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Preface

This volume contains the second part of the refereed proceedings of theXIII International
Conference on Optimization and Applications (OPTIMA 2022)1.

Organized annually since 2009, the conference has attracted a significant number
of researchers, academics, and specialists in many fields of optimization, operations
research, optimal control, game theory, and their numerous applications in practical
problems of data analysis and software development.

The broad scope of OPTIMA has made it an event where researchers involved in
different domains of optimization theory and numerical methods, investigating contin-
uous and discrete extremal problems, designing heuristics and algorithms with theoret-
ical bounds, developing optimization software, and applying optimization techniques
to highly relevant practical problems can meet together and discuss their approaches
and results. We strongly believe that this facilitates collaboration between researchers
working in optimization theory, methods, and applications, and those employing them
to resolve valuable practical problems.

The conference was held during September 26–30, 2022, in Petrovac, Montenegro,
in the picturesque Budvanian riviera on the azure Adriatic coast. For those who were
not able to come to Montenegro this year, an online session was organized. The main
organizers of the conferencewere theMontenegrinAcademy of Sciences andArts,Mon-
tenegro, the Dorodnicyn Computing Centre, FRC CSC RAS, Russia, and the University
of Évora, Portugal. This year, the key topics of OPTIMAwere grouped into seven tracks:

1. Mathematical programming
2. Global optimization
3. Discrete and combinatorial optimization
4. Optimal control
5. Optimization and data analysis
6. Game theory and mathematical economics
7. Applications

The Program Committee (PC) and invited reviewers included more than one hun-
dred well-known experts in continuous and discrete optimization, optimal control and
game theory, data analysis, mathematical economy, and related areas from leading insti-
tutions of 25 countries: Argentina, Australia, Austria, Belgium, China, Finland, France,
Germany, Greece, India, Israel, Italy, Lithuania, Kazakhstan, Mexico, Montenegro, the
Netherlands, Poland, Portugal, Russia, Serbia, Sweden, Taiwan, the UK, and the USA.
This year we received 70 submissions, mostly from Russia but also from Azerbaijan,
Kazakhstan, Latvia, Montenegro, Poland, Portugal, and the USA. Each submission was
reviewed in a single-blind blind manner by at least three PC members or invited review-
ers, experts in their fields, to supply detailed and helpful comments. Out of 43 qualified

1 http://agora.guru.ru/display.php?conf=OPTIMA-2022.

http://agora.guru.ru/display.php?conf=OPTIMA-2022
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submissions, the Program Committee decided to accept 17 papers to the first volume of
the proceedings for publication in LNCS volume 13781. Thus the acceptance rate for
the volume was about 40%.

In addition, after a short presentation of the candidate submissions, discussion at the
conference, and subsequent revision, the Program Committee proposed 13 out of the
remaining 26 papers to be included in this, second, volume of proceedings.

The conference featured two invited lecturers, plus several plenary and keynote talks.
The invited lectures were as follows:

• Panos M. Pardalos, University of Florida, USA, “Computational Approaches for
Solving Systems of Nonlinear Equations”

• Alexey Tret’yakov, Siedlce University of Natural Sciences and Humanities, Poland,
“Degenerate Equality Constrained Optimization Problems and P-Regularity Theory”

We would like to thank all the authors for submitting their papers and the members
of the PC for their efforts in providing exhaustive reviews. We would also like to express
special gratitude to all the invited lecturers and plenary speakers.

October 2022 Nicholas Olenev
Yuri Evtushenko

Milojica Jaćimović
Michael Khachay
Vlasta Malkova
Igor Pospelov
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Milojica Jaćimović Montenegrin Academy of Sciences and Arts,
Montenegro

Yuri G. Evtushenko Dorodnicyn Computing Centre, FRC CSC RAS,
Russia

Igor G. Pospelov Dorodnicyn Computing Centre, FRC CSC RAS,
Russia

Michael Yu. Khachay Krasovsky Institute of Mathematics and
Mechanics, Russia

Vlasta U. Malkova Dorodnicyn Computing Centre, FRC CSC RAS,
Russia

Nicholas N. Olenev CEDIMES-Russie and Dorodnicyn Computing
Centre, FRC CSC RAS, Russia

Program Committee

Majid Abbasov St. Petersburg State University, Russia
Samir Adly University of Limoges, France
Kamil Aida-Zade Institute of Control Systems of ANAS, Azerbaijan
Alla Albu Dorodnicyn Computing Centre, FRC CSC RAS,

Russia
Alexander P. Afanasiev Institute for Information Transmission Problems,

RAS, Russia
Yedilkhan Amirgaliyev Suleyman Demirel University, Kazakhstan
Anatoly S. Antipin Dorodnicyn Computing Centre, FRC CSC RAS,

Russia
Adil Bagirov Federation University, Australia
Artem Baklanov International Institute for Applied Systems

Analysis, Austria
Evripidis Bampis LIP6, Sorbonne Université, France
Olga Battaïa ISAE-SUPAERO, France
Armen Beklaryan National Research University Higher School of

Economics, Russia
Vladimir Beresnev Sobolev Institute of Mathematics, Russia
Anton Bondarev Xi’an Jiaotong-Liverpool University, China
Sergiy Butenko Texas A&M University, USA
Vladimir Bushenkov University of Évora, Portugal



viii Organization

Igor A. Bykadorov Sobolev Institute of Mathematics, Russia
Alexey Chernov Moscow Institute of Physics and Technology,

Russia
Duc-Cuong Dang INESC TEC, Portugal
Tatjana Davidovic Mathematical Institute of Serbian Academy of

Sciences and Arts, Serbia
Stephan Dempe TU Bergakademie Freiberg, Germany
Askhat Diveev FRC CSC RAS and RUDN University, Russia
Alexandre Dolgui IMT Atlantique, LS2N, CNRS, France
Olga Druzhinina FRC CSC RAS, Russia
Anton Eremeev Omsk Division of Sobolev Institute of

Mathematics, SB RAS, Russia
Adil Erzin Novosibirsk State University, Russia
Francisco Facchinei Sapienza University of Rome, Italy
Vladimir Garanzha Dorodnicyn Computing Centre, FRC CSC RAS,

Russia
Alexander V. Gasnikov National Research University Higher School of

Economics, Russia
Manlio Gaudioso Universita della Calabria, Italy
Alexander Yu. Gornov Institute of System Dynamics and Control

Theory, SB RAS, Russia
Edward Kh. Gimadi Sobolev Institute of Mathematics, SB RAS,

Russia
Andrei Gorchakov Dorodnicyn Computing Centre, FRC CSC RAS,

Russia
Alexander Grigoriev Maastricht University, The Netherlands
Mikhail Gusev N.N. Krasovskii Institute of Mathematics and

Mechanics, Russia
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A Derivative-Free Nonlinear Least
Squares Solver

Igor Kaporin(B)

Federal Research Center “Computer Science and Control”
of the Russian Academy of Sciences, Vavilova 40, Moscow, Russia

igorkaporin@mail.ru

Abstract. An improved version of derivative-free nonlinear least
squares iterative solver developed earlier by the author is described.
First, we apply a regularization technique to stabilize the evaluation
of search directions similar to the one used in the Levenberg-Marquardt
methods. Second, we propose several modified designs for the rectan-
gular preconditioning matrix, in particular a sparse adaptive techniques
avoiding the use of pseudorandom sequences. The resulting algorithm is
based on easily parallelizable computational kernels such as dense matrix
factorizations and elementary vector operations thus having a potential
for an efficient implementation on modern high-performance computers.
Numerical results are presented for several standard test problems as well
as for some special complex-valued cases to demonstrate the effectiveness
of the proposed improvements to method.

Keywords: Nonlinear least squares · Derivative-free optimization ·
Pseudorandom preconditioning · Preconditioned subspace descent

1 Introduction

Application areas of nonlinear least squares are numerous and include, for
instance, acceleration of neural network learning processes pattern recognition,
signal processing etc. This explains the need in the further development of robust
and efficient nonlinear least squares solvers.

The present paper continues the research started in [10] where a derivative-
free version of the method [9] was presented. Similar to [3–5], we use the inexact
Newton/Krylov subspace framework, however with search subspaces augmented
by several previous directions, with different stepsize choice rule and with the use
of rectangular preconditioner. The latter algorithimic feature (several variants of
which are discussed below) is critically important for the nonlinear least square
solver proposed in the present paper. Indeed, in the general case the residuals
cannot be readily used to form search directions as it was done in [3–5] when
the number of equations is equal to the number of unknowns.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Olenev et al. (Eds.): OPTIMA 2022, CCIS 1739, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-031-22990-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22990-9_1&domain=pdf
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https://doi.org/10.1007/978-3-031-22990-9_1


4 I. Kaporin

2 General Description of Nonlinear LS Solver

A standard least squares problem is formulated as

x∗ = arg min
x∈Rn

ϕ(x), (1)

where the function ϕ : Rn → R has the form

ϕ(x) =
1
2
‖f(x)‖2 ≡ 1

2
f�(x)f(x), (2)

and f(x) is a nonlinear mapping f : Rn → Rm, m ≥ n. Assuming sufficient
smoothness of f , an iterative procedure is constructed to find the minimizer x∗
numerically. Note that x∗ satisfies the equation

grad ϕ(x∗) = 0, (3)

where
grad ϕ(x) = J�(x)f(x) ∈ Rn, (4)

and
J(x) ≡ ∂f

∂x
∈ Rm×n, (5)

is the Jacobian matrix of f at x. Despite of m ≥ n, we still consider the zero
residual case ϕ(x∗) = 0 which may have practical importance.

To make the exposition more self-contained, further we recall some results
from [6–10].

2.1 Descent Along a Subnormalized Direction

Let x0, x1, . . . , xt, . . . be the sequence of approximations to the stationary point
x∗ constructed in the course of iterations, where t is the outer iteration index.
Further on, we will use the notations

ft = f(xt), Jt = J(xt), gt = grad(xt) = J�
t ft. (6)

The next approximation xt+1 to x∗ is constructed as

xt+1 = xt + αtpt, (7)

where the stepsize parameter αt satisfies

0 < αt < 2,

and pt is a direction vector satisfying the subnormalization condition (as intro-
duced in [10])

(Jtpt)�(ft + Jtpt) ≤ 0, (8)

which can conveniently absorb the inexactness of the Jacobian by a vector prod-
ucts arising due to application of finite difference approximations. Note that the
inequality (8) is a generalization of the normalization condition

(Jtpt)�(ft + Jtpt) = 0

used earlier in [6–9], where the explicit availability of Jt as an m×n matrix was
assumed. Next we consider sufficient conditions for the descent of ϕ(xt).
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2.2 General Estimate for Residual Norm Reduction

Under rather mild conditions, see, e.g. [7–9] and appendix A below, there exists
the limiting stepsize α̂t ∈ (0, 2) such that for all 0 < α ≤ α̂t the estimate

ϕ(xt + αpt)
ϕ(xt)

≤ 1 −
((

α − α2

2

)

θ2t

)2

(9)

is valid, where ϕ is defined in (2), direction pt is subnormalized by (8), and θt is
determined as

θt =
‖Jtpt‖
‖ft‖ . (10)

Note that by the subnormalization condition (8) it holds

ϑt = ϑ(ft, Jtpt) ≡ −(Jtpt)�ft

‖ft‖‖Jtpt‖ ≥ ‖Jtpt‖
‖ft‖ = θt, (11)

so that the quantity (10) is a lower bound for the cosine ϑt of the Euclidean
acute angle between m-vectors ft and (−Jtpt). Clearly, estimate (9) shows the
importance of finding subnormalized directions pt with values of θt as large as
possible. For the limiting stepsize condition sufficient for (9) to hold and the
proof of the latter see Appendix A in the present paper.

Remark 1. It appears that α̂t characterizes the nonlinearity of f in the neigh-
borhood of xt, while θt is related to the precision of approximate solution pt of
the “Newton equation” ft + Jtpt = 0. Note that the latter may not (and often
cannot) be solved exactly in the context of our considerations.

2.3 Choosing the Value of the Stepsize

Based on estimate (9) one can develop the following Armijo type procedure [1] for
evaluating appropriate stepsize αt providing for a certain decrease of the residual
norm. Let pt be a direction vector satisfying the subnormalization condition (8).
The value of stepsize is determined by checking the validity of estimate (23) (see
Appendix below; we cannot directly use Jp as in earlier papers) for a decreasing
sequence of trial values of α ∈ (0, 2); the standard choice is

α(l) = 2−l, l = 0, 1, . . . , lmax − 1, (12)

with lmax = 30, which approximately corresponds to α(l) > 10−9. As soon as (9)
be satisfied (which is the case whenever α̂t > 10−9), one sets αt = α(l). Other-
wise, the iterations are terminated with corresponding error message. However,
in numerical testing, the backtracking criterion (9) was often satisfied at once
for l = 0 with the stepsize αt = 1.
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2.4 Approximating Product of Jacobian by a Vector

The derivative-free approximation for products like Jp is obtained using the
second order central difference formula

J(x)p ≈ ˜J(x)p =
f(x + ζp) − f(x − ζp)

2ζ
, (13)

where ζ = O(τ1/3) and τ is the floating point tolerance. Assuming the sufficient
smoothness of f , the precision of (13) is estimated as

‖J(x)p − ˜J(x)p‖ = O(τ2/3),

which explains its further use. Indeed, in [10] it was noticed that under assump-
tion (26) (see Appendix below), larger finite difference errors resulted from
the use of the first order finite differences J(x)p ≈ (f(x + ζp) − f(x))/ζ with
ζ = O(τ1/2) are incompatible with small values of θ defined by (10). (Relatively
small θt can often be observed in computations; moreover, θt must decrease to
zero as t → ∞ for the convergence in nonzero residual problems.)

2.5 Choosing Subspace Basis and Descent Direction

Let k ≥ 1 and l ≥ 0 be fixed integers such that k + l ≤ n. Recall that pt−1 =
(xt−xt−1)/αt−1, . . . are the previous search directions. Introduce the rectangular
matrices Kt ∈ Rm×n serving as a kind of variable preconditioner, see Sect. 2.8
below. We further omit the iteration index t; for instance, we use notations

J = J(xt), pk−i = pt+k−i, ˜Jui =
(

f(xt + ζui) − f(xt − ζui)
)

/(2ζ).

According with numerical evidence presented in [10], the errors introduced by
the use of finite difference approximations for the products of J by a vector are
compensated by the application of Arnoldi-type orthogonalization procedure for
constructing the bases of subspaces containing search directions:

v1χ1,0 = f, vi+1χi+1,i = ˜Jui −
i

∑

j=1

vjχj,i, i = 1, . . . , k + l,

where
ui = K�vi, i = 1, . . . , k,

ui = pk−i, i = k + 1, . . . , k + l,

and the coefficients χ1,0 = ‖f‖,

χj,i = v�
j

˜Jui, j = 1, . . . , i, χi+1,i = ‖˜Jui −
i

∑

j=1

vjχj,i‖

are determined in a standard manner to satisfy the orthonormality condition
v�

i vj = δi−j . The above procedure was proposed in [10] as a generalization of
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the ones presented in [7–9]. An equivalent form of the above recurrences is the
matrix factorization

JU = V H + Z, (14)

where

U = [u1 | ... | uk+l], V = [v1 | ... | vk+l+1], V �V = Ik+l+1,

U ∈ Rn×(k+l), V ∈ Rm×(k+l+1), H ∈ R(k+l+1)×(k+l), Z ∈ Rm×(k+l).

Here, matrix Z accounts for the errors arising from the approximation of the
Jacobian by a vector multiplications so that

zi = Jui − ˜Jui,

where the latter notation corresponds to (13). Therefore, the direction is deter-
mined as

p = Us, s ∈ Rk+l, (15)

where s will be specified below in the next Section.

2.6 Characterizing Inexactness and Choosing Search Directions

Assume for a moment that Z = 0 in (14), which corresponds to exact compu-
tations with the Jacobian. In this case, the minimum norm solution of the form
(15) for the overdetermined linear equation f + Jp = 0 is given by

s = −(H�H)−1H�e1‖f‖,

where e1 = [1 0 . . . 0]� ∈ Rk+l+1 is the first unit vector. Indeed, according to
the initialization of recurrences for vi, one has

f = V e1‖f‖,

and, using (15) and (14) with Z = 0, it follows (recall that V �V = Ik+l+1)

‖f + Jp‖ = ‖V e1‖f‖ + JUs‖ = ‖V (e1‖f‖ + Hs)‖ = ‖e1‖f‖ + Hs‖, (16)

and the formula for the least squares solution readily follows.
As was announced in [10], a sufficiently reliable formula which takes into

account both the presence of a nonzero Z and potential ill-conditioning of H is
based on simple scaling and approximate pseudo-inversion

s = −1
2

(

H�H + δI
)−1

H�e1‖f‖, 0 < δ 
 ‖H‖2F , (17)

where δ = η‖H‖2F and η is a small positive parameter. For the latter, a fixed
value is used in actual implementation.

In order to estimate the effect of the derivative-free inexactness (which cor-
responds to Z �= 0), the following condition seems to be the most convenient:

Z�Z ≤ ξ2(H�H + δI), (18)

where ξ is a (typically small) positive parameter and δ is the same as in (17).
Next we find some upper bounds for ξ under which search directions (17) possess
the required subnormality (8) and angle (11) conditions.
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2.7 Subnormality of Search Directions and the Lower Bound for θ

Introducing the notation

M = H(H�H + δI)−1H� ∈ R(k+l+1)×(k+l+1), (19)

one finds
Hs = −1

2
Me1‖f‖. (20)

In the general case, similar to (16) one has

Jp = V Hs + Zs, f + Jp = V (e1‖f‖ + Hs) + Zs,

and therefore

(Jp)�(f + Jp) = (s�H�V � + s�Z�)(V (e1‖f‖ + Hs) + Zs)

= s�H�(e1‖f‖ + Hs) + 2s�Z�V

(

1
2
e1‖f‖ + Hs

)

+ s�Z�Zs

= −1
4
‖f‖2 +

∥

∥

∥

∥

1
2
e1‖f‖ + Hs

∥

∥

∥

∥

2

+ 2s�Z�V

(

1
2
e1‖f‖ + Hs

)

+ s�Z�Zs

≤ −1
4
‖f‖2 +

∥

∥

∥

∥

1
2
e1‖f‖ + Hs

∥

∥

∥

∥

2

+ 2‖Zs‖
∥

∥

∥

∥

1
2
e1‖f‖ + Hs

∥

∥

∥

∥

+ ‖Zs‖2

= −1
4
‖f‖2 +

(∥

∥

∥

∥

1
2
e1‖f‖ + Hs

∥

∥

∥

∥

+ ‖Zs‖
)2

≤ 1
4
‖f‖2

(

−1 +
(

‖(I − M)e1‖ + ξ
√

e�
1 Me1

)2
)

≤ 1
4
‖f‖2

(

−1 +
(

√

1 − e�
1 Me1 + ξ

√

e�
1 Me1

)2
)

where the last-but-one inequality holds by (17), (19), and (18) since

‖Zs‖2 = s�Z�Zs ≤ ξ2 s�(H�H + δI)s =
ξ2

4
e�
1 Me1‖f‖2,

while the last one follows from M2 ≤ M , so that

‖(I − M)e1‖ =
√

1 − 2e�
1 Me1 + e�

1 M2e1 ≤
√

1 − e�
1 Me1.

Thus we obtain the estimate

(Jp)�(f + Jp) ≤ 1
4
‖f‖2

(

−1 +
(

√

1 − e�
1 Me1 + ξ

√

e�
1 Me1

)2
)

.

The required results can now readily be obtained.
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First, the right hand side of the latter inequality is nonpositive if
√

1 − e�
1 Me1 + ξ

√

e�
1 Me1 ≤ 1,

which gives us a simple sufficient condition

ξ ≤
√

e�
1 Me1

1 +
√

1 − e�
1 Me1

,

for the subnormality (as defined by (8)) of direction (17).

Second, if one requires a more restrictive condition
√

1 − e�
1 Me1 + ξ

√

e�
1 Me1 ≤ ρ (21)

for some ρ ∈ (0, 1) to be specified later, then two-side bounds for θ = ‖Jp‖/‖f‖
readily follow from the resulting inequality

(Jp)�(f + Jp) ≤ −1 − ρ2

4
‖f‖2.

Indeed, from the latter inequality it follows

‖Jp‖2 +
1 − ρ2

4
‖f‖2 ≤ −(Jp)�f ≤ ‖Jp‖‖f‖

which is equivalent to the following quadratic inequality in θ,

θ2 − θ +
1 − ρ2

4
≤ 0,

the solution of which is
1 − ρ

2
≤ θ ≤ 1 + ρ

2
.

Setting now

ρ = 1 − 1
2

√

e�
1 Me1

gives (quite similar to the one used in [10]) the estimate

θ =
‖Jp‖
‖f‖ ≥ 1

4

√

e�
1 Me1,

which is valid if

ξ ≤ −1
2

+
1 −

√

1 − e�
1 Me1

√

e�
1 Me1

(22)

according with (21). Note that the right hand side of (22) is positive whenever
e�
1 Me1 > 16/25.
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Remark 2. It only remains to notice that the quantity e�
1 Me1 ∈ (0, 1) mono-

tonically increases in the progress of the Arnoldi iterations. Thus, the above
presented condition (22) on ξ seems not to be too restrictive.

Therefore, the stepsize can be safely determined from appropriately modified
estimate (9):

‖f(x + αp)‖2
‖f‖2 ≤ 1 −

((

α − α2

2

)

e�
1 Me1
16

)2

, (23)

as soon as conditions (18) and (22) hold.

2.8 Using Quasirandom and Adaptive Rectangular Preconditioners

As the preconditioner we consider a full column rank matrix Kt ∈ Rm×n satis-
fying

K�
t Kt ≈ In. (24)

Clearly, the forming of Kt and multiplying it by a vector q = Ktv must be as
cheap as possible. Here we will consider preconditionings having a potential for
a quite efficient implementation on modern high-performance computers. In the
proposed designs, the so called logistic sequence (see, e.g., [19] and references
cited therein) is used, defined as

ξ0 ∈ (0, 0.5) ∪ (0.5, 1), ξk = 1 − 2ξ2k−1, k = 1, 2, . . . . (25)

The idea of randomized preconditionings was already studied in [15] (see also
the references cited therein), though in rather different context.

Quasirandom Hankel Matrix. As in [10], we consider Kt taken as m ×
n Hankel matrix (Kt)i,j = ξi+j−1 with quasirandom entries generated by the
logistic sequence.

Quasirandom Design with Hadamard Matrix. In this case, we consider
Kt as the leading m×n submatrix of HDtH, where Dt is a diagonal matrix with
quasirandom entries generated by the logistic sequence, and H is the Hadamard
matrix of the order 2l ≥ max(m,n), defined recursively as

H2 =
[

1 1
1 −1

]

, H2k =
[

Hk Hk

Hk −Hk

]

, k = 2, 4, 8, . . . , 2l−1.

Quasirandom Sparse Design. Here we used Kt = [ek(1)| . . . |ek(n)], where
ek ∈ Rm is the kth unit vector, and the integer sequence 1 ≤ k(1) < . . . <
k(n) ≤ m was generated using quasirandom data associated with the logistic
sequence (25). The procedure for evaluating w = K�v has the following form:

k = 0;
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for i = 1, . . . , m:
if (|ξi| > cos nπ

2m ) then
k := k + 1
wk := vi

end if
end for

Consequently, the number of nonzeroes in Kt is only n, condition (24) is sat-
isfied exactly, and the computational costs for such preconditioning are minimal.

Adaptive Sparse Design. Here the preconditioner has the same form Kt =
[ek(1)| . . . |ek(n)] as above, where ek ∈ Rm is the kth unit vector; however, in this
case the integer sequence 1 ≤ k(1) < . . . < k(n) ≤ m is constructed using the
deterministic condition

|fk(i)| ≥ 1
2m

n
∑

j=1

|fj |,

where fj is the jth component of the current residual vector f(x). An important
additional advantage of such design is that it does not use any quasirandom
data.

2.9 Description of Computational Algorithm

The above described preconditioned subspace descent algorithm can be summa-
rized as follows. Note that indicating f(x) as an input means the availability of
computational module for the evaluation of vector f(x) for any given x.

Algorithm 1.
Key notations:

Vt = [v1| . . . |vimax+1] ∈ Rm×(imax+1), Ut = [u1| . . . |uimax ] ∈ Rn×imax ,

Hi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

χ1,1 χ1,2 χ1,3 . . . χ1,i

χ2,1 χ2,2 χ2,3 . . . χ2,i

0 χ3,2 χ3,3 . . . χ3,i

. . . . . . . . . . . . . . .
0 . . . 0 χi,i−1 χi,i

0 . . . 0 0 χi+1,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R(i+1)×i, hi =

⎡

⎢

⎢

⎢

⎢

⎣

χ1,1

χ1,2

χ1,3

. . .
χ1,i

⎤

⎥

⎥

⎥

⎥

⎦

∈ Ri;

Input: f(x) ∈ Rm, x0 ∈ Rn;
Initialization:
s = k + l ≤ n, η = 10−12, ζ = 5 · 10−6,
ε = 10−10, τmin = 10−8, tmax = 10000,
f0 = f(x0), ρ0 = f�

0 f0;
Iterations:
for t = 0, 1, . . . , tmax − 1:

generate quasirandom Kt ∈ Rm×n
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v1 := ft/
√

ρt

w := v1
imax := k + min(l, t)
for i = 1, . . . , imax:

if (i ≤ k) then
ui := K�

t w
end if
w := (f(xt + ζui) − f(xt − ζui))/(2ζ)
for j = 1, . . . , i:

χj,i = v�
j w

w := w − vjχj,i

end for
χi+1,i =

√
w�w

w := w/χi+1,i

vi+1 = w
end for
LtL

�
t = H�

imax
Himax + η trace(H�

imax
Himax)I

zt := (Lt)−1himax

ϑt := z�
t zt

zt := (Lt)−�ztρt

pt = −Utzt

uk+1+(tmodl) := pt

α(0) = 1
for l = 0, 1, . . . , lmax − 1:

x
(l)
t = xt + α(l)pt

f
(l)
t = f(x(l)

t )
ρ
(l)
t = (f (l)

t )�f
(l)
t

τ = α(l)(2 − α(l))ϑt/16
if (τ < τmin) return xt

if (ρ(l)t /ρt > 1 − (τ/2)2) then
α(l+1) = α(l)/2
x
(l+1)
t = xt + α(l+1)pt

else
go to NEXT

end if
end for
NEXT: xt+1 = x

(l)
t , ft+1 = f

(l)
t , ρt+1 = ρ

(l)
t ;

if (ρt+1 < ε2ρ0) or (ρt+1 ≥ ρt) return xt+1

end for

Remark 3. The use of quantity ϑt can be explained as follows. To simplify the
notation, let us drop the indices t, imax, and (l). Then, by H�H + δI = LL�,
h = H�e1, and (19), it holds

ϑ = z�z = h�L−�L−1h = e�
1 H(H�H + δI)−1H�e1 = e�

1 Me1,
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τ

2
=

1
2
α(2 − α)ϑ/16 =

(

α − α2

2

)

e�
1 Me1
16

.

Comparing the latter equality with (23) gives exactly the backtracking condition
ρ
(l)
t /ρt > 1 − (τ/2)2 used in Algorithm 1 for the refinement of stepsize α.

3 Test Problems and Numerical Results

Below some results of application of Algorithm 1 to several standard hard-to-
solve nonlinear test problems are presented. For the test runs, one core of Pen-
tium(R) Dual-Core CPU E6600 3.06 GHz, 3.25 Gbytes RAM desktop PC was
used. We will consider sufficiently large subspace dimensions with k ≥ l and
k + l ≤ n. For the nonzero residual problems, the iterations typically terminate
by the condition τ < τmin = 10−10, see the corresponding line in Algorithm 1.

3.1 Broyden Tridiagonal Function

Following [12], for m = 500 and n = m define f(x) as

fi = (3 − 2xi)xi − xi−1 − 2xi+1 + 1, 1 ≤ i ≤ 500,

where x0 = xn+1 = 0. The optimum value is f�f = 0 and the starting point is
set as x̃ = [−1 . . . − 1]�. The results are presented in Table 1. This test can be
considered as relatively easy due to the actual closeness of the initial guess x̃ to
the solution x∗.

Table 1. Broyden tridiagonal test: comparing various preconditionings

Preconditioning k + l #iter #fun.eval. opt.value ‖x‖C

Quasirandom Hankel 50+50 15 1726 6.7E-10 0.707

Quasirandom Hadamard 50+50 14 1597 4.8E-10 0.707

Quasirandom sparse 50+50 5 526 3.7E-12 0.707

Adaptive sparse 50+50 8 864 1.9E-10 0.707

3.2 Chained Rosenbrock Function

This test function was introduced in [17], and we will use its version with m =
2n − 2 and essentially variable coefficients:

f2i−1 = i(xi − x2
i+1), f2i = 1 − xi+1, i = 1, . . . , n − 1.

The optimum value is f�f = 0 at x∗ = [1 . . . 1]� and the starting point is
x̃ = [−1 . . . − 1]�. The results are given in Table 2 for m = 198 and n = 100.
For this test case, the convergence history demonstrated the behavior typical
for linear conjugate gradients with fast residual norm decrease at initial steps
followed by a near stagnation phase and fast superlinear decrease at the final
stage.
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Table 2. Chained rosenbrock test: comparing various preconditionings

Preconditioning k + l #iter #fun.eval Opt.value ‖x‖C

Quasirandom Hankel 50+50 664 133538 9.9E-08 1.000

Quasirandom Hadamard 50+50 721 145336 2.5E-08 1.000

Quasirandom sparse 50+50 632 126995 7.3E-08 1.000

Adaptive sparse 50+50 645 129379 8.2E-08 1.000

3.3 Approximate Canonical Decomposition of Inverse 3D Distance
Tensor

This rather hard-to-solve nonzero residual problem was considered, e.g., in [11,
14,16]. Since the 3D array under consideration

ti,j,k =
(

i2 + j2 + k2
)−1/2

is symmetric, the residual function can be taken as

fi+(j−1)q+(k−1)q2 = − (

i2 + j2 + k2
)−1/2

+
r

∑

l=1

x(l−1)q+ix(l−1)q+jx(l−1)q+k,

where 1 ≤ i, j, k ≤ q, so that m = q3 and n = qr. For x̃ = [1/2 . . . 1/2]�, the
results are given in Table 3 for r = 5, q = 30 and in Table 4 for r = 5, q = 50.
The sizes of the problem are m = 27000, n = 150 and m = 125000, n = 250.

Table 3. Inverse 3D distance tensor small test: comparing various preconditionings

Preconditioning k + l #iter #fun.eval Opt.value ‖x‖C

Quasirandom Hankel 75+75 101 25008 0.01113926 0.601

Quasirandom Hadamard 75+75 76 17178 0.01113926 0.601

Quasirandom sparse 75+75 224 62676 0.01113926 0.601

Adaptive sparse 75+75 135 35149 0.01113926 0.601

Table 4. Inverse 3D distance tensor large test: comparing various preconditionings

Preconditioning k + l #iter #fun.eval Opt.value ‖x‖C

Quasirandom Hankel 125+125 126 47880 0.02763617 0.653

Quasirandom Hadamard 125+125 102 36360 0.02763617 0.653

Quasirandom sparse 125+125 100 35480 0.02763617 0.653

Adaptive sparse 125+125 141 55278 0.02763617 0.653
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3.4 Lennard-Jones Potential Minimization

The problem of finding

x = [r�
1 . . . r�

N ]� = arg min
x

∑

1≤i<j≤N

(‖ri − rj‖−12 − 2‖ri − rj‖−6
)

,

where ri ∈ Rd and d = 2 or d = 3, serves as a popular hard-to-solve benchmark
system for optimization algorithms, see, e.g., [2,13,18]. Its reformulation as a
nonzero residual nonlinear LS problem with m = N(N − 1)/2 and n = dN
readily follows if one sets

fi,j = ‖ri − rj‖−6 − 1, 1 ≤ i < j ≤ N.

Clearly, the minimum of the Lennard-Jones potential is expressed as

min
∑

1≤i<j≤N

(‖ri − rj‖−12 − 2‖ri − rj‖−6
)

= min
x

‖f(x)‖2 − N(N − 1)
2

.

The results for d = 2, N = 100 (so that m = 4950 and n = 200) are shown in
Table 5. The obtained minima well agree with that published in the existing lit-
erature: for 2D problem f(x) = 68.26037 yields −290.521 compared to −293.697
in [2]. For this problem (with rank deficient Jacobian and non-unique solution),
dense quasirandom preconditionings provide for a considerably better results.

Note that for such complicated problems with multiple minima, the choice
of the initial guess is probably the most important tuning parameter. In our
tests with Lennard-Jones equations, we used 100 quasirandom initial guesses
generated on the base of the logistic sequence as follows:

ξ0 = 0.2, ξk = 1 − 2ξ2k−1, k = 1, 2, . . . ;

x
(s)
0 (j) = ξsj/8, 1 ≤ j ≤ n, s = 1, 2, . . . , 100;

the best results are shown in Table 5.

Table 5. Lennard-Jones 2D test: comparing various preconditionings

Preconditioning k + l #iter #fun.eval Opt.value ‖x‖C

Quasirandom Hankel 180+20 74 29258 68.260376 7.915

Quasirandom Hadamard 180+20 63 24846 68.269600 10.23

Quasirandom sparse 180+20 89 35284 68.683881 50889

Adaptive sparse 180+20 99 39288 68.415685 1723
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4 Concluding Remarks

In the present paper, a nonlinear least squares solver is presented which is based
on derivative-free computations and is formally applicable to all types of least
squares problems with sufficiently smooth residual function. Key feature of the
algorithm is the use of quasirandom rectangular preconditioners for the construc-
tion of approximate Krylov subspaces containing descent directions. In practice,
the proposed quasirandom Hadamard matrix based preconditioning can be rec-
ommended. The proposed algorithmic implementation of the method is justi-
fied by theoretical results related to the residual norm reduction. The results of
numerical testing on several hard-to-solve problems have confirmed the efficiency
and robustness of the derivatibe-free Preconditioned Subspace Descent method.

Acknowledgement. The author thanks the anonymous referee for insightful com-
ments and suggestions which allow to significantly improve the exposition of the paper.

A Limiting Stepsize Along Subnormalized Direction

Similar to [6,9], the proof of (9) is based on the assumption that the limiting
stepsize α̂ = α̂(f, p) along a subnormalized direction p exists such that the
limiting stepsize condition

‖f(x + αp) − f − αJp‖ ≤
(

α − α2

2

) ‖Jp‖2
‖f‖ (26)

is satisfied for all 0 < α ≤ α̂. (To clarify the notations, further we will omit the
iteration index t.) For instance, a sufficient condition for (26) to hold is that f
satisfies the local Lipschitz condition at x and J(x) has full column rank, see,
e.g., [9]. Indeed, (9) can be obtained from (26) and (8) as follows:

‖f(x + αp)‖ ≤ ‖f + αJp‖ + ‖f(x + αp) − f − αJp‖

=
(‖f‖2 + 2αf�Jp + α2‖Jp‖2)1/2

+ ‖f(x + αp) − f − αJp‖

≤ (‖f‖2 − 2α‖Jp‖2 + α2‖Jp‖2)1/2
+

(

α − α2

2

) ‖Jp‖2
‖f‖

= ‖f‖
(

(

1 − (2α − α2)
‖Jp‖2
‖f‖2

)1/2

+
(

α − α2

2

) ‖Jp‖2
‖f‖2

)

≤ ‖f‖
(

1 −
((

α − α2

2

) ‖Jp‖2
‖f‖2

)2
)1/2

,

where the latter estimate follows from the inequality

√

1 − η +
η

2
≤

√

1 − η2

4
,

which holds for any 0 ≤ η ≤ 1 and is used with η = α(2 − α)‖Jp‖2/‖f‖2, see
also (11).
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Abstract. Due to its applications in many different places in machine
learning and other connected engineering applications, the problem of
minimization of a smooth function that satisfies the Polyak-�Lojasiewicz
condition receives much attention from researchers. Recently, for this
problem, the authors of [14] proposed an adaptive gradient-type method
using an inexact gradient. The adaptivity took place only with respect to
the Lipschitz constant of the gradient. In this paper, for problems with
the Polyak-�Lojasiewicz condition, we propose a full adaptive algorithm,
which means that the adaptivity takes place with respect to the Lips-
chitz constant of the gradient and the level of the noise in the gradient.
We provide a detailed analysis of the convergence of the proposed algo-
rithm and an estimation of the distance from the starting point to the
output point of the algorithm. Numerical experiments and comparisons
are presented to illustrate the advantages of the proposed algorithm in
some examples.
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1 Introduction

With the increase in the number of applications that can be modeled as large-
or even huge-scale optimization problems (some of such applications arise in
machine learning, deep learning, data science, control, signal processing, statis-
tics, and so on), first-order methods, which require low iteration cost as well
as low memory storage, have received much interest over the past few decades
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[1]. Gradient-type methods may be regarded as the cornerstone and core of the
numerical methods for solving optimization problems.

For the problem of minimization of a smooth function f , it is well known that
if f is strongly-convex, then the gradient descent method achieves a global lin-
ear convergence rate [13]. However, many of the fundamental models in machine
learning such as least squares and logistic regression yield objective functions
that are convex but not strongly convex. This matter led to the formation of
motivation for seeking some alternatives to strong convexity, showing that it is
possible to obtain linear convergence rates for problems such as least squares and
logistic regression. One of these alternatives is the Polyak-�Lojasiewicz inequal-
ity (or PL-condition). This inequality was originally introduced by B. Polyak
[15], who proved that it is sufficient to show the global linear convergence rate
for the gradient descent without assuming convexity. PL-condition is very well
studied by many researchers in many different works for many different settings
of optimization problems and has been theoretically verified for objective func-
tions of optimization problems arising in many practical problems. For example,
it has been proven to be true for objectives of over-parameterized deep net-
works [2], learning LQR models [6], and phase retrieval [19]. More discussions
of PL-condition and many other simple problems can be found in [9]. Note
that many other important classes of non-convex problems (Lipschitz problems,
weakly convex problems, weakly α-quasiconvex functions) are investigated by
different authors (see e.g. [16,18,19]).

In the first-order methods (thus the classical gradient descent method), the
availability of an exact first-order oracle is assumed. That is, the oracle must
provide at each given point the exact values of the function and its gradient. But
unfortunately, in many applications, there is no access to this exact information
(especially information about the gradient) at each iteration of the method.
This led researchers to investigate the behavior of first-order methods which
have the possibility to work with an inexact oracle. This problem attracted the
attention of many researchers in mathematical optimization. In [3] (which can
be considered as a fundamental work in this direction) the authors introduce the
notion of an inexact first-order oracle, which naturally appears in the context of
smoothing techniques, Augmented Lagrangians, and many other situations. See
[3–5,10,17,21] and references therein, for more details.

It is known that the analysis of the convergence of the gradient descent
method, implied the constant step-size which depends on the Lipschitz con-
stant of the gradient of the objective function (constant of smoothness). But in
many applied optimization problems, it is difficult to estimate this constant. For
example, the well-known Rosenbrock function and its multidimensional gener-
alizations (for example, the Nesterov-Skokov function [12]) have only a locally
Lipschitz continuous gradient. Thus, it is impossible to estimate the Lipschitz
constant of the gradient for these functions without additional restrictions on
the operation region of the method. In order to overcome the difficulty to esti-
mate the value of the Lipschitz constant of the gradient, there have been many
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attempts to construct a method with adaptivity on the step-size, see for example
[7,16–18].

Recently, for the problem of minimizing a smooth function that satisfies the
PL-condition (which is the problem under consideration in this paper), in [14] the
authors proposed non-adaptive and adaptive gradient-type methods using the
notion of the non-exact gradient. They analyzed the proposed algorithms and
the influence of non-exactness on the rate of convergence. But the adaptivity
takes place with respect to the Lipschitz constant of the gradient, where it is
still necessary to calculate the level of the noise in the gradient exactly.

In this paper, we continue the research in order to construct an adaptive
gradient-type method that was studied in [14] for the first time and propose an
adaptive algorithm for problems with objective functions that satisfy PL condi-
tion with a detailed analysis of its convergence and an estimation of the distance
from the starting point to the output point of the algorithm. The adaptivity in
the proposed algorithm in this paper will be in both parameters: the Lipschitz
constant of the gradient and the level of the noise in the gradient. Therefore, the
proposed algorithm is fully adaptive.

This paper consists of an introduction and 4 main sections. In Sect. 2 we
formulate basic concepts, definitions, and assumptions that are connected with
the problem under consideration. In Sect. 3 we mention an adaptive algorithm
that was proposed in [14], the adaptivity in this algorithm is for the Lipschitz
constant of the gradient of the objective function. Section 4 is devoted to a fully
adaptive algorithm (the adaptivity in the Lipschitz constant of the gradient and
the level of the noise in the gradient) for problems with objective functions that
satisfy PL-condition. The last Sect. 5 is devoted to the numerical experiments
which demonstrate the effectiveness of the proposed algorithm. The conducted
experiments were conducted for the minimization problem of the quadratic form,
the logistic regression problem, and for one minimization problem connected with
the system of nonlinear equations.

2 Problem Statement and Basic Definitions

In this section, we present the problem statement and some basic concepts and
definitions.

Definition 1. The differentiable function f : Rn −→ R is an L-smooth (or ∇f
is Lipschitz-continuous) w.r.t. ‖ · ‖, for some constant L > 0, if

‖∇f(x) − ∇f(y)‖ � L‖x − y‖ ∀x, y ∈ R
n. (1)

Here and everywhere in the paper, the norm ‖ · ‖ indicates the Euclidean norm.

