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Preface

The 28th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2022) was held in Taiwan during December
5–9, 2022.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 364 submissions from all over the world, and the Program
Committee (PC) selected 98 papers for publication in the proceedings of the conference.
The two program chairs were supported by a PC consisting of 79 leading experts in
aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers). The strong conflict of interest rules imposed by IACR ensure
that papers are not handled by PC members with a close working relationship with the
authors. The two program chairs were not allowed to submit a paper, and PC members
were limited to two submissions each. Therewere approximately 331 external reviewers,
whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first-
round discussions the PC selected 224 submissions to proceed to the second round
and the authors were then invited to participate in an interactive rebuttal phase with
the reviewers to clarify questions and concerns. The second round involved extensive
discussions by the PC members.

Alongside the presentations of the accepted papers, the program of ASIACRYPT
2022 featured two invited talks by Jian Guo and Damien Stehlé. The conference also
featured a rump sessionwhich contained short presentations on the latest research results
of the field.

The four volumes of the conference proceedings contain the revised versions of the
98 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Using a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “Full Quantum Equivalence of Group
Action DLog and CDH, and More” by Hart Montgomery and Mark Zhandry, “Crypto-
graphic Primitives with Hinting Property” by Navid Alamati and Sikhar Patranabis, and
“SwiftEC: Shallue–van de Woestijne Indifferentiable Function to Elliptic Curves” by
Jorge Chavez-Saab, Francisco Rodriguez-Henriquez, and Mehdi Tibouchi. The authors
of all three papers were invited to submit extended versions of their manuscripts to the
Journal of Cryptology.

Many people have contributed to the success of ASIACRYPT 2022. We would like
to thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge and
expertise, and for the tremendous amount of work that was done with reading papers
and contributing to the discussions. We are greatly indebted to Kai-Min Chung and
Bo-Yin Yang, the General Chairs, for their efforts and overall organization. We thank
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Bart Preneel, Ron Steinfeld, Mehdi Tibouchi, Jian Guo, and Huaxiong Wang for their
valuable suggestions and help. We are extremely grateful to Shuaishuai Li for checking
all the files and for assembling the files for submission to Springer. We also thank
the team at Springer for handling the publication of these conference proceedings.

December 2022 Shweta Agrawal
Dongdai Lin
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Recovering the Tight Security Proof
of SPHINCS+

Andreas Hülsing(B) and Mikhail Kudinov

Eindhoven University of Technology, Eindhoven, The Netherlands

wotstw@huelsing.net

Abstract. In 2020, Kudinov, Kiktenko, and Fedorov pointed out a
flaw in the tight security proof of the SPHINCS+ construction. This
work gives a new tight security proof for SPHINCS+. The flaw can
be traced back to the security proof for the Winternitz one-time sig-
nature scheme (WOTS) used within SPHINCS+. In this work, we give
a stand-alone description of the WOTS variant used in SPHINCS+ that
we call WOTS-TW. We provide a security proof for WOTS-TW and
multi-instance WOTS-TW against non-adaptive chosen message attacks
where the adversary only learns the public key after it made its signature
query. Afterwards, we show that this is sufficient to give a tight security
proof for SPHINCS+. We recover almost the same bound for the secu-
rity of SPHINCS+, with only a factor w loss compared to the previously
claimed bound, where w is the Winternitz parameter that is commonly
set to 16. On a more technical level, we introduce new lower bounds
on the quantum query complexity for generic attacks against properties
of cryptographic hash functions and analyse the constructions of tweak-
able hash functions used in SPHINCS+ with regard to further security
properties.

Keywords: Post-quantum cryptography · hash-based signatures ·
W-OTS · SPHINCS+ · WOTS-TW · hash functions · undetectability ·
PRF

1 Introduction

Recently, hash-based signatures have received a lot of attention as they are
widely considered the most conservative choice for post-quantum signature
schemes. At the time of writing, the stateless hash-based signature scheme
SPHINCS+ is a third round alternate candidate in the NIST PQC competition.
However, NIST has repeatedly stated the following.

“NIST sees SPHINCS+ as an extremely conservative choice for standard-
ization. If NIST’s confidence in better performing signature algorithms is

This work was funded by an NWO VIDI grant (Project No. VI.Vidi.193.066). Part of
this work was done while M.K. was still affiliated with the Russian Quantum Center,
QApp. Date: November 19, 2022.

c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13794, pp. 3–33, 2022.
https://doi.org/10.1007/978-3-031-22972-5_1
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4 A. Hülsing, M. Kudinov

shaken by new analysis, SPHINCS+ could provide an immediately avail-
able algorithm for standardization at the end of the third round.”
(Dustin Moody on the pqc-forum mailing list after new attacks on Rainbow and

GeMSS were published, January 21, 2021)

One more supporting argument for the security of SPHINCS+ would be
a tight security reduction that allows one to derive attack complexities for a
given set of parameters. However, the tight proof for SPHINCS+ that was given
in [BHK+19] turned out to be flawed [KKF20]. The flaw, pointed out by Kudi-
nov, Kiktenko, and Fedorov is related to the proof of security of the used WOTS
scheme. Although the flaw could not be translated into an attack, this resulted
in an unsatisfactory situation. While there still exists a non-tight reduction for
the security of SPHINCS+, this reduction can not support the claimed security
of the used SPHINCS+ parameters.

In this work, we give a new tight security proof for SPHINCS+.

Security flaw. To provide context, we first give a brief description of the flaw
in the previous security proof. A WOTS signature consists of intermediate val-
ues of a collection of hash chains. The security of all WOTS variants relies
on the hardness of inverting such a hash chain or finding a longer alternative
chain with the same end note. The challenging point in a tight security proof
is to deal with the case where the adversary really inverts the hash chain on
the signature value, i.e., comes up with a longer hash chain that agrees on the
signature value and all following nodes. The straightforward proof approach is
to embed a preimage challenge in the chain. However, when targeting standard
(EU-CMA) security, this requires the reduction to guess the position used in
the signature as it may not be able to answer signature queries otherwise. This
guessing causes a significant tightness loss. An alternative approach was taken
in [BHK+19], based on [BH19], where the reduction tries to use the adversary
to solve a second preimage challenge. This has the advantage that the reduction
knows the full chain, hence can answer arbitrary signature queries and so no
guessing is necessary. The flaw occurred exactly there: The argument given for
why an adversary is likely to provide a second preimage does not apply to preim-
ages that are images of the hash function themselves. This is the issue pointed
out by [KKF20]. In this work, we solve the problem using a different approach:
We show that for the security of SPHINCS+ it is sufficient if WOTS achieves
security under non-adaptive chosen message attacks. Intuitively this is the case
as WOTS is used to sign values that are fully under the control of the honest
user and entirely independent of the adversaries input. This allows us to go back
to the straightforward proof approach and show how to implement it.

Security of hash-based signatures. Analyzing the security of modern hash-
based signature schemes is a multi-stage process. First, the security of the signa-
ture scheme is related to the complexity of breaking properties of the used (hash)
function families. To support the security of specific parameter sets with proofs,
we need an expected complexity for attacks that break the assumed properties.
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In general, a cryptographic hash function is considered secure if there are no
attacks that perform significantly better than generic attacks. Hence, the com-
plexity of generic attacks against these properties is analyzed. In [BHK+19],
the abstraction of tweakable hash functions (THFs) was introduced to unify the
description of schemes that only differ in the inputs that internal hash functions
take but follow the same general construction. These THFs are constructed from
keyed hash functions (KHFs). When using this abstraction, security of the sig-
nature scheme is related to the complexity of breaking the properties of THFs
(and possibly further functions, like PRFs, or further KHFs). Security of a THF
is then related to the security of the used KHF. Finally, the latter is assessed
with regard to generic attacks. In all of these steps, quantum adversaries have
to be considered to ensure post-quantum security.

Our contributions. With this work, we contribute to all three levels in the
security analysis of SPHINCS+. First, we give a new tight proof for the secu-
rity of SPHINCS+, assuming the used THFs provide a form of target-collision
resistance (TCR), decisional second-preimage resistance (DSPR), preimage resis-
tance (PRE), and undetectability (UD)1. As with all previous proofs for
SPHINCS+, we require that the KHF used for message compression provides
interleaved target-subset resilience (ITSR) and that a secure PRF is available.
Note that our new proof closes the gap again without modifying SPHINCS+.

The difference to the previous security proof for SPHINCS+ is in the proof of
the used WOTS variant. To make the proof more easily accessible, we first extract
this WOTS variant and formally define it, naming it WOTS-TW. WOTS-TW
is different from other WOTS variants in that it uses THFs to construct the
function chains. We then prove the security of WOTS-TW under non-adaptive
chosen message attacks (EU-naCMA) where the adversary receives the public
key after it made its signature query. This weaker model allows for a tight secu-
rity proof for WOTS-TW while also being sufficient for security proofs of schemes
like SPHINCS+. A tight proof is possible because a reduction can now generate
the WOTS-TW public key based on the signature query instead of guessing the
query. This eliminates the loss factor introduced by guessing. At the same time,
the notion is sufficient because for SPHINCS+, WOTS-TW is used to sign the
roots of hash trees which are generated by the reduction. In short, our new proof
combines the work of Dods, Smart, and Stam [DSS05] that uses undetectabil-
ity to plant preimage challenges, with the second-preimage resistance version of
Hülsing [Hül13], and the approach of multi-target mitigation by Hülsing, Rijn-
eveld, and Song [HRS16] and lifts it to the setting of tweakable hash functions.
We start with a proof in the single-instance setting for better exposition and
move to a proof in a multi-instance setting as used in SPHINCS+ afterwards.

As a second contribution, we analyze the security of THFs with respect to
undetectability and preimage resistance. The remaining properties were used
in the previous SPHINCS+ proof and were hence already analyzed. We obtain
results for the two THF-constructions (simple and robust) used in SPHINCS+

1 To be precise, we are considering multi-target versions of these notions which we
omit in the introduction for the sake of clarity.



6 A. Hülsing, M. Kudinov

that were considered in [BHK+19]. The simple construction simply concatenates
all inputs and feeds them into the underlying hash function. This construc-
tion was previously analyzed in the quantum-accessible random oracle model
(QROM). We give tight bounds for PRE and UD in the QROM (the former is
based on a conjecture from [BHK+19]). For the robust construction, we show
that PRE and UD can be based on PRE and UD of the used KHF, respec-
tively. Due to space constraints we left this part only in the full version of the
paper [HK22].

As a third contribution, we complete the picture for the hardness of breaking
the properties of (hash) function families via generic attacks (see Table 1 for an
overview). We obtain a new result for UD, and improve the result for TCR. Our
analysis generally follows the framework of [HRS16], which reduces the problem
of distinguishing two distributions over boolean functions to the respective secu-
rity property. In [HRS16], a distribution over variable weight functions, intro-
duced by Zhandry [Zha12], is used where every input is mapped to 1 with a fixed
probability. In this work, we also use distributions over fixed-weight functions
where the number of 1’s per function is fixed. During this process, we find a useful
self-reducibility result for the distinguishing problem with this kind of functions.
Moreover, we establish a new bound for PRE, overcoming a previous limita-
tion of the analysis in [HRS16] which only applied to sufficiently compressing
functions. Our new approach is a reduction from SPR and DSPR as previously
implicitly done in [BH19]. This gives a tight unconditional bound for the single
target case. For the multi-target case, we obtain a non-tight unconditional bound
and a tight bound based on a previous conjecture made in [BHK+19] regarding
the complexity of breaking DSPR in the multi-target case.

Lessons learned. As a result of our work we can conclude that the security
analysis is a lot nicer if WOTS is used to only sign signer-generated values. The
possibly more important lessons learned concern the general security analysis of
hash-based signatures. While the non-tight analysis is relatively well understood,
it does not justify the used parameter sets. The tight security analysis which
justifies used parameter sets however is largely non-trivial. Proofs are extremely
complex which makes them error-prone and hard to verify as demonstrated by
recent history. In consequence, an important next step is to actually verify the
given proof, for example, using tools from formal verification.

Acknowledgments. We want to thank Sydney Antonov for pointing out wrong
bounds in Table 1 of a previous version.

Organization. We introduce necessary definitions and notations in Sect. 2.
Section 3 is devoted to the description of the WOTS-TW scheme. The descrip-
tion of the EU-naCMA security model is given in Sect. 4. In Sect. 5 we provide a
security reduction for WOTS-TW in the single instance setting and in Sect. 6 we
lift the result to the multi-instance setting with possibly dependent messages.
The security proof for SPHINCS+ that uses WOTS-TW as a building block is
then given in Sect. 7. The summary of the state of the art for generic security
bounds and analysis of quantum generic security of UD and TCR properties is
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given in Sect. 8. The constructions of tweakable hash function from keyed hash
function can be found in the full version of the paper [HK22].

2 Preliminaries

In this section we introduce the definitions of building blocks, and security
notions for hash functions that we use. We begin with the notion of a tweakable
hash function, introduced in the construction of SPHINCS+ [BHK+19], and
its security. Beyond the presented notions, we make use of the standard defini-
tion for PRFs which for reference can be found in the full paper [HK22]. For
signatures we consider the common existential unforgeability notion but under
non-adaptive message attacks. In this setting the adversary has to select a set of
q messages that it will get signed before it receives the public key. For one-time
signatures we have q = 1. A detailed formal definition can be found in Sect. 4.

2.1 Tweakable Hash Functions

In this section we recall the definition of tweakable hash functions and related
security notions from [BHK+19]. These properties will later be used to prove
the security of our WOTS-TW scheme.

Function definition. A tweakable hash function takes public parameters P and
context information in form of a tweak T in addition to the message input. The
public parameters might be thought of as a function key or index. The tweak
might be interpreted as a nonce.

Definition 1 (Tweakable hash function). Let n,m ∈ N, P the public param-
eters space and T the tweak space. A tweakable hash function is an efficient
function

Th : P × T × {0, 1}m → {0, 1}n, MD ← Th(P, T,M)

mapping an m-bit message M to an n-bit hash value MD using a function key
called public parameter P ∈ P and a tweak T ∈ T .

We will sometimes denote Th(P, T,M) as ThP,T (M). In SPHINCS+, a pub-
lic value Seed is used as public parameter which is part of the SPHINCS+ public
key (the name comes from a specific construction of a tweakable hash function
that uses the public parameters as seed for a PRG). For the tweak, SPHINCS+

uses a so-called hash function address (ADRS) that identifies the position of
the hash function call within the virtual structure defined by a SPHINCS+ key
pair. We use the same approach for WOTS-TW, i.e., the public parameter is a
seed value that becomes part of the public key if WOTS-TW is used stand-alone.
If it is encompassed in a larger structure like SPHINCS+, the public parame-
ter will typically be that used in the encompassing structure and is therefore
only part of that structure’s public key. In this case, the hash addresses have to
be unique within the entire structure. Therefore, the address usually contains a
prefix determined by the calling structure.
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Security notions. To provide a security proof for WOTS-TW we require that
the used tweakable hash functions have certain security properties. Specifically,
we require the following properties or some variations of them which will be
discussed below:

– post-quantum single-function, multi-target collision resistance for distinct
tweaks (PQ-SM-DT-TCR);

– post-quantum single-function, multi-target preimage resistance for distinct
tweaks (PQ-SM-DT-PRE);

– post-quantum single-function, multi-target undetectability for distinct tweaks
(PQ-SM-DT-UD).

These properties were already considered in previous work. We slightly adapt
them. Moreover, in the context of multi-instance constructions like SPHINCS+,
we need another generic extension to collections of tweakable hash functions,
discussed at the end of the subsection.

We generally consider post-quantum security in this work. Therefore, we
will omit the PQ prefix from now on and consider it understood that we always
consider quantum adversaries. Since we are working in the post-quantum setting,
we assume that adversaries have access to a quantum computer but honest
parties do not. Hence, any oracles that implement secretly-keyed functions only
allow for classical queries. Moreover, in all of the properties an adversary can
influence the challenges by specifying the tweaks used in challenges. We generally
restrict this control in so far as we do not allow more than one challenge for the
same tweak (indicated by the DT label). As we have this restriction for all of
our properties we omit the DT label in all of the security notions.

Below we will define success probabilities and advantages of the adversaries
against different properties of hash functions. Here we define the insecurity of a
property Prop for parameter p (which usually denotes the number of targets) of
(tweakable) hash function F against time-ξ adversaries as the maximum success
probability for finding games or maximum advantage for distinguishing games
of any such adversary: InSecProp(F ; ξ, p) = max

A
{Succ/AdvProp

F,p (A)}.

Now we will discuss above properties and their variations. We provide addi-
tional intuition for those notions in the full paper [HK22].

Definition 2 (SM-TCR). In the following let Th be a tweakable hash function
as defined above. We define the success probability of any adversary A = (A1,A2)
against the SM-TCR security of Th. The definition is parameterized by the
number of targets p for which it must hold that p ≤ |T |. In the definition, A1 is
allowed to make p classical queries to an oracle Th(P, ·, ·). We denote the set of
A1’s queries by Q = {(Ti,Mi)}p

i=1 and define the predicate DIST({Ti}p
i=1) =

(∀i, k ∈ [1, p], i �= k) : Ti �= Tk, i.e., DIST({Ti}p
i=1) outputs 1 iff all tweaks are

distinct.
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Succsm-tcrTh,p (A) = Pr[P ←$ P;S ← ATh(P,·,·)
1 ( );

(j,M) ← A2(Q,S, P ) : Th(P, Tj ,Mj) = Th(P, Tj ,M)
∧ M �= Mj ∧ DIST({Ti}p

i=1)]

Definition 3 (SM-PRE). In the following let Th be a tweakable hash function
as defined above. We define the success probability of any adversary A = (A1,A2)
against the SM-PRE security of Th. The definition is parameterized by the
number of targets p for which it must hold that p ≤ |T |. In the definition, A1 is
allowed to make p classical queries to an oracle Th(P, ·, xi), where xi is chosen
uniformly at random for the query i (the value of xi stays hidden from A).
We denote the set of A1’s queries by Q = {Ti}p

i=1 and define the predicate
DIST({Ti}p

i=1) as we did in the definition above.

Succsm-preTh,p (A) = Pr[P ←$ P;S ← ATh(P,·,xi)
1 ( );

(j,M) ← A2(Q,S, P ) : Th(P, Tj ,M) = Th(P, Tj , xj) ∧ DIST({Ti}p
i=1)]

Definition 4 (SM-UD). In the following let Th be a tweakable hash func-
tion as defined above. We define the advantage of any adversary A = (A1,A2)
against the SM-UD security of Th. The definition is parameterized by the num-
ber of targets p for which it must hold that p ≤ |T |. First the challenger flips
a fair coin b and chooses a public parameter P ←$ P. Next consider an oracle
OP (T , {0, 1}), which works the following way: OP (T, 0) returns Th(P, T, xi),
where xi is chosen uniformly at random for the query i; OP (T, 1) returns yi,
where yi is chosen uniformly at random for the query i. In the definition, A1

is allowed to make p classical queries to an oracle OP (·, b). The goal of A is to
distinguish whether the oracle is OP (T , 0) or OP (T , 1). We denote the set of
A1’s queries by Q = {Ti}p

i=1 and define the predicate DIST({Ti}p
i=1) as we did

above.

Advsm-ud
Th,p (A) =

|Pr[P ←$ P;S ← AOP (·,0)
1 ( ); 1 ← A2(Q,S, P ) ∧ DIST({Ti}p

i=1)]

− Pr[P ←$ P;S ← AOP (·,1)
1 ( ); 1 ← A2(Q,S, P ) ∧ DIST({Ti}p

i=1)]|

At this point, we have finished describing the properties that will be needed to
construct a reduction proof for WOTS-TW. But for the further analysis of those
properties and analysis of SPHINCS+ one would need several more properties.

Decisional Second Preimage Resistance (DSPR) and its variants were intro-
duced and motivated in [BH19]. Here we present a multi-target version of DSPR
which is denoted as SM-DSPR. To do so, we need a second-preimage exists
predicate for THFs.
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Definition 5 (SPP,T ). A second preimage exists predicate of tweakable hash
function Th : P × T × {0, 1}m → {0, 1}n with a fixed P ∈ P, T ∈ T is the
function SPP,T : {0, 1}m → {0, 1} defined as follows:

SPP,T (x)
def
=

{
1 if |Th−1

P,T (ThP,T (x))| ≥ 2
0 otherwise

,

where Th−1
P,T refers to the inverse of the tweakable hash function with fixed public

parameter and a tweak.

Now we present the definition of SM-DSPR from [BHK+19] for a tweakable
hash function. The intuition behind this notion is that the adversary should be
unable to find a preimage such that doesn’t have a second preimage.

Definition 6 (SM-DSPR). Let Th be a tweakable hash function. Let A =
(A1,A2) be a two stage adversary. The number of targets is denoted with p, where
the following inequality must hold: p ≤ |T |. A1 is allowed to make p classical
queries to an oracle Th(P, ·, ·). We denote the query set Q = {(Ti,Mi)}p

i=1 and
predicate DIST({Ti}p

1) as in previous definitions.

Advsm-dspr
Th,p (A) = max{0, succ − triv},

where

succ = Pr[P ←$ P;S ← ATh(P,·,·)
1 (); (j, b) ← A2(Q,S, P ) :

SPP,Tj
(Mj) = b ∧ DIST({Ti}p

1)].

triv = Pr[P ←$ P;S ← ATh(P,·,·)
1 (); (j, b) ← A2(Q,S, P ) :

SPP,Tj
(Mj) = 1 ∧ DIST({Ti}p

1)].

Security for a collection of tweakable hash functions. In more complex
constructions like SPHINCS+, we make use of a collection of tweakable hash
functions which we call Thλ. In this case Thλ consists of a set of tweakable hash
functions Thmi

for different mi, the length of messages they process. This notion
of a collection of tweakable hash functions is necessary as we use the same public
parameters for all functions in the collection. Especially, it is necessary to make
the security notions above usable in the context of SPHINCS+. The problem
is that when used in constructions like SPHINCS+ or XMSS, queries to the
challenge oracle may depend on the outputs of other functions in the collection,
or even the same function but with different tweaks. This is incompatible with
above definitions as the public parameters are only given to the adversary after
all challenge queries are made.

We solve this issue by extending all the above stand-alone security proper-
ties to the case of collections. The definitions for functions that are part of a
collection only differ from the above in a single spot. We give the first part of
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the adversary A1, that makes the challenge queries, access to another oracle
Thλ(P, ·, ·), initialized with P . The oracle takes an input M and a tweak T and,
depending on the length m = |M | of M returns Thm(P, T,M). The only limi-
tation is that A is not allowed to use the same tweak in queries to both oracles,
the challenge oracle and the collection oracle. In general, A is allowed to query
the challenge oracle as well as Thλ with a message of length x, as long as the
used tweak is never used in a query to the challenge oracle.

Definition 7 (SM-TCR, SM-PRE, SM-UD, SM-DSPR for members
of a collection). Let Thm be a THF as defined above with message length
m. Moreover, let Thm be an element of a collection Thλ of THFs as described
above. Consider an adversary A = (A1,A2) against the SM-TCR (, SM-PRE,
SM-UD, SM-DSPR) security of Thm as part of collection Thλ (which we
denote as Thm ∈ Thλ). Let Thλ(P, ·, ·) denote an oracle for Thλ as described
above and denote by {Tλ

i }pλ

1 the tweaks used in the queries made by A. We
define the success probability of A against SM-TCR (, SM-PRE, SM-UD,
SM-DSPR) security of Thm as part of collection Thλ as the success probability
of A against stand-alone SM-TCR (, SM-PRE, SM-UD, SM-DSPR) security
of Thm defined above, when A1 is additionally given classical oracle access to
Thλ(P, ·, ·) with the condition that {Ti}p

1 ∩ {Tλ
i }pλ

1 = ∅.
In the case of SM-TCR, we will abuse notation when it comes to the security

of SPHINCS+ and consider the joined security of several members of a collection
of tweakable hash functions.

3 WOTS-TW

SPHINCS+ [BHK+19] developed its own variant of the Winternitz OTS. How-
ever, the authors never explicitly defined that variant. Since the flaw in the
SPHINCS+ security proof was in the proof for their WOTS scheme, we give a
separate description of the scheme in this section. As the distinguishing feature
of this variant is the use of tweakable hash functions, we call it WOTS-TW.

3.1 Parameters

WOTS-TW uses several parameters. The main security parameter is n ∈ N. The
length of messages that are signed is denoted as m. In the case of SPHINCS+,
m = n. The Winternitz parameter w ∈ N determines a base of the representation
that is used in the scheme and determines the parameter l:

l1 =
⌈

m

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1, l = l1 + l2.

The tweak space T must be at least of size lw. The size of the tweak space should
be bigger if we use several instances of WOTS-TW in a bigger construction such
as SPHINCS+ so we can use a different tweak for each hash function call. We also
need a pseudorandom function PRF : {0, 1}n × T → {0, 1}n, and a tweakable
hash function Th : {0, 1}n × T × {0, 1}n → {0, 1}n.
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3.2 Addressing Scheme

For the tweakable hash functions to guarantee security, they have to be called
with different tweaks. This is achieved using what was called an addressing
scheme in SPHINCS+. Such an addressing scheme assigns a unique address
to every tweakable hash function call in the scheme and the address space is
part of the tweak space such that addresses can be used as tweaks. We do not
specify a concrete addressing scheme in this work (see the SPHINCS+ specifi-
cation [ABB+20] for an example). Abstractly, we achieve unique addresses the
following way. A Winternitz key pair defines a structure of l hash chains, each of
which makes w−1 calls to the tweakable hash function. For a unique addressing
scheme, one may use any injective function that takes as input i ∈ [0, l − 1],
j ∈ [0, w −2], and possibly a prefix, and maps into the address space. The prefix
is necessary to ensure uniqueness if many instances of WOTS-TW are used in a
single construction. We will use ADRS to denote that prefix. The tweak associ-
ated with the j-th function call in the i-th chain is then defined as the output of
this function on input i, j (and a possible prefix) and denoted as Ti,j . The prefix
can also be used to distinguish other parts of a signature scheme such as binary
trees or few time signatures. Note that the addresses (ADRS, tweaks) can be
publicly computed and known to everybody.

3.3 WOTS-TW Scheme

The main difference between WOTS variants is in the way they do hashing.
Previously, the distinction was made in the definition of the so-called chaining
function that describes how the hash chains are computed. For WOTS-TW this
distinction is further shifted into the construction of the tweakable hash function
Th. The chaining function then looks as follows:

Chaining function cj,k(x, i,Seed): The chaining function takes as inputs a
message x ∈ {0, 1}n, iteration counter k ∈ N, start index j ∈ N, chain index
i, and public parameters Seed. The chaining function then works the following
way. In case k ≤ 0, c returns x, i.e., cj,0(x, i,Seed) = x. For k > 0 we define c
recursively as

cj,k(x, i,Seed) = Th(Seed, Ti,j+k−1, c
j,k−1(x, i,Seed)).

If we consider several instances of WOTS-TW then we will use cj,k
ADRS(x, i,Seed)

to denote that tweaks that are used to construct the chain have ADRS as a
prefix. With this chaining function, we describe the algorithms of WOTS-TW.

Key Generation Algorithm (SK,PK) ← WOTS-TW.kg(C;S): The
key generation algorithm optionally takes as input context information C =
(Seed,ADRS), consisting of a public seed Seed ∈ {0, 1}n and a global address
ADRS, as well as randomness S ∈ {0, 1}n which we call the secret seed. These
inputs are meant for the use in more complex protocols. If they are not provided,
key generation randomly samples the seeds and sets ADRS to 0. The key gen-
eration algorithm then computes the internal secret key sk = (sk1, . . . , skl) as
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ski ← PRF(S, Ti,0)), i.e., the l · n bit secret key elements are derived form the
secret seed using addresses. The element of the public key pk is computed as

pk = (pk1, . . . , pkl) = (c0,w−1(sk1, 1,Seed), . . . , c0,w−1(skl, l,Seed)).

The key generation algorithm returns SK = (S, C) and PK = (pk, C) Note that
we can compute sk and pk from SK.

Signature Algorithm σ ← WOTS-TW.sign(M,SK): On input of an m-
bit message M , and the secret key SK = (S, C), the signature algorithm first
computes a base w representation of M : M = (M1, . . . ,Ml1), Mi ∈ {0, . . . , w −
1}. That is, M is treated as the binary representation of a natural number x and
then the w-ary representation of x is computed. Next it computes the checksum
C =

∑l1
i=1(w − 1 − Mi) and its base w representation C = (C1, . . . , Cl2). We

set B = (b1, . . . , bl) = M ||C, the concatenation of the base w representations of
M and C. Then the internal secret key is regenerated using ski ← PRF(S, Ti,0)
the same way as during key generation. The signature is computed as

σ = (σ1, . . . , σl) = (c0,b1(sk1, 1,Seed), . . . , c0,bl(skl, l,Seed)).

Verification Algorithm ({0, 1} ← WOTS-TW.vf(M, σ,PK)): On input
of m-bit message M, a signature σ, and public key PK = (pk, C), the verification
algorithm computes the bi, 1 ≤ i ≤ l as described above and checks if

pk
?= pk′ = (pk′

1, . . . , pk
′
l) = (cb1,w−1−b1(σ1, 1,Seed), . . . , cbl,w−1−bl(σl, l,Seed)).

In case of equality the algorithm outputs true and false otherwise.
The intuition behind the security of WOTS-TW is the following. Assume

that you’ve observed a message and a signature (M,σ). To obtain (M ′, σ′),
where M ′ �= M you will have at least one block in some chain that occurs earlier
than in σ. This is due to checksum computation.

4 EU-naCMA Model

A standard definition of a Digital signature scheme and a notion of EU-CMA is
given in the full paper [HK22]. Here we define existential unforgeability under
non-adaptive chosen message attack (EU-naCMA). It is defined using the fol-
lowing experiment where S makes the shared state of A1 and A2 explicit.

Experiment ExpEU−naCMA
Dss(1n) (A = (A1,A2)):

(sk, pk) ← Kg(1n).
({M1, . . . ,Mq}, S) ← A1().
Compute {(Mi, σi)}q

i=1 using Sign(sk, ·).
(M�, σ�) ← A2(S, {(Mi, σi)}q

i=1, pk)
Return 1 iff Vf(pk, σ�,M�) = 1 and M� /∈ {Mi}q

i=1.
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Definition 8 (EU-naCMA). Let Dss be a digital signature scheme. We define
the success probability of an adversary A against the EU-naCMA security of Dss
as the probability that the above experiment outputs 1:

SuccEU−naCMA
Dss(1n),q (A) = Pr

[
ExpEU−naCMA

Dss(1n) (A) = 1
]
,

where q denotes the number of messages that A1 asks the game to sign.

If we limit the number of queries q = 1 to the signing oracle we will call the
model one-time EU-naCMA.

5 Security of WOTS-TW

Now we will reduce the security of WOTS-TW in a EU-naCMA model (see
Definition 8) to the security properties of the tweakable hash function Th and
the pseudorandom function family PRF. To do so we will give a standard game-
hopping proof. Intuitively the proof goes through the following steps.

– First, we replace the inner secret key elements that are usually generated using
PRF by uniformly random values. The two cases must be computationally
indistinguishable if PRF is indeed pseudorandom.

– Next we replace the blocks in the chains that become part of the signature by
the hash of random values. We need this so that we can later place preimage
challenges at these positions of the chain. Here it is important to note that
preimage challenges are exactly such hashes of random domain elements and
not random co-domain elements. To argue that these two cases are indistin-
guishable, we need a hybrid argument since for most chains we replace the
outcome of several iterations of hashing with a random value.

– Lastly we show that breaking the EU-naCMA property of our scheme in this
final case will either allow us to extract a target-collision or a preimage for a
given challenge.

Theorem 1. Let n, w ∈ N and w = poly(n). Let Th : P×T ×{0, 1}n → {0, 1}n

be a SM-TCR, SM-PRE, and SM-UD function. Let PRF : S×T → {0, 1}n be
a pseudorandom function. Then the insecurity of the WOTS-TW scheme against
one-time EU-naCMA attack is bounded by

InSecEU−naCMA(WOTS-TW; t, 1) ≤
InSecprf(PRF; t̃, l) + InSecsm-tcr(Th; t̃, lw)+

InSecsm-pre(Th; t̃, l) + w · InSecsm-ud(Th; t̃, l)

with t̃ = t + lw, where time is given in number of Th evaluations.

Proof. First consider the following two games: GAME.1 is the original
EU-naCMA game and GAME.2 is the same as GAME.1 but all outputs of
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PRF are replaced by random values. We claim that the difference in the success
probability of A playing these games must be bound by InSecprf(PRF; t̃, l).

Next we consider GAME.3 which is the same as GAME.2 but to answer the
message signing request we build the signature from nodes that are computed
applying Th only once instead of bi times (except if bi = 0, then we return
a random value as in the previous game). The public key is constructed from
that signature by finishing the chain according to the usual algorithm. We will
detail the process in the proof below. We claim that the difference in the success
probability of A playing these games must be bounded by w ·InSecsm-ud(Th; t̃, l).

Afterwards, we consider GAME.4, which differs from GAME.3 in that we are
considering the game lost if an adversary outputs a valid forgery (M ′, σ′) where
there exists an i such that b′

i < bi and c(b
′
i,bi−b′

i)(σ′
i, i,Seed) �= σi. We claim that

the difference in the success probability of A playing these games must be bound
by InSecsm-tcr(Th; t̃, lw).

If we now consider how A can win in GAME.4 there is just one viable case
left. By the properties of the checksum, there has to be at least one i with b′

i < bi.
For any such i the values that get computed from the forgery during verification
fully agree with those values that are computed during the verification of the
signature by the last game hop. This means that we can use an A that wins
in GAME.4 to find a preimage. We claim that the success probability of the
adversary A in GAME.4 must be bounded by InSecsm-pre(Th; t̃, l).

In summary, we get the following claims:

Claim 1. |SuccGAME.1(A) − SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, l).

Claim 2. |SuccGAME.2(A) − SuccGAME.3(A)| ≤ w · InSecsm-ud(Th; t̃, l).

Claim 3. |SuccGAME.3(A) − SuccGAME.4(A)| ≤ InSecsm-tcr(Th; t̃, lw).

Claim 4. SuccGAME.4(A) ≤ InSecsm-pre(Th; t̃, l).

The remainder of the proof consists of proving these claims. We then combine
the bounds from the claims to obtain the bound of the theorem.

Proof of Claim 1.

Claim 1. |SuccGAME.1(A) − SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, l).

Proof. We replace PRF in GAME.1 by the oracle provided by the PRF game
and output 1 whenever A succeeds. If the oracle is the real PRF function keyed
with a random secret key, the view of A is identical to that in GAME.1. If the
oracle is the truly random function the argument is a bit more involved. In this
case, it is important to note that A never gets direct access to the oracle but only
receives outputs of the oracle. The inputs on which the oracle is queried to obtain
these outputs are all unique. Hence, the outputs are uniformly random values.
Therefore, the view of A in this case is exactly that of GAME.2. Consequently,
the difference of the probabilities that the reduction outputs 1 in either of the
two cases (which is the PRF distinguishing advantage) is exactly the difference
of the success probabilities of A in the two games.
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Proof of Claim 2. We first give a more detailed description of GAME.3. In the
EU-naCMA game the adversary A asks to sign a message M without knowing
the public key. This message M gets encoded as B = b1, . . . , bl. In GAME.3, to
answer the query we will perform the following operations. First we generate l
values uniformly at random: ui ←$ {0, 1}n, i ∈ {1, . . . , l}. Next we answer the
signing query with a signature σ = (σ1, . . . , σl), where σi = Th(Seed, Ti,bi−1, ui)
if bi > 0 and σi = ui if bi = 0. Then the public key is constructed as

pk = (pk1, . . . , pkl) = (cb1,w−1−b1(σ1, 1,Seed), . . . , cbl,w−1−bl(σl, l,Seed)), (1)

and public key and signature are returned to the adversary. The reason we
consider this game is that to bound the final success probability in GAME.4
we will have a reduction replace the ui with SM-PRE challenges. The resulting
signatures have exactly the same distribution as the ones we get here. To show
that this cannot change the adversary’s success probability significantly, we now
prove the following claim.

Claim 2. |SuccGAME.2(A) − SuccGAME.3(A)| ≤ w · InSecsm-ud(Th; t̃, l).

Proof. Consider the following scenario. Let the adversary’s query be M . During
the signing algorithm M is encoded as B = {b1, . . . , bl}. Consider two distribu-
tions D0 = {ξ1, . . . , ξl}, where ξi ←$ {0, 1}n, i ∈ [1, l] and DKg = {y1, . . . , yl},
where yi = c0,bi−1(ξi, i,Seed), ξi ←$ {0, 1}n, i ∈ [1, l]. Samples from the first
distribution are just random values, and the samples from DKg are distributed
the same way as the (bi − 1)-th values of valid WOTS-TW chains. Assume
we play a game where we get access to an oracle Oφ that on input B returns
φ = {φ1, . . . , φl}, either initialized with a sample from D0 or with a sample from
DKg. Each case occurs with probability 1/2. Then we can construct an algorithm
MA

2−3 as in Algorithm 1 that can distinguish these two cases using a forger A.
Let us consider the behavior of MA

2−3 when Oφ samples from DKg. In this
case all the elements in the chains are distributed the same as in GAME.2.
The probability that MA

2−3 outputs 1 is the same as the success probability
of the adversary in GAME.2. If φ instead is from D0, then the distribution of
the elements in the chains is the same as in GAME.3. Hence, the probability
that MA

UD outputs 1 is the same as the success probability of the adversary in
GAME.3. By definition, the advantage of MA

2−3 in distinguishing D0 from DKg

is hence given by

AdvD0,DKg
(MA

2−3) = |SuccGAME.2(A) − SuccGAME.3(A)| (2)

The remaining step is to derive an upper bound for AdvD0,DKg
(MA

UD) using
the insecurity of the SM-UD property and a hybrid argument.

Let bmax = max{b1, . . . , bl} be the maximum of the values in the message
encoding of M . Let Hk be the distribution obtained by computing the values in φ
as φi = ck,bi−1−k(ξi, i, Seed), ξi ←$ {0, 1}n. Then H0 = DKg and Hbmax−1 = D0

(Note that the chaining function returns the identity when asked to do a negative
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Algorithm 1: MA
2−3

Input : Access to a distribution oracle Oφ and forger A
Output: 0 or 1.

1 Start A to obtain query with a message M .
2 Encode M as B = b1, . . . , bl as in signature algorithm.
3 Call Oφ(B) to obtain sample φ
4 Construct the signature σ doing one chain step on each sample where b > 0 and

compute the public key from the signature:
5 for 1 ≤ i ≤ l do
6 if bi > 0 then

7 σi = cbi−1,1(φi, i, Seed)

8 pki = cbi,w−1−bi(σi, i, Seed)

9 Send PK = (pk, Seed) and σ to A.
10 if A returns a valid forgery (M ′, σ′) then
11 return 1
12 else
13 return 0

amount of steps). As MA
2−3 distinguishes the extreme cases, by a hybrid argu-

ment there are two consecutive hybrids Hj and Hj+1 that can be distinguished
with probability ≥ AdvD0,DKg

(MA
2−3)/(bmax − 1).

To bound the success probability of an adversary in distinguishing two such
consecutive hybrids, we build a second reduction MB

UD that uses B = MA
2−3

to break SM-UD. For this purpose, MB
UD simulates Oφ. To answer a query for

B = b1, . . . , bl, MB
UD plays in the SM-UD game, interacting with the SM-UD

oracle OUD(·, b) to construct hybrid Hj+b, depending on the secret bit b of the
oracle. To do so MB

UD makes queries to OUD with tweaks {T1,j , . . . , Tl,j}. Then,
depending on b, the responses ψ of OUD are either l random values or ψ =
(cj,1(ξ1, 1, Seed), . . . , cj,1(ξl, l, Seed), ξi ←$ {0, 1}n, i ∈ [1, l]). After that MB

UD

requests Seed from the SM-UD challenger. Next, MB
UD applies the hash chain

to the oracle responses ψ to compute samples

φi =

{
cj+1,bi−1−(j+1)(ψi, i, Seed), if j < bi − 1
ξi ←$ {0, 1}n, otherwise,

and returns it to MA
2−3. MB

UD returns whatever MA
2−3 returns. If ψ con-

sisted of random values the distribution was Hj+1, otherwise Hj . Conse-
quently, the advantage of distinguishing any two hybrids must be bound by
InSecsm-ud(Th; ξ, l). Putting things together, we see that bmax ≤ w for any mes-
sage M . Hence, we get

|SuccGAME.2(A) − SuccGAME.3(A)| = AdvD0,DKg
(MA

2−3)

≤ w · Advsm-ud
Th,l (MB

UD) ≤ w · InSecsm-ud(Th; ξ, l)

which concludes the proof of the claim.
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Proof of Claim 3. Recall that GAME.4 differs from GAME.3 in that we are
considering the game lost if an adversary outputs a valid forgery (M ′, σ′) where
there exists i such that b′

i < bi and c(b
′
i,bi−b′

i)(σ′
i, i,Seed) �= σi. So the difference

in success probability is exactly the probability that A outputs a valid forgery
and there exists an i such that b′

i < bi and c(b
′
i,bi−b′

i)(σ′
i, i,Seed) �= σi. We will

now prove Claim 3 which claims the following bound on this probability:

Claim 3. |SuccGAME.3(A) − SuccGAME.4(A)| ≤ InSecsm-tcr(Th; t̃, lw).

Proof. To prove the claim we construct an algorithm MA
TCR that reduces SM-

TCR of Th to the task of forging a signature that fulfills the above condition.
The algorithm is based on the following idea. MA

TCR simulates GAME.4. In
GAME.4 the adversary sends a query to sign a message M . To answer this
query and compute the public key, MA

TCR interacts with the SM-TCR oracle.
This way, MA

TCR obtains target-collision challenges corresponding to the nodes
in the signature and all intermediate values of the chain computations made to
compute the public key. Then MA

TCR requests the public parameters P from
the SM-TCR challenger. We set the public seed Seed of WOTS-TW equal to
P and return the constructed signature and public key to A. When A returns a
forgery (M ′, σ′), there exists i such that b′

i < bi and c(b
′
i,bi−b′

i)(σ′
i, i,Seed) �= σi

per assumption. By a pigeonhole argument there must be a collision on the
way to the public key element. MA

TCR extracts this collision and returns it.
Algorithm 2 gives a detailed description of MA

TCR in pseudocode. For the visual
representation of the idea described in the mentioned algorithm see Fig. 1 in the
full paper [HK22]. The algorithm is broken into two logically separated parts:
Challenge placement and obtaining the result.

Here we detail which SM-TCR challenges we create per chain in line 11
of Algorithm 2. Assume we have σi at position bi. Then the first query will be
(Ti,bi

, σi). Let’s denote the answer for that query as c1. The next query will be
(Ti,bi+1, c1). We denote the answer for that query as c2. In general we will make
queries of the form (Ti,bi+k, ck). And we denote the answers for those queries as
ck+1. We make queries until we get cw−1−bi

. We set pki to be cw−1−bi
.

As we are set to bound the probability of those cases where the adver-
sary outputs a valid forgery and there exists i such that b′

i < bi and
c(b

′
i,bi−b′

i)(σ′
i, i,Seed) �= σi, MA

TCR never runs into the fail cases in lines 22 and
24. Moreover, the distribution of inputs to A when run by MA

TCR is identical to
that in GAME.4. Therefore, MA

TCR returns a target-collision with probability
|SuccGAME.3(A) − SuccGAME.4(A)| which concludes the proof of the claim.

Proof of Claim 4. It remains to prove the last claim. Consider a forgery σ′

and the positions b′
i of the σ′ elements. There must exist a j such that b′

j < bj

by the properties of the checksum. Remember that in GAME.4, the case where
c(b

′
j ,bj−b′

j)(σ′
j , j,Seed) �= σj is excluded for all such j. Hence, it must hold for

these j that c(b
′
j ,bj−b′

j)(σ′
j , j,Seed) = σj . Therefore, we can use A to compute a

preimage of σj . We use this to prove Claim 4.

Claim 4. SuccGAME.4(A) ≤ InSecsm-pre(Th; t̃, l).
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Algorithm 2: MA
TCR

Input : Security parameter n, oracle access to SM-TCR challenger C and
EU-naCMA forger A.

Output: A pair (j, M) or fail.
1 begin Challenge placement
2 Start A to obtain query with a message M .
3 Encode M as B = b1, . . . , bl as in signature algorithm.
4 for i ∈ {1, . . . , l} do
5 if bi = 0 then
6 Set σi ←$ {0, 1}n.
7 else
8 Sample ξi ←$ {0, 1}n,
9 Query C for SM-TCR challenge with inputs ξi, T1,bi−1.

10 Store answer as σi. // i.e., σi = Th(P, Ti,bi−1, ξi)

11 Compute public key element pki = cbi,w−1−bi(σi, i, ·) as in the
verification algorithm but using the SM-TCR challenge oracle
provided by C in place of Th. // That is why no Seed is needed

12 Get public parameters P from the challenger and set Seed = P .
13 Set signature σ = (σ1, . . . , σl) and pk = (pk1, . . . , pkl).

14 begin Obtaining the result
15 Return σ and PK = (pk, Seed) to the adversary A.
16 if The adversary returns a valid forgery (M ′, σ′) then
17 Encode M ′ as B′ = (b′

1, . . . , b
′
l) according to sign.

18 if ∃ i such that b′
i < bi and c(b

′
i,bi−b′

i)(σ′
i, i, Seed) �= σi then

19 Let j be the smallest integer such that the chains collide:

cbi,j(yi, i, Seed) = cb′
i,j(σ′

i, i, Seed)).

20 return SM-TCR solution (i, cb′
i,(j−1)(σ′

i, i, Seed))

21 else
22 return fail

23 else
24 return fail

Proof. As for the previous claim, we construct an algorithm MA
PRE that uses

a forger in GAME.4 to solve a SM-PRE challenge. In the beginning, MA
PRE

receives a query to sign a message M from the adversary A and encodes it
into bi’s. To answer the query MA

PRE interacts with the SM-PRE challenger
to receive preimage challenges yi for tweaks that make the challenges fit into
positions bi. That way, MA

PRE can use the challenges as signature values σi = yi.
Then MA

PRE asks the SM-PRE challenger to return public parameters P . Given
P , MA

PRE can construct the public key using the recomputation method used in
the signature verification algorithm. MA sets the public seed Seed of WOTS-TW
to be P and returns the constructed signature and public key to A. When A
returns a valid forgery, this forgery must contain a signature value σj with index
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Algorithm 3: MA
PRE

Input : Security parameter n, access to SM-PRE challenger C and forger A.
Output: A pair (j, M) or fail.

1 begin Challenge placement
2 Run A to receive initial query for a signature on message M .
3 Encode M as B = b1, . . . , bl following the steps in the signature algorithm.
4 for 1 ≤ i ≤ l do
5 if bi > 0 then
6 Query C for preimage challenge yi with tweak T1,bi−1.

// yi = Th(P, Ti,bi−1, ξi)

7 else
8 yi ←$ {0, 1}n.

9 Set σi = yi.

10 Get the seed P from C and set Seed = P .

11 Compute public key pk = (pk1, . . . pkl), as pki = cw−1−bi(yi, i, Seed).

12 begin Obtaining the result
13 Return σ and PK = (pk, P ) to A.
14 if A returns a valid forgery (M ′, σ′) then
15 Compute B′ = (b′

1, . . . , b
′
l) encoding M ′

16 if ∃1 ≤ j ≤ l such that b′
j < bj and c(b

′
j ,bj−b′

j)(σ′
j , j, Seed) = σj then

17 return SM-PRE solution (j, cb′
j ,(bj−b′

j−1)(σ′
j , j, Seed))

18 else
19 return fail

20 else
21 return fail

j such that b′
j < bj and cb′

j ,(bj−b′
j)(σ′

j , j,Seed) = σj per definition of the game.
MA

PRE returns preimage (j, cb′
j ,(bj−b′

j−1)(σ′
j , j,Seed)). A pseudocode version of

MA
PRE is given as Algorithm 3. For a visual representation of the ideas described

in the Algorithm 3 we refer to Fig. 2 in the full paper [HK22]. The algorithm
is broken into two logically separated parts: Challenge placement and obtaining
the result.

Due to the properties of GAME.4, MA
PRE succeeds whenever A succeeds, as

the failure case in line 19 never occurs when A succeeds. Moreover, the distribu-
tion of the inputs to A when run by MA

PRE is identical to that in GAME.4 (this
was ensured in the game hop to GAME.3). Therefore, MA

PRE returns preimages
with probability SuccGAME.4(A) which proves the claim.

6 Extension to Multiple Instances with Same Public Seed

One-time signatures are often used in more complex constructions. For example,
WOTS-TW was developed as part of SPHINCS+. The distinguishing feature of
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this setting is that many WOTS-TW instances are used within one instance of
the complex construction. In this section we will show that we can base the secu-
rity of multiple WOTS-TW instances on the same multi-target security proper-
ties used for a single instance. While, the number of targets increases, we argue
in Sect. 8 that the complexity of generic attacks is not influenced by the number
of targets for these notions. Hence, there is no decrease in security to be expected
when using multiple instances. We will show that this even works when the same
public seed is used for all instances, as long as different prefixes are used for the
tweaks.

In SPHINCS-like constructions WOTS-TW is used to sign the roots of trees
which are not controlled by an adversary against the construction but by the
signer. More generally, this is the case in many such constructions. Hence, we use
an extension of the EU-naCMA model from last section to d instances. We define
EU-naCMA security for d instances of WOTS-TW with respect to a collection
of THFs. Our definition is non-generic but tailored to WOTS-TW and the way it
is used within SPHINCS+ and other constructions. The reason is that in these
settings the THF used in WOTS-TW is a member of the collection of THFs
used in the construction and uses the same public parameters. We could have
introduced a generic model for this but this would have required the introduction
of further abstractions that would unnecessarily complicate the presentation.

The security of multiple WOTS-TW instances is analyzed using the fol-
lowing experiment. In which a two-stage adversary A = (A1, A2) is allowed
to make signing queries to a signing oracle WOTS-TW.sign(·, (Seed, ·,S)) and
THF oracle Thλ. The signing oracle takes as inputs a message M and address
ADRS. As we described in Sect. 3.2 ADRS defines a prefix that distinguishes
different instances of WOTS-TW and other structures in bigger constructions.
First it runs (SK,PK) ← WOTS-TW.kg(C = (Seed,ADRS);S). Then it com-
putes σ ← WOTS-TW.sign(M ;SK). By PK′ we denote PK without Seed, i.e.
PK′ = (pk,ADRS). The signing oracle returns (σ,M,PK′) to the adversary. We
restrict A1 from querying Thλ with tweaks for ADRSs that are used in sig-
nature queries. We define a function adrs(·) that takes a tweak as an input and
returns ADRS of that tweak. The set of queries to signing oracle is denoted as
Q = {(Mi,ADRSi)}d

i=1 and the set of tweaks that are used to query Thλ is
T = {Ti}p

i=1. We analyze one-time signatures, so the number of allowed signing
queries for each ADRS is restricted to 1.

Experiment Expd-EU-naCMA
WOTS-TW (A)

– Seed ←$ {0, 1}n

– S ←$ {0, 1}n

– state ← AWOTS-TW.sign(·,(Seed,·,S)),Thλ(Seed,·,·)
1 ( )

– (M�, σ�, j) ← A2(state, Seed)
– Return 1 iff j ∈ [1, d] ∧ [Vf(PKj , σ

�,M�) = 1] ∧ [M� �= Mj ]∧
[DIST({ADRSi}d

i=1)] ∧ [∀ADRSi ∈ Q,ADRSi /∈ T ′ = {adrs(Ti)}p
i=1].

We define the success probability of an adversary A in the described experiment
with d instances as Succd-EU-naCMA

WOTS-TW,d(A) def= Pr
[
Expd-EU-naCMA

WOTS-TW (A) = 1
]
. Note that
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due to ADRS restrictions for the signing oracle the adversary can not obtain
more than one signature for the same pk. The following theorem can be proven
by generalization of the proof of Theorem1. The main idea behind the proof is
the following. First we use different tweaks in different instances of WOTS-TW
as we use different ADRSs for each instance. Next point is that we obtain d
times more challenges and we separate them in d sets. Each set will be used
for one instance of WOTS-TW. Then the proof follows the same path as in
Theorem 1.

Theorem 2. Let n, w ∈ N and w = poly(n). Let F := Th1 : P ×T ×{0, 1}n →
{0, 1}n be a SM-TCR, SM-PRE, SM-UD THF as a member of a collection.
Let PRF : S × T → {0, 1}n be a KHF. Then the following inequality holds:

InSecd-EU-naCMA(WOTS-TW; t, d)

< InSecprf(PRF; t̃, d · l) + InSecsm-tcr(F ∈ Th; t̃, d · lw)

+ InSecsm-pre(F ∈ Th; t̃, d · l) + w · InSecsm-ud(F ∈ Th; t̃, d · l) (3)

with t̃ = t + d · lw, where time is given in number of Th and PRF evaluations.

Proof sketch. Let us give a brief description how the proof for the multi-instance
case is obtained. We have the same game hopping as in Theorem 1.

GAME.1 is the original d-EU-naCMA game and GAME.2 is the same as
GAME.1 but the pseudorandom outputs from PRF are replaced by truly ran-
dom values. We claim that

|SuccGAME.1(A) − SuccGAME.2(A)| ≤ InSecprf(PRF; t̃, d · l).

The reasoning here is the same as in Claim 1 in Theorem 1. Note that all inputs
on which the oracle in the PRF game is queried are unique due to the unique
ADRSs for each instance. Hence, the outputs are uniformly random values as
desired.

GAME.3 is different from GAME.2 in that for each signing query we answer
with a hash of a random value rather than building it with a chaining func-
tion. In Claim 2 of Theorem 1 we reduced it to the SM-UD property by using
a hybrid argument. Here we need to apply the same reasoning. To obtain the
needed hybrids in case of d instances we will do the following. We use an addi-
tional index to denote the B-values associated with the i-th message Mi. So
Mi is transferred into bi,1, . . . , bi,l. We now consider the d-fold distributions
Dd-Kg = {y1,1, . . . , y1,l, . . . , yd,1, . . . , yd,l}, where yi,j = c

0,bj−1
ADRSi

(ξi,j , j,Seed) and
Dd-0 = {ξ1,1, . . . , ξ1,l, . . . , ξd,1, . . . , ξd,l}, where ξi,j ←$ {0, 1}n, i ∈ [1, d], j ∈
[1, l]. The distinguishing advantage of an adversary against those two distribu-
tions is exactly the difference of these two games. To limit this distinguishing
advantage we need to build hybrids. We do this in the same manner as in the
proof of Theorem 1. Let bmax = max{b1,1, . . . , b1,l . . . , bd,1, . . . , bd,l} be the maxi-
mum of the values in the message encoding of all Mi. Let Hk be the distribution
obtained by computing the values as c

k,bi,j−1−k
ADRSi

(ξi,j , j, Seed), ξi,j ←$ {0, 1}n.
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One can notice that H0 = DKg and Hbmax−1 = D0. There must be two consecu-
tive hybrids Hγ and Hγ+1 that we can distinguish with probability close to the
distinguishing advantage. By playing SM-UD and interacting with the oracle
O(·, b) we can construct hybrid Hγ+b. This is done in just the same way as in
Claim 2 of Theorem 1. Hence, we obtain the following bound:

|SuccGAME.2(A) − SuccGAME.3(A)| ≤ w · InSecsm-ud(F ∈ Th; t̃, d · l).

Notice that in case of one instance we obtained Seed from the SM-UD challenger
that we used to construct the hybrids and obtain the WOTS-TW public key.
Here instead of using Seed we need to interact with the Thλ(Seed.·, ·) oracle.
Only after all of the signing queries are made we will obtain the Seed.

GAME.4 is different from GAME.3 in that we are considering the game
lost if an adversary outputs a valid forgery (M�, σ�, j) where there exist such i

that b�
i,j < bi,j and c

(b�
i,j ,bi,j−b�

i,j)

ADRSi
(σ�

j , j,Seed) �= σj . To show the bound we can
build a reduction that works as follows. To answer the signature queries and
compute the public key, the reduction interacts with the SM-TCR oracle. The
difference in case of d instances from one instance is that we will need d times
more interactions with the SM-TCR oracle. Per assumption, there must exist
at least one chain such that the chain that we built and the chain obtained from
the forged signature are different but lead to the same public key. Hence, by
a pigeonhole argument there must be a collision on the way to the public key
element. This collision is a solution for the SM-TCR challenge. So we proved
that

|SuccGAME.3(A) − SuccGAME.4(A)| ≤ InSecsm-tcr(H ∈ Th; t̃, d · lw).

To give a bound on the success probability for GAME.4 we use the SM-PRE
property. To answer signing queries we will interact with the SM-PRE oracle
and place challenges obtained from that oracle in place of signatures. To con-
struct public keys of WOTS-TW instances we will behave in the same way as
in the undetectability case. By interacting with Thλ(Seed, ·, ·) we can build
the chains of WOTS-TW structures. Again there must exist a j such that
b�
i,j < bi,j by the properties of the checksum. And since we excluded the case

where c
(b�

i,j ,bi,j−b�
i,j)

ADRSi
(σ�

j , j,Seed) �= σj we can obtain a preimage by computing

c
(b�

i,j−1,bi,j−b�
i,j)

ADRSi
(σ�

j , j,Seed). So we obtain

|SuccGAME.4(A)| ≤ InSecsm-pre(F ∈ Th; t̃, d · l).

This concludes the sketch of the proof.

7 SPHINCS+

In this section we will recap the SPHINCS+ structure and afterwards give fixes to
the original SPHINCS+ proof. To obtain a fixed proof we will utilize the results
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from Theorem 2. In SPHINCS+ a special function to compute message digest is
introduced. An expected property of that function is interleaved target subset-
resilience. The formal definition of this property is given in the full paper [HK22].
The part of the proof where we use this property is the same as in the SPHINCS+

paper [BHK+19]. Hence, we will not discuss it in details.

7.1 Brief Description

First we give a brief description of the SPHINCS+ signature scheme. An exam-
ple of the SPHINCS+ structure is shown in Fig. 3 in the full paper [HK22]. A
detailed description can be found in [BHK+19]. The public key consists of two
n-bit values: a random public seed PK.seed and the root of the top tree in the
hypertree structure. PK.seed is used as a first argument for all of the tweakable
hash functions calls. The private key contains two more n-bit values SK.seed
and SK.prf. We discuss the main parts of SPHINCS+. First we describe the
addressing scheme. As SPHINCS+ uses THFs, different tweaks are required for
all calls to THFs. The tweaks are instantiated by the addresses. The address is a
32 byte value. Address coding can be done in any convenient way. Each address
has a prefix that denotes to which part of the SPHINCS+ structure it belongs.
We denoted this prefix as ADRS in previous sections.

Then we need to discuss binary trees. In the SPHINCS+ algorithm, binary
trees of height γ always have 2γ leaves. Each leaf Li, i ∈ [0, 2γ −1] is a bit string
of length n. Each node of the tree Ni,j , 0 < j ≤ γ, 0 ≤ i < 2γ−j is also a bit
string of length n. The values of the internal nodes of the tree are calculated
from the children of that node using a THF. A leaf of a binary tree is the output
of a THF that takes the elements of a WOTS-TW public key as input.

Binary trees and WOTS-TW signature schemes are used to construct a
hypertree structure. WOTS-TW instances are used to sign the roots of binary
trees on lower levels. WOTS-TW instances on the lowest level are used to sign
the public key of a FORS (Forest of Random Subsets) few-time signature scheme
instance. FORS is defined with the following parameters: k ∈ N, t = 2a. This
algorithm can sign message digests of length ka-bits.

FORS key pair. The private key of FORS consists of kt pseudorandomly gen-
erated n-bit values grouped into k sets of t elements each. To get the public key,
k binary hash trees are constructed. The leaves in these trees are k sets (one
for each tree) which consist of t values, each. Thus, we get k trees of height a.
As roots of k binary trees are calculated they are compressed using a THF. The
resulting value will be the FORS public key.

FORS Signature. A message of ka bits is divided into k lines of a bits. Each of
these lines is interpreted as a leaf index corresponding to one of the k trees. The
signature consists of these leaves and their authentication paths. An authentica-
tion path for a leaf is the set of siblings of the nodes on the path from this leaf to
the root. The verifier reconstructs the tree roots, compresses them, and verifies
them against the public key. If there is a match, it is said that the signature was
verified. Otherwise, it is declared invalid.
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The last thing to discuss is the way the message digest is calculated. First, a
pseudorandom value R is prepared as R = PRFmsg(SKprf ,OptRand,M) using
a dedicated secret key element SK.prf and the message. This function can be
made non-deterministic initializing the value OptRand with randomness. The R
value is part of the signature. Using R, we calculate the index of the FORS
key pair with which the message will be signed and the message digest itself:
(MD||idx) = Hmsg(R,PK.seed,PK.root,M).

The signature consists of the randomness R, the FORS signature (under
idx from Hmsg) of the message digest, the WOTS-TW signature of the corre-
sponding FORS public key, and a set of authentication paths and WOTS-TW
signatures of tree roots. To test this chain, the verifier iteratively reconstructs
the public keys and tree roots until it gets the root of the top tree. If this matches
the root given in the SPHINCS+ public key, the signature is accepted.

7.2 SPHINCS+ Proof

In this part we fix the proof of security of the SPHINCS+ framework. The
security had several issues which are described in [KKF20,ABB+20]. The
SPHINCS+ construction uses the following functions:

F := Th1 : P × T × {0, 1}n → {0, 1}n; Thk : P × T × {0, 1}kn → {0, 1}n;
PRF : {0, 1}n × {0, 1}256 → {0, 1}n; Thl : P × T × {0, 1}ln → {0, 1}n;
Hmsg : {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m.
PRFmsg : {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n;
H := Th2 : P × T × {0, 1}2n → {0, 1}n;

In this section, we prove the following Theorem about the standard EU-
CMA-security (for a definition see the full paper [HK22]) of SPHINCS+. Note
that F, H, Thl, and Thk are members of a collection Th of tweakable hash
functions with different message lengths.

Theorem 3. For parameters n,w, h, d,m, t, k as described in [BHK+19] and l
be the number of chains in WOTS-TW instances the following bound can be
obtained:

InSecEU−CMA(SPHINCS+; ξ, qs)
≤ InSecprf(PRF, ξ, q1) + InSecprf(PRFmsg, ξ, qs)
+ InSecitsr(Hmsg, ξ, qs) + w · InSecsm-ud(F ∈ Th; ξ, q2)
+ InSecsm-tcr(F ∈ Th; ξ, q3 + q7) + InSecsm-pre(F ∈ Th; ξ, q2)
+ InSecsm-tcr(H ∈ Th; ξ, q4) + InSecsm-tcr(Thk ∈ Th; ξ, q5)
+ InSecsm-tcr(Thl ∈ Th; ξ, q6)
+ 3 · InSecsm-tcr(F ∈ Th; ξ, q8) + InSecsm-dspr(F ∈ Th; ξ, q8),

where q1 < 2h+1(kt + l), q2 < 2h+1 · l, q3 < 2h+1 · l · w, q4 < 2h+1k · 2t, q5 < 2h,
q6 < 2h+1, q7 < 2h+1kt, q8 < 2h ·kt and qs denotes the number of signing queries
made by A.
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Proof. We want to bound the success probability of an adversary A against
the EU-CMA security of SPHINCS+. Towards this end we use the following
series of games. We start with GAME.0 which is the EU-CMA experiment for
SPHINCS+. Now consider a GAME.1 which is GAME.0 but the experiment
makes use of a SPHINCS+ version where all the outputs of PRF, i.e., the
WOTS-TW and FORS secret-key elements, get replaced by truly random values.

Next, consider a game GAME.2, which is the same as GAME.1 but in the
signing oracle PRFmsg(SK.prf, ·) is replaced by a truly random function.

Afterwards, we consider GAME.3, which differs from GAME.2 in that we
are considering the game lost if an adversary outputs a valid forgery (M,SIG)
where the FORS signature part of SIG contains only secret values which were
contained in previous signatures with that FORS key pair obtained by A via the
signing oracle.

Now consider what are the possibilities of the adversary to win the game.
The FORS signature in a forgery must include the preimage of a FORS leaf node
that was not previously revealed to it. There are two separate cases for that leaf:

1. The FORS leaf is different to the leaf that we would generate for that place.
2. The FORS leaf is the same to the leaf that we would generate for that place;

Let’s consider GAME.4 which differs from GAME.3 in that we are considering
that the game is lost in the first “leaf case” scenario.

Now let’s analyze those games.

GAME.0 - GAME.3. The hops between GAME.0 and GAME.3 are fully
presented in the SHINCS+ paper [BHK+19]. The bound for these games are

|SuccGAME.0
A − SuccGAME.1

A | ≤ InSecprf(PRF, ξ, q1), (4)

|SuccGAME.1
A − SuccGAME.2

A | ≤ InSecprf(PRFmsg, ξ, qs), (5)

|SuccGAME.2
A − SuccGAME.3

A | ≤ InSecitsr(Hmsg, ξ, qs), (6)

where q1 < 2h+1(kt + l) and qs is the number of signing queries made by A.

GAME.3 - GAME.4. Let’s break the hop between GAME.3 and GAME.4
into several steps. Since the FORS leaf is different to the leaf that we would
generate for that place there are two possible outcomes. First is that the forged
signature contains a second preimage for some input of a THF. This can occur
in the FORS or WOTS-TW instances, the compression of FORS or WOTS-TW
public keys, and in the binary trees. And second case is that a WOTS-TW
forgery occurs.

Consider GAME.3.1 in which the game is lost if there is a second preimage
contained in the forged signature for an input of H in a binary tree. The difference
for this case can be bounded by building a SM-TCR adversary for H as a
member of a collection. We construct the SPHINCS+ structure using SM-TCR
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challenger for every input to H and the oracle Thλ for the rest. Here we also
consider binary trees of FORS as part of the challenge. Hence we obtain

|SuccGAME.3
A − SuccGAME.3.1

A | ≤ InSecsm-tcr(H ∈ Th; ξ, q4), (7)

where q4 < 2h+1 · k · 2t.
Now we introduce GAME.3.2 which is different from GAME.3.1 in that we

are considering the game lost if a second preimage for Thk is contained in
the FORS tree nodes computed while verifying the forged signature. As in the
previous case this can be bounded by

|SuccGAME.3.1
A − SuccGAME.3.2

A | ≤ InSecsm-tcr(Thk ∈ Th; ξ, q5), (8)

where q5 < 2h.
Next the GAME.3.3 is considered lost if a second preimage for Thl is con-

tained in the WOTS-TW public keys computed from the forged signature. Fol-
lowing the same ideas as above we obtain

|SuccGAME.3.2
A − SuccGAME.3.3

A | ≤ InSecsm-tcr(Thl ∈ Th; ξ, q6), (9)

where q6 < 2h+1.
The GAME.3.4 is lost if there is a second preimage in the forged signature for

some input for F outside the WOTS-TW instances, i.e., in as a FORS signature
value. The bound for this case is

|SuccGAME.3.3
A − SuccGAME.3.4

A | ≤ InSecsm-tcr(F ∈ Th; ξ, q7), (10)

where q7 < 2h · k · t.
So the only case left to hop to GAME.4 is a WOTS-TW forgery for one out

of d < 2h+1 instances. Using the bound in Theorem2 we obtain

|SuccGAME.3.4
A − SuccGAME.4

A | ≤ InSecsm-tcr(F ∈ Th; ξ, q3)
+ InSecsm-pre(F ∈ Th; ξ, q2 + w · InSecsm-ud(F ∈ Th; ξ, q2), (11)

where q2 < 2h+1 · l, q3 < 2h+1 · lw.

GAME.4. The analysis of GAME.4 can be found in the SPHINCS+ (see
paper [BHK+19] Claim 23). Here we note that we cannot use the SM-PRE
bound as the reduction is an instance of a T-openPRE game as introduced
in [BH19], i.e., the reduction needs to know some preimages. The only difference
is that we have already excluded the WOTS-TW preimage case. Hence we obtain
the following bound:

SuccGAME.4
A ≤ 3 · InSecsm-tcr(F; ξ, q8) + InSecsm-dspr(F; ξ, q8), (12)

where q8 < 2h · kt.
Combining the inequalities we obtain the bound from the theorem.
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8 Analyzing Quantum Generic Security

In this section we collect bounds on the complexity of generic attacks against the
properties discussed so far for THFs and KHFs. The definitions of the properties
for KHFs can be found in the full paper [HK22]. A hash function Th is com-
monly considered a good function if there are no attacks known for any security
property that perform better against Th than a generic attack against a random
function. First we discuss the current situation which is summarized in Table 1.
Attacks that match the security bound for nonnegligible probability for the UD
and PRF properties are shown in the full paper [HK22]. Then we give a new
proof for the SM-UD property. To do so we follow the approach of [HRS16]
where different instances of average-case distinguishing problems over boolean
functions are reduced to breaking the different hash function security properties.
The advantage of this approach is that we know lower bounds for these decision
problems, even for quantum algorithms. This allows us to derive lower bounds on
the complexity of quantum attacks against our security properties. A new proof
for the SM-TCR property which improves a previous result from [BHK+19] can
be found in the full version of the paper [HK22].

Table 1. Success probability of generic attacks – In the “Success probability” column
we give the bound for a quantum adversary A that makes q quantum queries to the
function and p classical queries to the challenge oracle. The security parameter n is the

output length of Th. We use X =
∑

γ

(
1 − (

1 − 1
t

)γ)k (
p
γ

) (
1 − 1

2h

)p−γ 1
2hγ .

Property Success probability Status

SM-TCR Θ((q + 1)2/2n) proven (this work, [BHK+19,HRS16])

SM-DSPR Θ((q + 1)2/2n) conjectured ([BHK+19])

SM-PRE Θ((q + 1)2/2n) based on conjecture ([BH19,BHK+19])

PRF Θ(12q/
√

2n) proven ([XY19])

SM-UD Θ(12q/
√

2n) proven (this work)

ITSR Θ((q + 1)2 · X) conjectured ([BHK+19])

8.1 Estimated Security

The success probability of generic attacks against SM-TCR and a reduction
to an average-case search problem was given in [BHK+19], but it had several
limitations on the adversary. In the full version of this paper (see [HK22]) a
proof without extra limitations on the adversary is given. A generic attack using
Grover search against plain TCR is given in [HRS16], which is applicable against
SM-TCR – as it runs a second preimage search when all information is available
– and has a success probability matching the proven bound.

With regard to SM-DSPR, two bounds are proven in [BH19]. On the one
hand, the bound O((q + 1)2/2n) is proven for single-target DSPR of a KHF,
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which is tight. This proof perfectly transfers to the SM-DSPR notion of a THF
by specifying the tweak we analyze Th(P, T, ·) which can be viewed as a KHF
with a fixed key. For a T -target version a factor-T lose bound is obtained via
a standard plug’n’pray argument, placing the challenge instance at a random
position, hoping that that will be the one that gets distinguished by the adver-
sary. In [BHK+19], the authors conjecture that the actual multi-target bound
should be the same as the single-target bound. A supporting argument for this
conjecture is that the best attack against multi-target DSPR for now is still a
second-preimage search which has the same complexity in both cases.

For PRE of a KHF h, a bound of SuccPRE
h,p (A) = Θ((q + 1)2/2n) is given

in [HRS16] that also holds in a multi-function, multi-target setting. The bound
is proven for h that are random and compressing by at least a factor 2 in
the message length. It is conjectured that it also applies for length preserv-
ing hash functions, i.e., functions that map n-bit messages to n-bit outputs,
possibly taking additional inputs like function keys or tweaks. A bound for
SM-PRE can be proven using SM-TCR and SM-DSPR (Succsm-preTh,p (A) ≤
3 · Succsm-tcrTh,p (A) + Advsm-dspr

Th,p (A)) as shown in [BHK+19,BH19]. With this we
derive the same bound of Succsm-preTh,p (A) = Θ((q+1)2/2n). For the case of multiple
targets, the tight bound needs above conjecture for SM-DSPR. A factor-T -loose,
unconditional bound follows from the loose bound for SM-DSPR.

The success probability of generic attacks against PRF is analyzed in [XY19].
The analysis is done by reducing to a distinguishing problem between a boolean
function of weight 0 and a random boolean function of weight 1.

The notion of undetectability was introduced in [DSS05]. In that work, the
authors give a bound for single-target undetectability considering classical adver-
saries as O(q/2n). Below, we give a bound for multi-target undetectability of
random Th considering quantum adversaries.

For all notions we conjecture that the bounds are exactly the same for the
case of collections. The reason is that for a random tweakable function, every
tweak is related to an independent random function. Hence, giving access to
those does not give any information about the targets to the adversary. This is
also reflected in the reductions that we know so far. In these, the function for a
tweak that is not used for a challenge is simulated by an independent random
function and we can give access to this function in parallel to the challenge oracle
as we do not touch it in the reduction.

In the full paper [HK22] we also discuss properties of KHFs which are
similar to ones discussed above. Specifically DM-SPR, DM-UD, DM-PRE,
DM-DSPR. We show that it is possible to obtain exactly the same table of
success probabilities by replacing SM-TCR with DM-SPR, SM-DSPR with
DM-DSPR, SM-PRE with DM-PRE, and SM-UD with DM-UD. In the fol-
lowing subsection we give a proof for the SM-UD property.

8.2 Decision Problem

Here we define distinguishing problems over boolean functions for which an opti-
mal query complexity bound is known. In our reductions to show lower bounds,



30 A. Hülsing, M. Kudinov

we assume we have access to some random functions G and g. Hence, we need to
simulate G and g efficiently so that any algorithm with q queries cannot notice a
difference. According to [Zha12] this can be simulated using 2q-wise independent
hash functions or QPRFs.

Definition 9 ([HRS16]).
Let F := {f : {0, 1}m → {0, 1}} be the collection of all boolean functions on

{0, 1}m. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions Dλ on F such
that f ←$ Dλ satisfies

f : x →
{

1 with prob. λ

0 with prob. 1 − λ

for any x ∈ {0, 1}m.

We follow the same approach as in [HRS16] and define Avg − Searchλ to be
the problem that given oracle access to f ← Dλ, finds an x such that f(x) = 1.
For any quantum algorithm A that makes q queries, we define

Succq
λ(A) := Pr

f←Dλ

[
f(x) = 1 : x ← Af (·)

]

Theorem 4 ([HRS16]). Succq
λ(A) ≤ 8λ(q+1)2 holds for any quantum algorithm

A with q queries.

Assume we have a family F of all n-bit boolean functions. We will call the
weight of a boolean function f the result of the following function: wt(f) = |{x :
f(x) = 1}|. Let’s denote Si = {f ∈ F|wt(f) = i}. We define the distinguishing
advantage for two sets Si and Sj as

Definition 10 (Dist-i,j). Let Si be as defined above. We define the distinguish-
ing advantage between

Advq
S0,S1

(A)
def
=

∣∣∣∣ Pr
f←$Si

[
Af (·) = 1

]
− Pr

f←$Sj

[
Af (·) = 1

]∣∣∣∣ .

We derive the following lemma from Theorem 9.3.2 [KLM06].

Lemma 1 ([KLM06]). Let Si be as defined above. The advantage of any q query
quantum algorithm in distinguishing S0 from S1 is Advq

S0,S1
(A) ≤ 6q/

√
2n.

Avg − Searchλ is used to prove SM-TCR (the proof can be found in the full
paper [HK22]) and SM-UD will be bounded by Advq

S0,S1
(A).

8.3 SM-UD

In this section we analyze the SM-UD property. In our reduction we need sets
Sl
0 and Sl

1. Sl
i will contain all functions f : [1, l] × {0, 1}n → {0, 1}n. Where

f(j, ·), j ∈ [1, l] is a random function from Si. We will now show that distin-
guishing f ←$ Sl

1 from f ←$ Sl
0 is as hard as distinguishing f ←$ S1 from

f ←$ S0.
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Algorithm 4: Dist-1,0 to SM-UD
Input : f , SM-UD adversary A
Output: b′ ∈ {0, 1}n

1 Choose a random public parameter P ←$ P
2 Construct a random tweakable hash function

H : P × T × {0, 1}n → {0, 1}n using random function
F : P × T × {0, 1}n → {0, 1}n and ey : T → {0, 1}n the following way:

3

H(p, t, x) :

{
if (p = P, f(t, x) = 1) : Return ey(t)
Return F (p, t, x)

4 Give oracle access to H to the adversary
5 For each query Ti respond with ey(Ti), i ∈ [1, p]
6 Give the public parameter P to adversary A2

7 return Output of A2

Lemma 2. Consider sets S0, S1, Sl
0, S

l
1 as defined above. Then Advq

S0,S1
(A) =

Advq

Sl
0,Sl

1
(A).

Proof. Assume we can distinguish f ←$ S1 from f ←$ S0 with some algorithm
A. Then to distinguish f ←$ Sl

1 from f ←$ Sl
0 we run A on f(1, ·). Hence,

Advq
S0,S1

(A) ≤ Advq

Sl
0,Sl

1
(A).

To show equality we now give the reduction in the opposite direction. Assume
we can distinguish f ←$ Sl

1 from f ←$ Sl
0. Our task is to distinguish f ′ ←$ S1

from f ′ ←$ S0. To build f from f ′ we can sample zi ←$ {0, 1}n using a random
function e : [1, l] → {0, 1}n, i ∈ [1, l], and set f(i, x) def= f ′(x ⊕ e(i)). One can
see that if f ′ was a constant zero function then f is a collection of constant
zero functions, so f ∈ Sl

0. If f ′ ∈ S1 then f(i, ·) outputs 1 for one random value
since zi were chosen uniformly at random, so f ∈ Sl

1. Hence, Advq
S0,S1

(A) ≥
Advq

Sl
0,Sl

1
(A).

Lemma 3. Let n ∈ N, H : P ×T ×{0, 1}n → {0, 1}n - a random hash function.
Any quantum adversary A that solves SM-UD for p targets making q queries to
H can be used to construct a quantum adversary B that makes 2q queries to its
oracle and distinguishes S0 from S1 with an advantage Advsm-ud

H,p (A) ≤ 12q/
√

2n.

Proof. We give a reduction that distinguishes S
|T |
0 from S

|T |
1 . The lemma follows

then by applying Lemmas 1 and 2. Assume we obtain a function f either from
S

|T |
0 or from S

|T |
1 . We build the reduction shown in Algorithm4 for which we

refer as quantum adversary B.
As in the single-target case we can see that for any f we construct a truly

random tweakable hash function. If f ∈ S
|T |
0 we answer the adversary with
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random values. If f ∈ S
|T |
1 we answer the queries with outputs of the hash

function on randomly chosen inputs.

Adv2q

S
|T |
0 ,S

|T |
1

(B) = | Pr
f←$S

|T |
0

[Bf () = 1] − Pr
f←$S

|T |
1

[Bf () = 1]| = Advsm-ud
H,p (A).

Combining this with Lemmas 1 and 2 we obtain the final bound:

Advsm-ud
Th,p (A) ≤ Adv2q

S
|T |
0 ,S

|T |
1

(B) = Adv2q
S0,S1

(B) ≤ 12q/
√

2n,

where q denotes the number of queries to Th.
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Abstract. Lyubashevsky’s signatures are based on the Fiat-Shamir
with aborts paradigm, whose central ingredient is the use of rejection
sampling to transform secret-dependent signature samples into sam-
ples from (or close to) a secret-independent target distribution. Several
choices for the underlying distributions and for the rejection sampling
strategy can be considered. In this work, we study Lyubashevsky’s sig-
natures through the lens of rejection sampling, and aim to minimize
signature size given signing runtime requirements. Several of our results
concern rejection sampling itself and could have other applications.

We prove lower bounds for compactness of signatures given signing run-
time requirements, and for expected runtime of perfect rejection sampling
strategies. We also propose a Rényi-divergence-based analysis of Lyuba-
shevsky’s signatures which allows for larger deviations from the target dis-
tribution, and show hyperball uniforms to be a good choice of distribu-
tions: they asymptotically reach our compactness lower bounds and offer
interesting features for practical deployment. Finally, we propose a differ-
ent rejection sampling strategy which circumvents the expected runtime
lower bound and provides a worst-case runtime guarantee.

1 Introduction

Lyubashevsky’s signature scheme [Lyu09,Lyu12] may be viewed as a lattice vari-
ant of Schnorr’s group-based signature scheme [Sch91], with a core conceptual
difference being the use of rejection sampling and the associated introduction
of aborts and repeats in the Fiat-Shamir heuristic [FS86]. The use of rejection
sampling in Lyubashesvky’s scheme is the focus of the present work. It is hard
to overstate the importance of Lyubashevsky’s signature scheme in lattice-based
cryptography. Thanks to its elementary and flexible design, numerous variants
and optimizations have been proposed (see [AFLT16,GLP15,DDLL13,BG14],
or [Lyu16], for instance). Notably, it led to the TESLA [ABB+17,AAB+19] and
Dilithium [DKL+18,BDK+20] candidates to the NIST standardization project
on post-quantum cryptography. It also led to lattice-based zero-knowledge proofs
(see [LNP22] and the references therein).
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Lyubashevsky’s scheme involves a publicly shared matrix A ∈ Z
n×m
q (note

that other algebraic setups are possible, but this is not relevant to the present
discussion). The signing key is a matrix S ∈ Z

m×k. It is small in the sense
that all its entries have absolute values significantly smaller than q. The verifi-
cation key associated to S is T = AS. Given a message μ ∈ {0, 1}∗, the signer
samples a small masking vector y ∈ Z

m and computes a random-looking com-
mitment com = Ay. By using a hash function H taking small values in Z

k, it
computes a challenge c = H(com, μ). Finally, if some (possibly probabilistic)
test passes, it outputs a signature σ = (z, c) with z = y+Sc, and else it restarts
from scratch. Given a signature σ = (z, c) for a message μ, the verifier accepts if
and only if z is small and H(Az − Tc, μ) = c. We refer the reader to Fig. 2 for
a formal description. As suggested by the choice of terminology, Lyubashevsky’s
signature can be viewed as an identification protocol made non-interactive by
relying on the Fiat-Shamir heuristic, i.e., by replacing a truly random c by the
output of a hash function. The security proof relies on the Random Oracle Model
(ROM) as it models H as a function such that each image is distributed as c is
supposed to be.

Compared to Schnorr’s signature scheme, the signing key and mask do not
belong to a finite set, preventing the use of a uniform mask y to hide the sensitive
term Sc.1 One possibility (see, e.g., [DPSZ12]) is to sample y exponentially
larger than Sc as a function of the security parameter, so that the distributions
of y and y + Sc have exponentially small statistical distance. As q must be
larger than y and the smallness of S relative to q impacts security, this flooding
approach leads to large parameters. Instead, Lyubashevsky [Lyu09,Lyu12] put
forward the notion of Fiat-Shamir with aborts. This is the reason for the test
concerning z in the signing algorithm: it is so that the output signature (z, c)
follows a distribution that is independent of the sensitive term Sc.

A classic application of rejection sampling (see, e.g., [Dev86, Chapter 2]) is to
use a source distribution Q that is convenient to sample from, to create samples
from a target distribution P . In Lyubashevsky’s scheme, the purpose differs: we
start from a pre-source distribution Q for y; it is shifted by Sc, leading to a
distribution Q+Sc for y + Sc; the latter is the source distribution; it is rejected
to a target distribution P for z that does not depend on the signing key S.
The purpose of rejection sampling here is to hide the sensitive data Sc. Diverse
choices of pairs of distributions have been put forward in the literature: uniform
in hypercubes [Lyu09], Gaussian with the same standard deviation while allowing
for some small statistical inaccuracy in the target distribution [Lyu12], a bimodal
Gaussian source distribution with a Gaussian target distribution in association
with an accomodating arithmetic modification of the scheme [DDLL13] (the
modification consists in replacing q with 2q and changing key generation to
ensure that T = −T = qI mod 2q). The pre-source distribution Q is shifted by
(−1)bSc for a uniform bit b, leading to a source distribution Q±Sc. We refer

1 If we view y and S over Zq rather than Z, then they do belong to a finite set; but
for security, the masking should preserve smallness relative to q, which the uniform
distribution modulo q does not achieve.
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to this as the bimodal setting. By opposition, we now refer to the former two
cases where the source distribution is Q+Sc as the unimodal setting. The first
choice (uniform distributions in hypercubes) leads to a simple design, whereas
the latter two allow for more compact signatures. One may also want to add
constraints on the number of loop iterations, notably to guarantee a signing
runtime upper bound. In the extreme case of removing rejection altogether, it
was recently shown in [ASY22] that a limited flooding suffices, compared to the
exponential flooding discussed earlier. This leads us to the question we address
in this work:

Given signing runtime requirements, which rejection sampling strategy
leads to the most compact signatures?

In a signature σ = (z, c), the second component contributes to a small fraction of
the bitsize: the main requirement on c is that it has sufficiently high min-entropy
to make it hard to guess. On the other hand, the contribution of z towards
signature length is mostly driven by ‖z‖, as this directly impacts security: for
a given security level, the smaller ‖z‖, the more compact the signatures. For
this reason, we simplify the overall objective to minimizing Ex←↩P (‖x‖) under
signing runtime requirements.

Contributions. Our main contributions concern the optimality of rejection
sampling design choices towards optimizing signature sizes and signing runtime.
We provide lower bounds, and study ways to reach and circumvent them.

Before describing the main results, we need to quantify the runtime of rejec-
tion sampling strategies. We note that for classic rejection sampling with tar-
get P and source Q, the expected number of samples needed is R∞(P‖Q) where
R∞(D1‖D2) = supx D1(x)/D2(x) refers to the Rényi divergence of infinite order.
Indeed, for classic rejection sampling, one samples x from Q and accepts with
probability P (x)/(M ·Q(x)), for M = R∞(P‖Q). This justifies using R∞(P‖Q)
to quantify the runtime for rejecting Q to P .

We start with our lower bounds.

• Considering Lyubashevsky’s scheme with perfect rejection sampling to the
target distribution P (as in [Lyu09]), the relevant quantity measuring the
signing runtime is then given by M = maxS,c R∞(P‖Q+Sc). We show (under
a mild assumption discussed below) that for all P and Q such that M is finite,
the expected norm Ex←↩P (‖x‖) is Ω((m/ logM) ·maxS,c ‖Sc‖). Interestingly,
this bound is a factor

√
m lower than what is obtained for the typical choice

of P and Q set as uniform distributions in hypercubes.
• In the case of perfect rejection with the accommodating arithmetic modifica-

tion from [DDLL13], then the relevant quantity for measuring the signing run-
time is M = maxS,c R∞(P‖Q±Sc), where Q±Sc denotes the balanced mixture
of Q+Sc and Q−Sc. In this case, we show (under the same mild assumption)
that for all P and Q such that M is finite, the expected norm Ex←↩P (‖x‖)
is Ω(

√
m/ logM ·maxS,c ‖Sc‖). This lower bound is actually reached (up to

a constant factor) for P and Q Gaussian as in [DDLL13].
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• We show that for any algorithm (terminating with probability 1) that selects
one out of many samples from Q to get a sample from P , the expected number
of required samples from Q is ≥ R∞(P‖Q). This lower bound is reached by
classic rejection sampling. In the case of Lyubashesvky’s signatures with exact
rejection sampling, this general result implies that classic rejection sampling
is the appropriate strategy when it comes to minimize the expected runtime.

The lower bounds above seem to give little margin of improvement in the
design choices of Lyubashevsky’s signatures, except for the unimodal case, for
which uniform distributions in hypercubes do not reach the lower bound. Our
second set of results considers ways to reach or circumvent these lower bounds.

• Concerning the unimodal case, one way to circumvent the results above
is to consider imperfect rejection sampling, by allowing for an approxi-
mation to P whose accuracy is parameterized by some ε > 0 (as intro-
duced in [Lyu12]). Then the relevant quantity to bound the runtime
becomes maxS,c Rε

∞(P‖Q+Sc), where Rε
∞ is a smoothed variant of R∞ that

we define. In this case, we improve the signature security analysis from [Lyu12]
by using the Rényi divergence instead of the statistical distance to quantify
the closeness to P of the output distribution. This allows choosing ε larger
than previously, leading to a (limited) signature compactness improvement.

• Gaussian distributions provide better signature compactness in the bimodal
and imperfect unimodal regimes, than uniforms in hypercubes in the perfect
unimodal regime. However, uniforms in hypercubes are sometimes preferred
(see, e.g., Dilithium), because they lead to a simpler implementation, which
in turn makes protection against timing attacks easier. We consider uniforms
in hyperballs as a new alternative for the choice of source and target distribu-
tions. We show that this choice reaches the two lower bounds for Ex←↩P (‖x‖)
for perfect rejection sampling and is as good as Gaussians for imperfect rejec-
tion sampling (up to a constant factor). Interestingly, the rejection test for
uniforms in hyperballs is very simple, similarly to uniforms in hypercubes. We
not only study the choice of uniforms in hyperballs in the asymptotic regime,
but also compare it to Dilithium.

• Finally, imperfect rejection from Q to P allows us to describe and analyze
variants of rejection sampling where the maximum number of loop iterations
is bounded. This provides trade-offs between maximum signing runtime and
signature sizes. When instantiated to rejection-free sampling, we recover the
scheme and analysis from [ASY22], whereas it quickly converges to Lyuba-
shevsky’s signature scheme when the signing runtime bound grows.

The results concerning signature compactness for unbounded (perfect and
imperfect) rejection sampling are summarized in Table 1.

Technical Overview. In Sect. 2, we provide the background necessary to this
work, including rejection sampling and Lyubashevsky’s signature scheme.

After identifying the notion of expected number of iterations during rejection
sampling with the notion of smooth-Rényi divergence that we define, we start
addressing our main question of understanding to which extent the expected
norm of a signature can be small for target expected signing runtime constraints.
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Table 1. This table expresses the compactness of the signature modeled as Ex←↩P (‖x‖)
given the signing runtime constraint for various choices of distributions P and Q. The
column indicates the signing runtime constraint which is modeled in the unimodal case
by maxv∈Bm(t) Rε

∞(P‖Q+v) ≤ M where ε quantifies the accuracy of rejection sampling
and in the bimodal case by maxv∈Bm(t) R∞(P‖Q±v) ≤ M . In the first row, P and Q
are chosen to be uniform in m-dimensional hypercubes of appropriate side-lengths, in
the second row, they are chosen to be m-dimensional Gaussians of appropriate vari-
ance. In the third row, they are chosen to be uniform in the m-dimensional hyperballs
of appropriate radii. The last row gives a lower bound on the compactness for any
choice of P and Q. Multiplicative constants are omitted in this table, and we make the
assumption that logM ≤ m.

Unimodal (ε = 0) Unimodal
(ε ≥ 2−o(m) and ε = o(1/m))

Bimodal (ε = 0)

Hypercube tm3/2

log M
tm3/2

log M
tm3/2

log M

Gaussian ∞ t
√

m
√

log 1
ε
+log M

log M
t
√

m√
log M

Hyperball tm
log M

(Lemma 6)
t
√

m
√

log 1
ε
+log M

log M
(Lemma 6) t

√
m√

log M
(Lemma 7)

Lower bound tm
log M

(Corollary 1) ? t
√

m√
log M

(Corollary 2)

Lower Bounds. In Sect. 3, we prove lower bounds in the case of exact rejec-
tion sampling in both unimodal and bimodal settings. These lower bounds
are obtained following a similar path. In what follows, we focus on the uni-
modal setting. To ease the analysis, we place ourselves in a slightly simpli-
fied setup where shifts belong to a hyperball Bm(t) of radius t instead of
being defined as Sc. Given that S is unknown, this simplification seems reason-
able and allows avoiding significant complications in the proof. In this setting,
we prove that for a given constraint maxv∈Bm(t) R∞(P‖Q+v) ≤ M , we have
Ex←↩P (‖x‖) ≥ (t/M1/(m−1) − 1) − √

m/2.
Our lower bounds are obtained in three steps: (1) considering the same setting

with continuous distributions, we first prove that we can restrict ourselves to the
case of isotropic distributions over Rm, where isotropic means that their densities
only depend on the norm. Specifically, we prove that for any two densities f, g,
there exist isotropic distributions f∗, g∗ satisfying maxv∈Bm(t) R∞(f∗‖g∗

+v) ≤ M
as well as Ex←↩f∗(‖x‖) = Ex←↩f (‖x‖). The latter distributions are essentially
obtained from f, g by averaging their respective densities on hyperspheres.
(2) Starting with f and g isotropic, we show that Ex←↩f (‖x‖) = μm/μm−1

where μk =
∫ ∞
0

rkf(r) dr. The main technicality consists in proving an inter-
mediate lower bound μm−1/μm−2 ≥ (t/M1/(m−1) − 1) which results from the
constraint maxv∈Bm(t) R∞(f‖g+v) ≤ M . Our lower bound is then obtained
by applying the Cauchy-Schwarz inequality |E(XY )|2 ≤ E(X2)E(Y 2) to ran-
dom variables X = ‖x‖m/2 and Y = ‖x‖(m−2)/2, where x ←↩ f . Indeed,
it immediately leads to inequality μm · μm−2 ≥ (μm−1)2, which results in
μm/μm−1 ≥ μm−1/μm−2 ≥ (t/M1/(m−1) − 1). (3) A similar lower bound in the
discrete setting is obtained by considering the continuous density p(x) = P (�x	)
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with P being a discrete probability. These lower bounds provide us with a tar-
get to reach, and we can compare them with the signature size obtained when
instantiating the above scheme with various distributions.

On Alternative Rejection Sampling Strategies. In Sect. 3.3, we investigate the
question of the relevance of rejection sampling strategies differing from the classic
one. We consider the following setting. As above, the goal is to sample from a
distribution P given access to a sampler from a distribution Q, and we consider
a sequence of samples (Xi)i≥1 from distribution Q. Any strategy is allowed
as long as we output one of the Xi’s. A strategy is given by a sequence of
algorithms (Ai)i≥1 that take samples (Xj)j≤i as input and return either an
index j ∈ [i], which corresponds to halting with output Xj , or a special symbol r
which corresponds to rejecting and moving to Ai+1. We restrict ourselves to the
case of procedures that terminate with probability 1. Considering i∗ the random
variable denoting the number of samples observed in a strategy, our objective is
then to measure how small E(i∗) can be. We prove that for any P,Q, we have
E(i∗) ≥ R∞(P‖Q). This result is obtained by proving that for any x, we have
P (x) ≤ E(i∗) · Q(x), leading to the former inequality by definition of R∞.

Rényi-Based Analysis for Imperfect Rejection Sampling. All lower bounds are
for perfect rejection sampling, in the sense that one obtains a sample from
(exactly) P . In [Lyu12], Lyubashevsky showed that one can consider imper-
fect rejection sampling, and shows that it is particularly beneficial in the case of
Gaussians. We propose an analysis that replaces the use of the statistical distance
as done in [Lyu12] by that of the smooth Rényi divergence, and allows loosening
the constraints on imperfectness. We first recall that in [Lyu12], the statistical
distance is used to bound the statistical distance between a (single) execution
of the imperfect rejection sampling algorithm and the target distribution. Using
imperfect rejection sampling in a signature scheme and given bound ε for the
above statistical distance, one can then bound the distinguishing advantage of
an adversary between the real security game and the ideal game (where signa-
tures are simulated by sampling them from the target distribution) by qsig · ε.
Here qsig is a bound on the number of signature queries an adversary can make.
In Sect. 4, we prove that for P,Q such that Rε

∞(P‖Q) is finite, the Rényi diver-
gence of infinite order between a (single) execution of the imperfect rejection
sampling algorithm and the target distribution is bounded by 1/(1 − ε). Com-
bining this result with the multiplicativity of the Rényi divergence, we can then
bound the Rényi divergence of infinite order between the adversary’s view in
the real game and its view in the ideal game by 1/(1 − ε)qsig for the resulting
signature. The probability preservation property of the Rényi divergence then
allows completing the analysis. Our analysis leads to potential improvements as
the former statistical bound qsig · ε imposes that ε = 2−Ω(λ), while our bound
can be used setting ε = 1/qsig. Since qsig is a (possibly large) polynomial of the
security parameter λ, this puts less constraint on the condition P and Q must
satisfy, which results in compactness improvement.
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Hyperball Uniforms. We show that (continuous) uniform distributions over
hyperballs reach the signature compactness lower bound (up to constant fac-
tors) in both unimodal and bimodal settings, as shown in Sect. 5.1. We also
show that they are as good as Gaussians for imperfect rejection sampling (up
to a constant factor). These results reduce to Rényi divergence computations,
which involve geometric properties of hyperballs. We emphasize that while Gaus-
sian distributions also achieve similar signature size (up to a constant factor) in
both unimodal and bimodal settings (but only in the case of imperfect rejection
sampling with polynomial loss for the unimodal case), using uniform distribu-
tions over hyperballs makes the rejection test as simple as computing ‖z‖ since
it consists only in checking that z is in the hyperball of the target distribution P .
In order to use this distribution in a signature, we propose a generalization of
Lyubashevsky’s signature that allows for continuous source and target distribu-
tions, by adding a rounding step after accepting a sample. Its security relies on
the same mechanisms as the discrete case. This strategy could also benefit to
Gaussian distributions, by allowing to replace discrete Gaussian sampling with
possibly simpler continuous Gaussian sampling. To assess the practicality of this
new choice of distributions, we propose parameters for a variant of Dilithium
with uniform distributions in hyperballs. If considering the sum of bitsizes of a
verification key and a signature, the gains range from ∼ 15% to ∼ 25%, depend-
ing on the security level.

Bounded Rejection Sampling. We conclude this work by proposing an original
strategy to use rejection sampling while guaranteeing a (moderate) worst-case
runtime. This could be beneficial in the context of real-time systems. A simple
strategy could consist in fixing a (very large) bound i on the number of iterations
such that it fails to produce a sample with negligible probability. While this
guarantees a worst-case runtime, the change is mainly cosmetic since it has to
be large enough for the sampling to succeed. In Sect. 6, we propose an alternative
solution that leaves the choice of i open without ever failing: for a fixed bound i,
it performs (up to) i − 1 iterations of the classic rejection sampling and outputs
a sample if it ever succeeds, otherwise, the last (i-th) iteration uses one-shot
flooding techniques (as done in [ASY22]) to guarantee an output. The analysis
makes heavy use of the smooth Rényi divergence and its properties. Different
choices for the bound i offer various trade-offs, ranging from one-shot signatures
(i = 1) as in [ASY22] to Lyubashevsky’s expected polynomial-time signatures (i
going to ∞).

Open problems. Our results suggest that instantiating the Fiat-Shamir with
aborts using uniform distributions in hyperballs is a relevant choice, both in the
unimodal and bimodal settings, as it provides more compact signatures than uni-
form distributions in hypercubes but also much simpler rejection test than Gaus-
sians. We believe it is an interesting open question to investigate a constant-time
implementation with this choice. Regarding further improvements of signatures,
our results show that there is not much room for improvement if the goal is to
minimize signature size or E(i∗). However, other quantities could be considered,
such as the shape of the tail of the distribution of i∗.
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2 Preliminaries

See full version for notations and some standard background.
We introduce a relaxed version of the Rényi divergence, termed the smooth

Rényi divergence, where one is able to remove a few problematic points from
the support, including those that may lie in Supp(p)\Supp(q). Doing so, we can
compare a wider set of probability distributions. For instance, while the Rényi
divergence of infinite order between DZm,σ and DZm,σ,v is infinite when v �= 0,
their smooth divergence is finite, as we show in the full version and is implicit
in [Lyu12]. We could give this definition for any order a ∈ [1,+∞]. However,
only the case a = +∞ is relevant for this work.

This definition is useful to link previous works on rejection sampling and the
Rényi divergence. A similar quantity has been previously defined in the quantum
information literature [Ren05,Dat09], though the specific notion of smoothing
we consider here is slightly different.

Definition 1 (Smooth Rényi Divergence). Let ε ≥ 0. Let p, q be two prob-
ability densities such that

∫
Supp(q)

p(x) dμ(x) ≥ 1 − ε. Their ε-smooth Rényi
divergence of infinite order is

Rε
∞(p‖q) := inf

S⊆Supp(q)∫
S

p(x) dμ(x)≥1−ε

ess sup
x∈S

p(x)
q(x)

.

This definition is equivalent to

Rε
∞(p‖q) := inf{M > 0 | Pr

x←↩p
(p(x) ≤ Mq(x)) ≥ 1 − ε}.

By convention, if
∫
Supp(q)

p(x) dμ(x) < 1 − ε, we define Rε
∞(p‖q) = +∞.

In the full version, we prove that the two definitions are indeed equivalent
and give useful properties of the smooth Rényi divergence.

2.1 Rejection Sampling

Given two close enough densities pt and ps, either both continuous or both
discrete, rejection sampling is a way to generate samples from pt given access
to samples from ps, as explained for instance in [Dev86]. It was used mainly
to generate samples from complex distributions that were “close” to easier-to-
sample distributions. However, in cryptography and particularly in the line of
works started with [Lyu09], it found a peculiar use that diverged from its primary
use. Given a family of densities (p(v)s ), rejection sampling can be used to hide the
parameter v given a density pt that is close to every density in this family. It was
later observed in [Lyu12] that an “imperfect” rejection procedure is sufficient for
this use and leads to smaller parameters, notably standard deviation of ps.
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In the case of Lyubashevsky’s signature scheme [Lyu09,Lyu12], a signature
is a pair of vectors (y + Sc, c) where y ←↩ Py and c would ideally be sam-
pled from Pc. Here Pc : C → R and Py : Z

m → R are two discrete prob-
ability distributions, where C ⊂ Z

k,m, k ≥ 1, and S ∈ Z
m×k is fixed (it is

the signing key). The joint distribution of this pair corresponds to the source
distribution P

(Sc)
s above, which depends on the sensitive data Sc. Rejection

sampling is used to ensure that the output of the signing algorithm is of the
form (z, c) where z ←↩ Pz and c ←↩ Pc are statistically independent and Pz is
well-chosen. Their joint distribution corresponds to the target distribution Pt

above. The case of BLISS [DDLL13] is identical, except that signatures are of
the form (y + (−1)bSc, c), where b ←↩ U({0, 1}).

We consider the algorithms from Fig. 1, which take some M ≥ 1 as a param-
eter. Algorithm Aideal corresponds to what we would like to have, whereas Areal

is the algorithm corresponding to the real distribution. We are typically inter-
ested in calling these algorithms until they output something, which is what Breal

∞
and Bideal

∞ do. It remains to understand when the outputs of these algorithms are
statistically close. The lemma below is proved in the full version.

Algorithm Areal:

1: x ←↩ ps

2: with probability min
(

pt(x)
M·ps(x)

, 1
)
,

return x
3: return ⊥

Algorithm Aideal:

1: x ←↩ pt

2: with probability 1
M
, return x

3: return ⊥

Algorithm Breal
∞ :

1: z ←⊥
2: while z =⊥ do
3: z ← Areal

4: end while
5: return z

Algorithm Bideal
∞ :

1: z ←⊥
2: while z =⊥ do
3: z ← Aideal

4: end while
5: return z

Fig. 1. Rejection sampling algorithms.

Lemma 1 Adapted from [Lyu12, Lemma 4.7]). Assume that M ≥ 1
and ε ∈ [0, 1/2] are such that

Pr
z←↩pt

(pt(z) ≤ M · ps(z)) ≥ 1 − ε,

which can be rewritten in terms of smooth Rényi divergence as Rε
∞(pt‖ps) ≤ M .

Then the probability Areal(⊥) that Areal aborts is such that

M − 1
M

≤ Areal(⊥) ≤ M − 1 + ε

M
.

Moreover, we have

Δ(Areal,Aideal) ≤ ε/M and Δ(Breal
∞ ,Bideal

∞ ) ≤ ε.
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2.2 Lyubashevsky’s Signature Scheme

All the following parameters are functions of a security parameter λ. We let k,m,
n ≥ 1 and q ≥ 2 specify matrix spaces over Zq, with m > n. The distribution PS

over Z
m×k is for signing keys and has support S = Supp(PS). Let M be the

message space. Let C ⊂ Z
k finite and H : Z

n
q × M → C a hash function,

which is modeled as a random oracle in the signature scheme analysis. The
parameter γ > 0 is used in the verification algorithm to quantify the smallness
of vectors corresponding to valid signatures. To obtain a 2λ security against
known attacks, one typically sets m,n, k = Ω(λ) and γ, q = poly(λ).

Let ε ≥ 0 and M ≥ 1 be parameters related to rejection sampling, for a
source distribution Q and a target distribution P over Z

m. Most works directly
instantiate these distributions. For example, uniform distributions in well-chosen
hypercubes are used in [Lyu09] and P = Q Gaussian are used in [Lyu12]. We
assume that the support of Q is contained in (−q/2, q/2]m.

We consider the scheme presented in Fig. 2, borrowed from [Lyu12] with
the aforementioned rejection sampling generalization. For simplicity, we assume
that the verification key A ∈ Z

n×m
q is in Hermite normal form, i.e., we have

A = (In|B) for some matrix B and with In ∈ Z
n×n
q denoting the identity

matrix. Up to mild conditions on k, n,m, q, this is without loss of generality.

KeyGen(1λ) :

1: B ←↩ Z
n×(m−n)
q and S ←↩ PS

2: A ← (In|B)
3: T ← AS
4: return vk = (A,T) and sk = (A,S)

Sign(μ,A,S) :
1: y ←↩ Q
2: c ← H(Ay, μ)
3: z ← y + Sc
4: u ←↩ U([0, 1])

5: if u ≤ min
(

P (z)
M·Q(y) , 1

)
then

6: return (z, c)
7: else
8: go to Step 1
9: end if

Verify(μ, z, c,A,T = AS) :
1: if ‖z‖ ≤ γ and c = H(Az − Tc, μ)

then
2: return 1
3: else
4: return 0
5: end if

Fig. 2. Lyubashevsky’s signature scheme.

Runtime and correctness follow from the two lemmas below.

Lemma 2 (Sign Runtime). Let ε ≥ 0, M ≥ 1 and B =
�λ/ log M

M−1+ε�. Assume that P and Q satisfy max(S,c)∈S×C Rε
∞(P‖Q+Sc) ≤ M .
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Let (y

0 |y


1 )

 ←↩ Q, where y0 takes values in Z

n. In the ROM, the number of
loop iterations i∗ of a Sign execution satisfies

∀i : Pr(i∗ ≥ i) ≤
(
1 − 1 − ε

M

)i

+ B2 · 2−H∞(y0|y1)Q + 2−λ.

Note that when M ≤ poly(λ), ε ≤ 1− 1/poly(λ) and 2−H∞(y0|y1)Q ≤ negl(λ), we
have that B2 · 2−H∞(y0|y1)Q + 2−λ ≤ negl(λ).

Lemma 3 (Correctness). Let ε ≥ 0 and M ≥ 1. Let P and Q satisfying
max(S,c)∈S×C Rε

∞(P‖Q+Sc) ≤ M . Let (y

0 |y


1 )

 ←↩ Q, where y0 takes value

in Z
n. Further assume that 2−H∞(y0|y1)Q ≤ negl(λ), ε ≤ negl(λ) and the prob-

ability that Sign terminates is ≥ 1 − negl(λ). Then, in the ROM, the scheme is
correct if γ ≥ γP with γP such that Prz←↩P (‖z‖ ≥ γP ) ≤ negl(λ).

We only highlight components of typical security proofs that are relevant to
our work, and refer to prior works for more details [Lyu09,Lyu12,AFLT16]. The
security proofs of Lyubashevsky’s signature scheme all proceed by sequences of
games and argue that the adversary’s advantages in successive games differ by
small amounts and that no efficient adversary can solve the last game with a
significant advantage.

An early step in the sequence of games is to replace the calls to H at Step 2
of the Sign algorithm by truly uniform and independent samples c ← U(C). To
ensure that the adversary cannot notice the difference in the ROM, this requires
that a given input (Ay, μ) to H cannot occur twice. This is obtained by having
the conditional min-entropy H∞(y0|y1)Q satisfy:

H∞(y0|y1)Q = Ω(λ).

An important other game hop consists in making Steps 1 to 6 of the Sign algo-
rithm signing-key independent. Concretely, this means arguing that the distri-
butions of the pair (z, c) in the experiments from Fig. 3 are statistically close, by
using Lemma 1. (Note that this also requires programming H consistently with
all appearing c’s.)

To complete the security proof, Lyubashevsky [Lyu12] reduces the SIS prob-
lem to the sEU-CMA security of a signing-key independent simulation of the
Sign algorithm, by relying on the forking lemma. At this stage of the security
proof, rejection sampling does not play a role anymore. We only note that the
SIS instance has parameters q,m, n and β = 2(γ + γ′), with γ as in the Verify
algorithm and γ′ = max(S,c)∈S×C‖Sc‖. Note that γ is always significantly larger
than γ′. We stress that there is a tension in setting γ: it should be sufficiently
high to provide correctness (see Lemma 3 above) and as small as possible to
provide higher security and hence allow more compact instantations.

3 Lower Bounds in the Case of Perfect Rejection
Sampling

We start by studying the case of perfect rejection sampling, which corresponds to
the setting of [Lyu09,DDLL13]. That is, we set ε = 0 in the formalism of Sect. 2.2.
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1: y ←↩ Q
2: c ← U(C)
3: z ← y + Sc
4: u ←↩ U([0, 1])

5: if u ≤ min
(

P (z)
M·Q(y) , 1

)
then

6: return (z, c)
7: else
8: return (⊥, ⊥)
9: end if

1: c ← U(C)
2: z ← P
3: u ←↩ U([0, 1])
4: if u ≤ 1

M
then

5: return (z, c)
6: else
7: return (⊥, ⊥)
8: end if

Fig. 3. Simulating signatures.

We prove two lower bounds: (1) regarding signature size in both unimodal and
bimodal settings (Sects. 3.1 and 3.2), and (2) regarding the expected number of
iterations of the rejection step (Sect. 3.3).

First, we analyze to which extent the expected norm of a distribution P can
be decreased, under the constraint that we can reject to it using shifted samples
from Q, where the Euclidean norm of the shift is bounded from above. This
gives lower bounds on the norm of the signature vector z in Lyubashevsky’s
signature scheme, as recalled in Sect. 2.2. We start by studying the easier case
of continuous distributions, and then provide a way to discretize the results.

Second, we prove than the classical rejection sampling strategy described
above is optimal if one aims to minimize the expected number of iterations of the
rejection step in the case of perfect rejection sampling from P to Q. Specifically,
the expected number of iterations of any strategy is at least R∞(P‖Q), which
is reached by classical rejection sampling.

3.1 Optimal Compactness in the Unimodal Setting

The main result of this subsection is the following.

Theorem 1. Let m ≥ 1, t > 0, V = Bm(t) and M > 1. Let f, g : Rm → [0, 1] be
two probability densities over R

m such that supv∈V R∞(f‖g+v) ≤ M . Then we
have:

Ex←↩f (‖x‖) ≥ t

M1/(m−1) − 1
.

Note that we place ourselves in a setup where shifts belong to a hyperball. In
the context of Lyubashesvky’s signature scheme, the shift is Sc, where S is the
signing key and c is the challenge (which is part of the signature). Given that S
is unknown, replacing the set of Sc’s by a hyperball seems to be a reasonable
approach. Refining this approximation would lead to significant difficulties in
the proof, with unlikely gains.

We now discuss the parameters M and m. As exhibited in Lemma 2, the
variable M is related to the rejection probability. The smaller M , the faster we
expect signing to be. To obtain a signing algorithm that terminates in polynomial
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time with overwhelming probability, we are interested in M ≤ poly(λ). Recall
that we have m = Ω(λ). In this parameter regime, we have t/(M1/(m−1) − 1) ≈
t(m − 1)/ logM .

The role of distribution g in Theorem 1 may seem puzzling, as it does not
appear in the result. It acts as a control of the discrepancy of f : distribution f
must be sufficiently wide to hide (in the Rényi divergence sense) a version of V
that is blurred by g. This forces Ex←↩f (‖x‖) to be rather large. The proof pro-
ceeds in two steps. The first one consists in showing that there is no point
favoring any direction and that we can restrict the study to isotropic distri-
butions, i.e., distributions whose density is a function of the norm of the vec-
tor. The proof, which may be found in the full version, proceeds by averag-
ing on shells. Theorem 1 is then obtained by integrating the local constraint
supv∈V R∞(f‖g+v) ≤ M over the whole support, with appropriate scaling.

Lemma 4. Let m ≥ 1, t > 0 and V = Bm(t). Let f, g : Rm → [0, 1] be two
probability densities over R

m and define M = supv∈V R∞(f‖g+v). Then there
exist two probability densities f∗, g∗ that satisfy

• supv∈V R∞(f∗‖g∗
+v) ≤ M ,

• ‖x‖ = ‖y‖ =⇒ g∗(x) = g∗(y) and f∗(x) = f∗(y),
• Ez←↩f (‖z‖) = Ez←↩f∗(‖z‖).
Proof (Theorem 1). Thanks to Lemma 4, we can, without loss of generality,
assume that both f and g are isotropic. For k ≥ 0, we define μk =

∫ ∞
0

rkf(r) dr,
which is the k-th order moment of f . In particular, we have μm−1 = 1/Sm

and μm = Ex←↩f (‖x‖)/Sm. Indeed, using a hyperspherical variable change, we
see that, for any β ∈ {0, 1}:

Ex←↩f (‖x‖β) =
∫

Rm

‖x‖βf(x) dx

=
∫ ∞

0

ρm−1+βf(ρ)
∫

[0,π]m−2×[0,2π]

D(�θ) d�θ dρ

= Sm · μm−1+β .

The above implies that Ex←↩f (‖x‖) = μm/μm−1.
For any x ≥ 0 and u ∈ [−t, t], it holds that f(x) ≤ M ·g(|x−u|). In particular,

for x ≥ t, we have f(x − t) ≤ M · g(x). Let us multiply both sides by xm−1 and
integrate over [t,+∞). With a change of variable on the left-hand side, this gives

∫ ∞

0

(x + t)m−1f(x) dx ≤ M ·
∫ ∞

t

xm−1g(x) dx

≤ M ·
∫ ∞

0

xm−1g(x) dx

= M ·
∫ ∞

0

xm−1f(x) dx,
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by recognizing that the right-hand side is M · μm−1 (which is the same for f
and g). Grouping everything on the same side, we have

0 ≤
∫ ∞

0

(
Mxm−1 − (x + t)m−1

)
f(x) dx. (1)

Let C = t/(M1/(m−1) − 1). For m > 2, we rewrite the integrand as

Mxm−1 − (x + t)m−1 =
(
M

1
m−1 x − (x + t)

)
·

m−2∑

k=0

(
xM

1
m−1

)k

(x + t)m−2−k

=
(
M

1
m−1 − 1

)
(x − C) ·

m−2∑

k=0

(
xM

1
m−1

)k

(x + t)m−2−k.

For m = 2, the above holds by replacing the sum by 1. Now, note that the
inequality xM1/(m−1) ≥ x + t holds if and only if x ≥ C. Hence the following
upper bound holds for any x ≥ 0, if m > 2:

(x − C) ·
m−2∑

k=0

(xM
1

m−1 )k(x + t)m−2−k ≤ (x − C)(m − 1)M
m−2
m−1 xm−2.

When m > 2, we can divide by (M1/(m−1) − 1)M (m−2)/(m−1)(m − 1) > 0 in
Equation (1), and obtain:

C ·
∫ ∞

0

xm−2f(x) dx ≤
∫ ∞

0

xm−1f(x) dx.

Note that it also holds for m = 2. This can be rewritten as μm−1/μm−2 ≥ C.
Now, observe that μm · μm−2 ≥ (μm−1)2. Indeed, the Cauchy-

Schwarz inequality states that for any real random variables X,Y , it holds
that |E(XY )|2 ≤ E(X2)E(Y 2). We instantiate it with the (non-independent)
random variables X = ‖x‖m/2 and Y = ‖x‖(m−2)/2, where x ←↩ f . Then XY =
‖x‖m

2 +m−2
2 = ‖x‖m−1. To conclude, note μm · μm−2 ≥ (μm−1)2 implies that

μm/μm−1 ≥ μm−1/μm−2 ≥ C. This completes the proof. ��
For the discrete case, we observe that given a discrete distribution P , let-

ting f : x �→ P (�x	) be a probability density over R
m, we have, by the triangle

inequality

Ex←↩f (‖x‖) ≤ Ex←↩P (‖x‖) +
√

m

2
.

Theorem 1 can then be adapted to the discrete case, up to subtracting
√

m
2

from the lower bound. In all setups considered in this work, this term is signifi-
cantly smaller than t/(M1/(m−1) − 1).

Corollary 1. Let m ≥ 1, t > 0, V = Bm(t)∩Zm and M > 1. Let P and Q be two
discrete probability distributions over Z

m such that supv∈V R∞(P‖Q+v) ≤ M .
Then we have:

Ex←↩P (‖x‖) ≥ t

M1/(m−1) − 1
−

√
m

2
.
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3.2 Optimal Compactness in the Bimodal Setting

We obtain the following result in the bimodal setting. The proof, which is similar
to the one of Theorem 1, it provided in the full version.

Theorem 2. Let m ≥ 3, t > 0, V = Bm(t) and M > 1. Let f, g : Rm → [0, 1] be
two probability densities over Rm such that supv∈V R∞(f‖g±v) ≤ M , where g±v

is the density x �→ 1
2 (g(x − v) + g(x+ v)). Then the following holds:

Ex←↩f (‖x‖) ≥ t
√

M
2

m−2 − 1
.

For M ≤ poly(λ) and m = Ω(λ) as in the discussion following Theorem 1,
we have t/(M2/(m−2) −1)1/2 ≈ t

√
(m − 2)/(2 logM). Similarly to the unimodal

case, the lower bound can be adapted to integer distributions with limited loss
(for all setups considered in this work).

Corollary 2. Let m ≥ 3, t > 0, V = Bm(t)∩Zm and M > 1. Let P and Q be two
discrete probability distributions over Z

m such that supv∈V R∞(P‖Q±v) ≤ M ,
where Q±v is as in Theorem 2. Then the following holds:

Ex←↩P (‖x‖) ≥ t
√

M
2

m−2 − 1
−

√
m

2
.

3.3 Optimality of the Expected Number of Iterations

We now analyze to which extent the expected number of iterations of the rejec-
tion step could be reduced in the case of exact rejection sampling from P to Q,
and prove the classical strategy to be optimal. This question arises from the
variety of rejection sampling techniques that have been studied in other fields.

There exist multiple variants of rejection sampling. For instance, a proce-
dure described in [HJMR07], and recalled in the full version, takes a greedy
approach to rejection sampling and differs from the one we presented up until
now. We are in the setting where we have access to a sampler from distribu-
tion Q. These samples are denoted by (Xi)i≥1 with Xi ∈ X for some set X and
we are required to output a sample from the distribution P over X . Any design
of procedure is allowed, as long as the output is one of the observed samples Xi.
Let i∗ be the random variable denoting the number of samples observed by an
algorithm and we wish to determine how small E(i∗) can be. We note that the
work of [HJMR07], establishes that there exists a rejection sampling algorithm
achieving E(log i∗) = logR1(P‖Q) up to lower order terms in R1(P‖Q), and that
this is optimal. Here, we show that the minimum value for E(i∗) is R∞(P‖Q).

We model a rejection sampling algorithm by a family of randomized functions
Ai : X i → {1, . . . , i} ∪ {r}. At step i, it sees the new sample Xi and based on
X1, . . . , Xi it computes Ai(X1, . . . , Xi). If it is equal to r, the algorithm asks
for one more sample and otherwise if Ai(X1, . . . , Xi) ∈ {1, . . . , i}, the algorithm
terminates and outputs the sample XAi(X1,...,Xi). Note that the running time
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of the algorithm is defined by i∗ = inf{i ≥ 1 : Ai(X1, . . . , Xi) �= r}. We only
consider algorithms for which i∗ < ∞ almost surely. We define the random
variable J = Ai∗(X1, . . . , Xi∗) ∈ N+, note that J ≤ i∗ and the output of the
algorithm is XJ (i.e., the output sample may not be the last one that was
generated).

Theorem 3. Let P,Q be two discrete probability distributions. Any rejection
sampling algorithm (Ai)i≥1 sampling from P satisfies E(i∗) ≥ R∞(P‖Q).

Proof. We have by assumption for any x ∈ X ,

P (x) = Pr[XJ = x] =
∞∑

j=1

Pr[J = j,Xj = x] ≤
∞∑

j=1

Pr[i∗ ≥ j,Xj = x],

where we used the fact that the event [J = j] is contained in [i∗ ≥ j]. Now,
observe that the event [i∗ < j] only depends on X1, . . . , Xj−1 and as such it is
independent of the event [Xj = x]. This implies that [i∗ ≥ j] is independent of
[Xj = x]. As a result, we have

P (x) ≤
∞∑

j=1

Pr[i∗ ≥ j] Pr[Xj = x] = E(i∗)Q(x),

which proves the desired result.

In the context of Lyubashevsky’s signature schemes with source distribu-
tion Q′, target distribution P ′, challenge set C and signing key S, we would
have P = P ′ ⊗ U(C) and Q would be the distribution of the pair (z, c) obtained
by sampling y from Q′, c from U(C) and defining z = y + Sc.

The above proof can be adapted in the setting where P and Q are continuous
distributions by considering a sequence of balls converging to {x} instead of x.

4 Improved Analysis via the Rényi Divergence

For the rest of the paper, we flip our focus and prove positive results (upper
bounds). In this section, we propose an improved analysis of Lyubashevsky’s
signatures that relies on the Rényi divergence rather than the statistical distance,
allowing larger sampling errors in the case of imperfect rejection sampling. Then,
in Sect. 5 propose a new choice of distributions that (asymptotically) reaches our
lower bounds. Finally, in Sect. 6, we propose a way to circumvent the lower bound
for the expected number of iterations by providing an alternate strategy which
allows to fix a-priori a maximal number of loop iterations.

Our lower bounds apply to perfect rejection sampling, but rejecting to an
inaccurate approximation to the target distribution also allows to instantiate
Lyubashevsky’s signature, as done in [Lyu12] and already mentioned in Sect. 2.2
(when ε > 0 in Lemma 1). In particular, imperfect rejection sampling is used
when instantiating the signature scheme with Gaussian distributions.
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In this section, we study the case of imperfect rejection sampling and describe
a way to improve the analysis of the digital signature from Sect. 2.2, by replacing
the statistical distance (in Lemma 1) with the Rényi divergence to quantify
the closeness between ideal and real rejection sampling algorithms. As already
observed in prior works (see in particular the discussion in [BLR+18]), the Rényi
divergence is well-suited for improving the analyses of digital signatures, as the
security game is of a search type. While the analysis based on the statistical
distance imposes ε = 2Ω(λ), as it requires the statistical distance to be negligible,
our analysis allows larger sampling errors as it only imposes ε ≈ 1/qsig where qsig
is the number of signing queries (which is poly(λ) � 2Ω(λ)).

4.1 Rényi Divergence Bounds for Imperfect Rejection Sampling

Let pt and ps be two probability densities, both continuous or both discrete. We
consider algorithms Areal, Aideal, Breal and Bideal from Fig. 1.

Lemma 5. Assume that M > 1 and ε < 1 are such that Rε
∞(pt‖ps) ≤ M . Then

for any a ∈ (1,+∞) we have:

Ra(Areal‖Aideal) ≤
(

1
M

+
M − 1 + ε

M
·
(
1 +

ε

M − 1

)a−1
) 1

a−1

,

Ra(Breal
∞ ‖Bideal

∞ ) ≤ 1
(1 − ε)a/(a−1)

.

Moreover, for a = ∞, we have:

R∞(Areal‖Aideal) ≤ 1 +
ε

M − 1
and R∞(Breal

∞ ‖Bideal
∞ ) ≤ 1

1 − ε
.

Note that for ε = 0, we recover the distributional equalities Areal = Aideal

and Breal
∞ = Bideal

∞ of Lemma 1. We are interested in the case ε > 0.

Proof. Let Areal(⊥) and Aideal(⊥) denote the probabilities that Areal or Aideal

output nothing. We have, using results from Lemma 1:

Ra(Areal‖Aideal)a−1=

⎡

⎣
∫

Supp(ps)

(
ps(x)min

(
pt(x)

M ·ps(x)
, 1

))a

(pt(x)/M)a−1
dx

⎤

⎦+
(Areal(⊥))a

(Aideal(⊥))a−1

≤
∫

Supp(ps)

(
ps(x)

pt(x)
M ·ps(x)

)a

(pt(x)/M)a−1
dx +

(1 − (1 − ε)/M)a

(1 − 1/M)a−1

=
∫

Supp(ps)

pt(x)
M

dx +
M − 1 + ε

M
·
(

M − 1 + ε

M − 1

)a−1

≤ 1
M

+
M − 1 + ε

M
·
(
1 +

ε

M − 1

)a−1

.
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We move on to bounding the second divergence. For any x ∈ Supp(ps):

Breal
∞ (x) =

Areal(x)
1 − Areal(⊥)

.

This also holds for Bideal
∞ with Aideal instead of Areal. We obtain:

Ra(Breal
∞ ‖Bideal

∞ )a−1 =
∫

Supp(ps)

1
Ma−1

·
(
ps(x)min

(
pt(x)

M ·ps(x)
, 1

))a

(Areal(⊥))a(pt(x)/M)a−1

≤ M

(1 − ε)a

∫

Supp(ps)

(
ps(x)min

(
pt(x)

M ·ps(x)
, 1

))a

(pt(x)/M)a−1
.

This sum was already computed just above and is at most 1/M .
The continuity of a �→ Ra(Pt‖Ps) at a = +∞ gives the last bounds. ��

4.2 Improved Analysis of Lyubashevsky’s Scheme

We now go back to the scheme described in Sect. 2.2 with imperfect rejection
sampling, and show that the analysis above allows setting ε ≈ 1/qsig instead
of ε = 2−Ω(λ). Here qsig refers to the number of signing queries that an adver-
sary can make. As a signing query requires an interaction with the signer, it
is typically considered to be a large polynomial in λ, which is much smaller
than 2Ω(λ). As a result, this refined analysis puts less stress on the condition
that Ps and Pt must satisfy and hence to reach smaller values for Ez←↩Pt

(‖x‖):
this is beneficial to security and then allows for smaller parameter sets.

To achieve this improvement, we replace the statistical distance with the
Rényi divergence in the scheme analysis, when simulating signature queries (see
Fig. 3). By Lemma 5 and the Rényi divergence data processing inequality, replac-
ing Areal by Aideal once in the security proof (i.e., in one loop iteration of one
signature query) leads to a multiplicative loss of a factor ≤ 1+ ε/(M − 1) in the
adversary’s advantage. Now, note that the probability that at least one among
the qsig sign queries requires more than B = (λ+log qsig)/ log(M/(M−1+ε)) loop
iterations is exponentially small. Assuming this is not the case, we can bound
the number of times Areal is replaced by Aideal in the security proof by B · qsig.
By the Rényi divergence multiplicativity property, this induces a multiplicative
loss of a factor ≤ (1 + ε/(M − 1))B·qsig in the adversary’s advantage.

5 Reaching the Lower Bounds with Hyperballs

In this section, we show that continuous uniform distributions in hyperballs reach
the lower bounds in both the unimodal and bimodal perfect rejection sampling
settings. We also consider the imperfect unimodal setting and find parameters
that are asymptotically at least as good as the ones obtained for the Gaussian
distribution (using our analysis described in Sect. 4). As continuous hyperball
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uniform distributions are easier both to study and implement than their discrete
counterpart, we consider the case of continuous distributions. Further, we show
that a slight modification of Lyubashevsky’s signature allows for the target and
source distributions to be continuous.

We also compare this choice of distributions with the uniform distributions in
hypercubes and with Gaussians, both asymptotically and with concrete param-
eters.

5.1 Uniform Distributions in Hyperballs

The first step is to compute the divergence in the three settings: unimodal, either
perfect or imperfect rejection sampling and bimodal perfect rejection sampling.
The first case can actually be seen as a particular case of the second one, and
we summarize both in the following lemma. We use the notation Ix(a, b) =
B(x; a, b)/B(a, b) for x ∈ [0, 1] and a, b > 0, where B(a, b) is the Beta function
and B(x; a, b) is the regularized incomplete Beta function.

Lemma 6 (Smooth Divergence). Let m ≥ 1 and v ∈ R
m. Let ε ∈ [0, 1/2)

and η ≥ 1 be such that 2ε = I1−1/η2(m+1
2 , 1

2 ). Let r, r′ > 0 such that r′2 ≥
r2 + ‖v‖2 + 2r‖v‖/η. Then it holds that:

Rε
∞

(
U(Bm(r))‖U(Bm(r′,v))

)
=

(r′

r

)m

.

Let M > 1. The above is ≤ M if r ≥ ‖v‖ ·
1
η +

√
1

η2 +M2/m−1

M2/m−1
and r′ = M1/mr.

Note that when ε = 0, we have η = 1. In that case, we can set r =
‖v‖/(M1/m − 1), which almost matches the lower bound from Theorem 1.
For ε = 2−c·m with a constant c > 0, we have that 1/η2 tends to 1 − 2−c

when m goes to infinity; for ε satisfying ε ≥ 2−o(m) and ε = o(1/m) with m
going to infinity, we have that 1/η2 ∼ − log(ε)/m (see full version).

Proof. Assume that there exists some cut C with vol(C)/Vm(r) ≤ ε such that
the divergence is defined, i.e., with Bm(r) \ C ⊆ Bm(r′,v). Then the divergence
is (r′/r)m, as the ratio of densities is constant and equal to (r′/r)m over Bm(r)\C.
To prove the first claim, it hence suffices to show that such a cut C exists.

We introduce the cut Cη := {x ∈ Bm(r)|〈x,v〉 ≥ −‖v‖r/η}. This is the inter-
section of a ball with an affine half-space, i.e., an m-dimensional hyperspherical
cap. Its volume is Vm(r)

2 · I1−1/η2(m+1
2 , 1

2 ) (see full version). The definition of η
ensures that vol(Cη)/Vm(r) = ε. We now check that Bm(r) \ Cη ⊆ Bm(r′,v).
Let x ∈ Bm(r) \ Cη. We have

‖x − v‖ ≤
√

r2 + ‖v‖2 + 2r‖v‖/η.

By assumption, the latter is no larger than r′, implying that x ∈ Bm(r′,v). This
completes the proof of the first claim.
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If we combine the condition on r and r′ and the equality r′ = M1/mr, we get

r2 + ‖v‖2 + 2
r‖v‖

η
≤ M2/mr2,

which is a degree-2 inequality on r. Solving it completes the proof. ��
Lemma 7 (Divergence in the Bimodal Setting). Let m ≥ 1 and v ∈
R

m. Let r, r′ > 0 such that r′2 ≥ r2 + ‖v‖2. Let U(Bm(r′),±v) denote the
continuous probability distribution which samples b ←↩ U({0, 1}) and returns z ←↩
U(Bm(r′, (−1)bv)). Then it holds that:

R∞
(
U(Bm(r))‖U(Bm(r′),±v)

)
=

(
1 + χ<r+‖v‖(r′)

) ·
(r′

r

)m

,

where χ<r+‖v‖ denotes the indicator function of reals smaller than r + ‖v‖.
Let M > 1. The above is ≤ M if r ≥ ‖v‖/

√
(M/2)2/m − 1 and r′ = (M/2)1/mr.

Note that the choice of r almost matches the lower bound from Theorem 2.

Proof. The support of U(Bm(r′),±v) is exactly Bm(r′,v) ∪ Bm(r′,−v) and its
density is z �→ (χBm(r′,v)(z) +χBm(r′,−v)(z))/(2Vm(r′)). The divergence is finite
when Bm(r) ⊆ Bm(r′,v) ∪ Bm(r′,−v). This is the case if any x with ‖x‖ ≤ r
satisfies ‖x − v‖ ≤ r′ or ‖x + v‖ ≤ r′. Let us assume, w.l.o.g., that ‖x − v‖ ≤
‖x+ v‖. Then we write

‖x − v‖ =
√

‖x‖2 + ‖v‖2 − 2〈x,v〉 ≤
√

‖x‖2 + ‖v‖2.

Thanks to the assumption on r and r′, we conclude that the divergence is finite.
Now, the ratio of the densities only takes three values. If x �∈ Bm(r) then

the ratio is 0. If x ∈ Bm(r) ∩ Bm(r′,v) ∩ Bm(r′,−v) then the ratio is (r′/r)m.
Finally, if x belongs to Bm(r) ∩ Bm(r′,v) but not to Bm(r′,−v), then the ratio
is 2(r′/r)m. This last case only occurs if Bm(r) �⊆ Bm(r′,−v). This is the case
only if r′ < r + ‖v‖. This completes the proof of the first claim.

For the second claim, note that the assumption on r and r′ is satisfied, and
that the divergence bound is indeed ≤ M . ��

Finally, in order to use the uniform distribution in a hyperball, we verify that
there is sufficient min-entropy in the first n coordinates given the remaining m−n
coordinates. The proof of the following lemma can be found in the full version.

Lemma 8. Let m ≥ 6, n ≥ 1 and r ≥ 2
√

m. Let x = (x

0 |x


1 )

 be a random

variable over R
m whose distribution is U(Bm(r)), where x0 has dimension n. It

holds that
H∞

(�x0	|�x1	
)
U(Bm(r))

≥
(
log2

1
0.85

)
· n .
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5.2 Lyubashevsky’s Signature with Continuous Distributions

We consider continuous distributions over hyperballs, which are not directly com-
patible with Lyubashevsky’s signature scheme, as recalled in Sect. 2. Switching
to uniform distributions over the integer points inside hyperballs leads to sev-
eral difficulties: sampling from such a distribution seems delicate, in particular
if the radius of the ball is moderate. Similarly, adapting Lemmas 6 and 7 seems
difficult. Rather, we argue that it is possible to extend Lyubashevsky’s signa-
ture scheme to the case of continuous distributions, and that this comes with
very limited complications (in the case of Gaussians, it could be simpler to use
continuous Gaussians with this modified scheme, than using discrete Gaussians
with the original scheme).

In order to adapt Lyubashevsky’s signature scheme to continuous distribu-
tions, a rounding step is added after acceptance of a sample, as well as during
hashing. Concretely, the changes compared to the construction described in Fig. 2
are as follows: (i) y is now sampled from a continuous distribution with density g,
(ii) c is now computed as H(A�y	, μ), (iii) with z still being defined as y+ Sc,
if the test passes, and the returned signature is now (�z	, c). This adaptation
is discussed in more details in the full version. We note that this leads to the
requirement that the min-entropy of �x0	|�x1	 is large, where x = (x


0 |x

1 )


 is
a random variable over R

m whose distribution is g and x0 has dimension n. In
the case of the uniform distribution in a hyperball, this is provided by Lemma 8.

We further remark that this applies to the analysis relying on the statistical
distance as well as our improved analysis which relies on the Rényi divergence.
Also, we note that the modified scheme involves computations over real numbers.
These can be securely replaced by finite precision computations, using standard
techniques such as described in [Pre17].

5.3 Comparison with Other Distributions

Let t = maxS,c‖Sc‖. In Table 2, we summarize the expected norm of signatures
(up to a constant factor) for diverse distributions P and Q, and for a target
expected number of iterations M . We consider three specific pairs of distribu-
tions, two of them being previously considered distributions (Gaussians and uni-
forms in hypercubes), and the last one being uniform distributions in hyperballs,
introduced above. We also consider three different scenarios:

• unimodal distributions and perfect rejection sampling, corresponding to the
column ε = 0;

• unimodal distributions and imperfect rejection sampling – we use approxima-
tions specific to the choice of ε ≥ 2−o(m) and ε = o(1/m);

• bimodal source distribution and perfect rejection sampling, corresponding to
column “Bimodal”.

Note that the second scenario relies on our improved analysis relying on the
Rényi divergence for the imperfect case (see Sect. 4). This parameter range for ε
is not appropriate when using the analysis relying on the statistical distance.
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In the last column, we also emphasize if the test that decides to keep or reject
a sample is simple or not. For hyperballs, it simply consists in comparing the
norm of the sample with the radius of the target hyperball.

The entries in the table are approximations for m → ∞, t = ω(1) and M =
2o(m), and for a given choice of P , we optimize the parametrization of Q (e.g.,
the radius in case of a hyperball) to minimize the signature norm.

Table 2. Expected norm of signatures depending on the choice of distributions and
(im)perfectness of rejection sampling.

Choices for P and Q ε = 0 ε ≥ 2−o(m) and ε = o(1/m) Bimodal Rejection Test

Hypercubes tm3/2

log M
tm3/2

log M
tm3/2

log M
Simple

Gaussians ∞ t
√

m
√

log 1
ε
+log M

log M
t
√

m√
log M

Complex

Hyperballs tm
log M

t
√

m
√

log 1
ε
+log M

log M
t
√

m√
log M

Simple

The values of the table are obtained by computing the parameters for the
underlying distributions (radii r, r′ of the hypercubes or hyperballs and standard
deviation σ of Gaussians) for our constraints M and t. This is done by computing
their (smooth) Rényi Divergence, as done in Lemmas 6 and 7 for hyperballs.
Proofs for hypercubes and Gaussians can be found in the full version. Given
these parameters, the expected norm immediately follows (r

√
m for a hypercube

of radius r, σr for a Gaussian of standard deviation σ, and r for a hyperball of
radius r). To conclude this section, we emphasize the following points:

• Gaussians and Hyperballs are asymptotically equivalent and reach the lower
bounds in the bimodal setting; Hyperballs further reach our lower bound in
the exact unimodal setting as well;

• Hyperballs benefits from a significantly simpler rejection test compared to
Gaussians;

• The bimodal setting (in both Gaussian and Hyperballs cases) leads to the
most compact signatures.

5.4 Concrete Parameters

To study the concrete impact of the choice of distributions on signature size,
we consider Dilithium. The left side of Table 3 shows the parameters for three
security levels of the round-3 documentation of the CRYSTALS-Dilithium sub-
mission to the NIST post-quantum project [BDK+20]. The right side of Table 3
gives updated parameters for Dilithium-G, a modification of Dilithium using
Gaussian distributions whose description is available in the first version of the
eprint version of [DKL+18]. For this updated version, we set the value of M
to 4.

In these schemes, the verification key is a module-LWE sample Bs1 + s2
where s1 and s2 have �∞-norms ≤ η. For each coordinate, the lowest d bits are
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Table 3. Parameters for Dilithium and updated Dilithium-G.

Hypercube-Uniform Previous Gaussian

Medium Recommended Very High Medium Recommended Very High

Ring dimension � 256 256 256 256 256 256

q 8380417 8380417 8380417 254977 254977 254977

(n, m − n) (4, 4) (6, 5) (8, 7) (4, 3) (5, 4) (7, 6)

η 2 4 2 2 3 2

S N/A N/A N/A 91 134 111

τ 39 49 60 39 49 60

t = S · √
τ N/A N/A N/A 568 938 860

B N/A N/A N/A 864K 535K 664K

γ2
q−1
88

q−1
32

q−1
32

q−1
48

q−1
24

q−1
32

d 13 13 13 11 11 11

M 4.25 5.1 3.85 4 4 4

BKZ block-size b to break SIS 423 (417) 638 (603) 909 (868) 450 (390) 677 (588) 1018 (891)

Best known classical bit-cost 123 (121) 186 (176) 265 (253) 131 (114) 198 (171) 297 (260)

Best known quantum bit-cost 112 (110) 169 (159) 241 (230) 119 (103) 179 (155) 270 (236)

BKZ block-size b to break LWE 422 622 860 403 623 1018

Best known classical bit-cost 123 181 251 117 182 297

Best known quantum bit-cost 111 164 228 1076 165 170

Expected signature size 2420 3293 4595 1737 2372 3478

Expected public key size 1312 1952 2592 672 1312 1600

dropped. A parameter τ is used to control the �1-norm of any hashed value c, so
that c has sufficient min-entropy. In Dilithium-G, the bound t is S

√
τ , where S

is the median over the key generation randomness of the largest singular value of
(rot(s1)
, rot(s2)
)
. A rejection step is added in KeyGen to check that the key
satisfies this bound. The value of the SIS bound corresponding to unforgeability
is computed using [BDK+20, Equation (6)]. The strong unforgeability bound
is obtained by multiplying this bound by 2. The security is estimated using
block-size optimized BKZ to break the module-SIS or module-LWE instances.2

For Dilithium, i.e., the hypercube version, we take t∞ = τη as a bound on
the �∞-norm of the secret key, which drives the radius of the hypercube and
subsequently the unforgeability SIS bound (in �∞-norm).

It was argued in [DKL+18] that it seems difficult for BKZ to solve SIS
with �∞-norm bound close to q, i.e., �2-norm above q. To analyze the runtime
of BKZ in the case of an �2-norm bound B ≥ q, one can remove the trivial
vectors of the input basis (i.e., the vectors with coordinates in qZ) by some
randomizing step. This approach was however not considered for Dilithium-G
and q was chosen such that B < q, leading to bigger parameters overall. Our
updated parameters allow for B ≥ q, for a fairer comparison to Dilithium. We
note that for B > q

√
n/2, linear algebra modulo q allows to solve SIS efficiently –

our choice of B is always significantly lower than this threshold.
Finally, the computation of the verification key and signature sizes (in bytes)

is performed as in [BDK+20] and [DKL+18], respectively. We note that the
updated Dilithium-G has signature sizes ∼ 25% smaller than those of Dilithium.

2 We use the scripts from https://github.com/pq-crystals/security-estimates.

https://github.com/pq-crystals/security-estimates
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To compute signature sizes for Gaussian and Hypercube versions, we rely on a
strategy explained in [ETWY22, Section 5].

Table 4. Parameters for hyperball-uniform and improved Dilithium-G.

Hyperball-Uniform Improved Gaussian
Medium Recommended Very High Medium Recommended Very High

Ring dimension � 256 256 256 256 256 256

q 254977 254977 254977 254977 254977 254977

(m, n) (4, 3) (6, 4) (8, 6) (4, 3) (5, 4) (7, 6)

η 2 3 2 2 3 2

S 91 140 115 91 134 111

τ 39 49 60 39 49 60

t = S · √
τ 568 980 890 568 938 860

B 741K 1894K 2330K 836K 413K 760K
γ2

q−1
16

q−1
8

q−1
8

q−1
64

q−1
48

q−1
48

d 10 13 13 12 11 10

M 4 4 4 4 4 4
BKZ block-size b to break SIS 464 (402) 677 (595) 958 (848) 453 (393) 715 (620) 991 (868)
Best known classical bit-cost 135 (117) 198 (174) 280 (248) 132 (114) 209 (181) 289 (253)
Best known quantum bit-cost 123 (106) 179 (157) 254 (224) 120 (104) 189 (164) 262 (230)
BKZ block-size b to break LWE 403 623 953 403 623 1018
Best known classical bit-cost 117 182 278 117 182 297
Best known quantum bit-cost 106 165 252 106 165 170
Expected signature size 1900 2710 3989 1672 2284 3347
Expected public key size 1056 1184 1824 672 1152 1376

We apply to Dilithium-G two modifications introduced in this work. In
Table 4 (right side), we show the improvements we obtain when the standard
deviation σ is computed using our refined bound (available in the full ver-
sion) on the smooth Rényi divergence between two Gaussians and instantiated
with ε = 2−64 instead of ε = 2−128, as allowed by the use of Rényi divergence (as
discussed in Sect. 4). Keeping M = 4, the standard deviation σ drops from 11t
to 6.85t and leads to an additional saving of ∼ 5% on the signature size. When
compared to Dilithium, we obtain up to ∼ 30% of signature size savings.

Finally, we explore the use of the continuous uniform distributions in hyper-
balls. We take the algorithms from Dilithium-G, which are adapted to radial
distributions and replace the Gaussians with the continuous uniform distribu-
tions in hyperballs, adding coefficient-wise rounding to integers when computing
commitments. We also emphasize that the rejection step is deterministic. To set
parameters, the bound B is computed using the radius of the hyperball instead of
the probabilistic upper bound on the norm of a Gaussian vector. In Table 4 (left
side), we provide the instantiations that we obtained. We note that the signature
sizes are larger than those obtained with Gaussians. The growth of the signature
size comes from two factors: first, the bound B is larger than the Gaussian case,
likely because of constant factors hidden in the Rényi divergence computations
of this section. Second, in order to encode a signature, we use a coordinate-wise



58 J. Devevey et al.

Huffman coding of the rounded vector, which is less efficient than in the Gaussian
case, as the Gaussian distribution minimizes entropy across distributions with a
fixed standard deviation. When compared to Dilithium, the signature size still
drops by ∼ 10% to ∼ 20%, which underlines the trade-off offered by the uniform
distributions in hyperballs, between the efficiency of Gaussians and the ease of
implementation provided by the uniform distributions in hypercubes.

All figures of Tables 3 and 4 can be reproduced using scripts available at
https://github.com/jdevevey/security-estimates.

6 Circumventing the Second Lower Bound via Bounded
Rejection Sampling

We conclude this work by investigating an alternative way to perform rejection
sampling which circumvents our lower bound on the expected number of loop
iterations from Sect. 3.3. Notably, this approach makes the resulting signature
scheme run within a given amount of time, which may be required in some
practical applications (e.g., in real-time systems).

A first solution could be to set a bound on the maximal number of iterations,
based on the run-time analysis from Lemma 2. However, this leads to a very large
bound, of the order of ω(log λ + log qsig)/ log(M/(M − 1 + ε)), to ensure that
with probability 1 − λ−ω(1), no signature among qsig requires more iterations.

In the following, we propose a rejection sampling strategy that lets us fix
an arbitrary bound i ≥ 1 on the number of iterations while still guaranteeing
an output is produced at the end of the process. This strategy consists in first
running i − 1 iterations of the rejection sampling procedure. If something was
output, then we are done, but if all iterations failed, we have to sample some-
thing that is related to the target distribution, in one-shot. For this last step,
we use some sort of flooding. Note that, setting i = 1, one obtains one-shot
signatures based on flooding, as in [ASY22]. Hence, this strategy can be seen as
a generalization of both rejection sampling and flooding techniques.

6.1 Bounded Rejection Sampling Lemma

Let i ≥ 1 be an arbitrary bound for the number of loop iterations. Instead of sim-
ply having one distribution Ps to sample from, we now use two distributions Pf

and Ps, where Ps is used for the rejection sampling part (the first i−1 iterations)
and Pf is used in case of i − 1 successive failures. If the divergences R∞(Pf‖Ps)
and R∞(Ps‖Pt) are small, this strategy works. Moreover, the resulting distribu-
tion has a divergence with Ps and is a weighted mean of the classical rejection
sampling-resulting distribution and the flooding distribution. This is what we
prove in the following lemma.

Lemma 9 (Bounded Rejection Sampling). Let pf , pt, ps be probability den-
sities, either all continuous or all discrete, and ε0, ε1 ≥ 0,M0,M1 ≥ 1 with

Rε0∞(pf‖pt) ≤ M0 and Rε1∞(pt‖ps) ≤ M1.

https://github.com/jdevevey/security-estimates
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Then
R

M
M0

ε0
∞ (Breal

i ‖Bideal
i ) ≤ M,

where
M =

(
1 −

(
1 − 1

M1

)i−1) 1
1 − ε1

+
(
1 − 1 + ε1

M1

)i−1

· M0,

and Breal
i and Bideal

i are defined in Fig. 4.

Note that in the case where i = 1, distribution ps is useless, as Breal
1 sam-

ples z ←↩ pf and returns it: this is flooding. Our lemma captures this situation,
as M = M0 in that case. It is then not only a generalization of rejection sampling
but also of flooding techniques.

Algorithms Bideal
i and Bideal′

i produce the same distribution for variable z, and
hence Lemma 9 also holds when replacing Bideal

i by Bideal′
i . Algorithm Bideal′

i is
more convenient when analyzing the adapted Lyubashevsky signature scheme.

Algorithm Breal
i :

1: � ← 1
2: while � ≤ i − 1 do
3: z ←↩ ps

4: with probability min( pt(z)
M1·ps(z)

, 1),
return z

5: � ← � + 1
6: end while
7: return z ←↩ pf

Algorithm Bideal
i :

1: return z ←↩ pt

Algorithm Bideal′
i :

1: � ← 1
2: while � ≤ i − 1 do
3: z ←↩ pt

4: with probability 1
M1

,
return z

5: � ← � + 1
6: end while
7: return z ←↩ pt

Fig. 4. Bounded rejection sampling algorithms.

Proof. With pt and ps, for t ∈ {real, ideal}, we can view Bt
i as calling i − 1

times At from Fig. 1, returning the value of the first call that does not abort,
and if all calls failed, returning some independent sample z ←↩ pf (or pt). Using
probability bounds from Lemma 1 and letting Areal(⊥) denote the probability
that Areal aborts, we know that

Breal
i (x) =

[ ∑

0≤j≤i−2

(Areal(⊥))j · min
(pt(x)

M1
, ps(x)

)]
+ (Areal(⊥))i−1 · pf (x)

=
1 − (Areal(⊥))i−1

1 − Areal(⊥)
· min

(pt(x)
M1

, ps(x)
)
+ (Areal(⊥))i−1 · pf (x)

≤ 1 − (
1 − 1

M1

)i−1

1−ε1
M1

· pt(x)
M1

+
(M1 − 1 + ε1

M1

)i−1

· pf (x).

Let us define

M =
(
1 −

(
1 − 1

M1

)i−1)
· 1
1 − ε1

+
(M1 − 1 + ε1

M1

)i−1

· M0.
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For this to be an upper bound on R
M

M0
ε0

∞ (Breal
i ‖Bideal

i ), it suffices that

Pr
x←↩Breal

i

[Breal
i (x) > M · pt(x)] ≤ M

M0
ε0.

For any output x such that Breal
i (x) > Mpt(x), it holds pf (x) > M0pt(x) accord-

ing to the above upper bound on Breal
i (x). This yields, by definition of M0:

Pr
x←↩pf

[Breal
i (x) > M · pt(x)

] ≤ ε0.

The probability is however not taken over the desired distribution for x. Note
that if we combine pf (x) > M0 · pt(x) with the above bound on the distribution
of the output of Breal

i , we get

Breal
i (x) <

M

M0
· pf (x).

Then Prx←↩Breal
i
[Breal

i (x) > Mpt(x)] < M
M0

ε0. ��

6.2 Lyubashevsky’s Signature with Bounded Rejection

In this section, we present a way to modify Lyubashevsky’s signature scheme by
relying on bounded rejection sampling, as decribed above. This can be seen as
a hybrid version between one-shot signatures which use flooding, as in [ASY22],
and Lyubashevsky’s unbounded signature.

Let k, n,m, q ≥ 1 specify matrix spaces with m > n. Let M be the message
space. Let H be a hash function modeled as a random oracle with domain Z

n
q ×M

and range some finite set C ⊆ Z
k. Let γ > 0. Let ε0, ε1 ≥ 0,M0,M1 ≥ 1, i ≥ 1

be parameters related to bounded rejection sampling. Let S ⊆ Z
m×k. Let P0, P1

and P2 be three probability distributions over Z
m satisfying

max
(S,c)∈S×C

Rε0∞((P0)+Sc‖P1) ≤ M0 and max
(S,c)∈S×C

Rε1∞(P1‖(P2)+Sc) ≤ M1.

Let (x

0 |x


1 )

 ←↩ P0 and (y


0 |y

1 )


 ←↩ P2, where y0 and x0 take values in Z
n. We

present the modified scheme in Fig. 5. The key generation algorithm is unchanged
from Fig. 2.

Before moving to the scheme analysis, let us define

M =
(
1 −

(
1 − 1

M1

)i−1) 1
1 − ε1

+
(
1 − 1 + ε1

M1

)i−1

· M0.

The runtime of Sign is deterministically bounded, by at most i loop iterations.
The correctness statement from Lemma 3 can be adapted as follows.

Lemma 10 (Correctness). Let ε0, ε1 ≥ 0 and M0,M1 ≥ 1. Let P0, P1, P2 sat-
isfy max(S,c)∈S×C Rεb∞(Pb‖Pb+1,+Sc) ≤ Mb for b ∈ {0, 1}. Let (x


0 |x

1 )


←↩P0 and
(y


0 |y

1 )


←↩P2, where x0 and y0 take values in Z
n. Assume that ε0 ≤ negl(λ),

M ≤ poly(λ) and 2−H∞(x0|x1)P0 , 2−H∞(y0|y1)P2 ≤ negl(λ). Then, in the ROM,
the scheme is correct if γ ≥ γP1 with γP1 such that Prz←↩P1(‖z‖ ≥ γP1) ≤ negl(λ).
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Sign′(μ,A,S) :
1: � ← 1
2: if � ≤ i − 1 then
3: y ←↩ P2

4: else
5: y ←↩ P0

6: end if
7: c ← H(Ay, μ)
8: z ← y + Sc
9: u ←↩ U([0, 1])

10: if u ≤ P1(z)
M1P2(y)

or � = i then
11: return (z, c)
12: else
13: � ← � + 1
14: go to Step 2
15: end if

Verify(μ, z, c,A,T = AS) :
1: if ‖z‖ ≤ γ and c = H(Az − Tc, μ)

then
2: return 1
3: else
4: return 0
5: end if

Fig. 5. Lyubashevsky’s signature scheme with bounded rejection.

The main modification towards analyzing the security of the scheme from
Fig. 5, compared to the one from Fig. 2, resides in the observation that the dis-
tributions of the pair (z, c) obtained by the two processes from Fig. 6 have M

M0
ε0-

smooth Rényi divergence of infinite order bounded by M . This is obtained by
applying Lemma 9. Note that the hash function H needs to be consistently pro-
grammed for every c that is produced, which is why we use the formalism of
Algorithm Bideal′

i rather than Algorithm Bideal
i .

By the multiplicativity of the smooth Rényi divergence (see full version), we
obtain that the (qsig ·Mε0/M0)-smooth Rényi divergence between the adversary’s
views in games where the changes from Fig. 6 have been applied to all signature
queries, is bounded by Mqsig . The probability preservation property can then be
used meaningfully if qsig · Mε0/M0 = 2−Ω(λ) and Mqsig ≤ poly(λ).

Once the signature queries are simulated without the signing key, the security
proof can be completed as in prior works (see [Lyu09,Lyu12,AFLT16]).

Asymptotic Trade-Off. We now discuss the choices of the distributions P0, P1

and P2. We require that Mqsig = poly(λ) and qsig ·Mε0/M0 = 2−Ω(λ), with ε0, ε1,
M0,M1 and M as in Lemma 9. We are aiming at not too large divergence
bounds M0,M1,M as signatures typically become less efficient when they
increase. For this reason, we set ε0 = 2−Ω(λ). As the condition Mqsig = poly(λ)
forces M to be close to 1, the condition qsig · Mε0/M0 = 2−Ω(λ) is already
satisfied. We now focus on ε1, M0 and M1.

When i tends to infinity, we have M ≈ 1/(1 − ε1), so that we can set ε1 ≈
1/qsig as in Sect. 4. For i = 1, we have M = M0, and we fall in the regime
of [ASY22, Section 4]. Let us now consider the small i case, which is probably
the most interesting one for applications requiring a bounded signature time.
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1: � ← 1
2: if � ≤ i − 1 then
3: y ←↩ P2

4: else
5: y ←↩ P0

6: end if
7: c ← U(C)
8: z ← y + Sc
9: u ←↩ U([0, 1])

10: if u ≤ P1(z)
M1P2(y)

or � = i then
11: return (z, c)
12: else
13: � ← � + 1
14: go to Step 2
15: end if

1: � ← 1
2: y ←↩ P1

3: c ← U(C)
4: z ← y + Sc
5: u ←↩ U([0, 1])
6: if u ≤ 1

M1
or � = i then

7: return (z, c)
8: else
9: � ← � + 1
10: go to Step 2
11: end if

Fig. 6. Simulating signatures.

As M ≥ 1/(1 − ε1) and we must ensure that Mqsig = poly(λ), we set ε1 at
most of the order of 1/qsig. This implies that M ≈ 1 + M0 · (1 − 1/M1)i−1, and
hence we set (M0 − 1) · (1− 1/M1)i−1 = O(1/qsig). For Gaussian and hyperball-
uniform instantiations, this leads to a standard deviation (resp. radius) growing
polynomially in qsig/(1 − 1/M1)i−1.