Definition 2. Let f be an L-smooth function. The gradient ∇f satisfies the
Polyak-�Lojasiewicz condition (for brevity, we write the PL-condition) [15] if the
following inequality holds

f(x) − f∗ � 1
2μ

‖∇f(x)‖2 ∀x ∈ R
n, (2)
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where μ > 0, f∗ = f(x∗) and x∗ is one of the exact solutions of the optimization
problem under consideration.

In this paper, we will consider a classical optimization problem

min
x∈Rn

f(x), (3)

when the objective function f satisfies (1) and (2).
Let us denote by ˜∇f(x) the approximate value of ∇f(x) at any requested

point x (alternatively we also call ˜∇f(x) an inexact gradient of f at x), this
means

∇f(x) = ˜∇f(x) + v(x), and ‖v(x)‖ � Δ, (4)

for some fixed Δ > 0. From this, (2) means

f(x) − f∗ � 1
μ

(‖˜∇f(x)‖2 + Δ2) ∀x ∈ R
n. (5)

3 Gradient Descent with an Adaptive Step-Size Policy

Due to the difficulty of estimating the Lipschitz constant of the gradient of the
objective function, the researchers are actively working in order to propose meth-
ods that overcome this difficulty in adaptive forms. In [14], the authors proposed
an adaptive algorithm (listed as Algorithm 1, below), which is a generalization
of the universal gradient method [11] for working with an inexact gradient of the
functions satisfying the PL-condition. The importance of working with inexact
gradients occurs in many optimization problems in the Hilbert space [20] and,
in a particular case, inverse problems [8]. The adaptivity in Algorithm1, is for
the Lipschitz constant L.

For the inexact gradient (4) we can get an inequality similar to (1), as follows:

f(x) � f(y) + 〈˜∇f(y), x − y〉 + L‖x − y‖2 +
Δ2

2L
, ∀x, y ∈ R

n.

This inequality contains an exact calculation of the value of the function f
at an arbitrary point from the domain of definition.

Let us assume that we can calculate the inexact value ˜f of the function f at
any point x, so that

|f(x) − ˜f(x)| � δ, (6)

for some δ > 0. Then the following inequality holds:

˜f(x) � ˜f(y) + 〈˜∇f(y), x − y〉 + L‖x − y‖2 +
Δ2

2L
+ 2δ, ∀x, y ∈ R

n. (7)
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Algorithm 1. Adaptive Gradient Descent with Inexact Gradient [14].
Require: x0, Lmin � 0, L0 � Lmin, δ � 0, Δ � 0.
1: Set k := 0
2: Calculate

xk+1 = xk − 1

2Lk

˜∇f(xk). (8)

3: If

˜f(xk+1) � ˜f(xk) + 〈˜∇f(xk), xk+1 − xk〉 + Lk‖xk+1 − xk‖2 +
Δ2

2Lk
+ 2δ, (9)

then k := k + 1, Lk := max
{

Lk−1
2

, Lmin

}

and go to Step 2. Otherwise, set Lk :=

2Lk and go to Step 3.
4: return xk.

For Algorithm 1, with a sufficiently small inexact gradient, at each point in
the sequence {xk}k�0,

‖˜∇f(xk)‖ � 2Δ, (10)

and according to (5), we can guarantee that f(xk) − f∗ � 5Δ2

μ .
For Algorithm 1, in [14], the following theorem has been proved.

Theorem 1. Suppose that f satisfies PL-condition (2) and conditions (6),
Δ2 � 16Lδ hold. Let the parameter Lmin in Algorithm1 be such that Lmin � μ

4
and one of the following holds:

1. Algorithm1 works N∗ steps where N∗ is such that

N∗ =
⌈

8L

μ
log

(

μ(f(x0) − f∗)
Δ2

)⌉

. (11)

2. For some N � N∗, at the N -th iteration of Algorithm1, stopping criterion
(10) is satisfied for the first time.

Then for the output point x̂ (x̂ = xN or x̂ = xN∗) of Algorithm1 will satisfy the
following inequalities

f(x̂) − f∗ � 5Δ2

μ
,

‖x̂ − x0‖ � 8Δ
μ

√

γ2

2
+

4γL

μ
log

(

μ(f(x0) − f∗)
Δ2

)

+
16

√

γL(f(x0) − f∗)
μ

, (12)

where γ = L
Lmin

. Also, the total number of calls to the subroutine for calculating
inexact values of the objective function and (8) is not more than 2N + log 2L

L0
.
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Note, that Algorithm 1 uses subroutines for finding the inexact value of the
objective function more often than the gradient method with a constant step-
size. But the number of calls to these subroutines in Algorithm 1 is not more than
2N + log 2L

L0
. This means that the “cost” of an iteration of the adaptive Algo-

rithm1 is, on average, comparable to about two iterations of the non-adaptive
method (i.e. with a constant step-size). At the same time, the accuracy achieved
by Algorithm 1 and the non-adaptive one also equals approximately [14].

4 Gradient Descent with Adaptivity in the Step-Size
and Inexactness of the Noise Level

As we saw in the previous section, the adaptivity in Algorithm1 was for the
parameter L only. In this section, we consider an Algorithm (listed as Algo-
rithm2, below), which is a generalization of Algorithm 1 for the case of an
unknown noise level Δk. It means that the adaptivity in Algorithm2, will be
for two parameters L and Δ. In this algorithm, at each iteration, we select the
constants Δk and Lk, at each iteration, such that they satisfy the inequality for
smooth functions with an inexact gradient for points from neighboring iterations.

Algorithm 2. Adaptive Gradient Descent Method for unknown L and Δ.
Require: x0, Lmin � μ

4
> 0, L0 � Lmin, Δ0 > 0, Δmin > 0.

1: Set k := 0.
2: Set Lk := max

{

Lk−1
2

, Lmin

}

. for k ≥ 1

3: Calculate:

xk+1 = xk − 1

2Lk
∇̃f(xk).

4: If

f(xk+1) � f(xk) + 〈∇̃f(xk), xk+1 − xk〉 + Δk‖xk+1 − xk‖ +
Lk

2
‖xk+1 − xk‖2,

(13)

then go to Step 5. Otherwise, set Lk := 2Lk and Δk = 2Δk and go to step 3.
5: Find the minimal value of Δk, such that (13) holds, and Δk ≥ Δmin, also Δk � Δj ,

for j < k.
6: If stop condition does not hold, set k := k + 1 and go to Step 2.
7: return xk.

For the sequence of points generated by Algorithm 2, due to fulfillment of
condition (13), the following inequality holds

f(xk+1) − f(xk) � Δ2
k

2Lk
− 1

4Lk
‖∇̃f(xk)‖2. (14)
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In this case, using (14), we can get the following estimate

f(xk+1) − f∗ �
k

∏

j=0

(

1 − μ

4Lj

)

(f(x0) − f∗) +
maxj�k Δ2

j

μ
, (15)

or by Lj � maxj�k Lj , we get

f(xk+1) − f∗ �
(

1 − μ

4maxj�k Lj

)k+1

(f(x0) − f∗) +
maxj�k Δ2

j

μ
. (16)

Here and below, by maxj�k Δ2
j we mean the maximum of all estimates Δj

up to the k-th iteration.
Let us estimate the value maxj�k Lj . Note that inequality (13) holds for

Lk � L and for Δk � Δ for all k � 0.
Let us consider an arbitrary K-th iteration. If Δ

ΔK
� L

LK
, then when LK

reaches L, ΔK reaches Δ also, it will not be more iterations in the step 4. Hence,
if Δ

ΔK
� L

LK
, then LK � 2L. On the other hand, if Δ

ΔK
> L

LK
, then in the worst

case LK = L at the beginning and after the completion of the process, we have
LK � 2Δ

ΔK
L � 2Δ

Δmin
L. Thus, we obtain the estimate Lmax � 2Lmax

{

Δ
Δmin

, 1
}

.

Denoting Lmax = Lmax
{

Δ
Δmin

, 1
}

, we obtain the following refinement of the
bound (16):

f(xk+1) − f∗ �
(

1 − μ

8Lmax

)k+1

(f(x0) − f∗) +
maxj�k Δ2

j

μ
. (17)

In a similar way, for Δk we obtain that Δk � Δmax := 2Δmax
{

L
Lmin

, 1
}

.
Thus, maxj�k Δj � Δmax.

In this case, we can stop the method after reaching the accuracy by the gra-
dient ‖∇̃f(xk)‖ � 2maxj�k Δj , which guarantees an estimate for the accuracy
by the function

f(xk) − f∗ �
5maxj�k Δ2

j

μ
� 5Δ2

max

μ
.

On the other hand, using the estimate (17) and the introduced notation, we
can guarantee the following rate of convergence

f(xk+1) − f∗ �
(

1 − μ

8Lmax

)k+1

(f(x0) − f∗) +
Δ2

max

μ
. (18)

Then we get the following expression for the number of iterations

N �
⌈

8Lmax

μ
log

(

μ(f(x0) − f∗)
4Δ2

max

)⌉

.

As before, we get an estimate for the distance from the starting point to the
current one, we can estimate it as follows:

‖xN − x0‖ � 8Δmax

μ

√

γ2

2
+

2γLmax

μ
log

(

μ(f(x0) − f∗)
4Δ2

max

)

+
16

√

γLmax(f(x0) − f∗)
μ

,
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where γ = L
Lmin

.
We can also estimate the total number of evaluations of the function f at

each iteration of Algorithm 2. As mentioned earlier, the condition (13) is satisfied
if Δk � Δ and Lk � L. Thus, step 4 will be repeated at one iteration no more
than

1 + log2

(

max
{

L

Lmin
,

Δ
Δmin

})

.

Step 5 will be repeated no more than log2

(

2L
Lmin

)

times. Thus, the total number
of function evaluations does not exceed

N∗ log2

(

4L

Lmin
max

{

L

Lmin
,

Δ
Δmin

})

.

In this case, we get the following result about the work of Algorithm 2.

Theorem 2. Let Algorithm2 works either

N∗ =
⌈

8Lmax

μ
log

(

μ(f(x0) − f∗)
4Δ2

max

)⌉

steps, or for some k∗ � N∗ on the k∗-th iteration of Algorithm2, the stopping
criterion ‖∇̃f(xk∗)‖ � 2maxj�k Δj be achieved. Then for the output point x̂
(x̂ = xk∗ or x̂ = xN∗) of the Algorithm2, the following inequality is guaranteed
to be true

f(x̂) − f∗ �
5maxj�k Δ2

j

μ
� 5Δ2

max

μ
.

Moreover,

‖x̂ − x0‖ � 8Δmax

μ

√

γ2

2
+

2γLmax

μ
log

(

μ(f(x0) − f∗)
4Δ2

max

)

+
16

√

γLmax(f(x0) − f∗)
μ

,

where γ = 4Lmax
μ , Δmax = 2Δmax

{

L
Lmin

, 1
}

, Lmax = Lmax
{

Δ
Δmin

, 1
}

. Also,
the total number of calls to the calculation of the function f is not more than

N∗ log2

(

4L

Lmin
max

{

L

Lmin
,

Δ
Δmin

})

.

Remark 1. The value Lmax estimates the maximum value of the parameter Lk.
The estimates above remain valid if Lmax is replaced by maxj�k Lj .

Remark 2. Let at any point x we have a model (f̃ , ∇̃f) of the function f such
that the following conditions are satisfied:

f̃(x) � f̃(y) + 〈∇̃f(y), x − y〉 +
L

2
‖x − y‖2 + Δ‖x − y‖ + δ, (19)

and
f̃(x) − f∗ � 1

μ

(

‖∇̃f(x)‖ + Δ2
)

+ δ. (20)
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Note that if ∇̃f is a Δ-inexact gradient and f̃ is a function such that
|f(x) − f̃(x)| � δ for each x, then the conditions above are satisfied. A nat-
ural modification of the Algorithm1 is the selection of L such that (19) will be
satisfied for it. In this case, the achieved accuracy will decrease from 5Δ2

μ to
5Δ2

μ + δ. We can act similarly in the case of a known constant δ in Algorithm 2.
In this case, the additional factor δ will also appear exactly. However, if the given
parameter δ is not known, then it can also be selected. However, this will lead
to an additional complication of the algorithm, which we will not discuss here.
Note that the condition (13) will be hold if Lk � L and Δk � Δ + 2Lk

‖∇̃f(xk)‖δ.
In order for this condition to be achieved, it is enough to modify the update of
Δk at the 4th step of Algorithm 2 so that Δk := 2τΔk for τ > 1. In this case,
the estimates for the number of iterations and the accuracy of the solution with
respect to the function, and the distance from the starting point to the output
point from Theorem 2 will remain true, provided that the parameters Δmax and
Lmax will change accordingly.1

Remark 3. Note, that the achieved Δmax can be significantly more than Δ
according to results of Theorem 2. Nevertheless, note that we do not research
in this work the influence of step 5 of Algorithm2. Moreover, according to our
experiments, the method stops when Δmax ∼ Δ.

As before, these estimates give theoretical guarantees for the convergence of
our method. But we observe that methods work significantly better in practice
than in theory. Particularly, we see in all our experiments that proposed adaptive
method Algorithm 2 can approach quality O

(

Δ2
)

in terms of gradient norm like
gradient method with constant step (see [14]).

5 Numerical Experiments

In this section, in order to demonstrate the performance of Algorithms 1, 2 and
the algorithm with the constant step-size (see (2.1), (2.9) and Theorems 2, 3
in [14]) and compare them, we consider some numerical experiments concerning
the quadratic optimization problem, logistic regression minimization and the
solution of the system of nonlinear equations.

In all experiments, we will use an exact gradient with random noise v(x) in
(4), that is randomly generated, on the n dimensional sphere with radius 1 at
the center 0, i.e. v(x) ∼ U (Sn

1 (0)).

1 In the worst case, Lk at the beginning of a new iteration is already equal to L. Then

denote by I1 the minimal solution in I of the inequality 2τIΔmin � Δ + δ
√

2L
Δ

2I

provided that I � 1. Then Lmax = 2IL. Similarly, we can get that

Δmax = 2

(

Δ +
δ
√

2Lmax

Δ

)

· max

{(

L

Lmin

)τ

, 1

}

.

.
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All experiments were implemented in Python 3.4, on a computer fitted with
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 8000 Mhz, 4 Core(s), 8 Logical
Processor(s). The RAM of the computer is 8 GB.

Note, in the work [14] authors propose the stopping rule ‖∇̃f(xk)‖ ≤ √
6Δ

for known inexactness value Δ. In this work constant
√

6 was chosen for a single
criterion of stopping methods and we will use it too.

5.1 The Minimization Problem of the Quadratic Form

In this subsection, we consider the minimization problem of the quadratic form

f(x) =
n

∑

i=1

dix
2
i , x = (x1, . . . , xn) ∈ R

n, di ∈ R. (21)

We run Algorithms 1, 2 and the variant with a constant step-size (we denote
this variant ”Alg. constant” in the listed tables below), for n = 100, L =
max1�i�n di = 1 and different values of the parameter μ.

We take x0 = (100, . . . , 100)� as the initial point of all the compared algo-
rithms.

The results are presented in Tables 1 and 2. The results, in Table 1 demon-
strate the running time (in milliseconds) of the algorithms and the required
number of iterations to achieve the accuracy ‖∇̃f(x)‖ �

√
6Δ, for different val-

ues of Δ. Meanwhile, the results in Table 2 demonstrate the achieved accuracy
with respect to ‖∇f(xN )‖, which is the norm of the gradient of the objective
function f at the output point xN of the algorithms after N iterations, and the
distance between the initial point x0 and the output point xN . Note that the
distance between x0 and the nearest optimal is equal to 948.7.

Table 1. The results of the algorithms for the quadratic form (21), with different values
of μ and Δ, to achieve the accuracy ‖∇̃f(x)‖ �

√
6Δ.

μ Δ Alg. constant [14] Algorithm 1 Algorithm 2

Iters Time, ms Iters Time, ms Iters Time, ms

0.01 10−7

10−4

10−1

1525
840
159

142.31
75.99
14.81

511
301
85

226.03
158.16
33.94

515
314
170

412.39
247.06
103.11

0.1 10−7

10−4

10−1

169
104
41

15.96
10.15
4.46

76
49
24

29.58
18.11
8.21

102
94
54

60.81
44.58
32.44

0.9 10−7

10−4

10−1

11
8
5

1.57
1.28
0.90

37
26
15

15.59
19.90
7.92

72
48
39

36.20
51.72
47.80

0.99 10−7

10−4

10−1

6
5
3

1.02
0.89
0.52

34
24
14

13.38
9.21
5.06

58
46
48

34.01
27.20
24.74
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Table 2. The results of the algorithms for the quadratic form (21), with different values
of μ and Δ.

µ Δ Alg. constant [14] Algorithm 1 Algorithm 2

‖xN − x0‖ ‖∇f(xN )‖
Δ

‖xN − x0‖ ‖∇f(xN )‖
Δ

‖xN − x0‖ ‖∇f(xN )‖
Δ

0.01 10−7

10−4

10−1

948.7
948.7
946.3

2.29
2.26
2.27

948.7
948.7
946.7

2.03
2.31
1.95

948.7
948.7
947.7

1.84
2.43
1.07

0.1 10−7

10−4

10−1

948.7
948.7
948.3

2.17
2.18
2.14

948.7
948.7
948.3

1.97
1.68
2.26

948.7
948.7
948.5

0.87
0.80
0.83

0.9 10−7

10−4

10−1

948.7
948.7
948.7

0.92
0.91
0.96

948.7
948.7
948.6

1.58
0.96
0.95

948.7
948.7
948.6

0.69
0.79
0.72

0.99 10−7

10−4

10−1

948.7
948.7
948.7

0.96
0.95
1.05

948.7
948.7
948.7

0.95
0.92
0.93

948.7
948.7
948.6

0.71
0.68
0.69

We can see that the adaptive Algorithms 1 and 2 are slower than the non-
adaptive one (algorithm with a constant step-size) for all parameters μ and Δ.
However, they give a gain in the number of iterations for small μ. At the same
time, we can notice that the running time for Algorithm2 is longer than for
Algorithm 1. The greatest difference is observed for large values of μ. At the
same time, when μ decreases, they begin to show similar results. Also, we note
from Table 2, that all three algorithms achieve approximately the same quality,
while not going far from the starting point.

5.2 Logistic Regression

Now let us examine the work of the compared algorithms in the problem of
logistic regression minimization, which has the following form

min
x∈Rn

f(x) =
1
m

m
∑

i=1

log (1 + exp (−yi〈wi, x〉)) , (22)

where y = (y1, . . . , ym)� ∈ [−1, 1]m is the feasible variable vector, and W =
[w1 . . . wm] ∈ R

n×m is the feature matrix, where the vector wi ∈ R
n is from the

same space as the optimized weight vector w.
Note that this problem may not have a finite solution in the general case. So

we will create an artificial data set such that there is a finite vector x∗ minimizing
the given function in the way described in [14].

We chose n = 200,m = 700, and consider the case of constant inexactness.
The results are presented in Table 3. From these results, we can see that the
proposed Algorithm 2 stopped faster than gradient descent with constant and
adaptive step-size for known Δ. But the obtained quality is a little worse. Nev-
ertheless, we can see the main advantage of the proposed method, that it finds
inexactness value without additional information.
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Table 3. The results of Algorithms for the problem (22) with different values of Δ, to
achieve the accuracy ‖∇̃f(x)‖ �

√
6Δ.

Δ Alg. constant [14] Algorithm 1 Algorithm 2

Iters Time, ms
‖∇f(x̂)‖

Δ
Iters Time, ms

‖∇f(x̂)‖
Δ

Iters Time, ms
‖∇f(x̂)‖

Δ

10−5 20002 5604.34 3.56 902 2856.98 2.22 23 449.68 3.37

10−4 9700 2605.02 2.42 472 1678.02 2.16 25 370.09 3.62

10−2 83 49.86 2.29 17 68.36 2.10 17 161.27 0.84

5.3 Solving a System of Nonlinear Equations

In this subsection, we consider the problem of solving a system of m nonlinear
equations

gi(x) =
n

∑

j=1

Aij sin(xj) + Bij cos(xj) := Ei, i = 1, . . . ,m, (23)

where x = (x1, . . . , xn) ∈ R
n and Aij , Bij ∈ R, ∀i = 1, . . . , m; j = 1, . . . , n. This

problem can be written as the following optimization problem

min
x∈Rn

f(x) :=
m

∑

i=1

(gi(x) − Ei)
2
. (24)

In the conducted experiments, the parameters Aij , Bij were chosen such that
AB� = BA� = 0, where A,B are the matrices with entries Aij , Bij , respec-
tively. In this case, the jacobian of the system (23) will be J = Adiag (sin(x)) +
Bdiag (cos(x)). We can estimate the parameter μ so that

μ = λmin(JJ�) � min
(

λmin(AA�), λmin(BB�)
)

,

where λmin(X) is the smallest eigenvalue of the matrix X.
Also, the Lipschitz constant of the gradient of the objective function in (24),

can be estimated so that 8
√

2σ2
max ((A|B)), where σmax(X) is the largest singular

value of the matrix X. Indeed, let E ∈ R
m×n be a matrix formed by Ei, i =

1, . . . ,m, then the objective function can be represented as a composition f(x) =
h(sin(x), cos(x)), where h(x, y) = ‖Ax + By − E‖2, with Lh = 2σ2

max ((A|B)) as
a Lipschitz constant of the gradient ∇h. Then for any x, y ∈ R

n, we have

‖∇f(x) − ∇f(y)‖ � 4‖∇h(sin(x), cos(x)) − ∇h(sin(y), cos(y))‖
� 4Lh‖(sin(x) − sin(y), cos(x) − cos(y))‖
� 4

√
2Lh‖x − y‖.

We run the compared algorithms for n = 256 and different numbers of equa-
tions m ∈ {8, 32, 128}. We take x0 = 1n = (1, . . . , 1)� as the initial point of
all the compared algorithms. The results are presented in Tables 4 and 5. The
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results, in Table 4 demonstrate the running time (in milliseconds) of algorithms
and the required number of iterations to achieve the accuracy ‖∇̃f(x)‖ �

√
6Δ,

for different values of Δ. Meanwhile, the results in Table 5, demonstrate the
achieved accuracy with respect to the ‖∇f(xN )‖, which is the norm of the gra-
dient of the objective function f at the output point xN of the algorithms after N
iterations, and the distance between the initial point x0 and the output point xN .

Table 4. The results of the algorithms for the problem (24), with different values of
Δ, to achieve the accuracy ‖∇̃f(x)‖ �

√
6Δ.

m L
μ

Δ Alg. constant [14] Algorithm 1 Algorithm 2

Iters Time, ms Iters Time, ms Iters Time, ms

8 2.1 · 105 10−4

10−1
14434
1479

2203.85
220.82

508
56

447.06
45.54

306
69

813.99
178.63

32 5.0 · 106 10−4

10−1
59643
12536

10314.68
2290.65

1871
383

1808.70
393.74

510
144

1509.95
499.39

128 7.7 · 108 10−4

10−1
921805
264361

177759.81
47414.07

27405
8800

23520.96
7367.66

4688
1916

11721.18
4919.18

Table 5. The results of the algorithms for the problem (24), with different values of Δ.

m L
µ Δ Alg. constant [14] Algorithm 1 Algorithm 2

‖xN − x0‖ ‖∇f(xN )‖
Δ ‖xN − x0‖ ‖∇f(xN )‖

Δ ‖xN − x0‖ ‖∇f(xN )‖
Δ

8 2.1 · 105 10−4

10−1
5.1

4.8

2.41

2.34

5.1

4.8

2.25

2.09

5.1

4.9

3.07

2.28

32 5.0 · 106 10−4

10−1
7.4

7.4

2.41

2.37

7.5

7.4

2.27

2.24

7.5

7.4

3.31

2.72

128 7.7 · 108 10−4

10−1
14.4

14.3

2.43

2.43

14.4

14.3

2.33

2.32

14.4

14.4

15.67

1.84

Now, it can be seen from Table 4, that the adaptive Algorithms 1 and 2
converge much faster than the algorithm with a constant step-size. While the
adaptive algorithms converge at approximately the same time, the algorithm
with a constant step-size converges at least one and a half times slower. Moreover,
for a large number L

μ it converges more than 10 times slower. A significant
efficiency of the adaptive algorithms is observed for a large value of L

μ (see also
the results in Table 5).

Note that, we stop the compared algorithms at accuracy ‖∇̃f(x)‖ �
√

6Δ,
although estimates for accuracy ‖∇̃f(x)‖ � 2Δ are proved for adaptive Algo-
rithms 1 [14] and 2 (see Theorem 2). It was decided to choose a single stopping
criterion that both adaptive algorithms can achieve the minimum accuracy from
the available ones was chosen. If we consider the criterion ‖∇̃f(xk)‖ �

√
6Δ,

then the results of Theorem 1 and 2 on the number of iterations and distances
from x0 to the output point x̂ := xN remain valid, but they can be refined by
increasing the denominator in the logarithm.
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6 Conclusion

In this paper, we have considered an adaptive gradient-type method for problems
of minimizing a smooth function that satisfies the PL-condition. The adaptivity
of the proposed algorithm is in the Lipschitz constant of the gradient and the
level of the noise in the gradient. This gives the algorithm the attribute of being
fully adaptive. A detailed analysis of its convergence, and an estimation of the
distance from the starting point to the output point of the algorithm, were
provided. Also, some numerical experiments were conducted for the problem of
minimizing a quadratic form, logistic regression, and the problem of solving a
system of nonlinear equations.
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Abstract. This paper presents an improved genetic algorithm for the
Resource Constrained Project Scheduling Problem (RCPSP). The sched-
ules are constructed using a heuristic that builds active schedules based
on priorities that takes into account the degree of criticality for the
resources. The degree of resource’s criticality is derived from the solution
of a relaxed problem with a constraint on accumulative resources. The
computational results with instances from the PCPLIB library validate
the effectiveness of the proposed algorithm. We have obtain some of the
best average deviations of the solutions from the critical path value. The
best known solutions have been improved for some instances from the
PCPLIB.

Keywords: Project management · Resource-constrained project
scheduling problem · Renewable resources · Genetic algorithms ·
PCPLIB

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP), denoted as
m, 1|cpm|Cmax [22], is one of the intractable optimization problems in operations
research. RCPSP may be stated as follows: a project consists of a set activities V
where each activity has to be processed without interruption. A partial order on
the set of activities is defined by a directed acyclic graph. For every activity are
assumed to be known duration, and the set and amounts of consumed resources.
At every unit interval of the planning horizon T̂ the same number of resources
is allotted, and the resources are assumed to be unbounded outside the project
horizon T̂ . All resources are renewable. The objective is to schedule the activities
of a project to minimize the project makespan.

As a generalization of the job-shop scheduling problem the RCPSP is NP-
hard in the strong sense [4]. So, it may be conceivable to use exact optimal
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methods only for projects of small size. For larger problems, one needs heuristics
to get the best solution within a convenient response time, and heuristics remain
the best way to solve these problems efficiently. Worth noting that introducing
cumulative resources into the same problem makes the problem solvable with
polynomial complexity [16].

The RCPSP is an important and challenging problem that has been widely
studied over the past few decades. One of the most promising directions for
developing heuristic methods is based on genetic algorithms (GA). Researchers
have developed different schemes for representing solutions, genetic operations
(crossover and mutation), and algorithms for solving RCPSP. We refer to the
surveys provided by Pellerin at al. (2020) [36], Abdolshah (2014) [1], Vanhoucke
(2012) [43], Hartmann and Briskorn (2010) [21], Kolisch and Hartmann (2006)
[26].

In paper [18] author has proposed a genetic algorithm for the RCPSP prob-
lem. It has two crossovers, which creates an offspring according to the criterion
of making the most use of available resources. Both crossovers use a heuristic
rule to find promising segments (genes) of parent chromosomes for their further
use in the offspring. This rule is based on the fact that first it turns out the
“scarcity” of resources, which, in turn, we can get from solving a relaxed prob-
lem. To solve the relaxed problem, we use a known fast approximate algorithm
[14]. In this paper, we propose a modified algorithm. It uses stochastics when
choosing promising genes.

The quality of the proposed algorithm has been examined for instances of
datasets j60, j90 and j120 from the electronic library PSPLIB [29]. We have
found improved solutions for 5 instances from data set j60, and for 43 instances
from data set j120. We have obtained some of the best average deviations from
the critical path value. For some instances we have improved the best known
literature solutions. We provide results of the numerical experiments.

2 Problem Setting

The RCPSP problem can be defined as follows. A project is taken as a directed
acyclic graph G = (N,A). Denote by N = {1, ..., n}∪{0, n+1} the set of activities
in the project where activities 0 and n + 1 are dummy. The latter activities
define the start and the completion of the project, respectively. The precedence
relation on the set N is defined with a set of pairs A = {(i, j) | i precedes j}.
If (i, j) ∈ A, then activity j cannot start before activity i has been completed.
The set A contains all pairs (0, j) and (j, n + 1), j = 1, ..., n.

Denote by K the set of renewable resources. For each resource type k ∈ K,
there is a constant availability Rk ∈ Z+ throughout the project horizon T̂ . Activ-
ity j has deterministic duration pj ∈ Z+. The profile of resource consumption is
assumed to be constant for every activity. So, activity j requires rjk ≥ 0 units
of resource of type k, k ∈ K, at every time instant when it is processed. We
assume that rjk ≤ Rk, j ∈ N, k ∈ K.

Let’s introduce the problem variables. Denote by sj ≥ 0 the starting time of
activity j ∈ N . Since activities are executed without preemptions, the completion
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time of activity j is equal to cj = sj + pj . Define a schedule S as an (n + 2)-
vector (s0, ..., sn+1). The completion time T (S) of the project corresponds to the
moment when the last activity n + 1 is completed, i.e., T (S) = cn+1. Denote by
J(t) = {j ∈ N | sj < t ≤ cj} the set of activities which are executed in the
unit time interval [t − 1, t) under schedule S. The problem is to find a feasible
schedule S = {sj} respecting the resource and precedence constraints so that
the completion time of the project is minimized. It can be formalized as follows:
minimize the makespan of the project

T (S) = max
j∈N

(sj + pj) (1)

under constraints
si + pi ≤ sj , ∀(i, j) ∈ A; (2)

∑

j∈J(t)

rjk ≤ Rk, k ∈ K, t = 1, ..., T̂ ; (3)

sj ∈ Z+, j ∈ N. (4)

Inequalities (2) define activities p recedence constraints. Relation (3) cor-
responds to the resource constraints and condition (4) define the variables in
question.

3 Genetic Algorithm

Let’s describe a modified GA algorithm (for more details of parent GA algorithm
we refer to [18]). We use two crossover operators that are applied with equal
probability during GA operation.

Solution Representation. We represent a feasible solution by the list of activ-
ities L = (j0, ..., jn+1) [27]. All lists considered are assumed to be compatible
with the precedence relations. In other words, activity i is listed before activity j
if (i, j) ∈ A. We use two algorithms for constructing schedules of activities with
serial (S-SGS) and parallel (P-SGS) decoders. The serial decoding procedure [27]
calculates an active schedule S(L) for an arbitrary list L. A schedule is called
active if none of the activities can be started earlier without delaying some other
activity. It is known that there is an optimal schedule among active schedules.
The parallel decoder (P-SGS) sequentially considers increasing schedule time,
and determines all activities to be eligible which can be started up to the sched-
ule time. We also apply a T-late decoder that uses the list L in reverse order
and construct a so-called T-late schedule.

Initial Population. Each schedule for the initial population Γ is constructed
as follows. We construct a random feasible list of activities L and then construct
the schedule S with the parallel decoder. Further we apply a local improvement
procedure FBI (the forward-backward improvement procedure) to the resulting
schedule. The best schedule obtained in this way is added to the population.
These actions are repeated until Γ contains the necessary number of schedules.
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The Set of Parent Schedules. We look through the entire population Γ in
nondecreasing order of schedule size, and add each schedule to the set of parents
Γ ′ with a certain probability. If we have looked through the entire population and
have not collected the necessary number of schedules ParentsSize (an algorithm
parameter), we choose the best among those which have not yet been added. A
pair of parent schedules will be randomly selected for a crossover from the set
Γ ′ of parent schedules. It has been noted in literature that this strategy for
choosing a pair of parent schedules has proved to work well in problems of large
dimension (see for example [37]).

We transmit to the offspring schedule the segment of the parent chromosome
(gene) that most optimally uses available resources, i.e., yields the smallest sur-
plus of resources. At each schedule time, we find the surplus of unused resources.
If it is less than a predefined admissible residue, we define the set of activities
fulfilled during this time interval. Let’s call this set of activities a dense gene. In
general case, we can operate with weighted residues of unused resources.

Heuristic Rule for Choosing Dense Genes. On the preliminary stage, before
GA begin, we find the degree of scarcity for each resource and rank them, assign-
ing them a weights. Let Θ be the set of dense genes and wk be the weight of a
resource of type k, k = 1, ...,K. We can compare the weights of genes, giving
priority to those of them, which the higher priority (scarce) resources are used
rationally, i.e., give less surplus of unused resources.

DenseActivities(S,R) → Θ.

1. Set t := 0, Θ = ∅.
2. While t < T (S):

(a) find the weight vt of the set A(t): vt =
∑

k∈K

(
Rk − ∑

j∈A(t) rjk

)
wk/Rk;

(b) if vt < R, then update the list of dense genes Θ = Θ ∪ A(t);
(c) t := t + 1.

It may happen that some of dense genes intersect. In this case, we will leave the
gene that yields smaller weighted surplus of unused resources vt.

Resource Weights. We determine the degree of relative scarcity for the
resources by solving a relaxed problem. For this purpose, we weaken the renewa-
bility condition for the resources and consider a problem with storable resources,
that is, instead of constraints (3) we consider constraints

t∑

t′=1

∑

j∈A(t′)

rjk ≤
t∑

t′=1

Rk, k ∈ K, t = 1, ..., T̂ . (5)

There is a known fast algorithm to solve problem (1), (2), (5), (4), whose
computational complexity depends as a function of order n2 on the number n
of arcs in the reduction graph G. These algorithm is asymptotically exact with
absolute error that tends to zero as the problem dimension grows in the case of
real activity durations [14]. It is also known the exact algorithm where activity
durations are integer [16]. Let us choose the first one. Applying this algorithm,
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we get, apart from a solution for the relaxed problem, the residues of storable
resources. We define the degree of scarcity for the resources: a resource with
a smaller balance of unused resource will be considered more scarce. We then
apply the resulting resource ranking rule obtained in the relaxed problem to the
original problem (1)–(4).

Unlike Algorithm [18], resource weights wk are random variables. Let i1, . . . ik
be a list of resources in ascending order of their ranks. Define γi1 = 1 < γi2 <
. . . < γik . Let’s put now wi1 = 1, wi2 takes a random value from the interval
(γi1 , γi2), and so on, wik is a random variable from the interval (γik−1 , γik). We
use uniform distribution to assign the random weights in the intervals. The idea
of randomly assigning resource weights is that: we get more variety in choosing
the best genes among dense ones. Besides, we can also vary the set of dense genes
itself by weighting the genes. Numerical experiments confirmed our assumptions.
Note, we can also vary parameters γ while the algorithm is running.

4 Crossovers and Algorithm Scheme

We use two crossovers presented in [18] without modification. These crossover
procedures is based on finding a set of activities whose simultaneous fulfillment
leads to small weights of the remaining unused resources. Let’s describe them
briefly.

Crossover Procedure A. Consider the first (in order) dense genes in each
parent schedule and choose as the leading one gene that corresponds to the
smaller weight. In the offspring chromosome, we place the activities from the
beginning of the parent chromosome that contains the leading gene up to the
last activity of the leading gene, inclusively. Next, consider the first dense genes
in the schedules that do not contain activities already added to the daughter
chromosome. Choose the best of the two new genes and add activities from the
parent chromosome that contained it (except, obviously, the activities that have
already been added to the daughter chromosome). Repeat these actions until
we have considered all dense genes. In conclusion, if necessary, augment the
daughter chromosome with remaining activities in the same order in which they
are located in the schedule with minimal duration. We construct the daughter
schedule by the daughter chromosome constructed in this way with the serial
decoder.

Crossover algorithm A can be written as follows.
CrossingA(S1, S2) → S.

1. Let daughter chromosome L := ∅.
2. Find dense genes for schedules Θ1 := DenseActivities(S1, R),

Θ2 := DenseActivities(S2, R).
3. While Θ1 	= ∅ & Θ2 	= ∅, do:

(a) if v(D1,1) ≤ v(D2,1), then:
i. find in chromosome L1 position k of the last activity from gene D1,1,
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ii. add to L the activities from L1, starting from j1 and ending with jk,
except for the already added activities,

iii. remove from Θ1 and Θ2 genes that have been considered;
(b) otherwise apply step 3 to D2,1.

4. If Θ1 = ∅ & Θ2 	= ∅, then apply step 3 to D2,1.
5. If Θ1 	= ∅ & Θ2 = ∅, then apply step 3 to D1,1.
6. If Θ1 = ∅ & Θ2 = ∅ & | L |<| N |, then add the missing activities in the

order in which they come in the better schedule out of S1 and S2.
7. Construct schedule S := SerialDecoder(L).

Crossover Procedure B. In this crossover, we construct a schedule from the
neighborhoods NA(S) and NT (S) [18].

A block of activity j in an active schedule S is a set of activities that are
overlapped to activity j in a given feasible schedule, started immediately after
activity j, or finished immediately before it. Graph GS is a digraph with set of
vertices V = N and set of arcs E = {(i, j) | ci = sj , (i, j) ∈ A}. The outgoing
network of activity j for schedule S is the maximal (with respect to inclusion)
connected subgraph of graph GS where the only source is the vertex correspond-
ing to activity j.

Choose the dense genes with the lowest weight criterion from the both parent
schedules. Then, we reveal these activities in the second chromosome, we find
the outgoing (or incoming) network for each of them and find the segment in
the list of activities between the leftmost and rightmost activities in the block
and outgoing (incoming) networks.

CrossingB(S1, S2) → S.

1. Find dense genes for parent schedules
Θ1 := DenseActivities(S1, R), Θ2 := DenseActivities(S2, R).

2. Find gene D ∈ Θ1 ∪ Θ2 of the minimal weight. Without loss of generality, we
assume that D ∈ L1.

3. Mark the segment α := D in L2.
4. For each activity j ∈ D, add to α the activities from the network outgoing

from j in L2.
5. Find positions j1 and j2 in chromosome L2 of the leftmost and rightmost

activities from α.
6. Include into α all still unadded activities between j1 and j2 from chromosome

L2.
7. Construct the daughter schedule S:

(a) assign activities in positions up to and including the j1th to the schedule
as in S2,

(b) assign activities between positions j1 and j2 to the schedule with the
parallel decoder,

(c) assign activities after the j2th to the schedule with the serial decoder.

The Mutation Operator. The mutation operator is to ”mix” the activities in
the list corresponding to the schedule and construct the schedule by the resulting
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list of activities. Mutation is done in two stages. On the first stage, we choose
a pair of random activities in the chromosome and switch their places unless
it violates precedence conditions. On the second stage, we move one random
activity to a different place, while also not violating the precedence conditions.
This procedure is repeated a given number of times.

The Next Generation. We choose a given number (a parameter of the algo-
rithm) of the best schedules from the set of offspring schedules Γ ′′. They are
added to the next generation Γ . The same number of the worst schedules are
removed from Γ .

The GA Algorithmn. Denote by λ the maximal number of generated sched-
ules. The number of generated schedules will be increased for every computation
of the objective function, and exceeding parameter λ will be used as the stopping
criterion for the algorithm. The general scheme of the algorithm is as follows.

1. Create initial population Γ := InitialPopulation(PopulationSize) and store
the record S∗.

2. Initiate a set of offspring schedules Γ ′′ := ∅.
3. While the number of generated schedules does not exceed λ:

(a) construct the set of parent schedules
Γ ′ = ParentsSelection(Γ, ParentsSize),

(b) until the necessary number of offspring schedules has been generated, do:
i. choose two parent schedules S1 and S2 ∈ Γ ′ at random,
ii. choose crossover Crossing with equal probability from CrossingA

and CrossingB,
iii. cross S1 and S2 : S′ := Crossing(S1, S2),
iv. apply to S′ sequentially the operations of mutation and local improve-

ment FBI: S′ := Mutation(S′,MutationSize), S′ := FBI(S′),
v. if the mutation has made S′ worse, it is canceled,
vi. if T (S′) < T (S∗), then update the record S∗ := S′,
vii. update the set of offspring schedules Γ ′′ = Γ ′′ ∪ S′,

(c) create a new population for the next generation,
(d) if S∗ has not been updated for a given number of steps, replace a given

number of the worst schedules in the population with new schedules.

5 Numerical Experiments

The GA algorithm was coded in C++ in the Visual Studio system and run on
a 3.4 GHz CPU and 16 Gb RAM computer under operating system Windows
7. In order to evaluate the performance of the proposed algorithm, we use the
standard set of instances presented in Kolisch and Sprecher [29]. These instances
are available in the project scheduling library PSPLIB along with their the best-
known values. The instances are downloadable at http://www.om-db.wi.tum.
de/psplib/.

Optimal solutions for instances from the datasets j60, j90 and j120 are
unknown. The measure of the solution quality is the average percent deviation

http://www.om-db.wi.tum.de/psplib/.
http://www.om-db.wi.tum.de/psplib/.
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Table 1. Average deviations from the critical path for dataset j60.

Algorithm Reference Year APD, %

λ = 50000 λ = 500000

GA this paper 2022 10,50 10,40

GA Goncharov, Leonov [18] 2017 10,52 10,42

GANS Proon, Jin [37] 2011 10,52 –

TS, VNS Goncharov [20] 2022 10,55 10,44

Sequential(SS(FBI)) Berthaut et al. [3] 2018 10,58 10,45

GH + SS(LS) Paraskevopoulos et al. [39] 2012 10,54 10,46

AI(FBI) Mobini, at al. [34] 2011 10,55 –

TS + SS(FBI) Mobini, at al. [33] 2009 10,57 –

GA(FBI) Wang et al. [45] 2010 10,57 –

GA(FBI) Goncalves [17] 2011 10,57 10,49

EA(GA(LS)+DEA(LS)) Elsayed et al. [11] 2017 10,58 –

PSO(LS) Czogalla and Fink [8] 2009 10,62 –

GA Lim et al. [31] 2013 10,63 10,51

Parallel(MA(LS)) Chen, at al. [7] 2014 10,63 –

PL(LS) Zheng and Wang [49] 2015 10,64 –

GA(FBI) Zamani [48] 2013 10,65 –

SFL(LS) Fang and Wang [12] 2012 10,66 –

GA(FBI) Ismail and Barghash [23] 2012 10,66 –

ACOSS Wang Chen, at al. [44] 2010 10,67 –

GAPS Mendes, at al. [32] 2009 10,67 10,67

GA Debels, Vanhoucke [10] 2007 10,68 –

Specialist(PSO(LS)) Koulinas et al. [30] 2014 10,68 –

GA(LS) Carlier et al. [6] 2009 10,70 –

Scatter search - FBI Debels, et al. [9] 2006 10,71 10,53

Table 2. Average deviations from the critical path for dataset j90.

Algorithm Reference Year APD, %

λ = 50000 λ = 500000

GA this paper 2022 9,92 9,61

GA Debels, Vanhoucke [10] 2017 9,90 –

Sequential(SS(FBI)) Berthaut et al. [3] 2018 9,96 9,74

TS, VNS Goncharov [20] 2022 9,98 9,78

Sequential(SS) Ranjbar and Kianfar [38] 2009 10,04 –

SS(EM + FBI) Debels, et al. [9] 2006 10,09 9,80

PL(LS) Jedrzejowicz, Ratajczak [24] 2006 11,60 –

TS Ying et al. [47] 2009 12,15 –
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Table 3. Average deviations from the critical path for dataset j120.

Algorithm Reference Year APD, %

λ = 50000 λ = 500000

GA this paper 2022 30,46 29,63

Specialist GA Goncharov, Leonov [18] 2017 30,50 29,74

TS, VNS Goncharov [19] 2019 30,56 29,88

GA Lim et al. [31] 2013 30,66 29,91

biased random-key GA Goncalves [17] 2011 32,76 30,08

GANS Proon, Jin [37] 2011 30,45 30,78

ACOSS Wang Chen, at al. [44] 2010 30,56 –

DBGA Debels, Vanhoucke [10] 2007 30,69 –

GH + SS(LS) Paraskevopoulos et al. [39] 2012 30,78 30,39

GA Debels, Vanhoucke [10] 2007 30,82 –

PL(LS) Zheng and Wang [49] 2015 31,02 –

SFL(LS) Fang and Wang [12] 2012 31,11 –

Sequential(SS(FBI)) Berthaut et al. [3] 2018 31,16 30,39

EA(GA(LS)+DEA(LS)) Elsayed et al. [11] 2017 31,22 –

Specialist(PSO(LS)) Koulinas et al. [30] 2014 31,23 –

GA - Hybrid, FBI Valls, at al. [41] 2008 31,24 30,95

GA(FBI) Wang et al. [45] 2010 31,28 –

GA(FBI) Zamani [48] 2013 31,30 –

Enhanced SS Mobini, at al. [33] 2009 31,37 –

GA(LS) Alcaraz and Maroto [2] 2006 31,38 –

GA(LS) Carlier et al. [6] 2009 31,40 –

Scatter search - FBI Debels, et al. [9] 2006 31,57 30,48

GAPS Mendes, at al. [32] 2009 31,44 31,20

GA, FBI Valls, et al. [40] 2005 31,58 –

(APD) of the received solutions from the lower bounds obtained by the critical
path algorithm.

In Tables 1 – 3 we show comparison the GA algorithm performance with
the previous results of experimental evaluation of competitive heuristics for the
dataset j60, j90 and j120 respectively. The scrutiny of the presented results
clearly shows the good performance of the proposed algorithm. We found
improved solutions for 5 instances from the data set j60, and for 43 instances
from the data set j120.

Average processing time is 16 s for λ = 50000 and 150 s for λ = 500000.

6 Conclusion

We have proposed a genetic algorithm for the resource-constrained project
scheduling problem with respect to the makespan minimization criterion. We
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have developed two versions of the neighborhoods. The algorithm uses a heuris-
tic that takes into account the degree of criticality (scarcity) of the resources,
which is derived from the solution of the relaxed problem with constraints
with cumulative resources. We have conducted numerical experiments on sets
of instances from the PSPLIB electronic library. The results of the computa-
tional experiments suggest that the proposed algorithm is a very competitive
heuristic and yields better results than several heuristics presented in the litera-
ture. The best known heuristic solutions have been improved for some instances
from the dataset j120.

Further studies will be focused on constructing hybrid algorithms for the
RCPSP problem.
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constrained project scheduling. In: Józefowska, J., Weglarz, J. (eds.) Perspectives
in Modern Project Scheduling, pp. 275–296. Springer, Boston (2006). https://doi.
org/10.1007/978-0-387-33768-5 11

25. Kochetov, Y., Stolyar, A.: Evolutionary local search with variable neighborhood
for the resource-constrained project scheduling problem. In: Proceedings of the 3th
International Workshop of Computer Science and Information Technologies, vol.
96–99 (2003)

26. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-
constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)

27. Kolisch, R., Hartmann, S.: Heuristic Algorithms for Solving the Resource-
Constrained Project Scheduling Problem: Classification and Computational Analy-
sis. In: Weglarz J., (ed). Project scheduling: Recent models, Algorithms and Appli-
cations. Kluwer Academic Publishers, pp. 147–178 (1999)

28. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general
class of resource-constrained project scheduling problems. Manag. Sci. 41, 1693–
1703 (1995)

https://doi.org/10.1007/s10732-010-9142-2
https://doi.org/10.1007/s10732-010-9142-2
https://doi.org/10.1134/S0005117917060108
https://doi.org/10.1007/978-3-030-33394-2_4
https://doi.org/10.1007/978-3-030-33394-2_4
https://doi.org/10.1007/978-0-387-33768-5_11
https://doi.org/10.1007/978-0-387-33768-5_11


46 E. N. Goncharov

29. Kolisch, R., Sprecher, A.: PSPLIB – a project scheduling problem library. Eur. J.
Oper. Res. 96, 205–216 (1996). http://www.om-db.wi.tum.de/psplib/

30. Koulinas, G., Kotsikas, L., Anagnostopoulos, K.: A particle swarm optimiza-
tion based hyper-heuristic algorithm for the classic resource constrained project
scheduling problem. Inf. Sci. 277, 680–693 (2014)

31. Lim, A., Ma, H., Rodrigues, B., Tan, S.T., Xiao, F.: New meta-heuristics for the
resource-constrained project scheduling problem. Flex. Serv. Manuf. J. 25(1–2),
48–73 (2013). https://doi.org/10.1007/s10696-011-9133-0

32. Mendes, J.J.M., Goncalves, J.F., Resende, M.G.C.: A random key based genetic
algorithm for the resource constrained project scheduling problem. Comput. Oper.
Res. 36, 92–109 (2009)

33. Mobini, M.D.M., Rabbani, M., Amalnik, M.S., et al.: Using an enhanced scat-
ter search algorithm for a resource-constrained project scheduling problem. Soft
Comput. 13, 597–610 (2009). https://doi.org/10.1007/s00500-008-0337-5

34. Mobini, M., Mobini, Z., Rabbani, M.: An artificial immune algorithm for the
project scheduling problem under resource constraints. Appl. Soft Comput. 11(2),
1975–1982 (2011)

35. Palpant, M., Artigues, C., Michelon, P.: Solving the resource-constrained project
scheduling problem with large neighborhood search. Ann. Oper. Res. 131, 237–257
(2004)

36. Pellerin, R., Perrier, N., Berthaut, F.: LSSPER: A survey of hybrid metaheuristics
for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 280(2),
395–416 (2020)

37. Proon, S., Jin, M.: A genetic algorithm with neighborhood search for the resource-
consrtained project scheduling problem. Naval Res. Logist. 58, 73–82 (2011)

38. Ranjbar, M., Kianfar, F.: A hybrid scatter search for the RCPSP. Sci. Iranica
16(1), 11–18 (2009)

39. Paraskevopoulos, D.C., Tarantilis, C.D., Ioannou, G.: Solving project scheduling
problems with resource constraints via an event list-based evolutionary algorithm.
Expert Syst. Appl. 39(4), 3983–3994 (2012)

40. Valls, V., Ballestin, F., Quintanilla, M.S.: Justification and RCPSP: a technique
that Pays. Eur. J. Oper. Res. 165, 375–386 (2005)

41. Valls, V., Ballestin, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-
consrtained project scheduling problem. Eur. J. Oper. Res. 185(2), 495–508 (2008)

42. Valls, V., Ballestin, F., Quintanilla, S.: A population-based approach to the
resource-constrained project scheduling problem. Ann. Oper. Res. 131, 305–324
(2004). https://doi.org/10.1023/B:ANOR.0000039524.09792.c9

43. Vanhoucke, M.: Resource-constrained project scheduling. In: Project Manage-
ment with Dynamic Scheduling. Springer-Verlag, Heidelberg, pp. 107–137 (2012).
https://doi.org/10.1007/978-3-642-25175-7 7

44. Chen, W., Shi, Y.J., Teng, H.F., et al.: An efficient hybrid algorithm for resource-
constrained project scheduling. Inf. Sci. 180(6), 1031–1039 (2010)

45. Wang, H., Li, T., Lin, T.: Efficient genetic algorithm for resource-constrained
project scheduling problem. Trans. Tianjin Univ. 16(5), 376–382 (2010). https://
doi.org/10.1007/s12209-010-1495-y

46. Weglarz, J.: Project Scheduling: Recent Models, Algorithms and Applications.
Kluwer Academic Publishers, Boston (1999)

47. Ying, K.C., Lin, S.W., Lee, Z.J.: Hybrid-directional planning: improving improve-
ment heuristics for scheduling resource-constrained projects. Int. J. Adv. Manuf.
Technol. 41(3–4), 358–366 (2009). https://doi.org/10.1007/s00170-008-1486-5

http://www.om-db.wi.tum.de/psplib/
https://doi.org/10.1007/s10696-011-9133-0
https://doi.org/10.1007/s00500-008-0337-5
https://doi.org/10.1023/B:ANOR.0000039524.09792.c9
https://doi.org/10.1007/978-3-642-25175-7_7
https://doi.org/10.1007/s12209-010-1495-y
https://doi.org/10.1007/s12209-010-1495-y
https://doi.org/10.1007/s00170-008-1486-5


An Improved GA for the RCPSP 47

48. Zamani, R.: A competitive magnet-based genetic algorithm for solving the
resource-constrained project scheduling problem. Eur. J. Oper. Res. 229(2), 552–
559 (2013)

49. Zheng, X., Wang, L.: A multi-agent optimization algorithm for resource constrained
project scheduling problem. Expert Syst. Appl. 42(15–16), 6039–6049 (2015)



Nonlocal Optimization Methods for
Nonlinear Controlled Systems with

Terminal Constraints

Dmitry Trunin(B)

Buryat State University, Ulan-Ude, Russia

tdobsu@yandex.ru

Abstract. A new approach to optimization of nonlinear control sys-
tems with terminal constraints based on the sequential solution of non-
local control improvement problems in the form of special systems of
functional equations in the control space is considered. The correspond-
ing systems are constructed as fixed point problems of special control
operators with an additional algebraic equation, to the solution of which
the apparatus of the theory and methods of fixed points is applied. The
proposed algorithms for successive approximations of control with the
preservation of all terminal constraints at each iteration of approxima-
tions do not contain the laborious operation of parametric variation to
improve control, which is typical for gradient improvement methods. The
effectiveness of the proposed methods for constructing relaxation control
sequences on the set of admissible controls in the considered class of
optimization of control systems is illustrated by model examples.

Keywords: Nonlinear controlled system · Terminal constraints ·
Conditions of control improvement · Fixed point problem · Iterative
algorithm

1 Introduction

To solve nonlinear optimal control problems, iterative methods of successive
improvement of admissible controls based on the necessary optimality condi-
tions (maximum principle, differential maximum principle, including in projec-
tion form, etc.) are traditionally applied. Characteristic representatives of the
considered class of methods are well-known gradient methods—methods of con-
ditional gradient and gradient projection.

The most laborious in standard gradient methods of optimal control is the
procedure of varying the control in a small neighborhood of the current approx-
imation at each iteration to improve the current approximation of the control.

The paper [1] proposes methods for nonlocal improvement of controls in the
class of linear in state optimal control problems with a free right end with a
linear and quadratic in state objective functional. These methods are based on
special formulas for the increment of the objective functional without residual
expansion terms and do not contain the time-consuming operation of parametric
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variation of the control in the vicinity of the current approximation. Improvement
of control is achieved at the cost of solving two special Cauchy problems. The
indicated features of the methods are essential factors for increasing the efficiency
of solving problems of the class under consideration.

In [2], methods for nonlocal improvement of control were developed in the
class of optimal control problems polynomial in state with a free right end,
generalizing the methods of [1]. These methods are based on formulas for the
increment of the objective functional without residual terms of the increments,
which were obtained with the help of modifications of the conjugate system. In
this case, to improve the control, it is required to solve a special boundary value
improvement problem. To solve this boundary value problem, the well-known
perturbation approach in mathematics is used.

In the paper [3], the methods of nonlocal improvement [2] are generalized
for a class of optimal control problems that are non-linear in state with a free
right end. In the indicated class of problems, the modified conjugate system is
a differential-algebraic system (the Cauchy problem with additional algebraic
relations).

In this paper, the methods of [3] are generalized to a class of optimal control
problems, nonlinear in state, with terminal constraints. For non-local improve-
ment of admissible controls in the considered class of problems, it is proposed
to use an iterative method for solving a system of functional equations in the
control space that determines the conditions for non-local improvement, which
is considered as a special fixed point problem.

At present, the development of effective methods for solving optimal control
problems with constraints that arise in the modeling of natural science processes
and in other applications is one of the topical mathematical problems of control
theory, which is the subject of numerous works, in particular [4–6].

2 Control Improvement Problem

We consider a class of optimal control problems that are nonlinear in state and
linear in control with one terminal equality constraint

ẋ = f(x, u, t), t ∈ T = [t0, t1], (1)

x(t0) = x0, (2)

u(t) ∈ U ⊂ Rr, t ∈ T, (3)

Φ0(u) = ϕ(x(t1)) +
∫

T

F (x, u, t)dt → min, (4)

Φ1(u) = χ(x(t1)) = 0. (5)

In problem (1)–(5):
x = (x1(t), x2(t), . . . xn(t)) is a state vector,
u = (u1(t), u2(t), . . . ur(t)) is a control vector.
Initial state x0 ∈ Rn is given.
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The functions f(x, u, t) and F (x, u, t) are nonlinear in x and linear in u

f(x, u, t) = A(x, t)u + b(x, t),

F (x, u, t) = 〈d(x, t), u〉 + g(x, t).

The functions A(x, t), b(x, t), d(x, t) and g(x, t) are nonlinear and differen-
tiable in x and continuous in u on the set Rn×T ; the functions ϕ(x) and χ(x) are
nonlinear and differentiable in x; U is a compact and convex set; time interval
T is fixed.

Various optimal control problems with terminal, phase and mixed constraints
can be reduced to the form (1)–(5).

By accessible controls in problem (1)–(5) we mean functions that are piece-
wise continuous on an interval T and have values in a compact and convex set
U ⊂ Rr:

V = {u ∈ PCr(T ) : u(t) ∈ U, t ∈ T} .

For accessible control v ∈ V we denote x(t, v), t ∈ T the solution of the
Cauchy problem (1), (2) for u = v(t), t ∈ T .

By admissible controls W we mean accessible controls if the terminal con-
straint is satisfied (5):

W = {u ∈ V : χ(x(t1, u)) = 0} .

In problem (1)–(5) the Pontryagin function with the conjugate variable p ∈
Rn can be presented in the form:

H(p, x, u, t) = H0(p, x, t) + 〈H1(p, x, t), u〉,

where H0(p, x, t) = 〈p, b(x, t)〉 − g(x, t), H1(p, x, t) = A(x, t)T p − d(x, t).
Consider the regular Lagrange functional:

L(u, λ) = Φ0(u) + λΦ1(u), λ ∈ R.

Following [3], the formula for the increment of the Lagrange functional, which
does not contain the remainder of the expansion, takes the form:

ΔvL(u0, λ) = −
∫

T

〈H1(p(t, u0, v, λ), x(t, v), t), v(t) − u0(t)〉dt, (6)

where (u0, v) are accessible controls; p(t, u0, v, λ), t ∈ T the solution of the mod-
ified differential-algebraic conjugate system

ṗ = −Hx(p, x, u, t) − r(t), (7)

〈Hx(p, x(t, u0), u0(t), t), x(t, v) − x(t, u0)〉 + 〈r(t), x(t, v) − x(t, u0)〉 =
= H(p, x(t, v), u0(t), t) − H(p, x(t, u0), u0(t), t), (8)

p(t1) = −ϕx(x(t1, u0)) − λχx(x(t1, u0)) − q, (9)
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〈ϕx(x(t1, u0)) + λχx(x(t1, u0)), x(t1, v) − x(t1, u0)〉+
+〈q, x(t1, v) − x(t1, u0)〉 =

= ϕ(x(t1, v)) − ϕ(x(t1, u0)) + λ(χ(x(t1, v)) − χ(x(t1, u0))).
(10)

Algebraic relations (8), (10) can always be solved in analogy with [3] with
respect to the values r(t), q and reduce the differential-algebraic problem to an
ordinary differential problem (perhaps in a non-unique way).

In particular, in the subclass of problems quadratic in state (the functions f ,
F , ϕ, χ are quadratic in x) the values r(t), q can be represented by the following
relations:

r(t) =
1
2
Hxx(p, x(t, u0), u0(t), t)(x(t, v) − x(t, u0)),

q =
1
2
(ϕxx(x(t1, u0)) + λχxx(x(t1, u0)))(x(t1, v) − x(t1, u0)).

For accessible control u0 ∈ V and a fixed projection parameter α > 0 simi-
larly to [2], we form the vector function

uα(p, x, t) = PU

(
u0(t) + αH1(p, x, t)

)
, p ∈ Rn, x ∈ Rn, t ∈ T, α > 0,

where PU is an operator of projection onto a set U in the Euclidean norm.
According to the well-known property of the projection, the following esti-

mate holds:∫
T

〈H1(p, x, t), uα(p, x, t) − u0(t)〉dt ≥ 1
α

∫
T

||uα(p, x, t) − u0(t)||2dt. (11)

Then from (6) and (11) follows the estimate of the increment of the functional:

ΔvL(u0, λ) ≤ − 1
α

∫
T

||uα(p, x, t) − u0(t)||2dt. (12)

We pose the problem of improving the admissible control u0 ∈ W : find the
control v ∈ W with property

Φ0(v) ≤ Φ0(u0).

Let us show that for a nonlocal improvement of the admissible control u0 ∈ W
it suffices to solve for some α > 0 the following system of functional equations
in the control space:

v(t) = uα(p(t, u0, v, λ), x(t, v), t), t ∈ T, λ ∈ R,
χ(x(t1, v)) = 0.

(13)

Let the control v is a solution of the system (13). It is easy to see that
v ∈ W . Then, by virtue of estimate (12), there is an improvement in the objective
functional Φ0 with an estimate

ΔvΦ0(u0) ≤ − 1
α

∫
T

||v(t) − u0(t)||2dt. (14)
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It follows from the estimate (14) that if control v differs from control u0, then
a strict improvement of the target functional is provided.

The system of equations (13) is considered as a fixed point problem in the
control space with an additional algebraic equation. This allows us to apply and
modify the well-known iterative fixed-point methods to solve the system (13).

3 Iterative Methods

To solve system (13) for fixed α > 0, the following modification of the well-known
algorithm of the simple iteration method [7] is proposed for k ≥ 0:

vk+1(t) = uα(p(t, u0, vk, λk), x(t, vk+1), t), t ∈ T, λ ∈ R,
χ(x(t1, vk+1)) = 0.

(15)

As an initial approximation of the iterative process (15), the control v0 ∈ V
is chosen. The main feature of the proposed iterative algorithm is the selection
of the parameter λ ∈ R at each iteration for k ≥ 1 to satisfy the terminal
constraint. It is assumed that such a possibility exists.

The implementation of the proposed implicit iterative process (15) at each
iteration consists in the following actions.

Find the solution pλ(t), t ∈ T of the problem (7)–(10) for v = vk(t).
Let xλ(t), t ∈ T the solution to the special Cauchy problem:

ẋ = f(x, uα(pλ(t), x, t), t), t ∈ T, x(t0) = x0.

Find the value of the Lagrange multiplier λ ∈ R from the condition:

χ(xλ(t1)) = 0. (16)

We form the next control approximation according to the rule:

vk+1(t) = uα(pλ(t), xλ(t), t), t ∈ T.

Thus, the implementation of the implicit process (15) at each iteration is
reduced to solving the algebraic equation (16).

Another modification of the algorithm of the simple iteration method for
solving system (13) has a more familiar standard explicit form for k ≥ 0:

vk+1(t) = uα(p(t, u0, vk, λk), x(t, vk), t), t ∈ T, λ ∈ R,
χ(x(t1, vk+1)) = 0.

(17)

For this modification, at each iteration of the process (17), after calculating
the solution pλ(t), t ∈ T of the problem (7)–(10) for v = vk(t) auxiliary control
is formed

vλ(t) = uα(pλ(t), x(t, vk), t), t ∈ T.

For the auxiliary control vλ a solution x(t, vλ), t ∈ T to the standard Cauchy
problem is found

ẋ = f(x, vλ(t), t), t ∈ T, x(t0) = x0.
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The value of the Lagrange multiplier λ ∈ R at each iteration of the process
(17) is selected from the condition of fulfillment of the terminal constraint:

χ(x(t1, vλ)) = 0. (18)

For the obtained solution λ ∈ R of equation (18) the following control approx-
imation is determined

vk+1(t) = vλ(t), t ∈ T.

A feature of the proposed iterative algorithms for solving the fixed point
problem (13) is the fulfillment of the terminal constraint (5) at each iteration of
the process of successive approximations of the control. In this case, the initial
approximation v0 of iterative processes may not satisfy the terminal constraint,
which is important for the practical implementation of algorithms.

The convergence of the proposed iterative processes is regulated by the choice
of the projecting parameter α > 0 and can be substantiated on the basis of the
perturbation method and the contraction mapping principle similarly to [2] for
sufficiently small values of α > 0.

Iterative processes are applied until the first improvement in control u0. Next,
a new improvement task is constructed for the obtained control, and the process
is repeated. The criterion for stopping the control improvement iterations is the
absence of strict control improvement in terms of the target functional.

Based on the sequential solution of control improvement problems, the cor-
responding iterative methods for constructing relaxation control sequences that
satisfy the terminal constraint are formed.

4 Example

This section presents the results of calculations of the model problem of satellite
rotation stabilization [8] using the proposed method of nonlocal improvement
(13) based on the implicit iterative process (15). A comparative analysis of the
effectiveness of this method (M3) with the standard methods of conditional
gradient (M1) and gradient projection (M2) is carried out [9].

The parameter α > 0, which regulates the convergence of the proposed
method (M3), was chosen experimentally according to the rule of change by
one order, starting from the value α = 1.

The calculation of phase and conjugate Cauchy problems was carried out
using the standard Fortran procedure divprk [10], which implements the 5th-
6th order Runge-Kutta method. The absolute error of the numerical integration
of the Cauchy problems was set equal to 10−10. The values of the calculated
control, phase and conjugate variables during the calculation were stored in the
nodes of a given uniform grid with a discretization step equal to 0.001. Piecewise
constant interpolation was used to approximate the controls between the nodes
of the uniform grid.

The solution of the algebraic equation with respect to the Lagrange multiplier
arising at each iteration of the process (15) was carried out by minimizing the
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quadratic residual of the equation by means of the standard Fortran procedure
dumpol [10], which implements the deformable polyhedron method.

The laboriousness of the methods was estimated by the total number of
Cauchy calculation problems for phase and conjugate variables.

For a numerical solution, the problem [8] was reduced to the form (1)–(5):

ẋ1 =
1
3
x2x3 + 100u1,

ẋ2 = −x1x3 + 25u2,

ẋ3 = −x1x2 + 100u3,

x1(0) = 200, x2(0) = 30, x3(0) = 40,

u1(t) ∈ [−40, 40], u2(t) ∈ [−20, 20], u3(t) ∈ [−40, 40], t ∈ [0, 0.1],

Φ0(u) =
1
2

(
x2
2(0.1) + x2

3(0.1)
) → min,

Φ1(u) = x1(0.1) = 0.

The equations of the system describe the dynamics of the rotation of a satel-
lite equipped with three jet engines. Controls characterize fuel consumption.
The minimized functional from the control reflects the goal to achieve a state
characterized by the absence of satellite rotation (stabilization).

As an initial approximation for all compared methods, we chose u(t) ≡ 0, t ∈
T .

The practical criterion for stopping the calculation of the problem in all
methods was the condition

|Φ0(uk+1) − Φ0(uk)| ≤ M |Φ0(uk)|,

where k > 0 is an iteration number, M = 10−5.
Comparative qualitative and quantitative results of calculations are presented

in Table 1.

Table 1. Results of calculations by compared methods.

Method Φ∗
0 Φ∗

1 N Note

M1 3.16428 × 10−13 2.45074 × 10−7 8512 0.5

M2 1.48471 × 10−13 3.13041 × 10−7 2642 0.5

M3 3.63122 × 10−13 5.229144 × 10−8 1458 10−5

In Table 1 Φ∗
0 is a calculated value of the objective functional of the prob-

lem, Φ∗
1 is a module of the calculated value of the functional-constraint, N is

a total number of solved phase and conjugate Cauchy problems. The note for
methods M1 and M2 indicates the value of the penalty parameter, for method
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Fig. 1. Design controls obtained by the M1 method.

Fig. 2. Design phase trajectories obtained by the M1 method.

M3 the value of the projection parameter α, which ensures the convergence of
the iterative process (15).

Graphs of computational controls and phase trajectories are given respec-
tively on Fig. 1, 2 (M1), Fig. 3, 4 (M2), Fig. 5, 6 (M3).

The calculation data allow us to conclude that the nonlocal method (M3)
has better computational efficiency, estimated by the total number of Cauchy
problems, compared to the conditional gradient and gradient projection meth-
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Fig. 3. Design controls obtained by the M2 method.

Fig. 4. Design phase trajectories obtained by the M2 method.

ods. In this case, almost identical calculated phase trajectories and values of the
control functionals were obtained.

In addition, the proposed method (M3) achieves a terminal constraint with
a given accuracy that is better than the conditional gradient and gradient pro-
jection methods.
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Fig. 5. Design controls obtained by the M3 method.

Fig. 6. Design phase trajectories obtained by the M3 method.

5 Conclusion

The proposed methods for nonlocal improvement of admissible controls in the
considered class of nonlinear problems with constraints are characterized by the
following properties:
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1. the absence of a rather laborious procedure for varying the control in a small
neighborhood of the control being improved, which is typical for gradient
methods;

2. exact fulfillment of the terminal constraint at each iteration of control
improvement.

The absence of the operation of parametric variation of control at each itera-
tion leads to a significant reduction in labor intensity compared to the standard
methods of conditional gradient and gradient projection.

The exact fulfillment of the terminal constraint at each iteration of the pro-
cess makes it possible to narrow the control search area to the set of admissible
controls, in contrast to the standard Lagrange methods, in which the search is
carried out simultaneously both over the set of accessible controls and over the
set of Lagrange multipliers. In the general case, penalty methods also do not
allow one to build an iterative process on the set of admissible controls in the
considered class of optimal control problems with constraints. The admissibility
property of the controls of the proposed method makes it possible to effectively
obtain controls that are acceptable in practice according to the optimality cri-
terion.

These properties of the methods are important factors for increasing the
efficiency of solving optimal control problems with terminal constraints.
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Abstract. Three-Bar Charts Packing Problem is to pack the bar charts
consisting of three bars each into the horizontal unit-height strip of min-
imal length. The bars of each bar chart may move vertically within the
strip, but it is forbidden to change the order and separate the bars.
For this novel issue, which is a generalization of the strongly NP-hard
Two-Bar Charts Packing Problem considered earlier, we propose several
approximation algorithms with guaranteed accuracy.

Keywords: Bar charts · Strip packing · Approximation

1 Introduction

To avoid discrepancies, hereinafter we will understand the length as a horizontal,
and the height as a vertical size. The problem of packing bar charts in a strip
was first described in [8] and can be formulated as follows. Let us have a set of
bar charts (BCs) consisting of several unit-length bars. The height of each bar is
positive, but does not exceed 1. In the Bar Charts Packing Problem (BCPP), it is
required to pack all BCs in a unit-height horizontal strip of minimal length. Let
us split the strip into the equal unit-length unit-height rectangles – the “cells”
and number them by positive integers 1, 2, . . . Then the packing length is the
number of cells with at least one bar. In a feasible packing, the bars of each
BC do not change order and must occupy the adjacent cells, but they can move
vertically independently of each other within the strip. Moreover, in each cell,
the total height of the bars in it should not exceed 1. Further, we will consider
only feasible packings and will omit the word “feasible”.

Let us denote the BCPP of packing BCs consisting of k bars each (k-BCs)
as k-BCPP. Earlier in [9–11], a 2-BCPP was considered, which is a generaliza-
tion of the Bin Packing Problem (BPP) [14] and 2-Dimensional Vector Packing
Problem [16]. Several approximation algorithms were proposed with a priori
guaranteed estimates. In [9] was proposed an O(n)-time algorithm which con-
structs a packing of n arbitrary 2-BCs of length at most 2 ·OPT +1, where OPT
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is an optimum of the 2-BCPP (Later, the additive constant was removed and the
estimate was reduced to 2 ·OPT ). When at least one bart of each 2-BC is higher
than 1/2 (“big” 2-BCs), an O(n3)-time, 3/2-approximation algorithm was pro-
posed. If all 2-BCs are big and non-increasing or non-decreasing, the complexity
was reduced to O(n2.5) preserving the ratio [10]. Paper [11] updates the esti-
mates for the packing length of big 2-BCs, keeping the time complexity. In [11]
a 5/4-approximation O(n2.5)-time algorithm for packing big non-increasing or
non-decreasing 2-BCs was presented. For the case of big 2-BCs (not necessarily
non-increasing or non-decreasing), a 16/11-approximation O(n3)-time algorithm
was proposed.

This paper considers a 3-BCPP of packing BCs consisting of 3 bars each
(3-BCs). Let us introduce the following definitions.

Definition 1. Packing is a function p : S → Z+, which associates with each
3-BC i the cell number of the strip p(i) into which the first bar of 3-BC i falls.

As a result of packing p, the bars of 3-BC i occupy the cells p(i), p(i) + 1
and p(i) + 2.

Definition 2. The packing length L(p) is the number of strip cells in which at
least one bar falls.

Definition 3. Two BCs form a t-union if t cells of the strip contain the bars
of both bar charts.

Two 3-BCs can form 0-, 1-, 2- and 3-unions.
The 3-BCPP generalizes the BPP. If all bars of each 3-BC are equal, then

3-BCPP is the same as BPP, which is strongly NP-hard and inapproximable
within the 3/2 − ε, for any ε > 0 [19]. However, for BPP, several approximation
algorithms are known [2,7,14,15,17,20]. The best-known estimate on the number
of bins used is 71/60 ·OPT +1, where OPT is optimum of BPP [21]. The known
results for BPP can be used to get an approximate packing for 3-BCPP; it
is sufficient to put each 3-BC in a minimal rectangle. However, the resulting
estimate is rough.

3-Dimensional Vector Packing Problem (3-DVPP) is a generalization of BPP
and a particular case of 3-BCPP when only 3-unions are allowed. It considers
three attributes for each item and bin. The problem is to pack all items in the
minimum number of bins, considering three attributes of bin’s capacity limits
[3,6,16]. Applying an approximation algorithms to the 3-DVPP gives a feasible
packing for 3-BCPP, but it is inaccurate.

1.1 Our Contribution

This paper presents a formulation of 3-BCPP. We find a non-trivial accuracy
estimates for the general case and particular cases of 3-BCPP. To formulate our
results, we need the following definition.

Definition 4. If at least k bars of the BC are higher than 1/2, then we call such
BC “k-big”. If BC is k-big, then it is also (k − 1)-big.
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(i) We propose an O(n)-time algorithm A3 to construct a packing of length at
most 3 · OPT + 2, where OPT is the optimum of the 3-BCPP.

(ii) If all 3-BCs are 2-big, the algorithm Mw [10] yields a 5/4-approximate
solution with time complexity O(n3). If additionally, in each 2-big 3-BC
a middle bar is big, we show how to find a 9/8-approximate packing with
time complexity O(n2,5).

(iii) If all 3-BCs are 1-big, we prove that the 3-BCPP remains strongly NP-hard.
The complexity of packing 2-big 3-BCs we do not know yet.

The rest of the paper is organized as follows. Section 2 provides a statement
of the 3-BCPP as Boolean Linear Programming. Section 3 contains a proof of
the NP-hardness of packing 1-big 3-BCs. In Sect. 4, we describe the algorithms
under consideration. Section 5 contains new approximation results, and the last
section concludes the paper.

2 Formulation of the Problem

Let us have a semi-infinite unit-height horizontal strip and a set of three-bars
charts (3-BCs) S, |S| = n. Each 3-BC i ∈ S, consists of three unit-length bars.
The height of the first bar is ai ∈ (0, 1], of the second is bi ∈ (0, 1] and of the
third is ci ∈ (0, 1]. Let us split the strip into identical rectangles of unit length
and height, which we call the “cells”, starting from the beginning of the strip,
and number them with positive integers 1, 2, . . .

We introduce the following variables.

xij =
{

1, if the first bar of 3-BC i is in the cell j;
0, else.

yj =
{

1, if the cell j contains at least one bar;
0, else.

Then 3-BCPP is as follows. ∑
j

yj → min
xij ,yj∈{0,1}

; (1)

∑
j

xij = 1, i ∈ S; (2)

∑
i

aixij +
∑
k

bkxkj−1 +
∑
l

clxlj−2 ≤ yj , ∀j. (3)

In this formulation, criterion (1) is the minimization of the packing length.
Constraints (2) require each 3-BC to be packed into a strip once. Constraints
(3) ensure that the sum of the bar’s heights in any cell does not exceed 1, and
also link two groups of variables.

The 3-BCPP (1)–(3) is strongly NP-hard as a generalizations of the BPP
[14]. Moreover, the problem is (3/2 − ε)-inapproximable for any ε > 0 unless
P=NP [19].
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3 NP-Hardness of Packing 1-Big 3-BCs

Since the complexity of the problem in the particular case when all 3-BCs are
1-big was not known, we prove the following theorem.

Theorem 1. 3-BCPP of packing 1-big 3-BCs is strongly NP-hard.

Proof. To prove the NP-completeness, we reduce the strongly NP-complete
Numerical 3-dimensional matching (3-MATCHING) [13] to the particular case
of the decision version of our problem: Can all 3-BCs be packed into the Q
strip cells? In the 3-MATCHING, the input data consists of three multisets
X, Y, Z, each containing k positive integers, and an integer T . The sum of all
elements in the sets X, Y, Z is equal to kT . Question: Does there exist a subset
M ⊆ X × Y × Z, such that each number from X, Y and Z occurs exactly once,
and for each triple (x, y, z) ∈ M the equality x + y + z = T holds?

Let xi ∈ X, yi ∈ Y and zi ∈ Z, i = 1, . . . , k. Using the input data of 3-
MATCHING, we construct an input data to the particular case of the 3-BCPP.
Let us build k 3-BCs with the bars ai = 2T, bi = xi and ci = ε, where ε > 0.
The next k 3-BCs have bars ai = T + yi, bi = T − ε/2 and ci = ε. And the last
k 3-BCs are defined by bars ai = zi, bi = T − ε/2 and ci = 2T − ε, i = 1, . . . , k.
Is it possible to pack such 3-BCs into the Q = 4k cells? If the answer to the last
question is Yes, then the answer to the question in the 3-MATCHING is Yes
too. If No, then in the 3-MATCHING the answer is No too (Fig. 1). Indeed, if in
the packing for some cell i the inequality xi + yi + zi < T holds, then for some
other cell j the inequality xj + yj + zj > T holds since the sum of all numbers
is kT . Therefore, the packing will have a length equal to 4k if and only if the
equality xi + yi + zi = T holds for each i = 1, . . . , k. The proof is over.

Fig. 1. Illustration to the proof of NP-hardness

4 Algorithms

The algorithms in this paper are described earlier or the modifications of the
previously presented algorithms for the 2-BCPP in [8–11]. We recall and adapt
these algorithms for the 3-BCPP below.
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4.1 Algorithm GA

In [9] for BCPP (with arbitrary BCs), a greedy algorithm GA was proposed that
can be rewritten for 3-BCPP as follows. Let a list P be an arbitrary ordered set of
elements from S. The first element in P is placed in the cells 1, 2, 3 and removed
from P . Let some 3-BCs are packed and deleted from P . Items deleted from P
do not move further. Then the typical procedure is performed, which consists
of the following. For the next 3-BC in P , we search for the leftmost position
that does not violate the packing feasibility. Its position is fixed and this 3-BC
is removed from P . The algorithm stops when P = ∅. The running time of GA
is O(n2) since for each 3-BC, we are searching the leftmost position in the strip.

Further in the algorithm A3, we will apply a simplified version of the GA for
packing the 1-big 3-BCs, in which the next 3-BC can participate only in 1- or
2-unions with the contents of the last two cells of the current packing. We will
also refer to such algorithm as GA.

4.2 Algorithm A3

Algorithm A3 consists of three steps. At the first step, we unite some 3-BCs so
that all but maybe one 3-BC become 1-big. To do this, combine a pair of 3-BCs
i, j ∈ S with bars of height ai, bi, ci, aj , bj , cj ≤ 1/2 into one 3-BC with bars
of the heights ai+aj , bi+bj , ci+cj . As a result, every 3-BC, except maybe one,
becomes 1-big. This procedure can be performed with O(n) time complexity [9].

At the second step, we split the modified set S of big 3-BCs into the six
disjoint subsets as shown in Fig. 2. The set S1 contains all big 3-BCs whose bar
heights satisfy the inequalities a ≥ b ≥ c. The set S2 includes such big 3-BCs
that a ≥ c ≥ b. The set S3 contains big 3-BCs such that b ≥ a ≥ c. The set S4

have big 3-BCs with c ≥ b ≥ a. The set S5 contains big 3-BCs with c ≥ a ≥ b.
And the set S6 includes big 3-BCs with b ≥ c ≥ a. If a 3-BC belongs to the
several sets, then for definiteness, we place it in a set with a smaller number.

Fig. 2. Splitting big 3-BCs into the subsets

Let us arbitrarily number the elements of each set and pack the elements of
each set S1, S2, S3 separately using the GA from left to right, and S4, S5, S6

from right to left. Since some sets Sk could be empty, we get at most six separate
packings.
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At the third step, we use the GA to pack the packings of sets S1, S2, S3

obtained at the previous step from left to right and the packings obtained for
the sets S4, S5, S6 from right to left. If after the first step there is a “small”
3-BC, then we add it to the packing obtained from S1, S2, S3 and apply a GA
once more.

4.3 Algorithm AMaxAT SP (0,1)

In [11] an O(n2.5)-time 5/4-approximation algorithm for packing the non-
increasing (or non-decreasing) big 2-BCs was proposed. The algorithm is based
on the approximation-preserving reduction of 2-BCPP to the Maximum Asym-
metric Traveling Salesman Problem with boolean weights of the arcs (Max-
ATSP(0,1)) and using the algorithms proposed in [4,18] for the latter problem.
Furthermore, in [11] an O(n3)-time 16/11-approximation algorithm for pack-
ing big (not necessary non-increasing or non-decreasing) 2-BCs is presented. In
obtaining this estimate, the algorithms for constructing a maximal matching
[12], and one proposed in [18] are used.

If any pair of 3-BCs can build at most 1-union, we may use the same approach
to find a feasible packing for 3-BCPP. Before packing, n 3-BCs occupy 3n cells.
Each 1-union decreases the packing length by 1. Let us build a weighted complete
digraph G = (V,A), where the vertices are the images of the 3-BCs, and the
weight of the arc (i, j) ∈ A equals 1 if two 3-BCs i and j can form a 1-union
with i on the left. Else the weight of the arc (i, j) is 0. If we find a max-weight
Hamiltonian path in the graph G, the weight of this path is the number of 1-
unions. The problem MaxATSP(0,1) is NP-hard. However, a 3/4-approximation
O(n2.5)-time algorithm exists [4,18].