We argue now that the trade-off above (for small i) seems essentially optimal.
For i = 1, it was showed in [ASY22, Appendix C.2] that the folklore statistical
attack against the Gaussian and rejection-free version of Lyubashevsky’s signa-
ture scheme runs in subexponential time when M0 = q

o(1)
sig . Now, for larger i and

sufficiently distinct target and flooding distributions, an adversary could con-
sider the signatures for which all loop iterations failed (i.e., the output sample
corresponds to the flooding distribution), and run the statistical attack described
in [ASY22] for those samples. As the probability of rejecting all samples is essen-
tially (1 − 1/M1)i−1, this attack matches with the trade-off above.
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Abstract. We propose the signature scheme Hawk, a concrete instan-
tiation of proposals to use the Lattice Isomorphism Problem (LIP) as
a foundation for cryptography that focuses on simplicity. This simplic-
ity stems from LIP, which allows the use of lattices such as Z

n, lead-
ing to signature algorithms with no floats, no rejection sampling, and
compact precomputed distributions. Such design features are desirable
for constrained devices, and when computing signatures inside FHE or
MPC. The most significant change from recent LIP proposals is the use
of module lattices, reusing algorithms and ideas from NTRUSign and
Falcon. Its simplicity makes Hawk competitive. We provide cryptanal-
ysis with experimental evidence for the design of Hawk and implement
two parameter sets, Hawk-512 and Hawk-1024. Signing using Hawk-512
and Hawk-1024 is four times faster than Falcon on x86 architectures,
produces signatures that are about 15% more compact, and is slightly
more secure against forgeries by lattice reduction attacks. When floating-
points are unavailable, Hawk signs 15 times faster than Falcon.

We provide a worst case to average case reduction for module LIP.
For certain parametrisations of Hawk this applies to secret key recovery
and we reduce signature forgery in the random oracle model to a new
problem called the one more short vector problem.

Keywords: Post-Quantum Cryptography · Signatures · Module
Lattice Isomorphism Problem · Concrete Design · Quadratic Forms

1 Introduction

Background. Currently the most efficient lattice based signature scheme, and
more generally, one of the most efficient post-quantum signature schemes, is Fal-
con [32]. Like its predecessor NTRUsign it has a hash-then-sign design, but
fixes the issue of signature transcript leakage [27] via Discrete Gaussian Sampling
(DGS) [19].

Since its introduction much progress has been made into making DGS more
efficient [11,12,18], in particular by exploiting ideal or module structures [14,28]
such as those of NTRU lattices. Nonetheless, DGS remains particularly difficult
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to implement securely and efficiently, especially on constrained devices, and even
more so when side-channel attacks are a concern. In particular, DGS involves
high precision floating-point linear algebra and the evaluation of transcendental
functions. A decade of research has not provided an entirely satisfactory solution
to such issues.

Recently an idea emerged: use a simple lattice, maybe as simple as Zn [7,15].
More precisely, use a hidden rotation of it. The idea is to base security on
the problem of finding isometries between lattices, i.e. the Lattice Isomorphism
Problem (LIP). While this is not only motivation for LIP based cryptography,
it was noted in [15] that this avoids the difficult DGS step above: sampling from
the Z

n lattice is much easier.

This work. The work [15], introducing the LIP based cryptography framework,
mostly focused on theoretical and asymptotic results. In our work we give a
concrete instantiation of their approach, based on simple module lattices, to see
if it is practical and competitive. An attractive choice would be to consider the
most structured option, namely modules of rank one (ideal lattices) over number
fields, however this restricted version of LIP is known to be solvable in classical
polynomial time [20,24].

Instead we work with rank two modules, for which the LIP problem has already
received some cryptanalytic attention [33]. It was quickly noted that NTRUsign
signatures [22]were leaking theGrammatrix of the secret key; recovering the secret
key from this Gram matrix is precisely LIP. While theNTRUsign scheme was ulti-
mately broken, it was only by exploiting a stronger form of leakage, not by solving
LIP. In conclusion this module LIP problem is plausibly hard and is clear and sim-
ple to state, and therefore appears as a legitimate basis for cryptography.

We consider the ring R = Z[X]/(Xn + 1) for n a power of two, that is the
ring of integers for some power of two cyclotomic field. This ring is naturally
viewed as an orthogonal lattice. We must then generate a basis of R2 following
some distribution, which we achieve by mimicking NTRUsign key generation
and setting the modulus q = 1. This allows us to make use of efficient techniques
from the literature [22,29,32]. Following the ideas presented in [15] we are able
to show that sampling our keys in this manner gives a worst case to average case
reduction for module LIP. However, this reduction is limited to a large choice
of the parameter that determines the sampling of the public key. In Hawk we
make more aggressive choices based on heuristic and experimental cryptanalysis.

The original design of [15] hashed a message to {0, 1
q , . . . , q−1

q }2n
for some

q = poly(n). Another optimisation we propose is to hash the message to a smaller
target space {0, 1

2}2n to further simplify Gaussian sampling. For this variant we
provide a reduction in the programmable random oracle model to a new problem:
one more (approximate) SVP. This reduction also requires a specific choice of
parameters, and again Hawk makes more aggressive choices. This problem is
similar to the recently introduced one more inhomogenous short integer solution
problem [1] used to design blind signature schemes from lattices.

We also propose efficient encodings for the public key and signatures of our
scheme. Decoding the keys is cheap and recovering redundant parts is done
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Table 1. Performance of Falcon and Hawk for n = 512, 1024 on an IntelR© CoreTM

i5-4590 @3.30GHz processor with TurboBoost disabled. Hawk was compiled with -O2

and Falcon with -O3. The Sign timings correspond to batch usage; “Gain” is more
favourable for Hawk in unbatched usage, see Sect. 5.4.

[32] This work Gain [32] This work Gain

Falcon Hawk
(
Falcon
Hawk

)
Falcon Hawk

(
Falcon
Hawk

)

512 512 1024 1024

AVX2 KGen 7.95 ms 4.25 ms ×1.87 23.60 ms 17.88 ms ×1.32

Reference KGen 19.32 ms 13.14 ms ×1.47 54.65 ms 41.39 ms ×1.32

AVX2 Sign 193µs 50 µs × 3.9 382µs 99 µs × 3.9

Reference Sign 2449µs 168µs ×14.6 5273µs 343µs ×15.4

AVX2 Vf 50µs 19 µs ×2.63 99µs 46 µs ×2.15

Reference Vf 53µs 178µs ×0.30 105µs 392µs ×0.27

Secret key (bytes) 1281 1153 ×1.11 2305 2561 ×0.90

Public key (bytes) 897 1006 ± 6 ×0.89 1793 2329 ± 11 ×0.77

Signature (bytes) 652 ± 3 542 ± 4 ×1.21 1261 ± 4 1195 ± 6 ×1.05

efficiently with a few number theoretic or fast Fourier transforms. Moreover, we
significantly compress the signature by dropping half of it, which is effectively com-
putationally free. Decompressing a signature uses Babai’s round-off algorithm [4].
This decompression uses public data during verification, so it is not a target for
side-channel or statistical attacks and does not require masking. Its use of round-
ing also allows us to avoid the need for high precision floats.

Performance and comparison. Following Falcon, we propose a reference imple-
mentation and an AVX2 optimised implementation. The reference implemen-
tation makes no use of floating-points (though it emulates them during key
generation), whereas the AVX2 version uses floating-points.

On AVX2 CPUs, Hawk-512 outperforms Falcon-512 by a factor of about
2 for key generation and verification and a factor of 4 for signing. The situa-
tion is similar for Hawk-1024. Without floats, Hawk signs 15 times faster than
Falcon, because Hawk uses number theoretic transforms in signing while Fal-
con emulates floating-points. The verification contains a fast decompression that
uses fixed-point arithmetic but uses two number theoretic transforms making it
slightly slower than Falcon. Because the numbers are smaller in Hawk’s secret
key, key generation is faster with Hawk.

Regarding compactness, Hawk-512 signatures are about 110 bytes shorter,
but public keys about 110 bytes larger, than Falcon-512; this puts Hawk-512
on par for certificate chain applications, and should be advantageous for other
applications. Additionally, secret keys are 128 bytes smaller. In Hawk-1024 we
save a little on signatures, but our keys are larger.
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We also note that Hawk resists forgery attacks a little better than Falcon.
This is a direct result of being able to use the secret key to efficiently sample
slightly smaller signatures in Z

2n than is possible in an NTRU lattice.
The recent variant of Falcon named Mitaka [17] also aims to make the

signing procedure simpler and free from floating-point arithmetic. They achieve
this with some loss in the signing quality compared to Falcon which makes sig-
nature forgeries somewhat easier, but their floating-point implementation signs
twice as fast. In contrast, by using Z

2n we obtain an even simpler sampler while
simultaneously improving the signing quality, efficiency and signature size.

Simplicity as a circuit. We claim that our signature scheme is simpler as a
circuit than Falcon and therefore expect the performance gap to be larger on
constrained architectures. In fact, we hope that Hawk or a variant of Hawk may
be simple enough to be implemented within a Fully Homomorphic Encryption
scheme for applications such as blind or threshold signatures [2]. It might also be
easier to mask against side-channel attacks, similarly to how the lack of floating-
points in the sampler simplifies the masking of MitakaZ [17, Sec. 7.3].

Implementation and source c. Our constant-time C implementation and auxil-
iary scripts are open source.1 Included is a SageMath implementation of Hawk.

Roadmap. Section 2 introduces some preliminaries. Section 3 introduces the sig-
nature scheme Hawk. Section 4 details our concrete cryptanalytic model for
Hawk. Section 5 details the parameters for Hawk, its estimated security, and
explains implementation and performance details. Section 6 provides a worst
case to average case reduction for smLIP, the search module LIP problem that
underlies our key generation design. Throughout references to appendices can be
found in the full version of this report [16], where we provide more information
on formal reductions and our implementation.

2 Preliminaries

We use bold lowercase letters v to denote column vectors. Bold uppercase letters
B represent matrices, and BT is the transpose. For a real matrix B let B̃ denote
the related Gram–Schmidt matrix. Let [n] = {1, . . . , n} for n ∈ Z≥1. Let log
without subscript denote the natural logarithm.

Lattices and quadratic forms. A full rank, n dimensional lattice Λ is a discrete
subgroup of R

n and is given by a basis B ∈ R
n×n of R-linearly independent

column vectors. A lattice defined by B is Λ(B) = {B · x : x ∈ Z
n}. Denote

by λi(Λ) the ith minima of Λ. This is the smallest radius of a centred and
closed ball such that its intersection with Λ contains i linearly independent
vectors. Two bases B,B′ generate the same lattice if there exists a unimodular

1 https://github.com/ludopulles/hawk-aux.

https://github.com/ludopulles/hawk-aux
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matrix U ∈ GLn(Z) such that B · U = B′. Two lattices Λ,Λ′ are isomorphic if
there exists an orthonormal transformation O ∈ On(R) such that O · Λ = Λ′.
Recovering this transformation is the Lattice Isomorphism Problem (LIP).

Definition 1 (Lattice Isomorphism Problem). Given two isomorphic lat-
tices Λ,Λ′, find O ∈ On(R) such that O · Λ = {O · v : v ∈ Λ} = Λ′.

If Λ,Λ′ are generated by B,B′ respectively, then they are isomorphic if there
exists an orthonormal transformation O ∈ On(R) and a unimodular matrix
U ∈ GLn(Z) such that O ·B ·U = B′. We can remove the real valued orthonor-
mal transformation by moving to quadratic forms. A quadratic form is a positive
definite real symmetric matrix Q ∈ S>0

n (R). For any lattice basis B the Gram
matrix BTB, consisting of all pairwise inner products, is a quadratic form. Con-
versely, given a quadratic form Q, Cholesky decomposition finds a basis BQ such
that BT

Q ·BQ = Q and BQ is an upper triangular matrix. Two quadratic forms
Q,Q′ ∈ S>0

n (R) are equivalent if there exists a unimodular U ∈ GLn(Z) such
that UT · Q · U = Q′. We have that two lattices are isomorphic if and only if
their Gram matrices are equivalent; this allows us to restate LIP.

Definition 2 (LIP, restated). Given two equivalent forms Q,Q′, find U ∈
GLn(Z) such that UT · Q · U = Q′.

The inner product with respect to Q ∈ S>0
n (R) is defined as 〈 · , · 〉Q : Rn ×

R
n → R, (x,y) �→ xT · Q · y. The norm with respect to Q ∈ S>0

n (R) is defined
as ‖x‖Q =

√〈x,x〉Q. Note that for a basis B and vectors x,y ∈ R
n we have

〈Bx,By〉 = xTBTBy = 〈x,y〉BTB ,

and thus the geometry of Λ(B) is fully described by Q = BTB. Moving from lat-
tices to quadratic forms can be viewed as forgetting about the specific embedding
of the lattice in R

n, while maintaining all geometric information. Throughout
the paper we will talk about lattices and quadratic forms interchangeably.

Discrete gaussian sampling and smoothing. Given a parameter σ ∈ R>0, we
define the Gaussian mass ρσ : Rn → R, x �→ exp

(
−‖x‖2 /2σ2

)
. For any c ∈ R

n

we denote the discrete Gaussian distribution on Λ + c with parameter σ by
DΛ+c,σ which assigns the probability ρσ (x) /

∑
y∈Λ+c ρσ (y) to a point x ∈ Λ+c,

and zero otherwise. We also define a Gaussian mass with respect to Q ∈ S>0
n (R)

as ρQ,σ : Rn → R,x �→ exp
(
−‖x‖2Q /2σ2

)
. For any c ∈ R

n we denote the
discrete Gaussian distribution on Z

n + c with respect to Q and parameter σ by
DQ,Zn+c,σ, which assigns a probability ρQ,σ (x) /

∑
y∈Zn+c ρQ,σ (y) to a point

x ∈ Z
n + c, and zero otherwise. If c ∈ Z

n we write DQ,σ. If Q = BT · B, note
that DQ,Zn+c,σ(x) = B−1 · DΛ(B)+B·c,σ(B · x), as ρQ,σ(x) = ρσ(B · x). When
σ is large enough compared to the maximum length of a Gram–Schmidt basis
vector, we can efficiently sample a discrete Gaussian.
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Lemma 1 [8, Lem. 2.3], adapted). There is a PPT algorithm that on input
a quadratic form Q ∈ S>0

n (R), c ∈ R
n and parameter σ ≥

∥∥∥B̃Q

∥∥∥ · (1/π) ·
√

log(2n + 4)/2 outputs a sample according to DQ,Zn+c,σ.

A discrete Gaussian has a similar tail bound to a continuous Gaussian.

Lemma 2 ([6, Lem. 1.5(ii)]). For any lattice Λ ⊂ R
n, point c ∈ R

n and τ ≥ 1,
we have

Pr
x∼DΛ+c,σ

[
‖x‖ > τσ

√
n
]

≤ 2
ρσ (Λ)

ρσ (Λ + c)
· τne− n

2 (τ2−1).

Definition 3. Let Λ̂ denote the dual of Λ. For ε > 0 we define the smoothing
parameter ηε(Λ) as the smallest σ ∈ R>0 such that ρ1/(2πσ)

(
Λ̂ \{0}

)
≤ ε.

Note that ηε is usually defined with respect to a width s =
√

2πσ. Here its value
is a factor

√
2π smaller than usual. If σ ≥ ηε(Λ) then DΛ+c,σ exhibits several

useful properties. For example, σ is close to the standard deviation of DΛ+c,σ,
with the closeness parametrised by ε, see [26, Lem. 4.3], and cosets have similar
weights. We may say σ is ‘above smoothing’ to refer to σ ≥ ηε(Λ) for some
implicit appropriate ε.

Lemma 3 ([26, Proof of Lem. 4.4]). For any lattice Λ ⊂ R
n, point c ∈ R

n,
and ε ∈ (0, 1), σ ≥ ηε(Λ), we have

(1 − ε) ·
(√

2π · σ
)n

det(Λ)
≤ ρσ(Λ + c) = ρQ,σ(Zn + c′) ≤ (1 + ε) ·

(√
2π · σ

)n

det(Λ)
,

where Q = BTB and c′ = B−1c for any basis B of Λ.

Module lattices and Hermitian forms. A number field K is an algebraic extension
of Q of finite degree n = [K : Q]. We write OK for the ring of integers of a general
number field. In this work, we consider the cyclotomic field K = Q (ζ2n) =
Q
(
e−2πi/2n

) ∼= Q[X]/(Xn +1) where n ≥ 2 is a power of two. This is a CM field
and has conductor m = 2n. Many of the facts below are not true for general
number fields. The ring of integers R ∼= Z[X]/(Xn+1) of K, or any ideal of it, is a
rank n lattice. Indeed, consider its image under the embedding σ : K → C

n, x �→
(σ1(x), . . . , σn(x)). Here σ1, σ2, . . . , σn are the n embeddings of K into C, ordered
such that σi+n/2 = σi for i ∈ [n/2] (for m ≥ 3 cyclotomic fields have no real
embeddings). The subset

{
(x1, . . . , xn) ∈ C

n : ∀i ∈ [n/2], xi+n/2 = xi

} ⊂ C
n is

isomorphic as an inner product space to R
n [25, Sec. 2.1]. We implicitly use

this isomorphism and write σ : K → R
n. We also have the coefficient embedding

vec : K → Q
n, a0 + a1X + · · · + an−1X

n−1 �→ (a0, a1, . . . , an−1)
T
, which is an

additive group isomorphism.
The algebraic norm and trace are given by N(x) =

∏n
i=1 σi(x) and Tr(x) =∑n

i=1 σi(x) for x ∈ K. Since the σi are ring homomorphisms the algebraic norm
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is multiplicative and the trace is additive. If x ∈ R then N(x) ,Tr(x) ∈ Z. The
embeddings enable us to view K as an inner product space over Q by defining
〈 · , · 〉 : K × K → Q as

〈f, g〉 =
1
n

·
n∑

i=1

σi(f) · σi(g).

We renormalise by 1
n as there is an isometry, up to a scaling factor of n, from

the complex embedding to the coefficient embedding, i.e. we have 〈f, g〉 =
〈vec(f), vec(g)〉 with the right hand inner product over Rn. This gives a (geomet-
ric) norm on K as ‖ · ‖ : K → Q, f �→ √〈f, f〉, which agrees with the Euclidean
norm of vec(f). As K is a CM field, it has an automorphism · ∗ : K → K that acts
as complex conjugation on its embeddings, which we call the adjoint operator. It
is the unique automorphism satisfying σi(x∗) = σi(x) for all x ∈ K and i ∈ [n].
Therefore, we have 〈f, g〉 = Tr(f∗g) /n.

For any � ∈ Z≥1, we define K
� =

� times
︷ ︸︸ ︷
K ⊕ · · · ⊕ K (and similarly R�, which is

an R-module). Extend vec : K� → Q
n� in the natural way. We extend the inner

product and norm to vectors f ,g ∈ K
� by

〈f ,g〉 =
�∑

i=1

〈fi, gi〉 and ‖f‖ =
√

〈f , f〉.

We write rot(f) =
(
vec(f), vec(Xf), . . . , vec(Xn−1f)

) ∈ Q
n×n for f ∈ K, which

is a basis for the lattice σ(f) given by the (possibly fractional) ideal (f), and
extend this to matrices B ∈ K

k×� in the natural way,

rot(B) =

⎛

⎜
⎝

rot(B11) · · · rot(B1�)
...

. . .
...

rot(Bk1) · · · rot(Bk�)

⎞

⎟
⎠ .

We now define a module lattice. Since R is the ring of integers of a number field,
it is a Dedekind domain and the notion of rank is well defined for R-modules.

Definition 4. Let M ⊂ K
k be an R-module of rank � ≤ k and define the map

σ = (σ, . . . , σ) : Kk → R
nk, (x1, . . . , xk) �→ (σ(x1), . . . , σ(xk)). The image σ(M)

is a rank n� lattice in R
nk which we call a module lattice.

We may refer to ‘the module lattice M ’ to mean σ(M). If B ∈ K
k×� is a basis for

an R-module M then rot(B) ∈ Q
nk×n� is a basis for the module lattice σ(M).

For B ∈ K
k×� we write B∗ to denote the adjoint transpose, and given a vector

f ∈ K
� we write f∗ for the adjoint transpose row vector.

Definition 5. For � ≥ 1, the set of Hermitian forms H>0
� (K) consists of all

Q ∈ K
�×� such that Q∗ = Q and Tr(v∗Qv) > 0 for all v ∈ K

� \{0}.
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Equivalently, Q is a Hermitian form whenever rot(Q) is a quadratic form.
For B ∈ K

�×� the Gram matrix B∗B is a Hermitian form. Similar to the general
case, we define an inner product with respect to a Hermitian form Q as

〈f ,g〉Q =
1
n

· Tr(f∗Qg) and ‖f‖Q =
√

〈f , f〉Q.

Once again, observe that for any B we have 〈Bf ,Bg〉 = 〈f ,g〉B∗B and ‖Bf‖ =
‖f‖B∗B. We use the above to define a discrete Gaussian over Hermitian forms.
For some Q ∈ H>0

� (K) and x ∈ K
� set DQ,σ(x) = Drot(Q),σ(vec(x)). Due to

our choice of K and the definition of our norm, this is equivalent to the natural
definition that follows from ρQ,σ : K� → R, x �→ exp(−‖x‖2Q /2σ2). Note that
the normalised trace satisfies 〈1, z〉 = Tr(z) /n, which evaluates a polynomial
z = z0 + z1X + · · · + zn−1X

n−1 to its constant coefficient z0.

Signature scheme. A signature scheme is a triple of PPT algorithms Π =
(KGen,Sign,Vf) such that Vf is deterministic. On input 1n, KGen outputs a
public and secret key (pk, sk). We assume n can be determined from either key.
On input sk and a message m from a message space that may depend on pk,
Sign outputs a signature sig. On input pk, a message m and a signature sig, Vf
outputs a bit b ∈ {0, 1}. We say sig is a valid signature on m if and only if b = 1.

In our practical cryptanalysis of Sect. 4 we discuss two types of forgery an
adversary may produce, strong and weak. A strong forgery is a signature on
a message for which an adversary does not know a signature, whereas a weak
forgery is a signature on a message for which an adversary may know signatures.
We call a signature scheme Π for which an adversary cannot produce a weak
forgery strongly unforgeable, and a signature scheme for which an adversary
cannot produce a strong forgery weakly unforgeable. In Appendix B of the full
version [16] we consider signature security in a formal game based model.

3 Scheme

In this section we present Hawk.2 We first give a version of Hawk that performs
no compression on its signatures for simplicity, we call this uncompressed Hawk.
We then introduce (compressed) Hawk and discuss how the security of Hawk
directly reduces to that of the uncompressed Hawk.

3.1 Uncompressed HAWK

The uncompressed version of our signature scheme is based on the scheme pre-
sented in [15, Sec. 6], but is adapted to number rings for efficiency. The scheme
uses the number ring R = Z[X]/(Xn + 1) with n ≥ 2 a power of two, the
ring of integers of the number field Q(ζ2n). We use the simplest rank 2 module
lattice, R2 ∼= Z

2n. We implicitly move between R2 and Z
2n via the coefficient

2 See https://github.com/ludopulles/hawk-aux/blob/main/code/hawk.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/hawk.sage
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embedding. The secret key is some basis B ∈ SL2(R) where B (resp. rot(B)) gen-
erates R2 (resp. Z2n). In the context of [15, Sec. 6] this matrix represents a basis
transformation applied to the trivial basis I2(K) of R2. The public key is the
Hermitian form Q = B∗ ·B associated to the basis B. A signature for a message
m is generated by first hashing m and a salt r to a point h = (h0, h1)

T ∈ {0, 1}2n.
Applying the transformation B to 1

2h gives us a target 1
2B · h. We then sample

a short element x in the target’s coset R2 + 1
2B ·h via discrete Gaussian samples

on Z and Z+ 1/2. By applying the inverse transformation B−1 we compute the
signature s = 1

2h±B−1x ∈ R2. This is close to 1
2h with respect to ‖ · ‖Q, and the

sign is chosen to prevent weak forgeries, see Algorithm 2 and below. See Fig. 1
for a visualisation when n = 1. Verification checks if the distance

∥∥ 1
2h − s

∥∥
Q

between s and 1
2h is not too large, which only requires the public key Q = B∗B

and not the secret key B. We have the following parameters:

1. σpk: controls the length of (f, g)T, the first basis vector of B,
2. σsec: controls the lower bound on the acceptable length of (f, g)T,
3. σsign: controls the length of of a short coset vector,
4. σver: controls the acceptable distance between signatures and halved hashes,
5. saltlen: controls the probability of hash collisions.

h

1
2h

s

h− s

1
2Bh

B

B−1 x

Fig. 1. Illustration of signing. First h is sampled (left), then B is applied, a short
lattice point x is sampled from a discrete Gaussian on Z

2n + 1
2
B · h (right). Finally

B−1 applied to x is subtracted from 1
2
h to obtain a lattice point s close to h/2 in

‖ · ‖Q. We then add h − 2s to ensure we satisfy sym-break(h1 − 2s1).
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Algorithm 1. Key generation for Hawk: KGen(1n)
1: Sample f, g ∈ R with coefficients from DZ,σpk

2: q00 = f∗f + g∗g
3: if 2 | N(f) or 2 | N(g) or ‖(f, g)‖2 ≤ σ2

sec · 2n then
4: restart
5: (F, G)T ← TowerSolveIn,1(f, g) [29, Alg. 4], if ⊥, restart

6: (F, G)T ← (F, G)T − ffNPR

(
f∗F+g∗G

q00
, ffLDL∗

R(q00)
)

· (f, g)T [14]

7: B =

(
f F
g G

)
.

8: Q =

(
q00 q01
q10 q11

)
= B∗ · B.

9: return (pk, sk) = (Q,B)

Algorithm 2. Signing for Hawk: SignB(m)

1: r ← U({0, 1}saltlen)
2: h ← H (m‖r)
3: t ← B · h (mod 2)
4: x ← D

Z2n+ 1
2 t,σsign

5: if ‖x‖2 > σ2
ver · 2n then

6: restart (optional, see Sect. 5.3, § Failure checks.)

7: s = (s0, s1)
T = 1

2
h − B−1x (parse x ∈ R2 via vec−1.)

8: if sym-break(h1 − 2s1) is False then
9: s ← h − s

10: return sig = (r, s)

Algorithm 3. Verification for Hawk: VfQ(m, sig)
1: (r, s) ← sig
2: h ← H (m‖r)

3: if s ∈ R2 and sym-break(h1 − 2s1) is True and
∥
∥h

2
− s

∥
∥2

Q
≤ σ2

ver · 2n then
4: return 1
5: else
6: return 0

For uncompressed Hawk we present KGen in Algorithm 1, Sign in Algorithm 2
and Vf in Algorithm 3. The security parameter n is a power of two and we assume
the internal parameters can be computed from it. We use previous work [29, Alg. 4]
to generate the unimodular transformation B efficiently, by sampling the first
basis vector (f, g)T, and then completing it (if possible) with a second basis vector
(F,G)T such that detB = 1. We combine this with the fast Babai reduction of [14]
to obtain a shorter second basis vector (F,G)T. In KGen checks are performed prior
to completing the basis B. In TowerSolveI [29] it is necessary for N(f) or N(g)
to be an odd integer. We require both to be odd to use an optimised constant-
time greatest common divisor algorithm, identical to the Falcon reference
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implementation. Also, we require the squared norm of (f, g)T to be longer than
σ2
sec ·2n for our concrete cryptanalysis, see Sect. 4. Note that the signer has B−1 =(
G −F
−g f

)
since fG − gF = detB = 1.

In Sign and Vf we check the condition sym-break(h1−2s1), which is required
for strong unforgeability. Without it sig′ = (r,h − s), which can be constructed
from public values, is another valid signature on m if sig = (r, s) is. Given e ∈ R,
we define sym-break(e) to be True if and only if e �= 0 and the first non zero
coefficient of vec(e) is positive. Checking this condition on h1−2s1 in Vf prevents
a weak forgery attack.

Signature correctness. Assume Sign is called with message m and outputs
sig = (r, s). First, note B−1x ∈ R2 + 1

2h and 1
2h ± 1

2h ∈ R2, so s =
1
2h ± B−1x ∈ R2. Second, suppose sym-break(h1 − 2s1) is not satisfied during
verification. By lines 8 and 9 of Algorithm 2, this means sym-break(h1 − 2s1)
and sym-break(2s1−h1) are both False, therefore h1 = 2s1. Since h ∈ {0, 1}2n,
this implies h1 = 0, i.e. we have found a preimage of (h0, 0)T for H. By choosing
a preimage resistant H or modelling it as a random oracle, this happens with
negl(n) probability. We allow this failure probability to simplify (compressed)
Hawk.

The signing algorithm terminates only if the condition on line 5 is False.
Therefore ‖x‖2 ≤ σ2

ver ·2n. Thus during verification
∥∥h

2 − s
∥∥2
Q

=
∥∥B

(
h
2 − s

)∥∥2 =

‖±x‖2 ≤ σ2
ver · 2n, with −x given by line 9 of Sign.

Storing pk and sk. We now consider how to efficiently store pk and sk, that is,

Q =
(

q00 q01
q10 q11

)
= B∗ · B and B =

(
f F
g G

)

respectively. For B it is sufficient to only store f and g, but this requires the
computationally expensive recovery of F and G in Sign. We note that computing
F,G is the most expensive part of KGen. Instead, one stores f, g and F since G
can be recovered efficiently from fG− gF = 1. The coefficients of f, g and F are
small so we use a simple encoding with constant-time decoding for them.

For Q by construction we have q10 = q∗
01 so one may simply drop q10. More-

over, since det(B) = 1 we have q00q11 − q01q10 = detQ = det(B∗) det(B) = 1,
therefore q11 can be dropped and reconstructed as q11 = 1+q∗

01·q01
q00

. In addition,
q00 is self-adjoint and therefore only the first half of its coefficients need to be
encoded. More details are given in Sect. 5.2.

3.2 (Compressed) HAWK

Hawk is obtained by dropping s0 from a signature s = (s0, s1)
T in Sign and

then reconstructing it in Vf using public values Q and h. There is a probability
that s0 is not correctly recovered, but it is kept small by rejecting ‘bad’ key
pairs in KGen. In Vf, s0 is recovered by finding a value that makes 1

2h− (s0, s1)
T



76 L. Ducas et al.

short with respect to ‖ · ‖Q. Two ways to reconstruct s0 are Babai’s round-off
algorithm and Babai’s Nearest Plane Algorithm [4]. Given that we work with
respect to the norm induced by Q, we must adapt one of these algorithms to
quadratic forms. Because of its simplicity and good performance, we use round-
off for Hawk. Specifically, we use the following to reconstruct s0.

s′
0 =

⌈
h0

2
+

q01
q00

(
h1

2
− s1

)⌋
, (1)

where the rounding is coefficientwise and �x� = z for x ∈ (
z − 1

2 , z + 1
2

]
and

z ∈ Z. Hence Vf is adapted to read a signature sig = (r, s1) and reconstruct s′
0

using (1), before setting s = (s′
0, s1)

T. Observe that s′
0 = s0 if and only if

⌈
q00

(
h0
2 − s0

)
+ q01

(
h1
2 − s1

)

q00

⌋

= 0.

The fraction inside the rounding function can be rewritten using (q00, q01) =
(f∗, g∗) ·B and B · (h2 − s

)
= (x0, x1)

T as f∗x0+g∗x1
f∗f+g∗g . Thus, we certainly recover

the correct s0 from Q, h and s1 if

f∗x0 + g∗x1

f∗f + g∗g
∈
(

−1
2
,
1
2

)n

. (2)

Intuitively, when (f, g) is sampled such that the Euclidean norm of
(f∗/q00, g

∗/q00) is sufficiently small, this recovery works almost always. Note
∥∥∥∥

(
f∗

q00
,

g∗

q00

)∥∥∥∥

2

=
1
n

Tr
(

f∗f + g∗g
q200

)
=

1
n

Tr
(
q−1
00

)
= 〈1, q−1

00 〉. (3)

Hence we choose a bound νdec such that decompression works almost always for
keys satisfying 〈1, q−1

00 〉 < νdec. We provide a computation and value for νdec in
Sect. 5.1. In summary, Algorithms 1, 2 and 3 are changed as follows for Hawk.

1. In KGen, restart if 〈1, q−1
00 〉 ≥ νdec.

2. In Sign, restart if x = (x0, x1)
T does not satisfy (2).

3. In Sign, return a signature as (r, s1) instead of (r, s) = (r, (s0, s1)
T).

4. In Vf, given a signature (r, s1) reconstruct s′
0 with (1) and set s = (s′

0, s1)
T.

Given the above, a reconstructed signature is correct. In practice we choose
νdec such that (2) is also satisfied except with small probability and forego item
2. in the list, see Sect. 5.3.

Security relation to the uncompressed variant. Note that an adversary that can
create a forgery (strong or weak) against Hawk can also create a forgery (strong
or weak) against uncompressed Hawk. Indeed, if sig = (r, s1) is a forgery against
Hawk then this implies sig = (r, (s′

0, s1)
T) is a forgery against uncompressed

Hawk. Only public quantities are required to recover s′
0. Therefore, throughout

we consider the security of uncompressed Hawk. In Appendix B of the full
version [16] we further reduce the forgery security of uncompressed Hawk to an
assumption called the one more short vector problem, or omSVP.
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4 Cryptanalysis

In this section we provide a concrete cryptanalysis of Hawk. Whereas the formal
security arguments we make in Sect. 6 and Appendix B of the full version [16]
increase our confidence in the design of Hawk, our results here aid us in choosing
parameter sets that are efficient. Throughout we consider uncompressed Hawk.
We consider recovering the secret key from public information and forging a new
signature given at most qs = 264 signatures. We report the various parameters,
probabilities and blocksizes output by our cryptanalysis in Table 2.

We express the constraints on various quantities in our scheme in terms
of Gaussian parameters σ•, even if they are not quantities sampled from a
distribution. This allows us to present necessary relationships between these
quantities as in Fig. 2. In particular for x ← DZd,σ, with σ above smoothing,
E[‖x‖] ≈ σ

√
d [26, Sec. 4]. For example, the verification of signatures is deter-

mined by a distance, say �. Instead of referring to �, we use the shorthand
σver = �/

√
d.

σpk ≥ σsec ≥ σver ≥ σsign ≥ σsec

2

: required for security

Sec 4.1 (statistical)Sec 4.2 (cryptanalysis)

Sec 5.1 Sec 5.1 Sec 4.2Sec 4.3

Sec 4.3

σ2
sec + σ2

sign > σ2
ver

Fig. 2. A summary of the necessary relationships between the various σ•.

We stress that the relations of Fig. 2 are necessary, under our experimental
analysis, conditions for security – any selection must also satisfy the concrete
cryptanalysis below. As a short introduction, σsign is our fundamental parameter,
and we select it first. It ensures that our scheme does not suffer from learning
attacks [13,27] if an adversary is given access to signature transcripts. We then
choose σpk which controls key generation in Algorithm 1. It must be large enough
that recovering the secret key is hard, and also that the cost of computing
a sufficiently good basis to aid with signature forgeries is hard. To this end we
heuristically estimate and verify experimentally σsec, a parameter that represents
the shortest a public basis can be before one recovers the secret key. Finally, σpk



78 L. Ducas et al.

and σver are chosen to ensure various rejection steps, in key generation and
signing respectively, do not occur too frequently, see Sect. 5.1. The condition
σ2
ver < σ2

sec + σ2
sign encodes the requirement for a good basis to not help with

signature forgeries.

4.1 Choosing σsign

We choose σsign large enough to avoid signatures leaking information about a
secret key. Following [32, Sec. 2.6], for security parameter λ in the face of an
adversary allowed qs signatures, it is enough to set

σsign ≥ 1
π

·
√

log(4n(1 + 1/ε))
2

≥ ηε(Z2n),

for ε = 1/
√

qs · λ to lose a small constant number of bits of security. We note
that since we sample from Z

2n we may use the orthogonal basis I2n(Z), and
thus the above inequality is also sufficient for efficient sampling via Lemma 1.
We ensure that, following the analysis of Falcon [32, Sec. 3.9.3], our proba-
bility distribution tables have a Rényi divergence at order 513 from their ideal
distributions of less than 1 + 2−79.3

4.2 Key Recovery

In Hawk, the problem of recovering the secret key B ∈ SL2(OK) from the public
key Q = B∗ · B is a (module) Lattice Isomorphism Problem. For the lattice
R2 ∼= Z

2n it is equivalent to finding a U ∈ SL2(OK) such that U∗ ·Q ·U = I2(K),
i.e. reducing (any lattice basis corresponding to) Q to an orthonormal basis. As
mentioned in [15], all known algorithms to solve LIP for modules of rank at least
two require finding at least one shortest vector. Therefore we assume that the
best key recovery attack requires one to find a single shortest vector.

Unusual-SVP. The shortest vectors in R2 have length 1, which is a factor of order
Θ(

√
n) shorter than predicted by the Gaussian heuristic. Recovering such ‘unusu-

ally’ short vectors is easier than generic shortest vectors, and can be achieved by
running the BKZ lattice reduction algorithm with blocksize β much lower than
the full dimension 2n. Given that for current cryptanalysis there are no signifi-
cant speed-ups for solving the structured variant of this unusual-SVP, we treat
the problem by considering the unstructured version (i.e. as the form rot(Q) or
some rotation of Z

2n). The problem of finding an unusually short vector has
received much cryptanalytic attention. This has lead to accurate estimates for
the required BKZ blocksize, see [3] for a survey. As an estimate, given that our
lattice has unit volume and we search for a vector of unit length, we require a
blocksize β such that

√
β/d ≈ δ2β−d−1

β , (4)

3 See https://github.com/ludopulles/hawk-aux/blob/main/code/generate C tables.
sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_tables.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_tables.sage
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where δβ ≈ (β/2πe)1/2(β−1). Asymptotically this is satisfied for some β ∈
d/2+o(d). Concrete estimates also simulate the Gram–Schmidt profile, use prob-
abilistic models for the lengths of projected vectors and account for the presence
of multiple shortest vectors [5,9,10,30].

In Fig. 4 we plot the estimate given by (4) where the o(d) term is concretised
to some constant, the estimate given by the leaky-LWE-estimator [10], which
applies the concrete improvements mentioned above, and experimental data.
These experiments apply the BKZ2.0 algorithm with lattice point enumeration
as implemented in [34] to the public form Q, reporting the BKZ block size
required to find a shortest vector. For dimensions which are not powers of two,
the experimental data uses a form sampled by [15, Alg. 1], the unstructured
generation procedure upon which our key generation is based. For some small
power of two dimensions we generate bases via Algorithm 1. We see that below
approximately dimension 80 instances can be solved with LLL reduction, and
that afterwards the required blocksize approximately increments by one when
the dimension increases by two, as (4) would suggest. We also see that above
approximately blocksize 70 the model of [10] appears especially accurate. We
therefore use this model to determine βkey in Table 2. We use a simple progressive
strategy where the blocksize increments by one after each tour, which we expect
to require a blocksize perhaps two or three larger than a more optimal progressive
strategy.

Decreasing σpk. For the experiments of Fig. 4 we took a large σpk as an attempt
to find a ground truth. We would like to minimise σpk to minimise the size of
our keys and the complexity of computing with them, but without significantly
reducing security. To this end we perform a similar experiment where we fix a
set of dimensions and reduce forms of these dimensions using various σpk < 20.
The results of these experiments are presented in Fig. 3.

For σpk below a certain threshold instances can be solved by LLL, then as
σpk increases past this threshold the instances become harder, before reaching
an empirical “maximum hardness” (at least with respect to these experiments)
where further increases in σpk appear to give no extra security.

When running BKZ one encounters shorter vectors as β grows. In a random
lattice of unit volume one expects to encounter vectors of length δd−1

β ∈ Θ(d)
when β = d/2 + o(d), but for Z

d this is also the moment that a vector of
length 1 is found. In fact, the model of [10] predicts that we suddenly jump from
finding vectors of length �0 = Θ(d) to finding a shortest vector of length 1. This
threshold behaviour was observed and discussed in [7, Sec. 6.2]. In our notation
the authors observe the threshold effect once vectors of length approximately√

d/2 are discovered. Our model and experiments suggest the threshold length
is Θ(d) but with a constant smaller than 1. We verified this behaviour for Z

d

experimentally. In Fig. 5 we plot σsec = �0/
√

d where �0 is the length of the
shortest basis vector after the penultimate tour concludes.

We see that for large enough dimensions the behaviour matches the unusual-
SVP predictions, and we obtain σsec = Θ(

√
d). For Table 2 we take σsec as the

output from the prediction of [10]. We assume the value σsec represents a lower



80 L. Ducas et al.

Fig. 3. Blocksize required to recover a shortest vector via lattice reduction as a function
of the standard deviation σ̃pk.

bound for σpk such that our public forms exhibit maximum hardness. In practice
we take σpk > σsec and reject keys where the length of (f, g)T is shorter than
�0. If we allow shorter (f, g)T then the public key may give information to an
adversary that she would not have unless she had already recovered the secret
key.

We note that the prediction of [10] in Fig. 5 is inaccurate for d ≤ 180, similarly
(but more noticeably) to Fig. 4. One can improve the accuracy of estimates
for these dimensions by using the geometric series assumption, and performing
several tours so that basis profiles match it, for small blocksizes (say up to
β = 20). Since our estimates converge in the range of feasible experiments, we
choose simplicity instead.

Note that even if the statistical arguments of Sect. 4.1 allow it, we can-
not take σsign < σsec/2. Indeed, 2 · ( 12h − s) ∈ Z

2n and if σsign < σsec/2 then∥∥2 · (12h − s)
∥∥
Q

= 2 ‖x‖ ≈ 2σsign

√
d < σsec

√
d. Therefore, doubling a public

quantity given by a signature may describe a shorter lattice vector than those
seen just before secret key recovery.
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Fig. 4. Blocksize required to recover a shortest vector via lattice reduction as a function
of dimension d.

4.3 Signature Forgery

Strong Forgery. We consider the general problem of forging a signature for some
unsigned message. Specifically, given a target 1

2h for some h ∈ {0, 1}2n, return
an s ∈ Z

2n such that
∥∥ 1
2h − s

∥∥
Q

≤ σver

√
d. We use the heuristic that solving

such an approximate CVP instance is at least as hard as solving an approximate
SVP instance with the same approximation factor over the same lattice. we
determine the expected blocksize β using the BKZ simulator [10] such that our
first basis vector has norm less than σver

√
d, and report it as βforge in Table 2.

Note that since we use the BKZ simulator of [10] to estimate both βkey and
βforge, if σver = σsec then βkey = βforge. Our approach mandates that σver ≤ σsec.
We make this design decision because in our model it means an adversary should
not be able to produce a strong forgery unless the secret key is recovered. Indeed,
when σver ≤ σsec our assumption on approximate CVP says forging a signature
is as hard as finding a vector as short as those found just before key recovery.

Weak Forgery. We consider a weak forgery attack consisting of adding a short
lattice vector to an existing signature for some message, and hoping that it
remains a valid signature for the same message. This vector might come from



82 L. Ducas et al.

Fig. 5. Shortest basis vector length before the recovery of a length one vector, given
in terms of σsec.

the public key, or from lattice reduction effort on it. Its length is assumed to
be at least �0 = σsec · √

d, see Sect. 4.2. We give arbitrarily many such length
�0 vectors to the adversary for free. We estimate the probability the attack
succeeds, i.e. that ‖x + v‖2 ≤ d · σ2

ver for x ← DZ2n,σsign
and v of length �0.4

If x were sampled from a spherical continuous Gaussian, then considering any
such v would give the same distribution of squared lengths. We examine the
distribution of ‖x + v‖2 for two “extremal” choices of v; the first has all its
weight in one coordinate, v = (��0�, 0, . . . , 0), and the second is as balanced as
possible, e.g. v = (1, . . . , 1, 2, . . . , 2) for ‖v‖ = ��0�. Note that the distribution
of ‖x + v‖2 is invariant under signed permutations of v. We report our estimate
for the success probability of this attack as Pr[weak forgery] in Table 2.

This attack implies the requirement σ2
ver < σ2

sec + σ2
sign. Even if a vector from

a reduced public key is orthogonal to a given signature, then if σ2
ver ≥ σ2

sec +σ2
sign

adding it will likely be sufficient for a weak forgery.

Comparison with Falcon. Falcon uses a different cryptanalytic model to deter-
mine the blocksizes reported in Table 2. Our model makes use of recent improve-
ments [10] and enjoys the experimental evidence above. The unusually short
vectors in Z

d are a factor about 1.17 shorter than the NTRU lattice of Fal-
con, after appropriate renormalisation, and thus key recovery for Hawk will
be slightly easier than Falcon in either model. On the other hand, our ver-
ification bound σver is a factor about 1.15 (Hawk-512) to 1.06 (Hawk-1024)
shorter than Falcon after renormalisation, and thus obtaining strong forgeries

4 See fail and forge probability at https://github.com/ludopulles/hawk-aux/
blob/main/code/find params.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
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is slightly harder than in Falcon in either model. In both Hawk-512 and Fal-
con-512 key recovery is harder than signature forgery, and thus hardening the
latter, as we do, gives a slightly more secure scheme overall. For Hawk-1024
and Falcon-1024 key recovery is easier than signature forgery, and in the Fal-
con model we obtain a slightly less secure scheme overall. See Appendix D of
the full version [16] for more detail on Falcon’s security methodology, and a
comparison to Hawk under it. We also argue there that part of the key recovery
methodology of Falcon is overconservative.

5 Parameters and Performance

In Table 2 we list parameters and the output of our concrete cryptanalysis for
Hawk.5 Section 5.1 explains how these parameters were chosen. We explain the
encoding used for public keys and signatures, and the simple encoding used for
secret keys, in Sect. 5.2. In Sect. 5.3 we explain the design choices made in our
constant-time implementation of Hawk, written in C. Finally, Sect. 5.4 contains
the details behind Table 1. More details can be found in Appendix C of the full
version [16].

5.1 Parameter Selection

In Hawk we set saltlen = λ+log2 qs, where qs = 264 is the limit on the signature
transcript size. The probability of a hash collision is then less than qs · 2−λ [32,
Section 2.2.2]. Allowing saltlen to depend on λ implies one must know λ before
computing H(m‖r), which is commonly the case. For simplicity Falcon choose
a fixed salt length of 320 bits. This is not optimal for λ = 128. Here Hawk-512
saves 16 bytes on signatures, though this saving is also available to Falcon-512.

The value of σpk for Hawk-512 listed in Table 2 is such that the probability of
‖(f, g)‖2 > σ2

sec · 2n is greater than 99.5% for f, g both with odd algebraic norm
and sampled as in KGen. For Hawk-1024, the probability that ‖(f, g)‖2 > σ2

sec·2n
holds for similar f, g is greater than 80%.

There are two failures that may occur during signing in Hawk. Firstly, ‖x‖2
may be too large. Secondly, (2) may be violated, i.e. decompressing sig = (r, s1)
may return s′

0 �= s0, the original first component of the signature. We choose
parameters σver and νdec to make such failures unlikely.

For Hawk-512, x is too large with a probability of around 2−22, determined
by convolving the necessary distributions together.6 To obtain a strict upper
bound on this probability one can use a looser tail bound analysis via Lemma 2
and Lemma 3, with ε = 1/

√
qsλ and τ = σver/σsign, which gives 2−17. Similarly

for Hawk-1024, x is too large with a probability of around 2−128 and the tail
bound gives a probability of at most 2−121.

5 See https://github.com/ludopulles/hawk-aux/blob/main/code/find params.sage.
6 See fail and forge probabilities at https://github.com/ludopulles/hawk-aux/

blob/main/code/find params.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
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Given a fixed secret key sk = B, we provide a heuristic upper bound on the
probability of decompression (1) giving s′

0 �= s0, which is upper bounded by the
probability that (2) does not hold. This also upper bounds the probability a
compressed signature is correct although s0 �= s′

0. Heuristically, we assume that
x0, x1 are independently sampled from a normal distribution on R

n with mean
0 and standard deviation σsign. Following Sect. 3.2 the decompression succeeds if
f∗x0+g∗x1

q00
∈ (− 1

2 , 1
2 )n. Since B is fixed, each coefficient is normally distributed

with mean 0 and variance ‖(f∗/q00, g
∗/q00)‖2 · σ2

sign = 〈1, q−1
00 〉 · σ2

sign, using (3).
Hence the probability that one of the n coefficients is not in the interval (−1

2 , 1
2 )

is erfc
(

1
2/
(√

2 · 〈1, 1/q00〉 · σsign

))
, where erfc is the complementary error func-

tion. By a union bound, the probability that decompression fails is heuristically
bounded from above by n · erfc

(
1/(

√
8 · 〈1, 1/q00〉 · σsign)

)
. By rejecting keys for

which 〈1, q−1
00 〉 ≥ νdec, decompression fails for any B heuristically with probabil-

ity at most n · erfc
(
1/
(√

8νdec · σsign

))
.

Taking νdec = 1/1000 in Hawk-512 this upper bound is 2−105. This condition
on (f, g) in KGen fails in about 9% of cases. We empirically determined this by
sampling f and g with odd algebraic norm 100,000 times. Combining this with
the small probability that ‖(f, g)‖ is too small, one can efficiently sample (f, g)
until all requirements, before TowerSolveI is invoked, are met.

In Hawk-1024 we take νdec = 1/3000 and decompression fails on a signa-
ture with probability less than 2−315 for a key satisfying 〈1, q−1

00 〉 < νdec. This
condition fails in about 0.9% of the cases during sampling of (f, g) inside KGen.

Parametrisations for formal reductions. The parameters above are determined
by concrete cryptanalysis and do not follow our formal reductions. In Sect. 6
we give a worst case to average case reduction for smLIP, and in Appendix A
of the full version [16] show how it applies to the KGen of Hawk. For this
reduction to be efficient σpk must grow exponentially in n. We discuss this in
final paragraph of Sect. 6. In Appendix B of the full version [16] we reduce
the strong signature forgery security of Hawk’s design to omSVP. To ensure
the parametrisation of the omSVP problem we reduce to is not easy we require
σver <

√
2σsign and 2σsign < σpk. The existence of plausibly hard parametrisations

of omSVP encourages us that there is no inherent flaw in our design. We take
σpk smaller than this requirement and discuss this further in Appendix B of the
full version [16].

5.2 Encoding

In Hawk both the secret key and x in Sign are sampled from a discrete Gaussian.
As a consequence, the coefficients of the public key and the signature roughly
follow a normal distribution. Therefore, it is beneficial to use the Golomb–Rice
coding [21]. This encoding is used for the signatures in Falcon [32].
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Table 2. Parameter sets and their estimated security are given. The dimension, bit
security and transcript size are used to determine σsign. Other standard deviations
are determined in Sect. 4. We then estimate the probability that a signature fails for
being too long. The estimated required blocksizes β for BKZ reduction to achieve key
recovery and signature forgery are then given. Finally, we give the estimated probability
of finding a weak forgery via the attack in Sect. 4.3.

Hawk-256 Hawk-512 Hawk-1024

Targeted security Challenge NIST-1 NIST-5

Dimension d = 2n 512 1024 2048

Bit security λ 64 128 256

Transcript size limit qs 232 264 264

Signature Std. dev. σsign 1.010 1.278 1.299

Verif. Std. dev. σver 1.040 1.425 1.572

Key Recov. Std. dev. σsec 1.042 1.425 1.974

Key Gen. Std. dev. σpk 1.1 1.5 2

Salt Length (bits) 112 192 320

log2(Pr[sign fail]) −2 −22 −128

Key Recov. (BKZ) βkey 211 452 940

Strong Forgery (BKZ) βforge 211 452 1009

log2(Pr[weak forgery]) −83 −143 −683

For the coding, we use an altered absolute value | · |′ : Z → [0,∞), x �→ x
for x ≥ 0 and x �→ −x − 1 for x < 0. The map that sends x to its sign and
|x|′ gives a bijection Z → {0, 1} ×Z≥0. Given a quantity that is sampled from a
discrete Gaussian distribution with (an above smoothing) parameter σ, take an
integer k close to log2(σ). To encode a value x ∈ Z, first output the sign of x and
the lowest k bits of |x|′ in binary. Then output �|x|′ /2k� in unary, i.e. �|x|′ /2k�
zeros followed by a one. Note that Falcon uses | · | where we use | · |′, but their
decoding fails when negative zero is encountered to ensure unique encodings [32,
Section 3.11.2]. An advantage of this altered absolute value is that it sometimes
saves one bit and is easy to implement: |x|′ is the XOR of x and -(x >> 15)
when x has 16 bits.

We use the Golomb–Rice coding on pk and s1. In particular, for pk the
coefficients of q01 and coefficients 1 up to and including n/2 − 1 of q00 are
encoded, with k = 9 and k = 5 respectively for Hawk-512 and k = 10 and k = 6
for Hawk-1024. The constant coefficient of q00 is output with 16 bits as its size
is much larger than the other coefficients. The second half of q00 can be deduced
from its self-adjointedness. For s1 we use k = 8 and k = 9 in our implementation
for Hawk-512 and Hawk-1024 respectively.

For the secret key, we note the sampler in our implementation of Hawk-512
generates coefficients for f and g with an absolute value at most 13 < 24, we
encode these with 5 bits, one of which is the sign. For the remaining polynomial
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F of the secret key, we encode with one byte per coefficient (recall G can be
reconstructed). We use this simple encoding and decoding for our secret key as
it is constant-time. Hawk-1024 requires 6 bits for coefficients of f and g since
the sampler generates values of absolute value at most 18 < 25.

5.3 Implementation Details

We implemented Hawk-512 and Hawk-1024 in the C programming language,
together with an AVX2 optimised implementation. Due to the many algorithmic
similarities between Hawk and Falcon, we were able to reuse a significant
portion of the public implementation of Falcon. The code for key generation
and signing is isochronous; all is constant-time except the encoding of the public
quantities pk and sig. Verification is trivially isochronous as it only uses public
information.

Babai reduction. In KGen we perform another reduction step to make (F,G)T

smaller than the output of TowerSolveI. TowerSolveI returns an element (F,G)T

whose projection onto the module lattice M = (f, g)T · R, i.e. the rank n real
lattice with basis C = rot((f, g)T), lies in the fundamental parallelepiped defined
by C. If this projection is uniformly distributed here, the expectation of its
squared norm is n

12 ·2nσ2
pk. However, line 6 in Algorithm 1 implies the projection

of (F,G)T onto M lies in the fundamental domain generated by the Gram–
Schmidt orthogonalisation of the rotations of (f, g)T in bit reversed order. By [31,

Lemma 6.9], the ith vector has an expected norm of
√

2n+1−i
2n ·‖(f, g)‖ for i ∈ [n].

Therefore, the expected squared norm of a point sampled uniformly from this
fundamental domain will be

1
12

· (3n + 1)n/2
2n

· 2nσ2
pk =

3n + 1
48

· 2nσ2
pk ≤ n

12
· 2nσ2

pk.

We observe that the squared norm of (F,G) is reduced by a factor of 4/3 by
line 6 of Algorithm 1. This shrinks the Hawk-512 public key size from 1027
bytes on average to 1006.

Sampling and pseudorandomness. We use the SHAKE256 extendable out-
put function to seed a pseudorandom number generator (PRNG) based on
ChaCha20 during sampling in KGen and Sign. As the Gaussian parameters
used in the scheme are fixed, DGS can be performed efficiently with precom-
puted probability tables and this PRNG. KGen uses a sampler that requires 64
bits of randomness. For sampling in Sign we implement DGS for Z + 1

2 t with
t ∈ {0, 1} that is constant-time over input t and that uses 80 bits of randomness,
sufficient for Sect. 4.1. This sampler uses a reverse cumulative distribution table
scaled by a factor of 278 similar to [32, Section 3.9.3]. Almost half of the time of
Sign is spent on sampling.
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Fast polynomial arithmetic. We want all computations to be performed in time
O(n log n). Addition of two polynomials in R = Z[X]/(Xn + 1) is in O(n), but
näıve multiplication in R requires O(n2) integer multiplications. There are two
ways to achieve O(n log n) via the specific structure of the used number ring.
First, one can use the fast Fourier transform (fft) to perform a multiplication
in O(n log n). Alternatively, one can perform multiplications with the number
theoretic transform ntt, which works with a (sufficiently large) prime modulus
p ≡ 1 (mod 2n) and an element ω ∈ F

×
p of order 2n. Then, as F

×
p is a cyclic

group of order p − 1 the ntt computes f(ωi) ∈ R for all i ∈ (Z/2nZ)× in
time O(n log n). When polynomials are transformed with the fft or ntt, mul-
tiplication is coefficientwise. We only use ntt in the reference implementation.
Multiplications in R could also be implemented with Karatsuba or Toom–Cook
style multiplication. For certain applications such as masking this may have com-
parable performance for the given parameters. We leave the trade-off between
masking techniques and alternative multiplication methods as future work.

For the ntt, multiplying two polynomials a(X), b(X) requires p to be twice
larger than the absolute value of any coefficient of a(X), b(X) or a(X)·b(X). This
allows one to recover the correct result in Z via the inverse transformation. In
Hawk-512 and Hawk-1024, p = 12289 is sufficient for signing. In the reference
implementation we use p = 216 + 1 since this Fermat prime allows a faster
multiplication procedure than using Montgomery reduction with p = 12289.
Signing using p = 216 + 1 is 17% faster than using p = 12289. If one wants to
reduce memory usage from 15 kB to 8 kB for Hawk-512, one can safely use the
prime p = 18433 such that values fit in the 16 bits instead of 32.

By demanding coefficients of s and Q are within 6 standard deviations of
their means, we can bound the integer ‖h − 2s‖Q by a product of two 31 bit
primes. Hence, in the reference implementation of Vf, we can compute the norm
of a signature by computing it with the ntt modulo these two primes.

The fft in our implementation uses double precision floating-point numbers
(double). When a processor has a floating-point unit and AVX2 support, this
fft is much faster than the ntt, but also requires more RAM.

Divisions and signature decompression. During decoding we require a polyno-
mial division in K to recover G = (1 + gF )/f and q11 = (1 + q10q01)/q00. Since
these exact divisions have output in R, they can be computed with either the
fft or ntt, by performing a division coefficientwise in the transformed domain.
In KGen, it should be checked that all ntt coefficients of f and q00 are nonzero.

The signature decompression requires a division with rounding to the closest
integral point in R, which can be done efficiently with the fft. One can do this
with fixed-point arithmetic: it is highly unlikely that the numerical error yields
an incorrect rounding. Especially, when we require that the quantity in (2) has
to be in (−0.49, 0.49)n, an absolute error of 0.01 is tolerated.

Failure checks. By default we catch invalid signatures before they are issued. The
first failure check is line 5 of Algorithm 2. A decompression may also output an
incorrect s′

0 �= s0. To catch this we could check with fft if (2) holds, and restart
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Table 3. Performance of dynamic signing for Falcon and Hawk on same PC with
same compilation flags as in Table 1.

Falcon-512 Hawk-512
(
Falcon
Hawk

)
Falcon-1024 Hawk-1024

(
Falcon
Hawk

)

AVX2 Sign 320 µs 58 µs ×5.5 656 µs 114 µs ×5.8

Ref. Sign 5427µs 168µs ×32 11868µs 343 µs ×35

if not. We remove this decompression check, because it is extremely unlikely that
it restarts over the lifetime of a key (see Sect. 5.1).

Omitting the first check might be necessary when implementing Hawk as a
circuit inside an FHE scheme, where while loops are impractical. This comes
at the cost of a rare but non negligible probability (see Sect. 5.1) of an invalid
signature, which might be mitigated by reparametrising the scheme.

In contrast to Falcon, we sample a new salt whenever Sign restarts as we do
not see how reusing the same target can be made compatible with the security
argument of [19]. Reusing the salt may lead to a statistical leak for Falcon,
though it may be hard to exploit as failures in signing are rare. Nevertheless, we
choose to be cautious when it comes to statistical leaks.

5.4 Performance

We report on the performance of our implementation of Hawk-512 and com-
pare it to that of Falcon-512 in Table 1. Hawk was compiled with the gcc
compiler (version 12.1.0) and compilation flag -O2 (and -mavx2 for AVX2), as
-O3 actually made the performance worse. The code for Falcon was taken from
the ‘Extra’ folder in the Round 3 submission package https://falcon-sign.info/
falcon-round3.zip, and was compiled with the same gcc but had compilation
flags -O3 -march=native.

Memory usage. The reference implementation of Hawk-512 uses 24kB, 15kB
and 18kB of RAM for KGen, Sign and Vf respectively, versus 16kB, 40kB and
4kB for Falcon-512 respectively. Hawk requires more RAM for KGen compared
to Falcon to execute line 6 of Algorithm 1. RAM usage of Falcon’s KeyGen
is more than reported on https://falcon-sign.info as we took the RAM usage of
the API functions, which takes sizes of decoded keys into account. The AVX2
optimised implementation of Hawk requires 27kB and 24kB for Sign and Vf
respectively, prioritising speed over memory usage. For Hawk-1024 and Falcon-
1024 memory usage roughly doubles.

Batched vs. dynamic signing. For consistency with the Falcon report [32],
Table 1 reports signing speeds for batched usage, that is, after some precompu-
tation expanding the secret key (called expand seckey). If one needs to start
from the secret key without expanding it, the performance of Falcon is signifi-
cantly affected while the precomputation is much lighter for Hawk. The timings
for dynamic signing are given in Table 3.

https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info
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6 Module LIP Self Reduction

In this section we give a worst to average case reduction for the search module
LIP problem, which underlies secret key recovery in Hawk. The average case
distribution we give does not match Algorithm 1 exactly, as it does not include
some conditions which may cause a restart. We also replace TowerSolveI, which
‘completes’ f and g into a basis with determinant one via F and G, with Hermite-
Solve. HermiteSolve fails if and only if it is impossible to complete a particular
f, g. We show that the distribution of public keys output by Algorithm 1 after
the above changes enjoys a worst to average case reduction. In Appendix A of
the full version [16] we discuss the unaltered public key distribution of Hawk
and show that the reduction is still applicable to Hawk.

Throughout we are concerned with asymptotic security, in contrast to the
main body of the paper where we find efficient parameters that are supported
by concrete cryptanalysis. In particular, the choice of σpk required to make the
reduction efficient is larger than is chosen in our parametrisations for Hawk.

6.1 Module Lattice Isomorphism Problem

Here we introduce a generalisation of the Lattice Isomorphism Problem (LIP) to
module lattices. Given the Hermitian inner product, the correct generalisation
of orthonormal transformations for the module version is to that of unitary
matrices. To avoid confusion with U, which is often used for U ∈ GL�(OK) in
lattice based cryptography, we will use O ∈ U�(KR) = {O ∈ K

�×�
R

: O∗ · O =
I�(K)} for unitary matrices.

Definition 6 (Module Lattice Isomorphism Problem). Given two OK-
modules M,M ′ ⊂ K

� find O ∈ U�(KR) such that O·M = {O·m : m ∈ M} = M ′.

Moving to Hermitian forms, the natural translation becomes equivalence under
the action of GL�(OK). However, for simplicity we restrict ourselves to equiv-
alence under the action of SL�(OK), and we denote the equivalence class by
[Q]sl = {U∗ ·Q ·U : U ∈ SL2(OK)}. Throughout we implicitly restrict to K that
are CM fields, e.g. all cyclotomic fields. Using (generalisations of) the Gentry–
Szydlo algorithm [20,23,24], solving LIP under both actions is equivalent for
such fields. We can now define the worst case module LIP variant. Note that our
worst case and average case problems are within a particular class.

Definition 7 (Worst case smLIP). Given K and Q ∈ H>0
� (K) an instance

of wc−smLIPQ
K,�, the worst case search module Lattice Isomorphism Problem, is

given by Q and any Q′ ∈ [Q]sl. A solution is U ∈ SL�(OK) such that Q′ =
U∗QU.

We now define an average case version of smLIP relevant to Hawk. It is
less general than the worst case version in that we implicitly fix � = 2 and
consider only power of two cyclotomics with conductor m = 2κ = 2n for K. We
define our average case distribution for any class [Q]sl, but note that the average
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case distribution over [I2(K)]sl relates to our key generation in Algorithm 1.
Finally, we define our average case distribution ACσ([Q]sl,K) algorithmically, see
Algorithm 6. This algorithm takes as input a particular form Q and a parameter
σ that controls an internal discrete Gaussian sampling procedure, and outputs
a sample from [Q]sl. One can think of σ = σpk in the case of Hawk.

A subroutine of Algorithm 6 must ‘complete’ a vector (f, g)T ∈ O2
K
, if pos-

sible, into a basis Y ∈ O2×2
K

with second column (F,G)T and determinant one.
To perform this operation we define a subroutine called HermiteSolve. This is
an algorithm that outputs ⊥ if and only if the particular vector cannot be com-
pleted, and otherwise outputs such a completion.

We also define a procedure Reduce with respect to the form Q. This is a
simpler, but less efficient, version of ffNP used in Algorithm 1. It serves two
purposes; from a theoretical perspective it ensures that the distribution is well
defined, i.e. that the distribution of the output form is independent of the input
form being used to sample, and from a practical perspective it ensures the second
column of the completed basis is relatively short.

Algorithm 4. HermiteSolve (K, f, g): completing f, g if possible.
Require: Conductor m = 2κ cyclotomic K, f, g ∈ OK

Ensure: Completion F, G ∈ OK such that det(Y) = 1 if it exists, else ⊥
1: Let X = (rot(f) rot(g))
2: Find U ∈ GL2n(Z) such that X · U is in Hermite Normal Form
3: if X · U �= (In(Z) 0) then return ⊥
4: Let (vec(G) −vec(F ))T be the first column of U return F, G

Algorithm 4 uses the Hermite Normal Form over the integers. If there exist
F,G such that fG − gF = 1 in OK, i.e. such that det(Y) = 1, then the ideal
(f, g) = OK, and this is equivalent to the Hermite Normal Form of (rot(f) rot(g))
being (In(Z) 0) ∈ Z

n×2n. One can then check that setting F,G as in Algorithm 4
satisfies fG − gF = 1. Given F,G we use Algorithm 5 to find a short, and
canonical with respect to Q, pair FQ, GQ that also satisfy fGQ − gFQ = 1.
Note that in Algorithm 5 we require a rounding function that partitions R,
i.e. � · � : R → Z that rounds a + 1/2 to a + 1 so the preimage of integer a is
[a − 1/2, a + 1/2). This rounding is applied coefficientwise.

Algorithm 5. Reduce (Q, f, g, F,G): reduction of F,G by Q and (f, g).
Require: Conductor m = 2κ cyclotomic K, f, g, F, G ∈ OK, Q ∈ H>0

2 (K)
Ensure: Canonical FQ, GQ reduced with respect to Q and (f, g)

1: Let x = (f, g)T, y = (F, G)T, and ν =
⌈

x∗·Q·y
x∗·Q·x

⌋
∈ OK

2: Let FQ = F − νf , GQ = G − νg return FQ, GQ
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Algorithm 6. acσ (Q,K): sampling from ACσ([Q]sl,K).
Require: Conductor m = 2κ cyclotomic K, Q ∈ H>0

2 (K)
Ensure: R ∈ [Q]sl and Y ∈ SL2(OK) such that R = Y∗ · Q · Y
1: Parse y1 ← DQ,σ as y1 = (f, g)T ∈ O2

K

2: if HermiteSolve(K, f, g) returns ⊥ then
3: restart
4: else F, G ← HermiteSolve(K, f, g)

5: Let y2 = (FQ GQ)T for FQ, GQ ← Reduce(Q, f, g, F, G)
6: Let Y = (y1 y2) and R = Y∗ · Q · Y return (R,Y)

The following lemma ensures that a sample R ∈ [Q]sl output by Algorithm 6
only depends on the class [Q]sl, and not on the input representative Q. As a
result the distribution ACσ([Q]sl,K) is well defined. We can then define our
average case module LIP.

Lemma 4. For any power of two cyclotomic K, Q ∈ H>0
2 (K), Q′ ∈ [Q]sl and

σ > 0 the distributions of (R, ·) ← acσ (Q,K) and (R′, ·) ← acσ (Q′,K) are
equal.

Proof. For Q′ ∈ [Q]sl there exists a U ∈ SL2(OK) such that Q′ = U∗ ·Q · U. It
is sufficient to show that for any Y created during acσ(Q,K), Y′ = U−1 · Y is
created within acσ(Q′,K) with the same probability. Having shown this, since
Y∗ · Q · Y = (Y′)∗ · Q′ · Y′, the two distributions are equal. Firstly, letting
y′
1 = U−1 · y1 we see that ρQ′,σ(y′

1) = ρQ,σ(y1). Given that the normalisation
constant for a given σ will be equal over all forms in [Q], the probability of
sampling y′

1 ← DQ′,σ is equal to the probability of sampling y1 ← DQ,σ.
We must now show that, after completing y′

1 to y′
2 via Algorithm 4 and then

reducing it with respect to y′
1 and Q′ using Algorithm 5, we have y′

2 = U−1 ·y2.
This is precisely the statement that Y′ = U−1 ·Y. Note that Algorithm 4 finds
a solution if one exists. Since U−1 · y2 is such a solution, Algorithm 4 succeeds.

We parse y′
1 = (f ′ g′)T and y′

2 = (F ′ G′)T so that f ′G′ − g′F ′ = 1. For
fixed (f ′, g′), any F̃ , G̃ such that f ′G̃ − g′F̃ = 1 are of the form F̃ = F ′ + λ · f ′,
G̃ = G′ + λ · g′ for some λ ∈ OK. For example, one has

f ′ · (G′ − G̃) = g′ · (F ′ − F̃ ) ⇒ G′ − G̃ = g′ ·
(
G′ · (F ′ − F̃ ) − F ′ · (G′ − G̃)

)

⇒ λ = −
(
G′ · (F ′ − F̃ ) − F ′ · (G′ − G̃)

)
,

with the same λ for the F ′ − F̃ case. If we let ỹ = U−1 ·y2 it is therefore enough
to show that ỹ is the unique reduced completion of y′

1 into Y′ ∈ SL2(OK), i.e. y′
2.

We have
⌈
y′∗
1 · Q′ · ỹ

y′∗
1 · Q′ · y′

1

⌋

=

⌈
(U−1 · y1)

∗ · Q′ · (U−1 · y2)
(U−1 · y1)

∗ · Q′ · (U−1 · y1)

⌋

=

⌈
y∗
1 · Q · y2

y∗
1 · Q · y1

⌋

= 0,

since y2 is reduced with respect to y1 and Q by the construction of Y in
acs(Q,K). Therefore ỹ is reduced with respect to y′

1 and Q′.
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Definition 8 (Average case smLIP). Given some power of two cyclotomic K

and Q ∈ H>0
2 (K) an instance of ac−smLIPQ

K,σ, the average case search module
Lattice Isomorphism Problem, is given by Q and an element Q′ ∈ [Q]sl sampled
from ACσ([Q]sl,K). A solution is U ∈ SL2(OK) such that Q′ = U∗ · Q · U.

We expect the problem to become harder as the parameter σ increases. In
fact, following [15], if σ is large enough we have equivalence with the correspond-
ing worst case problem, assuming that HermiteSolve does not fail too often.

Lemma 5 (Worst case to average case). Given a machine that can solve
ac−smLIPQ

K,σ in time T with probability ε > 0, for σ ≥ 2Θ(n) · λ2n([rot(Q)]),
one may solve wc−smLIPQ

K,� in expected time T + Esamples · poly(n, log σ) with

probability ε. Here Esamples(n, σ) ≥ 1 is the expected number of times (f g)T is
(re)sampled in Algorithm 6.

Proof. As input we receive Q ∈ H>0
2 (K) and some Q′ ∈ [Q]sl. By first

LLL reducing Q (by considering rot(Q) ∈ Q
2n×2n) we can sample efficiently

from DQ,σ via Lemma 1, and thus we can sample (Q′′,U′′) ← acσ (Q,K) in
time Esamples · poly(n, σ) by Algorithm 6. The sample Q′′ is distributed as
ACσ([Q]sl,K), and we have Q′′ = U′′∗QU′′. We now have an average case
instance between Q′ and Q′′, which the machine can solve in time T with
probability ε. On success we obtain some U′ such that Q′′ = U′∗Q′U′, and
U = U′′(U′)−1 gives a solution to the worst case instance, i.e. Q′ = U∗QU.

Following the same argument as [15, Lem 3.10] we may reduce σ in the reduction
at the expense of an additive loss from the cost of stronger lattice reduction. In
Appendix A of the full version [16] we give a heuristic explanation and matching
experimental evidence for why HermiteSolve fails with probability around 1

4 ,
which gives Esamples ≈ 4

3 , and thus the reduction above is in fact efficient.
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Abstract. We give a construction of an efficient one-out-of-many proof
system, in which a prover shows that he knows the pre-image for one
element in a set, based on the hardness of lattice problems. The con-
struction employs the recent zero-knowledge framework of Lyubashevsky
et al. (Crypto 2022) together with an improved, over prior lattice-based
one-out-of-many proofs, recursive procedure, and a novel rejection sam-
pling proof that allows to use the efficient bimodal rejection sampling
throughout the protocol.

Using these new primitives and techniques, we give instantiations of
the most compact lattice-based ring and group signatures schemes. The
improvement in signature sizes over prior works ranges between 25% and
2X. Perhaps of even more significance, the size of the user public keys,
which need to be stored somewhere publicly accessible in order for ring
signatures to be meaningful, is reduced by factors ranging from 7X to
15X. In what could be of independent interest, we also provide notice-
ably improved proofs for integer relations which, together with one-out-
of-many proofs are key components of confidential payment systems.

Keywords: Lattices · Zero-knowledge · One-out-of-many proofs ·
Ring signatures

1 Introduction

Zero-knowledge proofs are the cornerstone of privacy-enabling cryptography and
the ones based on lattice assumptions appear to currently be the most practical
potentially quantum-resistant variants. The fundamental hard problem upon
which lattice cryptography is based on is finding a vector �s with a small norm
satisfying A�s “ �t mod p. Rapid recent progress in the area resulted in the proof
size for proving pre-image knowledge in this basic equation to be reduced from
being on the order of megabytes [LNSW13] to as short as a dozen kilobytes
[YAZ+19,ESLL19,BLS19,ALS20,ENS20,LNS21a,LNP22].

A very useful extension of proving knowledge of a pre-image is proving knowl-
edge of a pre-image for one element in a set. That is, given a set {�t1, . . . ,�tm}, one
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would like to prove knowledge of a short vector �s such that A�s “ ti mod p with-
out leaking any information about the �s or the i. This type of a proof is related
to concepts such as set membership proofs and one-out-of-many proofs [GK15].1

These proofs have applications to ring signatures, group signatures, confiden-
tial transactions, anonymous credentials, and various other privacy-enhancing
cryptographic primitives.

In this work, we improve upon existing lattice-based one-out-of-many proofs
and, based on this new building block, construct the most efficient quantum-
safe ring and group signatures. Our improvement uses the high-level idea from
the recursive algorithm of [LNS21b], but using a different and simpler recursive
step which is made possible in part by being able to prove the base case using
the recent framework for zero-knowledge proofs [LNP22]. We also give a gen-
eral improvement to the rejection sampling step present in most lattice-based
zero-knowledge proofs. Specifically, we show that when using the zero-knowledge
framework from [LNP22], which gives the most efficient linear-size proofs for
quadratic relations, one can use the more efficient bimodal rejection sampling
procedure [DDLL13] everywhere. In some cases, this requires an extra short
commitment, but in the case of the one-out-of-many proof given in the current
work, using the more efficient rejection sampling step comes completely for free
and noticeably reduces the proof size. We additionally show how to apply this
bimodal rejection technique, together with the framework from [LNP22], to cre-
ate more efficient proofs for integer relations such as addition and multiplication.
Like one-out-of-many proofs, proving integer relations is a component of confi-
dential transaction systems, and we believe that our improved tools can be used
to make such systems (e.g. [LNS21b,ESZ21]) more efficient.

1.1 Results and Techniques

One-out-of-Many Proofs. The general equation for a lattice-based one-out-
of-m proof can be written as

T�v “ A�s mod p (1)

where �v is an m-dimensional unit vector (i.e. a vector consisting of one 1 and the
rest zeroes) and �s is a pre-image to the column in T chosen by the unit vector.
For our end application, we would like to prove that �s has a small norm, but we
will give a proof system for slightly more general statements, as the generality is
useful in the recursive nature of the protocol. Given a commitment to a vector
�v and �s, we would like to be able to prove that �v and �s satisfy (1), �v is a unit
vector, and �s additionally satisfies some arbitrary quadratic relations fi(�s) “ 0.2

In applications to group and ring signatures, the dimension of �s is quite small,
1 The original formal definition of a one-out-of-many proof from [GK15] is more

restricted in that A�s is a commitment to 0 rather than just an evaluation of a
one-way function on �s. But we do not need to restrict to this definition in this work.

2 Being able to prove quadratic relations, of course also allows one to prove that the
�2-norm of �s is smaller than some bound.
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and so it is enough to only strive for proofs that are linear in the input size.
Note that to keep the size of the proof linear, we still need it to be logarithmic
in m since a unit vector of dimension m only has entropy log m.

The proof of knowledge of (1) follows the commit-and-prove paradigm. That
is, we commit to the secrets �v and �s and then prove that the committed messages
satisfy the requisite relations. Keeping the proof linear in log m is the main
technical challenge in building a one-out-of-many proof since one can’t simply
commit and open the naive m-dimensional representation of �v. Instead, one can
write the unit vector �v as a tensor product of a logarithmic number of smaller
dimensional unit vectors, commit to these unit vectors, and then proceed to
recursively prove the relation.

We begin with the base case – proving the knowledge of a unit vector
�v P {0, 1}d (we can think of d being a constant with respect to m) and a vec-
tor �s satisfying T�v “ A�s where fi(�s) “ 0 for arbitrary quadratic functions
fi. The most efficient known proof for this statement directly follows from the
recent framework of [LNP22] where one commits to the vector �v and �s using the
“ABDLOP” commitment scheme defined in that work (it is a combination of
the Ajtai [Ajt96] and BDLOP [BDL+18] commitments – see (11) and Sect. 2.6)
and then proves that the committed values satisfy

T�v “ A�s mod p, (2)

and fi(�s) “ 0, and ‖�v‖ “ 1.3

Now suppose, by the inductive hypothesis, that having a commitment to �s′

and (some representation of) �v′ P {0, 1}m, we are able to prove that they satisfy
the linear relation

T ′�v′ “ A′�s′ mod p (3)

as well as the quadratic relations fi(�s′) “ 0 and that �v′ is a unit vector. We
will now show how to prove the relation in (3) for an arbitrary unit vector
in {0, 1}d·m. First, observe that any unit vector in {0, 1}d·m can be written
as �v b �v′ P {0, 1}d·m, where �v and �v′ are unit vectors in {0, 1}d and {0, 1}m,
respectively. So by writing an arbitrary d · m-dimensional unit vector as �v b �v′,
we would like to prove (when having a commitment to �v,�v′, �s) that

T (�v b �v′) “ A�s mod p, (4)

that fi(�s) “ 0, and that �v,�v′ are unit vectors. To prove (4), we will prove that

〈�ϕi, T (�v b �v′) ´ A�s〉 “ �0 mod p (5)

where �ϕi for i “ 1, . . . , l are randomly-chosen challenge vectors in Z
n
p . Proving

one such equation for a randomly-chosen �ϕi would result in the proof having
soundness error p´1, and so we would like to prove l such equations in order to
achieve the desired soundness error of p´l.
3 This only proves that �v is either a unit vector or a negative unit vector. But this is

fine because proving knowledge of �v,�s satisfying ˘T�v “ A�s is equivalent to (1).
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To prove (5) for one of l different �ϕi, we decompose the matrix T as T “
[T1 . . . Td] where Ti P Z

nˆm
p , and observe that by algebraic manipulation, we

can rewrite
〈�ϕi, T (�v b �v′) ´ A�s〉 “ 〈�v, �wi〉 ´ �ϕT

i A�s mod p, (6)

where

�wi “
⎡
⎣

�ϕT
i T1

· · ·
�ϕT

i Td

⎤
⎦ · �v′ P Z

d
p. (7)

Each of the l different �ϕi leads to an equation of the above form and the prover
thus commits to �w1, . . . , �wl and then using the inductive hypothesis from (3), he
can show that

⎡
⎣

�w1

· · ·
�wl

⎤
⎦ “ T ′ · �v′ mod p (8)

where the matrix T ′ is defined as

T ′ “

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ϕT
1 T1

· · ·
�ϕT
1 Td

· · ·
�ϕT
l T1

· · ·
�ϕT
l Td

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P Z
l·dˆm
p . (9)

The inductive hypothesis also allows him to prove that fi(�s) “ 0 and addi-
tionally that (the quadratic functions) 〈�v, �wi〉 ´ �ϕT

i A�s “ 0. To see that the
inductive hypothesis is applicable to proving these statements, we define the
vector �s′ in (3) as

�s′ “
⎡
⎣

�w
�s
�v

⎤
⎦ , where �w “

⎡
⎣

�w1

· · ·
�wl

⎤
⎦ (10)

and the matrix A′ as [ I | 0 | 0 ], and thus T ′�v′ “ A′�s′ “ �w. Since we assumed
to have commitments to �v′ and we created commitments to all parts of �s′, we
can prove (8) and the aforementioned quadratic relations involving �s, �w, and �v.
The main point is that by additionally committing to �w and �v, we are able to
use the inductive hypothesis to prove relations where the unit vector is d times
longer.

The commitment scheme used in [LNP22] allows to naturally commit to poly-
nomials in the ring Rp “ Zp[X]/(Xd `1) where, for optimal efficiency, d “ 64 or
128. For efficiency of the protocol, we would then like to pack the l commitments
to �wi P Z

d
p into just one vector Zd

p, which can then be represented by one polyno-
mial in Rp. We can do this in the trivial way as long as d·l � d. Then to compute
inner products 〈�v, �wi〉, we simply put the vector �v P {0, 1}d into a vector Zd

p that
contains �v at the top and has the rest of its coefficients set to 0. Then 〈�v, �wi〉 is
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the inner product of an appropriate shift of the vector containing the �v and the
vector containing the �wi. A downward shift of a committed vector in Z

d
p whose

bottom coefficients are all 0 is simply a multiplication of the commitment by the
polynomial X in Rp, which can be performed by the verifier.

Thus proving T ·(�v b�v′) “ A�s, where �vb�v′ is a d ·m dimensional unit vector,
requires the commitments needed for proving (3), an additional commitment
to �v, and one more commitment to the �wi. Since the base case requires one
commitment to �v (and a commitment to �s), the total number of commitments
to elements in Rp for proving (1) when �v is an m “ dk ·d-dimensional unit vector
is 2k ` 1 (and a commitments to �s), which is logarithmic in m and linear in the
dimension of �s. In particular, we write the unit vector �v in (1) as �v1b. . .b�vkb�vk`1

where �v1, . . . , �vk P {0, 1}d and �vk`1 P {0, 1}d. Then proving (1), that �vi are unit
vectors, and fi(�s) “ 0 requires creating an ABDLOP commitment to the vectors
�vi, �s, and then also creating a commitment to the above-described vector �wi at
each step of the proof.

Bimodal Gaussian Rejection Sampling Everywhere. The framework of
[LNP22] uses the newly-defined ABDLOP commitment scheme to commit to a
low-norm polynomial vector s1 and an arbitrary-norm polynomial vector m. To
do this, one generates a low-norm randomness s2 and outputs the commitment

[
tA

tB

]
:“

[
A1

0

]
s1 `

[
A2

B

]
s2 `

[
0
m

]
mod q.4 (11)

Proving knowledge of s1 and m is done using the “Fiat-Shamir with Aborts”
technique [Lyu09,Lyu12] where, upon generating low-norm masking vectors y1

and y2, computing w “ A1y1 ` A2y2, and receiving a challenge polynomial c,
the prover creates the responses z1 “ y1 ` cs1 and z2 “ y2 ` cs2 which satisfy

A1z1 ` A2z2 “ ctA ` w mod q. (12)

He now needs to perform rejection sampling on the zi in order to not leak
information about the si. The generic setup from [Lyu12] that results in the
smallest-norm zi being sent involves yi being sampled from a discrete Gaussian
distribution while standard deviation is approximately a factor of 12 larger than
‖csi‖. With the appropriate rejection sampling step, this results in the poly-
nomial vectors zi also being distributed as discrete Gaussians with standard
deviation 12 · ‖csi‖.

It was shown in [DDLL13] that if one first chooses a secret bit b P {´1, 1} and
creates zi “ yi ` bcsi (which is a bimodal distribution with two peaks at ˘csi),
then one can choose the yi from a discrete Gaussian distribution with standard
deviation ‖csi‖/

√
2 and via appropriate rejection sampling, the standard devia-

tion of zi ends up being ‖csi‖/
√

2 as well, which is around 17X smaller than that

4 We use modulus q here instead of p in the previous section to signify that the
commitment scheme modulus need not be (and is usually not, though they could be
related) the same as the modulus that one wants to prove relations over.
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in the previous paragraph. The outputs zi having a smaller standard deviation
means that the proof size will be noticeably smaller, the modulus q can be set
smaller as well, which in turn results in a smaller commitment size. The main
technical difficulty with using the bimodal distribution is that the bit b needs
to remain secret and the zi need to satisfy the verification Eq. (12) irrespective
of the b, which implies that we need to have A1bs1 ` A2bs2 “ ctA mod q. This
set-up exists in the special case of the BLISS signature scheme [DDLL13] where
the modulus is set to be even, and one can also force it by modifying the equa-
tion being proved as in [TWZ20], but these techniques would extol a high extra
cost on the output size of the zero-knowledge proofs.

In our work, we show how one can use the bimodal rejection sampling tech-
nique for masking the secret vectors s1 and s2 in (11) either completely for free,
or at a small increase in the commitment size. We note that using a rejection
sampling procedure that had similar properties as bimodal rejection sampling
was already employed in [LNS21a] on the randomness vector s2. The rejection
step there allowed for a smaller standard deviation at the cost of leaking one bit
of s2. This leakage is not a problem because the commitment scheme from (11)
(and the related commitment in [LNS21a]) is used inside a commit-and-prove
approach to constructing zero-knowledge proofs. In particular, when trying to
prove some relation (e.g. (1)), the prover commits to the secret values (�s and
�v in the case of (1)) using the commitment in (11) and proves relations about
s1 and m, which in turn implies the initial relation he set out to prove. The
important part is that the commitment scheme is only used once – if the prover
is to perform another proof, he will create another commitment with different
randomness s2. Thus leaking a small part of the randomness s2 is not a problem
as long as the Module-LWE problem upon which the hiding of the commitment
scheme is based on remains hard.

Our work improves on [LNS21a] in two ways. First, we show that directly
using the bimodal rejection sampling on z2 (despite z2 not being distributed
according to a bimodal distribution) only leaks a few more (i.e. log q) bits of s2
but ends up saving a factor of 2 in the rejection sampling probability. Leaking
log q bits still keeps the entropy of s2 very high. This problem has been investi-
gated both theoretically and in practice [AP12,ASA16,DDGR20,BJRW21], and
it does not seem that the LWE problem is weakened if a few bits of the random-
ness are leaked. The more interesting improvement is in also being able to use
the bimodal rejection sampling on z1. Here one cannot leak anything because
s1 is where the actual secret message is stored.5 The new idea is to create a
commitment to bs1, for a random b P {´1, 1} instead of to s1. We can show that
creating such a commitment and then outputting z1 “ y1 ` cbs1 after applying

5 One might be tempted to put the secret message into the m part of the commitment,
which does not leak even if there is leakage in s2, but this results in a much less effi-
cient commitment scheme because the dimension of the commitment grows linearly
with the dimension of m, whereas s1 has no effect on the size of the commitment.
See Sect. 2.6.
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the bimodal rejection sampling does not leak anything about s1 or b as long as
the commitment is only used once.

There is, however, an obvious problem with committing to bs1 – the relation
that one may want to prove about the message committed to in s1 may not hold
true when the messages are negated. There are two cases here – the simple case is
that what we would like to prove still holds true for the negated messages. In our
one-out-of-many proof, we commit to unit vectors �v1, . . . , �vk`1 and a low-norm
vector �s such that �v1 b . . .b�vk`1 “ �v such that (1) is satisfied. Note that if we’re
tensoring an even number of �vi, then b

i
�vi “ b

i
´�vi, and also ‖�vi‖ “ 1 “ ‖ ´�vi‖

and ‖�s‖ “ β “ ‖ ´ �s‖.6 Therefore proving (1) as well as ‖�vi‖ “ 1 and ‖�s‖ “ β
can be done regardless of whether we committed to the positive or negative of
these values.

In the case that we would like to prove some relations on some secret vector �s
which are not sign-independent, we commit to a bit b P {´1, 1} in the m part of
the ABDLOP commitment and to �s′ “ b�s, and then prove knowledge of a vector
�s′ and a bit b P {´1, 1} satisfying fi(b�s′) “ 0. Very importantly, note that fi(b�s′)
is still a quadratic equation because all the quadratic terms in fi remain the same
(since multiplication by b P {´1, 1} does not change them), and it is only the linear
terms that get multiplied by b, thus becoming quadratic. We then prove that if
the bit b is chosen randomly in {´1, 1}, then one can use the bimodal rejection
sampling on z1 “ y1 ` cbs1 without leaking anything about the secret s1.

Applications to Ring and Group Signatures. Being able to prove (1) imme-
diately gives us a construction of a ring signature scheme. In particular, every
user has a secret/public key pair �si,�ti, where ‖�si‖ is small and A�si “ �ti mod p.
Given a matrix T whose columns are the public keys of a group of users, the
signature of user i of a message μ is a zero-knowledge proof of knowledge (with
μ being used as an input into the random oracle of the Fiat-Shamir transform)
of a unit vector �v and a short vector �s satisfying (1). The full details are given in
the full version of the paper. In Fig. 1, we compare an instantiation of our ring
signature with other known potentially quantum-safe ones. Once the group size
within which one wishes to hide is larger than a few hundred members, the size
of our signature is the smallest, even including the isogeny-based construction
of [BKP20]. Additionally, the size of the public key of our ring signatures can
be as small as 128 bytes per user, which is a significant reduction over all prior
lattice-based ring signatures.7 Having small public keys is important because the

6 If we want to prove that ‖�s‖ � β, then we could create another commitment to a
vector �s′ P Rq such that ‖�s‖2 `‖�s′‖2 “ β2 – the existence of such an �s′ is guaranteed
by the four squares theorem.

7 It is of course possible to reduce the public key size of any scheme by hashing it as
pk′ “ H(pk) for some cryptographic hash function H with the resulting pk′ being as
small as 32 bytes. This technique is fine for regular signatures, where one can reveal
pk as part of the signature; but ring signatures will require a zero-knowledge proof
that pk′ “ H(pk), which will make the signatures orders of magnitude larger and
slower.
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Fig. 1. Comparison of the different post-quantum ring signature schemes with approx-
imately 128 bits of security. Sizes from previous constructions are either taken from
the corresponding prior work or from the recent survey by Buser et al. [BDE+22]. All
the values are given in KB. Here, N is the size of the ring. The signatures sizes for
[ESZ21,LNS21b] only approximately correspond to the ring sizes (e.g. 18KB signature
size is for the ring of 210 users and not 212). For DualRing-LB and MatRiCT (and
MatRiCT+) the public key size grows in the number of users. For MatRiCT+, the
public key size for the ring of size 1024 is provided. Further, we extrapolate the signa-
ture size for MatRiCT+ with 221 users from the smaller examples and from MatRiCT.
In our construction, we rely on the Extended-MLWE problem introduced in Defini-
tion 5. Note that this is a different version of the E-MLWE problem compared to the
one in [LNS21a] which is used in SMILE [LNS21b] (see Sect. 3.1 for more details).

public keys of all users need to be stored somewhere accessible by everyone who
wishes to use the ring signature.

The reason for the significant reduction in the public key size over the pre-
vious lattice schemes is that we were able to adapt the new framework from
[LNP22] as the base case of our recursive one-out-of-many proof. In prior ring
signatures (e.g. [EZS+19,ESZ21,LNS21b]) the signer had knowledge of �v and
�s satisfying (1), but for efficiency would only prove knowledge of an �s′ and an
additional low-norm polynomial c with ‖�s′‖ " ‖�s‖ satisfying T�v “ cA�s′ mod p
(where the right-hand side operations are over a polynomial ring Rp.) Being
able to prove knowledge of a vector that has the exact norm of �s and not have
an additional multiplication by c allows us to use a much smaller modulus p,
which in turn also allows to reduce the number of rows in A. The public key size
can, in fact, be essentially as small as the outputs in the hash function SWIFFT
[LMPR08].8

One can construct group signatures in a somewhat similar manner as ring
signatures. A technique employed in [EZS+19,ESZ21] has the public key of each

8 If we make p too small, then the signature size will increase because a smaller p
requires more “garbage terms” in the zero-knowledge proof to increase soundness.
In our parameter settings, we chose a particular compromise between the public key
size and signature size, but one could make the public key size even smaller at the
expense of a few extra kilobytes in the signature size.
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member stored in the matrix T , as in the ring signature, and the secret key of
user i are the �v and �s from (1). The keys are generated by choosing a small-norm
random �si and then putting A�si “ �ti into the public matrix T . To sign, the group
member does the same thing as in the ring signature (with an additional encryp-
tion and proof required by the group signature). Our group signature works in
the same fashion except that the secret key/public key pairs are generated by
first generating �ti “ H(i), for some cryptographic hash function H, and then
using a trapdoor for the matrix A to generate a short �si such that A�si “ �ti.
The main advantage of generating the keys in this manner is that the public key
size no longer needs to be linear in the number of group members, and can just
consist of the matrix A (since everyone can now generate T themselves). The dis-
advantage is that using a trap-door sampler to generate �si results in ‖�si‖ being
larger. But because our one-out-of many proof system can prove exact norms, the
proof size does not increase by too much. Using GPV-type trapdoor sampling
[GPV08,DP16] along with an optimized NTRU trapdoor [HHGP+03,DLP14]
and the parameters used in the Falcon signature scheme [FHK+20], we give an
instantiation (in the full version of the paper) of a lattice-based group signature
scheme with the smallest public key and signature sizes (see Fig. 2). The only
exception when one would want to use a different scheme is in the case that
the group sizes are very large – in that case [LNPS21,LNP22] has an advantage
over all others in the table due to the fact that the running time for signature
generation and verification are independent of the group size, rather than linear.

Other Applications. In addition to ring and group signatures, lattice-based
one-out-of-many proofs have recently found applications in the constructions
of confidential transaction protocols [EZS+19,LNS21b,ESZ21]. These construc-
tions also used other primitives, notably proofs of addition that were used to
make sure that the amounts in the transactions match up. As a side contribu-
tion, in the full version of the paper, we also show how to use the new framework
of [LNP22] in conjunction with the bimodal rejection sampling technique to con-
struct more efficient proofs of integer addition and multiplication, which improve
upon the constructions from [LNS20,ESZ21] that are used in the aforementioned
instantiations. We believe that the improved one-out-of-many proof and proof of
addition from this paper should noticeably shorten the confidential transaction
proof sizes. We leave the integration of these tools as well as the full implemen-
tation of the confidential transaction system to future work.
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Fig. 2. Comparison of different post-quantum group signature with approximately 128
bits of security. All the values are given in KB. Here, N denotes the size of the group. We
note that the schemes from [LNPS21,LNP22] not only do offer constant size signatures
but also enjoy signing and verification complexity independent of the group size N
which is not the case for all the other works (including ours). Further, the constructions
in [BDK+21,EZS+19,ESZ21] are dynamic which results in the linear public key size
in the number of users N . For MatRiCT+, the public key size for the group of size
1024 is provided. Since the signature size for MatRiCT+ was not explicitly provided
for group size 221, we set the value to be three times smaller than for MatRiCT which
seems to be the case for smaller examples. Finally, we remark that our scheme can
achieve CCA anonymity by following the Naor-Yung paradigm [NY90], i.e. encrypting
the same message under two different public keys and adding a NIZK proof that both
ciphertext encrypt the same message. We estimate that with this modification our
group signature sizes will be around 30KB.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q “ q1 · . . . · qn be a product
of n odd primes where q1 ă q2 ă . . . ă qn. Usually, we pick n “ 1 or n “ 2. In
this paper we pick each qi “ 5 (mod 8). We write �v P Z

m
q to denote vectors over

a ring Zq. Matrices over Zq will be written as regular capital letters. By default,
all vectors are column vectors. For simplicity, we denote �u2 “ �u ˝ �u. We write
x ← S when x P S is sampled uniformly at random from the finite set S and
similarly x ← D when x is sampled according to the distribution D. Further,
denote [n] :“ {1, . . . , n}.

2.2 Cyclotomic Rings

For a power of two d and a positive integer p, denote R and Rp respectively
to be the rings Z[X]/(Xd ` 1) and Zp[X]/(Xd ` 1). Lower-case letters denote
elements in R or Rp and bold lower-case (resp. upper-case) letters represent
column vectors (resp. matrices) with coefficients in R or Rp. For a polynomial
f P Rp, denote �f P Z

d
q to be the coefficient vector of f . By default, we write its

i-th coefficient as its corresponding regular font letter subscript i, e.g. fd/2 P Zp
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is the coefficient corresponding to Xd/2 of f P Rp. For the constant coefficient,
however, we will denote f̃ :“ f0 P Zp.

The ring R has a group of automorphisms Aut(R) that is isomorphic to Z
ˆ
2d.

Let σi P Aut(Rq) be defined by σi(X) “ Xi. For readability, we denote for an
arbitrary vector m P Rk:

σi(m) :“ (σi(m1), . . . , σi(mk))

and similarly σi(R) for any matrix R. When we write 〈u,v〉 P Z for u,v P Rk,
we mean the inner product of their corresponding coefficient vectors.

We recall the result by Lyubashevsky et al. [LNP22] which says that for
specific primes p, if c P Rp satisfies σ´1(c) “ c and c is non-zero then c is
invertible over Rp.

Lemma 1 ([LNP22]). Let p ≡ 5 (mod 8) be a prime. Then all non-zero c P Rp

satisfying σ´1(c) “ c are invertible.

In this paper, we will only be interested in the σ :“ σ´1 automorphism. The
main reason is the following observation.

Lemma 2 ([LNP22]). Let u,v P Rk
q . Then, the constant coefficient of σ(u)Tv

is equal to 〈u,v〉.
Thus, one reduces inner product arguments 〈u,v〉 “ a to proving that σ(u)Tv´
a P Rq has a vanishing constant coefficient.

We introduce the following notation:

〈x〉σ :“ (x, σ(x)) P R2
q for x P Rq.

Similarly, for a vector x “ (x1, . . . , xn), define 〈x〉σ “ (〈x1〉σ, . . . , 〈xn〉σ) P R2n
q .

We will use the following simple properties.

Lemma 3. For any x,y P Rn
q and any c P Rq such that σ(c) “ c:

〈x ‖ y〉σ “ 〈x〉σ ‖ 〈y〉σ and 〈x ` cy〉σ “ 〈x〉σ ` c〈y〉σ.

Next, we recall the definition of the discrete Gaussian distribution over R.

Definition 1. The discrete Gaussian distribution on R� centered around v P R�

with standard deviation s ą 0 is given by

D�
v,s(z) “ e´‖z´v‖2/2s2

∑
z′PR� e´‖z′‖2/2s2

.

When it is centered around 0 P R� we write D�
s “ D�

0,s.

We will use the standard tail bound result from [Ban93, Lemma 1.5(i)].

Lemma 4. Let z ← Dm
s . Then Pr

[
‖z‖ ą t · s√md

]
ă

(
te

1´t2
2

)md

.
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2.3 Module-SIS and Module-LWE Problems

Security of the [BDL+18] commitment scheme used in our protocols relies on
the well-known computational lattice problems, namely Module-LWE (MLWE)
and Module-SIS (MSIS) [LS15]. Both problems are defined over Rq.

Definition 2 (MSISκ,m,B). Given A ← Rκˆm
q , the Module-SIS problem with

parameters κ,m ą 0 and 0 ă B ă q asks to find z P Rm
q such that Az “ 0 over

Rq and 0 ă ‖z‖ � B. An algorithm A is said to have advantage ε in solving
MSISκ,m,B if

Pr
[
0 ă ‖z‖∞ � B ∧ Az “ 0

∣∣A ← Rκˆm
q ; z ← A(A)

]
� ε.

Definition 3 (MLWEm,λ,χ). The Module-LWE problem with parameters
m,λ ą 0 and an error distribution χ over R asks the adversary A to distin-
guish between the following two cases: 1) (A,As ` e) for A ← Rmˆλ

q , a secret
vector s ← χλ and error vector e ← χm, and 2) (A, b) ← Rmˆλ

q ˆ Rm
q . Then,

A is said to have advantage ε in solving MLWEm,λ,χ if
∣∣Pr

[
b “ 1

∣∣A ← Rmˆλ
q ; s ← χλ; e ← χm; b ← A(A,As ` e)

]
(13)

´ Pr
[
b “ 1

∣∣A ← Rmˆλ
q ; b ← Rm

q ; b ← A(A, b)
]∣∣ � ε.

2.4 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z
whose distribution should be independent of a secret message/randomness vector
r, so that z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes z “ y ` cr where r is either a secret vector
or randomness used to commit to the prover’s secret, c ← C is a challenge
polynomial, and y is a “masking” vector. In order to remove the dependency
of z on r, one applies rejection sampling. We summarise the two most common
techniques for rejection sampling described in [Lyu12,DDLL13].

Lemma 5 (Rejection Sampling [Lyu12,DDLL13]). Let V Ď R� be a set of
polynomials with norm at most T and ρ : V → [0, 1] be a probability distribution.
Fix the standard deviation s “ γT . Then, the following statements hold.

1. Let M “ exp(14/γ`1/(2γ2)). Now, sample v ← ρ and y ← D�
s, set z “ y`v,

and run b ← Rej1(z,v, s) as defined in Fig. 3. Then, the probability that b “ 0
is at least (1 ´ 2´128)/M and the distribution of (v, z), conditioned on b “ 0,
is within statistical distance of 2´128 of the product distribution ρ ˆ D�

s.
2. Let M “ exp(1/(2γ2)). Now, sample v ← ρ, β ← {0, 1} and y ← D�

s, set
z “ y ` (´1)βv, and run b ← Rej2(z,v, s) as defined in Fig. 3. Then, the
probability that b “ 0 is equal to 1/M and the distribution of (v, z), condi-
tioned on b “ 0, is identical to the product distribution ρ ˆ D�

s.
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Fig. 3. Two rejection sampling algorithms: the one used generally in previous works
[Lyu12] (left) and the bimodal Gaussian one [DDLL13] (right).

2.5 Challenge Space

We recall the specific challenge space used in [LNP22]. Namely, we fix η ą 0 and
a power-of-two k and set the challenge space C as:

C :“
{

c P Sκ : σ´1(c) “ c ∧ 2k

√
‖c2k‖1 � η

}
. (14)

Roughly speaking, the first condition, i.e. σ´1(c) “ c, is needed to prove
quadratic equations in the committed messages which might additionally involve
automorphisms, e.g. m1m2 “ σ´1(m3) where m1,m2,m3 are the secret mes-
sages. On the other hand, the second condition allows us to use [LNP22, Lemma
2.15] and deduce that if ‖r‖ � α and c P C then ‖cr‖ � ηα.

Further, we denote C̄ :“ {c ´ c′ : c, c′ P C and c ‰ c′} to be the set of differ-
ences of any two distinct elements in C. We will choose the constant η such that
(experimentally) the probability for c ← Sκ to satisfy 2k

√
‖c2k‖1 � η is at least

99%.
For security of our protocols, we need the invertibility property of the chal-

lenge space C, i.e. the difference of any two distinct elements of C is invertible
over Rq. To this end, we apply Lemma 1 and thus we only need the condition
κ ă q1/2. Secondly, to achieve negligible soundness error, we will need |C| to be
exponentially large. In Fig. 4 we propose example parameters to instantiate the
challenge space C.

Fig. 4. Example parameters to instantiate the challenge space C :“ {c P Sκ : σ´1(c) “
c ∧ 2k

√‖c2k‖1 � η} for a modulus q such that its smallest prime divisor q1 is greater
than 16. In our examples we picked k “ 32.

2.6 ABDLOP Commitment

We recall the ABDLOP commitment scheme defined in [LNP22], which is a gen-
eralisation of the Ajtai [Ajt96] and BDLOP [BDL+18] constructions. Concretely,
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to commit to a message vector s1 P Rm1
q with small coefficients as well as a “full-

fledged” polynomial vector m P R�
q, we sample a randomness vector s2 ← χm2 ,

where χ is a probability distribution over Rq, and compute:
[
tA

tB

]
:“

[
A1

0

]
s1 `

[
A2

B

]
s2 `

[
0
m

]

where A1 ← Rnˆm1
q ,A2 ← Rnˆm2

q ,B ← R�ˆm2
q . We observe that when � “ 0

(resp. m1 “ 0) then this construction ends up being the Ajtai (resp. BDLOP)
commitment scheme. In particular, the commitment size does not depend on
the length m1 of s1 (but it does on �). Hence, our strategy is to commit to long
vectors with small coefficients in the “Ajtai” part s1 and commit to a few garbage
polynomials used for the proofs in the “BDLOP” part m.

An opening of the commitment is a triple (s1,m, s2)9. As usual in lattice-
based cryptography, we also consider relaxed openings of a commitment which
are defined as follows.

Definition 4. A relaxed opening of the ABDLOP commitment (tA, tB) is a tuple
(s1,m, s2, c) which satisfies:

A1s1 ` A2s2 “ tA

A2s2 ` m “ tB

c P C̄ as defined in Sect. 2.5
‖cs1‖ � B1 and ‖cs2‖ � B2.

As shown in [LNP22, Lemma 3.1], the ABDLOP commitment is binding with
respect to relaxed openings under the Module-SIS assumption.

Lemma 6 ([LNP22]). The ABDLOP commitment is computationally binding
with respect to relaxed openings under the MSISn,m1`m2,B assumption where
B :“ 4η

√
B2

1 ` B2
2 .

The hiding property of the ABDLOP commitment scheme follows from the fact

that under the Module-LWE assumption that
[
A2

B

]
s2 looks pseudorandom.

2.7 Framework for Proving Lattice Statements

The recently proposed framework by Lyubashevsky et al. [LNP22] can be used
to prove various relations in the committed messages. Concretely, one can prove
knowledge of the secret messages (s1,m) P Rm1`�

q which satisfy all the following
conditions:

1. Quadratic relations over Rq with automorphisms. For i P [N ] and public
triples (Ri,2, ri,1, ri,0) P R2(m1`�)ˆ2(m1`�)

q ˆ R2(m1`�)
q ˆ Rq, we have:

〈s1 ‖ m〉T
σRi,2〈s1 ‖ m〉σ ` rT

i,1〈s1 ‖ m〉σ ` ri,0 “ 0. (15)

9 Message m does not need to be included in the opening since it can be determinis-
tically computed from tB and s2.
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2. Quadratic relations over Zq with automorphisms. For i P [M ] and public
triples (R′

i,2, r
′
i,1, r

′
i,0) P R2(m1`�)ˆ2(m1`�)

q ˆ R2(m1`�)
q ˆ Rq:

const. coeff. of 〈s1 ‖ m〉T
σR

′
i,2〈s1 ‖ m〉σ ` r′T

i,1〈s1 ‖ m〉σ ` r′
i,0 equals 0. (16)

3. Shortness in the infinity norm. For public Ps P Rnbinˆm1
q ,Pm P Rnbinˆ�

q and
f P Rnbin

q , the following polynomial vector has binary coefficients

Pss1 ` Pmm ` f P {0, 1}nbin·d. (17)

4. Shortness in the Euclidean norm. For i P [Z], public bound Bi ă √
q and

E(i)
s P Rniˆm1

q ,E(i)
m P Rniˆ�

q and v(i) P Rni
q , we have:

‖E(i)
s s1 ` E(i)

m m ` v(i)‖ � Bi.

This is equivalent to additionally proving knowledge of the binary polynomial
ϑi P R such that

〈pow(B2
i ), ϑi〉 “ B2

i ´
∥∥∥E(i)

s s1 ` E(i)
m m ` v(i)

∥∥∥
2

over Z (18)

where pow(n) :“ ∑�log n�
i“0 (2X)i P R for n � 2d´1.

3 Shorter Proofs via Bimodal Gaussians

In order to provide zero-knowledge (or more precisely, simulatability) for proving
relations in the ABDLOP committed messages (s1,m) under the randomness s2,
one applies the rejection sampling technique. In the original protocols presented
in [LNP22], the standard rejection sampling [Lyu12] is used for s1 and the more
recent one [LNS21a] for s2. In this section we describe how one can apply bimodal
Gaussian rejection sampling [DDLL13] on both the message and randomness
which significantly reduces the standard deviations, and consequently the proof
size, compared to [LNP22].

3.1 Bimodal Gaussian Rejection Sampling on the Randomness

In our constructions, we apply a rejection sampling procedure to mask a secret
vector �v by first sampling �y from a discrete Gaussian with standard deviation s,
and then computing �z :“ �v `�y. By Lemma 5, if we additionally run Rej1(�z,�v, s),
then the distribution of �z is indistinguishable to the one where we simply sample
�z from a discrete Gaussian and output �z with certain (known) probability. Here,
it is important that one could generate �z without having any information on �v.

Now, suppose that instead of Rej1, we run Rej2 which is used for bimodal
Gaussian rejection sampling [DDLL13]. It is now a natural question to ask
whether there is a way to simulate the �z by having as little information on
�v as possible. We answer this question positively and show that this distribution
is simulatable given only the inner product 〈�z,�v〉 of �z and �v. We summarise our
observation with the following lemma.
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Lemma 7. Let �v P Z
m be a vector of norm T . Fix s � γT and M “ exp

(
1

2γ2

)
.

Then the distributions of the outputs of A(�v) and F(�v) defined in Fig. 5 are
identical. Moreover, the probability that A outputs something is exactly 1/M .

Fig. 5. Algorithms A and F for Lemma 7. We define sign(x) “ 1 if x � 0 and ´1
otherwise.

Proof. Fix �v P V and �z P Z
m and let

p :“
exp

(
2〈	z,	v〉
s2

)

exp
(

2〈	z,	v〉
s2

)
` 1

.

By definition of A, A(�v, �z) is equal to

Dm
s (�z ´ �v) ·

exp
(

‖	v‖2

2s2

)

M cosh
(

〈	z,	v〉
s2

) “ Dm
s (�z) ·

2 exp
(

2〈	z,	v〉
s2

)

M
(
exp

(
2〈	z,	v〉
s2

)
` 1

) “ Dm
s (�z) · 2p

M

Now, we focus on F(�v). We see that by construction, 〈�z`, �v〉 � 0 and 〈�z´, �v〉 �
0. Let us consider three separate cases. First, suppose �z satisfies 〈�z,�v〉 ą 0.
Informally, we want to compute the probability that �y “ ˘�z and F picks �z`.
Then,

F(�v, �z) “ 2Dm
s (�z) ·

exp
(

2〈	z,	v〉
s2

)

exp
(

2〈	z,	v〉
s2

)
` 1

· 1
M

“ Dm
s (�z) · 2p

M
.

Further, suppose 〈�z,�v〉 ă 0. Informally, we compute the probability that �y “ ˘�z
and F picks �z´. Then,

F(�v, �z) “ 2Dm
s (�z) · 1

exp
(´2〈	z,	v〉

s2

)
` 1

· 1
M

“ Dm
s (�z) · 2p

M
.

Finally, assume 〈�z,�v〉 “ 0 and thus p “ 1/2. Then, F(�v, �z) is simply the proba-
bility that (�y “ �z ∧ F outputs �z`) or (�y “ ´�z ∧ F outputs �z´). Hence,

F(�v, �z) “ Dm
s (�z) · 1

2M
` Dm

s (´�z) · 1
2M

“ Dm
s (�z) · 1

M
“ Dm

s (�z) · 2p

M
.

Therefore, we proved that for every �z, A(�v, �z) “ F(�v, �z).
Finally, the second part of the statement follows from a simple observation

that F outputs something with probability exactly 1/M . 
�
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Extended-MLWE Revisited. We observe that the only information about �v
needed in order to run the simulator F in the security proof is the value of 〈�y,�v〉.
Hence, we reduce the simulatability property of our protocols to the hardness of
the so-called Extended-MLWE. Here, as usual, an adversary needs to distinguish
between the tuples (B,Bs) and (B,u), where u is a uniformly random vector
but this time it is also given a “hint” of the form (c,y, 〈cs,y〉) where c and y
are sampled from some known distributions. For simplicity, we will describe the
problem in a “knapsack” form.

Definition 5 (Extended-MLWE). The Extended-MLWE problem with param-
eters n,m and distribution χ, ξc, ξy over R asks the adversary A to distin-
guish between the two cases: 1) (B,Bs, c,y, 〈cs,y〉) and 2) (B,u, c,y, 〈cs,y〉) for
B ← Rmˆ(n`m)

q , a secret vector s ← χn`m, uniformly random vector u P Rm
q

and (c,y) ← ξc ˆξn`m
y . Then, A is said to have advantage ε in solving Extended-

MLWEn,m,χ,ξc,ξy
if

∣∣∣Pr
[
b “ 1

∣∣∣B ← Rmˆ(n`m)
q ; s ← χn`m; (c,y) ← ξc ˆ ξn`m

y ; b ← A(B,Bs, c,y, 〈cs,y〉)
]

´ Pr
[
b “ 1

∣∣∣∣ B ← Rmˆ(n`m)
q ; s ← χn`m; (c,y) ← ξc ˆ ξn`m

y ;u ← Rm
q ;

b ← A(B,u, c,y, 〈cs,y〉)
]∣∣∣∣ � ε.

We say that Extended-MLWEn,m,χ,ξc,ξy
is hard if for all PPT adversaries A, the

advantage in solving Extended-MLWEn,m,χ,ξc,ξy
is negligible.

We note that the (Module-)LWE problem with various side information has
already been discussed in prior work e.g. [DGK+10,AP12,DDGR20]. As far
as we are aware, this new variant of MLWE is the closest to the Extended
Module-LWE problems defined by Lyubashevsky et al. [LNS21a], Alperin-Sheriff
and Apon [ASA16], Alperin-Sheriff and Peikert [AP12] and Boudgoust et al.
[BJRW21].

We observe that [ASA16] describes a similar problem with the two differences:
(i) there is no c involved (assume that c “ 1) and (ii) the hint is an arbitrary
Q-linear function on the “error” part e of the secret s (in particular it could be
〈e,y〉 P Z where y ← ξm

y ). Alperin-Sheriff and Apon show that their Extended-
MLWE problem can be reduced to plain MLWE if the errors come from a discrete
Gaussian with a large enough standard deviation. The proof strategy was later
extended by Boudgoust et al. [BJRW21] who define another Extended-MLWE
problem. This time, however, the hint becomes a whole polynomial 〈e,y〉 P R.
Finally, the only difference between our problem and the one in [LNS21a] is that
the adversary is given the whole inner product 〈cs,y〉 instead of its sign.

If we consider our Extended-MLWE without any polynomial ring structure,
then the problem becomes almost identical to the one introduced by Alperin-
Sheriff and Peikert [AP12] (if we again assume c “ 1). The authors additionally
show that it is possible to reduce such a problem to plain LWE with the reduction
loss O(|〈�s, �y〉|).

Applications. As an example, we show how to use the new rejection sampling
strategy in the protocol for proving linear equations in the committed messages
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[LNP22][Section 3], however this approach can also be applied in all the protocols
from [LNP22]. Let (tA, tB) be the ABDLOP commitment to the message pair
(s1,m) P Rm1

q ˆ R�
q under randomness s2, i.e.

[
tA

tB

]
“

[
A1

0

]
· s1 `

[
A2

B

]
· s2 `

[
0
m

]
. (19)

Suppose the prover wants to prove knowledge of the message (s1,m) such that

R1s1 ` Rmm “ u

where R1 P RNˆm1
q ,Rm P RNˆ�

q and u P RN
q .

We present the commit-and-prove protocol in Fig. 6 for proving linear rela-
tions. The only difference between this protocol and [LNP22, Fig. 4] is that for
z2 we apply the new rejection sampling algorithm described above.

Fig. 6. Proof of knowledge Π(1) ((s2, s1,m), (f1, f2, . . . , fN )) of (s1, s2, c̄) P Rm1
q ˆ

Rm2
q ˆ C̄ satisfying (i) A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii) ‖sic̄‖ � 2si

√
2mid for

i “ 1, 2 and (iii) R1s1 ` Rmm “ u. Functions Reji are defined in Fig. 3.
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3.2 Bimodal Gaussian Rejection Sampling on the Message

This subsection focuses on applying bimodal Gaussian rejection sampling on
the message vector s1. First of all, we cannot apply Lemma 7 since it would
potentially leak certain information about the message s1 which, unlike s2, is
not freshly sampled every time a new proof is generated. Instead, we follow the
original methodology from [DDLL13].

Concretely, let us focus on the protocol in Fig. 6. If one were to naively apply
bimodal rejection sampling on cs1 then the masked opening of cs1 would become:

z1 :“ y1 ` bcs1 where b ← {´1, 1}.

As before, we set z2 :“ y2 ` cs2. Hence, if we keep w :“ A1y1 ` A2y2 then by
construction:

A1z1 ` A2z2 “ w ` c (A1bs1 ` A2s2) .

Note that A1bs1 ` A2s2 is a top part of the ABDLOP commitment to (bs1,m)
under randomness s2. Thus, it is a natural approach to simply commit to (bs1,m)
and prove the quadratic equation. However, this comes with a big obstacle, i.e.
we still need to prove the underlying relation in s1,m even though we committed
to bs1 and m. It might cause a problem even in the simple case of linear relations.
Indeed, initially we want to prove that R1s1 ` Rmm “ u. Since we committed
to bs1 and not s1, it makes sense to try and prove the equivalent statement:

R1(bs1) ` Rm(bm) “ bu. (20)

This suggests that we should also commit to bm and not m. However, it does
not solve the issue completely since vector u is still multiplied by a (secret) sign
b. Hence, the intuitive solution would be to also commit to b in the ABDLOP
commitment, prove b P {´1, 1} and the linear relation (20) in bs1, bm and b.
Therefore, the cost of such an approach is at least committing to an extra poly-
nomial.

We show that for certain types of statements we can circumvent committing
to b and still apply bimodal Gaussian rejection sampling. Namely, we focus on
sign-invariant relations.

Definition 6. Let R Ď {0, 1}∗ ˆ Rm1`� be a binary relation. We say that R is
sign-invariant if for every pair (u,w) we have: R(u,w) “ 1 ⇐⇒ R(u, ´w) “ 1.

Suppose we want to prove knowledge of (s1,m) P Rm1`�
q such that (u, (s1,m)) P

R where R is a sign-invariant relation. Then, we can sample a fresh sign b ←
{´1, 1} and commit to (bs1, bm) using the ABDLOP commitment. Further, we
simply prove that R(u, (bs1, bm)) “ 1 which implies that R(u, (s1,m)) “ 1.

Concrete Instantiation. We demonstrate our intuition with the following
example. Namely, we want to prove knowledge of (s1,m) which satisfies:

σ(s1)T s1 ` σ(m)Tm “ 0.
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Clearly, (bs1, bm) satisfies the relation above for b P {´1, 1}. As described before,
we first sample a sign b ← {´1, 1}, randomness vector s2 ← χ and compute

[
tA

tB

]
“

[
A1

0

]
· bs1 `

[
A2

B

]
· s2 `

[
0

bm

]
. (21)

Then, we simply follow the multiplicative proof from [LNP22, Section 4] to prove
that

σ(bs1)T (bs1) ` σ(bm)T (bm) “ 0.

Concretly, consider the masked opening z1 :“ y1 ` bcs1 of s1. Note that

σ(z1)T z1 “ c2σ(bs1)T (bs1) ` c
(
σ(y1)T (bs) ` yT

1 σ(bs)
) ` σ(y1)Ty1

and hence the coefficient corresponding to the quadratic term c2 is what we are
interested in. Here, we used the property of the challenge space C that c “ σ(c)
for c P C. We cannot do the same argument with bm since no masked opening
of bm was sent. However, we observe that the verifier can compute tB ´ Bz2 “
´By2 ` c(bm) which is of the similar form as the masked opening of bs1. Then

σ(tB´Bz2)T (tB ´ Bz2)

“ c2(bm)T (bm) ´ c
(
σ(By2)T (bm) ` (By2)T σ(bm)

) ` σ(By2)TBy2.

Therefore, we want to prove that the term in front of c2 in the following expres-
sion disappears, i.e.

σ(z1)T z1 ` σ(tB ´ Bz2)T (tB ´ Bz2) “ cg1 ` g0

where

g1 :“ σ(y1)T (bs) ` yT
1 σ(bs) ´ σ(By2)T (bm) ´ (By2)T σ(bm)

g0 :“ σ(y1)Ty1 ` σ(By2)TBy2.
(22)

The idea is then to additionally send a commitment t “ bT s2 ` g1 to g1 and
send

v :“ g0 ` bTy2 “ σ(y1)Ty1 ` σ(By2)TBy2 ` bTy2 (23)

in the clear. Then, the verifier can check that:

v
?“ σ(z1)T z1 ` σ(tB ´ Bz2)T (tB ´ Bz2) ` (bT z2 ´ ct). (24)

We present the protocol for proving this relation in Fig. 7 and summarise its
security properties in the full version of the paper.

Dealing with Relations Which Are Not Sign-Invariant. Typically, rela-
tions do not have the property that they are sign-invariant. In this case, to apply
bimodal Gaussian rejection sampling on the message s1 one needs to be more
careful. As hinted in the discussion above, one solution would be to commit to
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Fig. 7. Commit-and-prove protocol Πquad (s2, s1,m) for messages (s1,m) P Rm1`�
q ,

randomness s2 P Rm2
q and c̄ P C̄ which satisfy: A1s1 ` A2s2 “ tA, Bs2 ` m “ tB (ii)

‖sic̄‖ � 2si

√
2mid for i “ 1, 2 and (iii) σ(s1)

T s1 ` σ(m)Tm “ 0.

the sign b (in the BDLOP part of the ABDLOP commitment) and prove that
b P {´1, 1}10. Then, for example, to prove an arbitrary quadratic equation with
automorphisms (15), we commit to (bs1, bm ‖ b) and equivalently prove:

〈bs1 ‖ bm〉T
σRi,2〈bs1 ‖ bm〉σ ` brT

i,1〈bs1 ‖ bm〉σ ` ri,0 “ 0

which is a quadratic equation in bs1, bm and b. Then, in the soundness argument
of [LNP22] we would extract s̄1, m̄ and b̄ P {´1, 1} which satisfy

〈s̄1 ‖ m̄〉T
σRi,2〈s̄1 ‖ m̄〉σ ` b̄rT

i,1〈s̄1 ‖ m̄〉σ ` ri,0 “ 0.

Finally, since we proved that b̄ is a sign, we define (s∗
1,m

∗) :“ (b̄s̄1, b̄m̄) and
deduce that

〈s∗
1 ‖ m∗〉T

σRi,2〈s∗
1 ‖ m∗〉σ ` rT

i,1〈s∗
1 ‖ m∗〉σ ` ri,0 “ 0

which is what we wanted to extract at the very beginning.
10 Proving that b is a sign has already been covered in [LNP22, Section 5.1].
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Similarly, to prove (17), we want to prove instead

Ps(bs1) ` Pm(bm) ` bf P {0, b}nbind.

We observe that x P {0, b} “ { b´1
2 , b`1

2 } if and only if x ´ b´1
2 P {0, 1}. Hence,

the statement above is equivalent to:

Ps(bs1) ` Pm(bm) ` b(f ´ 2´1 · 1) ` 2´1 · 1 P {0, 1}nbind

where 1 P Rnbin
q is the polynomial vector with the coefficient vector �1. Hence, we

reduced our problem to proving that a linear combination of bs1, bm and b has
binary coefficients. We conclude that using similar techniques, one can transform
all the relations in s1,m described in Sect. 2.7 to equivalent ones in bs1, bm and
b P {´1, 1}.

4 Efficient One-out-of-Many Proofs

In this section we construct an efficient logarithmic-size one-out-of-many proof
[GK15] with applications to lattice-based ring and group signatures using tech-
niques from [LNP22] as the building block. In the full version of the paper we
show how to further reduce the proof size using the techniques developed in
Sect. 3, and eventually describe our ring signature construction.

The one-out-of-many proof considers the following problem. Informally, we
want to prove knowledge of an opening to some commitment contained in a
public set S without revealing any information about the commitment itself. In
the lattice setting, we would like to prove knowledge of a short vector such that
As P S, where S is a public set S “ {t1, . . . , tN} Ď Rn

q of size N “ d · dk. In
this section we assume that s P {0, 1}md has binary coefficients and d “ l · d
for l P N. For simplicity, we can already instantiate some of these parameters as
(d, d, l) “ (64, 8, 16).

We now use the observation from [ESS+19,GK15,BCC+15] that As P S if
and only if there exists a binary vector �v P {0, 1}N with exactly one 1, i.e. a unit
vector, such that [

�t1 �t2 · · · �tN
]
�v “ A�s (25)

where A “ rot(A) P Z
ndˆmd
q is the the rotation matrix of A. One could then

directly prove knowledge of �s and �v which satisfy conditions above using the
protocol from Sect. 2.7. However, the proof size grows linearly in N since we
would commit to the whole vector �v.

In order to circumvent this limitation, [GK15,BCC+15] observe that vector
�v can be uniquely decomposed into unit vectors �v1, . . . , �vk P {0, 1}d and �vk`1 P
{0, 1}d such that

�v “ �v1 b �v2 b · · · b �vk`1 :“ �v1 b (�v2 b (· · · b (�vk b �vk`1))) . (26)

For notational convenience, let us define the set of polynomials X in Rq with
their coefficient vectors being a unit vector. Concretely, X is defined as follows:

X :“ {1,X,X2, . . . , Xd´1}.
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In the end, we want to commit to s and polynomials u1, . . . , uk, vk`1 P X such
that �ui “ �vi ‖ 0d´d P Z

d
q
11 for i P [k] and prove

T (�v1 b · · · b �vk`1) “ A�s (27)

where T P Z
ndˆN
q is the matrix on the left-hand side of (25). We formally define

the corresponding relation:

Room :“
{

((T, A), (s, u1, . . . , uk, vk`1)) : s P {0, 1}md ∧ T (�v1 b · · · b �vk`1) “ A�s

∧u1, . . . , uk, vk`1 P X where �ui :“ �vi ‖ 0d´d

}
.

We now describe a commit-and-prove system for relation Room using the
ABDLOP commitment. Suppose that k � 1, otherwise one can prove this relation
directly using the framework from [LNP22].

First, note that proving u1, . . . , uk, vk`1 P X and s P {0, 1}md can be done
directly using the techniques from Sect. 2.7 hence we focus first on (27). Our
strategy to prove this equation with k ´ 1 tensor products would be somehow
to reduce it to proving an equation of the same form with only k ´ 2 tensor
products. Then, by recursion, we will end up with a system of linear equations
with no tensor products involved and thus we can apply the methods presented
in Sect. 2.7.

The key idea to reduce the number of tensor products is to ask the verifier
for l challenges �ϕ1, . . . , �ϕl P Z

nd
q and then prove that:

〈T (�v1 b · · · b �vk`1) ´ A�s, �ϕi〉 “ 0 for i “ 1, 2, . . . , l.

Note that if (27) was not true, then these l equations above would hold with
probability at most q´l

1 . Now, if we write

T :“ [
T0,1 T0,2 · · · T0,d

]
where each T0,i P Z

ndˆddk´1

q

then by simple algebraic manipulation we obtain

〈T (�v1 b · · · b �vk`1) ´ A�s, �ϕi〉 “ 〈�v1 b · · · b �vk`1, �ϕT
i T 〉 ´ 〈�s,AT �ϕi〉

“ 〈�v1, T1,i(�v2 b · · · b �vk`1)〉 ´ 〈�s,AT �ϕi〉

where

T1,i :“
⎡
⎢⎣

�ϕT
i T0,1

...
�ϕT

i T0,d

⎤
⎥⎦ P Z

dˆddk´1

q .

Now, let us define �wi :“ T1,i(�v2 b · · · b �vk`1) and w P Rq such that

�w “ �w1 ‖ · · · ‖ �wl P Z
d
q .

11 Alternatively, ui P {1, X, X2, . . . , Xd´1}.
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Next, we commit to w and show that for all i,

〈�v1, �wi〉 ´ 〈�s,AT �ϕi〉 “ 0 and �wi :“ T1,i(�v2 b · · · b �vk`1).

We observe that the first statement is equivalent to proving that the constant
coefficient of

X(i´1)du1σ(w) ´ σ(ai)T s

is equal to zero where the coefficient vector of ai P Rm
q is exactly �ai :“ AT �ϕi.

Lemma 8. Let i P [l]. Then, the constant coefficient of X(i´1)du1σ(w) P Rq is
equal to 〈�v1, �wi〉.
Proof. First, we note that 〈�v1, �wi〉 “ 〈X(i´1)du1, w〉. Here, we used the fact
that the coefficient vector of u1 is of the form �v1 ‖ 0d´d. Then, by Lemma 2,
〈X(i´1)du1, w〉 is the constant coefficient of X(i´1)du1σ(w).

On the other hand, the second statement can be combined for all i and
written as:

�w “
⎡
⎢⎣

T1,1

...
T1,l

⎤
⎥⎦ (�v2 b · · · b �vk`1). (28)

Thus, we reduce the one-out-of-many problem to proving knowledge of a tuple
(s, u1, . . . , uk, vk`1, w) which satisfies the following conditions: (i) s P {0, 1}md,
(ii) T1(�v2 b · · · b �vk`1) “ �w, (iii) for all i P [l], the constant coefficient of
X(i´1)du1σ(w) ´ σ(ai)T s is zero, and (iv) u1, . . . , uk, vk`1 P X where

�ui :“ �vi ‖ 0d´d for i P [k] and T1 :“
⎡
⎢⎣

T1,1

...
T1,l

⎤
⎥⎦ P Z

dˆddk´1

q .

Note that the second statement only involves k ´ 2 tensor products.
We can define the correspond relation as:

R :“
⎧
⎨
⎩

(
(T1, (ai)iP[l]), (s, u1, . . . , uk, vk`1, w)

)
: s P {0, 1}md ∧ T1(�v2 b · · · b �vk`1) “ �w

∧∀i P [l], const coeff. of X(i´1)du1σ(w) ´ σ(ai)T s is zero
∧u1, . . . , uk, vk`1 P X where �ui :“ �vi ‖ 0d´d

⎫
⎬
⎭ .

Intermediate Relations. We construct a commit-and-prove system for rela-
tion R using recursion. Namely, take 1 � j � k and consider the following
generalised relation

Rj :“

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
(Tj P Z

dˆddk´j

q , (ai)iP[l], (ϕι,i)ιP[j´1],iP[l]), (s, u1, . . . , uk, vk`1, w1, . . . , wj)
)

:
s P {0, 1}md ∧ Tj(�vj`1 b · · · b �vk`1) “ �wj

∧∀i P [l], const coeff. of X(i´1)du1σ(w1) ´ σ(ai)T s is zero
∧∀ι P [j ´ 1], i P [l], const coeff. of X(i´1)duι`1σ(wι`1) ´ σ(ϕι,i)wι is zero

∧u1, . . . , uk, vk`1 P X where �ui :“ �vi ‖ 0d´d

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(29)
We highlight that in Rj elements ϕι,i are polynomials in Rq. Also, it is easy to
see that R1 “ R.
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Base Case. We first show how to prove Rk only using the methods described in
Sect. 2.7. In the following, we say that a statement is of Type-n if it corresponds
to the Statement n in Sect. 2.7.

To begin with, using the ABDLOP commitment we commit to

s1 :“ s ‖ u1 ‖ · · · ‖ uk ‖ vk`1 P Rm`k`1
q , m :“ (w1, . . . , wk) P Rk

q .

Then, proving s P {0, 1}md and u1, . . . , uk, vk`1 P {0, 1}d is of Type-3. Next, by
Lemma 2, proving Tk�vk`1 “ �wk and 〈�1, �vi〉 “ 1 for i P [k`1] is of Type-2. Further,
it is easy to see that proving the constant coefficients of X(i´1)du1σ(w1)´σ(ai)T s
and X(i´1)duι`1σ(wι`1) ´ σ(ϕι,i)wι vanish is of Type-2. Finally, proving that
�ui “ �vi ‖ 0d´d for i P [k] is equivalent to proving that the constant coefficient of
X´jui is zero for d � j � d, which is of Type-2.

From now on, we will call the commit-and-prove protocol for relation Rk

described above as Πk.

Recursive Step. Let us assume we have a commit-and-prove system Πj`1 for
relation Rj`1 where 2 � j ` 1 � k. Now we want to use it to prove relation Rj .
We observe that the only statement which is included in Rj but not in Rj`1 is

Tj(�vj`1 b · · · b �vk`1) “ �wj . (30)

We prove this equation as before. Namely, we ask the verifier for l challenges
�ϕj,1, . . . , �ϕl P Z

d
q and then prove that:

〈Tj(�vj`1 b · · · b �vk`1) ´ �wj , �ϕj,i〉 “ 0 for i “ 1, 2, . . . , l.

Note that if (27) was not true, then these l equations above would hold with
probability at most q´l

1 . Now, if we write

Tj :“ [
Tj,1 Tj,2 · · · Tj,d

]
where each Tj,i P Z

dˆddk´j´1

q

then we have

〈Tj(�vj`1 b · · · b �vk`1) ´ �wj , �ϕj,i〉 “ 〈�vj`1 b · · · b �vk`1, �ϕT
j,iTj〉 ´ 〈�wj , �ϕj,i〉

“ 〈�vj`1 b · · · b �vk`1, �ϕT
j,iTj〉 ´ 〈�wj , �ϕj,i〉

“ 〈�vj`1, Tj`1,i(�vj`2 b · · · b �vk`1)〉 ´ 〈�wj , �ϕj,i〉

where

Tj`1,i :“
⎡
⎢⎣

�ϕT
j,iTj,1

...
�ϕT

j,iTj,d

⎤
⎥⎦ P Z

dˆdk´j´1

q .

Now, let us define �wj`1,i :“ Tj`1,i(�vj`2 b · · · b �vk`1) and wj`1 P Rq so that

�wj`1 “ �wj`1,1 ‖ · · · ‖ �wj`1,l P Z
d
q .



120 V. Lyubashevsky and N. K. Nguyen

Then, we need to show that for all i,

〈�vj`1, �wj`1,i〉 ´ 〈�wj , �ϕj,i〉 “ 0 and �wj`1,i “ Tj`1,i(�vj`2 b · · · b �vk`1).

The first statement is equivalent to proving that the constant coefficient of

X(i´1)duj`1σ(wj`1) ´ σ(ϕj,i)wj

is equal to zero. The second statement, however, can be combined for all i and
written as:

�wj`1 “ Tj`1(�vj`2 b · · · b �vk`1) where Tj`1 :“
⎡
⎢⎣

Tj`1,1

...
Tj`1,l

⎤
⎥⎦ P Z

dˆdk´j´1

q . (31)

Fig. 8. Commit-and-prove protocol Πj for the relation Rj where j ă k.

Therefore, we reduced proving (30) to proving that

– X(i´1)duj`1σ(wj`1) ´ σ(ϕj,i)wj is equal to zero
– �wj`1 “ Tj`1(�vj`2 b · · · b �vk`1)
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Fig. 9. Commit-and-prove protocol Πoom for the relation Room.

which in combination with other relations in Rj , it directly reduces to proving
relations in Rj`1.

In Fig. 8 we give a commit-and-prove protocol for relation Rj which uses Πj

as a black-box. One observes by discussion above that the correctness error for
Πj is the same as for Πk (which can be calculated directly from [LNP22]). Simu-
latability follows from the fact that running Πj , and thus Πj`1 up to Πk as sub-
routines, involves only sending intermediate commitments ti to wi which can be
simulated by the Extended-MLWE assumption. Finally, one can prove by induc-
tion that the knowledge soundness error for the protocol Πj is (k ´ j) · q´l

1 ` εk

where εk is the knowledge soundness error for Πk and is computed as in [LNP22].
The expected runtime of the extractor, that has black-box access to a (poten-
tially malicious) prover which runs in time T , is 2k´j ·poly(T ). Consequently, we
can only consider values k which are logarithmic in the security parameter. Due
to space constraints, we refer to the full version of the paper for more details.

Back to Room. At the very beginning of this section we showed how to reduce
proving relation Room to proving R1. Later on, we described a commit-and-prove
protocol for R1. Hence, we combine these two results to obtain a commit-and-
prove protocol Πoom in Fig. 9 for the one-out-of-many relation Room. Arguing
similarly as above, the correctness error for Πoom is the same as for Πk and the
soundness error is at most kq´l

1 ` εk.
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Abstract. In the UC framework, protocols must be subroutine respect-
ing; therefore, shared trusted setup might cause security issues. To
address this drawback, Generalized UC (GUC) framework is introduced
by Canetti et al. (TCC 2007). In this work, we investigate the impossi-
bility and feasibility of GUC-secure commitments using global random
oracles (GRO) as the trusted setup. In particular, we show that it is
impossible to have a 2-round (1-round committing and 1-round opening)
GUC-secure commitment in the global observable RO model by Canetti
et al. (CCS 2014). We then give a new round-optimal GUC-secure com-
mitment that uses only Minicrypt assumptions (i.e. the existence of one-
way functions) in the global observable RO model. Furthermore, we also
examine the complete picture on round complexity of the GUC-secure
commitments in various global RO models.

1 Introduction

Secure multi-party computation (MPC) [26,39] is one of the most important
cornerstone of modern cryptography. It enables n mutually distrustful players,
P1, . . . , Pn to securely evaluate any efficiently computable function f of their
private inputs, x1, . . . , xn. Since its introduction in the early 1980s, MPC has
been extensively studied in the literature. Typically, the security properties of
an MPC protocol are formalized using the well-known “simulation-paradigm”
[26,27]. Roughly speaking, the idea is to require that any adversarial attacker A
in the real world execution of the protocol, can be emulated by a so-called “sim-
ulator” S in an ideal world execution, where the players provide their inputs to
a trusted third party who computes f for them and relays the result back to the
players.
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From UC to GUC. To facilitate modular protocol design and analysis in
the complex network environments, Canetti proposed the Universal Composibil-
ity (UC) framework [10], where, the notion of indistinguishability between the
real and the ideal world is replaced by a notion of “interactive indistinguisha-
bility”. More specifically, an interactive environment, which may communicate
with both the honest players and the corrupted ones, should not be able to dis-
tinguish whether it is participating in the real execution or the ideal one. UC
security guarantees the security of the MPC protocols under concurrent execu-
tions, and even other arbitrary protocols running in the same network cannot be
adversarially affected—roughly speaking, the environment represents the collec-
tion of any other concurrent protocols. Additionally, this notion is closed under
composition, enabling modular analysis of protocols.

However, protocols in the UC framework must be subroutine respecting, and
shared setup cannot be directly modeled by the basic UC notion. To address this
drawback, Canetti, Dodis, Pass and Walfish proposed the Generalized Univer-
sal Composibility (GUC) framework in 2007 [11]. Since then, many interesting
and efficient protocols have been designed and analyzed under the GUC frame-
work [9,14,15,20,37].

Random Oracles as a Global Setup: GsRO, GoRO, GpRO, and GpoRO. It has
been shown [11,12] that, to achieve secure multi-party computation for any non-
trivial functionality in the UC and the GUC framework, certain trusted setups
(e.g., CRS, PKI, etc.) are required. Random Oracle (RO) is a classic idealized
setup that can be used to design UC-secure [28] and GUC-secure multi-party
computation protocols [9,14].

Random oracle model [4] is a popular idealized model that has been widely
used to justify the security of efficient cryptographic protocols. In spite of its
known inability to provide provable guarantees when RO is instantiated with
a real-world hash function [13], RO is still a promising setup without known
real-world attacks. In fact, RO draws increasing attention along with recent
advancement of the blockchain technology. It is generally viewed as a transparent
setup that can be easily deployed with no reliance on any trusted party in the
blockchain and other distributed system setting. Many RO-based non-interactive
ZK systems, e.g., zk-STARK [5] and Fractal [17], are developed and deployed
in real application scenarios. Note that, those RO-based protocols can achieve
post-quantum security.

A natural formulation of a global RO, denoted as GsRO, has been defined in
[11]: it is accessible to all parties both in the ideal world and the real world, but it
offers neither “observability” nor “programmability”. We emphasize that, it has
been proven that it is impossible to achieve GUC-secure commitment in the GsRO

model [11]. Later, Canetti, Jain, and Scafuro [14] proposed a strengthened ver-
sion of the global RO, denoted as GoRO, which allows the simulator to “observe”
the queries made by the malicious parties, and GUC-secure commitment can
be constructed in the GoRO model. Camenisch et al. [9] further strengthened the
GsRO from a different direction: they designed a mechanism that allows the simu-
lator to “program” the global RO without being detected by the adversary, and
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we denote this strengthened version of the global RO as GpRO. On top of both
GoRO and GpRO, Camensich et al. [9] then introduced an even stronger variant,
called GpoRO, and they constructed a round-optimal GUC-secure commitment in
the GpoRO model [9]. Figure 3 depicts the relation of these global RO models.

Problem Statement. We study the round complexity of GUC-secure commit-
ment in the global RO models. Clearly protocols relying on a less idealized setup
and weaker computational assumptions will allow us to gain better confidence
in the proved security statement. Note that, round-optimal GUC secure com-
mitments can be constructed based on the strong global RO setup GpoRO [9].
On the other hand, in [11], it has been proven that constructing a GUC-secure
commitment in the GsRO model is impossible. Between these two extremes, in
[14], Cannetti et al. have shown that it is feasible to construct a GUC-secure
commitment in the GoRO model; however, their construction relies on the dis-
crete logarithm assumption, which cannot achieve (post-) quantum security. We
are interested in GUC-secure commitment protocols using a global RO setup
and Minicrypt [29] assumptions; these protocols can additionally achieve post-
quantum security. This leads us to a natural research question:

What is the lower bounds of the round complexity1 of a GUC-secure commitment

in the GoRO model?

If there exists such a lower bound on the round complexity of a GUC-secure com-
mitment in the GoRO model, we would like to find a round-optimal construction.
We hereby ask:

If there exists such a lower bound, is that possible to construct round-optimal

GUC-secure commitment in the GoROmodel, using only Minicrypt assumption?

1.1 Our Results

We give affirmative answers to the above research questions. Our findings can
be summarized as follows.

A New Impossibility Result in the GoRO Model. In this work, we show that 2-
round (1-round for committing and 1-round for opening) GUC-secure commit-
ment does not exist in the GoRO model (cf. Sect. 3).

We prove this result by contradiction, and our main observation is as follows.
Suppose such a 2-round GUC-secure commitment exists. First, it is easy to see
that if the committing phase only takes one round, then there is only one message
sent from the committer to the receiver; that is, the receiver does not send any
message to the committer. Analogously, the receiver is also “silent” in the 1-
round opening phase. Therefore, the potentially corrupted receiver can delay all
its GoRO queries until it receives the opening message from the committer.

Let us consider the case where the receiver is corrupted. During the sim-
ulation, the simulated committer needs to generate the commitment message
1 Throughout this work, we do not consider the case of simultaneous rounds where

two parties can send their messages to each other at the same round [24,36].
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without the knowledge of the plaintext, and it later needs to generate the open-
ing message for any given input (a.k.a. the plaintext). As discussed before, the
corrupted receiver can choose not to query the GoRO until the simulator has
equivocated the commitment. Hence, the simulator cannot obtain any illegiti-
mate queries from GoRO for this corrupted receiver to facilitate this equivocation.
Now, observe that this simulator has no extra power over a normal party; in par-
ticular, any committer can invoke such a simulator (algorithm) to violate the
binding property of the commitment.

In the actual proof of our impossibility result, we let the corrupted committer
to internally run the simulator algorithm to generate the commitment message,
providing an empty list for the GoRO illegitimate queries. Obviously, given this
commitment message, the receiver/simulator cannot extract its plaintext; There-
fore, with very high probability, the simulation would fail.

A New Round-Optimal Commitment Using GoRO. With respect to our impossi-
bility result, a round-optimal commitment should takes at least 3 rounds. In this
work, we show how to construct a round-optimal (2-round for committing and 1-
round for opening) GUC-secure commitment only using Minicrypt assumptions
in the GoRO model (cf. Sect. 4).

A General Framework. A typical GUC-secure commitment requires both
extractability and equivocality. The GoRO model can directly provide the sim-
ulator with extractability; therefore, the challenge is to design an equivocation
mechanism with round efficiency. A natural approach is to utilize a (property-
based) perfect hiding non-interactive equivocal commitment: (i) in the 1st round,
the receiver picks the commitment key and sends it to the committer; and (ii) in
the 2nd round, the committer uses the equivocal commitment scheme to com-
mit the message. To deploy this approach, the following questions need to be
resolved:

– How to instantiate such a perfect-hiding non-interactive equivocal commitment?

– How can the simulator obtain the equivocation trapdoor?

In [14] and [37], the Pedersen commitment is used as a candidate of the
equivocal commitment. It is well-known, the security of Pedersen commitment
is based on the discrete logarithm assumption which is not (post-) quantum
secure. In this work, we show how to construct a candidate of the equivocal
commitment only using Minicrypt assumptions, i.e. the existence of one-way
functions, in the GoRO model.

To address the latter question, [14] introduced a 5-round mechanism that
enables the simulator to obtain the equivocation trapdoor in the GoRO model;
whereas, [37] proposed a more round-efficient (3-round) mechanism to do so.
More precisely, [37] let the receiver use a Non-Interactive Witness Indistinguish-
able (NIWI) argument to prove the knowledge of equivocation trapdoor w.r.t.
the commitment key. The proof is sent together with the commitment key in the
1st round. Note that straight-line extractability is needed for this approach.

Following the technique proposed in [37], our framework adopts the Non-
Interactive Witness Hiding (NIWH) argument with straight-line extractabil-
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ity [38] to prove the knowledge of equivocation trapdoor w.r.t. the commitment
key. The straight-line extractable NIWH argument can be constructed under
Minicrypt assumption in the GoRO model. Putting things together, we can obtain
a GUC-secure commitment using only Minicrypt assumptions. We present the
technique roadmap of our framework in Fig. 1.

GoRO-hybrid world

Equivocal
Commitment

GUC-secure
Commitment

Straight-line Extractable
NIWH Argument

(a) A general framework.

GoRO-hybrid world

Equivocal
Commitment

Straight-line Extractable
NIWH ArgumentOWF

MPC-in-the-head SHVZK
Protocol

(b) Instantiation of building blocks.

Fig. 1. Technique roadmap

Non-interactive Equivocal Commitment in Minicrypt. As shown in [18,35], it is
possible to build a non-interactive equivocal commitment from a 3-round public-
coin Special Honest Verifier Zero-Knowledge (SHVZK) protocol with 2-special
soundness. In the SHVZK protocol, the prover sends the message flow a in the
1st round, and the receiver sends a public-coin randomness e as the challenge in
the 2nd round. After receiving e, the prover computes and sends the response
z in the last round. The technique of constructing non-interactive equivocal
commitment can be summarized as follows. Let RL be an NP relation whose
associate language is L. The receiver randomly samples a pair (x,w) ∈ RL and
sends x to the committer. To commit a message m, the committer invokes the
SHVZK simulator for x ∈ L, using m as the challenge. The simulator then
outputs the simulated proof (a, z). The committer sends a to the receiver as its
commitment message. To open the commitment, the committer can simply send
m, z to the receiver, who will accept it if and only if (a,m, z) is an accepting
SHVZK proof transcript. The equivocation trapdoor is w, which can be extracted
from the straight-line extractor of NIWH as described above.

Since we aim to construct a commitment under Minicrypt assumptions, in our
construction, RL is instantiated with a one-way function relation, i.e., g(x) = y
where g is a one-way function. Next, how to construct a 2-special sound SHVZK
protocol underMinicrypt assumptions?One possible approach is to use the “MPC-
in-the-head” paradigm proposed by Ishai et al. [30]. Roughly speaking, the main
idea is for the prover to simulate the execution of an n-party computation proto-
col that checks if (x,w) ∈ RL, where x is the public input and w is the witness.
The prover then commits to all views of the parties and sends the commitments
to the verifier. After that, the verifier chooses a random subset of the parties and
asks the prover to open their corresponding views. The verifier accepts the proof
if the revealed views are consistent. Unfortunately, to the best of our knowledge,
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none of the followups [1,16,19,25,31] since the initial work of [30] can lead to a 2-
special sound SHVZK protocol merely under Minicrypt assumptions. To address
this issue, we propose a new technique that can construct a 2-special sound proto-
col in the GoRO model (cf. Sect. 4.2).

Towards a Complete Picture. In terms of the GoRO, our work gives a complete
answer to our questions: we show there exists no 2-round GUC-secure commitment
in the GoRO model (cf. Sect. 3), and present a 3-round (round-optimal) GUC-secure
commitment under only Minicrypt assumptions in the GoRO model (cf. Sect. 4).
Moreover, it is known that GUC-secure commitment does not exist in the GsRO

model [11], and round-optimal GUC-secure commitment can be constructed with-
out further assumptions in the GpoRO model [9]. What about the GpRO? In this work,
we also show some impossibility result: there exists no GUC-secure commitment
with 1-round committing in the GpRO model (see details in the full version of our
paper). However, the feasibility of round-optimal GUC-secure commitment under
Minicrypt assumptions in the GpRO model remains an open question.

Further Investigation and Future Directions. We mainly focus on the commit-
ment in this work. One may also wonder the lower bounds of the round complex-
ity of other cryptographic primitives such as ZK, OT, etc. In fact, it is already
known that there exists no NIZK in the observable RO model [38]. What about
the ZK proofs in the GpRO model? In this work, we show that our impossibility
result can be extended to ZK proofs in the GpRO model: there exists no non-
trivial GUC-secure NIZK protocols in the GpRO model (see details in the full
version of our paper).

1.2 Related Work

In terms of UC security with local setups, non-interactive commitments (1-
round for committing and 1-round for opening) can be constructed under various
setup assumptions. For instance, Canetti and Fischlin gave a candidate in the
CRS model [12]; Hofheinz and Müller-Quade suggested a candidate in the RO
model [28]. As for UC security with global setups, it is still unclear if it is possi-
ble to construct a non-interactive GUC-secure commitment, and very few work,
e.g., [20] is dedicated to this research area. In [11], Canetti et al. showed that
it is impossible to construct a GUC-secure commitment merely relying on local
CRS/RO functionalities; they further proposed a 7-round GUC-secure commit-
ment protocol in the Agumented CRS (ACRS) model. Later, Dodis et al. proved
that there exists no GUC-secure commitment with 1-round committing phase in
the ACRS model against adaptive adversaries [20]. Note that their impossibility
result can be extended to any other global setup whose output depends on the
program ID (pid) of the querying party, but not the session ID (sid), such as the
Key Registration of Knowledge (KRK) model [2]. To bypass this impossibility
result, GoRO,GpRO and GpoRO are proposed; note that the output of those setup
functionalities depends on the session ID (sid).

Focusing on commitments in the GoRO, Canetti et al. proposed a 5-round
GUC-secure commitment [14]. Later, Mohassel et al. gave a (1+2)-round GUC-
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secure commitment in the GoRO model, where the committer and the receiver
needs to have an additional 1-round setup phase followed by a 2-round commit-
ment [37]. Note that their construction also employed Pedersen commitment,
which cannot achieve (post-) quantum security. Byali et al. gave a 2-round
GUC-secure commitment construction in the CRS and GoRO hybrid model [8].
Following Byali et al. paradigm, GUC-secure ZK protocols [23,34] can also be
constructed in the CRS and GoRO hybrid model. With regard to post-quantum
security, [7] gave a 5-round lattice-based GUC-secure commitment and [6] gave
a 6-round code-based GUC-secure commitment in the GoRO model.

In respect of the GpRO and the GpoRO, Camenisch et al. proposed a 3-round
GUC-secure commitment from CDH assumption in the GpRO model and an
information-theoretical non-interactive GUC-secure commitment in the GpoRO

model [9]. Recently, Canetti et al. proposed a 2-round OT adaptive-secure OT
from DDH assumption in the GpRO model [15], but their protocol is only UC-
secure. Baum et al. constructed a GUC-secure commitment scheme that is addi-
tively homomorphic in the GpoRO model [3].

2 Preliminaries

2.1 Notations

Let λ ∈ N be the security parameter. We say that a function negl : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large λ, it
holds that negl(λ) < 1

p(λ) . We write y := Alg(x; r) when the algorithm Alg on
input x and randomness r, outputs y. We write y ← Alg(x) for the process of
sampling the randomness r and setting y := Alg(x; r). We also write y ← S for
sampling y uniformly at random from the set S. We use the abbreviation PPT
to denote probabilistic polynomial-time. Let [n] denote the set {1, 2, . . . , n} for
some n ∈ N. For an NP relation R, we denote by L its associate language, i.e.
L = {x | ∃w s.t. (x,w) ∈ R}. We often write RL to denote the NP relation
whose associate language is L for short. We also use RL(x,w) = 1 to refer
to (x,w) ∈ RL. We say that two distribution ensembles X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are identical (resp. computationally indistinguishable), denoted
by X ≡ Y (resp., X c≈ Y), if for any unbounded (resp., PPT) distinguisher D
there exists a negligible function negl(·) such that |Pr[D(Xλ) = 1]−Pr[D(Yλ) =
1]| = 0 (resp., negl(λ)). When we define a protocol/scheme in form of Π =
Π.{Alg-1, . . . ,Alg-n}, we use the notation Π.Alg-i to refer to the algorithm Alg-i
of Π where Alg-i ∈ {Alg-1, . . . ,Alg-n}.

2.2 Universal Composability

Canetti’s UC Framework. The UC framework proposed by Canetti [10] lays
down a solid foundation for designing and analyzing protocols secure against
attacks in an arbitrary network execution environment. Roughly speaking, in
the UC framework, a protocol Π is defined to be a computer program (or several
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programs) which is intended to be executed by multiple interconnected parties.
Every party is identified by the unique pair (pid, sid), where pid is the Program
ID (PID) and sid is the Session ID (SID). Let A be the adversary who can control
the network and corrupt the parties. When a party is corrupted, the adversary A
receives its private input and its internal state. We say a protocol is terminating if
it can terminate in polynomial time, and we only consider terminating protocols
in this work.

We call a protocol, the one for which we want to prove security, challenge
protocol. A challenge protocol Π is a UC-secure realization of a functionality
F , if it satisfies that for every PPT adversary A attacking an execution of Π,
there is another PPT adversary S—known as the simulator—attacking the ideal
process that interacts with F (by corrupting the same set of parties), such that
the executions of Π with A and that of F with S makes no difference to any
PPT network execution environment Z.

The Ideal World Execution. In the ideal world, the set of parties P =
{P1, . . . , Pn} only communicate with an ideal functionality F and the simu-
lator S. The corrupted parties are controlled by the simulator S. The output of
the environment Z in this execution is denoted by EXECF,S,Z .

The Real World Execution. In the real world, the set of parties P = {P1, . . . , Pn}
communicate with each other and the adversary A to run the protocol Π. The
corrupted parties are controlled by the adversary A. The output of the environ-
ment Z in this execution is denoted by EXECΠ,A,Z .

Definition 1. We say a protocol Π UC-realizes functionality F , if for any PPT
environment Z and any PPT adversary A there exists a PPT simulator S s.t.
EXECΠ,A,Z

c≈ EXECF,S,Z .

In order to conceptually modularize the design of the protocols, the notion
of “hybrid world” is introduced. A protocol Π is said to be realized “in the G
hybrid world” if Π invokes the ideal functionality G as a subroutine.

Definition 2. We say protocol Π UC-realizes functionality F in the G hybrid
world, if for any PPT environment Z and any PPT adversary A there exists a
PPT simulator S s.t. EXECG

Π,A,Z
c≈ EXECF,S,Z .

Furthermore, in the UC framework, the environment Z cannot have the direct
access to G, but it can do so through the adversary. Namely, in the real world,
the adversary A can access the ideal functionality G directly, and A queries G
for Z and forwards the answers; analogously, in the ideal world, Z can query G
through the simulator S. This implicitly means that G is local to the challenge
protocol instance. This allows the simulator S to simulate G in the ideal world
as long as it “looks” indistinguishable from G hybrid world.

Canetti et al’s GUC Framework. In Canetti’s UC framework, the environ-
ment Z is constrained: it cannot have the direct access to the setup. It means
that the setup is not global. This assumption might be impractical in real life
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applications where it is more plausible that there is a global setup published and
used by many protocols.

Motivated by solving problems caused by modeling setup as a local sub-
routine, Canetti et al. introduced Generalized UC (GUC) which can be used
for properly analyzing concurrent execution of protocols in the presence of
global setup [11]. In the GUC framework, the environment Z is unconstrained:
Z is allowed to access the setup directly without going through the simula-
tor/adversary and invoke arbitrary protocols alongside the challenge protocol.
Furthermore, the setup can be modeled as a shared functionality that can com-
municate with more than one protocol sessions. Let the output of the uncon-
strained PPT environment Z in the real world (resp. ideal world) execution be
denoted by GEXECΠ,A,Z (resp. GEXECF,S,Z).

Definition 3. We say a protocol Π GUC-realizes functionality F , if for any
unconstrained PPT environment Z and any PPT adversary A there exists a
PPT simulator S s.t. GEXECΠ,A,Z

c≈ GEXECF,S,Z .