4.4 Algorithms Mw

Algorithm Mw was described in [10] for 2-BCPP. It consists of sequence of steps.
For the 3-BCPP it can be described as following. First, using the set S, we
construct a weighted graph G1 = (V1, E1), in which the vertices are the images
of 3-BCs (|V1| = |S| = n). The edge (i, j) ∈ E1 if the 3-BCs i and j can form a
union, and the weight of this edge equals t if BCs i and j can create a t-union,
but cannot form a (t + 1)-union. In the graph G1, the max-weight matching is
constructed. As a result, we have 3-, 4- and 5-BCs, which are the prototypes of
the vertices forming the set V2 of the next weighted graph G2 = (V2, E2). The
edge (i, j) ∈ E2 of weight t exist if BCs i and j can form a t-union, but cannot
form a (t + 1)-union. At an arbitrary step in the corresponding graph Gk, we
construct the next max-weight matching. The algorithm stops when in the next
graph Gk+1, there are no more edges.

5 Approximation Results

The following theorem is valid for packing arbitrary 3-BCs.
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Theorem 2. Algorithm A3 with time complexity O(n) constructs a packing for
3-BCPP of length at most 3 · OPT + 2, where OPT is the minimum length of
the strip into which n 3-BCs can be packed.

Proof. Since the sets S1, S2, S3 and S4, S5, S6 are symmetric, we consider in
detail only packing of the sets S1, S2, S3.

All 3-BCs of the sets S1, . . . , S6 are 1-big by construction, which means that
each has a bar higher than 1/2. One 3-BC is packed in the first three cells.
Therefore, the packing density of one of the occupied cells is more than 1/2 >
1/3.

Suppose that after packing k 3-BCs, the packing density of all cells, except
two, is at least 1/3.

Let us consider what happens when the (k + 1)-th 3-BC in the S1 is packed
using a simplified version of the GA. At this point, k 3-BCs are already packed
and form a BC, which we denote as S

k

1 . Evidently, ak+1 + ak > 1. Let yk and
zk are the heights of the two last bars in the S

k

1 . The following three cases are
possible.

1. ak+1 + yk < 1 (the first bar of the (k + 1)-th 3-BC shares a cell with the last
but one bar of the S

k

1). Then, the packing density of all cells, except the last
one, is greater than 1/2 > 1/3 (because ak+1 > 1/2).

2. ak+1 + yk > 1, but ak+1 + zk < 1 (the first bar of the (k + 1)-th 3-BC cannot
be united with the last but one bar of the S

k

1 , but the first bar of the (k+1)-th
3-BC can be united with the last bar of the S

k

1). Then, yk + ak+1 + zk > 1
(because yk + ak+1 > 1). Therefore, the density of the last but one and third
cell from the end is greater than 1/2 > 1/3.

3. ak+1 +yk > 1 and ak+1 +zk > 1 (S
k

1 and (k +1)-th 3-BCs cannot be united).
In this case ak+1 + yk + zk > 1, and it follows that the packing density of all
cells, except the last two, is greater than 1/3.

Therefore, after packing (k + 1)-th 3-BC the packing density of all cells, except
two, is greater than 1/3.

Let us consider the packing of the set S2. We suppose that after packing k

3-BCs, the packing density of all cells, except two, is greater than 1/3. Let S
k

2

be the BC, which is the result of packing k 3-BCs, yk is the height of the last
but one and zk is a height of its last bar. The following cases are possible when
packing the (k + 1)-th 3-BC.

1. If ak+1 + yk < 1, ak+1 + zk < 1, then we pack the first and the second bars of
the (k + 1)-th 3-BC in the cells containing two last bars of the S

k

2 (the sum
of heights of these bars is less than 1 since a > b). Since ak+1 > 1/2 > 1/3,
we get the packing density greater than 1/3 except the last two cells.

2. If ak+1 + yk < 1, ak+1 + zk > 1, but bk+1 + zk < 1, then we pack the first and
the second bars of the (k + 1)-th 3-BC in the cells containing two last bars
of the S

k

2 . We get the packing density greater than 1/3 except the last two
cells, since ak+1 > 1/2 > 1/3.
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3. If ak+1+yk > 1, but ak+1+zk < 1, then we unite the first bar of the (k+1)-th
3-BC and the last bar of the S

k

2 . Since ak+1 + yk > 1, the packing density is
more than 1/3, except maybe the last 2 cells.

4. If (ak+1 + yk > 1 and ak+1 + zk > 1) or (ak+1 + yk < 1 and bk+1 + zk < 1),
then we pack the (k + 1)-th 3-BC on the right into the empty cells. We get
that ak+1 + zk > bk+1 + zk > 1, whence it follows that the packing density,
not counting the last two cells, is greater than 1/3.

Let us consider the packing of the set S3. We suppose that k 3-BCs are
packed with density greater than 1/3 except two cells. Let us define the result of
packing k 3-BCs as BC S

k

3 , where yk is the height of the last but one and zk is
the height of the last bar. The following cases arise when packing the (k + 1)-th
3-BC.

1. If ak+1+yk < 1 and bk+1+zk < 1, then we unite the first bar of the (k+1)-th
3-BC and the last but one bar of the S

k

3 . We have bk+1 + zk > 1/2 > 1/3.
Therefore, the packing density of all cells except one is greater than 1/3.

2. If ak+1+yk < 1 and bk+1+zk > 1, then we unite the first bar of the (k+1)-th
3-BC and the last bar of the S

k

3 . We have bk+1 + zk > 1, which means that
the packing density of all cells is greater than 1/3.

3. If ak+1 + yk > 1, ak+1 + zk > 1, then we pack the (k + 1)-th 3-BC into the
empty cells. Then ak+1 + zk + bk+1 > 1 + 1/2 = 3/2, that is, the packing
density of all cells is greater than 1/3.

4. If ak+1 + yk > 1, ak+1 + zk < 1, bk+1 + zk > 1, then we unite the first bar of
the (k +1)-th 3-BC and the last bar of the S

k

3 . We have bk+1 + zk > 1, which
means that the packing density of all cells is greater than 1/3.

In the latter case ak+1+bk+zk−1 = ak+1+yk > 1, ak+1+ck < 1, bk+1+ck <

1, so we unit the first bar of the (k+1)-th 3-BC and the last bar of the S
k

3 , but
we cannot use the height of the yk bar, because it could affect the packing
density of early filled cells. To show that the density remains greater than
1/3, we consider the options for packing the k-th 3-BC together with the
(k + 1)-th 3-BC. Note that in the cases 2–4, the packing density is greater
than 1/3, including the cell containing the bar of height zk+1. Therefore, we
can divide the packing cases of the k-th 3-BC into 3 variants (including new
cases that will appear due to this technique):

– k-th 3-BC is packed in the same way as in the case 1 or it is the first
3-BC in the S3;

– k-th 3-BC is packed in the same way as in the cases 2–5, 7;
– k-th 3-BC is packed in the same way as in the case 6.

5. If ak+1 + bk + zk−1 = ak+1 + yk > 1, ak+1 + ck < 1, bk+1 + ck < 1 and
the k-th 3-BC is packed in the same way as in the case 1, then we unite the
first bar of the (k + 1)-th 3-BC and the third bar of the k-th 3-BC. Since
ak+1 + bk + bk+1 > 1 + 1/2 = 3/2, then the density of the four last cells is
greater than 1/3. Note that in this case, the cell containing the bar of height
ck+1 has a density greater than 1/3, as in the cases 2–4.
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Fig. 3. A case 5 for the set S3 packing

Fig. 4. The cases 6 and 7 for the set S3 packing

6. If ak+1 + bk > 1, ak+1 + ck < 1, bk+1 + ck < 1 and the k-th 3-BC is packed in
the same way as in the case 2, then we unite the bars with heights ak+1 and
ck. We get that bk+1 > 1/2 > 1/3, and the packing density is greater than
1/3, except one cell.

7. If ak+1 + bk > 1, ak+1 + ck < 1, bk+1 + ck < 1, then we unite ak+1 and ck.
Since ak+1 + bk + ck + bk+1 > 1 + 1/2 = 3/2, the density of the four last
cells is greater than 1/3. Note that in this case, the cell containing the bar of
height ck+1 has density greater than 1/3, as in the cases 2–5.

When packing the 3-BCs of the set S3, the height of the first bar a1 of the
first 3-BC can be arbitrary. Thus, the packing density of all cells, except two, is
more than 1/3.

After applying the GA to all types of the 3-BCs (the sets S4, S5 and S6

are packed using a simplified version of the GA from right to left), we get six
packings, which we denote as S1, . . . , S6. These packings can be considered as
new BCs and can also be packed. Let us consider the BCs S1 and S2. Denote
by b1 and c1 the heights of the last but one and the last bars of S1, and let a2

and b2 are the heights of the first and the second bars of S2. When packing S1

and S2, we need to consider the following cases.

1. 2-union.
If b1 + a2 < 1, c1 + b2 < 1, then we unite the corresponding bars and get a
packing with density greater than 1/3, except two cells.

2. 1-union.
(a) If b1 + a2 < 1, c1 + b2 > 1, then we unite the bars with the heights c1

and a2. We get a2 + b1 + c1 + b2 > 1 + 1/2 = 3/2. The packing density is
more than 1/3, except two cells.
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(b) If b1 + a2 > 1, c1 + b2 < 1, then we unite the bars with the heights c1
and a2. We get a2 + b1 + c1 + b2 > 1 + 1/2 = 3/2. The packing density is
more than 1/3, except two cells.

3. 0-union.
(a) If b1 + a2 > 1, c1 + b2 > 1, then we place S2 on the right into the empty

cells and get a2 + b1 + c1 + b2 > 1 + 1/2 = 3/2. The packing density is
more than 1/3, except two cells.

(b) If c1 + b2 > 1, c1 + a2 > 1, then we put S2 on the right without union
and get a2 + b1 + c1 + b2 > 1 + 1/2 = 3/2. The packing density is more
than 1/3, except two cells.

Next, to the BC S1,2 obtained by packing the BCs S1 and S2, we add S3.
Let a1, b1, c1 are the heights of the last three bars of the BC S1,2, and a2, b2, c2
are the heights of the first, second and third bars of the BC S3. Consider the
possible cases:

1. 3-union.
a1 + a2 < 1, b1 + b2 < 1, c1 + c2 < 1, then we unite the corresponding bars
and get a packing with density greater than 1/3, except two cells.

2. 2-union.
(a) If a1 + a2 > 1, b1 + a2 < 1, c1 + b2 < 1.

Then we unite the corresponding bars and get a packing having a density
greater than 1/3, with the exception of two cells. One of these cells (with
density less than 1/3) is the last one in the current packing.

(b) If b1 + b2 > 1, b1 + a2 < 1, c1 + b2 < 1.
In this case we unite the corresponding bars and get a packing with
density greater than 1/3, except two cells. One of these cells is the last
one in the current packing.

(c) If c1 + c2 > 1, b1 + a2 < 1, c1 + b2 < 1.
We unite the corresponding bars and get a packing with density greater
than 1/3, except for two cells. One of these cells is the last one in the
current packing.

3. 1-union.
(a) If a1 + a2 > 1, b1 + a2 > 1, c1 + a2 < 1.

We unite the corresponding bars. Since b1+a2 > 1, we get a packing with
density greater than 1/3, except one cell.

(b) If a1 + a2 > 1, c1 + b2 > 1, c1 + a2 < 1.
Bar b2 of the first 3-BC in S3 for all cases of packing of the set S3 is
responsible only for the cell in which it is located, except case 5. In this
case, its height affects the density of subsequent cells, and we cannot use
the inequality c1 + b2 > 1 to get the needed density. It is required to
consider how the last 3-BC from the BC S1,2 unite the first 3-BC in S3.
These may be 3 cases for the set S1 or S2 considered earlier, or the BC
S1,2 contains only one 3-BC. There are seven cases in total:
Let a1, b1, c1 are the heights of the bars of the last but one 3-BC from
S1,2, a2, b2, c2 are the heights of the bars of the last 3-BC from S1,2,
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a3, b3, c3 are the heights of the bars of the first 3-BC from S3, a4, b4, c4
are the heights of the bars of the second 3-BC from S3.
Then a2 + a3 > 1, c2 + b3 > 1, c2 + a3 < 1.
i. Case 1 for packing S1.

We have that a2 + a3 + c2 + b3 + b4 > 1 + 1 + 1/2 = 2.5. Therefore,
the density of all cells, except one, is greater than 1/3.

ii. Case 2 for packing S1.
In this case b1+a2+c2+b3+b4 > 1+1+1/2 = 2.5. Then the density
of all cells except one is greater than 1/3.

iii. Case 3 for packing S1.
In this case b1 +a2 + c2 + b3 + b4 > 1+1+1/2 = 2.5, and the density
of all cells, except two, is greater than 1/3. Where one of these cells
(with density less than 1/3) is the last one in the current packing.

iv. Case 1 for packing S2.
Similarly to the case 1 for S1.

v. Case 2 for packing S2.
Similarly to the case 2 for S1.

vi. Case 2 for packing S2.
Similarly to the case 3 for S1.

vii. Let S1 or S2 consists of one 3-BC.
Since S1 or S2 is the first 3-BC, then a2+a3+b3+a4+b4 > 1+1+1/2 =
2.5. Therefore, the density of all cells except one is greater than 1/3.

(c) If b1 + b2 > 1, c1 + b2 > 1, c1 + a2 < 1.
Similar to the previous case, but when there is one 3-BC in the S1 or S2,
we have that a2 + b3 + a4 + b4 > 1/2 + 1 + 1/2 = 2, and the density of all
cells, except two, is greater than 1/3. And one of the cells with density
less than 1/3 is inside the BC.

(d) If c1 + c2 > 1, c1 + b2 > 1, c1 + a2 < 1.
In this variant, in case 5 of uniting the first 3-BC in S3, we can use the
height of the bar c3, so we have c1 + c2 > 1, and the density of all cells,
except one, is greater than 1/3.

4. 0-union.
If a2 + a1 > 1, a2 + b1 > 1, a2 + c1 > 1, then since a2 + c1 > 1 the density
of all cells except one is greater than 1/3.

Similarly, we construct the BC packing S4, S5, S6 from right to left, and also
get a packing density more than 1/3, except two cells.

A complete proof with illustrations one can find in [1].
We used a simplified version of the GA, where for each BC we consider only

the unions with the last 2 bars. Then the time complexity of algorithm A3 is
O(n). The theorem is proved.

For the particular case when all 3-BCs are 2-big, we prove the following new
results.

Lemma 1. If all 3-BCs are 2-big, then OPT ≥ 2n.
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Proof. More than one big bar cannot be in one cell, so each 2-big 3-BC occupies
at least 2 cells. Since |S| = n, the optimal packing length is at least 2n. The
lemma is proved.

Theorem 3. If all 3-BCs are 2-big, and the second bar of each 3-BC is big,
then algorithm AMaxATSP (0,1) constructs a 9/8-approximate solution with time
complexity O(n2.5).

Proof. Since the first two or last two bars of each 3-BC are higher than 1/2,
only 1-unions are possible. Moreover, OPT ≥ 2n (Lemma 1). If we solve the
MaxATSP (0, 1) using approximation algorithm [18] with approximation ratio
3/4 (i.e. q ≥ 3

4q∗, where q∗ is the optimum of the MaxATSP (0, 1), and q is
the weight of the path constructed by approximation algorithm), then we get an
approximate packing of length at most 3n − q. From the inequality q∗ ≤ n − 1
follows

3n − q

3n − q∗ ≤ 3n − 3
4q∗

3n − q∗ ≤ 9
8
.

The theorem is proved.

Let now each 3-BC is arbitrary 2-big (any two bars of each BC are higher
than 1/2). Algorithm Mw constructs a max-weight matching at each step. We
can assume that the optimal algorithm also builds some matching at each step
[10]. Let us introduce the following notation.

– mk is the cardinality of the k-th matching constructed by the Mw;
– m∗

k is the cardinality of k-th matching in the optimal packing;
– wk is the weight of the matching constructed at the k-th step of the Mw;
– w∗

k is the weight of the matching constructed at step k in the optimal packing;
– k1 is the number of 2-unions in the first matching constructed by the Mw;
– k∗

1 is the number of 2-unions in the first matching in the optimal packing.

Lemma 2. Any packing of 2-big 3-BCs can be disassembled so that 2-unions
appear only in the first matching.

Proof. Suppose we have a packing P . Let us disassemble it into the separate 3-
BCs that are not involved in the 2-unions (set A), and into the 4-BCs obtained
as a result of 2-unions (set B). We need to show that 2-unions can appear only
in the first matching.

We disassemble the packing P from left to right. Consider the first 3-BC. If
it is united with another BCs by:

1. 0-union or 1-union. Then we exclude it from the packing P and put it in the
set A;

2. 2-union. Then we consider such a 4-BC, which is the result of a 2-union. This
4-BC can only has 0- and 1- unions with other BCs. Let us exclude it from
P and include in the set B.
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Repeating this procedure until P becomes empty, we get a set A of separate
3-BCs, and a set B of 4-BCs obtained after 2-unions. Since each 2-big 3-BC
can participate in a 2-union at most once, we assume that the first matching
constructs all 2-unions. The lemma is proved.

The Lemma implies the equalities w∗
k = m∗

k, k ≥ 2.

Lemma 3. If all 3-BCs are 2-big, then m∗
2 + m∗

3 + . . . + m∗
q ≤ m∗

1.

Fig. 5. Disassembling of the packing. a) Optimal packing; b) First matching

Proof. Since the cardinality of the first matching in the optimal packing is m∗
1,

then B = n − 2m∗
1 3-BCs cannot form either 2- or 1-unions with each other.

Let us call them the “separate” 3-BCs (in the Fig. 5 m∗
1 = 3, B = 2). In the

following matchings, starting from the second, these B separate 3-BCs can only
form 1-unions with the m∗

1 4-BCs resulting from the unions in the first step.
Furthermore, m∗

1 new 4-BCs can also be united with each other. However, in
total, starting from the second step, at most m∗

1 − 1 1-unions are possible since
B 3-BCs do not unite with each other. The lemma is proved.

Theorem 4. If all 3-BCs are 2-big, then algorithm Mw constructs a 5/4-
approximate solution with time complexity O(n3).

Proof. Initially, n 3-BCs occupy 3n cells of the strip. Each 1-union reduces the
packing length by 1, and 2-union reduces by 2. If p matchings are constructed,
then the length of the packing yielded by the Mw is

L(Mw) = 3n − w1 − w2 − . . . − wp ≤ 3n − w1.

From Lemma 2 and Lemma 3 follows

OPT = 3n − w∗
1 − w∗

2 − . . . − w∗
q = 3n − w∗

1 − m∗
2 − . . . − m∗

q ≥ 3n − w∗
1 − m∗

1.
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Then

ε =
L(Mw)
OPT

≤ 3n − w1

3n − w∗
1 − m∗

1

≤ 3n − w1

3n − w1 − n/2
= 1 +

1
5 − 2w1/n

= f(x),

where x = w1/n. On the other hand, Lemma 1 implies

ε =
L(Mw)
OPT

≤ 3n − w1

2n
=

3 − w1/n

2
= g(x).

So, ε ≤ min{f(x), g(x)} for any feasible x. The function f(x) is increasing,
while the function g(x) is decreasing. If f(x0) = g(x0) then ε ≤ f(x) ≤ f(x0)
for x ≤ x0 and ε ≤ g(x) ≤ g(x0) for x ≥ x0. To find x0 we solve the equation
f(x) = g(x) or 2x2 − 7x + 3 = 0. There is one feasible solution x = 1/2. Then
ε ≤ f(1/2) = g(1/2) = 5/4.

The time complexity of constructing a max-weight matching is O(n3) [12].
It is sufficient to construct only the first matching to obtain the corresponding
accuracy. The theorem is proved.

6 Conclusion

We consider Three-Bar Charts Packing Problem (3-BCPP) in which it is nec-
essary to pack the bar charts consisting of three bars each (3-BCs) into the
horizontal unit-height strip of minimal length. The bars of each 3-BC may move
vertically within the strip, but it is forbidden to change the order and sepa-
rate the bars of each 3-BC. This novel issue is a generalization of the strongly
NP-hard Two-Bar Charts Packing Problem (2-BCPP) considered earlier [9–11].

– We proposed an O(n)-time algorithm A3 which constructs a packing of length
at most 3 · OPT + 2, where OPT is the optimum of 3-BCPP.

– If all 3-BCs are 2-big (at least two bars have a height more than 1/2), we
show how to find a 5/4-approximate solution with time complexity O(n3). If,
additionally, a small bar of each 3-BCs is not a second, it is possible to find
a 9/8-approximate packing with time complexity O(n2.5).

– If all 3-BCs are 1-big (one bar of each 3-BC is higher than 1/2), we prove that
3-BCPP remains strongly NP-hard. The complexity of packing 2-big 3-BCs
we do not know yet.

In the future, we are planning to prove that A3 constructs a packing of length
at most 8/3 OPT + 1. Moreover, we want to show the tightness of the obtained
accuracy estimates of the considered algorithms.
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Abstract. In this paper we consider the single machine scheduling prob-
lem. Each job has a release time, processing time and a delivery time.
Preemption of jobs is not allowed. The objective is to minimize the time,
by which all jobs are delivered. This problem is denoted by 1|rj , qj |Cmax,
has many applications, and it is NP-hard in strong sense. The problem is
useful in solving flowshop and jobshop scheduling problems. The goal of
this paper is to propose a new 11/7— approximation algorithm, which
runs in O(n log n) times. To compare the effectiveness of proposed algo-
rithms we tested random generated problems.

Keywords: Single machine scheduling problem · Inserted idle time ·
Worst-case performance ratio · Approximation algorithm

1 Introduction

The single machine problem of minimizing the maximum delivery times
1|rj , qj |Cmax, (Graham et al. [1]) is a classical combinatorial optimization prob-
lem. We consider a set of jobs V = {1, 2, . . . , n}. Each job i must be processed
without interruption for t(i) time units on the processor, which can process at
most one job at time. Each job i has a release time r(i), when the job is ready
for processing, and a delivery time q(i). With no loss of generality we consider
that t(i), r(i), q(i) are integers. The delivery of each job begins immediately after
processing has been completed.The objective is to minimize the time, by which
all jobs are delivered.

It is required to construct a schedule, that is, to find for each job i ∈ V the
start time τ(i), provided that r(i) ≤ τ(i). We can construct the permutation of
jobs S = (i1, i2, ..., in) and then find the start time τ(i) for each job by formula
τ(ij) = max{r(ij), τ(ij−1) + t(ij−1)}, for j ≥ 2 and τ(i1) = r(i1).

The goal is to construct a schedule that minimizes the delivery time of the
last job Cmax = max{τ(i) + t(i) + q(i)|i ∈ V }. The problem is NP -hard in the
strong sense [2], but there are exact polynomial algorithms for some special cases
and has many applications.
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Some authors considered an equivalent formulation of the problem, in which
instead of the delivery time for each job, the due date D(i) = K − q(i) is known,
where K is a constant, and the objective function is the maximum lateness
Lmax = max{τ(i) + t(i) − D(i)|i ∈ V }. This formulation of the problem is
denoted as 1|ri|Lmax.

If we swap the delivery times and the release times, we get an inverse problem
with the property that the solution of the direct problem S = (i1, i2, ..., in) is
optimal if and only if the permutation Sinv = (in, in−1, ..., i1) is the optimal
solution of the inverse problem.

The problem 1|rj , qj |Cmax is the main subproblem in many important models
of scheduling theory, such as multiprocessor scheduling, flowshop and jobshop
problems. The study of this problem has the theoretical interest and it is useful
in practical industrial applications [3–5,14].

Among the early works [10–13], that developed branch and bound algorithms
for single processor scheduling problem, the most effective algorithm was Car-
lier’s algorithm. This algorithm constructs a full solution by extended Jackson’s
rule in each node of the search tree and optimally solves random instances with
50–10,000 jobs. But there are hard instances for Carlier’s algorithm.

In further works, authors improve Carlier’s algorithm by offering various
methods for obtaining lower and upper bounds.

One way to improve the performance of the branch and bound method is to
use approximation efficient algorithms to obtain upper bounds. Such algorithms
should have a good approximation ratio and the low computational complexity.

In [14] three branch and bound algorithms based on Carlier’s algorithm were
presented. The paper [15] considered the the single processor scheduling problem
with precedence constraints and proposed the branch and bound algorithm which
used three different heuristics at each branch node.

The branch and bound algorithms proposed in [4], used a binary branching
rule where at each branch node the full schedule is generated by new heuristic
algorithm.

We developed the branch and bound algorithm for the single processor
scheduling problem with precedence constraints [18]. The branch and bound
algorithm used two heuristics at each branch node: extended Jackson’s rule and
an inserted idle time algorithm IJR.

One of the popular scheduling tools are list algorithms that build non-delayed
schedules. In the list algorithm, at each step, the job with the highest priority
is selected from the set of ready jobs. But the optimal schedule may not belong
to the class of non-delayed schedules.

IIT (inserted idle time) schedules were defined in [16] as feasible schedules in
which the processor can be idle when there are jobs ready to run.

The main idea of greedy algorithms for solving these problems is the choice at
each step of the highest priority job, before the execution of which the processor
could be idle.

Several approximation algorithms are known for solving the problem
1|ri, qi|Cmax, for which the worst-case performance ratio is established. The
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Table 1. Approximation algorithms

Year Pn Comp. c WCR Ref.

1971 1 O(n logn) 2 [6]

1980 n O(n2 log n) 3/2 [7]

1992 4n O(n2 log n) 4/3 [8]

1994 2 O(n logn) 3/2 [9]

2021 2 O(n logn) 3/2 [17]

Table 1 contents information about its. In the first column there is the year
of publication, second column Pn shows a number of permutations, which the
algorithm constructs, computational complexity of algorithm is given in the 3
column, the worst-case performance ratio is given in the 4 column, in the last
column references are given.

The first algorithm for constructing an approximate schedule was the Schrage
heuristic [6] - an extended Jackson rule, which is formulated as follows: each time
the processor is free, a ready job with the maximum delivery time is assigned to
it.

K. Potts [7] proposed an algorithm in which the extended Jackson’s rule
algorithm repeats n times. The best schedule is selected from n constructed
schedules.

L. Hall and D. Schmois [8] considered the direct problem and the inverse
problem and have developed a method in which the Potts algorithm is applied
to the direct and the inverse problem. In total, the algorithm builds 4n schedules
and chooses the best one.

E. Novitsky and K. Smutnitsky [9] proposed an 3/2 — approximation algo-
rithm, which creates only two permutations. For the first time, the Jackson rule
is applied, then the interference work is determined and the set of tasks is divided
into two sets: tasks that should be performed before the interference work and
tasks that should be performed after it. The best schedule is selected from two
schedule.

The author proposed an IIT 3/2—approximation algorithm ICA for a single-
machine scheduling problem [17], which creates two permutations. One permu-
tation is constructed by the Jackson rule algorithm, other permutation is con-
structed by IJR (Idle Jackson Rule) algorithm. We select the best one.

The goal of the paper is to prepare an approximation IJR algorithm, that
builds only one permutation and to prove that the worst-case performance ratio
of the IJR algorithm is equal 11/7.

Schrage heuristic builds one permutation and has a guaranteed accuracy score
of 2. All other algorithms actively use this algorithm. The proposed algorithm
has the best guaranteed estimate and can be used to construct other algorithms
with the best guaranteed estimate. For example, it is interesting to apply this
algorithm to direct and inverse problems (as in the method [8]). In addition, the
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algorithm is twice as fast as algorithms [9] and [17] because it only builds one
permutation.

The article is organized as follows: Sect. 2 presents an approximation algo-
rithm IJR. The theoretical study of the proposed algorithm in Sect. 3 contains
three lemmas and one theorem. We prove that the worst-case performance ratio
of the IJR algorithm is equal 11/7. The results of the computational experiment
are given in Sect. 4. In conclusion, the main results obtained in the article are
formulated.

2 IJR Scheduling Algorithm

The main idea of the IJR algorithm is that sometimes it is better to place a
priority job on service, even if it leads to some idle time of the processor.

In the IJR algorithm two jobs are selected: the highest priority job and the
highest priority ready job. The paper has established special conditions in which
it is advantageous to organize the unforced idle time of the processor. These
conditions allow to choose between two jobs.

The algorithm IJR is a greedy algorithm, but not a list algorithm and can
be used as a basic heuristic for various scheduling models and constructing a
branch and bound method.

We introduce the following notation: Sk = (i1, i2, . . . , ik) is the partial sched-
ule, time := max{τ(i) + t(i)|i ∈ Sk−1} is the time to release the processor after
the execution of already scheduled jobs. We store ready jobs in the queue with
priorities Q1, the priority of a job is its delivery time.

2.1 Algorithm IJR

Initialization

1. Sort all tasks in non-descending order of receive times:
r(j1) ≤ r(j2) ≤ . . . ≤ r(jn).
Let the list H = (j1, j2, . . . , jn)

2. Define rmin = min{r(i)| i ∈ V }.
3. Define qmin = min{q(i) | i ∈ V }.
4. Define two lower bounds the objective function

LB1 = rmin +
∑n

i=1 t(i) + qmin.
LB2 = max{r(i) + t(i) + q(i) | i ∈ V }.

5. Define the lower bound of the objective function LB = max{LB1, LB2}.
6. Set time := rmin. Q1 = ∅, l = 1, S0 = ∅.

Main loop
For k = 1 to n do

1. while (r(jl) ≤ time) do
begin add a ready job r(jl) to the Q1 queue; l:=l+1 end.

2. If there is no ready job and Q1 = ∅, then
time := min{r(i)|i /∈ Sk−1} and go to step 1.
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3. Select the ready job u ∈ Q1 with the maximum delivery time
q(u) = max{q(i)|i ∈ Q1}.

4. Set rup := time + t(u).
5. While there are jobs jl such that time < r(jl) < rup do

(a) If q(jl) ≤ LB/2, then jl is added to the queue Q1. l := l +1, go to step 5.
(b) If q(jl) > LB/2, define a possible idle time of the processor idle(jl) =

r(jl) − time.
(c) If q(jl) − q(u) ≥ idle(jl) then we set task jl on the processor:

set τ(jl) := r(jl); time := τ(jl) + t(jl),
Sk := Sk−1 ∪ {jl}, l := l + 1, go to step 1.

(d) else Add task jl, to the queue Q1.
Set l := l + 1, go to step 5.

6. Set the job u on the processor:
set τ(u) := time; time := τ(u) + t(u),
Sk := Sk−1 ∪ {u}.
Delete u from the queue Q1, go to step 1.

7. The schedule Sn is constructed. Find the value of the objective function
Cmax(Sn) = max{τ(i) + t(i) + q(i) | i ∈ V }.

The algorithm sets on the processor the job jl with the large delivery time
q(jl). If this job is not ready, then the processor will be idle in the interval
[time, r(jl)]. To avoid too much idle of the processor the inequality q(jl)−q(u) ≥
idle(jl) is verified on step 5c. If the inequality is hold, we choose job jl. Otherwise,
we set the ready job u with the maximum delivery time to the processor.

The JR algorithm does not allow the processor to be idle if there is a ready
job, even if the priority of the job is low. The IJR algorithm allows the processor
to be idle while waiting for the more priority job. Additional conditions are
checked ( step b and c of IJR algorithm), under which it is profitable to perform
the more priority job, but the downtime is not too large.

3 The Worst-Case Performance Ratio of the IJR
Algorithm

The properties of the schedule created by algorithm IJR proposed in Sect. 2 are
formulated and proved in the following lemmas.

Let the IJR algorithm constructs a schedule S, the value of the objective
function is equal to CA.

Consider some definitions that were introduced in [7] for schedules con-
structed according to Jackson’s rule, and which are important characteristics
of IIT schedules.

Definition 1. [7] A critical job in the schedule S is a job c such that CA =
τ(c) + t(c) + q(c). If there are several such jobs, then we choose the earliest one
(with minimum start time) in the schedule S.
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Definition 2. [7] A critical sequence in a schedule S is a sequence of jobs
J(S) = (a, S∗, c) such that c is the critical job and there is no processor idle
time in the schedule, starting from the start of the job a until the job c ends.

The job a is either the first job in the schedule, or the processor is idle before
it.

Definition 3. [7] A job u in a critical sequence J(S) is called interference job
if q(u) < q(c) and q(i) ≥ q(c), for all jobs i, that are done after job u in the
critical sequence J(S).

Proposition 1. [7] If for all jobs of the critical sequence it is true that r(i) ≥
r(a) and q(i) ≥ q(c), then the schedule is optimal.

Let us introduce a definition of delayed job that can be encountered in IIT
schedules.

Definition 4. A job v from the critical sequence J(S) = (a, S∗, c) is called a
delayed job if r(v) < r(a).

An interference job can be a delayed job.
Let us formulate two properties of the schedule, like the properties of Jack-

son’s rule schedules [7].

Lemma 1. [18] Let there be the interference job u in the critical sequence
J(S) = (a, S1, u, S2, c). Let rmin(S2) = min{r(i)|i ∈ S2 ∪ c}, T (S1) =

∑
i∈S1

t(i)
and idle = rmin(S2) − r(a) − t(a) − T (S1) > 0

Then CA − Copt ≤ t(u) − idle.

This lemma refines the property of the Jackson schedule, proved in [7], and
shows that, removing the interference work, we can reduce the length of the
schedule no more than t(u) − idle.

Lemma 2. If there are not any delayed jobs in the critical sequence, then CA −
Copt ≤ q(c).

Lemma 3. Let the IJR algorithm constructs a schedule S, the value of the objec-
tive function is equal to CA.

Assume the interference job u is in the critical sequence J(S) =
(a, S1, u, S2, c). If the job u is executed after the sequence S2 and job c in an
optimal schedule or the job u is performed between a and c in an optimal sched-
ule then CA/Copt ≤ 3/2.

Proof. Case 1. Let the job u is executed after the sequence S2 and job c in an
optimal schedule.

If t(u) ≤ Copt/2, then the Lemma 3 is true by Lemma 1.
Let t(u) > Copt/2. Let rmin(S2) = min{r(i)|i ∈ S2 ∪ c}. If the interference

job u is executed after all jobs of the sequence S2 and c in an optimal schedule,
then
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Copt ≥ rmin(S2) + T (S2) + t(c) + t(u) + q(u). Then

CA − Copt ≤ r(a) + t(a) + T (S1) + t(u) + T (S2) + t(c)

+q(c) − rmin(S2) − T (S2) − t(c) − t(u) − q(u)

= r(a) + t(a) + T (S1) − rmin(S2) + q(c) − q(u)

= −idle + q(c) − q(u)

Choose a job v ∈ S2 such that r(v) = rmin(S2). The algorithm IJR did not put
the job v instead of job u either because q(v) < LB/2 or idle(v) > q(v) − q(u).

Then idle = idle(v) = rmin(S2) − r(a) − t(a) − T (S1) > q(v) − q(u) ≥
q(c) − q(u), or q(c) ≤ q(v) < LB/2.

Then CA − Copt < LB/2.
Case 2. If in the optimal schedule, the job u is performed between a and c,

then
Copt ≥ r(a) + t(a) + t(u) + T (S2) + t(c) + q(c).

Therefore CA−Copt ≤ r(a)+t(a)+T (S1)+t(u)+T (S2)+t(c)+q(c)−r(a)−
t(a)−t(u)−T (S2)−t(c)−q(c) = T (S1) ≤ LB/2. Because t(u) > Copt/2 ≥ LB/2
and LB ≥ t(a) + T (S1) + t(u) + T (S2) + t(c).

In this case, the IJR algorithm constructs a 3/2 approximation schedule.

Theorem 1. The algorithm IJR constructs a schedule SA for which CA/Copt <
11/7.

Proof. Let the schedule S be constructed using the IJR algorithm. The objective
function value is CA, and there is the critical sequence J(S) = (a, S∗, c) in S.

We consider all the possible cases.
Case 1. There are no interference and delayed jobs in J(S) then the algorithm

has constructed an optimal schedule.
Case 2. There are some delayed jobs in J(S) = (a, S∗, c). If there is no

interference job in the critical sequence J(S), then q(i) ≥ q(c) for all jobs from
the critical sequence i ∈ J(S). But in the critical sequence there are jobs that
can be started before the job a.

Let r(J(S)) = min{r(i) | i ∈ J(S)}. Then

Copt ≥ r(J(S)) + T (J(S)) + q(c).

Hence

CA − Copt ≤ r(a) + T (J(S)) + q(c) − r(J(S)) − T (J(S)) − q(c)

= r(a) − r(J(S)) < LB/2.

Because q(a) > LB/2.
Case 3. There is the interference job u in the critical sequence J(S) =

(a, S1, u, S2, c). It is required to consider the case in which t(u) > Copt/2. If
in an optimal schedule the job u is executed after the sequence S2 and job c or
the job u is performed between a and c, then CA/Copt ≤ 3/2 by Lemma 3.
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We have to consider the case, where in an optimal schedule the job u is
executed before the job a.

Let us formulate a problem of fractional linear programming. We consider
jobs that make up the critical sequence and introduce the following variables.

1. x1 = r(a) — release time of job a.
2. x2 = T (S1) — sum of processing times jobs from S1.
3. x3 = T (S2) — sum of processing time jobs from S2 and c.
4. x4 = t(u) — processing time of job u.
5. x5 = q(a) — delivery time of job a.
6. x6 = q(c) — delivery time of job c.
7. x7 = rmin(S2) — minimum release time of jobs from S2.
8. x8 = Copt — optimal value of objective function.
9. x9 = t(a) — processing time of job ja.

10. x10 = t(j) — maximum processing time of jobs from S2 and c.
11. x11 = idle — is a possible idle time of the processor if the algorithm puts

a higher priority job, but not ready job, on the processor.

The objective function of the fractional linear programming problem is

CA/Copt = (x1 + x2 + x3 + x4 + x6 + x9)/x8.

It is required to find its maximum value with the following restrictions:

1. The sum of the times of all jobs does not exceed the lower estimate:

x2 + x3 + x4 + x9 ≤ LB.

2. For job a it is true r(a) + t(a) + q(a) ≤ LB: x1 + x5 + x9 ≤ LB.
3. At time x1+x2+x9 all tasks in the sequence S2 are not ready and potential

idle time of the processor is equal x11

x1 + x2 − x7 + x9 + x11 ≤ 0

4. For all jobs i ∈ S2 it is true rmin(S2) + t(i) + q(c) ≤ LB

x6 + x7 + x10 ≤ LB

5. Optimal value of objective function Copt ≥ rmin(S2) + T (S2) + q(c).

x3 + x6 + x7 − x8 ≤ 0

6. Optimal value of objective function Copt ≥ t(u) + t(a) + q(a)

x4 + x5 − x8 + x9 ≤ 0

7. Job u jumped over a hence q(a) ≥ LB/2 + 1 : if LB is an even number and
q(a) ≥ (LB+1)/2 if LB is an odd number. x5 ≥ LB/2+1 or x5 ≥ (LB+1)/2.

8. Processing time of all jobs not less than 1: x9 ≥ 1, x10 ≥ 1.
9. Idle time not less then 1: x11 ≥ 1.
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10. xi ≥ 0,∀i ∈ 1 : 11.

Consider the case where LB is an even number, for odd LB the solution will be
similar.

Let’s change the variable w = 1/x8 and yi = w ∗ xi, then the conditions of
the problem take the form:

F (y) = y1 + y2 + y3 + y4 + y6 + y9 −→ max

y2 + y3 + y4 + y9− LBw ≤ 0
y1 + y5 + y9− LBw ≤ 0
y1 + y2− y7 + y9 + y11 ≤ 0

y6 + y7 + y10− LBw ≤ 0
y3 + y6 + y7 ≤ 1

y4 + y5 + y9 ≤ 1
y3 + y4 + y6 + y9 ≤ 1

−y5+ (LB/2 + 1)w ≤ 0
−y9 + w ≤ 0

−y10+ w ≤ 0
− y11 + w ≤ 0

yi ≥ 0, i ∈ 1 : 11, w ≥ 0

Let’s construct a dual problem

g(u) = u5 + u6 + u7 −→ min

u2 + u3 ≥ 1
u1 + u5 + u7 ≥ 1
u1 + u6 + u7 ≥ 1

u2 + u6 − u8 ≥ 0
u4 + u5 + u7 ≥ 1

−u3 + u4 + u5 ≥ 0
u1 + u2 + u3 + u6 + u7 − u9 ≥ 1

u3 − u11≥ 0
u4 − u10 ≥ 0

−LBu1 − LB u2 − LBu4 + (LB/2 + 1)u8 + u9 + u10 + u11≥ 0
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ui ≥ 0, i ∈ 1 : 11.
Analyzing the third case, we could assert that all variables of the direct

problem (except for x2) must be different from zero. Hence, in the dual problem,
the restrictions must be satisfied as equalities. Next, we solve this system of
linear equations and obtain a solution to the dual problem.

Solving the dual problem:

u1 = u2 = u4 = u7 = u10 = (LB + 6)/(7LB + 2);

u3 = u8 = u11 = (6LB − 4)/(7LB + 2);

u5 = u6 = (5LB − 10)/(7LB + 2);

u9 = 1.

f(u) = u5+u6+u7 = 2(5LB−10)/(7LB+2)+(LB+6)/(7LB+2) = (11LB−14)/(7LB+2).