Since the unconstrained environment Z is given a high-level of flexibility: Z
is allowed to invoke arbitrary protocols in parallel with the challenge protocol.
This makes it extremely hard to prove the GUC security. Therefore, a simplified
framework called Externalized UC (EUC) is introduced in [11]. In the EUC
framework, the environment Z has direct access to the shared functionality G
but does not initiate any new protocol sessions except the challenge protocol
session. We call such an environment is G-externalized constrained. We say a
protocol Π is G-subroutine respecting if it only shares state information via a
single shared functionality G. We take RO models as an example, and present
the comparison of basic UC, GUC and EUC in Fig. 2.

Definition 4. Let the protocol Π be G-subroutine respecting. We say a protocol
Π EUC-realizes functionality F with respect to shared functionality G, if for any
PPT G-externalized constrained environment Z and any PPT adversary A there
exists a PPT simulator S s.t. EXECG

Π,A,Z
c≈ EXECG

F,S,Z .

In [11], Canetti et al. showed that for any G-subroutine respecting protocol
Π, proving Π EUC-realizes F with respect to G is equivalent to proving Π GUC-
realizes F . Therefore, when we want to prove the GUC security of a protocol,
we always turn to EUC security for the sake of simplicity.

2.3 The Global Random Oracle Models

In this section, we review four well-known Global Random Oracle (GRO) mod-
els: (i) Global Strict Random Oracle (GSRO) model proposed by Canetti et al.
in [14], which does not give any extra power to anyone; (ii) Global Observable
Random Oracle (GORO) model2 proposed by Canetti et al. in [14], which grants

2 In [9], Camenisch et al. used the notations Restricted Observable Global Random
oracles (GroRO), Restricted Programmable Global Random Oracles (GrpRO) and
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(a) Basic UC: the simulator S simulates
the local FRO and has full control.
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(c) GUC: the global GRO is external to the simulator, and the environment Z not only
has direct access to GRO, but also invokes arbitraty protocols ρ1, ρ2, · · · alongside the
challenge protocol Π.

Fig. 2. Comparison of basic UC, GUC and EUC.

the ideal world simulator access to the list of illegitimate queries (to be defined
later); (iii) Global Programmable Random Oracle (GPRO) model proposed by
Camenisch et al. in [9], which allows the simulator to program on unqueried
points without being detected; (iv) Global Programmable and Observable Ran-
dom Oracle (GPORO) model proposed by Camenisch et al. in [9], which provides
both programmability and observability. We present the relation of these mod-
els in Fig. 3, and the formal description of all the global random oracle models
mentioned above in Fig. 4.

The GSRO Model. The GSRO model GsRO is a natural extension of local RO
model FRO: as depicted in Fig. 4(a), upon receiving (Query, sid, x) from any
party, GsRO first checks if the query (sid, x) has been queried before. If not, GsRO

answers with a random value of pre-specified length, that is v ∈ {0, 1}�out(λ), and
records the tuple (sid, x, v); otherwise, the previously chosen value v is returned
again even if the earlier query was made by another party. The sad truth is that
Canetti et al. remarked that GsRO does not suffice to GUC-realizes commitment
functionality. Therefore, stronger variant global random oracle models are needed
to realize non-trivial functionalities.

The GORO Model. Compared to GsRO, the GORO model GoRO provides addition-
ally observability. More precisely, some of the queries can be marked as “illegit-

Restricted Observable and Programmable Global Random Oracles (GrpoRO). Here
we adopt the notations GORO, GPRO and GPORO which skips the “r” for the sake
of the simplicity as in [15].



GUC-Secure Commitments via Random Oracles 139

GpoRO

GsRO

GoROGpRO

obs
erv

abi
lity

obs
erv

abi
lity

programmability

programmability

observability
+

program
m

ability
Fig. 3. Relation of the global random oracle models

imate” and potentially disclosed to the simulator. As depicted in Fig. 4(b), the
GORO functionality GoRO interacts with a list of ideal functionality programs
F̄ = {F1, . . . ,Fn}, where F1, . . . ,Fn are the protocol functionalities (e.g., com-
mitment functionality, ZK functionality, etc.) that share the same global setup
GoRO. For any query (s, x) from any party P = (pid, sid) where s is the content of
the SID field, if s �= sid, then this query is considered “illegitimate”. After that,
GoRO adds the tuple (s, x, v) to the list of illegitimate queries for SID s, which
we denote as Qs. The illegitimate queries Qs may be disclosed to the instance
of ideal functionality whose SID is the one of the illegitimate queries. Then the
ideal functionality instance leaks the illegitimate queries to the simulator.

The GPRO Model. Compared to GsRO, the GPRO model GpRO additionally allows
simulator/adversary to program the global random oracle on unqueried points.
As depicted in Fig. 4(c), upon receiving (Program, sid, x, v) from the simula-
tor/adversary, GpRO first checks if (sid, x) has been queried before. If not, GpRO

stores (sid, x, v) in the query-answer lists. Any honest party can check whether a
point has been programmed or not by sending the (IsProgramed, sid, x) com-
mand to GpRO. Thus, in the real world, the programmed points can always be
detected. However, in the ideal world, the simulator S can successfully pro-
gram the random oracle without being detected since it can always return
(IsProgramed, sid, 0) when the adversary invokes (IsProgramed, sid, x) to
verify whether a point x has been programmed or not.

The GPORO Model. If we combine the GORO model and GPRO model together,
we obtain the GPORO model GpoRO which is depicted in Fig. 4(d). To the best of
our knowledge, the GPORO model is the most powerful GRO model that enables
efficient composable protocols in the GUC framework. For example, Camenisch
et al. gave an efficient non-interactive GUC-secure commitment protocol in the
GPORO model [9].

Remark 1. Camenisch et al. remarked that when one uses the (distinguishing)
environment in a cryptographic reduction, one can have full control over the
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The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S.
It is parameterized by the input/output length �in(λ) and �out(λ). It maintains an initially
empty list List.

– Query. Upon receiving (Query, s, x) from a party Pi ∈ P where Pi = (pid, sid), or the
adversary S:
• Find v such that (s, x, v) ∈ List. If there is no such v exists, select an uniformly

random v ∈ {0, 1}�out(λ) and record the tuple (s, x, v) in List.
• Return (QueryConfirm, s, v) to the requestor.

Shared Functionality GsRO

(a) The Global Strict Random Oracle Model GsRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It
is parameterized by the input/output length �in(λ) and �out(λ), and a list of ideal function-
ality programs F̄ . It maintains an initially empty list List.

– Query. Same as GsRO depicted in Figure 4(a), except when sid �= s, add the tuple
(s, x, v) to the (initially empty) list of illegitimate queries for SID s, which we denote
by Qs.

– Observe. Upon receiving a request from an instance of an ideal functionality in the list
F̄ , with SID s, return to this instance the list of illegitimate queries Qs for SID s.

Shared Functionality GoRO

(b) The Global Observable Random Oracle Model GoRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It
is parameterized by the input/output length �in(λ) and �out(λ). It maintains initially empty
lists List,Prog.

– Query. Same as GsRO depicted in Figure 4(a).

– Program. Upon receiving (Program, sid, x, v) with v ∈ {0, 1}�out(λ) from S:

• If ∃v′ ∈ {0, 1}�out(λ) such that (sid, x, v′) ∈ List and v �= v′, ignore this input.
• Set List := List ∪ {(sid, x, v)} and Prog := Prog ∪ {(sid, x)}.
• Return (ProgramConfirm, sid) to S.

– IsProgramed. Upon receiving (IsProgramed, sid′, x) from a party Pi or S:
• If the input was given by Pi = (pid, sid) and sid �= sid′, ignore this input.
• If (sid′, x) ∈ Prog, set b := 1; otherwise, set b := 0.
• Return (IsProgramed, sid′, b) to the requester.

Shared Functionality GpRO

(c) The Global Programmable Random Oracle Model GpRO

The functionality interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It
is parameterized by the input/output length �in(λ) and �out(λ), and a list of ideal function-
ality programs F̄ . It maintains initially empty lists List,Prog.

– Query/Observe. Same as GoRO depicted in Figure 4(b).
– Program/IsProgramed. Same as GpRO depicted in Figure 4(c).

Shared Functionality GpoRO

(d) The Global Programmable and Observable Random Oracle Model GpoRO

Fig. 4. The global random oracle models.
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shared functionality [9]. More precisely, as depicted in Fig. 5, the reduction algo-
rithm B simulates the complete view of the environment Z including the shared
functionality G, thus B has full control of G.

Z
A Π F
S

Simulated by B

Reduction B

G

Challenger C

Fig. 5. In order to play against the external challenger C, reduction algorithm B simu-
lates everything (marked as gray) including the shared functionality G, then starts the
protocol Π with the real world adversary A/environment Z by running A/Z internally
as black-box.

2.4 SHVZK Protocols

A 3-round public coin Special Honest Verifier Zero-Knowledge (SHVZK) pro-
tocol Π = Π.{Move1,Move2,Move3,Verify,Sim} allows a prover to convince a
verifier that a statement x is true with the aid of the witness w. In the first
round, the prover computes and sends the first flow message a := Move1(x,w; r)
using the statement-witness pair (x,w) and some random coin r. In the second
round, the verifier samples and sends a uniformly random public coin challenge
e ← Move2(1λ). In the last round, the prover computes the response to the chal-
lenge z := Move3(x,w, e; r) using the statement-witness pair (x,w), challenge e
and the random coin r. Finally the verifier accepts the statement x if and only
if Verify(x, a, e, z) = 1. We put the workflow of the SHVZK protocol in Fig. 6.
We often call (a, e, z) the transcript between the prover and the verifier.

Prover(x, w) Verifier(x)

a := Move1(x,w; r) a

e ← Move2(1λ)e

z := Move3(x, w, e; r) z

Output b := Verify(x, a, e, z)

Fig. 6. The workflow of the SHVZK protocol
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A SHVZK protocol should satisfy (i) perfect completeness, i.e. any honest
prover who holds the witness w such that (x,w) ∈ RL can always make the veri-
fier accept; (ii) k-special soundness, i.e. given any k distinct accepting transcripts,
we can always extract the witness w; (iii) Special Honest Verifier Zero-Knowledge
(SHVZK) property, i.e. given the challenge e ahead, there should be a PPT sim-
ulator algorithm Sim that takes the statement x, the challenge e and random
coin r as input, and outputs the simulated (a, z) which is indistinguishable from
the real one. The first property is easy to formalize. In order to formalize the
k-special soundness and SHVZK, we consider the following experiments:

Experiment exptk-SS
A,Π(λ):

1. A outputs a statement x along with k transcripts {(a, ei, zi)}i∈[k].
2. If ei �= ej where i �= j: extract the witness w′ from {(a, ei, zi)}i∈[k]

3. If (x,w′) ∈ RL, output 1; otherwise, output 0.
Denote by Advk-SS

A,Π(λ) := Pr[exptk-SS
A,Π(λ) = 1] the advantage of A.

Experiment exptSHVZK
A,Π (λ):

1. A outputs a statement-witness pair (x,w) along with a challenge e.
2. If (x,w) ∈ RL: select a random string r and a random bit b ∈ {0, 1},

and compute the following:
(a) If b = 0: a := Move1(x,w; r); z := Move3(x,w, e; r).
(b) If b = 1: (a, z) := Sim(x, e; r).

3. A is given (a, z) as input, and it outputs a guess bit b′ ∈ {0, 1}.
4. If b = b′, output 1; otherwise, output 0.

Denote by AdvSHVZK
A,Π (λ) :=

∣
∣Pr[exptSHVZK

A,Π (λ) = 1] − 1
2

∣
∣ the advantage of A.

Now we can formally define the SHVZK protocol.

Definition 5. We say a protocol Π = Π.{Move1,Move2,Move3,Verify,Sim} is
a SHVZK protocol if the following conditions hold:

1. (Perfect Completeness) For any (x,w) ∈ RL, we say it is perfect complete
if

Pr
[

a := Move1(x,w; r); e ← Move2(1λ);
z := Move3(x,w, e; r) : Verify(x, a, e, z) = 1

]

= 1

2. (k-Special Soundness) For any PPT adversary A, we say it has k-special
soundness where k ∈ N and k ≥ 2, if there exists a negligible function negl
such that Advk-SS

A,Π (λ) ≤ negl(λ).
3. (Special Honest Verifier Zero-Knowledge) We say it has SHVZK if

there exists a PPT simulator Sim such that for any PPT adversary A, there
exists a negligible function negl such that AdvSHVZK

A,Π (λ) ≤ negl(λ).

2.5 Straight-Line Extractable NIWH Argument in the RO Model

Witness Hiding (WH) interactive proofs were introduced by Feige and Shamir
in [21], and the Non-Interactive Witness-Hiding (NIWH) argument in the plain
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model can be found in [33]. We here discuss the NIWH argument in the ran-
dom oracle model. Note that, stronger security property such as (straight-line)
extractability can now be achieved in the random oracle model: an extraction
algorithm Ext could be constructed to extract the witness from a maliciously
generated and accepting proof. More concretely, in an NIWH argument in the
random oracle model Π = Π.{ProveO,VerifyO,Ext}, both the prover and the
verifier are allowed to query the random oracle O at any moment, during the
protocol execution. As in the plain model, the prover generates the proof π
using the statement-witness pair (x,w) and a random string r and sends π to
the verifier, and the verifier then verifies if the proof π is valid or not; the verifier
outputs a bit b indicating the acceptance or rejection. Formally, the Prove and
Verify algorithms in a NIWH argument in the RO model are described as follows:

– π := ProveO(x,w; r) takes input as a statement-witness pair (x,w) and a
random string r, and it is allowed to query the random oracle O. It outputs
a proof π. When r is not important, we use ProveO(x,w) for simplicity.

– b := VerifyO(x, π) takes input as a statement x and a proof π, and it is allowed
to query the random oracle O. It outputs a bit b indicating acceptance or
rejection.

The straight-line extractable NIWH argument should satisfy the perfect com-
pleteness, computational soundness, witness hiding and straight-line extractabil-
ity. The perfect completeness is trivial. The computational soundness means that
any PPT prover cannot convince the verifier that a false statement is true with
overwhelming probability. The last two properties are not to easy to formalize.
We first talk about the witness hiding property: given the proof π generated by
the prover, the verifier cannot compute any new witness that the verifier does
not know before the interaction. In order to formally define the witness hiding
property, we consider the following definition of hard instance ensembles [38].

Definition 6 (Hard Instance Ensembles). Let RL be an NP relation, and
L be its associate language, and X = {Xλ}λ∈N be a probability ensemble s.t. Xλ

ranges over L ∩ {0, 1}λ. We say that X is hard for NP relation RL if for any
PPT A and any x ∈ X , there exists a negligible function negl s.t. Pr[(x,A(x)) ∈
RL] = negl(λ).

Then we should consider the following experiment:

Experiment exptWH
A,Π(λ):

1. Select (x,w) ∈ RL, and compute π ← Prove(x,w).
2. A is given (x, π) as input, and it outputs w′.
3. If (x,w′) ∈ RL, output 1; otherwise, output 0.

Denote by AdvWH
A,Π(λ) := Pr[exptWH

A,Π(λ) = 1] the advantage of A.

We now describe how to define the straight-line extractability property; note
that our extractability definition is taken from that by Pass [38]. To enable the
extractability, typically, the extraction algorithm Ext can be developed by simu-
lating the random oracle for the prover and the verifier, and thus the algorithm
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Ext has full control of the random oracle. In this paper, we consider a much
more restricted random oracle, and the algorithm Ext is granted only with the
observability; that is, Ext is allowed to see the query-answer list of the random
oracle. For that reason, we write ExtO to indicate that, the extraction algorithm
Ext does not have the full control of the random oracle, and is only granted
to have the observability capability. With these notions above, we can formally
define the straight-line extractable NIWH arguments in the RO model.

Definition 7. Fix an NP relation RL whose associate language is L. Consider
a RO O. We say a protocol Π = Π.{Prove,Verify} is a NIWH argument for RL
in the RO model if the following condition holds:

1. (Perfect Completeness) For any (x,w) ∈ RL, we say it is perfect complete
if

Pr[π ← ProveO(x,w) : VerifyO(x, π) = 1] = 1

2. (Computational Soundness) For any x /∈ L, we say it is computational
sound if for any PPT adversary A, there exists a negligible function negl such
that

Pr[π∗ ← AO(x) : VerifyO(x, π∗) = 1] ≤ negl(λ)

3. (Witness Hiding) Let X = {Xλ}λ∈N be a hard instance ensemble RL. We
say it is witness hiding for RL under the instance ensemble X if for any
PPT adversary A and any (x,w) ∈ RL with x ∈ X , there exists a negligible
function negl s.t. AdvWH

A,Π(λ) ≤ negl(λ). We say it is witness hiding for RL
if it is witness hiding under all hard-instance ensembles X for RL.

4. (Straight-line Extractability) For any x ∈ L, we say it is straight-line
extractable if for any PPT adversary A,

Pr
[

π∗ ← AO(x); b := VerifyO(x, π∗);
w∗ ← ExtO(x, π∗)

: b = 1 ∧ (x,w∗) ∈ RL

]

≥ 1 − negl(λ)

2.6 Equivocal Commitment

Typically, an equivocal commitment scheme Π = Π.{KeyGen,KeyVer,Commit,
ComVer,EquCom,Equiv} allows the committer to generate the commitment c to
any value m using the commitment key ck and the randomness r. Later, the
committer can open c to m by sending the opening d to the receiver who verifies
it. Furthermore, if the committer obtains the trapdoor td with respect to the ck,
he can generate the equivocal commitment c̃, later open c̃ to any message m̃.
Formally, the equivocal commitment has the following algorithms:

– (ck, td) ← KeyGen(1λ) takes input as the security parameter λ, and outputs
a commitment key ck and the trapdoor td.

– b := KeyVer(ck, td) takes input as a commitment key ck and a trapdoor td. It
outputs a bit b indicating acceptance or rejection.

– (c, d) := Commit(ck,m; r) takes input as a commitment key ck, a message m
and a randomness r. It outputs the commitment c and the opening d. We
assume that there exists a deterministic algorithm that can extract m from
d. When r is not important, we use Commit(ck,m) for simplicity.



GUC-Secure Commitments via Random Oracles 145

– b := ComVer(ck, c, d) takes input as a commitment key ck, and a commitment-
opening pair (c, d). It outputs a bit b indicating acceptance or rejection.

– (c̃, st) := EquCom(ck, td; r) takes input as a commitment key ck, a trapdoor
td, and a randomness r. It outputs a commitment c̃ and a state st. When r
is not important, we use EquCom(ck, td) for simplicity.

– d̃ := Equiv(ck, td, c̃, st, m̃) takes input as a commitment key ck, a trapdoor td,
a commitment c̃, a state st, and an arbitrary message m̃ for which equivoca-
tion is required. It outputs an opening d̃.

The equivocal commitment requires the following properties: perfect correct-
ness, perfect hiding, computational binding and equivocation. Perfect correctness
means that the honest committer can always make the receiver accept. Perfect
hiding means that the commitment reveals nothing about the message.

Experiment expthiding
A,Π (λ):

1. Run (ck, td) ← KeyGen(1λ).
2. A is given ck as input, and it outputs two distinct messages m0,m1.
3. Select a random bit b ∈ {0, 1}, and compute c ← Commit(ck,mb).
4. A is given mb as input, and it outputs a bit b′.
5. If b′ = b, output 1; otherwise, output 0.

Denote by Advhiding
A,Π (λ) :=

∣
∣
∣Pr[expthiding

A,Π (λ) = 1] − 1
2

∣
∣
∣ the advantage of A.

Computational binding means that it is infeasible for the PPT committer to
output the commitment c that can be opened in two different ways.

Experiment exptbinding
A,Π (λ):

1. Run (ck, td) ← KeyGen(1λ).
2. A is given ck as input, and it outputs (c, d0, d1).
3. If d0 �= d1 and ComVer(ck, c, d0) = ComVer(ck, c, d1) = 1 holds,

output 1; otherwise, output 0.
Denote by Advbinding

A,Π (λ) := Pr[exptbinding
A,Π (λ) = 1] the advantage of A.

Equivocation means that given the trapdoor td, one can open a previously con-
structed commitment c of message m to other message m̃ �= m.

Experiment exptequivocal
A,Π (λ):

1. A is given 1λ as input, and it outputs (ck, td, m).
2. If KeyVer(ck, td) = 1: select a random string r and a random bit b ∈ {0, 1},

and compute the following:
(a) If b = 0: invoke (c, d) := Commit(ck, m; r).
(b) If b = 1: invoke (c, st) := EquCom(ck, td; r); d := Equiv(ck, td, c̃, st, m).

3. A is given (c, d) as input, and it outputs a bit b′.
4. If b = b′, output 1; otherwise, output 0.

Denote by Advequivocal
A,Π (λ) :=

∣
∣
∣Pr[exptequivocal

A,Π (λ) = 1] − 1
2

∣
∣
∣ the advantage of A.

Now we can formally define the equivocal commitment, and it should satisfy
the following definition:
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Definition 8. We say a scheme Π = Π.{KeyGen,KeyVer,Commit,ComVer,
EquCom,Equiv} is an equivocal commitment if the following conditions hold:

1. (Perfect Correctness) For any message m, we say it is perfect correct if

Pr[(ck, td) ← KeyGen(1λ); (c, d) ← Commit(ck,m) : ComVer(ck, c, d) = 1] = 1

2. (Perfect Hiding) We say it is perfect hiding if for any adversary A s.t.
Advhiding

A,Π (λ) = 0.
3. (Computational Binding) We say it is computational binding if for any

PPT adversary A, there exists a negligible function negl s.t. Advbinding
A,Π (λ) ≤

negl(λ).
4. (Equivocation) We say it is equivocal if for any PPT adversary A, there

exists a negligible function negl s.t. Advequivocal
A,Π (λ) ≤ negl(λ).

2.7 “MPC-in-the-Head” Paradigm

In [30], Ishai et al. proposed the famous “MPC-in-the-head” paradigm from
which we can construct a SHVZK protocol using the MPC protocol. Before
introducing the details of the paradigm, we have to define the MPC protocol.

Consider a function f : ({0, 1}λ)n+1 → {0, 1}λ. We let P1, . . . , Pn be n parties
modeled as PPT interactive machines. Assume that each party Pi holds a private
input wi ∈ {0, 1}λ and a public input x ∈ {0, 1}λ, and wants to compute y =
f(x,w), where w = (w1, . . . , wn). They communicate with each other using
point-to-point secure channels (e.g. encrypted channels or OT channels) in the
synchronous model. The parties jointly run a secure Multi-Party Computation
(MPC) protocol ΠMPC. The protocol ΠMPC is specified via the next-message
functions: there are multiple communication rounds, and in each round the party
Pi sends into the channel a message that is computed as a deterministic function
of the internal state of Pi (including private input wi and random tape ki) and the
messages that Pi has received in the previous rounds. We denote by viewi(x,wi)
the view of Pi, which is the concatenation of the inputs x,wi, the random tape ki

and all the messages received by Pi during the execution of ΠMPC. Each secure
channel defines a relation of consistency between views. For instance, in the
plain model, we say viewi(x,wi) and viewj(x,wj) are consistent if the outgoing
messages in viewi(x,wi) are identical to the incoming messages in viewj(x,wj)
and vice versa. Finally, all the views should yield the same output y, i.e. there
are n functions Πf,1, . . . , Πf,n such that y = Πf,i(viewi(x,wi)) for all i ∈ [n]. We
note that, for our purpose of use, we require that every party Pi in the honest
execution of ΠMPC has the same output y; while in the general case, the output
of Pi can be different from each other.

In this work, we only consider security of MPC protocols in the semi-honest
model. In the semi-honest model, the corrupted parties follow the instructions
of the protocol, but are curious about the private information of other parties.
Thus, the protocol needs to be designed in such a way that a corrupted Pi cannot
infer information about wj from its view viewi(x,wi), where j �= i.



GUC-Secure Commitments via Random Oracles 147

We denote by viewT (x,w1, . . . , wn) the joint view of players in set T ⊂ [n] for
the execution of ΠMPC on input (x,w1, . . . , wn). Consider a PPT simulator algo-
rithm Sim that given the set T ⊂ [n], the output of ΠMPC on input (x,w1, . . . , wn)
(i.e. f(x,w1, . . . , wn)), and the input of parties in T (i.e. (x, (wi)i∈T )), it can out-
put the simulated joint view of players in set T for the execution of ΠMPC on
input (x,w1, . . . , wn) which we denote by Sim(T, x, (wi)i∈T , f(x,w1, . . . , wn)).
With these notations, we have the following definition.

Definition 9. We say an n-party protocol ΠMPC realizes f in the semi-honest
model, if the following conditions hold:

1. (Perfect Correctness) For any inputs x,w = (w1, . . . , wn) and any random
tape, we say ΠMPC realizes f with perfect correctness if ∀i ∈ [n] : Pr[y =
Πf,i(viewi(x,wi))] = 1.

2. (t-Privacy) Let 1 ≤ t < n. We say ΠMPC realizes f with t-privacy if it
is perfect correct and for every set of corrupted parties T ⊂ [n] satisfying
|T | ≤ t, there exists a PPT simulator Sim such that

viewT (x,w1, . . . , wn) ≡ Sim(T, x, (wi)i∈T , f(x,w1, . . . , wn))

Now we can introduce the “MPC-in-the-head” paradigm. Let f be the fol-
lowing (n + 1)-argument function corresponding to an NP relation RL, that is,
f(x,w1, . . . , wn) = RL(x,w1 ⊕ · · · ⊕ wn). Here x is a public input known to all
parties, wi is the private input of party Pi, and the output is received by all
parties. In a high-level description, the main idea is for the prover to simulate
the execution of a t-private n-party MPC protocol that realizes f . Then the
prover employs a statically binding commitment to commit to all views of the
parties and sends them to the verifier. After that, the verifier chooses a random
subset of the parties, where the size of the subset equals t, and asks the prover
to open their corresponding views. Finally the verifier accepts the statement if
and only if (i) the commitments are correctly opened and (ii) the opened views
are consistent with each other. See more details in [30].

3 Impossibility in the GORO Model

In this section, we show that it is impossible to construct 2-round GUC-secure
commitment protocols (one round for the committing phase and one round the
for the opening phase) in the GoRO hybrid world against static adversaries. We
first provide the formal description of transferable commitment functionality
FtCOM from [14] in Fig. 7. The main difference with the traditional commitment
functionality is that in FtCOM, the simulator can request the list of the illegitimate
queries from FtCOM. If we use the traditional commitment functionality which
has no such power in the GoRO hybrid world, the simulator will have no advantage
over others at all. This is one of the reasons why transferable ideal functionalities
were designed in the presence of the GoRO model, and we refer interesting readers
to see more discussions in [14].
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The functionality interacts with two parties C, R and an adversary S.

– Upon receiving (Commit, sid, C, R, m) from C, do:
• Record the tuple (sid, C, R, m), and send (Receipt, sid, C, R) to R and S.
• Ignore any subsequent Commit command.

– Upon receiving (Decommit, sid, C, R) from C, do:
• If there is a tuple (sid, C, R, m) recorded, send (Decommit, sid, C, R, m) to R and S,

and halt.
• Otherwise, ignore the message.

– When asked by the adversary S, obtain from GoRO the list of illegitimate queries Qsid

that pertain to SID sid, and send Qsid to the adversary S.

Functionality FtCOM

Fig. 7. The transferable functionality FtCOM for commitment

We prove this impossibility by contradiction. Suppose that there exists such
a 2-round GUC-secure protocol. Let us first consider the case where the receiver
is corrupted, the simulator needs to produce an equivocal commitment without
knowing the plaintext in the committing phase, and later open it to any given
message (a.k.a. the plaintext) in the opening phase. We observe that the receiver
does not need to send any message during the 2-round protocol execution, thus
when the receiver is controlled by adversary, the corrupted receiver can delay all
its GoRO queries until it receives the opening message. In this case, the simulator
cannot obtain the illegitimate queries of the corrupted receiver before produc-
ing the equivocal commitments, and thus has no advantages over the real world
adversary. If the simulator still succeeds to produce the equivocal commitments
even if it has no illegitimate queries, then distinctions will be revealed when
the adversary performs the following attacks. The adversary corrupts the com-
mitter, and instructs the committer to run the simulator algorithm mentioned
above to generate the commitment message. In this case, where the committer is
corrupted, the receiver/simulator needs to extract the plaintext from this com-
mitment message. However, the entire computation of the commitment message
is totally independent of the plaintext, thus with high probability the simulation
would fail. Formally, we prove this impossibility through Theorem 1.

Theorem 1. There exists no terminating 2-round (one round for commitment
phase and one round for decommitment phase) protocol Π that GUC-realizes
FtCOM depicted in Fig. 7 with static security, using only the shared functionality
for global observable random oracle GoRO.

Proof. Suppose there exists such a protocol Π that GUC-realizes FtCOM in
the GoRO hybrid world. Then there must exist a PPT simulator S such that
EXECGoRO

FtCOM,S,Z
c≈ EXECGoRO

Π,A,Z for any PPT adversary A and any PPT GoRO-
externally constrained environment Z.

In particular, let us first consider the protocol session with SID sid1, and let
A be a dummy adversary that simply forwards protocol flows between corrupt
parties and the environment Z. Let Z corrupt the receiver R∗ at first. Then Z
chooses a random bit b ∈ {0, 1} and gives it as the input to the honest committer
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C. After that, Z waits for C to send the commitment ψ. Next, Z lets C reveal
the committed value b′. If b = b′, Z outputs 1; otherwise, Z outputs 0.

In order to make the GUC experiments above remain indistinguishable, the
simulator S needs to build an equivocal commitment ψ̃ without knowing b in
the committing phase, where ψ̃ is computational indistinguishable from the real
commitment ψ; later in the opening phase, S obtains b from FtCOM and needs
to open the previously sent commitment ψ̃ to b. For notation convenience, we
write S = (S1,S2) to split the simulator algorithm in two phases: (i) S1 works
in the committing phase, and it needs to output an equivocal commitment ψ̃
without knowing b; (ii) while S2 works in the opening phase, and upon receiving
the message b from FtCOM, it needs to output the opening message r such that
(b, r) correctly opens the previously sent commitment ψ̃.

We first describe the simulation strategy in the committing phase. Recall
that, the main advantage of the simulator over the others is that it can obtain
illegitimate queries of R∗. More precisely, S1 can request the illegitimate queries
Qsid1 from the commitment functionality FtCOM who forwards this request to
GoRO. The simulator S1 also can query GoRO just like normal parties. In order to
describe the process of querying to GoRO, we denote by G∗

oRO the simplified version
of the GoRO, that is, the GoRO with only the Query interface. We write SG∗

oRO
1

to denote the event that S1 has the query access to GoRO and can continuously
query to GoRO. With above notations, we will write SG∗

oRO
1 (sid1,Qsid1) to denote

the output (i.e., the equivocal commitment ψ̃ and the state st) produced by
S1 after querying to GoRO, when running on the illegitimate queries Qsid1 sent
by R∗. We note that, S1 should be able to handle any PPT environment Z.
Consider such a case where Z instructs R∗ to delay all its GoRO queries until it
receives the opening message. In this case, S1 finds nothing sent by R∗ in Qsid1 ,
but should still be able to produce the equivocal commitment ψ̃. In other words,
the algorithm (ψ̃, st) ← SG∗

oRO
1 (sid1,Qsid1) still works when Qsid1 = ∅, where ∅ is

an empty set; otherwise, the environment Z will find the distinction. We note
that, the algorithm SG∗

oRO
1 (sid1, ∅), i.e. we replace the Qsid1 with the empty set

∅, can be run by any party, since the algorithm only makes use of the Query
interface and anyone can query to GoRO. Now let us turn to the opening phase.
Analogously, we can write r ← SG∗

oRO
2 (sid1, ψ̃, st, b, ∅) to denote the event where

S2 can still open ψ̃ to the value b and the corresponding opening message r after
querying to GoRO, even if there is noting sent by R∗ in the list of the illegitimate
queries (i.e. Qsid1 = ∅). We note that, even if we switch to a session with a
different SID, both SG∗

oRO
1 (sid1, ∅) and SG∗

oRO
2 (sid1, ψ̃, st, b, ∅) still work as long as

the appropriate inputs are provided.
In the following, we show that the existence of the simulator S = (S1,S2)

above contradicts the security of Π against static corruptions, by creating a
particular environment Z ′ which succeeds in distinguishing EXECGoRO

FtCOM,S′,Z′ from
EXECGoRO

Π,A′,Z′ after a static corruption operation for any PPT simulator S ′. Let us
consider the session with SID sid2. Our Z ′ proceeds by corrupting the committer
C∗ at first, and then choosing a random bit b ∈ {0, 1} which it gives as the input
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to C∗. Next Z ′ instructs C∗ to run the algorithm (ψ̃, st) ← SG∗
oRO

1 (sid2, ∅) and
send ψ̃ to R. When R outputs (Receipt, sid2, C,R), Z ′ instructs C∗ to run the
algorithm r ← SG∗

oRO
2 (sid2, ψ̃, st, b, ∅) and send (b, r) to R. Finally Z ′ waits for R

to output b′. In the real world, R always outputs b′ = b. In the ideal world, S ′

should determine the committed value b′ from ψ̃ in the committing phase. This
means that in the ideal world, we must have that b′ = b with probability at most
1
2 , since the entire computation of ψ̃ is totally independent of b. Therefore, Z ′

can distinguish between the real world and the ideal world with probability at
least 1

2 , contradicting our assumption that Π is GUC-secure.

4 Feasibility in the GORO Model

In this section, we propose a 3-round (2 rounds for the committing phase
and 1 round for the opening phase) GUC-secure commitment protocol in the
GoRO hybrid world, assuming the straight-line extractable NIWH arguments and
perfect-hiding non-interactive equivocal commitment schemes exist. Then we
instantiate the building blocks using only Minicrypt assumptions in the GoRO

hybrid world. Therefore, our GUC-secure commitment protocol can be con-
structed via Minicrypt in the GoRO hybrid world. Since we prove that it is impos-
sible to construct 2-round GUC-secure commitments in the GoRO hybrid world
in Theorem 1, we stress that our construction is round-optimal.

4.1 Our GUC-Secure Commitment Construction

Recall that a GUC-secure commitment protocol requires two main properties: (i)
Equivocality: when the receiver is corrupted, the simulator should be able to pro-
duce equivocal commitments that can open to any value later; (ii) Extractability:
when the committer is corrupted, the simulator should be able to extract the
committed value from the commitment.

The GoRO directly provides the desired extractability. Then we have to design
a protocol that captures the equivocality. A natural approach is to employ the
perfect-hiding non-interactive equivocal commitments. More precisely, we let the
receiver generate the commitment key and send it to the committer in the first
round; and then let the committer commit to the message using the equivo-
cal commitment scheme. In order to provide extractability, we let the commit-
ter query the GoRO on the opening message of the commitment message above.
Then we require the committer to commit to the answer of the GoRO via another
instance of the equivocal commitment scheme. The committer sends all the com-
mitment messages in the second round. The opening phase just takes one round,
namely, the committer sends all the opening messages.

The only thing left is to provide the simulator with the advantage of getting
the equivocation trapdoor over the others. Our solution is to let the receiver
execute the straight-line extractable NIWH argument in the GoRO hybrid world
which proves the knowledge of the equivocation trapdoor with respect to the
commitment key. The receiver is required to send the proof along with the
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commitment key in the first round. Subsequently, the simulator can invoke the
straight-line extractor to obtain the equivocation trapdoor.

We denote committer algorithm as C and receiver algorithm as R. We denote
the event where queries GoRO on input x and gets the answer y as y := oRO(x).
We assume ideal private and authenticated channels for all communications.
Formally, we present our protocol ΠtCOM in Fig. 8 and prove the security through
Theorem 2.

Primitives: Straight-line extractable NIWH argument in the GoRO hybrid world ΠNIWH =
ΠNIWH.{ProveGoRO ,VerifyGoRO , ExtGoRO}, non-interactive equivocal commitment ΠECom =
ΠECom.{KeyGen,KeyVer,Commit,ComVer, EquCom, Equiv}.
Inputs: C has a private input m ∈ {0, 1}λ. R has no input.

Committing Phase: This phase consists of 2 rounds.

– Round 1: R works as follows:
• Generate the parameters of the commitment by invoking (ck, td) ← ΠECom.KeyGen(1λ).
• Compute the straight-line extractable NIWH proof by invoking

π ← ΠNIWH.ProveGoRO (ck, td) for proving the knowledge of td. Send (ck, π) to C.
– Round 2: C works as follows:

• Abort if ΠNIWH.VerifyGoRO (ck, π) = 0.
• Commit to the message m by invoking (c1, d1) ← ΠECom.Commit(ck, m).

• Compute h := oRO(sid, ‘C’||m||d1||r) where r ← {0, 1}λ.
• Commit to h by invoking (c2, d2) ← ΠECom.Commit(ck, h). Send (c1, c2) to R.

Opening Phase: This phase consists of 1 round.

– Round 3: C sends (m, d1, d2, r) to R.
– R computes h := oRO(sid, ‘C’||m||d1||r), and accepts m if and only if

ΠECom.ComVer(ck, c1, d1) = ΠECom.ComVer(ck, c2, d2) = 1 holds.

Protocol ΠtCOM

Fig. 8. Protocol ΠtCOM in the GoRO hybrid world

Theorem 2. Assume ΠNIWH is a straight-line extractable NIWH argument in
the GoRO hybrid world. Assume ΠECom is an equivocal commitment scheme. Then
the protocol ΠtCOM described in Fig. 8 GUC-realizes the functionality FtCOM

depicted in Fig. 7 in the GoRO hybrid world against static malicious corruption.

Proof. We leave the proof in the full version.

4.2 Instantiation of the Building Blocks

There are two building blocks, i.e. straight-line extractable NIWH arguments
and perfect-hiding non-interactive equivocal commitment schemes, in our con-
struction. In this section, we show how to instantiate them using only Minicrypt
assumptions in the GoRO hybrid world. We start by constructing a SHVZK pro-
tocol, since it is needed in both building blocks.
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SHVZK Protocols from “MPC-in-the-Head”. We here aim to construct
a SHVZK protocol using only Minicrypt assumptions in the GoRO hybrid world.
Our starting point is the “MPC-in-the-head” paradigm introduced in Sect. 2.7.

Note that our construction requires an SHVZK protocol with 2-special sound-
ness (, which we will explain the necessity later in Sect. 4.2); unfortunately, to
the best of our knowledge, none of the followups [1,16,19,25,31] since the orig-
inal work of [30], can lead to a 2-special sound protocol under only Minicrypt
assumptions. Therefore, we need to design a new technique approach that trans-
forms a MPC protocol into a SHVZK protocol with 2-special soundness.

Our Starting Point: [31]. We start with the 5-round SHVZK protocol proposed
by Katz et al. in [31] which is based on only Minicrypt assumptions. In the
high-level description, Katz et al. employed the (n − 1)-private n-player MPC
protocol in the preprocessing model and let the verifier provide its challenges
in two phases: one for checking the correctness of the opened preprocessing
executions, and the other for checking the consistency of the opened views.
Roughly speaking, the 5-round protocol of Katz et al. works as follows:

– Round 1: The prover simulates m independent executions of the preprocessing
phase, and commits to the states of the parties which can be obtained at the
end of the preprocessing phase.

– Round 2: The verifier samples an uniform random challenge c ∈ [m] and asks
the prover to open the views of all the executions of the preprocessing phase
except the c-th one.

– Round 3: The prover opens the states of all parties for each challenged execu-
tion of preprocessing phase. Beside that, the prover simulates the execution
of ΠMPC that checks RL(x,w) = 1 using the remaining unopened execution of
the preprocessing phase. The prover then commits to each view of the parties.

– Round 4: The verifier samples an uniform random challenge p ∈ [n] and asks
the prover to open all the views of the parties except the p-th one.

– Round 5: The prover reveals the states of each challenged party following
the preprocessing phase as well as its views in the execution of ΠMPC. The
verifier checks that the opened views are consistent with each other and with
an honest execution of ΠMPC (using the states from the preprocessing phase)
that yields the output 1.

In [31], Katz et al. compressed the above 5-round protocol into a 3-round one
by the following approach: (i) let the prover simulate the execution of ΠMPC for
every emulation of the preprocessing phase and commit to all the resulting views
as well as the states; (ii) let the verifier send its challenge (c, p), and asks the
prover to open all the states except the c-th one of the preprocessing phase as
well as all the views except the p-th one from the unopened preprocessing phase.
We recall the formal 3-round SHVZK protocol of Katz et al. in the full version of
our paper. We emphasize that the 3-round SHVZK protocol proposed by Katz
et al. cannot be 2-special sound, and we argue this through Proposition 1.

Proposition 1. Assume the n-party MPC protocol ΠMPC is (n − 1)-private in
the preprocessing model. Let m be the number of executions of preprocessing
phase, where m ≥ 2. The 3-round SHVZK protocol described in [31]:
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– cannot achieve k-special soundness, for k ≤ m.
– can achieve k-special soundness, for k ≥ m + 1.

Proof. We leave the proof in the full version.

Our Protocol Construction. Our key observation is that we can compress the
above 5-round protocol into a 3-round one by applying the Fiat-Shamir trans-
formation [22] to replace Round 2. Therefore, Round 1 and Round 3 can be
merged, and we obtain a 3-round protocol with 2-special soundness. We can
regard the first round of the resulting 3-round protocol as a “non-interactive
proof” that proves the correctness of the execution of the preprocessing phase,
but its soundness error is not negligible (i.e., 1

m , where m is the number of
the executions of preprocessing phase). This issue can be addressed by apply-
ing parallel repetition. Compared with the approach of [31], our approach needs
additional RO assumptions but it is an SHVZK protocol with 2-special sound.

Primitives: n-party MPC protocol ΠMPC which realizes f with (n − 1)-privacy in the pre-
processing model, where f(x, w1, . . . , wn) = RL(x, w1 ⊕ · · · ⊕ wn).

Random Oracles: oRO1 : {0, 1}�in(λ) → {0, 1}� and oRO2 : {0, 1}�in(λ) → (Z+
m+1)

λ

Inputs: P, V have a common input x. P has a private input w s.t. RL(x, w) = 1.

– Move1(x, w; r):
• For i ∈ [λ], j ∈ [m]:

∗ Derive λ-bit random seedi,j from randomness r and generate
{statei,j,k}k∈[n] ← Preprocess(seedi,j).

∗ For k ∈ [n]: select ri,j,k ← {0, 1}λ and commit to the states, i.e. compute
state-commitments comi,j,k := oRO1(sid, statei,j,k||ri,j,k).

• Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]), where ci ∈ [m].
• For i ∈ [λ]:

∗ Simulate the execution of ΠMPC using (x, w) and the states generated by the ci-th
preprocessing phase (i.e., {statei,ci,k}k∈[n]), and output the views of the parties
{viewi,k(x, wk)}k∈[n].

∗ For k ∈ [n]: select r̃i,k←{0, 1}λ and commit to the view of each party, i.e.
compute view-commitments c̃omi,k := oRO1(sid, viewi,k(x, wk)||r̃i,k).

• Send a := ({comi,j,k, c̃omi,k}i∈[λ],j∈[m],k∈[n], {statei,j,k, ri,j,k}i∈[λ],j∈[m]\{ci},k∈[n]).

– Move2(1λ): Send e := (p1, . . . , pλ), where pi ∈ [n] and pi is uniformly random.
– Move3(x, w, e; r): Send z := ({viewi,k(x, wk), r̃i,k, statei,ci,k, ri,ci,k}i∈[λ],k∈[n]\{pi}).

– Verify(x, a, e, z): Output 1 if and only if the following checks pass:
• Check the commitments are opened correctly:

∗ For i ∈ [λ], j ∈ [m] \ {ci}, k ∈ [n]: check comi,j,k = oRO1(sid, statei,j,k||ri,j,k) holds.
∗ For i ∈ [λ], k ∈ [n] \ {pi}: check comi,ci,k = oRO1(sid, statei,ci,k||ri,ci,k) and

c̃omi,k = oRO1(sid, viewi,k(x, wk)||r̃i,k) hold.
• Check the correctness of the executions of the preprocessing phase:

∗ Compute (c1, . . . , cλ) := oRO2(sid, {comi,j,k}i∈[λ],j∈[m],k∈[n]).
∗ For i ∈ [λ], j ∈ [m] \ {ci}: check {statei,j,k}k∈[n] are well-formed.

• Check the consistency between the opened views:
∗ For i ∈ [λ], k ∈ [n] \ {pi}: check viewi,k(x, wk) follows from the statei,ci,k correctly

and viewi,k(x, wk) yields output 1.
∗ For i ∈ [λ]: check {viewi,k(x, wk)}k∈[n]\{pi} are consistent with each other.

Protocol ΠSHVZK

Fig. 9. Protocol ΠSHVZK in the GoRO hybrid world
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Let ΠMPC be the n-party MPC protocol which realizes f with (n−1)-privacy
in the preprocessing model, where f(x,w1, · · · , wn) = RL(x,w1 ⊕ · · ·⊕wn). Let
Preprocess be the preprocessing algorithm that takes a λ-bit random string seed
as input, and outputs the states {state}i∈[n] which are used for the computation
later (cf. [31] for details). We use the GoRO to instantiate the statically binding
commitment (i.e., to commit msg with random string r, we use the answer of the
GoRO on input (msg, r) as the commitment and reveal (msg, r) as the opening).
We denote the event where queries GoROi

on input x and gets the answer y as
y := oROi(x) for i ∈ {1, 2} in the context, where oRO1 : {0, 1}�in(λ) → {0, 1}� and
oRO2 : {0, 1}�in(λ) → (Z+

m+1)
λ. We denote by m the number of the executions of

the preprocessing phase. Formally, we present our protocol ΠSHVZK in Fig. 9 and
prove the security through Theorem 3.

Theorem 3. Assume ΠMPC is a secure n-party protocol that realizes fR with
perfect (n − 1)-privacy, where f(x,w1, · · · , wn) = RL(x,w1 ⊕ · · · ⊕ wn). Then
the protocol ΠSHVZK depicted in Fig. 9 is a SHVZK protocol that satisfies perfect
completeness, 2-special soundness, perfect SHVZK.

Proof. We leave the proof in the full version.

PerfectHidingNon-interactive Equivocal Commitment. Given a SHVZK
protocol, we can obtain a perfect-hiding non-interactive equivocal commitment.
The intuition is as follows. Let RL be a hard NP relation. The receiver selects
(x,w) ∈ RL, and sets x as the commitment key and w as the equivocation trap-
door. The message m is used as the challenge on which to run the simulator for
the SHVZK protocol with respect to x, producing the prover’s first flow a and
the response z. The first flow a is used as the commitment. The message m and
response z are used as the opening. Equivocation is achieved by using the knowl-
edge of w to execute the honest prover algorithm instead of the simulator algo-
rithm. Similar ideas can be found in [18,35].

Let g be a one-way function; note that, due to the limit of space, we do
not give the formal definition of one-way function, and we refer readers to see
the definition in [32]. Formally, we present our non-interactive equivocal com-
mitment in Fig. 10 and prove the security through Theorem 4. The proof of
computational binding relies on the 2-special soundness, and this explains the
reason why 2-special soundness is necessary in Sect. 4.2. We instantiate the NP
relation with one-way function, i.e. R1 = {(y, seed) | y = g(seed)} where (y, seed)
is the statement-witness pair and g is a one-way function. If we use our SHVZK
protocol ΠSHVZK depicted in Fig. 9 as the building block, then we can obtain a
perfect hiding non-interactive equivocal commitment scheme via only Minicrypt
assumptions in the GoRO hybrid world.

Theorem 4. Assume ΠSHVZK is a 2-special sound SHVZK protocol. Assume g
is a one-way function. Then ΠECom depicted in Fig. 10 is an equivocal commit-
ment that satisfies perfect correctness, perfect hiding, computational binding and
perfect equivocation.

Proof. We leave the proof in the full version.
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Primitives: SHVZK protocol ΠSHVZK = ΠSHVZK.{Move1,Move2,Move3,Verify, Sim} and one-
way function g.

– KeyGen(1λ) : Select a random string seed ← {0, 1}λ, compute y := g(seed), and output
ck := y, td := seed.

– KeyVer(ck, td) : Check if ck = g(td) holds. If so, output 1; otherwise, output 0.

– Commit(ck, m) : Select a random string r ← {0, 1}λ, invoke (a, z) := ΠSHVZK.Sim(ck, m; r),
and output c := a, d := (m, z).

– ComVer(ck, c, d) : Check if ΠSHVZK.Verify(ck, c, m, z) = 1 holds. If so, output 1; otherwise,
output 0.

– EquCom(ck, td) : Select a random string s ← {0, 1}λ, invoke ã := ΠSHVZK.Move1(ck, td; s),
and output c̃ := ã, st := s.

– Equiv(ck, td, c̃, st, m̃) : Invoke z̃ := ΠSHVZK.Move3(ck, td, m̃; st), and output d̃ := z̃.

Scheme ΠECom

Fig. 10. Scheme ΠECom based on one-way function

Straight-Line Extractable NIWH Argument. We construct the straight-
line extractable NIWH argument in the GoRO hybrid world using the technique
described in [38]. We here describe the high-level description and the details can
be found in the full version of our paper. Given a SHVZK protocol with 2-special
soundness, we let the prover execute the honest prover algorithm to obtain the first
flow message. Fixing this first flow message, we let the prover pick two distinct ran-
dom challenges and compute the corresponding responses. Then the prover com-
mits to the response by querying GoRO and using the answer as the commitment.
Next the prover sends the first flow message along with all the challenges and the
commitments to the verifier. After that, the verifier asks the prover to open one
commitment. Finally the verifier receives the response, and checks if the corre-
sponding transcript is valid. The soundness error of the protocol described above
is 1

2 , and it can be reduced by parallel repetitions. We also apply Fiat-Shamir trans-
formation to remove the interaction [22]. The straight-line extractablity relies on
the observability provided by GoRO and 2-special soundness.

Theorem 5 ([38]). Assume there is a 2-special sound SHVZK protocol, then
there exists a straight-line extractable NIWH argument in the GoRO hybrid world.

5 Concluding Remarks: Towards a Complete Picture

In this work, we mainly focus on the lower bounds on round complexity for
GUC-secure commitment protocols in the global random oracle models. We also
wonder if such lower bounds exist, is it possible to construct round-optimal
GUC-secure commitment protocols under Minicrypt assumptions?

In terms of the GoRO, our work gives a complete answer: we show it is impos-
sible to construct 2-round GUC-secure commitment in the GoRO hybrid world
against static adversaries in Sect. 3, and construct a 3-round (round-optimal)
GUC-secure commitment protocol under Minicrypt assumptions in the GoRO

hybrid world in Sect. 4. In the remaining, let us turn our attention on other
global random oracle models.
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As for the GsRO, the results of [11] rules out the possibility of constructing
any GUC-secure commitment protocol in the GsRO hybrid world. More precisely,
they argued that no “public setup”, namely no setup that provides only public
information that is available to all parties, can suffice for realizing commitment
protocols in the GUC framework. It is easy to see that this impossibility result
holds in the GsRO hybrid world.

Regarding the GpoRO, non-interactive GUC-secure commitment protocol can
be achieved. In fact, Camenisch et al. proposed a non-interactive GUC-secure
commitment in the GpoRO hybrid world without any further assumptions [9].

Among all the global random oracle models depicted in Fig. 4, only the GpRO

has yet to be fully investigated. Actually, we already have some impossibility
result: we find that there exists no GUC-secure commitment protocols with one-
round committing phase in the GpRO hybrid world against static adversaries.
Intuitively, we observe that the receiver does not have the chance to send any
message in the committing phase in such commitment protocols. Note that, the
GpRO only allows the simulator to program on the unqueried points without
being detected, and the simulator benefits itself by letting the corrupted parties
to work on its programmed points. Now let us consider the case where the
committer is corrupted and the simulator acts as the receiver, the simulator
needs to extract the committed value before the opening phase. In a commitment
protocol where the committing phase only takes one round, the simulator (acting
as the receiver) does not need to send any message, thus it cannot enforce the
corrupted committer to produce its message on the programmed points. If the
simulator still succeeds in extracting the committed value from the commitment
message, then we can use such a simulator to break the hiding property of the
commitment scheme since anyone can run this simulator without relying on the
programmability of the GpRO. In conclusion, the committing phase requires at
least 2 rounds, plus (at least) 1 round of the opening phase, and the entire
commitment protocol requires at least 3 rounds. We refer interesting readers to
see the formal theorem and proof in the full version of our paper.

Given this lower bound in the GpRO, we find that the 3-round (2 rounds
for the committing phase, 1 round for the opening phase) GUC-secure commit-
ment protocol proposed in [9] is round-optimal. But their construction relies on
CDH assumption which lives in Cryptomania world. Unfortunately, we find it
extremely hard to construct a round-optimal GUC-secure commitment protocol
under only Minicrypt assumptions in the GpRO hybrid world, so we leave it as
an open question.
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Abstract. Functional Commitments (FC) allow one to reveal functions
of committed data in a succinct and verifiable way. In this paper we put
forward the notion of additive-homomorphic FC and show two efficient,
pairing-based, realizations of this primitive supporting multivariate poly-
nomials of constant degree and monotone span programs, respectively.
We also show applications of the new primitive in the contexts of homo-
morphic signatures: we show that additive-homomorphic FCs can be used
to realize homomorphic signatures (supporting the same class of func-
tionalities as the underlying FC) in a simple and elegant way. Using
our new FCs as underlying building blocks, this leads to the (seemingly)
first expressive realizations of multi-input homomorphic signatures not
relying on lattices or multilinear maps.

1 Introduction

Functional commitments (FC), put forth by Libert, Ramanna and Yung [22],
allow a sender to commit to a vector x of length n and later to open the com-
mitment to functions of the committed vector, namely to prove that f(x) = y.
FCs are required to be evaluation binding, meaning that it is computationally
hard to open a commitment at two distinct outputs y �= y′ for the same function
f . The distinguishing feature of FCs is that commitments and openings should
be succinct, i.e., of size independent of n.

Functional commitments generalize the well known notions of vector commit-
ments (VC) [4,5,23] and polynomial commitments (PC) [16]—two functionalities
that, albeit specific, have nowadays a large number of applications. Besides VCs
and PCs, state-of-the-art functional commitments capture linear forms [18,22]
and semi-sparse polynomials [24].

An FC for an arbitrary computation f can be built via succinct commitments
and SNARKs for NP: simply, use the latter to generate a succinct argument that
“y = f(x) and x opens the commitment”. However, such an FC holds under
non-falsifiable assumptions that are required to build SNARKs [12].
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In contrast, due to the falsifiability of the evaluation binding notion and
as confirmed by the existing constructions [22,24], functional commitments are
realizable from falsifiable assumptions. Thanks to these two properties – suc-
cinctness and security under falsifiable assumptions – FCs can be seen as a sim-
ple form of succinct non-interactive arguments.1 Whenever evaluation binding
is sufficient, FCs are an attractive building block: they provide communication-
efficiency through succinctness, without having to sacrifice assumptions (e.g., see
the applications of vector/polynomial commitments, and FCs for inner products
in [4,16,22]). For this reason we believe that advancing the understanding of
FCs could help us better understand the fundamental problem of constructing
succinct argument systems from minimal assumptions.

1.1 Our Results

In this work we make progress, along different fronts, in the study of functional
commitments based on falsifiable assumptions.

We begin by exploring potential applications of FCs. While we know several
applications of FCs for linear functionalities (and all the functionalities implied
by them, such as vector and polynomial commitments), to the best of our knowl-
edge, less is known about FCs for, say, multivariate polynomials or circuits.

We address this problem by showing a new application of FCs to build-
ing homomorphic signatures [1]. As it will be apparent later, this application
becomes particularly interesting if the FC is additively homomorphic, namely if
given two commitments to vectors x1 and x2, one can compute the commit-
ment to the vector x1 + x2. This is a basic and useful property of commitment
schemes. Yet we know of no FC that is additive-homomorphic and supports a
rich class of computations; the only known additive-homomorphic FCs are the
ones for linear forms of [18,22].

We bridge this gap by proposing the first additive-homomorphic FCs sup-
porting the evaluation of functions beyond linear. Our techniques yield new
homomorphic signatures that advance the state of the art, and a SNARG for a
polynomial-time language from a falsifiable assumption.

Below we present our results in more detail, and in the next section we
provide an overview of our techniques.

Additive-Homomorphic FC for Polynomials. We propose an additive-
homomorphic FC scheme that allows one to commit to a vector x of length
n and to open the commitment to f(x) where f is a collection of m multi-
variate polynomials of bounded constant degree. Our scheme enjoys compact
openings, i.e., a single proof, of size constant in both n and m, for all the m
evaluations. We build this FC using bilinear groups and prove its security based
on the Diffie-Hellman exponent assumption [2].

Compared to the FC for semi-sparse polynomials of [24] and an FC for poly-
nomials obtained via linearization (cf. Sect. 1.2), the main novelty of ours is to
1 Their functionality resembles commit-and-prove SNARKs except that FCs are eval-

uation binding rather than (knowledge) sound.
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be additively homomorphic. Also, ours is the first FC with compact openings
whose security is based on established assumptions: the scheme of [18] relies on
the generic group model, and that of [24] uses a newly proposed assumption.

Additive-Homomorphic FC for Monotone Span Programs. Our second
realization is an FC for a new polynomial time language, called semi-quadratic
arithmetic programs (sQAPs, for short). In a nutshell, an sQAP is defined by a
matrix F and accepts a pair of vectors (z,y) if there exists a solution w such that
F · (z ◦w) = y, where ◦ denotes entry-wise multiplication of vectors.2 An FC for
sQAPs allows one to commit to (z,y) and then open to F, in the sense of proving
that F accepts the pair of committed vectors. Our scheme is based on pairings,
it is additively homomorphic and has constant size proofs consisting of three
group elements. We prove its security based on a variant of the Diffie-Hellman
exponent assumption that we justify in the generic group model.

We show that sQAPs are sufficiently expressive to capture the well known
class of monotone span programs (MSPs) [15] and show how to turn our FC for
sQAPs into one for MSPs. Also, via known transformations (see Footnote 8) it
is possible to build a monotone span program that models the satisfiability of
an NC1 circuit, which therefore allows us to obtain the first FC for NC1 circuits.

Applications to Homomorphic Signatures, and More. To motivate
additive-homomorphic FCs we present a novel application of this primitive to
build homomorphic signatures (HS) [1] (see Sect. 1.3 for an overview).

Notably, by plugging our new FCs in this transformation we obtain new HS
that advance the state of the art as follows:

– Our FC for polynomials yields the first multi-input HS for polynomials based
on pairings, and the first HS with “compact” signatures, where, again, by
compact we mean that, for functions of the form f : F

n → F
m, the resulting

signatures have size which is constant in both n and m. None of the previous
schemes, e.g., [1,7,13] has compact signatures, as they need one signature for
every output value.

– Through our FC for NC1 we obtain the first multi-input HS based on pair-
ings for NC1 circuits. The most expressive HS based on pairings is that of
Katsumata et al. [17] that also supports NC1 circuits, but in the single-input
model where the signer must sign the entire data vector at once. Prior multi-
input HS for functions beyond linear instead need lattices [1,13] or multilinear
maps [7]. Our result essentially shows that these powerful algebraic structures
are not necessary to build such expressive HS.

In the full version we discuss further applications of additive-homomorphic FCs,
such as updatable FCs and verifiable databases with expressive queries.

A SNARG for Linear Systems from Falsifiable Assumptions. In [18],
Lai and Malavolta put forth a stronger security property for FC, that we call
strong evaluation binding, which considers as an attack not only two inconsis-
tent openings for the same function but also inconsistent openings for multiple
2 sQAPs is in P as it can be decided via Gaussian elimination.
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functions. Namely it must be computationally hard to produce a commitment
and a collection of valid openings for function-output pairs {fi, yi}Q

i=1 for which
there exists no vector x such that fi(x) = yi for every i = 1 to Q. Lai and Mala-
volta only show how to realize a strong evaluation binding FC for linear maps by
resorting to the generic group model. This is unsatisfactory as a generic group
model proof essentially uses non-black-box extractability techniques, which can-
not be considered falsifiable, and would defeat the main goal of this work which
is constructing FCs from falsifiable assumptions.

In our construction of FC for sQAPs we show a new proof technique that
allows us to reduce an adversary that produces a valid proof for an inconsistent
system of equations to an adversary against a falsifiable assumption. Interest-
ingly, we can apply the same technique to the linear map FC of [18] and prove its
strong evaluation binding based on a falsifiable assumption, the parallel bilinear
Diffie-Hellman exponent in [26].

This is to the best of our knowledge the first strong evaluation binding and
compact FC from a falsifiable assumption. This result is interesting since, as
one could observe, a strong evaluation binding FC with compact proofs for a
language L yields de facto a SNARG for L. Also, a strong evaluation binding
FC with compact proofs for quadratic polynomials would yield a SNARG for
NP, since a system of quadratic equations can model circuit satisfiability, e.g.,
through R1CS [10]. Therefore, due to the impossibility of Gentry and Wichs
[12], our SNARG for linear maps from falsifiable assumptions can be seen as
optimal, in the sense that it is unlikely to have an analogous result for quadratic
functions.

1.2 Related Work

Libert et al. [22] introduce the notion of functional commitments and propose a
construction for linear forms based on the Diffie-Hellman exponent assumption
in bilinear groups. Lai and Malavolta [18] extend the scheme of [22] to support
linear maps with compact openings, namely of size independent of both the input
and the output lengths. Lipmaa and Pavlyk [24] propose an FC construction
that supports, with compact proofs, a class of arithmetic circuits which roughly
corresponds to semi-sparse polynomials. Their scheme is obtained by “scaling
down” SNARK-based techniques and is proven secure from a newly proposed
falsifiable assumption in bilinear groups. More generally, an FC for linear maps
is sufficient to realize an FC for any linearizable function, that is a function
f which can be implemented as f(x) = 〈p(x),φf 〉 where p(·) is a vector of
polynomial-time computable functions which do not depend on f and can be
precomputed. Simply, the sender commits to the vector p(x) and then, for any
f , opens the commitment to the linear form φf . Both the scheme of [24] and the
one based on linearization are not additively homomorphic3 and thus cannot be
used in the applications discussed in this paper.
3 Even if one starts from an additive-homomorphic FC for linear maps, one can notice

that the transformation to FCs for linearizable functions does not preserve the
additive-homomorphism.
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In a recent work, Peikert et al. [25] propose the first construction of a vector
commitment based on lattice assumptions and show an extension of it to a
functional commitment for circuits. Their FC, however, works in a weaker model
where a trusted authority uses secret information to generate an opening key for
each function for which the prover wishes to generate an opening.

1.3 Technical Overview

FC for Polynomials. To illustrate the main ideas of our construction let us
consider the simplified case where one opens the commitment to a single poly-
nomial (i.e., no compactness) that is homogeneous. Note that a homogeneous
polynomial of degree d, that we can write as f(x) =

∑
� f� · (xd�,1

1 · · · xd�,n
n ) with∑

j d�,j = d, can be linearized as an inner product between the vector of its
coefficients and the vector of all degree-d terms. More precisely, assuming d = 2δ

a power of 2, given a homogeneous polynomial f we can build a vector f̂ ∈ F
nd

such that for any x ∈ F
n it holds 〈f̂ ,x(δ)〉 = f(x), where x(δ) is the δ-fold

Kronecker product of x with itself, i.e., x(1) = x ⊗ x, x(2) = x(1) ⊗ x(1), etc.
Following this observation, one could use an FC for linear forms to commit

to x(δ) and then open/verify the commitment using the appropriately computed
linear form f̂ . This idea however suffers the problem that the commitments
would not be additively homomorphic.

Our approach to solve this problem is to generate a commitment C to x such
that: (i) C is additively homomorphic, and (ii) the prover creates, at opening
time, a linear-map commitment Xδ to x(δ) and convinces the verifier that the
vector committed in Xδ is indeed the δ-fold Kronecker product of the vector
committed in C. Once (ii) is achieved we could use the linear-map functionality
to open Xδ to 〈f̂ ,x(δ)〉. The challenge of achieving (ii) is to make this proof
succinct without having to extract the committed vectors from the prover.

Our technique to solve this problem is algebraically involved. In what follows
highlight the main ideas, without focusing too much on security.

For the Xδ produced in the opening we use the linear-map commitment of
[18,22] in which the vector x(δ) is encoded in a group element

Xδ = [p(δ)x (α)]1 =
nd
∑

j=1

x
(δ)
j · [αj ]1

where the elements [αj ]1 are part of the public parameters.4 For the commitment
to x, assume for now that it includes X0 = [p(0)x (α)]1 =

∑n
j=1 xj · [αj ]1, and

consider for simplicity the case of δ = 1 (i.e., opening to a polynomial of degree

4 We use the bracket notation for bilinear groups of [9].
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d = 2). Then our first key observation is that

p(0)x (α) · (p(0)x (αn)/αn) =

(
n∑

i=1

xi · αi

)⎛

⎝
n∑

j=1

xj · αn(j−1)

⎞

⎠

=
n∑

i,j=1

xixj · αi+n(j−1) =
n2
∑

k=1

x
(1)
k · αk = p(1)x (α)

Thus, if we include in the commitment the element X̂0 = [p̂(0)x (α)]2 =
[p(0)x (αn)/αn]2, the verifier can test the correctness of X1 via a pairing
e(X1, [1]2) = e(X0, X̂0). Intuitively, this is secure because the pair (X0, X̂0)
is part of the commitment and can be somehow considered “trusted”; so the
pairing allows transferring this trust to X1. To handle openings of polynomials
of degree > 2, this is not sufficient though. Say that the prover includes in the
opening the elements X2,X1, X̂1, and the verifier tests the correctness of X2 via
a “chain” of checks e(X1, [1]2)

?= e(X0, X̂0) and e(X2, [1]2)
?= e(X1, X̂1). The

issue is that in the second check (X1, X̂1) is not “trusted”; in particular, while
X1 can be considered trusted due to the previous check, X̂1 is not, since it is
generated by the prover and not tested.

Our second key idea is based on showing that the polynomial p̂
(1)
x (α) in X̂1

can be expressed as the product of two polynomials φ
(2)
x (α), φ(3)

x (α), each of
them a linear function of x. Precisely, it holds that (cf. Claim 2)

p(1)x (αn)/αn = φ(2)
x (α) · φ(3)

x (α) = (p(0)x (αn2
)/αn2

) · (p(0)x (αn3
)/αn3

)

So, if we include in the commitment group elements Φ2, Φ3 encoding φ
(2)
x (α)

and φ
(3)
x (α) respectively, the verifier will be able to use a pairing to test the

correctness of the element X̂1 included in the opening, and mark X1 as “trusted”,
as it can establish a correct link with the group elements in the commitment.

To summarize, in this example of a degree-4 homogeneous polynomial f ,
the commitment C of x includes (X0, X̂0, Φ2, Φ3), and the opening includes
(X1, X̂1,X2) and a linear-map opening proof generated using [18] to show that
X2 (seen as a commitment to x(2)) opens to 〈f̂ ,x(2)〉 = f(x).

Importantly, all the group elements in the commitment can be expressed as
a linear map of the vector x, thus making C additively homomorphic.

Going beyond degree 4 requires further extensions of our technique since a
polynomial p̂

(k)
x (α) factors into 2k polynomials, which for k > 1 cannot be tested

with a pairing. We bridge this gap by showing how to break each of these tests
into a system of k quadratic equations using a tree-based encoding. This is our
third key idea that allows us to generalize the techniques illustrated so far to
handle degree-2δ polynomials.

Eventually, we obtain an FC for arbitrary polynomials of constant degree d
in which commitment and openings consist of exactly d group elements (notably,
even if one opens m polynomials at the same time). Comparing to the techniques
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of prior FCs for linear maps [18,22], while our FC uses them in the final step
of our opening algorithm, the remaining design ideas are novel and significantly
different.

FC for Semi-quadratic Arithmetic Programs. We recall that in an FC for
sQAPs one commits to a pair of vectors x = (z,y) and then opens to F in the
sense of proving that ∃w : F · (z ◦ w) = y. Similarly to the FC for polynomials,
we start from the idea of linearizing the computation in such a way that we can
eventually resort to a linear-map FC (LMC). Specifically, we use the LMC of
[18]. However, to do this linearization we cannot use the same technique of the
previous scheme to produce a commitment to, e.g., z ◦ w or z ⊗ w. Roughly
speaking, the issue is that in sQAPs w is not committed ahead of time together
with z; here w is a non-deterministic witness depending on each specific F.

So we proceed differently. We let the prover compute a succinct encoding of
the matrix Fz = F◦Z, where Z ∈ F

m×n is the matrix with z� in every row, and
we show how the verifier can check the validity of this encoding given F and a
committed z. This way, we are left with the problem of proving that (Fz | y) is
a satisfiable system of linear equations. To prove this, we let the prover generate
a commitment W to the solution w and then generate an opening proof to argue
that y = Fz · w for the committed w. The generation of W and its opening to
Fz rely on the LMC of [18].

Compared to [18], we introduce two technical novelties. The first one deals
with enabling the verifier to check the opening by having only an encoding of
Fz , which can be linked to the public F and the commitment to z. The second
and most important novelty concerns the security proof. The challenge is the
presence of this non-deterministic component w which requires the prover to
show the satisfiability of a system – a task that goes beyond what is captured
by the notion of evaluation binding since we need that an efficient adversary
cannot generate a valid opening if (Fz | y) is not satisfiable. This could be
solved by resorting to the strong evaluation binding of the [18] LMC, but they
only prove this property in the generic group model, essentially using a non-
black-box extraction technique. In our paper we show a new proof technique for
reducing an adversary producing a valid opening for an inconsistent system of
equations into an adversary against a falsifiable assumption.

From FCs to Homomorphic Signatures. We present a novel approach to
construct HS based on (additively homomorphic) FCs. The basic idea is that
the signer generates a commitment Cx to the dataset x and a (standard) digital
signature σCx

on the commitment. Given (Cx, σCx
), the server can compute a

function f by giving to the verifier this pair (Cx, σCx
) (which is succinct) along

with an opening of Cx to f (which is succinct as well). The resulting HS con-
struction is clearly single-input since the signer must commit to the dataset all at
once. We achieve a multi-input HS by exploiting FCs that are additively homo-
morphic. To sign the i-th element of the dataset, Alice commits to the sparse
vector xi · ei with xi in position i and 0 everywhere else; let Ci be the resulting
commitment. If the server is given these commitments one by one, eventually it
can reconstruct a commitment C to the currently available dataset by computing
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their sum homomorphically, and then proceed as in the single-input construc-
tion by opening C to the desired function f . This construction however is not
secure as the verifier cannot be assured that C is validly obtained from commit-
ments provided by Alice. Therefore we let Alice sign Ci using an homomorphic
signature that only needs to support one functionality, the homomorphic sum
in the commitment space. Interestingly, for pairing-based FCs, this HS can be
implemented via well known linearly-homomorphic structure-preserving signa-
tures [21]5. Finally, we notice that for the sake of this application the FC only
needs to satisfy a weaker notion of evaluation binding in which the adversary
reveals the vector x committed in C, yet it manages to produce an opening to a
function f and a result y �= f(x) that is accepted by the verification algorithm.

2 Preliminaries

Notation. We use λ ∈ N to denote the security parameter. If a function ε(λ) =
O(λ−c) for every constant c > 0, then we say that ε is negligible, denoted ε(λ) =
negl(λ). A function p(λ) is polynomial if p(λ) = O(λc) for some constant c > 0.
We say that an algorithm is probabilistic polynomial time (PPT) if its running
time is bounded by some p(λ) = poly(λ). Given a finite set S, x ←$S denotes
selecting x uniformly at random in S. For an algorithm A, we write y ← A(x)
for the output of A on input x. For a positive n ∈ N, [n] is the set {1, . . . , n}.
We denote vectors x and matrices M using bold fonts. For a ring R, given two
vectors x,y ∈ Rn, x ◦ y denotes their entry-wise product, i.e., the vector with
entries (xiyi)i, while z := (x ⊗ y) ∈ Rn2

denotes their Kronecker product (that
is a vectorization of the outer product), i.e., ∀i, j ∈ [n] : zi+(j−1)n = xiyj .

Bilinear Groups. Our FC constructions build on bilinear groups. A bilinear
group generator BG(1λ) outputs bgp := (q, G1, G2, GT , e, g1, g2), where G1, G2,
GT are groups of prime order q, g1 ∈ G1 and g2 ∈ G2 are two fixed generators,
and e : G1 × G2 → GT is an efficiently computable, non-degenerate, bilinear
map. We present our results using Type-3 groups in which it is assumed that
there is no efficiently computable isomorphisms between G1 and G2.

For group elements, we use the bracket notation of [9] in which, for s ∈
{1, 2, T} and x ∈ Zq, [x]s denotes gx

s ∈ Gs. We use additive notation for G1 and
G2 and multiplicative one for GT . For s = 1, 2, given an element [x]s ∈ Gs and
a scalar a, one can efficiently compute a · [x] = [ax] = gax

s ∈ Gs; given group
elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute [ab]T = e([a]1, [b]2).

3 Functional Commitments

We recall the notion of functional commitments (FC) [22]. A crucial feature
that makes this primitive interesting and nontrivial is that both commitment

5 Strictly speaking the signature does not need to be structure preserving as long as
it allows to (homomorphically) sign group elements.
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and the openings are succinct, i.e., of size independent of the vector’s length.
In our work we also consider compact FCs, a notion introduced in [18], which
requires openings size to be also independent of the function’s output length.

Definition 1 (Functional Commitments). A functional commitment
scheme is a tuple of algorithms FC = (Setup,Com,Open,Ver) with the follow-
ing syntax and that satisfies correctness and succinctness (or compactness).

Setup(1λ, n,m) → ck on input the security parameter λ and the vector length
n, outputs a commitment key ck, which defines the message space X and the
class of admissible functions F ⊆ {f : X n → X m} for some n,m = poly(λ).

Com(ck,x; r) → (C, aux) on input a vector x ∈ X n and (possibly) randomness
r, outputs a commitment C and related auxiliary information aux. We often
omit r from the inputs, in which case we assume it is randomly sampled in
the appropriate space.

Open(ck, aux, f) → π on input an auxiliary information aux and a function f ∈
F , outputs an opening proof π.

Ver(ck, C, f,y, π) → b ∈ {0, 1} on input a commitment C, an opening proof π, a
function f ∈ F and a value y ∈ X m, accepts (b = 1) or rejects (b = 0).

Correctness. FC is correct if for any n,m ∈ N, all ck ←$Setup(1λ, n), any
f : X n → X m in the class F , and any vector x ∈ X n, if (C, aux) ← Com(ck,x),
then it holds Ver(ck, C, f, f(x),Open(ck, aux, f)) = 1 with probability 1.

Succinctness/Compactness. A functional commitment FC is succinct if there
exists a fixed polynomial p(λ) = poly(λ) such that that for any n,m = poly(λ),
any admissible function f ∈ F such that f : X n → X m, honestly generated
commitment key ck ← Setup(1λ, n,m), vector x ∈ X n, commitment (C, aux) ∈
Com(ck) and opening π ← Open(ck, aux, f), it holds that |C| ≤ p(λ) and |π| ≤
p(λ) · m. Furthermore, we say that FC is compact if |π| ≤ p(λ).

3.1 Binding Notions of FCs

Intuitively, the security of FCs should model the hardness of computing openings
for false statements that are accepted by the verification algorithm. The first
definition in [22] is inspired by that of vector commitments [4]. It states that it
should be computationally hard to open a commitment to two distinct outputs
for the same function. Formally, it is defined as follows.

Definition 2 (Evaluation Binding). For any PPT adversary A,

AdvEvBind
A,FC (λ) = Pr

⎡
⎢⎣
Ver(ck, C, f, y, π) = 1

∧ y �= y′ ∧
Ver(ck, C, f, y′, π′) = 1

:
ck ← Setup(1λ, n)

(C, f, y, π, y′, π′) ← A(ck)

⎤
⎥⎦ = negl(λ)
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We define a weaker notion of evaluation binding in which the adversary is
required to fully open the commitment (i.e., to show the vector x it contains) and
to generate a valid opening for a false output, i.e., for some y �= f(x).6 Intuitively,
this is sufficient in applications where the verifier has either computed once the
commitment or has received the commitment from a trusted party (e.g., the
commitment comes with a valid signature of this party). We show in Sect. 6 that
this notion is sufficient to construct homomorphic signatures from FCs.

Definition 3 (Weak Evaluation Binding). For any PPT adversary A

AdvwEvBind
A,FC (λ) = Pr

⎡
⎢⎣

(C, ·) = Com(ck, x; r)

∧ y �= f(x) ∧
Ver(ck, C, f, y, π) = 1

:
ck ← Setup(1λ, n)

(x, r, f, y, π) ← A(ck)

⎤
⎥⎦ = negl(λ)

One may observe that if an FC satisfies evaluation binding, then it also sat-
isfies weak evaluation binding. For a formal proof, we refer to the full version.

Finally, we also mention a stronger version of evaluation binding, put forward
by Lai and Malavolta [18]. Here, the adversary outputs a commitment, and a
collection of openings to one or more functions. It is successful if all the claimed
outputs define an inconsistent system of equations. Namely, it outputs {fi,yi}
for which there exists no x such that for all i fi(x) = yi.

Definition 4 (Strong Evaluation Binding). For any PPT adversary A, the
advantage AdvsEvBind

A,FC (λ) defined below is negligible.

Pr

[
∀i ∈ [Q] : Ver(ck, C, fi,yi, π1) = 1
∧ �x ∈ X n : ∀i ∈ [Q] : fi(x) = yi

:
ck ← Setup(1λ, n)

(C, {fi,yi, πi}Q
i=1) ← A(ck)

]

3.2 Additional Properties of FCs

In the full version we give the notions of hiding commitments and zero-knowledge
openings. Here we define some extra properties of functional commitments that
can be useful in applications and that are enjoyed by our constructions.

Additive-Homomorphic FCs. We consider additively homomorphic FCs in
which, given two commitments C1 and C2 to vectors x1 and x2 respectively,
one can compute a commitment to x1 + x2. Below, we formalize this property,
considering also how to obtain the corresponding random coins and auxiliary
information of the commitment.

Definition 5 (Additive-homomorphic FCs). Let FC be a functional com-
mitment scheme where X is a ring. Then FC is additive homomor-
phic if there exist deterministic algorithms FC.Add(ck, C1, . . . , Cn) → C,
FC.Addaux(ck, aux1, . . . , auxn) → aux and FC.Addr(ck, r1, . . . , rn) → r such that
for any xi ∈ X and (Ci, auxi) ← Com(ck,xi; ri), if C ← FC.Add(ck, C1, . . . , Cn),
aux ← FC.Addaux(ck, aux1, . . . , auxn), and r ← FC.Addr(ck, r1, . . . , rn), then
(C, aux) = Com(ck,

∑n
i=1 xi; r).

6 This notion is similar in spirit to the basic security of accumulators [3].
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Efficient Verification. In FCs the verification algorithm must read the func-
tion’s description, which can be as large as its running time for certain com-
putational models (e.g., linear forms, polynomials, circuits) and thus can make
verifying and output of f as expensive as running f . To address this problem,
we define a notion of amortized efficient verification for FCs. Similarly to homo-
morphic signatures [7] and preprocessing universal SNARKs [14], an FC has this
property if the verifier can precompute a short verification key vkf associated to
f , and later can verify any opening for f by using only vkf .

Definition 6 (Amortized efficient verification). A functional commitment
scheme FC has amortized efficient verification if there are two additional algo-
rithms vkf ← VerPrep(ck, f) and b ← EffVer(vkf , C,y, π) such that for any
honestly generated commitment key ck ← Setup(1λ, n,m), vector x ∈ X n, com-
mitment (C, aux) ∈ Com(ck) and opening π ← Open(ck, aux, f) with f ∈ F ,
it holds: (a) EffVer(VerPrep(ck, f), C,y, π) = Ver(ck, C, f,y, π), and (b) EffVer
running time is a fixed polynomial p(λ, |y|).

Aggregation. Intuitively, we say that FC has aggregatable openings if given
several openings π1, . . . , π� such that each πi verifies for the same commitment
C and function-output pair (fi,yi), and given a function g : X m1 ×· · ·×X m� →
X m one can compute an opening π that verifies for the composed function
g(f1, . . . , f�) and the output g(y1, . . . ,y�).

Definition 7. A functional commitment scheme FC satisfies aggregation if
there is an algorithm π ← Agg(ck, C, ((π1, f1,y1), . . . , (π�, f�,y�)), g) such that,
for honestly generated commitment key ck ← Setup(1λ, n,m), commitment C
and triples {(πi, fi,yi)}�

i=1 such that for all i ∈ [
] it holds yi ∈ X mi and
Ver(ck, C, πi, fi,yi) = 1, then for any admissible function g : X m1 ×· · ·×X m� →
X m,

Ver(ck, C,Agg(ck, C, ((π1, f1,y1), . . . , (π�, f�,y�)), g), f∗, g(y1, . . . ,y�)) = 1

where f∗ is the composed function f∗(X) = g(f1(X), . . . , f�(X)).

4 Additive-Homomorphic FC for Polynomials

In this section we propose our FC for polynomials, which supports the following
features: additive-homomorphic, opening to multiple (multivariate) polynomials
of the committed vector with a compact proof, efficient verification and linear
aggregation. We build our scheme in bilinear groups and prove that it satisfies
evaluation binding under the DHE assumption (Definition 8 [2]).

We build this FC in two steps. We begin by constructing an FC that only
supports homogeneous multivariate polynomials whose degree is a power of two
(see next section). Next, in Sect. 4.4 we show how an additive-homomorphic
FC for homogeneous polynomials can be turned into one for all multivariate
polynomials by letting one commit to vectors (1,x).
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4.1 Additive-Homomorphic FC for Homogeneous Polynomials

Below we describe our FC for homogeneous polynomials. See Sect. 1.3 for an
intuition. To keep the exposition simpler we present a deterministic version of
our FC which is not hiding, and refer to the full version for how to modify it in
order to satisfy com-hiding and zero-knowledge openings.

Setup(1λ, n,m, d) Let n,m, d ≥ 1 be three integers representing the length of the
vectors to be committed, the number of the polynomials to be computed at
opening time, and the degree of these polynomials, respectively. Define N :=
nd, generate a bilinear group description bgp := (q, G1, G2, GT , e, g1, g2) ←
BG(1λ), and let F := Zq. Next, sample random α ←$ Zq, β ←$ F

m and output

ck :=
({[αj ]1, [αj ]2}j∈[N ], {[βi · αj ]2}i∈[m],j∈[N ]

{[αβi]1}i∈[m], {[αjβi]1}i∈[m],j∈[2N ]\{N+1}

)

Com(ck,x) We encode the vector x with the polynomial px(Z) :=
∑n

j=1 xj ·Zj .
Also, for 
 = 1, . . . , d − 1, we define the polynomials

φ(�)
x (Z) := px(Zn�

)/Zn�

=
n∑

j=1

xj · Zn�(j−1) of degree ≤ n�+1 − n�

Next, we compute

X0 :=
n∑

j=1

xj · [αj ]1 = [px(α)]1, X̂0 :=
n∑

j=1

xj · [αn(j−1)]2 = [px(αn)/αn]2

∀
 = 2, . . . , d − 1 : Φ� :=

⎧
⎨

⎩

∑n
j=1 xj · [αn�(j−1)]1 =

[
φ
(�)
x (α)

]

1
if 
 even

∑n
j=1 xj · [αn�(j−1)]2 =

[
φ
(�)
x (α)

]

2
if 
 odd

Output C := (X0, X̂0, {Φ�}d−1
�=2 ) and aux = x.

Open(ck, aux,f) Let f = (f1, . . . , fm) be a vector of m n-variate homogeneous
polynomials of degree d, where d = 2δ is a power of 2. We use a representation
of each polynomial fi via a linear form f̂ i : F

nd → F such that fi(x) =

f̂
�
i · x(δ), where x(δ) = (x ⊗ · · · ⊗ x) is the result of taking the Kronecker

product of x with itself δ times.7 Next, set x(0) := x and proceed as follows.
– For k = 1, . . . , δ − 1, compute

x(k) := x(k−1) ⊗ x(k−1), Xk :=
n2k∑
j=1

x
(k)
j · [αj ]1, X̂k :=

n2k∑
j=1

x
(k)
j · [αn2k

(j−1)]2

7 Since x(δ) has several terms repeated multiple times (e.g., after one product, the
resulting vector contains both xixj and xjxi), we assume f̂ i to always use the first
of them, according to lexicographic order, and have 0 coefficients for the others.
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Let us define the polynomials

p(k)x (Z) :=
n2k

∑

j=1

x
(k)
j ·Zj , p̂(k)x (Z) := p(k)x (Zn2k

)/Zn2k

=
n2k

∑

j=1

x
(k)
j ·Zn2k

(j−1)

and note that for every k the pair (Xk, X̂k) is ([p(k)x (α)]1, [p̂
(k)
x (α)]2).

(Xk, X̂k) can be seen as a commitment to the vector x(k) ∈ F
n2k

.
– Compute the last vector x(δ) := x(δ−1) ⊗ x(δ−1), and its commitment

Xδ :=
∑nd

j=1 x
(δ)
j · [αj ]1 = [p(δ)x (α)]1.

For k = 1 to δ, one can verify the correctness of the element Xk based
on the correctness of the previous pair (Xk−1, X̂k−1) (which eventually
reduces to the correctness of the commitment pair (X0, X̂0)) by testing
e (Xk, [1]2)

?= e
(
Xk−1, X̂k−1

)
. This equality holds based on the fact that,

for every k, p
(k)
x (Z) = p

(k−1)
x (Z) · p̂

(k−1)
x (Z) (see Claim 2).

The checks above can be seen as a way to progressively build trust in the
elements X1, . . . , Xδ. However for it to work we need that for a given k
both elements of the previous pair (Xk−1, X̂k−1) are deemed correct.

– In this step we show how to enable the verification of the correctness of
X̂k. This cannot be done via a quadratic equation, as we observed for
Xk, but it is possible by letting the prover provide additional hints to the
verifier.
The main idea of this step is that, for k = 1 to δ−1, we can factor p̂

(k)
x (Z)

as the product of 2k polynomials (implicitly) known to the verifier, namely

p̂(k)x (Z) =
2k+1−1∏

�=2k

φ(�)
x (Z) (cf. Sect. 4.2, Claim 1)

To let the verifier check this factorization with a pairing computation,
we break the verification of this product into a set of ≈ 2k quadratic
equations. The idea is that, for every k, the prover builds a binary tree
of height k in which the 2k polynomials are the leaves and then are mul-
tiplied pair-wise in a bottom-up tree fashion, i.e., each node of the tree is
the multiplication of its child nodes. More precisely, if we index the nodes
of the k-th tree with an integer 1 ≤ μ ≤ 2k+1 − 1, then an internal node
μ ∈ {1, . . . , 2k −1} of the k-th tree is a group element Ψk,μ, which encodes
the product of the polynomials encoded in the two child nodes Ψk,2μ

and Ψk,2μ+1. Instead, the leaves are the elements {Φ� = [φ(�)
x (α)]b}2

k+1−1
�=2k

(where b = (
 mod 2)+1) that are included in the commitment. In detail,
the computation of all the internal nodes Ψk,μ proceed as follows.
For every k = 2, . . . , δ − 1 and μ = 2k, . . . , 2k+1 − 1, initialize the polyno-
mials ψk,μ(Z) := φ

(μ)
x (Z). These are the leaves of the k-th tree. Next, for
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μ = 2k − 1, . . . , 2, compute

Ψk,μ :=

{
[ψk,2μ(α) · ψk,2μ+1(α)]1 if μ even
[ψk,2μ(α) · ψk,2μ+1(α)]2 if μ odd

Note that we do not compute the root node Ψk,1 but only stop at its
children Ψk,2, Ψk,3. The root is indeed the element X̂k already computed
in the first step of this Open algorithm.

– Finally, we compute a linear-map evaluation proof for the commitment
Xδ as follows. For every i = 1 to m, take the linear form f̂ i : F

nd → F

such that fi(x) = f̂
�
i · x(δ), and define the matrix F ∈ F

m×N that has

f̂
�
i in the i-th row. We generate a proof π̂ ∈ G1 for y = F · x(δ) as

π̂ :=
∑

i∈[m]
j,k∈[N ]:j �=k

Fi,j · x
(δ)
k · [αN+1−j+kβi]1

– Return π := ({Xk}δ
k=1, {X̂k, {Ψk,μ}2k−1

μ=2 }δ−1
k=1, π̂).

Ver(ck, C, π,f ,y) Parse the commitment as C := (X0, X̂0, {Φ�}d−1
�=2 ), and the

proof π := ({Xk}δ
k=1, {X̂k, {Ψk,μ}2k−1

μ=2 }δ−1
k=1, π̂) as returned by Open.

Output 1 if all the following checks pass and 0 otherwise:
– For k = 1 to δ − 1 and μ ∈ [2k, 2k+1 − 1] set Ψk,μ := Φμ.
– For k = 2 to δ − 1, check the validity of the k-th tree of elements

{Ψk,μ}2k−1
μ=2 . First, check all the internal nodes, bottom-up:

for k = 2 . . . δ − 1, for μ = 2k − 1 . . . 2 :

e(Ψk,2μ, Ψk,2μ+1)
?=

{
e(Ψk,μ, [1]2) if μ even
e([1]1, Ψk,μ) if μ odd

(1)

Second, check the roots of the trees:

for k = 1 . . . δ − 1 : e([1]1, X̂k) ?= e(Ψk,2, Ψk,3) (2)

– Check the validity of the chain of commitments:

for k = 1 . . . δ : e(Xk, [1]2)
?= e(Xk−1, X̂k−1) (3)

– Define the matrix F from f as in the Open algorithm, and check the proof
for the linear map:

e

⎛

⎜
⎜
⎝Xδ,

∑

i∈[m]
j∈[N ]

Fi,j · [αN+1−jβi]2

⎞

⎟
⎟
⎠

?= e (π̂, [1]2) · e

(
m∑

i=1

yi · [αβi]1, [αN ]2

)

(4)
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It is easy to see that our commitments are additively homomorphic and that
the scheme has efficient amortized verification as the verifier can precompute∑

i∈[m],j∈[N ] Fi,j · [αN+1−jβi]2. We refer to the full version for further details
about these properties as well as for a proof that the openings are linearly
aggregatable in the sense of Definition 7.

Compactness. In our scheme, an opening consists of 2δ +
∑δ−1

k=2(2
k − 2) = d

group elements, and a commitment also comprises d elements. Since the degree
is assumed to be a constant, d = O(1), compactness follows.

Efficiency. It is easy to see that the complexity of Com is O(nd), while Ver takes
time O(d+|y|+|f |) (and the O(|f |) part can be precomputed when using efficient
verification). The most complex and computationally heavy procedure of our
scheme is the Open algorithm, whose time complexity is O(mdnd log n), which
we justify as follows. Computing the commitments (X1, . . . , Xδ, X̂1, . . . , X̂δ−1)
in the first and second step takes time at most

∑δ
k=0 O(n2k

) which is O(δnd).
Computing all the group elements Ψk,μ in the third step can take time at most
O(d2nd log n). This estimation is obtained by observing that: every ψk,μ(Z) has
degree < nd (this is a non-tight worst case analysis, as many of them actually
have much lower degree); for each node of the tree the polynomial ψk,μ(Z) can
be computed via a multiplication of its children polynomials which, using FFT,
takes time O(dnd log n). So by summing over all the d elements {ψk,μ}k,μ, we
obtain the above estimation. Finally, the generation of π̂ in the last step takes
O(mN log N) = O(mdnd log n). This follows from an observation that, for every
row i = 1 to m, the coefficients of the polynomial in α of degree < 2N can be
computed using an FFT-based multiplication instead of going over all the N2

indices j, k.

4.2 Proof of Correctness

To prove correctness we proceed one by one on the equations of the verification
algorithm. We begin recalling the definition of the polynomials

p(k)x (Z) :=
n2k

∑

j=1

x
(k)
j · Zj , p̂(k)x (Z) := p(k)x (Zn2k

)/Zn2k

, φ(�)
x (Z) := p(0)x (Zn�

)/Zn�

Verification Eq. (1). For 2 ≤ k ≤ δ − 1 and 2k ≤ μ ≤ 2k+1 − 1, the first step of
the verification algorithm sets Ψk,μ = Φμ, for 2 ≤ k ≤ δ−1 and 2k ≤ μ ≤ 2k+1−1,
where each Φμ is defined in Com as

Φμ =
[
φ(μ)

x (α)
]

b
=
[
px(αnμ

)/αnμ
]

b
: b = 1 if μ even, b = 0 if μ odd

On the other hand, Open initializes the polynomials ψk,μ(Z) := φ
(μ)
x (Z) and

then, for 2 ≤ μ ≤ 2k−1, it constructs Ψk,μ = [ψk,2μ(α)·ψk,2μ+1(α)]b, with b = 1 if
μ is even and b = 2 if μ is odd. By the construction of Ψk,μ for 2 ≤ μ ≤ 2k−1, and
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having observed that both algorithms start from the same leaves, it is therefore
clear that each check of Eq. (1) is satisfied.

Verification Eq. (2). The intuition is that the check e([1]1, X̂k) ?= e(Ψk,2, Ψk,3)

is verifying whether the element X̂k =
[
p̂
(k)
x (α)

]

2
is the root of the k-th binary

tree computed starting from the leaf nodes {φ
(μ)
x (α)}μ=2k,...,2k+1−1, and where

each node is the multiplication of its two children.
To show this, we observe that by the construction of the polynomials ψk,μ(Z)

in Open as a multiplication tree, we have that

ψk,2(Z) · ψk,3(Z) =
2k+1−1∏

�=2k

φ(�)
x (Z)

The correctness of Eq. (2) then follows from the following Claim (whose proof
appears in the full version), which shows that the polynomial p̂

(k)
x (Z) encoded

in X̂k can be factored into the product
∏2k+1−1

�=2k φ
(�)
x (Z).

Claim 1. Fix any vector x(0) ∈ F
n and for any k ∈ [δ − 1], let x(k) = x(k−1) ⊗

x(k−1) and p̂
(k)
x (Z) =

∑n2k

j=1 x
(k)
j · Zn2k

(j−1). For 2 ≤ 
 ≤ d − 1, let φ
(�)
x (Z) =

∑n
j=1 x

(0)
j · Zn�(j−1). Then, it holds p̂

(k)
x (Z) =

∏2k+1−1
�=2k φ

(�)
x (Z).

Verification Eq. (3). By construction of Open, we have

∀k ∈ [δ] : Xk = [p(k)x (α)]1, ∀k ∈ [δ − 1] : X̂k = [p(k)x (αn2k

)/αn2k

]2

and by construction of Com, we have

X0 = [p(0)x (α)]1, X̂0 = [p(0)x (αn)/αn]2

Let us state the following claim (whose proof appears in the full version).

Claim 2. Fix any vector x(0) ∈ F
n and for any k ∈ [δ], let x(k) = x(k−1) ⊗

x(k−1) and p̂
(k)
x (Z) =

∑n2k

j=1 x
(k)
j · Zn2k

(j−1). Then for every k ∈ [δ] it holds

p
(k)
x (Z) = p

(k−1)
x (Z) · p̂

(k−1)
x (Z).

Then for every 1 ≤ k ≤ δ it holds

e
(
Xk−1, X̂k−1

)
=

[
p(k−1)

x (α) · p(k−1)
x (αn2k−1

)/αn2k−1
]

T

=
[
p(k)

x (α)
]

T
= e (Xk, [1]2)

Verification Eq. (4). By construction of Open we have

π̂ =
∑

i∈[m]
j,k∈[N ]:j �=k

Fi,j · x
(δ)
k · [αN+1−j+kβi]1
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Thus, consider a correct output yi = fi(x) which, by the definition of F in Open

and Ver, is yi =
∑

j∈[N ] Fi,j · x
(δ)
j . Then it holds

e

⎛

⎜
⎜
⎝

∑

i∈[m]
j,k∈[N ]:j �=k

Fi,j · x
(δ)
k · [αN+1−j+kβi]1, [1]2

⎞

⎟
⎟
⎠ · e

(
m∑

i=1

yi · [αβi]1, [αN ]2

)

=

⎡

⎢
⎢
⎣

∑

i∈[m]
j,k∈[N ]:j �=k

Fi,j · x
(δ)
k · αN+1−j+kβi +

∑

i∈[m],j∈[N ]

Fi,j · x
(δ)
j · [αN+1βi]1

⎤

⎥
⎥
⎦

T

=

⎡

⎢
⎢
⎣

⎛

⎝
∑

k∈[N ]

x
(δ)
k · αk

⎞

⎠

⎛

⎜
⎜
⎝

∑

i∈[m]
j∈[N ]

Fi,j · αN+1−jβi

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

T

= e

⎛

⎝Xδ,
∑

i∈[m],j∈[N ]

Fi,j · [αN+1−jβi]2

⎞

⎠

4.3 Proof of Security

We prove the evaluation binding of our FC based on the N -Diffie-Hellman-
Exponent (N -DHE) assumption [2], which we recall below.

Definition 8 (N-DHE [2]). Let bgp = (q, G1, G2, GT , e, g1, g2) be a bilinear
group setting. The N -DHE holds if for every PPT A the following advantage is
negligible

AdvN-DHE
A (λ) = Pr[A(bgp, {[αi]1, [αi]2}i∈[2N ]\{N+1}) = [αN+1]1]

where the probability is over the random choice of α ←$ Zq and A’s random coins.

Theorem 1. If the nd-DHE assumption holds, then the scheme FC of Sect. 4.1
satisfies evaluation binding.

Proof. Consider an adversary A who returns a tuple (C,f ,y, π,y′, π′) that
breaks evaluation binding. Parse

π = ({Xk}δ
k=1, {X̂k, {Ψk,μ}2k−1

μ=2 }δ−1
k=1, π̂), π′ = ({X ′

k}δ
k=1, {X̂ ′

k, {Ψ ′
k,μ}2k−1

μ=2 }δ−1
j=1 , π̂′)

and recall that by definition both proofs verify for the same commitment C =
(X0, X̂0, {Φ�}d−1

�=2 ) and that y �= y′. Let us call this event Win.
Let us define Coll as the event that A’s output is such that β� · (y −y′) = 0,

where β is the vector sampled in ck.
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We can partition adversaries in two classes: those that make Coll occur and
those that do not. Clearly it holds.

Pr[Win] ≤ Pr[Win ∧ Coll] + Pr[Win | Coll]

To prove the theorem we show that under the nd-DHE assumption both proba-
bilities are negligible.

For the first probability, Pr[Win∧Coll], it is easy to see that we can reduce it
to the discrete logarithm assumption (which is implied by nd-DHE). The idea of
the reduction is that, if β� · (y − y′) = 0 occurs then one can recover the value
of βi such that yi − y′

i �= 0. Hence a discrete logarithm adversary that receives
as input [η]1, [η]2 can choose a random index i∗ ←$ [m], implicitly set βi∗ = η
and perfectly simulate all the group elements of ck. If yi∗ �= y′

i∗ (which happens
with probability ≥ 1/m), then one can recover βi∗ = η. We don’t formalize this
reduction further as it is rather standard.

In the rest of the proof we focus on proving the remaining case, namely that
Pr[Win | Coll] is negligible. In particular, we show that for any PPT A there is
a PPT B such that

Pr[Win | Coll] ≤ Advnd-DHE
B (λ)

B takes as input {[αi]1, [αi]2}i∈[2N ]\{N+1}, samples β ←$ F
m and generates

ck, which is distributed identically to that generated by Setup.
Next, B runs (C,f ,y, π,y′, π′) ← A(ck) and proceeds as follows.
It computes z := β� · y and z′ := β� · y′ (recall that conditioned on Coll,

z �= z′) and then outputs
(z′ − z) · (π̂ − π̂′) .

Next, we claim that for a successful adversary A, B’s output is [αN+1]1.
Consider the executions of the Ver algorithm for π and π′.
First, for k = 1 to δ − 1 and μ ∈ [2k, 2k+1 − 1], let Ψk,μ and Ψ ′

k,μ be the
internal variables set in the first step of the verification algorithm. We observe
that Ψk,μ = Ψ ′

k,μ since in both cases (cf. the first step of Ver) they are built
from the same set of values {Φ�}d−1

�=2 included in C, which is common to both
executions of Ver.

Second, we argue that by the validity of the verification Eq. (1) for both proofs
(and by the non-degeneracy of the pairing function) we obtain that Ψk,μ = Ψ ′

k,μ

for every k = 2, . . . , δ − 1 and μ = 2j − 1, . . . , 2. We show this by induction. Let
us consider the case of μ even (μ odd is analogous). For μ = 2k − 1, . . . , 2k−1,
we are checking the parents of the leaves, and it holds Ψk,2μ = Ψ ′

k,2μ = Φ2μ,
Ψk,2μ+1 = Ψ ′

k,2μ+1 = Φ2μ+1 since 2μ ∈ [2k, 2k+1−2] and 2μ+1 ∈ [2k+1, 2k+1−1].
Therefore, by the non-degeneracy of the pairing function we have

e(Φ2μ, Φ2μ+1) = e(Ψk,μ, [1]2)
e(Φ2μ, Φ2μ+1) = e(Ψ ′

k,μ, [1]2)

}

⇒ Ψk,μ = Ψ ′
k,μ

Next, using the fact Ψk,μ = Ψ ′
k,μ for μ = 2k −1, . . . , 2k−1, we can apply the same

argument inductively to obtain that Ψk,μ′ = Ψ ′
k,μ′ for μ′ = 2k−1 − 1, . . . , 2k−2.

Eventually, we obtain that for all k, Ψk,μ = Ψ ′
k,μ for μ = 2, 3.
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Third, notice that by the validity of verification Eqs. (3) and (2) for k = 1
(and by the non-degeneracy of the pairing function) we obtain that X1 = X ′

1 and
X̂1 = X̂ ′

1. Moving to k > 1, we can see that from the equalities Xk−1 = X ′
k−1

and X̂k−1 = X̂ ′
k−1, we can derive in a similar way Xk = X ′

k and X̂k = X̂ ′
k. In

particular for the latter we use the conclusion of the second claim. Notice that
this argument leads to conclude that it must be the case that Xδ = X ′

δ.
Finally, by the validity of the verification Eq. (4) for both proofs with the

same Xδ, we have

e(π̂, [1]2)e([α]1, [αN ]2)z = e(π̂′, [1]2)e([α]1, [αN ]2)z′

⇒ π̂ − π̂′ = (z − z′) · [αN+1]1

��

4.4 From Homogeneous to Generic Polynomials

We show how to go from an additive homomorphic FC scheme for homogenous
polynomials to an FC that supports generic multivariate polynomials of the
same degree. The basic idea is to extend vectors by prepending a 1 in the first
position and then, instead of evaluating f(x) one evaluates f̂(1,x) where f̂

is the homogeneous polynomial in n + 1 variables defined as f̂(x0, . . . , xn) :=
xd
0 · f

(
x1
x0

, . . . , xn

x0

)
, which is such that ∀x : f̂(1,x) = f(x).

In order to preserve the additive homomorphic property, we actually let one
commit to vectors (0,x). Then a commitment to (1,x) is obtained by adding
homomorphically (1,0) at verification time.

In terms of security, we show that the scheme from this transformation sat-
isfies evaluation binding (and thus weak evaluation binding) provided that so
does the FC we start from. See the full version for the transformation’s details.

5 Additive-Homomorphic FC for Semi-quadratic
Arithmetic Programs

In this section we propose our second FC scheme that supports a new language
called semi-quadratic arithmetic programs (sQAP). As we show in Sect. 5.3, an
FC for sQAPs is sufficiently powerful to build an FC for monotone span programs
[15] and thus, using known transformations, an FC for NC1 circuits.8

In a nutshell, an sQAP checks the satisfiability of a class of quadratic equa-
tions (from which the name). More in detail, an sQAP defined by a matrix M
accepts a pair of vectors (z,y) if the linear system of equations (M | y) has a
solution w′ which is in multiplicative relation with the input z, i.e., w′ = w ◦ z
for some w. More formally:
8 It is known that a circuit in the class NC1 can be converted into a polynomial-size

boolean formula, and the latter can be turned into a monotone span program of
equivalent size, e.g. [20, Appendix G].



178 D. Catalano et al.

Definition 9 (Semi-Quadratic Arithmetic Programs). A semi-quadratic
arithmetic program (sQAP) f : F

n × F
m → {true, false} over a finite field F is

defined by a matrix F ∈ F
m×n. On an input x = (z,y), f accepts (i.e., outputs

true) iff
∃w ∈ F

n : F · (w ◦ z) = y

We observe that sQAPs are a polynomial time language. Given (z,y), one can
decide as follows. Define F′ as the matrix of entries F ′

i,j = Fi,j · zj and output
true if and only if ∃w ∈ F

n : F′ · w = y (e.g., using Gaussian elimination).

5.1 Our FC for sQAPs

We present our additive-homomorphic FC for sQAPs (see Sect. 1.3 for an
overview).

Setup(1λ, n,m) Let m,n ≥ 1 be two integers representing the size of the sQAPs
supported by the scheme (i.e., matrices in F

m×n) and thus the length of
the input vectors (pairs in F

n × F
m). Generate a bilinear group description

bgp := (q, G1, G2, GT , e, g1, g2) ← BG(1λ), and let F := Zq. Next, sample
random α, γ ←$ F,β ←$ F

m and output

ck :=

(
{[αj ]1, [γj ]1}j∈[n], [(αγ)n]2, {

[
αjβiγ

�
]
2
}i∈[m],j∈[n],�∈[2n],

{[αjβiγ
n+1]1}i∈[m],j∈[2n]\{n+1},

{[
αjβiγ

�
]
1

}

i∈[m],j,�∈[2n]:� �=n+1

)

Com(ck,x) Given an input x = (z,y), we compute

Cz :=
∑

j∈[n]

zj · [γj ]1, Cy :=
∑

i∈[m]

yi · [αγβi]1

Note, we encode z with the polynomial pz (X) =
∑m

j=1 zj · Xj , and thus
Cz = [pz (γ)]1. We output C := (Cz, Cy) and aux := (z,y).

Open(ck, aux,F) Let F ∈ F
m×n be a sQAP which accepts the input (z,y) in

aux. The opening algorithm performs the following steps:
– Compute a witness w ∈ F

n such that F · (w ◦ z) = y and compute a
commitment to it as W := [pw (α)]1 =

∑
j∈[n] wj · [αj ]1.

– Next, we compute an encoding Φz of the matrix F ◦ Z where Z ∈ F
m×n

is the matrix with z� in every row:

Φz :=
∑

i∈[m]
j,�∈[n]

Fi,j · z� · [αn+1−jβiγ
n+1+�−j

]
2

Precisely, note that F ◦ Z is encoded in the terms including γn+1 of
the above polynomial, i.e., the (i, j)-th entry is in the term Fi,j · zj ·
[αn+1−jγn+1βi]2.



Additive-Homomorphic Functional Commitments 179

– Finally, we compute an evaluation proof to show that the vector w
committed in W is a solution to the linear system ((F ◦ Z) | y), i.e.,
(F ◦ Z) · w = F · (w ◦ z) = y:

π̂ :=
∑

i∈[m]
j,k∈[n]:j �=k

Fi,j · zj · wk · [αn+1−j+kβiγ
n+1]1

+
∑

i∈[m]
j,k,�∈[n]:� �=j

Fi,j · z� · wk · [αn+1−j+kβiγ
n+1−j+�

]
1

Output π := (W,Φz, π̂).
Ver(ck, C, π,F, true) First, compute Φ ← ∑

i∈[m],j∈[m] Fi,j · [(αγ)n+1−jβi]2 and
then output 1 if all the following checks are satisfied.

e (Cz, Φ) ?= e ([1]1, Φz) (5)

e (W,Φz)
?= e (π̂, [1]2) · e (Cy, [(αγ)n]2) (6)

We refer to the full version for the correctness proof. Here we observe that:
proofs are succinct (three group elements), and commitments are additively
homomorphic. Also, it is easy to see that the scheme enjoys efficient amortized
verification: VerPrep is the algorithm that on input F computes the element Φ,
and EffVer performs the two checks described in Ver.

5.2 Proof of Security

We prove the weak evaluation binding of our FC for sQAPs based on the fol-
lowing assumption that we call double parallel bilinear Diffie-Hellman exponent
(DP-BDHE) assumption, as it can be seen as a “double version” of the PBDHE
assumption introduced by Waters in [26]. In the full version we justify (n,m)-
DP-BDHE in the generic group model.

Definition 10 ((n,m)-DP-BDHE assumption). Let bgp = (q, G1, G2, GT ,
e, g1, g2) be a bilinear group setting. The (n,m)-DP-BDHE holds if for every
n,m = poly(λ) and any PPT A, the following advantage is negligible

Adv(n,m)-DP -BDHE
A (λ) = Pr[A(bgp, Ω) => αn+1γn+1δ] where

Ω :=

⎛

⎜
⎜
⎜
⎝

{
[αj ]1, [γj ]1

}
j∈[n]

,
{
[αjβiγ

n+1]1
}

i∈[m],j∈[2n]
j �=n+1

,
{[

αjβiγ
�
]
1

}
i∈[m],j,�∈[2n]

� �=n+1

[(αγ)n]2,
{[

αjβiγ
�
]
2

}

i∈[m],j∈[n],�∈[2n]
,

{[
δ

βk

]

2

}

k∈[m]
,
{[

αjβiγ
n+1δ

βk

]

2

}

j∈[n],i,k∈[m]
i�=k

,
{[

αjβiγ
�δ

βk

]

2

}

i,k∈[m],j∈[n]
�∈[2n]\{n+1}

⎞

⎟
⎟
⎟
⎠

and the probability is over the random choices of α, γ, δ ←$ Zq, β ←$ Z
m
q and

A’s random coins.
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Theorem 2. If the (n,m)-DP-BDHE assumption holds then the FC scheme of
Sect. 5.1 satisfies weak evaluation binding.

Proof. Let A be a PPT adversary against the weak evaluation binding of the
FC scheme. We use A to build a PPT adversary B against the (n,m)-DP-BDHE
assumption. B runs on input the bilinear group description and the list of group
elements Ω.

B takes a subset of the elements in Ω, sets ck as below, and runs A(ck).

ck :=

(
{[αj ]1, [γj ]1}j∈[n], [(αγ)n]2, {

[
αjβiγ

�
]
2
}i∈[m],j∈[n],�∈[2n],

{[αjβiγ
n+1]1}i∈[m],j∈[2n]\{n+1},

{[
αjβiγ

�
]
1

}

i∈[m],j,�∈[2n]:� �=n+1

)

Let A’s output be ((z,y),F, true, π). If A is successful we have that: (i) the
proof is valid for the commitment C = Com(ck, (z,y)), and (ii) the sQAP does
not accept (z,y). If we parse π := (W,Φz, π̂), condition (i) means

e ([pz (γ)]1, Φ) = e ([1]1, Φz) (7)

e (W,Φz) = e (π̂, [1]2) · e
(
[αγβ�y]1, [(αγ)n]2

)
(8)

while condition (ii) means that for F′ = (Fi,j · zj)i,j

�w ∈ F
n : F′ · w = y (9)

As first step, for every k ∈ [m], B computes π′
k := e

(
π̂,
[

δ
βk

]

2

)
. By the

construction of Φ in the Ver algorithm and by Eq. (7) we have:

Φz =

⎡

⎣

⎛

⎝
∑

�∈[n]

z� · γ�

⎞

⎠ ·
⎛

⎝
∑

i∈[m],j∈[n]

Fi,j · (αγ)n+1−jβi

⎞

⎠

⎤

⎦

2

=
∑

i∈[m]
j∈[n]

Fi,j · zj · [αn+1−jβiγ
n+1]2 +

∑

i∈[m]
j,�∈[n]:� �=j

Fi,j · z� · [αn+1−jβiγ
n+1−j+�

]
2

Hence, by applying Eq. (8), for every k ∈ [m], it holds

π
′
k = e

⎛
⎝W,

∑
j∈[n]

Fk,j · zj ·
[
α

n+1−j
γ

n+1
δ
]
2

⎞
⎠ ·

[
−yk · (αγ)

n+1
δ
]

T
·

e

⎛
⎜⎜⎝W,

∑
i∈[m]\{k}

j∈[n]

Fi,j · zj ·
[

αn+1−jβiγ
n+1δ

βk

]

2

⎞
⎟⎟⎠ ·

e

⎛
⎜⎜⎝W,

∑
i∈[m]

j,�∈[n]:� �=j

Fi,j · z� ·
[

αn+1−jβiγ
n+1−j+�δ

βk

]

2

⎞
⎟⎟⎠ ·

⎡
⎣−

∑
i∈[m]\{k}

yi · (αγ)n+1βiδ

βk

⎤
⎦

T
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As the second step, for every k ∈ [m], B computes

π∗
k := π′

k · e

⎛

⎜
⎜
⎝W, −

∑

i∈[m]\{k}
j∈[n]

Fi,j · zj ·
[
αn+1−jβiγ

n+1δ

βk

]

2

⎞

⎟
⎟
⎠ ·

e

⎛

⎜
⎜
⎝W,−

∑

i∈[m]
j,�∈[n]:� �=j

Fi,j · z� ·
[
αn+1−jβiγ

n+1−j+�δ

βk

]

2

⎞

⎟
⎟
⎠ ·

e

⎛

⎝[(αγ)n]1 ,
∑

i∈[m]\{k}
yi ·
[
αγδβi

βk

]

2

⎞

⎠

= e

⎛

⎝W,
∑

j∈[n]

Fk,j · zj · [(αγ)n+1−jδ
]
2

⎞

⎠ · [−yk · (αγ)n+1δ
]
T

Notice that the elements above can be efficiently computed by B, given the
group elements included in its input Ω. In particular, for every j, 
 ∈ [n] such
that 
 �= j (and any i, k ∈ [m]), notice that

[
αn+1−jβiγ

n+1−j+�δ
βk

]

2
is part of

{[
αj′

βiγ
�′

δ
βk

]

2

}

j′∈[n],�∈[2n]\{n+1}
.

If the sQAP is not satisfied, i.e., condition (9) holds, it means that (F′ | y)
is an inconsistent system of equations, thus there exists a vector c ∈ F

m such
that c� · F′ = 0� and c� · y = τ �= 0. Let V := {v · c : v ∈ F}. Then any vector
v ∈ V is such that

v� · F′ = (0, . . . , 0) ∧ v� · y �= 0

In particular, one of them, u = τ−1 · c, is such that u� · y = 1. So, B finds u
such that

u� · (F′ | y) = (0, · · · , 0, 1) (10)

(e.g., by Gaussian elimination), and then B computes and returns

Δ∗ =
∏

k∈[m]

(π∗
k)−uk

We show below that, conditioned on A being successful, Δ∗ => (αγ)n+1δ,
and thus B succeeds in breaking the (n,m)-DP-BDHE assumption.

Expanding each term π∗
�,k we have

Δ∗ = e

⎛

⎝W, −
∑

j∈[n]

[
(αγ)n+1−jδ

]
2

∑

k∈[m]

Fk,j · zj · uk

⎞

⎠ ·
⎡

⎣(αγ)n+1δ
∑

k∈[m]

ykuk

⎤

⎦

T

The equality Δ∗ => (αγ)n+1δ follows from the fact that, by Eq. (10), we have
that for every j ∈ [n],

∑
k∈[m] uk · Fk,j · zj =

∑
k∈[m] uk · F ′

k,j = 0 and that
∑

k∈[m] uk · yk = 1. ��
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5.3 From FC for sQAPs to an FC for Monotone Span Programs

Here we show how to construct an FC for monotone span programs from
an additive-homomorphic FC for sQAPs, which can be instantiated using the
scheme presented in Sect. 5.1. We instantiate the same construction with vectors
of length n + 1 so that the commitment to

We recall the notion of (monotone) span programs (MSP) of Karchmer and
Wigderson [15].

Definition 11 (Monotone Span Programs [15]). A (monotone) span pro-
gram for attribute universe [n] is a pair (M, ρ) where M ∈ F

�×m and ρ : [
] →
[n]. Given an input x ∈ {0, 1}n, we say that

(M, ρ) accepts x iff (1, 0 . . . , 0) ∈ span〈Mx〉
where Mx denotes the matrix obtained from M by taking only the i-th rows Mi

for which xρ(j) = 1, and span is the linear span of row vectors over F.

So, (M, ρ) accepts x iff there exist w ∈ F
� such that

∑

i:xρ(i)=1

wi · Mi = (1, 0, . . . , 0)

Notice that the MSP can be evaluated in polynomial time by using Gaussian
elimination to find w.

As in other cryptographic works, e.g., [19], we work with a restricted version
of MSPs in which each input xi is read only once. Hence, 
 = n and ρ is a
permutation, which (up to a reordering of the rows of M) can be assumed to
be the identity function. Notice that the one-use restriction can be removed by
working with larger input vectors of length k·n in which each entry xi is repeated
k times, if k is an upper bound on the input’s fan out.

Therefore, in what follows we assume a monotone span program defined by
a matrix M ∈ F

n×m and we say that

M accepts x iff ∃w ∈ F
n : (w ◦ x)� · M = (1, 0 . . . , 0)

It is easy to see that MSPs are an instance of the sQAPs of Definition 9. Given
M, set F := M� and consider sQAP inputs (z,y) := (x, (1, 0 . . . , 0)�). Then it
is clear that the MSP M accepts x iff the sQAP M� accepts (x, (1, 0 . . . , 0)�).

We can use this relation to build an FC for monotone span programs from an
FC for sQAP. In particular, we can do it in such a way to preserve the additive-
homomorphic property, which allows us to use this scheme in the application to
homomorphic signatures of Sect. 6.

FC for MSPs from FC for sQAPs. Let FC′ be a functional commitment
scheme for sQAPs. We build a scheme FC for monotone span programs as follows.

Setup(1λ, n,m) output ck ← Setup′(1λ, n,m)
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Com(ck,x) Output (C, aux) ← Com′(ck, (x,0))
Open(ck, aux,M) Assume aux is the auxiliary information of a commitment to

a pair of vectors (x,0). The opening proceeds as follows.
– Compute a commitment to the vector (0, (1,0)) without using random

coins: (C1, aux1) ← Com(ck, (0, (1,0)); ∅).
– Use the additive homomorphism to compute the auxiliary infor-

mation corresponding to the commitment to (x, (1,0)): ˆaux ←
FC′.Addaux(ck, aux, aux1).

– Let F := M� and run π ← FC′.Open(ck, ˆaux,F).
Return π.

Ver(ck, C, π,M, true) Compute (C1, aux1) ← Com(ck, (0, (1,0)); ∅) and Ĉ ←
FC′.Add(ck, C, C1). Output FC′.Ver(ck, Ĉ, π,M�, true).

We state the following theorem. The proof easily follows from the characteriza-
tion of MSPs from sQAP mentioned earlier.

Theorem 3. If FC′ is a weak evaluation binding FC for sQAP, then FC is a
weak evaluation binding FC for MSPs.

Remark 1. We note that our FCs for sQAPs and MSPs allow the prover to
show that the program accepts, but not that it rejects. We believe that the
schemes could be changed to achieve this property and we leave it for future work.
However, we observe that proving only acceptance is sufficient when the MSP is
used to express that a circuit C outputs 1, due to the following observation. If
the claim is that C outputs 0, prover and verifier could switch to use C̄ (that is
C with a negated output), build an MSP for it, and show it accepts.

6 Homomorphic Signatures from Additive-Homomorphic
Functional Commitments

Homomorphic Signatures. We recall the definition of homomorphic signa-
tures (HS) of [1], extended to work with labeled programs [11], as used in several
prior works, e.g., [6,7].

In an HS scheme, the signer can sign a set of messages {xi} so that anyone
can later compute a function f on the signed messages and obtain a signature
that certifies the correctness of the result. Each set of messages is grouped into
a “dataset” which has an identifier Δ (e.g., the filename); inside such dataset
each message xi is assigned a “label” τi (e.g., its position). So, more precisely,
in HS the signer signs a collection of messages (xi) with respect to a dataset
identifier Δ and a label τ . Evaluation instead consists in executing a function f
on the messages associated to some labels τ1, . . . , τn of a dataset Δ. A property
that makes HS an interesting primitive is that the signatures resulted from the
evaluation are succinct, i.e., of size at most logatithmic in the input size. In this
paper we generalize HS to the case of functions with multiple outputs and define
the notion of compactness, which says that signatures are succinct with respect
to both input and output size. We provide below formal definitions.
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Labeled Programs [11]. Let L be the label space (e.g., L = {0, 1}∗ or L = [n]).
A labeled program P is a tuple (f, τ1, ..., τn) where f : X n → X m and every τi ∈ L
is the label of the i-th input of f . Given a function g : X � → X m, we can compose
t labeled programs P1, . . . ,Pt with m1, . . . ,mt outputs respectively, into P∗. The
latter, denoted as P∗ = g(P1, . . . ,Pt), is the program obtained by evaluating g
on the 
 =

∑t
i=1 mi outputs of P1, . . . ,Pt. The labeled inputs of P∗ are the

distinct labeled inputs of P1, . . . ,Pt (all inputs with the same label are merged
into a single input of P∗). If fid : X → X denotes the identity function and
τ ∈ L, Iτ = (fid, τ) is the identity program with label τ .

Definition 12 (Homomorphic Signature). A homomorphic signature
scheme HS is a tuple of PPT algorithms (KeyGen,Sign,Ver,Eval) that work as
follows and satisfy authentication correctness, evaluation correctness and suc-
cinctness.

KeyGen(1λ,L) → (sk, pk) Given the security parameter λ and the label space L,
outputs a public key pk and a secret key sk. The public key pk defines the
message space X and the set F of admissible functions.

Sign(sk,Δ, τ, x) → σ On input the secret key sk, a dataset identifier Δ ∈ {0, 1}∗,
a label τ ∈ L, and a message x ∈ X , outputs a signature σ.

Eval(pk, f, σ1, . . . , σn) → σ On input the public key pk, a function f : X n → X m

in the class F and a tuple of signatures (σi)n
i=1, outputs a new signature σ.

Ver(pk,P,Δ,y, σ) → {0, 1} On input the public key pk, a labeled program P =
(f, τ1, . . . , τn) with f : X n → X m, a dataset identifier Δ, a value y ∈ X m,
and a signature σ, outputs either 0 (reject) or 1 (accept).

Authentication Correctness. Informally, authentication correctness means
that a “fresh” signature generated by Sign on message x and label τ verifies
correctly for x as output of the identity program Iτ . More formally, a scheme
HS satisfies authentication correctness if for a given label space L, all key pairs
(sk, pk) ← KeyGen(1λ,L), any label τ ∈ L, dataset identifier Δ ∈ {0, 1}∗, and
any signature σ ← Sign(sk,Δ, τ, x), Ver(pk, Iτ ,Δ, x, σ) = 1 holds with all but
negligible probability.

Evaluation Correctness. Informally, this property means that executing Eval
with a function g on signatures (σ1, . . . , σt), where σi verifies for xi as output of
Pi, produces a signature σ that verifies for g(x1, . . . , xt) as output of the composed
program g(P1, . . . ,Pt). More formally, fix a key pair (pk, sk) ← KeyGen(1λ,L),
a function g : X � → X m, and a set of program/message/signature triples
{(Pi,xi, σi)}t

i=1 such that Ver(pk,Pi,Δ,xi, σi) = 1. If x∗ = g(x1, . . . ,xt), P∗ =
g(P1, . . . ,Pt), and σ∗ = Eval(pk, g, σ1, . . . , σt), then Ver(pk,P∗,Δ,x∗, σ∗) = 1
holds with all but negligible probability.

Succinctness/Compactness. An HS scheme HS is succinct (resp. compact)
if there exists a universal polynomial p(λ) such that for any keys (pk, sk) ←
KeyGen(1λ,L), integer n = poly(λ) and function f : X n → X in F (resp. integers
n,m = poly(λ) and function f : X n → X m in F), messages (x1, . . . , xn) ∈ X n,
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labels (τ1, . . . , τn) ∈ Ln, and dataset Δ ∈ {0, 1}∗, if σi ← Sign(sk,Δ, τi, xi) and
σ ← Eval(pk, f, σ1, . . . , σn), then |σ| ≤ p(λ) · log n (resp. |σ| ≤ p(λ) · log n · log m).

Expstrong-Ad-UF
A,HS (λ)

T ← ∅; (pk, sk) ←$KeyGen(1λ, L)
(P∗, Δ∗, x∗, σ∗) ← AOSign(·)(pk) // signing query phase

bVer ← Ver(pk, P∗, Δ∗, m∗, σ∗) // the signature verifies

b1 ← ∃j : (Δ∗, τ∗
j , ·, ·) /∈ T // type-1: new dataset/label

b2 ← x∗ �= f∗(x1, . . . , xn) // type-2: all inputs queried

where ∀i : (Δ∗, τ∗
i , xi, ·) ∈ T // but wrong result

return bVer (b1 b2)

Oracle OSign(Δ, τ, m)

if (Δ, τ, ·, ·) /∈ T then

σ ← Sign(sk, Δ, τ, x)

T ← T ∪ {(Δ, τ, x, σ)}
return σ

else return ⊥

Fig. 1. Strong adaptive security experiment for homomorphic signatures.

Remark 2 (Single-input vs. multi-input HS). The HS notion presented here
allows one to sign the messages of a dataset one by one. We call such a scheme
a multi-input HS. In contrast, single-input HS are HS schemes where Sign only
works on input all the messages of the dataset.

Security. Informally, an HS is secure if an adversary, without knowledge of the
secret key, can only produce signatures that are either the ones obtained from the
signer, or they are signatures obtained through the Eval algorithm on signatures
obtained from the signer. The formalization of this intuition can have different
strengths according to how a forgery is defined. We refer to [6] for a discussion
on different notions of unforgeability. In this work we adopt the simplest and
strongest notion from [6], called strong-adaptive security.

Definition 13 (Strong Adaptive Security). Let Expstrong-Ad-UF
A,HS (λ) be the

security experiment of Fig. 1, and let Advstrong-Ad-UF
A,HS (λ) = Pr[Expstrong-Ad-UF

A,HS

(λ) = 1] be the advantage of A against the strong adaptive security of scheme
HS. We say that HS is strong adaptive secure if for every PPT adversary A
there exists a negligible function ε(λ) such that Advstrong-Ad-UF

A,HS (λ) ≤ ε(λ).

HS can also satisfy a privacy property, called context hiding [1], which infor-
mally says that signatures on outputs do not leak information about the inputs.
An HS can have efficient amortized verification [7]; in brief this means that given
f one can precompute a function-specific verification key which can be used later
to verify any signature for f ’s outputs in at most polylogarithmic time. We give
formal definitions of these properties in the full version.
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6.1 From FCs to HS

Let FC be an additively homomorphic functional commitment scheme for a class
of functions F , such that the commitments are in C and FC.Add : Cn → C is its
homomorphic addition algorithm. Let LHS be an HS with message space C and
that supports the evaluation of FC.Add. We use these two schemes to build an
HS scheme HS for functions in F . The scheme is described in Fig. 2. We refer to
the introduction for an intuitive explanation of the construction.

Below, given a labeled program (f, i) with f : X t → X m and i = (i1, . . . , it) ∈
[n]t, we define f̂i : X n → X m as the n-input function that, ignoring inputs at
positions j /∈ i, works identically as f .

KeyGen(1λ, [n])

ck ← FC.Setup(1λ, n, m)

(skLHS, pkLHS) ← LHS.KeyGen(1λ, [n])

pk := (pkLHS, ck), sk := skLHS

return (sk, pk)

Eval(pk, f, σ1, . . . , σt)

C ← FC.Add(ck, C1, . . . , Ct)

aux ← FC.Addaux(ck, aux1, . . . , auxt)

σ̂ ← LHS.Eval(pkLHS,FC.Add, σ̂1, . . . , σ̂t)

π ← FC.Open(ck, aux, f̂i)

return σf,y := (σ̂, C, πf )
Sign(sk, Δ, i, xi)

Let ei s.t. ei,i = 1, ei,j = 0 ∀i �= j

(Ci, auxi) ← FC.Com(ck, xi · ei)

σ̂i ← LHS.Sign(skLHS, Δ, i, Ci)

return σi := (σ̂i, Ci, auxi, i)

Ver(pk, (f, i), Δ,y, σ)

bLHS ← LHS.Ver(pkLHS, (FC.Add, i), Δ, C, σ̂)

if σ = (σ̂, C, aux, i)

π ← FC.Open(ck, aux, f̂id,i)

bFC ← FC.Ver(ck, C, f̂i,y, π)

return bFC bLHS

Fig. 2. HS from additive FC and LHS for FC.Add.

The correctness of the scheme can be checked by inspection. In the following
theorem we prove its security. For lack of space, we defer to the full version for
the proof, further propertied of this construction, and a discussion on how to
instantiate the LHS scheme based on [8].

Theorem 4. If LHS is strongly-adaptive secure and FC is weak evaluation bind-
ing, then HS is strongly-adaptive secure.
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9. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

10. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

11. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 16

12. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press (2011). https://doi.org/10.1145/1993636.1993651

13. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press (2015). https://doi.org/10.1145/2746539.2746576

14. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-540-78967-3_25
https://doi.org/10.1007/978-3-319-93387-0_10
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-45608-8_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-319-96878-0_24


188 D. Catalano et al.

15. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eighth
Annual Structure in Complexity Theory Conference, pp. 102–111 (1993)

16. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

17. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

18. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS,
vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26948-7 19

19. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

20. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 30

21. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

22. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016). https://doi.org/10.
4230/LIPIcs.ICALP.2016.30

23. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 30

24. Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arith-
metic circuits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS,
vol. 12493, pp. 686–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 23

25. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices.
In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 480–
511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 16

26. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-642-19379-8_4


Linear-Map Vector Commitments
and Their Practical Applications

Matteo Campanelli1(B), Anca Nitulescu1, Carla Ràfols2,
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Abstract. Vector commitments (VC) are a cryptographic primitive
that allows one to commit to a vector and then “open” some of its
positions efficiently. Vector commitments are increasingly recognized as
a central tool to scale highly decentralized networks of large size and
whose content is dynamic. In this work, we examine the demands on
the properties that a vector commitment should satisfy in the light of
the emerging plethora of practical applications and propose new con-
structions that improve the state-of-the-art in several dimensions and
offer new tradeoffs. We also propose a unifying framework that captures
several constructions and we show how to generically achieve some prop-
erties from more basic ones. On the practical side, we focus on building
efficient schemes that do not require a new trusted setup (we can reuse
existing ceremonies for other pairing-based schemes, such as “powers of
tau” run by real-world systems such as Zcash or Filecoin).

1 Introduction

Vector commitment schemes [9,22] (or VC) allow a party to commit to a vec-
tor v through a short digest and then open some of its elements guaranteeing
position binding1 (one should not be able to open a commitment at position i
to two different values vi �= v′

i). For this primitive to be interesting the proof
of opening—or just “opening”—should be of size sublinear in m, the size of the
committed vector. A vector commitment with subvector opening also supports
a short opening for arbitrary subsets of positions I (rather than individual ones
only). More specifically this opening should be of size independent, not only of
m, but of |I|. We denote commitment schemes with such property as SVC [20]
(also called VC with batch opening in [4]).
1 For the applications considered in this work, hiding properties are not necessary. In

particular, our commitments are deterministic.
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Functional Vector Commitments, first introduced by Libert, Ramanna and
Yung in [21], capture the ability to compute commitments to vectors and later
perform openings of linear functions (inner-products) f : F

m → F
n of these

vectors, for some field F.
Both vector commitments with subvector openings and functional commit-

ments for inner-products can be captured as vector commitments with openings
for a more general class of function families, linear maps. Lai and Malavolta
[20] were the first to introduce Linear Map Commitments (LMC). In such a
scheme, the prover is able to open the commitment to some vector v to the out-
put of multiple linear functions or, equivalently, to the output of one linear-map
f : F

m → F
n, by producing a single short proof. In this work, we revisit Lai and

Malavolta [20] LMC notion and augment it to a full-featured vector commitment
generic definition that recovers all previously-defined schemes and more. We call
our primitive Linear Map Vector Commitment and use LVC for short2.

1.1 Motivation for Better Vector Commitments

Vector commitments are very useful to scale highly decentralized networks of
large size and whose content is dynamic [4,7,10,15] (such dynamic content can
be the state of a blockchain, amount stored on a wallet, the value of a file in a
decentralized storage network, etc.). Beyond the basic requirement that openings
should be efficient, in this work we also discuss how to achieve some additional
properties of LVC. We discuss some of the most prominent applications of LVC
to motivate and justify the importance of these properties in practice.

Verifiable Databases. One of the applications that can be significantly improved
by Vector Commitments is Verifiable Databases (VDB). In this setting, a client
outsources the storage of a database to a server while keeping the ability to access
and change some of its records, i.e. query functions of the data and update some
of the data and ensure the server does not tamper with the data. Solutions
using (binding) commitment schemes provide security but not efficiency in such
a setting. A popular instantiation that achieves both of them is a Merkle tree [23],
but this is not expressive enough to allow for functional openings.

For a VC scheme to be the ideal solution for VDB application, we require it to
additionally support efficient updates and expressive openings. For example, an
LVC scheme that allows the client to update records of the database in sublinear
time and to verify linear-map queries at almost the same cost as simple position
openings is a great improvement over current solutions.

Stateless Cryptocurrency. A recent application that motivated more efficient
constructions of VC schemes is stateless cryptocurrency, i.e. a payment system
based on a distributed ledger where neither validators of transactions nor system
users need to store the full ledger state. The ideal vector commitment scheme

2 We prefer LVC rather than LMC to emphasize the Vector Commitment aspect of
our notion.
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that provides the best trade-off between storage, bandwidth, and computation
in this setting should have all of the following properties: it must have a small
commitment size, short proofs, efficient computation for openings and it should
allow for proof updates and for aggregation to minimise communication in the
transactions and maintainability for the proofs, that allows updating all pre-
stored proofs in sublinear time.

Proof of Space. Proof of Space (PoS) is a protocol that allows miners (storage
providers) to convince the network that they are dedicating physical storage over
time in an efficient way. In a nutshell, a miner commits to a file (data) that uses
a specified amount of disk space and then the miner proves that it continues
to store the data by answering to recurring audits that consist of random spot-
checks. A PoS construction based on vector commitments, as described in [13],
requires short opening proofs for subvectors to be stored in a blockchain, cross-
commitments aggregation techniques and the possibility to implement space-
time tradeoffs to reduce the proving time for the miner (ideally sublinear in the
size of the vector).

“Caching” Optimizations. In some applications, e.g. when performing HTTP
queries, clients use the so-called prefetching3 and receive from a server not only
the values of interest but other related values that could potentially be queried in
the near future (e.g., values in a neighboring range of the queried values). Vector
commitments with efficient proofs for special (“caching”) subset openings allow
to add verifiability to such queries in a way that does not affect the speed of the
server since the proving procedure for a bigger subset is close or the same as for
individual positions.

1.2 Desired Properties and Limitations

At the very least a basic LVC should be efficient (small proof size and low
opening/verifying computational needs). Obviously, the same design goals as
with other cryptographic protocols apply, i.e. ideally one would like to prove
security under as standard assumptions as possible.

Reusable setup refers to the common reference string that many pairing-based
schemes use as public parameters. Ideally, one would like to have a transparent
setup (consisting of uniformly distributed elements) that does not rely on any
trusted parameter generation. It is common to sacrifice this goal for efficiency
and settle for a trusted setup (producing a SRS, or structured reference string)
that can be generated in a ceremony. But such ceremonies are complicated to
implement4, so it is interesting to design LVC that do not have special SRS
distributions and can reuse existing setups for other primitives.
3 https://developer.mozilla.org/en-US/docs/Web/HTTP/Link prefetching FAQ.
4 This remains true even if many setups are updatable [18] and they can be generated

and updated non-interactively in a secure way as long as one party is honest. There
might be issues if not enough parties participate in generating the SRS or updates
are not properly validated.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ
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Expressivity refers to the opening possibilities. One would like VC to be as
expressive as possible, meaning that it should be possible to open to functions
of the vector as general as possible (subvector openings, linear or arbitrary func-
tions).

Proof Aggregation captures the ability to “pack” two or more proofs together
obtaining a new proof for their combined claims (e.g. f(v) = y and f ′(v) = y′).
This should be done without knowledge of the opening of the vector and aggre-
gation cost should be sublinear in the vector length. Importantly, the resulting
proof should not significantly grow each time we perform an aggregation. One-
hop aggregation allows only to aggregate fresh proofs. Ideally, one would also
want to aggregate already aggregated proofs.

Updatability allows to efficiently update opening proofs: if C is a commitment
to v and a position needs to be updated resulting in a new commitment C′, an
updatable VC must provide a method to update an opening πf for a function
f that is valid for C into a new opening for the same function that is valid for
the new commitment C′. The new opening should be computed by only knowing
the portion of the vector that is supposed to change and in time faster than
recomputing the opening from scratch.

Maintainability aims at amortizing the proving costs in systems where com-
mitted values have a long life span and evolve over time. This is achieved by
means of dedicated memory to reduce the computation time needed to open
proofs. Concretely, the property requires that (1) one can efficiently store some
values to reduce the cost of computing any individual openings (2) after updat-
ing a single position of the committed vector, it should be possible to update all
proofs in time sublinear in the size of the vector (less than computing a single
proof from scratch in some cases).

Homomorphic properties apply to commitments as well as to proofs. An
LVC has homomorphic commitments if it is possible to meaningfully combine
commitments without knowing their openings : that is, from commitments C1 and
C2 to v1 and v2, any party must be able to compute a commitment to αv1+βv2

for any α, β ∈ F. The scheme has homomorphic openings if it is possible to derive
a proof that f(v1 + v2) = y1 + y2 from proofs for the claims f(v1) = y1 and
f(v2) = y2. Finally, a vector commitment scheme has homomorphic proofs when
it is possible to combine proofs of statements for different functions but same
vector. As we will see, this property is interesting for its implications.

1.3 Our Contributions

Theoretical Advances. On the theoretical frontier, we unify previous definitions
and augment them with additional properties. The basic notion we use is Lin-
ear Map Vector Commitments (LVC) and is inspired by the work of Lai and
Malavolta [20]. We then define additional properties on top of this definition
and explore their relations. Specifically, we augment this notion with updatabil-
ity and aggregation properties, including a novel notion -unbounded aggregation-
capturing the ability to aggregate already aggregated proofs but relaxing incre-
mental aggregation [7] in the sense that the verifier is allowed to do work linear in
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the number of aggregation hops (i.e. aggregation is “history” dependent), also,
disaggregation is not possible. We show that having additional homomorphic
properties is highly desirable, by arguing that any LVC that satisfies them: (1)
can be augmented with unbounded aggregation as well as updatability; (2) can
support general linear map openings (i.e. for any f : F

m → F
n) as long as it

supports inner product openings (i.e. for f ′ : F
m → F). This allows us to focus

on efficient constructions for inner products with homomorphic properties.

VC Constructions. First, we present two pairing-based LVC constructions for
inner products based on the properties of monomial and Lagrange polynomial
basis and prove that they satisfy all the relevant homomorphic properties to
obtain unbounded aggregation and support general linear maps. In terms of
expressivity, these constructions generalize previous work [26,27] by supporting
linear functions instead of only position or subvector openings. VC for this class
of functions are core components of important primitives such as arguments of
knowledge for Inner Product (IP) relations or aggregation arguments [11].

Second, we present two novel maintainable constructions by exploiting the
tensor structure of multivariate and univariate polynomials. These constructions
allow a stronger, more flexible form of maintainability: they support an arbitrary
memory/time trade-off for openings, meaning that one can decide how much
memory it wants to use to reduce the opening time.

The multivariate case is a generalization of Hyperproofs [26] in several dimen-
sions. Roughly speaking maintanability is achieved in Hyperproofs by construct-
ing a binary tree of proofs where at the leaves there are the values of individual
positions. We present a single construction that can be instantiated in several
ways (recovering Hyperproofs as a special case) with these features: (i) the tree
can be of any arity, so proofs are shorter5; (ii) the leaves can be commitments for
any LVC and not only individual openings, to achieve a fully flexible trade-off.
As a result of (ii), the scheme is more expressive (as it can support openings
to linear functions/subvector openins at leaf level if the underlying commitment
supports it).

The univariate construction presents a similar generalization of previous work
by [28] but it has the additional feature that the setup is independent of the
trade-off, and can be decided by the prover on the fly.

Practical Improvements. As in some applications like Proof of Space, the subset
of opened positions is not very meaningful and its distribution is expected to
be known in advance, we study how to improve verification efficiency for cer-
tain special subsets I openings in our inner-product constructions. For some
structured sets I, we achieve a verifier that performs half of the work it does
for arbitrary sets J of the same size in the Lagrange construction, and only a
constant number of group operations in the one that uses the monomial basis.

5 If one uses the Inner Pairing Product argument of Bünz et al. [6] on top of PST com-
mitments as suggested in Hyperproofs the difference in proof size is not so relevant,
but IPP will be much cheaper to run.
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Table 1. Comparison of our LVCs with other aggregatable VC schemes (aggSVC)
designed for Stateless Cryptocurrencies and Proof of Space applications. All schemes
have O(1)-sized proofs that verify in O(1) time and can update commitments in O(1)
time.

VC Scheme Setup Aggregation Updates Assumption Functional Special Sets

Opening Opening (size n)

PoS aggSVC [7] Trusted Incremental Same-Com hint RSA SVC O(n)

Pointproofs [15] Trusted One-hop Cross-Com key pairings × O(n)

Stateless aggSVC [27] Trusted One-hop Same-Com key pairings SVC O(1)

Our Lagrange LVC Reusable UnboundedCross-Com key AGM LVC O(1)

Our Monomial LVC Reusable UnboundedCross-Com keyless AGM LVC O(1)

Table 2. Comparison of our schemes with other maintainable VC. We consider vectors
of dimension m = k · m′ where m′ is the amount of memory dedicated for storing
proofs. All schemes are aggregatable using generic techniques, SNARKs or Inner Pairing
Products [6]. All times/sizes omit the dependence on the security parameter λ. We omit
constant additive terms from proof sizes. In the multivariate construction, � refers to
a constant parameter.

VC Scheme Setup Homomorphic Aggregation |π| Prove OpenAll UpdateAll

Merkle Trees Transparent × SNARK log m O(k) O(m) O(k + log m′)

Hyperproofs [26] Trusted � IPP log m O(k) O(m log m′) O(log m′)

Our Multivariate LVC Trusted � IPP log� m′ O(k) O(m log m′) O(log m′)

Our Univariate LVC Reusable � IPP log m′ O(k) O(m log m′) O(log m′)

Second, we mitigate the challenges of deploying these constructions due to
their need of a trusted setup. With the exception of the multivariate variant
of the maintainable construction, all our constructions can reuse trusted setups
such as “powers of tau” that were run for pairing-based SNARK schemes used
in real-world applications6, as opposed to for example [15], in which a certain
middle power of τ needs to be missing in the SRS (Tables 1 and 2).

In the full version of this work we demonstrate the practical benefits of our
special subset construction by providing an implementation and comparisons
with current solutions.

1.4 Related Work

Vector commitments were fully formalized in [9] and two first constructions were
proposed under standard, constant-size, assumptions: CDH in bilinear groups
and RSA respectively. Many follow-up works built on these constructions to
obtain better efficiency and more properties such as subvector openings, func-
tional openings, aggregation, updates and variants of these. A number of con-
structions [4,7] use the properties of hidden order groups to achieve construc-
tions with attractive features such as constant size parameters or incremental
aggregation but are concretely less efficient than pairing-based constructions.
6 E.g., the one used by ZCash. https://z.cash or and Filecoin [12].

https://z.cash
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Merkle trees are quite efficient and only need a transparent setup. They also
offer natural time-memory tradeoffs due to their tree structure. Nevertheless, VC
schemes based on bilinear groups are more expressive in terms of openings, have
homomorphic properties, allow for efficient updates for the proofs and aggrega-
tion mechanisms, so they are becoming an interesting alternative.

Expressivity. VC were generalized by Libert et al. [21], who formalize the notion
of functional commitments (FC). They construct vector commitments with open-
ings to linear-forms of the vector based on the Diffie-Hellman exponent assump-
tion over pairing groups. Later, Lai and Malavolta [20] introduce subvector open-
ings and show applications to building succinct-arguments of knowledge (similar
applications were shown by [4]) in the bilinear group setting. They also gen-
eralize the notion of SVCs to allow the prover to reveal arbitrary linear maps
computed over the committed vector. Previously, only Functional VC for single-
output linear functions were proposed which did not account for provers that
want to reveal multiple locations or function outputs of the committed vector in
a concise way.

Updatability. Vector commitments that allow for updates are useful in applica-
tions such as stateless cryptocurrencies. A weak variant of updatability requires
the algorithms that update the commitment and the opening to take as input an
opening for the position in which the vector update occurs called hints. Recent
RSA-based constructions are hint-updatable [4,7]. Compared to hint updates,
key-updates only need fixed update keys corresponding to the updated posi-
tions. Schemes based on bilinear groups require such fixed keys, and no extra
information about the change made in the vector in order to update.

Aggregation. Vector Commitments with an additional aggregation property are
very appealing for blockchain applications for their even shorter proofs of open-
ing. Campanelli et al. [7] showed two constructions of incrementally aggregat-
able SVCs, that have constant-size parameters and work over groups of unknown
order. Unfortunately, the practical efficiency of these constructions is still not
suffiecient for their deployment in real-world systems.

Gorbunov et al. [15] show how to extend the VC scheme of [22] to allow for
cross-commitment aggregation. Like our constructions, they assume the Alge-
braic Group Model (AGM) [14] in bilinear groups and a random oracle. Their
final SVC requires public parameters whose size is linear in the size of the com-
mitted vector, while cross-commitment aggregation allow for splitting up a long
vector into shorter ones and simply aggregate the proofs. However, this app-
roach allows only for one-hop aggregation, meaning that already aggregated
proofs cannot be reused in further aggregations by external nodes.

Tomescu et al. [27] showed how to realize an updatable SVC with one-hop
aggregation from bilinear groups. Their scheme has linear-sized public parame-
ters, and it supports commitment updates, proof updates from a static linear-
sized update key tied only to the updated position, in contrast with the dynamic
update hints required by related works.
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Maintainability. Apart from Merkle tree based Vector Commitments which are
known to be maintainable, Srinivasan et al. [26] show that the multilinear PST
polynomial commitment [24] can be turned to a maintainable VC construction.
Pre-computing all (single-position) opening proofs is done in quasilinear time
(contrary to the trivial quadratic time) and updating all proofs after a (sin-
gle position) vector update needs only logarithmic time. Contrary to Merkle
tree based approaches, the scheme has homomorphic properties. Furthermore,
due to its algebraic structure, it supports one-hop aggregation through generic
means, namely, Inner Pairing Product Arguments [6], albeit with a concretely
expensive proving computation. Tomescu et al. [28] add the same attribute to
KZG polynomial commitment schemes, resulting in an univariate construction
with the same properties.

2 Preliminaries

Bilinear Groups. A bilinear group is given by a description gk =
(p, G1, G2, GT , e) with additive notation such that p is prime, so F = Fp is a
field. G1, G2 are cyclic (additive) groups of prime order p. We use the notation
[a]1, [b]2, [c]t for elements in G1, G2 and GT respectively. e : G1 × G2 → GT is a
bilinear asymmetric map (pairing), which means that ∀a, b ∈ Zp, e([a]1, [b]2) :=
[ab]t. We implicitly have that [1]t := e([1]1, [1]2) generates GT . We use [a]1,2 to
refer to 2 group elements [a]1 ∈ G1, [a]2 ∈ G2. In our constructions, we denote by
G(p) the algorithm that, given as input the prime value p, outputs a description
gk = (p, G1, G2, GT , e).

Algebraic Group Model (AGM). The algebraic group model [14] lies between
the standard model and the stronger generic group model. In AGM, we consider
only so-called algebraic adversaries. Such adversaries have direct access to group
elements and, in particular, can use their bit representation, like in the standard
model. However, these adversaries are assumed to output new group elements
only by applying the group operation to received group elements (like in the
generic group model). This requirement is formalized as follows: Suppose an
adversary A is given some group elements [x1]1 . . . [xm]1 ∈ G1. Then, for every
new group element [z]1 ∈ G1 that the adversary outputs, it must also output
z1 . . . zm ∈ F such that [z]1 =

∑m
i=1[zixi]1.

3 Definitions: Linear-Map Vector Commitments

In the following, we define what we call Linear-map Vector Commitments (LVC)
schemes. Notably, this definition has been introduced by Lai and Malavolta
in [20] (except that there the name is Linear Map Commitments) to capture fur-
ther functionalities of vector commitments, whose definition before only account
for proofs of position openings (Vector Commitments) or more generally subvec-
tor openings (Sub-vector commitments). We introduce the definition and secu-
rity properties of LVC. Importantly, we do not consider the hiding property as
for our applications all vectors are public.
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Linear-Map Vector Commitment. A linear-map vector commitment scheme
for function families F ⊂ {f : Mm → Mn} is a tuple of PPT algorithms(
LVC.KeyGen, LVC.Commit, LVC.Open, LVC,Vf

)
that work as follows:

LVC.KeyGen(1λ,F) → (prk, vrk): The setup algorithm takes the security param-
eter λ, a family of functions F implicitly defining the message space M, and
the maximum vector length m = poly(λ), and outputs a pair of keys (prk, vrk).

LVC.Commit(prk,v) → (C, aux): On input the proving key prk, and a vector v =
(v1, v2 . . . , vm) ∈ Mm, returns a commitment C and auxiliary information
aux. This algorithm is deterministic.

LVC.Open(prk, aux, f,y) → πf : Takes as input prk, the auxiliary information aux,
a function f ∈ F , and a claimed result y ∈ Mn. It outputs a proof πf that
f(v) = y.

LVC.Vf(vrk,C, f,y, πf ) → 0/1: Takes as input the verification key vrk, C, function
f , y ∈ Mn, and proof πf . It accepts or rejects.

A LVC scheme must satisfy the following properties:

Definition 1 (LVC correctness). An LVC scheme is perfectly correct if for
all λ ∈ N, for any family of functions F ⊂ {f : Mm → Mn} and any v ∈ Mm,

Pr

⎡

⎣LVC.Vf(vrk,C, f,y, πf ) = 1
(prk, vrk) ← LVC.KeyGen(1λ,F)
(C, aux) ← LVC.Commit(prk,v)
πf ← LVC.Open(prk, aux, f,y)

⎤

⎦ = 1.

Definition 2 (LVC (strong) function binding). A linear map commitment
LVC satisfies strong function binding if, for any PPT adversary A, for all λ ∈ N,
for all integers K ∈ poly(λ), and for any family of functions F , the following
probability is negligible in λ:

Pr

⎡

⎢
⎢
⎣

∀k ∈ [K] :
LVC.Vf(vrk,C, fk,yk, πfk

) = 1
∧ � ∃ v ∈ Mm s. t.

∀k ∈ [K] : fk(v) = yk

(prk, vrk) ← LVC.KeyGen(1λ,F)(
C, {fk,yk, πfk

}k∈[K]

)
← A(prk, vrk)

⎤

⎥
⎥
⎦

The definition above can be relaxed to hold only for honestly-generated com-
mitments C, raising to the weak function binding notion. In the weak definition,
the adversary A returns a vector v while the commitment C is computed via
LVC.Commit. In this work, constructions are proven strong function binding.

3.1 Homomorphic Properties for LVC

Homomorphic Commitments. Linear-map vector commitment schemes that sat-
isfy homomorphic commitments allow to combine commitments of two vectors
into a single one of their sum (or any linear combination). Namely, for all λ,
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and (vrk, prk) ← LVC.KeyGen(1λ,F), if (C1, aux1) ← LVC.Commit(prk,v1) and
(C2, aux2) ← LVC.Commit(prk,v2), then C̃ = (αC1 +βC2) is a valid commitment
to ṽ = (αv1 + βv2) for any α, β ∈ M.

In this work, we are particularly interested in LVC that also have homomor-
phic proofs for different functions applied to a committed vector and homomor-
phic openings for the same function applied to different initial vectors.

Homomorphic Proofs. An LVC scheme has homomorphic proofs if it allows
recombine two proofs π1, π2 corresponding to linear maps f1, f2 into a new
proof π̃ that opens to a linear combination of f1 and f2 applied to the same
committed vector. Namely, for all λ, F ⊂ {f : Mm → Mn} and all vectors
v ∈ Mm, and (vrk, prk) ← LVC.KeyGen(1λ,F), (C, aux) ← LVC.Commit(prk,v),
if π1 ← LVC.Open(prk, aux, f1,y1) and π2 ← LVC.Open(prk, aux, f2,y2), then for
all α, β ∈ M:

π̃ = (απ1+βπ2) verifies LVC.Vf(vrk,C, f̃ = (αf1+βf2), ỹ = (αy1+βy2), π̃
)

= 1.

Homomorphic Openings. An LVC scheme has homomorphic openings if we can
combine opening proofs for the same linear-map f applied to two different vectors
v1 and v2 to obtain a new proof of opening π̃ that verifies with respect to the
linear combination C̃ of the two initial commitments C1,C2 and show the result
of f applied to the linear combination of the vectors v1 and v2.

More formally, for all λ, F ⊂ {f : Mm → Mn}, vectors v1,v2 ∈ Mm,
and (vrk, prk) ← LVC.KeyGen(1λ,F), if π1 ← LVC.Open(prk, aux1, f,y1) and
π2 ← LVC.Open(prk, aux2, f,y2), where (C1, aux2) ← LVC.Commit(prk,v1) and
(C2, aux2) ← LVC.Commit(prk,v2), then for all α, β ∈ M:

π̃ = (απ1+βπ2) verifies LVC.Vf(vrk, C̃ = (αC1+βC2), f, ỹ = (αy1+βy2), π̃
)

= 1.

4 Generic Constructions from Homomorphic Proofs

Many natural schemes (such as [15,27], PST commitments or our constructions
in Sect. 5) have homomorphic proofs or openings. This motivates us to consider
generic constructions that enhance any LVC scheme with homomorphic proper-
ties. We start by defining the notions of unbounded aggregation for same and
cross-commitments and then we show how to add such properties to LVC schemes
that have homomorphic proofs for the former and, additionally, homomorphic
commitments for the latter.

4.1 New Notion: Unbounded Aggregation

The intuition for our definition is that, given t proofs, commitments or openings,
we can aggregate them by performing a linear combination with random coeffi-
cients. Importantly, these coefficients have to be chosen after the claims are fixed
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and for that we rely on the RO model, as it is often the case for aggregation in
the literature.

In our work, we go a step further and show how this procedure can be done
over already aggregated proofs. Actually, aggregating already aggregated proofs
consists off just sampling new coefficients and using them for fresh linear combi-
nations. Importantly, the verifier needs to have access to the aggregation history:
it has to recompute the coefficient corresponding to each initial proof π, which
is the product of all the coefficients used in the aggregations it was involved in.
Note that this also adds a small overhead to the verifier: it makes a linear (in
the number of aggregation “hops”) number of hash computations.

Example for Same-Commitment Aggregation: Consider vector v committed in
C, functions f1, f2 and f3; let π1, π2 and π3 be proofs that f1(v) = y1, f2(v) = y2

and f3(v) = y3. An aggregated proof for f2(v) = y2, f3(v) = y3, would be π∗
1 =

π2 + γ1π3, for γ1 = H(C, {(f2,y2), (f3,y3)}). In a second step, we can aggregate
a proof that f1(v) = y1, by performing π∗

2 = π1 + γ2π
∗
1 , for γ2 = H(C, (f1,y1),

γ1). At the verification step, the verifier would reconstruct the coefficients of each
initial proof in π∗

2 . For instance, δ1 = 1, δ2 = γ1γ2, δ3 = γ2. Then, the verifier can
run the LVC.Vf algorithm to check whether π∗

2 = π1 +γ2π
∗
1 = π1 +γ1γ2π2 +γ2π3

is a valid proof that function f = f1 + γ1γ2f2 + γ2f3 evaluated at the vector
committed in C opens to y = y1 + γ1γ2y2 + γ2y3. For this last step to work
we need the homomorphic proof property and the verifier to have access to the
aggregation “history”.

To describe our history of claims we move to trees of statements {fj ,yj}t
j=1.

In these trees, leaves are pairs of function–output (f,y). As in the usual case
internal nodes are defined as an ordered list of subtrees. An empty history/tree
is referred to as null. We denote trees using the syntax Tf,y and the operation
that “merges” two subtrees in order adding a new root as “∴”. The following
definition formalizes the above and will be useful in our construction. We remark
that we include the commitment in each of the leaves of the trees Tf,y. This
does not increase the input size for cross-commitment aggregation where this
information is necessary (for same-commitment aggregation the commitment
is not necessary). This also allows to model more closely the “claims” for the
cross-commitment case where each proof is for a statement (C, f,y).