Solving the primal problem:

1. y1 = (3LB − 12)(7LB + 2)
2. y2 = (LB − 4)/(7LB + 2)
3. y3 = (LB + 8)/(7LB + 2)
4. y4 = (4LB − 10)/(7LB + 2)
5. y5 = 3(LB + 2)/(7LB + 2)
6. y6 = (2LB − 2)/(7LB + 2)
7. y7 = (4LB − 4)/(7LB + 2)
8. w = 6/(7LB + 2)
9. y9 = y10 = y11 = 6/(7LB + 2)
F (y) = y1 + y2 + y3 + y4 + y6 + y9 = (3LB − 12)(7LB + 2) + (LB − 4)/(7LB + 2)

+ (LB + 8)/(7LB + 2)+ (4LB − 10)/(7LB + 2)+ (2LB − 2)/(7LB + 2) + 6/(7LB + 2)= (11LB − 14)/(7LB + 2).

We have found feasible solutions to the primal and dual problems, and the
values of the objective functions are equal. By the duality theorem, these solu-
tions are optimal solutions direct and dual problems.

We can calculate xj .

1. x1 = (3LB − 12)/6
2. x2 = (LB − 4)/6
3. x3 = (LB + 8)/6
4. x4 = (4LB − 10)/6
5. x5 = (LB/2 + 1)
6. x6 = (LB − 1)/3
7. x7 = 2(LB − 1)/3
8. x8 = (7LB + 2)/6
9. x9 = x10 = x11 = 1

f(x) = (11LB − 14)/(7LB + 2)
Solving the similar problem of fractional linear programming for the case of

an odd LB, we obtain the following solution.
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Table 2. Release, processing and delivery times of jobs

Job a u S1 j1 . . . j17 c

ri 48 0 48 65 65 65 65

ti 1 65 16 1 1 1 1

qi 51 0 1 33 33 33 33

Table 3. IJR schedule

48 1 16 65 1 16 1 1 33

idle a S1 u j1 . . . j17 c q(c)

1. x1 = (LB − 3)/2
2. x2 = (LB − 5)/6
3. x3 = (LB + 7)/6
4. x4 = (2LB − 4)/3
5. x5 = (LB + 1)/2
6. x6 = (LB − 2)/3
7. x7 = (2LB − 1)/3
8. x8 = (7LB + 1)/6
9. x9 = x10 = x11 = 1

f(x) = (11LB − 13)/(7LB + 1)
We have proven that the worst-case performance ratio of IJR algorithm is

11/7.

The computational complexity of the IJR algorithm was established in [17].

Lemma 4. [17] The computational complexity of the IJR algorithm is
O(n log n).

Example 1. Consider a system of 21 jobs : a, u, S1, c and 17 identical tasks, which
are included in S2. The data for the job system are given in Table 2.

The lower bound for the objective function is equal LB = 100.
The IJR algorithm constructs the schedule S = (a, S1, u, j1, . . . , j17, c) (see
Table 3). The processor is idle 48 time units before starting the job a. Job c
is the critical job, the execution of job c ends at 148 and the delivery of job c
ends at 181.

The objective function is equal Cmax(S) = LB/2 − 2 + 1 + (LB − 4)/6 +
(LB + 8)/6 + (2LB − 5)/3 + (LB − 1)/3 = (11LB − 14)/6 = 181.

The optimal schedule is Sopt = (u, a, S2, c, S1) (see Table 4), the value of the
objective function for which is equal Copt = 117.

CA/Copt = (11LB − 14)(7LB + 2) = 1.547.
We can build a similar example for odd value LB = 101.
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Table 4. Optimal schedule

65 1 17 1 16

u a S2 c S1

4 Computational Experiment

To find out the practical efficiency of the algorithm, a computational experiment
was carried out. The goal of the computational experiment was to compare of the
accuracy of the IJR algorithm with the accuracy of the JR Schrage algorithm and
with the accuracy of the combined ICA (Idle Combined Algorithm) algorithm,
in which the best solution was chosen of the two solutions, obtained by the JR
and IJR algorithms.

The initial data was generated by the method described by Carlier [11]. For
each task i ∈ 1 : n, two integer values were chosen with uniform distribution:
q(i) between 1 and nK, r(i) between 1 and nK. There were chosen n = 100 and
the values for K from 14 to 18, the ranges, which hard instances occurred most
frequently.[?]. For each value of K, we considered 200 instances. Three groups
of examples were considered. The processing times t(j) of jobs from each group
were selected from the following intervals (tmax = 50):

1. Type A: t(j) from [1, tmax],
2. Type B: t(j) from [1, tmax/2], for j ∈ 1 : n − 1 and

t(jn) from [ntmax/8, 3ntmax/8],
3. Type C: t(j) from [1, tmax/3], for j ∈ 1 : n − 2 and t(jn−1), t(jn) from

[ntmax/12, 3ntmax/12].

Type B groups contains instances with one long job and type C groups con-
tains instances with two long jobs.

The value of the objective function CA was compared with the optimal value
of the objective function Copt, which was obtained by the branch and bound
method [18]. In all tables, n is the number of tasks in the instance. In the
second column there is constant K, average relative error RIJR = CIJR/Copt

for IJR algorithm in the 3 column, average relative error RJR = CJR/Copt for
JR algorithm in the 4 column, and average relative error RICA = CICA/Copt for
ICA algorithm in the 5 column.

For instances of Type A the average relative error of the solution is small (at
most 0.97 % ) for all algorithms and decreases with increasing n. We established
that changing the constant K from 10 to 22 does not significantly affect the
results of the algorithms for instances of Type A.

The theoretical analysis of the algorithms shows that the most difficult exam-
ples take place when there are one or two long tasks. Such tests were generated
in groups of type B and type C.

The value of the average relative error of algorithms for tests of type B are
given in the Table 5.
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Table 5. Type B. The average relative error of algorithms.

n K RIJR RJR RICA

100 14 1.06 1.03 1.004

100 15 1.05 1.04 1.007

100 16 1.01 1.04 1.004

100 17 1.02 1.03 1.006

100 18 1.05 1.06 1.005

Table 6. Type C. The average relative error of algorithms.

n K RIJR RJR RICA

100 14 1.02 1.04 1.004

100 15 1.07 1.03 1.006

100 16 1.05 1.04 1.005

100 17 1.06 1.04 1.008

100 18 1.06 1.05 1.004

The relative error of the solution increases for algorithms JR and IJR it
is from 1 to 6 % on average. The ICA algorithm has significantly more advan-
tages. It combines the advantages of the Schrage algorithm, which does not allow
unforced idle time and IJR algorithm, which allows them. The relative error of
the solution for ICA algorithm is from 1.004 to 1.007 on average.

Tables 6 show the results of comparison of algorithms for tests of Type C.
The combined ICA algorithm significantly diminishes the relative error of

the solution. For the combined algorithm it ranges from 0.4 to 0.8 %.

5 Conclusion

The paper considers the problem of scheduling for single processor with release
and delivery times. The goal is minimization of the total execution time of all
jobs. The paper proposes the IJR algorithm, in which the priority of the job
is considered first and processor can be idle, when certain conditions are met.
IJR algorithm builds only one permutation and its computational complexity is
O(n log n).

We prove that the worst-case performance ratio of the algorithm IJR is equal
11/7. The computational experiment has confirmed the practical efficiency of the
IJR algorithm.
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Abstract. Decentralized optimization is a common paradigm used in
distributed signal processing and sensing as well as privacy-preserving
and large-scale machine learning. It is assumed that several computa-
tional entities locally hold objective functions and are connected by a
network. The agents aim to commonly minimize the sum of the local
objectives subject by making gradient updates and exchanging informa-
tion with their immediate neighbors. Theory of decentralized optimiza-
tion is pretty well-developed in the literature. In particular, it includes
lower bounds and optimal algorithms. In this paper, we assume that
along with an objective, each node also holds affine constraints. We dis-
cuss several primal and dual approaches to decentralized optimization
problem with affine constraints.
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1 Introduction

Many distributed systems such as distributed sensor networks, systems for power
flow control and large-scale architectures for machine learning use decentralized
optimization as a basic mathematical tool. Several applications such as power
systems control [11,17] lead to problems where the agents locally hold optimiza-
tion objectives and aim to cooperatively minimize the sum of the objectives.
Moreover, every node locally holds affine constraints for its decision variable.
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Decentralized optimization without affine constraints can be called a well-
examined area of research. It is known that the performance of optimization
algorithms executed over strongly-convex smooth objectives is lower bounded
by a multiple of the graph condition number and objective condition number
(up to a logarithmic factor) [19]. Both primal [8] and dual [19] algorithms that
reach the lower bounds have been proposed. The algorithms are based on refor-
mulating network communication constraints as affine constraints via a commu-
nication matrix associated with the network (i.e. Laplacian matrix). Introduction
of affine constraints at the nodes leads to new classes of algorithms that can be
divided into two main types. The first type are consensus-based methods that can
be either primal or dual [2,9,10,12–14,23]. The second type are ADMM-based
methods [1,3,18,21]. Let us briefly review some of the closely related papers.

The paper [12] is dedicated to constrained distributed optimization and con-
sider only separable objective functions (each agent has its own independent
variable). Moreover, affine constraints are supposed to be network-compatiable
(constraint matrix can have a non-zero element on position (i, j) only if there
is an edge in communication graph between agents i and j). We do not impose
such limitations: in our case each term in the objective functions depends on the
same shared variable (formulation in [12] is obviously a special case of this) and
matrix of constraints can have arbitrary structure.

In [14] the authors present various formulations of distributed optimization
problems with different types of interconnections between constraints and objec-
tives, including the case, when the objective (cost) cannot be represented as sum
of cost functions of each agent. However, their algorithms for problems with cou-
pled affine constraints require to solve a “master problem” on central node at
each iteration and thus are not decentralized.

The authors of [20] consider multi-cluster distributed problem formulation
which is a generalization of multi-agent approach. In multi-cluster case agents
within one cluster have the same decision variable while different clusters cor-
responds to different decision variables. All variables are subject to a coupled
affine constraint. By incorporating consensus constraints into dual problem with
Lagrangian multipliers the author comes to solving a saddle point problem and
prove asymptotic O(1/N) ergodic convergence rate for their method. Depen-
dency of convergence rate on problem parameters in saddle point approach was
studied in [22].

Our paper studies the application of different techniques to decentralized
problems with affine constraints. We obtain linear convergence rates with (explic-
itly specified) accelerated dependencies on function properties, constraint matrix
spectrum and communication graph properties.

The paper outline is as follows. In Sect. 4 we discuss a primal approach, that is
based on reformulation the initial distributed problem as a saddle-point problem
and applying algorithm of paper [7] afterwards. In Sect. 5, we describe a method
that allows to incorporate both affine and communication constraints to the dual
function. We refer the approach in Sect. 5 as a globally dual approach. Finally,
in Sect. 6 we describe a slightly different dual approach that firstly takes dual
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functions locally at the nodes and incorporates consensus constraints afterwards.
We refer to the latter method as a locally dual approach.

2 Preliminaries

Let col(x1, . . . , xm) define a column vector of x1, . . . , xm ∈ R
d, i.e.

col(x1, . . . , xm) = [x�
1 . . . x�

m]�. For matrices P and Q, their Kronecker product
is defined as P ⊗ Q. Identity matrix of size p × p is denoted Ip. Moreover, given
a symmetric positive semi-definite matrix, we denote λmax(·), λmin(·), λ+

min(·)
its maximal, minimal and minimal nonzero eigenvalues, respectively. We also
let σmax(·), σmin(·) and σ+

min(·) be the maximal, minimal and minimal nonzero
singular values of a matrix, respectively.

In the forthcoming analysis, we will need the following basic lemma concern-
ing Kronecker product properties.

Lemma 1. Given two matrices P and Q such that σmin(P ) = σmin(Q) = 0, we
have

σmax(P ⊗ I + I ⊗ Q) = σmax(P ) + σmax(Q),

σ+
min(P ⊗ I + I ⊗ Q) = min

{
σ+
min(P ), σ+

min(Q)
}

Proof. Consider decompositions P = UP ΣP V �
P and Q = UQΣQV �

Q , where
UP , VP , UQ, VQ are orthogonal matrices and ΣP and ΣQ are diagonal matrices
with corresponding eigenvalues at the diagonal. We have

(U�
P ⊗ U�

Q )(P ⊗ I + I ⊗ Q)(VP ⊗ VQ) = ΣP ⊗ I + I ⊗ ΣQ.

Denote singular values of P as α1, . . . , αn and the singular values of Q as
β1, . . . , βm. Singular values of P ⊗ I + I ⊗ Q have form

λ(αi, βj) = αi + βj , i = 1, . . . , n, j = 1, . . . ,m.

Therefore, σmax(P ⊗ I+ I⊗ Q) = σmax(P ) + σmax(Q). For the minimal nonzero
singular values we obtain

σ+
min(P ⊗ I + I ⊗ Q) = min

{
σ+
min(P ), σ+

min(Q)
}

.

3 Problem Statement

Consider minimization problem with affine constraints.

min
x∈Rd

m∑

i=1

fi(x) s.t. Bx = 0. (1)

We assume that each fi is held by a separate agent, and the agents can exchange
information through some communication network. Each agent also locally holds
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affine optimization constraints Bx = 0, where B ∈ R
p×d. Further we assume that

Ker B �= {0}, because otherwise the constraints Bx = 0 define a set consisting
of only {0}, which is not an interesting case.

We make assumptions on the optimization objectives that are standard for
optimization literature [16].

Assumption 1. Each fi (i = 1, . . . ,m) is differentiable, μ-strongly convex and
L-smooth, i.e.

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
μ

2
‖y − x‖22 ,

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
‖y − x‖22 .

The communication network is represented by an undirected connected graph
G = (V, E). The communication constraints are represented by a specific matrix
W associated with the graph G.

Assumption 2

1. W is a symmetric positive semi-definite matrix.
2. (Network compatibility) For all i, j = 1, . . . ,m it holds [W ]ij = 0 if (i, j) /∈ E

and i �= j.
3. (Kernel property) For any v = [v1, . . . , vm]� ∈ R

m, Wv = 0 if and only if
v1 = . . . = vm, i.e. Ker W = span {1}.

An explicit example of a matrix that satisfies Assumption 2 is the Graph Lapla-
cian W ∈ R

m×m:

[W ]ij �

⎧
⎪⎨

⎪⎩

−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise.
(2)

Let us introduce x = col (x1 . . . xm) and W = W ⊗ I. According to Assump-
tion 2, communication constraints x1 = . . . = xm can be equivalently rewritten
as Wx = 0. Also introduce B = I ⊗ B and F (x) =

∑m
i=1 fi(xi). That allows to

rewrite problem (1) in the following way.

min
x∈Rmd

F (x) (3)

s.t. Wx = 0, Bx = 0.

Reformulation 3 admits implementation of optimization methods for affinely
constrained minimization. The iterations of such methods become automati-
cally decentralized in the following sense. Let the optimization algorithm use
primal or dual oracle calls of the objective function and use multiplications by
the matrices representing affine constraints. In the case of problem (3) the gra-
dient ∇F (x) = col [∇f1(x1) . . . ∇fm(xm)] is computed locally on the nodes and
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stored in a distributed manner across the network. Multiplication by B is also
performed locally due to its definition (i.e. the i-th node computes Bxi), and the
multiplication by W is performed in a decentralized manner due to the network
compatibility property of W (see Assumption 2).

4 Primal Approach

In this section, we discuss the solution of problem (3) by an algorithm APDG
[7] that only uses primal oracle calls. The algorithm is designed for saddle-point
problems, so we reformulate (3) as a saddle-point problem.

We add dual multipliers for the constraints and get a saddle-point problem

min
x∈Rmd

max
u∈Rmp,v∈Rmd

F (x) + 〈u,Bx〉 + γ 〈v,Wx〉 = F (x) +
〈(

u
v

)
,

(
B

γW

)
x
〉

.

(4)

Algorithm 1. APDG: Accelerated Primal-Dual Gradient Method
1: Input: x0 ∈ RangeA�,y0 ∈ RangeA, ηx, ηy, αx, βx, βy > 0, τx, τy, σx, σy ∈ (0, 1],

θ ∈ (0, 1)
2: x0

f = x0

3: y0
f = y−1 = y0

4: for k = 0, 1, 2, . . . do
5: yk

m = yk + θ(yk − yk−1)
6: xk

g = τxx
k + (1 − τx)xk

f

7: yk
g = τyy

k + (1 − τy)y
k
f

8: xk+1 = xk + ηxαx(xk
g − xk) − ηxβxA

�Axk − ηx

(∇F (xk
g) + A�yk

m

)

9: yk+1 = yk − ηyβyA(A�yk + ∇F (xk
g)) + ηyAxk+1

10: xk+1
f = xk

g + σx(xk+1 − xk)

11: yk+1
f = yk

g + σy(y
k+1 − yk)

12: end for

Denote A =
(

B
γW

)
. In order to get complexity bounds for APDG applied

to problem (4), we need to bound the spectrum of A. Note that A�A = B�B+
γ2W2 = Im ⊗ (B�B) + γ2W 2 ⊗ Id. By Lemma 1 we have

λmax(A�A) = λmax(B�B) + γ2λ2
max(W ),

λ+
min(A

�A) = min
{
λ+
min(B

�B), γ2(λ+
min(W ))2

}
.

We can also compute the condition number of A�A:

χ(A�A) =
λmax(A�A)
λ+
min(A�A)

=
λmax(B�B) + γ2λ2

max(W )
min

{
λ+
min(B�B), γ2(λ+

min(W ))2
} .
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By accurately choosing factor γ, we can control the condition number χ(A�A).

The minimal value of χ(A�A) is attained at γ2 = λ+
min(B

�B)

(λ+
min(W ))2

and equals

χ(A�A) = χ(B�B)+χ2(W ). Therefore, if we apply APDG directly to problem
(3), the complexity would be

O

(

max

(√
χ2(W ) + χ(B�B)

√
L

μ
, χ2(W ) + χ(B�B)

)

log
1
εx

)

calls of ∇fi(·) at each node and communication rounds, with εx being the desired
distance to the solution: ‖xN − x∗‖ ≤ εx. In the smooth, strongly convex case
it is also the complexity for satisfying F (xN ) − F (x) ≤ εF or ‖AxN‖ ≤ εA (up
to logarithmic dependencies on the problem parameters). Indeed, from Lipschitz
smoothness we have F (xN ) − F (x) ≤ Lε2x/2 and ‖AxN‖ = ‖AxN − Ax∗‖ ≤
σmax(A)εx. By that means, in the following inequalities ε can be replaced by
any of εx, εf , εA.

The dependence on network parameters W and affine constraints parameters
B can be enhanced by using Chebyshev acceleration [19]. Let us replace W by
a Chebyshev polynomial PK(W ) such that it has degree K = O

(√
χ(W )

)
and

condition number χ(PK(W )) = O(1). Multiplication by PK(W ) is equivalent to
making K communication rounds. Analogically, let us replace B�B by a Cheby-
shev polynomial PM (B�B) with degree M = O

(√
χ(B�B)

)
and condition

number χ
(
PM (B�B)

)
= O(1). As a result, we obtain

N = O

(√
L

μ
log

1
ε

)

oracle calls at each node,

O
(
N

√
χ(W )

)
communications,

O

(
N

√
χ(B�B)

)
multiplications byB,B� at each node.

5 Globally Dual Approach

In this section, we describe an approach to solving (3) that is based on passing
to the dual problem. We call this approach “global” since both constraints, that
is, affine constraints Bx = 0 and communication constraints Wx = 0 are used
in the dual reformulation.

Let γ be a positive scalar and A� = [B� γW] and introduce dual function

Φ(u) = max
x∈Rmd

[−F (x) + 〈u,Ax〉] = F ∗(A�u).

We have ∇Φ(u) = A∇F ∗(A�u) = A · arg min
x∈Rmd

[−F (x) + 〈u,Ax〉]. Note that

multiplication by A is performed in a distributed manner: indeed, it includes



Decentralized Strongly-Convex Optimization with Affine Constraints 99

local multiplications by B and a consensus round, which is a multiplication by
W. Moreover, the arg min operation is computed locally, which is standard for
decentralized optimization [19]. Finally, dual function Φ is λmax(A

�A)
μ -smooth on

R
2md and LΦ = λ+

min(A
�A)

L -strongly convex on (KerA�)⊥. Solving dual problem

min
u∈R2md

Φ(u)

by a fast gradient method (see i.e. accelerated Nesterov method in Sect. 2.2 of

[16]) until accuracy Φ(uN )−Φ(u) ≤ εΦ requires N = O
(√

L
μ

√
χ(A�A) log 1

εΦ

)

iterations.
Following the same arguments as in Sect. 4, we compute the condition number

χ(A�A):

χ(A�A) =
λmax(B�B) + γ2λ2

max(W )
min

{
λ+
min(B�B), γ2(λ+

min(W )2)
} .

The minimal value of χ(A�A) is attained at γ2 = λ+
min(B

�B)

(λ+
min(W ))2

and equals

χ(A�A) = χ(B�B)+χ2(W ). Communication and computation complexities of
fast dual method equal

O

(√
L

μ

(
χ(B�B) + χ2(W )

) 1
2 log

1
εΦ

)

.

To obtain desired complexity estimates for the algorithm to find the approx-
imate solution xN satisfying F (xN )−F (x) ≤ ε and ‖AxN‖ ≤ ε, we refer to the
following properties of dual function (see, e.g. Theorem 5.2 from [4]):

‖∇Φ(u)‖ ≤ ε/Ru ⇒ F (x(u)) − F (x∗) ≤ ε,

‖∇Φ(u)‖ ≤ ε ⇒ ‖Ax(u)‖ ≤ ε,

where ‖u‖ ≤ 2Ru, and x(u) = arg minx∈Rmd [−F (x) + 〈u,Ax〉]. Combining it
with Φ(uN )−Φ(u) ≥ ‖Φ(uN )‖2/2LΦ, which is true for a smooth convex function,
we justify substitution of εΦ by ε in the complexity estimate. This transition will
only change the constant hidden by big-O notation (by the factor of two), and
affect omitted logarithmic dependencies on the problem parameters.

To employ Chebyshev acceleration in this case we do substitution A�u → p.
In this variables accelerated Nesterov method turns into Algorithm 2, where
x(q) = ∇F ∗(q) = arg min [−F (x) + 〈q, x〉]:

Algorithm 2. Globally Dual Method
1: Input: p0 ∈ RangeA�, η > 0, β ∈ (0, 1)
2: p−1 = p0

3: for k = 0, 1, 2, . . . do
4: q = pk + β

(
pk − pk−1

)

5: pk+1 = q − ηA�Ax(q)
6: end for
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For the algorithm in this form we can replace A�A with Chebyshev polyno-
mial of it, as we did in Sect. 4, and obtain the same complexity estimates as for
APDG:

N = O

(√
L

μ
log

1
ε

)

oracle calls at each node,

O
(
N

√
χ(W )

)
communications,

O

(
N

√
χ(B�B)

)
multiplications byB,B� at each node.

6 Locally Dual Approach

In Sect. 5 we discussed a dual reformulation of (3) where both constraints Bx = 0
and Wx = 0 are used simultaneously. This section describes a dual approach,
as well, but the difference is that we firstly pass to dual functions locally at the
nodes and impose the communication constraints only afterwards.

6.1 Utilizing Locality on y

One can note that in the above approaches optimization over y could be done
locally at each node. This is equivalent to including affine constraints into the
objective (as an indicator function) instead of handling them with Lagrangian
multipliers. In settings there the “cost” of communication is limiting or compa-
rable to that of local computations, we can find the solution faster by going this
way. It may be the case when x has a small dimension and decentralization is
desirable due to privacy constraints.

Dual problem in this approach will be

max
z

min
Bx=0

{F (x) + 〈z,Wx〉} = −min
z

F ∗
[Bx=0](W

�z),

where F ∗
[Bx=0](z) = max

Bx=0
{〈z,x〉−F (x)} denotes a convex conjugate under affine

constraints.
We can reduce the problem of computing the gradient of such a modified

conjugate function to calling conventional dual oracle. Let E be a matrix, the
rows of which constitute an orthogonal basis in the null space of B (matrix E
can be computed at the preprocessing stage of an optimization algorithm). Then
instead of working with functions fi(x) we can optimize the sum of functions
hi(t) = fi(Et).

Denote t = col(t1, . . . , tm), H(t) =
∑m

i=1 hi(ti). Then problem (1) could be
written in decentralized way as follows

min
t

m∑

i=1

hi(ti)

s.t. Wt = 0.
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Its dual form is

max
t

{〈z,Wt〉 − H(t)} = −min
z

H∗(W�z),

and the gradient of the objective can be computed using Demyanov’Danskin’s
theorem:

∇H∗(z) = arg max
t

{〈z, t〉 − F (Et)}.

From smaller dimension of t comparing to x we can expect that computation
of ∇H∗(z) is easier than calling conventional first-order dual oracle, the only
drawback is the necessity of storing matrix E and performing multiplications by
E.

Let μt and Lt be the constants of strong convexity and Lipschitz smoothness
of hi respectively for all i = 1, . . . , m. Then, obviously, μt ≥ μ and Lt ≤ L. For
example, if fi(x) is twice continuously differentiable, then its smoothness con-
stant can be computed as Lx,i = sup

x∈Rn

λmax(∇2fi(x)). The smoothness constant

of hi(t) is given by Lt,i = sup
t∈Rdt

λmax(E�∇2fi(Et)E). Note that the dimension

of t can be computed as dt = d − rank(B). In the latter variant the maximum
is taken over a smaller set of points, and multiplication by E is likely to further
reduce the smoothness constant (and increase strong convexity constant).

Since H(t) is Lt-smooth and μt-strongly convex, we have that F ∗
[Bx=0](z) =

H∗(z) is 1
μt

-smooth and 1
Lt

-strongly convex [6].
Thus, the fast gradient method [15] applied to the dual problem requires

O

(√
Lt

μt
χ(W ) log

1
ε

)

,

dual-oracle calls and communication rounds to ensure F (xN ) − F (x) ≤ ε and
‖AxN‖ ≤ ε (see Sect. 5 for details). And using Chebyshev acceleration as
described in Sect. 4 we can reduce the complexities to

N = O

(√
Lt

μt
log

1
ε

)

oracle calls at each node,

O
(
N

√
χ(W )

)
communications.
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7 Numerical Experiments

In the simulation we consider the following smooth, strongly convex objective
function:

fi(x) =
1
2
‖Cix − di‖22 +

θ

2
‖x‖22,

F (x) =
1
2
‖Cx − d‖22 +

θ

2
‖x‖22,

C = diag(C1, . . . , Cm), d = col (d1, . . . , dm).

We consider different parameters of the problem such as the dimension of x, the
rank of B ∈ R

dim(x)×dim(x) and the number of nodes. For each case we plot func-
tion error and constraints violation norm at each iteration for all our algorithms:
APDG, Locally and Globally Dual approaches. The Chebyshev acceleration is
not applied in the experiments, so each iteration corresponds to one gradient
computation (gradient of primal function in case of APDG, and gradient of dual
function is case of dual approaches). We also provide tables with comparison
of time and number of iterations required to achieve given accuracy. Time is
measured with our Python/NumPy [5] implementation of the algorithms, which
is available on GitHub1.

1. For the first case we consider the ring network with m = 5 nodes, x ∈ R
40

and rankB = 1. Typical convergence plot is shown on Fig. 1. One can see
that all algorithms converge linearly, with the fastest one in terms of itera-
tions number being Locally Dual, and the slowest one being APDG. However,
computing the gradient of a dual function might be an arithmetically more
expensive operation than computing primal gradient in the black-box sce-
nario. In our implementation we compute the gradient of dual function by
numerically solving the system of linear equations with its right-hand part
being changed between iterations. It means that one iteration of the Dual
methods is more time-consuming than one iteration of APDG. In the Table 1,
we compare computational time and number of iterations required to achieve
given accuracy. The results are averaged for 100 randomly generated prob-
lems.

Table 1. Time and iterations for achieving ‖Axk‖ < 10−2. Averaged over 100 experi-
ments. Problem parameters: 5 nodes, dim(x) = 40, rank B = 1.

APDG Globally dual Locally dual

Iterations 875.3 502.7 276.7

Time (s) 0.193 0.510 0.233

1 Source code: https://github.com/niquepolice/decentr constr dual.

https://github.com/niquepolice/decentr_constr_dual
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Fig. 1. 5 nodes, dim(x) = 40, rank B = 1.

2. Next we use the same number of nodes and the dimension of x, but increase
the rank of B. Even for rankB = 3 the condition number of the locally dual
problem usually is about two orders of magnitude smaller than the condition
number of the globally dual problem, therefore the globally dual approach has
a significant advantage in that case. Typical convergence plots are shown in
Fig. 2, averaged iteration and time complexities for satisfying stopping criteria
are shown in Table 2.

Fig. 2. 5 nodes, dim(x) = 40, rank B = 3.

3. In the case of higher dimension (10 nodes, dim(x) = 100, rankB = 1) we
used Erdős-Rényi random communication graphs with edge probability =
0.3. APDG seems to converge much faster by constraints violation norm at
first iterations then other methods (Fig. 3), and its convergence rate is close to
other methods. See also Table 3 for averaged results of multiple experiments.
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Table 2. Time and iterations for achieving ‖Axk‖ < 10−1. Averaged over 100 experi-
ments. Problem parameters: 5 nodes, dim(x) = 40, rank B = 3.

APDG Globally dual Locally dual

Iterations 1555.5 1551.7 123.1

Time (s) 0.337 1.577 0.127

Fig. 3. Erdős-Rényi graph on 10 nodes, average degree = 3.6. dim(x) = 100, rank B =
1.

Table 3. Time and iterations for achieving accuracy ‖Axk‖ < 101. Averaged over 10
experiments. Problem parameters: 10 nodes, edge probability = 0.3, dim(x) = 100,
rank B = 1.

APDG Globally dual Locally dual

Iterations 404.3 2227.9 1425.5

Time (s) 2.561 54.024 16.544
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Abstract. In this paper we study a production expansion problem in
different cases, including stochastic. The problem for the producer is to
choose optimal way of investment in the production expansion. Different
optimal control methods to study these cases are reviewed and the limits
of their applicability are considered. We extend the analysis to the case
of stochastic gain for investment, where the problem is set in continu-
ous and discrete time with various assumptions. For the discrete time
version we find the exact solution which has the same structure as in
the deterministic model. In the continuous time we currently present the
asymptotic analysis and study the specifics of the solution with respect
to the terminal value.

Keywords: Production expansion · Optimal control · HJB equation

1 Introduction

This work is a study of the investment behavior of an enterprise (or a producer),
influenced by various factors. The constructed mathematical model is formalized
by different types of optimal control problems that require different solution
techniques. The key factors that describe the environment might be deterministic
or stochastic, and the model might be considered in continuous and discrete time.
The influence of model parameters on the optimal solution is studied. Various
versions of the model are considered and compared.

In this paper we consider the problem of optimal investment in production
expansion [1–3]. The original baseline model [1,2] described the problem of profit
maximization in the form we outline in Sect. 2. The authors demonstrate the
existence of the piecewise-continuous control and optimality of the control using
the Pontryagin’s maximum principle.

This model admits several extensions. Firstly, the tax paid by the company
might follow nonlinear relationship with the company’s profits [2]. The author
suggested to consider progressive tax so that the integrand in the goal functional
is a concave function of the profit. This assumption leads to a more smooth opti-
mal investment, compared to the baseline model where the investment jumps
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Olenev et al. (Eds.): OPTIMA 2022, CCIS 1739, pp. 109–123, 2022.
https://doi.org/10.1007/978-3-031-22990-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22990-9_8&domain=pdf
http://orcid.org/0000-0003-1922-3979
http://orcid.org/0000-0002-5319-3489
https://doi.org/10.1007/978-3-031-22990-9_8


110 A. Flerova and A. Zhukova

from maximum investment to no investment regime. Another extension is intro-
duced in a more recent paper [4]. The authors add uncertainty assuming lack of
information about the market conditions parameter α. The authors analyse the
control in the form of an algorithm that delivers sub-optimal solution.

Several new modifications of the model are introduced in this paper. Firstly,
we assume the possibility of uncertainty in the form of stochastic gain for invest-
ment and reformulate the model in discrete time to be able to analyse it in the
simplest case. We further extended the model by adding Brownian motion com-
ponent to the dynamics of the income of the producer. We demonstrate that
the solution to the modified model is qualitatively similar to the deterministic
version if we impose the information constraint that the investment decision
precedes the realization of the gain in income resulting from the investment.

This study is important from both theoretical point of view and economic
analysis. The former is valuable since we present the approach to the description
of the stochastic optimal control and its analysis. As for the economic sense of
the model, it is relevant as the authors of [5] remark, in the current conditions,
investment is typically made out of the income of owners and it is important to
analyze the risks associated with this process. From the economic policy point
of view, it is important to understand the consequences of increased uncertainty.

This work contributes to modelling the producer’s decision-making in the
conditions of varying revenue and other external conditions [6–8]. This model
might also include the aspect of uncertainty in the line of studies of the more
realistic description of the production where the owners work on an imperfect
capital markets [9] with different rates for deposits and loans.

2 Formulation of the Problem

Let us analyze a problem formulated in [1]. A firm produces a product, receives
x(t) of money per unit of time for the sale of this product. The share u(t) of the
output x(t) is used to expand production:

dx

dt
= αu(t)x(t),

where α is the parameter that characterizes the return on investment. It might
be affected by the economic environment, the demand for the firm’s product or
some other external or internal circumstances.

We assume that there are no transaction costs, sales occur instantly.
The initial capital is known: x(0) = x0 > 0. We assume also that the produc-

tion costs are proportional to the output produced with coefficient β (per unit of
time the production costs are equal to βx(t)). Suppose that the producer pays
taxes in proportion to earnings. The portion b1 of the resulting profit is paid as
a tax.

Therefore, the producer’s profit from time t = 0 to t = T (where T is known)
is equal to

Q =
∫ T

0

(1 − b1)(x(t) − u(t)x(t) − βx(t))dt.
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Let us denote μ = 1 − β, It is clear that under the assumption that the
producer pays taxes in proportion to earnings the parameter 1− b1 has no effect
on the maximum of the functional (1). So, further in this work we will consider
b1 = 0. So, the problem is to choose the control u(t) that gives the maximum
profit:

∫ T

0

(μ − u(t))x(t)dt → max (1)

ẋ(t) = αu(t)x(t), (2)
0 � u(t) � μ, (3)

x(0) = x0. (4)

3 The Deterministic Model of Optimal Expansion
of the Firm

Let us begin with solving the producer’s problem (1)–(4) in continuous time
under the condition that the ratio α (the parameter that characterizes the return
on investment) is a positive constant α = const > 0. We will refer to this analysis
as we move on to the stochastic version. This way this problem is a classical
optimal control problem and one can solve it using the Pontryagin’s maximum
principle, and in this study the Hamilton-Jacobi-Bellman function will be used
to handle with the problem.

Theorem 1. The optimal control function for the problem (1)–(4), where α is
a positive constant, is

if τ > 0, uopt(t) =

{
μ, if 0 � t � τ,

0, if τ < t � T ;

if τ � 0, uopt(t) = 0, t ∈ [0, T ],

where τ = T − 1
αμ .

Proof. The necessary conditions in the form of the Hamilton-Jacobi-Bellman
equation for the value function S(t, x) of the problem (1)–(4) are

−∂S(t, x)
∂t

= max
0�u�μ

[
μx(t) − u(t)x(t) + αu(t)x(t)

∂S(t, x)
∂x

]
,

with the boundary condition S(T, x) = 0, that is

− ∂S

∂t
= μx + max

0�u�μ

[(
α

∂S

∂x
− 1

)
xu

]
. (5)

So, the value of the function u(t) that maximizes the expression in the square
brackets in (5) is

u(t, x) =

{
0, if α∂S

∂x < 1, (II)
μ, if α∂S

∂x > 1. (I)
(6)
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Let us study these two cases. In case I when u(t) = μ Eq. (5) becomes

− ∂S

∂t
= α

∂S

∂x
μx. (7)

This equation is a linear homogeneous first-order partial differential equation.
The solution of the Eq. (7) may be presented as S(t, x) = F (xe−μαt), where F is
a continuous function. If case I executes at the end of the considered interval (at
some interval [t1, T ], where 0 < t1 < T ), then the boundary condition S(T, x) =
F (xe−μαT ) = 0 must be satisfied for any x. But it is possible only if F ≡ 0,
which is a trivial solution, when the functional remains zero.

In case II when u(t) = 0 Eq. (5) becomes −∂S/∂t = μx.
In this case the value function is decreasing and can reach the boundary

condition S(T, x) = 0. So, at some interval [τ, T ], where 0 < τ < T , S(t, x) =
μx(T − t). The switching time τ may be found from (6), which says that the
optimal control switches when ∂S

∂x = 1
α :

α
∂S(t, x)

∂x

∣∣∣∣
t=τ

= αμ(T − τ) = 1

and
τ = T − 1

αμ
. (8)

Notice, that ∂2S(t,x)
∂x∂t

∣∣∣∣
τ

< 0 and case II on the right from τ changes on case I

on the left from τ .
The value function S(t, x) has to be continuous at the point τ , so the following

qualities hold:

F (xe−ματ ) = μx(T − τ) ⇒ F (xe−μαT+1) =
x

α
.

Let’s substitute xe−μαT+1 = y, then x = yeμαT−1 and F (y) = yeμαT−1

α . That

is S(t, x)
∣∣∣∣
t<τ

= xe−αμt

α eαμT−1 = x
αeμα(τ−t), which is also a decreasing function.

So, the optimal control function has got not more than one point of change in
regime.

It is easy to see that the obtained value function S(t, x) is continuous and
smooth.

The following important fact should be noted. The Hamilton-Jacobi-Bellman
equation (5) for the problem (1)–(4) gives us not only necessary but also sufficient
conditions of optimality [10].

So, the optimal control function for the problem (1)–(4) is

uopt(t) =

{
μ, if 0 � t � T − 1

αμ ,

0, if T − 1
αμ < t � T.

(9)

And the theorem is proved.



Analysis of the Model of Optimal Expansion of a Firm 113

This theorem shows that the producer has two stages of lifetime. On the
initial stage the producer spends all the income for the production extension
and then on the second stage consumes all the income.

Notice that depending on the parameters (e.g., if the time T is not enough)
there might not be the period of no investment when uopt(t) = μ and producer
is only consuming the income all the time. It is the case when τ = T − 1

αμ < 0.
In general, the relation between this two stages depends on the parameters of
the model T , α and μ.

If one introduces the discounting coefficient δ into our model, it turns into
∫ T

0

(μ − u (t)) x (t) e−δ tdt (10)

ẋ (t) =α u (t)x (t) , x (0) = x0, u ∈ [0, μ]. (11)

Using the Pontriagin’s maximum principle one can show that the optimal
control for this problem is

uδ (t) =

⎧⎨
⎩

μ, t < ln
(

α μ−δ
α μ

)
δ−1 + T,

0 t > ln
(

α μ−δ
α μ

)
δ−1 + T.

(12)

The optimal control has not more then one switching point, and switches from
μ to 0 at timepoint

τδ = ln
(

α μ − δ

α μ

)
δ−1 + T, (13)

if τδ > 0. For small δ we have τδ ≈ T − 1
α μ − δ

2α2μ2 − δ2

3α3μ3 , which is the same
as the model without discounting. The role of the discounting parameter δ is
to shorten the time of investment (where investment rate is at maximum) and
expand the period of spending (where there is no investment uδ = 0).

But let us note, that the introduction of the discounting parameter did not
have a fundamentally affect on the form of the solution: the optimal control, as
before, has no more than one switching point.

4 The Stochastic Model of Optimal Expansion
of the Firm

4.1 Stochastic Model of Production Expansion in Discrete Time

Let’s move to discrete time in order to take stochastics into account more easily
and rewrite the producer’s problem (1)–(4):

T−1∑
t=0

(μ − ut) xt → max (14)

xt+1 = xt + αtutxt, (15)
x (0) = x0 > 0, (16)

0 ≤ ut ≤ μ. (17)
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To account the uncertainty in investment let us assume ratio α to be a
Bernulli random variable:

αt =

⎧⎪⎪⎨
⎪⎪⎩

α1 with probability p1,
α2 with probability p2,
...
αn with probability pn,

(18)

where
∑n

i=1 pi = 1 and αi > 0 for i = 1, ..., n.
For the problem in the discrete time it appears to be very important to

understand in what order the events take place. This was discussed in the paper
on modelling the agents when a change of state occurs according to the Pois-
son process [11,12]. In that setting, it was essential whether the agent’s state
is described by the left-continuous or right continuous process. The resulting
solution would depend on this assumption. A similar problem arises here.

The Bellman equation defines the necessary conditions for optimality of the
investment expenditure u.

When ut is defined before the realization of the αt, the Bellman equation
contains the maximum over the average expected value of the future state

St (xt) = max
0≤ut≤μ

[f (ut, xt) + Eαt
St+1 (xt+1)] .

On the contrary, if the control ut is defined after the agent knows the real-
ized value of αt, the Bellman equation would be different, having the expected
maximum over the optimal choice of the ut contingent on the αt and the value
of the future state

St (xt) = Eαt
max

0≤ut≤μ
[f (ut,αt

, xt) + St+1 (xt+1,αt
)] . (19)

One may see that the solution to the Eq. (19) defines the control as a complex
function ut,αt

contingent on every realization of the random process αt.
We decided to start with the analysis of the first option, where the agent

has to make the investment decision in the beginning of the time interval [t, t +
1]. It makes sense to assume the limited information about the realized gain
characterized by the random αt by the end of this period.

In the next section we present the analysis of the optimal control problem
under this assumption.