Definition 3. Given a tree T we associate to each of its internal nodes a hash
label h defined so that h(L ∴ R) := H(C,L,R). We then associate to each of the
leaves in the tree a label

δ(leaf) :=
∏

i=1,...,t

h(xi)r(xi,leaf)

where the xi-s are the internal nodes along the path from leaf to the root (root
included and starting from the bottom), the predicate r(x, leaf) is 1 if leaf is a
right child of x and 0 otherwise.

Remark 1 (Unbounded vs One-hop vs Incremental). Previous works have defined
other types of aggregation. In one-hop aggregation (or batching) [4] aggregated
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proofs cannot be aggregated further. Incremental aggregation [7] does not have
this limitation. The difference between the latter and our notion is that incre-
mental aggregation does not require to keep track of the order in which the
aggregation has been applied (for verification or further aggregation). On the
other hand, we do require to track order, but we argue that this is not an over-
head in many settings. In particular, even incremental aggregators and verifiers
need to know the claims related to the proofs being aggregated, albeit in no
order. Adding a structure to the claims roughly adds a number of bits linear in
the length of the opening for additional separators (see also examples on tree
histories above).

When we consider unbounded-aggregatable LVC, we assume KeyGen outputs
additional parameters for aggregations in pp. The aggregation algorithm will
follow this syntax7:

LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π′) → π∗

We subsequently modify the syntax for the verification algorithm in an
(unbounded) aggregatable LVC as follows:

LVC.Vf(vrk,C, Tf,y ∴ T ′
f,y, π∗) → b ∈ {0, 1}

with Tf,y replacing f,y.
We require the following correctness property and that function binding still

holds.

Definition 4 (Unbounded Aggregation Correctness). For any Tf,y,
Tf ′,y′ and any π, π′:

Pr

⎡
⎣

(LVC.Vf(vrk,C, Tf,y, π) = 1 ∧
LVC.Vf(vrk,C, T ′

f,y, π′) = 1
) ⇒

LVC.Vf(vrk,C, Tf,y ∴ T ′
f,y, π∗) = 1

(prk, vrk, pp) ← LVC.KeyGen(1λ, F)
(C, aux) ← LVC.Commit(prk,v)

π∗ ← LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π′)

⎤
⎦ = 1

Definition 5 (Unbounded Aggregation Function Binding). For any Tf,y,
Tf ′,y′ the following probability is negligible in λ:

Pr
[
LVC.Vf(vrk,C, Tf,y ∴ T ′

f,y, π∗) = 1
∧ �a s.t. f(a) = y ∧ f ′(a) = y′

(prk, vrk, pp) ← LVC.KeyGen(1λ,F)
(C, π∗, Tf,y, T ′

f,y) ← A(pp, prk, vrk)

]

Definition: Cross-Commitment Aggregation. Unbounded aggregation can
be performed across different commitments as well. This property is called Cross-
commitment Aggregation and makes sense when we have a set of commitments
C′
1, . . . ,C

′
t that we want to open at one or more maps f , as it allows to compute

a succinct proof of opening for linear-maps from different vectors committed

7 The algorithms can be generalized for more proofs. Proof size remains the same, also
for cross-commitment aggregation.
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separately. Below we show our syntax which directly expands on our same-
commitment aggregation described above. Function binding and correctness are
also straightforward to expand. We let Tf,y include our commitments in the
leaves (see also next section).
Cross-commitment aggregation: LVC.CrossAgg(pp, Tf,y, π, Tf ′,y′ , π′) → π∗

Cross-commitment verification: LVC.CrossVfy(vrk,
(
C′

j

)
j
, Tf,y, π∗) → 0/1

4.2 Unbounded Aggregation for LVC

We now describe unbounded aggregation algorithms for any LVC scheme that
satisfies the homomorphic properties of Sect. 3.1.

LVC.KeyGen(1λ,F) → (prk, vrk, pp, {upkj}m
j=1): Additionally generate the

description of a hash function H(·) and set it as pp.
LVC.Agg(pp, Tf,y, π, Tf ′,y′ , π′) → π∗:

Compute γ = H(C, Tf,y, Tf ′,y′) and output π∗ = π + γπ′.
LVC.Vf(vrk,C, Tf,y ∴ Tf ′,y′ , π∗) → b

Return b ← LVC.Vf
(
vrk,C, f∗, y∗, π∗) where:

– let {leafi = (C, fi,yi)}�
i=1 be all the leaves in Tf,y ∴ Tf ′,y′ .

– For each i let δi := δ(leafi) be the value defined as in Definition 3.

f∗ :=
∑

i

δifi y∗ :=
∑

i

δiyi

Theorem 1. When applied to a function binding LVC scheme with homomor-
phic proofs,

(
LVC.Agg, LVC.Vf

)
satisfies Unbounded Aggregation Correctness (as

in Definition 4) and Function Binding (Definition 5) in the ROM.

Proof. Correctness follows by inspection, using the fact that the LVC satisfies
homomorphic proof, so we omit it.

For function binding, let
(
C, π∗, Tf,y, Tf ′,y′

)
be an output of A such that

LVC.Vf(vrk,C, Tf,y ∴ Tf ′,y′ , π∗) = 1. By construction this implies IP.Vf
(
vrk,C,

∑
i δifi,

∑
i δiyi, π

∗) = 1. Because IP is function binding, except with negligible
probability, there exists a vector a such that f(a) = y, for y =

∑
i δiyi, f(X) =

∑
i δifi(X) then there exists a such that

t∑

i=1

δifi(a) =
t∑

i=1

δiyi.

Since H is a random oracle, the coefficients δi do not depend on yi, fi. And
by the Schwartz-Zippel lemma, except with probability r/F, fi(a) = yi for all i,
which concludes the proof. 
�

Cross-Commitment Aggregation for LVC. For the case of cross-
commitment aggregation, we proceed similarly but we also need to homomorphi-
cally operate on the commitments (recall that hashing on trees implicitly hashes
the commitments too since we include them there).

LVC.CrossAgg(pp, Tf,y, π, Tf ′,y′ , π′) → π∗:
Compute γ = H(Tf,y, Tf ′,y′)
Output π∗ = π + γπ′
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LVC.CrossVfy(vrk,
(
C,C′, Tf,y ∴ Tf ′,y′ , π∗) → b

– let leaf1, . . . , leaf� be all the leaves in Tf,y ∴ Tf ′,y′ . We add to each leaf
leafi and additional subindex j that refers to which commitment the
proof in leafij corresponds to. Note that we still consider 	 leaves.

– each leafij is of the form (Cj , fi,yi)
– For each i let δij := δ(leafij) be the value defined as in Definition 3.
– Compute

f∗
j :=

∑

i

δijfi y∗
j :=

∑

i

δijyi

– Return 1 iff bj = 1 for all bj ← LVC.Vf
(
vrk,Cj , f

∗
j , y∗

j , π∗).

Efficiency. For our constructions, the verification equations for computing bi =
IP.Vf

(
vrk,C∗, f∗, y∗, π∗) are two pairing equations where the elements in the

right side can be aggregated, and thus the verifier performs only 	 + 1 pairings.

Security. The security of this augmented construction follows analogously to
that for same-commitment aggregation, with the additional requirement for the
LVC scheme to have homomorphic commitments and openings.

4.3 From Inner-Products to Arbitrary Linear-Maps

In this section we show we can obtain LVC schemes for any family of functions
F ⊂ {f : F

m → F
n} starting from simpler constructions that have homomorphic

proofs and openings.
Our starting point are LVC schemes for FIP = {f : F

m → F}, or inner-
product VC schemes, that we will denote as IP = (IP.KeyGen, IP.Commit,
IP.Open, IP.Vf). All this algorithms work as the ones for LVC, except that instead
of f ∈ FIPm,p

, they use the vector f ∈ F
m so that f(v) = f · v.

We can write the linear-map f : F
m → F

n as f = (f1, f2, . . . fn), where each
fi is an inner product function. If the IP scheme has homomorphic proofs, and
we set πi to be the proof that fi(v) = fi · v = yi, an aggregation of {πi}n

i=1 is
a proof of the statement f(v) = y. Later, in the following section, we show two
possible constructions of IP vector commitments schemes that can be used to
instantiate the framework in this section.

An IP aggregation algorithm for one-hop aggregation8 of proofs works as
follows:

IP.Agg(pp, {fi, yi}n
i=1, π = (πi)n

i=1) → π′:
Parse pp = H, where H is a hash function, compute γ = H(C, {fi, yi}n

i=1)
Output π′ =

∑n
i=1 γi−1πi

IP.VfAgg(vrk,C, {fi, yi}n
i=1, π

′) → b:
Compute γ = H(C, {fi, yi}n

i=1), f ′ =
∑n

i=1 γi−1fi, y′ =
∑n

i=1 γi−1yi

Output b ← IP.Vf(vrk,C, f ′, y′, π′).

8 Naturally, this can be seen as a particular case of unbounded aggregation.
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Using IP.Agg, we present an alternative way of computing concise proofs of
LVC for more general functions f : F

m → F
n, based on aggregation.

LVC.KeyGen(1λ,F) → (prk, vrk, pp):
– Run (prk, vrk) ← IP.KeyGen(1λ,FIP) and generate aggregation parame-

ters pp = H (a hash function). Output (prk, vrk, pp).
LVC.Commit(prk,v) → (C, aux):

– Run (C, aux) ← IP.Commit(prk,v) and output (C, aux).
LVC.Open(prk, pp, aux, f,y) → π:

– Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector
representing inner-product function fi. Run πi ← IP.Open(prk, aux, fi, yi)
for i ∈ [n] and output π ← IP.Agg(pp, {fi, yi}n

i=1, (πi)n
i=1).

LVC.VfAgg(vrk, pp,C, f,y, π) → b:
– Parse f = (f1, f2, . . . fn) and y = (y1, . . . yn). Consider fi as the vector

representing function fi. Output b ← IP.VfAgg(vrk,C, {fi, yi}n
i=1, π)

4.4 Updability for LVC

We consider updatability as an extra property of the LVC scheme. The KeyGen
algorithm additionally computes the update keys, while two extra algorithms
are defined as follows:

LVC.UpdCom(upk,C, j, δ) → C′: takes as input C, a position j ∈ [m], update key
upk, and a constant δ ∈ M. It outputs C′ as a commitment for v′ = v+δej

9.
LVC.UpdOpen(upk, j, δ, f,y, π) → π′: Takes as input upk, j, δ, a function f , a

valid opening pair (y, π) for f and outputs a proof π′ for the new opening
y′ = f(v + δej).

Update Correctness. Let
(
prk, vrk, upk

) ← LVC.KeyGen(1λ,F), and let
(C, j, f,y, π) be a tuple such that LVC.Vf(vrk,C, f,y, π) = 1. Then LVC satis-
fies update correctness if for any δ ∈ M,

Pr
[
LVC.Vf(vrk,C′, f,y′, π′) = 1

∧ y′ = y + δf(ej)
C′ ← LVC.UpdCom(upkj ,C, j, δ)

π′ ← LVC.UpdOpen(upkj , j, δ, f,y, π)

]

= 1.

Updates for IP. We present a generic construction of the updatability algo-
rithms for inner-product schemes. We state that even though algorithms can be
generalized to LVC for arbitrary functions, for ease of exposition we only present
it for inner-product openings, rather than generic linear-maps.

It is easy to see that commitments can be updated when one value of the vec-
tor changes by simply applying the linear-homomorphic property of the underly-
ing IP scheme. Given C such that (C, aux) ← LVC.Commit(prk,v), when position
t of the vector changes, i.e. v′ = v + δet we can compute a commitment to the
9 This notion can be generalized to more than one position.
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new vector v′ as C′ = (C + Ĉ) where (Ĉ, ˆaux) ← LVC.Commit(prk, et) is given as
an update key.

Moreover, it is possible to update existing proofs using the homomorphic
openings property of the IP scheme: when position t of the vector changes as
above, to update a prior proof we simply add to π a proof π̂ corresponding to
the opening of f(δet). The resulting π′ = π+π̂ corresponds to the opening of the
sum f(v′) = f(v)+ δf(et) with respect to the updated commitment C′ = C+ Ĉ.

We extend IP arguments to satisfy updatability by asking the IP.KeyGen
algorithm to additionally generate updatable keys and introduce IP.UpdCom
and IP.UpdOpen that work the following way;

IP.KeyGen(1λ,FIP) → (prk, vrk, {upkj}m
j=1):

– Additionally generate public update keys upk: Set πuij
← IP.Open(prk,

auxj , ei, uij = ei ·ej), ∀i, j ∈ [m], Define upkj = {πuij
}m

i=1 for all j ∈ [m],
and output (prk, vrk, {upki}m

i=1).
IP.UpdCom(prk,C, t, δ) → C′:

– Set Ĉ ← IP.Commit(prk, et), and output C′ = C + δĈ.
IP.UpdOpen(upkt, t, δ,C, f , y, π) → π′:

– Parse upkt = {πuit
}m

i=1 and compute π̂ =
∑m

i=1 fiπuit
.

– Set π′ = π + δπ̂ as proof for y′ = y + f · δet and output π′.

Theorem 2. If IP satisfies function binding and has homomorphic commit-
ments and openings, the extension above satisfies update correctness.

Proof. The proof follows directly by the definition of homomorphic proof and
IP.UpdCom, IP.UpdOpen.

5 Constructions for Inner-Pairing VC

In this section, we present two constructions of LVC for inner products, that
is, for functions f ⊂ FIP = {f : F

m → F}. We denote as IP = (IP.KeyGen,
IP.Commit, IP.Open, IP.Vf) a vector commitment scheme with inner product
openings. All the algorithms work as the ones for LVC, except that they take
as inputs the vector of coefficients of the linear function f ∈ FIP, f(v) = f · v,
i.e. use the vector f ∈ F

m
p .

The first one is in the monomial basis and the other based on the univariate
sumcheck of [2,25] that considers vectors encoded as polynomials in the Lagrange
basis. We prove they are indeed linear vector commitment arguments with homo-
morphic proofs and openings. Therefore, they can be used as a starting point
to obtain further aggregation properties as shown in Sect. 4.1 and, in particular,
lead to two different more generic linear-map vector commitment schemes.
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5.1 Monomial Basis

For the first scheme, we consider vectors a ∈ F
m encoded as a polynomial in the

monomial basis, that is as a(X) =
∑m

i=1 aiX
i−1.

IP.KeyGen(1λ,FIP) → (prk, vrk):
Generate group description gk = (p, G1, G2, GT , e) ← G(p)
Sample τ ← F

Output prk =
({[τ i]1,2}m−1

i=0

)
, vrk =

(
[τm−1]1,

{
[τ i]2

}m

i=0

)
.

IP.Commit(prk,a) → (Ca, aux): Compute Ca =
∑m

i=1 ai[τ i−1]1 and output
(Ca,a).

IP.Open(prk, aux,b, y) → π:
Find R(X),H(X) such that deg(R) < m − 1 and

(
m∑

i=1

aiX
i−1

) (
m∑

i=1

biX
m−i

)

− yXm−1 = R(X) + XmH(X).

Define R̂(X) = XR(X)
Output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1).

IP.Vf(vrk,Ca,b, y, π) → 0/1: Compute Cb =
∑m

i=1 bi[τm−i]1, parse π = ([R]1,
[H]1, [R̂]1) and output 1 if and only if

e
(
Ca,Cb

) − e
(
y[τm−1]1, [1]2

)
= e

(
[R]1, [1]2

)
+ e

(
[H]1, [τm]2

)
and

e([R]1, [τ ]2) = e([R̂]1, [1]2).

Remark 2. The second verification equation is meant to ensure that [R]1 is the
evaluation at τ of a polynomial of degree at most m−2. Note that it is important
for security that only m − 1 powers of τ are available to the adversary in G1,
otherwise the second equation does not guarantee that the degree is at most
m − 2. Importantly, even though we present our construction using a srs with
powers of τ up to m−1 in G1 and m in G2, it can easily be adapted for a bigger
srs and, in particular, existing trusted setups where the same powers of τ are
available in both groups are enough. For the second check, if m + k powers of τ
are given in G1, R̂(X) should be defined as Xk+2R(X).

We implement this construction for single positions and compare it with
individual position openings in Merkle tree-based vector commitments in the
full version of the paper. Below, we state the theorems for security guarantees,
and refer the reader to the full version for the formal proofs.

Theorem 3. The construction above satisfies Completeness, Homomorphic
Proofs and Homomorphic Openings.

Theorem 4. The construction above satisfies Strong Function Binding in the
AGM under the (m − 1,m)-BSDH Assumption [3].
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Intuition. Without loss of generalization, we consider an adversary that provides
two proofs π1, π2 with IP.Vf(vrk,Ca,bk, yk, πbk

) = 1 for k = 1, 2 and there is no
a ∈ F

m s. t. a · bk = yk.
For commitment Ca and proofs πk = ([Rk]1, [Hk]1, [R̂k]1) under the AGM

we can extract polynomials a(X),Hk(X), Rk(X), R̂k(X) of degree up to m − 1
such that the proof elements are their evaluations in G1 at secret point τ . On
the other hand, the second verification equation in our IP scheme assures that
Rk(X)X = R̂k(X). Because deg(R̂k) ≤ m − 1 deg(R1),deg(R2) ≤ m − 2.

Consider a ∈ F
m the vector of the coefficients of a(X) =

∑m
i=1 aiX

i−1.
Then, from the first verification equation in both of the proofs we have that
p1(X), p2(X) have a common root in τ , where for k = 1, 2:

Pk(X) =
( m∑

i=1

aiX
i−1

)( m∑

i=1

bkiX
m−i

) − ykXm−1 − Rk(X) + XmHk(X).

If for some k, pk(X) is not the zero polynoial, since τ is one of its roots, we
can solve the discrete logarithm problem and extract τ from [Pk(τ)]1. Thus, it
must be the case that pk(X) ≡ 0 for k = 1, 2. Because deg(Rb),deg(Rc) < m−1
and deg(XmHb(X)),deg(XmHc(X)) > m − 1, we have that the coefficient for
Xm−1 in polynomial Pk(X) is

∑m
i=1 aibki − yk = 0. Indeed, there exists a vector

a such that a · bk = yk, contradicting the initial assumption that the adversary
A breaks the strong functional binding.

Updates Without Keys. We remark that we do not need any additional
update keys added to the setup. Indeed, the update key is made by proofs
of inner products between cannonic vectors ei · ei = 1 or ei · ej = 0. In our
construction for encodings in the monomial basis, a proof that ei ·ei = 1 consists
on R(X) = H(X) = 0. On the other hand, to prove that ei · ej = 0 for i �= j
the proof is (the evaluation in the group of) either R(X) = Xm+i−j if j > i, or
H(X) = Xi−j if i > j. As such powers of τ are already included in prk, upk = ∅.

5.2 Lagrange Basis

In this second scheme, for a Lagrange basis {λi(X)}m
i=1 over a multiplicative

group H = {h1, . . . , hm} of size m in F we encode a vector a ∈ F
m as a polynomial

a(X) =
∑m

i=1 aiλi(X). Recall that when H is a multiplicative subgroup, λi(0) =
m−1 for all i ∈ [m]. Moreover, if we set t(X) =

∏m
i=1(X − hi) we have that

λi(X)λj(X) ≡ 0 mod t(X), and λi(X)2 ≡ λi(X) mod t(X). The construction
below, presented in [25], exploits these properties in the proof of openings for
inner-products:

IP.KeyGen(1λ,FIPm
) → (prk, vrk):

Generate group description gk = (p, G1, G2, GT , e) ← G(p), define multi-
plicative group H = {h1, . . . , hm} in F, and compute Lagrange polynomials
{λj(X)}m

j=1 over H.
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Sample τ ← F and output prk =
({[τ i]1,2}m

i=1, {[λi(τ)]1}i=1m−1, [τm]2
)

and
vrk =

(
[1]1,2,

{
[τ i]2, [λi(τ)]2

}m

i=1

)
.

IP.Commit(prk,a) → (Ca, aux): Compute Ca =
∑m

i=1 ai[λi(τ)]1 and output
(Ca,a).

IP.Open(prk, aux,b, y) → π:
Find R(X),H(X) such that deg(R) < m − 1 and

(
m∑

i=1

aiλi(X)

) (
m∑

i=1

biλi(X)

)

− m−1y = XR(X) + t(X)H(X)

Define R̂(X) = XR(X) and output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1).
IP.Vf(vrk,Ca,b, y, π) → 0/1: Calculate Cb =

∑m
i=1 bi[λi(τ)]2

Parse π = ([R]1, [H]1, [R̂]1) and output 1 if and only if

e
(
Ca,Cb

) − e
(
m−1y[1]1, [1]2

)
= e

(
[R]1, [1]2

)
+ e

(
[H]1, [t(τ)]2

)
, and

e
(
[R]1, [τ ]2

)
= e

(
[R̂]1, [1]2

)
.

The proof of completeness can be found in [25]. Below, we state the theorems
for Strong Function Binding and homomorphic proofs and openings, and refer
the reader to the full version of this paper for the formal proofs.

Theorem 5. The construction above has Homomorphic Proofs and Openings.

Theorem 6. The construction above satisfies Strong Function Binding in the
AGM under the (m − 1,m)-BSDH Assumption [3].

Intuition. The proof goes as the one for Theorem 4 except that

pk(X) =
( m∑

i=1

aiλi(X)
)( m∑

i=1

bkiλi(X)
) − m−1yk − XRk(X) + t(X)Hk(X).

Once more, if one of the polynomials pk(X) is not the zero polynomial, since
τ is one of its roots, we can solve the discrete logarithm problem and extract τ
from [Pk(τ)]1.

Then, Pk(X) ≡ 0, for both k = 1, 2. Because deg(Rk) < m − 1 and

( m∑

i=1

aiλi(X)
)( m∑

i=1

bkiλi(X)
) ≡

m∑

i=1

aibkiλi(X) mod t(X),

∑m
i=1 aibkiλi(X) − m−1yk = XRk(X), which implies

∑m
i=1 aibkiλi(0) −

m−1yk = 0. As H is a multiplicative subgroup, λi(0) = m−1 for all i ∈ [m]
and thus

∑m
i=1 aibki = yk. Then, there exists a such that a ·bk = yk for k = 1, 2,

contradicting the initial claim that adversary A is successful.
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Updatability with Short Keys. In this construction, a proof that ei · ei = 1
is the encoding in a group of the polynomial Ri(τ), for Ri(X) = (λi(X)− 1)/X.
On the other hand, the proof that ei · ej = 0 for i �= j is [H(τ)]1, for H(X) =
((λi(X)λj(X))/t(X). Including the evaluation of all these polynomials in upk
would require a srs of quadratic size. Still, as noted in [27], these keys can be
computed in constant time from a linear-size update key.

6 Subvector Openings

In this section, we present schemes for VC with Subvector Openings (SVC),
starting from the constructions of Sect. 5. We will consider SVC as a special case
of LVC. The class of functions that open a set of positions I = {i1, . . . , in} of a
committed vector v ∈ F

m is given by the linear-map fI with

fI : F
m → F

n, fI(v) = (ei1 · v, . . . ein
· v)

where for each k ∈ [n], eik
is the ikth vector of the canonical basis F

m.
Naturally, for a vector v ∈ F

m, we can construct proofs of openings of sub-
vectors vI = (vi)i∈I by aggregating different inner product proofs for vectors eik

for ik ∈ I using the techniques in Sect. 4.1. We refer to these aggregated proofs
as non-native subvector openings, given that they require a random oracle and
in particular, are no longer algebraic and homomorphic. As opposed to them,
we call native subvector opening, a scheme that is algebraic and homomorphic.

In what follows, we improve on Subvector Openings in some special sce-
narios, achieving native aggregation for new schemes and reducing the verifier
complexity in existing ones.

6.1 Native SV Openings for the Monomial Basis

For the construction of Sect. 5.1, we introduce native subvector openings for
subsets with consecutive position I = {i, i + 1, . . . , i + k}. That is, for c̃ =
(ci)i∈I such that there exist u1,u2 with c = (u1, c̃,u2). To prove an opening
of c̃, we only need commitments to R(X) =

∑i−1
s=1 ciX

m−i+s−1 and H(X) =∑m
i=i+k+1 cm−i+s+1X

s−1, which are shifted-encodings of u1, u2. The verifier
checks that deg(R) < m − 1, computes C̃(X) =

∑i+k
s=i c̃sX

s−i and C̃ = [C̃(τ)]1
and checks whether e(C − C̃, [τm−i]1) = e([R]1, [1]2) + e([H]1, [τm+k]2).

Note that, given individual proofs of openings as in Sect. 5.1, that is,
[Rs(τ)]1, [Hs(τ)]1 such that C(X)Xm−s − csX

m−1 = Rs(X) + XmHs(X) and
deg(Rs) < m − 1, for the commitments defined above we have [R]1 = [Ri(τ)]1
and [H]1 = [Hi+k(τ)]1, that is, proofs can be aggregated at no cost for the
prover.

6.2 Non-native SV Openings for the Monomial Basis

For the LVC scheme of Sect. 5.1, the techniques of Sect. 4.1 allow us to redefine
the Open and Vf algorithms to work for an arbitrary subset of positions I ⊂
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[m]. More specifically, the prover will simply run IP.Open(prk, aux, eik
,v) for

k = 1, . . . , n to obtain (vik
, πik

) and πik
a proof of correct computation of vik

.
Then, use the random oracle to sample a randomness γ ∈ F and output πI =∑n

k=1 γk−1πik
.

The verifier will receive πI = ([R]1, [H]1, [R̂]1), compute y =
∑n

k=1 γk−1vik
,

and check as before e([R]1, [τ ]2) = e([R̂]1, [1]2) and

e

(

C,
n∑

k=1

γk−1[τm−ik ]2

)

− e
(
y[τm−1]1, [1]2

)
= e ([R]1, [1]2) + e ([H]1, [τm]2) .

Note that verifier’s work is dominated by the computation of
∑n

k=1 γk−1

[τm−ik ]2, so we analyze for which sets I ⊂ [m] this computation can be
cheaper than |I| G2-exponentiations. Without loss of generality, we can re-assign
γk−1 → γm−ik , and thus our verifier now needs to compute

∑n
k=1[(γX)m−ik ]2 =∑

i∈I [(γX)m−i]2.
Now, note that if Ik,s,n ⊂ [m] is an arithmetic progression, i.e. it is such

that for a given ratio s, a starting power k and a number n of desired elements,
Ik,s,n = {k, s + k, . . . , (n − 1)s + k}, then

∑

i∈Ik,s,n

(γX)m−i = (γX)k 1 − (γX)n

1 − (γX)s
.

This reduces the work of the verifier to compute
∑

i∈Ik,s,n
(γX)m−i to con-

stant. Note that the verifier cannot compute (1 − (γX)s)−1, so we multi-
ply all the terms of the equation by 1 − (γX)s. I.e, the verifier computes
y =

∑
i∈Ik,s,n

γm−iyi and checks whether

e
(
[C]1, γk[τk]2 − γk+n[τk+n]2

) − e
(
[τm−1]1y − [τn+s−1]1γsy, [1]2

)

= e
(
[R]1, 1 − γs[τ s]2

)
) + e

(
[H]1, [τn]2 − γs[τn+s]2

)
.

6.3 Lagrange Basis

Native. In the Lagrange Basis, one can use the native subset openings of [27].
There, the verifier needs to compute computation the vanishing polynomial
tI(X) =

∏
i∈I(X−hi). To reduce verifer’s work we focus on those subsets I ⊂ [m]

such that tI(X) can be calculated in less than |I| computations. One answer to
this question comes from cosets. That is, given H = {1, ω, ω2, . . . , ωm−1} group
of roots of unity where m = 2n, let Hk be the subgroup of order 2k of H, where
k goes from 0 to n. Then, for each 0 ≤ s < 2n/k we can construct the coset
I = ωs

Hk, whose vanishing polynomial is tI(X) = X2k − (ωs)2
k

. Verifier accepts
if and only if e

(
C − C̃, [1]2

)
= e

(
[H]1, [x2k

]2 − ωs2k)
.

Non-native. Given that the native subvector opening procedure above works
for arbitrary subsets I ⊂ [m], we don’t consider aggregation of individual posi-
tions. The latter makes sense only when applying a linear function to the new
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subset. That is, when the verifier is given Cf,I , claimed to be a commitment to
f · cI , for some linear function f applied to the vector cI = (ci)i∈I .

7 Maintainable Vector Commitment Schemes

7.1 Multivariate Case

One of the key points of vector commitment schemes that allow to speedup
subvector openings is the ability to pre-compute and store individual openings
and later aggregate them to create subvector openings without incurring linear
amount of computations each time.

In constructions such as the ones presented in Sect. 5, the proof of opening of
one position involves all other elements in the vector. That is, the polynomials
committed to create the proof have coefficients that involve all the values of the
committed vector v ∈ F

m. As a consequence, prover work is linear in the size of
v (as it has to evaluate polynomials of degree m). To alleviate this, Shrinivasan
et al. [26] utilize a tree-like structure for computing/communicating proofs which
allows pre-computation in quasi-linear (instead of quadratic) time and efficient
updates at the cost of a proof of size log m.

In this section, we extend the techniques of [26] to achieve trade-offs and
efficiency improvements. Roughly speaking, we present a way to “compose” the
tree-based commitments of [26] with constant size ones. We achieve this by con-
sidering trees that themselves have commitments for leaves instead of openings.
The intuition is the following: we divide the vector v in small chunks {vj} ∈ F

k.
We then arrange these chunks in a tree as follows: each chunk corresponds to a
leaf of the tree and each node is a succinct representation of its children. The
root of the tree is the commitment to the vector. An opening proof only involves
the elements in the path of the root to the leaf containing the position to be
opened. That is, if we want to open value a in position i of v ∈ F

k·m′
, we prove

that (1) cj is the leaf that contains the commitment to the j chunk containing
i and (2) cj opens to a in the position corresponding to i. The former part can
be pre-computed and efficiently maintained while the latter is computed on the
fly.

This results in a construction with the following memory/time trade-off: for
any k,m′ ∈ N with m = k · m′, any opening can be computed in time inde-
pendent of m′ after pre-computing and storing Oλ(m′) values (independent of
k). Furthermore, a relaxed maintainability notion is satisfied: all stored values
can be pre-computed efficiently in Oλ(m · log m′) time and updated in O(log m′)
time.

Additionally, we show how to use a higher arity tree (any constant 	 contrary
to the binary ones used in [26]) to further reduce the proof size by a constant
factor, namely Oλ(log� m′) (assuming a constant size commitment for the leaf
part), at the expense of a slightly worse prover time. We note that–apart from
the evident advantage of shorter proofs–this results in smaller aggregation time
for the prover and verifier when using inner pairing products.
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Our starting point is the PST polynomial commitment [24]. The PST poly-
nomial commitment is a natural generalization of the KGZ polynomial commit-
ment [19] for multivariate polynomials, that is, it allows to commit to ν-variate
polynomials of individual degrees less than 	. The core idea of the construction
lies in the fact that for every p(X) ∈ F[Xν , . . . , X1] and x = (xν , . . . , x1) ∈ F

ν ,
p(x) = y if and only if there exist polynomials Hν(X), . . . , H1(X) such that

p(X) − y =
ν∑

j=1

Hj(X) · (Xj − xj)

where the proof polynomials Hj(X) are efficiently computable.
Using standard techniques to encode monomials in a cryptographically

secure bilinear group (encode setting X = τ and publishing all the monomi-
als [τdν

ν · · · τd1
1 ]1 and [τ ]2) results in a polynomial commitment with proof of size

roughly ν group elements.

Tree Structure. To achieve the flexible memory/time trade-off, instead of hav-
ing the vector values in the leaves of the tree, we replace them with elements
[r]1 · vj where [r] ∈ G

k
1 is the commitment key of an arbitrary algebraic vector

commitment scheme LVC. To open a position of v, we use the PST approach to
reach corresponding leaf j, and then the opening algorithm of LVC on vj .

One subtlety of replacing leaves with commitments is that a standalone PST
proof is no longer binding, that is, the prover can undetectably claim arbitrary
values that supposedly correspond to a leaf. We overcome this by using a low
degree test to ensure that the claimed value for the leaf is uniquely defined.

Note that the root of the tree depends on the elements τ , r. Viewing both
τ = (τν , . . . , τ1) and r = (rk, . . . , r1) as formal variables X,R, we can treat the
root node (the commitment) as an evaluation of a polynomial. Now, note that
this polynomial corresponds to the interpolation of the elements of the leaves in
Σν . Thus, the aforementioned polynomial is

p(X,R) = λ(X) · (R · v1, . . . ,R · v�ν ) = (λ(X) ⊗ R) · v
The prover can still evaluate one by one the variables Xν , . . . , X1 at σν , . . . , σ1

-as it would do in the simple PST case- and end up with a polynomial q(R) =
p(σ,R) = R · vj . To ensure that q does not contain any Xj variable, we also
include a low degree test in the proof. The evaluation of the latter polynomial
at [r]1 corresponds to the leaf commitment at position σ and can be opened by
employing the Open algorithm of the leaf commitment scheme with key [r]1.

Construction. First, we introduce some notation. Let Σ ⊆ F denote an interpo-
lating set of size 	. Given σ = (σν , . . . , σ1) ∈ Σν , we denote σ|i = (σν , . . . , σi) ∈
Σν−i+1. For v = (vσ )σ∈Σν with vσ ∈ F

k and σ1 ∈ Σi we denote with vk,σ1

the vector (vσ1,σ2)σ2∈Σν−i , that is, the concatenation of vectors vj whose 	-ary
representation of the index j is prefixed with σ1. Finally, we denote with τν,� the
ν-variate monomial basis of individual degree less than 	 evaluated at τν , . . . , τ1.
In all cases, we omit the subscript when it is clear from the context.
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We present the construction next. While our aim is individual position open-
ings, the construction supports a bigger family of functions: linear forms10

applied to one of the k-sized chunks of the vector. Concretely, let Fp,k ⊆{
f : F

k → F
}

be the family of linear forms supported by the leaf commitment
scheme. We define the 	, ν-extended family as

Ext�,ν-Fp,k = {f : F
k·�ν → F | ∃f ′ ∈ Fp,k, i ∈ {1, . . . , 	ν} s.t.

∀v1, . . . ,v�ν ∈ F
k : f(v1, . . . ,v�ν ) = f ′(vi)}

Our construction is a linear vector commitment MVTree for the family
Ext�ν -Fp,k, that uses as a black box an algebraic linear vector commitment
scheme LVC′ for the family Fp,k.

MVTree.KeyGen(1λ,Ext�ν -Fp,k) → (prk, vrk):
– (prk′ = [r]1, vrk′) ← LVC′.KeyGen(1λ,Fp,k)
– Let λ(X) be the vector of Lagrange polynomials associated to Σ.
– Sample τν , . . . , τ1 ← F and output prk = (prk′, [λ]1 = [λ(τν) ⊗ · · · ⊗

λ(τ1) ⊗ r]1, [τ ⊗ r]1), vrk = (vrk′, [τν ]2, . . . , [τ1]2, [τ �−1
ν · · · τ �−1

1 ]2),
upk = ({[λ(τj) ⊗ · · · ⊗ λ(τ1) ⊗ r]1}1j=ν−1),

MVTree.Commit(prk,v) → (C, aux):
– For all σ ∈ Σν : compute (Cσ , auxσ ) ← LVC′.Commit(prk′,vσ ). Compute
C = [p(τ , r)]1 = [λ]1 · v and output C, aux =

({auxσ}σ∈Σν ,v
)

MVTree.Open(prk, aux, f,y) → π:
– Let f(v1, . . . ,v�ν ) = f ′(vi) for f ′ ∈ Fp,k and i = (σ)� in 	-ary.
– Consider τ , r as formal variables X = (Xν , . . . , X1),R = (Rk, . . . , R1).
– Denote pν+1(X,R) = p(X,R) = (λ(X) ⊗ R) · v
– For all ν ≥ j ≥ 1:

Compute pj(Xj−1, . . . , X1,R) = λ(Xj−1, . . . , X1,R) · vσ|j

Compute Hj(Xj , . . . , X1,R) as

Hj(Xj , . . . , X1,R) =
pj+1(Xj , . . . , X1,R) − pj(Xj−1, . . . , X1,R)

(Xj − σj)

and group element [Hj ]1 = [Hj(τj , . . . , τ1, r)]1
– Compute Ĉσ = [τ �−1

ν · · · τ �−1
1 · r]1 · vσ , π′ ← LVC′.Open(prk′, auxσ , f ′,y)

and output π = ([Hν ]1, . . . , [H1]1,Cσ , Ĉσ , π′).
MVTree.Vf(vrk,C, f,y, π) → 0/1:

– Let f(v1, . . . ,v�ν ) = f ′(vi) for f ′ ∈ Fp,k and i = (σ)� in 	-ary.
– bPath ← e(C − Cσ , [1]2) =

∑ν
j=1 e([Hj ]1, [τj − σj ]2)

– bLD-Test ← e(Cσ , [τ �−1
ν · · · τ �−1

1 ]2) = e(Ĉσ , [1]2)
– bLeaf ← LVC′.Vf(vrk′,Cσ , f ′,y, π′)
– Output bPath ∧ bLD-Test ∧ bLeaf

10 We use linear forms for simplicity, one could also consider general linear functions.
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We omit explicitly describing the update algorithm. Instead, we demonstrate in
Theorem 8 how to efficiently update all proofs after modifying a position in the
committed vector.

We summarize the properties of the construction in the following theorems.
Due to space limitations, we omit their proofs and refer the interested reader to
the full version of this paper.

Theorem 7. Let LVC′ be an algebraic vector commitment scheme that satis-
fies completeness, homomorphic openings and weak function binding for a func-
tion family Fp,k. Then, MVTree satisfies (1) completeness, (2) Homomorphic
Openings and (3) strong function binding for Ext�ν -Fp,k in the AGM under the
(	 − 1) · ν-BSDH assumption [3].

Theorem 8. Consider construction MVTree and let πσ = ([Hσ
ν ]1, . . . , [Hσ

1 ]1,
Cσ , Ĉσ , π′

σ ) be some proof of opening for a leaf commitment in position σ written
in 	-ary.

Then, computing all partial proofs
{

([Hσ
ν ]2, . . . , [Hσ

1 ]1,Cσ , Ĉσ )
}

σ∈Σν
can be

done in Oλ(k ·ν ·	ν) = Oλ(ν ·m) time and storing them needs Oλ(	ν) = Oλ(m/k)
space. Furthermore, if we update C by adding δ in some position i∗, we can
update all partial proofs in time Oλ(ν).

Efficiency of the Multivariate Construction. We only consider the case
where 	 = O(1). First, let’s focus on the time needed to compute [Hj ]1. One
can simply write the polynomial pj − pj−1 as a polynomial in 1,Xj , . . . , X

�−1
j

with polynomial coefficients in the other variables. Then, we can use standard
(univariate) polynomial division to divide each term with Xj − σj in constant
time. To encode it in the group, it is enough to note that the total degree of
each term is k · 	j−1, so we need to perform 	 multi-exponentiations of this size
totaling in O(k · 	j) operations.

That said, we demonstrate the efficiency of the construction. The commit-
ment key consists of linear in m group elements. Opening needs O(k · 	j) opera-
tions for each iteration, totaling in O(k · 	ν) time. By inspection of the construc-
tion, proofs size is log�(m/k) + 2 + |π′|, where π′ is the size of an opening of
the leaf commitment. Finally, verification consists of (1) a log�(m/k)-size pairing
product equation, (2) a low degree test involving constant operations and (3) a
verification of an opening of a leaf commitment.

Remark 3 (On aggregation). The first two verification tests are pairing product
equations. Assuming the leaf commitment verification is also a pairing product
equation, one can use inner pairing products [6] to aggregate many such equa-
tions as done in [26] and, thus, achieve one-hop cross commitment aggregation.
While the aggregated proof size decreases exponentially, this comes at the cost
of a significant overhead for the prover due to the need to work in the target
group. Reducing the proof size from log2 m to roughly log�(m/k) (assuming
constant size/verification for leaf commitment opening) can make aggregation
significantly cheaper for the prover.
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7.2 Univariate Maintainable Vector Commitments

In this section, we give an optimized construction that achieves the same
memory-time tradeoffs for the prover that the scheme in Sect. 7.1, but for uni-
variate polynomials. For that, we rely on the q-BSDH assumption for q = m − 1
[3], while we only needed q = log m plus the assumption that the leaf commit-
ment is sound in the multivariate case.

Our work generalizes a previous univariate construction of [28] in a similar
way as it generalizes hyperproofs. Namely, our construction truncates the tree
at some level so that leaves are commitments and not individual positions.

For vectors of size m, we offer the following trade-off: for any ν, κ, such
that m = 2ν+κ+1, one can derive openings of size ν + 5 group elements. The
prover can pre-compute and store 2ν − 1 proofs, and then compute proofs by
performing O(κ2κ) group operations. We show also how to compute all proofs
with O(νm) group operations (plus O(m(ν + κ)) field operations). The proofs
are maintainable, as an update in a position requires recomputing O(ν) proofs.
One interesting feature is that the trusted setup depends only on m (the powers
of τ) and not on ν, κ, so the right tradeoff can be decided on the fly.

Overview. Our construction builds a tree of commitments to a vector v ∈ F
m

build as follows. The root of the tree is a commitment C = [λ]1v, where
λ = ([λ1(τ)]1, . . . , [λm(τ)]1), for {λj(X)} the Lagrange interpolation polyno-
mials for H. The two children will be C0 = [λ0]1v0 and C1 = [λ1]1v1, which are
commitments to v0 and v1 with keys λ0 and λ1 of half the size to be specified
next. The two children of C0 will be C00 = [λ10]1v10,C10 = [λ10]1v10 and so on.
The leaves are commitments Cb, b = (bν , . . . , b0) ∈ {0, 1}ν+1 to vectors of size
2κ. For any leaf index b = (bν , . . . , b0), we denote b|j = (bj . . . b0) the suffix11 of
size j. Note that Cb|j for j = 0, . . . , ν − 1 denotes all the commitments from the
root to the leaf Cb.

The division into vectors of half the size is done in bit reverse order according
to the least significant bit of the binary representation of the index, b0. At the
first level, there will be two vectors v0,v1 of size m/2 containing all positions of
v with suffix b0. At the next level, there will be four vectors v00,v01,v10,v11 of
size m/4, and vb1b0 indicates all the positions of v (in the natural order) that
have as suffix b1b0 and so on.

The division into commitment keys of half the size will follow a similar pat-
tern. At level 1, the group of roots of unity H will be split into H

0 and H
1, accord-

ing to the least significant bit of the binary representation of the index of the root,
i.e. H

0 consists of all even and H
1 all odd powers of ω. In particular, H

0 are the
roots of unity of size m/2, and H

1 = ωH
0 is a coset. At level 2, the commitment

keys will be associated to H
00, H

01, H
10, H11 and by the same reasoning, H

00 are
the roots of unity of size m/4, H

10 = ω2
H

00, H
01 = ωH

00 and H
11 = ω3

H
00. More

generally, we note that for any 0 ≤ j ≤ ν and any string (bj , . . . , b0) ∈ {0, 1}j+1,

11 Note that this notation is different than the one we used in the multivariate case. In
the latter case, this notation denoted prefixes while here it denotes suffixes. We do
this because in each case the corresponding notation makes presentation easier.



Linear-Map Vector Commitments and Their Practical Applications 215

H
b|j = ωs

Hr, for s =
∑j

i=0 bi2i and r = m
2j+1 . The vanishing polynomial associ-

ated to H
b|j will be denoted tb|j (X) = Xr − (ωs)r = X

m

2j+1 − ω
m

∑j
i=0 bi2

i

2j+1 . The
Lagrange polynomials associated to the interpolation set H

b|j with the natural
order will be written as λb|j (X) = (λb|j

1 (X), . . . , λb|j
r (X)) and the commitment

key for node b|j is λb|j = [λb|j (τ)]1.
As in the multivariate case, the idea to open the commitment to some func-

tion f that is a linear function of some chunk vi is to (1) open the root com-
mitment to the leaf and (2) open the commitment to the leaf using the IP
argument for the Lagrange basis of Sect. 5 or the construction of Tomescu et
al. [27]. For (2), since at the leaf level the commitment is w.r.t to the key λb

for some b = (bν , . . . , b0), we prove the following lemma, that shows that the
construction for inner products of Sect. 5 works for any coset of roots of unity.

Theorem 9. Let H ⊂ F be a subset of roots of unity of size m = 2ν+κ+1,
for some κ, ν ≥ 0. Given some b ∈ {0, 1}ν+1, define s =

∑ν
i=0 bi2i, r = 2κ,

Hr ⊂ H the subgroup of roots of unity of size r, and H
b = ωs

Hr. Let tb(X)
be the vanishing polynomial at H

b and λb(X) the associated Lagrange basis
polynomials. Then, if A(X) = λb(X) · a and B(X) = λb(X) · b, it holds that
a · b = y if and only if there exist polynomials H(X), R(X) with deg(R) < r − 2
such that

A(X)B(X) − r−1y = XR(X) + tb(X)H(X).

Therefore, at any leaf b we can open the commitment to any linear relation
and verify with the same equation. To open C to a certain leaf commitment Ci,
the idea is to implicitly show from root to leaf that Cb|j , Cb|j+1 agree in H

b|j+1 .
This is proven by showing that their difference is divisible by t(1−bj+1)b|j (X).
More specifically, we prove the following lemma, that shows how the parent and
the children nodes ate each level relate through a simple equation:

Lemma 1. Consider two cosets H0b|j and H1b|j . Let Cb|j (X) be an encoding
of vector vb|j , and C0b|j (X), C1b|j (X) those of vectors v0b|j and v1b|j . For all
j = 0, . . . , ν it is true that

Cb|j (X) = t1b|j (X)
C0b|j (X) − C1b|j (X)

2ωsj
+ C1b|j (X)

Cb|j (X) = t0b|j (X)
C0b|j (X) − C1b|j (X)

−2ωsj
+ C0b|j (X)

Scheme Description. Formally, we present an LVC commitment scheme that
works for the function family:

Extν-Fp,2κ = {f : F
m → F,m = 2κ+ν+1 | ∃f ∈ F

2κ

, i ∈ 2ν s.t.

∀v1, . . . ,v2ν ∈ F
2κ

: f(v1, . . . ,v2ν ) = vi · f}
.

Algorithms LVC.KeyGen and LVC.Commit are the same as the Lagrange basis
construction of Sect. 5 and are omitted. The commitment to v is C = [λ�]1v
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together with the auxiliary input information aux. Note that step 4. of the open
algorithm is IP.Open from Sect. 5.2.

UVTree.Open(pk,b, aux, f,y) → π:
1. Let f(v0...0, . . . ,v1...1) = vb · f for f ∈ F

2κ

and some b = (bν , . . . , b0).
2. For any 0 ≤ j ≤ ν, compute Cb|j = [λb|j ]1vb|j .
3. Compute [H]1 = (C0 − C1)/2, and for any 0 ≤ j ≤ ν − 1, compute

Kb|j = (−1)j(2ωsj )−1. Then define [Hb|j ]1 = Kb|j (C0bj ...b0 − C1bj ...b0).
4. Find R(X),Hb(X) such that if

(
λb(X) vb

)
(

2κ
∑

i=1

fiλ
b
i (X)

)

− y2−κ = XR(X) + Hb(X)tb(X).

Define R̂(X) = Xm+1−2κ

R(X).12 Define Ĉb = τm−2κ

Cb.
5. Output π = ([Hb0 ]1, . . . , [Hb|ν−1 ]1, [Hb(τ)]1, [R(τ)]1, [R̂(τ)]1,Cb, Ĉb).

UVTree.Vf(vk,C, f,y, π) → 0/1:
1. Use the vector representation f of f and compute Cf =

∑2κ

i=1 fi[λb
i (τ)]2.

2. Check that

e(C − Cb, 1) = e([H]1, [tb0(τ)]2) +
ν−1∑

j=0

e([Hb|j ]1, [tb|j+1(τ)]2) (1)

e
(
Cb,Cf

) − e
(
m−1y[1]1, [1]2

)
= e

(
[R]1, [1]2

)
+ e

(
[Hb]1, [tb(τ)]2

)
(2)

e
(
[R]1, [τm+1−2κ

]2
)

= e
(
[R̂]1, [1]2

)
(3)

e
(
Cb, [τm−2κ

]2
)

= e
(
Ĉb, [1]2

)
(4)

Maintainability. The cost of computing all proofs is O(νm). For each piece vi

with O(κ2κ) operations one can compute the coefficients in the monomial basis.
Following Lemma 1, the parent node can be computed in cost dominated by
2κ = m

2ν+1 exponentiations from the expression of children nodes, and since
there are 2ν parent nodes the cost is dominated by m

2 exponentiations. Going
one level up, the vector size doubles but the number of nodes is halved. We
conclude that to compute all proofs one needs O(κ2κ + ν m

2 ). The number of
proofs to store (including leaf commitments) is 2ν+1 − 1.

Theorem 10. When instantiated with a function binding argument for inner
product relations IP, the scheme above is a function binding LVC argument under
the AGM if the (m − 1,m)-DLOG assumption holds.

12 We assume as in Sect. 5 that at most m − 1 powers of τ are in the SRS in group G1.
The degree check is meant to ensure that R(X) is of degree at most 2κ − 2.
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Proof. Let A be an adversary against the function binding game as in Defini-
tion 3. We will see, through game reductions, that the advantage of A in strong
function binding is negligible even for k = 2, that is, for two non-compatible
functions f1, f2. Note that for two functions to be non compatible they must be
defined on the same block b.

A plays Game0, the strong function binding game as in Definition 3, and out-
puts (C, {fk, yk,πk}k=1,2), where π1 = ({[Hb|j]1, }ν−1

j=0 , [Hb]1, [R]1, [R̂]1,Cb, Ĉb),
π2 = ({[H ′

b|j]1}ν−1
j=0 , [H ′

b]1, [R′]1, [R̂′]1,C′
b, Ĉ′

b), s.t. LVC.Verify(vk,C, f1, y1,π1) =
1, LVC.Verify(vk,C, f2, y2,π2) = 1, and wins if there exists no v ∈ F

m such that
f1(v) = y1 and f2(v) = y2.

Recall A is algebraic and thus we assume one can extract polynomials
Cb(X), C ′

b(X), Ĉb(X), Ĉ ′
b(X) which are, algebraic representations of Cb,C′

b

and Hb(X),H ′
b(X), {Hb|j (X),H ′

b|j
(X)}ν−1

j=0 the ones for [Hb]1, [H ′
b]1, {[Hb|j ]1,

[H ′
b|j

]1}ν−1
j=0 , respectively.

Let Game1 be exactly as Game0 but the game aborts if Cb(X) or C ′
b(X) are

polynomials of degree more than 2κ − 1. If this is not the case, it is easy to find
τ by observing that in this case either Cb(X)Xm−2κ − Ĉ(X) or C ′

b(X)Xm−2κ −
Ĉ ′(X) is a non-zero polynomial with a root in τ so the difference between both
games is bounded by the advantage of any adversary against the (m − 1,m)-
DLOG problem.

Let Game2 be exactly as Game1 but upon receiving π1,π2, it checks if Cb

and C′
b are equal and aborts otherwise. We next bound the probability of abort.

Define the polynomial p(X) = Cb(X) − C ′
b(X) − (H(X) − H ′(X))tb0(X) +

+
∑ν−1

j=0 (Hb|j (X)−Hb|j+1(X))tb|j (X), which is the difference of verification Eq.
(1) for each commitment. If p(X) �= 0, the output of the adversary can be used
to construct an adversary against the (m − 1,m)-DLOG assumption, since τ
is a root of p(X). On the other hand, if p(X) = 0, Cb(X) − C ′

b(X) can be
written as a sum of terms that are multiples of tb|j (X) for j = 0, . . . , ν. But all
of these vanishing polynomials evaluate to 0 in h ∈ H

b, since tb(X)|tb|j (X) for
j = 0, . . . , ν. Therefore, Cb(X) − C ′

b(X) is also 0 when evaluated at the coset.
But since this polynomial is of degree at most 2k, Cb(X) = C ′

b(X) which implies
that necessarily Cb = C′

b.
Therefore, in Game2, except with negligible probability the leaf commitment

is the same and the probability that the adversary wins is the same as in the
strong function binding game of the inner product commitment. 
�
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Abstract. Vector commitments allow a user to commit to a vector of
length n using a constant-size commitment while being able to locally
open the commitment to individual vector coordinates. Importantly, the
size of position-wise openings should be independent of the dimension
n. Gorbunov, Reyzin, Wee, and Zhang recently proposed PointProofs
(CCS 2020), a vector commitment scheme that supports non-interactive
aggregation of proofs across multiple commitments, allowing to drasti-
cally reduce the cost of block propagation in blockchain smart contracts.
Gorbunov et al. provide a security analysis combining the algebraic group
model and the random oracle model, under the weak n-bilinear Diffie-
Hellman Exponent assumption (n-wBDHE) assumption. In this work,
we propose a novel analysis that does not rely on the algebraic group
model. We prove the security in the random oracle model under the n-
Diffie-Hellman Exponent (n-DHE) assumption, which is implied by the
n-wBDHE assumption considered by Gorbunov et al. We further note
that we do not modify their scheme (and thus preserve its efficiency) nor
introduce any additional assumption. Instead, we prove the security of
the scheme as it is via a strictly improved analysis.

Keywords: Vector commitments · Aggregation · Provable security

1 Introduction

As introduced in [12,22], vector commitments (VCs) allow a user to commit
to a vector of messages by generating a short commitment string. Later, the
committer should be able to concisely reveal individual coordinates of the mes-
sage vector. Here, “concisely” means that the partial opening information (called
“proof” hereafter) should have constant size – no matter how large the commit-
ted vector is – and still convince the verifier that the opened coordinate is correct.
As in standard commitments, a vector commitment scheme should satisfy two
security properties: (1) A binding property which asserts that no efficient adver-
sary should be able to generate a commitment of a vector that can be opened to
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two different values at the same position, and (2) a hiding property which guar-
antees that revealing a subset of components should not reveal any information
about messages at non-revealed positions. Vector commitments enable signifi-
cant savings in terms of storage, by storing only a constant-size commitment
to a vector instead of commitments to individual coordinates, and bandwidth,
thanks to the ability to provably and succinctly open individual positions.

In 2020, Gorbunov, Reyzin, Wee, and Zhang [16] introduced a vector com-
mitment scheme, called PointProofs, which additionally supports non-interactive
aggregation of proofs across multiple commitments. Two types of aggregation
are supported:

– Same-commitment aggregation allows anyone to publicly aggregate single-
position proofs for the same vector commitment into a single proof;

– Cross-commitment aggregation allows anyone to further aggregate same-
commitment-aggregated proofs for distinct commitments (and possibly dis-
tinct subsets of positions) and fold them into a single constant-size proof.

Supporting proof aggregations is particularly useful for optimizing dis-
tributed applications, such as blockchain propagation. In this context, a third
party (the validator) validates blocks by performing operations that depend on
data owned by several distinct users. Vector commitments that support proof
aggregation make it possible to drastically reduce storage: Instead of storing all
users’ data, each user can commit to their data individually so that a valida-
tor stores only their respective (concise) commitments. When needed, a user
can compute proofs for opening positions relevant to the block validation, and
aggregate these proofs into a single proof using same-commitment aggregation.
Cross-commitment aggregation further allows a validator to aggregate all proofs
from distinct users into a single proof that can be included in a block, let-
ting other validators verify the block using a single proof. We also note that
PointProofs supports updates of commitments, allowing a user who has already
committed to a vector to update some components of this vector without having
to compute a new vector commitment from scratch.

In [16], Gorbunov et al. consider the use case of blockchain smart contracts.
They show that using their scheme instead of former state-of-the-art vector
commitments allows a 60%-reduction of bandwidth overheads for propagating a
block of transactions. In this work, we focus on improving the security analysis
of the scheme without modifying it. We thus refer to [16] for further applications
as well as for a detailed efficiency analysis of PointProofs in terms of space and
time.

The security requirements of vector commitments with aggregation are eas-
ily defined by extending the standard hiding and binding requirements. Specifi-
cally, the hiding property requires that (possibly aggregated) proofs for opened
positions do not reveal any information about unopened messages. The binding
property is extended as follows: For same-commitment (resp. cross-commitment)
aggregation, binding requires that no efficient adversary be able to come up with
a vector commitment C (resp. a set of vector commitments C1, . . . , C�) together
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with two conflicting aggregated proofs, which open a position of an output vec-
tor commitment to two distinct values. While the PointProofs commitment is
perfectly hiding (like its underlying vector commitment scheme [22]), its compu-
tational binding property is argued in the algebraic group model, as well as in
the random oracle model (ROM), under the n-wBDHE assumption in bilinear
groups.

Recall that the algebraic group model (AGM) is an intermediate idealized
model, introduced in [15], that stands between the generic group model and the
standard model. As a reminder, in the generic group model, adversaries do not
have access to the bit representation of group elements: From the adversary’s
standpoint, each group element is represented by a unique uniformly random bit-
string, and group operations are performed by querying an oracle that returns
the representation of the resulting group element (to ensure uniqueness, the ora-
cle keeps track of all group elements known to the adversary). In the generic
group model, computational problems and their decisional variants are equiva-
lent, and the Discrete Logarithm problem is provably intractable, as shown by
Shoup in [30]. This illustrates why proofs in the generic group model are more
often considered as sanity checks rather than proofs of security.

The algebraic group model is a security model weaker than the generic group
model, in which one only considers algebraic adversaries. Unlike the generic
group model, no restriction is made regarding access to the group elements in
the AGM: Algebraic adversaries have the same access to group elements as in the
standard model. Yet, adversaries are restricted to only handle group elements
that are computed by applying group operations to known group elements, sim-
ilarly as in the generic group model. That is, given elements g1, . . . , g� from
a multiplicative group G, an algebraic adversary can only access elements of
the form

∏�
i=1 gλi

i for coefficients λi’s of its choice. Hence, the main difference
between the generic group model and the algebraic group model is that the lat-
ter allows using coefficients λi that depend on the actual bit representation of
elements gi’s, while the former forbids it. Despite this minor relaxation, the alge-
braic group model is still considered as being very idealistic and to be avoided
when it is possible.

Our Contribution. In this work, we provide a different security analysis of Point-
Proofs, which relies on the Generalized Forking Lemma [1] and the Local Forking
Lemma [2]. Using these tools, we prove the scheme to be binding in the ran-
dom oracle model, under the n-Diffie-Hellman Exponent (n-DHE) assumption
in groups equipped with a bilinear map. As opposed to the original proof of
Gorbunov et al. [16], we circumvent the use of algebraic group model, and rely
on a weaker assumption; the n-DHE assumption being implied by the aforemen-
tioned n-wBDHE assumption. In the ROM, we thus prove the binding property
under the same assumption as the one used in the underlying vector commitment
scheme due to Libert and Yung [22].

We believe this result to be important in the context of vector commitments
as it proves the security of PointProofs as a vector commitment scheme support-
ing cross-commitment aggregation with constant-size openings under a falsifiable
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assumption [26] without restricting oneself to algebraic adversaries. Moreover,
PointProofs is extremely efficient [32] and, among known candidates support-
ing cross-commitment aggregation [5,16,31], it is the only one that simultane-
ously provides optimal proof length and linear-size public parameters. Even if we
only consider same-commitment aggregation, it implies one of the most efficient
schemes with sub-vector openings among those [13,16,17,32] that simultane-
ously feature linear-size public parameters and optimal-size proofs (recall that
elements of a pairing-friendly group usually have a shorter representation than
those of hidden-order groups).

We insist that we do not introduce any additional assumptions in Point-
Proofs, neither do we alter the efficiency of the scheme in the process. Our app-
roach thus provides a strict improvement over the prior analysis. Before outlining
our security proof, we first briefly recall the PointProofs construction.

Construction. PointProofs builds on the vector commitment of [22] and can also
be seen as an application of the inner product functional commitment scheme
of [21], which are both inspired by the broadcast encryption scheme of Boneh,
Gentry and Waters [8]. Let n denote the dimension of committed vectors, and
consider cyclic groups G = 〈g〉 and Ĝ = 〈ĝ〉 of prime order p equipped with an
asymmetric bilinear map e : G × Ĝ → GT . Let gT = e(g, ĝ) be the generator
of GT . The scheme uses public parameters

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n],H

)
,

with gi = g(α)i

and ĝi = ĝ(α)i

, where α is chosen uniformly at random from Zp,
and H : {0, 1}∗ → Zp is a hash function modeled as a random oracle.

To commit to a vector m = (m1, . . . ,mn) ∈ Z
n
p , one chooses γ ← U(Zp)

uniformly and computes a multi-base Pedersen commitment [27] of the form

C = gγ ·
n∏

j=1

g
mj

j = gγ+
∑n

j=1 mi·αj

,

which can be seen as raising g to the evaluation of a polynomial defined by the
coefficients contained in m. To open a position i ∈ [n] of m to mi, the committer
reveals a proof

πi = gγ
n+1−i ·

n∏

j=1,j �=i

g
mj

n+1−i+j =
(
C/gmi·αi

)αn+1−i

,

which is an element of G whose discrete logarithm is the same polynomial eval-
uation as in C, except that the coefficient mi is lacking, and the polynomial is
multiplied by αn−i+1, so that πi does not depend on the monomial αn+1. This
proof can be easily verified by checking that

e(C, ĝαn+1−i

) = e(πi, ĝ) · gmi·αn+1

T ,

where gαn+1

T = e(g1, ĝn) is computable from the public parameters.
In order to aggregate multiple proofs (πi)i∈S involving the same commitment

C, where S ⊆ [n], anyone can derive randomness for each proof πi from the
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random oracle as ti ← H(i, C, S,m[S]), with m[S] being the sub-vector (mi)i∈S ,
and define the aggregated proof as πS =

∏
i∈S πti

i . Verification is achieved in
a similar way to the single position case, by additionally verifying the linear
combination for coefficients provided by the random oracle evaluations. That is,
the verifier checks that

e(C, ĝ
∑

i∈S αn+1−i·ti) = e(πS , ĝ) · g
αn+1 ∑

i∈S mi·ti

T .

Finally, the cross-commitment aggregation of proofs (πS(j))j∈[�] (which might
result from the same-commitment-aggregation process) proceeds in a similar
way. Again, some randomness t′j ← H ′(j, {C(j), S(j),m(j)[S(j)]}j∈[d]) is first
derived from random oracle evaluations (of a second random oracle H ′), and
the cross-commitment aggregated proof is defined to be π =

∏�
j=1 (πS(j))t′

j .
Verification is performed in a similar way to the same-commitment-aggregated
case: The verifier first derives all random coefficients (the t

(j)
i for i ∈ S(j) for

each underlying same-commitment-aggregated proof, as well as the t′j) before
verifying that

∏

j∈[�]

(
e(C(j), ĝ

∑
i∈S(j) αn+1−i·t(j)

i )
)t′

j

= e(π, ĝ) ·
∏

j∈[�]

(

g
αn+1·∑

i∈S(j) m
(j)
i ·t(j)

i

T

)t′
j

.

(1)

Technical Overview. As already mentioned, our proof strategy relies on the
Local [2] and Generalized [1] Forking Lemmas. We first briefly remind the intu-
ition behind these lemmas. The standard Forking Lemma [29] considers the
setting in which a probabilistic polynomial time adversary A, given access to a
random oracle H, succeeds with non-negligible probability in some experiment
which consists of outputting a pair (y, aux), where y lies in the domain of H and
aux is some auxiliary information, such that the triplet (y,H(y), aux) satisfies
a target condition. Let us denote by x1, . . . , xq the q queries made by A to the
random oracle, and let us assume that y is the j-th query for some j ∈ [q]1.

The Forking Lemma states that running A again with the same coins but
replacing H with another random oracle H ′ which satisfies H ′(xi) = H(xi) for
i < j, results in A succeeding again with some non-negligible probability with
output (y,H ′(y), aux′). The important bit here is that A’s output involves the
same y, but now H ′(y) differs (with overwhelming probability) from H(y). This
new triplet (y,H ′(y), aux′) is called a fork. This lemma has notably been used in
the context of signature schemes based on applying the Fiat-Shamir paradigm
to 3-round identification protocols [14] with special-soundness, where the triplet
(y,H(y), aux) is a transcript and the target condition is for it to be valid.

On one hand, the Local Forking Lemma [2] is a refinement of the standard
Forking Lemma, which states that one is able to create a fork by replacing H
by a random oracle H ′ that only differs from H on the specific input y.

1 Typically, the target condition is sparse and the range of H is exponentially large,
therefore A must query H(x) to succeed with non-negligible probability.
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On the other hand, the Generalized Forking Lemma [1] is an extension to
the setting where multiple y’s are generated by the adversary. That is, the out-
put of A is of the form (y1,H(y1), . . . , y�,H(y�), aux) and allows to create forks
for different yi’s, e.g., a first fork (y1,H ′(y1), . . . , y′

�,H(y′
�′), aux′) and a second

fork (y1,H(y1), . . . , y�,H
′′(y�), aux′′). Each fork is obtained by using a different

random oracle that outputs the same values as H for all the queries preceding
the forking point, and whose values are sampled uniformly at random and inde-
pendently of H as soon as the forking point is hit. In the previous example, y1
is the forking point of the first tuple and y� is that of the second one.

We start by explaining how we reduce binding in the case of same-commitment
aggregation to the hardness of the n-DHE problem. First, we recall that the n-DHE
problem asks to compute gn+1 given

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
(borrowing

the notation from the construction described in the previous part). Consider an
adversary A that manages to break the binding property with non-negligible prob-
ability. Our n-DHE solver sets the public parameters to be the n-DHE instance and
uses A as follows.

A is able to generate a tuple (C,S0, S1,m0[S0],m1[S1], π0, π1) containing a
commitment C as well as two sets S0, S1 ⊆ [n] such that S0 ∩ S1 	= ∅ and valid
proofs π0, π1 with respect to sub-vectors m0[S0] ∈ Z

|S0|
p , m1[S1] ∈ Z

|S1|
p such

that m0[i∗] 	= m1[i∗] for some i∗ ∈ S0 ∩ S1. The following holds for this output:

e(C, ĝαn+1−i

)
∑

i∈Sb
t
(b)
i = e(πb, ĝ) · g

αn+1 ∑
i∈Sb

mi·t(b)
i

T , (2)

where t
(b)
i = H(i, C, Sb,mb), for both b = 0 and b = 1.

Random oracle queries made by A are of the form (i, C, S,m[S]), and both
(i∗, C, S0,m0[S0]) and (i∗, C, S1,m1[S1]) must have been queried for Eq. 2 to
hold. One can then apply the Generalized Forking Lemma in order to create
forks. In our case, the auxiliary information aux is the pair of proofs. We aim to
obtain two forks: a first one of the form (C,S0, S

′
1,m0[S0],m′

1[S
′
1], π

′
0, π

′
1), related

to a random oracle H ′ such that H(i∗, C, S0,m0[S0]) 	= H ′(i∗, C, S0,m0[S0]),
and a second one of the form (C,S′′

0 , S1,m′′
0 [S′′

0 ],m1[S1], π′′
0 , π′′

1 ), related to H ′′

and such that H(i∗, C, S1,m1[S1]) 	= H ′′(i∗, C, S1,m1[S1]). In addition, we need
that for all i ∈ S0\{i∗}, H(i, C, S0,m0[S0]) = H ′(i, C, S0,m0[S0]) and that for
all i ∈ S1\{i∗}, H(i, C, S1,m1[S1]) = H ′′(i, C, S1,m1[S1]).

Such forks are obtained by applying the Generalized Forking Lemma as fol-
lows: to ensure that the mentioned conditions about the values of H,H ′,H ′′

are satisfied, we design the reduction algorithm to simulate the random oracle
such that all hash values for inputs (i, C, S0,m0[S0]) where i ∈ S0\{i∗} (resp.
(i∗, C, S1,m1[S1]) where i ∈ S1\{i∗}) are set before setting the hash values for
(i∗, C, S0,m0[S0]) (resp. (i∗, C, S1,m1[S1])). More precisely, our reduction first
makes a random guess about the value of i∗, which is a correct guess with prob-
ability 1/n. Then, on receiving a query (i, C, S,m[S]), it checks whether i∗ ∈ S.
If so, it first defines the hash values for inputs (i, C, S,m[S]) for all i 	= i∗, and
finally sets the value of H(i∗, C, S,m[S]) at the end. Doing so, the conditions
on the values of H,H ′,H ′′ are satisfied, and the Generalized Forking Lemma
guarantees that the two desired forks can be obtained.
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To conclude the proof, one simply re-writes Eq. (2) with each fork using b = 0
and b = 1, respectively. The first fork leads to equation:

e(C, ĝαn+1−i

)
∑

i∈S0
t′
i = e(π′

0, ĝ) · g
αn+1 ∑

i∈S0
mi·t′

i

T ,

where t′i = H ′(i, C, S0,m0). A similar equation is obtained for the second fork.
Thanks to the conditions satisfied by H,H ′,H ′′ values, it follows that for all
i 	= i∗, we have t

(0)
i = t′i and t

(1)
i = t′′i , where t′′i = H ′′(i, C, S1,m1).

Finally, combining these equations allows to recover an equation that depends
only on terms e(gn+1, ĝ), e(π1, ĝ), e(π′′

1 , ĝ), e(π0, ĝ), e(π′
0, ĝ). Setting aside the

term e(gn+1, ĝ) and focusing on the G-component, the reduction manages to
compute gn+1 as a combination of π1, π

′′
1 , π0, π

′
0, which is the solution to the

n-DHE problem.
In the supplementary material, we also propose a different proof which relies

on the Local Forking Lemma, and compare this approach to the above one.
These two proofs provide different bounds for the advantage and run-time of the
reduction, and we believe that, in the context of PointProofs, the proof based
on the Generalized Forking Lemma provides a tighter reduction.

The case of cross-commitment aggregation follows a similar strategy, but
this time we reduce the binding property of the cross-commitment aggrega-
tions to that of the same-commitment aggregations. This proof is also in the
random oracle model. Given an adversary A against the binding property of
the cross-commitment scheme, we construct an adversary B against the bind-
ing property of the same-commitment scheme as follows: B splits the random
oracles queries made by A into two categories: those corresponding to same com-
mitment evaluations (the t

(j)
i ’s in the above description), which are redirected

by B to the random oracle to which it has access, and those corresponding to
cross-commitment evaluations (the t′j ’s). B simulates the response to the queries
of the second category. It first runs A which outputs two tuples of the form

(
π0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0]

)
,

(
π1, {C

(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1]

)
,

that breaks the binding property. In other words, there exist j0 ∈ [d0], j1 ∈ [d1]
such that C

(j0)
0 = C

(j1)
1 and m(j0)

0 [i∗] 	= m(j1)
1 [i∗] for some i∗ ∈ S

(j0)
0 ∩ S

(j1)
1 .

B then uses the Local Forking Lemma twice. In the first fork, it rede-
fines the hash value of the query (j0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 }j∈[d0]). The out-

put of A in this fork involves the same first collection of commitments
{C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0] as in the initial execution, together with a proof

π′
0. The equation obtained by running the verification algorithm (Eq. 1) on

this collection of commitments is such that the value of all t′j ’s are the
same as A’s first run except if j = j0. By forking a second time on query
(j1, {C

(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 }j∈[d1]) and repeating the same arguments, B obtains

two pairs of equations, that can be combined using a similar gymnastic as in the
same-commitment proof to recover a valid attack against the binding property
of the same-commitment aggregations.
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We emphasize that using the Generalized Forking Lemma instead of the
Local Forking Lemma does not seem to be an option in this case. Indeed, focus-
ing on the first fork, our proof relies on the capacity to create a fork for the
query (j0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 }j∈[d0]) without changing every other hash values

H(j, {C
(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 }j∈[d0]), for j ∈ [d0]\{j0}. Using the Generalized Fork-

ing Lemma would require to set all the latter hash values before the value for
(j0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 }j∈[d0]), but contrary to the previous case, one cannot

simply guess j0 as it lies in an arbitrary range. For this reason, we rely on the
Local Forking Lemma for proving the binding property in this case.

Related Work. Historically, vector commitments with logarithmic-size openings
have been known for 3 decades, with the folklore construction based on Merkle
trees [23]. In 2008, Catalano et al. [11] called for constructions with constant-size
openings with the motivation of compressing proofs in zero-knowledge databases
[24]. Vector commitments with O(1)-size openings appeared later on [12,22],
with a first realization based on a q-type assumption put forth by Libert and
Yung [22]. Catalano and Fiore [12] obtained constructions from the standard
RSA assumption and the Computational Diffie-Hellman assumption in pairing-
friendly groups. Peikert et al. [28] recently came up with the first candidate under
standard lattice assumptions. Meanwhile, applications of vector commitments
were considered in the context of zero-knowledge databases [22], verifiable data
streaming [18], authenticated dictionaries [20,34], de-centralized storage [10],
succinct arguments [3,19], cryptocurrencies [13,32] and blockchain transactions
[3,16], or certificates of collective knowledge [25].

Back in 2010, Kate, Zaverucha and Goldberg [17] introduced the related
notion of polynomial commitments, which allows committing to a polynomial
in such a way that the committer can later prove that the committed poly-
nomial evaluates to specific values on certain inputs. They showed that their
scheme enables batch openings, where a constant-size proof convinces the veri-
fier about multiple polynomial evaluations at once. Libert, Ramanna and Yung
[21] suggested inner product functional commitments, which imply both vector
commitments and polynomial commitments.

Lai and Malavolta [19] and Boneh et al. [3] independently generalized VCs by
introducing the notion of sub-vector commitments, where the sender can gener-
ate a short proof πS that opens a sub-vector m[S] of m, for some subset S ⊆ [n].
Lai and Malavolta [19] provided instantiations in hidden order groups and also
showed that a variant of the Catalano-Fiore commitment [12] allows sub-vector
openings under a constant-size assumption (namely, the cube-CDH assumption)
in pairing-friendly groups. We remark that sub-vector commitments can also
be realized from polynomial commitments with batch openings, as shown by
Camenisch et al. [9, Section 3.1]. However, their construction intentionally pre-
vents proof aggregation.

The property of proof aggregation was considered in [3,10,16,31,34]. Boneh,
Bünz and Fisch [3] and Tomescu et al. [32] independently considered same-
commitment aggregation in hidden-order groups and under q-type assumptions
in pairing-friendly groups, respectively. Campanelli et al. [10] defined incremen-
tally aggregatable VCs, where different sub-vector openings can be merged into
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a constant-size opening for the union of their sub-vectors. Moreover, aggregated
proofs support further aggregation. They showed how to realize incrementally
aggregatable VCs in hidden-order groups.

Gorbunov et al. [16] proposed PointProofs as the first construction enabling
cross-commitment aggregation. They also showed [16, Appendix A] that a vari-
ant of the Lai-Malavolta commitment [19] supports same-commitment aggrega-
tion, but still at the cost of quadratic-size public parameters. As underlined in
[16], same-commitment aggregation implies sub-vector openings by having the
committer aggregate same-commitment proofs.

In [16, Appendix B], Gorbunov et al. also showed that the restriction to
algebraic adversaries is unnecessary if one just aims at a relaxed binding property
– which may be sufficient in certain blockchain applications – which assumes
honestly generated commitments. Here, we remove the restriction to algebraic
adversaries even when commitments are adversarially generated.

The recent Hyperproofs construction of Srinivasan et al. [31] also allows cross-
commitment aggregation and makes it possible to update all proofs in sub-
linear time when the vector changes. On the downside, it loses the conciseness of
PointProofs as its proofs have size O(log n). Besides [16,31], we are only aware
of one alternative VC scheme supporting cross-commitment aggregation, which
was proposed by Boneh et al. [5]. However, it is only known to be secure in the
combined AGM+ROM setting.

2 Preliminaries

We use λ to denote the security parameter. For a natural integer n ∈ N, the set
{1, 2, · · · , n} is denoted by [n]. We denote by negl(λ) a negligible function in λ,
and PPT stands for probabilistic polynomial-time. For a finite set S, we write
x R← S to denote that x is sampled uniformly at random from S. We denote
vectors by bold characters e.g. m. For a vector m = (m1, . . . ,mn) and a subset
of indices S ⊆ [n], we denote by m[S] the sub-vector (mi1 , . . . ,mi|S|), where
S = {i1, . . . , i|S|} with ij < ij+1 for each j ∈ {1, . . . , |S| − 1}. For a single index
i ∈ [n], we sometimes denote mi by m[i].

2.1 Bilinear Maps and Complexity Assumptions

Let (G, Ĝ,GT ) be cyclic groups of prime order p that are equipped with a bilin-
ear map e : G × Ĝ → GT . We rely on a parameterized assumption which was
introduced by Boneh, Gentry and Waters [8]. While this assumption was origi-
nally defined using symmetric pairings [4,8], we consider a natural extension to
asymmetric pairings, which were used in PointProofs.

Definition 1. Let (G, Ĝ,GT ) be asymmetric bilinear groups of prime order p.
The n-Diffie-Hellman Exponent (n-DHE) problem is, given

(g, gα, g(α
2), . . . , g(α

n), g(α
n+2), . . . , g(α

2n), ĝ, ĝα, ĝ(α
2), . . . , ĝ(α

n))

where α R← Zp, g R← G, ĝ R← Ĝ, to compute g(α
n+1).
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We note that this assumption is the same as the one underlying the binding
property of the vector commitment scheme of Libert and Yung [22]. As an artifact
of the algebraic group model, Gorbunov et al. [16] considered a stronger version
of the above assumption where g(α

2n+1), . . . , g(α
3n) are also given.

2.2 Generalized Forking Lemma

Here, we recall the Generalized Forking Lemma as stated in [1] which is later
used in one of our proofs.

f = (ρ, h1, . . . , hQ) R← F
(L, {out�}�∈L) ← A(π, f)

If L = ∅ output 0.

Else, let L = (�1, . . . , �m) such that �1 ≤ · · · ≤ �m

For i = 1, . . . , m do

Set succi ← 0, ki ← 0, kmax ← 8mQ/ε · ln(8m/ε)

While succi = 0 and ki < kmax do

f ′ R← F such that f ′
|�i = f|�i

Let f ′ = (ρ, h1, . . . , h�i−1, h
′
�i

, . . . , h′
Q)

(L′, {out′
�}�∈L′) ← A(π, f ′)

If h′
�i

�= h�i and L′ �= ∅ and �i ∈ L′ then
keep out′

�i
and set succi ← 1

Else
set ki ← ki + 1

If succi = 1 for all i ∈ [m], then
output (L, {out�}�∈L, {out′

�}�∈L)
Else output 0

Game GA,π

Fig. 1. Game Gπ,A where an algorithm is forked in the Generalized Forking Lemma.

Let SAMP() be a probabilistic algorithm that returns a value π which we
think of as parameters. Also, consider an algorithm A that takes as input the
parameters π and uses some randomness f = (ρ, h1, . . . , hQ), where ρ is value
of the random tape of A and h1, . . . , hQ are responses received by querying a
random oracle H : {0, 1}∗ → Zp, and Q is the maximal number of the hash
queries. We denote by F the space of all such randomness. Also, for any f ∈ F
and i ∈ [Q], we denote by f|i the sub-vector (ρ, h1, . . . , hi−1). Algorithm A
outputs a pair (L, {out�}�∈L), where L is a subset of [Q], and each out� is a
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string, for � ∈ L. We consider L = ∅ as failure, and L 	= ∅ as success. Let ε
be the probability that the output of A(π, f) is successful. We define the game
Gπ,A as in Fig. 1 parameterized by π and A, where π R← SAMP(). We now state
the lemma as proven by Bagherzandi et al. [1] and used in [7].

Lemma 1 (Generalized Forking Lemma [1]). Let SAMP, A, and H :
{0, 1}∗ → Zp be as described, where A runs in time τ and succeeds with
probability ε. If p > 8mQ/ε, then the game Gπ,A runs in time at most
τ · 8m2Q/ε · ln(8m/ε), and is successful with probability at least ε/8.

2.3 Local Forking Lemma

We also recall the Local Forking Lemma of Bellare et al. [2], which will be used
in our proof for the cross-commitment case. The difference with the classical
Forking Lemma is that the random oracle is only reprogrammed on the forking
point, instead of all points from the forking point onwards.

Let SAMP() be a probabilistic algorithm that returns a value π which we
think of as parameters. We also consider a deterministic algorithm A, that given
π R← SAMP(), and having access to a random oracle H ∈ H, outputs an integer
α ≥ 0, and a string x. We consider α = 0 as failure, and α ≥ 1 as success. If
α ≥ 1, we require x to be the α-th query that A has issued to the oracle H. We
consider the two following games parameterized by π and A, where π R← SAMP():

H R← H
(α, x) ← AH(π)

If α ≥ 1
Return 1

Otherwise
Return 0

Game Gsingle
π,A

H R← H
(α, x) ← AH(π)

H ′ ← H
H ′[x] R← {0, 1}∗

(α′, x′) ← AH′
(π)

If (α = α′) ∧ (α′ ≥ 1)
Return 1

Otherwise
Return 0

Game Gdouble
π,A

Fig. 2. Game Gsingle
π,A , and Game Gdouble

π,A , where the local forking happens in the latter.

We now recall the statement of the lemma.

Lemma 2 (Local Forking Lemma, [2]). Let SAMP and A be as described,
and let q be the number of H-queries issued by A. It holds that:

Pr[Gdouble
π,A = 1] ≥ 1/q · Pr[Gsingle

π,A = 1]2.
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2.4 Vector Commitments with Aggregation

We recall the formal definition of vector commitments with aggregation intro-
duced in [16]. As in [16], we divide the definition into two parts; the case of
same-commitment aggregation, and the case of cross-commitment aggregation.

2.4.1 Same-Commitment Aggregation

Definition 2 (Vector Commitment with Same-Commitment Aggrega-
tion [16]). A vector commitment with same-commitment aggregation for mes-
sage space M consists of six algorithms Setup,Commit,UpdateCommit,Prove,
Aggregate,Verify as follows:

Setup(1λ, 1n) → pp : On input the security parameter λ and a number n which
is the length of underlying vector of a commitment in the scheme, it outputs
public parameters pp that is used by all other algorithms.

Commitpp(m; aux) → C : On input a message vector m = (m1, . . . ,mn) of
length n, uses some auxiliary information (i.e. randomness) aux to output a
commitment C.

UpdateCommitpp(C,S,m[S],m′[S], aux) → C ′ : Takes as input a commitment
C, a subset S ⊆ [n], and m[S] = (mi)i∈S as the underlying message vector
of C, and uses some auxiliary information aux to change m[S] to m′[S] =
(m′

i)i∈S and outputs a new commitment C ′ for this new vector of messages.
Provepp(i,mi, aux) → πi : On input an index i ∈ [n] and a message bit mi ∈ M,

uses the auxiliary information aux that was used in the algorithm Commit to
output a proof πi for this message bit.

Aggregatepp(C,S,m[S], {πi}i∈S) → πS : Takes as input a commitment C, a
subset S ⊆ [n], a subset of message bits m[S] = (mi)i∈S , and a set of proofs
{πi}i∈S where each πi for i ∈ S is the proof generated for mi using the
algorithm Prove. It outputs an aggregated proof πS .

Verifypp(C,S,m[S], πS) → b : On input a commitment C, a subset S ⊆ [n], a
sub-vector of messages m[S], and an aggregated proof πS , and outputs a bit
b ∈ {0, 1}.

We require a vector commitment scheme with same-commitment aggregation
to satisfy the following properties:

Correctness of Opening. For all λ, n, m = (m1, . . . ,mn) ∈ Mn, and S ⊆ [n],

Pr

⎡
⎢⎢⎣Verify(C, S,m[S], πS) = 1 :

pp ← Setup(1λ, 1n)
C ← Commitpp(m; aux)
{πi ← Provepp(i, mi, aux)}i∈S

πS ← Aggregate(C, S,m[S], {πi}i∈S)

⎤
⎥⎥⎦ = 1.
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Correctness of Updates. For all parameters λ, n, message vectors m =
(m1, . . . ,mn),m′ = (m′

1, . . . ,m
′
n) ∈ Mn, subset S ⊆ [n], and aux such that

mi = m′
i for all i ∈ [n]\S, we have

UpdateCommitpp(C,S,m[S],m′[S], aux) = Commitpp(m′; aux),

where C ← Commitpp(m; aux), and pp ← Setup(1λ, 1n).

Binding. For all λ, n, and any PPT adversary A, the probability of finding a
tuple (C,S0, S1,m0[S0],m1[S1], π0, π1), such that

Verify(C,S0,m0[S0], π0) = Verify(C,S1,m1[S1], π1) = 1

and m0[i] 	= m1[i] for some i ∈ S0 ∩ S1, is negligible in λ.

2.4.2 Cross-Commitment Aggregation

Definition 3 (Vector Commitment with Cross-Commitment Aggrega-
tion [16]). A vector commitment with cross-commitment aggregation for mes-
sage space M consists of the six algorithms Setup,Commit,UpdateCommit,Prove,
Aggregate,Verify as in the same-commitment case, and two additional algorithms
AggregateAcross, and VerifyAcross that are as follows:

AggregateAcrosspp({Cj , Sj ,mj [Sj ], πj}j∈[d]) → π: Takes as input a collection
of commitments Cj together with each of their aggregated proofs πj with
respect to subset Sj and message sub-vector mj [Sj ], and outputs a cross-
aggregated proof π.

VerifyAcrosspp(π, {Cj , Sj ,mj [Sj ], πj}j∈[d]) → b: Given a cross-aggregated
proof π, and a collection of underlying commitments, subsets, and message
sub-vectors {Cj , Sj ,mj [Sj ], πj}j∈[d], this algorithm outputs a bit b ∈ {0, 1}.

We require a vector commitment scheme with cross-commitment aggrega-
tion to satisfy the correctness of opening as in Definition 2 extended to cross-
commitment aggregations. Also, it should satisfy an extension of binding prop-
erty as follows:

Binding (for cross-commitments). For all λ, n, and any PPT adversary A,
the probability of finding the two following tuples with the following described
properties is negligible in λ:

(π0, {C
(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[�0]), and (π1, {C

(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[�1]),

such that

VerifyAcross(π0, {C
(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[�0])

= VerifyAcross(π1, {C
(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[�1]) = 1

and there exist j0 ∈ [�0], and j1 ∈ [�1], for which it holds that C
(j0)
0 = C

(j1)
1 ,

and m(j0)
0 [i] 	= m(j1)

1 [i], for some i ∈ S
(j0)
0 ∩ S

(j1)
1 .
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2.4.3 Statistical Hiding
As stated in [16], one can optionally require a vector commitment scheme to
generate commitments that are hiding. Intuitively, this property requires that
any commitment C that is generated in the scheme must reveal no information
about its underlying message vector m. Also, any proof πi generated with respect
to the i-th element mi of a message vector m = (m1, . . . ,mn) should not reveal
any information about any other element mj of the message, where j 	= i.

Since PointProofs were already proven to be statistically hiding in [16], we
rather focus only on the binding property and do not further detail hiding. We
refer the reader to [16] for a details regarding the hiding property.

3 The Case of Same-Commitment Aggregation

We first consider the simpler variant of PointProofs [16] which only allows aggre-
gating proofs for sub-vectors contained in the same commitment. This construc-
tion implicitly uses the functional commitment scheme of [21] to aggregate proofs
using randomizers derived from a random oracle. Its description is as follows.

Setup(1λ, 1n): To generate public parameters, do the following:
1. Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ and g R← G,

ĝ R← Ĝ.
2. Pick a random α R← Z

∗
p and compute g1, . . . , gn, gn+2, . . . , g2n ∈ G as well

as ĝ1, . . . , ĝn ∈ Ĝ, where gi = g(α
i) for each i ∈ [2n]\{n+1} and ĝi = ĝ(α

i)

for each i ∈ [n].
3. Choose a hash function H : {0, 1}∗ → Zp that will be modeled as a

random oracle in the analysis.
The public parameters are defined to be

pp =
(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n],H

)

and the trapdoor is tk = gn+1 = g(α
n+1).2

Commitpp(m1, . . . ,mn; aux): To commit to a vector (m1, . . . ,mn) ∈ Z
n
p , choose

γ R← Zp and compute

C = gγ ·
n∏

j=1

g
mj

j .

The output is C and the auxiliary information is aux = (m1, . . . ,mn, γ).
UpdateCommitpp(C,S,m[S],m′[S], aux): Given C ∈ G and the state informa-

tion aux = (m1, . . . ,mn, γ), choose γ′ R← Zp and compute

C ′ = gγ′ · C ·
∏

j∈S

g
m′[j]−m[j]
j

together with aux′ = (m̄1, . . . , m̄n, γ + γ′), where m̄i = m′
i if i ∈ S and

m̄i = mi if i 	∈ S.
2 The trapdoor is only used to prove the hiding property.
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Provepp(mi, i, aux): Parse aux as (m1, . . . ,mn, γ) and compute

πi = gγ
n+1−i ·

n∏

j=1,j �=i

g
mj

n+1−i+j . (3)

The opening of C at position i consists of πi ∈ G.
Aggregatepp(C,S,m[S], {πi}i∈S): Given a commitment C ∈ G, a sub-vector

m[S] with S ⊆ [q], and the corresponding proofs {πi}i∈S , compute

πS =
∏

i∈S

πti
i

where ti = H(i, C, S,m[S]).
Verifypp(C,S,m[S], πS): Given πS ∈ G return 1 if C ∈ G and

e(C,
∏

i∈S

ĝti
n+1−i) = e(πS , ĝ) · e(g1, ĝn)

∑
i∈S m[i]·ti (4)

where ti = H(i, C, S,m[S]) for each i ∈ S. Otherwise, it returns 0.

In [16], the scheme was proven binding in the algebraic group model and
in the random oracle model. We now show that, using the Forking Lemma [29]
(more precisely, its generalization used in [1,7]), we can prove its security in the
random oracle model (i.e., without using the algebraic group model) under the
n-DHE assumption, which already underlies the binding property of the vector
commitment scheme in [22].

In Supplementary Material A, we provide an alternative proof using the
Local Forking Lemma [2] and give a comparison between the advantage/running-
time ratios of the two reductions.

We note that the security analysis of [16] highlighted the necessity of includ-
ing S and m[S] among the inputs of the hash function when the coefficient
{ti}i∈S are computed in the aggregation algorithm. Consistently with this obser-
vation, the proof of Theorem 1 crucially relies on the fact that (S,m[S]) are
hashed along with (i, C).

In order to rely on the General Forking Lemma, we need to answer random
oracle queries in a careful way, by adapting a technique used by Boneh et al. [7]
in the context of multi-signatures supporting key aggregation.

Theorem 1. The above commitment is binding in the random oracle model if
the n-DHE assumption holds.

Proof. Suppose that the adversary A is able to generate a commitment C as
well as two sets S0, S1 ⊂ [n] such that S0 ∩ S1 	= ∅ and convincing proofs
π0, π1 respectively for sub-vectors m0[S0] ∈ Z

|S0|
p , m1[S1] ∈ Z

|S1|
p such that

m0[i] 	= m1[i] for some i ∈ S0 ∩ S1. Let Pr[¬Bind] be the probability of A
generating such tuple. In the random oracle model, we build an algorithm C
that uses A to solve the n-DHE problem. Let qH be the maximum number of
queries that A can issue to the random oracle H.
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Consider an algorithm SAMP that generates an n-DHE instance
π =

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
, and an algorithm B that on input π and

randomness f = (ρ, h1, . . . , hQ), where Q = n · qH , does as follows.
B begins by drawing a random index i† R← U([n]). It runs A on input(

g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
and randomness ρ. First, B initializes a counter

� = 0, which it increments every time it sets a new hash value. When A makes a
H-query (i, C, S,m[S]), B uses the values in (h1, . . . , hQ) to respond as follows:

– If the input (i, C, S,m[S]) is such that the hash value H(i, C, S,m[S]) was
previously defined, B returns the previously-defined value.

– If (i, C, S,m[S]) is such that i† ∈ S, then B does the following: For each
index i′ ∈ S\{i†}, it increments � and sets H(i′, C, S,m[S]) ← h�. Finally, it
increments � and sets H(i†, C, S,m[S]) ← h�. Note that B programs H on |S|
inputs at once for such hash queries and that H(i†, C, S,m[S]) is set after all
other inputs for indices i′ ∈ S\{i†}. Then, B returns the corresponding value
of H(i, C, S,m[S]) to A.

– Else, B increments � and returns h� as the value for H(i, C, S,m[S]).

Since A makes at most qH and B sets at most n hash values at each query, at
most Q = n · qH values are set in the process.

With probability ε := Pr[¬Bind], A outputs

(C,S0, S1,m0[S0],m1[S1], π0, π1)

such that

e(C,
∏

i∈S0

ĝ
t
(0)
i

n+1−i) = e(π0, ĝ) · e(g1, ĝn)
∑

i∈S0
m0[i]·t(0)i (5)

e(C,
∏

i∈S1

ĝ
t
(1)
i

n+1−i) = e(π1, ĝ) · e(g1, ĝn)
∑

i∈S1
m1[i]·t(1)i (6)

where t
(b)
i = H(i, C, Sb,mb[Sb]) for each i ∈ Sb and b ∈ {0, 1}. Then, B deter-

mines the smallest i� ∈ S0 ∩ S1 such that m0[i�] 	= m1[i�]. If i� 	= i†, it aborts
and outputs (∅, ∅). Otherwise, if i� = i† (which is the case with probability 1/n
since i† is drawn uniformly and independently of A’s view), let �0 ∈ [Q] be
the index of the random oracle query H(i�, C, S0,m0[S0]) and let �1 ∈ [Q] be
the index of the random oracle query H(i�, C, S1,m1[S1]). Let h�0 , h�1 ∈ Zp be
the corresponding responses. Note that, due to the way B sets the responses to
random oracle queries, any value H(i, C, Sb,mb[Sb]) for an index i ∈ Sb\{i�}
is set before H(i�, C, Sb,mb[Sb]) = h�b

, for b ∈ {0, 1}. Finally, B outputs
(L = {�0, �1}, {out�0 , out�1}), where

out�0 = out�1 = (C,S0, S1,m0[S0],m1[S1], π0, π1, h�0 , h�1) (7)

Note that B outputs a-non empty subset L = {�0, �1} successfully with proba-
bility at least ε/n.
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Now, we describe a reduction C that solves an n-DHE instance(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
using A. Algorithm C runs the game GB,π

defined in Fig. 1, where π is the given n-DHE instance, and B is the algo-
rithm that uses the adversary A as described above. If the game outputs 0,
then C aborts. By Lemma 1, with probability at least (ε/n)/8, GB,π outputs
(L = {�0, �1}, {out�0 , out�1}, {out′�0 , out′�1}) after having forked twice. Then, C
parses out�0 and out�1 as in (7) and obtains C and (Sb,mb[Sb], πb) for b ∈ {0, 1}
satisfying Eqs. (5)–(6). It also parses out′�0 and out′�1 as described hereunder and
performs the following computations:

• For the first forking, it parses

out′�0 = (C,S0, S
′
1,m0[S0],m′

1[S
′
1], π

′
0, π

′
1, h

′
�0 , h

′
�1),

where Verify outputs 1 on both (C,S0,m0[S0], π′
0), and (C,S′

1,m
′
1[S

′
1], π

′
1).

Note that (S′
1,m

′
1[S

′
1]) may differ from their counterparts (S1,m1[S1]) of the

first execution but it does not matter. What matters is that the second run
involves the same (S0,m0[S0]) as in the first execution and the hash query
H(i�, C, S0,m0[S0]) is also the �0-th hash query in the second execution,
where it obtains a different response h′

�0
. This holds since the forking occurs

at the �0-th oracle query and the executions are identical up to that point.
Hence, the �0-th query is indeed issued on the input (i�, C, S0,m0[S0]) during
the forking. Now, since the index i� ∈ S0 ∩ S1 determined in the first run
belongs to S0, we know that

t
(0)
i� = H(i�, C, S0,m0[S0]) = h′

�0 	= h�0 ,

but other hash values of the form H(i, C, S0,m0[S0]) for i 	= i� are the same as
in the initial execution because B assigned the values of H(i, C, S0,m0[S0])
for i 	= i� before the forking point. Let us now consider the proofs π0, π

′
0

obtained in the first run of B and the first forking, respectively. By dividing
out the Eqs. (5) of both runs, we have

e(C, ĝ
Δt

(0)
i�

n+1−i�) = e(π0/π′
0, ĝ) · e(g1, ĝn)m0[i

�]·Δt
(0)
i� , (8)

where Δt
(0)
i� � h�0 − h′

�0
	= 0.

• For the second forking, the reduction C parses out′�1 as

out′�1 = (C,S′′
0 , S1,m′′

0 [S′′
0 ],m1[S1], π′′

0 , π′′
1 , h′′

�0 , h
′′
�1).

Here, (S′′
0 ,m′′

0 [S′′
0 ]) may differ from the pair (S0,m0[S0]) extracted from out�1

at the very first execution, but it does not matter. The forking point being
the �1-th hash query, we know that the first and third executions are iden-
tical up to that point. Consequently, the �1-th query is issued on the input
(i�, C, S1,m1[S1]) in this forking, where it obtains a different response h′′

�1
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than in the very first run. With non-negligible probability, Lemma 1 ensures
that B’s output in this forking involves the same (S1,m1[S1]) as in the first
run and the hash query H(i�, C, S1,m1[S1]) is also the �1-th hash query. Since
i� ∈ S1, we can repeat the same arguments as in the first fork and, by dividing
out the verification equations (6) of the first and third runs, B obtains

e(C, ĝ
Δt

(1)
i�

n+1−i�) = e(π1/π′′
1 , ĝ) · e(g1, ĝn)m1[i

�]·Δt
(1)
i� , (9)

where Δt
(1)
i� � h�1 − h′′

�1
	= 0.

Then, raising both members of (9) to the power ω � Δt
(0)
i� /Δt

(1)
i� yields

e(C, ĝ
Δt

(0)
i�

n+1−i�) = e((π1/π′′
1 )ω, ĝ) · e(g1, ĝn)m1[i

�]·Δt
(0)
i� . (10)

If we now use the hypothesis that m0[i�] 	= m1[i�], the combination of (10) and
(8) implies

e(π0/π′
0, ĝ) · e(g1, ĝn)m0[i

�]·Δt
(0)
i� = e((π1/π′′

1 )ω, ĝ) · e(g1, ĝn)m1[i
�]·Δt

(0)
i� .

Now, since e(g1, ĝn) = e(gn+1, ĝ), we have:

e(gn+1, ĝ)Δt
(0)
i� ·(m0[i

�]−m1[i
�]) = e((π1/π′′

1 )ω, ĝ)/e(π0/π′
0, ĝ),

which then allows B to compute the sought-after n-DHE solution, by looking
only at the G-components, as

gn+1 �
(

(π1/π′′
1 )ω

π0/π′
0

)1
/(

Δt
(0)
i� ·(m0[i

�]−m1[i
�])

)

. (11)

By Lemma 1, with probability at least (ε/n)/8, the reduction C succeeds in
solving the n-DHE problem. �

4 The Case of Cross-Commitment Aggregation

Let H ′ : {0, 1}∗ → Zp be a hash function modeled as a random oracle. Algorithms
AggregateAcross and VerifyAcross are as follows:

AggregateAcrosspp({C(j), S(j),m(j)[S(j)], πj}j∈[d]): Given a collection of
({C(j), S(j),m(j)[S(j)], πj}j∈[d]), where each πj is the same-commitment-
aggregated proof of C(j) with respect to the sub-vector of message m(j)

limited to indices in S(j), compute and output

π =
d∏

j=1

(πj)t′
j ,

where t′j = H ′(j, {C(j), S(j),m(j)[S(j)]}j∈[d]).
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VerifyAcross(π, {C(j), S(j),m(j)[S(j)], πj}j∈[d]): Given π ∈ G, return 1 if
C(j) ∈ G for all j ∈ [d], and

d∏

j=1

e

⎛

⎝C(j),
∏

i∈S(j)

ĝ
tj,i

n+1−i

⎞

⎠

t′
j

= e(π, ĝ) · e (g1, ĝn)

∑

j∈[d],i∈S(j)
m(j)[i]·tj,i·t′

j

where

tj,i = H(i, C(j), S(j),m(j)[S(j)]), t′j = H ′(j, {C(j), S(j),m(j)[S(j)]}j∈[d]).

We now prove the cross-commitment binding property under the n-DHE
assumption in the ROM, without restricting ourselves to algebraic adversaries.

Here, we rely on the Local Forking Lemma instead of the Generalized Forking
Lemma. The reason is that the proof of Theorem 2 proceeds with a reduction
from the same-commitment case. In the process, it has to fork on the hash
function H ′. For this purpose, if we were to use the Generalized Forking Lemma
as in the proof of Theorem 1, we would have no way to guess which hash query
should be defined after other hash queries involving related inputs. Therefore
we need the Local Forking Lemma to force all but one of the cross-commitment
aggregation coefficients {t′j}j∈[d] to be identical in two adversarial runs.

Theorem 2. The above cross-commitment scheme is binding in the random
oracle model assuming the hardness of the n-DHE problem.

Proof. For the sake of contradiction, let us assume that an adversary A has
non-negligible probability ε of contradicting the binding property of the cross-
commitment aggregation in PointProofs. Namely, with probability ε, A can gen-
erate two tuples

(
π0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0]

)
,

(
π1, {C

(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1]

)
,

such that VerifyAcross accepts (πb, {C
(j)
b , S

(j)
b ,m(j)

b [S(j)
b ]}j∈[db]) for each value of

b ∈ {0, 1}, and there exist indices j0 ∈ [d0] and j1 ∈ [d1] for which C
(j0)
0 = C

(j1)
1

and m(j0)
0 [i] 	= m(j1)

1 [i], for some i ∈ S
(j0)
0 ∩ S

(j1)
1 . In the random oracle model,

we give a reduction B that uses A to break the binding property of the same-
commitment aggregation of PointProofs.

B receives public parameters pp =
(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)
from its

own challenger in the same-commitment aggregation game and runs A on pp.
Note that B, which is attacking the binding property of the same-commitment
aggregation of PointProofs, has oracle access to H, but A has also oracle access
to H ′. Algorithm B responds to A’s oracle queries to H by redirecting the query
to H (so, it does not simulate H itself for A). It responds to A’s queries to the
second random oracle H ′ in the following way. In a first execution, it answers
H ′-queries with values h1, h2, . . . , hQ ∈ Zp, where Q denotes the total number of
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queries made by A to H ′. We assume w.l.o.g. that all these queries are distinct.
With probability ε, A outputs

(
π0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0]

)
,

(
π1, {C

(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1]

)
,

such that the aggregated verification algorithm returns 1 running on both tuples.
Namely,

d0∏

j=1

e

⎛

⎜
⎝C

(j)
0 ,

∏

i∈S
(j)
0

ĝ
t
(0)
j,i

n+1−i

⎞

⎟
⎠

t
′(0)
j

= e(π0, ĝ) · e (g1, ĝn)

∑

j∈[d0],i∈S
(j)
0

m
(j)
0 [i]·t(0)j,i ·t′(0)

j

(12)

d1∏

j=1

e

⎛

⎜
⎝C

(j)
1 ,

∏

i∈S
(j)
1

ĝ
t
(1)
j,i

n+1−i

⎞

⎟
⎠

t
′(1)
j

= e(π1, ĝ) · e (g1, ĝn)

∑

j∈[d1],i∈S
(j)
1

m
(j)
1 [i]·t(1)j,i ·t′(1)

j

(13)

where t
(b)
j,i = H(i, C(j)

b , S
(j)
b ,m(j)

b [S(j)
b ]), for each j ∈ [db], i ∈ S

(j)
b , and b ∈ {0, 1},

and t
′(b)

j = H ′(j, {C
(j)
b , S

(j)
b ,m(j)

b [S(j)
b ]}j∈[db]), for each j ∈ [db] and b ∈ {0, 1}.

Then, B determines the two indices j0 ∈ [d0], j1 ∈ [d1], for which the binding
property is contradicted, i.e., C

(j0)
0 = C

(j1)
1 , and m(j0)

0 [i] 	= m(j1)
1 [i], for some

i ∈ S
(j0)
0 ∩ S

(j1)
1 . Let �b ∈ [Q] be the index of the query

H ′(jb, {C
(j)
b , S

(j)
b ,m(j)

b [S(j)
b ]}j∈[db]),

for b ∈ {0, 1}. Let h�0 , h�1 ∈ Zp be the corresponding responses.
The reduction B then locally forks the adversary twice. It first runs A a

second time with the same random tape and answers all random oracle queries
using the outputs h1, . . . , h�0−1, h

′
�0

, h�0+1, . . . , hQ ∈ Zp, where h′
�0

R← Zp is
chosen afresh and all other outputs h� for � 	= �0 are identical to those of the first
execution. The Local Forking Lemma (Lemma 2) ensures that with probability
at least equal to 1/Q · ε2, A’s second run outputs

(
π′
0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0], π′

1, {C ′
1
(j)

, S′
1
(j)

,m′
1
(j)[S′

1
(j)]}j∈[d′

1]

)
.

Note that the second collection {C ′
1
(j)

, S′
1
(j)

,m′
1
(j)[S′

1
(j)]}j∈[d′

1]
might be dif-

ferent from its counterpart {C
(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1] of the first run, but what

matters is that this run involves the same collection {C
(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0]

as the first execution of A and the hash query H ′(j0, {C
(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0])
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is also the �0-th query issued by A where it receives a different response h′
�0

. Since
j0 ∈ d0, we know that

t
′(0)
j0 = H ′(j0, {C

(j)
0 , S

(j)
0 ,m(j)

0 [S(j)
0 ]}j∈[d0]) = h�0 	= h′

�0 ,

but other hash values t
′(0)
j for j ∈ [d0]\{j0} are the same as in the initial execution

because of the local forking. If we now consider the two proofs π0, π′
0 obtained

in the two runs, by dividing out the Eqs. (12) of both runs, we have

e

⎛

⎜
⎝C

(j0)
0 ,

∏

i∈S
(j0)
0

ĝ
t
(0)
j0,i

n+1−i�

⎞

⎟
⎠

Δt
′(0)
j0

= e(π0/π′
0, ĝ) · e(g1, ĝn)

∑

i∈S
(j0)
0

m
(j0)
0 [i]·t(0)j0,i·Δt

′(0)
j0

(14)

where Δt
′(0)
j0

= h�0 − h′
�0

	= 0. Raising both sides of Eq. (14) to the power

ω0 � 1/(Δt
′(0)
j0

) yields

e

⎛

⎜
⎝C

(j0)
0 ,

∏

i∈S
(j0)
0

ĝ
t
(0)
j0,i

n+1−i�

⎞

⎟
⎠ = e((π0/π′

0)
ω0 , ĝ) · e(g1, ĝn)

∑

i∈S
(j0)
0

m
(j0)
0 [i]·t(0)j0,i

(15)

Then, B locally forks A a second time on the hash query H ′(j1, {C
(j)
1 ,

S
(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1]), which was the �1-th H ′-query in the first execution.

Namely, it runs A a second time with the same random tape as in the first
run and now answers A’s random oracle queries to H ′ using the outputs
h1, . . . , h�1−1, h

′′
�1

, h�1+1, . . . , hQ ∈ Zp, where h′′
�1

R← Zp is freshly sampled and
all other outputs h� for � 	= �1 are the same as in the first execution. By the Local
Forking Lemma, with probability at least equal to 1/Q · ε2, A’s third run outputs

(
π′′
0 , {C ′′

0
(j)

, S′′
0
(j)

,m′′
0
(j)[S′′

0
(j)]}j∈[d′′

0 ]
, π′′

1 , {C
(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1]

)
.

Again, the collection {C ′′
0
(j)

, S′′
0
(j)

,m′′
0
(j)[S′′

0
(j)]}j∈[d′′

0 ]
might differ from its coun-

terpart {C0
(j), S0

(j),m0
(j)[S0

(j)]}j∈[d0] of the first execution of A, yet, this run
involves the same collection {C

(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1] as in the first run and

the hash query H ′(j1, {C
(j)
1 , S

(j)
1 ,m(j)

1 [S(j)
1 ]}j∈[d1]) is also the �1-th query to H ′

where A receives a different response h′′
�1

. Since j1 ∈ d1, we can repeat the same
arguments as in the first fork and, by dividing out the verification equations (13),
B obtains

e

⎛

⎜
⎝C

(j1)
1 ,

∏

i∈S
(j1)
1

ĝ
t
(1)
j1,i

n+1−i�

⎞

⎟
⎠

Δt
′(1)
j1

= e(π1/π′′
1 , ĝ) · e(g1, ĝn)

∑

i∈S
(j1)
1

m
(j1)
1 [i]·t(0)j1,i·Δt

′(1)
j1

(16)
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where Δt
′(1)
j1

= h�1 − h′′
�1

	= 0. Again, by raising both members of Eq. (14) to the

power ω1 � 1/(Δt
′(1)
j1

) we have

e

⎛

⎜
⎝C

(j1)
1 ,

∏

i∈S
(j1)
1

ĝ
t
(1)
j1,i

n+1−i�

⎞

⎟
⎠ = e((π1/π′′

1 )ω1 , ĝ) · e(g1, ĝn)

∑

i∈S
(j1)
1

m
(j1)
1 [i]·t(0)j1,i

(17)

Finally, B outputs the tuple
(
C,S

(j0)
0 , S

(j1)
1 ,m(j0)

0 [S(j0)
0 ],m(j1)

1 [S(j1)
1 ], (π0/π′

0)
ω0 , (π1/π′′

1 )ω1

)
,

where C = C
(j0)
0 = C

(j1)
1 . Regarding Eqs. (15) and (17), Verify accepts both

(
(π0/π′

0)
ω0 , C, S

(j0)
0 ,m(j0)

0 [S(j0)
0 ]

)
,

(
(π1/π′′

1 )ω1 , C, S
(j1)
1 ,m(j1)

1 [S(j1)
1 ]

)
,

and there exists an index i ∈ S
(j0)
0 ∩ S

(j1)
1 for which m(j0)

0 [i] 	= m(j1)
1 [i]. With

non-negligible probability (1/Q · ε2)2, B thus breaks the binding property of the
same-commitment aggregation construction from Sect. 3, which contradicts the
statement of Theorem 1. �
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A Proof via Local Forking Lemma

In this section, in order to compare with the reduction obtained from the Gen-
eralized Forking Lemma, we prove the binding property of same-commitment
aggregation of PointProofs [16] in the random oracle model via Local Forking
Lemma [2].

A.1 The Case of Same-Commitment Aggregation

Theorem 3. The vector commitment scheme described in Description 3 is bind-
ing in the random oracle model if the n-DHE assumption holds.

Proof. Suppose there exists an adversary A, that with a non-negligible proba-
bility ε generates a commitment C as well as two sets S0, S1 ⊂ [n], such that
S0∩S1 	= ∅, together with convincing proofs π0, π1 for sub-vectors m0[S0] ∈ Z

|S0|
p ,

m1[S1] ∈ Z
|S1|
p such that m0[i] 	= m1[i] for some i ∈ S0 ∩ S1. We build an algo-

rithm B in the random oracle model that uses A to solve the n-DHE problem.
B first runs A on input of an n-DHE instance

(
g, ĝ, {gi}i∈[2n]\{n+1}, {ĝi}i∈[n]

)

set as the public parameters pp of the vector commitment scheme. In a first exe-
cution, it answers random oracle queries with values h1, . . . , hQ ∈ Zp, where Q
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denotes the total number of H-queries made by A. We assume w.l.o.g. that all
random oracle queries are distinct. With probability ε, A outputs a tuple

(C,S0, S1,m0[S0],m1[S1], π0, π1)

such that

e(C,
∏

i∈S0

ĝ
t
(0)
i

n+1−i) = e(π0, ĝ) · e(g1, ĝn)
∑

i∈S0
m0[i]·t(0)i (18)

e(C,
∏

i∈S1

ĝ
t
(1)
i

n+1−i) = e(π1, ĝ) · e(g1, ĝn)
∑

i∈S1
m1[i]·t(1)i (19)

where t
(b)
i = H(i, C, Sb,mb[Sb]) for each i ∈ Sb and b ∈ {0, 1}. Then, algorithm

B determines the smallest i� ∈ S0 ∩ S1 such that m0[i�] 	= m1[i�]. Let �0 ∈ [Q]
be the index of the random oracle query H(i�, C, S0,m0[S0]) and let �1 ∈ [Q] be
the index of the random oracle query H(i�, C, S1,m1[S1]). Let h�0 , h�1 ∈ Zp be
the corresponding responses.

The reduction then locally forks the adversary twice. It first runs A a second
time with the same random tape and answers all random oracle queries using the
outputs h1, . . . , h�0−1, h

′
�0

, h�0+1, . . . , hQ ∈ Zp, where h′
�0

R← Zp is chosen afresh
and all other outputs h� for � 	= �0 are identical to those of the first execution. The
Local Forking Lemma (Lemma 2) ensures that with probability at least equal
to 1/Q · ε2, A’s second run outputs (C,S0, S

′
1,m0[S0],m′

1[S
′
1], π

′
0, π

′
1). Note that

(S′
1,m

′
1[S

′
1]) may differ from their counterparts (S1,m1[S1]) of the first execution

but this run involves the same (S0,m0[S0]) as in the first execution and the hash
query H(i�, C, S0,m0[S0]) is also the �0-th hash query in this execution, where
A receives a different response h′

�0
. Since i� ∈ S0, we know that

t
(0)
i� = H(i�, C, S0,m0[S0]) = h�0 	= h′

�0

with overwhelming probability 1−1/p, but other hash values t
(0)
i for i ∈ S0\{i�}

are the same as in the initial execution because of the local forking. If we now
consider the two proofs π0, π

′
0 obtained in the two runs, by dividing out the

equations (18) of both runs, we have

e(C, ĝ
Δt

(0)
i�

n+1−i�) = e(π0/π′
0, ĝ) · e(g1, ĝn)m0[i

�]·Δt
(0)
i� , (20)

where Δt
(0)
i� � h�0 − h′

�0
	= 0 except with probability 1/p.

Then, B locally forks A a second time on the hash query H(i�, C, S1,m1[S1]),
which was the �1-th hash query in the first execution. Namely, it runs A a sec-
ond time with the same random tape as in the first run and now answers all
random oracle queries using the outputs h1, . . . , h�1−1, h

′′
�1

, h�1+1, . . . , hQ ∈ Zp,
where h′′

�1
R← Zp is freshly sampled and all other outputs h� for � 	= �1 are
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the same as in the first execution. Here again, regarding the Local Forking
Lemma, with probability at least equal to 1/Q · ε2, A’s third run outputs
(C,S′′

0 , S1,m′′
0 [S′′

0 ],m1[S1], π′′
0 , π′′

1 ). Note that (S′′
0 ,m′′

0 [S′′
0 ]) may differ from the

pair (S0,m0[S0]) of the first execution but this run involves the same (S1,m1[S1])
as in the first execution of A and the hash query H(i�, C, S1,m1[S1]) is also the
�1-th query in the this run, where A receives a different response h′′

�1
. Since

i� ∈ S1, we can repeat the same arguments as in the first fork and, by dividing
out the verification equations (19) of the first and third runs, B obtains

e(C, ĝ
Δt

(1)
i�

n+1−i�) = e(π1/π′′
1 , ĝ) · e(g1, ĝn)m1[i

�]·Δt
(1)
i� , (21)

where Δt
(1)
i� � h�1 − h′′

�1
	= 0 except with probability 1/p. Then, raising both

sides of (21) to the power ω � Δt
(0)
i� /Δt

(1)
i� yields

e(C, ĝ
Δt

(0)
i�

n+1−i�) = e((π1/π′′
1 )ω, ĝ) · e(g1, ĝn)m1[i

�]·Δt
(0)
i� . (22)

If we now use the hypothesis that mi� 	= m′
i� , the combination of (22) and (8)

implies

e(π0/π′
0, ĝ) · e(g1, ĝn)m0[i

�]·Δt
(0)
i� = e((π1/π′′

1 )ω, ĝ) · e(g1, ĝn)m1[i
�]·Δt

(0)
i� ,

which allows B to compute and output

gn+1 �
(

(π1/π′′
1 )ω

π0/π′
0

)1
/(

Δt
(0)
i� · (m0[i

�]−m1[i
�])

)

. (23)

Thus, with probability at least equal to
(
(1/Q) · ε2

)2, the reduction B succeeds
in solving the n-DHE problem. �

A.2 Local vs Generalized Forking Lemma

We provided two proofs for the binding property of same-commitment aggrega-
tion of the vector commitment scheme proposed in [16] as PointProofs. In one
technique, we used the Generalized Forking Lemma (Lemma 1) to prove the
binding property (Theorem 1), and in the other technique, we used the Local
Forking Lemma (Lemma 2) to prove the same (Theorem 3). Here, we compare
the two techniques in terms of the advantage/run-time ratio of the reduction in
each case.

Let ε, t be respectively the winning probability and run-time of A which is the
adversary of PointProofs’ binding property. Furthermore, let q be the number of
oracle queries that A issues to H. We denote by m the number of forkings (i.e.
the number of times an n-DHE adversary re-runs A) which is equal to 2 in both
of our proofs. The advantage/run-time ratio in each case is as follows:
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• Using Local Forking Lemma

Adv

t
=

(1/q · ε2)m

t
=

ε4

t · q2

• Using Generalized Forking Lemma

Adv

t
=

ε/8
t · 8 · m2 · q · 1/ε · ln(8m/ε)

=
ε2

t · 256 · q · ln(16/ε)
,

Since we can consider ε ≥ 1/2, we have ln(16/ε) = ln(16) − ln(ε) ≤ ln(16) −
ln(1/2) ≈ 3.4. So, for the Generalized Forking Lemma case, we have

Adv

t
≥ ε2

t · 256 · q · 3.4
≥ ε2

870 · t · q

Since q, the number of oracle queries, can be potentially very large, using
Generalized Forking Lemma seems to give a tighter reduction in the case of
PointProofs.
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Abstract. Ring signatures allow a user to sign messages on behalf of
an ad hoc set of users - a ring - while hiding her identity. The original
motivation for ring signatures was whistleblowing [Rivest et al. ASI-
ACRYPT’01]: a high government employee can anonymously leak sen-
sitive information while certifying that it comes from a reliable source,
namely by signing the leak. However, essentially all known ring signature
schemes require the members of the ring to publish a structured verifica-
tion key that is compatible with the scheme. This creates somewhat of a
paradox since, if a user does not want to be framed for whistleblowing,
they will stay clear of signature schemes that support ring signatures.

In this work, we formalize the concept of universal ring signatures
(URS). A URS enables a user to issue a ring signature with respect to a
ring of users, independently of the signature schemes they are using. In
particular, none of the verification keys in the ring need to come from
the same scheme. Thus, in principle, URS presents an effective solution
for whistleblowing.

The main goal of this work is to study the feasibility of URS, espe-
cially in the standard model (i.e. no random oracles or common refer-
ence strings). We present several constructions of URS, offering different
trade-offs between assumptions required, the level of security achieved,
and the size of signatures:

– Our first construction is based on superpolynomial hardness assump-
tions of standard primitives. It achieves compact signatures. That
means the size of a signature depends only logarithmically on the
size of the ring and on the number of signature schemes involved.

– We then proceed to study the feasibility of constructing URS from
standard polynomially-hard assumptions only. We construct a non-
compact URS from witness encryption and additional standard
assumptions.

– Finally, we show how to modify the non-compact construction into
a compact one by relying on indistinguishability obfuscation.
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1 Introduction

Ring Signatures. Ring signatures, introduced in [33], allow for a user to create a
signature σ for a message m with respect to an ad-hoc group of users R, called
a ring. A ring signature should be: i) unforgeable, meaning that, given a valid
signature σ for a ring R, it must have been created by one of the users in R; and
ii) anonymous, meaning that it should be infeasible for someone, even if they
have access to every signing key corresponding to the verification keys in the
ring R, to identify which user created the signature.

Ring signatures have recently found wide-spread application in the context of
cryptocurrencies. However in this work we revisit the original motivation of ring
signatures: whistleblowing [33]. Using a ring signature scheme, a whistleblower in
a high government office with access to some classified information can leak this
information e.g. to the media, in a way that convinces them that this information
comes from a reliable source, namely by signing the leak. At the same time, the
identity of the whistleblower remains hidden in the ring of insiders. A critical
aspect in this scenario is that the whistleblower can issue such a signature without
the consent of the other parties in the ring.

Rivest, Shamir and Tauman-Kalai [33] showed that signature schemes with
RSA verification keys can be used to issue ring signatures. If RSA signatures
were the universally agreed-upon standard for digital signatures, this would be
great for whistleblowers! Yet, currently there is a plethora of competing schemes
and standards for digital signatures.

Support for ring signatures might however even deter users from adopting
some signature scheme: Knowing that a certain signature scheme supports ring
signatures, why should loyal government officials even use such a scheme and
potentially be framed for being a whistleblower? Furthermore, wouldn’t it even
be in the interest of a government to mandate their officials to use signature
schemes which do not allow to issue ring signatures? Can the kind of whistle-
blowing envisioned by [33] be prohibited by such measures? Are there effective
countermeasures which protect users against being abused as a crowd in which a
whistleblower seeks anonymity? Concretely, can we construct signature schemes
which protect their users from being involuntarily forced into a ring?

Universal Ring Signatures. Formalizing the idea of a ring signature compatible
with all digital signature schemes, we define the notion of Universal Ring Signa-
tures (URS)1. URS allow users to create a ring signature for a ring composed of
verification keys R = (vk1, . . . , vk�) independently of the structure of each vki and
even the signature schemes which were used to create these keys. In other words,
each vki can be a verification key from a (possibly different) signature scheme.2

Most importantly, none of the verification keys is required to be compatible with
known ring signature schemes.
1 The term universal ring signatures was also used in [36] to refer to a completely

different property of ring signatures.
2 For example, one of the verification keys can be from an SIS-based signature scheme

and another from a group-based signature scheme.
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Thus, URS allow users to conceal their identity inside a ring in a non-
cooperative way : The user can create a signature with respect to a ring of verifica-
tion keys, even if they were specifically chosen to be incompatible with specific
ring signature schemes. This is in stark contrast to standard ring signatures,
where the parties cooperate by issuing verification keys that are compatible with
a ring signature scheme, thus intentionally providing anonymity to one another
(which is what happens in a cryptocurrency setting).

A URS provides a way out of the whistleblower problem described above.
Equipped with a URS scheme, a whistleblower just needs to somehow specify
(implicitly or explicitly) the verification keys of the users in the ring. However,
unlike for all known ring signature schemes, these verification keys do not need
to obey any particular structure.

Ring Signatures via Non-interactive Zero-Knowledge Proofs. Non-interactive
zero-knowledge (NIZK) proofs [8] are a powerful and quite general tool to make
protocols secure against malicious adversaries. In the context of ring signatures,
the slightly stronger notion of non-interactive zero-knowledge proofs of knowl-
edge (NIZKPoK) provide a stronger soundness guarantee, in the sense that any
(efficient) prover providing a valid proof of some statement x must know corre-
sponding witness w of x.

NIZKPoK proofs provide a direct approach to construct ring signatures: For
a ring R, a message m and a commit c one provides a proof π which certifies
that c commits to a signature σ such that the pair (σ,m) verifies under some
verification key vk in the ring R.

This construction does not require that the verification keys in the ring R
come from one and the same signature scheme. Thus, NIZKPoK proofs in fact
imply universal ring signatures. Yet, NIZK (and thus also NIZKPoK) are known
to be impossible in the standard model [23], that is without a common reference
string and without making use of the random oracle heuristic [4]. We will later
discuss the ramifications of relying on either the random oracle model or the
random oracle heuristic in the construction of URS.

1.1 Our Results

The main problem we address in this work is the question of whether universal
ring signatures exist in the standard model, and if so under which assumptions.

Before we tackle the problem of constructing universal ring signatures, we first
provide definitions that formalize the requirements informally laid out above.

We present three standard model URS construction, offering different trade-
offs between compactness, security and primitives/assumptions needed to con-
struct them. Our schemes are fully universal, in the sense that no assumptions
on the structure of verification keys are made.

Our first construction is a URS scheme with compact signatures, i.e., the sig-
nature size depends only logarithmically on the number of users in the ring and
on the number of signature schemes. This scheme relies on superpolynomial hard-
ness of standard assumptions. Specifically, we rely on a superpolynomially secure
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signature scheme, a (polynomially secure) perfectly binding commitment scheme,
perfectly sound non-interactive witness-indistinguishability (NIWI) proof sys-
tems for NP and somewhere perfectly binding (SPB) hashing scheme [3]. All of
these primitives can be instantiated using standard hardness assumptions.

We get the following theorem.

Theorem 1 (Informal). Assuming the existence of perfectly binding commit-
ment schemes, perfectly sound NIWI proof systems for NP and SPB hashing
schemes (all three with polynomial security), there exists a universal ring signa-
ture scheme in the standard model with compact signatures under the condition
that the underlying signature schemes are superpolynomially secure.

While this construction provides the baseline for our investigation, it raises
the question whether superpolynomial hardness is necessary to construct stan-
dard model universal ring signatures. Compared with 2-move blind signatures,
we do know standard model constructions (again, no CRS or RO) from super-
polynomial hardness assumptions [19,20], yet we don’t know of any such con-
struction from polynomial hardness assumptions and in fact, it is known that no
such construction is achievable via a black-box reduction [16]. Thus, it is con-
ceivable that something similar might be the case for universal ring signatures.

Perhaps somewhat surprisingly, our second construction shows that this is
not the case for URS: We provide a construction that enjoys a security reduction
to polynomial and falsifiable hardness assumptions. Concretely, we rely on the
existence of a witness encryption (WE) scheme for NP, a perfectly sound NIWI
proof system for NP, an SPB hashing scheme, and a pseudorandom function
(PRF). In terms of compactness, the size of the signatures of this scheme depends
linearly on the number of users in the ring. Further, this scheme fulfills a slightly
relaxed notion of anonymity, which we call t-anonymity, which requires that
there need to be at least t honestly generated verification keys in the ring. The
standard notion of anonymity corresponds to 2-anonymity.

Theorem 2 (Informal). Assuming the existence of a WE for NP, a perfectly
sound NIWI proof system for NP, an SPB hashing scheme, and a PRF, there
exists a (non-compact) universal ring signature scheme in the standard model
with t-anonymity, where t is a parameter depending on the signature schemes
involved.

For all conceivable purposes, the parameter t here is a small constant. Con-
cretely, t depends on the entropy κ of the honest verification keys involved.
Asymptotically, any such key must have entropy at least κ = ω(log(λ)). Oth-
erwise, it would be trivially insecure. Our only requirement on t will be that
t ·κ ≥ λ. In terms of concrete parameters, κ would have to be at least 50 bits (or
else the underlying scheme would be trivially insecure). Setting t = 3 or t = 4
will be sufficient for this parameter choice.

This leaves open the question of compactness. Is perhaps any standard model
URS necessarily non-compact?

We can also resolve this question negatively, yet under still a (potentially)
stronger assumption: We provide a construction of a compact WE scheme from
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polynomial hardness assumptions for a special type of languages that we call
(t,N) threshold conjunction languages, which together with Theorem 2 will
imply a compact URS scheme from polynomial hardness assumptions.

A (t,N) threshold conjunction language is the set of statements (x1, . . . , xN )
for which there are at least t valid statements xi among them. The size of
the ciphertexts we receive when encrypting under such a statement is com-
pact in the sense that it only depends logarithmically on N . Our WE construc-
tion requires indistinguishability obfuscation (iO), puncturable pseudorandom
functions (PPRF) [10], somewhere statistically binding (SSB) hashing schemes
[27,30] and (t,N)-linear secret sharing (LSS). We obtain the following theorem.

Theorem 3 (Informal). Assuming the existence of an iO for all circuits, a
(non-compact) WE for NP, a PPRF, an SSB hashing scheme, and a (t,N)-LSS,
there exists a compact WE scheme for (t,N) threshold conjunction languages,
when N − t ∈ O(log N).

Combining the two previous theorems, we obtain our final URS construction.
This URS construction achieves compact signatures.

Theorem 4 (Informal). Assuming the existence of a compact WE for (N −
1, N) threshold conjunction languages, a perfectly sound NIWI proof system for
NP, an SPB hashing scheme and a PRF, there exists a compact universal ring
signature scheme in the standard model with t-anonymity.

1.2 Discussion and Interpretation of Our Results

Returning to our main motivation, a URS enables whistleblowing since a whistle-
blower can force any honest users into a ring, regardless of which signature
scheme they use. In this sense, one can view the process of signing a message
using a URS as an adversarial act : even if a set of honest users do not want to
hide the whistleblower, there are no effective measures on the level of signature
schemes which could protect users from being included in an anonymity set.

Bearing this in mind, we interpret our results, which establish the feasibility
of URS, as demonstrating the impossibility of designing signature schemes that
resist coercion into rings. Needless to say, the rather heavy components involved
in our constructions do not lead to practically useful protocols.

Above we briefly discussed that universal ring signatures can be constructed
from NIZKPoK proofs and by now there is a plethora of constructions of
NIZKPoK proofs from standard assumptions in the common reference string
(CRS) model [8,12,15,25,28,32], or alternatively in the random oracle model [4].
If the goal was to construct a practically useful URS to provide support across
different, seemingly incompatible but common signature schemes, then a pro-
tocol relying on succinct NIZKPoK arguments would be preferable. In such a
setting, one would expect the users of these schemes to collaborate in the sense
that they are willing to provide anonymity to one another, i.e. one could assume
that all users trust a common reference string as well as all the signature schemes
involved.
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Yet, the scenario we are interested in is different, in the sense that the “users”
have no reason to trust one another, as they were potentially forced into a ring
against their will. In this sense, a universal ring signature scheme in the CRS
could give users who have been forced into a ring against their will a means of
plausible deniability, e.g. by claiming that they do not trust the CRS that was
used to generate a universal ring signature, as the party who generated such a
CRS may also forge such a signature.

On the other hand, if we consider URS in the random oracle model, then
the unsoundness of the ROM could cause issues. When protocols in the ROM
are instantiated, we replace the random oracle with a concrete hash function
H. As shown by Goldwasser and Kalai [24], this heuristic can lead to unsound
proof systems if the underlying language already depends on this (concrete) hash
function H.

This issue also comes up in the context of universal ring signatures, as one
of the signature schemes could be chosen depending on the hash function H.
Somewhat more concretely, assume we wanted to build a signature scheme Σ∗

which makes a URS relying on a random oracle unsound, in the sense that if any
verification key of Σ∗ is used in a ring R, then universal ring signatures can be
forged, while Σ∗ is still EUF-CMA secure. We could achieve this by taking any
EUF-CMA secure signature scheme Σ and modifying it to Σ∗ by additionally
including into the verification keys vk∗ of Σ∗ an obfuscated program O which lets
anyone publicly generate URS of rings involving vk∗. Note that this obfuscated
program O needs to know a succinct description of the hash function H, but this
is feasible as we assume H to be instantiated, rather than a random oracle. The
same can in fact be argued for any fixed static common reference string CRS,
i.e. CRS can be hardwired into O. Note that while for such a scheme the size
of the verification key would increase, both generation and verification would
remain essentially unchanged.

Looking ahead, if such a transformation from Σ to Σ∗ was done starting
relative to one of our standard-model secure URS, then Σ∗ would be necessarily
insecure. But for a URS whose unforgeability rests on the CRS model or the
random oracle model, we would generally expect such a Σ∗ to be unforgeable
(once the CRS or the RO has been instantiated).

The bottom line of this discussion is that it seems hard to argue that URS
constructions in the CRS model or the ROM would be robust against signature
schemes which undermine the unforgeability of the URS by depending on the
concrete CRS which is used or the concrete hash function which instantiates the
Fiat-Shamir paradigm.

1.3 Previous Works

Ring signatures have been extensively studied in the last two decades. Construc-
tions in the random oracle model (ROM) include [1,9,14,29,33]. Ring signatures
in the CRS model were studied in [11,35], where [11] solves the interesting but
orthogonal problem of how to include users in a ring whose public keys are
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not posted publicly by using a PKI structure. We can also find standard model
constructions for ring signatures in e.g. [3,5,31].

All works presented above assume some form of structure on the verification
keys. For example, the work of [33] assumes that ring verification keys are RSA
keys or the work of [5] assumes that ring verification keys are composed by a
standard verification key and a uniformly random string.

The only exceptions we are aware of are the works [1,22]. In these works,
ring signatures that support different signature schemes are presented. However,
these works are only somewhat universal in the sense that there are signature
schemes that are not compatible with their schemes.3 Moreover, these schemes
are only secure in the ROM whereas we work in the standard model. In essence,
the focus of these works is different from ours as they sacrifice universality for
efficiency. In this work, we take the opposite direction.

A construction of a universal primitive from iO has previously been given
for a notion called signature aggregators in [26]. This allows to combine signa-
tures from different users using arbitrary signature schemes into one signature
to succinctly store and verify. The application and techniques used are however
different and can not be transferred to ring signatures trivially.

2 Technical Overview

Before presenting our constructions of URS, we briefly recall the ring signature
scheme of Backes et al. [3]

In the scheme of [3] (which is itself based on [5]), verification keys are com-
posed by VKi = (vki, pki) where vki is a verification key of a standard signature
scheme Sig and pki is a public key of a public-key encryption (PKE) scheme that
has pseudorandom ciphertexts4.

To sign a message m with respect to a ring R = {VKi}i∈[�], the signer i first
generates a signature σ ← Sig.Sign(ski,m) and then encrypts σ it using pki, that
is, ct0 ← PKE.Enc(pki, σ). The signer then samples ct1 ←$ {0, 1}λ. One crucial
point is that, if the underlying PKE has pseudorandom ciphertexts, then we
cannot distinguish well-formed ciphertexts from uniformly random strings. In
particular, this means that ct0 contains (computationally) no information about
the public key under which it was encrypted.

The signer now proves that either ct0 or ct1 encrypts a valid signature
under one of the verification keys in the ring using a non-interactive witness-
indistinguishable (NIWI) proof system. If off-the-shelf NIWIs were used in this
construction, the size of the proof would scale linearly with the size of the ring.
This would lead to signatures of size O(|R| · poly(λ)), where λ is the security
parameter. To circumvent this problem, [3] employed a new strategy.

3 More precisely, the scheme of [1] is compatible with trapdoor-one-way and three-move
signature schemes. The scheme of [22] is compatible with certain sigma protocols.
Any scheme outside of these classes is not compatible with their ring signature
schemes.

4 Examples of such PKE schemes exist from the LWE or DDH assumption.
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Compact NIWI Proofs. The main ingredient to compress the size of the NIWI
proof is a somewhere perfectly binding (SPB) hashing scheme. An SPB hashing
scheme allows one to hash a database such that the hash perfectly binds to the
database item an index i, while the hashing key hides the index i. [3,27,30].

Given ct0, ct1, the signer can now use a NIWI proof system together with a
somewhere perfectly binding (SPB) hashing scheme to create a compact proof π
that either ct0 or ct1 encrypts a valid signature under one of the keys in the ring.
The basic idea here is that instead of proving a statement over all verification
keys in the ring, it is sufficient to prove a statement about just two SPB hashes.
More concretely, to compute the proof π, the signer first generates an SPB pair of
hashing key/secret key (hkj , shkj) ← SPB.KeyGen(1λ, i) that binds to position
i, for j ∈ {0, 1}. Then, it hashes R into a digest hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Finally, the signer proves that there exists an index i such that one
of the two statements is true:

1. ct0 encrypts a valid signature under vki and hk0 binds to i;
2. ct1 encrypts a valid signature under vki and hk1 binds to i.

The signature is composed by (ct0, ct1, hk0, hk1, π). Thus, by the efficiency
requirements of SPB, the signature has size O(log |R| · poly(λ)).

Finally, to verify that a signature is valid, one just needs to recompute hj as
the hash of R under hkj , for j ∈ {0, 1}, and check that π is a valid proof.

Security. Unforgeability and anonymity are roughly argued as follows in [3]. To
argue unforgeability, the security of the scheme is reduced to the security of the
underlying signature scheme. To do this, the reduction receives a verification key
vki∗ from the challenger, creates the remaining verification keys vki, for i �= i∗,
and also the public keys pki for all i ∈ [�]. Importantly, the public keys pki are
created such that the reduction knows the corresponding secret keys.

Upon receiving a (ring signature) forge from the adversary, the reduction
proceeds as follows:

1. Decrypt both ct0 and ct1, to obtain σ0 and σ1, respectively;
2. Check if any of σ0, σ1 is a valid signature under vki∗ . If one of them is valid,

the reduction outputs it as the forge.

By the perfect correctness of the SPB hashing and perfect soundness of the
NIWI, the reduction outputs a valid forge with non-negligible probability.

To prove anonymity, one relies on the witness-indistinguishability of the
NIWI and the fact that the underlying PKE has pseudorandom ciphertexts.
Concretely, given two honestly generated verification keys vki0 and vki1 , build
a sequence of hybrids to prove that a signature created under vki0 is indistin-
guishable from a signature created under vki1 . The sequence of hybrids starts by
replacing ct1 with an encryption of a valid signature under vki1 , and this change
goes unnoticed since the PKE has pseudorandom ciphertexts. Next, change the
index in the witness used to create the proof π from i0 to i1 using the witness-
indistinguishability of the NIWI scheme.
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2.1 Compact Universal Ring Signatures from Signatures
with Superpolynomial Security

The construction of the Backes et al. scheme [3] serves as the starting point of
our first construction. Observe that the ring signature verification keys of the
Backes et al. scheme have a special format: each verification key VKi is composed
of a standard verification key vki and a public key pki.

The public key pki, which can be chosen by the unforgeability reduction,
is what enables this reduction to extract a valid forge. In a URS, however,
verification keys are not required to have any particular format. In particular,
they are not required to include an independently chosen public key of a PKE.
How can we facilitate the extraction of a forge by an unforgeability reduction in
the setting of URS?

Commitments Instead of Ciphertexts. Our first observation is that the cipher-
texts in the scheme of Backes et al. [3] are never decrypted in the actual scheme.
So, ciphertexts in this scheme actually serve as extractable commitments. Thus,
a natural approach is to rely on commitments instead of ciphertexts in this con-
struction. The main reason for using commitments instead of ciphertexts is that
we can choose a keyless commitment scheme.

Using a commitment scheme, we can build a URS as follows: To sign
a message m under a ring of users R = {vk1, . . . , vk�} (where each vki is
from a possibly different signature scheme), a signer first creates a signature
σ ← Sig.Signi(ski,m) using its signature scheme Sigi. Then, it commits to
(com0, γ0) ← CS.Commit(1λ, σ) and to (com1, γ1) ← CS.Commit(1λ, 0) (where
γb is the opening information). Using SPB and NIWI exactly as before, the
signer can create a compact proof π that one of the commitments hides a valid
signature under one of the keys in R.

Anonymity follows by essentially the same argument as before, where the
hiding property of the underlying commitment is used instead of the ciphertext
pseudorandomness of the PKE in [3].

Unforgeability from Superpolynomial Hardness. We now show how the unforge-
ability reduction can extract a valid forge from the adversary. Assume that the
hiding property of the commitment scheme CS holds against polynomial-time
adversaries but that CS can be extracted in superpolynomial-time. We can then
use complexity leveraging to prove the unforgeability of the scheme, given that
the underlying signature schemes are unforgeable against superpolynomial-time
adversaries.

Concretely, given a PPT adversary A that breaks the unforgeability of our
URS, we can construct a superpolynomial-time reduction against the unforge-
ability of one of the Sigi. The reduction, after receiving a forge Σ∗ = (com∗

0, com
∗
1,

hk∗
0, hk

∗
1, π

∗) by A, opens both com0 and com1 by brute force to recover σ∗
0 and

σ∗
1 respectively. Note that, since CS can be extracted in superpolynomial time,

the reduction succeeds in recovering σ∗
0 and σ∗

1 . Now, as before, the reduction
tests if there is a b ∈ {0, 1} such that 1 ← Sig.Verifyi(vki,m, σ∗

b ) and outputs σ∗
b

if it is the case.
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2.2 Non-compact Universal Ring Signatures from Witness
Encryption

Considering both the construction of Backes et al. [3] and our construction in
the last paragraph, the question emerges of how one could possibly efficiently
extract a signature, even if we cannot shoehorn an extraction trapdoor into the
protocol utilizing a CRS or augmenting the verification keys. Somewhat more
abstractly:

Is it possible to extract a secret from a protocol when the protocol constraints
don’t allow us to embed an extraction gadget into the protocol?

Extracting via Witness Encryption. Our way out of this dilemma starts with
the observation that by relying on a sufficiently strong tool, namely standard
witness encryption (WE) [18], we can repurpose any sufficiently cryptographic
object as a public key. In our case, these objects will be the verification keys of
the honest parties.

Recall that a WE for an NP language L (with relation R) allows an encrypter
to encrypt a message m with respect to a statement x. If x ∈ L, then a party in
possession of a witness w such that R(x,w) = 1 can recover the encrypted m.
But, if x /∈ L, then indistinguishability of encryptions holds. Currently, we have
constructions of WE from indistinguishability obfuscation (iO) [17] or multilin-
ear maps [18], but WE is potentially a weaker assumption than either of these.

To use the security of WE, we need to craft a language L with distinct true
and false statements, such that witnesses of true statements allow for decryp-
tion, whereas ciphertexts under false statements hide the encrypted message.
Ideally, true and false statements should be indistinguishable. Our design-choice
of true and false statements will be informed by the following consideration:
Consider two distributions of (honest) verification keys, one where each honest
vk is generated using truly random coins, and another one where each honest
ṽk is generated using (possibly correlated) pseudorandom coins. While these
distributions are clearly computationally indistinguishable, under the right cir-
cumstances we can also make them statistically far, meaning that one of them
can serve as a distribution of true statements, while the other one will be the
distribution of false statements.

More concretely, let PRG be a pseudorandom generator (PRG). We say that
a verification key vk is malformed if it is created using random coins coming
from a PRG, instead of using truly random coins. That is, for some seed s

(vk, sk) ← Sig.KeyGen(1λ;PRG(s)).

Similarly, a well-formed key vk is created using truly random coins.
Now, consider the language L parameterized by � different verification keys

{vki}i∈[�]. The yes instances of L are the instances {vki}i∈[�] where all but one
of the verification keys are malformed. In other words, there exist {si}i∈[�]\{i∗}
with i∗ ∈ [�] such that for all i ∈ [�] \ {i∗}

(vki, ski) ← Sig.KeyGeni(1
λ;PRG(si)).
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Looking ahead, the dichotomy between all but one key are malformed vs at
least two keys are well-formed is what will allow us to prove unforgeability and
anonymity respectively. In the former case, the statement under which the WE
ciphertext is created is true and, thus, we will be able to decrypt it. In the latter
case, the statement is false. Therefore, we can use the security of the WE scheme.

At first glance, this approach seems to work. However, there is a caveat: when
the reduction wants verification keys to be well-formed, it might accidentally end
up creating them malformed. As an example, consider a signature scheme Sig
whose verification keys have less min-entropy than the underlying PRG. Say
the key generation algorithm Sig.Gen(1λ, r) only uses the first λ/3 bits of r
whereas the PRG seed has λ/2 bits of entropy. In other words, the distributions
of well-formed keys and malformed keys might not be sufficiently statistically
far. Then, there is a non-negligible probability that a key chosen from the well-
formed distribution is actually malformed. We could assume that the underlying
signature schemes have exponential security (e.g., verification keys have λ bits
of min-entropy) but this would to some degree defeat the purpose of URS.

Replacing the PRG by a PRF. The solution for this problem is to use a pseudo-
random function (PRF) instead of a PRG to sample malformed keys. Instead of
generating malformed keys individually, we now generate them in a correlated
fashion: A set of keys {vki} is malformed iff a PRF key K exists such that

(vki, ski) ← Sig.KeyGeni(1
λ;PRF(K, i)).

Note that now, all malformed keys are correlated via the PRF key. This implies
that the distribution of t malformed keys has λ bits of min-entropy because as
soon as we choose the PRF key, all malformed keys are fixed. On the other hand,
when sampling t well-formed keys independently, the resulting distribution will
have tκ bits of min-entropy where κ is the min-entropy of each verification key.
Setting tκ > λ we conclude that the distributions of well-formed and malformed
keys are statistically far apart.

This fact will allow us to prove t-anonymity by making the number of honest
keys in the ring just large enough.

Given this, we redefine the language L in the following way: yes instances
of L are the instances {vki}i∈[�] where all but one of the verification keys are
malformed. In other words, there exists K ∈ {0, 1}λ such that for all i ∈ [�]\{i∗}

(vki, ski) ← Sig.KeyGeni(1
λ;PRF(K, i)).

The Scheme. Armed with a WE scheme WE for the language L described above,
we now outline how we can construct a URS scheme.

The scheme is essentially the same as above except that we use the WE
scheme for language L as a drop-in replacement for the commitment scheme.

To sign a message m with respect to the ring R, the signer encrypts a valid
signature σ created using its own signing key. Then, it encrypts σ using WE
under the statement x = R, that is, ct0 ← WE.Enc(1λ, x, σ). Additionally, it
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creates the ciphertext ct1 ← WE.Enc(1λ, x, 0). Finally, the signer can again use
NIWI and SPB to prove compactly that one of the ciphertexts encrypts a valid
signature.

We first analyze the size of the signature. Note that, for all known WE
schemes, the ciphertext size is proportional to the size of the verification circuit
for the language L. Since the statement is of size O(|R| · poly(λ)), then the
ciphertexts output by WE are of size O(|R| · poly(λ)). This implies that the
signature is of size O(|R| · poly(λ)).

Security. We now sketch how we prove the security of the scheme. As mentioned
before, we will set all but one key to be malformed in order to prove unforgeabil-
ity. Whereas in the t-anonymity proof, we set none of the keys to be malformed
(recall that t-anonymity requires that the challenge ring as at least t honestly
generated verification keys).

To prove unforgeability, we design a reduction that sets all verification keys,
but the challenge key vki∗ to be malformed. That is, {vki}i∈[�]\{i∗} are mal-
formedly created using a PRF key K. By the security of the PRF, the adversary
is not able to distinguish the case where the verification keys {vki}i∈[�]\{i∗} are
well-formed from the case when they are malformed.

The crucial observation now is that the reduction has a valid witness w = K
for the statement x = R under which WE ciphertexts are encrypted. This means
that, upon receiving a URS forge

Σ∗ = (ct∗0, ct
∗
1, hk

∗
0, hk

∗
1, π

∗)

by the adversary, the reduction can use w to decrypt both ct∗0 and ct∗1. An
analysis identical as for the previous scheme shows us that, if Σ∗ is a valid
URS signature, then there is a non-negligible probability that one of ct∗0 and ct∗1
decrypts to a valid signature σ∗ under vki∗ .

In the t-anonymity proof, we set none of the verification keys to be mal-
formed, from which the adversary chooses t of them, say, vki0 , . . . , vkit−1 . If the
parameters of the PRF are chosen properly, then there is a negligible probability
that x ∈ L. As explained above, since all t verification keys are sampled inde-
pendently, it is unlikely that t − 1 share correlations via a PRF key K. This is
because the distribution of t − 1 honestly generated keys has much more min-
entropy than t − 1 malformed keys. Thus, there will be at least two well formed
verification keys in the challenge ring R∗ with overwhelming probability. We
conclude that WE encryptions of σ are indistinguishable from WE encryptions
of 0 by the security of the WE.

Given this, we can easily build a sequence of hybrids in a similar fashion
as for the previous schemes. That is, given two honestly generated verification
keys vki0 , vki1 and a signature Σ∗ = (ct∗0, ct

∗
1, hk

∗
0, hk

∗
1, π

∗) for a message m∗ with
respect to the ring R∗ where vki0 , vki1 ∈ R∗:

1. We first replace ct∗1 by an encryption of a valid signature σ′ under vki1 . By the
security of the underlying WE, this change is undetected by the adversary.

2. We switch witnesses from i0 to i1, using the witness-indistinguishability of
the NIWI scheme.



Universal Ring Signatures in the Standard Model 261

2.3 Compact Universal Ring Signatures from Indistinguishability
Obfuscation

At first glance, the techniques that we employed in the previous construction
seem hopeless in our ultimate goal of building a compact URS from falsifiable
hardness assumptions. On the one hand, for all known WE schemes that we
know of, the size of the ciphertexts grows with the size of the statement. On the
other hand, if we try to reduce the size of the statement of the language L, we
immediately run into trouble.

The reason for this is that to be able to extract a valid forge, the reduction
needs to set up all verification keys but the challenge one in a special mode.5

If the reduction sets just a few of them in this special mode, anonymity does
not hold anymore: An adversary breaking anonymity could just use the same
strategy as the unforgeability reduction to extract a signature from the challenge
URS signature since, in the anonymity game, all but two verification keys may
be adversarially chosen.

Given this state of affairs, it seems implausible (or even impossible!) that we
can achieve a compact URS scheme just from WE.

Our final contribution is to build a WE scheme for a special type of NP
languages that we call threshold conjunction languages. A threshold conjunction
language L′ is a language of the form

L′ = {(x1, . . . , xN ) : ∃(xi1 , . . . , xiN−1) s.t. xi1 ∈ L ∧ · · · ∧ xiN−1 ∈ L}.

In other words, given an instance x = (x1, . . . , xN ), x is a yes instance of L′ if
all but one of the xi are instances of L.

Compact URS from Compact WE. Assume for now that we have a compact
WE scheme for threshold conjunction languages. That is ciphertexts of such a
scheme scale only logarithmically with N . Then, plugging this WE scheme into
our construction from the previous section immediately yields a compact URS.

Compact Witness Encryption for Threshold Conjunction Languages. It remains
to show how we can obtain such a scheme. For simplicity, we focus on the case
where we have N instances x = (x1, . . . , xN ) and x ∈ L′ iff xi ∈ L for all
i ∈ [N ]. The case where all but one of the statements xi must be true can be
easily obtained by additionally using a secret sharing scheme.

The high-level idea of the construction is as follows: We build an obfuscated
circuit C̄ that receives an index i ∈ [N ] and outputs non-compact WE cipher-
texts WE.Enc(1λ, xi, ri) for uniform ri ←$ {0, 1}.6 The ciphertext of our new WE
scheme for a message m ∈ {0, 1} is composed by C̄ and c = m +

∑
ri.

If one is in possession of witnesses for all statements xi, then by the correct-
ness of the underlying non-compact WE scheme, one can recover all ri. On the
5 In our case, the special mode is when keys are malformed.
6 To make the circuit size independent of N , we use a pseudorandom function (PRF)

to succinctly describe all the ri. This PRF has to be puncturable in order to use the
puncturing technique of [34].
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other hand, if one of the statements xi∗ is false, then we can build a sequence
of hybrids where we replace WE.Enc(1λ, xi, ri) by an encryption of 0 and then
replace c by a uniform value.

Although the idea seems to work at first glance, there is a critical issue: The
scheme is not compact. The reason for this is that we have to hardwire all the
statements in C̄, otherwise how does the circuit know under which statements it
must encrypt each ri? To circumvent this problem we use (again!) a somewhere
statistically binding (SSB) hashing scheme in a similar way as [27].7 That is, the
circuit only has a hash value h ← SSB.Hash(hk, {x1, . . . , xN}) hardwired. Now,
when it receives (i, xi, γi), it first checks if γi is a valid opening with respect to
xi, h. Since {x1, . . . , xN} is public, anyone can compute a valid opening

γi ← SSB.Open(hk, {x1, . . . , xN}, i)

for every i ∈ [N ].
Recall that the verification algorithm of an SSB hashing scheme can be imple-

mented in size O(log N ·poly(λ)). Hence, the efficiency requirements are met and
the circuit is now of size O(log N · poly(λ)).

We thus obtain a WE scheme that outputs ciphertexts that depend only
logarithmically on N .

How to Avoid the Exponential Security Loss of Current iO Schemes. We stress
that, although the scheme presented above enjoys a polynomial reduction to the
underlying cryptographic primitives, current iO schemes incur a security loss -
compared to the underlying hardness assumptions - which is proportional to the
size of the domain of the circuit being obfuscated (e.g., [2,6,7]). This implies
that the construction presented above suffers from an exponential security loss
when we instantiate the iO scheme by any known construction since the circuit
being obfuscated has an exponentially-sized domain.8

Intending to avoid this exponential security loss, we present an alternative
construction of compact WE for threshold languages where we just obfuscate a
program with a polynomial-size domain. Note that, if the domain of the obfus-
cated program has only polynomial size, then the security reduction from iO to
the underlying hardness assumptions loses only a polynomial factor.

As explained above, the statements cannot be hardwired in the circuit, other-
wise, the size of the obfuscated circuit is not compact. To avoid this conundrum,
we utilize the iO for Turing machines (TM) scheme of [21].

We note that, in the scheme of [21], a TM is modeled as a sequence of
circuits. The input is written on a tape and the obfuscated TM accesses the
input via a laconic oblivious transfer (LOT) [13]. We can consider a second tape
which includes the statements (x1, . . . , xN ) and from which the TM reads from
using a LOT in a similar way as in [21]. Note that since (x1, . . . , xN ) is public
knowledge, this tape can be created by any party and does not have to be part

7 This time we use SSB in its statistically binding form.
8 Observe that the obfuscated circuit receives as input an index i, a statement xi and

an SSB proof γi.
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of the description of the obfuscated TM. Instead, only the LOT hash needs to
be hardwired in the TM. The size of the resulting obfuscated TM depends only
logarithmically on the size of this tape.

Given this, to encrypt a message m, one obfuscates a TM M that receives
an index i ∈ [N ] as input, retrieves xi from the public tape and outputs
WE.Enc(1λ, xi, ri).9 A ciphertext is composed by M̄ (which is the result of obfus-
cating M) and c = m +

∑
ri. Decryption works exactly as before.

As mentioned before, the size of M̄ depends only logarithmically on N and,
hence, the size of the ciphertext is O(log N · poly(λ)).

Furthermore, since the obfuscated TM M̄ has a polynomial-size domain, its
security proof incurs only a polynomial security loss compared to the underlying
hardness assumption.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”. A negligible function negl(n) in n is a function
that vanishes faster than the inverse of any polynomial in n.

For n ∈ N, [n] denotes the set {1, . . . , n}. If S is a (finite) set, we denote by
x ←$ S an element x ∈ S sampled according to a uniform distribution. If D is a
distribution over S, x ←$ D denotes an element x ∈ S sampled according to D.
If A is an algorithm, y ← A(x) denotes the output y after running A on input
x. If A and O are algorithms, AO means that A has oracle access to O.

Additionally, we assume familiarity with the following notions from standard
literature: Signature Schemes, Non-Interactive Witness-Indistinguishable Proof
Systems, Commitment Schemes, Somewhere Statistically Binding and Some-
where Perfectly Binding Hashing Schemes, Pseudorandom Generators, Witness
Encryption Schemes, Indistinguishability Obfuscation, and Puncturable Pseu-
dorandom Functions. For completeness, a full collection of definitions of these
notions and possible instantiations can be found in the full version of the paper.
We also require Linear Secret Sharing with a slightly modified definition given
below.

Linear Secret Sharing. Linear secret sharing (LSS) is used to divide a secret
into shares such that if one is in possession of an authorized set of shares, then
one can reconstruct the secret. In this work, we use threshold LSS (which, for
simplicity, we simply refer to as LSS).

Definition 5 (Linear Secret Sharing). Let t ≤ N . A (t,N)-linear secret
sharing (LSS) LSS scheme is composed of the following algorithms:

– (s1, . . . , sN ) ← Share(m) takes as input a message m. It outputs N shares
(s1, . . . , sN ).

9 We remark that the underlying WE also has a domain of polynomial size hence it
only looses a polynomial factor in security if it is based on iO [17,21].
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– m ← Reconstruct(si1 , . . . , sit) takes as input t shares (si1 , . . . , sit). It outputs
a message m.

A (t,N)-LSS scheme, which is generated by a generating matrix in the systematic
form, has the following additional algorithm:

– (siz+1 , . . . , siN ) ← RemainShare(m, si1 , . . . , siz ) that takes as input a message
m and uniformly chosen shares sij ←$ {0, 1}λ for j ∈ [z] with z < t, and
outputs N − z remaining shares (siz+1 , . . . , siN ).

Definition 6 (Correctness). A LSS scheme LSS is said to be correct if for all
messages m, all subsets {i1, . . . , it} ⊆ [N ] and any z < t it holds that:

Pr [m = Reconstruct(si1 , . . . , sit) : (s1, . . . , sN ) ← Share(m)] = 1.

and Pr

⎡

⎣
m = Reconstruct(si1 , . . . , sit) :

sij ←$ {0, 1}λ for j ∈ [z]
(siz+1 , . . . , siN ) ← RemainShare(m, si1 , . . . , siz )

⎤

⎦ = 1.

Definition 7 (Privacy). We say that a (t,N)-LSS scheme LSS is private if
for all subsets {ii1 , . . . , iiz} ⊂ [N ] where z < t, all pairs of messages (m0,m1)
and all PPT adversaries A we have that

∣
∣
∣
∣
Pr [1 ← A(s0,i1 , . . . , s0,iz ) : (s0,1, . . . , s0,N ) ← Share(m0)] −
Pr [1 ← A(s1,i1 , . . . , s1,iz ) : (s1,1, . . . , s1,N ) ← Share(m1)]

∣
∣
∣
∣ ≤ negl(λ).

4 Universal Ring Signatures

In this section we present the definition of URS. A URS is composed of a signing
and a verification algorithm.

Definition 8 (Universal Ring Signature). A universal ring signature (URS)
scheme URS is composed of the following algorithms:

– Σ ← Sign(1λ, ski,m,R, i, S) takes as input a security parameter 1λ, a sign-
ing key ski, a message m, a ring of keys R = (vk1, . . . , vk�) an index
i ∈ [�] and a list of signature schemes S = {Sigi = (Sig.KeyGeni,Sig.Signi,
Sig.Verifyi)}i∈[M ], where each vkj is a public verification key under exactly
one10 of the schemes Sigi. It outputs a signature Σ.

– b ← Verify(Σ,m,R, S) takes as input a signature σ, a message m, a ring of
keys R and a list of signature schemes S. It outputs a bit b ∈ {0, 1}.
We want a URS to fulfill correctness, unforgeability and anonymity.

10 In practice, keys/certificates are usually annoted with their respective schemes and
we assume such a labelling here.
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Definition 9 (Correctness). We say that a URS URS = (Sign,Verify) is cor-
rect if for all λ ∈ N, all �,M = poly(λ), all correct signature schemes Sig′, all
j ∈ [�], all messages m and all (vk, sk) ← Sig′.KeyGen(1λ), we have that

Pr
[
1 ← Verify

(
Sign(1λ, sk,m,R, j, S),m,R, S

)]
= 1

for any R = (vk1, . . . , vk�) such that vkj = vk and any S = {Sigi}i∈[M ] such that
Sig′ ∈ S. That is, the remaining elements in R,S may be arbitrarily chosen.

We now define the unforgeability of a URS. A URS scheme should be compat-
ible with any signature scheme. Hence, we would like to let the adversary choose
signature schemes for the URS scheme. However, the adversary could choose
an insecure signature scheme and, in this case, we cannot guarantee unforge-
ability. Hence, the experiment should provide a list of secure signature schemes
and verification keys at the beginning of the experiment. The forge given by
the adversary must be with respect to these verification keys.11 Our definition is
similar to the one of unforgeability with respect to insider corruption for standard
ring signatures [5], which is the strongest unforgeability definition.

Definition 10 (Unforgeability). Let A be an adversary. We denote by Ls a
list of challenge signature schemes

Ls = {Sigi = (Sig.KeyGeni,Sig.Signi,Sig.Verifyi)}i∈[M ].

Consider the following experiment, denoted by ExpURSUnf (Ls,A, 1λ):

1. The experiment provides Ls to A.
2. The adversary outputs a list of indices {indi}i∈[�].
3. For all i ∈ [�], the experiment computes (vki, ski) ← Sig.KeyGenindi(1

λ) and
outputs R = (vk1, . . . , vk�) to the adversary. Also it initialises a set K = ∅
and remembers the indices indi.

4. The adversary may now make three types of requests12:
– Corrupt(i), which the experiment answers with the secret key ski. Also it

adds vki to K.
– URSSign(m, R̄, i, S̄) takes as input an index i ∈ [�], a message m, a ring

of keys R̄ (not necessarily contained in R) and a list of signature schemes
S̄. If vki ∈ R̄, we denote its position as i∗. If additionally Sigindi ∈ S̄, the
experiment answers with Σ ← URS.Sign(1λ, ski,m, R̄, i∗, S̄).

– Sign(m, i) takes as input an index i ∈ [�] and a message m. The experi-
ment answers with Σ ← Sig.Signindi(1

λ, ski,m).

11 Note that, in the unforgeability definition for standard ring signatures in [5] a similar
situation happens: The forge of the adversary must be with respect to verification
keys created honestly and not with respect to maliciously chosen verification keys.

12 Note that as the key generation algorithms are publicly available, the adversary may
honestly generate key pairs itself. The corruption oracle simply serves to corrupt the
initial honest keys. Arbitrary additional adversarially chosen keys can be included
in ring signature queries, as we do not require R̄ ⊆ R.
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5. A outputs (Σ∗,m∗, R∗, S∗).
6. If 1 ← Verify(Σ∗,m∗, R∗, S∗), R∗ ⊆ R \ K, S∗ ⊆ Ls and the message m∗ was

never queried in a URSSign or Sign request, the experiment outputs 1.13 Else,
it outputs 0.

We say that a URS URS = (Sign,Verify) is unforgeable, if for all λ ∈ N,
M = poly(λ), all lists of EUF-CMA secure signature schemes Ls = {Sigi}i∈[M ]

and all PPT adversaries A we have that

Pr
[
1 ← ExpURSUnf (Ls,A, 1λ)

]
= negl(λ).

In the anonymity experiment, the goal of the adversary is to guess which user
created a given signature. We give a general definition called t-anonymity, which
mandates that at least t honest keys in the anonymity set must be honestly
chosen for anonymity to hold. The adversary may include at least t honest
and additional maliciously chosen verification keys (potentially from insecure
signature schemes) in a challenge ring. It should still be unable to determine
which of the honest parties signed a given URS under that ring.

The case of 2-anonymity coincides with the definition of anonymity against
full key exposure of [5]. This is the strongest anonymity definition for ring signa-
tures and is even known to imply unrepudiability, meaning that a member in the
ring cannot prove that they did not sign the message [31]. As it is the standard
case, we will refer to 2-anonymity as anonymity throughout this work.

Definition 11 (t-Anonymity). Let A = (A1,A2,A3) be an adversary. We
denote a list of challenge signature schemes by Ls = {Sigi = (Sig.KeyGeni,
Sig.Signi,Sig.Verifyi)}i∈[M ]. We define the t-anonymity experiment ExpURSAnont(Ls,
A, 1λ) as follows:

1. ({indi}i∈[�], aux1) ← A1(1λ, Ls).
2. For all i ∈ [�], the experiment computes (vki, ski) ← Sig.KeyGenindi(1

λ; ri)
with random coins ri and sets K = (vk1, . . . , vk�).

3. (m∗, R∗ = (vk′
1, . . . , vk

′
p), S

∗ = (Sig′
1, . . . ,Sig

′
q), (jk)k∈[t], aux2) ← A2(K,

(r1, . . . , r�), aux1) where vk′
jk

∈ K for k ∈ [t] with indices lk in K (i.e.
vk′

jk
= vklk). Additionally, the signature schemes corresponding to these pub-

lic keys, Sigindlk , must be in the set S∗. If these conditions are violated, the
experiment aborts.

4. Σ∗ ← URS.Sign(1λ, sklk ,m∗, R∗, jk, S∗) where k ←$ [t].
5. k′ ← A3(Σ∗, aux2).
6. If k = k′, then output 1. Else, output 0.

13 We can consider the stronger notion, where a forge is valid, if no query of the
form URSSign(m∗, R∗, ·, ·) or Sign(m∗||R∗, i) for vki ∈ R∗ was made. This can be
achieved by the standard trick of signing the message (m∗||R∗) instead of m∗ or a
hash H(m∗||R∗) thereof for compactness.
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We say that a URS URS = (Sign,Verify) is t-anonymous, if for all λ ∈ N , all
sizes M = poly(λ), all lists of signature schemes Ls = {Sigi}i∈[M ] and all PPT
adversaries A = (A1,A2,A3) we have that

∣
∣
∣
∣Pr

[
1 ← ExpURSAnont(Ls,A, 1λ)

]
− 1

t

∣
∣
∣
∣ = negl(λ).

Efficiency of URS. We remark that URS inherits the efficiency of the most
inefficient signature scheme in the ring. For this reason, it is unlikely that we
can construct a URS with good and practical parameters and efficiency.

5 Universal Ring Signature from Signature Schemes
with Superpolynomial Security

In this section, we present a construction of URS that is based on signature
schemes that are superpolynomially hard to forge. From this hardness, we can
prove security of the URS scheme using complexity leveraging.

5.1 Construction

We start by presenting the construction of this URS scheme.
For simplicity, we assume, that there is an upper bound on the size of

all descriptions of signature verification circuits. Also, for public keys vk ←
Sig.KeyGen(1λ), we assume that they are labeled with their respective schemes.
That is, there is a function tag(., .) which takes vk and a signature scheme Sig
and outputs 1, iff the key vk was made under Sig, but 0 for any other signa-
ture verification scheme as input. Sig.Verify should only accept keys vk with the
corresponding tag to Sig, that is tag(vk,Sig) = 1.

In the scheme below, we assume that all used signature schemes are unforge-
able against superpolynomial adversaries running in O(T ′(λ) ·poly(λ)). We then
use a commitment scheme whose hiding property holds against PPT adversaries
but can be broken in time T ′(λ) ∈ ω(poly(λ)). A signature of our URS for a
message m includes a commitment to a signature of m in one of the underlying
signature schemes. This will give our reduction, which runs in superpolynomial
time, an advantage in the unforgeability experiment, where it may extract the
commitments and provide a forge against the underlying signature scheme. How-
ever, this opening strategy cannot be used by an adversary against anonymity,
as they are running in polynomial time.

Construction 1. Let:

– CS be a commitment scheme such that the hiding property holds against
polynomial-time adversaries but can be broken in time T ′(λ) ∈ ω(poly(λ)),
which is super-polynomial.

– SPB be a SPB hashing scheme;
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– L be a language such that

L =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(m, com, hk, h, rhk, rh) : ∃(vk, i,Sig.Verify, ind, τ, ρ, σ, γ) s.t.
1 ← SPB.Verify(hk, h, i, vk, τ)

1 ← SPB.Verify(rhk, rh, ind,Sig.Verify, ρ)
1 ← CS.Verify(com, σ, γ)
1 ← Sig.Verify(vk,m, σ)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

;

where Sig.Verify is a description of the verification algorithm of a signature
scheme Sig.14

– NIWI be a NIWI scheme for the language

LOR =
{

(m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1) :
∃b ∈ {0, 1} s.t. (m, comb, hkb, hb, rhkb, rhb) ∈ L

}

.

We now describe our scheme in full detail.
Sign(1λ, ski,m,R = (vk1, . . . , vk�), i, S = {Sigi}i∈[M ])

– Determine an index ind such that tag(vki,Sigind). Parse Sigind = (Sig.KeyGen,
Sig.Sign,Sig.Verify). Set S′ = {Sig.Verifyi}i∈[M ] to be the list of verification
algorithms in S.

– Compute σ ← Sig.Sign(ski,m).
– Compute (hkj , shkj) ← SPB.Gen(1λ, �, i) and hj ← SPB.Hash(hkj , R) for j ∈

{0, 1}. Also, compute the proof τ ← SPB.Open(hk0, shk0, R, i).
– Compute (rhkj , rshkj) ← SPB.Gen(1λ,M, ind) and rhj ← SPB.Hash(rhkj , S

′)
for j ∈ {0, 1}. Also, compute the proof ρ ← SPB.Open(rhk0, rshk0, S′, ind).

– Compute (com0, γ0) ← CS.Commit(1λ, σ) and (com1, γ1) ← CS.Commit
(1λ, 0).

– Set x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1).
– Set w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, γ0).
– Compute the proof π ← NIWI.Prove(x,w).
– Output Σ = (com0, com1, hk0, hk1, rhk0, rhk1, π).

Verify(Σ,m,R, S = {Sigi}i∈[M ]) :

– Parse Σ as (com0, com1, hk0, hk1, rhk0, rhk1, π). Set S′ = {Sig.Verifyi}i∈[M ] to
be the list of verification algorithms in S.

– Compute hj ← SPB.Hash(hkj , R) for j ∈ {0, 1}.
– Compute rhj ← SPB.Hash(rhkj , S

′) for j ∈ {0, 1}.
– Set x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1).
– If 1 ← NIWI.Verify(x, π), output 1. Else, output 0.

We remark, that we only require the verification algorithms of the underlying
signature schemes to verify a URS signature. Therefore, we only include these
algorithms in S′, which is hashed down by SPB and provided to NIWI. This is
to reduce size. Essentially, our verification algorithm URS.Verify could only take
the list of signature verification algorithms S′ as an input, but we state the full
list of signature schemes to fit our more general definition.
14 We assume that for all schemes, |Sig.Verify| is bounded by a polynomial β(λ).
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Signature Size. A signature for a message m with respect to a ring R (of size
�) and a list of schemes S (of size M) is composed of Σ = (com0, com1, hk0,
hk1, rhk0, rhk1, π). Both com0, com1 are of size O(poly(λ)) and independent of
� and M . The size of the hashing keys hk0, hk1, the proof τ and the circuit
SPB.Verify(hk, h, i, vk, τ) can be bounded by O(log(�) · poly(λ)). Analogously,
rhk0, rhk1, ρ and the runtime of SPB.Verify(rhk, rh, ind,Sig.Verify, ρ) are bounded
by O(log(M) · poly(λ)).15

Given that, we conclude that the circuit that verifies the relation of language
L has size at most O((log(M) + log(�)) · poly(λ)). Hence, the proof π has size
O((log(M) + log(�)) · poly(λ)). We conclude that the total size of the signature
is O((log(M) + log(�)) · poly(λ)). Thus, it grows only logarithmic in the number
of users in the ring and logarithmic in the number of signature schemes.

5.2 Proofs

We now show that the construction presented above fulfills the required
properties for a URS. We start by showing correctness. Then we proceed
to prove unforgeability and anonymity. Our proof of unforgeability uses a
superpolynomial-time reduction.

Theorem 12 (Correctness). The scheme presented in Construction 1 is cor-
rect, given that NIWI is perfectly complete and SPB and CS are correct.

Theorem 13 (Unforgeability). We assume the challenge signature schemes
LS = {Sigi}i∈[M ] to be unforgeable against adversaries running in superpolyno-
mial time T ′(λ) · poly(λ) for T ′(λ) ∈ ω(poly(λ)). We assume, that our commit-
ment scheme allows extraction in time T ′(λ), but is secure against PPT adver-
saries. Then the scheme presented in Construction 1 is unforgeable against PPT
adversaries, given that NIWI is perfectly sound and SPB is somewhere perfectly
binding.

At a high level, we will build a superpolynomial-time reduction that breaks
unforgeability for the underlying signature scheme. The reduction, upon receiv-
ing the challenge URS signature Σ∗ = (com∗

0, com
∗
1, hk

∗
0, hk

∗
1, rhk

∗
0, rhk

∗
1, π

∗) from
the adversary, opens the commitments com∗

0 and com∗
1 using brute force. Note

that, since we allow the reduction to run in superpolynomial time, it will succeed
in breaking the hiding property of the commitment scheme. Then, by the per-
fect soundness of the NIWI scheme, the reduction can extract a valid signature
from either com0 or com1 with non-negligible probability and, thus, break the
unforgeability of the signature scheme.

Theorem 14 (Anonymity). Assume that SPB is index hiding, NIWI is
witness-indistinguishable and CS is hiding. Then the scheme presented in Con-
struction 1 is anonymous.

15 This holds, as we assumed, that we can bound |Sig.Verify| by a polynomial β(λ) for
all signature schemes Sig.
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To prove the theorem above, we build a sequence of hybrids starting from the
2-anonymity game where k = 1 and ending at a hybrid describing the game for
k = 2. Let vk′

j1 and vk′
j2 be the challenge verification keys in the anonymity game

and let Σ = (m∗, com0, com1, hk0, hk1, rhk0, rhk1, π) be the challenge signature
build using vk′

j1 . First note that the length of π does not reveal information
even if the keys vk′

j1 , vk
′
j2 or signature verification circuits are of different length.

This is due to the Or-statement in LOR. In the first hybrid, we change hk1 and
rhk1 to be SPB hashing keys binding to index j1. Next, we replace com1 by a
commitment of a valid signature under vk′

j2 . In the next hybrid, we can replace
the proof π by a new one computed using the new signature under vk′

j2 (this
change goes unnoticed by the witness indistinguishability of the NIWI). We can
now replace com0 by a commitment of a valid signature under vk′

j2 . In the next
step, we replace hk0 and rhk0 to be SPB hashing keys binding to index j2 and,
finally, compute π as the proof that com0 is a commitment to a valid signature
under vk′

j2 for which hk0 and rhk0 bind to.

6 Non-compact Universal Ring Signature from Witness
Encryption

In this section we present a URS scheme from falsifiable assumptions. The result-
ing URS has a signature size that scales with the size of the ring. We first present
the construction. Then, we proceed to the analysis of the scheme.

6.1 Construction

We now present our construction for URS from WE.

Construction 2. Let

– PRF : K × [�] → {0, 1}λ be a PRF.
– L′ be a language such that

L′ =

⎧
⎪⎨

⎪⎩

({vki}i∈[�] : ∃
(
{Sigij}j∈[�−1],K

)
s.t.

rij ← PRF(K, ij)
(vkij , skij ) ← Sig.KeyGenij (1

λ; rij )

⎫
⎪⎬

⎪⎭
.

– WE be a witness encryption scheme for language L′.
– SPB be a SPB hashing scheme;
– L be a language such that

L =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(m, ct, hk, h, rhk, rh, x) : ∃(vk, i,Sig.Verify, ind, τ, ρ, σ, rct) s.t.
1 ← SPB.Verify(hk, h, i, vk, τ)

1 ← SPB.Verify(rhk, rh, ind,Sig.Verify, ρ)
ct ← WE.Enc(1λ, x, σ; rct)
1 ← Sig.Verify(vk,m, σ)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

;
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where Sig.Verify is a description of the verification algorithm of a signature
scheme Sig.16

– NIWI be a NIWI scheme for the language

LOR =
{

(m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, x) :
∃b ∈ {0, 1} s.t. (m, ctb, hkb, hb, rhkb, rhb, x) ∈ L

}

.

We now describe the scheme in full detail.

Sign(1λ, ski,m,R = (vk1, . . . , vk�), i, S = {Sigi}i∈[M ]}):

– Determine an index ind with tag(vki,Sigind). Parse Sigind = (Sig.KeyGen,
Sig.Sign,Sig.Verify). Set S′ = {Sig.Verifyi}i∈[M ] to be the list of verification
algorithms in S.

– Compute σ ← Sig.Sign(ski,m).
– Compute (hkj , shkj) ← SPB.Gen(1λ, �, i) and hj ← SPB.Hash(hkj , R) for j ∈

{0, 1}. Also, compute the proof τ ← SPB.Open(hk0, shk0, R, i).
– Compute (rhkj , rshkj) ← SPB.Gen(1λ,M, ind) and rhj ← SPB.Hash(rhkj , S

′)
for j ∈ {0, 1}. Also, compute the proof ρ ← SPB.Open(rhk0, rshk0, S′, ind).

– Encrypt ct0 ← WE.Enc(1λ, x′, σ; rct) and ct1 ← WE.Enc(1λ, x′, 0), where x′ =
R.

– Set x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, x
′).

– Set w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, rct).
– Compute the proof π ← NIWI.Prove(x,w).
– Output Σ ← (ct0, ct1, hk0, hk1, rhk0, rhk1, π).

Verify(Σ,m,R, S):

– Parse Σ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π). Set S′ = {Sig.Verifyi}i∈[M ] to be
the list of verification algorithms in S.

– Compute hj ← SPB.Hash(hkj , R) for j ∈ {0, 1}.
– Compute rhj ← SPB.Hash(rhkj , S

′) for j ∈ {0, 1}.
– Set x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, R).
– If 1 ← NIWI.Verify(x, π), output 1. Else, output 0.

Signature Size. A signature for a message m under a ring R (of size �) and a
list of schemes S (of size M) is of the form Σ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π).
We first analyze the size of the ciphertexts ct0, ct1. The circuit that verifies the
relation R′ of language L′ needs to have size at least O(�·poly(λ)) since witnesses
for this language are of that size. It is clear that the conditions can be checked
in a circuit of this size.

Moreover, a similar analysis as the one made for Construction 1 shows that
the total size of (hk0, hk1, rhk0, rhk1, π) is O((log � + log M) · poly(λ)). We may
assume, that M ≤ � because signature schemes that no corresponding key exists
for in R may be omitted without altering functionality.

We conclude that the signatures in this scheme have size O(� · poly(λ)).

16 We assume again, that for all schemes, |Sig.Verify| is bounded by a polynomial b(λ).
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6.2 Proofs

We now give the proofs of the security of the proposed scheme.

Theorem 15 (Correctness). The scheme presented in Construction 2 is cor-
rect, given that NIWI is perfectly complete.

Theorem 16 (Unforgeability). Assume that Sigi is EUF-CMA, PRF is a
pseudorandom function, NIWI is perfectly sound and WE is correct. Then, the
scheme presented in Construction 2 is unforgeable.

To prove unforgeability, we first build a hybrid where the experiment com-
putes all verification keys, except for vki∗ , using randomness from a PRF (instead
of using truly random coins). Note that this change goes unnoticed given that
PRF is a PRF. Next, we build a reduction to the unforgeability of the underlying
signature scheme. The idea is similar to the proof of Theorem 13. Namely, the
goal of the reduction is to extract a valid signature from either ct0 or ct1. To
do this, note that the reduction is in possession of the key K such that vki is
created using random coins PRF(K, i), for all i �= i∗ where vki∗ is the challenge
verification key. Then, by the correctness of the WE and the perfect soundness of
the NIWI, the reduction can use K to decrypt both ct0 and ct1. In the end, there
is a non-negligible probability that the reduction can extract a valid signature
under vki∗ , thus breaking the unforgeability of the signature scheme.

Theorem 17 (t-Anonymity). Assume that NIWI is witness-indistinguishable,
SPB is index hiding and WE is soundness secure. Then the scheme presented in
Construction 2 is t-anonymous where t = (λ−ω(log λ))/q and q is a lower bound
of the min-entropy of verification keys in the ring.

The proof of the theorem is similar to the proof of Theorem 14. However,
now we would like to use the security of the WE to replace ct1 by an encryption
of a valid signature under one key (and then replace back by an encryption of
0). To do this, we note that (unlike the unforgeability security proof described
above) all verification keys in K are computed using truly random coins. The
challenge ring given by the adversary must include at least t of these keys.
A simple information-theoretical argument states that there is only a negligible
probability that there is a PRF key K such that t−1 of these honestly generated
verification keys are malformed. This is because they are sampled independently
and thus it is unlikely that they are correlated via a PRF key. Hence, we can
conclude that �−1 verification keys in the adversary’s ring are not created using
random coins PRF(K, i), except with negligible probability. In other words, there
is a negligible probability that x′ ∈ L′. We can thus use the security of the WE
to safely replace encryptions of signatures and encryptions of 0. That is, we
switch out the encrypted signature in ct0 from one under one challenge key to a
signature under another one.
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7 Compact Witness Encryption for Threshold
Conjunction Languages

In this section we present a WE scheme that is compact for threshold conjunction
languages. We first define the notion of threshold conjunction languages.

Definition 18 (Threshold Conjunction Languages) Let L be an NP lan-
guage with relation R. We define a (t,N)-threshold conjunction language L′ as:

L′ =
{
(x1, . . . , xN ) : ∃{ij}j∈[t] ∈ [N ] s.t. xij ∈ L}

.

In other words, an accepting instance (x1, . . . , xN ) of L′ is one such that
there are at least t accepting instances xij .

7.1 Construction from Indistinguishability Obfuscation

We now describe our WE scheme for any (t,N)-threshold conjunction language
L′. The protocol achieves compact ciphertexts, i.e., of size O(log N), when N −
t ∈ O(log N).

Construction 3. Let N ∈ poly(λ) and t be such that N − t ∈ O(log N) and L
be an NP language. Let

– LSS be a (t,N)-LSS scheme. In the following, we assume that shares can be
written as strings in {0, 1}λ.

– WE be a (non-compact) WE scheme for language L.
– iO be an obfuscator for all circuits.
– PPRF be a puncturable PRF.
– SSB be an SSB hashing scheme.

Additionally, consider the following circuit C[λ, hk, h, k0, k1, t, N ] which has the
values λ, hk, h, k0, k1, t and N hardwired.

C[λ, hk, h, k0, k1, t, N ](i, τi, xi) :

– If 0 ← SSB.Verify(hk, h, i, xi, τi) or i ≥ t, return ⊥.
– Compute si ← PPRF.Eval(k0, i) and random coins ri ← PPRF.Eval(k1, i).
– Compute cti ← WE.Enc(1λ, xi, si; ri). Output cti.

We now define the WE scheme for the (t,N)-conjunction language L′.

Enc(1λ, x,m):

– Parse x = (x1, . . . , xN ).
– Create PPRF keys k0 ← PPRF.KeyGen(1λ) and k1 ← PPRF.KeyGen(1λ).
– For i ∈ [t−1], compute pseudorandom shares si ← PPRF(k0, i). Compute the

remaining shares (st, . . . , sN ) ← LSS.RemainShare(m, s1, . . . , st−1).
– Compute hk ← SSB.Gen(1λ, t − 1, j) for j ←$ [t − 1]. Moreover, compute h ←

SSB.Hash(hk, {x1, . . . , xt−1}).
– Consider the circuit C = C[λ, hk, h, k0, k1, t, N ]. Compute C̄ ← iO(1λ, C).
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– For i ∈ {t, . . . , N}, compute encryptions cti ← WE.Enc(1λ, xi, si).
– Output ct = ({cti}i∈{t,...,N}, C̄, hk).

Dec(w, ct):

– Parse w = (wi1 , . . . , wit) and ct as ({cti}i∈{t,...,N}, C̄, hk)
– For i ∈ [t − 1], compute τi ← SSB.Open(hk, {x1, . . . , xt−1}, i) and run cti ←

C̄(i, τi, xi).
– For j ∈ [t], decrypt sij ← WE.Dec(wij , ctij ).
– Reconstruct m ← LSS.Reconstruct(si1 , . . . , sit). Output m.

Ciphertext Size. The ciphertext is of the form ({cti}i∈{t,...,N}, C̄, hk). Assume
that the language L has a verification circuit CL. The ciphertexts cti for
i ∈ {t, . . . , N} have size O(|CL| · poly(λ)). Since N − t ∈ O(log(N)), the
size of {cti}i∈{t,...,N} is O(log(N) · |CL| · poly(λ)). The obfuscated circuit C
implements the SSB.Verify algorithm which is of size O(log(N)). Moreover, all
other operations in C are independent of N and depend only on |CL|. Hence,
|C| ∈ O(log(N) · |CL| · poly(λ)). Finally, the hashing key hk is of size O(log(N))
by the efficiency requirements of SSB.

We conclude that the scheme presented above outputs ciphertexts of size
O(log(N) · |CL| · poly(λ)).

7.2 Proofs

We now prove that the scheme is correct and soundness secure.

Theorem 19 (Correctness). The scheme presented in Construction 3 is cor-
rect, given that LSS, SSB and WE are correct.

Theorem 20 (Soundness security). The scheme presented in Construction
3 is soundness secure given that SSB is index hiding and somewhere statistically
binding, iO is a secure iO obfuscator, PPRF is pseudorandom at punctured points,
WE is soundness secure and LSS is private.

Before presenting the formal proof, we give a brief outline. The proof follows a
sequence of hybrids, where the last one can be reduced to the privacy of the LSS.
First, note that if x /∈ L′, then there do not exist t instances xi ∈ L. Assume,
for simplicity that t = N , then there exists an index i∗ such that xi∗ /∈ L. We
start with a hybrid that is identical to the real soundness security game.

Then, we use the index hiding of the SSB hashing scheme to replace hk by a
hashing key that is binding to index i∗. We then use the puncturing technique of
[34]. That is, we create punctured PRF keys k′

0 and k′
1 (by puncturing the PPRF

keys k0 and k1 respectively) at the point i∗. At the same time, we embed into
the obfuscated circuit the ciphertext cti∗ ← WE.Enc(1λ, xi∗ , si∗ ; ri∗) where si∗ ←
PPRF.Eval(k0, i∗) and ri∗ ← PPRF.Eval(k1, i∗). Given that the SSB is somewhere
statistically binding at the point i∗, the circuits are functionally equivalent and
we can use the security of the iO obfuscator to argue indistinguishability. We can
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now replace the values si∗ , ri∗ by uniform ones since the PPRF is pseudorandom
at punctured points. Finally, we replace cti∗ by an encryption of 0. To conclude
the proof, we can easily build a reduction to the security of the LSS.

In the more general case, some WE encryptions with respect to false state-
ments are computed using the obfuscated program and some are given in the
plain. For the former ones, we simply repeat the process above. For the latter
ones, we use security of WE to replace these encryptions by encryptions of 0.

In the full version of the paper we present a variant of this protocol that does
not incur in exponential loss of security in the reduction.

7.3 Compact Universal Ring Signature from Compact WE
for Threshold Conjunction Languages

Consider again the URS construction of Sect. 6. One of the requirements of
this URS scheme is a (non-compact) WE for a language L′ which is itself a
(N − 1, N) -threshold conjunction language. When we plug the WE scheme for
(t,N)-threshold conjunction languages as a drop-in replacement for non-compact
WE, we obtain a compact URS scheme.

Specifically, the following theorem is a direct consequence of plugging the
compact WE scheme for (t,N)-threshold conjunction languages described above
with the URS signature from Sect. 6.

Theorem 21. Let

– PRG : {0, 1}λ/2 → {0, 1}λ be a PRG.
– L′ be the (� − 1, �) threshold conjunction language defined in Construction 2.
– WE be a compact witness encryption scheme for the (� − 1, �) threshold con-

junction language L′. As we have just established, this primitive can be built
from secure iO, (� − 1, �)-LSS, (non-compact) WE for NP, PPRF and SSB.

– SPB be a SPB hashing scheme;
– L and LOR be the languages defined in Construction 2.
– NIWI be a NIWI scheme for LOR.

Then there exists a URS scheme that satisfies correctness, anonymity and
unforgeability. Moreover, a signature Σ with respect to a ring of users R and
a ring of signature schemes S has size |Σ| ∈ O((log � + log M)poly(λ)) where
� = |R| and M = |S|.
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Abstract. Partially blind signatures, an extension of ordinary blind sig-
natures, are a primitive with wide applications in e-cash and electronic
voting. One of the most efficient schemes to date is the one by Abe
and Okamoto (CRYPTO 2000), whose underlying idea—the OR-proof
technique—has served as the basis for several works.

We point out several subtle flaws in the original proof of security, and
provide a new detailed and rigorous proof, achieving similar bounds as
the original work. We believe our insights on the proof strategy will find
useful in the security analyses of other OR-proof-based schemes.

1 Introduction

Blind signatures, first introduced by Chaum [11], are a fundamental crypto-
graphic primitive. They allow two parties, a signer who holds the secret key and
a user who holds the message, to jointly generate a signature. Roughly speaking,
security requires that the signer learns nothing about the message nor the signa-
ture (blindness), and the user cannot forge a signature that does not result from
its interaction with the signer (one-more unforgeability). Blind signatures have
found extensive applications in settings where anonymity is of great concern,
such as e-cash [11,13,19,37] and electronic voting [12,18].

However, in a blind signature scheme, the signer has absolutely no control
over the message it signs. This leads to various shortcomings in practice. First,
in an e-cash system where a bank uses blind signatures to issue its coins, to avoid
the double spending problem, the bank has to keep record of all coins that have
been spent; to prevent the ledger from growing unlimitedly, old coins need to
expire after a period of time, so that the corresponding entries in the ledger can
be deleted. Second, there is no way to inscribe the value or expiration date of a
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coin. Thus, the bank has to use a different public key for each value/expiration
date, and anyone who spends or receives these coins has to maintain a list of
all public keys, which has to evolve over time when old coins expire and are
replaced by new ones. Similarly, in electronic voting, voters have to download a
new public key for each election.

To address these issues, Abe & Fujisaki [2] proposed an extension called
partially blind signatures, which allow a signer to explicitly include some common
information (called the tag) in the signature. The tag is agreed upon by the
signer and the user in advance and remains unblinded throughout the signing
procedure; for example, it can be the date of issue or the value of the electronic
coin. Setting the tag to the empty string yields an ordinary blind signature
scheme. Informally, a partially blind signature scheme is secure if it satisfies (1)
partial blindness: for multiple signatures that use the same tag, an adversarial
signer cannot link these signatures to the signing sessions they originate from;
and (2) one-more-unforgeability, or OMUF security : an adversarial user that
interacts with the signer in at most � many sessions, cannot output more than �
valid message-signature pairs.

Despite 25 years of research, there have been very few partially blind sig-
nature schemes ever proposed. The most efficient scheme up to date is the one
proposed by Abe and Okamoto (AO) [4], which involves only 2 group (multi-)
exponentiations for the signer and 4 (multi-)exponentiations for the user. The
scheme is based on the classical OR-proof technique for obtaining witness indis-
tinguishable protocols by Cramer et al. [15], and its security proof involves an
intricate rewinding argument. The ideas behind both the scheme and its security
proof repeatedly appear in blind signatures [1,5,6,35].

Unfortunately, close scrutiny shows that there are a number of critical issues
with the proof of one-more-unforgeability in AO and in some other subsequent
works. In particular, the analysis of the reduction’s success probability is based
on a problematic counting argument. In this paper, we revisit the AO partially
blind signature scheme and present a new comprehensive analysis of its one-
more-unforgeability, which addresses all issues in the original security proof.
(The proof of partial blindness in AO is correct and is not the focus of this
paper). The contributions of this paper are two-fold. First, we identify the flaws
in the proof of AO, which we elaborate on in Sect. 1.1. Second, we overcome
these issues by resorting to a more involved and rigorous counting argument.
Our insights lead to new proof techniques and a much better understanding
of AO’s ideas. While we focus on the AO partially blind signature scheme, we
believe that our techniques are applicable to other blind signature schemes based
on the OR-proof technique.

1.1 Technical Overview

In this section we provide an overview of our security proof of the AO partially
blind signature scheme, and explain the issues in the original work [4]. Similar to
AO, our proof is done in two steps. First we consider the simplified case where
there is only a single tag. This is the most technically involved part of the entire
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security analysis, and contains essential modifications to the proof in AO. Then
we generalize it to the multi-tag case. This part of the proof is straightforward
and mostly follows [4]. For simplicity, we only discuss the case of a single tag in
this technical overview.

Forking: A Recap. The reduction in our security proof uses the forking tech-
nique to rewind the adversary and solve the discrete logarithm problem [31]. As
is standard in a forking argument, we first define what we call a deterministic
wrapper which provides a simplified, non-interactive interface to the reduction.
More precisely, the wrapper takes as input an instance I (containing a public
key and the internal values used to generate the signer’s first messages of all
signing sessions), a random tape rand (containing the random tape of the actual
adversary), and a random hash vector

−→
h (to be used as outputs of random ora-

cle queries). The reduction forks the wrapper instead of forking the adversary
directly. In more concrete terms, this means that the reduction runs the wrap-
per once on inputs I, rand,

−→
h and obtains an output which implicitly defines

an index J ∈ [|−→h |]. It then generates a vector
−→
h ′ by resampling the vector

−→
h

uniformly at random from position J , and keeping the first J − 1 entries the
same. It reruns the wrapper on inputs I, rand,

−→
h ′, which will generate a run that

is identical up the point where the reduction answers the J-th random oracle
query. In particular, the input to this query remains identical in both runs. The
goal of the reduction is to infer some equality from these relations so as to solve
a discrete logarithm instance that it suitably embeds in its interaction with the
adversary (see below).

Dealing with OR-Proofs in Forking. The AO scheme uses the classical OR-
proof strategy of [15] to combine two Schnorr-style signatures into one. The
witness for one branch of the proof is the actual secret key x of the scheme; the
other branch corresponds to the tag key z which is obtained through hashing
the tag info. On the signer’s side, the protocol is a witness indistinguishable
(WI) proof of knowledge of at least one witness, either the secret key x or the
discrete logarithm of the tag key dlog z. This gives rise to the following proof
strategy, which was also used in [6]: The reduction can choose these tag keys
such that it knows a witness and sign without knowing the secret key (so it
can embed a discrete logarithm challenge in the public key), or it can embed
its discrete logarithm challenge in a tag key and sign using the actual secret
key. The intuitive idea here is that for each run of the protocol, the witness
used internally by the reduction is perfectly hidden from the adversary (due to
WI). Thus, the probability that the reduction is able to extract the “opposing”
witness (i.e., the one it is not using itself for answering signing queries) from two
forking runs of the adversary should be high.

Unfortunately, this intuition proves incorrect upon closer inspection. While
WI perfectly hides the witness during any single run of the protocol, the tran-
scripts of two executions of the protocol with the adversary (as performed by the
reduction) can depend on the witness internally used by the reduction. There-
fore, arguing that the reduction indeed extracts the opposing witness from two
runs of the adversary turns out to be highly non-trivial.
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Partnering Runs. We now describe the general idea for proving that the reduc-
tion has a significant probability to extract the witness it needs. For now we fix
an instance I and a random tape rand, and consider the hash vector

−→
h as the only

varying parameter of the reduction. Using a simple counting argument, one can
show that for a significant portion of pairs I, rand, there must exist two hash vec-
tors

−→
h ,

−→
h ′ that lead to the same transcript between the wrapper and the adver-

sary when the wrapper is run on (I, rand,
−→
h ) or (I, rand,

−→
h ′), respectively. Bor-

rowing the terminology from [4], we refer to such triples (I, rand,
−→
h ), (I, rand,

−→
h ′)

as partners. The key observation is that the witness extracted from partnering
runs is independent of which witness was used by the reduction as part of the
instance I, and thus the reduction has a significant probability of extracting the
desired witness (i.e., the witness not used by the reduction).1 Unfortunately,
given I, rand, finding a pair of partners (I, rand,

−→
h ) and (I, rand,

−→
h ′) might not

be efficiently possible, as in general, only few of them may exist. Hence it requires
an additional argument to ensure that the reduction produces forks from which
the desired witness can be efficiently extracted.

From Partners to Triangles. The next step in our chain of reasoning is to
apply the strategy of AO for “amplifying” the number of forking runs from which
the desired witness can be extracted. Thus, analogous to AO, we define triangles
as follows. The corners of a triangle will be three triples (I, rand,

−→
h ), (I, rand,−→

h ′), (I, rand,
−→
h ′′), which produce successful runs for the wrapper. In addition,−→

h ,
−→
h ′,

−→
h ′′ all share a common prefix of some i − 1 entries and start to fork

from each other at the i-th entry. The most important property of a triangle,
however, is that (I, rand,

−→
h ) and (I, rand,

−→
h ′) be partnering runs, i.e., produce

the same transcript for the wrapper. (AO refer to the pair of partnering runs
as the “triangle base” and to the remaining pairs of triples as the “triangle
sides”). We illustrate this in Fig. 1. As observed by AO, if the forked runs
corresponding to (I, rand,

−→
h ) and (I, rand,

−→
h ′) yield the desired witness (i.e., the

one not stored inside I), then either of the forked runs (I, rand,
−→
h ), (I, rand,

−→
h ′′)

or (I, rand,
−→
h ′), (I, rand,

−→
h ′′) yield the same witness. Their key insight is that

the number of triangles should be far greater than the number of triangle bases
formed by partnering runs (I, rand,

−→
h ) and (I, rand,

−→
h ′). Intuitively, this is the

case because a single pair of triples (I, rand,
−→
h ), (I, rand,

−→
h ′) can serve as the

base in many different triangles.

A Gap in AO. The next step in the analysis of AO is to count the number
of triangles for which at least one side yields the desired witness. (We call such

1 Due to the WI property of the scheme, for any (I, rand,
−→
h ), there exists a cor-

responding triple (I′, rand,
−→
h ) that contains the other witness and produces the

same transcript as (I, rand,
−→
h ). This means that the same witness w could have

been extracted from a pair of partnering runs (I, rand,
−→
h ), (I, rand,

−→
h ′), or from

(I′, rand,
−→
h ), (I′, rand,

−→
h ′), where one of I and I′ contains w, and the other instance

does not.
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(I, rand,
−→
h ) (I, rand,

−→
h ′)

(I, rand,
−→
h ′′)

base/partners

sidesid
e

(a) A triangle consists of a pair of part-
ners (the base) and one additional tu-
ple (the top). A pair consisting of the
top and one of the base corners is called
a side.

−→
h

−→
h ′

−→
h ′′ −→

h

−→
h ′−→

h ′′

(b) Left: forking as in a triangle (solid
lines are the base, dashed lines are the
top); right: not a triangle (forking at
wrong point).

Fig. 1. Triangles

triangle sides “successful”). Recall that we keep I, rand fixed throughout this
counting argument, and argue only about the number of successful hash vectors
associated with runs using I, rand. If we can show that there are enough of
triangles with a successful side, we might hope that when sampling a random
pair (I, rand,

−→
h ), (I, rand,

−→
h ′′) during forking, the reduction will hit a successful

triangle side, from which the desired witness can be extracted.
This is the point where our analysis diverges significantly from [4]. As noted

above, many triangles may share a base; that is, for any given base, there exist
many possible triangle tops. This makes it possible to “amplify” the extractabil-
ity of the desired witness from a single base to extracting it from many possible
triangle sides which are adjacent to this base in some triangle. (Recall that if
a triangle base is successful, then at least one of the two sides must also be
successful). However, we observe that many triangles may also share a side. If
many triangles overlap on successful sides (but not on unsuccessful sides), it
might happen that the total number of successful sides is much smaller than the
total number of unsuccessful sides.2

Indeed, this is where the most crucial gap occurs in [4]. First, for each triangle
base corner (I, rand,

−→
h ), they assign this corner a partner (I, rand,

−→
h ′) using the

mapping Prt (so (I, rand,
−→
h ′) = Prt(I, rand,

−→
h ) forms a triangle base together

with (I, rand,
−→
h ); see [4, p. 284]). It is, however, unclear if this is intended to be

2 We stress that simply replacing a triple (I, rand,
−→
h ) with an indistinguishable triple

(I′, rand,
−→
h ) is not sufficient to solve this problem. Indeed, one might hope that since

the adversary can not detect this change, an unsuccessful side may become successful
when switching from I to I′, as the desired witness would flip. However, a successful

forking pair ((I′, rand,
−→
h ), (I′, rand,

−→
h ′)) need only exist if ((I, rand,

−→
h ), (I, rand,

−→
h ′))

is a base. The same is not true, in general, for sides, as their endpoints may not (and
generally do not) yield the same transcript. Because of this, an unsuccessful side

((I, rand,
−→
h ), (I, rand,

−→
h ′)) might not even be part of a triangle side when switching

witnesses from I to I′.
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an injective assignment (i.e., no two base corners can share the same partner).
If so, there is a gap as to why this assignment is possible, i.e., why there are
enough such partners for each of the base corners to find a different partner. In
fact, we provide an argument in our analysis for why such partners—which we
call opposing base corners—are not much fewer than original base corners, but
they do not necessarily need to be equal in size.

On the other hand, if the assignment Prt is not injective, then different
triangles may share the same side. This is also problematic, as we explain now.
[4] proceeds to claim that if (for a fixed pair I, rand) at least 4

5 of triangle sides
are unsuccessful, then at least 3

5 of triangle bases are also unsuccessful, i.e.,
they yield the undesired witness that is used by the reduction. (See the proof of
the last claim on [4, p. 284]). Although this claim is not explicitly argued, the
underlying reasoning seems to be as follows: since every triangle has two sides
and one base, if 4

5 of all sides are unsuccessful, then at least 4
5 + 4

5 −1 = 3
5 fraction

of triangles have two unsuccessful sides, which implies that their bases must also
be unsuccessful. However, this argument implicitly assumes that no triangles
ever share a base or a side, which, as we have mentioned, is not necessarily the
case.

Concrete Counterexamples and Additional Issues. We now provide con-
crete counterexamples to show why the claim above is false if triangles may
share sides, or even just bases. For triangles sharing sides, consider the example
in the middle of Fig. 2, where 8 out of the 10 triangle sides are unsuccessful,
yet only 2 out of the 6 triangle bases are unsuccessful. For triangles sharing only
bases (recall that in this case there is already a gap as to why there exists an
assignment Prt such that triangles do not share sides), the claim is also untrue:
see the rightmost part of Fig. 2 for an example where 5 out of the 6 triangle
sides are unsuccessful, yet only 1 out of the 2 triangle bases are unsuccessful.

¬× ¬× ¬×

¬× ¬×

¬×

¬×

¬×

¬×

¬×

¬×

×

×

×

×

× ×

×

× ×

×

¬× ¬×

¬×

¬× ¬×

¬×

¬×

¬× ¬×

¬×

¬× ×¬× ¬×

¬×

¬× ¬×

×

Fig. 2. Claim in [4] that if at least 4
5

of triangle sides are unsuccessful (i.e., yield the
undesirable witness ¬×), then at least 3

5
of bases (incident to two square nodes) also

yield this witness. This holds for non-overlapping triangles (left), but not for triangles
overlapping in sides (middle) or in bases (right).

We further note that there are some relatively minor gaps that are easier to
fix. In particular, it is incorrect to assert that the probability to extract either
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witness from a triangle base is close to 1
2—we refer here to the last sentence in

the proof of the last claim on [4, p. 284]:

Since the information of a base, (−→ε ,−→ε ′)[(
−→
h ,

−→
h ′)], is independent of the

witness the simulator already has as a part of Ω [I, rand], this contradicts
that a biased result should occur with probability (over Ω [I, rand]) less
than 1/2 + 1/poly(n) for any polynomial poly.

(The expressions in brackets are a translation to our notation).
To see why this claim is incorrect, imagine a computationally unbounded

adversary that finds the secret key x = dlog y by brute force, and wins the
OMUF game by running the real signer’s code. Then the signatures produced
by this adversary—including pairs of signatures obtained from triangle bases—
will always yield the same witness (the secret key x), rather than yielding either
witness with probability close to 1

2 . Our approach to deal with this issue is to
define a “majority witness” × which can be extracted from many triangle bases
(for a suitable definition of many). We then show that it is possible to extract
×, using a suitable counting argument.

Resolving the Issues from Earlier Works. We now provide an overview of
our strategy to bridge the gaps in [4], achieving the same result. We first recall
that for any triple (I, rand,

−→
h ), there is a corresponding instance I′ that contains

the other branch of witness, such that (I, rand,
−→
h ) and (I′, rand,

−→
h ) yield the

same transcript. This naturally leads to the concept of both-sided triangle bases,
namely triangle bases ((I, rand,

−→
h ), (I, rand,

−→
h ′)) that are also the base of some

triangle when I is replaced by I′. Using several counting arguments, we show that
the set of both-sided base corners must be large. While our counting arguments
are more detailed and rigorous, they are in the same spirit as those of [4].

We now bridge the gap in [4], by showing that there cannot be too large of
an overlap between triangle sides such that the absolute amount of successful
triangle sides would get small. We define good base corners as triples that are
incident to many successful both-sided triangle bases, as well as many successful
triangle sides. We further require that these triangle sides and bases must exist
at the good base corner’s maximum branching index—the index at which the
largest number of partners fork from it. Similarly, we define good opposing corners
that are incident to a successful both-sided triangle base and many successful
sides, but the triangle base and sides are located at the maximum branching
index of the triple at the other end of the base.

Our crucial observation is that if there are not too many good base cor-
ners, then there must be many good opposing corners. To see this, consider a
base corner (I, rand,

−→
h ′) that is not good, and consider all triples (I, rand,

−→
h )

that are partners of (I, rand,
−→
h ′). Let i denote the maximum branching index

of (I, rand,
−→
h ′); by definition, a significant portion of these partners (I, rand,

−→
h )

fork with (I, rand,
−→
h ′) at index i. Recall that if a triangle base is successful, then

at least one of its sides must also be successful. Since most of the triangle sides
involving (I, rand,

−→
h ′) are unsuccessful at index i, this means that many of the
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other triangle sides, i.e., those involving the partners (I, rand,
−→
h ), are success-

ful at index i. In other words, a significant portion of a non-good base corner
(I, rand,

−→
h ′)’s partners, are good opposing corners. (In the formal proof, we will

also rule out the possibility that different non-good base corners’ corresponding
good opposing corners overlap too much).

The above conclusion means that, when the reduction samples the triple
for the first forking run, with significant probability the triple is either a good
base corner or a good opposing corner. Then, due to the definitions of these
good triangle corners, it is not hard to show that with significant probability the
reduction hits a successful triangle side while sampling the second triple—that
is, the desired witness can be extracted from the two forking runs.

Finally, we remark that our reduction guesses in advance which hash values
the adversary will actually use to produce its signatures. This introduces a loss
of

(
Qh

�+1

)
in the reduction’s advantage, where Qh is the number of the adversary’s

hash queries and � is the number of signing sessions closed. This step is necessary
in our analysis as we need all possible forking indices to have a signature attached
to them in order to lower-bound the set of good opposing base corners. (See
Remark 2 in Sect. 4.4). We notice that a loss in this order of magnitude seems
inherent due to the recent polynomial-time ROS-attack [7], and that we achieve
comparable bounds to the original work of Abe & Okamoto [4].3

1.2 Related Work

Partially blind signatures were introduced in [2], which also presented a scheme
based on a non-standard RSA-type assumption. Cao et al. [10] proposed another
construction based on the RSA assumption, but their scheme was cryptoanalyzed
in [27]. Zhang et al. [38], as well as Chow et al. [14], proposed schemes based
on bilinear pairings, and Papachristoudis et al. [29] proposed a scheme based on
lattice assumptions. Okamoto [28] proposed a theoretical construction that does
not rely on the random oracle model. Finally, Maitland & Boyd [26] considered a
restrictive partially blind signature scheme, where the user’s choice of messages
must follow certain rules.

There is a rich literature on (ordinary) blind signatures and their applications.
Its security notion was formalized by Pointcheval & Stern [30] and Juels et
al. [22], and later strengthened by Schröder & Unruh [34]. Fischlin [16] and
Abe & Ohkubo [3] considered security definitions in the universal composability
(UC) framework. Camenisch et al. [9] and Fischlin & Schröder [17] considered a
stronger notion of blindness called selective-failure blindness. There are a large
number of blind signature schemes based on various assumptions and in various
models; a very incomplete list includes [1,8,20,21,25,28,30,32,33].

We notice that the security analyses of (partially) blind signature schemes
are usually extremely involved, with the original security proofs sometimes being

3 See the top of [4, p. 285], where the reduction’s advantage includes a term η2
1 , where

η1 = η/2Q�+1
h and η is the adversary’s advantage.
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flawed. Apart from the schemes already discussed, we give two additional exam-
ples here. The security of the Schnorr blind signature [33] relies on the hardness
of the ROS problem, which was recently shown to be easy [7]; a new security
proof in the weaker sequential setting appears in [23]. For partially blind signa-
ture schemes, the aforementioned Zhang et al. scheme [38] has an issue in its
security proof, and the full analysis came much later [36]. This paper can be seen
as yet another attempt of spotting and fixing issues in previous works; however,
we stress that the underlying OR-proof technique of the Abe-Okamoto scheme
is widely used in blind signatures, and we believe that our techniques will find
applications in the security analyses of other schemes as well.

2 Preliminaries

2.1 Notation

We denote by [�] := {1, . . . , �}. For a vector
−→
h , its i-th entry is denoted by hi,

and the vector of its first i entries is denoted by
−→
h [i]. We denote by x $← X that

x is sampled uniformly at random from set X. For a vector −→x ∈ Xn, we denote
by −→x ′ $← Xn

|−→x [i]
that −→x ′ is sampled uniformly at random from {−→x ′ ∈ Xn|−→x ′

[i] =
−→x [i]}. For an algorithm A, we use tA to denote its running time.

2.2 Computational Problems

Definition 1 (Discrete Logarithm Problem). For public parameters pp =
(G, q,g) for a group G with order q and generator g, we describe the discrete
logarithm game DLOGG with adversary A as follows:

Setup. Sample x $← Zq and set y := gx. Output (pp,y) to A.
Output Determination. When A outputs x′ ∈ Zq, return 1 if gx′

= y and 0
otherwise.

We define the advantage of A as

advDLOGG

A := Pr[DLOGA
G

= 1]

where the probability goes over the randomness of the game as well as the ran-
domness of the adversary A. We say that the discrete logarithm problem is (t, ε)-
hard in G if for any adversary A that runs in time at most t, it holds that

advDLOGG

A ≤ ε.

(When it is clear from context, we may omit G and only write DLOG for the
game).



288 J. Kastner et al.

2.3 Partially Blind Signatures

The definitions in this section mostly follow [4].

Definition 2 (Partially Blind Signature scheme). A three-move partially
blind signature scheme PBS = (KeyGen,Sign = (Sign1,Sign2),User = (User1,
User2),Verify) consists of the following ppt algorithms:

Key Generation. On input public parameters pp, the probabilistic algorithm
KeyGen outputs a public key pk and a secret key sk. Henceforth we assume
that pp is provided to all parties (including the adversary) as an input, and
do not explicitly write it.

Signer: The interactive signer Sign = (Sign1,Sign2) has two phases:
Sign1: On input a tag info and a secret key sk, the probabilistic algorithm

Sign1 outputs an internal signer state stSign, and a response R.
Sign2: On input the secret key sk, a challenge value e, and the corresponding

internal state stSign, the deterministic algorithm Sign2 outputs a response
S.

User. The interactive user User = (User1,User2) has two phases:
User1: On input a public key pk, a tag info, a message m, and a Sign1

response R, the probabilistic algorithm User1 outputs a challenge value
e and an internal user state stUser.

User2: On input a public key pk, a Sign2 response S, and the correspond-
ing internal user state stUser, the deterministic algorithm User2 outputs a
signature sig on message m along with the tag info.

Verification. On input a public key pk, a message m, a signature sig, and a tag
info, the deterministic algorithm Verify outputs either 1 or 0, where 1 indicates
that the signature is valid, and 0 that it is not.

We say a partially blind signature scheme PBS is (perfectly) correct if for all
pk,m, sig, info that result from an honest interaction between signer and user,
Verify(pk,m, sig, info) = 1.

We now define the one-more-unforgeability of a partially blind signature
scheme. We do not focus on partial blindness in this paper; we include the
definition in in the full version [24] for completeness, and for a proof that the
Abe-Okamoto scheme is partially blind, see the original paper [4].

Definition 3 (One-more-unforgeability). For a three-move partially blind
signature scheme PBS, we define the �-one more unforgeability (�-OMUF) game
�-OMUFPBS with an adversary U (in the role of the user) as follows:

Setup. Sample a pair of keys (pk, sk) $← PBS.KeyGen(pp). Initialize �closed := 0
and run U on input pk.

Online Phase. U is given access to oracles sign1 and sign2, which behave as
follows.
Oracle sign1: On input info, the oracle samples a fresh session identifier sid.

It sets opensid := true and generates (Rsid, stsid) $← PBS.Sign1(sk, info).
Then it returns the response Rsid together with sid to U.
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Oracle sign2: If �closed < �, the oracle takes as input a challenge e and
a session identifier sid. If opensid = false, it returns ⊥. Otherwise, it
sets �closed++ and opensid := false. Then it computes the response S $←
PBS.Sign2(sk, stsid, e) and returns S to U.

Output Determination. When U outputs distinct tuples (m1, sig1, info1), . . . ,
(mk, sigk, infok), return 1 if k ≥ �closed + 1 and for all i ∈ [k] : PBS.Verify(pk,
σi,mi, infoi) = 1. Otherwise, return 0.

We define the advantage of U as

adv�-OMUFPBS

U = Pr
[
�-OMUFU

PBS = 1
]

where the probability goes over the randomness of the game as well as the ran-
domness of the adversary U. We say the scheme PBS is (t, ε, �)-one-more unforge-
able if for any adversary U that runs in time at most t and makes at most �
queries to sign2,

adv�-OMUFPBS

U ≤ ε.

If U always queries the same tag to oracle sign1, we denote the game as �-1-info-
OMUFPBS and say that PBS is (t, ε, �)-single-tag one-more unforgeable.

3 The Abe-Okamoto Partially Blind Signature Scheme

In this section we describe the partially blind signature scheme by Abe &
Okamoto [4]. The idea of the scheme relies on the OR-Proof technique by Cramer
et al. [15]. It runs a proof of knowledge that the signer knows either the secret
key x or the discrete logarithm of the so-called tag key z, which is obtained
through hashing the tag info. In this way we obtain a witness indistinguishable
scheme: an honest signer does not know dlog z and is forced to use x for issuing
signatures; while the reduction may program the random oracle so that it knows
the dlog z and can then simulate the signer without knowing the secret key x.

Key Generation. On input public parameters pp = (G,g, q,H∗,H) (where
H∗ and H are random oracles with ranges G and Zq, respectively), KeyGen
samples x $← Zq and sets y := gx. It then outputs (pk, sk) := (y, x).

Signer. Sign = (Sign1,Sign2) behaves as follows:
Sign1: On input info and sk, Sign1 computes the tag key z := H∗(info) and

samples u, s, d $← Zq. It then computes the commitments a := gu,b :=
gs · zd. It outputs the response (a,b) to the user and an internal state
stSign := (u, s, d).

Sign2: On input e ∈ Zq, stSign = (u, s, d), sk = x, Sign2 computes c := e − d
and r := u − cx. It outputs the response (r, c, s, d) to the user.

User. User = (User1,User2) behaves as follows:
User1: On input pk,m, info,a,b, User1 computes the tag key z := H∗(info)

and samples t1, t2, t3, t4
$← Zq. It then computes α := gt1 · yt2 · a and

β := gt3 · zt4 · b, queries h := H(α, β, z,m) for the message m it wants to
sign, and computes the blinded challenge e := h − t2 − t4. It outputs e to
the signer and an internal state stUser := (t1, t2, t3, t4).
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User2: On input pk, (r, c, s, d), stUser = (t1, t2, t3, t4), User1 computes ρ :=
r + t1, ω := c + t2, σ := s + t3, and δ := d + t4. It then verifies that
ω + δ = H(gρ · yω,gσ · zδ, z,m); if so, it outputs the signature (ρ, ω, σ, δ).
(Otherwise, it outputs ⊥).

Verification. On input y,m, info, (ρ, ω, σ, δ), Verify computes z := H∗(info). It
outputs 1 if ω + δ = H(gρ · yω,gσ · zδ, z,m) and 0 otherwise.

For a graphic illustration of the scheme, see see the full version [24].

4 Computing the Probability for Extracting the “Good”
Witness

As mentioned in the introduction, our analysis of the Abe-Okamoto scheme is
done in two steps. In this section, we deal with the case that the adversary U
only uses a single tag, i.e., U plays the �-1-info-OMUFAO game.

4.1 The Deterministic OMUF Wrapper

Restricting the Adversary to Making � + 1 Hash Queries. Suppose that
the adversary U makes � queries to sign2 (henceforth “signing queries”) and Qh

queries to H (henceforth “hash queries”), and uses a single tag info. Below we
assume w.l.o.g. that U never makes the same query to H twice.

We say that a message-signature pair (m, (ρ, ω, σ, δ)) corresponds to an index
i ∈ [Qh], or corresponds to the adversary U’s i-th hash query, if this query was
H(yωgρ, zδgσ, z,m). (When the message m is clear from context, we may say
that the signature (ρ, ω, σ, δ) corresponds to index i.) We remark that we can
further assume w.l.o.g. that there exist � + 1 hash queries of U, each of which
corresponds to a distinct message-signature pair in the output of U (in particular,
Qh ≥ �+1). This is because otherwise one of the following must hold (assuming
that U succeeds):

– There exists a pair (m, (ω, ρ, δ, σ)) that does not correspond to any hash
query, i.e., H(yωgρ, zδgσ, z,m) has never been queried. In this case, U can be
turned into another adversary U′ that runs the code of U and additionally
makes such a hash query; obviously U and U′ have the same advantage.

– There exist two distinct pairs (m1, (ω1, ρ1, δ1, σ1)), (m2, (ω2, ρ2, δ2, σ2)) that
correspond to the same hash query. In this case, we have that m1 = m2,
yω1gρ1 = yω2gρ2 , and zδ1gσ1 = zδ2gσ2 . Then a reduction to the discrete
logarithm problem can easily compute both x and w as x = (ω1 − ω2)−1 ·
(ρ2 − ρ2) and w = (δ1 − δ2)−1 · (σ2 − σ1).

It is not hard to see that any adversary U can be turned into another adver-
sary that makes exactly �+1 hash queries, with a factor of

(
Qh

�+1

)
loss in advantage.

Formally, we define an adversary M := MU that works as follows. M, on input of
a public key pk, chooses a random subset I of [Qh] with |I| = � + 1, and invokes
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U(pk). For U’s i-th query to H, if i /∈ I, M responds with a random integer in
Zq. For any other query (including queries to signing oracles, queries to H∗, and
the i-th query to H for i ∈ I), M forwards it to the corresponding oracle of M’s
own challenger, and forwards the response back to U. When U outputs a set of
�+1 message-signature pairs, M checks if every pair (m, (ρ, ω, σ, δ)) corresponds
to some index i ∈ I, that is, U’s i-th hash query was H(yωgρ, zδgσ, z,m). If so,
M copies U’s output (and outputs ⊥ otherwise).

Lemma 1. For M described above, we have that

adv�-1-info-OMUFAO

M ≥ adv�-1-info-OMUFAO

U (
Qh

�+1

) .

Proof. It is straightforward that M simulates the OMUF game to U perfectly.
Assume that U succeeds. By our assumption on U, there is a set of indices
I∗ ⊂ [Qh] corresponding to the message-signature pairs in U’s output, with
|I∗| = � + 1. If I∗ = I, then M also succeeds. Since I is a random subset of size
� + 1 of [Qh], the probability that I∗ = I is 1

(Qh
�+1)

. The lemma follows. 	


The lemma above implies that it is sufficient to consider an adversary that
makes exactly � + 1 (distinct) hash queries, since an upper bound of the adver-
sary’s advantage in this specific case immediately translates to such an upper
bound in the general case. Below we simply assume that the adversary makes
� + 1 hash queries.

The Deterministic Wrapper. For any adversary M that makes exactly � + 1
distinct hash queries, we define a deterministic wrapper A that, given the witness
and random coin tosses for one side, simulates the view of M. The wrapper uses
either the y-side witness (i.e., the secret key) x or the z-side witness w = dlog z
to respond to sign2 queries, and simulates the other side of the OR-proof using
fixed values. We begin with the formal definition of an instance:

Definition 4 (Instances). For the deterministic wrapper simulating the
OMUF-game to the adversary we define two types of instances I. A y-side (a.k.a.
honest) instance consists of the following components:

b = 0: bit indicating that the secret key x will be used for simulation
x: the secret key, also referred to as the y-side witness
z: the tag key, to be returned by oracle H∗ for requested info
di, si: simulator choices for z-side part corresponding to the i-th signing session
ui: discrete logarithm of the y-side commitment ai in the i-th signing session.

A z-side instance consists of the following components:

b = 1: bit indicating that the tag witness w will be used for simulation
y: the public key
w: the discrete logarithm of the tag key z as above
ci, ri: simulator choices for y-side part corresponding to the i-th signing session
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vi: discrete logarithm of the z-side commitment bi in the i-th signing session.

Let
−→
h be the vector of responses returned by random oracle H (so

∣
∣
∣
−→
h

∣
∣
∣ =

� + 1), rand be the randomness used by the adversary M, and info be the tag
used in the OMUF game. We define a deterministic wrapper A := AM

info
that runs

on (I, rand,
−→
h ) as shown in Fig. 3. The wrapper allows us to argue about which

(I, rand,
−→
h ) tuples cause the adversary to succeed.

A has two simulation modes. For b = 0, it runs the honest signer’s algorithm
to simulate both sign1 and sign2 oracle queries; for H∗ queries, it responds with
z if the input is info and ⊥ for all other inputs. In mode b = 1, A knows w
and not x. It therefore runs the so-called z-side signer (see the full version [24]),
which is the honest signer’s algorithm except that w is treated as the secret key.
A responds to queries to H∗ with gw for info and ⊥ otherwise. In both modes,
A responds to queries to H using entries in the hash vector

−→
h . Finally, upon

receiving M’s output message-signature pairs, A checks if they are all valid, and
if so, A copies M’s output (and outputs ⊥ otherwise).

It is easy to see that

tA = tM + O(�) = tU + O(�) + O(Qh
2) = tU + O(�) + O(Qh

2),

where the term O(�) comes from verifying � + 1 signatures, and O(Qh
2) comes

from identifying the hash indices that correspond to signatures.

A(I, rand,
−→
h )

00 parse b from I
01 if b = 0
02 parse (b, x, z,

−→
d , −→s , −→u ) := I

03 pk := gx

04 else
05 parse (b,y, w, −→c , −→r , −→v ) := I
06 pk := y
07 sid := 0
08 j := 0
09 (mi, (ρi, ωi, σi, δi))�+1

i=1 := Msign1,sign2,H,H∗
(pk; rand)

10 if ∀i : Verify(pk, mi, (ρi, ωi, σi, δi))
11 return (mi, (ρi, ωi, σi, δi))�+1

i=1
12 else
13 return ⊥

H(ξ)
14 j++
15 return hj

H∗(info)
16 if info = info
17 if b = 0 return z
18 else return gw

sign1(info)
20 if info = info
21 sid++
22 open(sid) := true

23 if b = 0
24 asid := gusid

25 bsid := gssid · zdsid

26 else
27 asid := grsid · ycsid

28 bsid := gvsid

29 return (sid,asid,bsid)
30 else return ⊥

sign2(sid, esid)
31 if open(sid)
32 if b = 0
33 csid := esid − dsid

34 rsid := usid − csid · x
35 else
36 dsid := esid − csid
37 ssid := vsid − dsid · w
38 else
39 return ⊥
40 open(sid) := false

Fig. 3. Wrapper A that simulates the OMUF game to the adversary M
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The Set of Successful Tuples. Let

Succ := {(I, rand,
−→
h )|A(I, rand,

−→
h ) �= ⊥}

be the set of all “successful” input tuples to the wrapper A. For a pair of instance
and randomness I, rand, it is also useful to define SuccI,rand as the set of successful
input tuples with instance I and randomness rand, i.e.,

SuccI,rand :=
{

(I′, rand′,
−→
h ) ∈ Succ

∣
∣
∣
∣

I′ = I
rand′ = rand

}
.

In the following we further denote by I the set of all possible instances, by
R the set of all possible randomness of A, and by ε the success probability of A,
i.e.,

ε :=
|Succ|

∣
∣I × R × Z

�+1
q

∣
∣

We show in Lemma 2 below (in Sect. 4.3) that the simulation using the z-side
witness is perfectly indistinguishable from the real execution where the y-side
witness is used (this is called the witness indistinguishability of the scheme),
i.e., A simulates the OMUF game to M perfectly. Furthermore, if M succeeds,
then so does A, since A copies M’s output in this case (see lines 10–11 of Fig. 3).
Therefore,

ε = adv�-1-info-OMUFAO

M .

4.2 Basic Definitions

We first define some concepts related to the wrapper A’s input tuple (I, rand,
−→
h ),

that will be used throughout the security proof.

Transcripts. We begin with the definition of the query transcript, which consists
of the adversary’s signing queries:

Definition 5 (Query Transcript). Consider the wrapper A running on input
tuple (I, rand,

−→
h ). The query transcript, denoted −→e (I, rand,

−→
h ), is the vector of

queries esid made to the sign2 oracle (simulated by A) by the adversary M, ordered
by sid.

Next, we define (full) interaction transcripts between adversary M and wrap-
per A. These contain, in addition to −→e (I, rand,

−→
h ), also M’s sign1 queries and the

signatures from the output of M. This will be useful to argue about A’s behavior
on different inputs (I, rand,

−→
h ). Looking ahead, we will see that it is possible

to deterministically transform (I, rand,
−→
h ) into a dual input Φ

rand,
−→
h

(I, rand,
−→
h )

that results in the same behavior as (I, rand,
−→
h ) (i.e., produces the same full

transcript as (I, rand,
−→
h )), but inverts the type of the witness I from y-side to

z-side (or vice-versa).
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Definition 6 (Full Transcripts). Consider the wrapper A running on input
tuple (I, rand,

−→
h ). We denote by tr(I, rand,

−→
h ) the transcript produced between A

and the adversary M, i.e., all messages sent between the user (played by M) and
the signer (played by A). Concretely,

tr(I, rand,
−→
h ) =

(
info, (−→a ,

−→
b ),−→e , (−→c ,−→r ,

−→
d ,−→s ), sig1, . . . sig�+1

)
,

where sig1, . . . , sig�+1 are the signatures output by M. (If M aborts at any point
during the protocol or outputs fewer than � + 1 signatures, we consider any
undefined entry to be ⊥).

Forking, Partners, and Triangles. We next define what it means for two
input tuples to fork successfully—this corresponds to all cases where the reduc-
tion would be able to compute at least one of the two witnesses from the resulting
signatures. However, without further work, the witness that can be computed
might be the one that the reduction already knows.

Definition 7 (Successful forking). We say two successful input tuples (I,
rand,

−→
h ), (I, rand,

−→
h ′) ∈ Succ fork from each other at index i ∈ [�+1] if

−→
h [i−1] =−→

h ′
[i−1] but hi �= hi. We denote the set of hash vector pairs (

−→
h ,

−→
h ′) such that

(I, rand,
−→
h ), (I, rand,

−→
h ′) fork at index i as Fi(I, rand).

We now define partners, which will play a key role in our analysis. Informally,
two tuples (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners at some index i if they fork

from this index and produce the same query transcript (but not necessarily the
same full transcript).

Definition 8 (Partners). We say two (successful) tuples (I, rand,
−→
h ), (I, rand,−→

h ′) are partners at index i ∈ [� + 1] if the followings hold:

– (I, rand,
−→
h ) and (I, rand,

−→
h ′) fork at index i

– −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′)

We denote the set of (
−→
h ,

−→
h ′) such that (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners

at index i by prti(I, rand). We further denote by PI,rand the following set:

PI,rand =
{

(I, rand,
−→
h ) ∈ SuccI,rand

∣
∣
∣∃−→

h ′, i ∈ [� + 1] : (
−→
h ,

−→
h ′) ∈ prti(I, rand)

}

We define triangles in order to extend the nice properties of partners to more
general forking tuples. Informally, a triangle consists of three vectors

−→
h ,

−→
h′ ,

−→
h′′

which all fork from each other at the same index, and also have the property
that

−→
h and

−→
h′ are partners at this index. This way, it is natural to view these

vectors as corners of the triangle and any pair of two vectors as the sides.
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Definition 9 (Triangles). A triangle at index i ∈ [�+1] with respect to I, rand
is a tuple of three (successful) tuples in the following set:

i(I, rand) =

⎧
⎪⎨

⎪⎩

((I, rand,
−→
h ),

(I, rand,
−→
h ′),

(I, rand,
−→
h ′′))

∣
∣
∣
∣
∣
∣
∣

(
−→
h ,

−→
h ′) ∈ prti(I, rand)

(
−→
h ,

−→
h ′′) ∈ Fi(I, rand)

(
−→
h ′,

−→
h ′′) ∈ Fi(I, rand)

⎫
⎪⎬

⎪⎭

For a triangle ((I, rand,
−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ i(I, rand), we call the

pair of tuples ((I, rand,
−→
h ), (I, rand,

−→
h ′)) the base, and ((I, rand,

−→
h ), (I, rand,

−→
h ′′))

and ((I, rand,
−→
h ′), (I, rand,

−→
h ′′)) the sides. We further refer to the tuples (I, rand,−→

h ), (I, rand,
−→
h ′), (I, rand,

−→
h ′′) as corners, where the two corners incident to the

base are called base corners, and the third corner is called the top. We will some-
times write (

−→
h ,

−→
h ′,

−→
h ′′) ∈ i(I, rand) for compactness.

Maximum Branching Index and Set. In the following we define two impor-
tant characteristics of partner tuples. We begin by defining the maximum branch-
ing index, which is the index at which a partner tuple (I, rand,

−→
h ) ∈ PI,rand has

the most partners.

Definition 10 (Maximum Branching Index). Fix a pair I, rand. The max-
imum branching index of a partner tuple (I, rand,

−→
h ) ∈ PI,rand is the index at

which (I, rand,
−→
h ) has the most partners, i.e.,

Brmax(I, rand,
−→
h ) = argmaxi∈[�+1]

∣
∣
∣
{−→

h ′
∣
∣
∣(

−→
h ,

−→
h ′) ∈ prti(I, rand)

}∣
∣
∣ .

In case of ties, we pick the lowest such index.

The maximum branching index naturally defines a partition of any non-empty
set of partnered tuples PI,rand, where the i-th set of the partition contains all
tuples with maximum branching index i. We define the maximum branching set
as the largest part of this partition, i.e., the largest subset of tuples that share
a common maximum branching index.

Definition 11 (Maximum Branching Set). For a pair I, rand, consider the
partition of partner tuples according to their maximal branching indices:

Bi(I, rand) =
{

(I, rand,
−→
h )

∣
∣
∣Brmax(I, rand,

−→
h ) = i

}
.

The maximum branching set of I, rand is defined as the largest set among them,
i.e.,

Bmax(I, rand) = Bimax(I,rand)(I, rand),

where
imax(I, rand) = argmaxi∈[�+1] |Bi(I, rand)| .

In case of ties, we pick the lowest such index.

Note in particular that B
Brmax(I,rand,

−→
h )

(I, rand) (henceforth BBrmax(I, rand,
−→
h )

for simplicity) is the set of all tuples (I, rand,
−→
h ′) which have the same maximum

branching index as (I, rand,
−→
h ) (so (I, rand,

−→
h ) ∈ BBrmax(I, rand,

−→
h )).
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4.3 The Mapping Φ

For any successful tuple (I, rand,
−→
h ), we now define the mapping Φ

rand,
−→
h

and
prove its transcript preserving properties in Lemma 2. We remark that this
mapping is not efficiently computable and will merely serve as a technical tool
in our analysis.

Definition 12 (Mapping instances via transcript). For (I, rand,
−→
h ) ∈

Succ, we define Φ
rand,

−→
h

(I) as follows. For a y-side instance I = (1, w,y,−→c ,−→r ,
−→u ), Φ

rand,
−→
h

(I) is a z-side instance that consists of

b = 0 x = dlog y z = gw ∀i ∈ [�] : di = ei − ci

∀i ∈ [�] : si = ui − di · w ∀i ∈ [�] : vi = ci · x + ri

For a z-side instance I = (0, x, z, d, s, v), Φ
rand,

−→
h

(I) is a y-side instance that
consists of

b = 1 w = dlog z y = gx ∀i ∈ [�] : ci = ei − di

∀i ∈ [�] : ri = vi − ci · x ∀i ∈ [�] : ui = di · w + si

(where −→e is the query vector produced by rand,
−→
h using instance I). We will

sometimes use the notation Φ−→e instead of Φ
rand,

−→
h

for a given (I, rand,
−→
h ). We

also define Φ(I, rand,
−→
h ) = (Φ

rand,
−→
h

(I), rand,
−→
h ).

Lemma 2 (Φ
rand,

−→
h
is a bijection that preserves transcripts). Fix rand,

−→
h .

For all tuples (I, rand,
−→
h ) ∈ Succ, Φ

rand,
−→
h

is a self-inverse bijection and

tr(I, rand,
−→
h ) = tr(Φ

rand,
−→
h

(I), rand,
−→
h )

The proof is deferred to to the full version [24].
The lemma above shows that the Abe-Okamoto scheme is witness indistin-

guishable, i.e., a simulator that uses the z-side witness to sign (see see the full
version [24]) creates a view identical to the real view to the adversary. In par-
ticular, this implies that the wrapper A simulates the �-OMUF game to the
adversary M perfectly.

Corollary 1. (I, rand,
−→
h ) ∈ Succ ⇔ (Φ

rand,
−→
h

(I), rand,
−→
h ) ∈ Succ.

We look into the effect of the transcript mapping function on partner tuples.
We have proven that Φ

rand,
−→
h

preserves the transcript (and hence success) of

(I, rand,
−→
h ). However, note that this does not (by itself) imply that partnering

tuples (I, rand,
−→
h ) and (I, rand,

−→
h ′) result in partnering tuples (Φ

rand,
−→
h

(I), rand,
−→
h ) and (Φ

rand,
−→
h

(I), rand,
−→
h ′), or (Φ

rand,
−→
h ′(I), rand,

−→
h ) and (Φ

rand,
−→
h ′(I), rand,−→

h ′), respectively. Lemma 3 asserts that this is indeed the case.
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Lemma 3 (Partners stay partners through Φ). For all I, rand, and vectors−→
h ,

−→
h ′,

(
−→
h ,

−→
h ′) ∈ prti(I, rand) ⇔ (

−→
h ,

−→
h ′) ∈ prti(Φrand,

−→
h

(I), rand)

⇔ (
−→
h ,

−→
h ′) ∈ prti(Φrand,

−→
h ′(I), rand)

We refer the reader to the full version for the proof.

Corollary 2. Brmax(I, rand,
−→
h ) = Brmax(Φrand,

−→
h

(I), rand,
−→
h ).

4.4 Extracting a Witness from a Fork

Witness Extraction. We briefly recall how the reduction can compute a wit-
ness from two signatures from forking runs of the wrapper A. We say a signature
(ρ, ω, σ, δ) on a message m in the output of A on input (I, rand,

−→
h ) corresponds to

a hash value hi, if H(gρyω,gσzδ, z,m) was the i-th hash query made to the ran-
dom oracle H in this run of A. Informally we say that a witness can be extracted
from I, rand, and a pair of forking hash vectors (

−→
h ,

−→
h ′) ∈ Fi(I, rand), if it can

be efficiently computed from the two signatures corresponding to hi and h′
i. We

make this formal in the following definition.

Definition 13 (Witness Extraction). Fix I, rand and let (
−→
h ,

−→
h ′) ∈ Fi(I,

rand) for some i ∈ [� + 1]. Moreover, denote sigi, sig
′
i the signatures that corre-

spond to hi and h′
i, respectively. Consider the two witness extraction algorithms

Ey,Ez as described in Fig. 4. For × ∈ {y, z}, we say that the ×-side witness
can be extracted from (I, rand,

−→
h ) and (I, rand,

−→
h ′) at index i if E× on input

(sigi, sig
′
i) does not return ⊥.

Lemma 4. Let I, rand, i, (
−→
h ,

−→
h ′) ∈ Fi(I, rand), sigi, sig

′
i, and algorithms Ey,Ez

be as in Definition 13. Then at least one of Ey and Ez outputs a correct witness
on input the two signatures sigi = (ρi, ωi, σi, δi) and sig′

i = (ρ′
i, ω

′
i, σ

′
i, δ

′
i) corre-

sponding to hi and h′
i. More specifically, Ey outputs the y-side witness if and

only if ωi �= ω′
i, otherwise Ez outputs the z-side witness.

The proof is a standard forking argument and is deferred to to the full version
[24].

Remark 1. We note that the witness may be contained in the instance I, in which
case the witness can be trivially extracted. For the purposes of the lemma we
only consider the more interesting case that the witness can be computed from
the two signatures directly, regardless of which witness was used for simulating
the signing oracles.
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Ey((ρi, ωi, σi, δi), (ρ′
i, ω

′
i, σ

′
i, δ

′
i))

42 if (ωi �= ω′
i)

43 return x := ρi−ρ′
i

ω′
i−ωi

44 else
45 return

Ez((ρi, ωi, σi, δi), (ρ′
i, ω

′
i, σ

′
i, δ

′
i))

46 if (δi �= δ′
i)

47 return w := σi−σ′
i

δ′
i−δi

48 else
49 return

Fig. 4. The two witness extraction algorithms from Definition 13

Witnesses in Triangles. We now show that if a witness can be extracted from
the base of a triangle, it can also be extracted from at least one of the sides.
This was previously shown in [4].

Corollary 3. Fix I, rand and let (
−→
h ,

−→
h ′,

−→
h ′′) ∈ i(I, rand) for some i ∈

[� + 1]. Moreover, suppose that the y-side witness can be extracted from the
base (I, rand,

−→
h ), (I, rand,

−→
h ′) of the triangle at index i. Then the y-side witness

can also be extracted from at least one of the sides (I, rand,
−→
h ), (I, rand,

−→
h ′′) or

(I, rand,
−→
h ′), (I, rand,

−→
h ′′) at index i. An analogous statement holds for the z-side

witness.

Proof. Toward a contradiction, suppose that the y-side witness can be extracted
from the base (I, rand,

−→
h ), (I, rand,

−→
h ′) at index i, but can not be extracted at

index i for either of the sides (I, rand,
−→
h ), (I, rand,

−→
h ′′) or (I, rand,

−→
h ′), (I, rand,−→

h ′′). Then, by Lemma 4, ωi = ω′′
i and ω′

i = ω′′
i , so ωi = ω′

i. By Lemma 4
again, the y-side witness can not be extracted from (I, rand,

−→
h ), (I, rand,

−→
h ′), a

contradiction. An analogous argument can be made for the z-side. 	

We now define both-sided triangle base corners as triangle base corners (I,

rand,
−→
h ) which remain base corners of some triangle at their maximal branch-

ing index when mapped via Φ
rand,

−→
h

. (Recall that by Corollary 2, the maximal

branching index is preserved under Φ). On top of this, if (I, rand,
−→
h ) is a both-

sided triangle base corner, and forms a triangle base with (I, rand,
−→
h ′) at index

Brmax(I, rand,
−→
h ), then (Φ

rand,
−→
h

(I), rand,
−→
h ) and (Φ

rand,
−→
h

, rand,
−→
h ′) also form a

triangle base.
For every such tuple (I, rand,

−→
h ), we further define the set Dy

i (I, rand,
−→
h )

of tuples that form a both-sided triangle base with (I, rand,
−→
h ) at index i from

which the y-side witness can be extracted, and an analogous set Dz
i (I, rand,

−→
h )

for the z-side witness. This allows us to then define sets By
T and Bz

T that contain
tuples where the majority of both-sided triangle bases incident to the tuple allow
for extraction of the y-side or z-side witness, respectively.
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Definition 14 (Both-sided Triangle Base Corners). We call elements of
the set

BT :=

{
(I, rand,

−→
h )

∣∣∣∣∣ ∃−→
h ′,−→

h ′′,
−→
h ′′′ :

(
−→
h ,

−→
h ′,

−→
h ′′) ∈ �

Brmax(I,rand,
−→
h )

(I, rand)

(
−→
h ,

−→
h ′,

−→
h ′′′) ∈ �

Brmax(I,rand,
−→
h )

(Φ
rand,

−→
h

(I), rand)

}

both-sided triangle base corners. For any index i ∈ [� + 1], we define sets

Dy
i (I, rand,

−→
h ) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(I, rand,
−→
h ′)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃−→
h ′′,−→
h ′′′ :

(
−→
h ,

−→
h ′,

−→
h ′′) ∈ i(I, rand)

(
−→
h ,

−→
h ′,

−→
h ′′′) ∈ i(Φrand,

−→
h

(I), rand)
The y-side witness can be
extracted from (I, rand,

−→
h ),

(I, rand,
−→
h ′) at index i

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

and By
T ⊂ BT as

By
T :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(I, rand,
−→
h )

∣
∣
∣
∣
∣
∣
∣
∣
∣

Dy

Brmax(I,rand,
−→
h )

(I, rand,
−→
h ) �= ∅

∣
∣
∣Dy

Brmax(I,rand,
−→
h )

(I, rand,
−→
h )

∣
∣
∣

≥
∣
∣
∣Dz

Brmax(I,rand,
−→
h )

(I, rand,
−→
h )

∣
∣
∣

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

We define sets Dz
i (I, rand,

−→
h ) and Bz

T analogously.

Lemma 5 (Both-sided triangle bases produce the same witness on
both sides).

1. Φ(By
T ) = By

T and Φ(Bz
T ) = Bz

T ;
2. By

T ∪ Bz
T = BT .

We defer the proof to to the full version [24].
We define B×

T as the larger set of By
T and Bz

T . By the second item of Lemma
5,

∣
∣B×

T

∣
∣ ≥ 1

2 |BT |.
Let B×

T,y (resp. B×
T,z) be the subset of B×

T with y-side instances (resp. z-side

instances). We stress that By
T and B×

T,y are two different sets: (I, rand,
−→
h ) ∈

By
T means that more both-sided triangle bases (with (I, rand,

−→
h ) as one of its

corners) allow for extracting the y-side witness than the z-side witness; whereas
(I, rand,

−→
h ) ∈ B×

T,y means that (I, rand,
−→
h ) ∈ B×

T and I is a y-side witness.

Lemma 6.
∣
∣
∣B×

T,y

∣
∣
∣ =

∣
∣
∣B×

T,z

∣
∣
∣ = 1

2

∣
∣B×

T

∣
∣.

Proof. By the first item of Lemma 5, Φ is a bijection within B×
T , and since

Φ maps a tuple with a y-side instance to a tuple with a z-side instance (and
vice versa), we know that Φ is a bijection between B×

T,y and B×
T,z; therefore,∣

∣
∣B×

T,y

∣
∣
∣ =

∣
∣
∣B×

T,z

∣
∣
∣. Since B×

T,y and B×
T,z form a partition of B×

T , we know that
∣
∣
∣B×

T,y

∣
∣
∣ +

∣
∣
∣B×

T,z

∣
∣
∣ =

∣
∣B×

T

∣
∣, and the lemma follows. 	
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We now give a lower bound of the size of B×
T . Let εB×

T
be the probability of

getting a tuple in B×
T while sampling uniformly at random, i.e.,

εB×
T

:=

∣
∣B×

T

∣
∣

∣
∣
∣I × R × Zq

�+1
∣
∣
∣
.

Lemma 7 (Lower-bounding the size of B×
T ). Assume ε ≥ 432

(
1− 1

(�+1)2

)

q .
Then

εB×
T

≥ ε

96
.

We defer the proof to the full version [24].

Finding Triangle Tops. In order for our security proof to go through, a key
step is to compute the probability that the reduction hits a triangle side from
which the ×-side witness can be extracted when forking the wrapper, indepen-
dently of the witness that is being used by the reduction. This event is crucial in
our proof because, assuming that the reduction samples one of these sides, it is
likely that it did so with the witness opposite of ×, meaning that it extracts the
witness × it does not already know with significant probability, hence solving the
discrete logarithm problem. In order to lower bound the probability of the event
above, we first define relevant triangle tops for a both-sided triangle base corner
(I, rand,

−→
h ) ∈ B×

T . These are all the tuples (I, rand,
−→
h ′′) such that (

−→
h ,

−→
h ′,

−→
h ′′)

forms triangles at index i (where
−→
h ′ is as in the definition of both-sided triangle

tops (Definition 14)).

Definition 15 (Relevant triangle tops). For a tuple (I, rand,
−→
h ), define its

relevant triangle tops at index i as tuples in the following set:

T×
T,i(I, rand,

−→
h ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(I, rand,
−→
h ′′)

∣
∣
∣
∣
∣
∣
∣
∣
∣

∃−→
h ′ :

(
−→
h ,

−→
h ′,

−→
h ′′) ∈ i(I, rand)

The × -side witness
can be extracted from (I, rand,

−→
h ),

(I, rand,
−→
h ′) at i

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

We will mostly consider relevant triangle tops at the maximum branching index
Brmax(I, rand,

−→
h ) and we thus define T×

T (I, rand,
−→
h ) := T×

T,Brmax(I,rand,
−→
h )

(I,

rand,
−→
h ).

What remains to be shown is that many elements of B×
T actually have many

relevant triangle tops, regardless of whether they reside in B×
T,y or B×

T,z, i.e., inde-
pendently of the witness that they store. This ensures that when the reduction
samples and then (partially) resamples the vectors during the forking process, it
will hit a side from which the desired witness can be extracted with significant
probability, as explained above.
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Lemma 8 (There are enough relevant triangle tops). There exists a
subset Gy ⊂ B×

T,y with |Gy| ≥ 3
8

∣
∣
∣B×

T,y

∣
∣
∣ such that for each (I, rand,

−→
h ) ∈ Gy,

∣
∣
∣T×

T (I, rand,
−→
h )

∣
∣
∣ ≥

εB×
T

16(� + 1)
· q�−Brmax(I,rand,

−→
h )+2 − 2q�−Brmax(I,rand,

−→
h )+1.

An analogous statement holds for B×
T,z.

The proof is deferred to the full version [24].

Corollary 4. Let Gy be as in Lemma 8. Then

Pr
(I,rand,

−→
h )

$←I×R×Zq
�+1

i
$←[�+1],

−→
h ′ $←Zq

�+1

|−→h [i−1]

[

(I, rand,
−→
h ′) ∈ T×

T (I, rand,
−→
h )

∣
∣
∣
∣
∣

(I, rand,
−→
h ) ∈ Gy

Brmax(I, rand,
−→
h ) = i

]

≥
εB×

T

16(� + 1)
− 2

q
.

An analogous statement holds for Gz.

Proof. Suppose (I, rand,
−→
h ) ∈ Gy and Brmax(I, rand,

−→
h ) = i. Note that∣

∣
∣
∣Zq

�+1

|−→h [i−1]

∣
∣
∣
∣ = q�−i+2. Therefore, the probability of sampling an

−→
h ′ such that

(I, rand,
−→
h ′) ∈ T×

T (I, rand,
−→
h ) is

∣
∣
∣T×

T (I, rand,
−→
h )

∣
∣
∣

q�−i+2
≥

ε
B

×
T

16(�+1) · q�−i+2 − 2q�−i+1

q�−i+2
=

εB×
T

16(� + 1)
− 2

q
.

	


Opposing Base Corners. By Corollary 3 we know that each triangle with
a relevant base has at least one relevant side. We now want to consider the
probability of finding such a relevant side in the forking proof.

To this end, we consider opposing base corners—corners of relevant bases
whose partners are in Gy or Gz. See See the full version [24] for a graphic
illustration. (Keep in mind that the sets Gy and Gz are the sets of both sided
triangle base corners for which there exist many triangle tops).

Definition 16 (Opposing base corners).

O×
T :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(I, rand,
−→
h )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃−→
h ′ :

(I, rand,
−→
h ′) ∈ Gy ∪ Gz

(
−→
h ,

−→
h ′) ∈ prt

Brmax(I,rand,
−→
h ′)(I, rand)

the × -side witness can be
extracted from (I, rand,

−→
h ),

(I, rand,
−→
h ′) at Brmax(I, rand,

−→
h ′)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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Good Corners with Useful Tops. For each tuple (I, rand,
−→
h ) in O×

T or B×
T we

define useful triangle tops—triangle tops that allow for extraction of the ×-side
witness when combined with the base corner (I, rand,

−→
h ) (see the full version

[24] for a graphic illustration):

Definition 17 (Useful triangle tops). For any (I, rand,
−→
h ) ∈ O×

T ∪ B×
T ,

define

A×
T,i(I, rand,

−→
h ) :=

⎧
⎪⎨

⎪⎩

(I, rand,
−→
h ′′)

∈ T×
T,i(I, rand,

−→
h )

∣
∣
∣
∣
∣
∣
∣

the × -side witness can be
extracted from (I, rand,

−→
h ),

(I, rand,
−→
h ′′) at index i

⎫
⎪⎬

⎪⎭

Recall that relevant base corners—those in Gy or Gz—are tuples in B×
T for

which many triangle tops are relevant (i.e., the corresponding T×
T set is large).

We now consider a subset of these relevant base corners for which a lot of the
relevant triangle tops are useful (i.e., the corresponding A×

T set is large). We call
these base corners good.

Definition 18 (Good base corners). We say that a base corner in Gy ∪ Gz

is good if it lies within the following set:

B̂×
T :=

⎧
⎪⎪⎨

⎪⎪⎩
(I, rand,

−→
h ) ∈ Gy ∪ Gz

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣A×

T (I, rand,
−→
h )

∣
∣
∣

≥ 1
2

∣
∣
∣T×

T (I, rand,
−→
h )

∣
∣
∣

−q�−Brmax(I,rand,
−→
h )+1

⎫
⎪⎪⎬

⎪⎪⎭

We now want to show that if the set of good base corners is small, then
there exist a lot of opposing base corners—which we call good opposing base
corners—that fulfill a property analogous to good base corners.

Definition 19 (Good opposing base corners).

Ô×
T :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I, rand,
−→
h )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∃−→
h ′ :

(I, rand,
−→
h ′) ∈ Gy ∪ Gz

(
−→
h ,

−→
h ′) ∈ prt

Brmax(I,rand,
−→
h ′)(I, rand)

the × -side witness can be
extracted from (I, rand,

−→
h ),

(I, rand,
−→
h ′) at Brmax(I, rand,

−→
h ′)∣

∣
∣A×

T,Brmax(I,rand,
−→
h ′)

(I, rand,
−→
h )

∣
∣
∣

≥ 1
2

∣
∣
∣T×

T,Brmax(I,rand,
−→
h ′)

(I, rand,
−→
h )

∣
∣
∣

−q�−Brmax(I,rand,
−→
h ′)+1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let ̂B×
T,y ⊂ B̂×

T and ̂O×
T,y ⊂ Ô×

T be analogous to B×
T,y ⊂ B×

T , i.e., the subset

of tuples with y-side instances. We define B̂×
T,z and Ô×

T,z similarly.

Lemma 9. If
∣
∣
∣̂B×

T,y

∣
∣
∣ < 1

2 |Gy|, then
∣
∣
∣̂O×

T,y

∣
∣
∣ ≥ 1

8(�+1) |Gy|. An analogous state-
ment holds for z.
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Proof. Let F = Gy \ ̂B×
T,y (so |F | ≥ 1

2 |Gy|). Consider any (I, rand,
−→
h ′) ∈ F , and

let i = Brmax(I, rand,
−→
h ′). Then

∣
∣
∣A×

T,i(I, rand,
−→
h ′)

∣
∣
∣ <

1
2

∣
∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ − q�−i+1.

By Corollary 3, for any (
−→
h ,

−→
h ′,

−→
h ′′) ∈ i(I, rand) such that the ×-side witness

can be extracted from the base (I, rand,
−→
h ), (I, rand,

−→
h ′), if the ×-side witness

cannot be extracted from (I, rand,
−→
h ′), (I, rand,

−→
h ′′), then it can be extracted

from (I, rand,
−→
h ), (I, rand,

−→
h ′′). (All extractions mentioned above are at index

i). Therefore,
∣
∣
∣A×

T,i(I, rand,
−→
h )

∣
∣
∣ +

∣
∣
∣A×

T,i(I, rand,
−→
h ′)

∣
∣
∣ ≥

∣
∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ .

We note that all but q�−i+1 elements of T×
T,i(I, rand,

−→
h ) are also ele-

ments of T×
T,i(I, rand,

−→
h ′). This is because (I, rand,

−→
h ∗) ∈ T×

T,i(I, rand,
−→
h ) \

T×
T,i(I, rand,

−→
h ′) implies that (

−→
h ,

−→
h ∗) ∈ Fi(I, rand) but (

−→
h ′,

−→
h ∗) /∈ Fi(I, rand),

which means that
−→
h ∗ must share its first i entries with

−→
h ′ (recall that

−→
h and−→

h ′ share the first i − 1 entries), so there are at most q�−i+1 such vectors. We
get that ∣

∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ ≥

∣
∣
∣T×

T,i(I, rand,
−→
h )

∣
∣
∣ − q�−i+1.

Combining all inequalities above, we get
∣
∣
∣A×

T,i(I, rand,
−→
h )

∣
∣
∣ ≥

∣
∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ −

∣
∣
∣A×

T,i(I, rand,
−→
h ′)

∣
∣
∣

>
∣
∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ −

(
1
2

∣
∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ − q�−i+1

)

=
1
2

∣
∣
∣T×

T,i(I, rand,
−→
h ′)

∣
∣
∣ + q�−i+1

≥ 1
2

(∣
∣
∣T×

T,i(I, rand,
−→
h )

∣
∣
∣ − q�−i+1

)
+ q�−i+1

>
1
2

∣
∣
∣T×

T,i(I, rand,
−→
h )

∣
∣
∣ − q�−i+1

I.e., if (I, rand,
−→
h ′) ∈ F , then all of its partners (I, rand,

−→
h ) at index i with which

it forms triangle bases from which the ×-side witness can be extracted, are in
̂O×

T,y.

We now lower-bound the number of such partners (I, rand,
−→
h ). Define the set

of tuples that yield the same query transcript with (I, rand,
−→
h ′) as

E(I, rand,
−→
h ′) = {(I, rand,

−→
h �)|−→e (I, rand,

−→
h �) = −→e (I, rand,

−→
h ′)}.

Note that E(I, rand,
−→
h ′) is the set of partners of (I, rand,

−→
h ) at any index. Con-

sider a subset Ei(I, rand,
−→
h ′) of all tuples that fork from (I, rand,

−→
h ′) at index
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i, i.e., Ei(I, rand,
−→
h ′) = {(I, rand,

−→
h �)|(−→h �,

−→
h ′) ∈ prti(I, rand)}. Recall that i =

Brmax(I, rand,
−→
h ′). By the definition of maximum branching index, we have

∣
∣
∣Ei(I, rand,

−→
h ′)

∣
∣
∣ ≥ 1

� + 1

(∣
∣
∣E(I, rand,

−→
h ′)

∣
∣
∣ − 1

)
≥ 1

2(� + 1)

∣
∣
∣E(I, rand,

−→
h ′)

∣
∣
∣

(where the −1 comes from excluding (I, rand,
−→
h ′) itself). As (I, rand,

−→
h ′) ∈

B×
T , it holds that at least half of the tuples in Ei(I, rand,

−→
h ′), together with

(I, rand,
−→
h ′), allow for the extraction of the ×-side witness. This means that at

least half of the tuples in Ei(I, rand,
−→
h ′) are in ̂O×

T,y.

We have shown that for any (I, rand,
−→
h ′) ∈ F , at least 1

4(�+1) of tuples

in E(I, rand,
−→
h ′) are in ̂O×

T,y. Further note that for any (I1, rand1,
−→
h 1) and

(I2, rand2,
−→
h 2), either E(I1, rand1,

−→
h 1) = E(I2, rand2,

−→
h 2) or E(I1, rand1,

−→
h 1) ∩

E(I2, rand2,
−→
h 2) = ∅.4 Summing over all E(I, rand,

−→
h ′) for some (I, rand,

−→
h ′) ∈

F , we get

∣
∣O×

T

∣
∣ ≥ 1

4(� + 1)

∑

E s.t. E=E(I,rand,
−→
h ′)

for some (I,rand,
−→
h ′)∈F

|E| ≥ 1
4(� + 1)

∑

E s.t. E=E(I,rand,
−→
h ′)

for some (I,rand,
−→
h ′)∈F

|E ∩ F |

=
1

4(� + 1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⋃

E s.t. E=E(I,rand,
−→
h ′)

for some (I,rand,
−→
h ′)∈F

(E ∩ F )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

4(� + 1)
|F | ≥ 1

8(� + 1)
|Gy| .

	

Remark 2. We point out that it is at this point that we need to require the
adversary to make exactly � + 1 hash queries (and thus lose a

(
Qh

�+1

)
factor in

advantage). The proof of Lemma 9 would not go through with Qh > � + 1 hash
queries, as hash vectors in this case may fork at arbitrary indices that do not
have a corresponding signature. Therefore, not every tuple in an E-set would
also be a partner of every other tuple in the same E-set (with the definition of
partners adapted to this setting, i.e., two tuples can only be partners if they
both have a signature at their forking index).

In the following, we want to avoid the case distinction of whether triangle corners
come from the B-sets or the O-sets. We therefore define good triangle corners:

4 This is because E(I1, rand1,
−→
h 1) ∩ E(I2, rand2,

−→
h 2) �= ∅ implies that I1 = I2,

rand1 = rand2, and −→e (I1, rand1,
−→
h 1) = −→e (I2, rand2,

−→
h 2), which in turn implies that

E(I1, rand1,
−→
h 1) = E(I2, rand2,

−→
h 2).
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Definition 20. Let Ĝy be the larger set of ̂B×
T,y and ̂O×

T,y. Furthermore, for

a tuple (I, rand,
−→
h ) ∈ Ĝy, let t(I, rand,

−→
h ) be an index at which many relevant

triangle tops exist, i.e.,

t(I, rand,
−→
h ) =

{
Brmax(I, rand,

−→
h ) (ifĜy = ̂B×

T,y)

Brmax(I, rand,
−→
h ′) (ifĜy = ̂O×

T,y)

(where
−→
h ′ is as in the definition of ̂O×

T,y). If multiple such
−→
h ′ (and thus multiple

choices for t) exist, choose one that results in the smallest value of t. Define set
Ĝz analogously, and for a tuple (I, rand,

−→
h ) ∈ Ĝz, define t(I, rand,

−→
h ) analo-

gously.

It is easy to see that for a good opposing base corner, the number of triangle
tops is the same as for the corresponding tuple from Gy ∪ Gz. We state this as
a lemma.

Lemma 10.

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq
�+1

i
$←[�+1],

−→
h ′ $←Zq

�+1
|−→h [i−1]

[
−→
h ′ ∈ T ×

T,i(I, rand,
−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝy

t(I, rand,
−→
h ) = i

]
≥

ε
B×

T

16(� + 1)
− 2

q

An analogous statement holds for Ĝz.

Proof. If Ĝy = ̂B×
T,y, then the lower bound is implied by Corollary 4. If Ĝy =

̂O×
T,y, setting the partner from the proof of Lemma 8 to the triangle corner from

̂O×
T,y yields this lower bound. 	


We furthermore note the following regarding the probability of sampling a
tuple in Ĝy and Ĝz:

Lemma 11.

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq
�+1

i
$←[�+1],

−→
h ′ $←Zq

�+1

|−→h [i−1]

Pr
[
(I, rand,

−→
h ) ∈ Ĝy

]
≥ 3

128(� + 1)
εB×

T

The same holds for Ĝz.

We defer the proof to the [24]. We will use the sets Ĝy and Ĝz for simplicity in

the forking proof to avoid case distinctions over whether ̂B×
T,y or ̂O×

T,y (or B̂×
T,z

or Ô×
T,z) are larger.
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4.5 Forking Proof for Concurrent OMUF

In this section, we show that the Abe-Okamoto partially blind signature scheme
AO is single-tag one-more unforgeable. We extend the proof to multiple tags in
Sect. 4.6.

Theorem 1 (OMUF security for single-tag adversaries). For all � ∈ N, if
there exists an adversary U that makes Qh hash queries to random oracle H and

(tU, εU, �)-breaks 1-info-OMUFAO with εU ≥ 432
(
1− 1

(�+1)2

)

q · (
Qh

�+1

)
, then there

exists an algorithm B that
(

tB = 2tU + O(Qh
2), εB ≈ 3ε2U

75423744·(Qh
�+1)

2·(�+1)3

)
-

breaks DLOG.

Proof. We use the wrapper A as described in Fig. 3. We now construct a reduc-
tion B that plays the DLOG game as follows.

After B receives its discrete logarithm challenge U, it samples a bit b $←
{0, 1}. It then samples an instance I of type b where it sets z := U if b = 0 and
y := U if b = 1, and all other items uniformly at random from Zq. Furthermore,
B samples a random tape rand for A and a random hash vector

−→
h . After that,

B runs A on (I, rand,
−→
h ). If A returns a set of � + 1 valid message-signature

pairs, B chooses a random index i $← [� + 1]. B then re-samples the vector−→
h ′ $← Zq

�+1

|−→h [i−1]
and runs A on (I, rand,

−→
h ′). If A outputs a second set of � + 1

valid message-signature pairs, B identifies the signature matching the hash value
hi and h′

i respectively in both pair (it aborts if there exists no such signature
for h′

i). Denote the corresponding signature components to the ith hash query
by ρi, ρ

′
i, ωi, ω

′
i, σi, σ

′
i, δi, δ

′
i (see the full version [24]).

If ωi �= ω′
i and b = 1, B computes

x := (ωi − ω′
i)

−1 · (ρ′
i − ρi)

as its output; if δi �= δ′
i and b = 0, B computes

w := (δi − δ′
i)

−1 · (σ′
i − σi)

as its output. Otherwise B aborts. (If A fails to return a set of � + 1 valid
message-signature pairs either time, B also aborts).

B runs A twice, and performs Θ(�) additional computation (in particular, B
verifies up to 2(� + 1) signatures). Plugging in tA = tU + O(Qh

2), we get that

tB = 2tU + O(Qh
2).

We now analyze the advantage of reduction B. Let εU be the advantage of
U in the OMUF game, and ε be the probability that A outputs � + 1 valid
message-signature pairs. By Lemma 1 and subsequent analysis in Sect. 4.1,

ε ≥ εU(
Qh

�+1

) .
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We can see that B internally runs the witness extracting algorithm Ey or
Ez in Definition 13. Forking over the set Ĝ of good base corners yields the
theorem statement. We provide a detailed computation of the probability in the
full version [24]. 	


4.6 Extension to Multiple Tags

Theorem 2. Let U be an adversary against �-OMUFAO that runs in time tU,
closes at most �info signing sessions per tag info, closes at most � signing sessions
in total, and queries at most Qinfo tags info to oracle H∗. Let advOMUFAO

Qinfo,�info,U
be U’s

advantage. Then there exists a reduction B against 1-info-OMUFAO that runs
in time tB ≈ tU and makes at most �info signing queries and has advantage

adv�info-1-info-OMUFAO

B ≥
adv�−OMUFAO

Qinfo,�info,A
− �

q

Qinfo
.

The proof of this theorem mostly follows that in [4]. We provide it in the full
version [24] for completeness.
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Abstract. The algebraic group model (AGM), formalized by Fuchs-
bauer, Kiltz, and Loss, has recently received significant attention. One
of the appealing properties of the AGM is that it is viewed as being
(strictly) weaker than the generic group model (GGM), in the sense
that hardness results for algebraic algorithms imply hardness results for
generic algorithms, and generic reductions in the AGM (namely, between
the algebraic formulations of two problems) imply generic reductions in
the GGM. We highlight that as the GGM and AGM are currently for-
malized, this is not true: hardness in the AGM may not imply hardness in
the GGM, and a generic reduction in the AGM may not imply a similar
reduction in the GGM.

1 Introduction

Computational Assumptions in Groups. Since the work of Diffie and Hell-
man [DH76], there have been many elegant cryptographic schemes and protocols
whose security can be based on the conjectured hardness of certain computa-
tional problems in (cyclic) groups. To prove security in this setting, we begin
by formulating an appropriate hardness assumption relative to a group G. It is
important to stress that such assumptions are always relative to some specific
encoding of the elements of G, even though this is not always made explicit. For
example, let G denote the cyclic group of order p, for some large prime p such
that q = 2p + 1 is also prime. One way to encode elements of G is to represent
them as integers in the order-p subgroup of Z∗

q , with the group operation cor-
responding to multiplication modulo q. Another way to encode elements of G
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is to represent them as integers in Zp with the group operation corresponding
to addition modulo p. Even though these are both encodings of the same group
(or, put differently, these two encodings are isomorphic), it is reasonable to con-
jecture that the discrete-logarithm problem is hard in the first case even though
it is trivial to solve in the second case. Encodings matter.

Beyond understanding the hardness of specific problems in groups, it is also
interesting to understand relations between different problems. Here, too, the
specific encoding may affect the relations that can be shown.

Unfortunately, the current state-of-the-art in complexity theory does not
allow us to prove any unconditional hardness results relative to any concrete
group encoding; namely, we do not know how to prove lower bounds on the
probability with which arbitrary algorithms can solve some problem relative to
any specific encoding of group elements. (On the other hand, we can in some
cases show unconditional relations between certain problems, e.g., that—for any
encoding—hardness of the decisional Diffie-Hellman assumption implies hard-
ness of the discrete-logarithm problem.) This has motivated researchers to inves-
tigate the possibility of proving hardness results for specific (restricted) classes
of algorithms. Two examples we study in this work are the class of generic algo-
rithms, and the class of algebraic algorithms. We discuss these in more detail
below.

Generic Algorithms and the Generic Group Model. Roughly speaking,
generic algorithms operate independently of any particular group encoding. That
is, they ignore the specific encoding of group elements but instead treat group
elements “generically.” Studying this class of algorithms is well motivated, since
several well-known algorithms such as the baby-step/giant-step algorithm [PH78]
and Pollard’s rho algorithm [Pol78] are generic in this sense. A generic algorithm
has the advantage that it works for any encoding of group elements; it cares only
about the mathematical structure of the underlying group, but not its encoding.
Researchers have proposed different variants of the so-called generic group model
(GGM) [Nec94,Sho97,Mau05,MPZ20] in an effort to formally define the notion
of a generic algorithm. We describe these in Sect. 2.1.

It is possible to prove unconditional hardness results in the generic group
model. While the implications of such results for hardness relative to any specific
encoding are unclear, at a minimum a proof of hardness in the GGM serves as a
“sanity check” that some assumption is reasonable. Indeed, the GGM is now a
canonical tool to establish (some level of) confidence for new hardness assump-
tions or even security of cryptographic schemes. Moreover, for some specific
group encodings (e.g., appropriately defined elliptic-curve groups) and certain
problems, the best known algorithms are indeed generic.

Algebraic Algorithms and the Algebraic Group Model. Other
work [BV98,PV05] has proposed a class of so-called algebraic algorithms.
Roughly speaking, algebraic algorithms are allowed to exploit the concrete
encoding of group elements, but they are restricted to only being able to derive
(new) group elements via group operations involving elements they have been
provided with as input. Fuchsbauer, Kiltz, and Loss [FKL18] recently formalized
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this idea as the algebraic group model (AGM), and showed a number of results
in that model. A number of papers have since extended those results [MTT19,
KLX20,BFL20,ABK+21,GT21], and have used the AGM to prove security of
cryptographic constructions [MBKM19,RS20,KLX22,FPS20,ABB+20,RZ21].

The utility of studying the AGM is not immediately clear, and we are not
aware of any natural group-theoretic algorithms that are algebraic but not
generic.1 We are also not aware of any unconditional hardness results for prob-
lems of cryptographic interest in the AGM. (Though lower bounds for some
problems are possible in an extension of the AGM [KLX20].) Nevertheless, Fuchs-
bauer, Kiltz, and Loss argue that the AGM can be useful for studying reductions
between problems. As an example, for many group encodings the best-known
algorithm for solving the computational Diffie-Hellman problem is to first solve
the discrete-logarithm problem. In the AGM, one can prove that this is inherent,
in the sense that hardness of the latter implies hardness of the former. Such a
result is not known to hold in general.

To justify the usefulness of studying reductions in the AGM, Fuchsbauer
et al. [FKL18, Lemma 2.2] claim that a generic reduction between two problems
in the AGM implies a generic reduction between those problems in the GGM.
That is, if there is a generic reduction R showing that the hardness of (algebraic)
security game H implies hardness of (algebraic) security game G, and if H can
be proven unconditionally hard for generic algorithms, then G is also hard in
the GGM. Their proof of this claim uses the following natural steps:

Step 1: Assume toward a contradiction that G is not hard in the GGM,
so there is a generic algorithm AG

gen that succeeds in game G with high
probability.

Step 2: Since any generic algorithm is also algebraic, the reduction R can be
applied to AG

gen to obtain an algebraic algorithm AH
alg := RAG

gen that succeeds
with high probability in H.

Step 3: Since R is generic, AH
alg is in fact a generic algorithm. But this con-

tradicts the fact that H is unconditionally hard for generic algorithms.

While the above is appealing, some steps are not entirely clear. In particu-
lar, it is not obvious that the intuitive conversion of a generic algorithm to an
algebraic algorithm (cf. step 2) is applicable in all contexts. And even if it is
possible to transform the generic algorithm AG

gen to an “equivalent” algebraic

algorithm AG
alg, it is then not clear that the resulting algebraic algorithm RAG

alg

can be meaningfully transformed back into a generic algorithm (cf. step 3).

1.1 Our Results

Seeking to better understand the algebraic group model and its relationship to
the generic group model, we provide self-contained descriptions of both and then

1 Fuchsbauer et al. claim that index-calculus algorithms are algebraic, but without
any further explanation. It is not clear to us what they mean by this.
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explore their relationship. We first observe that the formal definition of algebraic
algorithms proposed by Fuchsbauer et al. may not match the intended intuition.
Specifically, Fuchsbauer et al. define an algorithm to be algebraic if it provides
a representation of any group elements it outputs. (See more details in Sect. 3.)
This is supposed to ensure that “the only way for an algebraic algorithm to
output a new group element is to derive it via group multiplication from known
group elements” [FKL18]. However, we show in Sect. 3 an algorithm that obtains
a new group element using non-group operations but can still output a valid
representation of that element.

More importantly, we show that a generic algorithm need not be algebraic,
and that it might be hard to convert a generic algorithm to an algebraic one
with the same behavior. In particular, we show a counterexample to the claim
of Fuchsbauer et al. as described above by showing a security game called the
“binary encoding game (beg)” and describing a generic reduction from the
discrete-logarithm problem to this game. (Note that the discrete-logarithm prob-
lem is unconditionally hard in the GGM, and is conjectured to be hard for certain
encodings.) But we show that beg is easy in the GGM. Thus:

Theorem 1 (Informal). A generic reduction in the AGM does not imply a
generic reduction in the GGM.

Concurrent Work. In concurrent and independent work, Zhandry [Zha22]
studies the GGM and the AGM and gives a new definition of the AGM. We
consider the AGM as originally defined by Fuchsbauer et al. [FKL18]. Zhandry
does not address the relationship between generic reductions in the AGM vs. the
GGM, and does not show any analogue of our theorem stated above.

Discussion. Our counterexample to [FKL18, Lemma 2.2] is admittedly con-
trived, and an important next step is to understand whether there is some sub-
class of security games for which a version of their lemma might still apply. Any
such subclass should of course be broad enough to include security games of cryp-
tographic relevance. More generally, we believe that a more-formal treatment of
the GGM and AGM, and the relationship between them, is warranted.

2 Preliminaries

In this section, we provide the required background and preliminaries.

Algorithms. We denote by s ← S uniform sampling of variable s from the finite
set S. Algorithms are written using uppercase letters (e.g., A, B). To indicate
that a probabilistic algorithm A runs on some inputs (x1, . . . , xn) and returns y,
we write y ← A(x1, . . . , xn). If A has oracle access to an algorithm B during its
execution, we write y ← AB(x1, . . . , xn).

Group Encodings. Throughout this work, we restrict attention to the cyclic
group G of prime order p. For concreteness, we often identify G with the additive
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group Zp. As highlighted in the Introduction, however, we explicitly focus on
encodings of this group and its impact on algorithms for various problems.

Fix some � ≥ �log p�. An encoding σ : Zp → {0, 1}� is simply an injective map
from Zp to {0, 1}�. We let id be the “trivial” encoding in which each element
of Zp is encoded as a binary integer in the range {0, . . . , p − 1} using �log p�
bits and then padded to the left with 0s to a string of length �, and the group
operation is addition modulo p. We often use boldface capital letters (e.g., X,Y)
for encodings of group elements.

As notational shorthand, we will often use standard multiplicative notation
for group operations on (encodings of) group elements. Thus, σ(x)σ(y) refers
to computing the group operation on the group elements σ(x), σ(y); note that
σ(x)σ(y) = σ(x+y mod p). Similarly, for r an integer, σ(x)r refers to computing
the r-fold group operation on σ(x); of course, σ(x)r = σ(xr mod p).

dlogA
σ

01 z ← Zp

02 z′ ← A(σ(1), σ(z))
03 Return 1 iff z′ = z

Fig. 1. The discrete-logarithm game dlog.

Security Games. We use a variant of code-based security games [BR06]. A
game Gσ, parameterized by an encoding σ, has a main procedure and (pos-
sibly zero) oracle procedures that describe how oracle queries are answered.
Figure 1 shows an example of the discrete-logarithm game. We let GA

σ be a ran-
dom variable denoting the boolean output of game Gσ played by algorithm A.
Algorithm A is said to succeed when GA

σ = 1, and the success probability of A
in Gσ is SuccAGσ

def= Pr[GA
σ = 1]. TimeAGσ

denotes the running time of GA
σ.

Security Reductions. Let Gσ,Hσ be security games. We write Hσ
(Δt,Δε)=====⇒ Gσ

if there is an algorithm R (a reduction) such that for all algorithms A, algorithm
B := RA satisfies

SuccBHσ
≥ 1

Δ ε
· SuccAGσ

, TimeBHσ
≤ Δt · TimeAGσ

.

Note that the reduction may depend on the encoding, and a reduction with
some parameters may exist for certain encodings and not others. (For examples
of reductions that depend on the encoding, see [Gal12, Section 21.4].)
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2.1 Generic Algorithms

In general, an algorithm A in a game Gσ may depend on σ. A generic algorithm,
however, should be “oblivious” to the encoding used. At least two ways of for-
malizing this have been considered, one due to Shoup [Sho97] and another due
to Maurer [Mau05].

Shoup’s approach can be summarized as requiring a generic algorithm A to
work for all encodings. Since A cannot depend on the encoding, however, it must
be provided with some way to perform group operations. We can provide such
capabilities (both to A and possibly the game itself) by giving access to two
oracles that we collectively call encoding oracles:

– a labeling oracle that takes as input x ∈ Zp and returns σ(x), and
– a group-operation oracle that takes as input strings s1, s2 and does the follow-

ing: if s1 = σ(x) and s2 = σ(y), return σ(x + y mod p); otherwise, return ⊥.

Calls to these oracles take unit time by definition. We denote by ̂Gσ the mod-
ification of a game Gσ to include the above oracles. We define2 SuccAG =
minσ{SuccA

̂Gσ
} and TimeAG = maxσ{TimeA

̂Gσ
}.

Maurer’s approach to defining the generic group model is similar in spirit,
but technically different. Here, roughly speaking, a generic algorithm does not
have access to any encodings of group elements at all; instead, the algorithm is
able to access group elements only via abstract “handles.” One way to formalize
this is by initializing a counter ctr to 1, and a table T to empty, at the beginning
of an algorithm’s execution. The algorithm now has access to three encoding
oracles that take the following form:

– the labeling oracle takes as input x ∈ Zp. It stores (ctr, x) in T and incre-
ments ctr. (It does not return anything.)

– the group-operation oracle takes as input positive integers i, j < ctr. It finds
(i, x) and (j, y) in T , stores (ctr, x + y mod p) in T , and increments ctr. (It
does not return anything.)

– an equality oracle takes as input positive integers i, j < ctr. It finds (i, x) and
(j, y) in T and returns 1 if x = y and 0 otherwise.

Note that ctr can also be incremented, and T populated, by actions that occur as
part of the game itself rather than due to actions of the algorithm. For example,
the discrete-logarithm game of Fig. 1 would be modified to store (1, x) in T and
increment ctr as part of step 1; it would also provide no input to A in step 2.
Moreover, if A is supposed to output a group element in some game, then it
should instead output a positive integer i < ctr; this will correspond to an output
of σ(x), where (i, x) is the record stored in T . If we let ˜G denote the appropriate
modification of a game G, then we again define SuccAG = minσ{SuccA

˜Gσ
} and

TimeAG = maxσ{TimeA
˜Gσ

}.

2 While one might expect SuccA
̂Gσ

and TimeA
̂Gσ

to be independent of σ (and that is

the case for “natural” generic algorithms), that may not be the case in general.
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We refer to Shoup-generic and Maurer-generic algorithms depending on the
model under consideration. With respect to either model, we say a game G is
(t, ε)-hard in the generic group model if for every generic algorithm A it holds
that TimeAG ≤ t ⇒ SuccAG ≤ ε.

A generic algorithm A (in either model) with success probability ε = SuccAG
may fail to run in a “standard” game Gσ where the encoding oracles are not
present. However, for any σ it is possible to modify a generic algorithm A (of
either type) in a black-box way (by simulating the encoding oracles) to obtain
an algorithm Aσ where SuccAσ

Gσ
= ε and the time complexity of Aσ relative to A

reflects only the time required to perform group operations for the encoding σ.

SA
σ

01 b1 · · · b� := σ(1)
02 b ← A
03 Return 1 iff b = b1

Fig. 2. Game S.

For completeness, we remark that there can be games where the optimal
success probabilities for generic algorithms differ depending on which generic
group model is used. Consider, for example, game S in Fig. 2. With respect to
Shoup’s notion of generic algorithms, there exists a trivial algorithm A that has
success probability 1 for any encoding. (A simply asks its encoding oracle for
σ(1) and outputs the first bit.) On the other hand, with respect to Maurer’s
notion of generic algorithms it is not possible to have an algorithm that achieves
success probability better than 1/2 for all encodings.

Generic Reductions. For games G, H, we write H
(Δt,Δε)=====⇒S-GGM G if there is

a generic reduction R (where generic is defined relative to Shoup’s model) such
that for all generic algorithms A, algorithm B := RA (which is generic) satisfies

SuccBH ≥ 1
Δ ε

· SuccAG, TimeBH ≤ Δt · TimeAG.

We define H
(Δε,Δt)=====⇒M-GGM G analogously with respect to Maurer’s model.

3 Algebraic Algorithms

Algebraic algorithms are another example of a class of algorithms that has been
considered in the context of group-theoretic problems. The main idea, which
seems to have originated in work of Paillier and Vergnaud [PV05], is to try
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to capture the notion of an algorithm that, on the one hand, only performs
group operations on group elements (as in the generic group model) but, on the
other hand, can depend on a specific encoding σ rather than being “encoding-
agnostic.” As one might expect, formalizing this intuition is not straightforward.
The main difficulty is that, with an encoding σ fixed, it is no longer clear how
to differentiate between arbitrary computations on group elements done by an
algorithm and group operations on group elements (that may depend on σ).

Fuchsbauer et al. [FKL18] suggest one way to resolve the above dilemma.
Roughly speaking, they do not attempt to place any restrictions on intermediate
computations done by an algorithm, but instead require that any group elements
output by an algorithm must3 be accompanied by a representation relative to
the ordered set S of group elements (the base set) provided to that algorithm
as input. (A representation of a group element σ(y) relative to an ordered set of
group elements S = (σ(x1), . . . , σ(xk)) is a vector r = (r1, . . . , rk) ∈ Z

k
p such that

σ(y) =
∏

i σ(xi)ri . Note this implies y =
∑

i rixi mod p.) To ensure nontriviality,
we assume the set S always includes σ(1) (i.e., σ(1) is always provided to the
algorithm as input). To be clear: (1) group elements received by the algorithm
as a result of an oracle call are added to the base set (in particular, the base set
can expand during the course of executing the algorithm; a valid representation
must always be relative to the current set), and (2) an algebraic algorithm must
also provide a representation for any group elements it provides as input to some
oracle call. This is intended to capture the intuitive idea that the only way for
an algebraic algorithm to generate a new group element is to derive it via group
operations from known group elements.

A(1)
01 r1, r2 ← Zp

02 s ← r1 · r2 mod p
03 Output (s, s)

Fig. 3. Algorithm A with respect to the identity encoding id.

We note a number of unsatisfactory aspects of this definition:

1. The definition does not constrain algorithms that do not output group ele-
ments. In particular, for the discrete-logarithm game the class of algebraic
algorithms is the class of all algorithms. Thus, the AGM is useless for ana-
lyzing games where the algorithm’s output is not a group element.

2. The formalization considers some algorithms to be algebraic even though
they may not match one’s intuition regarding what operations an algebraic
algorithm should be allowed to perform. For example, consider algorithm A

3 Formally, if an algorithm violates these requirements in some game, then by definition
it does not succeed.
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in Fig. 3 with respect to the identity encoding σ = id. This algorithm samples
two group elements r1, r2 and then multiplies them modulo p. The group
operation here, however, is addition modulo p. Nevertheless, A is able to
output a representation of the resulting group element s with respect to its
base set {1}. More generally, whenever the encoding is such that the discrete-
logarithm problem can be solved efficiently relative to that encoding, any
algorithm can be made algebraic by simply computing a representation of
any group elements it outputs.

3. Perhaps more problematic is that, once a particular encoding σ is fixed, it is
not immediately well-defined what it means for an algorithm to “be provided
with a group element as input” or to “output a group element.” To get a
sense of the problem, consider a game involving an oracle that, on input i,
returns the ith bit of σ(x). At no point in time does an algorithm in that game
ever receive a group element from an oracle; nevertheless, it is clearly trivial
to construct an algorithm that outputs the group element σ(x). Fuchsbauer
et al. attempt to address this issue by requiring that “other elements” (i.e.,
non-group elements) “must not depend on any group elements,” but it is not
clear how such a requirement can be formalized.

It seems intuitive, and one would like to claim, that algebraic algorithms
are at least as strong as generic algorithms, in the sense that for any game G,
any generic algorithm A with ε = SuccAG, and any encoding σ, it is possible to
construct an algebraic algorithm Aσ achieving the same success probability by
simply simulating the encoding oracles for A and keeping track of the represen-
tations of any group elements generated during the execution of A. As already
noted by Fuchsbauer et al., however, thus is not necessarily true (at least for
Shoup’s version of the GGM). Specifically, in Shoup’s GGM it may be possible
to obliviously sample group elements (i.e., without knowledge of their discrete
logarithm), something that is ruled out by definition in the AGM.

We show in Sect. 4, in the context of reductions, that it is also not the case
that all generic algorithms can be made algebraic.

Although Fuchsbauer et al. conjecture that any Maurer-generic algorithm
can be made algebraic, we are not aware of a proof of that conjecture.

Generic Reductions for Algebraic Adversaries. Fuchsbauer et al. [FKL18]
consider generic reductions for algebraic adversaries; we map their definition to

our syntax. For games G, H, write H
(Δt,Δε)=====⇒alg G if there is a generic reduction

R such that for all algebraic algorithms A and encodings σ, algorithm B := RA

satisfies
SuccBHσ

≥ 1
Δ ε

· SuccAGσ
, TimeBHσ

≤ Δt · TimeAGσ
. (1)

The reduction is deliberately restricted to be generic (rather than algebraic) so
that, as explained by Fuchsbauer et al., if A is algebraic then B will be algebraic,
and if A is generic then B will be generic. We remark that the above notion seems
to be useful only for Shoup-generic reductions; it is not clear how a Maurer-
generic reduction would be able to provide A with encodings of group elements
that A expects.
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We observe several technical issues with the above definition:

– It is not true that when R is generic and A is algebraic, the composed algo-
rithm B = RA is algebraic. Indeed, a simple counterexample is a generic
algorithm R that obliviously samples a group element and outputs it.

– Even if (1) holds for all algebraic algorithms A, it is not clear whether it holds
for all generic algorithms A. Again, this is because a generic algorithm is not
necessarily algebraic (nor is it necessarily possible to construct an algebraic
algorithm with the same behavior).

4 A Counterexample

In this section, we give an example showing that a generic reduction in the AGM
does not imply a reduction in the GGM. Concretely, we show two games G and
H such that: (1) there is a Shoup-generic reduction from H to G; (2) H is hard
for Shoup-generic algorithms; but (3) G is easy for Shoup-generic algorithms.
Formally,

Theorem 2. There are security games G and H such that

– H
(2,1)
===⇒alg G;

– H is (t, O(t2/p))-hard with respect to Shoup-generic algorithms;
– There is a Shoup-generic algorithm A running in time O(�) with SuccAG = 1.

begA
σ

01 z ← Zp

02 parse Z = σ(z) as the bitstring z1 · · · z�

03 (X,U1, . . . ,U�) := (σ(1), σ(z1), . . . , σ(z�))
04 Z′ ← A(X,U1, . . . ,U�)
05 Return 1 iff (Z′ = Z)

Fig. 4. The binary encoding game.

Proof. Take H as the discrete-logarithm game from Fig. 1. Security game G is
one we introduce called the binary encoding game (beg); see Fig. 4. Hardness of
H for Shoup-generic algorithms was shown in [Sho97]. It is easy to see that there
is a Shoup-generic algorithm A with SuccAbeg = 1: for each i, the algorithm sets
z′
i := 1 iff Ui = X and then outputs Z′ := z′

1 · · · z′
�. Thus, it only remains to

prove that dlog
(2,1)
===⇒alg beg.

Fix an encoding σ. Generic reduction R is given (X,Z) := (σ(1), σ(z)) as
input along with oracle access to an algebraic algorithm A; it proceeds as follows:
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1. Parse Z as the bitstring z1 · · · z�. Set z0 := 1.
2. Request I = σ(0) from the labeling oracle.
3. For i = 1, . . . , � do: if zi = 0 then set Ui := I; else set Ui := X.
4. Run A(X,U1, . . . ,U�) to obtain output Z′ along with a representation

(x0, x1, . . . , x�) such that Z′ = Xx0 · Ux1
1 · · ·Ux�

� .
5. Output

∑�
i=0 zi · xi mod p.

We now analyze the behavior of R. Let A be an algebraic adversary with
ε = SuccAbegσ

. Observe that when A is run as a subroutine by R in game dlogσ,
the input provided to A is distributed identically as in begσ. Moreover, whenever
A succeeds it holds that (1) Z′ = Z and (2) z =

∑

zi · xi mod p. It follows that
SuccR

A

dlogσ
= ε. This completes the proof.

In light of our counterexample, we highlight where the proof of the result by
Fuchsbauer et al. [FKL18, Lemma 2.2] fails. Note that the generic algorithm A
with SuccAbeg = 1 that we construct as part of the proof cannot be converted
to an algebraic algorithm. (More formally: the “trivial” attempt to convert A to
an algebraic algorithm by monitoring its encoding oracles does not work, nor do
we see another way to convert A to an algebraic algorithm. Moreover, as long as
the discrete-logarithm problem is hard for some particular encoding σ, there is
no efficient way to convert A into an algebraic algorithm with similar behavior
relative to that encoding.)

5 Concluding Thoughts

Our work raises several issues related to the AGM. For starters, it is unclear
whether the AGM is a meaningful class of algorithms to study; on the one
hand because we are not aware of any (natural) algebraic algorithms that are
not generic, and on the other hand because it is not clear whether the class
of algebraic algorithms contains the class of generic algorithms. This may be
related to the issue of whether the current formalization of the AGM adequately
captures one’s intuition about what “algebraic” algorithms can do, as well as
whether it is possible to formally define what it means for certain objects not to
“depend on” encodings of group elements. One argument in favor of the AGM
is that it provides a meaningful way to analyze reductions; our work shows,
however, that the main justification for studying reductions in the AGM does
not hold in certain settings.

Our work raises several interesting directions for future work, including the
question of developing other formalism for the algebraic group model, as well as
formally resolving the question as to whether the class of algebraic algorithms
strictly includes the class of Maurer-generic algorithms.

Acknowledgments. We thank Steven Galbraith for interesting discussions about the
AGM and helpful comments on an earlier draft of this work.
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Abstract. Extending work leveraging program obfuscation to instantiate
random-oracle-based transforms (e.g., Hohenberger et al., EUROCRYPT 2014,
Kalai el al., CRYPTO 2017), we show that, using obfuscation and other assump-
tions, there exist standard-model hash functions that suffice to instantiate the
classical RO-model encryption transforms OAEP (Bellare and Rogaway, EURO-
CRYPT 1994) and Fujisaki-Okamoto (CRYPTO 1999, J. Cryptology 2013) for
specific public-key encryption (PKE) schemes to achieve IND-CCA security. Our
result for Fujisaki-Okamoto employs a simple modification to the scheme.

Our instantiations do not require much stronger assumptions on the base
schemes compared to their corresponding RO-model proofs. For example, to
instantiate low-exponent RSA-OAEP, the assumption we need on RSA is sub-
exponential partial one-wayness, matching the assumption (partial one-wayness)
on RSA needed by Fujisaki et al. (J. Cryptology 2004) in the RO model up
to sub-exponentiality. For the part of Fujisaki-Okamoto that upgrades public-
key encryption satisfying indistinguishability against plaintext checking attack
to IND-CCA, we again do not require much stronger assumptions up to sub-
exponentiality.

We obtain our hash functions in a unified way, extending a technique of
Brzuska and Mittelbach (ASIACRYPT 2014). We incorporate into their tech-
nique: (1) extremely lossy functions (ELFs), a notion by Zhandry (CRYPTO
2016), and (2) multi-bit auxiliary-input point function obfuscation (MB-AIPO).
While MB-AIPO is impossible in general (Brzuska andMittelbach, ASIACRYPT
2014), we give plausible constructions for the special cases we need, which may
be of independent interest.

Keywords: Fujisaki-Okamoto · RSA-OAEP · Random oracle · Standard
model · Chosen-ciphertext security · Extremely lossy functions

1 Introduction

1.1 Background and Goal

THE RANDOM ORACLE MODEL AND UNINSTANTIABILITY. The random oracle (RO)
model [10] is a popular paradigm for designing practical cryptographic schemes. The
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idea is that in the design and analysis of a scheme all parties are assumed to have access
to one or more oracles that implement independent random functions (called ROs). The
hope is that when the scheme is implemented in practice, using cryptographic hash-
ing in place of the ROs, then the scheme retains security. (Replacing the ROs with
some functions is said to “instantiate” the scheme via these functions.) Unfortunately,
this paradigm has been shown to be false in a strong sense, starting with the work of
Canetti, Goldreich, and Halevi [28]. They exhibit schemes that are secure in the RO
model but are insecure when instantiated with any efficient function, let alone crypto-
graphic hashing. Such unfortunate schemes are called uninstantiable. Thus, it is crucial
to demonstrate instantiatiability of popular RO model schemes by giving efficient func-
tions that can provably replace their ROs. This not only gives us better evidence of their
security, but also provides insights into their security that were previously obscured in
the ROM. This insight can lead to tweaks that increase their security and new design
goals for cryptographic hashing.

Before proceeding, it should be clarified that our hash functions made to replace
ROs are not practically efficient. Thus, we do not propose that our hash functions
are actually used. Rather, their existence makes it more plausible that the schemes we
instantiate meet their goals when using cryptographic hashing.

RO MODEL TRANSFORMS. A particularly vexing case of uninstantiability concerns
transforms in the RO model; in other words, compilers that take one or more “base
schemes” (that may or may not use ROs) and output a “target scheme” that uses ROs.
We say that the transform “works” if for any secure base schemes the output target
scheme is secure (under the appropriate security notions). The instantiated scheme
should have the same security property, so we refer to the transform as uninstantiable
if for any standard-model hash functions replacing the ROs, there exist secure base
schemes such that the corresponding target scheme is insecure. This means the trans-
form cannot “work” in the standard model in general.

OUR FOCUS: CLASSICAL ENCRYPTION TRANSFORMS. We are concerned with instan-
tiability of two highly influential RO model transforms that output a (public-key)
encryption scheme, the Optimal Asymmetric Encryption Padding (OAEP) trapdoor
permutation-based transform [11] and the Fujisaki-Okamoto (FO) hybrid-encryption
transform [37]. These are considered two of the “crown jewels” of the RO model, but
their instantiability has not been established. In fact, there exist uninstantiability results
to some extent. Accordingly, the main question we study is:

Do there exist standard-model hash functions that suffice to instantiate IND-
CCA2 secure OAEP and FO?

We briefly recall how these transforms work. OAEP takes a trapdoor permutation
(TDP) F (typically RSA) and produces a public-key encryption scheme whose public
key is an instance f of the TDP. It uses two ROs G,H and the encryption algorithm has
the form:

EOAEP
f (m; r) = f(s‖t)where s = G(r) ⊕ m‖0ζ and t = H(s) ⊕ r,

where ζ ∈ N is a redundancy parameter.
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FO uses a public-key encryption scheme and a symmetric-key encryption scheme
to produce a new public-key encryption scheme. We modify the original encryption
algorithm [37] by incorporating changes from Hofheinz, Hövelmanns, and Kiltz [49] to
obtain the form:

Ehy
pk(m; r) = Easy

pk (r;H(r))‖E sy
K(m) where K = G(r‖c1), c1 = Easy

pk (r;H(r)) ,

where Easy denotes the encryption algorithm of the starting public-key scheme and E sy

denotes the encryption algorithm of the starting symmetric-key scheme.
Instantiability results for OAEP and FO are challenging because there are negative

results known. Notably, Kiltz and Pietrzak [61] show a black-box separation for OAEP
in the ideal TDP model, and Brzuska et al. [23] show the FO transform to be uninstan-
tiable, even assuming IND-CPA security of the base PKE scheme. Further results about
the schemes are discussed below.

1.2 Further Related Work and Open Questions

ATTEMPTS AT INSTANTIABILITY OF OAEP AND FO. The question of instantiability
of OAEP and FO was posed by Canetti [26] and Boldyreva and Fischlin [18,19]. The
latter gave partial instantiations of variants of the transforms, where only one of the
ROs is instantiated. Kiltz et al. [60] showed IND-CPA security of RSA-OAEP using
lossiness of RSA, while Bellare, Hoang, and Keelveedhi [7] showed RSA-OAEP is the
same for public-key-independent messages assuming the round functions meet their
UCE notion. Cao et al. [29] gave partial instantiations of RSA-OAEP, as well as full
instantiations for some variants of it.

On the negative side, Brown [22] and Paillier and Villar [64] showed negative
results for proving RSA-OAEP is IND-CCA secure in restricted models, and Kiltz and
Pietrzak [61] showed a general black-box impossibility result. Their results do not con-
tradict ours because we use non-blackbox assumptions. Furthermore, they do not apply
to TDP’s satisfying properties common-inputs extractability (CIE) and second-inputs
extractability (SIE). Shoup [70] exhibited a black-box separation showing that a form
of non-malleability for the TDP is necessary. On the other hand, Fujisaki et al. [39]
show that the seemingly stronger assumption of partial one-wayness (POW) on the
TDP is sufficient.

FO has evaded any positive results in the standard model, despite its growing impor-
tance. The assumptions needed by Brzuska et al. [23] were later relaxed by Goyal et
al. [46]. We evade these results by exploiting the fact that they do not apply when the
PKE scheme is OW-PCA or lossy. Brzuska et al. [23] actually show uninstantiability
of the underlying “Encrypt-with-Hash” (EwH) [6] portion of the transform, namely
Easy

pk (r;H(r)). Thus, our main focus is on the “hybrid encryption” part of the trans-
form Easy

pk (r)‖E sy
K(m) where K = G(r‖c1), c1 = Easy

pk (r;H(r)). We also consider the
first part by making other assumptions on the base scheme. Concurrently, Zhandry [73]
introduced a negative result for the FO transform when using random oracles in his
augmented random oracle model (AROM). We use structured hash functions instead.
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We have previously seen success in instantiating classical RO-based transforms out-
side the encryption domain, such as the full-domain hash (FDH) signature scheme [50,
72] and Fiat-Shamir (e.g., [58]). In particular, we have seen such lines of work first use
obfuscation and later drop it (e.g., by Zhandry [72] in the case of FDH); we are hopeful
the same pattern will emerge for our results.

RESULTS IN THE (Q)ROM. Results about the security of RSA-OAEP in the RO model
were shown in [11,39,70]. Ultimately, these works showed RSA-OAEP is IND-CCA2
secure in the RO model assuming only one-wayness of RSA, but with a loose security
reduction.

The original security bound for FO is lossy. With the recent interest in post-quantum
cryptography and FO’s applications to it, there has been work on getting tight reductions
for FO and variants in the quantum RO model, e.g. [49,51,55,56,69], all of which are
set in the ROM. Our security bound for the instantiated FO is also lossy.1 An interesting
question is whether “implicit rejection” can help with this, as it does in the RO case.

1.3 Our Results

A UNIFIED PARADIGM. Our standard-model hash functions for OAEP and FO are
obtained via a unified paradigm that uses indistinguishability obfuscation (iO) [3,41] to
obfuscate the composition of a punctured pseudorandom function (PPRF) [21,59,68]
and extremely lossy function (ELF) [72]. In our proofs, we extend an idea of Brzuska
and Mittelbach [25] to construct universal computational extractors [7]. In our exten-
sion, we utilize multi-bit auxiliary-input point function obfuscation (MB-AIPO) [27],
as well as ELFs.

ELFS AND THEIR APPLICABILITY. To explain ELFs [72], we first recall the notion of
a lossy function, a trapdoor-less version of lossy trapdoor functions [65]. A lossy func-
tion key can be generated in one of two modes, the injective or the lossy mode, where
the first induces an injective function and the second induces a highly non-injective one.
Furthermore, keys generated via these two modes are indistinguishable to any efficient
adversary. Note that the lossy function image cannot be too small, else there would be a
trivial distinguisher. ELFs achieve much more lossiness by reversing the order of quan-
tifiers. Namely, for an ELF, for every adversary there exists an (adversary-dependent)
indistinguishable lossy key-generation mode. The induced function can even have an
appropriate polynomial-size image. Zhandry [72] constructs ELFs based on exponen-
tial DDH, where the lossy mode depends on the run-time of the adversary.

We observe ELFs seem useful for “answering decryption queries” in a proof of IND-
CCA security. Indeed, a high-level strategy in the reduction could be, on answering
a decryption query, to iterate over all possible ELF outputs in the lossy mode to see
which one permits correct decryption. But there is a problem: the ELF output used in

1 Looking ahead, we do not obtain a post-quantum secure instantiation of FO in this work based
on known realizations of our hash functions. Yet, clearly a classically secure one is a step
forward.
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the challenge ciphertext would not look random to a reduction running the IND-CCA
adversary and simulating the decryption oracle this way. This is because the reduction
must be able to enumerate the entire lossy ELF image. To solve this problem, we wrap
the ELF into a higher-level program that we obfuscate. This program outputs a special,
truly random point on the input used in forming the challenge ciphertext, and otherwise
evaluates the ELF.

RESULTS ON OAEP. For simplicity, consider the case of public-key-independent mes-
sages; we later explain how to deal with the public-key-dependent case. We show
that low-exponent RSA-OAEP is fully instanitiable under the same assumption on the
base scheme (RSA) used by Fujisaki et al. [38] in the RO model, namely partial one-
wayness. Here we instantiate G in OAEP as iO(ELF(PRFK(·))) where iO is an indistin-
guishability obfuscator [3,41], ELF is an injective-mode ELF, and PRF is a puncturable
pseudorandom function [21,59,68]. The PRF key and ELF function are hardcoded
into the obfuscated program. To instantiate H we use a one-wayness extractor [52]
with polynomial-length output (see below). In the proof (and not in the construction),
multi-bit point function obfuscation with auxiliary input (MB-AIPO) is used.

RESULTS ON FUJISAKI-OKAMOTO. We focus on the part of the transform from OW-
PCA to IND-CCA2 (cf. transform 3.2.2 of Hofheinz et al. [49]), which is not subject
to uninstantiability results. Moreover, we propose a modified version of this part of the
FO transform:

Ehy
pk(m; r) = Easy

pk (r; z)‖E sy
K(m‖r) where K = G(r‖Easy

pk (r; z)) .

Decryption recovers r from the asymmetric ciphertext, computes the symmetric key
with the hash function, and then decrypts the symmetric ciphertext m‖r′, m is returned
iff r = r′. Moreover, if the symmetric-key encryption is already randomized and
randomness-recovering, then r can safely be used as its coins as there is no additional
overhead (c.f. Remark 4.2 in the full version of the paper).

We show this modified part of the FO transform is fully instantiable under suitable
assumptions. To describe the assumptions, we introduce a new notion of cryptogra-
phy with “adaptive” auxiliary input. This refers to an adversary being given auxiliary
input that includes access to an oracle. Specifically, for our instantiation we require MB-
AIPO with adaptive auxiliary input where the input point has the form r∗‖c∗

1, the output
point is K∗, and the auxiliary input has the form (t, d, c∗, pk ′,m) where c∗ = c∗

1‖c∗
2

is an encryption of m. Furthermore, the oracle provided to the adversary is either
a public-key ciphertext validity checker or, as a separate assumption, a symmetric-
key ciphertext validity checker. Beyond this, we need that the public-key encryption
scheme is sub-exponentially OW-PCA and the symmetric-key encryption scheme is
sub-exponentially secure authenticated encryption [9]. Notably, we later show that our
new ELF-based MB-AIPO is secure for the adaptive auxiliary input needed, albeit for
public-key-independent messages.

NEW MB-AIPOS. We wish to justify the existence of MB-AIPOs for the distributions
needed in the OAEP and FO instantiation proofs. This is challenging because in general
MB-AIPO for computationally unpredictable auxiliary input is likely impossible [24].
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To circumvent this result for OAEP, we provide a new and simple RSA-based MB-
AIPO. The auxiliary input contains an RSA ciphertext, and it is plausible this combina-
tion is secure. For FO, we show a new MB-AIPO for statistically unpredictable auxil-
iary input (which is not subject to the [24] result) based on ELFs that we further prove
is sufficient for us when the PKE scheme is lossy [8] and the one-time AE scheme is
information-theoretic and leakage-resilient in the sense of [2]. Of course, one can sim-
ply assume security of our MB-AIPO wrt. the specific computationally unpredictable
auxiliary input needed. Then information-theoretic security of the AE and lossiness of
the PKE can be removed, which yields a more practical result.

LEVERAGING SUB-EXPONENTIAL SECURITY ASSUMPTIONS. Finally, we leverage
sub-exponential security assumptions to handle public-key-dependent messages. To see
the reason, consider that the auxiliary information given to an MB-AIPO adversary in
our proofs should contain an encryption of the challenge message. However, the chal-
lenge message depends on the obfuscation itself, the latter being in the public key.
Thus, we have to guess the message in the auxiliary information. A generic argument to
this effect would require sub-exponential security assumptions on all of the primitives,
whereas for us it is crucial to avoid this assumption on ELFs, for which we do not know
sub-exponentially secure instantiations. Thus, we use a tailored argument at this step of
the proof. While we do not view sub-exponential assumptions as too devastating, it is an
important open problem to handle public-key-dependent messages without them. Cur-
rent techniques to remove sub-exponential iO [1] do not seem applicable to our case,
because the message is not hashed or fed through an obfuscation.

ON THE ASSUMPTIONS. Arguably, our assumptions are strong, but not unreasonably
so. We note that new constructions of iO have recently emerged [43,53,54,71] under
safer assumptions. ELFs have been built from exponential DDH [72], which is a com-
mon assumption on elliptic curves. To construct a sub-exponential one-wayness extrac-
tor with polynomial output length, we can use diO with short auxiliary input as per [13],
which is stronger than iO but is plausibly satisfied by the same constructions.2 (diO with
short auxiliary input is weaker than full-fledged diO, which is implausible [42].) Per-
haps the most exotic assumption we need are MB-AIPOs for specific auxiliary input
distributions. However, we lend plausibility by suggesting specific constructions.

2 Preliminaries

We overview notations and definitions used; some of which are taken from the prior
work of Cao et al. [29].

2 Unfortunately, for another construction of a one-wayness extractor with polynomial-length
output from ELFs due to Zhandry [72], it does not seem possible to set parameters to get
sub-exponential security.
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2.1 Notation and Conventions

For a probabilistic algorithm A, by y ←$ A(x) we mean that A is executed on input
x and the output is assigned to y. We sometimes use y ← A(x; r) to make A’s ran-
dom coins explicit. We denote by Pr

[
A(x) = y : x ←$ X

]
the probability that A

outputs y on input x when x is sampled according to X . We denote by [A(x)] the set
of possible outputs of A when run on input x. The security parameter is denoted k ∈ N

and 1k denotes the unary encoding of the security parameter. Integer parameters often
implicitly depend on k.

Unless otherwise specified, all algorithms must run in probabilistic polynomial time
(PPT) in k, and an algorithm’s run time includes that of any overlying experiment as
well as the size of its code.

The length of a string s is denoted |s|. We denote by s|ji the substring of s from the
i-th least significant bit (LSB) to the j-th most significant bit (MSB) of s (inclusive),
where 1 ≤ i ≤ j ≤ |s|. For convenience, we denote by s|� = s|�1 the � LSBs of s

and s|� = s||s|
|s|−� the � MSBs of s, for 1 ≤ � ≤ |s|. Vectors are denoted in boldface,

for example x. If x is a vector then |x| denotes the number of components of x and
x[i] denotes its i-th component, for 1 ≤ i ≤ |x|. Note that we begin indexing at 1,
not 0. For convenience, we extend algorithmic notation to operate on each vector of
inputs component-wise. For example, if A is an algorithm and x,y are vectors then
z ←$ A(x,y) denotes that z[i] ←$ A(x[i],y[i]) for all 1 ≤ i ≤ |x|. Unless otherwise
specified, ε denotes the empty string. A function f : N → [0, 1] is negligible if for every
constant c and all but finitely many k ∈ N we have f(k) < 1/kc.

Many games return a value like (b′ = b). This means that the boolean truth
value of the statement b′ = b is returned. Define the left-or-right selector function
as LR(x0, x1, b) = xb for x0, x1 ∈ {0, 1}∗ and b ∈ {0, 1}.
INDISTINGUISHABILITY. LetX = {Xk}k∈N and Y = {Yk}k∈N be distribution ensem-
bles. We say that X is computationally indistinguishable from Y , denoted X ≈c Y , if
for all PPT distinguishers D

|Pr [D(xk) ⇒ 1 ] − Pr [D(Yk) ⇒ 1 ]| ≤ negl(k)

We say that X is statistically indistinguishable from Y , denoted X ≈s Y , if for all
(even bounded) distinguishers D

|Pr [D(xk) ⇒ 1 ] − Pr [D(Yk) ⇒ 1 ]| ≤ negl(k) .

2.2 Encryption Schemes and Their Security

SYMMETRIC-KEY ENCRYPTION. A symmetric-key (or private key) encryption scheme
SE with message space Msg is a tuple of algorithms (K, E ,D). The key-generation
algorithm K on input 1k outputs a private key K. The encryption algorithm E on inputs
K and a message m ∈ Msg(1k) outputs a ciphertext c. The deterministic decryption
algorithm D on inputs K and ciphertext c outputs a message m or ⊥. We require that
for all K ∈ [K(1k)] and all m ∈ Msg(1k), DK(EK(m)) = m with probability 1.
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Game AEA,1
SE (k)

K ←$ K(1k)
b′ ←$ AEK(·),VK(·)(1k)
Return b′

Oracle EK(m)
c ←$ EK(m)
Return c

Oracle VK(c)
m ← DK(c)
If m = ⊥ return 0
Return 1

Game AEA,0
SE (k)

K ←$ K(1k)
b′ ←$ A$(·),⊥(·)(1k)
Return b′

Oracle $(m)
c ←$ EK(m)
u ←$ {0, 1}|c|

Return u

Oracle ⊥(c)
Return ⊥

Fig. 1. Games to define AE for private-key encryption.

AUTHENTICATED ENCRYPTION. Let SE = (K, E ,D) be a symmetric key encryp-
tion scheme. To define authenticated encryption [9], we give a combined definition
of privacy and authenticity following Rogaway and Shrimpton [67]. Let A be an adver-
sary. For every k ∈ N, the experiments in Fig. 1 define the AE game. Define the AE-
advantage of A against SE as

Advae
SE,A(k) =

∣
∣Pr

[
AEA,1

SE (k) ⇒ 1
]

− Pr
[
AEA,0

SE (k) ⇒ 1
]∣
∣ .

We say that SE is AE-secure ifAdvae
SE,A(k) is negligible in k for all PPT A.

PUBLIC-KEY ENCRYPTION. A public-key encryption scheme PKE is a tuple of algo-
rithms (Kg,Enc,Dec), with message space Msg and coin space Coins. The key-
generation algorithm Kg on input 1k outputs a public key pk and matching secret
key sk . The encryption algorithm Enc on inputs pk and a message m ∈ Msg(1k)
outputs a ciphertext c. The deterministic decryption algorithm Dec on inputs sk and
ciphertext c outputs a message m or ⊥. We require that for all (pk , sk) ∈ [Kg(1k)]
and all m ∈ Msg(1k), Dec(sk , (Enc(pk ,m)) = m with probability 1. When multiple
primitives are being used, algorithms of PKE will be denoted PKE.Kg, PKE.Enc, etc.
to avoid confusion.

PRIVACY OF PUBLIC-KEY ENCRYPTION [45,66]. Let PKE = (Kg,Enc,Dec) be a
public key encryption scheme and let A = (A1, A2) be an adversary. Let M be a PPT
algorithm that takes inputs 1k and a public key pk to return a message m ∈ Msg(1k).
For all k ∈ N and ATK ∈ {CPA, CCA1, CCA2}, the experiment in Fig. 2 (left) defines
the IND-ATK security game. The ind-atk advantage of A against PKE is defined as

Advind-atk
PKE,A (k) = 2 · Pr

[
IND-ATKA

PKE(k) ⇒ 1
] − 1 .
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Game IND-ATKA
PKE(k)

b ←$ {0, 1} ; (pk , sk) ←$ Kg(1k)
(st, m0, m1) ←$ A

O1(·)
1 (1k, pk)

c ←$ Enc(pk , mb)
b′ ←$ A

O2(·)
2 (st, pk , c)

Return (b = b′)

Game OW-PCAA
PKE(k)

(pk , sk) ←$ Kg(1k)
m ←$ Msg(1k) ; r ←$ Coins(1k)
c ← Enc(pk , m; r)
m′ ←$ APCOsk (·,·)(pk , c)
If m = m′ then return 1
Else return 0

Fig. 2. Games to define IND-ATK (left) and OW-PCA (right) security for public-key encryp-
tion.

If atk = cpa, then O1(·) = ε and O2(·) = ε. In this case, we say PKE is secure against
chosen-plaintext attack (IND-CPA) if Advind-cpa

PKE,A (k) is negligible in k for all PPT A.
Similarly, if atk = cca1, then O1(·) = Dec(sk , ·), and O2(·) = ε; if atk = cca2,
then O1(·) = Dec(sk , ·), and O2(·) = Dec(sk , ·). In the case of cca2, A2 is not
allowed to ask O2 to decrypt c. We say that PKE is secure against non-adaptive
chosen-ciphertext attack or IND-CCA1 (resp. adaptive chosen-ciphertext attack or
IND-CCA2), if Advind-cca1

PKE,A (k) (resp. Advind-cca2
PKE,A (k)) is negligible in k for all PPT

A.

ONE-WAYNESS UNDER PLAINTEXT CHECKING ATTACK. Let PKE = (Kg,Enc,Dec)
be a public key encryption scheme. For every k ∈ N, the experiment in Fig. 2 (right)
defines the OW-PCA security game. We say PKE is OW-PCA secure if for any PPT
adversary A

Advow-pca
PKE,A (k) = Pr

[
OW-PCAA

PKE(k) ⇒ 1
]

,

is negligible in k. Here PCOsk (·, ·) is the plaintext-checking oracle that on input (c,m)
outputs 1 iff Dec(sk , c) = m. We say that PKE is sub-exponentially OW-PCA if for
every PPT A we have Advow-pca

PKE,A (k) = O(2−kα

) for a constant 0 ≤ α ≤ 1.

2.3 Trapdoor Permutations and Their Security

TRAPDOOR PERMUTATIONS. A trapdoor permutation (TDP) family with domain
T.Dom is a tuple of algorithms F = (Kg,Eval, Inv). Algorithm Kg on input 1k out-
puts a pair (F, F−1), where F : T.Dom(k) → T.Dom(k). Algorithm Eval on inputs a
function F and x ∈ T.Dom(k) outputs y ∈ T.Dom(k). We often write F (x) instead
of Eval(F, x). Algorithm Inv on inputs a function F−1 and y ∈ T.Dom(k) outputs
x ∈ T.Dom(k). We often write F−1(y) instead of Inv(F−1, y). We require that for any
(F, F−1) ∈ [Kg(1k)] and any x ∈ T.Dom(k), F−1(F (x)) = x.

ONE-WAYNESS. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain T.Dom. We say F is one-way if for every PPT inverter I

Advowf
F,I(k) = Pr

(F,F −1) ←$ Kg(1k)
x ←$ T.Dom(k)

[
x′ ← I(F, F (x))

x′ = x

]
≤ negl(k) .
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PARTIAL ONE-WAYNESS [38]. Let F = (Kg,Eval, Inv) be a trapdoor permutation fam-
ily with domain T.Dom. We say F is (μ, μ + ζ)-partial one way ((μ, μ + ζ)-POW) if
for every PPT inverter I

Advpow
F,I (k) = Pr

(F,F −1) ←$ Kg(1k)
x ←$ T.Dom(k)

[
x′ ← I(F , F (x))

x′ = x|μ+ζ
μ

]
≤ negl(k) .

We additionally say that F is sub-exponentially (μ, μ+ ζ)-POW if for all PPT inverters
I and all k ∈ N, there exists some constant 0 < α < 1 such that the advantage of I
is bounded by O(2−kα

). Fujisaki et al. [38] show that in the case of RSA one-wayness
implies partial one-wayness.

2.4 Algebraic Properties of RSA

We recall algebraic properties of RSA that hold in the low-exponent regime for appro-
priate parameters. For generality of our results, we state them for abstract TDPs. We
adapt them from Cao et al. [29].

SECOND-INPUT EXTRACTABILITY. Informally, a TDP is SIE if there is an efficient
extractor that given a TDP function F , an image F (x), and some portion of the preim-
age, can return the entire preimage. Formally: Let F = (Kg,Eval, Inv) be a trapdoor
permutation family with domain {0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-
second-input-extractable ((i, j)-SIE) if there exists an efficient extractor E such that
for every k ∈ N, every F ∈ [Kg(1k)], and every x ∈ {0, 1}n, extractor E on inputs
F, F (x), x|ji+1 outputs x. We often write ζ-SIE instead of (n − ζ, n)-SIE.