4.2 Solution to Stochastic Model of Production Expansion
in Discrete Time

Proposition 1. There exists a solution to the HJB equation (4.1) in the form:

uopt
t =

{
μ, if t < T − 1 − 1

E(α)μ ,

0, if t > T − 1 − 1
E(α)μ .
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Proof. To simplify the expressions further in this subsection we assume that the
ratio αt (18) may take two values:

αt =
{

α1 with probability p,
α2 with probability 1 − p,

It is easy to verify that all following calculations are also valid for any number
of values that αt may take. The necessary conditions in the form of the Hamilton-
Jacobi-Bellman equation for the value function St(x) of the problem (14)–(17)
are

St (xt) = max
0≤ut≤μ

[(μ − ut) xt+ESt+1 (xt+1)]

= max
0≤ut≤μ

[(μ − ut) xt + pSt+1 (xt + α1utxt) + (1 − p)St+1 (xt + α2utxt)]

with the boundary condition ST (x) = 0.
This problem is considered in the reverse time from the last moment in time

to the first. At the end we have ST (x) = 0, so at the previous step we assume

ST−1(xT−1) = max
0≤uT−1≤μ

[(μ − uT−1) xT−1] .

Thus, uT−1 = 0 and ST−1(xT−1) = μxT−1 = μxT .
Moving to the step T − 2:

ST−2(xT−2) = max
0≤uT−2≤μ

[(μ − uT−2) xT−2 + pST−1 (xT−2 + α1uT−2xT−2)

+ (1 − p) ST−1 (xT−2 + α2uT−2xT−2)]

= max
0≤uT−2≤μ

[(μ − uT−2) xT−2 + (p + 1 − p) μxT−2 + E (α) μuT−2xT−2]

= max
0≤uT−2≤μ

[xT−2 (2μ + (E (α) μ − 1) uT−2)] .

Optimal control on the step T − 2 is

uT−2 =
{

μ, if E (α) μ − 1 > 0,
0, if E (α) μ − 1 < 0.

Suppose that uT−2 = 0 then we have ST−2 = 2μxT−2 = 2μxT and on the
previous step T − 3 we have

ST−3(xT−3) = max
0≤uT−3≤μ

[(μ − uT−3) xT−3 + pST−2 (xT−3 + α1uT−3xT−3)

+ (1 − p) ST−2 (xT−3 + α2uT−3xT−3)]

= max
0≤uT−3≤μ

[(μ − uT−2) xT−3 + (p + 1 − p) μxT−3 + E (α) μuT−2xT−3]

= max
0≤uT−3≤μ

[xT−3 (3μ + (2E (α) μ − 1) uT−3)] .
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Let’s suppose that there are k steps from the end for which ut = 0, t ≥
T − k + 1, then on the step T − k we obtain the following value function:

ST−k(xT−k) = max
0≤uT−k≤μ

[xT−k (kμ + ((k − 1)E (α) μ − 1) uT−k)] .

We have shown that uT−1 = 0. Let l (l ∈ N, l � 3) be the smallest number
that satisfies the inequality (l − 2)E (α) μ − 1 > 0. Notice that if l > T then
ut = 0 every step of the life of the firm (t = 0, ..., T). But we will consider a
more interesting case when l < T , then ut = 0 for t > T − l +1 and uT−l+1 = μ.
Such T − l + 1 is the first timepoint in the reverse time when the coefficient
to uT−l+1 in ST−l+1 is positive and the optimal control uT−l+1 is nonzero.
Following this

ST−l+1(xT−l+1) = xT−l+1μ (l − 2) (1 + E (α) μ) .

Let’s see the next (in the reverse time) step.

ST−l(xT−l) = max
0�uT−l�μ

[xT−l(μ + μ(l − 2)(1 + E(α)μ

+ (E(α)μ(l − 2)(1 + E(α)μ) − 1)uT−l].

Notice that

E (α) μ (l − 2) (1 + E (α) μ) − 1 > (l − 2)E (α) μ − 1 > 0.

It means that uT−l = μ and

ST−l(xT−l) = xT−lμ (l − 2) (1 + E (α) μ)2

.
It is easy to check that for each next step to the beginning uT−t = μ and

ST−t(xT−t) = μxT−t (l − 2) (1 + E (α) μ)2+t

for t from l − 1 to T .
Now we have got the optimal control for our problem:

uopt
t =

{
μ, if (T − t − 1) E (α) μ − 1 > 0,
0, if (T − t − 1) E (α) μ − 1 < 0.

(20)

The proposition is proved.

Important to note that if α is a positive constant and the problem (14)–(17)
is deterministic, the optimal control (20) becomes

uopt
determ =

{
μ, if 0 � t � T − 1 − 1

αμ ;
0, if T − 1 − 1

αμ � t � T − 1.

And this optimal control looks like the optimal control (9), which brings the
optimal solution to the continuous problem (1)–(4).
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5 Stochastic Model of Production Expansion
in Continuous Time

The stochastic version of this model in continuous time might assume the random
process of income in the form of

dxt = αutxtdt + σxtdBt, (21)

where Bt is a Brownian motion. In this formulation, ut = u(t, ω) is a stochastic
process. In order to be non-anticipating, that is, based on information up to time
t, the function ω → u(ω, t) is assumed to be measurable with respect to sigma
algebra Ft of natural filtration {Ft} and α is a positive constant again.

A possible variation is to assume random Poisson jumps of the income

dxt = αutxtdt + σxtdNt, (22)

where Nt is the Poisson counting process. Our experience [11,12] shows that the
analysis requires a different technique with Lagrange’s multipliers methods. We
are planning this variation for further research.

The agent’s goal is augmented by a terminal term F (x(T )), whose role we
demonstrate below

E

[∫ T

0

(μ − u(t))x(t)dt + F (x(T ))

]
→ max (23)

dx(t) = αu(t)x(t)dt + σx(t)dBt, (24)
u ∈ [0, μ], x(0) = x0. (25)

5.1 The Production Expansion Problem with a Linear Terminal
Component

Let’s briefly consider a deterministic version of the problem with the terminal
component:

∫ T

0

(μ − u(t))x(t)dt + kx(T ) → max (26)

ẋ(t) = αu(t)x(t), (27)
0 � u(t) � μ, x(0) = x0. (28)

Proposition 2. The optimal control function for the problem (26)–(28) is

if k <
1
α

, uopt(t) =

{
μ, if 0 � t � T − 1

αμ + k
μ ,

0, if T − 1
αμ + k

μ < t � T,

otherwise uopt(t) = μ for t ∈ [0, T ].
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Proof. The Pontryagin maximum principle states the optimal control to maxi-
mize the Hamilton-Pontryagin function H(t, x, u, p) = (μ − u)x + pαux, where
the conjugate variable p(t) satisfies the equation ṗ(t) = u − μ − pαu and the
transversality condition p(T ) = k. From that the optimal control is

u(t) =

{
μ, if p(t) > 1

α ,

0, if p(t) < 1
α .

(29)

If u(t) = 0 then ṗ(t) = −μ and p(t) is a decreasing function. If u(t) = μ
then ṗ(t) = −pαμ and p(t) is also a decreasing function. So the optimal control
has got not more than one switching point and it depends on the value of k. If
k > 1

α in respect that p(T ) = k there is no switch point and optimal control
is u(t) = μ for t ∈ [0, T ]. This means that the producer invests everything is
possible to make the earnings x(T ) at the last time T the largest. If k < 1

α the
switching moment is easily found: τ = T − 1

αμ + k
μ . So the optimal control for

the problem (26)–(28) is:

if k <
1
α

, uopt(t) =

{
μ, if 0 � t � T − 1

αμ + k
μ ,

0, if T − 1
αμ + k

μ < t � T,
(30)

otherwise uopt(t) = μ for t ∈ [0, T ].

It is clear that if k is big enough the terminal component in (26) may change
the form of the solution: the producer might have an investing period for all the
interval [0, T ]. The conditions of this problem allow him to get the maximum
profit due to the last moment of time T . But if k is small enough, the solution
(30) is similar to the solution of the problem (1)–(4).

6 Stochastic Model of Production Expansion
in Continuous Time

Now returning to the stochastic model (32)–(34). The necessary conditions for
optimal control u might be formulated for the value function

S(s, y) = sup
u

Ju(s, y), (31)

where

Ju(s, y) = E

[∫ T

s

(μ − u(t))x(t)dt + φ(x(T ))

]
(32)

dx(t) = αu(t)x(t)dt + σx(t)dBt, (33)
u ∈ [0, μ], x(s) = y. (34)

The Hamilton-Jacobi-Bellman equation for this problem [13]

sup
v∈[0,μ]

{
∂

∂s
S (s, y) + (μ − v) y + αvy

∂

∂y
S (s, y) +

σ2y2

2
∂2

∂y2
S (s, y)

}
= 0. (35)
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The terminal condition
S(T, y) = φ(y). (36)

The optimal control value in (35) is similar to the (6)

v(t, x) =

⎧⎪⎨
⎪⎩

0, if α∂S
∂x < 1, (A)

μ, if α∂S
∂x > 1, (B)

[0, μ], if α∂S
∂x = 1. (C)

(37)

6.1 Case (A)

For the case (A) the Eq. (35) turns into

− ∂

∂s
S (s, y) = μ y +

σ2y2

2
∂2

∂y2
S (s, y) . (38)

One may try to solve this equation in the form

S (s, y) = H (s, y) − μ y ln(y)
σ2

+ C1 y + C2, (39)

which leads to the equation

− ∂

∂s
H (s, y) =

y2σ2

2
∂2

∂y2
H (s, y) . (40)

This equation might be solved in the form H (s, y) = F1 (s)F2 (y) . As a
result the nonzero solution of (40) reduces to solving a system of equations

σ2y2

2F2 (y)
d2

dy2
F2 (y) = c = − 1

F1 (s)
d

ds
F1 (s) . (41)

The case of c = 0. In the case of c = 0 the solution to the system (41) is

F1 (s) = const1, F2 (y) = y const2 + const3.

Returning to the (39) the solution S(s, y) is still

S (s, y) = −μ y ln(y)
σ2

+ C̃1 y + C̃2. (42)

The Case of c 	= 0. This option leads to the solutions of the (41):

F1 (s) = C3 e−cs, (43)

F2 (y) =C4 y
1
2+

√
σ2+8 c
2σ + C5 y

1
2−

√
σ2+8 c
2σ . (44)

The (39) has the form of S(s, y) as

S (s, y) = C̃3 e−cs

(
y

1
2+

√
σ2+8 c
2σ + C̃4 y

1
2−

√
σ2+8 c
2σ

)
− μ y ln(y)

σ2
+ C̃1 y + C̃2. (45)
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6.2 Case (B)

The case (B) leads to the equation (35) in the form

− ∂

∂s
S (s, y) = α μ y

∂

∂y
S (s, y) +

σ2y2

2
∂2

∂y2
S (s, y) . (46)

One may also solve it in the form S (s, y) = F1 (s) F2 (y) . Substituting into
(46)

σ2y2

2F2 (y)
d2

dy2
F2 (y) +

y μα

F2 (y)
d

dy
F2 (y) = c = − 1

F1 (s)
d

ds
F1 (s) . (47)

The solution delivers

S (s, y) = C1 e−cs y1/2+1/2
−2 α μ+

√
4 α2μ2−4 α μ σ2+σ4+8 cσ2

σ2

+ C2e−cs y1/2−1/2
2 α μ+

√
4 α2μ2−4 α μ σ2+σ4+8 cσ2

σ2 . (48)

We present the two solutions to (35) and (46), one of which should satisfy
the terminal condition (36). If the function φ(y) were zero, as in the initial
formulation of the problem (1)–(4), there would be no nontrivial solution of this
form. Further analysis is needed to find the solution in the form different from
the one attempted above.

If one assumes some nonzero φ(y) that enables to satisfy the terminal con-
dition (36), another challenge appears to match the two solutions in the points
where (37) switches from one value to the other

α
∂

∂y
S (s, y) = 1. (49)

The (42) contains the y ln(y) term with no undefined constants, whereas the
(48) has only power functions of y with constants. Therefore, the (49) would be
a complex equation that we plan to analyze in the future.

6.3 Approximate Asymptotic Solution to the Producer’s Problem

Now we are able to present the asymptotic approximation for S(s, y). For this,
we substitute

y2 ∂2

∂y2
S (s, y) = S1 (s, y) . (50)

We start form the Eq. (35) where we have

− ∂

∂s
S (s, y) = μ y +

σ2

2
S1 (s, y) . (51)

This allows us to solve this equation for S(s, y) to obtain at time interval
(s, T ]

S (s, y) = S (T, y) + μ y (T − s) +
σ2

2

∫ T

s

y2 ∂2

∂y2
S (τ, y) dτ. (52)



Analysis of the Model of Optimal Expansion of a Firm 121

By substituting this expression into the right hand side of itself, we obtain

S (s, y) = S (T, y) + μ y (T − s) + 1/2σ2y2

(
∂2

∂y2
S (T, y)

)
(T − s)

+ 1/2σ4y2

∫ T

s

∫ T

τ

∂2

∂y2
S (h, y) dh dτ

+ σ4y3

∫ T

s

∫ T

τ

∂3

∂y3
S (h, y) dh dτ +

σ4y4

4

∫ T

s

∫ T

τ

∂4

∂y4
S (h, y) dh dτ. (53)

Assuming the parameter σ to be small and the coefficient of the σ4 to be
bounded (the assumption to be verified), we obtain the order of σ2 approximation

S (s, y) = S (T, y) + μ y (T − s) +
σ2y2

2
∂2

∂y2
S (T, y) (T − s) . (54)

Using the same idea, one may rewrite the (46) equation in the form for some
moment of time τ

S (s, y) = 1/2 σ2y2e−2 α μ s

∫ τ

s

e2 hα μD2,2 (S)
(
h, ye−α μ s+hα μ

)
dh + F1

(
e−α μ sy

)
.

(55)

Here by D2,2 (S) we denote the derivative with respect to the second argu-
ment.

By substituting it in the right-hand side of itself and leaving only the terms
up to the order σ2 and less, we come to the following form of the asymptotic
expression

S (s, y) = F1

(
e−α μ sy

)
+ 1/2σ2y2e−2α μ sF ′′

1

(
e−α μ sy

)
(τ − s) . (56)

As in the deterministic case described in the beginning of this paper, we may
also find the unknown function F1 from the continuity of S(s, y) at some point
s = τ . Therefore

F1 (z) = S (T, zeα μ τ ) + μ zeα μ τT − μ zeα μ ττ

+
σ2z2

2
(D2,2) (S) (T, zeα μ τ ) (T − τ) e2α μ τ . (57)

We demonstrate the approach on the particular case in the next section.

6.4 The Asymptotic Solution to the Producer’s Problem
with φ(x) = kx

To illustrate the solution obtained in the previous section and to compare it to
the deterministic model (26)–(28) we consider the case of φ(x) = kx. Therefore,

S (T, y) = ky. (58)
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From (54) we have the value function for different time intervals

S (s, y) = ky + μ yT − μ ys, (59)

S (s, y) =μ y (T − τ) e−α μ s+α μ τ + kye−α μ s+α μ τ , (60)

that are derived based on assumption of taking the same value at time t = τ .
One may further see that

∂

∂y
S (s, y) = k + μT − μ s, (61)

∂

∂y
S (s, y) =μ (T − τ) e−α μ s+α μ τ + ke−α μ s+α μ τ . (62)

Assuming that
∂

∂y
S (τ, y) =

1
α

, (63)

we obtain the value τ of the moment of time when these two functions become
equal to each other.

∂

∂y
S (τ, y) = k + μT − μ τ,

∂

∂y
S (τ, y) = μ (T − τ) + k. (64)

The value of τ corresponds to the deterministic version (26)–(28)

τ =
(
k − α−1 + μT

)
μ−1. (65)

It is clear that this value is in the range [0, T ] only in the case of k < 1/α.
One may verify that both (64) are decreasing functions of time that take the

value of 1/α only once. This defines the control (37) of the form identical to the
optimal control (30) in the deterministic version of the model.

7 Conclusion

This paper presents the analysis of the model of optimal production expansion.
The model is modified to take into account uncertainty in the environment that
affects the future income for the producer. The influence of model parameters
on the optimal solution is studied. Various versions of the model are considered
and compared. Two possible stochastic versions are presented and analyzed: a
discrete-time version and the continuous-time version with income having the
Browninan motion component. In order to study the continuous-time problem, a
generalization of the baseline model is introduced, that adds a terminal term to
the producer’s goal. We present an asymptotic approximation of the stochastic
model, that demonstrates correspondence to the solution in the deterministic
case. This work demonstrates that the solution to the model with uncertainty is
qualitatively similar to the deterministic version and relies on the expected value
of the uncertain parameter. The small uncertainty in the continuous time model
requires adding a special terminant term to the goal functional and in the case
of linear terminant the approximate solution is still similar to the deterministic
model.
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Abstract. In this study, we propose an addition to the classical
ISLMBP model that changes its focus. Typically, this model is used
to analyze the impact of different macroeconomics policy options on
macroeconomic stabilization (the return of an economy that has devi-
ated from long-term equilibrium to a state of full resources usage). We
propose an addition to this model that describes the reaction of busi-
ness owners and financial investors to the level of tax burden and (more
detailed) interest rates. This allows us to consider the optimization prob-
lem of replenishing the state budget from three sources: taxes, public
debt and money emission. The proposed model allows us to quantita-
tively study the optimal proportion between these sources of financing,
taking into account the specifics of the investment climate (sensitivity of
the economy to the national and international interest and tax rates).

Keywords: Macroeconomics · Optimal control · Economic policy ·
Taxes · Emission · Public debt

1 Introduction

It is well known that the state budget can be financed by taxes, public debt
and money emission. Each of these methods has its drawbacks: taxes reduce
economic activity, public debt generates costs for its maintenance, and emission
acts as an inflationary tax. Each of these mechanisms has been well studied
separately. Surprisingly, the question of preferability for one of these mechanisms
(or the proportion between all three, respectively) still remains opened. The main
reason for that is that macroeconomic models are concentrated on the problems
of macroeconomic policy choice (influencing an economy that has deviated from
long-term equilibrium to bring it to an equilibrium state).

In this work, we propose a modification of the ISLMBP model, which allows
us to formulate the problem of the optimal choice of the method of financing
state social policy. Using the classical balance macroeconomic model, we obtain a
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universal basis, the performance of which has been verified by numerous authors.
However, by adding some previously unused dependencies to it, we get the oppor-
tunity to transform it into an optimal control task.

Various economic schools (both Western and Russian: Keynesian, Neoclas-
sic, Monetarists, Technological paradigm theory, etc.) give their answers about
preferable financing method. However, none of these schools offers a macroe-
conomic model complete enough to take into account the impact of all three
methods on economic activity and allow a quantitative analysis of the possi-
ble combination of all three methods at once. This is due to the fact that the
state macroeconomic policy is considered mainly by balance-sheet macroeco-
nomic models (based on the system of national accounts [13]), and long-term
dynamics - by models of economic growth. Docking between these models is
limited. Long-term and short-term dynamics of the economy are conceptualized
differently.

Models of economic growth (starting with the Solow model [5], and further
more modern versions: Ramsey [6], Mankiw [7], Rebelo [8] etc.) explain the
dynamics of the economy through investment in factors of production (capital or,
in more complex models, material capital and human capital). Accordingly, the
only thing that connects these models with balance-sheet macroeconomic models
is the amount of investment in production factors. And this amount is typically
determined in them on the basis of some basic micro-justification, which assumes
the optimal distribution of household funds between consumption and savings.
However, this approach contradicts modern interpretations of macroeconomic
equilibrium (based on the Keynesian-neoclassical synthesis). Thus, in balance
sheet models, an increase in savings is a manifestation of the economic crisis,
and there is no reason to believe that all savings will be directed to investments.
Instead, they can be withdrawn from the national economy through the foreign
exchange market.

The development of modern models of economic growth is associated pri-
marily with the construction of more complex interpretations of demographic
processes and human capital (as, for example, in the works of O. Galor, for exam-
ple, [11]). These works are of great interest in terms of possible integration with
balance sheet macroeconomic models, since they make it possible to describe
changes in population size and the quality of labor resources as an endogenous
processes. However, before creating such a hybrid model with endogenous labor
and capital, we consider it appropriate to focus on a model with endogenous
capital, which would reflect the impact of state fiscal and monetary policy on
this factor in accordance with the ideas of modern macroeconomics about the
dynamics of financial flows. For the description of impact of firms’ decisions on
financial flows and impact of financial flows on the exchange rate and investment,
see, for example, [9] and [10].

Accordingly, the basic micro-justification of the amount of savings should
be replaced by models that suggest the possibility of reducing the investments
due to capital outflow. The basic (simplest) version of such a balance sheet
model is the ISLMBP model. Note that there are more modern balance-sheet
macroeconomic models that include more complex effects on the labor market,
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a more diverse description of financial instruments, and finer tools for external
shocks description. The development of balance models in this direction is due to
their focus on describing the short-term period, shocks and the anti-crisis policy
of the state. Accordingly, although the use of a more complex basic balance sheet
model may have its advantages, they are redundant for studying the long-term
dynamics of potential GDP.

2 Model ISLMBP

The ISLMBP model is a classic macroeconomic model with a microeconomics
basis, created within the scientific school of the neoclassical–Keynesian synthe-
sis [1,2]. It describes the interaction of four macroeconomic agents (the Firm,
the Household, the State and the Outside world) in three markets (Goods,
Money and Foreign exchange). The agents (except State) are described by their
behavioral functions: consumption, investment, and net exports, demand for
the national currency, and supply of the national currency. (The full model also
describes the equilibrium in the labor market, but for our purpose of the macroe-
conomic equilibrium, this market takes a subordinate position in relation to the
goods market).

The State, on the contrary, is represented not through a function of behavior,
but through a balance equation that limits the choice of the state controls: the
State budget

Em = Debt(τ) r + Tr − Ta − t Y − Lo − G (1)

Here:

Y : gross domestic product (GDP)
Em : money base growth (emission)
Debt(τ)r: public debt service costs charged on public debt at an interest rate.

Note that all money cost interest rates r are considered the same through-
out the model since it is assumed that differences in rates on different financial
instruments in highly competitive financial markets are fully explained by dif-
ferences in the level of risks.

Also note that formally all variables of the balance-sheet model (not includ-
ing sensitivity factors) are formally dynamic (take on different values at different
time moments τ). In order to simplify the notation, here and below, only vari-
ables included in differential equations are marked as dynamic (see Sect. 4). The
remaining variables are fully calculated on the basis of the macroeconomic bal-
ances (see IS, LM and BP ).

Tr: social transfers to the Household
Ta: Autonomous (GDP-independent) taxes (such as property taxes)
t in (0, 1): level of tax burden on economic activity (VAT, profit taxes, labor
taxes, consumption taxes, etc.)
Lo: additional government borrowing (government debt growth)
G: government spending.
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Let us emphasize that we equally classify as emission all the forms of money
base generations. In particular, the direct printing of money by the Treasury,
the repurchase of state loan bonds by the Central Bank, and other forms of
“quantitative easing” (the repurchase of securities and stocks by the Central
Bank).

To simplify things, instead of full descriptions of agents, we present the final
balance equations of their interaction in the markets (known as IS, LM, and
BP):

IS : Y =
(Ca + Ia];K(τ) − dr r + G + NXa + MPC(Tr − Ta))

(MPC t − MPC + MPI + 1)
(2)

Here:

Ca: autonomous consumption (living wage, etc.)
IaK(τ) − drr: investments aimed at expanding/replenishing capital (fixed
assets), reduced by the opportunity cost of financial capital
r: risk-free investment rate of return (on deposits, bonds, etc., associated with
the key rate of the Central Bank)NXa: autonomous net export (difference
between export and import)
MPC in (0, 1): marginal propensity to consumption (part of household
income growth directed towards consumption rather than saving)
MPI: marginal propensity to import, part of expenses spent on imported
rather than domestic goods.

LM : Y =
(cr + 1)
(cr + rr)

MB(τ)V
P

+ h r (3)

Here:

MB: monetary base (simply speaking, government-issued national currency)
cr: deposit ratio (percentage of funds circulating as cash outside the banking
system)
rr: reserve ratio (percentage of banks’ assets not issued as loans)
h: sensitivity of the investment, “speculative” demand for money according
to the interest rate
V : velocity of money circulation (institutional characteristic associated pri-
marily with the level of development of payment systems and peoples’ expec-
tations)
P : prices level in the economy (phase variable)

BP : Y =
NXa + Fa + f(r − re)

MPI
(4)

Here:

Fa: autonomous capital export/import
f : sensitivity of capital export to the difference between the national inter-
est rate r and the rate re on international markets (The ISLMBP model
assumes that the government cannot of maintain national currency overval-
ued or undervalued for a long time).
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3 Model Extension: ISLMBPFI

The ISLMBP model allows various interpretations (see [3]). We use a small
open economy interpretation, in which the rate of interest in the outside world
does not depend on events in the national economy (although our model can be
adapted to the case of a large open economy).

The classical ISLMBP model considers the export/import of capital as a
process that depends exclusively on the interest rate. This shortcoming follows
from the microeconomics basis of the model, which did not consider the question:
where do the funds go to the foreign exchange market come from (if the balance
of financial capital is negative), and where do the funds go in the economy (if
the balance of capital is positive). We propose a new interpretation of the flow
of financial capital.

Consider briefly the choice of the Firm’s owner in the national economy. (In
terms of microeconomics, the owner is a special household whose income consists
mainly of dividends). He accumulates financial resources (by the rate r), invests
them in the renewal and development of production (investment) and expects
to receive a profit. Note that professional financiers are also owners (of financial
sector firms). This also applies to the distribution of profits: the owner invests
part of the profits back into his own business (in this case, the alternative cost
is the same interest rate r at which he can place them on the financial market).
The lower the interest rate of raising capital is, the greater profit owners can
count on; and the higher the level of tax burden on economic activity t is, the
lower the profit will be. Thus, the amount of investment in the national economy
is inversely proportional to the interest rate r and the tax rate t.

At the same time, in an open economy, the owner has a choice: to invest in the
national economy, or withdraw funds abroad, where conditions for investment
are better. The higher the interest rate abroad re are, and the higher the foreign
taxes te are, the lower desire of the owner to withdraw funds abroad is.

Of course, the search for investment places in foreign economies is associated
with increased transaction costs, so only a certain part of national investors will
withdraw money abroad: however, the greater the gap in conditions is, the larger
will be the proportion.

I = K(τ) Ia − dr r − dt t − fr re + ft te (5)

Here: dr, dt, fr and ft: sensitivity of investment to the national interest rate r
and the rate re on international markets, national tax burden t and the burden
te on international markets.

In turn, in the foreign exchange market, there is an interaction of domestic
and foreign owners. Both domestic and foreign owners buy more national cur-
rency if the interest rate on it is higher than the world one, and the tax burden
is lower (and vice versa).

0 = NXa − MPI Y + Fa + rf (r − re) + tf (te − t) (6)
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Here: rf and tf : sensitivity of capital export to the difference between the
national interest rate r and the rate re on international markets, national tax
burden t and the burden te on international markets.

These additions, describing the relationship between investment and the
movement of financial capital, significantly change the overall equilibrium in the
ISLMBP model, but, more importantly, allow it to reflect the trade-off between
different methods of the state budget financing. Without them, tax financing of
the state budget did not have significant disadvantages, due to the nature of mul-
tipliers: simultaneous proportional increase in taxes and government spending
should increase GDP. After adding this balances, tax financing of social policy
also has negative consequences for GDP growth rates (similar to how emission
financing can lead to inflation, and public debt generates budget spending).

Thus, the equilibrium conditions in the markets of goods, money and foreign
currency take will be:

Y =
Ca + IaK(τ) − dr r − fr re − dt t − ft te + G + NXa − MPC(Ta − Tr)

MPC t − MPC + MPI + 1
(7)

Y =
(cr + 1)MB(τ)V

(cr + rr)P
+ h r (8)

Y =
NXa + Fa + rf(r − re) + tf(te − t)

MPI
(9)

This system of three equations with three unknowns (P , r, Y ) is unequivo-
cally solved. A significant feature of the resulting solution is that the key rate of
the Central Bank is not only not a control, but is in fact a function of the level
of the tax burden. The Central Bank is forced to set it at the level calculated
in the model to avoid imbalance in the balance of payments. This means that in
a small open economy (with high taxes), pressure from capital outflow prevents
the Central Bank from targeting inflation (changes in the prices level P ).

4 The Statement of the State’s Problem of Optimal
Control

The State controls a significant number of model variables, although some of
them are considered ineligible for change. The government controls Tr, Ta, t and
G (fiscal policy). The central bank controls rr (monetary policy). The Central
Bank and the Government jointly control the amount of public debt Lo. At the
same time, a change in Ta and rr is considered to be dangerous (they are not
limited in this model, but any changes to them require verification of indirect
consequences for the state budget using auxiliary models).

We emphasize that this statement corresponds to the logic of choos-
ing a state that successfully copes with the implementation of a counter-
cyclical/stabilization policy. That is why the monetary policy seems to be redun-
dant (the Central Bank just needs to set r in accordance with the model equi-
librium). The main issue of public policy is:
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– considering the volume of social obligations G and Tr given (politically), and
Ta and rr unchangeble

– choose a financing method: the optimal volume Lo and t (as well as the
volume of money emission Em calculated from this).

As in the Solow model, the dynamics of capital in the model (given State con-
trols) can be expressed analytically. This makes it possible to study the objective
function at least by simulation methods (and potentially to obtain an analytical
solution on the optimal value of the State controls).

To answer this question, it is necessary to compose a functional (optimal
choice criteria). In the macroeconomic literature, three such criteria are most
common: the capital, the growth rate of (potential) GDP and the ratio of GDP
to public debt. In both cases, an auxiliary model of economic growth is needed. In
the macroeconomic literature, such models are based, as a rule, on the classical
Solow model [5], using the Cobb-Douglas production function [4]. It describes
economic growth as a process of capital accumulation in the economy. The Solow-
type model explains it by a constant rate of savings converted into investments.
More sophisticated models take savings out of macroeconomic equilibrium ([6,
12]. We use the same approach, but take into account the impact on investment
of what we call the investment climate: the sensitivity of owners to global and
national interest rates, as well as the global and national tax burden.

Y lr(τ) = bK(τ)aL1−a (10)

dK(τ)
dτ

) = I − K(τ) am (11)

dMB(τ)
dτ

) = Em (12)

dDebt(τ)
dτ

) = Lo (13)

Note that the capital intensity of capital (the amount of investment required to
form a unit of capital) can be specified both in the capital transfer equation or
in the production function.

Y lr(τ): the potential GDP (obtained from the full usage of the resources of
the national economy).

a, b: calibration constants reflecting scale effect and production technology.
Assuming (for simplicity) the working-age population to be permanent and

independent of state social policy, we obtain three phase (stock) variables: capi-
tal, money base, and public debt. Potential GDP can be calculated through the
change in capital:

F (Lo, t) =
∫ ∞

τ0

Y lr(K(τ))
Debt(Lo)

dτ (14)
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In turn, the change in capital is uniquely determined by the controls Lo and
t.

K(τ) = K0 e
τ((Ia−am)((t−1)MP C+MP I+1) rf−am dr MP I)

((t−1)MP C+MP I+1)rf+MP I dr

− (dr re + dt t + fr re − ft te)((t − 1)MPC + MPI + 1) rf

(am − Ia)((t − 1) MPC + MPI + 1) rf + am dr MPI

+
dr((Ta − Tr) MPI + (t − 1)(te tf − t tf + Fa + NXa)) MPC

(am − Ia)((t − 1)MPC + MPI + 1)rf + am dr MPI

+
dr(te tf − t tf − Ca + Fa − G) MPI + tf te − tf t + NXa + Fa)

(am − Ia)((t − 1)MPC + MPI + 1)rf + am drMPI
(15)

F (Lo, t) =
∫ ∞

τ0

Y lr(t, Lo)
Debt(Lo)

dτ (16)

This functional can be discounted, but we consider its relevance questionable
for reasons beyond the scope of this study.

Since the value of potential GDP in the model is uniquely calculated through
the value of capital, then by deriving the differential equation that describes the
dynamics of capital (with the values of controls chosen by the state), we also
obtain the explicit form of the functional F (t, Lo). (The substitution (15) into
(10) and then into (16) is not reproduced in the article due to being cumber-
some).

The maximization of this functional is analytically possible, but difficult due
to the difference in the powers of the numerator and denominator. Note that the
problem can be easily solved analytically if we represent the functional as

F (Lo, t) =
∫ ∞

τ0

K(τ)
Debt(Lo)

dτ (17)

However, such a replacement is unacceptable, because diminishing returns on
capital means that the ratio of GDP to debt may decrease as the ratio of capital
to debt increases.

Note that long-term GDP Y lr, strictly speaking, is not identical to short-
term GDP Y , since the ISLMBP model allows the economy to deviate from the
optimal level due to supply and demand shocks. However, as in the neoclassical
model of economic growth, we consider the economy in a stable state, not in
a state of shock. Then the mutual correspondence of short-term and long-term
GDP is ensured by the calibration of the Cobb-Douglas function (coefficients
and capital K itself, since it is an unobserved characteristic).

5 Model Trajectories’ Features

Let us present the results of a preliminary analysis of the model dynamics asso-
ciated with the policies of some developed countries. Consider three cases:

1. financing mainly through public debt
(Japan; USA considering some specifics)
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2. financing mainly through emission (Venezuela)
3. financing mainly through taxes (France).

Fig. 1. Real GDP dynamics in quantitative example

Let us give an example of the dynamics of the model with these three types
of policies from the same initial state of the national economy (see Fig. 1 and
Fig. 2). Key model parameters are: MPC = 0.5, MPI = 1 V = 2, h = 100,
cr = 1.6, rr = 0.05, re = 0.02, te = 0.3. This analysis was made by a discrete
delta version of our model. A fixed amount of government spending (G + Tr)
is financed here by each of the three ways (t = 0.38, or Lo = G + Ta, or
E = G+Ta), as well as a mixed option (some tax cuts, a small government debt
and moderate emission at a level that maintains the prices level). This is just an
example, which, in particular, does not take into account the deflationary trap.
We should not base on it any meaningful conclusions about the advantages of
one or another method of financing. This will become possible only after the
identification of the model according to the macroeconomic statistics of several
countries.

However, this example (with parameters broadly reminiscent of the Rus-
sian economy) makes it possible to make sure that the patterns in the model
are quite realistic, and the trajectory of economic development changes greatly
while choosing different financing methods. For example, it can be seen that
inflationary financing leads to a short-term rise in GDP followed by a sharp fall,
while debt financing allows maintaining GDP at an inflated level at the cost of
losing growth rates. Both observations are consistent with generally accepted
ideas about macroeconomic dynamics.
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Fig. 2. Inflation dynamics in quantitative example

At the same time, it can be shown that the dynamics observed in the model
changes strongly when the fundamental parameters change. For example, if the
sensitivity of investment and financial capital to the national tax rate is suffi-
ciently high (see Fig. 3), then tax financing of social policy becomes less produc-
tive, in contrast to debt (which is typical for the United States, thou formally
Unated States should not be considered as a small open economy). And vice
versa, in countries with low inequality and a high quality of life (which con-
tribute to reduced tax sensitivity), the level of the tax burden can be signifi-
cantly higher than the global one without serious consequences for the balance
of payments and investment activity (“Scandinavian socialism”). Moreover, the
model allows us to describe the “resource curse”: the state of the economy with
large autonomous exports (raw resources) and a poor institutional setting. An
attempt to finance major social programs of the state through taxes leads in this
case to the decline of domestic investment and stagnation in the economy, and
low taxes lead to problems with the balance of payments (“Dutch disease”).
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Fig. 3. Inflation dynamics in quantitative example for higher taxes sensibility

6 Conclusions and Perspectives

The proposed ISLMBP model with the addition FI, which describes the impact
of taxes and interest rates on investment and financial capital flow, is designed to
compare different ways of financing the state budget: money emission, taxes, and
loans. It allows us to explore different combinations of these sources and predict
the reaction of owners/investors to them. Additional coefficients introduced into
the model make it possible to consider it as an optimal control model. All ways
of the budget financing can be modeled in it as having maxima in the amount
of funds raised and GDP value.

The analytical solution of the problem of optimizing the growth rate of GDP,
capital or debt-to-GDP ratio is mathematically complex, but can be researched
by simulation methods. The model can be adjusted for countries with different
investment climates (sensitivity of investors and financial capital to interest rates
and taxes). The next stage in the development of the model may be its adaptation
to various monetary policies (primarily, to the policy of accumulating gold and
foreign exchange reserves). After that, it will be possible to identify the model
on the macroeconomic statistics of different countries, including Russia.

Another interesting, but mathematically difficult, possibility for the develop-
ment of the model is related to the decomposition of the marginal propensity to
import into different motives: technological and consumer exports and imports.
This will make it possible to abandon the rigid identification of autonomous
exports according to macro statistics, considering its changes during the struc-
tural restructuring of the economy.
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Abstract. We consider the optimization problem of forming the fittest
strategy for zooplankton diel vertical migration. This strategy should
maximize the fitness function reflecting the average specific rate of pop-
ulation reproduction. We solve this problem using feedback between the
current environmental state and the organism’s local movement. Such
feedback reflects the ability of living organisms to adapt to changing
habitat conditions. We construct the feedback on the base of the neural
network. Its input is the values of environmental factors at a given point
and a given time; its output is the corresponding local displacement of
zooplankton. The initial optimization problem is reduced to the opti-
mization of the feedback settings or to the optimal choice of the neural
network weights. To train the neural network, we apply the new evo-
lution method of stochastic global optimization: Survival of the Fittest
by Differential Evolution (SoFDE), based on the Survival of the Fittest
algorithm and Differential Evolution. It was shown that this approach
permits to form the optimal behavioral strategy for different environ-
mental conditions.

Keywords: Feedback · Global optimization · Survival of the Fittest
algorithm · Differential evolution · Neural network · Zooplankton · Diel
vertical migration

1 Introduction

In population biology, we are generally interested in a certain behavioral strategy
(or a life trait) that remains in the community as a result of competition [30].
The knowledge of this strategy allows us to understand and predict outcomes of
long-term biological evolution. Darwin’s idea of “survival of the fittest” suggests
that the strategy persisting in the population for a relatively long period of time
is the one that should have the highest fitness [4,12]. In the simplest cases, the
evolutionary fitness is proportional to the average specific energy gain, which is
used for reproduction of the corresponding subpopulation [14,22,28]. Biologically
more justified to construct feedback that would connect the current environmen-
tal state and the organism’s local behavior. Such feedback provides the ability
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of living organisms to adapt to changing habitat conditions. It forms different
fittest strategies for different biotic/abiotic external factors. In this case, the
initial problem is reduced to the choice of the optimal feedback settings.

This problem arises, in particular, in modeling diel vertical migration (DVM)
of zooplankton. The phenomenon of diel vertical movements of aquatic organ-
isms was discovered two hundred years ago [7] and it consists of regular ascending
and descending of zooplankton in the water column. Diel vertical movements of
zooplankton play an important role in the dynamics of the organic matter of the
ocean. They are the most significant synchronous movement of biomass on Earth
[21] and can potentially have an influence on the planet’s climate [1,6,9,18]. Iden-
tifying the causes and mechanisms of DVM is an important problem in modern
ecology. The effect of diel vertical movements of zooplankton has been studied
by many scientists both empirically and theoretically [2,10,15,16,34]. DVM of
zooplankton is considered as the result of adaptation to the dynamical environ-
mental factors during biological evolution [11,17,24], however, many aspects of
this phenomenon are still poorly understood. This is due to the wide variety of
patterns of DVM observed in nature. Nature observations show that the strat-
egy of DVM changes with the season chaining of environmental conditions. It is
known that some species of zooplankton carry out detectable vertical movements,
but for others, this is not typical [7]. In addition, certain species of zooplankton
make detectable movements only when they reach a certain age. The complexity
of the problem of modeling DVM is aggravated by the inevitable random spread
of the above factors and stochasticity of different nature.

The purpose of this work is to construct optimal feedback between the cur-
rent environmental state and the organism’s local behavior on the base of fitness
maximization. This feedback permits to form adaptive zooplankton DVM strate-
gies. To solve this problem, we use a neural network to approximate the optimal
feedback function. Neural networks, as universal function approximators, can be
effectively applied to the problem of finding feedback [40], and it is worth noting
that the neural network is the mathematical model, which is based on the princi-
ple of functioning of nerve cells networks of living organisms. Also, we use global
optimization methods for training neural networks. Currently there are many
global optimization methods [36,37,39,41]. Here we use evolutionary algorithms
because they are based on the ideas of mutation, crossover and selection and are
suitable for modeling the phenomena of biological evolution. The following evo-
lution methods of stochastic global optimization are proposed: the Differential
Evolution [38] which can be considered as the suitable algorithm for training the
neural network [3] and the novel method - Survival of the Fittest by Differential
Evolution (SoFDE), based on the Survival of the Fittest algorithm proposed in
[23,29]. An important advantage of SoFA is that one can rigorously guarantee its
convergence for an extensive class of objective functions [29]. Another significant
advantage of SoFA is that this framework can efficiently work in higher dimen-
sional spaces, spaces of increasing dimension or even infinite-dimension Hilbert
spaces. This algorithm shows the higher convergence rate than several other evo-
lution methods (Evolutionary Strategy with Cauchy distribution [35], Controlled
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Random Search with local mutation [20,32,33] and Multi Level Single-Linkage)
for some important classes of optimization problems in the spaces of a high
dimension. It was tested in a class of relevant objective functions and was suc-
cessfully applied for investigations of physical and biological models [23,29]. The
SoFDE method was used for the first time. In this method we have retained
the advantages of SoFA and improved the convergence rate using Differential
Evolution. Then we compared the efficiency of the SoFDE algorithm with the
Differential Evolution and the original SoFA in neural network training.