COMMON-INPUTS EXTRACTABILITY. Informally, a TDP is CIE if there is an effi-
cient extractor that on inputs an instance of the TDP family F , two image points
F (x1), F (x2), returns the preimages x1, x2 if a run of bits of both preimages are equal.
Formally: Let F = (Kg,Eval, Inv) be a trapdoor permutation family with domain
T.Dom. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-common-input-extractable ((i, j)-CIE)
if there exists an efficient extractor E such that for every k ∈ N, every F ∈ [Kg(1k)],
and every x1, x2 ∈ T.Dom, extractor E on inputs F, F (x1), F (x2) outputs (x1, x2) if
x1|ji+1 = x2|ji+1. We often write ζ-CIE instead of (n − ζ, n)-CIE.

PARAMETERS. Barthe et al. [4] show via the univariate Coppersmith algorithm [31]
that RSA is ζ-SIE and ζ-CIE for sufficiently large ζ. Specifically, they show RSA is
ζ1-SIE for ζ1 > n(e − 1)/e, and ζ2-CIE for ζ2 > n(e2 − 1)/e2. Cao et al. [29]
show a generalization to runs of arbitrary consecutive bits using the (heuristic) bivariate
Coppersmith algorithm [17,31,32]. Specifically, they show that RSA is (i, j)-SIE for
(j − i) > n(e−1)/e, and (i, j)-CIE for (j − i) > n(e2 −1)/e2, assuming the bivariate
Coppersmith algorithm is efficient. Although its efficiency is heuristic, it works well in
practice [16,20,35,57].

2.5 Function Families and Associated Security Notions

FUNCTION FAMILIES. A function family with domain F.Dom and range F.Rng is a
tuple of algorithms F = (KF , F ) that work as follows. Algorithm KF on input a unary
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encoding of the security parameter 1k outputs a key KF . Deterministic algorithm F on
inputs KF and x ∈ F.Dom(k) outputs y ∈ F.Rng(k). We alternatively write F as a
function F : KF × F.Dom → F.Rng.

ONE-WAYNESS EXTRACTORS. LetF : KF ×F.Dom → F.Rng be a function family.We
say F is a one-wayness extractor [52] if for any PPT adversary A and any unpredictable
distribution D we have

Advcdist
F,A,D = | Pr [A(KF , z, F (KF , x)) = 1 ] − Pr [A(KF , z, R) = 1 ] | ,

is negligible in k, where KF ←$ KF (1k), (z, x) ←$ Dk, and R ←$ F.Rng(k).
We additionally say that F is a sub-exponential one-wayness extractor if for any

PPT adversary A, any sub-exponentially unpredictable distribution D and all k ∈ N,
there exists some constant 0 < α < 1 such that the advantage of A is bounded by
O(2−kα

).
We explain how to build a sub-exponential one-wayness extractor, which is essen-

tially a sub-exponentially secure universal hardcore function. The construction due to
Bellare et al. [13] from diO + PPRFs has polynomial output length as desired. The form
of diO needed has short auxiliary input, evading impossibility results of [42]. Moreover,
the construction is sub-exponentially secure if the underlying primitives are also. It is
not clear how to make an alternative construction from ELFs [72] sub-exponentially
secure. However, it suffices for public-key-independent messages in our results.

2.6 The OAEP Transform

PADDING SCHEME. We define a general notion of a padding scheme following [11,
61]. For ν, ρ, μ ∈ N, the associated padding scheme is a triple of algorithms PAD =
(Π,PAD,PAD−1) defined as follows. Algorithm Π on input 1k outputs a pair (π, π̂)
where π : {0, 1}μ+ρ → {0, 1}ν and π̂ : {0, 1}ν → {0, 1}μ ∪ {⊥} such that π is
injective and for all m ∈ {0, 1}μ and r ∈ {0, 1}ρ we have π̂(π(m‖r)) = m. Algorithm
PAD on inputs π and m ∈ {0, 1}μ outputs y ∈ {0, 1}ν . Algorithm PAD−1 on inputs a
mapping π̂ and y ∈ {0, 1}ν outputs m ∈ {0, 1}μ or ⊥.

PADDING-BASED ENCRYPTION. Let PAD be a padding transform from domain
{0, 1}μ+ρ to range {0, 1}ν . Let F be a TDP with domain {0, 1}ν . The associated
padding-based encryption scheme is a triple of algorithms PAD[F ] = (Kg,Enc,Dec)
defined in Fig. 3.

Kg(1k)
(π, π̂) ←$ Π

(F, F −1) ←$ Kg(1k)
pk ← (π, F )
sk ← (π̂, F −1)
Return (pk , sk)

Enc(pk , m||r)
(π, F ) ← pk

y ← π(m||r)
c ← F (y)
Return c

Dec(sk , c)
(π̂, F −1) ← sk

y ← F −1(c)
m ← π̂(y)
Return m

Fig. 3. Padding based encryption scheme PAD[F ] = (Kg,Enc,Dec).
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Algorithm OAEP(KG,KH )(m‖r)
s ← (m‖0ζ)⊕ G(KG, r)
t ← r ⊕ H(KH , s)
x ← s‖t

Return x

Algorithm OAEP−1
(KG,KH )(x)

s‖t ← x ; r ← t ⊕ H(KH , s)
m′ ← s ⊕ G(KG, r)
If m′|ζ = 0ζ then return m′|μ
Return ⊥

Fig. 4. OAEP padding scheme OAEP[G,H].

OAEP PADDING SCHEME. We recall the OAEP padding scheme [11]. Let message
length μ, randomness length ρ, and redundancy length ζ be integer parameters, and
ν = μ+ ρ+ ζ. Let G : KG ×{0, 1}ρ → {0, 1}μ+ζ and H : KH ×{0, 1}μ+ζ → {0, 1}ρ

be function families. The associated OAEP padding scheme is a triple of algorithms
OAEP[G,H] = (KOAEP,OAEP,OAEP−1) defined as follows. On input 1k, KOAEP

returns (KG,KH) where KG ←$ KG(1k) and KH ←$ KH(1k), and OAEP,OAEP−1

are as defined in Fig. 4.

OAEP ENCRYPTION SCHEME. As in Fig. 3, we denote by OAEP[G,H,F ] =
(OAEP.Kg,OAEP.Enc,OAEP.Dec) the OAEP-based encryption scheme F-OAEP
with n = ν. We typically think of F as RSA, and all our results apply to this case
under suitable assumptions.

2.7 The Fujisaki-Okamoto Transform

The Fujisaki-Okamoto (FO) transformation [36,37] is a technique to convert weak
public-key encryption schemes into strong ones which resist chosen-ciphertext attack
(i.e., are IND-CCA2 secure). Let SE = (K, E ,D) be a private-key encryption scheme
and let PKE = (Kg,Enc,Dec) be a public-key encryption scheme. Assume K(1k)
outputs a key K ∈ {0, 1}k and PKE.Coins ⊆ PKE.Msg. Moreover, let H : KH ×
H.Dom → H.Rng and G : KG × PKE.Coins → {0, 1}k be hash function families. The
FO transform FO[H,G,PKE,SE] = (FO.Kg,FO.Enc,FO.Dec) is defined in Fig. 5.

FO.Kg(1k)
(pk′, sk′) ←$ PKE.Kg(1k)
KH ←$ KH(1k)
KG ←$ KG(1k)
pk ← (pk′, KH , KG)
sk ← (sk′, KH , KG)
Return (pk , sk)

FO.Enc(pk , m; r)
(pk′, KH , KG) ← pk

y ← H(KH , r)
c1 ← PKE.Enc(pk′, r; y)
K ← G(KG, r)
c2 ←$ E sy

K(m)
c ← (c1, c2)
Return c

FO.Dec(sk , c)
(sk′, KH , KG) ← sk

r ← PKE.Dec(sk′, c1)
If r = ⊥ then return ⊥
c′
1 ← PKE.Enc(pk ′, r;H(KH , r))
If c′

1 �= c1 then return ⊥
K ← G(KG, r)
m ← Dsy

K(c2)
Return m

Fig. 5. FO transform FO[H,G,PKE, SE] = (FO.Kg,FO.Enc,FO.Dec).
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2.8 Program Obfuscation

Here we present three different types of obfuscation used in this paper. We start by
recalling the definition of indistinguishability obfuscation from [3,41].

INDISTINGUISHABILITY OBFUSCATION. A PPT algorithm iO is called an indistin-
guishability obfuscator for a circuit ensemble C = {Ck}k∈N if the following conditions
hold:

– Correctness: For all security parameters k ∈ N, for all C ∈ Ck, and for all inputs
x, we have that

Pr
[
C ′(x) = C(x) : C ′ ←$ iO(1k, C)

]
= 1 .

– Security: For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈ Ck such
that |C0| = |C1| and C0(x) = C1(x) on all inputs x, we have that

Advio
iO,D,C(k) = | Pr

[
D(1k, iO(1k, C0)) = 1

] − Pr
[
D(1k, iO(1k, C1)) = 1

] |
≤ negl(k) .

One can also represent security as a game that picks a random bit b and gives the
adversary, who can make exactly one query, oracle access to iO(LR(·, ·, b)). Both cir-
cuits in the query must be the same size and functionally equivalent.

We additionally say that iO is a sub-exponentially indistinguishability obfuscator
for a circuit ensemble C = {Ck}k∈N if for every PPT distinguisher D, for all k ∈ N and
for all pairs of functionally equivalent circuits C0, C1 ∈ Ck, there exists some constant
0 < α < 1 such that the advantage of D is bounded by O(2−kα

).
We now formalize the definition of unpredictable distributions which are used to

define obfuscators for point functions.

COMPUTATIONALLY UNPREDICTABLE DISTRIBUTION. We call distribution ensemble
D = {Dk = (Zk,Xk)}k∈N, on tuples of strings, computationally unpredictable (cup)
if for every PPT algorithm A, we have

Pr
[
A(1k, z) ⇒ x : (z, x) ←$ Dk

] ≤ negl(k) .

We call it sub-exponentially unpredictable if there exists some constant 0 < α < 1 such
that the above probability is bounded by O(2−kα

).

STATISTICALLY UNPREDICTABLE DISTRIBUTIONS. We call distribution ensemble
D = {Dk = (Zk,Xk)}k∈N, on tuples of strings, statistically unpredictable (sup) if
for every (even unbounded) algorithm A, we have that

Pr
[
A(1k, z) ⇒ x : (z, x) ←$ Dk

] ≤ negl(k) .

POINT OBFUSCATION WITH AUXILIARY INFORMATION. Although indistinguishabil-
ity obfuscation applies to general circuits, we can also study obfuscation schemes for
particular classes of functions, such as point functions. A point function px for some
value x is defined as follows: px(x̃) = 1 iff x̃ = x and equals ⊥ otherwise.
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We now give the definition of point function obfuscation following [15]. A PPT
algorithm AIPO is a point function obfuscator for the class of distributions D = {Dk =
(Zk,Xk)}k∈N, where Xk is the input point distribution and Zk is the auxiliary infor-
mation distribution, if the following conditions hold:

– Correctness: For all security parameters k ∈ N, for all (z, x) ←$ Dk, AIPO on
input x outputs a polynomial-size circuit px that returns 1 on x and ⊥ everywhere
else.

– Security: To distinguisher A we associate the experiment in Fig. 6, for every k ∈ N.
We require that for every PPT distinguisher A

Advaipo
AIPO,A,D(k) = 2 · Pr

[
AIPOD,A

AIPO(k) ⇒ 1
]

− 1 ≤ negl(k) .

SUB-EXPONENTIAL SECURITY. We additionally say AIPO is a sub-exponentially
secure point obfuscator if for any sub-exponentially unpredictable distribution ensem-
ble {Dk = (Zk,Xk)}k∈N there exists some constant α > 0 such that for every PPT A,
and for all k ∈ N, the advantage of every PPT adversary A is bounded by O(2−kα

).

AUXILIARY-INPUT POINT OBFUSCATION WITH MULTI-BIT OUTPUT. A multi-bit
point function px,y is similar to a regular point function px in that ⊥ is returned for
all inputs x′ = x. But unlike px, which just returns a single bit 1 input x, px,y returns
the multi-bit string y.

A PPT algorithm MB-AIPO is a multi-bit point obfuscator for the distribution
ensemble D = {Dk = (Zk,Xk, Yk)}k∈N, on triples of strings, if the following condi-
tions hold:

– Correctness: For all security parameters k ∈ N, for all (z, x, y) ←$ Dk, MB-AIPO
on input x, y outputs a polynomial-size circuit that returns y on x and ⊥ on all other
inputs.

– Security: To distinguisherA, we associate the experiment in Fig. 6, for every k ∈ N.
We require that for every PPT distinguisher A,

Advmb-aipo
MB-AIPO,A,D(k) = 2 · Pr

[
MB-AIPOD,A

MB-AIPO(k) ⇒ 1
]

− 1 ≤ negl(k) .

Game AIPOD,A
AIPO(k)

b ←$ {0, 1} ; (z, x0) ←$ Dk

x1 ←$ {0, 1}|x0|

p ←$ AIPO(xb)
b′ ←$ A(1k, z, p)
Return (b = b′)

Game MB-AIPOD,A
MB-AIPO(k)

b ←$ {0, 1} ; (z, x, y0) ←$ Dk

y1 ←$ {0, 1}|y0|

p ←$ MB-AIPO(x, yb)
b′ ←$ A(1k, z, p)
Return (b = b′)

Fig. 6. Games to define AIPO (left) and MB-AIPO (right) security.
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Game PRF-DISTA
PRF(k)

b ←$ {0, 1} ; (S, st) ←$ A1(1k)
K ←$ PRF.Kg(1k)
KS ←$ PRF.Punct(K, S)
y0 ← PRF.Eval(K, S)
y1 ←$ PRF.Rng(k)×|S|

b′ ←$ A2(st, S, KS ,yb)
Return (b = b′)

Fig. 7. Game to define PRF-DIST security.

We omit definitions of unpredictability and sub-exponential security in the context of
MB-AIPOs since they extend naturally from their AIPO counterparts. Although we
will note that in the case of MB-AIPO the unpredictable sampling distribution has the
form D = {Dk = (Zx,Xk, Yk)}k∈N where Yk represents the multi-bit output point.
Unpredictability is defined the same way as above, in particular, the attacker is not
given the point sampled from Yk, nor are they required to predict it. MB-AIPO for
computationally unpredictable auxiliary inputs is likely impossible in general [24]. Our
choice is therefore to use statistical unpredictability or assume MB-AIPO for a specific
computationally unpredictable auxiliary input.

2.9 Puncturable PRFs

A family of puncturable pseudorandom functions (PPRFs) [21,59,68] with domain
PRF.Dom and range PRF.Rng is a tuple of algorithms PRF = (PRF.Kg,
PRF.Punct,PRF.Eval) that work as follows. Algorithm PRF.Kg on input 1k outputs
a key K. Algorithm PRF.Eval takes as inputs a key K and x ∈ PRF.Dom(k) and
outputs y ∈ PRF.Rng(k). We often write PRFK(x) instead of PRF.Eval(K,x). Addi-
tionally, there is a PPT puncturing algorithm PRF.Punct which on inputs a key K and
a polynomial-size set S ⊆ PRF.Dom(k), outputs a special, punctured key KS . We say
PRF is puncturable PRF if the following two properties hold:

– Functionality preserved under puncturing: For every PPT adversary A =
(A1, A2) such that adversary A1(1k) outputs a polynomial-size set S ⊆
PRF.Dom(k), it holds for all x ∈ PRF.Dom(k) where x /∈ S that

Pr[PRF.Eval(K,x) = PRF.Eval(KS , x) :

K ←$ PRF.Kg(1k), KS ←$ PRF.Punct(K,S)] = 1 .

– Pseudorandom at punctured points: To attacker A = (A1, A2), we associate the
experiment in Fig. 7 for every k ∈ N. We require that for every PPT adversary
A = (A1, A2),

Advpprf
PRF,A(k) = 2 · Pr

[
PRF-DISTA

PRF(k) ⇒ 1
] − 1 ≤ negl(k) .

The works [21,59,68] construct PPRFs from one-way functions.
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2.10 Extremely Lossy Functions

A family of extremely lossy functions (ELFs) ELF with domain ELF.Dom and range
ELF.Rng is a tuple of algorithms ELF = (ELF.IKg,ELF.LKg, ELF.Eval) that work
as follows. Algorithm ELF.IKg on input 1k outputs the description of a function
f : ELF.Dom(k) → ELF.Rng(k). Algorithm ELF.LKg on inputs 1k and polynomial
r outputs the description of a function f : ELF.Dom(k) → ELF.Rng(k). Algorithm
ELF.Eval on inputs a function f and x ∈ ELF.Dom(k) outputs y ∈ ELF.Rng(k). We
often write f(x) instead of ELF.Eval(f, x). An ELF has the following properties:

– Correctness: For f output by (1k), the function f is injective.
– Key-indistinguishability: For any polynomial p and inverse polynomial function δ,
there is a polynomial q such that, for any adversary A running in time at most p, and
any r ≥ q, we have that

– Lossiness: for all polynomials r, over f ←$ ELF.LKg(1k, r) the function f has
image of at most r.

– Efficiently enumerable image: For any polynomial r, let f be an out-
put of ELF.LKg(1k, r). Then on inputs f, r and in time poly(|ELF.Dom|, r),
f([ELF.Dom]) can be output.

Zhandry gives a construction from the exponential DDH assumption.

3 Low-Exponent RSA-OAEP Instantiation

In this section, we show low-exponent (e.g., e = 3) RSA-OAEP is fully instantiable
using its algebraic properties described in Sect. 2.4. We leave the instantiability of high-
exponent RSA-OAEP for future work.

ELF′.IKg(1k)
f ←$ ELF.IKg(1k)
K ←$ KPI(1k)
Return (K, f)

ELF′.LKg(1k, r)
f ←$ ELF.LKg(1k, r)
K ←$ KPI(1k)
Return (K, f)

ELF′.Eval(K, f, x)
y ← ELF.Eval(f, x)
Return PRG(PIK(y))

Fig. 8.Augmented ELF construction ELF′[PRG,PI,ELF] = (ELF′.IKg,ELF′.LKg,ELF′.Eval).

Procedure KG(1k)
K ←$ PRF.Kg(1k)
f ←$ ELF.IKg(1k)
KG ←$ iO(pad(s(k), f(PRFK(·))))
Return KG

Procedure G(KG, x)
CG ←$ KG(1k)
Return CG(x)

Fig. 9. The hash function family G.
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3.1 Augmented ELFs

For convenience, we define a notion of augmented ELFs to make the evaluation of
the ELF in injective mode on a uniform input to be uniform on an appropriate binary
range. We will need this below. The idea is to compose the ELF, f , with a pairwise-
independent hash and pseudorandom generator, i.e. PRG(PIK(f(·))). Namely, let
ELF = (ELF.IKg,ELF.LKg,ELF.Eval) be an ELF, PI : KPI × {0, 1}n → {0, 1}m

be a function family such that m ≤ |ELF.Dom| − 2 log(1/ε) + 1 for negligible ε,
and PRG : {0, 1}m → {0, 1}r be a function. Define the associated augmented ELF
ELF′[PRG,PI,ELF] = (ELF′.IKg,ELF′.LKg,ELF′.Eval) as in Fig. 8.

Proposition 1. Suppose ELF is a secure ELF, PI is pairwise-independent hash, and
PRG is a secure PRG. Then the associated augmented ELF ELF′[PRG,PI,ELF], as
defined in Fig. 8, is such that the output of the following experiment is computationally
indistinguishable from (f ′, z) where z ∈ {0, 1}r is independent and uniform:

f ′ ←$ ELF′.IKg(1k) ; x ←$ ELF.Dom(x) ; Return (f ′, f ′(x)) .

This follows by first applying the Leftover Hash Lemma [47] and then the security of
the PRG.

3.2 The Result

We will need MB-AIPO for the following distribution ensemble. We suggest using our
new RSA-based construction in the full version of Sect. 5; in particular, this RSA-based
obfuscator “plays well” with the auxiliary input in this case. Define the distribution
ensemble DOAEP = {DOAEP

k }k∈N be as follows:

Distribution DOAEP
k

r∗ ←$ {0, 1}ρ ; z∗ ←$ {0, 1}μ+ζ

KH ←$ KH(1k) ; (F, F−1) ←$ Kg(1k)
m ←$ {0, 1}μ

s∗ ← z∗ ⊕ (m‖0ζ) ; y∗ ← H(KH , s∗)
t∗ ← r∗ ⊕ y∗ ; c∗ ← F (s∗‖t∗)
L ← (c∗,KH , F,m)
Return(L, r∗, z∗)
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OAEP.Kg(1k)
KG ←$ KG(1k)
KH ←$ KH(1k)
(F, F −1) ←$ Kg(1k)
pk ← (F, KG, KH)
sk ← (F −1, KG, KH)
Return (pk, sk)

OAEP.Enc(pk, m)
(F, KG, KH) ← pk

r ←$ {0, 1}ρ

z ← G(KG, r)
s ← z ⊕ (m‖0ζ)
t ← r ⊕ H(KH , s)
c ← F (s‖t)
Return c

OAEP.Dec(sk, c)
(F −1, KG, KH) ← sk

s‖t ← F −1(c)
r ← t ⊕ H(KH , s)
m′ ← s ⊕ G(KG, r)
If m′|ζ = 0ζ then return m′|μ
Return ⊥

Fig. 10. OAEP[G,H,F ] = (OAEP.Kg,OAEP.Enc,OAEP.Dec) where G is defined in Fig. 9.

Theorem 1. Let n, μ, ζ, ρ be integer parameters. Let F be a family of trapdoor per-
mutations with domain {0, 1}n, where n = μ + ζ + ρ. Assume F is sub-exponentially
OW, (μ, μ + ζ)-SIE, and (μ, μ + ζ)-CIE. Assume ELF is a secure augmented ELF with
ELF.Rng = {0, 1}μ+ζ , PRF is a secure puncturable PRF with PRF.Dom = {0, 1}ρ

, iO is a sub-exponentially secure iO for P/poly, and sub-exponential MB-AIPO for
the distribution ensemble DOAEP exists. Let G : KG × {0, 1}ρ → {0, 1}μ+ζ and
H : KH × {0, 1}μ+ζ → {0, 1}ρ be hash function families, where G is in Fig. 93

and H is a sub-exponentially secure one-wayness extractor. Then OAEP[G,H,F ] =
(OAEP.Kg,OAEP.Enc,OAEP.Dec), as defined in Fig. 10, is IND-CCA2 secure.

The full proof can be found in the full version of the paper; below we present a proof
sketch. At a high-level, the idea is to change ELF to lossy mode so that a simulator
can answer decryption queries by exhaustively searching the lossy image and using
algebraic properties of RSA.

Game G1: This is the standard IND-CCA2 security game, shown in Fig. 11. G is com-
puted by the circuit C1[K, f ] = f(PRFK(·)) where f is in injective mode and the PRF
key K is not punctured. Note that in G1, z∗ = G(KG, r∗).

Game G2: The PRF key K is replaced with a key K∗ which is punctured at r∗ and the
circuit C1 is switched to C2. C2 depends on an MB-AIPO of the point function pr∗,z∗ so
that on inputs not equal to r∗, f(PRFK∗(·)) is evaluated and on input r∗, the obfuscated
point function pr∗,z∗ is evaluated (and pr∗,z∗(r∗) = z∗). The input-output behavior of
the circuits in G1 and G2 are identical and they are the same size (using padding), only
their descriptions differ. Since the adversary gets obfuscated versions of these circuits,
games G1 and G2 are indistinguishable by the security of iO.

Game G3: Previously, z∗ was given by f(PRFK(r∗)). In G3, r∗ is defined as f(x∗)
where x∗ is sampled randomly from the PRF range. This change is indistinguishable
by the pseudorandomness at punctured points of the puncturable PRF.

3 Here the function pad(·.·) pads the circuit specified by the second argument to the length
specified by the first argument. Here we implicitly set s(k) to what is needed in the proof;
cf. [24].
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Game G1(k)
b ←$ {0, 1} ; K ←$ PRF.Kg(1k)
r∗ ←$ {0, 1}ρ ; f ←$ ELF.IKg(1k)
x∗ ← PRFK(r∗) ; z∗ ← f(x∗)
KG ←$ iO(pad(C1[K, f ]))
KH ←$ KH(1k) ; (F, F −1) ←$ Kg(1k)
pk ← (F, KH , KG) ; sk ← (F −1, KH , KG)
(st, m0, m1) ←$ A

Dec(·)
1 (1k, pk)

s∗ ← z∗ ⊕ (mb‖0ζ) ; y∗ ← H(KH , s∗)
t∗ ← r∗ ⊕ y∗ ; c∗ ← F (s∗‖t∗)
b′ ←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Fig. 11. IND-CCA2 security game for OAEP with adversary A = (A1, A2).

Game G4: In G3 we had z∗ = f(x∗), where x∗ was random. In this game, z∗ is
changed to a randomly sampled string from the range of G. This game is indistinguish-
able from the previous because f is a secure augmented ELF.

Game G5: The circuit C2 now uses the un-punctured PRF key K instead of K∗, the
key punctured at r∗. Like the transition to G2, this update to C2 does not change its
input-output behavior and is therefore undetected due to iO security.

Game G6: By considering the running time of the IND-CCA adversary A, the ELF is
switched to lossy mode. This reduces the range of f(PRFK(·)) to polynomial size. This
game also updates A1’s decryption oracle to include a “bad” flag which is silently set to
true ifA1 makes a decryption query c = F (s‖(r⊕H(KH , s))), where s = z⊕(m‖0ζ),
in which the last ζ bits of z are equal to the last ζ bits of z∗. So the bad flag condition
can be written as z|ζ = z∗|ζ .

This flag does not change the input-output behavior of the decryption oracle. Thus
to bound the probability the switch from G5 to G6 is detected, we only need to invoke
indistinguishability of the ELF injective and lossy modes.

Game G7: We further update A1’s decryption oracle to return ⊥ if the bad flag intro-
duced in G6 is true. Hence G6 and G7 follow the “identical-until-bad” of [12], allowing
the game transition to be bounded by the probability bad is set.

Let us consider what it means for bad to be set to true. As stated in G6, this occurs
when A1 queries their decryption oracle with a ciphertext c = F (s‖(r ⊕ H(KH , s))),
where s = z ⊕ (m‖0ζ), such that z|ζ = z∗|ζ . A1 gets as input the function F , the hash
keys KH and KG. At this point, KG is the circuit described in G3 under iO. The last
ζ bits of z∗ are encoded in this circuit as the last ζ bits of the MB-AIPO output point
(since the output point is z∗). Hence the only wayA1 can obtain z∗ (with non-negligible
probability) is by breaking MB-AIPO security. So, the security of the MB-AIPO is used
to bound the probability the switch from G6 to G7 is detected.
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Game G8: In this game both A1 and A2’s decryption oracles are changed to decrypt
using only the public key (F,KH ,KG) and no secret keys. These decryption oracles
have the same input-output behavior as the oracles in G7, and hence their change is
undetectable to the adversary. Decryption without the private key is achieved by exploit-
ing three properties: the polynomial-sized ELF range, second-input extractability (SIE),
common-inputs extractability (CIE), which are algebraic properties of RSA defined by
Barthe et al. [4] that hold due to the Coppersmith algorithm [31]; we actually use gen-
eralizations due to Cao et al. [29] that hold due to the bivariate Coppersmith algo-
rithm [17,31,32].

First, note the polynomial ELF range allows z = f(PRFK(r)) to be found via
exhaustive search instead of by using F−1, unless z = z∗, the challenge point. In G7,
all valid ciphertexts were decrypted by A1’s oracles except for those with z|ζ = z∗|ζ .
In G8, with overwhelming probability, z∗ will not be in the lossy ELF range and hence
will not be found through exhaustively searching the range. So ifA1 makes a decryption
query in G8 that cannot be decrypted using exhaustive search, ⊥ is returned. But if A2

makes a valid query c in G7 with z|ζ = z∗|ζ , then their decryption oracle will decrypt.
So to achieve this behavior inG8 we run a CIE extractor on inputs F, c, c∗. The extractor
returns s‖t and s∗‖t∗ if z|ζ = z∗|ζ and ⊥ otherwise. If ⊥ is returned then the query was
not a valid ciphertext and ⊥ is returned by the oracle. If s‖t is returned then decryption
can be completed using the hash keys.

Game G9: In this final game the MB-AIPO output point in the circuit C2 is switched
from z∗ to random z (while z∗ is still used in the formation of s∗). Since z is the MB-
AIPO output point and z∗ was the output point in G8, the security of MB-AIPO is used
to bound the probability the adversary detects this transition.

A2’s challenge ciphertext is c∗ = F (s∗‖(r∗ ⊕ H(KH , s∗))) where s∗ = z∗ ⊕ (mb

‖0ζ). At this point, z∗ is randomly sampled and is independent of r∗. Moreover, KG

given to A is independent of z∗. So mb is hidden in c∗ by z∗ acting as a one-time-pad.
So the challenge bit b is hidden and hence c∗ looks random to A2, concluding the proof
sketch.

4 Fujisaki-Okamoto Instantiation

Inspired by Hofheinz, Hövelmanns, and Kiltz [49], we take a modular approach to
instantiating FO. Our main contribution is to instantiate the part of the PKE transform
from OW-PCA to IND-CCA. Here we need to assume the SE is information-theoretic
and leakage-resilient AE. Then we observe how to instantiate a transform from OW-
CPA to OW-PCA based on prior work assuming the PKE is lossy. Composing these
transforms provides an instantiation of FO under the foregoing assumptions. As a point
of comparison, Matsuda and Hanaoka [62] also construct IND-CCA encryption from
lossy encryption, but their construction follows a different blueprint than FO.
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4.1 Cryptography with Adaptive Auxiliary Input

We define primitives in a setting where the adversary gets auxiliary information depend-
ing on the secrets. Such a setting was considered by Dodis et al. [33]. We further extend
it to consider what we call adaptive auxiliary input, where the adversary is given an
oracle that depends on the secrets.

ADAPTIVE DISTRIBUTION ENSEMBLES. An adaptive distribution ensemble is a pair
(O,D) where O is an oracle and D = {Dk = (Zk,Xk)}k∈N is a distribution ensem-
ble. We call (O,D) adaptive computationally unpredictable (acup) if for every PPT
algorithm A,

Pr
[
AO(z,x,·)(1k, z) ⇒ x : (z, x) ←$ Dk

]
≤ negl(k) .

We call it sub-exponentially unpredictable if there exists some constant 0 < α < 1 such
that the above probability is bounded by O(2−kα

). Adaptive statistically unpredictable
(asup) is defined similarly.

AE WITH ADAPTIVE AUXILIARY INPUT. Let SE = (K, E ,D) be a private-key encryp-
tion scheme and let A be an adversary. Let (O,D) be an adaptive distribution ensemble
where O is an oracle and distribution ensemble D = {Dk = (Zk,Kk)}k∈N is such
that Kk is uniform on K(1k). For every k ∈ N, the experiments in Fig. 12 define the
AE-AUX game (where the code of O is elided). Define the AE-AUX advantage of A
against SE wrt. (O,D) as

Advae-aux
SE,A,O,D(k) =

∣
∣Pr

[

AE-AUXA,1
SE,O,D(k) ⇒ 1

]

− Pr
[

AE-AUXA,0
SE,O,D(k) ⇒ 1

]∣
∣ .

We say that SE is secure under AE-AUX wrt. (O,D) if Advae-aux
SE,A,O,D(k) is negligible

in k for all PPT A.

LEAKAGE-RESILIENT AE. Leakage resilience [2] corresponds to the case in which the
oracle is empty (O = ε) and D is statistically unpredictable. We are not aware if such a
definition has appeared in the literature before. Leakage-resilient AE has been studied,
e.g., by Bartwell et al. [5], but they use the weaker “only computation leaks” paradigm
of Micali and Reyzin [63].

MB-AIPO WITH ADAPTIVE AUXILIARY INPUT. MB-AIPOs with adaptive auxiliary
input are similarly defined wrt. adaptive distribution ensembles, meaning that in the
MB-AIPO experiment (Fig. 6), A gets oracle O. We believe this to be a natural pro-
gression of the notion, capturing the intuition that if the input point is unpredictable
relative to an oracle, the MB-AIPO is secure relative to the same oracle. The notions
of acup-MB-AIPO and asup-MB-AIPO are defined naturally. Note that in this work
we only consider MB-AIPOs with adaptive auxiliary input relative to specific adaptive
distribution ensembles.
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Game AE-AUXA,1
SE,D(k)

(w, K) ←$ Dk

b′ ←$ AEK(·),VK(·),O(·)(1k, w)
Return b′

Oracle EK(m)
c ←$ EK(m)
Return c

Oracle VK(c)
m ← DK(c)
If m = ⊥ return 0
Return 1

Oracle O(w, K, ·)
. . .

Game AE-AUXA,0
SE,D(k)

(w, K) ←$ Dk

b′ ←$ A$(·),⊥(·),O(·)(1k, w)
Return b′

Oracle $(m)
c ←$ EK(m)
u ←$ {0, 1}|c|

Return u

Oracle ⊥(c)
Return 0

Oracle O(w, K, ·)
. . .

Fig. 12. Games to define AE-AUX for private-key encryption.

4.2 From OW-PCA to IND-CCA

Here we consider instantiability of the part of the Fujisaki-Okamoto (FO) transform
that upgrades OW-PCA to IND-CCA, as in Sect. 3.2.2 of [49]. In the full version, we
also consider insantiability of the part of the FO transform that upgrades OW-CPA to
OW-PCA, showing a positive result by making the stronger assumption of lossiness [8]
(compared to OW-CPA) on the base PKE scheme. In fact, we show that by assuming
lossiness of the base PKE scheme, we can also construct anMB-AIPO from ELFs (men-
tioned in Sect. 5) that is secure wrt. each of the three (adaptive) distribution ensembles
required in Theorem 2.

We slightly tweak the part of the Fujisaki-Okamoto (FO) transform that upgrades
OW-PCA to IND-CCA, as in Sect. 3.2.2 of [49]. Note that this part is not subject to
an uninstantiability result. Here we encrypt m‖r instead of m under the symmetric
encryption scheme. Our version of this part of FO, which we call FO, also differs
from the original in that the symmetric key is set to be the hash of r‖c1 (where c1
is the asymmetric ciphertext), instead of just the hash of r, which is also done in [49].
Let SE = (Ksy, E sy,Dsy) and PKE = (PKE.Kg,PKE.Enc,PKE.Dec) be private and
public-key encryption schemes, respectively. Let {0, 1}k and {0, 1}μ be the SE key-
space and message-space, respectively. Let G : KG × (PKE.Msg × PKE.Ctxt) →
{0, 1}k be the hash function family as constructed in Fig. 14. FO[G,PKE,SE] =
(FO.Kg,FO.Enc,FO.Dec) is defined in Fig. 13.
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FO.Kg(1k)
(pk′, sk′) ←$ PKE.Kg(1k)
KG ←$ KG(1k)
pk ← (pk′, KG)
sk ← (sk′, KG)
Return (pk , sk)

FO.Enc(pk , m; r)
(pk′, KG) ← pk

z ←$ PKE.Coins(1k)
c1 ← PKE.Enc(pk′, r; z)
K ← G(KG, r‖c1)
c2 ← E sy

K(m‖r)
c ← (c1, c2)
Return c

FO.Dec(sk , c)
(c1, c2) ← c ; (sk′, KG) ← sk

r ← PKE.Dec(sk′, c1)
If r = ⊥ then return ⊥
K ← G(KG, r‖c1)
m‖r′ ← Dsy

K(c2)
If r = r′ then return m

Return

Fig. 13.Modified part of FO transform FO[G,PKE, SE] = (FO.Kg,FO.Enc,FO.Dec).

Procedure KG(1k)
KPRF ←$ PRF.Kg(1k)
f ←$ ELF.IKg(1k)
KG ←$ iO(pad(s(k), f(PRFKPRF(·))))
Return KG

Procedure G(KG, x)
CG ←$ KG(1k)
Return CG(x)

Fig. 14. The hash function family G.

Theorem 2. Assume that ELF is a secure augmented ELF, PRF is a secure punc-
turable PRF and iO is a sub-exponentially secure indistinguishability obfuscator.
Assume sub-exponentially secure MB-AIPO (1) for the adaptive distribution ensem-
ble (PCOsk ′(·, ·),DFO

1 ), (2) for adaptive distribution ensemble (VK∗(·),DFO
1 ), and

(3) for the distribution D7 (Fig. 21 of the full version). Moreover, assume PKE is sub-
exponentially OW-PCA and SE is sub-exponentially secure one-time AE. Then if G is
instantiated as in Fig. 144, FO as defined in Fig. 13 is IND-CCA2 secure.

The full proof can be found in the full version of the paper; below we present a
proof sketch.

Game G1: We start with the standard IND-CCA2 security game with PPT adversary
A = (A1, A2), shown in Fig. 15, in which the hash function G is given by iO(C1[K, f ]).
Our goal in this game chain is to show that ciphertext c∗

2 = E sy
K∗(m‖r∗) looks uniformly

random to any efficient adversary given the corresponding public-key ciphertext c∗
1 and

KG. To do so, we again use our new approach, incorporating an ELF and MB-AIPO
into the technique of [25].

Game G2: First, we change C1 to C2 in a manner that does not change the input/output
behavior. The PRF key KPRF is replaced with a key K∗

PRF which is punctured at r∗‖c∗
1.

C2 depends on an MB-AIPO of the point function with input point r∗‖c∗
1 and output

point K∗. On inputs x = r∗‖c∗
1, G(KG, x) is evaluated as f(PRFK∗

PRF
(x)). On inputs

x = r∗‖c∗
1, G(KG, x) is evaluated as the MB-AIPO and hence outputs K∗. Therefore,

this game is functionally equivalent to the previous game and the circuits in G1 and G2

are indistinguishable by the security of iO.

4 Here the function pad(·.·) pads the circuit specified by the second argument to the length
specified by the first argument. We implicitly set s(k) to what is needed in the proof; cf. [24].
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Game G1(k)
KPRF ←$ PRF.Kg(1k) ; f ←$ ELF.IKg(1k)
r∗ ←$ G.Dom(k) ; z∗ ←$ PKE.Coins(1k)
(pk′, sk′) ←$ PKE.Kg(1k)
c∗
1 ← PKE.Enc(pk′, r∗; z∗)

t∗ ← PRFKPRF(r
∗‖c∗

1) ; K∗ ← f(t∗)
KG ←$ iO(pad(C1[KPRF, f ]))
pk ← (pk′, KG) ; sk ← (sk′, KG)
b ←$ {0, 1} ; (st, m0, m1) ←$ A

Dec(·)
1 (1k, pk)

c∗
2 ← E sy

K∗(mb‖r∗) ; c∗ ← (c∗
1, c

∗
2)

b′ ←$ A
Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Fig. 15. IND-CCA2 security game for FO with adversary A = (A1, A2).

Game G3: The symmetric encryption key and MB-AIPO output point is K∗, where,
previously, f(PRFKPRF

(r∗‖c∗
1)) = K∗. In the third game, K∗ becomes K∗ = f(t∗)

where t∗ is sampled uniformly at random from the PRF range. This change is indistin-
guishable by the security of the PRF at punctured points.

Game G4: Next, K∗, the symmetric encryption key and MB-AIPO output point, is
switched to random. This game is indistinguishable from the previous because f is a
secure augmented ELF.

Game G5: In this game the PRF key used in the obfuscated circuit C2 is switched
from K∗

PRF (punctured at r∗‖c∗
1) to KPRF which is unpunctured. In the previous game

when evaluated at r∗‖c∗
1, C2 would return the output of the MB-AIPO at this point,

not the ELF PRF composition. As in the transition from G2 to G3, the circuit input-
output behavior in G5 is identical to that of G4. The difference in circuit descriptions is
indistinguishable by the security property of iO.

Game G6: By considering the running time of the IND-CCA adversary A, the ELF
is switched to lossy mode, shrinking the range of f(PRFKPRF

(·)) down to polynomial
size. Previously in G5, the symmetric encryption key K∗ was sampled randomly from
the injective ELF range, so in G6 when K∗ is sampled from this same range, with
overwhelming probability this value of K∗ will not be in the image of f(PRFKPRF

(·)).
At this point we introduce three flags to the FO decryption oracle to track A’s nefar-

ious activities. In G6 these flags, bad0, bad1, and bad2, are all “silent,” meaning their
states do not affect the behavior of the oracles. Using three game transitions, we show
that the probability of each flag being set to true is negligible. Since the transitions from
Gi to Gi+1 for i ∈ {6, 7, 8} follow the “identical-until-bad{0,1,2}” model of [12], the
game transitions can be bounded by the probability bad{0,1,2} is set.

Game G7: In the first of these three transitions, A1’s decryption oracle is changed
so that it returns ⊥ when bad0 is true, which occurs when A1 makes a decryption
query c = (c1, c2) where the symmetric key computed in the decryption procedure,
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K = G(KG, r‖c1), is such that K = K∗. Recall from G6 that f is in lossy mode and
thus with high probability the only way the current hash circuit could output the key
K∗ is if the MB-AIPO input point r∗‖c∗

1 was used as input. In other words, if bad0 is
set to true, then r‖c1 = r∗‖c∗

1. Thus, the probability bad0 is set to true is bounded by
the security of MB-AIPO.

Game G8: This game continues from G7 and differs in A2’s decryption oracle, which
returns ⊥ when bad1 is set to true. This occurs when A2 makes a query c = (c1, c2)
where K = K∗ (as in G7) and c1 = c∗

1. This can only happen if K∗ is in the image
of f , which is in lossy mode. In this game K∗ is randomly sampled from the injective
ELF range and so with high probability will not be in the polynomial-sized lossy ELF
range, and hence w.h.p. bad1 will not be set to true.

Game G9: This game continues from G8 and differs in A2’s decryption oracle, which
returns ⊥ when bad2 is set to true. This occurs when A2 makes a query c = (c1, c2)
where K = K∗ (as in G7), c1 = c∗

1, c2 = c∗
2, and c2 is a valid symmetric ciphertext. If

bad2 is set to true, then A2 has found a valid symmetric ciphertext different from their
challenge (c2 = c∗

2). To set bad2, A2 must find a valid symmetric ciphertext under the
same key as the challenge key, K∗, hence we bound the probability bad2 is true with
an AE-AUX adversary.

Game G10: In this final game, the output point of the MB-AIPO in KG is switched
from the symmetric key K∗ to a uniformly random string K. The challenge ciphertext
is still formed using K∗ but the obfuscated output point in the hash circuit K is now
independent of the challenge ciphertext given to A. The probability that A detects the
transition from G9 to G10 is bounded by the security of MB-AIPO.

Now that the K∗ is uniformly random and independent of the public key, c∗
2 looks

uniformly random by virtue of the symmetric-key encryption scheme being IND-CPA
secure concluding the proof sketch.

5 New Auxiliary-Input Multi-Bit Point Function Obfuscators
and Applications

Recall that in both our OAEP and FO instantiations we need a point function obfusca-
tion with multi-bit output (MB-AIPO), for uniformly random input and output points,
that is secure wrt. certain auxiliary inputs, even though MB-AIPO is impossible in gen-
eral [24]. We first show how to obtain anMB-AIPO for statistically unpredictable inputs
(albeit only polynomially secure), as needed for our FO instantiation, from ELFs. We
then show that the MB-AIPO required for the RSA-OAEP instantiation can be built
from RSA itself under a strong yet reasonable assumption on RSA. As far as we are
aware, before our work there was only one candidate MB-AIPO, due to Bitansky and
Canetti [14].

The full section can be found in the full version of the paper.
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Abstract. We give the first constructions in the plain model of 1) non-
malleable digital lockers (Canetti and Varia, TCC 2009) and 2) robust
fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources with
entropy below 1/2 of their length. Constructions were previously only
known for both primitives assuming random oracles or a common refer-
ence string (CRS).

Along the way, we define a new primitive called a nonmalleable point
function obfuscation with associated data. The associated data is public
but protected from all tampering. We use the same paradigm to then
extend this to digital lockers. Our constructions achieve nonmalleabil-
ity over the output point by placing a CRS into the associated data and
using an appropriate non-interactive zero-knowledge proof. Tampering is
protected against the input point over low-degree polynomials and over
any tampering to the output point and associated data. Our construc-
tions achieve virtual black box security.

These constructions are then used to create robust fuzzy extractors
that can support low-entropy sources in the plain model. By using the
geometric structure of a syndrome secure sketch (Dodis et al., SIAM
Journal on Computing 2008), the adversary’s tampering function can
always be expressed as a low-degree polynomial; thus, the protection
provided by the constructed nonmalleable objects suffices.

Keywords: Point obfuscation · Digital lockers · Nonmalleability ·
Virtual black box obfuscation · Fuzzy extractors

1 Introduction

The random oracle (RO) paradigm [9] allows one to analyze cryptographic prim-
itives/protocols with an idealized random function, significantly simplifying the
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designs and analyses. Since instantiating RO with a real-life object is impossible
for the general case [23], it is important to identify useful RO properties that
are achievable under specific hard problems.

Initial Efforts – Point Obfuscation. Canetti [20] initiated a study on an
important property of random oracles called oracle hashing—or point obfusca-
tion—and realized it in the plain model. More specifically, a point function Ival
is indexed by a string val and acts as follows:

Ival(val′) =

{
1 val = val′

0 otherwise
.

An obfuscated point function should reveal nothing beyond the input/output
behavior of the function Ival(·). This security notion is called virtual black-box
(VBB) security. Constructions are known from multiple assumptions [4,20,27,46].

VBB secure obfuscation of point functions captures the idea that the output
of the RO is independent of its input, and that one can verify whether the
output (for now, up to one bit) of an RO is correctly generated from a specific
input. While VBB security is impossible for general functions [6], VBB secure
obfuscation appears possible for point functions. (Similar techniques are used to
obfuscate wildcards, conjunctions, and hyperplanes [7,12,18,24,31,39].)

Next Step – Nonmalleability. However, there are many other properties of the
RO that make it a desirable object. For example, given an RO output value on
input x, it should be infeasible to obtain another output of RO on any related
input point (e.g., x+1). Applied to our setting, this is known as nonmalleable point
obfuscation. The nonmalleability of random oracles enables many other objects
that resist active attack. For example, this work considers robust fuzzy extrac-
tors [16] as an application, which were first constructed from random oracles.

Canetti and Varia [25] defined a nonmalleable point function and realized it in
the common reference string (CRS) model. However, as one of the most valuable
properties of the RO is that no trusted setup is required, an ideal instantiation
would not require a CRS.

To tackle this, Komargodski and Yogev [44] proposed a construction of a
nonmalleable point obfuscation in the plain model.1 Prior work in plain model
point obfuscation considers a limiting tampering class of low-degree polynomials
where the degree relates to the hardness of the underlying number-theoretic
assumption.

Another Step Forward – Digital Lockers. An obfuscated point function
only outputs one bit. However, we are generally interested in the RO outputting
a random string for a given input. To emulate this functionality, a natural

1 Unfortunately, their underlying cryptographic assumption was broken by Bartusek,
Ma, and Zhandry [8]. An alternative assumption was posed in [45], but this did not
suffice to show security. Fortunately, Bartusek, Ma, and Zhandry introduced their
own assumption and accompanying construction, showing their assumption holds in
a strong variant of the generic group model [8].
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extension is the multi-bit point function, where each function Ival,key is indexed
by a pair of strings (val, key) and works as follows:

Ival,key(val′) =

{
key val = val′

⊥ otherwise
.

An obfuscation of a function of this class is called a digital locker, which is useful
in password [20] and biometric authentication [1,22].

Though we know how to build digital lockers in the plain model [21], the
only existing nonmalleable constructions require a CRS. Fenteany and Fuller [38]
achieved half of the goal, constructing a digital locker that nonmalleabile against
tampering only on val in the standard model. However, while the work [38]
pointed out a technique to additionally protect key, it required a CRS, similarly
to the original work [25]. As an ideal instantiation of RO does not require a
trusted setup, this naturally motivates our main question:

Can one build a nonmalleable digital locker in the plain model without setup?

Our Technical Contributions We answer the main question in the affirmative,
constructing a nonmalleable digital locker in the plain model. We present the
following contributions:

1. Point Obfuscation with Associated Data We define a new primitive called
a nonmalleable point obfuscator with associated data. We then instantiate this
object using group assumptions introduced by Bartusek, Ma, and Zhandry [8].

2. Creating a Multibit Output We then integrate this construction with the
real or random construction [21], yielding a nonmalleable digital locker that
prevents tampering on the input and associated data only. This step is not
black box in the point obfuscations. Instead, it is created from scratch using
similar techniques from the same group assumptions as the constructed point
obfuscation.

3. Protecting the Multibit Output By putting the CRS of a true simulation
extractable non-interactive zero-knowledge proof (NIZK) [32] into the asso-
ciated data, we can protect the output of the digital locker. Conceptually,
our new tool protects the NIZK crs, which (if intact) can be used to derive
nonmalleability for the other parts of the construction. This step is black box
from an appropriate variant of a digital locker.

In all of the above steps, the prevented tampering class for the input point, val
is low-degree polynomials, rather than the desired complete tamper resistance.
However, this class is still meaningful in many applications where a RO was
previously used.

1.1 Low Entropy Robust Fuzzy Extractors in the Plain Model

Despite a limited tampering class, our nonmalleable objects suffice to construct
the first plain model robust fuzzy extractors [16] that support sources whose
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entropy is less than half their length 1/2, a known barrier for information-
theoretically secure constructions [35]. We notice that all prior computationally
secure constructions relied on some form of a CRS, and our work shows that
this component is not required.

A fuzzy extractor is a pair of algorithms (Gen,Rep) with two properties:

Correctness. Let w,w′ be values that are close in some distance metric, and
define (key, pub) ← Gen(w). Then it is true that Rep(w′, pub) = key.

Security. The value key is computationally indistinguishable from a uniform
value given pub.

Digital lockers have been used to construct reusable fuzzy extractors, as in [50]
[1,22], i.e., one can derive multiple keys from the same entropy source. An addi-
tional desirable property is robustness [33], which prevents an adversary from
modifying pub in an attempt to force Rep to produce a different key.

Robust fuzzy extractors are notoriously difficult to construct – we show vari-
ous limitations of the prior constructions in Table 1. Dodis and Wichs [35] showed
that it is only possible information-theoretically if the entropy of w is at least
half its length. Feng and Tang [37] showed this barrier exists in the CRS model,
as well. Feng and Tang construct a robust fuzzy extractor with computational
security for entropy sources that can depend on the CRS.

We construct the first robust fuzzy extractor in the plain model that supports
entropy for w that is less than half its length. We combine our nonmalleable dig-
ital locker with a specific error-correction component, the syndrome construc-
tion [11,30,34]. The syndrome construction allows the reduction to extract a
low-degree polynomial that is consistent with the adversary’s tampering. Simi-
lar techniques were used to construct CRS model robust fuzzy extractors from
algebraic-manipulation detection codes [29]. We present a second construction
directly from the nonmalleable point function from associated data which is able
to extract a limited length key.2

To the best of our knowledge, our work and that of Cramer et al. [29] are
the only two approaches to building a robust fuzzy extractor that do not build a
robust extractor first. This is because our nonmalleable tools only prevent limited
tampering classes; both works use the secure sketch component to guarantee the
adversary’s tampering is in this low complexity class.

1.2 Technical Overview

In this section, we present an overview of our techniques. In the CRS model, non-
malleability of point functions can be achieved as [25], by using a nonmalleable
NIZK system – in addition to generating a regular C ← DL(Ival,key), one also
appends a zero-knowledge proof π to the output showing knowledge of the pair
(val, key) inside C. However, any non-trivial nonmalleable NIZK system would
require a trusted (nontamperable) CRS for security of the proof system, so the

2 We also show that a nonmalleable point function (without associated data) suffices
to construct a robust secure sketch [34].
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Table 1. Comparison of Robust Fuzzy Extractors. The CRS∗ model means that the
distribution of W can depend on the CRS, however, the CRS is still assumed not to
be modified. For a distribution W , H∞(W ) represents min-entropy (see Sect. 2) and
|W | represents its length. IT corresponds to information-theoretic security and Comp.
represents security against computationally bounded adversaries. Syn. is the syndrome
or null space of an appropriate error correcting code. The column of SS errors indicates
the error tolerance of the underlying secure sketch. This parameter is related to the
information leakage of the secure sketch. This work and prior computational works
require a secure sketch that corrects 2t errors, which leads to more leakage.

Scheme Model Security SS errors H∞(W ) < |W |/2?
[14,15] RO IT t �
[33] Plain IT t X

[29] CRS IT t X

[53–55] CRS Comp 2t �
[37] CRS∗ Comp 2t �
Syn. + NM Point Obf w/Assoc. Data Plain Comp 2t �
Syn. + NM Digital Locker Plain Comp 2t �

overall obfuscation would be (crs, C, π). Without trusted setup, an adversary
may simply replace the crs, rendering the NIZK ineffective and breaking non-
malleability. So, this trusted setup required immediately fails at achieving our
goal.

Point Obfuscation with Associated Data To achieve our goal, we formalize
a notion that blends any public string with point obfuscation in a meaningful
way, called point obfuscation with associated data. More specifically, the obfus-
cator Obf(Ival, ad) takes as input the point function Ival and an additional public
string ad (e.g., crs) and then outputs an obfuscated program C along with
ad. The output program C should be VBB secure, and ad is treated as public
information.

We formulate nonmalleability properties that treat the two inputs quite dif-
ferently. The adversary outputs (C ′, ad′, f) and wins if C ′ is consistent with the
values f(val) and ad′, and one of the following hold:

1. The function belongs to some targeted function class, i.e., f ∈ F , or
2. The function f is the identity and ad′ �= ad.

Nonmalleability requires that the adversary has only a negligible winning prob-
ability, meaning that they cannot replace ad by any other string, nor tamper val
consistently by any function in the class F .

Remark 1. It is undesirable that in the definition the adversary output their
tampering function. The desired notion is that the adversary cannot output
(C ′, ad′) that is consistent with any f . This notion is impossible to achieve in
the plain model if f contains linear shifts. Essentially, given an obfuscation of
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point x, an adversary not required to output their mauling function may simply
create an obfuscation of independent point y. It is clear that if the function
f(z) = z − x + y is in F , this would be a valid tampering, but it is impossible
to prevent without requiring the adversary shows some awareness of its specific
tampering. The definition where the adversary chooses and outputs f after seeing
C does imply that all fixed functions f are prevented [45]. See the full version
for more details [3, Appendix A].

How to Construct this Object. Before instantiating such an object, we recall
some notations and related constructions of nonmalleable point obfuscations in
prior work [8,38,44]. We note that all of these constructions rely on groups that
only efficiently admit linear operations.

Suppose that g is a generator of a prime order group whose order is p.
Throughout this paper, [x]g will be used to represent gx (called implicit nota-
tion in [36]) so as to highlight the behavior in the exponent. We treat val as
an element in Zp. Let the class of tampering functions F correspond to low
degree polynomials over Zp. Previous constructions [8] use a set of polynomial
encodings, denoted as P, and compute the following for Obf(Ival) :

1. Sample some P ← P,
2. Output P, [P (val)]g.

The intuition for security3 is twofold: 1) that P is sufficiently randomized to
argue virtual black box security [6], and that 2) for all instances of P ∈ P no
fixed affine functions of P - i.e., αP (val) + β - correspond to any P ′(f(val)) for
P ′ ∈ P and low degree polynomial f . Prior work achieves these two properties
jointly by randomizing the low degree coefficients of P and fixing some higher
powers to have a coefficient of 1. For example, Bartusek et al. [8] consider Pa(x) =
ax + x2 + x3 + x4 + x5.

Our construction builds such a function class P, parameterizing P ∈ P by
both a random a and ad, so that ad and val can be blended in a secure way. Let
ρ := |ad|. Then, we have:

Pa,ad(x) def= ax +
ρ+1∑
i=2

adix
i +

ρ+6∑
i=ρ+2

xi.

In the above, the random a corresponds to the lowest degree coefficient of P
and the bits of ad set intermediate coefficients of the polynomial P . We can
prove security using the same group assumption used in prior nonmalleable point
obfuscation works [8,38].

While the construction has a similar structure to prior work, analysis of
nonmalleability is significantly more complicated by the fact that the adversary
3 The actual constructions are more complicated to ensure correctness holds, using

other points of randomness and group elements to check correctness. These are not
used in arguing nonmalleability. For simplicity, we do not discuss correctness in this
section.
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Algorithm 1: Augmented real-or-random construction that provides non-
malleability over input point and associated data. Obf is an obfuscator and
NMObf is a nonmalleable obfuscator.

Input (val, key, ad).
Sample random z.
for each bit i of key do

if keyi = 1 then
Ci ← Obf(Ival)

else
Ci ← Obf(Iz)

end

end
Let C0 ← NMObf(Ival,ad). // To distinguish an all-zero key and provide

nonmalleability

Output C = (C0, C1, . . . , C|key|, ad).

1) knows ad, 2) can output any value for ad′, and 3) doesn’t have to explain
how ad′ arose from ad. This gives the adversary more flexibility, and proving
nonmalleability becomes a careful multi-step procedure.

To give some intuition for the algebraic structure, it is important that the
powers multiplied by the bits of ad are below the powers with coefficients 1. If
these were switched, one could apply a polynomial tampering function to x and
change the associated data to compensate for the resulting changes in the higher
powers.

Extending to the Multibit Setting. Next, we integrate the above with the
real-or-random approach of Canetti and Dakdouk [21]. The modified algorithm
is summarized in Algorithm 1.

On the technical side, this approach requires the polynomials in the group
to have more randomized powers, similar to the prior work of Fenteany and
Fuller [38]. However, unlike their work, we only use one nonmalleable point
obfuscation, the rest simply provide privacy. That is, only C0 in Algorithm 1 is
nonmalleable. As we show, this is sufficient to ensure nonmalleability over the
resultant digital locker.

Protecting the Multibit Output. The above instantiation of the real-or-
random construction prevents tampering of the input point and associated data
but provides no protection over key. Our protection of the associated data allows
us to upgrade the NIZK construction of [25] to the plain model. Our technique
protects the associated data, which is set as crs, and the security of NIZK
protects everything else, so long as crs cannot be tampered with. As we discuss
in Sect. 5.3, we are also able to use a weaker NIZK system, specifically true
simulation extractible NIZKs, which may be instantiable in pairing-free groups.
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1.3 Discussion and Open Questions

This work presents the first constructions in the plain model of nonmalleable
digital lockers and low-entropy robust fuzzy extractors. The integration of the
nonmalleable point function with associated data with the real-or-random con-
struction is technical and non-black box. Ideally, one would be able to define
some necessary condition such that general black box composition of our point
obfuscation with associated data and any other point obfuscation or digital locker
is possible. One can view our construction as evidence that our particular non-
malleable point obfuscator with associated data is safe under composition with
a specific point function.

There are known barriers to constructing digital lockers secure against auxil-
iary data that is hard to invert (such as a point function) if indistinguishability
obfuscation exists [10,19]. Security in the presence of auxiliary data is the stan-
dard method for arguing composition.

In this work, we focus on nonmalleability of digital lockers. Obfuscating wild-
cards, conjunctions, and hyperplanes use similar techniques [7,12,18,24,31,39],
so our techniques may apply. We note that some of these objects directly yield
non-robust fuzzy extractors [31,39], so it may be possible to provide robustness
by making the obfuscation nonmalleable. It seems less likely the techniques can
be used to protect obfuscation of general evasive functions [5], compute-and-
compare programs [17,43,56] and general obfuscation [2,40–42,48,49].

We generically use (true simulation extractible) NIZKs. Optimizing this con-
struction is important, since this object will likely represent the dominant com-
putational cost.

2 Preliminaries

Logarithms are base 2. Let Xi ∈ Z be random variables. We denote by X =
X1, ...,Xn the tuple (X1, . . . , Xn). For a discrete random variable X, the min-
entropy of X is H∞(X) = − log(maxx Pr[X = x]). For a pair of discrete random
variables X,Y , the average min-entropy of X|Y is

H̃∞(X|Y ) = − log
(

E
y∈Y

(
2−H∞(X|Y )

))
.

The notation id is used to denote the identity function: ∀x, id(x) = x. Capitalized
letters are used for random variables and lowercase letters for samples. Let {Dλ}
be an ensemble of sets. Two circuits, C and C ′, with inputs in Dλ are functionally
equivalent, denoted C ≡ C ′, if ∀x ∈ Dλ, C(x) = C ′(x). For a matrix A, let Ai

denote the ith row and Ai,j to denote the entry in the i row and jth column.

Definition 1. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over
Dλ, is well-spread if the function H∞(Xλ) mapping λ to non negative reals
grows faster than ω(log λ). That is, H∞(Xλ) = ω(log λ).
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Definition 2. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over
Dλ, is efficiently sampleable if exists a PPT algorithm given 1λ as input whose
output is identically distributed as Xλ.

Throughout this work, we will use λ to represent the security parameter, ρ to
represent the length of the associated data, � to represent the length of the output
key, and τ to represent the maximum degree of the polynomial the adversary
uses for mauling.

3 Obfuscation Definitions

All obfuscation definitions include require only polynomial slowdown, which is
easily verifiable for all presented constructions. The main object we introduce in
this work is a nonmalleable point function with associated data. A traditional
point function Ival : Zp �→ {0, 1} takes a single input val ∈ Zp and returns 1 if and
only if the input x to the function is val. An obfuscator is designed to preserve this
functionality while hiding val. The definition of a nonmalleable point function
with associated data adds a second input to I denoted as ad ∈ {0, 1}ρ. This
input does not need to be hidden by the obfuscator but should be nonmalleable.
So the raw functionality is just a point function of the pair val, ad. That is,

Ival,ad(x, y) =

{
1 x = val ∧ y = ad

0 otherwise.

Note that, since in our use cases ad is public, an honest user may just use
the given ad in using the obfuscated point function. In our further sections, we
use lockPoint(·) to denote point obfuscation algorithm and unlockPoint as the
obfuscated program. As prior work [25,38,44], we first present the notion of an
obfuscation verifier:

Definition 3 (Obfuscation Verifier). Let λ ∈ N be a security parameter and
let O input x ∈ Dλ and output a program P. An algorithm Vobf is a value verifier
if ∀x ∈ Dλ it is true that PrVobf,O[Vobf(P) = 1|P ← O(x)] = 1.

Definition 4 (Nonmalleable Point Function with Associated Data).
For security parameter λ ∈ N parameter ρ ∈ N, let Dλ be a sequence of input
domains and F : Dλ → Dλ be a family of functions. Let X be a family of
distributions over Dλ. A (F ,X , ρ)-nonmalleable point function obfuscation with
associated data lockPoint is a PPT algorithm that inputs a point val ∈ Dλ and
ad ∈ {0, 1}ρ, and outputs a circuit unlockPoint. Let Vobf be an obfuscation verifier
for lockPoint as defined in Definition 3. The following properties must hold:

1. Completeness: For all val ∈ Dλ, ad ∈ {0, 1}ρ, it holds that

Pr[unlockPoint(·, ·) ≡ Ival,ad(·, ·)|unlockPoint ← lockPoint(val, ad)] ≥ 1 − ngl(λ),

where the probability is over the randomness of lockPoint.
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2. Virtual Black Box Security: For every PPT A and any polynomial func-
tion p, there exists a simulator S and a polynomial function q(·) such that,
for all large enough λ ∈ N, all val ∈ Dλ, ad ∈ {0, 1}ρ and for any predicate
P : Dλ × {0, 1}ρ �→ {0, 1},

| Pr[A(unlockPoint, ad) = P(val, ad)|unlockPoint ← lockPoint(val, ad)]

−Pr[SIval,ad(·)(1λ, ad) = P(val, ad)]| ≤ 1
p(λ)

,

where S is allowed q(λ) oracle queries total to Ival,ad and the probabilities
are over the internal randomness of A and lockPoint, and of S, respectively.
Here Ival,ad(·) is an oracle that returns 1 when provided input (val, ad) and 0
otherwise.

3. Nonmalleability: For any X ∈ X , for all ad ∈ {0, 1}ρ, for any PPT A,
there exists ε = ngl(λ), such that defining

unlockPoint ← lockPoint(val, ad),
(C, f, ad∗) ← A (unlockPoint, ad)

it is true that :

Pr
val←X

[
Vobf(C) = 1, (If(val),ad∗ ≡ C)
f ∈ F ∨ (f = id ∧ ad∗ �= ad)

]
≤ ε.

3.1 Nonmalleable Digital Locker

We recall the definition of a nonmalleable digital locker. To distinguish this from
the case of point obfuscation, we use lock() to denote the multi-bit point obfusca-
tion algorithm and unlock as the (obfuscated) digital locker. In our construction,
all tampering of the output key is prevented, so we remove the notion of a key
verifier that was used in [38].

Definition 5 (Nonmalleable Digital Locker). For security parameter λ ∈
N, let Dλ be a sequence of domains, let

1. F : Dλ → Dλ be a function family,
2. X be a family of distributions over Dλ,
3. lock be a PPT algorithm that maps points val ∈ Dλ, key ∈ {0, 1}n to a circuit

unlock, and
4. Vobf be an obfuscation verifier.

The algorithm lock is a (F ,X , n)-nonmalleable digital locker if all of the below
are satisfied:

1. Completeness For all val ∈ Dλ, key ∈ {0, 1}n it holds that

Pr[unlock(·) ≡ Ival,key(·)|unlock ← lock(val, key)] ≥ 1 − ngl(λ),

where the probability is over the randomness of lock. Here Ival,key is a function
that returns key when provided input val, otherwise Ival,key returns ⊥.
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2. Virtual Black Box Security: For all PPT A and p = poly(λ), ∃S and
q(λ) = poly(λ) such that for all large enough λ ∈ N, ∀val ∈ Dλ, key ∈
{0, 1}n,P : Dλ × {0, 1}n �→ {0, 1},∣∣Pr[A(lock(val, key)) = P(val, key)] − Pr[SIval,key(1λ) = P(val, key)]

∣∣ ≤ 1
p(λ)

,

where S is allowed q(λ) oracle queries to Ival,key and the probabilities are over
the internal randomness of A and lock, and of S, respectively.

3. Nonmalleability ∀X ∈ X , PPT A, key ∈ {0, 1}n, there exists ε = ngl(λ)
such that:

Pr
val←X

⎡
⎢⎣

Vobf(C) = 1,(
(f ∈ F ∧ key′ �=⊥)∨

(key′ �∈ {⊥, key} ∧ f = id)

)∣∣∣∣∣∣∣
unlockval,key ← lock(val, key)

(C, f) ← A(unlockval,key)
key′ ← C(f(val))

⎤
⎥⎦ ≤ ε.

recall id is the identity function.

Remark 2. As mentioned in the Introduction, there are alternative notions of
nonmalleability. We formally define fixed nonmalleability, a weaker definition
which was used in [25], and oblivious nonmalleability, which does not require
the adversary to output the targeted function f in the full version [3, Appendix
A]. There we show that oblivious nonmalleability is impossible in general. One
can bypass this result by using cryptographic tools that extract the tampering
function, such as a random oracle or non-falsifiable assumptions.

3.2 Same Point Definitional Equivalences

The soundness in Definitions 4 and 5 are virtual black box security [6]. In
the majority of this work, we will be using distributional indistinguishability,
which says that obfuscations of all well spread distributions X are indistin-
guishable from obfuscations of random points. Bitanski and Canetti [13] showed
that this definition is equivalent to virtual black box obfuscation for point
functions (see also [20,52]). Furthermore, they showed this equivalence holds
when given a constant number of obfuscations on related points. Fenteany and
Fuller [38] show that this equivalence holds if given a polynomial number of
copies unlockPoint1 ← lockPoint(X), ..., unlockPoint� ← lockPoint(X) as long as
the same value is locked in each call to lockPoint. In the full version [3], we gen-
eralize these results showing that a vector of obfuscations that have output on
a single input point are secure when composed with associated data. That is,
define the circuit class

Pointval,key,ad(val′, ad′) =

{
key val′ = val ∧ ad′ = ad

⊥ otherwise
.

Note that point functions and digital lockers both with and without associated
data variants fall into this class by adjusting whether ad and key are of length
0. These proofs are straightforward extensions of the proofs in [38]. There are
presented for completeness in the full version of this work [3].
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Definition 6 (Distributional Indistinguishability). A Point obfuscator is
called a good distributional indistinguishable (DI) obfuscator if for any PPT A
with binary output and any well-spread distribution X over points in Dλ, for all
vectors �key, �ad then there exists some negligible function ε such that

| Pr
val←X

[A({Ci, �adi}�
i=1) = 1|{Ci ← Point(val, �adi, �keyi)}�

i=1]

− Pr
u

$←Dλ

[A({Ci, �adi}�
i=1) = 1|{Ci ← Point(u, �adi, �keyi)}�

i=1]| ≤ ε.

Theorem 1. For the class Point under � = poly(λ) composition where the
same val is used in each obfuscation, distributional indistinguishability and vir-
tual black box security (in Definition 4) are equivalent.

3.3 Group Theoretic Assumptions

We present our underlying group-theoretic assumptions here. As a reminder, we
use the implicit notation [36] to denote encoding in a group with generator g
(where [x]g denotes gx).

Assumption 1 [8, Assumption 3]. Fix some ψ ∈ Z
+. Let G = {Gλ}λ∈N be

a group ensemble with efficient representation and operations where each Gλ is
a group of prime order p(λ) ∈ (2λ, 2λ+1). Let {Xλ} be a family of well-spread
distributions over Dλ = Zp(λ). Then for any PPT A:∣∣Pr[A({ki, [kix + xi]g}i∈[2,...,ψ] = 1] − Pr[A({ki, [kir + ri]g}i∈[2,...,ψ]

∣∣ = ngl(λ).

where x ← Xλ, r ← Zp(λ), ki ← Zp(λ).

Bartusek, Ma, and Zhandry [8] justified Assumption 1 by showing it holds in the
generic group model even if Xλ depends on g. This model of allowing a distribu-
tion to depend on g is related to the non-uniform generic group model [26]. Such
an assumption is crucial to arguing plain model security (rather than treating Xλ

as independent of g). The second assumption can be proved from Assumption 1,
see [8, Lemma 8], and is useful for arguing nonmalleability:

Assumption 2 [8, Assumption 4]. Fix some ψ ∈ Z
+. Let G and Xλ be defined

as in Assumption 1. For any PPT A,

Pr[[x]g ← A({ki, [kix + xi]g}i∈[2,..,ψ])] = ngl(λ).

where x ← Xλ and ki ← Zp(λ).

4 Nonmalleable Point Functions with Associated Data

We begin by instantiating a nonmalleable point obfuscation satisfying Defini-
tion 4.
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Construction 1. Let λ ∈ N be a security parameter, let ρ ∈ N be a parameter.
Let G = {Gλ}λ∈N be a group ensemble with efficient representation and oper-
ations where each Gλ is a group of prime order p(λ) ∈ (2λ, 2λ+1). Define five
polynomials p1, ..., p5 as follows:

p1,ad,c1(val) = c1val +
ρ∑

i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali,

p2,c2(val) = c2val + valρ+7,

p3,c3(val) = c3val + valρ+8,

p4,c4(val) = c4val + valρ+9,

p5,c5(val) = c5val + valρ+10.

In the above, all calculations are conducted modulo Zp(λ).

Let g be a generator of the group Gλ. Let c1, c2, c3, c4, c5
$← Zp(λ) be input

randomness. Let ρ
def
= |ad|. Consider the following construction:

lockPoint(val, ad; a, b, c)
def
=

⎛
⎜⎜⎜⎜⎜⎝

c1, [p1,ad,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g

⎞
⎟⎟⎟⎟⎟⎠

Vobf is the circuit that checks that unlockPoint consists of the appropriate number
of values and group elements. If not, it outputs 0. Given a program unlockPoint
consisting of five pairs {(c′

i, g
′
i)}5i=1

4 and inputs val′, ad′ compute:

[
p1,ad′,c′

1
(val′)

]
g

?= g′
1,{[

pi,c′
i
(val′)

]
g

?= g′
i

}5

i=2
.

If all of these checks pass, output 1. Otherwise, output 0.

Theorem 2. Let all parameters be as in Construction 1, let ρ ∈ N be a param-
eter. Define F : Zp(λ) → Zp(λ) as the set of non-constant, non-identity polyno-
mials of maximum power τ . Suppose that

1. Assumption 1 holds for ψ = max{τ(ρ + 6), ρ + 10} and
2. (ρ + 6)22ρ/p(λ)3 = ngl(λ).

Then, Construction 1 is a (F ,X , ρ)-nonmalleable point function obfuscation with
associated data.
4 g is a generator that is a global system parameter along with the group description.

Note that it is efficiently checkable 1) whether the order of a group is prime and 2)
whether an element g is a generator of the known order group.



366 D. Apon et al.

Remark 3. In the above, the size of associated data is limited to be ρ ≈ log(p(λ)),
which is linear in the security parameter λ. Our primary application has the
associated data as the CRS of some NIZK. Such strings can be quite long. In
Sect. 5.4, we show that it suffices to include a short value in the associated data
whose size is Θ(log λ).

In order to prove that Construction 1 satisfies Definition 4, we must prove cor-
rectness, virtual black box security, and nonmalleability.

Correctness: We present the following lemma proving correctness. Its proof is
deferred to the full version [3].

Lemma 1. For any ρ such that (ρ + 6)22ρ/p(λ)3 + ρ/p(λ) = ngl(λ), Construc-
tion 1 satisfies completeness.

Security: We present the following theorem proving security. Its proof is
deferred to the full version [3]. Within the proof, Lemma 2 presents a general
approach to creating valid point obfuscations from Assumption 1, which will be
used in later constructions, as well.

Theorem 3. Let ρ be the length of ad. Suppose that Assumption 1 holds for
highest power ψ = ρ + 10. Then, Construction 1 satisfies virtual black box secu-
rity.

Nonmalleability: Finally, we must prove nonmalleability. We give the main
theorem below. The proof strategy for it is as follows:

1. Lemma 2. We first prove that any method of incorporating associated data
suffices for keeping val from being changed as long as there are enough large
powers of val that are not affected by associated data. We show this holds
even for adversaries that may arbitrarily tamper with the associated data.

2. Lemma 3. We then prove that, if the value val is not tampered, then for
Construction 1 it is difficult to change ad ∈ {0, 1}ρ to any distinct ad′ ∈
{0, 1}ρ.

The aggregate of both of these results yields the desired nonmalleabillity prop-
erty. We include the statements of Lemma 2 and Lemma 3 below, as well. Their
proofs are deferred to the full version [3].

Theorem 4. Let λ be a security parameter. Let {Xλ} be a well-spread distribu-
tion ensemble and let τ, ρ ∈ Z

+ be parameters that are both poly(λ). Let Fpoly

be the ensemble of functions fλ where fλ is the set of non-constant, non-identity
polynomials in Zp(λ)[x] with degree at most τ . Suppose that Assumption 1 holds
for ψ = max{ρ + 10, τ(ρ + 6)}. Then, the obfuscator in Construction 1 is non-
malleable over Fpoly with distribution ensemble {Xλ}, and AD = {0, 1}ρ.
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Lemma 2. Let λ be a security parameter. Let {Xλ} be a well-spread distribution
ensemble and let τ, � ∈ Z

+ be poly(λ). Let Fpoly be the ensemble of functions
fλ where fλ is the set of non-constant, non-identity polynomials in Zp(λ)[x] with
degree at most τ .

Let P (x) = r1x + . . . + rρ−1x
ρ−1 + rρx

ρ with ri ∈ Zp(λ), and let �P =
{r1, . . . , rρ} where any or all of the ri may be 0. Suppose that Assumption 1
holds for ψ = max{ρ + 10, τ(ρ + 6)}. Define as obfuscation (with c1, c2, c3, c4, c5
uniformly distributed in Zp(λ))

lockPointP (val, �P ; c1, c2, c3, c4, c5)
def
= �P ,

⎡
⎢⎢⎢⎢⎢⎢⎣

c1,
[
c1val + valP (val) +

∑ρ+6
i=ρ+2 val

i
]

g

c2,
[
c2val + valρ+7

]
g

c3,
[
c3val + valρ+8

]
g

c4,
[
c4val + valρ+9

]
g

c5,
[
c5val + valρ+10

]
g

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Consider Fpoly and distribution ensemble {Xλ}. For any nonmalleability PPT
adversary A in Definition 4, A outputs a valid f, P ′, unlockPointP ′ with negligible
probability.

Lemma 3. Let λ be a security parameter. Let {Xλ} be a well-spread distribution
ensemble and let τ, ρ ∈ Z

+ be poly(λ). Let Fpoly be the ensemble of functions
fλ where fλ is the set of non-constant, non-identity polynomials in Zp(λ)[x] with
degree at most τ .

Let P�b(x) = bρx
ρ + bρ−1x

ρ−1 + . . . + b1x where bi ∈ {0, 1}. Suppose that
Assumption 2 holds for ψ = max{ρ + 10, τ(ρ + 6)}. Define as an obfuscation
(with c1, c2, c3, c4, c5 uniformly distributed in p(λ)):

lockPoint(val,�b; c1, c2, c3, c4, c5)
def
= �b,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1,
[
c1val + valP�b(val) +

∑ρ+6
i=ρ+2 val

i
]

g

c2,
[
c2val + valρ+7

]
g

c3,
[
c3val + valρ+8

]
g

c4,
[
c4val + valρ+9

]
g

c5,
[
c5val + valρ+10

]
g

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider Fpoly and distribution ensemble {Xλ}. The probability that any PPT
algorithm outputs a valid obfuscation with the identity function f and some P�b′

with �b′ ∈ {0, 1}ρ,�b′ �= �b is negligible.

5 Standard Model Digital Lockers

We will now construct a nonmalleable digital locker in two steps.

– In Sect. 5.1 we amend our previous construction of a NMPOad to instead output
a predetermined key rather than a single bit. Nonmalleability of the input val
and ad must still be preserved, but no nonmalleability is guaranteed for key.
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– In Sect. 5.2, we use this intermediate digital locker with a non-interactive zero
knowledge proof, to guarantee complete nonmalleability over key.

Of course, correctness and security must hold for val, key as well. The end result
of these efforts (Construction 3) will be a digital locker with: 1) input val non-
malleable over low-degree polynomials, 2) public helper string ad nonmalleable
over any tampering, and 3) output key nonmalleable over any tampering. As we
will see in Sect. 6, these tampering classes have meaningful applications.

5.1 Digital Lockers Nonmalleable Over Val and Ad

We integrate our NMPOad with the real-or-random construction [21] in Fig. 1. The
essential idea is that we may encode each bit of key as a real (encoding val) or
random (encoding a random point) point obfuscation, with an additional obfus-
cation of val to ensure that is the point being tested. We encode the attestation
of ad in this additional obfuscation.

In order to adapt our techniques to a real-or-random digital locker with
|key| = �, then, it is clear that we must ensure that each point obfuscation
retains security in the presence of up to � other copies of the same point (i.e.,
if key = 1�). The previous construction is clearly not sufficient, providing two
copies of the obfuscation breaks security (see discussion in [38]), but we may use
similar techniques as so. We begin by defining the intermediate cryptographic
object.

Definition 7 (Input Nonmalleable Digital Locker with Associated
Data). For security parameter λ ∈ N, let {Dλ} be an ensemble of finite sets,
let ρ ∈ N be a parameter. Let

1. F : Dλ → Dλ be a function family,
2. X be a family of distributions over Dλ,
3. iLock be a PPT algorithm that maps points val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈

{0, 1}n to a circuit iUnlock, and
4. Vobf be an obfuscation verifier.

The algorithm iLock is a (F ,X , ρ, n)-input nonmalleable digital locker with asso-
ciated data if all of the below are satisfied:

1. Completeness For all val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈ {0, 1}n it holds that

Pr[iUnlock(·) ≡ Ival,ad,key(·)|iUnlock ← iLock(val, ad, key)] ≥ 1 − ngl(λ),

where the probability is over the randomness of iLock. Here Ival,ad,key is a
function that returns key when provided input (val, ad), otherwise Ival,ad,key
returns ⊥.

2. Virtual Black Box Security: For all PPT A and p(λ) = poly(λ), ∃S
and q(λ) = poly(λ) such that for all large enough λ ∈ N, ∀val ∈ Dλ, ad ∈
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{0, 1}ρ, key ∈ {0, 1}n,P : Dλ × {0, 1}ρ+n �→ {0, 1},∣∣ Pr[A(iLock(val, ad, key), ad) = P(val, ad, key)]

−Pr[SIval,ad,key(1λ, ad) = P(val, ad, key)]
∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,ad,key and the probabilities are
over the internal randomness of A and lock, and of S, respectively.

3. Input Nonmalleability For all X ∈ X , PPT A, ad ∈ {0, 1}ρ, key ∈ {0, 1}n,
there exists ε = ngl(λ) such that:

Pr
val←X

⎡
⎢⎣

Vobf(C) = 1,
f ∈ F ∨ (f = id ∧ ad′ �= ad)

C(f(val), ad′) �=⊥

∣∣∣∣∣∣∣
unlockval,key ← iLock(val, ad, key)
(C, f, ad′) ← A(unlockval,key, ad)

⎤
⎥⎦ ≤ ε.

Remark 4. Note that input nonmalleability does not protect against key tamper-
ing. In fact, an adversary that arbitrarily mauls key to key′ ∈ {0, 1}n is allowed
for this object, so long as val and ad are not tampered.

Before introducing the construction, we define some polynomials that will be
used in the construction as follows:

p0,ad, �c0(val) = c0,1val +
�∑

i=1

c0,i+1val
i+1 +

ρ∑
i=1

adival
�+1+i +

5∑
i=1

val�+ρ+1+i,

(1)

p0,1,c0,�+2(val) = c0,�+2val + val�+ρ+7, (2)

p0,2,c0,�+3(val) = c0,�+3val + val�+ρ+8, (3)

p0,3,c0,�+4(val) = c0,�+4val + val�+ρ+9, (4)

p0,4,c0,�+5(val) = c0,�+5val + val�+ρ+10, (5)

p∗
�c(val) = cj,1val +

�∑
i=1

cj,i+1val
i+1. (6)

Construction 2. Let λ ∈ N be a security parameter, let ρ, � ∈ N be parameters.
Let G = {Gλ} be a group ensemble with efficient representation and operations
where each Gλ is a group of prime order p(λ) ∈ (2λ, 2λ+1). Let Dλ = Zp(λ). Let
g be a generator of Gλ. Let ρ, � ∈ Z

+ such that ρ = O(log λ) and � = poly(λ).
Define the Construction of (iLock, iUnlock) as in Fig. 1.

Theorem 5. Let all parameters be as in Construction 2. Let τ ∈ N and ρ ∈ N

be parameters.

1. Suppose that Assumption 1 holds for maximum power max{� + ρ + 10, τ(� +
ρ + 6)},
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iLock(val, ad, key) :

1. Define � = |key|,
2. Sample z ← Zp(λ),
3. Sample C ← Z

(�+1)×(�+1)
p(λ) ,

c0,�+2, c0,�+3, c0,�+4, c0,�+5 ← Zp(λ),
4. Compute unlockPointad =⎡

⎢⎢⎢⎢⎢⎣

[p0,ad,C0(val)]g
c0,�+2,

[
p0,1,c0,�+2(val)

]
g

c0,�+3,
[
p0,2,c0,�+3(val)

]
g

c0,�+4,
[
p0,3,c0,�+4(val)

]
g

c0,�+5,
[
p0,4,c0,�+5(val)

]
g

⎤
⎥⎥⎥⎥⎥⎦

5. For i = 1 to �:

unlockPointi =

{[
p∗
Ci

(val)
]
g

keyi = 1[
p∗
Ci

(z)
]
g

keyi = 0
.

6. OutputC, unlockPointad, {unlockPointi}�
i=1.

iUnlock(C′, unlockPoint′ad,
{unlockPoint′i}�

i=1, val
′, ad′):

1. Parse unlockPoint′ad as
c′
0,�+2, c

′
0,�+3, c

′
0,�+4, c

′
0,�+5,

g′
0,1, g

′
0,2, g

′
0,3, g

′
0,4, g

′
0,5.

2. Verify[
p1,ad′,C′

0
(val′)

]
g
= g′

0,1,{[
pi,c′

0,i
(val′)

]
g
= g′

0,i

}5

i=2
.

If one checks does not pass out-
put ⊥.

3. Initialize key = �0�.
4. For i = 1 to �:

(a) If [p∗
C′

i
(val′)]g =

unlockPoint′i set keyi = 1.
5. Output key.

Fig. 1. Real-or random-instantiation of input nonmalleable digital locker with associ-
ated data.

2. Let Fpoly be the family of polynomials over Zp(λ) with maximum degree τ ,
and

3. (� + ρ + 10)22ρ/p(λ)3 = ngl(λ).

Then, Construction 2 is a (Fpoly,X , ρ, �)-input nonmalleable digital locker with
associated data.

The proof of this statement is deferred to the full version [3]. The technical
details behind Theorem 5 follow the same structure as Theorem 2 — we prove
correctness, virtual black box security, and input nonmalleability separately, each
following a similar proof structure as the respective property of Construction 1.

5.2 Adding Key Nonmalleability

We now show that the input nonmalleable digital locker with associated data
suffices to build a fully nonmalleable digital locker for the same function class.
Let iLock be such an object and Π = (Setup, P, V ) be some appropriate non-
interactive proof system (described in Sect. 5.3) using a crs of length ρ for the
following language that proves well-formness of iLock:

L = {iUnlock : ∃(val, crs, key, r) such that iUnlock = iLock(val, crs, key; r)}
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lock(val, key) :

1. Sample (crs = (crs1, crs2),TK, EK) ← Setup(1λ).
2. Compute iUnlock ← iLock(val, crs1, key; r).
3. Compute π ← P (unlock′; val, key, r, crs).
4. Output (iUnlock, π, crs).

Vobf(iUnlock, π, crs):

1. If VobfInput(iUnlock) = 0 output 0.

2. If crs = �0 output 0.
3. if V (π, unlock′, crs) = 0 output 0.
4. Output 1.

unlock(val, iUnlock, π, crs = (crs1, crs2)): Output iUnlock(val, crs1)

Fig. 2. Digital locker construction.

Construction 3. For security parameter λ ∈ N, let F : Dλ → Dλ be a family
of functions, let ρ, � ∈ N be parameters, X be a family of distributions over Dλ.
Suppose that

1. iLock is a (Fpoly,X , ρ, �)-input-nonmalleable digital locker with associated
data with associated obfuscation verifier VobfInput, and

2. Π = (Setup, P, V ) is an NIZK system for the language L with short non-
tamperable CRS.5 We formally define this property and show a generic con-
struction in Sect. 5.3.

Then define (lock, unlock,Vobf) as in Fig. 2.

Theorem 6. Let notation be as in Construction 3. Suppose that

1. iLock is a (Fpoly,X , ρ, �)-input-nonmalleable digital locker with associated
data with associated obfuscation verifier VobfInput, and

2. Π = (Setup, P, V ) is a true simulation extractable non-interactive zero knowl-
edge proof system as described in Sect. 5.3,

3. That every function f ∈ F is entropy preserving; i.e., for any well-spread X,
f(X) is also well-spread.

Then lock, unlock is a (F ,X , n)-nonmalleable digital locker.

Proof (Proof of Theorem 6). Following Definition 5, we need to prove complete-
ness, soundness, and nonmalleability. Completeness can be easily verified, so we
just focus on the non-trivial parts, i.e., proof of soundness and nonmalleability.

Soundness. To prove soundness, we first observe that according to Theorem 1,
for this class of circuits being obfuscated DI is equivalent to VBB, so for the rest
of the proof, we focus on proving the DI. We prove soundness by contradiction.
Suppose there exists a PPT adversary A, a key key ∈ {0, 1}�, and a well-spread
distribution X such that

| Pr
val←X

[A(lock(val, key)) = 1] − Pr
r

$←Dλ

[A(lock(r, key)) = 1] > ε

5 That is, crs can be split into (crs1, crs2) where crs1 has length independent of the
language, i.e., O(λ), and only crs1 is required to be non-tamperable. crs2 cannot
be modified (computationally infeasible) given the original crs1.
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for some non-negligible ε, then there exists an adversary B that breaks the DI
security of the input-nonmalleable digital locker. This reaches a contradiction.

B receives the distribution X samples (crs1, crs2,TK,EK) ← Setup(1λ) for
the proof system, and sets associated data as crs1. B sends this distribution to
the reduction for iLock with the input distribution the same X, and associated
data, crs1. The reduction samples some val ← X or uniform r. B receives
iUnlock. Next B creates a simulated π. It sends iUnlock, π, crs to A and outputs
A’s decision.

Clearly, if val is from the distribution X, then the reduction has simulated
an indistinguishable lock(val, key) (assuming the simulated proof π is indistin-
guishable), or otherwise, lock(r, key). That is, in both cases, the obfuscation
is properly prepared assuming the indistinguishability of the simulated proof.
Thus, the advantage of the adversary A translates to the advantage of B in
breaking the DI of the nonmalleable point obfuscation. By the equivalence of DI
and VBB of point obfuscation, this breaks the soundness of the nonmalleable
point obfuscation.

Nonmalleability. Now we prove nonmalleability. As before, we prove by con-
tradiction. Suppose there exists a PPT adversary A and key ∈ {0, 1}�, a well-
spread distribution X such that A breaks the nonmalleability experiment with
non-negligible probability ε. Then there exists an adversary B that breaks the
nonmalleability of the underlying iLock(·).

B follows exactly the same procedure in preparing the input to the adver-
sary A as in soundness proof above. Now A would return a triple (C, f, crs∗ =
(crs∗

1, crs
∗
2)) that passes the checking conditions with a non-negligible proba-

bility ε. Assume C is different from the original obfuscation given to A (as we
don’t allow identity tampering). B does the following:

– If the crs1 is modified to a different crs∗
1, then the reduction just outputs

the C, f, crs∗
1 which correspond to a tamper according to nonmalleability of

iLock(·).
– If the crs1 is kept intact but crs2 is modified to a different crs∗

2, then this
breaks the underlying NIZK as it is computationally infeasible to obtain a
consistent but different crs∗

2.
– If the crs = crs∗ in C is intact yet the statement-proof pair is modified,

then B runs the witness extractor to extract a valid witness, i.e., val′ used
to generate C. As the input obfuscated circuits received by B are properly
prepared by the challenger, the simulated proof given to the adversary A is
with respect to a true statement. In this case, the notion of true simulation
extractability allows B to extract a valid witness by running the extractor.
Thus, given val′ = f(val). B can prepare an obfuscation (with an arbitrary
associated data of val′), breaking the nonmalleability of iLock(·).

Since A wins the nonmalleable experiment with a non-negligible probability,
one of the above case must happen with a non-negligible probability. This would
imply the contradiction we expect. The above two arguments complete the proof
of Theorem 6.
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5.3 The Building Block – True Simulation Extractable NIZK

In this section, we present the building block used in Construction 3 – true
simulation extractable NIZK. The notion was introduced by Dodis et al. [32] as
a relaxation of all simulation extractable NIZK. We describe the notion in what
follows.

Definition 8. Let R be an NP relation on pairs (x,w) with corresponding lan-
guage LR = {x : ∃w such that (x,w) ∈ R}. A true-simulation extractable non-
interactive zero-knowledge (NIZK) argument for a relation R consists of three
algorithms (Setup,Prove,Verify) with the following syntax:

– (crs,TK,EK) ← Setup(1λ): creates a common reference string crs, a trap-
door TK, and an extraction key EK.

– π ← Prove(crs, x, w): creates an argument π that R(x,w) = 1.
– 0/1 ← Verify(crs, x, π): verifies whether or not the argument π is correct.

For presentation simplicity, we omit crs in the Prove and Verify. We require
that the following three basic properties hold:

– Completeness. For any (x,w) ∈ R, if (crs,TK,EK) ← Setup(1λ), π ←
Prove(x,w), then Verify(x, π) = 1.

– Soundness. For any PPT adversary A, the following probability is negligible:
for (crs,TK,EK) ← Setup(1λ), (x∗, π∗) ← A(crs) such that x∗ /∈ LR but
Verify(x∗, π∗) = 1.

– Composable Zero-knowledge. There exists a PPT simulator S such that
for any PPT A, the advantage (the probability A wins minus one half) is
negligible in the following game.

• The challenger samples (crs,TK,EK) ← Setup(1λ) and sends (crs,TK)
to A

• A chooses (x,w) ∈ R and sends to the challenger.
• The challenger generates π0 ← Prove(x,w), π1 ← Sim(x,TK), and then

samples a random bit b ← {0, 1}. Then he sends πb to A.
• A outputs a guess bit b′, and wins if b′ = b.

– Extractibility. Additionally, true simulation extractability requires that there
exists a PPT extractor Ext such that for any PPT adversary A, the probability
A wins is negligible in the following game:

• The challenger samples (crs,TK,EK) ← Setup(1λ) and sends crs to A.
• A is allowed to make oracle queries to the simulation algorithm
Sim′((x,w),TK) adaptively. Sim′ first checks if (x,w) ∈ R and returns
Sim(x, TK) if that is the case.

• A outputs a tuple x∗, L∗, π∗.
• The challenger runs the extractor w∗ ← Ext(L∗, (x∗, π∗),EK).
• A wins if (1) the pair (x∗, L∗) was not part of the simulator query, (2)

the proof π∗ verifies, and (3) R(x∗, w∗) = 0.
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Briefly speaking, a true simulation extractable NIZK requires that the adver-
sary can only query the simulation oracle only on true statements, whereas all
simulation extractability allows the adversary to query on any (perhaps false)
statement. As shown by the work [32], the true simulation extractable NIZK can
be constructed in a fairly simple way as summarized by the following theorem.

Theorem 7 ([32]). Assume that there exists a CCA2 encryption and a regular
NIZK argument for NP languages, then there exists a true simulation extractable
NIZK for NP languages.

The work [32] showed how to instantiate the building blocks under the SXDH
assumption over bilinear groups. There is plausible evidence that the regular
NIZK can be constructed without the need of pairing groups, c.f. [28], under
some non-standard assumptions.

5.4 NIZK with Short Non-tamperable CRS

The generic use of the NIZK from Dodis et al. [32] requires long CRS that would
depend on the language being proved, and this is a general fact for NIZKs. In
our application, however, this poses a challenge when we combine this with our
non-malleable obfuscation with associate data. Particularly, the correctness of
Theorem 2 requires a group that has a length larger than that of associated data.
We notice that the language L used in Construction 3 requires a long CRS, as
the statement and the witness are long. So, putting CRS as the associated data
in the non-malleable digital locker would require a significantly larger group,
which is undesirable.

To handle this technical subtlety, we present a simple transformation from
any NIZK into one whose CRS has the following structure: crs = (crs1, crs2),
where only crs1 is short and non-tamperable, crs2 can be arbitrarily long but
cannot be tampered consistently (computationally infeasible) as long as crs1
is kept intact. In this way, we can put crs1 as the associated data into our
non-malleable digital locker, and keep crs2 public, as we presented in the prior
section. Thus, the underlying group of the non-malleable obfuscation can be
significantly smaller.

To achieve this, given any crs′ from the underlying NIZK, we define a new
NIZK which is essentially the same as the original one, except in the CRS
generation: first it samples a collision resistant hash function h and computes
z = h(crs). It outputs crs = (crs1 = (h, z), crs2 = crs′) as the new CRS. The
verifier will always check whether h(crs2) = z and rejects immediately if it does
not hold. The security (zero-knowledge, soundness) is not affected by crs1, as it
can be generated just given crs′.

6 Application to Fuzzy Extractors

In this section, we show that a nonmalleable digital locker suffices to build a
robust fuzzy extractor [14–16,33] when combined with a standard secure sketch.
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We note information-theoretic robust fuzzy extractor in the plain model or CRS
models requires the source to have an entropy of at least half its length [35]. In
this work, we consider computational robust fuzzy extractors in the plain model.
We begin with a few definitions.

Definition 9 (Secure Sketch). Let λ be a security parameter. Let W = Wλ

be a family of random variables over metric space (M, dis) = (Mλ, disλ). Then
SS,Rec is a (M,W, t, δ)-secure sketch if the following hold:

Correctness. For all w,w′ ∈ M such that dis(w,w′) ≤ t, Pr[Rec(w′,SS(w)) =
w] ≥ 1 − δ.

Security. For all distributions W ∈ W it is true that H̃∞(W |SS(W )) ≥ ω(log λ).

Definition 10 (Robust Fuzzy extractor). An (M,W, �, t)-computationally
robust fuzzy extractor is a pair of PPT algorithms (Gen,Rep) where for all w,w′ ∈
M,

– (key, pub) ← Gen(w), where key ∈ {0, 1}� and pub ∈ {0, 1}∗

– key′ ← Rep(pub, w′)

such that the following properties are true:

– Correctness : For all w,w′ ∈ M such that dist(w,w′) ≤ t,

Pr
[
key′ = key

∣∣ (key, pub) ← Gen(w), key′ ← Rep(pub, w′)
] ≥ 1 − ngl(λ).

– Security : For any distribution W ∈ W, and for (key, pub) ← Gen(W ), for
all PPT A there exists some ngl(λ) function such that

|Pr[A(key, pub) = 1] − Pr[A(U�, pub) = 1] ≤ ngl(λ).

where U� is a uniformly distributed random variable on {0, 1}�.
– Robustness: Let W,W ′ ∈ M be (correlated) distributions such that

Pr
(w,w′)←(W,W ′)

[dis(w,w′) ≤ t] = 1

and W,W ′ ∈ W. For all W,W ′ ∈ W and for all adversaries A, the advantage
of A in the following experiment is at most ngl(λ):
1. Sample (w,w′) ← (W,W ′).
2. Compute (key, pub) ← FE.Gen(w) and send it to A.
3. A outputs pub′ and wins if pub′ �= pub and FE.Rep(pub′, w′) �∈ {⊥, key}.

Before introducing a common secure sketch which uses code syndromes we intro-
duce the notation of Wgt(x) = dis(x, 0) as the Hamming weight of x.
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Gen(w) :

1. Compute ss ← SS(w).

2. Sample random key ∈ {0, 1}�.
3. Obfuscate unlockw,key ← lock(w, key).
4. Output key, pub = (ss, unlockw,key).

Rep(w′, ss′, unlock′):

1. If Vkey(unlock
′) = 0 output ⊥.

2. Let w∗ ← Rec(w′, ss′)
3. If dis(w′, w∗) > t or w∗ �∈ F

n
q output ⊥.

4. Output unlock′(w∗).

Fig. 3. Robust Fuzzy Extractor from nonmalleable digital locker and syndrome secure
sketch.

Definition 11 (Syndrome). Let A : Fk
q → F

n
q be a (n, k, d = 2t + 1)-linear

error code, then there exists a matrix Syn : Fn
q → F

n−k
q with two properties:

1. For all values x where Wgt(x) ≤ t the value Syn(x) is unique.
2. There is an efficient mapping from s ∈ F

n−k
q to the value x of weight at most

t if one exists. Let Invert denote this mapping. If no such value exists then
the output of Invert is ⊥.

3. For any two values s, s′ where Wgt(s),Wgt(s′),Wgt(s − s′) ≤ t it is true that

Invert(Syn(s − s′)) = Invert(Syn(s) − Syn(s′))
= Invert(Syn(s)) − Invert(Syn(s′)) = s − s′.

Definition 12 (Syndrome Secure Sketch [11,30,34]). Let W ∈ F
n
q be the

set of all distributions W where H∞(W ) = (n − k) log q + ω(log λ). Let Syn be
the Syndrome of an (n, k, d = 2t+1)-error correcting code. Then define SS(w) =
Syn(w) and Rec(w′, s) = w′ − Invert(Syn(w′)−s) = w′ − Invert(Syn(w′ −w)) = w.
Then (SS,Rec) is a (Fn

q ,W, t, 0)-secure sketch.

Theorem 8. Assume the following:

1. (SS,Rec) be a syndrome secure sketch for distance 2t, that is, d = 4t + 1,
2. W is the set of all efficiently sampleable distributions W where

H̃∞(W |SS(W )) ≥ ω(log λ),

3. (lock, unlock, Vkey) is a nonmalleable digital locker for (F ,X ) where F includes
all functions f : Fn

q → F
n
q of the form f(x) = x + a and where X is the set of

all distributions X where H∞(X) = ω(log λ).

Then (Gen,Rep) described in Fig. 3 is a (M,W, �, t)-robust fuzzy extractor (Def-
inition 10).

See the full version [3] for the full proof. The intuition behind the robustness
proof is that the adversary will be able to extract the function f from the robust
fuzzy extractor adversary’s output by computing Invert(ss′ − ss).
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Aligning Tampering Functions. There is a subtlety when we instantiate the
fuzzy extractor of Theorem 8 – the digital locker in Theorem 8 requires a function
class of the domain F

n
q , whereas the digital locker constructed in Fig. 2 works in

Zp(λ). It is unclear whether there is an additively homomorphic mapping between
these spaces for arbitrary p, q, n. Therefore, a trivial plug-in of the digital locker
of Fig. 2 does not work. In Sect. 6.1, we show that how to align readings in a
simple way at the cost of increased leakage of the secure sketch.

An Alternative to Efficiently Sampleable W . Theorem 8 required W to
be efficiently sampleable. This is because in the proof the reduction samples a
w ← W to compute a secure sketch ss and create the conditional distribution
W |SS(w). An alternative approach is to define all of the objects throughout our
main technical sections to be nonmalleable in the presence of auxiliary infor-
mation Z such that H∞(W |Z) ≥ ω(log λ). In this case, A′ can receive ss as
auxiliary information and directly forward it to A.

All of the proofs contained in this work naturally extend to the setting of
auxiliary information. The major work needed to have confidence in the auxiliary
input approach is to show that [8, Assumption 3] holds in the non-uniform
generic group model [26] in the presence of auxiliary information. Importantly,
the distribution W has average min-entropy conditioned on SS(W ). There are
strong impossibility results on digital lockers that are secure against hard to
invert auxiliary information [19].

Applications of Nonmalleable Point Function Obfuscation. Nonmal-
leable point obfuscation and nonmalleable point obfuscation with associated
data (Definition 4) can be used to build robust secure sketches and robust fuzzy
extractors, respectively.

– Robust secure sketch: Robustness for secure sketches is defined in a sim-
ilar fashion as for fuzzy extractors. For correlated distributions W,W ′, the
adversary receives SS(w) from the challenger and outputs SS′. The adver-
sary wins the robustness game if he succeeds in finding a value SS′ such that
Rec(SS′, w′) �∈ {⊥, w}. Informally, suppose (lockPoint, unlockPoint) is a non-
malleable point obfuscation and (SS,Rec) is a syndrome-based secure sketch.
Then Fig. 4 describes a robust secure sketch. The formal theorem and proof
can be found in the full version [3].

– Robust fuzzy extractor: Let (lockPoint, unlockPoint) be a nonmalleable
point obfuscation with associated data, (SS,Rec) be a syndrome-based secure
sketch and ext be a randomness extractor. Then Fig. 5 describes a robust
fuzzy extractor. We stress that this construction requires the remaining
entropy of W to be high conditioned on both the produced key which is
produced using a randomness extractor [47,51] and SS(w). There is no limi-
tation on the key length in the robust fuzzy extractor from the nonmalleable
digital locker (in Theorem 8). The formal theorem and proof can be found in
the full version [3].
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SS′(w) :

1. Compute ss ← SS(w).
2. Obfuscate

unlockPointw ← lockPoint(w).
3. Output (ss, unlockw).

Rec′(w′, ss′, unlockPoint′):

1. If Vobf(unlockPoint
′) = 0 output ⊥.

2. Compute w∗ ← Rec(w′, ss′)
3. If dis(w′, w∗) > t or w∗ �∈ F

n
q output ⊥.

4. Else if unlockPoint′(w∗) = 0 output ⊥.
5. Else output w∗.

Fig. 4. Robust Secure Sketch from nonmalleable point obfuscation and syndrome
secure sketch.

Gen(w) :

1. Sample random seed ∈ {0, 1}ρ.
2. Generate key ← ext(w; seed).
3. Compute ss ← SS(w).
4. Obfuscate

unlockPointw,seed ← lockPoint(w, seed).
5. Output key and

pub = (ss, unlockPointw,seed, seed).

Rep(w′, ss′, unlockPoint′, seed′):

1. If Vkey(unlockPoint
′) = 0 output ⊥.

2. Compute w∗ ← Rec(w′, ss′)
3. If dis(w′, w∗) > t or w∗ �∈ F

n
q output ⊥.

4. if unlockPoint′(w∗, seed′) = 0 output ⊥.
5. Output key ← ext(w∗; seed′).

Fig. 5. Robust Fuzzy Extractor from nonmalleable point obfuscation with associated
data, syndrome secure sketch and randomness extractor.

6.1 Instantiations – Aligning the Tampering Function Classes

In this section, we show how to align the tampering function classes required by
the fuzzy extractor of Theorem 8 and the construction of Fig. 2. This deals with
the mismatch in input domain for the syndrome (which takes inputs in F

n
q ) and

the nonmalleable digital locker (which takes inputs in Zp).
Assume that the input readings w,w′ are q-ary strings of length n. Instead of

using a q-ary error correcting code (A ∈ F
n×k
q and Syn : Fn×(n−k)

q ), we consider
an error correcting code with entries in Fq′ for some prime q′ ≥ 2(q−1)+1. That
is, let A′ ∈ F

n×k
q be a (n, k, d = 4t + 1) linear error correcting code, and let Syn′

be the corresponding syndrome. Furthermore, we make the restriction p ≥ qn,
where Zp is the input domain of the digital locker of Fig. 2. In the construction
of Rep, note there is a check if the recovered value, w∗, is not q-ary, in which
case we output ⊥. Thus, for the adversary to successfully break robustness they
must produce a q-ary output.

Now we encode every string x ∈ F
n
q as the natural q-ary representation, i.e.,

x �→ ∑
i∈[n] xiq

i−1 ∈ Zp, denoted as Enc(x). Moreover, the digital locker takes
input an encoded version of w, i.e.,

lockPoint(Enc(w), seed) and unlockPoint(Enc(w∗), seed′).

By setting things up in this way, Theorem 8 holds even if the underlying digital
locker is non-malleable for shift functions in Zp.

In Theorem 8 the reduction extracts a tampering function f : F
n
q → F

n
q

where f(w) = w + Invert(ss′ − ss). With the modified syndrome construction,
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the function f : Fn
q → F

n
q , as above, the reduction can extract a function f(w) =

w + Invert(ss′ − ss). By the check of w∗ ∈ F
n
q and the initial condition that

w ∈ F
n
q , this implies that wi + Invert(ss′ − ss)i ∈ Fq, we can first conclude

that Invert(ss − ss′) can be represented in {−(q − 1), ..., (q − 1)}n. Under this
representation, we conclude that for each i, wi + Invert(ss′ − ss)i ∈ Fq using
standard integer addition. So, for each i, we are guaranteed an element in Fq

(i.e., Enc(w∗) = Enc(w) + Enc(Invert(ss′ − ss))), which corresponds exactly to a
shift tampering function in Zp, and thus the reduction can break the underlying
non-malleable digital locker.

The effect of this transform is to increase the required entropy on the distri-
bution W . The standard analysis of the secure sketch assumes that SS(W ) leaks
(n−k) log q bits of information about W . By increasing the syndrome from q to q′

this increases the leakage of the secure sketch by (n−k) log(q′/q) ≈ (n−k) log 2.
This transform applies to the constructions in Figs. 4 and 5 as well. We do not
include it in our proofs to show the general connection between syndrome secure
sketches and nonmalleable point obfuscation variants.
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11. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 29

12. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A sim-
ple obfuscation scheme for pattern-matching with wildcards. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 731–752. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 25

13. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 28

14. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proceedings of the 11th
ACM Conference on Computer and Communications Security, pp. 82–91 (2004)

15. Boyen, X.: Robust and reusable fuzzy extractors. In: Security with Noisy Data,
pp. 101–112. Springer, Heidelberg (2007). https://doi.org/10.1007/978-1-84628-
984-2 6

16. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

17. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. J. Cryptol. 30(1), 289–
320 (2017)

18. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: Proceedings of the 2016 ACM Conference on Inno-
vations in Theoretical Computer Science, pp. 147–156 (2016)

19. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 11

20. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

https://doi.org/10.1007/978-3-642-54242-8_2
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/978-3-662-49099-0_20
https://doi.org/10.1007/978-3-662-49099-0_20
https://doi.org/10.1007/3-540-46766-1_29
https://doi.org/10.1007/978-3-319-96878-0_25
https://doi.org/10.1007/978-3-642-14623-7_28
https://doi.org/10.1007/978-1-84628-984-2_6
https://doi.org/10.1007/978-1-84628-984-2_6
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/BFb0052255


Plain Model Nonmalleable Digital Lockers and Robust Fuzzy Extractors 381

21. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 28

22. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. J. Cryptol. 34(1), 1–33 (2021)

23. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

24. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11799-2 5

25. Canetti, R., Varia, M.: Non-malleable obfuscation. In: Reingold, O. (ed.) TCC
2009. LNCS, vol. 5444, pp. 73–90. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00457-5 6

26. Coretti, S., Dodis, Y., Guo, S.: Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 693–721. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 23

27. Cousins, D.B., et al.: Implementing conjunction obfuscation under entropic ring
LWE. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 354–371. IEEE
(2018)

28. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12107, pp. 442–471. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45727-3 15
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Abstract. Non-malleable codes (Dziembowski, Pietrzak and Wichs,
ICS 2010 & JACM 2018) allow protecting arbitrary cryptographic prim-
itives against related-key attacks (RKAs). Even when using codes that
are guaranteed to be non-malleable against a single tampering attempt,
one obtains RKA security against poly-many tampering attacks at the
price of assuming perfect memory erasures. In contrast, continuously non-
malleable codes (Faust, Mukherjee, Nielsen and Venturi, TCC 2014) do
not suffer from this limitation, as the non-malleability guarantee holds
against poly-many tampering attempts. Unfortunately, there are only
a handful of constructions of continuously non-malleable codes, while
standard non-malleable codes are known for a large variety of tam-
pering families including, e.g., NC0 and decision-tree tampering, AC0,
and recently even bounded polynomial-depth tampering. We change this
state of affairs by providing the first constructions of continuously non-
malleable codes in the following natural settings:

– Against decision-tree tampering, where, in each tampering attempt,
every bit of the tampered codeword can be set arbitrarily after adap-
tively reading up to d locations within the input codeword. Our
scheme is in the plain model, can be instantiated assuming the exis-
tence of one-way functions, and tolerates tampering by decision trees
of depth d = O(n1/8), where n is the length of the codeword. Notably,
this class includes NC0.
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– Against bounded polynomial-depth tampering, where in each tam-
pering attempt the adversary can select any tampering function that
can be computed by a circuit of bounded polynomial depth (and
unbounded polynomial size). Our scheme is in the common reference
string model, and can be instantiated assuming the existence of time-
lock puzzles and simulation-extractable (succinct) non-interactive
zero-knowledge proofs.

1 Introduction

Related-key attacks (RKAs) allow an adversary to break security of a cryp-
tographic primitive by invoking it under one or more keys that satisfy known
relations. Such attacks were first introduced as a tool for the cryptanalysis of
blockciphers [20,52], but can also be mounted in practice thanks to the ability
of attackers to influence secret keys via tampering attacks [21,22,45].

Theoretically, we can model F-RKA security of a given cryptographic prim-
itive as follows: The attacker can choose multiple tampering functions f1, f2, . . .
within a family of allowed manipulations F of the secret key, and later observe
the effect of such changes at the output by invoking the primitive on cho-
sen inputs. An elegant solution to the problem of constructing F-RKA-secure
cryptoschemes is provided by non-malleable codes [40]. Intuitively, an F-non-
malleable code allows us to encode a message so that a modified codeword via a
function f ∈ F either decodes to the same message or to a completely unrelated
value. In the application to RKA security, we simply encode the secret key κ
and store the corresponding codeword γ in memory. A RKA changes the mem-
ory content to γ̃ = f(γ) for some function f ∈ F . Hence, at each invocation, we
decode the codeword stored in memory and run the corresponding cryptographic
primitive using the obtained key. Since the decoded key is either equal to the
original or unrelated to it, we obtain F-RKA security.

Unfortunately, there are two important caveats to the above general solu-
tion: (i) Since non-malleable codes are only secure against a single tampering
attempt f ∈ F , at each invocation we must completely erase the memory and
re-encode the key; (ii) In case the modified codeword is invalid, and thus cannot
be decoded, we must self-destruct and stop using the underlying primitive. It
turns out that limitation (ii) is inherent, in that Gennaro, Lysyanskaya, Malkin,
Micali and Rabin [45] established that RKA security is impossible without self-
destruct.1 On the other hand, it would be desirable to remove limitation (i)
as perfect erasures of the memory are notoriously hard to implement in prac-
tice [26]. Another drawback of limitation (i) is that it makes the cryptoscheme
stateful (even if it was stateless to start with) and requires fresh randomness for
re-encoding the key.

1 Their attack is simple: The j-th tampering function tries to set the j-th bit of
the secret key to 0: If the device returns an invalid output, the next function fj+1

additionally sets the j-th bit of the key to 1 and otherwise it sets it to 0.
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The stronger notion of continuously non-malleable codes [43] allows us to
overcome limitation (i): Since such codes guarantee F-non-malleability even
against poly-many tampering attempts, one immediately obtains F-RKA secu-
rity without assuming perfect erasures.

1.1 Our Contribution

A nice feature of the above compiler is its generality: In order to achieve F-RKA
security all we need to do is to design an F-non-malleable code. In recent years,
there has been a tremendous progress in the design of non-malleable codes for
several tampering families F of practical interest, including: bit-wise indepen-
dent and split-state tampering [2,4,6,29,40,50,51,53–55], space-bounded tam-
pering [42], small-locality and small-depth circuits [7,10,12,48], decision-tree
and AC0 tampering [13,15], and very recently even bounded polynomial-depth
tampering [11,14,35]. In contrast, continuous non-malleability is only known
for bit-wise independent tampering [32,34], tampering functions with few fixed
points and high entropy [49], constant-state tampering [3], split-state tamper-
ing [5,36,43,56] and space-bounded tampering [30], leaving open the following
intriguing question:

Can we construct continuously non-malleable codes against natural non-
compartmentalized tampering families, such as decision trees, AC0 or even
bounded polynomial-depth circuits?

We answer the above question in the affirmative:

– In the setting of decision-tree tampering, we construct a code which resists
continuous tampering attacks from the family of functions that modify every
bit of the tampered codeword arbitrarily after adaptively reading up to d
locations from the input codeword. Our scheme is in the plain model, assumes
the existence of one-way functions, and tolerates tampering by decision trees
of depth d = O(n1/8), where n is the length of the codeword. Notably, this
class includes NC0.

– In the setting of bounded polynomial-depth tampering, we construct a code
that resists continuous tampering attacks, where the adversary can select any
tampering function that can be computed by a circuit of bounded polynomial
depth (and unbounded polynomial size). Notably, this class includes non-
uniform NC. Our scheme is in the common reference string (CRS) model,
and assumes the existence of time-lock puzzles and simulation-extractable
(succinct) non-interactive zero-knowledge (NIZK) proofs.

We remark that both our constructions rely on computational assumptions.
Although we don’t know whether they are necessary for decision-tree or bounded-
depth continuous tampering, achieving information-theoretic guarantees in the
continuous scenario turned out to be challenging for even more well-studied
families [3,5,28,30,32–34,39,42,49]. We leave this problem open for future work.
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1.2 Technical Overview

Due to space constraints, most proofs have been deferred to the full version
of this paper [25]. Let us start by reviewing different flavors of one-time non-
malleability (see Sect. 3 for formal definitions).

– Non-malleability w.r.t. message/codeword: A code is non-malleable w.r.t.
message (resp. w.r.t. codeword) if a tampered codeword either decodes to
the original message (resp. is identical to the original codeword) or decodes
to a completely unrelated value.

– Super non-malleability: A code is super non-malleable [43,44] if the tampered
codeword itself (when valid) is unrelated to the original message. Note that
the distinction between w.r.t. message and w.r.t. codeword also applies here.

Persistent Tampering. The above flavors can be naturally extended to the setting
of continuous non-malleability. Our first observation is that, in the setting of non-
compartmentalized tampering, continuous non-malleability is only achievable in
the case of persistent tampering, where the j-th tampering function fj is applied
to the output of the previous function fj−1.

The latter can be seen as follows. Consider an adversary that computes offline
a valid encoding of two different messages, for simplicity say μ0 = 0k and μ1 =
1k. Call γ0 and γ1 the corresponding codewords. Next, the attacker prepares a
tampering query that hard-wires γ0, γ1 and proceeds as follows: It reads the first
bit γ[1] of the target codeword; if γ[1] = 0 it overwrites the target codeword
with γ0, while if γ[1] = 1 it overwrites the target codeword with γ1. As a result,
the adversary learns the first bit of the target codeword. Now, if tampering is
non-persistent, the attacker can repeat this procedure to efficiently recover the
entire codeword, which clearly violates continuous non-malleability.2

In light of the above attack, in what follows, and without loss of generality,
when we refer to continuous non-malleability, we implicitly refer to the case of
persistent tampering.

Decision-Tree Tampering. To show our first result, we revisit the recent con-
struction of non-malleable codes against decision-tree tampering by Ball, Guo
and Wichs [15]. On a high-level, this construction first encodes the message μ
using a leakage-resilient non-malleable code in the split-state model, resulting
in a codeword (γL, γR) consisting of a right and a left part. Then, each part γi

for i ∈ {L,R} is encoded independently as follows: we sample a random small
set (whose size is that of the underlying codeword) in a much larger array, plant
the input in these locations and zero everything else out. Finally, we use a ramp
secret sharing with relatively large secrecy threshold to encode a description of
the small set (which can be represented by a seed ζi). To decode, we can simply

2 To the best of our knowledge, this observation is new. Previous work in the setting
of non-compartmentalized tampering implicitly circumvented the above attack by
requiring each tampering function to have high min-entropy and few fixed points, or
by assuming that the number of tampering queries is a-priori bounded [49].
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extract the seed and output what is in the corresponding locations of the array.
This allows us to recover both parts γL, γR and thus obtain the initial message.

Ball, Guo and Wichs [15] show how to simulate the decoded message corre-
sponding to one decision-tree tampering query using bounded split-state leak-
age and one split-state tampering query on the underlying non-malleable code.
Although our construction is similar to theirs, proving continuous non-malleability
is non-trivial and requires significant new ideas. We discuss some of them below.

First, in the original construction, the positions of the codeword that are not
indexed by ζi are ignored, since they are not useful for the reconstruction. In
our case, however, an attacker could copy the original codeword into the zero
bits and overwrite the rest with a valid encoding of an unrelated message, which
would allow it to retrieve the original encoding, thus breaking continuous non-
malleability. We avoid this by requiring such positions to be 0 for the codeword
to be valid. Second, we must ensure that the adversary cannot modify the other
parts of the outer codeword without touching the inner codeword: this is because
otherwise the adversary could use some tampering queries to save a state inside
the codeword, and then use another tampering query to actually tamper with
the codeword using more information than he should. We avoid this attack, by
relying on computational assumptions. The idea is to sample verification keys
vkL, vkR for a one-time signature scheme, generate (γL, γR) as an encoding of the
string μ||vkL||vkR, and finally append signatures σL, σR to the left and right part
of the above described final encoding. In Sect. 3.3, we also show that this trick
works generically to compile any super non-malleable code w.r.t. message into
a super non-malleable code w.r.t. codeword, so long as the tampering family F
allows us to evaluate the signing algorithm of the signature scheme. Intuitively,
our code against decision-tree tampering removes this assumption thanks to
the fact that the split-state model allows us to run arbitrary polynomial-time
functions (independently on the two parts of the codeword).

In a nutshell, our scheme uses as building blocks a split-state nmc, a signature
scheme and a simple procedure transforming states into their sparse versions.
The latter takes as input a length-c-string γ, samples a random set I of c indices
in [n] with n > c, and outputs the sparse codeword γ∗ = (γ∗

1 , γ∗
2 ), where γ∗

1

is a RSS encoding of I, and γ∗
2 is a length-n-string that has γ in the positions

indexed by I, and zeros elsewhere. To extract the original string from the sparse
one, it suffices to use the RSS decoding algorithm on the first part, and return
the corresponding bits of the second part.

The design of our scheme follows.

Algorithm Enc∗(μ). Proceed as follows:
1. Sample two pairs of keys (skL, vkL), (skR, vkR) for the signature scheme
2. Compute the split-state codeword (γL, γR) for the message (μ||vkL||vkR)
3. Compute the sparse strings γ∗

L and γ∗
R for γL and γR.

4. Sign γ∗
L and γ∗

R with, respectively, skL and skR, to get σL and σR.
5. The final codeword is (σL, γ

∗
L , σR, γ∗

R).

The decoding algorithm extracts γL and γR from their sparse versions γ∗
L

and γ∗
R and checks that in the remaining positions there are only zeros, decodes
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the split-state codeword (γL, γR) to get μ||vkL||vkR, verifies the signatures and
outputs ⊥ if verification fails, μ otherwise.

Unfortunately, even with the above modifications, it is unclear how to extend
the original proof of security to the setting of continuous tampering, even if
one assumes the underlying split-state non-malleable code to be continuously
non-malleable. The reason is that the reduction needs to leak some bits from
the codeword for each tampering query, therefore having a large number of
tampering queries would lead to leaking too much information from the split-
state codeword. Instead, we exploit the power of super non-malleability: Assume
the underlying split-state code is super non-malleable w.r.t. codeword.3 Then,
the reduction only needs to know the index q∗ of the first tampering query
which actually modifies the inner codeword. In case the tampered inner codeword
(γ̃L, γ̃R) is invalid, the experiment stops and we are done. Otherwise, if (γ̃L, γ̃R)
is valid, the reduction obtains it in full. At this point, the reduction is able to
simulate the answer to all subsequent tampering queries on its own, as tampering
is persistent, which allows us to conclude continuous non-malleability.4

It remains to be seen how the reduction can obtain the index q∗. A possible
strategy would be to simulate the outcome of all the tampering queries inside the
leakage oracle, and then return the index of the first tampering query which actu-
ally modifies the codeword; however, each bit of a tampering query can depend
on bits of both the left and right part of the inner codeword, while a split-state
leakage query is only allowed to see one of these parts. Our strategy is to guess
the index q∗, and then check at the end of the experiment if the guess was correct
or wrong. Here, we additionally exploit the fact that the underlying split-state
super non-malleable code is information-theoretically secure, which essentially
allows the reduction to run many instances of the experiment inside the leakage
oracle, and check that the adversary does not try to cancel its advantage (due
to a wrong simulation). A similar strategy was already used in [23,24,56]. The
formal proof appears in Sect. 4.1.

Bounded Polynomial-Depth Tampering. Our second construction exploits the
observation that, for certain tampering families, continuous non-malleability
w.r.t. codeword can be reduced to one-time super non-malleability w.r.t.
codeword plus logarithmic (in the security parameter) leakage on the code-
word. Indeed, this is the case as long as the leakage family allows us to run
polynomially-many tampering functions in parallel, and return the index of the
first query that actually modifies the codeword (if any). We formalize this obser-
vation in Sect. 3.3 (see Theorem 3). Note that the latter clearly holds true in the
setting of bounded polynomial-depth leakage and tampering.5

In light of the above, it suffices to construct a one-time super non-malleable
code w.r.t. codeword against bounded polynomial-depth tampering. We do so, by

3 We can take, e.g., the non-malleable code of [5] for a concrete instantiation.
4 As a bonus, we actually prove continuous super non-malleability.
5 The same observation holds true for the setting of AC0 tampering, but not for

decision-tree tampering.
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looking at a slightly more general question. Namely, in Sect. 4.2, we show how to
compile a leakage-resilient non-malleable code into a super non-malleable code
in the CRS model, using simulation-extractable NIZK proofs. The idea is to
encode a message μ using the underlying code, and then append to the resulting
encoding γ a NIZK proof of knowledge π of the randomness ρ used by the
encoder. The decoder outputs ⊥ if the NIZK proof does not verify correctly.

In the reduction, we can simulate the NIZK proof π and then use a leak-
age query in order to obtain the tampered proof π̃ (so long as the proof π̃ is
valid), along with the extracted witness ρ̃ corresponding to a tampered code-
word (γ̃, π̃) = f(γ, π) in the experiment defining super non-malleability. Unfor-
tunately, the randomness ρ̃ is too long6 for being obtained via a leakage query.
However, this issue can be resolved by generating ρ using a pseudorandom gen-
erator G and letting the corresponding λ-bit seed σ be the witness. This allows
the overall leakage to depend only on the security parameter, either assum-
ing simulation-extractable SNARKs [9] (which inherently require non-falsifiable
assumptions [47]), or by making the size of the proof depend only on the size of
the witness (which can be achieved using fully-homomorphic encryption [46]).

More in detail, our compiler builds on a leakage-resilient one-time non-
malleable code (Enc,Dec), a pseudorandom generator G, and a simulation-
extractable proof system. The relation R for the proof system is satisfied by
every couple statement-witness (γ, σ) where γ = Enc(μ;G(σ)) for some mes-
sage μ. Our encoding (and decoding) algorithm takes as input a CRS ω for the
underlying proof system, and is described below.

Algorithm Enc∗(ω, μ): Proceed as follows:
1. Generate a random seed σ for the PRG.
2. Use the underlying non-malleable encoding algorithm Enc with random-

ness G(σ)) to compute a codeword γ for μ
3. Generate a proof π for the couple (γ, σ)
4. Output (γ, π).

The decoding algorithm verifies the proof, returns ⊥ if verification fails, and
the message μ underlying γ otherwise.

A subtlety in the above proof sketch is that the leakage family supported by
the underlying code must allow simulating the proof π, applying the tampering
function f on (γ, π), verifying the tampered proof π̃, and extracting the cor-
responding tampered seed σ̃. Similarly, the tampering family supported by the
underlying code must allow simulating the proof π and applying the tampering
function f on (γ, π). Hence, this compiler does not work for all tampering fam-
ilies. Fortunately, it clearly works for the setting of bounded polynomial-depth
tampering.

Our final result is then achieved by adapting a recent construction of
Dachman-Soled, Komargodski and Pass [35], who showed how to obtain one-time
non-malleability w.r.t. message against bounded polynomial-depth tampering

6 Note that we cannot extract the proof outside the leakage function, as the corre-
sponding statement is the tampered modified codeword γ̃ inside the leakage oracle.
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assuming the existence of key-less hash functions and time-lock puzzles (along
with other standard assumptions); in the CRS model, we show that their con-
struction can be simplified and proven leakage-resilient one-time non-malleable
assuming the existence of time-lock puzzles and simulation-extractable NIZKs.
We refer the reader to Sect. 4.2 and the full version for more details.

Necessity of Super Non-malleability for the Inner Split-State Code. In our con-
struction against decision-tree tampering, we require the inner split-state encod-
ing to be a super non-malleable code, thus allowing for the simulation of the
whole codeword. We argue that this is not an artifact of our proof, but rather a
necessity for our construction to achieve security. Indeed, by using a contrived
instance of a non-malleable code which is not super non-malleable, and contrived
instances of the ramp secret sharing and the signature scheme, we are able to
instantiate our scheme so that the adversary becomes able to retrieve the mes-
sage in full. We consider here a simplified version of our scheme in which we
remove the signature scheme, and we point the reader to [25] for the detailed
explanation and for how to reintroduce back the signatures.

First of all, we need a split-state non-malleable code which has a good amount
of spare bits, initially set to 0, and a secondary mode of operation which uses the
spare bits to reconstruct the message instead of the actual relevant bits. Then,
we need a malleable RSS encoding which allows to only replace a part of the
encoded value leaving everything else intact.

The attack then proceeds as follows: the adversary is now able to tamper
with the RSS encoding so that the spare bits of the split-state codeword are in
a known location (while keeping the other positions untouched), and he is also
able to replace those spare bits with some encoding of either 0 or 1 depending
on some bit that the adversary wants to leak, leaving everything else untouched.
Finally, the adversary uses multiple queries to leak every bit he left untouched,
thus recovering all the bits that are necessary to reconstruct the original message.

Application to RKA Security Without Erasures. It is well known that a con-
tinuously F-non-malleable code allows us to obtain a natural notions of F-
RKA security for arbitrary cryptographic primitives. This was proven by Faust,
Mukherjee, Nielsen, and Venturi [43] for the case of non-persistent tampering.
In [25], we show that the same works for the case of persistent tampering.

1.3 Related Work

In recent work, Freitag et al. [41] investigate non-malleable time-lock puzzles
in the concurrent setting. Their definition generalizes continuous non-persistent
non-malleable codes against bounded depth tampering, but requires that the
adaptive choice of tampering functions runs in bounded depth too. They pro-
vide an impossibility result for the latter, which we extend to all the continuous
non-persistent non-malleable codes against global tampering. Given that, they
introduce the weaker notion of functional concurrent non-malleable time-lock
puzzles, present a construction assuming the existence of (plain) time-lock puz-
zles in the auxiliary-input random oracle model, and provide interesting appli-
cations in coin tossing and electronic auctions.
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Dachman-Soled and Kulkarni [36] show that continuous super non-
malleability in the split-state model inherently requires setup. This impossibility,
instead, does not hold for continuous super non-malleability against persistent
tampering attacks, which can be achieved information-theoretically in the split-
state model.

Leakage-Resilient Locally Decodable and Updatable Non-Malleable
Codes [38] are a fine-grained tool for protecting RAM machines against leak-
age and tampering. In literature, there are constructions in the split-state and
continuous setting [38], with information theoretic security [27], as well as tight
upper and lower bounds [37].

An alternative approach for obtaining generic RKA-security is to rely on non-
malleable key derivation [31,44,57]. The difference with non-malleable codes is
that in this case one stores a uniformly random string in memory which is used
to derive a key for the underlying cryptoscheme at each invocation. Continuously
non-malleable key derivation can essentially be achieved only for tampering via
polynomials or functions with high entropy.

Another line of research seeks direct constructions of RKA-secure crypto-
graphic primitives, including, e.g., pseudorandom functions [1,16,18] public-key
encryption [8,58], identity-based encryption and signatures [19]. RKA security
has become a de-facto standard for block-ciphers, and systems are often designed
while implicitly relying on the RKA-security of the underlying block-cipher (see,
e.g., [17] and references therein).

2 Preliminaries

We start by setting up some basic notation and by recalling the notion of cod-
ing schemes. For space reasons, the definition of other standard cryptographic
primitives is deferred to the full version [25].

2.1 Notation

We denote by [n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗, we denote its length
by |x|; if i ∈ [|x|] and I ⊆ [|x|], we denote by x[i] the i-th bit of x and by x[I]
the substring of x obtained by only considering the bits indexed by I.

If X is a set, |X | represents the number of elements in X . When x is chosen
randomly in X , we write x ←$ X . When A is a randomized algorithm, we write
y ←$ A(x) to denote a run of A on input x (and implicit random coins ρ) and
output y; the value y is a random variable and A(x; ρ) denotes a run of A on
input x and randomness ρ. An algorithm A is probabilistic polynomial-time (PPT
for short) if A is randomized and for any input x, ρ ∈ {0, 1}∗, the computation
of A(x; ρ) terminates in a polynomial number of steps (in the size of the input).

Asymptotics. We denote by λ ∈ N the security parameter. A function p is
polynomial (in the security parameter), if p(λ) = O(λc) for some constant c > 0.
A function ν : N → [0, 1] is negligible (in the security parameter) if it vanishes
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faster than the inverse of any polynomial in λ, i.e. ν(λ) = O(1/p(λ)) for all
positive polynomials p(λ). Unless stated otherwise, we implicitly assume that
the security parameter is given as input (in unary) to all algorithms.

Random Variables. For a random variable X, we write P [X = x] for the prob-
ability that X takes on a particular value x ∈ X , with X being the set over
which X is defined. The statistical distance between two random variables X
and Y over X is defined as Δ (X;Y) := 1

2

∑
x∈X |P [X = x] − P [Y = x]|. Given

two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote
that Xλ and Yλ are identically distributed, X

s≈ Y to denote that they are sta-
tistically close, i.e. Δ (Xλ;Yλ) ≤ ν(λ) for some negligible function ν : N → [0, 1],
and X

c≈ Y to denote that they are computationally indistinguishable, i.e. for all
PPT distinguishers D there is a negligible function ν : N → [0, 1] such that:

ΔD (Xλ;Yλ) := |P [D(Xλ) = 1] − P [D(Yλ) = 1]| ≤ ν(λ).

The notion of computational/statistical indistinguishability generalizes immedi-
ately to ensembles of interactive experiments {GA(λ)}λ∈N where the adversary
A outputs a bit at the end of the interaction.

2.2 Coding Schemes

A (k, n)-code is a pair of algorithms Γ = (Init,Enc,Dec) specified as follows.

Initialization: The initialization algorithm Init is a randomized algorithm that
takes as input the security parameter λ ∈ N (in unary) and outputs a CRS
ω ∈ {0, 1}∗.

Encoding: The encoding algorithm Enc is a randomized algorithm that takes
as input a CRS ω ∈ {0, 1}∗, a message μ ∈ {0, 1}k and outputs a codeword
γ ∈ {0, 1}n.

Decoding: The decoding algorithm Dec is a deterministic algorithm that takes
as input a CRS ω ∈ {0, 1}∗, a codeword γ ∈ {0, 1}n and outputs either a
value in {0, 1}k or ⊥ (denoting an invalid codeword).

We say that Γ satisfies correctness if for all ω ∈ Init(1λ) and all messages μ ∈
{0, 1}k it holds that P [Dec(ω,Enc(ω, μ)) = μ] = 1, where the probability is over
the randomness of the encoding algorithm.

Remark 1 (Coding schemes in the plain model). A code in the plain model can
be obtained by restricting Init to output the empty string. In that case, we
simply write Γ = (Enc,Dec) and omit the string ω as an input of the encoding
and decoding algorithm.

Ramp Secret Sharing. A ramp secret sharing is a coding scheme satisfying the
additional property that any subset of the bits of a codeword with size at most

t · n�, for some t ∈ (0, 1), reveals nothing about the message.
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Definition 1 (Ramp secret sharing). We say that Γ is a binary (k, n, t)-
ramp secret sharing if Γ is a (k, n)-code satisfying the following property: For
every μ ∈ {0, 1}k, and for every non-empty subset I ⊆ {0, 1}n of size at most

t ·n�, we have that Enc(μ)|I is identically distributed to the uniform distribution
over {0, 1}|I|.

As shown by Ball et al. [10], any binary linear error correcting code is a binary
ramp secret sharing with suitable secrecy. In particular, every binary linear error
correcting code correcting at most d errors is a binary ramp secret sharing with
secrecy (d − 1)/n.

Lemma 1 ([10]). For any message length k ∈ N there exist parameters n ∈ N

and t ∈ (0, 1) such that there is a binary (k, n, t)-ramp secret sharing.

3 Non-malleable Codes

In this section, we revisit the definition of non-malleable codes and establish
relations among different flavors of non-malleability.

3.1 Non-malleability

Let Γ be a (k, n)-code, and F = {f : {0, 1}n → {0, 1}n} be a family of functions.
Informally, Γ is non-malleable against tampering in F if decoding a codeword
tampered via functions in F yields either the original message or a completely
unrelated value. In this paper, we refer to the above flavor of security as non-
malleability w.r.t. message. Instead, when a tampered codeword (always via func-
tions in F) is either identical to the original codeword or decodes to a completely
unrelated value, we speak of non-malleability w.r.t. codeword.7

A stronger (as the name suggests) flavor of non-malleability is the so-called
super non-malleability, introduced implicitly in [43] (and explicitly in [44]). This
property requires that not only the output of the decoding, but the codeword
itself, is independent of the message, as long as the tampered codeword is valid
and either different from the original codeword (yielding super non-malleability
w.r.t. codeword) or decoding to something different than the original message
(yielding super non-malleability w.r.t. message).

The definition below formalizes continuous (super) non-malleability w.r.t.
message/codeword. For readability, it will be useful to introduce the following
predicates depending on a code Γ , a CRS ω, two messages μ0, μ1, two codewords
γ, γ̃ and a tampering function f ∈ F :

– msg(ω, μ0, μ1, γ, γ̃): outputs 1 if and only if Dec(ω, γ̃) ∈ {μ0, μ1};
– cdw(ω, μ0, μ1, γ, γ̃): outputs 1 if and only if γ̃ = γ;

7 In the literature, the latter flavor of non-malleability is sometimes known as strong
non-malleability whereas the former flavor is also known as weak non-malleability.
However, we find this terminology rather confusing due to the fact that a code can be
at the same time weakly non-malleable and super non-malleable (as defined below).
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CNMsame,output
Γ,A,F,G (λ, b)

1: ω ←$ Init(1λ)
2: (μ0, μ1, α0) ←$ A0(ω)
3: γ ←$ Enc(ω, μb)

4: return A
Otamper(γ,·),Oleak

� (γ,·)
1 (α0)

Fig. 1. Experiment defining leakage-resilient (super) non-malleable codes, with an
adversary A consisting of subroutines (A0,A1).

– standard(μ̃, γ̃): outputs μ̃;
– super(μ̃, γ̃): outputs μ̃ if μ̃ ∈ {�,⊥}, and γ̃ otherwise.

The above algorithms are called inside the tampering oracle Otamper(γ, ·), which
initializes8 γ̂ = γ and self-destruct parameter δ = 0, and behaves as follows:

1. if δ = 1, output ⊥;
2. compute γ̃ = f(γ̂) and μ̃ = Dec(ω, γ̃);
3. if same(ω, μ0, μ1, γ̂, γ̃) = 1, set μ̃ = �;
4. if μ̃ = ⊥, set δ = 1;
5. set γ̂ = γ̃ and return output(μ̃, γ̃);

We model leakage resilience by an oracle Oleak
� (γ, ·) that accepts as input

functions g ∈ G and returns g(γ) (or ⊥ if δ = 1), for a total of at most � bits.

Definition 2 (Continuously non-malleable codes). Let Γ be a (k, n)-code,
and F ⊆ {f : {0, 1}n → {0, 1}n} and G ⊆ {g : {0, 1}n → {0, 1}∗} be family of
functions. For flags same ∈ {msg, cdw} and output ∈ {standard, super} we say
that Γ is a (G, �)-leakage-resilient persistent continuously F-non-malleable code
if the following holds for the experiments defined in Fig. 1:

{
CNMsame,output

Γ,A,F,G (λ, 0)
}

λ∈N

c≈
{
CNMsame,output

Γ,A,F,G (λ, 1)
}

λ∈N

. (1)

In particular:

– When Eq. (1) holds for same = msg (resp. same = cdw) we speak of persistent
continuous non-malleability w.r.t. message (resp. w.r.t. codeword);

– When Eq. (1) holds for output = super, we refer to persistent continuous
super non-malleability w.r.t. message/codeword. When output = standard, we
speak of persistent continuous non-malleability w.r.t. message/codeword.

– When Eq. (1) holds in the information-theoretic setting with statistical dis-
tance at most ε ∈ [0, 1], we say that Γ is leakage-resilient persistent continu-
ously super non-malleable with statistical security ε.

8 The oracle additionally takes as input all the values that are required to evaluate
the above predicates. We omit them for clarity.
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One-Time Non-malleability. When we restrict the adversary by only allowing
one tampering query, we obtain the weaker notion of one-time non-malleability.
To formalize the latter, it suffices to replace Item 4 with an instruction which
sets δ = 1 regardless of the value of μ̃. We denote the resulting experiment as
1NMsame,output

Γ,A,F,G (λ, b), and in Definition 2 it only suffices to replace Eq. (1) with

{
1NMsame,output

Γ,A,F,G (λ, 0)
}

λ∈N

c≈
{
1NMsame,output

Γ,A,F,G (λ, 1)
}

λ∈N

(2)

to obtain the new notion.

3.2 Families of Tampering Functions

Below, we define a few tampering families of interest for this paper.

Split-State Tampering. Let Γ be a (k, nL + nR)-code. In the split-state model,
we think of a codeword γ ∈ {0, 1}n as consisting of two parts γL ∈ {0, 1}nL , γR ∈
{0, 1}nR . Hence, we consider the following families of tampering and leakage
functions:

Fsplit(nL, nR) := {f = (fL, fR) : fL : {0, 1}nL → {0, 1}nL , fR{0, 1}nR → {0, 1}nR}
Gsplit(nL, nR) :=

{
g = (gL, gR) : gL : {0, 1}nL → {0, 1}�, gR : {0, 1}nR → {0, 1}�

}
.

In this case, we simply say that Γ is �-leakage-resilient super non-malleable w.r.t.
message/codeword in the split-state model.

Decision Trees. Let Γ be a (k, n)-code and d ∈ N. Consider a binary tree of
depth d whose internal nodes are labelled by numbers in [n] and whose leaves
contain values in {0, 1}. Given a binary tree as above, we define a decision tree of
depth d for {0, 1}n as a Boolean function that takes as input a string γ ∈ {0, 1}n

and is described as follows:

– it starts from the root;
– it reads the label i ∈ [n] of the node, and observes the i-th bit of the codeword

γi ∈ {0, 1}: if γi = 0, it descends to the left subtree, while if γi = 1, it moves
to the right subtree;

– it outputs the value of the leaf at the end of the path.

We denote with DT d(n) the set of all decision trees for {0, 1}n with depth at
most d. Hence, we consider the tampering family:

Fd
dtree(n) :=

{
f := (f1, . . . , fn) : ∀i ∈ [n], fi ∈ DT d(n)

}
,

and the leakage family Gd
dtree(n) := DT d(n). In this case, we simply say that Γ is

�-leakage-resilient super non-malleable w.r.t. message/codeword against depth-d
decision-tree tampering and leakage.
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Bounded Polynomial-Time Tampering. Let S(λ), T (λ) be polynomials in the
security parameter. A non-uniform algorithm A is described by a family of algo-
rithms {Aλ}λ∈N

(i.e., a different algorithm for each choice of the security param-
eter). Each Aλ corresponds to an algorithm whose input size is n(λ), where
n : N → N. We say that a non-uniform algorithm A is S-size T -time if, for every
input of size n(λ) for some λ ∈ N, the total work of the algorithm is at most
S(λ) and its parallel running time is upper bounded by T (λ). We denote the
family of non-uniform S-size T -time algorithms as FS,T

non-uni(n), and let

FT
non-uni(n) :=

⋃

S∈poly(λ)

FS,T
non-uni(n).

3.3 Simple Facts

It is not hard to show that (super) non-malleability w.r.t. message is strictly
weaker than (super) non-malleability w.r.t. codeword (e.g., consider a con-
trived code where we append a dummy bit to each codeword which is
ignored by the decoding algorithm). It is also easy to see that non-malleability
w.r.t. message/codeword is strictly weaker than super non-malleability w.r.t.
message/codeword (e.g., consider a contrived code where we encode the mes-
sage twice and where the decoding algorithm ignores the second copy of the
codeword).

Below, we formalize three simple observations. (i) Assuming one-way func-
tions, one can transform any (super) non-malleable code w.r.t. message into
one w.r.t. codeword. (ii) For any (super) non-malleable code w.r.t. mes-
sage/codeword there is a natural tradeoff between security and leakage resilience.
(iii) In some cases, one-time super non-malleability w.r.t. codeword, along with
leakage resilience, are sufficient to imply continuous non-malleability (in the
setting of persistent tampering). All the above statements hold as long as the
tampering family F and the leakage family G supported by the code are large
enough (as detailed below). For simplicity, we stick to the plain model (but
similar statements hold true in the CRS model).

Adding Super Non-malleability w.r.t. Codeword. Let Γ = (Enc,Dec) be a code
and Σ = (Gen,Sign,SigVer) be a signature scheme. Consider the following
derived code Γ ∗ = (Enc∗,Dec∗).

Encoding: The encoding algorithm Enc∗ takes as input a message μ ∈ {0, 1}k,
samples (sk , vk) ←$ Gen(1λ), computes γ ←$ Enc(vk ||μ) and σ ←$ Sign(sk , γ),
and outputs γ∗ = (γ, σ).

Decoding: The decoding algorithm Dec∗ takes as input a codeword γ∗ = (γ, σ),
and computes μ∗ = vk ||μ = Dec(γ). If either μ∗ = ⊥ or SigVer(vk , γ, σ) = 0,
output ⊥. Else output μ.

Let F ⊆ {f : {0, 1}n+s → {0, 1}n+s}, G ⊆ {g : {0, 1}n+s → {0, 1}∗ be
families of functions. In the theorem below, for any function f ∈ F , and any
γ ∈ {0, 1}n and σ ∈ {0, 1}s, we write f(γ, σ)1 (resp. f(γ, σ)2) for the function
that outputs the first n bits (resp. the last s bits) of f(γ, σ).
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Theorem 1. Assume that Σ is a strongly one-time unforgeable signature
scheme with M = {0, 1}n, S = {0, 1}s and V = {0, 1}v, and that Γ is a
(G(n), � + s)-leakage-resilient persistent continuously F(n)-super-non-malleable
(k + v, n)-code w.r.t. message. Then, the above defined (k, n + s)-code Γ ∗

is (G(n + s), �)-leakage-resilient persistent continuously F(n + s)-super-non-
malleable w.r.t. codeword, so long as for all g ∈ G(n + s), all f ∈ F(n + s),
and all (sk , vk) ∈ Gen(1λ) and ρ ∈ {0, 1}∗, it holds that

G(n) ⊇ {g(·,Sign(sk , ·; ρ)), f(·,Sign(sk , ·; ρ))2, } (3)
F(n) ⊇ {f(·,Sign(sk , ·; ρ))1,SigVer(vk , f(·,Sign(sk , ·; ρ)))}. (4)

Intuitively, if the signature scheme is strongly unforgeable, then a tampering
attacker cannot maul γ∗ while preserving vk . On the other hand, the security
of the underlying non-malleable code guarantees that every change to vk makes
the mauled message independent.

Remark 2 (On compartmentalized tampering). Note that Theorem 1 does not
immediately apply in the split-state setting where F = Fsplit(n, n) and G =
Gsplit(n, n), because the conditions of Eq. (3) and Eq. (4) are not satisfied in
general. However, we can slightly modify the code Γ ∗ by signing the left part γL
and the right part γR of a codeword γ = (γL, γR) ∈ {0, 1}2n separately, yielding
signatures σL and σR, and letting γ∗ = ((γL, σL), (γR, σR)) to obtain the above
result for the families Gsplit(n + s, n + s) and Fsplit(n + s, n + s).

Adding Leakage Resilience. Next, we show how to use complexity leveraging in
order to add leakage resilience to any strong-enough non-malleable code. The
latter was already shown by Brian et al. [23] for the case of split-state tamper-
ing, who proved how leakage can be simulated by guessing and later verifying
the accuracy of the guess. In particular, the security loss is exponential in the
number of bits leaked, as the reduction correctly simulates the leakage only when
the guess is exact. We observe that this can be generalized to the case where
tampering via F can reveal whether the answer to a leakage query in G is correct.
We call this property G-friendliness.

Definition 3 (Leakage-friendly tampering). Let F ⊆ {f : {0, 1}n →
{0, 1}n} and G ⊆ {g : {0, 1}n → {0, 1}�} be families of functions. We say that
F is G-leakage friendly if for all g ∈ G, all f ∈ F , and all strings y ∈ {0, 1}�

it holds that f̂ ∈ F where f̂ is the function that upon input γ ∈ {0, 1}n outputs
f(γ) if and only if y = g(γ) (and outputs ⊥ otherwise).

Theorem 2. Let F ⊆ {f : {0, 1}n → {0, 1}n} and G ⊆ {g : {0, 1}n → {0, 1}�}
be families of functions such that F is G-leakage friendly. Assume that Γ is
persistent continuously F-(super)-non-malleable w.r.t. message/codeword, with
statistical security ε ∈ (0, 1). Then, Γ is G-leakage-resilient persistent continu-
ously F-(super)-non-malleable w.r.t. message/codeword, with statistical security
2� · ε, assuming that all the leakage is done before the first tampering query.
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Remark 3 (On computational security). Theorem 2 also holds in the computa-
tional setting, so long as � = O(log λ). In fact, it even holds for � = ω(log λ)
assuming Γ has sub-exponential security.

Remark 4 (On adaptive leakage). We can extend Theorem 2 to leakage families
G ⊆ {g : {0, 1}n → {0, 1}∗}, so long as the notion of leakage friendliness holds for
up to q leakage functions. In this case, leakage resilience holds against adversaries
making at most9 q leakage queries.

Achieving Persistent Continuous Super Non-malleability. Finally, we establish
a connection between one-time super non-malleability and persistent continuous
super non-malleability. Intuitively, one can simulate continuous tampering by
leaking the index of the first tampering query that modifies the codeword and
then obtaining the corresponding mauled codeword via a single tampering query.
This connection was first outlined in [49], and later proven formally in [5] in the
split-state setting. We generalize this observation to general tampering families.

Theorem 3. Let Γ be a (G(n), �+1)-leakage-resilient F(n)-super-non-malleable
(k, n)-code w.r.t. codeword. Assume that for every q(λ) ∈ poly(λ), and every
tuple of tampering functions f (1), . . . , f (q) ∈ F(n), the leakage family G(n) con-
tains the function ĝ(γ) that computes (f (1)(γ), . . . , f (q)(γ))) and returns 1 if and
only if f (1)(γ) = · · · f (q−1)(γ) = γ, but f (q)(γ) �= γ. Then, Γ is also a (G(n), �)-
leakage-resilient persistent continuously F(n)-super-non-malleable (k, n)-code
w.r.t. codeword.

Remark 5 (On super non-malleability w.r.t. codeword). Theorem 3 holds even
starting with a super non-malleable code w.r.t. message, so long as the family F
is closed under composition of poly-many functions (i.e., for all q(λ) ∈ poly(λ)
and all f (1), . . . , f (q) ∈ F the function f (q) ◦ f (q−1) ◦ · · · ◦ f (1) is contained in F).

4 Our Constructions

4.1 Decision-Tree Tampering

Our construction is inspired by [15], with a few modifications that are necessary
in order to prove persistent continuous super non-malleability w.r.t. codeword.
To facilitate the description, let us introduce the following auxiliary function. For
n, c ∈ N, let φ : {0, 1}c log n → P([n]) be the function that, upon input a string
ζ ∈ {0, 1}c log n corresponding to c binary representations of distinct numbers in
[n], outputs the corresponding set of indices I ⊆ [n].

Our scheme is made of two layers, where the outer layer takes as input a
split-state encoding of the message. Let n, c, t ∈ N be such that t ≥ c log n.
Let (EncRSS,DecRSS) be a binary ramp secret sharing with messages in {0, 1}t.
Consider the coding scheme (Enc∗

n,c,t,Dec
∗
n,c,t) described below.

9 Note that, e.g., Fsplit is Gsplit-leakage friendly for any q ∈ poly(λ).
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Algorithm Enc∗
n,c,t(γ). Upon input γ ∈ {0, 1}c:

1. Sample a random string ζ over the set of all strings of length c log n
corresponding to c binary representations of distinct numbers in [n].

2. Let I = φ(ζ) and let I = [n] \ I.
3. Let γ∗ be such that γ∗[I] = γ and γ∗[I] = 0n−c.
4. Output (EncRSS(ζ), γ∗).

Algorithm Dec∗
n,c,t(γRSS, γ

∗). Proceed as follows:
1. Decode ζ = DecRSS(γRSS) and let I = φ(ζ).
2. If there exists i ∈ [n] \ I such that γ∗[i] = 1, return ⊥.
3. Let γ := γ∗[I].
4. Output γ (or (γ, ζ) when ζ is explicitly needed).

We observe that the only difference between our version of the Dec∗
n,c,t algo-

rithm and the one in [15] is the check we perform in Item 2. This modification is
required in order to obtain super non-malleability because, otherwise, an attacker
could copy the original codeword into the 0 bits and then overwrite it with a
constant valid codeword, and this would allow for the retrieval of the original
encoding, and thus of the underlying message, in full.

We are now ready to define the final encoding scheme Γ ∗ =
(Enc∗,Dec∗) with security against decision-tree leakage and tampering. Let
m,nL, nR, c, tL, tR, s, v ∈ N be parameters. Let Σ = (Gen,Sign,SigVer) be a sig-
nature scheme with message space M = {0, 1}∗, signature space S = {0, 1}s and
verification keys in V = {0, 1}v. Let Γ = (NMEnc,NMDec) be a (m+2v, 2c)-code.
Let EncL := Enc∗

nL,c,tL
, EncR := Enc∗

nR,c,tR
, DecL := Dec∗

nL,c,tL
, DecR := Dec∗

nR,c,tR
.

Algorithm Enc∗(μ). Upon input μ ∈ {0, 1}m:
1. Sample (skL, vkL) ←$ Gen(1λ) and (skR, vkR) ←$ Gen(1λ).
2. Run (γL, γR) ←$ NMEnc(μ||vkL||vkR).
3. Run γ∗

L ←$ EncL(γL) and γ∗
R ←$ EncR(γR).

4. Compute σL ←$ Sign(skL, γ
∗
L) and σR ←$ Sign(skR, γ∗

R).
5. Output γ∗ := (σL, γ

∗
L , σR, γ∗

R).
Algorithm Dec∗(γ∗). Proceed as follows:

1. Parse γ∗ = (σL, γ
∗
L , σR, γ∗

R)
2. Run γL = DecL(γ∗

L) and γR = DecR(γ∗
R).

3. Run μ||vkL||vkR = NMDec(γL, γR).
4. Check that SigVer(vkL, γ

∗
L , σL) = 1 and SigVer(vkR, γ∗

R, σR) = 1
5. Output μ, or ⊥ if the above check fails.

We establish the following theorem.

Theorem 4. Let Σ, Γ , and Γ ∗ be as above. Assume that Σ is a strongly one-
time unforgeable signature scheme with signature length s = βc for some β ∈
(0, 1), that Γ is an αc-leakage-resilient super non-malleable (k + 2v, 2c)-code
w.r.t. codeword in the split-state model for some constant α < 1, and that the
privacy thresholds tL, tR of the ramp secret sharing satisfy tL ≥ d and tR ≥ (4tL+
c)d. Then, the code Γ ∗ described above is a persistent continuously super non-
malleable (m,n)-code against depth-d decision-tree tampering for d = O(c1/4)
and n = O(c2).
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Remark 6 (On simulating persistent continuous tampering). The definition of
persistent continuous tampering states that the adversary A has unlimited access
to the tampering oracle, unless A fails to produce a valid codeword, thus receiving
⊥ in all subsequent tampering queries. However, we observe that this is equiva-
lent to asking that A cannot send any more queries to the tampering oracle after
receiving, as a result to a tampering query, a codeword γ̃ ∈ {0, 1}n ∪ {⊥} which
is different from �. This is because, once obtained a tampered codeword which is
either ⊥ or a valid codeword, the adversary can simulate all the other queries on
its own. Notice that this only holds in the case of super non-malleability, since
A needs the tampered codeword in order to simulate the subsequent queries.

The remainder of the section is dedicated to the proof of Theorem 4.

Establishing Useful Notation and Procedures. For ease of notation, let Fd
dtree(n) :=

Fd
dtree,Fsplit(c, c) := Fsplit,Gsplit(c, c) := Gsplit, G∗

A(λ, b) := CNMcdw,super
Γ ∗,A,Fd

dtree,∅
(λ, b)

andGA(λ, b) := 1NMcdw,super
Γ,A,Fsplit

(λ, b). For all adversaries A againstG∗
A(λ, b), we can

assume, without loss of generality, that A performs at most p = poly(λ) tampering
queries. Finally, let EncLRSS be the instantiantion of EncRSS used in EncL and let
EncRRSS be the instantiation of EncRSS used in EncR.

The proof is by reduction. In order to simplify the exposition, we define a
template procedure ObtainBits which we will invoke several times in the actual
proof. Informally, ObtainBits tries to evaluate the decision trees corresponding
to the positions in I of the codeword tampered via f using the information L
already known to the reduction itself; if some information is missing, it leaks
it from the codeword. Since the reduction uses ObtainBits both inside and out-
side the leakage oracle, different sub-procedures are needed to leak these bits,
depending on when ObtainBits is invoked. The formal definition follows.

Procedure ObtainBitsBit,Return(f, I,L):
– Instantiation: A sub-procedure Bit taking as input an index i ∈ [n]

and returning a bit bi ∈ {0, 1}, and a sub-procedure Return taking as
input the set L and a string x ∈ {0, 1}∗ and returning some value.

– Input: A collection of decision trees f , a set of indices I ⊆ [n], a
set L = {(i, b) : i ∈ [n], b ∈ {0, 1}} such that if (i1, b1), (i2, b2) ∈ L
and i1 = i2 then b1 = b2. Informally, I is the set of decision trees
the procedure should compute and L is the prior knowledge of the
algorithm invoking the procedure.

1. Let x be an initially empty string.
2. For all i ∈ I, let initially T = f [i] and compute T as follows.

(a) Let r be the label on the root of T.
(b) If r is a leaf (i.e. T = r), then append r to x and step to the

next index i ∈ I (or break the loop if all decision trees have been
computed).

(c) If there exists (r, b) ∈ L for a b ∈ {0, 1}, let b∗ = b; otherwise, run
b∗ ← Bit(r) and replace L ← L ∪ {(r, b∗)}.
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(d) Replace T with its left subtree if b∗ = 0 and with its right subtree
if b∗ = 1.

(e) Go to Item 2a.
3. Run y ← Return(L, x) and output y.

As for the sub-procedures, we define the following possibilities for the tem-
plate argument Bit.

– Procedure Leak(i): Use the leakage oracle to leak the bit i from the split-
state codeword.

– Procedure Await(i): Abort the procedure ObtainBits, returning (await, i).

Finally, we define the following possibilities for the template argument Return.

– Procedure Ready(L, x): Return (ready).
– Procedure Check(L, x): Return 1 if x is the all 0 string and return 0 if x

contains at least one 1.
– Procedure Update(L, x): Return the updated set L.

Notice that, when using the sub-procedure Leak, algorithm ObtainBits presents
an undefined behaviour whenever there exists (i, b) /∈ L such that i does not
refer to any position on the split-state codeword; however, our reduction only
invokes ObtainBits with sets L such that the only missing indices are indices
which belong to the split-state codeword.

Ruling Out Signature Forgeries. For any adversary A against G∗
A(λ, b), q ∈

[p], j ∈ {L,R}, let W(q)
j be the event in which the first q − 1 tampering queries

from A do not modify the codeword and the q-th tampering query f (q) is
such that f (q)(γ∗) = (σ̃L, γ̃

∗
L , σ̃R, γ̃∗

R) satisfies (i) NMDec(DecL(γ̃∗
L),DecR(γ̃∗

R)) =
μ̃||ṽkL||ṽkR with ṽk j = vk j and (ii) SigVer(vk j , γ̃

∗
j , σ̃j) = 1 and (γ̃∗

j , σ̃j) �=
(γ∗

j , σj). Let W := WL∪WR, where WL :=
⋃

q∈[p] W
(q)
L and WR :=

⋃
q∈[p] W

(q)
R .

Informally, W is the event in which the adversary A against G∗
A(λ, b) modifies

the message but not the codeword, thus successfully forging a signature.
For b ∈ {0, 1}, let H∗

A(λ, b) be the experiment G∗
A(λ, b) in which the challenger

aborts whenever W happens. Clearly, the two experiments G∗ and H∗ are only
distinguishable when W happens, therefore, if we show that W happens with
negligible probability, it follows that G∗(λ, b) and H∗(λ, b) are statistically close.

Lemma 2. For all PPT adversaries A there is a negligible function ν : N →
[0, 1] such that Pr[W] ≤ ν(λ).

Reducing to Split-State Non-malleability with Augmented Adversaries. Now we
want to perform the reduction to the split-state super non-malleable code. Unfor-
tunately, we cannot convert each decision-tree tampering query to a split-state
tampering query because each conversion needs some leakage and we would end
up leaking too many bits. However, the reduction only needs to simulate the
first tampering query which actually modifies the codeword, because the answer
to all previous queries is �.
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In order to apply this idea, we first define an experiment Haug which, infor-
mally, is the same of G except that the adversary is given one-time oracle access
to the needed information, i.e. the index of the first tampering query actually
modifying the codeword. The only remaining problem is that the reduction Âaug

still performs too much leakage to verify whether the tampered codeword is valid
or not; this is because the reduction should check that the padding string inside
the codeword γ∗ does not contain any 1. The solution is to give the reduction
Âaug oracle access to this information too, so that now Âaug is able to simulate
the experiment to the adversary A without performing too much leakage.

More formally, let A be an adversary telling apart H∗(λ, 0) and H∗(λ, 1)
with non-negligible advantage and let RunInfoA(τ) be a function which takes as
input the transcript τ of the execution of A(1λ; ρA) when the codeword is γ∗ and
outputs the index q� of the first tampering query that is not answered � and a bit
b⊥ which is 1 if the output of such tampering query is ⊥ and 0 otherwise. Notice
that τ is uniquely determined by the random coins ρA of A and the decision-tree
codeword γ∗ = comp(γ) which is compiled by some deterministic compilation
instructions comp from the split-state codeword γ. Therefore, we can define the
oracle Oaug

A (γ, comp, ρA) which is initialized with the split-state codeword γ and,
upon receiving the query containing the instructions comp and the random coins
ρA, computes τ and outputs RunInfoA(τ). Consider the experiment Haug

Â,A
(λ, b)

which is exactly the same as GÂ except that Â is given one-time oracle access
to Oaug

A (γ, ·, ·) before the tampering query.
Let Isgn

L , Irss
L , Istr

L , Isgn
R , Irss

R , Istr
R be a partition of [n] such that, given an encod-

ing γ∗, Isgn
L (resp. Isgn

R ) contains the positions of γ∗ in which is stored the left
(resp. right) signature, Irss

L (resp. Irss
R ) contains the positions of γ∗ in which

is stored the left (resp. right) ramp secret sharing and Istr
L (resp. Istr

R ) con-
tains the positions of γ∗ in which is stored the string containing the left (resp.
right) part of the codeword and the left (resp. right) zeroes. For j ∈ {L,R}, let
Ij = Isgn

j ∪ Irss
j ∪ Istr

j . We now show a reduction Âaug which is able to tell apart
Haug

Âaug,A
(λ, 0) and Haug

Âaug,A
(λ, 1) with non-negligible advantage.

1. Sample random coins ρA, ρencL , ρencR , ρsgnL , ρsgnR and random strings ζL, ζR.
2. For j ∈ {L,R}, let Icdw

j = φ(ζj) and Izero
j = Istr

j \ Icdw
j .

3. Compute ωL = EncLRSS(ζL; ρ
enc
L ) and ωR = EncRRSS(ζR; ρencR ).

4. Sample (skL, vkL) ←$ Gen(1λ) and (skR, vkR) ←$ Gen(1λ).
5. Run A(1λ; ρA), obtaining the challenge messages μ0, μ1; then construct the

challenge messages μ∗
0 := μ0||vkL||vkR and μ∗

1 := μ1||vkL||vkR and send
μ∗
0, μ

∗
1 to the challenger.

6. For j ∈ {L,R}, construct the leakage function gsgnj which hard-wires the
values ρencj , ρsgnj , ζj , ωj , sk j and, upon input the codeword part γj , computes
γ∗

j = Encj(γj ; ρencj , ζj) and σj = Sign(sk j , γ
∗
j ; ρsgnj ) and outputs σj .

7. Send (gsgnL , gsgnR ) to the leakage oracle, thus obtaining the signatures (σL, σR).
8. Let L be a set which, initially, contains all the pairs (i, b) such that i ∈

[n] \ Icdw
L ∪ Icdw

R and b = γ∗[i]. Notice that the only bits unknown to Â are
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the ones belonging to the split-state codeword, namely, the ones in Icdw
L and

in Icdw
R ; therefore, Â is able to construct the set L.

9. Using the information in L, construct the compilation information comp
which is used to compile the split-state codeword γ into the decision-tree
codeword γ∗ = comp(γ).

10. Send (comp, ρA) to the augmented oracle Oaug
A , thus receiving a pair (q�, b⊥).

11. Upon receiving the q-th tampering query f (q) ∈ Fd
dtree from A, return � if

q < q�; otherwise let f = f (q) and do the following.
(a) Obtaining the necessary bits: run the procedure

L ← ObtainBitsLeak,Update(f, Isgn
L ∪ Irss

L ∪ Isgn
R ∪ Irss

R ,L),

then use the set L to compute the tampered signatures σ̃L, σ̃R and the
tampered encodings ω̃L, ω̃R.

(b) Obtaining the new positions: for j ∈ {L,R}, compute ζ̃j = DecRSS(ω̃j)
and let Ĩcdw

j = φ(ζ̃j) and Ĩzero
j = Ĩstr

j \ Ĩcdw
j .

(c) Leaking the remaining bits for the left part: construct the leakage function
ĝL
L which hard-wires (a description of) the tampering function f , the

sets Icdw
L and Ĩcdw

L and the set L and, upon input the left part γL of
the codeword, constructs the set LL = {(i, γ∗[i]) : i ∈ Icdw

L }, runs the
procedure

y ← ObtainBitsAwait,Ready(f, Ĩcdw
L ,L ∪ LL) (5)

and returns y. Then, send (ĝL
L , ε) to the leakage oracle, thus obtaining a

value y. If y = (await, i) for some i ∈ Icdw
R , leak γ∗[i] from the right part

of the codeword, update L ← L ∪ {(i, γ∗[i])} and repeat this step.
(d) Leaking the remaining bits for the right part: construct the leakage func-

tion ĝL
R which hard-wires (a description of) the tampering function f , the

sets Icdw
R and Ĩcdw

R ∪ Ĩzero
R and the set L and, upon input the right part

γR of the codeword, constructs the set LR = {(i, γ∗[i]) : i ∈ Icdw
R }, runs

the procedure

y ← ObtainBitsAwait,Ready(f, Ĩcdw
R ∪ Ĩzero

R ,L ∪ LR)

and returns y. Then, send (ε, ĝL
R ) to the leakage oracle, thus obtaining a

value y. If y = (await, i) for some i ∈ Icdw
L , leak γ∗[i] from the left part of

the codeword, update L ← L ∪ {(i, γ∗[i])} and repeat this step.
(e) Validating the right part: construct the leakage function ĥchk

R which hard-
wires (a description of) the tampering function f , the sets Icdw

R and Ĩcdw
R ∪

Ĩzero
R and the set L and, upon input the right part γR of the codeword,

constructs the set LR = {(i, γ∗[i]) : i ∈ Icdw
R }, runs the procedure

bvalid ← ObtainBitsAwait,Check(f, Ĩcdw
R ∪ Ĩzero

R ,L ∪ LR)

and returns bvalid. Then, send (ε, ĥchk
R ) to the leakage oracle, thus obtaining

the bit bvalid. If bvalid = 0, abort the simulation and return a random guess.
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(f) Tampering with the codeword: for j ∈ {L,R}, construct the tampering
function f̂j which hard-wires the strings σL, σR, ωL, ωR, the sets Icdw

L , Icdw
R ,

L and (a description of) the tampering query f and, upon input the
codeword part γj , computes the tampered codeword part γ̃j by using the
additional bits given by L and then returns γ̃j . Send the query (f̂L, f̂R) to
the tampering oracle, thus obtaining a codeword γ̃ ∈ {0, 1}2c ∪ {�,⊥}. If
γ̃ ∈ {�,⊥}, abort the simulation and return a random guess. Otherwise,
let γ̃ = (γ̃L, γ̃R), reconstruct γ̃∗

L (resp. γ̃∗
R) using the value γ̃L and the set

Icdw
L (resp. the value γ̃R and the set Icdw

R ) and set γ̃∗ = (σ̃L, γ̃
∗
L , σ̃R, γ̃∗

R).
(g) Checking the signature: reconstruct the tampered message μ̃||ṽkL||ṽkR.

Then, check that ṽkL �= vkL and ṽkR �= vkR, compute bL = SigVer(vkL, σ̃L,
γ̃∗
L) and bR = SigVer(vkR, σ̃R, γ̃∗

R), check that bL = bR = 1 and abort the
simulation returning a random guess if one of the previous checks fails.

Finally, set γ̃∗ = ⊥ if b⊥ = 1, return γ̃∗ to A and output the same distin-
guishing bit as A.

For the analysis, notice that the reduction Âaug perfectly simulates H∗(λ, b) to
A unless the leakage performed exceeds the admissible leakage αc− 1; therefore,
when the leakage is within the bounds, Âaug has the same advantage of A.

The following lemma allows us to conclude that GÂ(λ, 0) and GÂ(λ, 1) are
computationally close.

Lemma 3. If there exists an adversary Âaug which is able to distinguish between
Haug

Âaug,A
(λ, 0) and Haug

Âaug,A
(λ, 1) with non-negligible advantage, then there exists

an adversary Â which is able to distinguish between GÂ(λ, 0) and GÂ(λ, 1) with
non-negligible advantage.

Bounding the Leakage. It remains to bound the leakage made by the reduction.

Proposition 1 ([15, Proposition 1]). Let n, c, t ∈ N such that t ≥ c log n. Let
A be an arbitrary algorithm that reads adaptively at most t bits of (EncRSS(ζ),
φ(ζ)). Let Y denote the number of distinct 1’s in φ(ζ) which are read by A.
Then, over the randomness of ζ and EncRSS,

Pr
[

Y ≥ 2tc

n

]

≤ exp
(

− tc

3n

)

.

Lemma 4. Suppose tR ≥ (4tL + c + 2s)d. Let �bitR be the amount of positions b
leaked from γR. Then, for any γ ∈ {0, 1}2c, the event that �bitR ≥ 2(4tR + 4tL +
c + 2s)dc/nR happens with probability at most (4d + 1) exp(−tRc/3nR).

Lemma 5. Suppose tL ≥ d. Let �bitL be the amount of positions b leaked from
γL. Then, for any γ ∈ {0, 1}2c, the event that �bitL ≥ 2(4tL + 4tR + nR + 2s)dc/nL

happens with probability at most (4tL + 4tR + nR + 2s)d/tL exp(−tLc/3nL).
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Let

�tamp =
(
�bitL + �bitR

)
(1 + log(c))

= 2dc

(
4tL + 4tR + nR + 2s

nL
+

4tR + 4tL + c + 2s

nR

)

(1 + log(c)).

By the above lemmas, the event that the amount of leakage performed by Â
exceeds �tamp+2s+2 (recall that the reduction also leaks 2s bits for the signatures
and 2 bits for checking the simulation) happens with probability at most

(4d + 1) exp(−tRc/3nR) + (4tL + 4tR + nR + 2s)d/tL exp(−tLc/3nL). (6)

Lemma 6. Fix α ∈ (0, 1). Then, there exist constants η1, η2, η3, η4 (only
dependent on α) such that, if tL = η1c log n, tR = η2dc log n log c, nL =
η3d

3c log n log3 c, nR = η4d
2c log n log2 c, then �tamp ≤ αc with overwhelming

probability.

By choosing the parameters as in Lemma 6, the length of the final codeword
satisfies

n = 2s + 4tL + 4tR + nL + nR = O(d3c log n log3 c),

which can be rewritten as n/ log n = O(c7/4 log3 c), thus making n = O(c2) a
good approximation, and the total amount of leakage is � = �tamp + 2βc + 2,
which, with a good choice of the parameters η1, . . . , η4 and α, β, can simply be
rewritten as � ≤ αc. This concludes the proof of Theorem4. ��

4.2 Bounded Polynomial-Depth Tampering

Our construction for bounded polynomial-depth tampering, works in three steps.

(i) First, we show a compiler for turning any leakage-resilient non-malleable
code into a leakage-resilient super non-malleable code; the compiler is non-
black-box, as it relies on NIZK proofs, and thus yields a code in the CRS
model (even if the initial code is in the plain model).

(ii) Second, we show how to instantiate the above compiler by simplifying the
non-malleable code for bounded polynomial-depth tampering of Dachman-
Soled et al. [35] (thanks to the fact that we rely on trusted setup).

(iii) Third, we argue that the family of bounded polynomial-depth tampering
satisfies the conditions of Theorem3, so that persistent continuous non-
malleability follows by steps (i) and (ii).

Let Γ = (Enc,Dec) be a (k, n)-code with randomness space {0, 1}r, let G :
{0, 1}s → {0, 1}r be a PRG, and let Π = (CRSGen,Prove,ProofVer) be a non-
interactive argument system with proof space P = {0, 1}m for the relation:

R =
{
(γ, σ) ∈ {0, 1}n × {0, 1}s : ∃μ ∈ {0, 1}k s.t. γ = Enc(μ;G(σ))

}
. (7)

Consider the following (k, n+m)-code Γ ∗ = (Init∗,Enc∗,Dec∗) in the CRS model.
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Initialization: The initialization algorithm Init∗ outputs ω ←$ CRSGen(1λ).
Encoding: The encoding algorithm Enc∗ proceeds as follows:

– sample a uniformly random seed σ ←$ {0, 1}s and compute ρ = G(σ);
– let γ = Enc(μ; ρ);
– run π ←$ Prove(ω, γ, σ);
– return γ∗ = (γ, π).

Decoding: The decoding algorithm Dec∗, upon input a codeword γ∗ = (γ, π),
proceeds as follows:

– run ProofVer(ω, γ, π), and output ⊥ if the verification fails;
– compute μ = Dec(γ), and output ⊥ if the decoding fails;
– else, return μ.

Let F ⊆ {f : {0, 1}n+m → {0, 1}n+m} be a family of functions. In the
theorem below, for any function f ∈ F , and any γ ∈ {0, 1}n and π ∈ {0, 1}m,
we write f(γ, π)1 (resp. f(γ, π)2) for the function that outputs the first n bits
(resp. the last m bits) of f(γ, π).

Theorem 5. Assume that Π is a one-time simulation extractable non-
interactive zero-knowledge argument system for the relation of Eq. (7), with proof
space P = {0, 1}m, with zero-knowledge simulator S = (S0,S1) and with extractor
K. Let Γ be a (G(n), � + s + m)-leakage-resilient F(n)-non-malleable (k, n)-code
w.r.t. message/codeword.

Then, the above defined (k, n + m)-code Γ ∗ is (G(n + m), �)-leakage-resilient
F(n + m)-super-non-malleable w.r.t. message/codeword, so long as for every
g ∈ G(n + m) and every f ∈ F(n + m), all γ ∈ {0, 1}n, all π ∈ {0, 1}m, and all
(ω, ζ, ξ) ∈ S0(1λ), it holds that:

G ⊇ {g(·,S1(ζ, ·))1,ProofVer(ω, f(·,S1(ζ, ·))),K(ξ, f(·,S1(ζ, ·)))} (8)
F � f(·,S1(ζ, ·))1. (9)

Instantiating the Proof System. Since the underlying code Γ needs to tolerate
at least m bits of leakage, where m is the size of a proof under Π, Theorem 5
implicitly requires proofs that are sub-linear in the size of the statement (which
is a codeword), but not of the witness (which is a seed for the PRG). In the liter-
ature, such proofs are referred as Succinct Non-interactive Arguments of Knowl-
edge (SNARKs). In [9], the authors present a simulation-extractable SNARK
whose proofs consist of 4 group elements. The security proof relies on both the
generic group model (GGM) and the random oracle model (ROM).

Alternatively, we can use [46], where fully-homomorphic encryption (FHE)
and NIZK argument systems are used to achieve succinct-proof NIZK argument
systems for all of NP. The succinct proof for an NP relation R is built as follows:

– The witness x is encrypted with key σ into a ciphertext u of the same length
by means of a symmetric-key encryption scheme (namely, one-time pad with
a pseudorandom key generated from σ via a PRG G).
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– The key generation algorithm of the FHE is called with randomness ρ to get
(pk , sk). Next, the FHE scheme is used with keys (pk , sk) and randomness τ
to encrypt the symmetric key σ into a ciphertext z. Then, the FHE evalua-
tion algorithm takes as input the ciphertext z, and the NP relation R over
statement y and witness u ⊕ G(·), and returns a ciphertext v.

– The underlying prover provides an argument π for the statement (pk , z, v)
and witness (ρ, σ, τ), proving that (pk , sk) are generated according to ρ, that
z is an encryption of σ according to pk , τ and that v decrypts to 1.

– The succinct proof is given by (pk , z, u, π).

Since |u| = |x| and (pk , z, π) are polynomial in the security parameter, the proof
size is |x| + poly(λ). Also note that (pk , z, u, π) is sufficient to verify the proof,
as one can obtain v and then call the underlying verification algorithm.

In their work, Gentry et al. [46] show that this transformation preserves the
soundness and the zero-knowledge property of the underlying NIZK argument
system. However, their result also applies to simulation extractability. For a
high-level idea, call A an adversary against the simulation-extractability of the
succinct-proof scheme. Assume that, given a simulated proof (pk , z, u, π) for a
statement y of its choice, A manages to produce an accepting and fresh pair
(ỹ, (p̃k , ũ, z̃, π̃)). Consider the extractor that takes as input (ỹ, (p̃k , ũ, z̃, π̃)) and
as trapdoor (pk , sk), and does the following. If p̃k �= pk , it computes the homo-
morphic evaluation ṽ of the circuit R(ỹ, ũ⊕G(·)) on ciphertext z̃ with p̃k . Then,
it runs the underlying extractor over ((p̃k , z̃, ṽ), π̃) to get (ρ̃, σ̃, τ̃). If p̃k = pk , the
extractor only needs to decrypt z̃ to get σ̃. In both cases, it outputs x̃ = ũ⊕G(σ̃).

Instantiating the Underlying Code. To instantiate the underlying code, we start
from the construction of Dachman-Soled et al. [35] which is in the plain model
and relies on key-less hash functions, time-lock puzzles, as well as other standard
assumptions. In the CRS model, their construction can be simplified as follows:
The encoding of a message μ consists of a time-lock puzzle ζ computed using μ
(with some fixed difficulty parameter) and a simulation-extractable NIZK proof
of knowledge π of the message μ inside the puzzle. We refer the reader to [25]
for the formal description and the security analysis in the CRS model.

Proving Continuous Non-malleability. Finally, we invoke Theorem3 to conclude
persistent continuous non-malleability. To do that, we need to check that the
leakage family of bounded polynomial-depth circuits contains the function ĝ in
the statement of the theorem. In our case, it suffices to consider leakage resilience
against circuits of depth ≤ T +c for a small constant c, and compute the leakage
function ĝ as follows. Upon input the codeword γ, consider q parallel sub-circuits,
where the i-th circuit computes f (i)(γ), and outputs bi = 1 if f (i)(γ) = γ, bi = 0
otherwise. The circuit will then output 1 if b1 = · · · = bq−1 = 0 and bq = 1, and
0 otherwise. By inspection, every sub-circuit has depth ≤ T + c, as it computes
a tampering function and a bit-wise comparison (feasible in constant depth). To
check if b1 = · · · = bq−1 = 0, it suffices to compute b = OR(b1, . . . , bq−1). The
leakage function finally outputs AND(NOT(b), bq).
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5 Conclusions

We have shown how to achieve continuous non-malleability in two natural set-
tings: (i) decision-tree tampering, and (ii) bounded polynomial-depth tampering.
The first result is in the plain model; the second result requires trusted setup.
Both constructions rely on computational assumptions (one-way functions in (i),
and time-lock puzzles and simulation-extractable succinct-proof NIZKs in (ii)).
Natural open problems include: removing computational assumptions from our
construction in (i), and weakening the assumptions from our construction in (ii).
We leave these as interesting directions for future research.

Our paper provides the first crucial insights for constructing continuously
non-malleable codes against non-compartmentalized tampering. In particular:

– We prove for the first time that security against non-persistent global tam-
pering is impossible in the continuous setting.

– We prove for the first time that, when the target tampering family is pow-
erful enough, continuous non-malleability follows from one-time super non-
malleability with log bits of leakage resilience. The latter, in particular, is
true for bounded-depth tampering and for AC0 tampering.

– We show a generic transform to reduce one-time super non-malleability to one-
time non-malleability using NIZK proofs; this transform requires the under-
lying tampering family to satisfy certain properties, which are met in the
setting of bounded polynomial-depth tampering.

We believe the above observations are important, and will turn useful for
future constructions of continuously non-malleable codes against other non-
compartmentalized tampering families (e.g., AC0 tampering), possibly under
weaker assumptions.

References
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Abstract. In known security reductions for the Fujisaki-Okamoto
transformation, decryption failures are handled via a reduction solv-
ing the rather unnatural task of finding failing plaintexts given the pri-
vate key, resulting in a Grover search bound. Moreover, they require
an implicit rejection mechanism for invalid ciphertexts to achieve a rea-
sonable security bound in the QROM. We present a reduction that has
neither of these deficiencies: We introduce two security games related
to finding decryption failures, one capturing the computationally hard
task of using the public key to find a decryption failure, and one cap-
turing the statistically hard task of searching the random oracle for key-
independent failures like, e.g., large randomness. As a result, our security
bounds in the QROM are tighter than previous ones with respect to the
generic random oracle search attacks: The attacker can only partially
compute the search predicate, namely for said key-independent failures.
In addition, our entire reduction works for the explicit-reject variant
of the transformation and improves significantly over all of its known
reductions. Besides being the more natural variant of the transforma-
tion, security of the explicit reject mechanism is also relevant for side
channel attack resilience of the implicit-rejection variant. Along the way,
we prove several technical results characterizing preimage extraction and
certain search tasks in the QROM that might be of independent interest.

Keywords: Public-key encryption · post-quantum security · QROM ·
Fuji-saki-Okamoto transformation · decryption failures · NIST

1 Introduction

The Fujisaki-Okamoto (FO) transform [FO99,FO13] is a well known transforma-
tion that combines a weakly secure public-key encryption scheme and a weakly
secure secret-key encryption scheme into an IND-CCA secure public-key encryp-
tion scheme in the random oracle model. Dent [Den03, Table 5] gave an adoption
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for the setting of key-encapsulation. This adoption for key encapsulation mecha-
nisms (KEM) is now the de-facto standard to build secure KEMs. In particular,
it was used in virtually all KEM submissions to the NIST PQC standardisation
process [NIS17]. In the context of post-quantum security, however, two novel
issues surfaced: First, many of the PKE schemes being transformed into KEM
are not perfectly correct, i.e., they sometimes fail to decrypt a ciphertext to
its plaintext. Second, security proofs have to be done in the quantum-accessible
random oracle model (QROM) to be applicable to quantum attackers.

Both problems were tackled in [HHK17] and a long sequence of follow-
up works (among others [SXY18,JZC+18,BHH+19,HKSU20,KSS+20]). While
these works made great progress towards achieving tighter reductions in the
QROM, the treatment of decryption failures did not improve significantly. In
this work, we make significant progress on the treatment of decryption failures.
Along the way, we obtain several additional results relevant on their own.

An additional quirk of existing QROM reductions for the FO transform is
that they require an implicit rejection variant, where pseudorandom session keys
are returned instead of reporting decapsulation errors, to avoid extreme reduc-
tion losses. (The only known concrete bound [DFMS21] for Dent’s variant is
much weaker then those known for the implicit rejection variant.)

The Fujisaki-Okamoto transformation. We recall the FO transformation for
KEM as introduced in [Den03, Table 5] and revisited by [HHK17], there called
FO⊥

m. FO⊥
m constructs a KEM from a public-key encryption scheme PKE, and the

overall transformation FO⊥
m can be described by first modifying PKE to obtain a

deterministic scheme PKEG, and then applying a PKE-to-KEM transformation
(called U⊥

m in [HHK17]) to PKEG:

Modified scheme PKEG. Starting from PKE and a hash function G, deter-
ministic encryption scheme PKEG is built by letting EncG encrypt messages m
according to the encryption algorithm Enc of PKE, but using the hash value
G(m) as the random coins for Enc: EncG(pk, m) := Enc(pk, m;G(m)). DecG uses
the decryption algorithm Dec of PKE to decrypt a ciphertext c to obtain m′, and
rejects by returning ⊥ if c fails to decrypt or m′ fails to encrypt back to c.

PKE-to-KEM transformation U⊥
m. Starting from a deterministic encryption

scheme PKE’ and a hash function H, key encapsulation algorithm KEM⊥
m :=

U⊥
m[PKE′,H] is built by letting Encaps(pk) := (c := Enc′(pk, m), K := H(m)),

where m is picked at random from the message space. Decapsulation will return
K := H(m) unless c fails to decrypt, in which case it returns failure symbol ⊥.

Combined PKE-to-KEM transformation FO⊥
m. The ’full FO’ transforma-

tion FO⊥
m is defined by taking PKE and hash functions G and H, and defining

FO⊥
m[PKE,G,H] := U⊥

m[PKEG,H]. While there exists a plethora of variants that
differ from FO⊥

m, it was proven [BHH+19] that security of these variants is either
equivalent to or implied by security of FO⊥

m.

The role of correctness errors in security proofs for FO. Correctness
errors play a role during the proof that an FO-transformed KEM is IND-CCA
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secure: To tackle the CCA part, it is necessary to simulate the decapsulation ora-
cle oDecaps without the secret key, meaning the plaintext has to be obtained
via strategies different from decrypting. While different strategies for this exist in
both ROM and QROM, they all have in common that the obtained plaintext is
rather a plaintext that encrypts to the queried ciphertext (a “ciphertext preim-
age”) than the decryption. Consequently, the simulation fails to recognise failing
ciphertexts, i.e., ciphertexts for which decryption results in a plaintext different
from the ciphertext preimage (or even in ⊥), and will in this case behave differ-
ently from oDecaps. Hence, the simulations are distinguishable from oDecaps
if the attacker can craft such failing ciphertexts.

The approach chosen by [HHK17] was to show that the distinguishing advan-
tage between the two cases can be bounded by the advantage in a game COR.
Game COR (defined in [HHK17]) provides an adversary with a key pair (includ-
ing the secret key) and asks to return a failing message, i.e., a message that
encrypts to a failing ciphertext, for the derandomized scheme PKEG. [HHK17]
further bounded the maximal advantage in game COR for PKEG in terms of a
statistical worst-case quantity δwc of PKE, which is the expected maximum prob-
ability for plaintexts to cause a decryption failure, with the expectation being
taken over the key pair. This results in a typical search bound as the adversary
can use the secret key to check if a ciphertext fails. In the QROM, the resulting
bound is therefore 8q2δwc, q being the number of queries to G.1

Intuitively, this notion suffers from two related unnatural features:
– First, it is unnatural to provide adversaries with the secret key, as long as the
scheme has at least some basic security.2 In particular, this observation applies
to adversaries tasked with finding failing plaintexts, which is not a mere issue of
aesthetics: If the secret key is given to the adversary, an analysis of this bound
can’t make use of computational assumptions without becoming heuristic.3
– Second, it is unnatural that the bound contains a Grover-like search term with
regard to δwc: As IND-CCA adversaries don’t have access to the secret key, they
can only check if ciphertexts fail via their classical CCA oracle, which should
render a Grover search impossible. Furthermore, in ROM and QROM, it should
be the (usually much smaller) number of CCA queries that limits the adversary’s
ability to search, not the number of random oracle queries. Hence this bound
seems overly conservative.

While follow-up works have used different games in place of COR to deal with
decryption errors, all result in the same quantum search bound in terms of δwc.

1 Some publications (e.g., [JZC+18]) use the bound 2q · √
δwc, it is however straight-

forward to verify that the bound above can be achieved by using [HKSU20, Lemma
2.9] as a drop-in replacement. Note that this is indeed a quadratic improvement
unless 4q · √

δwc > 1, in which case the IND-CCA bound is meaningless, anyways.
2 Schemes that allow for a key recovery attack serve as pathological examples why

this argument does not hold in generality.
3 An example we happen to be aware of is the analysis of the correctness error bound

of Kyber [BDK+18].
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Main contribution. Our main contribution is a new security reduction for the
FO transformation that improves over existing ones in two ways.

Decryption failures. We introduce a family of new security games, the Find
Failing Plaintext (FFP) games. These provide a much more natural framework
for dealing with decryption errors in the FO transformation, and it is the novel
structure of our reduction that allows their usage. Two important members of
the FFP family are as follows: The first one, Find Failing Plaintext that is Non-
Generic (FFP-NG), gives a public key to the adversary and asks it to find a
message that triggers a decryption failure more likely with respect to this key
pair than with respect to an independent key pair. The second one, Find Failing
Plaintext with No Key (FFP-NK), tasks an adversary with producing a message
that triggers a decryption failure with respect to an independently sampled key
pair, without providing any key to the adversary. As summarised in Fig. 1, we
provide a reduction from FFP-NG and passive security of PKE together with
FFP-NK for PKEG to IND-CCA security of the FO-transformed of PKE. This new
reduction structure avoids both unnatural features mentioned above:
– None of the two failure-related games FFP-NG and FFP-NK provide the adver-
sary with the secret key. In particular, we show how to bound an adversary’s
advantage in game FFP-NK in terms of δik, the worst-case decryption error rate
when the message is picked independently of the key, and additional related sta-
tistical parameters . We give two concrete example bounds, one involving the
variance based on Chebyshev’s inequality and one based on a Gaussian-shaped
tail bound. We expect that these “independent-key” statistical parameters can
be estimated more conveniently and without heuristics, by exploiting the com-
putational assumptions of the PKE scheme at hand.
– Game FFP-NK still allows for a Grover search advantage, but only when search-
ing for messages that are more likely to cause a failure on average over the key.
This game corresponds, e.g., to the first attempt at finding a failure in attacks
like [DVV18,BS20,DRV20]. In the context of the entire security reduction for
FO, the advantage in this game is multiplied with the number of decapsula-
tion queries a CCA attacker makes, correctly reflecting the fact that the ability
of identifying a decryption failure should depend on the CCA oracle and is thus
limited. Game FFP-NG defines a property of the underlying PKE scheme, it thus
allows to analyze the hardness of finding meaningful decryption failures indepen-
dently from the hardness of searching a random oracle for them. FFP-NG seems
thus more amenable to both security reductions and cryptanalysis.

As a consequence of these features, we expect our reduction to yield much
better security bounds that provide non-trivial provable security for real-world
parameters.

FO with explicit rejection. Our reduction employs a technique for gen-
eralized preimage extraction in the QROM that was recently introduced in
[DFMS21]. As shown by [DFMS21], this technique is well-suited for proving
FO⊥

m secure. We furthermore generalize the one-way to hiding (OWTH) lemma
[AHU19] such that it is compatible with the technique from [DFMS21]. OWTH
was used to derive the state-of-the-art bounds for implicitly rejecting variants,
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and combining the two techniques, we obtain a security bound for FO⊥
m that is

competitive with said state-of-the-art bounds.

QROM tools. To facilitate the above-described reduction, we provide two
technical tools that might be of independent interest: Firstly, we generalize
the OWTH framework from [AHU19] such that it can be combined with the
extractable quantum random oracle simulation from [DFMS21], rendering the
two techniques compatible with being used together in the same security reduc-
tion. We make crucial use of this possibility to avoid the additional reduction
losses that [DFMS21] need to accept to be able to use the plain one-way to
hiding framework in juxtaposition with the extractable simulator.

Secondly, we prove query lower bounds for tasks where an algorithm has
access to a QRO (or even an extractable simulator thereof) and has to output
an input value x which, together with the corresponding oracle output RO(x),
achieves a large value under some figure-of-merit function. We use this technical
result to provide the aforementioned bounds for the adversarial advantage in the
FFP-NK game, but they might prove of independent interest.

TL;DR for scheme designers. Section 6 provides concrete bounds for the
IND-CCA security of FO⊥

m[PKE,G,H]. Besides having to analyze the conjectured
passive security of PKE, applying the bounds to a concrete scheme PKE requires
to analyze the following computational and statistical properties:
– γ, the spreadness of PKE.
– An upper bound for FFP-NG against PKE.
– Either an upper bound for FFP-NK for PKEG, in our extended oracle model
that allows preimage extractions, or, two statistical values: δik, the worst-case
decryption error rate when the message is picked independently of the key, and
σδik , the maximal variance of δik.

Acknowledgements. We would like to thank Dominique Unruh for valuable
discussions about the semi-classical one-way to hiding lemma and Manuel Bar-
bosa for pointing out the use of heuristics in bounds for delta.

2 ROM Reduction

This section substantiates the upper half of Fig. 1 in the ROM. The first step of
common security reductions for the FO transformation consists of simulating the
decapsulation oracle without using the secret key. This simulation allows trans-
forming an IND-CCA-KEM-adversary A against KEM⊥

m := FO⊥
m[PKE,G,H] into

an IND-CPA-KEM-adversary Ã against the same KEM⊥
m. The oracle simulation,

however, will not accurately simulate the behaviour of Decaps for ciphertexts
that trigger decryption errors. We will show that from an adversary capable of
distinguishing between the real decapsulation oracle and its simulation, we can
construct an adversary B that is able to extract failing plaintexts for the deran-
domised version PKEG of PKE. In more detail, we formalise extraction of failing
plaintexts as the winning condition of two Find Failing Plaintext (FFP) games,
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PKEG

FFP-CPA
PKEG

FFP-CCA

PKE
IND-CPA

PKE
OW-CPA

KEM⊥
m

IND-CPA

KEM⊥
m

IND-CCA

KEM�⊥
m

IND-CCA

Thms. 2/4

FO⊥
m , [HHK17]/ Thm. 7

FO⊥
m , [HHK17]/ Thm. 8

Thm. 1/3

[BHH+19, Thm. 3]
(also see Rmk. 1)

δik, σδik small PKEG

FFP-NK

PKE
FFP-NG

PKEG

FFP-CCA

Thm. 10

Thm. 9

Fig. 1. Summary of our results. Top: ”Ths. X/Y“ indicates that we provide a ROM
Thm. X (in Sect. 2) and a QROM Thm. Y (Sect. 4). Bottom: Breaking down FFP-CPA
security of PKEG (Sect. 5). Solid (dashed) arrows indicate tight (non-tight) reductions
in the QROM. Theorems 2 and 4 have comparably mild tightness loss: It is linear in
the number of decryption queries. Theorems 7 and 8 are as lossy as previously known
ones.

which we formally define in Definition 1 (also see Fig. 2). For ATK ∈ {CPA,CCA},
an adversary B playing the FFP-ATK game for a deterministic encryption scheme
PKE gets access to the same oracles as in the respective IND-ATK game, outputs
a message m, and wins if Dec(Enc(m)) �= m. (Here, and in the following, we
sometimes omit the arguments pk and sk, respectively.) For such messages m
we say that m is a failing plaintext, or shorter, that m fails. The final bounds we
obtain are essentially similar to the ones in [HHK17] except for involving a dif-
ferent correctness definition, see the discussion after Remark 1. Game FFP-CCA
was already introduced in [BS20], there called COR-ad-CCA.

Definition 1 (FFP-ATK). Let PKE = (KG,Enc,Dec) be a deterministic public-
key encryption scheme. For ATK ∈ {CPA,CCA}, we define FFP-ATK games as
in Fig. 2, where OATK is trivial if ATK = CPA and

OATK := oDecrypt if ATK = CCA.

We define the FFP-ATK advantage function of an adversary A against PKE as

AdvFFP-ATK
PKE (A) := Pr[FFP-ATKA

PKE ⇒ 1] .

Note that in neither FFP-ATK game, the adversary has access to the secret
key. In particular, the FFP-CPA game only differs from the correctness game
COR defined in [HHK17] in exactly this fact, as game COR additionally provides
the secret key. We note that an adversary winning either FFP-ATK game for a
deterministic scheme PKE can be used to win in game COR.

We start by introducing two simulations of the Decaps oracle, oDecaps′ and
a variant oDecaps′′ of oDecaps′. oDecaps′′ extracts failing plaintexts from
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Game FFP-ATK
01 (pk, sk) ← KG
02 m ← AOATK,G(pk)
03 c := Enc(pk, m)
04 m′ := Dec(sk, c)
05 return �m′ �= m�

oDecrypt(c)
06 m := Dec(sk, c)
07 return m

Fig. 2. Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA,CCA}. OATK is
the decryption oracle present in the respective IND-ATK-KEM game (see Definition 1)
and G is a random oracle, provided if it is used in the definition of PKE.

adversarial decapsulation queries, and is simulatable by FFP adversaries with
access to the decryption oracle oDecrypt for PKEG. Both simulations of the
Decaps oracle make use of a list L of previous queries to G and their respective
encryptions. For this to work, we replace G with a modification G′ that keeps
track of all issued queries and compiles L. The original Decaps oracle and its
simulations are defined in Fig. 3, using the following conventions. For a set of
pairs L ⊂ X ×Y, we assume that a total order is chosen on X and Y. We denote
by L−1(y) the first preimage of y. Formally, we define L−1(y) by setting

L−1(y) :=
{

x if (x, y) ∈ L and x ≤ x′ for all x′ s. th. (x′, y) ∈ L
⊥ � x s. th. (x, y) ∈ L.

(1)

The simulation oDecaps′ can, however, only reverse encryptions that were
already computed by the adversary (with a query to oracle G′) before their query
to oracle oDecaps′, which is where the spreadness of PKE comes into play: If
γ is large, it becomes unlikely that the attacker can guess an encryption c =
Enc(pk, m;G(m)) without a respective query to G. oDecaps′ will furthermore
answer inconsistently if the reversion (in other words, the preimage) of c differs
from its decryption, meaning that c belongs to a failing plaintext that can be
recognized by the failure-extracting variant oDecaps′′.

Theorem 1. Let PKE be a (randomised) PKE scheme that is γ-spread, and
let KEM⊥

m := FO⊥
m[PKE,G,H]. Let A be an IND-CCA-KEM-adversary (in the

ROM) against KEM⊥
m, making at most qD many queries to its decapsulation ora-

cle oDecaps. Then there exist an IND-CPA-KEM adversary Ã and an FFP-CCA
adversary B against PKEG such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ AdvFFP-CCA

PKEG (B) + qD · 2−γ . (2)

Ã makes qG queries to G and qH + qD queries to H, B makes qG queries to G and
qD decryption queries, and both adversaries run in about the time of A.

Proof. Let A be an adversary against KEM⊥
m. We define Ã as the IND-CPA-KEM

adversary against KEM⊥
m that runs b′ ← AG′,H,oDecaps′ and returns b′. We fur-

thermore define our FFP-CCA adversary B against PKEG as follows: B runs
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oDecaps(c)
01 m′ := Dec(sk, c)
02 if m′ = ⊥
03 return K:=⊥
04 else
05 c′ := Enc(pk, m′;G(m′))
06 if c �= c′ return ⊥
07 else return H(m′)
G′(m)
08 r := G(m)
09 c := Enc(pk, m; r)
10 LG := LG ∪ {(m, c)}
11 return r

oDecaps′(c �= c∗)
12 m := L−1

G (c)
13 if m = ⊥
14 return K:=⊥
15 else return K := H(m)
oDecrypt(c �= c∗)
16 m′ := Dec(sk, c)
17 if m′ = ⊥
18 return ⊥
19 else
20 if Enc(pk, m′;G(m′)) �= c
21 return ⊥
22 else return m′

oDecaps′′(c �= c∗)
23 m := L−1

G (c)
24 m′ := oDecrypt(c)
25 if m �= ⊥and m �= m′

26 LFAIL := LFAIL ∪ {m}
27 if m = ⊥
28 return K:=⊥
29 else
30 return K := H(m)

Fig. 3. Simulation oDecaps′ of oracle oDecaps for KEM⊥
m, failing-plaintext-

extracting version oDecaps′′ of oDecaps′, and decryption oracle oDecrypt for PKEG.
Oracles oDecaps′ and oDecaps′′ use in lines 12 and 23 the notation introduced in
Eq. (1). G′ only differs from G by compiling list LG (which was initialized to ∅).

AG′,H,oDecaps′′ , using its own FFP-CCA oracle oDecrypt to simulate oDecaps′′.
As soon as oDecaps′′ adds a plaintext m to LFAIL, B aborts A and returns m.
If A finishes and LFAIL is still empty, B returns ⊥.

First, we will relate A’s success probability to the one of Ã. Note that unless
Ã’s simulation oDecaps′ of the decapsulation oracle fails, Ã perfectly simulates
the game to A and wins if A wins. Let DIFF be the event that A makes a
decryption query c such that Decaps(sk, c) �= oDecaps′(c). We bound

1
2 +AdvIND-CCA-KEM

KEM⊥
m

(A)=Pr [A wins]=Pr [A wins∧¬DIFF]+Pr [A wins∧DIFF]

= Pr
[
Ã wins ∧ ¬DIFF

]
+ Pr [A wins ∧ DIFF] ≤ Pr

[
Ã wins

]
+ Pr [DIFF]

= 1
2 + AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ Pr [DIFF] .

To analyze the probability of event DIFF, we note that it covers several cases:

- Original oracle oDecaps(c) rejects, whereas simulation oDecaps′(c) does
not, meaning that c is an encryption belonging to a previous query m to G′,
but fails the reencryption check performed by oDecaps(c). Since the latter
means that either m′ := Dec(sk, c) = ⊥ or that Enc(pk, m′;G(m′)) �= c =
Enc(pk, m;G(m)), this case only occurs if Dec(sk, c) �= m, meaning m fails.

- Neither oracle rejects, but the return values differ, i.e., c is an encryption
belonging to a previous query m to G′, but decrypts to some message m′ �= m.

- oDecaps′(c) rejects, whereas oDecaps(c) does not, i.e., while c would pass
the reencryption check, its decryption m has not yet been queried to G′.

In either of the former two cases, G′ has been queried on a failing plaintext
m and the decapsulation oracle has been queried on its encryption c, meaning
that the failing plaintext can be found and recognized by B since B can use its
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own FFP-CCA oracle oDecrypt to simulate oDecaps′′. We will denote the last
case by GUESS since A has to find a guess for a ciphertext c that passes the
reencryption check, meaning it is indeed of the form c = Enc(pk, m;G′(m)) for
m := Dec(sk, c), while not having queried G′ on m yet. Whenever DIFF occurs,
B succeeds unless GUESS occurs. In formulae,

Pr[DIFF]=Pr[DIFF∧¬GUESS]+Pr[DIFF∧GUESS]
≤AdvFFP-CCA

PKEG (B)+Pr [GUESS].

Together with Lemma 1 below, this yields the desired bound. 
�

We continue by bounding the probability of event GUESS. We will also need
to analyze a very similar event in Theorem 2, in which we revisit the FFP-CCA
attacker B against PKEG, and where we will simulate B’s oracle oDecrypt
via an oracle oDecrypt′ (see Fig. 4). Therefore, we generalize the definition of
event GUESS accordingly. Since GUESS means that A computed a ciphertext
c = Enc(pk, m;G(m)) before querying G on m, the probability can be upper
bounded in terms of the maximal probability of any ciphertext being hit by
Enc(pk, −; −). For completeness, we prove Lemma 1 in the full version.

Lemma 1. Let PKE be γ-spread, and let A be an adversary expecting oracles G,
H as well as either a decapsulation oracle oDecaps for KEM⊥

m or a decryption
oracle oDecrypt for PKEG, issuing at most qD queries to the latter. When run
with G′ and simulated oracle oDecaps′ (or oDecrypt′, respectively), there is
only a small probability that original oracle oDecaps (oDecrypt) would not
have rejected, but simulation oDecaps′ (oDecrypt′) does. Concretely, we have

Pr [GUESS] ≤ qD · 2−γ . (3)

So far, we have shown that whenever an IND-CCA adversary A’s behaviour
is significantly changed by being run with simulation oDecaps′ instead of the
real oracle oDecaps, we can use A to find a failing plaintext, assuming access
to the FFP-CCA decryption oracle oDecrypt for PKEG. We now show that
oDecrypt can be simulated via oracle oDecrypt′ (see Fig. 4) without the
secret key, thereby being able to construct an FFP-CPA adversary from any
FFP-CCA adversary that succeeds with the same probability up to (at most) a
multiplicative factor equal to the number of decryption queries the FFP-CCA
adversary makes.

Theorem 2. Let PKE be -γ-spread, and let B be an FFP-CCA adversary against
PKEG, issuing at most qD many decryption queries. Then there exists an FFP-
CPA adversary B̃ such that

AdvFFP-CCA
PKEG (B) ≤ (qD + 1) · AdvFFP-CPA

PKEG

(
B̃

)
+ qD · 2−γ . (4)

Adversary B̃ makes at most the same number of queries to G as B and runs in
about the time of B .
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oDecrypt′(c)
01 m := L−1

G (c)
02 return m
G′(m)
03 c := Enc(m;G(m))
04 LG := LG∪{(m, c)}
05 return G(m)

B̃G

06 i ←$ {1, ..., qD + 1}
07 if i < qD + 1
08 Run BG′,oDecrypt′

(pk) until i-th query ci to oDecrypt′

09 m := L−1
G (ci)

10 else
11 m ← BG′,oDecrypt′

(pk)
12 return m

Fig. 4. Simulation oDecrypt′ of oracle oDecrypt for PKEG, which is defined anal-
ogously to oDecaps′ (see Fig. 3), and FFP-CPA adversary B̃. For the reader’s conve-
nience, we repeat the definition of G′.

Proof. To simulate oDecrypt, we use a similar strategy as in the proof of
Theorem 1. We define the events DIFF and GUESS in the same way as in the
proof of Theorem 1, except now with respect to the adversary B and oracles
oDecrypt (oDecrypt′) instead of oDecaps (oDecaps′). If our simulation
does not fail, then a reduction can simulate the FFP-CCA game to B and use
B’s output to win its own FFP-CPA game. The simulation will fail if either
GUESS happens (with probability at most qD · 2−γ due to Lemma 1), or DIFF,
while GUESS does not, meaning that the failing message triggering DIFF can
be extracted from LG. Our reduction B̃ combines both approaches (using B’s
output and LG). Since B̃ has no knowledge of the secret key, it cannot determine
which message will let it succeed and hence has to guess.

Assume without loss of generality that B makes exactly qD many queries to
oracle oDecrypt. Consider the adversary B̃G in Fig. 4. B̃ samples i ← {1, ..., qD+
1} and either runs BG′,oDecrypt′ until its i-th query to oDecrypt′ or until the
end if i = qD+1. To implement G′, B̃ uses its oracle G. Simulation oDecrypt′ is
defined in Fig. 4 and works analogous to oDecaps′ in the previous proof. Finally,
B̃ outputs query preimage L−1

G (ci), where ci is B’s i-th query to decryption oracle
oDecrypt′, unless i = qD + 1, in which case B̃ outputs the output of B.

Using the same chain of inequalities as in the proof of Theorem 1, and again
using Lemma 1, we obtain

AdvFFP-CCA
PKEG (B) ≤ Pr [B wins ∧ ¬DIFF] + Pr [DIFF ∧ ¬GUESS] + qD · 2−γ . (5)

Adversary B̃ perfectly simulates game FFP-CCA unless DIFF occurs, and wins
with probability 1/qD +1 if B wins by returning a failing plaintext or if B issues a
decryption query that triggers DIFF but not GUESS.

AdvFFP-CPA
PKEG

(
B̃

)
= 1

qD + 1 · (Pr [B wins ∧ ¬DIFF] + Pr [DIFF ∧ ¬GUESS]) (6)

Combining Eqs. (5) and (6) yields the desired bound. 
�

Next, we observe that IND-CPA security of KEM⊥
m can be based on passive

security of PKE. This result is implicitly contained in [HHK17] since [HHK17]
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proved such a result for IND-CCA security of KEM⊥
m. Combining Theorems 1 and

2 with the result from [HHK17], we obtain the following

Corollary 1. Let PKE and A be as in Theorem 1. Then there exist a OW-CPA
adversary BOW-CPA and an IND-CPA adversary BIND-CPA such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤(qRO + qD + 1) · AdvOW

PKE(BOW-CPA)

+ (qD + 1) · AdvFFP-CPA
PKEG (C) + 2qD · 2−γ

and

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ 3 · AdvIND-CPA

PKE (BIND-CPA) + 2 · (qRO + qD) + 1
|M|

+ (qD + 1) · AdvFFP-CPA
PKEG (B) + 2qD · 2−γ .

C makes qG queries to G, and all adversaries run in about the time of A.

We remark that the factor 2 in front of the additive term qD · 2−γ is an artefact
of our modular proof (in terms of Theorems 1 and 2). It is straightforward to
show that the bound of Corollary 1 can be proven without the factor of 2, when
directly analyzing the composition of the reductions from Theorems 1 and 2.

When comparing our bounds with the respective bounds from [HHK17], we
note that our bounds are still in the same asymptotic ball park and differ from
the bounds in [HHK17] essentially by replacing the worst-case correctness term
δwc (there denoted by δ) present in [HHK17] by AdvFFP-CPA

PKEG (B), and having an
additional term in γ even for KEM �⊥

m. We believe that the additional γ-term
could be removed by doing a direct proof for KEM�⊥

m, but redoing the whole
proof for this variant was outside the scope of this work. We will further analyze
AdvFFP-CPA

PKEG (B) in Sect. 5.

Remark 1 (Obtaining the results for FO �⊥
m[PKE]). We can use the results from

[BHH+19] to furthermore show that the bounds given in Corollary 1 also hold if
KEM⊥

m := FO⊥
m[PKE,G,H] is replaced with KEM�⊥

m := FO⊥
m[PKE,G,H]: In more

detail, it follows directly from [BHH+19, Theorem 3] that for any IND-CCA-KEM
attacker A against KEM�⊥

m, there exists an IND-CCA-KEM attacker B against
KEM⊥

m such that AdvIND-CCA-KEM
KEM�⊥

m
(A) ≤ AdvIND-CCA-KEM

KEM⊥
m

(B) and Corollary 1 does
not contain any terms relative to KEM⊥

m itself, it only contains terms relative to
the underlying schemes PKE and PKEG.

3 Compressed Oracles and Extraction

We want to generalize the ROM results obtained in Sect. 2 to the QROM. To
this end, we will use an extension of the compressed oracle technique [Zha19]
that was introduced in [DFMS21]. It was shown in [Zha19] how a quantum-
accessible random oracle O : X → Y can be simulated by preparing a database
D with an entry Dx for each input value x, with each Dx being initialized as a
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uniform superposition of all elements of Y , and omitting the “oracle-generating”
measurements until after the algorithm accessing O has finished. In [DFMS21],
this oracle simulation was generalized to obtain an extractable oracle simulator
eCO (for extractable Compressed Oracle) that has two interfaces, the random
oracle interface eCO.RO and an extraction interface eCO.Ef , defined relative to
a function f : X × Y → T . Whenever it is clear from context which function f
is used, we simply write eCO.E instead of eCO.Ef .

In general, eCO.Ef can extract preimage entries from the “database” D dur-
ing the runtime of an adversary instead of only after the adversary terminated.
This allows for adaptive behaviour of a reduction, based on an adversary’s
queries. In [DFMS21], it was already used for the same purpose we need it for
– the simulation of a decapsulation oracle, by having eCO.E extract a preimage
plaintext from the ciphertext on which the decapsulation oracle was queried. We
will denote oracles modelled as extractable quantum-accessible ROs by eQROf ,
and a proof that uses an eQROf will be called a proof in the eQROMf .

We will now make this description more formal, closely following notation and
conventions from [DFMS21]. Like in [DFMS21], we describe an inefficient variant
of the oracle that is not (yet) “compressed”. Efficient simulation is possible via
a standard sparse encoding, see [DFMS21, Appendix A]. The simulator eCO for
a random function O : {0, 1}m → {0, 1}n is a stateful oracle with a state stored
in a quantum register D = D0m . . . D1m , where for each x ∈ {0, 1}m, register Dx

has n + 1 qubits used to store superpositions of n-bit output strings y, encoded
as 0y, and an additional symbol ⊥, encoded as 10n. We adopt the convention
that an operator expecting n input qubits acts on the last n qubits when applied
to Dx. The compressed oracle has the following three components.
– The initial state of the oracle, |φ〉 = |⊥〉2m

– A quantum query with query input register X and output register Y is
answered using the oracle unitary OXY D defined by

OXY D|x〉X = |x〉X ⊗
(
FDx

CNOT⊗n
Dx:Y FDx

)
, (7)

where F |⊥〉 = |φ0〉, F |φ0〉 = |⊥〉 and F |ψ〉 = |ψ〉 for all |ψ〉 such that 〈ψ|⊥〉 =
〈ψ|φ0〉 = 0, with |φ0〉 = |+〉⊗n being the uniform superposition. The CNOT
operator here is responsible for XORing the function value (stored in Dx, now
in superposition) into the query algorithm’s output register.

– A recovery algorithm that recovers a standard QRO O: apply F ⊗2m to D and
measure it to obtain the function table of O.
We now make our description of the extraction interface eCO.E formal: Given

a random oracle O : {0, 1}m → {0, 1}n, let f : {0, 1}m × {0, 1}n → {0, 1}� be a
function. We define a family of measurements (Mt)t∈{0,1}� . The measurement
Mt has measurement projectors {Σt,x}x∈{0,1}m∪{∅} defined as follows. For x ∈
{0, 1}m, the projector selects the case where Dx is the first (in lexicographical
order) register that contains y such that f(x, y) = t, i.e.

Σt,x =
⊗
x′<x

Π̄t,x′
D′

x
⊗ Πt,x

Dx
, with Πt,x =

∑
y∈{0,1}n:
f(x,y)=t

|y〉〈y| (8)
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and Π̄ = 1 − Π. Σt,∅ covers the case where no register contains such a y, i.e.

Σt,∅ =
⊗

x′∈{0,1}m

Π̄t,x′
D′

x
. (9)

As an example, say we model a random oracle H as such an eQROf . Using
f(x, y) := �H(x) = y�, M1 allows us to extract a preimage of y.

eCO is initialized with the initial state of the compressed oracle. eCO.RO
is quantum-accessible and applies the compressed oracle query unitary OXY D.
eCO.E is classically-accessible. On input t, it applies Mt to eCO’s internal state
and returns the result. eCO has useful properties that were characterized in
[DFMS21, Theorem 3.4]. These characterisations are in terms of the quantity

Γ (f) = max
t

ΓRf,t
, with

Rf,t(x, y) :⇔ f(x, y) = t and
ΓR := max

x
|{y | R(x, y)}|. (10)

For f = Enc(·; ·), the encryption function of a PKE that takes as inputs a message
m and an encryption randomness r, we have Γ (f) = 2−γ |R| if PKE is γ-spread.
In this case, eCO.E(c) outputs a plaintext m such that Enc(m, eCO.RO(m)) = c,
or ⊥ if the ciphertext c has not been computed using eCO.RO before.

4 QROM Reduction

In this section, we generalize the reductions from Sect. 2 to the QROM. To do so,
we give in Fig. 6 the quantum analogues of the simulated decapsulation oracles
oDecaps′ and oDecaps′′ from Fig. 3, which were (essentially) developed in
[DFMS21]. We have to adapt our simulations since the ROM simulations from
Fig. 3 use book-keeping techniques and therefore cannot be easily implemented
in the standard QROM. Instead, we use the formalism described in Sect. 3, i.e.,
we use a simulation of a quantum-accessible random oracle and make use of
the additional extraction interface eCO.E: While the simulations in Fig. 3 had
access to a list LG that could be used to extract potential ciphertext preimages,
the simulations in Fig. 6 can now extract them by accessing extractor eCO.E
(see lines 12 and 24). The rest of the simulation is exactly as before. Using the
notation from Sect. 3, we denote the modelling of the ROM as extractable by
eQROMEnc, as we extract preimages relative to function f = Enc(pk, ·, ·), with
the message being f ’s first and the randomness being f ’s second input.

We split this section as follows: Sect. 4.1 ends with IND-CPA security of KEM⊥
m

and FFP-CPA security of PKEG, in the eQROMEnc. We give the eQROMf defi-
nition of FFP-ATK in Fig. 5. Section 4.2 develops the necessary eQROMEnc tools
to further analyze IND-CPA security of KEM⊥

m. Concretely, Sect. 4.2 provides
an eQROMEnc-compatible variant of the one-way to hiding (OWTH) lemma for
semi-classical oracles as introduced in [AHU19]. Equipped with the results from
Sect. 4.2, we show in Sect. 4.3 that also in the eQROMEnc, IND-CPA security of
FO⊥

m[PKE,G,H] can be based on passive security of PKE.
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Game FFP-ATK
01 (pk, sk) ← KG
02 m ← AOATK,eCO(pk)
03 c := Enc(pk, m)
04 return �Dec(sk, c) �= m�

oDecrypt(c)
05 m := Dec(sk, c)
06 return m

Fig. 5. Games FFP-ATK for a deterministic PKE, where ATK ∈ {CPA,CCA}, in the
eQROMf . Like in its classical counterpart (see Fig. 2, page 420), OATK is the decryption
oracle present in the respective IND-ATK-KEM game . The only difference is that
random oracle G is now modelled as an extractable superposition oracle eCO.

4.1 From IND-CPAFO[PKE] and FFP-CCAG
PKE to IND-CCAFO[PKE]

We begin by proving a quantum analogue of Theorem 1.

Theorem 3. Let PKE be a (randomized) PKE that is γ-spread, and KEM⊥
m :=

FO⊥
m[PKE,G,H]. Let A be an IND-CCA-KEM-adversary (in the QROM) against

KEM⊥
m, making at most qD, qG and qH queries to oDecaps, G and H, respectively.

Let furthermore d and w be the combined query depth and query width of A’s
random oracle queries. Then there exist an IND-CPA-KEM adversary Ã and an
FFP-CCA adversary B against PKEG, both in the eQROMEnc, such that

AdvIND-CCA-KEM
KEM⊥

m
(A)≤AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+AdvFFP-CCA

PKEG (B)+12qD(qG+4qD)·2−γ/2.

The adversary Ã makes qG + qH + qD queries to eCO.RO with a combined depth
of d + qD and a combined width of w, and qD queries to eCO.E. Here, eCO.RO
simulates G × H. The adversary B makes qD many queries to oDecrypt and
eCO.E and qG queries to eCO.RO, and neither Ã nor B query eCO.E on the
challenge ciphertext. The running times of the adversaries Ã and B are bounded
as Time(Ã) = Time(A) + O(qD) and Time(B) = Time(A) + O(qD).

Before proving the theorem, we point out similarities and differences to the
ROM counterpart, Theorem 1. First note that the bounds look very similar. The
only difference lies in the additive error term that depends on the spreadness
parameter γ. In the above theorem, this additive error term O(qDqG2−γ/2) is
much larger than the term O(qD2−γ) present in Theorem 1. It originates from
dealing with the fact that the extraction technique used to simulate the Decaps
oracle inflicts an error onto the simulation of the QRO. We expect that for
many real-world schemes, the additive security loss of O(qDqG2−γ/2) is still small
enough to be neglected. Another important difference between Theorem 3 and
Theorem 1 is of course that the adversaries Ã and B are now in the non-standard
eQROMEnc. Looking ahead, we provide further reductions culminating in Corol-
lary 6 which gives a standard-QROM bound for KEM⊥

m in terms of (standard
model) security properties of PKE.

Proof. We prove this theorem via a number of hybrid games, drawing some inspi-
ration from the reduction for the entire FO transformation given in [DFMS21].
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oDecaps(c �= c∗)
01 m′ := Dec(sk, c)
02 if m′ = ⊥
03 return K:=⊥
04 else
05 c′ := Enc(pk, m′;G(m′))
06 if c �= c′

07 return ⊥
08 else
09 return H(m′)

G′, input registers X, Y
10 Apply eCO.ROXY D

11 return registers XY

oDecaps′(c �= c∗)
12 m ← eCO.E(c)
13 if m = ⊥
14 return ⊥
15 else
16 return H(m)

oDecrypt(c)
17 m′ := Dec(sk, c)
18 if m′ = ⊥
19 return ⊥
20 else if
Enc(pk, m′;G(m′)) �=c
21 return ⊥
22 else
23 return m′

oDecaps′′(c �= c∗)
24 m ← eCO.E(c)
25 m′ := oDecrypt(c)
26 if m �= ⊥and m �= m′

27 LFAIL := LFAIL ∪ {m}
28 if m = ⊥
29 return ⊥
30 else
31 return H(m)

Fig. 6. Simulated and failing-plaintext-extracting versions of the decapsulation ora-
cle oDecaps for FO⊥

m[PKE,G,H], using the extractable QRO simulator eCO from
[DFMS21] (see Sect. 3). The simulations of oDecaps are exactly like the ROM ones in
Fig. 3 except for how they extract ciphertext preimages (lines 12, 24). eCO is assumed
to be freshly initialized before oDecaps′ or oDecaps′′ is used for the first time, and
extraction interface eCO.E is defined with respect to function f = Enc(pk, ·; ·).

Game G0 is IND-CCA-KEMKEM⊥
m

(A).
Game G1 is like Game G0, except for two modifications: The quantum-

accessible random oracle G is replaced by G′ as defined in Fig. 6, and after the
adversary has finished, we compute m̂i := eCO.E(ci) for all i = 1, ..., qD, where
ci is the input to the adversary’s ith decapsulation query. By property 1 in
[DFMS21, Lem. 3.4], G′ perfectly simulates G until the first eCO.E-query, and
since the first eCO.E-query occurs only after A finishes, we have

AdvIND-CCA-KEM
KEM⊥

m
(A) = AdvGame G0 = AdvGame G1 . (11)

Game G2 is like Game G1, except that m̂i := eCO.E(ci) is computed right
after A submits ci instead of computing it in the end. Note that Game G2 can
be obtained from Game G1 by first swapping the eCO.E call that produces m̂1
with all eCO.RO calls that happen after the adversary submits c1, including the
calls inside oDecaps, then continuing with the eCO.E-call that produces m̂2,
etc. By property 2.c of [DFMS21, Lem. 3.4] and since Γ (Enc(·; ·)) = 2−γ |R| for
γ-spread PKE schemes, we have that∣∣AdvGame G1 − AdvGame G2

∣∣ ≤ 8
√

2qD(qG + qD) · 2−γ/2. (12)

Game G3 is the same as Game G2, except that A in run with access
to the oracle oDecaps′ instead of oDecaps, meaning that upon a decapsu-
lation query on ci, A receives oDecaps′(ci) = H(m̂i) instead of oDecaps(ci) =
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Decaps(sk, ci) (using the convention H(⊥) := ⊥). We still let the game also com-
pute oDecaps(ci), as oDecaps makes queries to eCO.RO which can influence
the behavior of eCO.E in subsequent queries. (Note that the reencryption step
of oDecaps triggers a call to G′, which in turn uses eCO.RO.) We define B
exactly as in the proof of Theorem 1, except that it uses the oracles G′ and
oDecaps′′ defined in Fig. 6: B runs AG′,H,oDecaps′′ , using its own FFP-CCA ora-
cle oDecrypt to simulate oDecaps′′ and answering H queries by simulating a
fresh compressed oracle.4 As soon as oDecaps′′ adds a plaintext m to LFAIL, B
aborts A and returns m. If A finishes and LFAIL is still empty, B returns ⊥.

Let DIFF be the event that A makes a decryption query c in Game G2 such
that oDecaps(c) �= oDecaps′(c). Like in Theorem 1, we bound

1
2 + AdvGame G2 = Pr [A wins in Game G2]

= Pr [A wins in Game G2 ∧ ¬DIFF] + Pr [A wins in Game G2 ∧ DIFF]
= Pr [A wins in Game G3 ∧ ¬DIFF] + Pr [A wins in Game G2 ∧ DIFF]

≤ Pr [A wins in Game G3] + Pr [DIFF] = 1
2 + AdvGame G3 + Pr [DIFF] .

Again, event DIFF encompasses three cases: For some decapsulation query c,

- the original decapsulation oracle oDecaps(c) rejects, but the simulation
oDecaps′(c) = H(m̂) does not. By construction of the oracles, this implies
that Dec(sk,Enc(pk, m̂, eCO.RO(m̂))) �= m̂ if the eCO.RO call in the previous
equation is performed right after the considered oDecaps′′ call.

- Neither oracle rejects, but the return values differ, i.e., calling eCO.E(c) in
line 12 yielded something different than Dec(sk, c). Like above, this implies
that preimage m̂ := eCO.E(c) fails

- oDecaps(c) does not reject, while oDecaps′(c) does, i.e., m̂ := eCO.E(c) in
line 12 yielded ⊥, but the re-encryption check inside the oDecaps call in line
25 checked out, meaning that Enc(pk, m, eCO.RO(m) = c for m := Dec(sk, c).
(Equivalently, the latter means that oDecrypt(c) = m.)

In the above, any statements about eCO calls that are not actually performed
by the adversary or an oracle are assumed to be made right after the query c
and do not cause any measurement disturbance in that case.

We will again denote the last case by GUESS. Whenever DIFF occurs, B
succeeds unless only case GUESS occurs: If DIFF∧¬GUESS occurs, then a failing
plaintext is extractable from the ciphertext that triggered DIFF∧ ¬GUESS (this
time due to access to eCO.E), and the plaintext is recognisable as failing by B
due to its FFP-CCA oracle oDecrypt. In formulae,

Pr[DIFF]=Pr[DIFF∧¬GUESS]+Pr[DIFF∧GUESS]≤AdvFFP-CCA
PKEG [B]+Pr[GUESS].

4 We remark that a t-wise independent function for sufficiently large t = O(qH + qD)
also suffices, which is more efficient as it doesn’t require (nearly as much) quantum
memory.
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In summary, we can bound the difference in advantages between Game G2
and Game G3 as∣∣AdvGame G2 − AdvGame G3

∣∣ ≤AdvFFP-CCA
PKEG (B) + Pr [GUESS] .

The following two steps are in a certain sense symmetric to the steps for
Games 0–2: A playing Game G3 can almost be simulated without using
the oDecaps oracle, except that oDecaps is still invoked before each call to
the oracle oDecaps′, without the result ever being used. This is an artifact
from Game G2. Omitting the oDecaps invocations might introduce changes
in A’s view, as these invocations might influence the behavior of eCO.E in sub-
sequent queries. We therefore define Game G4 like Game G3, except that the
oDecaps invocations are postponed until after A finishes. By a similar argument
as for the transition from Game G1 to Game G2, we obtain∣∣AdvGame G3 − AdvGame G4

∣∣ ≤ 8
√

2q2D2−γ/2.

Finally, Game G5 is like Game G4, but the computations of oDecaps(ci) are
omitted entirely. In game 4, all invocations of oDecaps already happened after
the execution of A, hence this omission does not influence A’s success probability.

Let Ã be an IND-CPA-KEM adversary against KEM⊥
m in the eQROMEnc,

simulating Game G5 to A: Ã has access to a single extractable oracle whose
oracle interface eCO.RO simulates the combination of G and H, i.e., eCO.RO
simulates G×H. (We decided to combine G and H into one oracle to simplify the
subsequent analysis of the IND-CPA advantage against KEM⊥

m that will be carried
out in Sect. 4.3.) Ã runs b′ ← AG′,H,oDecaps′ and returns b′. The simulation of
A’s oracles using eCO.RO is straightforward (preparing the redundant register
in uniform superposition, querying the combined oracle, and uncomputing the
redundant register).

We now have

AdvGame G4 = AdvGame G5 = AdvIND-CPA-KEM
KEM⊥

m
(Ã). (13)

Collecting the terms from the hybrid transitions, using Lemma 2 below, and
bounding qD2−γ ≤ q2D2−γ/2 yields the desired bound. The statements about
query numbers, width and depth, as well as the runtime, are straightforward.


�

Like in Sect. 2, we continue by bounding the probability of event GUESS,
and Lemma 2 below is the eQROMEnc analogue of Lemma 1. Again, we will
soon revisit FFP-CCA attacker B against PKEG, and we will simulate B’s oracle
oDecrypt via an oracle oDecrypt′ (see Fig. 7) that differs from oDecrypt
if an event equivalent to GUESS occurs. Therefore, we again generalize the defi-
nition of event GUESS accordingly.

Lemma 2. Let PKE and A be like in Lemma 1 (see page 422), except that
A is now considered in the eQROMEnc. Let A be run with G′ and oDecaps
or oDecaps′ (oDecrypt or oDecrypt′), but for each query ci, both m̂i =
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oDecrypt′(c)
01 m ← eCO.E(c)
02 return m

G′, input registers X, Y
03 Apply eCO.ROXY D

04 return registers XY

Fig. 7. Simulation oDecrypt′ of oracle oDecrypt for PKEG. For the reader’s conve-
nience, we repeat the definition of G′.

oDecrypt′(ci) and mi = oDecrypt(ci) are computed in that order, regard-
less of which of the two oracles oDecaps and oDecaps′ (oDecrypt and
oDecrypt′) A has access to. Then GUESS, the event that m̂i = ⊥ while mi �= ⊥,
is very unlikely. Concretely,

Pr [GUESS] ≤ 2qD · 2−γ . (14)

Proof. We begin by bounding the probability that for some fixed i ∈ {1, ..., qD}
we have m̂i = ⊥ but mi �= ⊥. From the definitions of oDecaps and oDecaps′,
as well as the definitions of the interfaces eCO.RO and eCO.E, we obtain√

Pr[m̂i = ⊥ ∧ mi �= ⊥] =
√

Pr[m̂i = ⊥ ∧ Enc(mi, eCO.RO(mi)) = ci]

=
∥∥∥Πc,x

Y OXY F Σc,∅
F |mi〉X |0〉Y |ψi〉F E

∥∥∥ (15)

Here, |ψi〉 is the adversary-oracle state before A submits the query ci and the
projectors Πc,x

Y and Σc,∅ are with respect to f = Enc (see Eq. (8)). We begin
by simplifying the expression on the right hand side. We have OXY F |mi〉X =
FFmi

CNOT⊗n
Fmi

:Y FFmi
⊗ |mi〉X and ΠY CNOT⊗n

Fmi
:Y |0〉Y = CNOT⊗n

Fmi
:Y ΠFmi

|0〉Y

for any projector Π that is diagonal in the computational basis. We can thus
simplify∥∥∥Πc,x

Y OXY F Σc,∅
F |mi〉X |0〉Y |ψi〉F E

∥∥∥ =
∥∥∥Πc,x

Fmi
FFmi

Σc,∅|mi〉X |0〉Y |ψi〉F E

∥∥∥
≤

∥∥∥FFmi
Πc,x

Fmi
Σc,∅

F |mi〉X |0〉Y |ψi〉F E

∥∥∥ + ‖[Πc,x, F ]‖

≤
∥∥∥FFmi

Πc,x
Fmi

Σc,∅
F |mi〉X |0〉Y |ψi〉F E

∥∥∥ +
√

2 · 2−γ/2 (16)

where we have applied the two observations and omitted any final unitary opera-
tors in the first equality, and the last inequality is due to Lemma 3.3 in [DFMS21].
But the remaining norm term vanishes as

Πc,x
Fmi

Σc,∅
F = (Πc,xΠ̄c,x)Fmi

⊗ (Π̄c,x)⊗|M|−1
FM\{mi} = 0. (17)

Combining Eqs. (15) to (17) and squaring the resulting inequality yields

Pr[m̂i = ⊥ ∧ mi �= ⊥] ≤ 2 · 2−γ . (18)

Collecting the terms and applying a union bound over the qD decapsulation
queries yields the desired bound. 
�
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So far, we have shown that whenever an IND-CCA adversary A’s behaviour is
significantly changed by being run with simulation oDecaps′ instead of the real
oracle oDecaps, we can use A to find a failing plaintext, assuming access to the
decryption oracle oDecrypt provided in the FFP-CCA game. We continue by
proving an eQROMEnc-analogue of Theorem 2, i.e., we show that oDecrypt can
be simulated via oracle oDecrypt′ (see Fig. 7) without the secret key, thereby
being able to construct an FFP-CPA adversary from any FFP-CCA adversary
(both in the eQROMEnc).

Theorem 4. Let PKE and B be like in Theorem 2 (see page 422), except that B
is now considered in the eQROMEnc, issuing at most qeCO.RO/qeCO.E many queries
to its respective oracle eCO.RO/eCO.E. Then there exist an FFP-CPA adversary
B̃ in the eQROMEnc such that

AdvFFP-CCA
PKEG (B) ≤ (qD + 1)AdvFFP-CPA

PKEG (B̃) + 12qD(qG + 4qD)2−γ/2 (19)

The adversary B̃ makes qeCO.RO queries to eCO.RO and qeCO.E + qD queries to
eCO.E, and its runtime satisfies Time(B̃) = Time(B) + O(qD).

Proof. On a high level, the proof works as follows. Analogous to Theorem 3,
we simulate oDecrypt by oDecrypt′. As we wish to remove the usage of
oDecrypt entirely, however, we cannot use it to determine at which oDecrypt′

query a failure occurs. We thus resort to guessing that information. On a tech-
nical level this proof follows the proof of Theorem 3 with deviations similar as in
the proof of Theorem 2. Let oDecrypt′ be the simulation defined in Fig. 7. Let
Game G0 be the FFP-CCA-game, and let Games G1 − G5 be defined based
on Game G0 like in the proof of Theorem 3. Like in the proof of Theorem 3, we
have

AdvGame G0 ≤ AdvGame G5 + 12qD(qG + 2qD)2−γ/2 + Pr[DIFF]
≤AdvGame G5+12qD(qG + 2qD)2−γ/2+ Pr[DIFF ∧ ¬GUESS] + Pr[GUESS]. (20)

Assume without loss of generality that B makes exactly qD many queries to
the oracle for DecG (if it does not, we modify B by adding a number of useless
decryption queries in the end). We define an FFP-CPA adversary B̃eCO defined
exactly like the classical one in Fig. 4 (except that it has quantum access to
its oracles), i.e., B̃ samples i ← {1, ..., qD + 1} and runs BG′,oDecrypt′ until the
i-th query, or until the end if i = qD + 1. Finally, B̃ outputs mi, the output of
BG′,oDecrypt′ ’s i-th decryption query, unless i = qD + 1, in which case B̃ outputs
the output of BG′,oDecrypt′ . By construction,

AdvFFP-CPA
PKEG (B̃) ≥

(
AdvGame G5 + Pr[DIFF ∧ ¬GUESS]

)
/(qD + 1) (21)

(note that all instances of AdvGame i are for B playing Game i.) Combining
Eqs. (20) and (21) and Lemma 2 yields the desired bound. The statement about
B̃’s running time and number of queries is straightforward. 
�

Combining Theorems 3 and 4, we obtain the following
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Corollary 2. Let PKE and A be as in Theorem 3. Then there exist an IND-CPA-
KEM adversary Ã and an FFP-CPA adversary B, both in the eQROMEnc, such
that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤AdvIND-CPA-KEM

KEM⊥
m

(
Ã

)
+ (qD + 1)AdvFFP-CPA

PKEG (B)

+ 24qD(qG + 4qD)2−γ/2 (22)

Both Ã and B make qG + qH + qD queries to eCO.RO, with a combined depth
(width) of d + qD (w), and qD queries to eCO.E. The running times of Ã and B
satisfy Time(Ã) = Time(A) + O(qD) and Time(B) = Time(A) + O(qD).

Again, the additive error terms are a factor of 2 larger due to our modular proof
(in terms of Theorems 3 and 4), which can be avoided with a direct proof.

While the additive error term depending on γ improves by roughly a power 2
over the corresponding term in the security bound of [DFMS21], the only known
concrete bound for FO⊥

m, we remark that we do not expect it to be tight. It
turns out, however, that many relevant schemes have abundantly randomized
ciphertexts.

4.2 Semi-classical OWTH in the eQROMf

To analyze IND-CPA-KEM security of KEM⊥
m in the eQROMEnc, we want to apply

an eQROMEnc argument to show that keys encapsulated by FO⊥
m[PKE,G,H]

are random-looking unless the adversary can be used to attack the underlying
scheme PKE. We will need to argue that the challenge key K∗ := H(m∗) and the
encryption randomness G(m∗) used for challenge ciphertext c∗ can be replaced
with fresh random values, in the eQROMEnc. To that end, we develop eQROMf

generalizations of the semi-classical OWTH theorems from [AHU19].
We will first describe how we model this ’replacing with fresh randomness’ on

a subset S ⊂ X for superposition oracle, and how our approach generalizes pre-
vious approaches. Previous work (like [AHU19]) used two oracles O0 and O1 that
only differ on some set S, while algorithm A’s input is always defined relative to
oracle O0. In the case where A’s oracle is O1, the input uses fresh randomness
from the adversary’s point of view. Here we meet the first eQROMEnc-related
roadblock: Superposition oracles have the property that initially, each value
eCO.RO(x) is in quantum superposition, which complicates equating two oracles
everywhere but on S. As it suffices for our purpose, we define the ‘resampling’ set
S as follows: We assume A’s input inp to be classical, generated by an algorithm
GenInp with classical access to eCO0. We can then define S as the set of all inputs
x queried by GenInp, e.g., for input (c∗, K∗) := (Enc(pk, m∗;G(m∗))),H(m∗)), S
is {m∗}.) Apart from how we model S, we proceed as in [AHU19]: Use eCO0 to
generate A’s input and replace A’s access to eCO0 with access to an independent
extractable compressed oracle eCO1.

Clearly, if GenInp does not query eCO0, the two oracles eCO0 and eCO1

are perfectly indistinguishable to A. But what if A’s input depends on eCO0?
[AHU19] related A’s distinguishing advantage to the probability of “FIND”,
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the event that an element of S is detected in A’s queries to the QRO via
a quantum measurement. This result, however, is in the (plain) QROM, and
FIND is not the only distinction opportunity in the eQROMf as there are now
two oracle interfaces, eCO.RO and eCO.E. As an example, let A have input
(x, t := f(x, eCO.0RO(x))) for some oracle input value x. Without any eCO.RO
query, A can tell the two cases apart by querying eCO.E on t: Querying eCO.0E
on t results in output x with overwhelming probability, while querying eCO.1E
on t yields output ⊥. Extraction queries hence have to be taken into account.

Before stating this section’s main theorems, we will describe our approach
more formally. Borrowing the notation from [AHU19], we define ‘punctured’ ver-
sions eCO\S of eCO: During each eCO.RO query, we first apply a ’semi-classical’
oracle OSC

S , and then oracle unitary OXY D. Intuitively, OSC
S marks if an element

of S was found in one of the query registers. Formally, OSC
S acts on the query

input registers X1, · · · Xw and a ‘flag’ register F that holds one qubit per oracle
query, by first mapping |x1, · · · xw, b〉 to |x1, · · · xw, b ⊕ �x1 ∈ S ∨ · · · ∨ xw ∈ S�〉,
and then measuring register F in the computational basis.

Like in [AHU19], we denote the event that any measurement of F returns 1
by FIND. In that case, the query has collapsed to a superposition of states where
at least one input register only contains elements of S. If FIND does not occur,
then all oracle queries collapsed to states not containing any elements of S, and
in consequence, set S defining A’s input is effectively removed from the query
input domain. In this case, the only way to distinguish between eCO0 and eCO1

is to perform an extraction query where eCO.0E might return an element of S.
We will call this event EXT. If neither FIND nor EXT occur, the two scenarios
are indistinguishable to A.

The following helper lemma formalizes the above reasoning and extends it to
some other probability distances: Eq. (23) formalizes that if A neither triggers
FIND nor EXT, its behaviour in the two cases is the same: arbitrary events will be
equally likely in both cases. Equations (24) and (25) have a similar interpretation.
The proof of Lemma 3 is mostly reworking the probabilities by reasoning about
the cases and eliminating the case where neither FIND nor EXT occurs. It is
given in the full version.

Lemma 3. Let eCO0 and eCO1 be two extractable superposition oracles from
X to Y for some function f : X × Y → T , and let GenInp be an algorithm
with classical output inp, having access to eCO0. Let S be the set of elements
x ∈ X whose oracle values are needed to compute inp, and let TS := {t | ∃x ∈
S s.th. t = f(x, eCO0(x))}. Let FIND be the event that flag register F is ever
measured to be in state 1 during a call to A’s punctured oracle, and let EXT
be the event that A performs an extraction query on any t ∈ TS . Let E be an
arbitrary (classical) event. Then

Pr[E ∧ ¬FIND∧¬EXT : AeCO0\S ]=Pr[E∧¬FIND∧¬EXT : AeCO1\S ], (23)

|Pr[E∧¬FIND :AeCO0\S ]−Pr[E∧¬FIND :AeCO1\S ]|≤Pr[EXT :AeCO0\S ], (24)

| Pr[FIND : AeCO0\S ] − Pr[FIND : AeCO1\S ]| ≤ Pr[EXT : AeCO0\S ] (25)
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where all probabilities are taken over the coins of GenInp and the internal ran-
domness of A and we used AO0 as a shorthand for AO0(inp).

The following theorem relates the distinguishing advantage between eCO0

and eCO1 to the probability that FIND or EXT occur. Intuitively, the theorem
states that no algorithm A will recognize the reprogramming unless A makes
a random oracle or an extraction query related to its input. Theorem 5 is the
eQROMf counterpart of [AHU19, Th. 1, ‘Semi-classical O2H’]. Its proof is given
in the full version. In the special case where EXT never happens, e.g., when
extraction queries are triggered by an oracle simulation like oDecaps′ that
forbids critical inputs, we obtain the same bound as [AHU19, Th. 1], but in the
eQROMf .

Theorem 5 (eQROMf -OWTH: Distinguishing to Finding). Let eCO0,
eCO1, GenInp, S, FIND and EXT be like in Lemma 3. We define the OWTH
distinguishing advantage function of A as

AdvOWTH
eQROf

(A) := | Pr[1 ← AeCO0
(inp)] − Pr[1 ← AeCO1

(inp)]| ,

where the probabilities are over the coins of GenInp and the randomness of A.
For any algorithm A of query depth d with respect to eCO.RO, we have that

AdvOWTH
eQROf

(A) ≤4 ·
√

d · Pr[FIND : AeCO1\S ]

+ 2 · (
√

d + 1) ·
√

Pr[EXT : AeCO0 ] + Pr[EXT : AeCO1
]. (26)

If additionally Pr[EXT : AeCO0\S ] = Pr[EXT : AeCO1\S ] = 0, we obtain

AdvOWTH
eQROf

(A) ≤ 4 ·
√

d · Pr[FIND : AeCO1\S ]. (27)

In many cases, a desired reduction will not know the ‘resampled’ set S.
Theorem 6 relates the probability of FIND to the advantage of a preimage extrac-
tor ExtractSet that extracts an element of S without knowing S: ExtractSet will
run A with the unpunctured oracle eCO and measure one of its queries to gen-
erate its output. In one of our proofs, we additionally need to puncture on a set
different from S. We therefore prove Theorem 6 for arbitrary sets S ′′.

Theorem 6 (eQROMf -OWTH: Finding to Extracting). Let A be an algo-
rithm with access to an extractable superposition oracle eCO from X to Y for
some function f : X × Y → T , with query depth d with respect to eCO.RO,
and let GenInp be like in Lemma 3. Let FIND be the event that flag register F is
ever measured to be in state 1 during a call to A’s punctured oracle, where the
puncturing happens on a set S ′′.

Let ExtractSet be the algorithm that on input inp chooses i ←$ {1, · · · d}, runs
AeCO(inp) until the i-th query to eCO.RO; then measures all query input registers
in the computational basis and outputs the set S ′ of measurement outcomes. Then

Pr[FIND : AeCO\S′′
] ≤ 4d · Pr[S ′′ ∩ S ′ �= ∅ : S ′ ← ExtractSet] . (28)
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The proof (given in the full version directly follows from [AHU19, Th. 2,
‘Search in semi-classical oracle’] since [AHU19, Th. 2] gives the bound of Theo-
rem 6 for algorithms B accessing a semi-classical oracle OSC

S′′ itself (rather than
some oracle punctured on S ′′). An algorithm BOSC

S′′ hence can perfectly simulate
eCO\S ′′ to A by simulating eCO and having the puncturing done by its own
oracle OSC

S′′ .
If the input inp of A is independent of S ′′, we also get an extraction bound,

an eQROMf counterpart of [AHU19, Cor. 1], which is proven in the same way.

Corollary 3 (eQROMf -OWTH: Extracting independent values). If S and
inp are independent, then for any algorithm AeCO issuing q many queries to
eCO.RO in total,

Pr[FIND : AeCO\S′′
] ≤ 4q · pmax ,

where pmax := maxxinX PrS′′ [x ∈ S]. As a special case, we obtain that

Pr[FIND : AeCO\{x}] ≤ 4q|X|−1 , (29)

for S ′′ = {x} with uniformly chosen x ∈ X, assuming that x was not needed to
generate the input to A.

4.3 From IND-CPAPKE or OW-CPAPKE to IND-CPAFO[PKE]

We will now use the OWTH results from Sect. 4.2 to show that the IND-CPA
security of FO⊥

m[PKE,G,H] can be based on the passive security of PKE. In The-
orem 7, we base IND-CPA security of FO⊥

m[PKE,G,H] on the IND-CPA security
of PKE, and we base it on OW-CPA security of PKE in Theorem 8. The obtained
bounds are the same as their known plain QROM counterparts.

Theorem 7. Let A be an IND-CPA adversary against KEM⊥
m in the eQROMEnc,

issuing q many queries to eCO.RO in total, with a query depth of d, and qE many
queries to eCO.E, where none of them is with its challenge ciphertext. Then there
exists an IND-CPA adversary BIND-CPA against PKE such that

AdvIND-CPA-KEM
KEM⊥

m
(A) ≤ 4 ·

√
d · AdvIND-CPA

PKE (BIND-CPA) + 8q|M|−1/2,

with Time(BIND-CPA) = Time(A) + Time(eCO, q, qE) and QMem(BIND-CPA) =
QMem(A) + QMem(eCO, q, qE).

Note that forbidding extraction queries to eCO.E on c∗ is no limitation in our
context: eCO.E queries are only triggered by an IND-CCA adversary querying its
simulated oracle oDecaps′, and oDecaps′ rejects queries on c∗.

A full proof is given in the full version. To summarise the proof, we first define
a Game G1 like the IND-CPA-KEM game, except that encryption randomness
r∗ := G(m∗) and honest KEM key K0 := H(m∗) are replaced with fresh uniform
randomness. In Game G1, the forwarded KEM key is a uniformly random key
either way, the advantage of A in Game G1 hence is 0. It remains to bound
the distinguishing advantage between the IND-CPA-KEM game and Game G1.
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We apply Theorem 5 which bounds this distinguishing advantage in terms of the
probability of event FINDm∗ , the event that m∗ is detected in the adversary’s
random oracle queries. To further bound Pr[FINDm∗ ], we use IND-CPA security
of PKE to replace A’s ciphertext input c∗ with an encryption of an independent
message. As m∗ now is independent of A’s input, FINDm∗ is highly unlikely for
large enough message spaces. (This uses Corollary 3 .)

Theorem 8. For any IND-CPA adversary A like in Theorem 7, with a query
width of w, there furthermore exists an OW-CPA adversary BOW-CPA such that

AdvIND-CPA
KEM⊥

m
(A) ≤ 8d ·

√
w · AdvOW

PKE(BOW-CPA),

with Time(BOW-CPA) = Time(A) + Time(eCO, q, qE) and QMem(BOW-CPA) =
Time(A) + QMem(eCO, q, qE).

Again, a full proof is given in the full version. The proof does exactly the same
steps as the one of Theorem 7, up to the point where we bound Pr[FINDm∗ ].
To bound Pr[FINDm∗ ], we use Theorem 6 to relate Pr[FINDm∗ ] to the OW-CPA
advantage of an algorithm that extracts m∗ from A’s oracle queries.

5 Characterizing FFP-CPAPKEG

While it may very well be that the maximal success probability in game FFP-CPA
for PKEG can already be bounded for particular instantiations of PKEG without
too much technical overhead, even in the eQROMEnc, this section offers an alter-
native way to bound this probability: In Theorem 9, we relate the success prob-
ability in game FFP-CPA for PKEG to two failure-related success probabilities
that are easier to analyze. This reduction separates the computationally hard
problem of exploiting knowledge of the public key to find failing ciphertexts for
PKE, from the statistically hard problem of searching the QRO G for failing
plaintexts m for PKEG without knowledge of the key.

We begin by defining these two new notions related to decryption failures: In
Fig. 8 we define a new variant of the FFP game that differs from game FFP-CPA
by providing A not even with the public key. Since the adversary obtains No
Key whatsoever, the game is called FFP-NK, and we define the advantage of an
FFP-NK adversary A against PKE as

AdvFFP-NK
PKE (A) := Pr[FFP-NKA

PKE ⇒ 1].

Furthermore, we define a Find non-generically Failing Plaintext (FFP-NG) game,
also in Fig. 8. In this game, the adversary gets a public key pk0 as input and is
allowed to issue a single message-randomness pair to a Failure Checking Oracle
FCO that is defined either relative to (sk0, pk0), the key pair whose public key
constitutes A’s input, or relative to a key pair (sk1, pk1) which is an independent
key pair. We define the advantage of an FFP-NG adversary A against PKE as

AdvFFP-NG
PKE (A) :=

∣∣∣Pr[FFP-NGA
PKE,0 ⇒ 1] − Pr[FFP-NGA

PKE,1 ⇒ 1]
∣∣∣ .
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Game FFP-NK
01 m ← A
02 (pk, sk) ← KG
03 c := Enc(pk, m)
04 return �Dec(sk, c) �= m�

Game FFP-NGb

05 (sk0, pk0) ← KG
06 (sk1, pk1) ← KG
07 b′ ← AFCOb (pk0)
08 return �b = b′�

FCOb(m; r) �one query
09 c ← Enc(pkb, m; r)
10 m′ := Dec(skb, c)
11 return �m �= m′�

Fig. 8. Key-independent game FFP-NK for deterministic schemes PKE, and the find
non-generically failing ciphertexts games FFP-NG (with b ∈ {0, 1}). A can make at
most one query to FCOb.

While the game is formalized as an oracle distinguishing game, A can only win
the game with an advantage over random guessing if it queries oracle FCO on a
message-randomness pair that fails with a different probability with respect to
key pair (sk0, pk0) than with respect to key pair (sk1, pk1), a key pair about which
B can only gather information by its query to FCO. We expect this game to be
a more palatable target for both provable security and cryptanalysis compared
to FFP-CPAPKEG or correctness-related games from the existing literature.

Theorem 9. Let PKE be a public-key encryption scheme. For any FFP-CPA
adversary A in the eQROMEnc against PKEG making qR and qE queries to
eCO.RO and eCO.E, respectively, there exist an FFP-NK adversary C in the
eQROMEnc against PKEG and an FFP-NG adversary B against PKE with

AdvFFP-CPA
PKEG (A) ≤ AdvFFP-NG

PKE (B) + AdvFFP-NK
PKEG (C).

The running time of C is about that of A, that of B is Time(B) = Time(A) +
Time(eCO, qRO, qE) and QMem(B) = QMem(A) + QMem(eCO, qRO, qE).

The proof consists of the following two steps: Apply the FFP-NG definition to
argue that the FFP-CPA game’s key pair can be replaced with an independent
one whose public key is not given to A. After this change, winning means solving
FFP-NK for PKEG. The full proof is given in the full version.

5.1 Characterizing FFP-NKPKEG

In the last section, we have related the success probability of an adversary in
game FFP-CPA for PKEG to the success property of an adversary in game FFP-NK
for PKEG, in the eQROMEnc. Intuitively, an adversary in game FFP-NK will
succeed if it can find oracle inputs m such that m and r := eCO.RO(m) satisfy
the predicate that (m, r) fails with respect to pk. To prove the upper bound we
provide in Theorem 10, we therefore generically bound the success probability for
a certain search problem in Sect. 5.2. While we note that the search bound might
be of independent interest, it in particular allows us to characterize the maximal
advantage in game FFP-NK in terms of two statistical values for the underlying
randomised scheme PKE. We begin with the definitions of δik and σδik : Below,
we define the worst-case decryption error rate δik under independent keys, and
the maximal variance of the decryption error rate σδik .
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Definition 2 (worst-case independent-key decryption error rate, max-
imal decryption error variance). We define the worst-case decryption error
rate under independent keys δik and the maximal decryption error variance under
independent keys σδik of a public-key encryption scheme PKE as

δik := max
m∈M

[ Pr
(sk,pk),r

[(m, r) fails]] = max
m∈M

Er[ Pr
(sk,pk)

[(m, r) fails]] , and

σ2
δik

:= max
m∈M

Vr[ Pr
(sk,pk)

[(m, r) fails]] both for uniformly random r.

We want to stress that δik differs from the worst-case term δwc that was
introduced in [HHK17] (there denoted by δ) since δwc is defined by

δwc := EKG max
m∈M

Pr
r←$R

[(m, r) fails].

Intuitively, δwc is the best possible advantage of an adversary, trying to find the
message most likely to fail for a given key pair, while for δik, the key pair will
be randomly sampled after the adversary had made its choice m. On a formal
level, it is easy to verify that δwc serves as an upper bound for δik.

Theorem 10. Let PKE be a public-key encryption scheme with worst-case in-
dependent-key decryption error rate δik and decryption error rate variance σδik .
For any FFP-NK adversary A in the eQROMEnc against PKEG, setting C = 304,
we have that

AdvFFP-NK
PKEG (A) ≤ δik + 3

√
Cqσδik + 2Cq2σ2

δikδik(− log
√

Cqσδik),

The proof is given in the full version.
In the full version, we also give an alternative bound that grows with the

logarithm of the number of RO queries, assuming a Gaussian tail bound for the
decryption error distribution.

5.2 Finding Large Values of a Function in the eQROMf

In this section, we provide the technical results for the eQROMf that we need
to prove Theorem 10. Throughout this section, f is a fixed function such that
eQROMf is well-defined. We begin by providing a bound for the success proba-
bility of an algorithm in the eQROMf that searches for a value x that, together
with its oracle value eCO.RO(x), satisfies a relation R. In the lemma below, we
will use the quantity ΓR that was defined in Eq. (10) (see page 426).

Lemma 4. Let R ⊂ X × Y be a relation and AeCO an algorithm with access to
eQROf from X to Y for some function f : X × Y → T , making q queries to
eCO.RO. Then

Prx←AeCO [R(x, eCO.RO(x))] ≤ 152(q + 1)2ΓR|Y|−1, (30)

independently of the number of queries A makes to eCO.E. Here it is understood
that eCO.RO is queried once in the very end to determine eCO.RO(x).
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Proof. The only difference between [DFMS21, Proposition 3.5] and Lemma 4 is
that A now additionally has access to eCO.E. The proof is thus the same as for
[DFMS21, Proposition 3.5], with the additional observation that queries to eCO.E
commute with the progress measure operator M for any relation R. This is because
i) both M and the operator applied upon an eCO.E query are controlled uni-
taries controlling on the database register of the compressed oracle database of
the eQROf , and ii) the target registers of M and eCO.E are disjoint. 
�

According to Lemma 4, it is hard to search a random oracle, even given
extraction access. We will now use Lemma 4 to show that it is also hard to
produce an input to the oracle so that the resulting input-output pair has a
large value under a function F , in expectation . To state a theorem making this
intuition precise and quantitative, let F : X × Y → I ⊂ [0, 1], and let I be
ordered as I = {t1, ..., tR} with ti > ti−1. The hardness of the task of finding
large values is related to a “tail bound” G(t) for the probability of F (x, r) being
larger than t .

Theorem 11. Let F and I be as above. Let further G : [0, 1] → [0, 1] be non-
increasing such that G(t) ≥ Prr←Y [F (x, r) ≥ t] for all x. Let C := 304, ΔG(i) :=
G(ti) − G(ti+1) (setting formally G(tR+1) = 0), and let κq := min{i|Cq2G(ti) ≤
1}. Then for any algorithm AeCO making at most q ≥ 1 queries to eCO.RO,

Ex←AeCO [F (x, eCO.RO(x))] ≤ tκq
+ Cq2

∑R

i=κq+1
tiΔG(i) . (31)

eCO.RO is queried once in the end to determine eCO.RO(x).

Proof. Let x ← AeCO. We bound

E [F (x, eCO.RO(x))] =
∑R

i=1
ti Pr[F (x, eCO.RO(x)) = ti]

=
∑R

i=1
ti (Pr[F (x, eCO.RO(x)) ≥ ti] − Pr[F (x, eCO.RO(x)) ≥ ti+1])

= t1 +
∑R

i=2
Pr[F (x, eCO.RO(x)) ≥ ti](ti − ti−1)

≤ t1+
∑R

i=2
min(1, Cq2G(ti))(ti − ti−1) = tκq

+ Cq2
∑R

i=κq+1
G(ti)(ti − ti−1),

where we have used Lemma 4 with the relation Rf,≥ti
defined by Rf,≥ti

(x, y) :⇔
f(x, y) ≥ ti in the second-to-last line. We further bound
∑R

i=κq+1
G(ti)(ti − ti−1) = −G(tκq+1)tκq

+
∑R

i=κq+1
tiΔG(i) ≤

∑R

i=κq+1
tiΔG(i).


�

We provide a corollary for the case where G is given by Chebyshev’s inequality.
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Corollary 4. Let F , I, and C be as in Theorem 11, and let the expectation
values and variances of F (x, r) for random r ← Y be bounded as Er[F (x, r)] ≤ μ
and Vr[F (x, r)] ≤ σ2, respectively. Then, for an algorithm AeCO making at most
q ≥ 1 quantum queries to eCO.RO,

Ex←AeCO [F (x, eCO.RO(x))] ≤ μ + 3
√

Cqσ + 2Cq2σ2μ(− log(
√

Cqσ)). (32)

Proof. By Chebyshev’s inequality, we can set G(t) = σ2(t−μ)−2. We thus obtain
tκq

≤
√

Cqσ + μ. We bound

∑R

i=κq+1
tiΔG(i) = −

∑R

i=κq+1
ti

∫ ti+1

ti

G′(t)dt ≤ −
∫ 1

tκq

tG′(t)dt (33)

=2σ2
∫ 1

tκq

t

t − μ
dt = 2σ2

∫ 1−μ

tκq −μ

u + μ

u
du = 2σ2

(
1 − tκq

+ μ log 1 − μ

tκq
− μ

)
. (34)

We arrive at the bound

Ex←AeCO [F (x, eCO.RO(x))]≤μ+
√

Cqσ+2Cq2σ2(1+μ(log(1−μ)−log(
√

Cqσ))).

If
√

Cqσ ≥ 1, the claimed bound trivially holds, else
√

Cqσ ≥ Cq2σ2 and thus

Ex←AeCO [F (x,eCO.RO(x))]≤μ+3
√

Cqσ+2Cq2σ2μ log(log(1−μ)−log(
√

Cqσ)).


�

6 Tying Everything Together

Combining the reductions from Sect. 4.1 and 4.3, we obtain a first corollary that
still relies on FFP-CPA of PKEG. Corollary 6 states our main result.

Corollary 5. Let PKE and IND-CCA-KEM A against KEM⊥
m be like in Theo-

rem 3 (on page 427). Then there exist an IND-CPA adversary BIND, a OW-CPA
adversary BOW and an FFP-CPA adversary C against PKEG in the eQROMEnc
such that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ ÃdvPKE + (qD + 1)AdvFFP-CPA

PKE (C) + εγ , with (35)

ÃdvPKE =

⎧⎪⎨
⎪⎩

4 ·
√

(d + qD) · AdvIND-CPA
PKE (BIND) + 8(q+qD)√

|M| or

8 (d + qD) ·
√

w · AdvOW
PKE(BOW).

(36)

The additive error term is given by εγ = 24qD(qG+4qD)2−γ/2, C makes qG+qH+
qD queries to eCO.RO and qD to eCO.E. BIND’s, BOW’s and C’s running time are
bounded as Time(BIND/OW) = Time(A) + Time(eCO, qG + qH + qD) + O(qD) and
Time(C) = Time(A) + O(qD).
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Corollary 6. Let PKE and A be like in Theorem 3, and let PKE furthermore
have worst-case random-key decryption error rate δik, decryption error rate
variance σδik and decryption error tail envelope τ . Set C = 304 and assume√

CqGσδik ≤ 1/2. Then there exists an FFP-NG adversary C against PKE such
that

AdvIND-CCA-KEM
KEM⊥

m
(A) ≤ÃdvPKE + (qD + 1)(AdvFFP-NG

PKE (C) + εδik) + εγ (37)

with ÃdvPKE and εγ like in Corollary 5. The additive error term εδik is given
by εδik ≤ δik + (3 + 2δik)

√
CqGσδik . C’s running time is bounded by Time(A) +

Time(eCO, qG + qH + qD) + O(qD).

In the full version, we give an alternative corollary with an εδik that only
grows logarithmically with the number of RO queries, assuming a Gaussian-
shaped tail bound for the decryption error probability distribution.

Proof. Corollary 6 follows by combining Corollary 5 with Theorems 9 and 10 from
Sect. 5. We simplified error term εδik from Theorem 10 by using the inequality
x2/ log(x) ≤ x for x ≤ 1/2 for x =

√
CqGσδik , exploiting the mild condition√

CqGσδik ≤ 1/25. 
�

The above result has two main advantages over previous ones: i) The additive
loss can be much smaller than the additive loss of roughly q2Gδwc present in all
previous bounds. ii) It holds for the explicit rejection variant of the transforma-
tion, with bounds that are competitive with previous ones that were limited to
implicitly rejecting variants.
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Abstract. Linear cryptanalysis [25] is one of the main families of key-
recovery attacks on block ciphers. Several publications [16,19] have
drawn attention towards the possibility of reducing their time complex-
ity using the fast Walsh transform. These previous contributions ignore
the structure of the key recovery rounds, which are treated as arbitrary
boolean functions. In this paper, we optimise the time and memory com-
plexities of these algorithms by exploiting zeroes in the Walsh spectra
of these functions using a novel affine pruning technique for the Walsh
Transform. These new optimisation strategies are then showcased with
two application examples: an improved attack on the DES [1] and the
first known attack on 29-round PRESENT-128 [9].

Keywords: Linear cryptanalysis · Key recovery attacks · FFT ·
Walsh transform · Pruning · DES · PRESENT

1 Introduction

General Background

Linear Cryptanalysis. Matsui’s linear cryptanalysis [25] is a widely studied fam-
ily of statistical cryptanalysis against block ciphers and other symmetric con-
structions, and any new proposals are expected to justify their resilience against
it. Linear attacks are commonly turned into key recovery attacks, in which a lin-
ear distinguisher is extended by one or more rounds by incorporating a key guess.
If the attack requires a data complexity of N and l bits of the key are guessed, the
time complexity of a standard linear key recovery attack is O (N)+O (

22l
)

[26].

Fast Key Recovery Algorithms. In the paper by Collard et al. [16], a new key
recovery algorithm based on the fast Walsh transform1 was presented which can
sometimes reduce the time complexity of attacks on key-alternating ciphers to
O (N)+O (

l2l
)
. However, this technique has several limitations, as it complicates

common optimisations of previous attacks, most notably key schedule-induced
relations. The technique was generalised to multiple rounds by Flórez-Gutiérrez
et al. [19], however, many limitations to the algorithm remained.
1 Called fast Fourier transform/FFT in the paper.
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Our Contribution

New Pruned Walsh Transform Algorithm. We describe a new pruning technique
for the fast Walsh transform which is effective when the nonzero inputs and the
desired outputs lie in (unions of) affine subspaces of F

n
2 . The algorithm reduces

the computation of the desired outputs to a Walsh transform of smaller size than
that of the full transform, thus achieving a large reduction in time complexity.

Reduced Attack Complexity. We next show how this pruned algorithm can be
used to optimise linear key recovery attacks. Previous techniques based on the
Walsh transform treated the key recovery map as a black box, which meant that
the size of the input to this map often became the bottleneck of the algorithm.
In our new approach, we see that in some common cases the cipher construction
leads to the presence of a lot of zeros in the Walsh spectrum which can be
used to improve the key recovery. This, together with information about the key
schedule, can greatly reduce the time complexity. We also show how additional
zeros can be created by rejecting a small fraction of the data.

Applications

Cryptanalysis of the DES. The first application is a variant of Matsui’s attack
on the DES [26] in which the last round of the linear approximation has been
removed, and is treated as a key recovery round. We improve the data complexity
by a factor of 20.5 with respect to the best previous result of Biham and Perle [4],
but the memory complexity grows due to the larger key guess.

Cryptanalysis of Reduced-Round PRESENT. We add a key recovery round to
the 28-round attack on PRESENT by Flórez-Gutiérrez et al. [19] with the new
pruning techniques, giving the first known attack on 29-round PRESENT-128.

Paper Structure. Section 2 covers some techniques and notations which are
used in the rest of the paper, as well as the specifications of the applications’
target ciphers. Section 3 describes the affine pruning algorithm for the fast Walsh
transform from a theoretical perspective. Section 4 provides tools which help the
cryptanalyst identify zeroes in the Walsh spectra of the maps which appear in
key recovery attacks. Chapter 5 combines the results of the previous two sections
by optimising linear key recovery attacks to make use of the cipher structure.
Sections 6 and 7 describe the applications to the DES and PRESENT.

2 Preliminaries

2.1 Linear Key Recovery Attacks

Linear Approximation. Let E : F
n
2 × F

κ
2 −→ F

n
2 be a block cipher. A linear

approximation of E is an expression of the form 〈α, x〉 + 〈β, y〉, where 〈·, ·〉
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denotes the dot product in F
n
2 . The correlation of the approximation is

cor(α, β) =
1

2n+κ

∑

K∈F
κ
2

∑

x∈F
n
2

(−1)〈α,x〉+〈β,EK(x)〉. (1)

Linear attacks make use of biased linear approximations, that is, of approxima-
tions whose correlation is different from zero.

Key Recovery Attack. We consider a cipher of the form E′ = F ◦E, and a biased
linear approximation 〈α, x〉 + 〈β, y〉 of E. In a key recovery attack, we guess
a part k of K so that the value of the linear approximation can be computed
for each pair (x, y = E′

K(x)) in a collection D of N known plaintext-ciphertext
pairs. We compute an experimental estimation2 of the correlation for each guess:

ĉor(k) =
1
N

∑

(x,y)∈D
(−1)〈α,x〉+〈β,F −1

k (y)〉. (2)

If the value of k corresponding to the correct key K appears within the largest
2|k|−a in the list3, we say that the attack achieves an advantage of a [28]. As a
rule of thumb, the attack requires O (

cor(α, β)−2
)

data pairs to succeed. In this
paper we use the more precise model of Blondeau and Nyberg [8].

Multiple Linear Approximations. It is common for linear attacks to make use of
more than one linear approximation [6,21]. In the PRESENT attack we use the
χ2 multiple linear cryptanalysis statistic:

Q(k) =
M∑

i=1

ĉori(k)2, (3)

where ĉori(k) denotes the experimental correlation for the i-th approximation.
In a multiple linear attack, the data complexity is determined by the capacity
C =

∑M
i=1 cor(αi, βi)2. Detailed models were given by Blondeau and Nyberg [8].

2.2 The Walsh Transform

Definition 1. Let f : F
n
2 −→ C be a complex-valued function on F

n
2 . We refer

to the space of functions of this kind as CF
n
2 , which is isomorphic to C

2n

. The
Hadamard or Walsh transform of f is another map f̂ : F

n
2 −→ C given by4

f̂(u) =
∑

x∈F
n
2

(−1)〈u,x〉f(x). (4)

2 The notation ĉor should not be confused with the Walsh transform ̂f .
3 |x| will denote the number of bits of a binary vector x.
4 It is common to use the normalised Hadamard transform, which is divided by

√
2n,

but for the purposes of this paper we will not use this factor in the definition.
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The transform of any vector in CF
n
2 can be computed efficiently using:

̂f(u) =
∑

xn−2∈F2

. . .
∑

x0∈F2

(−1)un−2xn−2+...+u0x0f(0, xl−2, . . . , x0)

+ (−1)un−1
∑

xn−2∈F2

. . .
∑

x0∈F2

(−1)un−2xn−2+...+u0x0f(1, xl−2, . . . , x0).
(5)

This formula, in a divide-and-conquer approach, leads to the fast Walsh trans-
form algorithm [18], which has a time complexity of n2n additions/subtractions.

An associated transformation can be defined for (vectorial) boolean functions:

Definition 2. Let g : F
n
2 −→ F

m
2 be any vectorial boolean function. We define

its Walsh transform as the map ĝ : F
n
2 × F

m
2 −→ C given by the formula

ĝ(u, v) =
∑

x∈F
n
2

(−1)〈u,x〉⊕〈v,g(x)〉. (6)

The coefficients of this map ĝ are often called the Walsh spectrum of g. It
is a complex matrix whose columns are the Walsh transforms of indg,v : x �→
(−1)〈v,g(x)〉, complex representations of its linear components x �→ 〈v, g(x)〉.
When m=1 we can ignore the second input and assume v = (1) to define ĝ(u).
We will also use the Walsh spectrum restricted to a subset X:

Definition 3. Let g : F
n
2 −→ F

m
2 be a vectorial boolean function, and X ⊆ F

n
2 a

subset of its domain. The Walsh transform of g restricted to X is defined as

ĝx∈X(u, v) =
∑

x∈X

(−1)〈u,x〉⊕〈v,g(x)〉. (7)

We define the transform restricted to Y ⊆ F
m
2 as ̂gg(x)∈Y = ̂gx∈g−1(Y ).

2.3 Walsh Transform-Accelerated Linear Cryptanalysis

FFT-accelerated linear cryptanalysis was introduced by Collard et al. [16].
Flórez-Gutiérrez et al. [19] provided a two-matrix description for instances in
which the linear approximation can be separated into two independent parts,
such as when key recovery is considered on both the plaintext and the ciphertext
sides. We now show a small generalisation of this approach using d-dimensional
arrays.

We consider a linear approximation whose value can be expressed as

f0(x) ⊕ f1(x1 ⊕ kO
1 , kI

1) ⊕ · · · ⊕ fd(xd ⊕ kO
d , kI

d)
︸ ︷︷ ︸

F (X⊕KO,KI)

, (8)

where (x1, . . . , xd) = X are separate parts of the plaintext-ciphertext pair x (we
denote this by x �→ X). (kO

1 , . . . , kO
d ) = KO is outer key material which is xored
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directly to x, and (kI
1 , . . . , k

I
d) = KI is additional inner key material. Our aim

is to compute all values of the experimental correlations ĉor(KO,KI):

N ·ĉor(KO,KI) =
∑

x∈D
(−1)f0(x)⊕f1(x1⊕kO

1 ,kI
1)⊕...⊕fd(xd⊕kO

d ,kI
d)

=
∑

X

(−1)F (X⊕KO,KI)
∑

x∈D
x�→X

(−1)f0(x)

︸ ︷︷ ︸
A[X]

=
1

2|X|
∑

Y

(−1)〈KO,Y 〉
[
∑

Z

(−1)〈Y,Z〉(−1)F (Z,KI)

]
∑

X

(−1)〈Y,X〉A[X]

=
1

2|X|
∑

Y

(−1)〈KO,Y 〉
(

d∏

i=0

f̂i(yi, k
I
i )

)

Â[Y ],

(9)

using the convolution theorem. The attack can be performed as follows:

1. For each fi, precompute 2|kI
i | tables of size 2|kO

i | containing f̂i( · , kI
i ).

2. Distillation phase: Construct the 2|x1| × · · · × 2|xd|-dimensional array A.
3. Analysis phase:

(a) Apply the FWT on the array A to obtain Â. We can consider A is a
one-dimensional array of 2|X| elements.

(b) For each value of KI :
i. Multiply each entry Â[Y ] of Â by

∏d
i=0 f̂i(yi, k

I
i ).

ii. Apply another FWT to obtain an array containing ĉor[ · ,KI ].
4. Search phase: Exhaustive search over the rest of the key for the guesses with

the largest values of 2|X|N ĉor[KO,KI ].

The memory complexity of this algorithm mainly consists 2|X| memory reg-
isters to store Â. The time complexity of the distillation phase is O (N), as each
plaintext-ciphertext pair is checked once and discarded. The time complexity of
the analysis phase is dominated by the loop on KI , and consists of d2|KI |+|KO|

multiplications and |KO|2|KI |+|KO| additions/subtractions. The time complex-
ity of the search phase is given by models such as [8].

Other improvements to this algorithm were proposed by Flórez-Gutiérrez et
al. [19], most notably in the case of multiple linear cryptanalysis. By separating
the key guesses into groups, it is possible to perform a “complete” key guess
kT (accounting for any dependencies which are induced by the key schedule)
while still using the FFT algorithm on different parts of the key guess for each
individual approximation. The authors also introduced some Walsh transform
pruning techniques for cases in which some external keybits can be deduced from
the internal keybits. This paper builds on that improvement.

2.4 DES Specification

The Data Encryption Standard [1] is one of the most widely analysed block
ciphers due to its use in the industry. It has a block length of 64 bits and a key
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Fig. 1. A round of PRESENT.

size of 56 bits, and is a 16-round Feistel network. Each state (L,R) consists of
two (left and right) 32-bit parts. The cipher operates as follows:

(L0, R0) ← IP (P );
for i ← 1 to 16 do

Li ← Ri−1;
Ri ← Li−1 ⊕ f(Ri−1,Ki);

end
C ← IP−1(R16, L16);

where IP is a fixed initial permutation and each Ki is a 48-bit round subkey.

The Round Function f . First, an expansion function E is applied on the 32-bit
input to obtain a 48-bit string. This string is xored with the round subkey, and
eight different 6-to-4-bit Sboxes S1, . . . , S8 are applied to obtain a 32-bit string.
Finally, an output permutation P is applied.

The Key Schedule. It extracts sixteen 48-bit subkeys K1, . . . ,K16 from the key:
(C0,D0) ← PC1(P );
for i ← 1 to 16 do

Ci ← LSp(i)(Ci−1);
Di ← LSp(i)(Di−1);
Ki ← PC2(Ci,Di);

end
where Ci and Di are 28 bits long, PC1 and PC2 are two permutated choices,
LSj is a j bit rotation to the left, and p(i) is either 1 or 2.

Notation. In this paper, X[j] will denote the j-th rightmost (least significant)
bit of X, starting from 0. We will also ignore IP , IP−1 and PC1 and denote
P = (L0, R0), C = (R16, L16), K = (C0,D0) instead.

2.5 PRESENT Specification

PRESENT [9] is a lightweight block cipher which has received substantial atten-
tion from cryptanalysts since its introduction, and is a popular target for linear
cryptanalysis. PRESENT has a block size of 64 and can operate with keys of
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either 80 or 128 bits. It is a substitution permutation network with 31 rounds
(Fig. 1):

X ← P ;
for i ← 1 to 31 do

X ← addRoundKey(X,Ki);
X ← sBoxLayer(X);
X ← pLayer(X);

end
C ← addRoundKey(X,K32);

Sbox Layer. The nonlinear operation consists of the parallel application of 16
identical 4-bit Sboxes on all the nibbles of the state.

Permutation Layer. The linear transformation is a bit permutation, which sends
the bit in position i to the position P (i) = 16i mod 63, i 
= 63, P (63) = 63. For
its inverse we do the same with P−1(j) = 4j mod 63, j 
= 63, P−1(63) = 63.

Key Schedule. A 64-bit round subkey Ki is xored to the state in each round.
These are obtained from the master key K. For 128 bits:

for i ← 1 to 31 do
Ki ← K[127, . . . , 64];
K ← LS61(K);
K[127, 126, 125, 124] ← S(K[127, 126, 125, 124]);
K[123, 122, 121, 120] ← S(K[123, 122, 121, 120]);
K[66, . . . , 62] ← K[66, . . . , 62] ⊕ RCi;

end
K32 ← K[127, . . . , 64];

Notation. We denote the i-th rightmost bit of X starting from 0 by X[i].

3 Affine Pruned Walsh Transform Algorithm

In order to remove unnecessary computations from the algorithm of Sect. 2.3,
we must efficiently compute the Walsh transform when the non-zero inputs or
desired outputs are limited to previously-known fixed subsets of F

n
2 . An algo-

rithm which obtains the desired outputs with less computations than the “full”
fast transform will be called a pruned fast Walsh transform algorithm. The case
of fixed values for some output position bits was already considered by Flórez-
Gutiérrez et al. in [19]. Our algorithms generalise this result.

Definition 4 (Problem statement). Let f : F
n
2 −→ C be any vector in CF

n
2 .

We assume that lists L,M ⊆ F
n
2 are given, and that f(x) = 0 for all x ∈ F

n
2 \ L.

The aim is to compute f̂(y) for all y ∈ M with as few operations as possible.
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3.1 Overview of Previous Results for the One-Dimensional DFT

The pruning problem has already been studied for the one-dimensional discrete
Fourier transform (DFT), as it arises naturally in some applications. Markel [24]
prunes the decimation-in-frequency algorithm for the case in which L consists
of the first 2r, r < s points of the input. Similarly, Skinner [30] prunes the
decimation-in-time algorithm for the case in which L consists of the first 2r

points in bit-reversed order. An algorithm limiting both inputs and outputs at
the same time was introduced by Sreenivas and Rao [32]. A pruned decimation-
in-time algorithm which can compute the outputs in a consecutive (but possi-
bly shifted) frequency window was presented by Nagai [27]. Sorensen and Bur-
rus [31] proposed an alternative transform decomposition technique, which maps
the nonzero inputs to a series of smaller DFTs, and then combines the results. All
these algorithms exhibit similar complexities: evaluating 2r points of a 2n point
transform costs O (r2n). However, an interesting phenomenon was observed by
Shousheng and Torkelson [20]: when the subset of outputs M is a comb of equidis-
tant points, a smaller complexity of O (2n + r2r) can be achieved.

Alves et al. [2] introduced the first traceback pruning method for arbitrary
input or output sets. Hu and Wan [22] showed a similar technique and found the
average complexity as a function of n, |L| and |M |. The overhead computations
were reduced by Singh and Srinivasan [29]. Pruning has been recently generalised
to mixed-radix and composite length DFTs in works such as [14,33].

We consider the pruning problem for the Walsh transform or (2, . . . , 2)-
dimensional DFT, specifically the case when L and M lie in affine subspaces
of F

n
2 . Our algorithm takes a different approach to the works mentioned above:

we reduce the Walsh transform to one of significantly smaller dimension.

3.2 Walsh Transform Pruning for Affine Sets

We now describe a pruned algorithm which can be used when both the input
and output sets of the Walsh transform lie in affine subspaces of F

n
2 .

Definition 5 (Affine pruning problem). Let f : F
n
2 −→ C be a vector. We

are given lists L,M ⊆ F
n
2 , vector subspaces X,U ⊆ F

n
2 and vectors x0, u0 ∈ F

n
2

so that L ⊆ x0 + X,M ⊆ u0 + U , and f(x) = 0 for all x 
∈ L. The aim is to
compute f̂(y) for all y ∈ M with as few operations as possible.

Example. Consider the Walsh transform of size 16 = 24. The fast transform
requires 4 · 24 = 64 additions. Let the lists L = x0 + X and M = u0 + U be

x0 = (0, 0, 1, 0), X = span {(0, 0, 0, 1), (0, 1, 1, 0), (1, 0, 1, 0)} ,

u0 = (0, 1, 0, 0), U = span {(0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 0, 0)} .

A traceback-based pruning approach as done in [2,20,22,24,27,30,32] is
shown in Fig. 2. By removing unnecesary computations from the fast Walsh
transform, we obtain the desired outputs with 32 additions and subtractions.
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f1000f1000f1000

f0111

f0110

f0101f0101f0101

f0100f0100f0100

f0011f0011f0011

f0010f0010f0010

f0001

f0000

f1110

̂f1101

̂f1100

̂f1011̂f1011̂f1011

̂f1010̂f1010̂f1010

̂f1001̂f1001̂f1001

̂f1000̂f1000̂f1000

̂f0111̂f0111̂f0111

̂f0110̂f0110̂f0110

̂f0101̂f0101̂f0101

̂f0100̂f0100̂f0100

̂f0011

̂f0010

̂f0001

̂f0000

Fig. 2. Using traceback techniques, we can reduce the cost of this Walsh Transform of
length 16 from 64 to 32 operations.

Let us examine the expressions for each of the outputs:

̂f0100 = + f0010 + f0011 − f0100 − f0101 + f1000 + f1001 − f1110 − f1111
̂f0101 = + f0010 − f0011 − f0100 + f0101 + f1000 − f1001 − f1110 + f1111
̂f0110 = − f0010 − f0011 − f0100 − f0101 + f1000 + f1001 + f1110 + f1111
̂f0111 = − f0010 + f0011 − f0100 + f0101 + f1000 − f1001 + f1110 − f1111
̂f1000 = + f0010 + f0011 + f0100 + f0101 − f1000 − f1001 − f1110 − f1111
̂f1001 = + f0010 − f0011 + f0100 − f0101 − f1000 + f1001 − f1110 + f1111
̂f1010 = − f0010 − f0011 + f0100 + f0101 − f1000 − f1001 + f1110 + f1111
̂f1011 = − f0010 + f0011 + f0100 − f0101 − f1000 + f1001 + f1110 − f1111

We observe the following properties:

̂f0100 = − ̂f1010, ̂f0101 = − ̂f1011, ̂f0110 = − ̂f1000, ̂f0111 = − ̂f1001

The difference in the indices in each of these pairs is (1, 1, 1, 0), which is
orthogonal to X. There are also pairs of inputs which always appear with oppo-
site signs: (f0010, f1110), (f0011, f1111), (f0100, f1000), and (f0101, f1001). In this
case, the difference between the indices is (1, 1, 0, 0), which is orthogonal to U .

This suggests an algorithm which subtracts the input pairs from each other
at the beginning and duplicates the output pairs at the end, such as the one in
Fig. 3. With the appropriate intermediate values, the size 24 transform is reduced
to a size 22 transform. The total cost is 24 additions and subtractions.

We now proceed to formalise the “trick”, starting with the following lemma:

Lemma 6. Let X,U ⊆ F
n
2 be vector subspaces of F

n
2 . We can define t as

t := dim
(

X

X ∩ U⊥

)
= dim

(
U

U ∩ X⊥

)
. (10)
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f1111f1111f1111

f1110f1110f1110

f1001f1001f1001

f1000f1000f1000

f0101f0101f0101

f0100f0100f0100

f0011f0011f0011

f0010f0010f0010

−f0101 + f1001

+f0011 − f1111

−f0100 + f1000

+f0010 − f1110
+f0010+f0011−f0100−f0101
+f1000+f1001−f1110−f1111

+f0010+f0011+f0100+f0101−f1000−f1001−f1110−f1111

+f0010−f0011−f0100+f0101
+f1000−f1001−f1110+f1111

+f0010−f0011+f0100−f0101−f1000+f1001−f1110+f1111
f1011f1011f1011

̂f1010̂f1010̂f1010

̂f1001̂f1001̂f1001

̂f1000̂f1000̂f1000

̂f0111̂f0111̂f0111

̂f0110̂f0110̂f0110

̂f0101̂f0101̂f0101

̂f0100̂f0100̂f0100

Fig. 3. Organising the inputs and outputs carefully allows us to reduce the cost of the
transform to just 24 operations.

There exist isomorphisms φ : X/(X ∩ U⊥)
∼=−→ F

t
2 and ψ : U/(U ∩ X⊥)

∼=−→ F
t
2

which preserve the inner product:

〈y, v〉 = 〈φ(y), ψ(v)〉 for all y ∈ X

X ∩ U⊥ , v ∈ U

U ∩ X⊥ . (11)

Proof. The equality of the dimensions is a consequence of the dimension formula
and the properties of orthogonal spaces. It is also easy to show that the inner
product 〈y, v〉 is well-defined for any y ∈ X/(X ∩ U⊥) and v ∈ U/(U ∩ X⊥).

We will construct a pair of “orthonormal” bases starting from two arbitrary
bases {y1, . . . , yt} and {v1, . . . , vt}. We will first ensure 〈y1, vj〉 = δ1j for all j
and 〈yi, v1〉 = δi1 for all i, and then work recursively. There is at least one j so
that 〈y1, vj〉 = 1 (if y1 ⊥ vj for all j, we’d have y1 ⊥ U , y1 = 0). We swap the
vj so that 〈y1, v1〉 = 1. We then modify both bases as follows:

ynew
1 = y1 ynew

i = yi + 〈yi, v1〉y1 for all i 
= 1
vnew
1 = v1 vnew

j = vj + 〈y1, vj〉v1 for all j 
= 1

These new bases have the following properties:

〈ynew
1 , vnew

1 〉 = 〈y1, v1〉 = 1
〈ynew

1 , vnew
j 〉 = 〈y1, vj〉+〈y1, vj〉〈y1, v1〉 = 0 for all j 
= 1

〈ynew
i , vnew

1 〉 = 〈yi, v1〉 +〈yi, v1〉〈y1, v1〉 = 0 for all i 
= 1

This process can be iterated on the rest of the elements until we obtain a
pair of bases {y1, . . . , yt} and {v1, . . . , vt} which verify 〈yi, vj〉 = δij . We obtain
φ and ψ by mapping these bases to the standard basis of F

t
2.

This lemma provides the basis for the following result and Algorithm1:

Proposition 7. Let f̂ be the Walsh transform of f ∈ CF
n
2 . We are given lists

L ⊆ x0 + X ⊆ F
n
2 and M ⊆ u0 + U ⊆ F

n
2 , where x0 + X and u0 + U are affine

subspaces, and assume f(x) = 0 for all x 
∈ L. Let t = dim
(
X/(X ∩ U⊥)

)
=

dim
(
U/(U ∩ X⊥)

)
. There is an algorithm which computes f̂(u) for all u ∈ M

with |L| + t2t + |M | additions using 2t memory registers.
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Algorithm 1: Fast Walsh transform pruned to affine subspaces
Parameters: L ⊆ x0 + X ⊆ F

n
2 ,M ⊆ u0 + U ⊆ F

n
2 , (X,U subspaces).

Input: f : L −→ C

Output: ̂f : M −→ C

BX = {y1, . . . , yt} ← GetBasis(X/(X ∩ U⊥));

BU = {v1, . . . , vt} ← GetBasis(U/(U ∩ X⊥));
for k ← 1 to t − 1 do // Generate "good" bases

while 〈yk, vk〉 = 0 do (vk, vk+1, . . . , vt−1, vt) ← (vk+1, vk+2, . . . , vt, vk);
for i ← k + 1 to t do yi ← yi + 〈yi, vk〉yk;
for j ← k + 1 to t do vj ← vj + 〈yk, vj〉vk;

end
let g : F

t
2 −→ C, g(y) = 0 ∀y ∈ F

t
2;

foreach x ∈ L do // Absorb the nonzero inputs

(i1, . . . , it) ← GetCoordinates(x − x0,BX);

g(i1, . . . , it) ← g(i1, . . . , it) + (−1)〈x−x0,u0〉f(x);

end
g ← FWT(g) ; // Fast Walsh transform of size 2^t

foreach u ∈ M do // Generate the desired outputs

(j1, . . . , jt) ← GetCoordinates(u − u0,BU );
̂f(u) ← (−1)〈x0,u〉g(j1, . . . , jt);

end

return ̂f

Proof. Let u = u0 + u′, u′ ∈ U be one of the desired outputs.

f̂(u) =
∑

x∈F
n
2

(−1)〈u,x〉f(x) =
∑

x′∈X

(−1)〈u,x0〉+〈u′,x′〉+〈u0,x′〉f(x0 + x′)

= (−1)〈u,x0〉 ∑

y∈X/(X∩U⊥)

(−1)〈u′,y〉 ∑

x′∈y

(−1)〈u0,x′〉f(x0 + x′),

where x ∈ y′ means that x is a representative of the class y, in other words,
y = x′ + (X ∩ U⊥). This suggests the following algorithm:

1. For each y ∈ X/(X ∩ U⊥), compute g(y) =
∑

x′∈y(−1)〈u0,x′〉f(x0 + x′),
forming an array g of length 2t. We go over all x ∈ L, compute x′ = x − x0,
and add f(x) to the bin corresponding to the class of x′. This costs at most
|L| additions. We do not need to store any entries of f in memory.

2. We apply the fast Walsh transform on g with t2t additions. The result is a
vector ĝ which contains, for each v ∈ V ∈ U/(U ∩ X⊥):

ĝ(v) =
∑

y∈X/(X∩U⊥)

(−1)〈v,y〉 ∑

x′∈y

(−1)〈u0,x′〉f(x0 + x′).

Lemma 6 justifies the validity of this step.
3. For each output u ∈ M , separate u = u0 + u′, and sign-swap the entry of ĝ

indexed under the class of u′ according to 〈x0, u〉 to obtain f̂(u). The total
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cost is at most |M |. Each output can be queried individually, and we can even
store the vector ĝ and query any output in O (1) afterwards.

Example. We return to the example to illustrate how the algorithm of Fig. 3
is justified by Proposition 7. Indeed, U ∩ X⊥ = X⊥ = span {(1, 1, 1, 0)} and
X ∩ U⊥ = U⊥ = span {(1, 1, 0, 0)}, so t = 2 and the transform reduces to one of
size 22. The inputs and outputs of the reduced transform correspond to the bases
((0, 1, 1, 0), (0, 0, 0, 1)) of X/(X ∩U⊥) and ((0, 0, 1, 0), (0, 0, 0, 1)) of U/(U ∩X⊥).

3.3 A Small Generalisation

We have described a pruned fast Walsh transform algorithm which is effective
when the inputs and/or outputs are restricted to affine subspaces of small dimen-
sion. We have also shown that the time complexity doesn’t just depend on the
dimensions of these subspaces, but also on their orthogonality. The next natural
step is to look into algorithms for arbitrary subsets of F

n
2 .

We can find the smallest subspaces which cover all inputs and outputs by
choosing random x0 ∈ L and u0 ∈ M and picking X = span ({x − x0}x∈L)
and U = span ({u − u0}u∈M ). However, if |L|, |M | � n it is very likely that
X = U = F

n
2 , and we just obtain the traditional fast Walsh transform algorithm.

This is the case in the applications later in the paper.
In these applications, however, the nonzero coefficients can be covered by a

small amount of low dimension subspaces. We assume that we separate the lists
L and M as disjoint unions L = L1 ∪ · · · ∪ Lp and M = M1 ∪ · · · ∪ Mq. Let’s
also assume that there exist x1

0, . . . , x
p
0 and u1

0, . . . , u
q
0, as well as X1, . . . , Xp and

U1, . . . , Uq so that Li ⊆ xi
0 + Xi and Mj ⊆ uj

0 + Uj . Although the list families
{Li} and {Mj} are disjoint, the affine subspace families {xi

0+Xi} and {uj
0+Uj}

need not be disjoint. Because of the linearity of the Walsh transform, we can
compute the transform for each pair (Li,Mj) separately, and combine the results
at the end. Let tij := dim

(
Xi/(Xi ∩ U⊥

j )
)
. The time complexity is:

q|L| +
p∑

i=1

q∑

j=1

tij · 2tij + p|M | additions/subtractions. (12)

4 Zeros in the Walsh Spectra of SPN Constructions

This section adapts some previously-known results on the Walsh transform
(see [13]) to quickly identify zeroes in the Walsh spectra of block cipher construc-
tions which alternate a bricklayer nonlinear map and a linear transformation,
such as Substitution Permutation Networks. We also illustrate how in some cases
slightly modifying to the key recovery map so that it rejects some plaintexts can
drastically reduce the number of nonzero coefficients.
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Lemma 8. Let f : F
n
2 −→ F

m
2 , f(x) = Lx ⊕ c, where L ∈ GL(Fn

2 , Fm
2 ) is a

linear map and c ∈ F
m
2 is a constant. Then

f̂(u, v) =
{

0 if u 
= LT v
(−1)〈v,c〉2n if u = LT v

for all u ∈ F
n
2 , v ∈ F

m
2 . (13)

Lemma 9. Let fi : F
ni
2 −→ F

mi
2 , i = 1, . . . , d be d vectorial boolean func-

tions. We consider the bricklayer map F : F

∑
i ni

2 −→ F

∑
i mi

2 , which is
obtained by concatenation, F(x1, . . . , xd) = (f1(x1), . . . , fd(xd)). Then, for any
(u1, . . . , ud) ∈ F

n1
2 × . . . × F

nd
2 and (v1, . . . , vd) ∈ F

m1
2 × . . . × F

md
2 , we have

F̂((u1, . . . , ud), (v1, . . . , vd)) =
d∏

i=1

f̂i(ui, vi). (14)

Note that if mi = 1 and fi is balanced, then f̂i(ui, vi) =

⎧
⎨

⎩

f̂i(ui) if vi = 1
0 if ui 
= 0, vi = 0

2ni if ui = 0, vi = 0
.

Lemma 10. Let f : F
n
2 −→ F

l
2 and g : F

l
2 −→ F

m
2 be vectorial boolean functions.

Let X ⊆ F
n
2 , Z ⊆ F

l
2 and Y ⊆ F

m
2 be subsets. We have

2lĝ ◦ f(u, v) =
∑

w∈F
l
2

f̂(u,w) · ĝ(w, v) (15)

2lĝ ◦ fx∈X(u, v) =
∑

w∈F
l
2

f̂x∈X(u,w) · ĝ(w, v) (16)

2lĝ ◦ fg◦f(x)∈Y (u, v) =
∑

w∈F
l
2

f̂(u,w) · ̂gg(z)∈Y (w, v) (17)

2lĝ ◦ ff(x)∈Z(u, v) =
∑

w∈F
l
2

̂ff(x)∈Z(u,w)ĝ(w, v) =
∑

w∈F
l
2

f̂(u,w)ĝz∈Z(w, v)

(18)

Using these results, we can often obtain compact formulas for the Walsh
coefficients of some key recovery maps, such as the following:

Proposition 11. Let fi : F
n
2 −→ F

li
2 be d balanced vectorial boolean functions,

let L : F

∑
i li

2 −→ F
l
2 be a linear map, and let g : F

l
2 −→ F2 be a boolean function.

In the applications, the fi will be some Sboxes with possibly truncated outputs,
L will be a truncation of the linear layer, and g will be a linear combination of
outputs of an Sbox layer. We also consider a subset Z ⊆ F

l
2. We consider the

composition h = g ◦ L ◦ F, where F is the bricklayer function F(x1, . . . , xd) =
(f1(x1), . . . , fd(xd)). The Walsh coefficients of h can be obtained through the
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following formula:

ĥL(F(x))∈Z(u1, . . . , ud) =
1
2l

∑

w1∈F
l1
2

· · ·
∑

wd∈F
ld
2

∑

v∈F
l
2

︸ ︷︷ ︸
wi=0 if ui=0

(w1,...,wd)=Ltv

d∏

i=1

f̂i(ui, wi)ĝz∈Z(v). (19)

Proof. We use Lemma 10 to write the Walsh coefficients of h as

ĥL(F(x))∈Z(u1, . . . , ud) =
1

2
∑

i li+l

∑

w∈F

∑
i li

2

∑

v∈F
l
2

F̂(u,w)L̂(w, v)ĝz∈Z(v).

According to Lemma 8, L̂(w, v) 
= 0 if and only if w = Ltv, in which case
L̂(w, v) = 2

∑
i li . This means we only have to consider the sums over the wi

for which an appropriate v exists, and vice versa. Furthermore, we can write
F̂(u,w) =

∏d
i=1 f̂i(ui, wi) according to Lemma 9. Since f̂i(0, wi) = 0 if wi 
= 0,

we can assume wi = 0 for the i for which ui = 0.

In particular, for the case in which all li = 1:

Corollary 12. Let fi : F
ni
2 −→ F2 be l boolean functions and g : F

l
2 −→ F2. We

consider h(x1, . . . , xl) = g(f1(x1), . . . , fd(xl)) and the subset Z ⊆ F
d
2. Then

̂hF(x)∈Z(u1, . . . , ul) =
2

∑
i,ui=0 ni

2l
ĝz∈Z(w(u1, . . . , ul))

∏

i,ui �=0

f̂i(ui),

where w(u1, . . . , ul)i =
{

0 if ui = 0
1 if ui 
= 0 .

We’ll show how the previous result describes ĥf(x)∈Z and its zeroes in a
compact manner. We first look at ĝz∈Z . Given any w ∈ F

l
2 so that ĝz∈Z(w) = 0,

we can deduce that ̂hF(x)∈Z(u1, . . . , ul) = 0 for all (u1, . . . , ul) so that w =
w(u1, . . . , ul). Furthermore, for the (u1, . . . , ul) for which ĝz∈Z(w(u1, . . . , ul)) 
=
0, the Walsh coefficient ̂hF(x)∈Z(u1, . . . , ul) can be written as the product of
ĝz∈Z(w(u1, . . . , ul)) and the f̂i(ui) corresponding to each ui 
= 0.

An interesting situation appears when ĝz∈Z(1, . . . , 1) = 0. Given (u1, . . . , ul)
so that ui 
= 0 for all i, we know that ̂hF(x)∈Z(u1, . . . , ul) = 0, and any nonzero
Walsh coefficient must verify ui = 0 for at least one i. As a result, the nonzero
Walsh coefficients can be separated into l vector subspaces Ui of dimensions∑

j �=i nj − ni. Each Ui is determined by the ni linear equations ui = 0.
When ĝ(1 . . . 1) = 0, we obtain this decomposition without any modifications

to the key recovery map. When ĝ(1 . . . 1) 
= 0, we would like to choose some large
Z ⊆ F

d
2 so that ĝz∈Z(1, . . . , 1) = 0. We can use the following result:
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Proposition 13. Let g : F
l
2 −→ F2 be a map for which ĝ(1 . . . 1) = a 
= 0. There

exists Z ⊆ F
l
2 with |Z| = 2l − |a| so that ĝz∈Z(1 . . . 1) = 0.

We have substituted the key recovery map, which normally takes values ±1
depending on the linear approximation, for a modified map which is zero when
F(x) 
∈ Z. From the perspective of the attack, we are rejecting the plaintext-
ciphertext pairs for which the input of g is not in Z. Assuming independence,
the resulting attack has the same parameters except for the data complexity,
which increases by a factor of 2l/|Z| to compensate the rejected plaintexts.

These results describe static key recovery maps F (X ⊕ KO) without inner
key guesses. We must also consider maps of the form F (X ⊕ KO,KI). When
all li = 1, the xoring of a round subkey between rounds only changes the Walsh
coefficient signs, and the positions of the zero coefficients remain unaltered:

Corollary 14. Let fi : F
ni
2 −→ F2 be l boolean functions, g : F

l
2 −→ F2,

and let k ∈ F
l
2 be a fixed parameter. We consider the parametric function

h(x1, . . . , xl; k) = g((f1(x1), . . . , fl(xl)) ⊕ k) and the subset Z ⊆ F
l
2. Then

ĥ(·, k)F(x)⊕k∈Z(u1, . . . , ul) = (−1)〈k,w(u1,...,ul)〉ĥ(·, 0)F(x)∈Z(u1, . . . , ul).

5 Optimised Attack Algorithm

We now provide a linear key recovery algorithm which makes use of the affine
pruned Walsh transform. We assume that the target linear approximation is of
the form f0(x) + f(X ⊕ KO,KI), but it also applies to key recovery maps with
several parts. We will also make some redundancy assumptions:

– The parts of the plaintext-ciphertext pair X which are xored with the outer
key guess KO lie in an affine subspace of the form x0 + Y ⊆ F

|KO|
2 .

– The nonzero Walsh coefficients of F (·, 0) lie in the union of l affine subspaces
ui
0 + Ui ⊆ F

|KO|
2 . We denote the number of nonzero coefficients in ui

0 + Ui by
|Li|. We also assume that the nonzero Walsh coefficients of F (·,KI) occupy
the same subspaces. If the latter is not true, each value of KI must be treated
separately, and the cost of the analysis phase is multiplied by 2|KI |.

– Given the key schedule of the cipher, for a given guess of KI , the possible
values of KO lie within an affine subspace of the form vKI

0 + VKI ⊆ F
|KO|
2 .

We denote the dimensions of the relevant quotient spaces for the first
Walsh transform as ti = dim

(
Y/(Y ∩ U⊥

i )
)
. For the last set of Walsh trans-

forms, we assume that these dimensions are constant for all the KI , that is
ri = dim

(
Ui/(Ui ∩ V ⊥

KI )
)

for all KI ∈ F
|KI |
2 . This assumption is not necessary

but it simplifies the complexity calculation.
The broad idea of the attack procedure is to compute ĉor(·,KI) as the sum

of l linear transformations of A. Each linear operation corresponds to the part
of the Walsh spectrum of F which lies in the affine subspace ui

0 + Ui ⊆ F
|KO|
2 .

The full attack algorithm is the following:
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1. Distillation phase: We can merge the first step of the first pruned Walsh
transform into the distillation phase to save time and memory. Depending on
the relative sizes of N and 2dim(Y ), we have two options:

– Perform the distillation phase as usual (compute A in full) and compute
the first step of the pruned Walsh transform algorithm for each of the l
pruned Walsh transforms separately to obtain l tables gi of lengths 2ti .
We note that we only need 2dim(Y ) counters to store A. The cost of this
operation is N + l · 2dim(Y ) additions.

– We can instead construct l distilled tables gi directly, without building
the intermediate array A. The cost of this operation is l · N additions.

Both options require
∑l

i=1 2ti registers to store the resulting distilled data.
2. Analysis phase: We also save time and memory by mixing the last step of the

first Walsh transform, the eigenvalue multiplication step, and the first step of
the second set of Walsh transforms.
(a) First Walsh transform: Perform the (standard) fast Walsh transform on

each of the arrays gi to obtain l arrays ĝi. The time complexity of this
operation is

∑l
i=1 ti2ti additions.

(b) Walsh spectrum multiplication: This step and the next are repeated for
each guess of KI . Inside each subspace ui

0+Ui, we go over all the nonzero
Walsh coefficients. For the nonzero coefficients which belong to more than
one subspace, we must only consider them in one of these subspaces. For
each coefficient, we fetch the appropriate entry of ĝi and multiply it by
the coefficient F̂ (ui

0+u′,KI). The result is then added to the appropriate
coordinate of an array h of length 2ri . This step uses 2|KI | ∑l

i=1 |Li|
products and additions and requires

∑l
i=1 2ri additional memory registers

(assuming we can reuse the same memory from one KI to the next). If
Corollary 14 applies, it is possible to achieve further savings by performing
the multiplication step a single time.

(c) Second set of Walsh transforms: We perform the fast Walsh transform on
each of the hi to obtain ĥi, at a cost of

∑l
i=1 ri2ri additions.

(d) Unfolding step: For each guess of KO, we compute ĉor(KO,KI) by adding
l values (with appropriate signs), one from each of the ĥi. This costs
l2|KI |2dim(V ) additions.

By adding up the cost of each step we find that the total time and memory
complexity of the algorithm is, after removing terms of lower order:

2|KI |
︸ ︷︷ ︸

∗
Nl + 2|KI |

︸ ︷︷ ︸
∗

l∑

i=1

ti2ti + 2|KI |
︸ ︷︷ ︸

∗∗

l∑

i=1

Li + 2|KI |
l∑

i=1

ri2ri additions, (20)

2|KI |
︸ ︷︷ ︸

∗∗

l∑

i=1

Li products, and (21)

l∑

i=1

2ti +
l∑

i=1

2ri registers, (22)
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where the factors indicated by ∗ can be removed when the nonzero Walsh coeffi-
cients of F (·,KI) occupy the same subspaces ui

0+Ui independently from KI , and
the factors with ∗∗ can be removed when the Walsh coefficients of the different
F̂ (·,KI) only differ by sign as in Corollary 14.

6 Application to the DES

As an application example, we present a variant of Matsui’s linear attack [25,26]
on the DES [1]. This variant has lower data complexity (241.5 vs. 243), but has
a larger memory complexity (238.75 vs. 226.00) due to the larger key guess.

We use a 13-round linear approximation identical to the 14-round linear
approximation used in [26], but with the last round removed. This increases the
correlation from −2−19.75 to 2−19.07. The input mask is (00000000, 01040080)
at (L1, R1) and the output mask is (21040080, 00000000) at (L14, R14).

Figure 4 indicates the active keybits in the key recovery in rounds 1, 15, and
16. There are 40 active keybits in total: 3 are active in round 1, one is active
in round 15, 28 are active in round 16, 3 are active in both rounds 1 and 16,
and 5 are active in both rounds 15 and 16. All active keybits are represented
as part of K, after applying the appropriate bit rotation. There are 43 active
plaintext/ciphertext bits (four of which are duplicated before the key addition
because of the expansion map) and 40 active keybits (eight of which are used
twice). An attack using the same version of Algorithm 2 as [26] would have a
time complexity of O(N)+243+40 � 283 operations. An attack based on the FFT
without any kind of optimisation [17] would require O(N) + 48 · 248 operations.

6.1 The Walsh Spectrum of the Key Recovery Map

Figure 5 shows the full key recovery map for the attack, including all the key
material. In other words, it shows how the linear approximation is computed
from the plaintext, ciphertext, and key. Our aim is to identify the zeroes in
this function’s Walsh spectrum. We note that all key material is xored to the
plaintext/ciphertext, and that there are seven plaintext/ciphertext bits which
are xored at the end and can be considered separately as the term f0. The rest
of the map consists of two independent parts if we ignore the key schedule: one
corresponds to the first round and the other corresponds to the last two rounds.

In the case of the map for the first round, which we will denote by f1, we can
see that it consists of the application of S5 and the xoring of three of its output
bits. If we look at the Walsh spectrum of S5, we can see that for the output
y1 ⊕ y2 ⊕ y3 we have 50 nonzero coefficients out of the total 64.
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Fig. 4. Key recovery in rounds 1, 15 and 16 of the DES. States are represented as
divided into nibbles, except for those before the S-box layer which are divided in
groups of 6 bits. The least significant bit is the one on the upper right. represents
a bit which appears linearly in the linear approximation, while represents any other
active (nonlinear) bit. , , and represent keybits which are active in rounds 1, 15
and 16, respectively. (Color figure online)

The map for the last two rounds f2 is a little more complex. It is the compo-
sition of three maps: the first is an F

42
2 → F

12
2 map consisting of the application

of the six active Sboxes in round 16 (selecting a single output bit for each), as
well as the identity on the six active bits on the left part of the ciphertext. We
then apply a linear F

12
2 → F

6
2 map which xors the outputs of the six sboxes into

the ciphertext material. Finally, we apply S5 and xor the four outputs. If we
look at the Walsh spectrum of S5 with output mask F (Table 1), we note that
there are 32 zeros, one of them corresponding to the input mask 3F.
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Fig. 5. Schematic of the key recovery map for the DES attack.

Table 1. Part of the Walsh spectrum of S5: ̂S5(·, F).

00 0 08 8 10 −40 18 −8 20 0 28 0 30 8 38 0

01 0 09 −8 11 8 19 −8 21 0 29 0 31 8 39 0

02 −8 0A 0 12 0 1A 0 22 −24 2A 8 32 0 3A −8

03 −8 0B 0 13 0 1B 0 23 −8 2B 8 33 0 3B 8

04 0 0C −8 14 0 1C 0 24 0 2C 0 34 0 3C 8

05 8 0D 0 15 8 1D 8 25 −8 2D −8 35 8 3D 0

06 0 0E −8 16 0 1E 0 26 0 2E 0 36 0 3E 8

07 −8 0F 0 17 8 1F −8 27 −8 2F −8 37 −8 3F 0

We consider the coefficients f̂2(u0, . . . , u5, u6), where u6 corresponds to the
six active bits in the left half of the ciphertext. The mask u6 will be determined
by the rest of parts of the mask, as from Corollary 12 we can deduce that

f̂2(u0, . . . , u5, u6) 
= 0 =⇒ (u6[i] = 1 ←→ ui 
= 0 for all i). (23)

Furthermore, the following expression for the Walsh coefficient can be deduced:

̂f2(u0, . . . , u5, ind(u0, . . . , u5)) =

̂S8(u0, 1)̂S4(u1, 4)̂S6(u2, 1)̂S2(u3, 1)̂S1(u4, 4)̂S3(u5, 4)̂S5(ind(u0, . . . , u5), F),
(24)
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where ind(u0, . . . , u5)[i] = 1 ⇐⇒ ui 
= 0. We also collect the following informa-
tion about the Walsh spectra of the active Sboxes in the last round:

– Ŝ8( · , 1) has 15 zeros.
– Ŝ4( · , 4) has 12 zeros.

– Ŝ6( · , 1) has 17 zeros.
– Ŝ2( · , 1) has 20 zeros.

– Ŝ1( · , 4) has 14 zeros.
– Ŝ3( · , 4) has 18 zeros.

By adding the number of nonzero coefficients associated to each value in
Table 1, we conclude that despite being a map defined in F

42
2 , the Walsh spectrum

of f2 only has around 230.31 nonzero coefficients. Furthermore, since Ŝ5(3F, F) =
0, u0, . . . , u5 cannot all be nonzero at the same time. All nonzero coefficients
belong to at least one of six vector subspaces of dimension 35. Each subspace Ũi

is determined by fixing one ui = 0, which is a six bit condition, as well as the
bit condition u6[i] = 0. Since Ŝ5(3D, F) = 0, we can ignore the subspace Ũ1.

6.2 Attack Algorithm and Complexity

Based on the observations we have made on the key recovery map for the attack,
we propose the following attack algorithm. We have provided a more thorough
description of the subspaces Y, V and Ui as supplementary material.

Distillation phase and first set of Walsh transforms. The nonzero Walsh coef-
ficients of the key recovery map form five affine subspaces which are handled
separately. The first step in the analysis phase consists of five pruned transforms
whose inputs are restricted to a subspace Y of dimension 40 (due to the duplicate
input bits in the key recovery map) and whose outputs are restricted to sub-
spaces Ui = F

6
2 × Ũi of dimension 41. We can show that dim(Y/(Y ∩ U⊥

2 )) = 33,
dim(Y/(Y ∩ U⊥

0 )) = 35, and dim(Y/(Y ∩ U⊥
i )) = 37 for i = 3, 4, 5.

1. Initialise three arrays g3, g4, g5 of length 237, one array g0 of length 235 and
one array g2 of length 233.

2. For each pair (x, y), increment or decrement one position in each of the gi

according to the values of the appropriate parts of the plaintext and ciphertext
and to P [39] + P [50] + P [56] + C[7] + C[18] + C[24] + C[29].

3. Apply the fast Walsh transform on each of the gi.

The time complexity of these steps is around 6N memory accesses and 3 · 37 ·
237 + 35 · 235 + 33 · 233 � 243.93 additions and subtractions.

Multiplying by the Walsh coefficients. The key recovery map has 50 · 230.31 �
235.95 nonzero Walsh coefficients. They can be enumerated by separating them
into 32 sets, one for each Ŝ5( · , F) 
= 0, and looking at the nonzero positions in
the LATs of (up to) 7 other active Sboxes.

1. Initialise one array h2 of length 238, one array h0 of length 237, and three
arrays h3, h4, h5 of length 234.
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2. For each of the nonzero Walsh coefficients, retrieve the associated output of
the first Walsh transform from one of the gi (if the coefficient lies in more
than one of the Ui, we can choose any), multiply it by the coefficient and add
or subtract the result to the appropriate position of the array hi.

The time complexity of this step is 7 · 235.95 � 238.76 products.

Second set of Walsh transforms and exhaustive search. The Walsh transforms
in the second set are pruned at the inputs according to the subspaces Ui, and
at the outputs according to a subspace V of dimension 40 given by the key
schedule. We can show that dim(V/(V ∩ U⊥

2 )) = 38, dim(V/(V ∩ U⊥
0 )) = 37,

and dim(V/(V ∩ U⊥
i )) = 34 for i = 3, 4, 5.

1. Perform the standard Walsh transform on the five arrays h0, h2, h3, h4, h5.
2. For each of the 240 possible key guesses, we add one coordinate from of each

of the five arrays to obtain the experimental correlations. We keep the 224

guesses with the highest correlation, as we aim for an advantage of 16 bits.
3. For each one of the 40-bit partial key guesses, we try all possibilities of the

16 other keybits exhaustively until either the key is found or the attack fails.

The time complexity of these steps is 38 ·238+37 ·237+3 ·34 ·234+5 ·240 � 244.41

additions/subtractions and 240 trial encryptions.

Attack Complexity. The data complexity of the attack was determined using
the model of Blondeau and Nyberg [8]. We obtain a 16 bit advantage with 70%
probability with N = 241.5 data. The memory complexity is dominated by the
ten arrays, which require 239.74 memory registers of 64 bits. This can be reduced
to around 238.75 by performing the multiplication step in a way in which the gi

and the hi do not have to be allocated at the same time.
For the time complexity, we consider that on a modern processor a DES

encryption takes 16 clock cycles, a product takes 6 clock cycles, and a memory
access or an addition take 1 clock cycle. We obtain

1
16

· 6 · 241.5 +
1
16

(
243.93 + 244.41

)
+

6
16

· 238.76 + 240 � 242.13 DES encryptions.

This attack is, to the best of our knowledge, the best in terms of data com-
plexity. However, it has rather high time (if we exclude data generation) and
especially memory complexities when compared to previous attacks (Table 2).

7 Application to PRESENT-128

In this section we introduce the first, to the best of the authors’ knowledge, attack
on 29-round PRESENT-128. It is based on a previous attack on PRESENT-
80 [19] and adds an additional key recovery round. The attack uses the full
codebook and has a time complexity of 2124.06 29-round PRESENT encryptions.
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Table 2. Comparison of selected attacks on the Data Encryption Standard.

Type Complexity PS Source
Data Time Memory

Differential cryptanalysis 247.00 CP 237.00 O (1) 58% [5]
Linear cryptanalysis 243.00 KP 239.00 226.00 50% [26]
Multiple linear cryptanalysis 242.78 KP 238.86 230.00 85% [11]
Conditional linear cryptanalysis 242.00 KP 242.00 228.00 90% [4]
Linear cryptanalysis 241.50 KP 242.13 238.75 70% Section 6

Table 3. The linear approximations of 24-round PRESENT which conform set II
of [19], and which are also used in our attack.

Group ([19]) Input mask Input S-box Output mask Output S-box Qty. 24R ELP

A A 5, 6, 9, 10 2,8 5, 7, 13, 15 32 2−65.1

B C 5, 6, 9, 10 2,8 5, 7, 13, 15 32 2−65.6

C A 5, 6, 9, 10 2,8 6, 14 16 2−65.8

A 13, 14 2,8 5, 7, 13, 15 16

D 2,4 5, 6, 9, 10 2,8 5, 7, 13, 15 64 2−66.0

E C 5, 6, 9, 10 2,8 6, 14 16 2−66.3

C 13, 14 2,8 5, 7, 13, 15 16

F A 13, 14 2,8 6, 14 8 2−66.5

G 2,4 5, 6, 9, 10 2,8 6, 14 32 2−66.7

8 5, 6, 9, 10 2,8 5, 7, 13, 15 32

2,4 13, 14 2,8 5, 7, 13, 15 32

Total 296 2−57.8

The attack uses one of the three sets of linear approximations which were
defined in [19] and provide a trade-off between capacity and key recovery com-
plexity. We will use set II, which has 296 approximations and a total capacity
of 2−57.8. Table 3 shows all the approximations which conform this distinguisher
in a compact form. All of them have a single active Sbox in the first round and
a single active Sbox in the last round, and the input mask always has Hamming
weight 1 or 2 while the output mask always has Hamming weight 1.