This work is motivated by the need to reveal the mechanisms of zooplank-
ton adaptation by modeling optimal feedback, which ensures the formation of
the most fitness strategies. The contribution of this paper is the construction
of optimal feedback in the problem of modeling zooplankton DVM using neural
networks and evolutionary algorithms and the demonstration of its effectiveness
on field observations. The paper is organized as follows. At the beginning, we
describe the environment for the zooplankton DVM and introduce the fitness
function. Meanwhile, we consider the problem of finding the best fit zooplank-
ton DVM strategy and discretize the problem. Then we describe the neural
network architecture and present the evolutionary algorithm SoFDE for train-
ing the neural network. We construct the optimal feedback between zooplankton
movements and the environment. Finally, we form the migration strategy using
the constructed optimal feedback and test it under different environmental con-
ditions.

2 Materials and Methods

2.1 The Problem Statement

Empirical data show that the movement of plankton is determined by various
environmental factors: spatial distributions across the depth x of food (phy-
toplankton) F (x), predator (fish) density Px(x), distribution of adverse fac-
tors D(x), such as temperature, radiation level etc., the overall predator activ-
ity Pt(t) during the day, etc. [7,10,27]. All of these factors can be considered
as mathematical functions of the vertical coordinate x (measured in meters) or
the time of day t (measured in hours). The activity of predators depends on
daylight; the function Pt(t) is periodic with the period 24 h.

Here we use biological relevant parameters determining the DVM of a dom-
inant zooplankton herbivorous species in the Black Sea [27]. We selected these
parameters so as to find an optimal migration strategy that would satisfy the
obtained observations. We use the following parametrization of F , Px, Pt and
D:

F (x) =
tanh(ξ1(x − c1)) + 1

2
, (1)

Px(x) = tanh(ξ2(x − c2)), (2)

Pt(t) = cos
(

2π(
t

24
+

1
2
)
)

+ 1, (3)
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P (x, t) =
1
2
Px(x)Pt(t), (4)

D(x) =
ξ3η

x−c3
1 + ξ4η

−(x−c4)
2

2
. (5)

Here c1, c2, c3 and c4 are some characteristic depths, ξ1, ξ2, ξ3, ξ4 and η1, η2
are some constants. Note that this parameterization of the vertical distribution
of food F (x) is justified by empirical observation [27], likewise this concerns the
vertical distribution of visual predation load Px(x) [10]. The parameterization
of the natural mortality D(x) is in fact an approximation of the sum of the two
sigmoid functions used in [27] which has empirical justification. The values of
parameter functions F , P , D are taken close to those considered in [27].

Consider x as the vertical coordinate of the position of zooplankton; t is the
time of day varying from 0 to 24; ν = x(t) is the hereditary strategy of plankton
behavior - a continuous differentiable function on the segment [0; 24], satisfying
condition x(0) = x(24). In the simplest case, the fitness function of the strategy ν
has the following form [28]:

J(ν) =
∫ 24

0

(αF (x) − βP (x, t) − γD(x) − δE(x′)) dt. (6)

Here we assume that the energetic cost E(x′) of the vertical movement is pro-
portional to the square of its velocity x′(t)

E(x′) = ξ5(x′
t(t))

2. (7)

The weighting coefficients α, γ, β, δ quantify the relative contribution of the cor-
responding environmental factors.

We can find the strategy with the highest fitness by methods of the calculus
of variation. But it is much more interesting and more promising to form the
best strategy based on the perceived current value of environmental factors at a
given position of zooplankton at a given time. In other words, our problem is to
construct feedback between the environmental state and the zooplankton move-
ment, which leads to the optimal strategy during the day. Such feedback allows
zooplankton to adapt to changes in the environment. We solve the problem with
the help of a neural network. We will train the network for fixed environmental
functions, and then we will consider its work for different functions.

Here we use piecewise linear approximations of zooplankton movement strate-
gies. We divide the day into n equal intervals (ti, ti+h), where h = 24/n, t0 = 0,
ti = t0 + ih, and consider that the depth of zooplankton immersion varies lin-
early at each interval. In this case, the zooplankton strategy is determined by
the positions x(ti) = xi of the zooplankton at times ti or by the initial position
x0 = x(0) and displacements Δxi = xi − xi−1. We consider the displacements
to be of the following form Δxi = υσi where υ is a fixed constant and coeffi-
cients σi can have one of three values −1, 0, 1. Then the behavior strategy and
the corresponding fitness value are determined by the initial position x0 and the
set of coefficients σi : J(ν) = J(ν(x0, σ1, . . . , σn)). It is necessary to find the
optimal values of σi.
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We solve this problem using feedback – we construct the dependence of
the displacement coefficient σi on the values of environmental factors F (xi−1),
P (xi−1, ti−1), ΔP (xi−1, ti−1) ≡ P (xi−2, ti−2)−P (xi−1, ti−1), D(xi−1) at a given
point xi−1 and a given time ti−1 in order to provide the maximum of the fit-
ness function J(ν). In other words, our goal is to find the function σ : σi =
σ(F (xi−1), P (xi−1, ti−1),ΔP (xi−1, ti−1),D(xi−1)) to maximize the functional:
J(ν(x0, σ(F (x0), P (x0, t0),ΔP (x0, t0),D(x0)), . . . , σ(F (xn−1), P (xn−1, tn−1),
ΔP (xn−1, tn−1),D(xn−1)))). To construct this dependence σ, we use the neural
network. In this case, this dependence is defined by the set N of the network
weights: σi = σ(F (xi−1), P (xi−1, ti−1),ΔP (xi−1, ti−1),D(xi−1), N). Thus, the
initial problem is reduced to finding the optimal setting N of the network.

It is worth noting that the original problem can be reduced to the well-known
class of optimal control problems with feedback [25]. It can also be considered as
the inverse problem: we need to find the function x(t) by given functions (1–5)
where the functional (6) is maximized.

2.2 Construction of Optimal Feedback

To solve the problem, we have built a four-layer neural network. The architec-
ture of the artificial neural network is shown in Fig. 1. Such the neural network
architecture is justified by systematic experiments and works [19,26].

Fig. 1. The architecture of the artificial neural network.

The first input layer contains four fully connected neurons, the second and
third hidden layers contain 6 and 12 fully connected neurons respectively and
the fourth layer contains 3 neurons; wi is the weight of i-th connection – the
amplification coefficient of the signal passing through the i-th connection, |wi| <
wmax; bj is the bias corresponding to j-th neuron of the second - fourth layers,
|bj | < bmax. The activation function for every neuron of the second - fourth layer
has the form of the sigmoid:

f(y) =
1

1 + e−y
. (8)
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Thus, the network is described by a set N of weights wi, i = 1, 132, and
biases bj , j = 1, 21. Input is values of four environmental factors of the cur-
rent zooplankton position. The output determines displacement coefficients in
accordance with the following rule:

I(s1,i, s2,i, s3,i) =

⎧⎪⎨
⎪⎩

−1, if max (s1,i, s2,i, s3,i) = s1,i;
0, if max (s1,i, s2,i, s3,i) = s2,i;
1, if max (s1,i, s2,i, s3,i) = s3,i.

(9)

σi = I(s1,i, s2,i, s3,i). (10)

We use the following characteristics of the neuron network: wmax = bmax =
100. Knowing the current zooplankton position x(ti−1), we can calculate the
corresponding environmental characteristics, then pass this information through
the neural network and calculate the displacement and new zooplankton position
x(ti). Thus, we can obtain the zooplankton daily trajectory ν(N) = x(t,N)
corresponding to a given neural network N by repeating this procedure n times.
Then we trained the constructed neural network - selected the values of weights
and biases that maximize fitness:

J(ν(N∗)) = max
N

|wi|≤wmax,
|bj |≤bmax

(J(ν(N))). (11)

We solved the problem for the following values of parameters that correspond
to observed data [8,27]: α = 0.4, β = 0.46, γ = δ = 0.025, n = 1440, ξ1 = 0.02,
ξ2 = 0.025, ξ3 = ξ4 = 0.105, ξ5 = 0.27 · 10−3, η1 = η2 = 1.15 c1 = c2 = −100,
c3 = −10, c4 = −120, υ = 1, x0 = −15.

2.3 Description of the SoFDE Framework

To find the optimal weights of the neural network we propose a new evolutionary
algorithm for global optimization: Survival of the Fittest by Differential Evolu-
tion (SoFDE). The formal description of the SoFDE algorithm is the following.

Suppose we have some continuous positive function J(N) (objective function
or fitness) which is defined in the rectangular domain:

Π = {N = (w1, . . . , wm) : Wmin ≤ wj ≤ Wmax, j = 1,m}. (12)

Here Wmin and Wmax are some constants. Assuming that J(N) has a unique
vector of global maximum (denoted by N∗) in Π.

A population Pg consists of NP agents or vectors: Pg = (N1,g, . . . , NNP,g),
where g denotes the generation index, g = 1, Gmax.
Each vector Ni,g = {wi,1,g, wi,2,g, . . . , wi,m,g}, i = 1, NP consists of m variables.

0. Initialization. Before the evolutionary process begins, the population is ran-
domly initialized, each vector receives randomly generated uniformly dis-
tributed values between the lower and upper bounds of its components:
wi,j,1 = rand(Wmin,Wmax).
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Then the population Pg evolves and directs vectors in the search space to
the global optimum. At the end of the evolutionary process, a vector with the
maximum value of the fitness function is returned as the final solution. During
each generation, evolutionary algorithms use three operations for each agent, its
Mutation, Crossover, and Selection.

1. Mutation. The mutant vector Ñi,g+1 is created using the mutation operator,
which is described below:
(a) Each vector in the population is assigned once per generation for NP iter-

ations the probability of participation for further mutation as a reference
vector:

Jψg (Ni,g)
Jψg (N1,g) + . . . + Jψg (NNP,g)

. (13)

Here ψg is a parameter of the method, an infinitely increasing sequence,
depending on the generation, regulating the rate of convergence. Given
the probabilities found, the reference vector Nr,g, r ∈ {1, . . . NP} and its
corresponding coordinates wr,j,g are randomly selected from the popula-
tion.

(b) The mutant vector Ñi,g+1 is created randomly, the components of which
w̃i,j,g+1 take values on the segment [Wmin,Wmax] with probability den-
sity:

Ai,r,j,gεi,g

ε2i,g + (w̃i,j,g+1 − wr,j,g)2
. (14)

Here εi,g is a sequence decreasing to zero, and Ai,r,j,g is the normalizing
probability density constant for the segment [Wmin,Wmax]:

Ai,r,j,g = (arctan(
wmax − wr,j,g

εi,g
) − arctan(

wmin − wr,j,g

εi,g
))−1. (15)

In other words, a mutant vector is obtained with the following mutation
of its components:

w̃i,j,g+1 = wr,j,g + εi,gtan((rand(0, 1) − 1
2
)A−1

i,r,j,g). (16)

For example, let wr,j,g = 0, Ai,r,j,g = π−1 for j = 1,m and εi,g = 1,
then the components of mutant vector Ñi,g+1 have the standard Cauchy
distribution:

w̃i,j,g+1 = tan((rand(0, 1) − 1
2
)π). (17)

This mutation operation corresponds to the SoFA algorithm, but with some
modifications, it uses the Cauchy distribution instead of the Gaussian distri-
bution.

2. Crossover. The population of test vectors is divided into two parts: N̄q,g+1,
q = 1, Qmax and N̄l,g+1, l = Qmax + 1, NP . The crossover operator is not
applied for the first part N̄q,g+1, q = 1, Qmax, where Qmax < NP . This
means that the test vectors of the first part will receive a mutation for all
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their components: w̄q,j,g+1 = w̃q,j,g+1, where j = 1,m and g = 1, Gmax. For
the second part the created mutant vector Ñl,g+1 participates in the formation
of the test vector N̄l,g+1 as follows:

w̄l,j,g+1 = w̃l,j,g+1, if rand(0, 1) ≤ CRl,g or j = jr, else wl,j,g, (18)

for l = Qmax + 1, NP and j = 1,m. Crossover parameter CRl,g ∈ [0, 1]
represents the probability of selecting components for the test vector from the
mutant vector. The randomly selected index jr ∈ {1, 2, . . . ,m} is responsible
for ensuring that the test vector contains at least one component from the
mutant vector. If the component was not selected from the mutant vector,
then it is taken from the parent vector Ni,g. We recommend setting the size
of the first part Qmax as 10% of NP . This crossover operation corresponds to
the DE algorithm, but with modifications, it does not apply to some vectors.

3. Selection. After the crossover operation, the test vector is evaluated – the
fitness function J(N̄i,g+1) is calculated, then its value is compared with the
corresponding value from the population J(Ni,g). The best vector will remain
in the next generation:

Ni,g+1 = N̄i,g+1, if J(Ni,g) ≤ J(N̄i,g+1), else Ni,g. (19)

This selection operation corresponds to the DE algorithm.

We introduced the algorithm SoFDE that uses basic steps, such as mutation,
crossover and selection from DE, but with the modified mutation and crossover
operator, which carry the ideas of SoFA.

The stopping criteria can be expressed by the maximum number of fitness
function calculations, a time limit, or reaching the required accuracy. Assume
that the calculation of a multidimensional function spends much more time than
the rest of the algorithm’s work. Therefore, let’s introduce the maximum number
of iterations – calculations of the fitness function Kmax and a variable that tracks
the current number of calculations of the fitness function k = (g − 1)NP + i,
g = 1, Gmax, i = 1, NP . The algorithm finishes its work if k > Kmax.

The SoFDE algorithm has several configurable hyperparameters: NP , CRi,g,
εi,g, which can significantly affect the optimization process. This paper considers
a simple approach to choosing the parameters CRi,g, εi,g, based on jDE [5]:

0) Initialization of parameters CRl,0 = CRl = 0.9, εq,0 = εl,0 = εl = 1.
1) Updating parameters:

εq,g =
1

((g − 1)NP + q)
1

2D

. (20)

CRl,g = rand(0, 1), if rand(0, 1) ≤ 0.1, else CRl. (21)

εl,g =
1

((g − 1)NP + l)
1
2
, if rand(0, 1) ≤ 0.1, else εl, (22)



Construction of Optimal Feedback for Zooplankton DVM 147

2) Saving parameters when successfully replacing the parent vector with the test
vector:

CRl = CRl,g, if J(Nl,g) ≤ J(N̄l,g+1), (23)

εl = εl,g, if J(Nl,g) ≤ J(X̄l,g+1), (24)

where q = 1, Qmax, l = Qmax + 1, NP and g = 1, Gmax.

The population size is often taken proportional to the dimension of the prob-
lem NP = 10m [5].

The parameter ψg, which regulates the convergence rate, takes the following
value:

ψg = ((g − 1)NP + 1)
1
λ , (25)

where λ is some positive constant.
It was proved that for any δ > 0, the probability of choosing the test vector

N̄q,g from the δ-neighborhood of the vector of global maximum N∗ tends to unity
when g becomes infinitely large [29]. In other words, the probability density of
the choice of the test vector N̄q,g tends to the delta-function centered at the
vector of the global maximum N∗. Thus, the optimization algorithm converges.

3 Results

To find the optimal weights of the neural network, we used the following evo-
lution methods: SoFDE, original SoFA, the Differential Evolution with different
mutation strategies such as DE best 1, DE current to pBest 1, DE current to best
1, DE rand 1 [5,31]. Method parameters and stopping conditions are the same
for all algorithms and take the following values: λ = 4, m = 153, NP = 1530,
Qmax = 153, Kmax = 153 · 103, p = 15. We also use the configuration of param-
eters from jDE [5].

Comparison of the convergence rate for different methods is shown in Fig. 2.
Here the average dependence of the found best fitness value on the number of
iterations is presented on 15 runs. It can be seen that the SoFDE method provides
a higher convergence rate and greater accuracy in finding the maximum fitness.

The optimal pattern of DVM obtained by the SoFDE method is shown in
Fig. 3. For comparison, the results of field observations in the Black Sea are also
presented here [8]. The highest observed concentration of biomass is marked in
gray. It can be seen in Fig. 3 that we get the good approximation of the real
observed behavioral strategy of DVM.

We considered the work of the trained neural network with noisy data of the
amount of food:

Fi(x) =
tanh(ξ1(x − c1)) + 1

2
+ rand(−Θi, Θi), (26)

where i = 1, 2 and Θ1 = 0.05; Θ2 = 0.15.
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Fig. 2. (a) Comparison of the average convergence rate with its upper and lower bound-
ary for the SoFDE algorithm (blue line) and (b) DE best1; (c) DE current to pBest 1;
(d) DE current to best 1; (e) DE rand 1; (f) SoFA. (Color figure online)

Fig. 3. The echogram and the optimal strategy of DVM obtained by the neural network
and value of the fitness function J is 5.894.
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Fig. 4. Strategies of DVM formed by the network for the changed environmental factor
F with (a) 5% and (b) 15% percent noise. The optimal graph corresponds to the strategy
without noise; the simulated graph corresponds to the strategy formed by the neural
network.

Fig. 5. Strategies of DVM formed by the network for the changed environmental factor
D with (a) c3 = −20 and (b) c3 = −40. The optimal graph corresponds to the true
optimal strategy for these conditions and value of the fitness function J is (a) 5.967, (b)
5.841; the simulated graph corresponds to the strategy formed by the neural network
and value of the fitness function J is (a) 5.932, (b) 5.803.

The trajectory formed by the network is shown in Fig. 4. It can be seen that
the presence of a small noise changes the trajectory insignificantly; the created
feedback permits to form the strategy with noisy values of environmental factors.

Then we have investigated the work of the training network for different
environments. We have considered season changes of the D function [27]. We
took c3 = −20 and c3 = −40. The obtained patterns of DVM are shown in
Fig. 5 by the green line. Here the true optimal strategy is also shown by the
blue line. Comparison of the two graphs allows us to evaluate the efficiency of
the trained neural network in a changed environment. It can be seen that the
network almost exactly forms the trajectory for changed conditions. The relative
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Fig. 6. Strategies of DVM formed by the network for the changed environmental factor
P (c2 = −90 before 12:00 UTC and c2 = −95 after). The optimal graph corresponds
to the true optimal strategy for these conditions and value of the fitness function J is
6.291; the simulated graph corresponds to the strategy formed by the neural network
and value of the fitness function J is 5.894.

error in this case between the values of the fitness function of the optimal and
simulated strategy is about 2.1%.

Finally, we have considered predator activity changes of the P function. In
the work [13] shows an echogram of a sharp change in the strategy of zooplankton
migration due to increased predator activity after 12:00 UTC. We took c2 = −90
before 12:00 UTC and c2 = −95 after. As you can see in Fig. 6, we managed
to achieve the described migration. The relative error in this case between the
values of the fitness function of the optimal and simulated strategy is about
6.3%.

4 Summary

In this study, we develop a novel approach to model strategies of diel vertical
migrations (DVM) of zooplankton. We have constructed feedback that connects
the current environmental state and the organism’s local behavior. We solved
the problem on the base of the neuron network – the multilayer perceptron. Its
input is the values of environmental factors at the given point and the given time,
its output is the corresponding local displacement of zooplankton. Net weights
are selected to provide maximum zooplankton fitness. To train the network,
we applied evolution methods of stochastic global optimization: the Differential
Evolution and the novel Survival of the Fittest by Differential Evolution algo-
rithm. It was shown that this approach permits to form the optimal behavioral
strategy for different environmental conditions, and for noisy values of environ-
mental factors. The obtained trajectory is the good approximation of the real
pattern of DVM observed in the Black Sea. It was shown that the Survival of
the Fittest by Differential Evolution algorithm provides a higher neural net-
work convergence rate and greater accuracy in finding the maximum fitness.
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Our straightforward tests of the new software demonstrated the great poten-
tial of the proposed methodology in revealing DVM in the case of noisy and
dynamical environmental conditions.
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Abstract. The article considers the problem of planning the optimal
trajectory of a delta robot. The workspace of the robot is limited by
the range of permissible values of the angles of the drive revolute joints,
interference of links and singularities. Additional constraints related to
the presence of obstacles have been introduced. Acceptable values of the
robot’s input coordinates are obtained based on the inverse kinematics,
taking into account the constraints of the workspace, represented as a
partially ordered set of integers. For the given initial and final coordi-
nates, a randomly generated family of trajectories belonging to a valid
set is obtained. Optimization of each of the trajectories of the family
based on evolutionary algorithms is performed. The optimization crite-
rion is a function proportional to the duration of movement along the
trajectory. The results of modeling are presented.
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1 Introduction

Robot trajectory planning is essential for avoiding various obstacles and obtain-
ing the optimal path in terms of various criteria. Currently, there are a number of
methods that can be used for trajectory planning. Some of the well-known meth-
ods are based on route networks, including the method based on the application
of Visibility Graphs [1]. An alternative method for determining routes is based on
the use of Generalized Voronoi Diagrams [2]. Thus, the method of uninformed
search allows implementing breadth-first search, depth-first search, search by
cost criterion [3]. Heuristic pathfinding algorithms are designed to quickly find a
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route in a graph by propagating towards more promising vertices [4,5]. In recent
years, a number of methods for trajectory planning have been proposed. A two-
stage method for planning the trajectory of two mobile manipulators for joint
transportation in the presence of static obstacles is considered in [6]. At the first
stage of path planning in progress, the shortest possible path between the initial
and target configuration is executed in the workspace. The second stage consists
in calculating a sequence of time-optimal trajectories for passing between con-
secutive points of the path, taking into account non-holonomic constraints and
maximum permissible joint accelerations. A new method of spatial decomposi-
tion is presented in [7]. It was applied to define a space for trajectory planning,
called RV-space. In [8], the method of directed reachable volumes (DRVs) is
presented, which makes it possible to obtain the area taking into account con-
straints on the positions of the robot’s links and end-effector. The current work
considers the application of evolutionary and bio-inspired algorithms for plan-
ning the trajectory of a delta robot, taking into account the limitations of its
workspace.

2 Setting an Optimization Problem

The delta robot [9] with 3 degrees of freedom is showed on Fig. 1. The end-
effector of delta robot is the center P of the moving platform with xP , yP , zP

coordinates.

Fig. 1. Structure of the delta robot
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The input coordinates for a delta robot are the angles θi of rotation of the
drive revolute joints Ai. Inverse kinematics allows to transfer the described con-
straints of the workspace to the space of input coordinates. Inverse kinematics
[10]:

θi = 2 tan−1
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An arbitrary trajectory can be represented as a set of movements (steps),
during which the revolute joint drives operate at a constant angular velocity
and the movement in the space of input coordinates is rectilinear. In order to
reduce the duration of such small movements, the highest of the angular speeds
of the drives at each step should correspond to the maximum possible. The
duration of a move is proportional to the sum of individual steps defined in
accordance with the Chebyshev metric:

t =
1

ωmax

n∑
i=1

ρi (2)

where ρi = maxj∈{1,2,...,m} |θi,j − θi−1,j | - according to Chebyshev distance
between the points of the beginning of Ci−1(θi−1,1, θi−1,2, .., θi−1,m) and end
with Ci−1(θi,1, θi,2, .., θi,m) i-th step; m is the number of the input coordinates
(for the Delta robot m = 3); ωmax is the maximum angular velocity of the drive
revolute joints. However, the direct application of this indicator as a criterion
function for optimizing the trajectory is impractical, since the Chebyshev metric
introduces significant ambiguity. On the other hand, using the criterial “usual”
length of the trajectory (the sum of the Euclidean lengths of all steps) as a crite-
rion function also not allowed. The duration of movement in this case may be far
from optimal as a result. Therefore, it is proposed to supplement the criterion
function with a Euclidean metric taken with a small weighting coefficient ε:

F =
n∑

i=1

⎛
⎝ max

j∈{1,2,...,m}
|θi,j − θi−1,j | + ε

√√√√ m∑
j=1

(θi,j − θi−1,j)
2

⎞
⎠ → min (3)

The approach based on the application of a criterion function of this type was
successfully tested by the authors to optimize the 3-RPR mechanism’s trajectory
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[11]. Optimization should be carried out with constraints on the size of the
workspace. In the framework of previous works, the authors proposed to use the
representation of the workspace in the form of a partially ordered set of integers
AP [12]. Therefore, checking the optimization constraint consists of two steps.

The First Stage. Definition of the Set B of Trajectory Coordinates in
the Space of Integers
For this purpose, an algorithm based on a modification of the algorithm is devel-
oped Bresenham’s algorithm [13], which assumes that the trajectory is repre-
sented as a polyline consisting of many segments. In [14], a modification of the
algorithm was proposed for the 3D case, but the coordinates of the beginning and
end of the segments belong to the space of integers, which leads to a displace-
ment of the trajectory segment and the set B (Fig. 2). Cells that intersect the
orthosis are highlighted in red for coordinates represented as integers, yellow for
coordinates represented as real numbers, and orange for both cases. As you can
see from the figure, using integer coordinates does not allow you to accurately
determine the set B.

Fig. 2. Offset of the trajectory segment depending on the source data

Modifying the algorithm considering the original data that belongs to the 3D
space of real numbers (coordinates of the beginning x1, y1, z1 and end x2, y2, z2
segments). In this case, the coordinates must correspond to the covering set of
the workspace, represented as a partially ordered set of integers, respectively,
they must be obtained taking into account the accuracy of the approximation
Δj and the displacement kj along the j coordinate axes by the formula

xi =
θi,1 + k1

Δ1
, yi =

θi,2 + k2
Δ2

, zi =
θi,3 + k2

Δ2
(4)
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The algorithm works as follows:
Input: x1, y1, z1, x2, y2, z2
1: δx = x2 − x1, δy = y2 − y1, δz = z2 − z1
2: if δx = 0 then x1 = [x1], x2 = [x2] end if
3: if δy = 0 then y1 = [y1], y2 = [y2] end if
4: if δz = 0 then z1 = [z1], z2 = [z2] end if
5: B = B ∪ {[x1], [y1], [z1]}
6: if δx < 0 then x = �x1 + 0.5� − 0.5 else x = �x1 − 0.5� + 0.5 end if
7: if δy < 0 then y = �y1 + 0.5� − 0.5 else y = �y1 − 0.5� + 0.5 end if
8: if δz < 0 then z = �z1 + 0.5� − 0.5 else z = �z1 − 0.5� + 0.5 end if
9: while x · sign(δx) ≤ x2 · sign(δx) do

10: xZ = x+0.5 ·sign(δx), yR = y1+δy ·(x−x1)/δx, zR = z1+δz ·(x−x1)/δz

11: if (�yR� 	= yR − 0.5) or (sign(yR) = sign(δy)) then
12: yZ = [yR]
13: else
14: yZ = sign(yR) · �|yR|�
15: end if
16: if (�zR� 	= zR − 0.5) or (sign(zR) = sign(δz)) then
17: zZ = [zR]
18: else
19: zZ = sign(zR) · �|zR|�
20: end if
21: B = B ∪ {xZ , yZ , zZ}, x = x + sign(δx)
22: end while
23: while y · sign(δy) ≤ y2 · sign(δy) do
24: xR = x1 + δx · (y − y1)/δy

25: if �xR� 	= xR − 0.5 then
26: xZ = [xR], yZ = y + 0.5 · sign(δy), zR = z1 + δz · (x − x1)/δz

27: if (�zR� 	= zR − 0.5) or (sign(zR) = sign(δz)) then
28: zZ = [zR]
29: else
30: zZ = sign(zR) · �|zR|�
31: end if
32: B = B ∪ {xZ , yZ , zZ}
33: end if
34: y = y + sign(δy)
35: end while
36: while z · sign(δz) ≤ z2 · sign(δz) do
37: xR = x1 + δx · (z − z1)/δz, yR = y1 + δy · (z − z1)/δz,
38: if �xR� 	= xR − 0.5 and �yR� 	= yR − 0.5 then
39: xZ = [xR], yZ = [yR], zZ = z + 0.5 · sign(δz)
40: B = B ∪ {xZ , yZ , zZ}
41: end if
42: z = z + sign(δz)
43: end while
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The algorithm for determining the coordinates of the trajectory in the space
of integers for a 2D trajectory assumes the exclusion of the z dimension. Other-
wise, it is similar to the algorithm given above for the 3D case.

The Second Stage. Checking Whether the Resulting set B Belongs to
the Workspace Set Aθ

Thus the optimization constraint condition has the form

Bi ⊂ Aθ, i ∈ 1, .., n (5)

where n is the number of segments that make up the trajectory.
Thus, the optimization problem looks like this.

– parameters: coordinates of intermediate points of the trajectory xi, yi, zi, i ∈
1, .., (n − 1). For a delta robot, the coordinates are the rotation angles of the
drive revolute joints, i.e. [(xiyizi)]T = [(θi,1θi,2θi,3)]T .

– parameter change range: overall dimensions of the workspace in the space of
input coordinates θi,j ∈ [θj,min; θj,max].

It should be noted that the optimization parameters change in the space
of real numbers. The transition to the space of integers to calculate the cells
checked at the second stage is carried out using the formula (4) and the modified
Bresenham’s algorithm.

– criterion: the function F calculated by formula (3).
– constraint: condition (5).

To increase the efficiency of optimization in the presence of obstacles, we
transfer the optimization constraint to the criterion function

F ′ = F +
n∑

i=1

⎛
⎝ϑi

⎛
⎝p1

√√√√ m∑
j=1

(θi,j − θi−1,j)
2 + p2

⎞
⎠

⎞
⎠ → min (6)

where p1, p2 are the penalty coefficient, and ϑi is the Heaviside function:

ϑi =
{

0, if Bi ⊂ A
1 − otherwise (7)

3 Algorithms for a Path Optimization

The choice of algorithms is justified by their efficiency and high level of applica-
bility to a number of different problems. However, the authors do not conclude
that these algorithms are better than other evolutionary algorithms for solving
this particular problem. The purpose of this investigation is an initial assessment
of the applicability of some of the most widely used evolutionary and bio-inspired
algorithms for optimizing a trajectory within a workspace represented as a par-
tially ordered set of numbers. This creates the prerequisites for further in-depth
research, including a comparative analysis of the application of a larger number
of algorithms for this problem and the selection of their parameters.

We apply the following evolutionary and bio-inspired algorithms to solve
optimization problem.
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3.1 Genetic Algorithm (GA)

The basic principles of GA were first rigorously formulated by Holland [15]. The
GA works with a population of “individuals”, each representing a possible solu-
tion to a given problem. Genetic algorithms are widely applied, including for the
synthesis of a control system for robots [16], for planning the trajectory of col-
laborative robots [17]. We use a modification of the genetic algorithm described
earlier in [18]. To speed up the algorithm, we apply parallel computing (Fig. 3).
Dashed lines indicate areas where calculations are performed simultaneously.

Fig. 3. A genetic algorithm using parallel computing

3.2 Particle Swarm Algorithm (PSO)

Particle Swarm Optimization (PSO) is a widely applied two-component swarm-
based evolutionary optimization method [19,20]. The particle swarm algorithm
solves the problem by having a population of potential solutions, here called
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particles, and moving these particles in the search space according to a sim-
ple mathematical formula over the position and velocity of the particle. The
movement of each particle depends on its local best-known position, but is also
directed to the best-known positions in the search space, which are updated as
other particles find better positions. This is expected to move the swarm towards
better solutions [18]. New position of the si particle At time t is determined by
the vector of its coordinates qi, and its velocity by the vector ϑi:

qi,t+1 = qi,t + vi,t+1; (8)

vi,t+1 = αvi,t + Pn[0;β] × (qG,t − qi,t) + Pn[0; γ] × (qP,t − qi,t) (9)

where Pn [a; b] is an n-dimensional vector of pseudorandom values uniformly
distributed over the interval [a,b];qG,t is the coordinate vector of the best particle
in the group; qB,t is the coordinate vector of the best in population particle; α, β,
γ are free parameters of the algorithm with the following recommended values:
α = 0.7, β = 1.4, and γ = 1.4 according to [18]. To speed up the work, parallel
calculations are applied in the same way when determining the new position of
particles and the value of the criterion function in the new position.

3.3 Grey Wolf Algorithm (GWO)

Algorithm The Grey Wolf Optimization (GWO) algorithm [21] shows its relia-
bility in solving real optimization problems where the objective function is not
linear. The study in [21] shows that the PSO and GWO algorithms show better
results in comparison with a number of other algorithms. The paper [22] presents
a method for optimal trajectory generation (OTG) for creating a simple and
error-free continuous motion along a trajectory with fast convergence using the
GWO method. The authors of [23] compared the GA, PSO, and GWO algorithms
for optimizing efficient hybrid robot control for controlling the foot trajectory of
a robot during walking. The results showed that the GWO algorithm performs
more efficiently and quickly at similar torques for configuring a hybrid controller
based on LQR (Linear quadratic regulator) and PID (proportional–integral–
derivative controller) than other traditional algorithms. Based on these works,
newer methods for controlling robot navigation were also developed, which uses
a hybrid concept of using the GWO algorithm and the artificial potential field
(APF) method for planning the trajectory of a mobile robot [24].

We apply a modification of the GWO algorithm described earlier in [25]
using parallel calculations to modify the parameters of a possible solution and
determine the value of the fitness function.

4 Numerical Results

The problem of determining the workspace AP for a delta robot in the space of
output coordinates is considered by the authors in [26]. The constraints of the
workspace AP are transferred from the space of output coordinates xP , yP , zP
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to the space of input coordinates θi using the solution of the inverse kinematics
(1). The workspace Aθ in the input coordinate space is similarly represented as
a partially ordered set of integers after the transfer. An object was added as an
obstacle with a parallelepiped shape (Fig. 4a). Elements of the covering set of
the workspace in the output coordinate space (Fig. 4b) belonging to the obstacle
were excluded A′

P = AP \C. The transfer of constraints A′
P → Aθ (Fig. 4c) was

performed for the updated set A′
P .

Fig. 4. Additional boundaries, related to the overall dimensions of the obstacle: a)
obstacle C; b) Workspace set AP ; c) A′

P ; c) Aθ

We perform trajectory optimization using the above-mentioned algorithms
for the 2D and 3D case of forming a trajectory inside the workspace of a delta
robot, as well as for a randomly generated 2D contour with a large number
of obstacles. A C++ software package has been developed for this purpose.
Parallel computing is implemented using the OpenMP library. Visualization of
2D results is performed using developed Python scripts Python (Matplotlib and
JSON libraries). Visualization of 3D results is performed by exporting an ordered
set of integers describing the workspace in STL format and arrays of co-ordinates
of trajectory points in JSON format, and then importing data in the Blender
software package using developed Python scripts.

4.1 2D Case

Let’s make a slice of the workspace Aθ of the delta robot in the space of input
coordinates θ1 θ2 θ3, taking the angle θ1 = 0. In this case, the set Aθ will be
2D (Fig. 5). We assume that the starting point of the trajectory is θ1,2 = −70◦,
θ1,3 = 20◦, the end point is θn,2 = 50◦, θn,3 = 0◦, and the number of vertices
of the trajectory is n = 3. Accordingly, the number of optimization parameters
p = 2n = 6. The weight coefficient ε = 0, 1, the penalty coefficients: p1 = 5,
p2 = 500. Parameters of the GA algorithm: the number of individuals in the
initial population H = 1000, the number of generations W = 250, the number
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of crossovers at each iteration SGA = 500, the number of possible values of each
of the parameters g = 225, the probability of mutation pm = 70%. Parameters
of the GWO algorithm: H = 1000, W = 250, number of new individuals at each
iteration SGWO = 1000. Parameters of the PSO algorithm: H = 1000, W =
250, number of groups G = 2, values of free parameters α = 0.7, β = 1.4, γ
= 1.4. Optimization for each of the tests was performed in four stages. At the
first stage, the range of parameters was changed to the ranges corresponding
to the overall dimensions of the workspace for each of the coordinates. The
parameter ranges at each subsequent stage were reduced by a factor of 102. At
the same time, the center of the ranges corresponded to the best result obtained
at the previous stage. The optimization results are shown in Table 1. The PSO
algorithm provides the best average value of the criterion function.

Table 1. Results table for the 2D case

Trials GA GWO PSO Trials GA GWO PSO

1 160,089 160,197 160,044 6 160,107 160,378 160,044

2 160,821 160,145 160,044 7 160,007 160,457 160,044

3 160,344 160,340 160,045 8 160,060 160,397 160,042

4 160,048 160,228 160,040 9 160,198 160,212 160,045

5 160,123 160,070 160,044 10 160,471 160,189 160,044

Avg. values 160,227 160,261 160,044

The obtained trajectories for all tests are almost identical. Examples of tra-
jectories for the first and second tests are shown in Fig. 5. In the second test, the
GWO algorithm obtained the trajectory with the largest value of the criterion
function. This is clearly seen in Fig. 5b.

Fig. 5. Results of optimization of the test path: a) 1, b) 2.



Synthesis of Trajectory Planning Algorithms 163

The convergence graphs for each of the algorithms are shown in Fig. 6. The
minimum value of the criterion function obtained as a result of optimization is
applied as the reference value of the function. The minimum value of the criterion
function in one of the tests was obtained using the GA algorithm, but in other
tests, the PSO algorithm has better convergence rates.

Fig. 6. Convergence of algorithms for planning a 2D trajectory: a) GA, b) GWO, c)
PSO

4.2 3D Case

A computational experiment is performed, which consists in planning the tra-
jectory inside the 3D workspace Bθ of a delta robot in the space of input coor-
dinates, taking into account the obstacle, shown in Fig. 4c. Set the starting and
ending points of the trajectory in the output coordinate space: xp1 = 250 mm,
yp1 = 250 mm, zp1 = −500 mm, xp2 = −270 mm, yp2 = −270 mm, zp2 = −450
mm, and the number of vertices of the trajectory n = 3. Accordingly, the num-
ber of optimization parameters p = 3n = 9. Let’s take the parameters of the
algorithms H = 250,W = 200, SGA = 125, and SGWO = 250. The remaining
parameters of the computational experiment coincide with the 2D case. Opti-
mization for each of the tests is performed in four stages, similar to the 2D case.
The optimization results are shown in Table 2. In this case, The GA algorithm
showed the best average value of the criterion function.

Table 2. Results table for the 3D case

Trials GA GWO PSO Trials GA GWO PSO

1 152,499 149,852 149,737 6 131,130 149,863 149,891

2 151,070 150,136 130,477 7 130,719 130,433 130,459

3 131,368 130,477 149,778 8 150,506 131,111 149,915

4 137,201 150,394 130,385 9 152,649 149,941 149,914

5 149,876 150,427 149,674 10 149,772 150,083 149,769

Avg. values 143,679 144,272 144,000
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The convergence graphs are shown in Fig. 7. The minimum value of the cri-
terion function is obtained using the PSO algorithm.

Fig. 7. Convergence of algorithms for planning a 3D trajectory: a) GA, b) GWO, c)
PSO.

Figure 8 shows the trajectories for Test 3 inside the workspace. As can be
seen from the figure, the PSO algorithm found only a local minimum of the
criterion function for avoiding the obstacle.

Fig. 8. Results of trajectory optimization

4.3 Trajectory Planning When There are a Large Number
of Obstacles

In the first two cases, the trajectory was planned inside the workspace of the
delta robot in the presence of a single obstacle. To test the algorithms on
the problem of planning a trajectory with a large number of obstacles, a 2D
domain was generated, similarly represented as an ordered set of integers. Dur-
ing the experiment, 10 tests were performed similarly for the following initial
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data: x1 = −95 mm,y1 = −95 mm, x2 = 85 mm, y2 = 85 mm, the num-
ber of vertices of the trajectory n = 7. Accordingly, the number of optimiza-
tion parameters p = 2n = 14. We assume the parameters of the algorithms
H = 2000,W = 1000, SGA = 1000, SGWO = 2000, pm = 90%. The other param-
eters were not changed. Optimization for each of the tests was performed in two
stages, rather than four. Figure 9 shows examples of the trajectories obtained as
a result of optimization. In Fig. 9a, the path that allows you to avoid all obsta-
cles is obtained only for the GA algorithm, in Fig. 9b and c - by the GA and
GWO algorithms, in Fig. 9d - by all algorithms. Figure 10 shows an example of
the convergence graph of the algorithms. As a result of performing 10 tests for
each of the algorithms, the GA algorithm showed the best results GA (Fig. 10a),
each time reaching a trajectory that allows to avoid all obstacles. The GWO
algorithm (Fig. 10b) it allowed to exclude the interference with an obstacle in 4
cases, and the PSO algorithm-only in one case.

Fig. 9. The result of planning a trajectory in the presence of a large number of obstacles
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Fig. 10. Convergence of algorithms when planning a trajectory with a large number
of obstacles: a) GA, b) GWO, c) PSO.

5 Conclusion

The application of heuristic algorithms made it possible to solve the problem
of trajectory planning for both 2D and 3D domains represented as a partially
ordered set of integers. The PSO algorithm showed better convergence rates for
planning a trajectory within a 2D workspace of a robot with a single obsta-
cle. In all other cases, the GA algorithm showed the better results. As part of
future research in-depth research will be carried out, including a comparative
analysis of the application of a larger number of algorithms for this problem and
the selection of their parameters. Also, more experiments will be performed for
accurate comparative evaluation of algorithms.
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Abstract. This paper reviews application of modern optimization
methods for functionals describing digital predistortion (DPD) of signals
with orthogonal frequency division multiplexing (OFDM) modulation.
The considered family of model functionals is determined by the class
of cascade Wiener–Hammerstein models, which can be represented as
a computational graph consisting of various nonlinear blocks. To assess
optimization methods with the best convergence depth and rate as a
properties of this models family we multilaterally consider modern tech-
niques used in optimizing neural networks and numerous numerical meth-
ods used to optimize non-convex multimodal functions.

The research emphasizes the most effective of the considered tech-
niques and describes several useful observations about the model prop-
erties and optimization methods behavior.

Keywords: Digital pre-distortion · TMPA · IGIRNN

1 Introduction

For this moment there are a lot of base station, which are really necessary to
realize really good wireless connection. For now there is a need to create more
high speed signal, which will allows us to download huge size data really fast.
As a result, modern signals should have really complex modulation and high
frequency bandwidth(for example third generation partnership project (3GPP)
set the frequency limits in the 5G new radio (NR) standard, namely, frequency
range 1 (FR1: 0.4–7.1 GHz range) and frequency range 2 (FR2: 24–52.6 GHz)
[8]). It is widely assumed that wireless communication in the fifth generation
would have greatly enhanced capacity and communication rate. The envelope
amplitude distortion is caused by the amplitude variations on the input while
amplifying the departure from a straight line input-output transfer function in
the cut-off and saturation regions [2,6] (Fig. 1).
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Fig. 1. AM-AM amplitude characteristic of input/output signal

There are many approaches aiming to linearize the RF PA and keep a high
efficiency at the same time, including feedback linearization [12], feedforward
linearization [13], analog predistortion and digital predistortion (DPD) [7]. DPD
is often regarded as the most powerful linearization technology because to its
versatility and great performance. The correct modeling and linearization of
wideband RF PA is now of great interest to academics and engineers. In this
case we used next approach of using DPD technique (Fig. 2):

Fig. 2. Used technique of digital-pre-distortion

From the mathematical point of view this approach can be following formu-
lation:

1
2
‖PA(DPD(x) + x) − x‖22 → min

DPD(x)

All distortions of signal could be presented as additive changes. So, optimiza-
tion problem could be reformulated in the following form

1
2
‖DPDθ(x) − d‖22 → min

θ∈Θ
.

where d = y − x.
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A lot of DPD models have been proposed to compensate the Imd’s which
is generated in process of power amplification. For this moment, Volterra-
based models, like memory polynomial (MP) [5], generalized memory polynomial
(GMP) [17] and dynamic deviation reduction Volterra (DDR) model [24] are the
most widely used. Since basis function of Volterra-based models, based on canon-
ical piecewise-linear (CPWL) functions, decomposed vector rotation (DVR) is
proposed to model the PAs with strong nonlinearity such as envelope tracking
(ET) PAs [23]. Neural networks are well known as a function with nonlinear
approximation ability according the universal approximation theorem [11], so it
can be considered as a DPD function. For this moment there are a lot of imple-
mentation of different DPD function, which is based on different neural networks
approaches, like real-valuated time delay neural network, which is based on mul-
tilayer perceptron [20] etc.

However, in wideband communication circumstances, the memory effect and
nonlinearities of RF PAs are much more severe and complicated, resulting in
MLP architecture’s linearization performance being significantly worse. It should
be observed that when bandwidth increases, the memory effect of power ampli-
fiers increases dramatically [21].

As commanly known, because of its capacity to replicate memory effect, the
recurrent neural network (RNN) can be used for prediction of time series data
[22], and as a result it has been employed to model the behavior of the PA
[16]. The RNN, on the other hand, has a difficulty with vanishing gradients,
meaning that the model cannot adequately reflect the long-term memory effect
[1,9]. As a result, while the RNN model has a higher modeling capacity than the
MLP model in principle, the RNN model typically performs worse in practice
when modeling the behavioral features of wideband RF PAs. A number RNN-
based variant models have been presented to overcome the problem of gradient
vanishing, such as the long short-term memory (LSTM) network [10], gated
recurrent unit (GRU) network [4], and so on. These RNN-based variant models
perform admirably, particularly in wideband digital predistortion [21]–[3]. In
2014 there were presented an attentional mechanism to improve neural machine
translation (NMT). [15] In the process of translate generation decoder of model
selectively focused on the parts of the source. Because of RNN can be used
in time series processing, attention mechanism there were implemented added
as well [18]. Currently, there were implemented attention approach for DPD
model [21]. In this case researchers implemented original approach of attention
mechanism based on latent vectors of context information from LSTM model.
But this approach were used to find special delays for memory polynomial model
and found the solution for 20 MHz bandwidth signal. In our research, there were
suggested the idea of using the Temporal Pattern Attentio approach with low
parameters models Instant Gate Recurrent neural network(IGRNN) and Instant
Gate Implict Recurrent neural network (IGIRNN), which was based on the GRU
cells [14].
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2 Idea Description

2.1 Attention Mechanism

Originally, attention mechanism, for recurrent neural networks, is the correla-
tion process of RNN output vector and hidden vectors, which produced during
the sequence processing. Because of each hidden element, contains special infor-
mation of corresponding element of sequence in process of correlation we can
understand how all of hidden elements influence to the output vector. The pro-
cess of attention mechanism can be divided into three main parts:

1. Process of dot product between hidden vectors of elements and output vector
of model, to check the cosine similarity of two vectors.

2. A numerical conversion (i.e., the Softmax [15] 1) is used to numerically convert
the correlation produced in the preceding step, in order to normalize and
organize the previously computed results into a probability distribution with
the total of all element weights equal to 1. Furthermore, by utilizing the
Softmax’s intrinsic mechanism, the weight of the vital parts may be made
more obvious. The Softmax and the coefficients have a connection.

αt = Softmax(hy, ht) =
exp(hy · ht)

∑M
k=1 exp (hy · hk)

(1)

3. Summarize the hidden vectors multiplied by the significantly coefficients from
Softmax function processing, and concatinate it to the output of RNN func-
tion (Fig. 3).

v =
M∑

k=1

αk ∗ hk (2)

Fig. 3. Description of attention mechanism

and Each if them contain, mostly which contains information of all elements
of sequences.
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2.2 Memory Term Reduction Approach for DPD

In previous research [21] authors realized attention mechanism for DPD case
based on LSTM [10] functions. They tried to found special time delays for GMP
[17] Model. In their case there were realized “sequence-to-one” regression task
with RNN approach. Attention-LSTM architecture was optimized with SGD-
like methods over 1000 epochs. After the process of optimization, the results of
Softmax function had some regions of matrix, which were higher, than another
parts. After the ensemble average along the diagonals of matrix α, this result
present the delays of the memory terms, which is really important for output
signal (Fig. 4).

Fig. 4. Description of implementation attention mechanism for finding memory terms
delays

In our case we also used this approach, to understand, what of all elements
mostly influence to output value.

2.3 Temporal Pattern Attention

While earlier research has mostly focused on altering the network architecture
of attention-based models through various parameters in order to increase per-
formance on various tasks, we feel there is a significant flaw in using normal
attention mechanisms on RNN for MTS forecasting. This architecture is well
suited to challenges where each time step comprises only a single piece of data,
such as an NLP job where each time step corresponds to a single word. It fails to
disregard variables that are noisy in terms of predicting usefulness when there
are several variables in each time step. Furthermore, because the conventional
attention mechanism averages information across numerous time steps, it fails
to recognize temporal patterns that might be used to forecast.
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Fig. 5. (a) α matrix of attention block, which were achieved in 1000 epochs of opti-
mization (b) result of ensemble average process of αmatrix (c) delays diagram,based
to (b) results

Figure 6 depicts a high-level overview of the suggested paradigm. Given prior
RNN hidden states H ∈ R

m×(t−1)(where m- count of element per every hidden
vector, t- count of element in sequence), the suggested attention mechanism
simply attends to its row vectors in the proposed method. Rows with attention
weights choose factors that are useful for predicting. The context vector vt now
contains temporal information since it is the weighted sum of the row vectors
holding information from various time steps (Fig. 5).

CNN’s success lies in no small part to its ability to capture various important
signal patterns; as such we use a CNN to enhance the learning ability of the
model by applying CNN filters on the row vectors of H. Specifically, we have k
filters Ci ∈ R

1×T , where T is the maximum length we are paying attention to.
If unspecified, we assume T = w. Convolutional operations yield HC ∈ R

n×k

where HC
i,j represents the convolutional value of the i-th row vector and the j-th

filter. Formally, this operation is given by

HC
i,j =

w∑

l=1

Hi,(t−w−1+l)xCj,T−w+l (3)
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Fig. 6. Description of using temporal attention approach algorithm

We calculate vt as a weighted sum of row vectors of HC . Defined below is
the scoring function f : Rk × R

m −→ R to evaluate relevance:

f(HC
i , ht) = (HC

i )T · Wα · ht (4)

where HC
i is the i-th row of HC , and Wα ∈ R

k×m. The attention weight αi is
obtained as

αi = sigmoid(f(HC
i , ht)) (5)

Note that we use the sigmoid activation function instead of softmax, as we expect
more than one variable to be useful for forecasting. Completing the process, the
row vectors of HC are weighted by αi to obtain the context vector vt ∈ R

k 2
Than we concatenate vectors v and h to get the h′ to compare them with y
signal [19].

2.4 Recurrent Neural Networks for DPD

According to the review of previous research [14], there were designed special
recurrent neural networks, which were mainly based on the nonlinear physical
characteristics of RF-PAs.

Instant Gated Recurrent Neural Network. There were desined special
neural network structure which is more in line with PA characteristic. This
structure had two state control units based on current input information. The
i-th hidden neuron forward propagation equation presented below (Fig. 7):

zi
t = σ(W i

zxt + bz) (6)

ri
t = σ(W i

rxt + br) (7)

h̄i
t = tanh(W i

hxt + U i
h(ri

t ⊗ hi
t−1) + bi

h (8)

hi
t = (1 − zi

t) ⊗ hi
t−1 + zi

t ⊗ h̄i
t (9)
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Fig. 7. Schemes of recurrent neural networks

Instant Gated Implict Recurrent Neural Network. To decrease power
requirements of digital predistortion, there were designed another neural net-
work, based on IGRNN mode. In this function also presented two gate control
units, but information, which is controlled by this gates, gets only from previous
stage

h̄i
t = tanh(U i

h(ri
t ⊗ hi

t−1) + bi
h (10)

As a result, this form of network topology is more in accordance with the
properties of a power amplifier, allowing it to have outstanding expression ability
while being computationally simple. The two state control units established here
only take the current input information xt in the new structure.

2.5 Behavioral Modeling of TPA Approach Based on IGRNN
or IGIRNN

To solve the regression case for time series task with recurrent approach, there
is not necessary to use special embedding, for every input token. In our case
we also didn’t use it, because of we couldn’t generate informative embedding for
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every input value, from I and Q channels of signal data. For time series regression
task there are a two main approaches to solve it with RNN approach “sequence
to sequence” and “sequence to one”. The first approach has proved in multi
language translation task but in our case there couldn’t be used this approach,
because in our case in sequences there isn’t well organised structure and out-
put samples of signal didn’t depended on previous samples. In well structured
memory-polynomial models, every output samples, depends on group set of input
signals samples, as a result, to use this memory affect, there were decide to use
sequence part (M samples of successive samples) of input dataset. So, input of
the model at current time step n was defined as

xn = [x(n), x(n − 1), ..., x(n − M)]T ,

for the time step n-1 we should take

xn−1 = [x(n − 1), x(n − 2), ..., x(n − M − 1)]T

etc. Since the memory terms at the past time steps, quantified as T, influence the
current state by being processed and transmitting the hidden state, these mem-
ory terms are called indirect memory terms (IDMT) in this article. Oppositely,
the memory terms at the current time steps quantified as M, directly influence
the current state, and are called direct memory terms (DMT). In our case we
used signal, which were captured on real platform. The real signal consist of
In phase part and Quadrature part. Originally xn can be presented, as follows
equation

xn = in + j · qn (11)

so, the batch variant of input sequence will be presented as:

In =

⎡

⎢
⎣

in in−1 . . . in−M

...
. . .

...
in−T in−1−T . . . in−M−T

⎤

⎥
⎦ (12)

and

Qn =

⎡

⎢
⎣

qn qn−1 . . . qn−M

...
. . .

...
qn−T qn−1−T . . . qn−M−T

⎤

⎥
⎦ (13)

According the ides, to use all information from the previous samples of
sequences more effectively(IDMT should work better) there were decided to use
attention approach. The idea of using some vectors from processing of previous
samples of model allowed to find some hidden patterns and hidden dependence’s
for output samples. Attention idea allows to accumulate some hidden data infor-
mation of whole sequence samples and realize the idea of delay term memory.
The conventional attention mechanism averages information across numerous, it
fails to recognize temporal patterns that might be used to linearization of RF
PAs output. At the Fig. 9 you can see the idea of using TPA Approach for DPD
task. More detail explanation off this idea you can see upper Sect. 2.3 (Fig. 8).
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Fig. 8. Scheme of TPA approach for DPD model

In our case we realize temporal pattern Attention approach, which is based
on IGIRNN 2.4 and IGRNN 2.4 recurrent cell functions.

Fig. 9. Scheme of sequance to one regression task

2.6 Validation Metrics

To assess the quality of the solution obtained as a result of the optimization of
this loss functional, we will further use the normalized mean square error quality
metric, measured in decibels:

NMSE(y, y) := 10 log10

{∑m
k=1(yk − yk)2
∑m

k=1 x2
k

}

dB.

3 Experiments

In the following experiments we use 2 different training signals: 80 MHz and
200 MHz. We split them into 2 parts. 80% of signal is used for training, and
other 20% is used for testing. In Table 1 we list experiments on TPA approach.
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We use Adam optimizer with initial learning rate 0.001 and StepLR scheduler
with factor γ = 0.99 and step size 5. Each model is trained for 1500 epochs. Batch
size is equal to 64. Random seed is fixed.

3.1 Using Memory Term Reduction for Sequence Length
Decreasing

To decrease the length of input sequences there were decide to use the memory
tearm reduction approach. In this experiment we used 80 Mhz band data, which
consist of 99840 I, Q samples, attention implemented for IGRNN cell function.
After 1000 epochs of training and calculating of ensemble average for each diag-
onals of α matrix, there were got the next matrix, described delays of sequence:

Results in Table 1 show that TPA improves NMSE for about 1 dB for LSTM
and GRU, while increase in number of parameters is negligible. IGRNN performs
better that GRU with equal amount of parameters (Fig. 10).

Fig. 10. Matrix with memory depth of 20; The right-side vertical scale shows the α
values

This approach allowed us to decrease architecture since 16000 ± 500 to
15000 ± 500 and performance decrease since −42.4 dB to −41.4 dB. So, this
approach allowed us to decrease number of parameters and achive not really bad
performance also, this approach allows us to keep less count of element every
iteration of optimization and as a result it allows us to optimize model faster.

3.2 Using TPA Approach

To increase lingering ability of DPD model architecture, there were realized TPA
approach, which were described at the previous Subsect. 2.3, 2.5. In this experi-
ments we used two types of signals with 80 MHz and 200 MHz bandwidth. In this
type of experiments we also used Bidirectional technique, which often used for
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time series models. According the results, which were presented in Table 1, the
best performance were achieved by LSTM architecture on all signals, but twice
less count of model parameters (IGIRNN) achieved performance near the sames,
as performance of LSTM. For example the best result on 80 MHZ bandwidth
signal were achieved with LSTM and it’s score is −42.58 dB with 24579 param-
eters, but −42.03 dB were achieved by IGRNN model with 13619 parameters
(Figs. 11, 12, 13 and 14).

Table 1. Experiments on Temporal Pattern Attention. w = 11, k = 9 and m = 20 for
all experiments below

rnn name bidirectional num layers type (Mhz) attention nmse num params

gru - 2 80 - -38.64 4000

gru - 2 80 + -37.39 4859

gru + 3 80 - -40.85 17800

gru + 3 80 + -42.4 18659

igirnn - 2 80 - -35.02 1840

igirnn - 2 80 + -34.86 2699

igirnn + 3 80 - -37.19 9360

igirnn + 3 80 + -37.25 10219

igrnn - 2 80 - -37.65 2320

igrnn - 2 80 + -37.69 3179

igrnn + 3 80 - -40.5 12760

igrnn + 3 80 + -42.03 13619

lstm - 2 80 - -39.68 5320

lstm - 2 80 + -38.15 6179

lstm + 3 80 - -41.65 23720

lstm + 3 80 + -42.58 24579

gru - 2 200 + -34.71 4000

gru - 2 200 - -35.35 4859

gru + 3 200 + -38.04 17800

gru + 3 200 - -39.32 18659

igirnn - 2 200 + -31.31 1840

igirnn - 2 200 - -32.93 2699

igirnn + 3 200 + -35.15 9360

igirnn + 3 200 - -36.38 10219

igrnn - 2 200 + -33.28 2320

igrnn - 2 200 - -34.50 3179

igrnn + 3 200 + -38.03 12760

igrnn + 3 200 - -38.46 13619

lstm - 2 200 + -35.59 5320

lstm - 2 200 - -36.04 6179

lstm + 3 200 + -38.75 23720

lstm + 3 200 - -39.51 24579
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Fig. 11. Amplitude input - amplitude
output plot with and without DPD for
80 Mhz OFDM signal

Fig. 12. Power spectrum density of 80 MHz
spectrum bandwidth signal dataset

Fig. 13. “Amplitude input - amplitude
output” plot with and without DPD for
200 MHz OFDM signal

Fig. 14. Power spectrum density of 200 MHz
spectrum bandwidth signal dataset

4 Conclusion

The use of low-complexity neural networks, based on the RNN model with an
attention mechanism, is offered as a unique technique. The two models offered
to overcome the problem of vanishing gradients in RNN model training differ
from the classic RNN model due to their personalized attention strategy. As a
result, they are better able to characterize the short-term and long-term mem-
ory effects of RF-PA. We compared the custom attention mechanism (temporal
memory approach) to other RNN-based variant models, such as GRU and LSTM
models, during the course of our research, and as a result, the custom attention
mechanism (temporal memory approach) allows us to show simpler models high
performance and can effectively reduce model parameters. Theoretical research
and practical data indicate that the Temporal pattern method with IGRNN
has superior performance and much reduced computing complexity when com-
pared to RNN variant models such as the GRU and LSTM models, which have
comparable performance.
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Abstract. We developed a new approach to the analysis of time series
based on the use of quasi-linear recurrence relations. Unlike neural net-
works, this approach makes it possible to explicitly obtain high-quality
quasi-linear difference equations (adequately describing the considered
process). Currently, we developed and tested methods for identifying the
parameters of a single equation. The research considers the identification
algorithm for parameters of quasilinear recurrence equation. We use it to
solve the problem of regression analysis with mutually dependent observ-
able variables, which allows to implement the generalized last deviations
method (GLDM). Using this model we held the computational exper-
iment. The model using the identified parameters allows to obtain the
long-time forecast.

Keywords: Forecasting · Time series · Quasilinear model ·
Generalized least deviations method

1 Introduction

Currently, a lot of experience has been accumulated in measuring vibration sig-
nals, developing methods of vibration diagnostics and forecasting the condition
and resource of mechanical systems. In this regard, one of the most urgent direc-
tions is to improve the accuracy and speed of determining diagnostic signs. The
above applies, first of all, to unique, highly loaded mechanical systems con-
sidered, for example, by [10,12]. The solution to this problem in many cases
can be obtained through the dynamic characteristics of mechanical systems.
The determination of these characteristics is greatly facilitated by the correct
choice of a diagnostic mathematical model that establishes a connection between
the space of object states and the space of diagnostic features. Dynamic mod-
els presented in the form of difference equations, phenomenological, structural,
regression models, etc. are considered as them. The choice of a particular model
depends on the defined characteristics and the nature of the analyzed process.
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Identification using different statistical methods, neural networks, or mathe-
matical models has been urgent for a long time in different spheres of life. Nowa-
days these methods are used not only in industry but also for attempts to forecast
the development of Covid-19 pandemics. For example, [2] compares the quality of
forecasting the pandemics process by different well known models, develops the
software running all of these methods and holds the computational experiments
using Covid-19 time series. The authors conclude that their forecasting system
can be implemented to any kind of time series. The most of forecasts, especially
for big data are made using different neural network models. For example, [1,11]
considers the neural network model that can be used to forecast changes in the
price of ferrosilicon in the domestic market of the Russian Federation in the
short term. His model is distinguished by high forecasting accuracy and can be
useful in substantiating strategic decisions in the activities of branch research
institutes and metallurgical enterprises. [5,13] describes the econometric models
of the qualitative economic indicator of metallurgical branch, production appli-
cable for estimation of the statistical features of production ferrous metals and
perspective development ferrous metallurgy. Nevertheless, all such models look
like a black magic box, allowing to obtain some appropriate answer for some
input data. Some researchers are using so-called cognitive modelling to increase
the quality of forecasting by neural networks. The paper be [3] aims to compare
the performance of cognitive and mathematical time series predictors, regard-
ing accuracy. The authors discover that the results of their experiment showed
that the cognitive models have at least equivalent accuracy in comparison to
the ARIMA models. Most of these approaches are used for forecasting some
economical units like production volume, some logistics parameters etc.

Since all the listed above models work for short time forecasting the task of
developing mathematical approach that makes it possible to explicitly obtain
high-quality quasi-linear difference equations (adequately describing the consid-
ered process) is urgent. There are known some researches in this field like [5],
where the proposed model includes data cleaning, data smoothing and final data
after preprocessing fed into regression-based model to predict industrial electric
power consumption. But this paper as lots of others again considers statistical
methods.

In our paper we discuss our methods for identifying the parameters of a sin-
gle equation. The research considers the identification algorithm for parameters
of quasilinear recurrence equation. We use it to solve the problem of regression
analysis with mutually dependent observable variables, which allows to imple-
ment the generalized last deviations method (GLDM). Using this model we held
the computational experiment. The model using the identified parameters allows
to obtain the long-time forecast. Unlike neural networks, this approach makes it
possible to explicitly obtain high-quality quasi-linear difference equations (ade-
quately describing the considered process).
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Fig. 1. The scheme of the model implementation

In this paper we try to implement the considered by [7] algorithms to deter-
mine the coefficients a1, a2, a3 . . . , am ∈ R of a m-th order quasilinear autore-
gressive model

yt =
n(m)∑

j=1

ajgj({yt−k}m
k=1) + εt, t = 1, 2, . . . , T (1)

by up-to-date information about of values of state variables {yt ∈ R}T
t=1−m

at time instants t; here gj : ({yt−k}m
k=1) → R, j=1,2, . . . n(m) are given n(m)

functions, and {εt ∈ R}T
t=1 are unknown errors.

2 Notation and Statement of the Problem

The considered algorithm works like the following (Fig. 1). GLDM-algorithm [7]
gets a time series {yt ∈ R}T

t=−1−m of length T +m ≥
(
1 + 3m + m2

)
as an input

data and determines the factors a1, a2, a3 . . . , am ∈ R by solving the optimization
problem

T∑

t=1

arctan

∣∣∣∣∣∣

n(m)∑

j=1

ajgj({yt−k}m
k=1) − yt

∣∣∣∣∣∣
→ min

{aj}n(m)
j−1 ⊂R

(2)

The Cauchy distribution

F (ξ) =
1
π
arctan(ξ) +

1
2

has the maximum entropy among distributions of random variables that have
no mathematical expectation and variance. That’s why function arctan(∗) is
applied for this research.

Further we consider an m-th order model with quadratic nonlinearity, there-
fore the basic set of g(∗) functions contains

g(k)({yt−k}m
k=1) = yt−k,

g(kl)({yt−k}m
k=1) = yt−k · yt−l,

k = 1, 2, . . . ,m; l = k, k + 1, . . . ,m.

Obviously, in this case n(m) = 2m + C2
m = m(m + 3)/2 , and the numbering

of g(∗) functions can be arbitrary.
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Predictor forms the indexed by t = 1, 2, . . . , T −1, T family of the m-th order
difference equations

y[t]τ =
n(m)∑

j=1

a∗
jgj

(
{y[t]τ−k}m

k=1

)
,

τ = t, t + 1, t + 2, t + 3, . . . , T − 1, T, T + 1, . . . (3)

for lattice functions y[t] with values y[t]τ which interpreted as constructed at time
moment t the forecasts for yτ . Let us use the solution of the Cauchy problem for
its difference equation (3) under the initial conditions

y[t]t−1 = yt−1, y[t]t−2 = yt−2, . . . , y[t]t−m = yt−m,

t = 1, 2, . . . , T − 1, T (4)

to find the values of the function y[t].

So we have the set Y τ =
{

y[t]τ
}T

t=1
of possible prediction values of yτ .

Further we use this set to estimate the probabilistic characteristics of the yτ

value.

3 Evaluating by GLDM

Problem (2), i.e. problem of GLDM-estimation, is a multi-extremal optimization
problem. GLDM-estimates are robust to the presence of a correlation of values
in {yt ∈ R}T

t=−1−m, and (with appropriate settings) are the best for probability
distributions of errors with heavier (than normal distribution) tails (see [10]).
All the above shows the feasibility of solving the identification problem (1) with
usage solution (2).

Let us use the interrelation between GLDM-estimates and estimates by the
weighted least deviation method considered by [4] (WLDM-estimates) to solve
problems (2) of higher dimension.

Let us consider the algorithm of GLDM estimation (see [6]) in terms of this
paper. First of all let us consider WLDM estimation algorithm used in GLDM
algorithm.

3.1 Evaluating by WLDM

Algorithm WLDM-estimator [7] gets a time series {yt ∈ R}T
t=1−m and weight

factors {pt ∈ R
+}T

t=1 as an input data and calculates the factors

a1, a2, a3 . . . , an(m) ∈ R

by solving the optimization problem

T∑

t=1

pt ·

∣∣∣∣∣∣

n(m)∑

j=1

ajgj({yt−k}m
k=1) − yt

∣∣∣∣∣∣
→ min

{aj}n(m)
j=1 ∈Rn(m)

(5)
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This problem represents the problem of convex piecewise linear optimization,
and the introduction of additional variables reduces it to the problem of linear
programming

T∑

t=1

ptzt → min
(a1,a2,...,an(m))∈Rm,

(z1,z2,...,zT )∈RT

(6)

−zt ≤
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] − yt ≤ zt, (7)

zt ≥ 0, t = 1, 2, . . . , T (8)

Problem 6–8 has a canonical form with n(m) + T variables and 3n inequal-
ity constraints including the conditions for the non-negativity of the variables
zj , j = 1, 2, . . . , T . The dual task to task (6) is

T∑

t=1

(ut − vt) yt → max
u,v∈RT

, (9)

T∑

t=1

ajgj({yt−k}m
k=1) (ut − vt) = 0, j = 1, 2, . . . , n(m), (10)

ut + vt = pt, ut, vt ≥ 0, t = 1, 2, . . . , T. (11)

Let us introduce variables wt = ut − vt, t = 1, 2, . . . , T . Conditions (11) imply

ut =
pt + wt

2
, vt =

pt − wt

2
, −pt ≤ wt ≤ pt, t = 1, 2, . . . , T. (12)

Therefore the optimal value of the problem (9)–(11) is equal to the optimal value
of problem

T∑

t=1

wt · yt → max
w∈RT

, (13)

T∑

t=1

gj({yt−k}m
k=1) · wt = 0, j = 1, 2, . . . , n(m), (14)

−pt ≤ wt ≤ pt, t = 1, 2, . . . , T. (15)

Constraints (14) define a (T − n(m))-dimensional linear subspace L with
(n(m) × T )-matrix

S =

⎡
⎢⎢⎢⎣

g1({y1−k}m
k=1) g1({y2−k}m

k=1) . . . g1({yT+1−k}m
k=1)

g2({y1−k}m
k=1) g2({y2−k}m

k=1) . . . g2({yT+1−k}m
k=1)

...
...

. . .
...

gn(m)({y1−k}m
k=1) gn(m)({y1−k}m

k=1) . . . gn(m)({y1−k}m
k=1)

⎤
⎥⎥⎥⎦ ,

constraints (15) define T -dimensional brick T .
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A simple structure of the allowable set of problem (13)–(15): the intersection
of (T − n(m))- dimensional linear subspace L (14) and T - dimensional brick
T (15), – allow us to find its solution by an algorithm uses the gradient projection
of the goal function (13) (i.e. vector ∇ = {yt}T

t=1 ) on an acceptable area L ∩ T
that is defined by restrictions (14)–(15). The matrix of the projection operator
on L is

SL = E − ST ·
(
S · ST

)−1 · S,

and gradient projection on L is ∇L = SL · ∇. Besides, if the external normal on
some face of the brick forms an acute angle with a gradient projection ∇L the
movement along this face is zero.

DualWLDMSoluter. Algorithm 1 to solve problem (13)-(15) begins the search
of the optimal solution at 0, moving along direction ∇L. If the current point falls
on the face of brick T , then the corresponding coordinate in the direction of the
moving is assumed to be 0.

Algorithm 1. DualWLDMSoluter

Require: :
∇L � Gradient projection
{pt ∈ R

+}T
t=1 � Weight factors

Ensure: :

w∗ = arg max
w∈RT

T∑
i=1

wi · yi � Optimal dual solution

R∗ = {t ∈ T : |w74t
∗| = pt} � Active restrictions

1: w ← {wi = 0 : i = 1, 2, . . . , T}; R ← ∅; g = ∇L

2: while (α∗ �= 0) do
3: {(α∗, t∗) ← argmax {α ≥ 0 : −pt ≤ wt + αgt ≤ pt}}
4: w ← w + α∗g; gt∗ ← 0; R := R ∪ {t∗};
5: end while
6: w∗ = w, R∗ = R

return (w∗, R∗)

Computational complexity of such algorithm does not exceed O(T 2) due to
the simple structure of the admissible set: intersection of T -dimensional cuboid
(15) and (T − n(m))-dimensional linear subspace (14).

If (w∗, R∗) is the result of executing the Algorithm 1, then w∗ is the optimal
solution to the problem (13)–(15), and the optimal solution of the problem (9)–
(11) is equal to

u∗
t =

pt + w∗
t

2
, v∗

t =
pt − w∗

t

2
, t = 1, 2, . . . , T.
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It is following from the complementarity condition for a pair of mutually dual
problems (6)–(8) and (9)–(11) that

yt =
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] ∀t /∈ R∗, (16)

yt =
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] + z∗

t , ∀t ∈ R∗ : w∗
t = pt, (17)

yt =
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] − z∗

t , ∀t ∈ R∗ : w∗
t = −pt. (18)

In fact, the solution ({a∗
j}

n(m)
j−1 , z∗) of linear algebraic equations system (16)–

(18) represents the dual optimal solution of problem (13)–(15) and the optimal
solution of the problem (5), that proves the validity of the following theorem.

Theorem 1. Let w∗ be the optimal solution of the problem, (13)–(15), Let
({a∗

j}
n(m)
j−1 , z∗) be solution of a system of linear algebraic equations (16)–(18).

Then ({a∗
j}

n(m)
j−1 is the optimal solution to the problem (5).

The above allows us to propose WLDM-estimator Algorithm 2. The main prob-
lem with the use of WLDM-estimator is the absence of general formal rules
for choosing weight coefficients. Consequently, this approach requires additional
research.

Algorithm 2. WLDM-estimator

Require: :
S = {St ∈ R

N}t∈T � The matrix of a linear subspace L
∇L � Gradient projection on L
{pt ∈ R

+}T
t=1 � Weight factors

{yt ∈ R
+}T

t=1−m � Values of the given state variables
Ensure: :

A∗ ∈ R
n(m) � Optimal primal solution

z∗ ∈ R
T � Restrictions

1: (w∗, R∗) ← DualWLDMSoluter
(∇L, {pt ∈ R

+}T
t=1

)
2: S∗ ← {St : t /∈ R∗}; y∗ ← {yt : t /∈ R∗} � System (16) matrix
3: (A∗)T ← y∗ · (S∗)−1 � System (16) solution
4: z∗ ← (A∗)TS − y � Find restrictions

return (A∗, z∗)

The established in [6,9] results allow us to reduce the problem of determining
GLDM estimation to an iterative procedure with WLDM estimates.
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3.2 GLDM Estimation Algorithm

Problem (2) of GLDM estimation is a concave optimization problem. GLDM-
estimates are robust to the presence of a correlation of values in {Xj t : t =
1, 2, . . . , T ; j = 1, 2, . . . , N}, and (with appropriate settings) like the best for
probability distributions of errors with heavier (than normal distribution) tails
[10]. The above shows the feasibility of solving the identification problem (1) by
Algorithm (2). The established in [6] results allow us to reduce the problem of
determining GLDM estimation to an iterative procedure with WLDM estimates
(see Algorithm 3).

Algorithm 3. GLDM-estimator

Require: :
S = {St ∈ R

N}t∈T � The matrix of a linear subspace L
∇L � Gradient projection on L
{pt ∈ R

+}T
t=1 � Weight factors

{yt ∈ R
+}T

t=1−m � Values of the given state variables
Ensure: :

A∗ ∈ R
n(m) � Optimal GLDM solution

z∗ ∈ R
T � Residuals

1: p ← {pt = 1 : t = 1, 2, . . . , T}
2: (A(1), z(1)) ←
3: ← WLDMSoluter

(
S, ∇L, {pt}T

t=1, {yt}T
t=1−m

)
4: for all (t = 1, 2, . . . T ) do
5: pt ←

(
1/

(
1 + (z

(1)
t )2

))

6: end for
7: (A(2), z(2)) ← WLDMSoluter

(
S, ∇L, {pt}T

t=1, {yt}T
t=1−m

)
8: k ← 2
9: while

(
A(k) �= A(k−1)

)
do

10: for all (t = 1, 2, . . . T ) do
11: p

(k)
t ←

(
1/

(
1 + (z

(k)
t )2

))

12: end for
13: ((A, z)) ← WLDMSoluter

(
S, ∇L, {p

(k)
t }T

t=1, {yt}T
t=1−m

)

14: (A(k+1), z(k+1)) ← (A, z)
15: k ← (k + 1)
16: end while
17: z∗ ← z(k), (A∗) ← A(k) � Find restrictions

return (A∗, z∗)

Theorem 2. The sequence{
(
A(k), z(k)

)
}∞

k=1, constructed by GLDM-estimator
Algorithm, converges to the global minimum (a∗, z∗) of the problem (2).

The description of GLDM-estimator Algorithm shows that its computational
complexity is proportional to the computational complexity of the algorithm
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for solving of primal and/or dual WLDM problems (5). Multiply computational
experiments show that the average number of iterations of GLDM-estimator
Algorithm is equal to the number of coefficients in the identified equation. If this
hypothesis is true then computational complexity in solving practical problems
does not exceed

O((n(m))3 T + n(m) · T 2).

It is necessary to take into account that the search and finding of the high-
order autoregression equation have their own specific conditions. One of these
conditions, in particular, is the high sensitivity of the algorithm to rounding
errors. To eliminate the possibility of error in the calculations, it is necessary to
accurately perform basic arithmetic operations on the field of rational numbers
[8] and supplement them with parallelization.

4 Predictor

Predictor forms the indexed by t = 1, 2, . . . , T − 1, T family of the m-th order
difference equations (3) for lattice functions y[t] with values y[t]τ that interpreted
as constructed at time moment t the forecast for yτ . Let us use the solution of the
Cauchy problem for its difference equation (3) under the initial conditions (4) to

find the values of the function y[t]. So we have the set Y τ =
{

y[t]τ
}T

t=1
of possible

prediction values of yτ . Further we use this set to estimate the probabilistic
characteristics of the yτ value. It should be written as Algorithm 4.

5 Experimental Results

Let us consider the computational experiment on constructing the solution of
Cauchy problem to one quasi-linear difference equation, the identification of this
equation, and let us show that the obtained solution shows the high quality of
the considered algorithm. So, we present the results of computational experiment
to solve the unknown recurrence equation of the time series.

We consider the process shown in Fig. 2. This process has data for 655 days.
Let us for the experiment use consider the time series satisfying this process with
length 150, 300, 500, and 655 days for the model of the second order

yt = (a1yt−1 + a2yt−2) +
(
a3y

2
t−1 + a4yt−1yt−2 + a5y

2
t−2

)
.

Hence, algorithm is to define five coefficients a1, . . . , a5.
Identification results are presented in Table 1. It shows that the experiment

for 300 points gives the lowest value of the loss function; coefficients of the model
are significant. Most likely, after increasing the length of the observed time series
the experiments on the value of the loss function allow receive the dependency
of influence the time series length on its value.

After comparing the results of calculation using our model with machine
learning models we have the following (see Table 2). The input data is the time
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Algorithm 4. Predictor

Require: :
Y={yt ∈ R

+}T
t=1−m � Values of the given state variables

A= {ai}n(m)
i=1 � WLDM solution

Ensure: :
PY[1:T][1:T]: PY[t][τ ] = y[t]τ � forecast for yτ at time moment t
E � Average prediction errors
D � Average absolute prediction errors
minFH � Relabel prediction horizon

1: while (FH[Strt] < m) do
2: Strt++;
3: PY[Strt][0]=Y[Strt];
4: PY[Strt][1]=Y[Strt+1];
5: for all (t = Strt + 2, . . . m) do
6: py=0;
7: for all j = 0, 1, . . . n do
8: A1=G[j](PY[Strt][t-1],PY[Strt][t-2]);
9: R=a[j]*A1;

10: py+=R;
11: end for
12: PY[Strt][t]=py;
13: if (|PY [Strt][t] − Y [(Strt) + t]| > SZ) then
14: Break;
15: end if
16: end for
17: FH[Strt]=t;
18: end while
19: LastStrt=t;
20: minFH=FH[Strt];
21: int minFHp=minFH;
22: for all t = 3, . . . Strt do
23: if (minFH > FH[t]) then
24: minFHp=FH[t];
25: end if
26: end for
27: minFH=(minFHp<minFH)? minFHp : minFH;
28: E=D=0; � minFHp is the reasonable horizon
29: for all t = 3, . . . minFH do
30: D+=fabs(Y[t+Strt]-PY[Strt][t]);
31: E+=(Y[t+Strt]-PY[Strt][t]);
32: end for
33: D/=minFH; E/=minFH;

return (D; E; minFH)

series with 888 points for the daily infected cases of Covid-19 in Chelyabinsk
region. The graph of this process is shown in Fig. 3. We see that this process in
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Fig. 2. The observed time series

Table 1. The identification results

Timeframe 150 300 500

a1 1.982416e00 2.056573e00 1.999967e00
a2 −9.824160e–01 −1.056573e00 −9.999669e–01
a3 7.459095e01 −4.031902e01 −2.774247e00
a4 7.606037e01 −4.092965e01 −2.805568e00
a5 −1.506450e02 8.124591e01 5.579729e00
Loss function 2.811987e–01 5.663879e–02 3.828931e–02
Reasonable forecasting horizon 149 299 499
E −3.640266e–03 9.866220e–01 9.919839e–01
D 9.350328e–01 9.866220e–01 9.919839e–01

neither monotonous nor oscillate, it has both small as very high peaks in different
periods. We see that the model exactly reproduced this process by the obtained
coefficients and allowed to get a forecast for 14 days. We used this time series
to run machine learning algorithms and calculated the errors and the value of
loss function for them (see Table 2). As we can see from this table the proposed
model allows get better results, and lower errors, and the R2 = 1.0 that means
that this model is very effective for capturing the pattern of the data. The other
examples and full source code is published in [14].

The main aim to identify the equations is enabling to use the model values of
endogenous variables for forecasting possible values of corresponding endogenous
variables in the future. Algorithm 4 allows to estimate the reasonable forecasting
horizon, and for the considered example it is one day less then the length of initial



194 A. Panyukov et al.

Table 2. The errors for machine learning models and GLDM-model

Model MSE RMSE MAE R2 RRMSE Correlation MBE E D Loss Func

LSTM 8886.12 94.27 26.86 0.98 0.25 0.99 17.62 −17.56 26.81 15571.76
LSTMs 21761.75 147.52 52.03 0.96 0.38 0.99 46.3 −46.18 51.9 40929.42
BDLSTM 8703.41 93.29 28.56 0.98 0.24 0.99 0.67 −0.66 28.55 590.96
GRU 15637.84 125.05 30.9 0.97 0.33 0.99 16.94 −16.95 30.89 14978.54
GLDM 34.04 5.83 0.65 1 0.01 1 −0.65 0.65 0.65 165950.5

Fig. 3. The results of running GLDM model for daily Covid-19 infection cases in
Chelyabinsk region (888 days)

data. It is not so for some other time series, especially for time series of oscillatory
process with minimums and maximums on the observed period. From Table 1 it
is easy to see that even for very large forecasting horizon the average errors have
low values and they do not depend on the length of initial vector.

The considered computational experiment is based on standard numeric data
types and does not use parallelization. Perhaps, either increasing the order of
difference equation, or increasing of vector length (making the algorithm run-
ning for big data arrays) may cause using special data types for increasing the
accuracy or using parallel technologies for speeding up the algorithm execution.

6 Conclusion

Speaking about the quality of the model itself we can mention that it works
not worse than neural network models or classical statistical models. It has one
significant advantage in comparison with these models that is in the opportunity
to interpret the model coefficients in term of the research problem. The method
considered in the article is another alternative to the construction of digital twins
of the production process. Unlike neural networks, this approach makes it possi-
ble to explicitly obtain high-quality quasi-linear difference equations (adequately
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describing the considered process). Directions of further researches are the use of
the above algorithms for forecasting the multidimensional time series, and many
other points.
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