7.1 Key Recovery Example for a Single Approximation

As an example, we consider the 24-round linear approximation with input mask
0000000000A00000 and output mask 0000000000200000, between the 3rd and
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the 26th rounds. We add two rounds of key recovery at the input side and three
rounds at the output side. We will apply the pruned Walsh transform-based
attack algorithm to compute its experimental correlation for all key guesses.

For comparison purposes, we consider the cost when using the Walsh trans-
form without pruning. There are 32 active bits in K1, 8 active bits in K2, 4
active bits in K28, 16 active bits in K29, and 64 active bits in K30 (crossed-out
in Fig. 6). They add up to 28 bits of inner key guess KI and 96 bits of outer key
guess KO. We thus require 296 memory registers, and the time complexity is in
the order of 96 · 296+28 � 2130.6 additions, which leaves little margin to repeat it
for several approximations using less than 2128 equivalent encryptions.

In order to reduce this cost as much as possible, we consider both the struc-
ture of the key recovery map and the key schedule in order to prune both stages
of Walsh transforms. The key recovery map consists of three independent parts
corresponding to each of the three active bits in the input and output masks.

Both parts corresponding to the input mask are essentially identical. If we
denote by S1 the second component of S (that is, the second output bit), then
these F

16
2 −→ F2 maps are of the form S1(S1(x3), S1(x2), S1(x1), S1(x0) ⊕ kI).

Using Corollary 14, each of their Walsh coefficient is the product of up to five
coefficients of the Walsh spectrum of S1, which we note has six zeros.

We next look at the remaining part, which has a similar structure but over
three rounds. In round 27, we consider Ŝ−1(F, 2) = Ŝ(2, F) = 4. By reject-
ing the ciphertexts which lead to an input 3, 5, B or D to this Sbox, this
coefficient becomes zero. We can split all nonzero Walsh coefficients into two
affine subspaces of dimension 48 corresponding to the nonzero Walsh coefficients
Ŝ−1

x∈F
4
2\X (B, 2) and Ŝ−1

x∈F
4
2\X (D, 2). The “inactive” bits in each of these sub-

spaces have been surrounded by a thicker outline in Fig. 6. The cost of this
modification is a reduction of the available data by a factor of 3/4 = 2−0.42.

We now consider the key schedule. When pruning the Walsh transforms, we
prefer relationships which are linear or which describe outer active keybits in
terms of inner active keybits. We first guess the 28 inner keybits, painted (dark)
red in the figure. The outer bits which can be deduced from these are colored
(light) green. The other outer bits are guessed individually. There are three bits
of K30 which can be deduced from the guess for K28.

Let us compute the time complexity of obtaining all the ĉor(KO,KI). We
start with two Walsh transforms whose outputs are restricted to subspaces of
dimension 48+32 = 80. The distillation phase costs 2N operations and requires
2 · 280 memory registers. The cost of the Walsh transforms themselves is 2 · 80 ·
280 � 287.32 additions. The cost of the Walsh coefficients multiplication is at
most

(
10
16

)20 · 2 · 280 � 267.44 products.
The second pair of Walsh transforms is repeated once for each of the 228

guesses of KI . In every case, the Walsh transforms have inputs restricted to
subspaces of dimension 80 and outputs restricted to subspaces of dimension 93.
The dimension of X/(X∩U⊥) is minimal and equal to 77. The total cost of these
transforms is thus 228 · 2 · 77 · 277 � 2112.27 additions. The cost of combining the
resulting arrays would be 2120 additions. However, 25 bits of the key guess at
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Fig. 6. Key recovery for one approximation.

Table 4. Restricted Walsh spectra used in the PRESENT-128 attack.

ŜS(x)∈F
4
2\X (2, ·)

v 0 1 2 3 4 5 6 7 8 9 A B C D E F

X = ∅ 0 0 4 4 −4 −4 0 0 4 −4 0 8 0 8 −4 4
X = {3, 5, B, D} 0 0 4 4 −4 −4 0 0 0 0 0 8 0 8 0 0

ŜS(x)∈F
4
2\X (4, ·)

v 0 1 2 3 4 5 6 7 8 9 A B C D E F

X = ∅ 0 0 −4 4 −4 −4 0 8 −4 −4 0 −8 0 0 −4 4
X = {1, 3, D, F} 0 0 0 0 −4 −4 0 8 −4 −4 0 −8 0 0 0 0

ŜS(x)∈F
4
2\X (8, ·)

v 0 1 2 3 4 5 6 7 8 9 A B C D E F

X = ∅ 0 0 4 −4 0 0 −4 4 −4 4 0 0 −4 4 8 8
X = {0, 1, 2, 4,

5, 7, 9, C} 0 0 0 −4 0 0 −4 0 0 4 0 0 −4 0 8 0

K1 and three bits of the guess at K28 can be deduced from the guess at K30,
and the calculation can be performed with 292 additions.

We note that we have decreased the time complexity by a factor of almost
216 by increasing the data complexity by a factor of 4/3 � 20.42, illustrating that
a carefully picked filtering of the data can lead to significant time gains.
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7.2 Overview of the Complete Attack

We divide the 296 linear approximations into two groups depending on the Ham-
ming weight of the input mask and their time complexity contribution:

Type I (Groups D,G). These are the 160 approximations with input masks of
Hamming weight 1. For these approximations, there are 16 active bits in K1,
4 in K2, 4 in K28, 16 in K29 and 64 in K30. We can compute ĉor for these
approximations with around 160·224 ·80·280 � 2117.64 additions without pruning.

Type II (Groups A,B,C,E,F). These are the 136 approximations with input
masks of Hamming weight 2. There are 32 active bits in K1, 8 in K2, 4 in K28,
16 in K29, and 64 bits in K30. We treat these approximations as in the example:
we study the Walsh spectrum of the active Sbox in round 27 (see Table 4).
For 48 approximations, we are interested in Ŝ(2, ·), and we can split the Walsh
spectrum of the key recovery map into two affine subspaces of dimension 80 by
discarding 1/4 of the data. For 40 approximations, the coefficient is Ŝ(4, ·), and
we can split the spectrum into 2 spaces of dimension 80 by discarding 1/4 of the
data. For the other 48 approximations, the coefficient is Ŝ(4, ·), in which case
the spectrum lies on a subspace of dimension 80 after discarding 1/2 of the data.
Given these restrictions, we can compute ĉor with either 2 ·228 ·80 ·280 � 2115.32

or 228 · 80 · 280 � 2114.32 additions. Further reductions are possible if we used
the key schedule, but they are different for each approximation. Ignoring these,
2123.08 additions are required in total. We also have to combine both arrays
corresponding to each approximation, which requires at most 292 additions per
approximation if we consider the key schedule.

Computing the Multiple Linear Cryptanalysis Statistic: First Step. We must also
consider the cost of computing the multiple linear cryptanalysis statistic. Using
the notation of [19], the approximations form M2 = 32 groups (8 groups for
type I and 24 groups for type II) which share the same key guesses KO and KI .
We can compute the sum of squares within each group and combine them in
the next step. Considering the key schedule, for the Type II approximations we
need to guess at most 92 bits, and for Type I at most 88 bits. This step can thus
be performed with 136 · 292 + 160 · 288 � 299.2 products and additions.

Computing the Multiple Linear Cryptanalysis Statistic: Second Step. The com-
bined tables of the previous step are used to compute QkT

for each value of a
global key guess kT . Figure 7 shows a guess of 123 keybits from which all the key
guesses can be deduced. For each guess of kT , we must add 32 values, one from
each of the tables constructed in the previous step, at a cost of 32 · 2123 = 2128

additions. After this we can find the five remaining keybits with an exhaustive
search costing 2123 encryptions if we aim for a five-bit advantage.
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Fig. 7. Determining all the active keybits for all approximations (crossed out in the
figure) with as few guesses as possible. We can deduce the (light) green bits if we know
the 123 keybits highlighted in (dark) red. (Color figure online)

Data Complexity. We once again use the model from [8], with careful considera-
tion that the number of available plaintexts depends on the approximation. We
find that if the whole codebook is used (264 distinct known plaintexts), a 5 bit
advantage is achieved with 67% probability.

Memory Complexity. There are two main steps which contribute to the memory
complexity. The distillation phase requires 160 · 216+64 + 136 · 2 · 232+48 � 288.75

registers. The 32 intermediate multiple linear cryptanalysis statistic tables use
299.2 memory registers, which dominate the memory complexity of the attack.

Time Complexity. The dominant parts of the time complexity are the compu-
tation of the multiple linear cryptanalysis statistic and the final exhaustive key
search. The latter takes 2123 PRESENT encryptions, while the former requires
2128 additions. If we assume that a sum requires at most 128 bit operations
and a 29-round PRESENT encryption requires at least 3776 (64 for each subkey
addition and Sbox layer), these will be equivalent to at most 2123.12 encryptions.
The total time complexity is thus 2124.06 encryptions (Table 5).
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Table 5. Comparison of linear attacks on reduced-round PRESENT. Attacks on
PRESENT-80 are also included for the sake of completeness. KP= Known Plaintext.
DKP = Distinct Known Plaintext.

Key Rds. Complexity PS Source
Data Time Memory

80 26 263.8 KP 272.0 232.0 51% [7,15]
263.0 KP 268.6 248.0 95% [10]
261.1 KP 268.2 244.0 95% [19]
260.8 KP 271.8 244.0 95% [19]

27 264.0 KP 274.0 267.0 95% [34]
263.8 DKP 277.3 248.0 95% [10]
263.4 DKP 272.0 244.0 95% [19]

28 264.0 DKP 277.4 251.0 95% [19]
128 28 264.0 DKP 2122 284.6 95% [19]

29 264.0 DKP 2124.06 299.2 67% Sect. 7

8 Conclusion

Summary of Results. We have introduced a new framework for pruning of
the fast Walsh transform to affine subspaces and used it as part of an opti-
mised version of the attack algorithms of [16,19], whose time complexity can be
significantly lowered with respect to previous iterations.

In general terms, the time complexity of a key recovery attack using the
fast Walsh transform largely depends on three factors: the number of active
bits in the plaintext/ciphertext, the number of active keybits, and the number
of input bits to the key recovery map which combines the two to evaluate the
linear approximation. Previous versions of the Walsh-based attack algorithm
often ran into a bottleneck imposed by the latter, in the sense that any additional
redundancy in the key or the data would not reduce the time complexity or
only reduce it by a logarithmic factor. Our improved algorithm can effectively
exploit the construction of the map. In the application examples, the number of
independent active keybits becomes the bottleneck of the attack.

We have showcased the usability of this improved version of the algorithm by
describing two attacks which are only possible (in the sense of having a smaller
time complexity than exhaustive search) thanks to it. We have provided the best
known attack on the DES with regards to data complexity as well as the first
attack on 29-round PRESENT-128 in the literature.

Further Research. The first continuation to this work would be application
to other ciphers. This technique might prove particularly useful in differential-
linear cryptanalysis [3,23], as using the same key guess for both ciphertexts in
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a pair introduces a lot of redundancy. We also think that, since applying the
framework to an attack is a fairly technically involved task, an automatic tool
which computes an optimal key recovery algorithm given a linear distinguisher
of a block cipher could be of great use to the community.

The results shown in this paper are most effective in the case of specific cipher
constructions, such as ciphers which use a bit permutation as the linear layer, a
case in which the Walsh spectrum can be described in a sufficient way. It would be
of interest to try to generalise these results to other common constructions. In the
applications, we also find that the attacks become limited by the number of active
keybits. For this reason, another open question would be whether it is possible
to adapt conditional guessing techniques such as [12] to Walsh transform-based
linear key recovery attacks. A broader open problem would be to find interesting
applications of pruned fast Walsh transform algorithms to other problems in
symmetric cryptology.
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Abstract. The security of code-based cryptography relies primarily on
the hardness of generic decoding with linear codes. The best generic
decoding algorithms are all improvements of an old algorithm due to
Prange: they are known under the name of information set decoders
(ISD). A while ago, a generic decoding algorithm which does not belong
to this family was proposed: statistical decoding. It is a randomized algo-
rithm that requires the computation of a large set of parity-checks of
moderate weight, and uses some kind of majority voting on these equa-
tions to recover the error. This algorithm was long forgotten because
even the best variants of it performed poorly when compared to the sim-
plest ISD algorithm. We revisit this old algorithm by using parity-check
equations in a more general way. Here the parity-checks are used to get
LPN samples with a secret which is part of the error and the LPN noise is
related to the weight of the parity-checks we produce. The corresponding
LPN problem is then solved by standard Fourier techniques. By properly
choosing the method of producing these low weight equations and the
size of the LPN problem, we are able to outperform in this way signifi-
cantly information set decoders at code rates smaller than 0.3. It gives for
the first time after 60 years, a better decoding algorithm for a significant
range which does not belong to the ISD family.

1 Introduction

1.1 The Decoding Problem and Code-based Cryptography

Code-based cryptography relies crucially on the hardness of decoding generic
linear codes which can be expressed as follows in the binary case

Problem 1.1 (decoding a linear code). Let C be a binary linear code over
F2 of dimension k and length n, i.e. a subspace of F

n
2 of dimension k. We are

given y ∈ F
n
2 , an integer t and want to find a codeword c ∈ C and an error

vector e ∈ F
n
2 of Hamming weight |e| = t for which y = c+ e.

c© International Association for Cryptologic Research 2022
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This terminology stems from information theory, y is a noisy version of a
codeword c: y = c + e where e is a vector of weight t and we want to recover
the original codeword c. It can also be viewed as solving an underdetermined
linear system with a weight constraint. Indeed, we can associate to a subspace
C of dimension k of F

n
2 a binary (n−k)×n matrix H (also called a parity-check

matrix of the code) whose kernel defines C, namely C = {x ∈ F
n
2 : Hxᵀ = 0}.

The decoding problem is equivalent to find an e of Hamming weight t such that
Heᵀ = sᵀ where s is the syndrome of y with respect to H, i.e. sᵀ = Hyᵀ. This
can be verified by observing that if there exists c ∈ C and e such that y = c+e
then Hyᵀ = H(c+ e)ᵀ = Hcᵀ +Heᵀ = Heᵀ.

The decoding problem has been studied for a long time and despite many
efforts on this issue [2–4,12,14,19,20,24,26] the best algorithms [3,5,6,20] are
exponential in the number of errors that have to be corrected: correcting t errors
in a binary linear code of length n with the aforementioned algorithms has a cost
of 2αn(1+o(1)) where α = α(R, τ) is a constant depending of the code rate R

�
= k

n ,

the error rate τ
�
= t

n and the algorithm which is used. All the efforts that have
been spent on this problem have only managed to decrease slightly this exponent
α. Let us emphasize that this exponent is the key for estimating the security level
of any code-based cryptosystem. We expect that this problem is the hardest at
the Gilbert-Varshamov relative distance τ = δGV where δGV

�
=h−1(1− R), with

h being the binary entropy function h(x)
�
=−x log2 x − (1 − x) log2(1 − x) and

h−1(x) its inverse ranging over [0, 1
2 ]. This corresponds in the case of random

linear codes to the largest relative weight below which there is typically just one
solution of the decoding problem assuming that there is one. Above this bound,
the number of solutions becomes exponential (at least as long as τ < 1−δGV) and
this helps to devise more efficient decoders. Furthermore, all the aforementioned
algorithms become polynomial in the regime 1−R

2 ≤ τ ≤ 1+R
2 (see an illustration

of this behavior in Fig. 1).

Fig. 1. Complexity exponent α of the Prange ISD algorithm [24] as a function of the
error ratio τ

�
= t

n
at rate R = 1

2
. The peak corresponds to the normalized Gilbert-

Varshamov distance δGV = h−1(1 − R).
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There are code-based cryptographic primitives whose security relies precisely
on the difficulty of decoding at the Gilbert-Varshamov relative distance (some-
thing which is also called full distance decoding [5,6,20]), for instance the Stern
code-based identification schemes or associated signatures schemes [1,13,16,27].
In the light of the upcoming NIST second call for new quantum resistant signa-
ture algorithms, it is even more important to have a stable and precise assessment
of what we may expect about the complexity of solving this problem. For much
smaller distances, say sub-linear, which is relevant for cryptosystems like [21,22],
the situation seems much more stable/well understood, since the complexity expo-
nent of all the above-mentioned algorithms is the same in this regime [7].

1.2 ISD Algorithms and Beyond: Statistical Decoding

All the aforementioned algorithms can be viewed as a refinement of the original
Prange algorithm [24] and are actually all referred to as Information Set Decod-
ing (ISD) algorithms. Basically, they all use a common principle, namely making
the bet that in a certain set of about k positions (the “information set”) there are
only very few errors and using this bet to speed-up decoding. The parameters
of virtually all code-based cryptographic algorithms (for the Hamming metric)
have been chosen according to the running time of this family of algorithms.
Apart from these algorithms, there is one algorithm which is worth mention-
ing, namely statistical decoding. It was first proposed by Al Jabri in [17] and
improved a little bit by Overbeck in [23]. Later on, [15] proposed an iterative
version of this algorithm.

It is essentially a two-stage algorithm, the first step consisting in computing
an exponentially large number of parity-check equations of the smallest possible
weight w, and then from these parity-check equations the error is recovered by
some kind of majority voting based on these equations. This majority voting
is based on the following principle, take a parity-check equation h for the code
C we want to decode, i.e. a binary vector h = (hi)1≤i≤n such that 〈h, c〉 = 0
for every c in C. Assume that the i-th bit of the parity-check is 1, then since
〈h,y〉 = 〈h, e〉 = ei +

∑
j �=i hjej , the i-th bit ei of the error e we want to recover

satisfies
ei +

∑

j �=i

hjej = 〈h,y〉 . (1.1)

The sum
∑

j �=i hjej is biased, say it is equal to 1 with probability 1−ε
2 with a bias

ε which is (essentially) a decreasing function of the weight w of the parity-check
h. This allows to recover ei with about Θ

(
1/ε2

)
parity-checks. However the bias

is exponentially small in the minimum weight of h and e and the complexity of
such an algorithm is exponential in the codelength. An asymptotic analysis of
this algorithm was performed in [9] and it turns out that even if we had a way
to obtain freely the parity-check equations we need, this kind of algorithm could
not even outperform the simplest ISD algorithm: the Prange algorithm. This is
done in [9] by showing that there is no loss in generality if we just care about
getting the best exponent to restrict ourselves to a single parity-check weight w
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(see Sect. 5 in [9]) and then analyse the complexity of such a putative algorithm
for a single weight by using the knowledge of the typical number of parity-check
equations of a given weight in a random linear code. The complexity exponent
we get is a lower bound on the complexity of statistical decoding. We call such
a putative statistical decoding algorithm, genie-aided statistical decoding: we are
assisted by a genie which gives for free all the parity-check equations we require
(but of course we can only get as much parity-check equations of some weight
w as there exists in the code we want to decode). The analysis of the exponent
we obtain with such genie-aided statistical decoding is given in [9, §7] and shows
that it is outperformed very significantly by the Prange algorithm (see [9, §7.2]).

1.3 Contributions

In this work, we modify statistical decoding so that each parity-check yields now
an LPN sample which is a noisy linear combination involving part of the error
vector. This improves significantly statistical decoding, since the new decoding
algorithm outperforms significantly all ISD’s for code rates smaller than 0.3. It
gives for the first time after 60 years, a better decoding algorithm that does not
belong to the ISD family, and this for a very significant range of rates. The only
other example where ISD algorithms have been beaten was in 1986, when Dumer
introduced his collision technique. This improved the Prange decoder only for
rates in the interval [0.98, 1] and interestingly enough it gave birth to all the
modern improvements of ISD algorithms starting from Stern’s algorithm [26].

A New Approach: Using Parity-Checks to Reduce Decoding to LPN.
Our approach for solving the decoding problem reduces it to the so-called Learn-
ing Parity with Noise Problem (LPN).

Problem 1.2 (LPN). Let Os,τ (·) be an oracle parametrized by s ∈ F
s
2 and

τ ∈ [0, 1] such that on a call it outputs (a, 〈s,a〉 + e) where a ∈ F
s
2 is uniformly

distributed and e is distributed according to a Bernoulli of parameter τ . We have
access to Os,τ (·) and want to find s.

(1.1) can be interpreted as an LPN sample with an s of size 1, namely ei.
However, if instead of splitting the support of the parity-check with one bit on
one side and the other ones on the other side, but choose say s positions on the
first part (say the s first ones) and n − s on the other, we can write

〈h,y〉 =
s∑

i=1

hiei

︸ ︷︷ ︸
linear comb.

+
∑

j>s

hjej

︸ ︷︷ ︸
LPN noise

.

We may interpret such a scalar product as an LPN sample where the secret is
(e1, · · · , es); i.e. we have a noisy information on a linear combination

∑s
i=1 hiei

on the s first bits of the error where the noise is given by the term
∑

j>s hjej
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and the information is of the form
∑s

i=1 hiei + noise = 〈h,y〉. Again the second
linear combination is biased, say P

(∑
j>s hjej = 1

)
= 1−ε

2 and information

theoretic arguments show that again Θ
(
1/ε2

)
samples are enough to determine

(e1, · · · , es). It seemed that we gained nothing here since we still need as many
samples as before and it seems that now recovering (e1, · · · , es) is much more
complicated than performing majority voting.

However with this new approach, we just need parity-check equations of low
weight on n − s positions (those that determine the LPN noise) whereas in
statistical decoding algorithm we have to compute parity-check equations of low
weight on n − 1 positions. This brings us to the main advantage of our new
method: the parity-checks we produce have much lower weight on those n − s
positions than those we produce for statistical decoding. This implies that the
bias ε in the LPN noise is much bigger with the new method and the number
N = Θ

(
1/ε2

)
of parity-check equations much lower. Secondly, by using the

fast Fourier transform, we can recover (e1, · · · , es) in time O (s2s). Therefore,
as long as the number of parity-checks we need is of order Ω (2s), there is no
exponential extra cost of having to recover (e1, · · · , es). This new approach will
be called from now on Reduction to LPN decoding (RLPN).

Subset Sum Techniques and Bet on the Error Distribution. As just
outlined, our RLPN decoder needs an exponential number N = Θ

(
1/ε2

)
of

parity-checks of small weight on n − s positions. This can be achieved efficiently
by using collision/subset techniques used in the inner loop of ISD’s. Recall that
all ISD’s proceed in two steps, (i) first they pick an augmented information set
and (ii) then have an inner loop computing low weight codewords of some sort.
Step (ii) uses advanced techniques to solve subset-sum problems like birthday
paradox [10,12], Wagner algorithm [28] or representations techniques [3,19]. All
these techniques can also be used in a natural way in our RLPN decoder to
compute the low weight parity-checks we need.

Furthermore, another idea of ISD’s can be used in our RLPN decoder. All
ISD’s are making, in a fundamental way, a bet on the error weight distribution
in several zones related to the information set picked up in (i). There are two
zones: the potentially augmented information set and the rest of the positions.
ISD algorithms assume that the (augmented) information set contains only very
few errors. A similar bet can be made in our case. We have two different zones:
on one hand the s positions determining s error bits and on the other n − s bits
which determine the LPN noise. It is clearly favorable to have an error ratio
which is smaller on the second part. The probability that this unlikely event
happens is largely outweighed by the gain in the bias of the LPN noise.

Our Results. Using all the aforementioned ingredients results in dramatically
improving statistical decoding (see Fig. 2), especially in the low rate regime (R ≤
1
2 ) where ISD algorithms are known to perform slightly worse than in the high

rate regime (R > 1
2 ). Indeed, the complexity exponent α(R)

�
=α(R, δGV(R)) of
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ISD’s for full decoding (a.k.a. the GV bound decoding) which could be expected
to be symmetric in R is actually bigger in the low rate regime than in the high
rate regime: α(R) > α(1 − R) for 0 < R < 1

2 . This results in an exponent curve
which is slightly tilted towards the left, the maximum exponent being always
obtained for R < 1

2 . Even worse, the behavior for very small rates (i.e. R → 0+)
is fundamentally different in the very high rate regime (R → 1−). The complexity
curve behaves like α(R) ≈ R in the first case and like α(R) ≈ 1−R

2 in the second
(at least for all later improvements of the Prange decoder incorporating collision
techniques). This behavior at 0 for full distance decoding has never been changed
by any decoder. It should be noted that α(R) = R(1+o(1)) around 0 means that
the complexity behaves like 2α(R)n = 2R(1+o(1))n = 2k(1+o(1)), so in essence ISD’s
are not performing really better than trivial enumeration on all codewords. This
fundamental barrier is still unbroken by our RLPN decoder, but it turns out that
α(R) approaches R much more slowly with RLPN. For instance, for R = 0.02
we have α(R) ≈ R

2 . This behavior in the very low regime is instrumental for
the improvement we obtain on ISD’s. In essence, this improvement is due in this
regime to the conjunction of RLPN decoding with a collision search of low weight
parity-checks. This method can be viewed as the dual (i.e. operating on the dual
code) of the collision search performed in advanced ISD’s which are successful for
lowering the complexity exponent down to α(R) ≈ 1−R

2 in the high rate regime.
In some sense, the RLPN strategy allows us to dualize advanced ISD techniques
for working in the low rate regime.

All in all, using [3] (one of the most advanced ISD techniques) to compute
low weight codewords of some shape we are able to outperform significantly
even the latest improvements of ISD algorithms for code rates R smaller than
0.3 as shown in Fig. 2. This is a breakthrough in this area, given the domi-
nant role that ISD algorithms have played during all those years for assess-
ing the complexity of decoding a linear code. Note however that the correct-
ness of this algorithm relies on the LPN error model (Assumption 3.7) for
which some recent experiments have found out not to be completely accu-
rate (see https://github.com/tillich/RLPNdecoding/tree/master/verification_
heuristic/histogram). However, experimental results seem to indicate that this
LPN modeling can be replaced by the weaker Conjecture 3.11 which is compat-
ible with the experiments we have made and for which there is a clear path to
demonstrate its validity (see Subsect. 3.4).

Proving the Standard Assumption of Statistical Decoding. In analyzing
the new decoding algorithm, we also put statistical decoding on a much more
rigorous foundation. We show that the basic condition that has to be met for
both statistical decoding and RLPN decoding, namely that the number N of
parity-check equations that are available is at least of order Ω

(
1/ε2

)
in the case

of statistical decoding and Ω
(
s/ε2

)
in the case of RLPN decoding where ε is

the bias of the LPN noise, is also essentially the condition which ensures that
the bias is well approximated by the standard assumption made for statistical
decoding which assumes that

bias (〈eN,hN〉) ≈ bias (〈eN,h′
N〉) , (1.2)

https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
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Fig. 2. Complexity exponent for full distance decoding of genie-aided statistical decod-
ing [9, §7] (recall that this is a lower bound on the complexity exponent of statistical
decoding), the basic Prange ISD algorithm [24], the best state-of-the-art algorithm of
[6] (with a correction in the exponent, see the full version of this paper [8, Ap. B]) and
our RLPN decoder as a function of R.

where bias(X) is defined for a binary random variable as bias(X)
�
=P(X = 0)−

P(X = 1), N is a subset of n − s positions (those which are involved in the
LPN noise), h is chosen uniformly at random among the parity-checks of weight
w on N of the code C we decode whereas h′ is chosen uniformly at random
among the words of weight w on N. We will namely prove that as soon as the
parameters are chosen such that N = ω

(
1/bias (〈eN,h′

N〉)2
)
, we have that for

all but a proportion o(1) of codes C (as proved in Proposition 3.1 in Subsect.
3.1): bias (〈eN,hN〉) = (1 + o(1))bias (〈eN,h′

N〉) .

2 Notation and Coding Theory Background

Vectors and Matrices. Vectors and matrices are respectively denoted in bold
letters and bold capital letters such as a and A. The entry at index i of the vector
x is denoted by xi. The canonical scalar product

∑n
i=1 xiyi between two vectors

x and y of F
n
2 is denoted by 〈x,y〉. Let I be a list of indexes. We denote by xI

the vector (xi)i∈I. In the same way, we denote by AI the sub-matrix made of
the columns of A which are indexed by I. The concatenation of two vectors x
and y is denoted by x||y. The Hamming weight of a vector x ∈ F

n
2 is defined

as the number of its non-zero coordinates, namely |x| �
=# {i ∈ [[1, n]] : xi �= 0}

where #A stands for the cardinality of a finite set A and [[a, b]] stands for the
set of the integers between a and b.

Probabilistic Notation. For a finite set S, we write X
$← S when X is an element

of S drawn uniformly at random in it. For a Bernoulli random variable X, denote
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by bias(X) the quantity bias(X)
�
=P(X = 0)−P(X = 1). For a Bernoulli random

variable X of parameter p = 1−ε
2 , i.e. P(X = 1) = 1−ε

2 , we have bias(X) = ε.

Soft-O Notation. For real valued functions defined over R or N we define o(), O (),
Ω (), Θ (), in the usual way and also use the less common notation Õ () and Ω̃ (),
where f = Õ (g) means that f(x) = O

(
g(x) logk g(x)

)
and f = Ω̃ (g) means

that f(x) = Ω
(
g(x) logk g(x)

)
for some k. We will use this for functions which

have an exponential behavior, say g(x) = eαx, in which case f(x) = Õ (g(x))
means that f(x) = O (P (x)g(x)) where P is a polynomial in x. We also use
f = ω(g) when f dominates g asymptotically; that is when lim

x→∞
|f(x)|
g(x) = ∞.

Coding Theory. A binary linear code C of length n and dimension k is a subspace
of the vector space F

n
2 of dimension k. We say that it has parameters [n, k] or

that it is an [n, k]-code. Its rate R is defined as R
�
= k

n . A generator matrix G
for C is a full rank k × n matrix over F2 such that C =

{
uG : u ∈ F

k
2

}
. In

other words, the rows of G form a basis of C. A parity-check matrix H for C

is a full-rank (n − k)× n matrix over F2 such that C = {c ∈ F
n
2 : Hcᵀ = 0} . In

other words, C is the null space of H. The code whose generator matrix is the
parity-check matrix of C is called the dual code of C. It might be seen as the
subspace of parity-checks of C and is defined equivalently as

Definition 2.1 (dual code). The dual code C⊥ of an [n, k]-code C is an
[n, n − k]-code which is defined by C⊥ �

= {h ∈ F
n
2 : ∀c ∈ C, 〈c,h〉 = 0} .

It will also be very convenient to consider the operation of puncturing a code,
i.e. keeping only a subset of entries in a codeword.

Definition 2.2 (punctured code). For a code C and a subset I of code
positions, we denote by CI the punctured code obtained from C by keeping only
the positions in I, i.e. CI = {cI : c ∈ C}.

We will also use several times that random binary linear codes can be decoded
successfully, with a probability of error going to 0, as the codelength goes to
infinity as long as the code rate is below the capacity, and this of any binary
input symmetric channel whose definition is

Definition 2.3 (binary input memoryless symmetric channel). A binary
input memoryless symmetric channel (BIMS) with output a finite alphabet Y,
is an error model on {0, 1}∗ assuming that when a bit b ∈ {0, 1} is sent, it gets
mapped to y ∈ Y with probability denoted by p(y|b) (these are the transition
probabilities of the channel). Being symmetric means that there is an involution
f such that p(y|0) = p(f(y)|1). Being memoryless means that the outputs of the
channel are independent conditioned on the inputs: when b1 · · · bn ∈ {0, 1}n is
sent, the probability that the output is y1 · · · yn is given by p(y1|b1) · · · p(yn|bn).
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We use here this rather general formulation to analyze what is going on when
we have several different LPN samples corresponding to the same parity-check
h. The error model that we have in this case will be more complicated than the
standard binary symmetric channel (see Definition 2.6 below). The capacity of
such a channel is given by

Definition 2.4 (capacity of a BIMS channel). The capacity1 C of a BIMS
channel with transition probabilities (p(y|b)) y∈Y

b∈{0,1}
is given by

C
�
=
∑

y∈Y

∑

b∈{0,1}

p(y|b)
2

log2
p(y|b)

1
2p(y|0) + 1

2p(y|1) .

LPN samples correspond to the binary symmetric channel (BSC) given by

Definition 2.5 (binary symmetric channel). BSC(p) is a BIMS channel
with output alphabet Y = {0, 1} and transition probabilities p(0|0) = p(1|1) =
1 − p, p(1|0) = p(0|1) = p, where p is the crossover probability of the channel.

In other words, this means that a bit b is transformed into its opposite 1− b
with probability p when sent through the channel. It is readily verified that

Definition 2.6 (binary symmetric channel). The capacity C of BSC(p) is
given by C = 1 − h(p).

We will also talk about maximum likelihood decoding a code (under the
assumption that the input codeword is chosen uniformly at random) for a given
channel, meaning the following

Definition 2.7 (maximum likelihood decoding). Maximum likelihood
decoding of a binary code C ⊂ {0, 1}n over a BIMS channel with transitions
probabilities (p(y|b)) y∈Y

b∈{0,1}
corresponds, given a received word y ∈ Yn, to out-

put the (or one of them if there are several equally likely candidates) codeword
x which maximizes p(y|x). Here p(y|x) �

= p(yi|xi) · · · p(yn|xn) denotes the prob-
ability of receiving y given that x was sent.

In a sense, this is the best possible decoding algorithm for a given channel model.
There is a variation of Shannon’s theorem (see for instance [25, Th. 4.68 p. 203])
which says that a family of random binary linear codes (Cn)n attain the capacity
of a BIMS channel.

Theorem 2.8. Consider a BIMS channel of capacity C. Let δ > 0 and consider
a family of random binary linear codes Cn of length n and rate smaller than
(1−δ)C obtained by choosing their generator matrix uniformly at random. Then
under maximum likelihood decoding, the probability of error after decoding goes
to 0 as n tends to infinity.
1 The formula given here is strictly speaking the symmetric capacity of a channel, but

these two notions coincide in the case of a BIMS channel.
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3 Reduction to LPN and the Associated Algorithm

The purpose of this section is (i) to explain in detail the reduction to LPN, (ii) to
give a high level description of the algorithm which does not specify the method
for finding the dual codewords we need, and then (iii) to give its complexity. We
assume from now on that we are given y which is equal to a sum of a codeword
c of the code C we want to decode plus an error vector e of Hamming weight t:

y = c+ e, c ∈ C, |e| = t.

We will start this section by explaining how we reduce decoding to an LPN
problem and also show how the LPN noise can be estimated accurately.

3.1 Reduction to LPN

Recall that in RLPN decoding we first randomly select a subset P of s positions

P ⊆ [[1, n]] such that #P = s

where s is a parameter that will be chosen later. P corresponds to the entries
of e we aim to recover and is the secret in the LPN problem. We denote by
N

�
=[[1, n]]\P the complementary set, with a choice of the letter N standing for

“noise” for reasons that will be clear soon. Given h ∈ C⊥, we compute,

〈y,h〉 = 〈e,h〉 =
∑

j∈P

hjej +
∑

j∈N

hjej = 〈eP,hP〉 + 〈eN,hN〉

It gives access to the following LPN sample:

(a, 〈s,a〉 + e) where s
�
= eP, a

�
=hP and e

�
=〈eN,hN〉.

Here e follows a Bernoulli distribution that is a function of n, s and u (resp. w)
the weight of e (resp. h) restricted to N, namely

u
�
= |eN| and w

�
= |hN| .

The probability that e is equal to 1 is estimated through the following proposition
which gives for the first time a rigorous statement for the standard assumption
(1.2) made for statistical decoding.

Proposition 3.1. Assume that the code C is chosen by picking for it an (n −
k) × n binary parity-check matrix uniformly at random. Let N be a fixed set
of n − s positions in [[1, n]] and e be some error of weight u on N. Choose h
uniformly at random among the parity-checks of C of weight w on N and h′

uniformly at random among the words of weight w on N. Let δ
�
=bias (〈e,h′〉).

If the parameters k, s, u, w are chosen as functions on n so that for n going to
infinity, the expected number N of parity-checks of C of weight w on N satisfies
N = ω

(
1/δ2

)
then for all but a proportion o(1) of codes we have

bias (〈eN,hN〉) = (1 + o(1))δ.
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Proof. Let us define for b ∈ {0, 1}:

Eb
�
=#{h ∈ C⊥ : |hN| = w, 〈eN,hN〉 = b} (3.1)

E′
b

�
=#{h′ ∈ F

n
2 : |h′

N| = w, 〈eN,h′
N〉 = b} (3.2)

By using [2, Lemma 1.1 p.10]2, we obtain

E(Eb) =
E′

b

2k
and Var (Eb) ≤ E′

b

2k
.

By using now the Bienaymé-Tchebychev inequality, we obtain for any function
f mapping the positive integers to positive real numbers:

PC

(
|Eb − E(Eb)| ≥

√
f(n)E(Eb)

)
≤ 1

f(n)
. (3.3)

Since bias (〈eN,hN〉) = E0−E1
E0+E1

we have with probability greater than 1 − 2
f(n)

μ0 − μ1 −√
2f(n)

√
μ0 + μ1

μ0 + μ1 +
√

2f(n)
√

μ0 + μ1

≤ bias (〈eN,hN〉) ≤ μ0 − μ1 +
√

2f(n)
√

μ0 + μ1

μ0 + μ1 −√
2f(n)

√
μ0 + μ1

(3.4)
where μi

�
=E(Ei) and where we used that for all positive x and y,

√
x +

√
y ≤

√
2(x + y). We let f(n) = δ

√
N/2. Since N = μ0 + μ1 this implies f(n) =

δ
√

μ0 + μ1/2. By the assumptions made in the proposition, note that f(n) tends
to infinity as n tends to infinity. We notice that

√
2f(n)

√
μ0 + μ1 = δ1/2(μ0 + μ1)3/4 = o (δ(μ0 + μ1)) (3.5)

because

δ1/2(μ0 + μ1)3/4

δ(μ0 + μ1)
=

1
√

δ
√

μ0 + μ1

=
1

√
2f(n)

→ 0 as n → ∞.

Equation (3.4) can now be rewritten as

μ0 − μ1 − o (δ(μ0 + μ1))
μ0 + μ1 + o (δ(μ0 + μ1))

≤ bias (〈eN,hN〉) ≤ μ0 − μ1 + o (δ(μ0 + μ1))
μ0 + μ1 − o (δ(μ0 + μ1))

(3.6)

Now, on the other hand

δ = bias (〈eN,h′
N〉) = E′

0 − E′
1

E′
0 + E′

1

=
E′

0
2k − E′

1
2k

E′
0

2k + E′
1

2k

=
μ0 − μ1

μ0 + μ1
(by (3.1)).

From this it follows that we can rewrite (3.6) as

δ

1 + o(δ)
− o(δ) ≤ bias (〈eN,hN〉) ≤ δ

1 − o(δ)
+ o(δ) (3.7)

from which it follows immediately that bias (〈eN,hN〉) = δ(1 + o(1)). ��
2 Note that there is an additional condition “Suppose Lq−r grows exponentially in n”

in the statement of this lemma, but it is readily seen that this condition is neither
necessary nor used in the proof.
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Remark 3.2. Note that the condition N = Ω
(
1/δ2

)
, respectively N = Ω

(
s/δ2

)

is the condition we need in order that statistical decoding, respectively RLPN
decoding succeed. This means that if we just have slightly more equations than
the ratio 1

δ2 , then the standard assumption (1.2) made for statistical decoding
holds. The point of this assumption is that it allows easily to estimate the bias
as the following lemma shows.

Lemma 3.3. Under the same assumptions made in Proposition 3.1, we have
that for all but a proportion o(1) of codes,

bias(〈eN,hN〉) = δ(1 + o(1)) with δ
�
=

Kn−s
w (u)
(
n−s
w

)

where u
�
= |eN| and Kn

w stands for the Krawtchouk polynomial of order n and
degree w ∈ [[0, n]] which is defined as:

Kn
w(X)

�
=

w∑

j=0

(−1)j
(

X

j

)(
n − X

w − j

)

.

Proof. By using Proposition 3.1 (and the same notation as the one used there)
we have that for all but a proportion o(1) of codes bias (〈eN,hN〉) = (1 +
o(1))bias

(〈eN,h′
N〉). Now by definition of u, we have

bias (〈eN,h′
N〉) = 1

(
n−s
w

)
∑

j even

(
u

j

)(
n − s − u

w − j

)

− 1
(
n−s
w

)
∑

j odd

(
u

j

)(
n − s − u

w − j

)

=
1

(
n−s
w

)
∑

j

(−1)j
(

u

j

)(
n − s − u

w − j

)

=
Kn−s

w (u)
(
n−s
w

) .

��
We will now repeatedly denote by bias of the LPN sample the quantity ε

appearing in the previous lemma and the estimated bias the quantity namely

Definition 3.4 (bias of the LPN samples). The bias ε of the LPN samples
is defined by

ε
�
=bias(〈eN,hN〉)

when eN has Hamming weight u and h is drawn uniformly at random among
the parity-check equations of weight w restricted on N. The estimated bias is
the quantity δ defined by

δ
�
=bias(〈eN,h′

N〉)
when eN has Hamming weight u and h′ is drawn uniformly at random among
the binary words of weight w restricted on N. This quantity is equal to

δ =
Kn−s

w (u)
(
n−s
w

) .
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The point of introducing Krawtchouk polynomials is that we can bring in
asymptotic expansions of Krawtchouk polynomials. Most of the relevant prop-
erties we need about Krawtchouk polynomials are given in [18, §II.B]. They can
be summarized by

Proposition 3.5. 1. Value at 0. For all 0 ≤ w ≤ n, Kn
w(0) =

(
n
w

)
.

2. Reciprocity. For all 0 ≤ t, w ≤ n,
(
n
t

)
Kn

w(t) =
(

n
w

)
Kn

t (w).
3. Roots. The polynomials Kn

w have w distinct roots which lie in the interval

[[n/2 −
√

w(n − w), n/2 +
√

w(n − w)]].

The distance between roots is at least 2 and at most o(n).
4. Magnitude outside the root region. We set τ

�
= t

n , ω
�
= w

n . We assume w ≤ n/2

and t ≤ n/2−√
w(n − w). Let z

�
= 1−2τ−√

D
2(1−ω) where D

�
=(1 − 2τ)2−4ω(1−ω).

We have
Kn

w(t) = 2n(τ log2(1−z)+(1−τ) log2(1+z)−ω log2 z+o(1)). (3.8)

5. Magnitude in the root region. Between any two consecutive roots of Kn
w, where

1 ≤ w ≤ n
2 , there exists t such that:

Kn
w(t) = 2n( 1+h(ω)−h(τ)

2 +o(1)) where ω
�
=

w

n
and τ

�
=

t

n
. (3.9)

By using this proposition, we readily obtain

Proposition 3.6 (exponential behavior of δ2). Let τ and ω be two reals
in the interval

[
0, 1

2

]
. Let ω⊥ �

= 1
2 − √

ω(1 − ω) and z
�
= 1−2τ−√

D
2(1−ω) where

D
�
=(1 − 2τ)2 − 4ω(1 − ω). There exists a sequence of positive integers (tn)n∈N

and (wn)n∈N, such that tn

n →
n→∞ τ , wn

n →
n→∞ ω and

log2(K
n
wn

(tn)2/( n
wn
)2)

n has a limit

which we denote δ̃(τ, ω) with

˜δ(τ, ω) =

{

2 (τ log2(1 − z) + (1 − τ) log2(1 + z) − ω log2 z − h(ω)) if τ ∈ [0, ω⊥]
1 − h(τ) − h(ω) otherwise.

Proof. In the case τ ∈ [0, ω⊥] we just let tn = �τn�, wn = �ωn� and use directly
the asymptotic expansion (3.8). In the case τ ∈ [

ω⊥, 1
2

]
we still define wn with

wn
�
=�ωn� but define tn differently. For n large enough, we know from Proposi-

tion 3.5 that �τn� lies between two zeros of the Krawtchouk polynomial and that
there exists an integer tn in this interval such that log2(K

n
wn

(tn))

n = 1+h(ω)−h(τn)
2 +

o(1) where τn = tn

n . Now since the size of this interval is an o(n) we necessarily

have τn = τ + o(1) and therefore log2(K
n
wn

(tn))

n = 1+h(ω)−h(τ)
2 + o(1). ��

The point of this proposition is that the term 2 log2(Kn−s
w (u)/

(
n−s
w

)
) quan-

tifies the exponential behaviour of the square ε2 of the bias ε (see Lemma 3.3)
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and 1/ε2 is up to polynomial terms the number of parity-checks we need for
having enough information to solve the LPN problem as will be seen. This is
because the capacity of the BSC(1−ε

2 ) is 1 − h
(
1−ε
2

)
= θ(ε2) and that solving

an LPN-problem with a secret of size s and N samples amounts to be able to
decode a random linear code of rate s

N over the BSC( 1−ε
2 ). It is therefore doable

as soon as the rate is below the capacity (see Theorem 2.8). The reason why the
Shannon capacity appears here is because of the following heuristic/assumption
we will make here:

Assumption 3.7 (LPN modelling). We will assume that the 〈eN,hN〉 are
i.i.d Bernoulli random variables of parameter 1−ε

2 .

Strictly speaking, the corresponding random variables are not independent.
However, note that similar heuristics are also used to analyze a related lat-
tice decoder making use of short dual lattice vectors (they are called dual
attacks in the literature). We will discuss this assumption in more depth in Sub-
sect. 3.4. Assumption 3.7 models the LPN noise as a binary symmetric channel
BSC(1−ε

2 ) of crossover probability 1−ε
2 . A straightforward application of Theo-

rem 2.8 together with the fact that the capacity of a binary symmetric BSC(1−ε
2 )

is 1 − h
(
1−ε
2

)
= Ω(ε2) implies

Fact 3.8. With Assumption 3.7, the number N of LPN samples is such that
s/N = O(ε2) for a small enough constant in the O, performing maximum-
likelihood decoding of the corresponding [N, s] binary code recovers the secret
eP with probability 1 − o(1).

Performing maximum likelihood decoding of the corresponding code can be
achieved by a fast Fourier transform on a relevant vector. Indeed, for a given
received word y and a set H̃ of N parity-checks so that their restriction to P

leads to a set H of N different vectors of F
s
2, we let for a ∈ H, ã be the unique

parity-check in H̃ such that ãP = a and define fy,H as

fy,H : a ∈ F
s
2 �→

{
(−1)〈y,ã〉 if a ∈ H

0 otherwise (3.10)

We define
the Fourier transform of such a function by f̂(x)

�
=
∑

u∈F
s
2
f(u)(−1)〈x,u〉. The

code D we want to decode (obtained via our LPN samples) is described as

D
�
={cx, x ∈ F

s
2} where cx

�
=(〈x,a〉)a∈H , (3.11)

and the word uy,H we want to decode is given by uy,H = (〈y, ã〉)a∈H . It is
readily seen that

f̂y,H(x) =
∑

a∈F
s
2

f(a)(−1)〈x,a〉 =
∑

a∈H

(−1)〈x,a〉+〈y,ã〉 = #H − 2|uy,H − cx|.

In other words, finding the closest codeword to uy,H is nothing but finding the
x which maximizes f̂y,H(x). This is achieved in time O (s2s) by performing a
fast Fourier transform. Notice that an exhaustive search would cost O

(
22s

)
.
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3.2 Sketch of the Whole Algorithm

Algorithm 3.1. RLPN decoder
Input: y, t, C an [n, k]-code
Output: e such that |e| = t and y − e ∈ C.

function RLPNdecode(y, C, t)
s, u ← Optim(t, k, n)

� s and u in order to minimize the complexity of the following procedure.
for i from 1 to Niter do � Niter is a certain function of n, s, t and u.

P
$← {I ⊆ [[1, n]] : #I = s}

N ← [[1, n]] \ P

H ← Create(N, w,P)
̂fy,H ←FFT(fy,H)
x0 ← argmax ̂fy,H

if ̂fy,H(x0) ≥ δN
2

then � δ
�
=Kn−s

w (u)/
(

n−s
w

)

.
return e such that eP = x0 and eN = RLPNdecode(yN,CN, t−|x0|))

end if
end for

end function

Besides, the fast Fourier transform solving the LPN problem, Algorithm 3.1
uses two other ingredients:

– A routine Create(N,w,P) creating a set H of N parity-check equations h

such that |hN| = w where N �
=[[1, n]]\P. We will not specify how this function

is realized here: this is done in the following sections. This procedure together
with an FFT for decoding the code associated to the parity-check equations
in H (see Eq. (3.11)) form the inner loop of our algorithm.

– An outer loop making a certain number Niter of calls to the inner procedure,
checking each time a new set P of s positions with the hope of finding an N

containing an unusually low number u of errors in it. The point is that with
a right u, the number of times we will have to check a new P is outweighed
by the decrease in N because the bias δ is much higher for such a u.

3.3 Analysis of the RLPN Decoder

We need to show now that our RLPN decoder returns what we expect. It is what
the following proposition shows (a proof can be found in the full paper [8]).

Proposition 3.9 (acceptation criteria). Under Assumption 3.7, by choosing
Niter = ω

(
1

Psucc

)
(where Psucc is the probability over the choice of N that there

are exactly u errors in N), s = ω(1) and N = ω
(

n
δ2

)
, we have with probability

1−o (1) that at least one iteration is such that eP meets the acceptation criteria
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f̂y,H(eP) ≥ δN
2 . Moreover, the probability that there exists x �= eP which meets

this acceptation criteria is o(1).

The space and time complexity of this method are given by

Proposition 3.10. Assume that Create(N,w,P) produces N parity-check
equations in space Seq and time Teq. The probability Psucc (over the choice of

N) that there are exactly u errors in N is given by Psucc = ( s
t−u)(n−s

u )
(n

t)
. The

space complexity S and the time complexity T of the RLPN-decoder are given by

Space : S = O (Seq + 2s) , Time : T = Õ

(
Teq + 2s

Psucc

)

.

The parameters s, u and w have to meet the following constraints

N ≤ 2s (3.12)

N ≤
(
n−s
w

)

2k−s
. (3.13)

Under Assumption 3.7 the algorithm outputs the correct eP with probability 1−
o(1) if in addition we choose N and Niter such that

N = ω

⎛

⎝n

( (
n−s
w

)

Kn−s
w (u)

)2
⎞

⎠ (3.14)

Niter = ω

(
1

Psucc

)

. (3.15)

Proof. All the points are straightforward here, with the exception of the con-
straints. The first constraint is that the number of parity-checks should not be
bigger than the total number of different LPN samples we can possibly produce.
The second one is that the number of parity-checks needed is smaller than the
number of available parity-checks. The conditions ensuring the correctness of the
algorithm follow immediately from Proposition 3.9. ��

3.4 On the Validity of Assumption 3.7

The proof of the correctness of the algorithm relies on the validity of the
LPN modelling (Assumption 3.7). We have programmed this algorithm and
have verified that for several parameters it gives the correct answer. The cor-
responding experiments with the programs that have been used for running
them can be found on https://github.com/tillich/RLPNdecoding. However, we
have also found out (see https://github.com/tillich/RLPNdecoding/tree/master/
verification_heuristic/histogram) that the second largest Fourier coefficient (the
one which corresponds to the second nearest codeword, besides eP) does not
behave in the same way in the LPN model as in practice with the noise given by
the 〈hN, eN〉’s. This can be traced back to the fact that 〈hN, eN〉 and

〈
h′
N, eN

〉

https://github.com/tillich/RLPNdecoding
https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
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are positively correlated when hN and h′
N are close to each other in Hamming dis-

tance. Actually these correlations have an effect on the tails of the largest Fourier
coefficients as demonstrated in Fig. 3 which display longer tails corresponding to
the largest Fourier coefficients in the case of a noise produced by 〈hN, eN〉’s (called
parity-checks in the figure) instead of Fourier coefficients produced by decoding a
code with a BSC(1−ε

2 ) noise (called BSC in the figure). This phenomenon vanishes
when k gets larger as can be verified in Fig. 3 or on https://github.com/tillich/
RLPNdecoding/tree/master/verification_heuristic/histogram. From our experi-
ments (see more details on https://github.com/tillich/RLPNdecoding) this phe-
nomenon is not severe enough to prevent Algorithm 3.1 from working but needs
some adjustments about how larger N has to be in terms of 1

δ2 . This experimental
evidence leads us to conjecture

Conjecture 3.11. Algorithm3.1 is successful if we replace in Proposition 3.10 the

condition N = ω

(

n

(
(n−s

w )
Kn−s

w (u)

)2
)

by the slightly stronger condition N =

ω

(

nα

(
(n−s

w )
Kn−s

w (u)

)2
)

for a certain α ≥ 1.

If this conjecture is true, then obviously the asymptotic exponent of the complexity
is unchanged if we replace Assumption 3.7 by Conjecture 3.11. A semi-heuristic
way to verify this conjecture could be to proceed as follows

1. Let W be the weight of the vector
(〈

h̃N, eN
〉)

h∈H̃
. Compute Var (W ) and

prove that Var (W ) is of order O
(
nβN

)
where β is some constant.

2. Use this computation to bound heuristically the tails of the Fourier coefficients
and use this computation of Var (W ) to give an estimation for the second
largest Fourier coefficient when decoding the [N, s]-code which agrees with the
experimental evidence.

3. Use this to prove that the second largest Fourier coefficient is typically far away
enough from the first one to prove the validity of Conjecture 3.11.

4 Collision Techniques for Finding Low Weight
Parity-Checks

4.1 Using the [10] Method

A way for creating parity-checks with a low weight on N is simply to use subset-
sum/collision techniques [10,11,26]. We start here with the simplest method for
performing such a task pioneered by Dumer in [10]. Consider a parity-check
matrix H for the code C we want to decode and keep only the columns belonging
to N to obtain an (n−k)× (n− s) matrix HN. The row-space of HN generates
the restrictions hN to N of the parity-checks h of C. This row-space is nothing
but the dual code C⊥ punctured in P, i.e. we keep only the positions in N.

https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
https://github.com/tillich/RLPNdecoding
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Fig. 3. Tails of the largest Fourier coefficients when decoding the [N, s]-code either with
the noise produced by the 〈hN, eN〉’s or by the ideal LPN noise model (the BSC( 1−ε

2
)

noise model). Both figures correspond to parity-checks hN of weight 6 and to s = 19.
However they differ in the value for k. k equals 26 in the first figure and displays rather
heavy tails for the largest Fourier coefficients corresponding to the parity-checks hN

whereas k = 40 corresponds to rather similar tails in both cases. This is a general
trend that can be verified on https://github.com/tillich/RLPNdecoding/tree/master/
verification_heuristic/histogram, when k gets larger, the heavy tail phenomenon van-
ishes.

With our notation, this is C⊥
N and is an [n− s, n−k]-code. Therefore if we want

to find parity-checks h of C such that |hN| = w, this amounts to find codewords
of C⊥

N of weight w. For this, we compute a parity-check matrix H′ of C⊥
N i.e. a

(k − s) × (n − s) matrix such that C⊥
N = {c ∈ F

n−s
2 : H′cᵀ = 0}. We split such

a matrix in two parts randomly chosen and of the same size H′ =
(
H1 H2

)
.

We obtain an algorithm of time and space complexity, T and S respectively,

producing N codewords of weight w, with N =
(

n−s
2
w
2
)
2

2k−s (1 + o(1)) and S =

T = O
((n−s

2
w
2

)
+ N

)
. The algorithm for producing such codewords is to set up

two lists,

L1
�
=
{
(H1h

ᵀ
1 ,h1) : |h1| = w

2

}
and L2

�
=
{
(H2h

ᵀ
2 ,h2) : |h2| = w

2

}

and looking for collisions H1h
ᵀ
1 = H2h

ᵀ
2 in the lists. It yields vectors h′ = h1||h2

of weight w which are in C⊥
N since H′h′ᵀ = H1h

ᵀ
1 +H2h

ᵀ
2 = 0. These vectors in

F
n−s
2 can be completed to give vectors h ∈ F

n
2 such that hN = h′. The number

of collisions is expected to be of order
(n−s

2
w
2

)2
/2k−s since 2−(k−s) is the collision

probability of two vectors in F
k−s
2 . The algorithm for performing this task is

given by Algorithm4.1.

https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
https://github.com/tillich/RLPNdecoding/tree/master/verification_heuristic/histogram
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Algorithm 4.1. Creating low weight parity-checks by collisions
Input C, w, P
Output a list of parity-check equations h of C such that |hN| = w where

N
�
=[[1, n]] \ P.
function Create(C,w, P)

H ← Parity-check-matrix(C⊥,P)
� returns a parity-check matrix for C⊥ with an identity corresponding to

the positions in P: H =

(

I P
0 H′

)

where we assume that the first block corresponds

to the positions of P.

L1 ← {(H1h
ᵀ
1,h1) : |h1| = w/2,h1 ∈ F

n−s
2

2 }
L2 ← {(H2h

ᵀ
2,h2) : |h2| = w/2,h2 ∈ F

n−s
2

2 }
� We assume H′ =

(

H1 H2

)

, with H1 and H2 of the same size.
L ← {h1||h2 ∈ L1 × L2 : H1h

ᵀ
1 = H2h

ᵀ
2}

return {h′Pᵀ||h′ : h′ ∈ L}
� It is straightforward to check that h′Pᵀ||h′ belongs to C⊥.

end function

We have represented in Fig. 4 the form of the parity-checks output by this
method, together with the bet we make on the error.

h

s (n − s)/2

w/2

(n − s)/2

w/2

e t − u u

Fig. 4. The form of the parity-checks produced by this method, vs. the bet made on
the error. The hatched rectangle of size s for h indicates that the weight is arbitrary
on this part.

The amortized cost for producing a parity-check equation of weight w is
O(1) as long as N ≥ Ω

((n−s
2
w
2

))
. It is insightful to consider the smallest value

of w for which
(n−s

2
w
2

) ≤ (n−s
2
w
2

)2
/2k−s. This is roughly speaking the smallest

value (up to negligible terms) of w for which the amortized cost for producing
parity-check equations of weight w is O(1) per equation. In such a case, we

roughly have N ≈ (n−s
2
w
2

) ≈ (
n−s
2
w
2
)
2

2k−s ≈ 2k−s. In other words with this choice we
have Teq = O

(
2k−s

)
. Let us choose now u as the “typical error weight” when

restricted to N, namely u ≈ tn−s
n and s such that the decoding complexity

of the [N, s]-code is also of order the codelength, i.e. N = Θ̃ (2s). This would
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imply 2s ≈ 2k−s, which means that we are going to choose s = k
2 . By using

Proposition 3.10, all these choices would yield a time complexity TDumer86 for
decoding C which would be of order

TDumer86 = Õ
(
2k/2

)
, (4.1)

if the constraint N = Ω̃

((
(n−s

w )
Kn−s

w (u)

)2
)

for successful decoding the [N, s]-code is

met. This amounts to 2Rn/2 = Ω̃

((
(n(1−R/2)

w )
K

n(1−R/2)
w (t(1−R/2))

)2
)

, where R is the code

rate, i.e. R = k
n . By using Proposition 3.1, we can give an asymptotic formula

for this constraint. It translates into R/2 ≥ 2(1−R/2) δ̃ (τ, ω/(1 − R/2)) , where
δ̃ is the function defined in Proposition 3.6. Amazingly enough this constraint is
met up to very small values of R, it is only below R ≈ 0.02 that this condition
is not met anymore. This innocent looking remark has actually very concrete
consequences. This means that above the range R � 0.02 the asymptotic com-
plexity exponent, i.e. αDumer86

�
= lim supn log2 TDumer86/n where TDumer86 is the

time complexity, satisfies

αDumer86 ≤ R

2
. (4.2)

This is very surprising, since in the vicinity of R ≈ 0 the asymptotic time com-
plexity of all known decoding methods approach quickly R. In other words, in
this regime, the complexity is of order T ≈ 2Rn = 2k for full distance (a.k.a.
GV) decoding, meaning that they are not better than exhaustive search. Unfor-
tunately this is also the case for our method. It can namely be proved that even
by optimizing on the value of s, w and u we can not do better than this with our
method, since αDumer86(R) ∼ R as R approaches 0. However, as can be guessed
from the fact that αDumer86 ≤ R

2 for R � 0.02, the behaviour of the complexity
is much better for our RLPN decoder. This can be verified in Fig. 5.

It is worthwhile to recall that ISD algorithms in the regime of the rate close
to 1 precisely use this collision method to find low weight codewords in order
to reduce significantly the complexity of decoding. In a sense, we have a dual
version of the birthday/collision decoder of [10] with reduced complexity for
rates close to 0.

4.2 Improving [10] by Puncturing as in [11]

There is a simple way of improving the generation of dual codewords of low
weight on N. It consists in partitioning N in two sets N1 and N2 with N2 being
a subset of positions of size just a little bit above n−k (which is the dimension of
the dual code C⊥), say n−k+� and then to use the collision method to get dual
codewords of weight w2 on N2. The same method is used in the improvement
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Fig. 5. The complexity of the RLPN-decoder for very small rates vs. the simplest
information set decoder, namely the ISD Prange decoder [24]. For small R, there is
no much difference between the ISD Prange decoder and much more evolved decoders
like [3,5,6,20]. The RLPN-decoder with the very simple [10] technique performs much
better for small rates than ISD decoders. It is only outperformed by the Prange decoder
for rates above 0.25 approximately.

[11] of the simple collision decoder [10] or in a slightly less efficient way in [26].
It just consists in finding codewords in C⊥ which have weight w1 on N1 and w2

on N2 instead of simply weight w on N. We have represented in Fig. 6 the form
of the parity-checks we produce with this method. Note that the weight w1 is
expected to be half the size k − � − s of N1.

h

s k − � − s

(k − � − s)/2

(n − k + �)/2

w2/2

(n − k + �)/2

w2/2

e t − u u1 u2

Fig. 6. The form of the parity-checks produced by this method, vs. the bet made on
the error. The hatched rectangle of size s for h indicates that the weight is arbitrary
on this part.

To understand the bias we get in this case, the proof of Proposition 3.1 can be
readily adapted to yield

Proposition 4.1. Assume that the code C is chosen by picking for it an (n −
k) × n binary parity-check matrix uniformly at random. Let N be a fixed set of
n−s positions in [[1, n]] which is partitioned in two sets N1 and N2 and e be some
error of weight ui on Ni for i ∈ {1, 2}. For i ∈ {1, 2}, choose h uniformly at
random among the parity-checks of C of weight wi on the Ni’s and h′ uniformly
at random among the words of weight wi on the Ni’s. For i ∈ {1, 2}, let

δi
�
=bias

(〈
eNi

,h′
Ni

〉)
and δ

�
= δ1δ2



498 K. Carrier et al.

If the parameters k, s, ui, wi are chosen as functions on n so that for n going
to infinity, the expected number N of parity-checks of C of respective weight wi

on Ni for i ∈ {1, 2}, satisfies N = ω
(
1/δ2

)
then for all but a proportion o(1) of

codes we have
bias (〈eN,hN〉) = (1 + o(1))δ.

With the collision method we use, the parity-checks we produce have actually
a slightly more specific form, since N2 is partitioned in two sets of (almost)
the same size on which h has weight w2/2. It is not difficult to turn such a
generation of parity-checks at the cost of a polynomial overhead into a generation
of uniformly distributed parity-checks of weight w2 on N2. We leave out the
details for doing this here. Under such an assumption, we have
Lemma 4.2. With the same assumptions as in Proposition 4.1,

Ph(〈eN,hN = 1〉) = 1 − ε

2
where ε = δ1δ2(1 − o(1))

δ1
�
=

Kk−�−s
w1

(u1)

(k−�−s
w1

) , δ2
�
=

Kn−k+�
w2

(u2)

(n−k+�
w2

) , u1
�
= |eN1 |, u2

�
= |eN2 |, w1

�
= |hN1 | and

w2
�
= |hN2 |.

Proof. This is an application of the previous proposition and Lemma 3.3. ��
All these considerations lead to a slight variation of the RLPN decoder given

in Algorithm3.1. Let us make now a bet on the weight ui of the error restricted
to Ni for i ∈ {1, 2} and use Dumer’s [11] collision low-weight codeword generator
to produce N parity-checks h such that |hNi

| = wi for i ∈ {1, 2}. We call the
associated function Create(N,w1, w2,P).

Proposition 4.3. If Assumption 3.7 holds and assuming that Create(N,w1,
w2,P) produces N parity-check equations in space Seq and time Teq that are of
weight wi on Ni for i ∈ {1, 2}. The probability Psucc (over the choice of N1 and
N2) that there are exactly u1 errors in N1 and u2 errors in N2 is given by

Psucc =

(
s

t−u1−u2

)(
k−�−s

u1

)(
n−k+�

u2

)

(
n
t

) .

The space complexity SDumer89 and time complexity TDumer89 of the RLPN-
decoder are given by

Space : SDumer89 = O (Seq + 2s) , Time : TDumer89 = Õ

(
Teq + 2s

Psucc

)

.

under the constraint on the parameters s, �, u1, u2, w1 and w2 given by

N ≤ 2s (4.3)

N ≤
(
k−�−s

w1

)(
n−k+�

w2

)

2k−s
(4.4)

N = ω

⎛

⎝

( (
k−�−s

w1

)(
n−k+�

w2

)

Kk−�−s
w1 (u1)Kk−�−s

w2 (u2)

)2
⎞

⎠ . (4.5)
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We have found out that choosing w1 carefully is unnecessary and simply setting
it to it its expected value is sufficient, i.e. w1 = k−�−s

2 . Again, the same discus-
sion as in the previous section applies and if Conjecture 3.11 applies then the
asymptotic form of the complexity is the same as if we use Proposition 4.3 and
we get the following asymptotic form

Proposition 4.4. If Conjecture 3.11 holds, the asymptotic complexity exponent
of the RLPN decoder based on Dumer’s collision low weight dual codeword gen-
erator is given by

αDumer89(R)
�
= min

(σ,ν1,ν2,λ,ω1,ω2)∈R
β(R, σ, ν1, ν2, λ, ω1, ω2) (4.6)

β
�
=max (σ, ν′) + π,

ν′ �
=max

(
(1−R+λ)

2 h
(

ω2
1−R+λ

)
, ν
)
, ν

�
=(1 − R + λ)h

(
ω2

1−R+λ

)
− λ,

π
�
=1 − R − σh

(
τ−ν1−ν2

σ

)− (R − λ − σ)h
(

ν1
R−λ−σ

)
− (1 − R + λ)h

(
ν2

1−R+λ

)
,

τ
�
= δGV(R) = h−1(1 − R)

and the constraint region R is defined by the subregion of non-negative tuples
(σ, ν1, ν2, λ, ω1, ω2) such that ω1 = R−λ−σ

2 and

σ ≤ R − λ, ν1 ≤ R − λ − σ, ν2 ≤ 1 − R + λ, τ − σ ≤ ν1 + ν2 ≤ τ, ν ≤ σ,

ν = −(R − λ − σ)δ̃
(

ν1
R−λ−σ , ω1

R−λ−σ

)
− (1 − R + λ)δ̃

(
ν2

1−R+λ , ω2
1−R+λ

)

where δ̃ is the function defined in Proposition 3.6.

5 Using Advanced Collision Techniques

ISD techniques have evolved [3,4,11,19,26] by first introducing [26] collision
techniques whose purpose is to produce for codes of rate close to 1, all codewords
of some small weight, and later on by substantially improving them by using on
top of that for instance representation techniques [19]. These algorithms come
very handy in our case for devising the function Create(N,w,P) that we need.
In the previous section, we have explored what could be achieved by the very
first techniques of this type taken from [10,11]. We are going to explain now
what can be gained by using [3,19]. It is convenient here to formalize the basic
step used in the previous section which can be explained by the function of
Algorithm5.1. It creates codewords of weight w in a code of parity-check matrix
H as sums x1 + x2 of two lists L1 and L2 with a complexity which is of the
form O

(
max

(
#L1,#L2,

#L1·#L2
2�

))
if the Hxᵀ

i ’s are distributed uniformly at
random and independently (we will make this assumption from now on). It is
clear that [10] and [11] is more or less a direct application of this method. [19]
and [3] use several layers of this function. [19] starts by partitioning the set of
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Algorithm 5.1. Merging two lists for producing low weight codewords
Input: L1 ⊆ F

n
2 , L2 ⊆ F

n
2 , w ∈ [[1, n]], H ∈ F

�×n
2

Output: a list L = {x = x1 + x2 : xi ∈ Li, i ∈ {1, 2}, |x| = w, Hxᵀ = 0} of
elements of the form x1 + x2 with xi belonging to Li of weight w belonging to the
code of parity-check matrix H

function Merge(L1,L2, w,H)
L ← ∅
for all x1 ∈ L1 do

Store x1 in a hashtable T at address Hxᵀ
1

end for
for all x2 ∈ L2 do

if ∃x1 in T at address Hxᵀ
2 and |x1 + x2| = w then

Put x1 + x2 in L

end if
end for
return L

end function

positions of the vectors of F
n
2 which are considered in two sets I1 and I2 of

about the same size. Then it starts with two lists L0
1 and L0

2 of all elements
of weight p0 and support I1 and I2 respectively. It merges them in a list L1

of elements of weight p1 in the kernel of a parity-check matrix H1. Since the
elements of L0

1 and L0
2 have disjoint supports by construction, we necessarily

have that p1 = 2p0. List L1 is then merged with itself to yield elements which are
in the kernel of another matrix H2 (see Fig. 7). Since these are sums of elements
of L1 they are also in the kernel of H1, so that the elements of the final list are

of weight p2 and belong to the code of parity-check H =
(
H1

H2

)

. The size of H1

is chosen such that an element x of weight p2 and H1xᵀ = 0 is typically the sum
of only two elements of L1 (this is the point of the representation technique).
[3] is similar to [19] with one layer which is added. In this case, we create at the
end a list of elements of weight p3 which are in the code of parity-check matrix

H
�
=

⎛

⎝
H1

H2

H3

⎞

⎠ . (5.1)

The sizes of H1 in the [19] case, and of H1 and H2 in [3] are chosen to ensure
unicity of the representation of an element of a list as the sum of two elements
of the lists used for the merge (this is the representation technique).

We use these two techniques as we used the [10] technique inside the [11]
technique, namely to generate codewords of C⊥ (i.e. Hxᵀ = 0 for H given by
(5.1)) which are of weight p3 on a set of indices of size n − k + � (see Fig. 8).
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Fig. 7. This figure represents the successive lists obtained in [19] and [3]. The support
of the elements of the list are represented in pink. Arrows point from the lists which
are merged to the result of the merge and if two arrows depart from a list and arrive
at another list, this means that the departure list is merged with itself. The weights of
the elements are indicated for each level and the matrix Hi used for the merge is also
given at the level of the result of the merge.

h

s k − � − s

(k − � − s)/2

n − k + �

p3

e t − u u1 u2

Fig. 8. The form of the parity-checks produced by this method [3], vs. the bet made
on the error. The hatched rectangle of size s for h indicates that the weight is arbitrary
on this part.

If we let �1 be the number of rows of H1, �2 be the number of rows of the

matrix of H′
2

�
=
(
H1

H2

)

, then the fact that the elements of L2 should have a

unique representation in terms of a sum of a pair of elements of L1 respectively
and that they are all elements x of weight p1 and p2 respectively which satisfy
H′

2x
ᵀ = 0 and Hxᵀ = 0 respectively, imposes conditions (5.2) which follow. The

Si represent the space complexity of the successive lists (i.e. L0, L1, L2 and
L3) used in the [3] algorithm, whereas the Ti’s denote the complexity of each
merge and Teq is the final complexity.

2�1 =
(

p2
p2/2

)(
n − k + � − p2

p1 − p2/2

)

, 2�2 =
(

p3
p3/2

)(
n − k + � − p3

p2 − p3/2

)

(5.2)

S0 =
(n−k+�
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There is a similar proposition as Proposition 4.4 which gives the asymptotic
complexity of the RLPN decoder used in conjunction with the [19] or [3] tech-
niques for producing low weight codewords. For [19] it is given by

Proposition 5.1. If conjecture 3.11 applies, the asymptotic complexity expo-
nent of the RLPN decoder based on [19] is given by

αMMT(R)
�
= min

(σ,ν1,ν2,λ,λ1,ω1,ω2,π1)∈R
β(R, σ, ν1, ν2, λ, λ1, ω1, ω2, π1) (5.5)

β
�
=max(σ, ν′) + π, ν′ �

=max(γ1, γ2), ν
�
=(1 − R + λ)h

(
ω2

1−R+λ

)
− λ

γ1
�
=max

(
1−R+λ

2 h
(

π1
1−R+λ

)
, (1 − R + λ)h

(
π1

1−R+λ

)
− λ1

)
,

γ2
�
=2(1 − R + λ)h

(
π1

1−R+λ

)
− λ1 − λ,

ρ
�
=1 − R − σh

(
τ−ν1−ν2

σ

)− (R − λ − σ)h
(

ν1
R−λ−σ

)
− (1 − R + λ)h

(
ν2

1−R+λ

)
,

τ
�
= δGV(R) = h−1(1 − R)

and the constraint region R is defined by the subregion of non-negative tuples
(σ, ν1, ν2, λ, λ1, π, ω1, ω2) such that

σ ≤ R − λ, λ1 ≤ λ, π1 ≤ ω2, ν1 ≤ R − λ − σ, ν2 ≤ 1 − R + λ, ν ≤ σ,

τ − σ ≤ ν1 + ν2 ≤ τ, ω1 = R−λ−σ
2 , ω2 < 1 − R + λ,

ω2
2 < π1 < 1 − R + λ, λ1 = ω2 + (1 − R + λ − ω2)h

(
π1−ω2/2

1−R+λ−ω2

)
,

ν = −(R − λ − σ)δ̃
(

ν1
R−λ−σ , ω1

R−λ−σ

)
− (1 − R + λ)δ̃

(
ν2

1−R+λ , ω2
1−R+λ

)

where δ̃ is the function defined in Proposition 3.6.

A proposition for the asymptotic behavior of RLPN decoding used together with
[3] can be found in the full version of the paper [8, Ap. A]. We have used them
for producing the complexity curves given in Fig. 9 which display the various
complexities of the RLPN decoders we have presented. Even if there is a tiny
improvement by using [3] instead of [19] the two curves are nearly indistinguish-
able. A perspective of improvement of our algorithm could be to produce the
parity-check equations by using more recent ISD techniques than [3], in partic-
ular [5,20] or [6] which all use nearest-neighbor search. Our preliminary results
using in particular [20] do not provide significant improvement, we have only
been able to achieve a very slightly better complexity for rates close to 0.2.

6 A Lower Bound on the Complexity of RLPN Decoders

As pointed out all along the paper, RLPN decoding needs a large number N of
parity-check equations to work but of some shape as indicated below
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h

s n − s

w

where the hatched area indicates that the weight is arbitrary on this part while h
restricted on the other positions needs to have Hamming weight w. The number
N of such parity-checks has to verify (see Proposition 3.10)

N = ω

⎛

⎝n

( (
n−s
w

)

Kn−s
w (u)

)2
⎞

⎠ (6.1)

in order to be able to solve the underlying LPN problem. It can be verified
that the smaller w is (the bigger is the bias ε), the smaller is N and the more
efficient is our algorithm. Obviously if w is too small, there are not enough such
parity-checks. It can be verified that the expected number of parity-checks of
the aforementioned shape is given by 2s

(
n−s
w

)
/2k in a random code (which is our

assumption). Therefore we need

N = O

(
2s
(
n−s
w

)

2k

)

. (6.2)

Given this picture it is readily seen that the complexity of RLPN decoding
is always lower-bounded by N (which is at least the cost to produce N parity-
checks) but we can be more accurate on the lower-bound over the complexity.
Recall that we first need to solve an underlying LPN problem and that we make
a bet on the number of errors u in N. Therefore, assuming that we can compute
a parity-check of the aforementioned shape in time O(1), the complexity of this
genie-aided RLPN decoding is given by

Õ

(
1

Psucc
max (2s, N)

)

(6.3)

where Psucc is given in Proposition 3.10. Our only constraints are given by (6.1)
and (6.2). By optimizing (6.3) over s, u and w, we can give a lower-bound on
the complexity of RLPN decoding. However notice that our lower-bound applies
to a partition of parity-checks in two parts (s and n − s). We do not consider
here finer partitions. This method for lower bounding the complexity of RLPN
decoding is very similar to the technique used in [9, §7] to lower bound the
complexity of statistical decoding. All in all, we give in Fig. 9 this lower-bound
of the complexity. The optimal parameters computed for each RLPN algorithms
can be found on https://github.com/tillich/RLPNdecoding. As we see our RLPN
decoders meet this lower-bound for small rates and we can hope to outperform
significantly ISD’s for code rates smaller than ≈ 0.45.

https://github.com/tillich/RLPNdecoding
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Fig. 9. Complexity exponents of our different RLPN decoders, ISD’s and the genie-
aided RLPN algorithm when splitting parity-checks in two parts.

7 Concluding Remarks

Since Prange’s seminal work [24] in 1962, ISD algorithms have played a predomi-
nant role for assessing the complexity of code-based cryptographic primitives. In
the fixed rate regime, they have been beaten only once in [10] with the help of col-
lision techniques, and this only for a tiny code rate range (R ∈ (0.98, 1)) and for a
short period of time [11,26] until these collision techniques were merged with the
collision techniques to yield modern ISD’s. Surprisingly enough, these improved
ISD have resulted in decoding complexity curves tilting more and more to the
left (i.e. with a maximum which is attained more and more below 1

2 ) instead
of being symmetric around 1

2 as it could have been expected. It is precisely for
rates below 1

2 that RLPN decoding is able to outperform the best ISD’s. This
seems to point to the fact that it is precisely for this regime of parameters that
we should aim for improving them. Interestingly enough, even if there is some
room of improvement for RLPN decoding by using better strategies for produc-
ing the needed low weight parity-checks, there is a ceiling that this technique
can not break (at least if we just split the parity-checks in two parts) and which
is extremely close at rate R = 0.45 to the best ISD algorithm [6]. The RLPN
decoding algorithm presented here has not succeeded in changing the landscape
for very tiny code rates (R going to 0), since the complexity exponent of RLPN
decoding approaches the one of exhaustive search on codewords, but the speed
at which this complexity approaches exhaustive search is much smaller than for
ISD’s in the full decoding regime (i.e. at the GV distance). The success of RLPN
decoding for R < 0.3 could be traced back precisely to this behaviour close to
0. An interesting venue for research could be to try to explore if there are other
decoding strategies that would be candidate for beating exhaustive search in the
tiny code rate regime.

Note however that like dual attacks in lattice based cryptography, the suc-
cess of this algorithm relies on assumptions of the noise model we get from the
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low weight parity-check equations we produce (which is similar to the vectors in
the dual lattice of small norm we use for dual attacks). The strict LPN model
for this noise (Assumption 3.7) has been found out not to be completely accu-
rate for the large Fourier coefficients obtained during decoding the [N, s]-code
with Fourier techniques (see Subsect. 3.4). However, a weaker conjecture, namely
Conjecture 3.11, is enough for guaranteeing the success of this decoding method
and is compatible with the experiments we have made. There is a rather clear
path for verifying at least semi-heuristically this conjecture and this will be the
object of further studies about this algorithm.
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Abstract. At Eurocrypt 2022, May et al. proposed a partial key expo-
sure (PKE) attack on CRT-RSA that efficiently factors N knowing only
a 1

3
-fraction of either most significant bits (MSBs) or least significant

bits (LSBs) of private exponents dp and dq for public exponent e ≈ N
1
12 .

In practice, PKE attacks typically rely on the side-channel leakage of
these exponents, while a side-channel resistant implementation of CRT-
RSA often uses additively blinded exponents d′

p = dp + rp(p − 1) and
d′

q = dq + rq(q − 1) with unknown random blinding factors rp and rq,
which makes PKE attacks more challenging.

Motivated by the above, we extend the PKE attack of May et al.
to CRT-RSA with additive exponent blinding. While admitting rpe ∈
(0, N

1
4 ), our extended PKE works ideally when rpe ≈ N

1
12 , in which

case the entire private key can be recovered using only 1
3

known MSBs
or LSBs of the blinded CRT exponents d′

p and d′
q. Our extended PKE

follows their novel two-step approach to first compute the key-dependent
constant k′ (ed′

p = 1 + k′(p − 1), ed′
q = 1 + l′(q − 1)), and then to fac-

tor N by computing the root of a univariate polynomial modulo k′p.
We extend their approach as follows. For the MSB case, we propose
two options for the first step of the attack, either by obtaining a single
estimate k′l′ and calculating k′ via factoring, or by obtaining multiple
estimates k′l′1, . . . , k

′l′z and calculating k′ probabilistically via GCD.
For the LSB case, we extend their approach by constructing a differ-

ent univariate polynomial in the second step of the LSB attack. A formal
analysis shows that our LSB attack runs in polynomial time under the
standard Coppersmith-type assumption, while our MSB attack either
runs in sub-exponential time with a reduced input size (the problem is
reduced to factor a number of size e2rprq ≈ N

1
6 ) or in probabilistic poly-

nomial time under a novel heuristic assumption. Under the settings of the
most common key sizes (1024-bit, 2048-bit, and 3072-bit) and blinding
factor lengths (32-bit, 64-bit, and 128-bit), our experiments verify the
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validity of the Coppersmith-type assumption and our own assumption,
as well as the feasibility of the factoring step.

To the best of our knowledge, this is the first PKE on CRT-RSA
with experimentally verified effectiveness against 128-bit unknown expo-
nent blinding factors. We also demonstrate an application of the pro-
posed PKE attack using real partial side-channel key leakage targeting
a Montgomery Ladder exponentiation CRT implementation.

Keywords: Partial key exposure · Additive blinding · CRT-RSA ·
Coppersmith method

1 Introduction

1.1 Partial Key Exposure Attacks on (CRT-)RSA

As one of the longest-serving and the most widely used public-key cryptosystems,
RSA can use the Chinese Remainder Theorem (CRT) optimization to speed
up exponentiation operations, which is especially favored by power-constrained
embedded systems. To mitigate side-channel attacks [35], a real implementation
of (CRT-)RSA often adopts blinding countermeasures such as message blind-
ing, modulus blinding and exponent blinding [15,19,22,35,40], of which addi-
tive exponent blinding [35] was referred to by the BSI as the “classical exponent
blinding” [11] and is widely deployed, e.g., in open source cryptographic libraries
MbedTLS [44], Libgcrypt [37], and Botan [9]. Throughout this work, we consider
CRT-RSA with additive exponent blinding as the main target of our research.

At Eurocrypt’96, Coppersmith presented a novel lattice-based method to
find small solutions of univariate modular polynomials with some applications
to cryptanalysis of RSA [17], and he [16] extended this method to bivariate
equations to factor RSA modulus N with half MSBs of one of its prime factors.
Boneh et al. [6] introduced PKE attacks to recover the full RSA private key
using a few consecutive MSBs or LSBs of the private key based on the Cop-
persmith method. Many subsequent works continued the research on PKE, but
most do not take into account the widely deployed exponent blinding counter-
measure [3,7,23,28,38,42,43,50,56–59], with only a couple of exceptions to the
best of our knowledge [24,32]. Fouque et al. [24] investigated PKE attacks on an
additively blinded private exponent with up to 32-bit blinding factors and very
small e values for RSA without CRT. They showed that non-consecutive known
bits—which could realistically result from SCA (Side-Channel Analysis) leak-
age of sliding-window exponentiation implementations—of the additively blinded
private exponent could be used to recover the private exponent. However, their
attack relies on the fact that both the public exponent e and the blinding fac-
tor are small to enable brute force, and requires multiple traces to gradually
retrieve the entire private key. In particular, the retrieval requires several (50 in
their experiments) instantiations of the recovered non-consecutive exponent bits
(when e = 3) or 2-bit consecutive exponent bits (when e = 216+1), each provid-
ing a 1

64 to 1
16 (depending on the public exponent, key length) non-consecutive or
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consecutive portion of the blinded exponents. Further, it works with very small
e values (the cases of e = 3 and 216 + 1 were experimentally verified) and up
to 32-bit blinding factors. Joye and Lepoint [32] also focused on PKE on RSA
with additive exponent blinding. They constructed trivariate or bivariate poly-
nomials based on Coppersmith’s lattice techniques to recover the whole key with
partial known blinded exponent MSBs/LSBs. Their attack requires in the best
case more than half of the known MSBs or LSBs of the blinded private expo-
nent, which was experimentally verified. In addition to the aforementioned works
that assume some partial bits of the (blinded) private exponent(s) known with
certainty, another line of works considers the case where all bits of the blinded
private exponent(s) are classified, but where they can be wrongly classified with
some error probability, e.g. [4,52–54]. In summary, previous PKE attacks on
(CRT-)RSA with additive exponent blinding mostly consider restricted cases of
e and small blinding factors using special-structured partial key leakages from
multiple observations, or need more than half of blinded private exponent from
a single observation of the partial key leakage, or need a full recovery of the
(blinded) exponent bits with errors.

1.2 Our Contribution

In this work, we aim to answer the question: how and to which extent can we
extend the PKE attack to CRT-RSA with additive exponent blinding (ideally
using as few as possible consecutive MSBs/LSBs of the private CRT exponent
from a single observation of the partial key leakage) both theoretically and empir-
ically?

Our contributions in this context are summarized as follows.
First, we extend the PKE attack on CRT-RSA with unblinded exponents (dp

and dq) [43] to that with additively blinded ones, i.e., d′
p = dp + rp(p − 1) and

d′
q = dq + rq(q − 1) for unknown random blinding factors rp and rq.1 Instead of

restricting rp and rq to 32 bits or any lengths within the reach of brute force [24],
we allow the blinding factors up to some exponential size Nγ , and concretely
128 bits or even more. Our extended PKE works ideally when the products of
public exponent e = Nα and the blinding factors (i.e., e · rp and e · rq in the
LSB case; e · r

2
3
p and e · r

2
3
q in the MSB case) are roughly N

1
12 , i.e., α + γ ≈ 1

12
or α + 2

3γ ≈ 1
12 . In this setting, the attackers/evaluators need only a 1

3 -fraction
of MSBs or LSBs of d′

p and d′
q to recover the entire private key. In general, as

for [43], our extended PKE attack works in the small e regime (albeit with more
MSBs/LSBs), i.e., 0 < e < N

1
4−γ , which arguably covers most common choices

in practice (e.g., NIST mandates e ∈ (216, 2256) [45]).
Second, we formally analyze the asymptotic time complexity of the proposed

PKE attack. In the LSB case, it runs in polynomial time under the standard
1 We argue that the extension is non-trivial as, intuitively (from an information the-

oretic point of view), the random unknown blinding factors (rp and rq) effectively
reduce the information on dp, dq, k, and l that can be obtained directly from partial
key exposure.
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Coppersmith-type heuristic assumption. In the MSB case, it either runs in sub-
exponential time with a reduced input size (i.e., the number to factor in this
case is of size e2 · rp · rq, significantly smaller than the RSA modulus N), or
runs in probabilistic polynomial time (PPT) under a novel assumption that cer-
tain values corresponding to the blinded exponents are coprime with a certain
probability, but with the additional cost that, for one of the exponents, multiple
observations of the blinded execution are needed. We implement the proposed
PKE attack for the most common key sizes (1024-bit, 2048-bit, and 3072-bit)
and blinding factor lengths (32-bit, 64-bit, and 128-bit), and our extensive exper-
iments not only confirm the effectiveness of the Coppersmith-type heuristic (in
the LSB case), but also that of our own assumption and the feasibility of the
sub-exponential (in e2 · rp · rq) time complexity (in the MSB case). In partic-
ular, the MSB attack succeeds with the probability that randomly distributed
numbers are coprime (using multiple observations of the blinded exponents), or
completes mostly in seconds or minutes for most parameter settings (using single
observation of the blinded exponents). In the most challenging case occasionally
observed for 2048-bit (resp., 3072-bit) key with 128-bit additive blinding expo-
nent, it finishes in less than 1.5 (resp., 50) hours. To the best of our knowledge,
this is the first2 PKE on CRT work that experimentally verifies the effectiveness
using 128-bit additive exponent blinding factors. The experiment parameters also
provide hands-on references (such as lattice dimensions, and required running
time) to the attackers/evaluators for applying PKE attacks.

Third, the extended PKE attack can be combined with various forms of side-
channel attacks, e.g., cold boot attacks [27,61], cache-timing micro-architectural
attacks [2,62], and timing, power or electromagnetic analysis attacks on CRT-
RSA [13,29,35,51,64], to significantly enhance the applicability of these attacks
(by reducing the goal of full key recovery to obtaining only a 1

3 -fraction of leak-
age). Note that this PKE attack can tolerate some errors of the partial key
leakage,3 i.e., combining the error-free MSBs or LSBs of d′

p from one observation
of the partial key leakage, and those of d′

q from another one. To this end, we
demonstrate an application of the extended PKE attacks on deep learning-based
partial side-channel leakage from a typical real-world target, i.e., a Montgomery
Ladder exponentiation CRT implementation with 2048-bit key and 64-bit addi-
tive exponent blinding on a 45 nm secure microcontroller with RSA co-processor.

Several preliminaries and proofs in this work closely follow the corresponding
versions in [43]. In those cases, the contributions of May et al. are included here
in full such that this work is self-contained and easier to read.

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section 2 introduces the necessary
background information about the Coppersmith method and the state-of-the-art
2 The work [54] estimates the effort for 128-bit blinding factors with error probability
0.05, but only verifies the estimates experimentally for 32-bit blinding factors.

3 It is a commonly used strategy also for error-tolerant lattice-based attacks on
(EC)DSA as pointed out in [1].
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PKE attack on unblinded CRT exponents published at Eurocrypt’22. Section 3
provides a mathematical proof of the extended PKE attack in the additive blind-
ing scenario. Afterwards, we experimentally verify the effectiveness and time
complexity of this approach in Sect. 4. Finally, in Sect. 5, an application of the
extended PKE attack is demonstrated using partial side-channel key leakage of
a typical real-world Montgomery Ladder exponentiation implementation with
additive exponent blinding countermeasure.

2 Preliminaries

2.1 Notations

By ‘log’ we denote the base 2 logarithm, ‘ln’ denotes the natural logarithm, and
ζ(.) denotes Riemann’s zeta function. We use capital letters for random variables
and small caps for their realizations. We use capital bold font letters for matrices
(e.g., M) and small bold caps for vectors (e.g., v). We use |detM| to denote the
absolute value of the determinant of the matrix M, which corresponds to the
determinant of the lattice spanned by this matrix.

2.2 Coppersmith’s Method

Similar to many previous PKE works, we rely on Coppersmith’s method to find
small modular roots of multivariate polynomials [18]. We first give a simple
introduction to the multivariate Coppersmith’s lattice-based method.

Let f ∈ Z[x1, ..., xj ] be a j-variate polynomial over the integers with max-
imum degree δ in each variable separately, this polynomial has a small root
r = (r1, ..., rj) modular an integer M and let Ui ∈ Z denote some known bounds.
The goal is to find integers |ri| ≤ Ui such that f(r1, ..., rj) = 0 in polynomial
time.

To this end, a series of so-called shift-polynomials with a chosen sufficiently
big positive integer m ∈ N and the indices i0, ..., ij ∈ N is constructed as below:

s[i0,...,ij ](x1, ..., xj) = f i0(x1, ..., xj) · xi1
1 · ... · xij

n · Mm−i0 .

Those polynomials have the root r modulo Mm by construction. A subset of
the constructed shift-polynomials s[i0,...,ij ](U1x1, ..., Ujxj) is selected to generate
an l-dimensional lattice L with their coefficient vectors such that the lattice L
has a triangular basis matrix B. Given a large enough chosen integer m and
the determinant of L fulfilling the enabling condition, i.e., |detB| ≤ Mml, then
a collection of j polynomials p1(x1, ..., xj), ..., pj(x1, ..., xj) can be computed in
polynomial time. This is due to the fact that the coefficient vectors of the poly-
nomials pj(U1x1, ..., Ujxj) are elements of L, which is generated by the coeffi-
cient vectors of the polynomials si(U1x1, ..., Ujxj). Therefore, the computation
of p1(x1, ..., xj), ..., pj(x1, ..., xj) can be done with the widely used LLL lattice
basis reduction algorithm [36]. Those computed polynomials have the root r not
only modulo Mm but also over the integers as proved by Howgrave-Graham
in [30] as stated below.
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Lemma 1 (Howgrave-Graham [30]). Let h(x1, ..., xk) ∈ Z[x1, ..., xk] be a
polynomial in at most ω monomials. Suppose that h(r1, ..., rk) ≡ 0 mod Mm

for some positive integer m. Also let |ri| < Xi for 1 ≤ i ≤ k and

‖h(x1X1, ..., xkXk)‖ <
Mm

√
ω

.

Then, h(r1, ..., rk) = 0 holds over the integers.

In the case of j = 1, i.e., the polynomial f is univariate, the root r can
be straightforwardly resolved from p1 using standard techniques, e.g., Newton’s
method. In the case of j > 1, if such (computed) polynomials generate an ideal
(p1, ..., pj) of zero-dimensional variety, we can use a Gröbner basis to resolve
their root, it means that the RSA modulus N can be efficiently factored in our
context. However, the existence of such a zero-dimensional variety relies on the
standard Coppersmith-type heuristic assumption (see also [43, Assumption 1])
as below:

Assumption 1. In the multivariate setting, Coppersmith’s method yields poly-
nomials that generate an ideal of zero-dimensional variety.

It is worth mentioning that it is essential to experimentally verify the validity
of this assumption because it might fail in some cases, e.g., in the small e regime
of the TK attack [57] as pointed out in [43].

2.3 PKE Attack on Unblinded CRT Exponents

We first briefly recall the PKE attack on unblinded CRT private exponents
in [43]. We denote an RSA public key as (N , e), where N = pq and e = Nα.
In practice, p and q usually have the same bit-length, so they are bounded as
p, q = Θ(

√
N). The unblinded CRT exponents are marked as dp and dq, without

loss of generality, which are assumed to be full-size, i.e., dp, dq = Θ(
√

N). The
CRT private key exponentiation is executed as

M = (Cdq mod q) + q · ((q−1 mod p) · ((Cdp mod p) − (Cdq mod q)
)
mod p

)
,

where C is the ciphertext to be decrypted and M is the plaintext. The definition
of PKE attacks on RSA is, that the RSA private key can be fully recovered in
polynomial time given only a constant fraction of the secret exponent(s). This
recent work put forward the state-of-the-art PKE attack on CRT exponents in
small e regime from 1

2 known LSBs of dp (or dq, see [7, Fig. 4]) to 1
3 known

LSBs (or MSBs) of both dp and dq (see [43, Fig. 1]) when e ≈ N
1
12 . It is a novel

two-step (both steps can finish in polynomial time) approach as below:

– Step 1: Compute CRT key constants k (edp = 1 + k(p − 1)) and l (edq =
1 + l(q − 1)) based on the known parts of dp and dq and the public key
(N , e). If the MSBs of dp and dq are known, this step is trivial to solve
a quadratic polynomial equation. In the LSB case (the LSBs are known),
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Coppersmith’s lattice-based method [18] is involved so this step relies on
a standard Coppersmith-type heuristic assumption as mentioned above in
Assumption 1. They experimentally verified this heuristic in addition to the
mathematical proof.

– Step 2: Recover the unknown bits of dp and subsequently the factor p of
N using the previously calculated k. The authors considered it as an exten-
sion of Howgrave-Graham’s approximate divisor algorithm [31] to the case
of approximate divisor multiples for some known multiple k of an unknown
divisor p of N . They mathematically proved that this unknown divisor can
be recovered in polynomial time.

3 Extended PKE Attack on Additively Blinded CRT
Exponents

As discussed in Subsect. 1.2, the problem to be solved in this work is: to
which extent can one reveal the whole private key when only part of the addi-
tively blinded CRT exponent bits is disclosed. In the following, we describe the
extended PKE attack on additively blinded CRT exponents based on [43].

May et al. only considered the PKE attack on unblinded CRT private expo-
nents in [43], we extend their work to cover the additively blinded CRT private
exponents, and it is called EPKE (Extended Partial Key Exposure) attack in
the rest of this paper.

Using the additive blinding factors rp and rq, the blinded CRT exponents
are d′

p = dp + rp(p − 1) and d′
q = dq + rq(q − 1), where rp, rq = Nγ . Let (d′(M)

p ,
d

′(M)
q ) be the MSBs of d′

p and d′
q, and (d′(L)

p , d
′(L)
q ) be the LSBs. So, we have:

d′
p = d′(M)

p 2i + d′(L)
p ,

d′
q = d′(M)

q 2i + d′(L)
q .

Hereafter, we label it as the MSB case if (d′(M)
p , d

′(M)
q ) are known (e.g., by

side-channel attacks), or as the LSB case if (d′(L)
p , d

′(L)
q ) are known. In addi-

tion to the Coppersmith-type assumption required for the LSB case in [43], our
algorithm in the MSB case has two options with different requirements:

– Given only parts of two blinded exponents d′
p and d′

q, a factoring step of a
number roughly 1

6 the size of N is required, leading to a sub-exponential time
complexity.

– Given parts of one blinded exponent d′
p and multiple blinded exponents d′

q,i,
the time complexity remains polynomial, with a success probability accord-
ing to the additional heuristic Assumption 2 defined below (which will be
experimentally verified).

Assumption 2. For z distinct blinded exponents d′
q,i = dq + rq,i(q − 1), the

corresponding values l′i = l + rq,ie are coprime with probability 1/ζ(z).
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According to [20, (1.2) and (3.1)], this assumption holds if the values l′i = l +
rq,ie are distributed uniformly. However, the assumption that these values are
distributed uniformly is too strong. In any case, Assumption 2 is sufficient and
is experimentally validated as described in Sect. 4.

Our main result of EPKE regarding factoring N is the extension of [43,
Theorem 1] as follows:

Theorem 1. Let (N , e) be the public key and N be large enough with e = Nα.
Given the MSBs (d′(M)

p , d
′(M)
q,1 , . . . , d

′(M)
q,z ) or the LSBs (d′(L)

p , d
′(L)
q ) of the

additively blinded CRT exponents (d′
p, d′

q) with blinding factors rp, rq,i = Nγ . If
the unknown parts of d′

p and d′
q(,i) are upper bounded by N δ and δ ≥ γ (which

already holds for commonly used up to 128-bit additive blinding factors), where

γ ≤ δ < min{1
4
+ α + γ,

1
2

− 2α − γ}
for the MSB case, or

δ < min{1
4
+ α + γ,

1
2

− 2α − 2γ}
for the LSB case, then N can be factored

– in polynomial time under Coppersmith’s heuristic assumption (see Assump-
tion 1) for the LSB case,

– in sub-exponential time exp(c(ln(N2α+2γ))t(ln ln(N2α+2γ))1−t) for the MSB
case (z = 1) with constants c and t dependent on the underlying integer
factorization algorithm, or

– in probabilistic polynomial time under Assumption 2 for the MSB case (z >
1).

Proof Outline. The additively blinded CRT exponents d′
p, d′

q satisfy the equa-
tions

ed′
p = 1 + k′(p − 1), (1)

ed′
q = 1 + l′(q − 1), (2)

where k′ = k + rpe and l′ = l + rqe as we have

edp = 1 + k(p − 1),

edq = 1 + l(q − 1).

Similar to [43], we use a two-step method to factor N .

Step 1: Given the unknown parts of d′
p and d′

q being upper bounded by N
1
2−2α−γ

(MSB case) or N
1
2−2α−2γ (LSB case),

– in Sect. 3.1 we prove that k′ can be calculated in sub-exponential time
exp(c(ln(N2α+2γ))t(ln ln(N2α+2γ))1−t) using a single known MSBs of d′

q

in the MSB case,
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– in Sect. 3.2 we prove that k′ can be calculated in probabilistic polynomial
time using multiple known MSBs of d′

q in the MSB case under Assump-
tion 2, and

– in Sect. 3.3 we prove that k′ can be calculated in polynomial time under
the Coppersmith-type heuristic Assumption 1 for multivariate polynomi-
als in the LSB case.

Step 2: With the computed k′ and the unknown MSBs or LSBs of d′
p bounded

by N
1
4+α+γ , we provide an algorithm for factoring N in polynomial time

based on the novel result of May et al. of approximate divisor multiples [43,
Theorem 3]. �

Note that the proof outline for Theorem 1 and the proofs of Lemmas 2, 4
and 5 follow the work of May et al. [43] and only differ in handling those two
random blinding factors rp and rq.

3.1 Step 1a: Computing (k′, l′) from MSB Using Factoring

In the MSB case, to compute k′ using known MSBs of two blinded exponents d′
p

and d′
q, the basic idea is to compute the product k′l′ followed by a factorization of

this product to find the candidates of k′ using the modular sum of k′+ l′ mod e.
The time complexity here is determined by the factorization of the product k′l′,
which is sub-exponential according to [8, Formula 3.10]. The time complexities
of the state-of-the-art fastest known integer factorization algorithms are of the
form exp(c(lnn)t(ln lnn)1−t)) for some constants c > 0 and 0 < t < 1, in which
n is the number to be factored. For QS (Quadratic Sieve) and ECM (Elliptic-
Curve Method) factorization algorithms, t = 1

2 ; for NFS (Number Field Sieve),
t = 1

3 . Note that, in practice, this sub-exponential time complexity is affordable
because of the small size of e and commonly used small sizes (very often 64 bits
or even 32 bits, at most 128 bits) of exponent blinding factors rp and rq. We
also experimentally verify this in Sect. 4. Most of the experiments take seconds
or minutes for the factorization step and occasionally need up to one and a half
hours (resp., fifty hours) for 2048-bit (resp., 3072-bit) key with a regular PC.

Lemma 2 ((k′, l′) from MSB). Let (N , e) be the public key and N be large
enough with e = Nα. Given the MSBs (d′(M)

p , d
′(M)
q ), if the unknown parts (d′(L)

p ,
d

′(L)
q ) are upper bounded by N δ, where

γ ≤ δ <
1
2

− 2α − γ,

then (k′, l′) can be computed in time exp(c(ln(N2α+2γ))t(ln ln(N2α+2γ))1−t).

Proof. The first steps of the proof are completely analogous to the proof of [43,
Lemma 1], where k, l, dp, and dq are replaced by k′, l′, d′

p, and d′
q, respectively.

Similarly, the following quantity can be computed efficiently from the known
MSBs:

Ã =
22ie2d

′(M)
p d

′(M)
q

N
.



A Third is All You Need: EPKE Attack on CRT with Exponent Blinding 517

Considering

d′
p, d′

q = Θ(N
1
2+γ), d′M

p , d′M
q = Θ(N

1
2+γ−δ), d′(L)

p , d′(L)
q , 2i = Θ(Nδ), k′, l′ = Θ(Nα+γ),

we have

k′l′N − ÃN = O(N2α+2γ) + O(N2α+ 1
2+2γ) + O(N2α+ 1

2+γ+δ) + O(N2α+2δ)

= O(N2α+ 1
2+γ+δ),

and further we obtain

k′l′ − Ã = O(N δ+2α+γ− 1
2 ) = o(1).

In conclusion, the product k′l′ can be calculated in polynomial time
O(log2 N).

Further we can deduce the analogue of [43, Equation (7)], i.e.,

k′ + l′ ≡ 1 − k′l′(N − 1) mod e, (3)

where the right-hand side can be computed with the obtained product k′l′ and
the public key (N , e).

To compute k′, the product k′l′ is factored using the state-of-the-art inte-
ger factorization algorithms [8] to get all its factors in sub-exponential time
exp(c(ln(N2α+2γ))t(ln ln(N2α+2γ))1−t). Then, the search for a combination of
those factors that satisfies Eq. 3 will reveal two values corresponding to k′ and
l′. Putting all together, the time complexity of computing k′ in the MSB case is
exp(c(ln(N2α+2γ))t(ln ln(N2α+2γ))1−t). �

As opposed to the proof in [43], it is not trivial to recover k′ and l′ from one
product k′l′ in polynomial time. Trying to use Eq. (3) to compute a univariate
polynomial with k′ and l′ as roots will fail because, unlike 0 < k+ l < 2e, there is
no small interval that k′+l′ will fall into to derive k′+l′ from k′+l′ mod e, which
is due to the blinding factors rp and rq. Since k = k′ mod e and l = l′ mod e,
it may seem feasible to find k and l instead, but the method from [43] will not
work as it is non-trivial to derive the required product kl from kl mod e = k′l′

mod e. Constructing a multivariate polynomial as in the LSB case to recover k
and l using Coppersmith’s method is also non-trivial, as the modulus e is not
large enough compared to roots k and l. Regardless, the factoring method is fast
enough in practice shown by the experimental results in Sect. 4.

In the end, two candidates for k′ are found because the modular sum cannot
tell which of those two possible values is k′ and which is l′. The fact that two
candidates are found for k′ means that Step 2 may have to be repeated for
both candidates. However, it is not described in [43] how the two values k and
l can be distinguished in the MSB case, while they are two equivalent roots of
a univariate polynomial (as opposed to the LSB case, where they together form
one root of a bivariate polynomial).
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3.2 Step 1b: Computing (k′, l′1, . . . , l
′
z) from MSB Using GCD

This section describes how to compute, in the MSB case, k′ using known MSBs
of one blinded exponent d′

p and multiple blinded exponents d′
q,i in heuristic prob-

abilistic polynomial time. Rather than using factorization methods to determine
the factors of k′l′, it is possible to use the fact that l′ is different in every execu-
tion of the CRT exponentiation due to the random blinding factor. An attacker
can recover partial information on two different exponentiation executions with
blinded dq, i.e., d′

q,1 and d′
q,2, compute the products k′l′1 and k′l′2, and recover k′

by computing the GCD (Greatest Common Divisor). It may be that l′1 and l′2 are
not coprime, in which case the GCD will comprise k′·f where f = gcd(l′1, l

′
2). This

happens with some probability, and can be solved by capturing additional expo-
nentiation executions and successively computing the GCD with more products
that include k′. Alternatively, the additional factor f is likely small (experimen-
tally verified as shown in Fig. 3) in practice and can be recovered using a small
brute-force with only two instantiations. The attacker can guess f , derive the
corresponding k′, l′1, and l′2, and verify whether both pairs satisfy Eq. (3).

Lemma 3 ((k′, l′1, . . . , l
′
z) from MSB). Let (N , e) be the public key and N be

large enough with e = Nα. Given the MSBs (d′(M)
p , d

′(M)
q,1 , . . . , d

′(M)
q,z ), if the

unknown parts (d′(L)
p , d

′(L)
q,1 , . . . , d

′(L)
q,z ) are upper bounded by N δ, where

γ ≤ δ <
1
2

− 2α − γ,

then (k′, l′1, . . . , l
′
z) can be computed in time O(log2 N) with probability 1/ζ(z)

under Assumption 2.

Proof. In this case, to compute k′, we use one observation d
′(M)
p combined with

z observations d
′(M)
q,1 , . . . , d

′(M)
q,z . To this end, we first calculate all the products

k′l′1, . . . , k
′l′z, using the process described in the proof of Lemma 2 and then

compute k∗ = gcd(k′l′1, . . . , k
′l′z). According to Sect. 3.1, all the products k′l′i

can be calculated in polynomial time O(log2 N) using the already known MSBs
(d′(M)

p , d
′(M)
q,1 , . . . , d

′(M)
q,z ) and public key (N , e). Now, k∗ = k′ if and only if

gcd(l′1, . . . , l
′
z) = 1, which, according to Assumption 2 occurs with probability

1/ζ(z). Upon obtaining k′, it can be verified that this is correct by computing a
corresponding l′i and verify that they satisfy Eq. (3). The complexity of the GCD
computation is O((log z)·M((2α+2γ) logN) log((2α+2γ) logN) considering the
state-of-the-art quasi-linear time recursive algorithm [55, Theorem 4]. Putting
all together, the time complexity of computing k′ in the MSB case using multiple
known MSBs is O(log2 N). �

3.3 Step 1c: Computing (k′, l′) with Known LSBs

As mentioned above, in the LSB case, the approach to computing k′ using Cop-
persmith’s lattice-based method relies on the standard heuristic Assumption 1.
In Sect. 4, we will verify the efficiency of this heuristic method in practice.
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Lemma 4 ((k′, l′) from LSB). Let (N , e) be the public key and N be large
enough with e = Nα. Given the LSBs (d′(L)

p , d
′(L)
q ), if the unknown parts (d′(M)

p ,
d

′(M)
q ) are upper bounded by N δ, where

δ <
1
2

− 2α − 2γ,

then (k′, l′) can be computed in polynomial time under Assumption 1.

Proof. The first steps of the proof are completely analogous to the proof of [43,
Lemma 2], where k, l, dp, and dq are replaced by k′, l′, d′

p, and d′
q, respectively.

Specifically, the polynomials f and g are defined analogously.
We know that k′, l′ are upper bounded by Nγe, and it is also known that,

under Assumption 1, all roots (x0, y0) of g modulo 2ie that satisfy |x0|, |y0| <
Nγe can be solved in polynomial time if

(Nγe)2 < (2ie)
2
3 . (4)

Because e = Nα and 2i = Θ(N
1
2+γ−δ), the inequality 4 is actually asymp-

totically equivalent to

δ <
1
2

− 2α − 2γ,

which completes the proof. �

3.4 Step 2: Factoring N with Computed k′

After computing k′ as described in Sects. 3.1 and 3.2 for the MSB case or in
Sect. 3.3 for the LSB case, the second step is to factor N in polynomial time
using the computed k′ and the known part of d′

p. Please keep in mind that, in
the MSB case when factoring is used, this step occasionally has to be performed
twice because we do not know which of the two factors obtained in Step 1
corresponds to k′ (as opposed to l′). Our Step 2 is similar to [43] and based on
their Theorem 3 as below:

Theorem 2 (May-Nowakowski-Sarkar [43]). Suppose we are given a poly-
nomial f(x) = x + a and integers k,N ∈ N, where k = Nμ for some μ ≥ 0.
Let p > Nβ ∈ N, β ∈ [0, 1] be an unknown divisor of N . In time polynomial in
logN, log k and log a, we can compute all integers x0, satisfying

f(x0) ≡ 0 mod kp and |x0| ≤ Nβ2+μ.

To factor N with the computed k′ and the known parts of (d′
p, d′

q), we have
the following Lemma 5, which is a direct application of Theorem 2.

Lemma 5. Let (N , e) be the public key and N be large enough with e = Nα.
Given the value k′ and the MSBs (d′(M)

p , d
′(M)
q ) or the LSBs (d′(L)

p , d
′(L)
q ). If the
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unknown parts of (d′
p, d′

q) are upper bounded by N δ for δ < 1
4 + α + γ, then N

can be factored in time polynomial in logN, log k′ and log a, where

a = (ed′(M)
p 2i + k′ − 1) · (e−1 mod k′N)

in the MSB case, or

a =

(
ed

′(L)
p + k′ − 1

gcd(2ie, k′N)

)

·
((

2ie

gcd(2ie, k′N)

)−1

mod
k′N

gcd(2ie, k′N)

)

in the LSB case.

Proof. In the MSB case, the first steps of the proof are completely analogous to
the proof of [43, Lemma 3], where k, l, dp, and dq are replaced by k′, l′, d′

p, and
d′

q, respectively.
Since k′ = Θ(Nα+γ) and p = Θ(

√
N), it is concluded from [43, Theorem 3]

that the unknown part d
′(L)
p can be solved in polynomial time if d

′(L)
p < N

1
4+α+γ .

This condition is already fulfilled because d
′(L)
p ≤ N δ. The last step to factor N

is to get p = gcd (fMSB(d′(L)
p ), N).

In the LSB case, similarly we construct a polynomial

fLSB(x) = x + (ed′(L)
p + k′ − 1) · ((2ie)−1 mod k′N),

however, it is slightly different from the MSB case (and from [43]) that the
modular multiplicative inverse (2ie)−1 mod k′N does not always exist because
gcd(2ie, k′N) = 1 does not always hold. To this end, we slightly change the
polynomial to

fLSB(x) = x+

(
ed

′(L)
p + k′ − 1

gcd(2ie, k′N)

)

·
((

2ie

gcd(2ie, k′N)

)−1

mod
k′N

gcd(2ie, k′N)

)

,

in this way, it is guaranteed that the modular multiplicative inverse(
2ie

gcd(2ie, k′N)

)−1

mod
k′N

gcd(2ie, k′N)
exists. The rest is the same as the MSB

case to factor N to get p = gcd (fLSB(d′(M)
p ), N) and that finishes our proof. �

It is worth noting that our EPKE also does not work if e ≥ N
1
4−γ , unless

factoring is easy, according to [43, Corollary 1].

4 Experimental Results

As aforementioned, it is critical to experimentally verify the validity of Assump-
tion 1 in the LSB case, as well as the validity of Assumption 2 and the sub-
exponential time of factoring k′l′ in the MSB case. To assess the effectiveness of
the EPKE attacks, we first conduct the EPKE attacks to recover the entire pri-
vate exponent with 1

3 known blinded MSBs or LSBs of d′
p and d′

q, with different
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Table 1. Summary of the EPKE experiments - MSB case with single d
′(M)
q

Len(N) Len(e) Len(rp, rq) Len(UnknownLSB) Step 1a Factoring time Step 2 Lattice Dim. LLL time

1024 64 32 336/352 <1 s 21 1 s

1024 43 64 347/362 <1 s 21 1 s

1024 17* 128 347/401 2 s 21 2 s

2048 149 32 665/693 42 s 21 4 s

2048 128 64 677/704 175 s 21 4 s

2048 85 128 697/725 340 s 21 4 s

3072 235 32 1008/1034 1787 s 31 60 s

3072 213 64 1014/1045 5993 s 31 60 s

3072 171 128 1032/1066 6651 s 31 60 s

Table 2. Summary of the EPKE experiments - MSB case with multiple d
′(M)
q

Len(N) Len(e) Len(rp, rq) Len(UnknownLSB) Step 1b Success Prob.

1024 64 32 336/352 0.67/0.89/0.93/0.97/0.98/0.99/0.98/0.98/1.00

1024 43 64 347/362 0.65/0.89/0.91/0.98/0.97/0.99/0.99/1.00/0.99

1024 17* 128 347/401 0.65/0.78/0.94/0.99/0.96/0.99/0.99/1.00/1.00

2048 149 32 665/693 0.67/0.79/0.89/0.95/0.99/1.00/0.98/0.99/1.00

2048 128 64 677/704 0.73/0.86/0.92/0.93/0.98/1.00/1.00/1.00/1.00

2048 85 128 697/725 0.73/0.86/0.92/0.95/0.99/1.00/0.99/1.00/1.00

3072 235 32 1008/1034 0.69/0.81/0.93/0.98/0.98/0.99/1.00/1.00/1.00

3072 213 64 1014/1045 0.72/0.82/0.94/0.98/0.98/0.99/1.00/1.00/1.00

3072 171 128 1032/1066 0.67/0.81/0.93/1.00/0.99/1.00/1.00/1.00/1.00

key and additive blinding factor lengths. To this end, we consider the commonly
used key length of 1024-bit, 2048-bit and 3072-bit, the commonly used additive
blinding factor length of 32-bit, 64-bit and 128-bit, and both MSB and LSB cases.
Rather than executing the EPKE attacks on real or simulated side-channel leak-
age, known keys are generated and a fraction of the known bits of the blinded
private exponents are used directly. Since our bounds depend on both the length
of e and the length of the additive blinding factor, we choose the length of e based
on the length of the additive blinding factor such that r

2
3
p e ≈ N

1
12 in the MSB

case and such that rpe ≈ N
1
12 in the LSB case. In these cases, we can use only 1

3 -
part of known bits to recover the full key. More precisely, α = 1

12 − 2
3γ according

to our bounds min{ 1
4 + α + γ, 1

2 − 2α − γ} for the MSB case, and α = 1
12 − γ

according to our bounds min{ 1
4 + α+ γ, 1

2 − 2α − 2γ} for the LSB case. If γ = 0,
i.e., without exponent blinding, our bounds are the same as [43] for both MSB and
LSB cases, i.e., our bounds are the generalization of their work. The experimental
EPKE attack results are summarized in Table 1 and Table 2 for the MSB case and
Table 3 for the LSB case. The experiments are repeated 100 times for each setting
by randomly generating a CRT key pair including e, so the time values in each
table correspond to the average time over 100 experiments of each setting. We
have implemented the experiments in SAGE 9.5 and YAFU [5] 2.08 factorization
toolkit (Ubuntu 20.04.4) with an Intel� CoreTM i5-7500 CPU 3.40 GHz.
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Table 3. Summary of the EPKE experiments - LSB case

Len(N) Len(e) Len(rp, rq) Len(UnknownMSB) Step 1c Lattice Dim. LLL time Step 2 Lattice Dim. LLL time

1024 53 32 320/341 121 216 s 21 <1 s
1024 21 64 320/341 121 202 s 21 <1 s
1024 17* 128 191/222 121 461 s 21 4 s
2048 139 32 648/682 121 487 s 21 4 s
2048 107 64 647/682 121 470 s 21 4 s
2048 43 128 649/682 121 419 s 21 4 s
3072 224 32 978/1024 121 1104 s 31 90 s
3072 192 64 978/1024 121 1110 s 31 90 s
3072 128 128 976/1024 121 991 s 31 87 s

The fourth column shows two values, the ones in bold font correspond to the
theoretical bounds, and the others correspond to the experimental results. In
the MSB case, with a public exponent e of size α = 1

12 − 2
3γ, we nearly reach

the asymptotic bound using a min{ 1
4 +α+ γ, 1

2 − 2α − γ}-part MSBs of blinded
CRT exponents (d′

p, d′
q) to recover the entire private key.

In the LSB case, with a public exponent e of size α = 1
12 − γ, we succeeded

in computing (k′, l′) in each performed experiment, affirming the validity of
Assumption 1. We closely reach the asymptotically bound using a min{ 1

4 + α+
γ, 1

2 − 2α − 2γ}-part LSBs of blinded CRT exponents (d′
p, d′

q) to recover the
entire private key. We need more known bits to reveal the key compared with
the MSB case.

It has to be mentioned that the fourth row (1024-bit key with 128-bit blinding
factor) in both MSB and LSB cases is different from the other settings. Because
the chosen e should be 1 (resp., N− 1

24 ) for the MSB (resp., LSB) case if we
want to use 1

3 known MSBs/LSBs of blinded CRT exponents (d′
p, d′

q) to recover
the full private key. However, those two e values are not realistic, instead, we
choose a very widely-used (e.g., 216 + 1) size of e, i.e., 17-bit, which complies
with the NIST’s recommendation of e and is also close to those two values. Our
experiments suggest that in the MSB case the required known bits are close to
the optimum value, i.e., 1

3 MSBs of blinded exponents. While in the LSB case
we need more than 2

3 LSBs of blinded exponents, because the used e value is too
far away from the expected value e = N− 1

24 .
Another critical point to be verified is the required sub-exponential factoring

time to compute k′ in Step 1a (see Sect. 3.1), as shown in Fig. 1, clearly it can
be observed that the required factoring time for all the settings is certainly
affordable even with an average PC. Mostly, the factoring finishes within seconds
or minutes, but on very few occasions it requires between one hour and one and
a half hours (resp., fourteen hours and fifty hours) for 2048-bit (resp., 3072-
bit) key with 128-bit blinding. It is worth noting that the 1024-bit key with
the 32-bit blinding factor case requires slightly more time than the 1024-bit
key with the 64-bit blinding factor case, because the former case uses SAGE’s
internal factorization function while all other cases utilize YAFU’s factorization
functions.
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(a) (b)

(c)

Fig. 1. Step 1a Factoring Time for: (a) 1024-bit key; (b) 2048-bit key; (c) 3072-bit key.

Finally, the success probability of the probabilistic method to obtain k′ in
Step 1b (see Sect. 3.2) is shown in Fig. 2. For all parameter sets in Tables 1, 2
and 3, 100 RSA key pairs were generated, and for each key pair, 1,000 sets of
values (l′1, . . . , l

′
10) were generated based on blinded exponents. The number of

values required to obtain a GCD of 1 was computed for each set, in order to
determine the estimated success probability of the attack depending on z. Our
experimental results in Table 2 also validate the estimated probability here as
part of the full attack path, as the last column indicates the successful EPKE
attack probability with 2 ∼ 10 different randomly generated l′z values for each
setting of key size and blinding factor length. As can be observed, the successful
EPKE attack probability is already above 0.65 using only two l′z values, and it
reaches up to almost 1 using five l′z values. Therefore, we experimentally verify
the validity of Assumption 2. In addition, as mentioned above, the f factor
can be recovered using only two l′z values with a small brute-force because it is
expected to be small in practice. We also empirically confirm that the f factor is
indeed pretty small as shown in Fig. 3. Mostly it is smaller than 100 for different
key sizes and exponent blinding factor lengths, the brute-force effort is affordable
to compute k′ with only two l′z values to achieve the successful EPKE attack
probability of 1.
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Fig. 2. Step 1b Estimated versus assumed probability that l′1, . . . , l
′
z are coprime.

A somewhat surprising observation is, from a PKE attack perspective, com-
paring to without additive exponent blinding, CRT-RSA with additive exponent
blinding of size Nγ and public exponents e ≤ N

1
12−γ becomes easier to attack

with larger exponent blinding factors. For instance, CRT-RSA with 2048-bit N
and widely used 17-bit public exponent e. Without exponent blinding, the PKE
attack can efficiently break the scheme with roughly 48% (492 bits) of the LSBs
of the CRT exponents. On the contrary, given a 153-bit exponent blinding, then
roughly only 33% (389 bits) are required. However, from an SCA attack point of
view, it is other way around. The additive exponent blinding limits an attacker
to use only a single attack trace to get the partial key information instead of
using multiple attack traces without exponent blinding.

In both cases, we verified the effectiveness of the proposed EPKE attacks
using partially known blinded CRT exponents to disclose the entire private key.
Next, we will demonstrate an application of this EPKE attack using the obtained
partial side-channel key leakage via profiled attacks in a realistic context.

5 A Use Case of EPKE on Real SCA Partial Key Leakage

In the following, we first introduce our profiled attacks-based experimental ver-
ification methodology concerning the EPKE attacks for an attacker/evaluator
to disclose the full private key based on partially recovered CRT exponents. It
includes the metrics used for training neural networks and the knowledge of
points of interest (POIs) assumption. In the end, we present the experimental
results rendering this verification methodology.

5.1 Deep Learning Profiled Attack

Since the seminal work of Kocher [35], side-channel analysis (SCA) has been
a powerful and de facto tool to evaluate the physical security of various
cryptographic implementations, especially on embedded devices. There is a
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(a) (b)

(c)

Fig. 3. Step 1b Histogram of f values with two l′z values for: (a) 1024-bit key; (b)
2048-bit key; (c) 3072-bit key.

rich body of literature about SCA on RSA implementations. Some of these
works [13,15,48,60,64] concentrated on RSA implementations with additive
blinding. In particular, Carbone et al. [13] conducted profiled attacks, which
is considered the most powerful SCA, on an RSA implementation with all afore-
mentioned blinding countermeasures on a CC EAL4+ certified IC. Zaid et al. [64]
improved the profiled attack by introducing a new ensembling loss function.

Since the introduction of template attacks [14], the SCA community has
considered profiled attacks as the most powerful side-channel attacks. Profiled
attacks have two stages, i.e., the profiling stage and the attack stage. In the
profiling stage, an attacker/evaluator uses a profiling device (and has control of
the key or at least knows the key) to model the leakage characteristic of the target
key-dependent sensitive data (exponent bits in this work) with the side-channel
traces of the target implementation. The built leakage characteristic models for
every possible target sensitive data value are the outcome of the profiling stage.
In the attack (also called online) stage, the victim device is used to measure the
side-channel traces of the target implementation. Afterwards, the attack traces
are matched with the previously built leakage characteristic models of the target
sensitive data (exponent bits in this work). For each attack trace, a probability
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is computed for each possible guessed key unit value (2 possible values for one
exponent bit) per each trace. Finally, for each hypothesised key unit value, the
probabilities for all the attack traces are combined using, e.g., the maximum
likelihood method to get a combined probability of that specific guessed key
unit value. The combined probability of each possible hypothesised key unit
value is compared to find the highest one. The hypothesised key unit value
with the highest probability is considered the recovered key unit. This attack
process is repeated for all key units to reveal the complete key. In this work, the
combination of probabilities is skipped because only single-trace attacks are in
scope due to the exponent blinding countermeasure.

We use deep learning profiled attacks (DL) to experimentally investigate
the efficiency of our proposed extended PKE attack in the additive exponent
blinding scenario. In this regard, the deep learning model is used to extract the
required partial MSBs or LSBs of blinded CRT exponents as the input to our
extended PKE attack to reveal the entire private key. We use a published MLP
(Multi-Layer Perceptron) [39] neural network model for our DL profiled attacks.
The structure of this model is very simple and shallow, but it showed pretty
good performance. We will describe the parameters-setting in Sect. 5.6.

Unlike the classical profiled attacks (e.g., template attacks), DL makes no
assumption of the leakage characteristic. It exploits the features (sample points
for side-channel traces) to classify the labels (sensitive data in the SCA context)
using neural networks (details followed in Subsect. 5.6). The training process
of neural networks (i.e., the profiling) aims to construct a classifier function
F (.) : R

d → R
|S|. The input trace l ∈ Rd is mapped to the output vector

p ∈ R|S| of scores via this function. During the training, the backpropagation
method [25,34] is used for each training batch to update the trainable parameters
of the neural network model aiming at minimizing the loss, which is computed
to quantize the classification error over each training batch. Then in the attack
stage, the built trained model (i.e., F (.) with all the final updated trainable
parameters) is used to classify each attack trace to obtain its probability vector
p[sg]. Afterwards, the final probability vector p[g] of each key candidate g is
calculated using all the attack traces. Note that, in this work only a single attack
trace is used to decide the final probability of each attacked exponent bit. The
key candidate g∗ = argmax p[g] is considered the right one.

5.2 Knowledge of POIs Assumption

There is an implicit assumption about the knowledge of the POIs to apply the
profiled attacks to CRT exponentiation implementations. That is, the attack-
ers/evaluators can determine the rough timing interval of each exponent bit
calculation in the side-channel traces. It is feasible for most of security products
in a grey-box testing context via SPA (Simple Power Analysis)/SEMA (Simple
Electromagnetic Analysis) and CPA (Correlation Power Analysis)/CEMA (Cor-
relation Electromagnetic Analysis) (or similar techniques) as shown in [13,21].
For instance, one can vary the key length, perform correlation analyses on the
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input and output data, make use of the design information such as the loca-
tion of the RSA co-processor in the glue logic area or temporarily switch off
some side-channel countermeasures like jitters. The additive exponent blinding
countermeasure will not make this harder, because it only adds more patterns
corresponding to exponent bit calculations in the side-channel traces. If the pat-
terns of one exponent bit calculation without exponent blinding can be identified
in a side-channel trace, it is the same to identify the exponent bit calculation
patterns given the presence of an additive exponent blinding countermeasure.

5.3 Metrics

We use the most common machine learning metric accuracy [25] to monitor
and evaluate our deep learning profiled attacks. Its definition is the successful
classification rate obtained over a dataset. Accordingly, the training accuracy,
the validation accuracy and the test accuracy correspond to the reached suc-
cessful classification rates respectively over the training, the validation and the
test sets. The training and validation accuracy metrics are used to monitor the
performance of the neural network training, and we use the test accuracy to eval-
uate the trained model. The accuracy is suitable for our experiments because
we focus on the successful classification rate of each exponent bit, and we use
a balanced dataset (the number of profiling traces of each class is the same)
to avoid the potential deceptive impact of the accuracy metric. Concerning the
metrics used to train the neural networks, we use the Negative Log-Likelihood
(NLL) loss function [12] for DL profiled attacks. It is a loss function calculated
as − log y used in multi-class classification, where y is a prediction corresponding
to the ground-truth label after the softmax [25] activation function is applied.
The loss for a mini-batch is computed by taking the mean or sum of all items
in the batch. Because it is proved that minimizing the NLL loss is equivalent to
maximizing the Perceived Information [10,49] and thus minimizing the online
attack complexity, thanks to the recent work [41].

5.4 Montgomery Ladder Exponentiation Implementation

Our target is a Montgomery Ladder exponentiation CRT-RSA implementation
on a modern 45 nm secure microcontroller equipped with an RSA co-processor
running at 100MHz. This is a typical real-world target from a side-channel
attack viewpoint due to the implemented side-channel countermeasures, that is,
SPA/DPA-resistant atomic Montgomery Ladder exponentiation with additive
message and exponent blinding and multiplicative modulus blinding. Moreover,
the 32-bit CPU also has variable internal clock, random branch insertion, mem-
ory encryption and physical address scrambling countermeasures to enhance the
side-channel resistance.

Algorithm 1 illustrates the implemented left-to-right Montgomery Ladder
exponentiation [33]. It is a well-known and widely used SPA-resistant regular
exponentiation algorithm without using dummy operations to defeat SPA/SEMA
and safe-error attacks [63]. We view the n-bit private exponent as a binary vector
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d = (dn−1, ..., d0) (where d0 is the LSB). N is the modulus used for the exponen-
tiation, and C is the message to be decrypted using the private exponent.

Algorithm 1. Montgomery Ladder.
Require: C, N,d = (dn−1, ..., d0)
Ensure: M = Cd mod N
1: R0 ← 1
2: R1 ← C
3: for i = n − 1 downto 0 do
4: R¬di ← Rdi × R¬di mod N
5: Rdi ← Rdi × Rdi mod N

6: end for
7: return R0

5.5 EPKE Attack on SCA Partial Key Leakage Verification
Strategy

To represent a realistic scenario of EPKE attack on CRT using SCA partial key
leakage, we follow the verification strategy as below:

1. Determine the Montgomery Ladder exponentiation interval using the SPA
technique as discussed in Sect. 5.2.

2. Measure a set of 5,000 profiling traces focusing on the exponentiation interval
using a CRT key pair labelled as KProf0.

3. Randomly generate ten different CRT key pairs with 128-bit e values
(considering a 64-bit additive blinding factor used by the target CRT
implementation) to measure the attack traces for the MSB case, denote
those ten attack key pairs as KMSB1,KMSB2, ...,KMSB10. Similarly, for
the LSB case, randomly generate another ten different CRT key pairs
KLSB1,KLSB2, ...,KLSB10 with 107-bit e values to acquire the corresponding
attack traces.

4. Measure ten attack traces for each of those 20 attack keys.
5. Train the neural network model using the profiling traces to save the best

model with the highest test accuracy.
6. Perform the profiled attack on all the attack traces using the saved best

neural network model to recover the MSBs or LSBs of CRT exponents. More
precisely, recover 411 (= 1024+64−677, according to the sixth row in Table 1)
MSBs of d′

p and d′
q for each attack trace with KMSB1,KMSB2, ...,KMSB10.

Similarly, recover 441 (= 1024+64−647, according to the sixth row in Table 3)
LSBs of d′

p and d′
q for each attack trace with KLSB1,KLSB2, ...,KLSB10.

7. Conduct the EPKE attack using the recovered 411 MSBs of d′
p and d′

q to
disclose the full private key for KMSB1,KMSB2, ...,KMSB10 and verify the
required sub-exponential time. To this end, we benefit from the previously
mentioned combination of the recovered MSBs of d′

p from one attack trace
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and the recovered MSBs of d′
q from another attack trace. For each MSB attack

key KMSBi, we have 100 different combinations, using those combinations to
tolerate potential SCA errors. We do the same for the LSB attack keys. In
this case we need to verify the validity of the Coppersmith-type heuristic
assumption.

We acquired power consumption traces with a Lecroy WaveRunner 8254
oscilloscope at a sampling rate of 500 MS/s. For each exponentiation execution,
we triggered the oscilloscope at its end and recorded the processing of the entire
exponentiation. Each trace consists of 16,000,000 sample points. Each exponent
bit processing corresponds to two Montgomery modular multiplications as shown
in Algorithm 1, and it contains about 6,074 sample points illustrated in the full
version.

While we recorded the entire exponentiation for this experiment, it is worth
mentioning that an extra advantage of our EPKE attack is that the recovered
MSBs or LSBs of d′

p and the MSBs or LSBs of d′
q can come from different

observations of the partial key leakage. An attacker can, at his own convenience,
capture and combine the error-free MSBs or LSBs of d′

p from one observation of
the partial key leakage, and those of d′

q from another one, while the remaining
parts can be arbitrarily erroneous or not captured at all (i.e., only capture one-
third of the execution of one of the two CRT exponentiations).

5.6 Attack Results

We have implemented the DL profiled attacks in Python and PyTorch [46] ver-
sion 1.10.1 with an NVIDIA GTX 1080Ti GPU. We use the Adadelta opti-
mizer [65] and utilize the adaptive learning rate policy ReduceLROnPlateau to
gradually decrease the learning rate (with the default Adadelta optimizer initial
learning rate of 1.0) with a factor of 0.05 if the training stagnates. We use a batch
size of 512 and 100 as the number of epochs. All profiling and attack traces are
normalized using the StandardScalar function from the Scikit-learn [47] library
by removing the mean and scaling to unit variance. 20% of profiling traces com-
pose a validation set. A validation data set is crucial to DL performance because
it provides a way of instantly detecting over-fitting [26]. The DL attacks utilize
the trained model with the highest validation accuracy. As mentioned above, we
use the NLL loss for the model training. Table 4 summarizes the details of the
used DL model and the corresponding hyperparameters.

We first train the model using the profiling traces to save the best model
based on the highest validation accuracy depicted in Fig. 4, in which the best
model corresponds to a validation accuracy of 100%.

The saved best model is then used to retrieve the 411 (resp., 441) MSBs
(resp., LSBs) of d′

p and d′
q for all the 10 MSB-case (resp., LSB-case) attack

traces with attack key KMSBi (resp., KLSBi). For each attack key, there are
100 combinations of recovered MSBs (resp., LSBs) of d′

p from one attack trace
and recovered MSBs (resp., LSBs) of d′

q from another attack trace. We conduct
the EPKE attacks using those combinations to recover the prime factor p as
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Table 4. MLP model details

MLP

nb_epoch = 100
batch_size_training = 512

Dense(50, activation="relu", input_shape=(nb_samples,))
BatchNormalization()
Dense(100, activation="relu")
BatchNormalization()
Dense(2, activation="softmax")
compile(loss=’categorical-crossentropy’, optimizer=’adadelta’, metrics=[’accuracy’])

learning_rate_policy = ReduceLROnPlateau(optimizer, ’min’, factor=0.05, verbose=True)

Fig. 4. Training and validation accuracy.

described in Sect. 3.4. The second column of Tables 5 and 6 presents the num-
ber of successful recovery of the prime factor out of 100 combinations for each
attack key. The last three (resp., four) columns indicate the time cost and lattice
dimensions of the two-step EPKE attack on the MSB (resp., LSB) cases. In the
third column of Table 5, we present the average factoring time to compute k′

and the corresponding minimum and maximum time (in the brackets).
The results further confirm the effectiveness of our EPKE attack in a real-

istic context, that is, disclosing a fraction of blinded CRT exponents via SCA
followed by an EPKE attack to reveal the entire private key. In addition, the
SCA experiments show that the proposed EPKE attack can tolerate slight SCA
errors as demonstrated by our proposed verification strategy, i.e., combining the
recovered error-free partial MSBs or LSBs of d′

p from one trace and MSBs or
LSBs of d′

q from another one. When considering real-world CRT implementa-
tions, SCA attacks will often result in errors, which is why it is essential for an
attacker/evaluator to be able to apply (E)PKE attacks.
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Table 5. Summary of the real SCA data EPKE experiments - MSB case

Attack Key Success Nr. Step 1a Factoring time Step 2 Lattice Dim. LLL time

KMSB1 26 110 s ([0.93 s, 599.7 s]) 21 6 s

KMSB2 35 90 s ([0.5 s, 1379.7 s]) 21 6 s

KMSB3 15 176 s ([1.0 s, 1817.7 s]) 21 6 s

KMSB4 3 10 s ([6.1 s, 16.4 s]) 21 6 s

KMSB5 9 202 s ([1.5 s, 1211.8 s]) 21 6 s

KMSB6 4 251 s ([59.7 s, 477.9 s]) 21 6 s

KMSB7 4 65 s ([2.1 s, 235.7 s]) 21 6 s

KMSB8 4 212 s ([1.6 s, 775.2 s]) 21 6 s

KMSB9 4 969 s ([764.4 s, 1373.7 s]) 21 6 s

KMSB10 12 21 s ([2.6 s, 60.7 s]) 21 6 s

Table 6. Summary of the real SCA data EPKE experiments - LSB case

Attack Key Success Nr. Step 1c Lattice Dim. LLL time Step 2 Lattice Dim. LLL time

KLSB1 6 121 388 s 21 2 s

KLSB2 2 121 404 s 21 2 s

KLSB3 4 121 407 s 21 3 s

KLSB4 3 121 421 s 21 3 s

KLSB5 8 121 410 s 21 3 s

KLSB6 5 121 407 s 21 3 s

KLSB7 9 121 399 s 21 3 s

KLSB8 12 121 405 s 21 3 s

KLSB9 16 121 442 s 21 3 s

KLSB10 9 121 433 s 21 3 s

6 Conclusion and Future Work

Many existing PKE works focused on implementations of RSA and its CRT
variant without exponent blinding countermeasures. The state-of-the-art PKE
attack on CRT without exponent blinding [43] can recover the whole CRT private
key with only a third MSBs or LSBs of CRT exponents when the public exponent
e ≈ N

1
12 . In this work, we showed that it can be extended to CRT implementa-

tions with additive exponent blinding, which is the most widely deployed expo-
nent blinding countermeasure in real-world products. We proposed an extended
PKE attack to recover the full CRT private key using partial disclosed MSBs
or LSBs of additively blinded CRT exponents. It follows a two-step approach,
first computing the key-dependent constant k′ and then factoring the N using
partial MSBs or LSBs of blinded CRT exponents d′

p and d′
q.

The mathematical proof and time-complexity analyses suggest that a third
MSBs or LSBs of blinded CRT exponents d′

p and d′
q are enough to recover the
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entire CRT private key: in polynomial time based on the standard Coppersmith-
type heuristic assumption in the LSB case when e ≈ N

1
12−γ , as well as in sub-

exponential (yet practically feasible) time or in probabilistic polynomial time
under a heuristic assumption in the MSB case when e ≈ N

1
12− 2

3γ . Under different
settings of typical key size and exponent blinding factor length, our extensive
experiments verify the validity of the Coppersmith-type heuristic for the LSB
case, as well as the affordability of the required sub-exponential time and the
heuristic assumption for the MSB case. More precisely, in practice, using an
average PC, the required sub-exponential time is mostly in seconds and minutes,
the worst-case occasionally observed is less than one and a half hours.

Moreover, as an application of the proposed EPKE attack in real life, utilizing
real SCA partial key leakage of a real-world SPA/DPA-resistant Montgomery
Ladder CRT implementation on a 45 nm secure microcontroller with an RSA
co-processor, our SCA experimental results suggest that the EPKE attack can
tolerate slight SCA errors of the recovered MSBs or LSBs of the blinded CRT
exponents. Such errors are expected to occur in a realistic scenario, especially
when only a single attack trace is available. It sheds some light on the error-
tolerant potential of the EPKE attack, and points out a possible future direction
of our work, i.e., how to improve the EPKE to tolerate more generic SCA errors
of the recovered MSBs or LSBs, e.g., in the binary symmetric model where
every recovered exponent bit will be “flipped” with a crossover probability (i.e.,
the Bernoulli distribution).
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Abstract. Cube attacks exploit the algebraic properties of symmetric
ciphers by recovering a special polynomial, the superpoly, and subse-
quently the secret key. When the algebraic normal forms of the cor-
responding Boolean functions are not available, the division property
based approach allows to recover the exact superpoly in a clever way.
However, the computational cost to recover the superpoly becomes pro-
hibitive as the number of rounds of the cipher increases. For example,
the nested monomial predictions (NMP) proposed at ASIACRYPT 2021
stuck at round 845 for Trivium. To alleviate the bottleneck of the NMP
technique, i.e., the unsolvable model due to the excessive number of
monomial trails, we shift our focus to the so-called valuable terms of a
specific middle round that contribute to the superpoly. Two new tech-
niques are introduced, namely, Non-zero Bit-based Division Property
(NBDP) and Core Monomial Prediction (CMP), both of which result in
a simpler MILP model compared to the MILP model of MP. It can be
shown that the CMP technique offers a substantial improvement over the
monomial prediction technique in terms of computational complexity of
recovering valuable terms. Combining the divide-and-conquer strategy
with these two new techniques, we catch the valuable terms more effec-
tively and thus avoid wasting computational resources on intermediate
terms contributing nothing to the superpoly. As an illustration of the
power of our techniques, we apply our framework to Trivium, Grain-
128AEAD, Kreyvium and Acorn. As a result, the computational cost
of earlier attacks can be significantly reduced and the exact ANFs of
the superpolies for 846-, 847- and 848-round Trivium, 192-round Grain-
128AEAD, 895-round Kreyvium and 776-round Acorn can be recovered
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in practical time, even though the superpoly of 848-round Trivium
contains over 500 million terms; this corresponds to respectively 3, 1, 1
and 1 rounds more than the previous best results. Moreover, by inves-
tigating the internal properties of Möbius transformation, we show how
to perform key recovery using superpolies involving full key bits, which
leads to the best key recovery attacks on the targeted ciphers.

Keywords: Cube attack · Superpoly · Trivium · Grain-128AEAD ·
Acorn · Kreyvium · Division property · Monomial prediction

1 Introduction

The cube attack, proposed by Dinur and Shamir at EUROCRYPT 2009 [8], is
one of the most powerful cryptanalytic techniques against symmetric ciphers.
Typically, any output bit of a cipher can be regarded as a polynomial of the
public input x = (x0, x1, . . . , xn−1) and the secret input k = (k0, k1, . . . , km−1),
denoted by f(x,k). For a chosen term xu =

∏
ui=1 xi,u,x ∈ F

n
2 , f(x,k) can be

uniquely expressed as

f(x,k) = p(x[ū],k) · xu + q(x,k) ,

where p(x[ū],k) is a Boolean function of k, x[ū] = {xi : ui = 0} and each term in
q(x,k) misses at least one variable from {xi : ui = 1}. The polynomial p(x[ū],k)
is called the superpoly of the cube term xu . After assigning a static value to k
and x[ū], the value of p(x[ū],k) can be computed by summing f(x,k) over a
structure called cube, denoted as Cu , composed of all possible 0/1 combinations
of {xi : ui = 1}.

To mount a cube attack, one first recovers the superpoly in an offline phase.
Then, the value of the superpoly is obtained by querying the encryption oracle
and computing the summation. From the equation between the superpoly and
its value, information of the secret key can be revealed. Therefore, the superpoly
recovery is a central step in the cube attack.

Traditional cube attacks [8,9,20,35] regard ciphers as black boxes so the
superpolies are recovered experimentally. Only linear or quadratic superpolies
are applicable. In [25], Todo et al. introduced cube attacks based on the Conven-
tional Bit-based Division Property (CBDP). New methods based on CBDP [27]
were proposed to efficiently identify secret variables that are not involved in the
superpoly. After removing these uninvolved key bits and collecting the remain-
ing key bits into a set J , the truth table of the superpoly can be recovered with
time complexity 2|I|+|J|, where the set I = {i : ui = 1} is called cube indices.
In [28], Wang et al. improved the precision of CBDP by considering cancellation
characteristics of constant 1 bits, thus further lowering the complexity.

Exact Superpoly Recovery. Although the CBDP never produces a false pos-
itive error [17], it cannot accurately predict the existence of a monomial in the
superpoly. A substantial amount of works have been carried out to get around this
point. At Asiacrypt 2019, Wang et al. [29] managed to recover the exact super-
poly for the first time with the pruning technique combined with the three-subset



Stretching Cube Attacks: Massive Superpolies 539

bit-based division property. However, the value of this technique is limited as it
requires the assumption that almost all elements in the so-called 1-subset can
be pruned. In [30], Ye and Tian introduced the recursively-expressing method,
which recursively splits the output bits into intermediate terms of smaller rounds
and filters out these useless terms that contribute nothing to the superpoly. As
a result, several superpolies recovered in [28] are proved to degenerate to con-
stants. In [11,12], Hao et al. proposed the three-subset division property without
unknown subsets (3SDPwoU) to recover the exact superpolies from the perspec-
tive of counting the number of three-subset trails. In [17], Hu et al. established
the equivalence between monomial prediction and 3SDPwoU from the viewpoint
of monomial propagations. In [36], Ye and Tian also developed a pure algebraic
method to recover the exact superpoly. However, as the number of rounds of the
cipher increases, such useful cubes are hard to find. Last year, Hu el al. embedded
the monomial prediction technique into a nested framework, which allows them to
recover massive superpolies [16] that contain almost 20 million terms.

Nested Monomial Predictions. In terms of structure, the nested monomial
prediction [16] consists of two components, namely the coefficient solver and
the term expander. Given a cube term xu , the coefficient solver is designed
to compute the superpoly of xu for a term of the current round, and the term
expander is responsible for expressing unsolved terms as terms of a deeper round.
At first, from top to bottom, the target output bit is expressed as a polynomial
of the state bits of an intermediate round, then by iteratively calling the coeffi-
cient solver and expanding unsolved terms into terms of deeper rounds, the final
superpoly can be recovered.

As mentioned, the cube attack is one of the powerful tools to evaluate the
security of stream ciphers. It is important to explore its limits by recovering
superpolies for as many rounds as possible. While the nested monomial pre-
dictions is efficient for massive superpolies (e.g., it can recover a superpoly for
845-round Trivium that contains 19,967,968 terms), it has been stuck at 845
rounds of Trivium. In order to recover superpolies for more rounds, novel tech-
niques are required.

Contributions. This paper provides new efficient methods to recover super-
polies for more initialization rounds of stream ciphers such as Trivium [5],
Grain-128AEAD [15], Kreyvium [6] and the authenticated encryption algorithm
Acorn [31].

Recall that the framework of nested monomial predictions consists of two
components, i.e., the coefficient solver and the term expander; we design two
algorithms to greatly improve the efficiency of both of them.

– Two-step strategy for the coefficient solver. Unlike the monomial prediction,
our coefficient solver takes two steps to compute the superpoly. During the
first stage, the intermediate monomials related to the superpoly are deter-
mined utilizing a new technique called core monomial prediction. Next, by
applying the monomial prediction to these intermediate monomials and col-
lecting the results, the final superpoly can be recovered quickly.



540 J. He et al.

Table 1. Verification and comparison of superpolies for 843-, 844- and 845-round
Trivium† from [16].

I Round Status TimeCost ([16]) TimeCost (ours)

I0 843 Verified(�) Less than 2 weeks 2 h

I1 843 Verified(�) 4 h

I2 843 Verified(�) 1 h

I3 843 Verified(�) 1.5 h

I4 843 Verified(�) 1 day and 17 h

I2 844 Verified(�) 17 h 5 h

I3 844 Verified(�) 6 h 2.5 h

I2 845 Verified(�) about 16 days 19.5 h

I3 845 Verified(�) 4 days and 9 h 8.5 h

†: The time consumption of the superpoly recovery of 843-, 844-
round Trivium is stated as ‘less than two weeks’ in [16]. The
concrete time cost for 844- and 845-roundTriviumwas obtained
by rerunning the code provided by [16] on our platform.

– Fast-descent algorithm for the term expander. Instead of expressing the cur-
rent terms as a polynomial of indistinguishable terms of a deeper round and
then testing them one by one, our term expander uses Gurobi’s callback
function to automatically filter out the useless terms internally during each
expansion, which makes the number of rounds drop faster and reduces the
time spent on useless terms.

Our new framework offers substantial efficiency improvements in recovering
superpolies compared to the nested monomial prediction. We verified superpolies
for Trivium recovered in [16]. As a result, our framework allows to recover
superpolies in a few hours rather than in weeks. The comparison is illustrated
in Table 1.

More importantly, our framework is able to recover superpolies for more
initialization rounds of high profile symmetric-key ciphers including Trivium
(ISO/IEC standard [3,5]), Grain-128AEAD (a member of the ten finalist candi-
dates of the NIST LWC standardization process [15]), Kreyvium (designed for
Fully Homomorphic Encryption [6]) and Acorn (a member of the final portfolio
of the CAESAR competition for Lightweight applications [31]). For Trivium,
we are the first to obtain superpolies for up to 848-round Trivium. We also
recovered the superpolies of 192-round Grain-128AEAD, 895-round Kreyvium
and 776-round Acorn, all penetrating one more round than the previous best
results. By investigating the internal properties of Möbius transformation, we
propose a novel method to perform key recovery inside Möbius transformation.
The summary of our cube attack results and the previous best results are pro-
vided in Table 2.

All source codes for recovering the superpolies in this paper are provided in
the public git repository https://github.com/viocently/ekignrb9lc.git.

https://github.com/viocently/ekignrb9lc.git
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Table 2. Summary of our cube attack results and the previous best results. #Cube
means the number of cubes whose superpolies are recovered.

Cipher Rounds #Cube Cube size Time complexity Attack types Reference

Trivium ≤806 – – Practical key recovery [8,9,20,23,37]

808 37 39–41 Practical Key recovery [23]

≤844 – – 275 ∼ 279.6 Key recovery [11,12,16,17,19,23]

[9,26,29,35,37,38]

845 2 54–55 278 Key recovery [16]

846 6 51–54 279 Key recovery Sect. 6.1

847 2 52–53 279 Key recovery Sect. 6.1

848 1 52 279 Key recovery Sect. 6.1

Grain‡ 169 – – Practical Condit. Diff. [18]

– – – Practical State recovery [7]

≤190 – – 2123 ∼ 2129 Key recovery [11,12,25,26,28]

191 2 95–96 2127 Key recovery [16]

192 1 94 2127 Key recovery Sect. 6.2

Kreyvium ≤893 – – 2119 ∼ 2127 Key recovery [10–12,23,26,28]

894 1 119 2127 Key recovery [16]

895 1 120 2127 Key recovery Sect. 6.3

Acorn ≤774 – – 2127 Key recovery [10,11,26,28]

775 6 127 2127 Distinguisher [34]

775 5 126 2126 Distinguisher [33]

775 1 126 2127 Key recovery [33]

776 2 126 2127 Key recovery Sect. 6.4

‡: Grain-128a or Grain-128AEAD.

2 Division Property and Monomial Prediction

2.1 Notations and Definitions

We use bold italic lowercase letters to represent bit vectors. For an n-bit vector
u = (u0, · · · , un−1) ∈ F

n
2 , its complementary vector is denoted by ū, where

ui ⊕ ūi = 1 for 0 ≤ i < n. The Hamming weight of u is wt(u) = |{i : ui = 1}|.
The concatenation of u0 and u1 is denoted by u0||u1. For u,x ∈ F

n
2 , x[u] denotes

a sub-vector of x with respect to u as x[u] = (xi0 , xi1 , . . . , xiwt(u )−1) ∈ F
wt(u)
2 ,

where ij ∈ {0 ≤ i ≤ n − 1 : ui = 1} and (i0, . . . , iwt(u)−1) is arranged from the
least to the greatest. For any n-bit vectors u and u′, we define u � u′ if ui ≥ u′

i

for all i. Similarly, we define u � u′ if ui ≤ u′
i for all i. Bold italic lowercase

letters with superscript are used to represent the bitvector in a certain round.
Particularly, u(i) represents a bitvector in round i. We use 0n or 1n to represent
an all-zeros or all-ones vector of length n.
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Blackboard bold uppercase letters (e.g. S, K, U, . . .) are used to represent sets
of bit vectors. In the propagation of some algebraic properties such as CBDP,
the set generated in the i-th round is denoted as S

(i).

Boolean Function. Let f : F
n
2 → F2 be a Boolean function whose algebraic

normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕

u∈F
n
2

au

n−1∏

i=0

xui
i ,

where au ∈ F2, and

xu = πu (x) =

n−1∏

i=0

xui
i with xui

i =

{
xi, if ui = 1 ,

1, if ui = 0 ,

is called a monomial. If the coefficient of xu in f is 1, i.e., xu is contained by f ,
then we denote it by xu → f . Otherwise, we denote the absence of xu in f by
xu

� f . In this work, we will use xu and πu (x) interchangeably to avoid using

the awkward notation x(i)u
(j)

when both x and u have superscripts.

Vectorial Boolean Function. Let f : F
m
2 → F

n
2 be a vectorial Boolean func-

tion with y = (y0, y1, . . . , ym−1) = f(x) = (f0(x), f1(x), . . . , fn−1(x)). For
v ∈ F

n
2 , we use yv to denote the product of some coordinates of y:

yv =
m−1∏

i=0

yvi
i =

m−1∏

i=0

(fi(x))vi ,

which is a Boolean function in x.

2.2 Conventional Bit-Based Division Property

The word-based division property [24] was proposed by Todo originally as a
generalization of integral attack. Subsequently, by shifting the propagation of
the division property to the bit level, Todo and Morii [27] introduced the bit-
based division property (CBDP).

Definition 1 (Conventional bit-based division property (CBDP) [27]).
Let X be a multiset whose elements take a value of F

m
2 and k ∈ F

m
2 . When the

multiset has the division property D1m

K
, the following conditions are fulfilled:

⊕

x∈X

xu =
{

unknown, if there exists k ∈ K s.t. u � k,
0, otherwise.

In [32], Xiang et al. introduced the mixed integer linear programming (MILP)
method to search for integral distinguishers of block ciphers based on CBDP.
They first introduced the division trail as follows.
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Definition 2 (Division Trail of CBDP [32]). Let DK(i) be the division prop-
erty of the input for the ith round function. Consider the propagation of the
division property {k} = K

(0) → K
(1) → K

(2) → · · · → K
(r). For any bitvec-

tor k(i+1) ∈ K
(i+1), there must exist a bitvector k(i) ∈ K

(i+1) such that k(i)

can propagate to k(i+1) by the propagation rules of CBDP. Furthermore, for
(k(0),k(1), ...,k(r)) ∈ (K(0)×K

(1)×· · ·×K
(r)), we call (k(0) → k(1) → · · · → k(r))

an r-round division trial if k(i) can propagate to k(i+1) for all i ∈ {0, 1, · · · , r−1}.
For a stream cipher, three fundamental operations, i.e., COPY, AND, and XOR
are sufficient to cover all division trails. Xiang et al. showed how to model
these three operations by inequalities. We present their MILP models in [13,
Sup.Mat. B].

In our work, we use k(0) Kf� k(r) to denote the existence of at least one division
trail from k(0) to k(r) through the function f . The set of all division trails from

k(0) to k(r) is denoted as k(0)
Kf

�� k(r), whose size is denoted by |k(0)
Kf

�� k(r)|.
When f is not explicitly given or can be inferred from the context, we use

k(0) K� k(r) and k(0) K

�� k(r) for simplicity.

2.3 Monomial Prediction

Let f : F
n0
2 → F

nr
2 be a composite vectorial Boolean function built by composi-

tion from a sequence of vectorial Boolean functions f (i) : F
ni
2 → F

ni+1
2 , 0 ≤ i ≤

r − 1 whose ANFs are known, i.e.,

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0). (1)

Let x(i) ∈ F
ni
2 and x(i+1) ∈ F

ni+1
2 be the input and output variables of f (i)

respectively. We call an i-round monomial πu(i)(x(i)) (1 ≤ i ≤ r − 1) an inter-
mediate monomial or an intermediate term1. Starting from a monomial of x(0),
say πu(0)(x(0)), all monomials of x(1) satisfying πu(0)(x(0)) → πu(1)(x(1)) can
be derived; for every such πu(1)(x(1)), we then find all πu(2)(x(2)) satisfying
πu(1)(x(1)) → πu(2)(x(2)); such forward expansions continue until we arrive at
the monomials of x(r). Each transition from πu(0)(x(0)) to πu(r)(x(r)) denoted
by

πu(0)(x(0)) → πu(1)(x(1)) → · · · → πu(r)(x(r)).

is called a monomial trail [17], denoted by πu(0)(x(0)) � πu(r)(x(r)), which is
also used to indicate the existence of at least one monomial trail from πu(0)(x(0))
to πu(r)(x(r)). All the trails from πu(0)(x(0)) to πu(r)(x(r)) are denoted by
πu(0)(x(0)) �� πu(r)(x(r)), which is the set of all trails. Whether πu(0)(x(0)) →
πu(r)(x(r)) is determined by the size of πu(0)(x(0)) �� πu(r)(x(r)), represented as
|πu(0)(x(0)) �� πu(r)(x(r))|. If there is no trail from πu(0)(x(0)) to πu(r)(x(r)), we
say πu(0)(x(0)) 
� πu(r)(x(r)) and accordingly |πu(0)(x(0)) �� πu(r)(x(r))| = 0.

1 In this paper, ‘monomial’ and ‘term’ have the same meaning.
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Theorem 1 (Integrated from [11,12,14,17]). Let f = f (r−1) ◦ f (r−2) ◦ · · · ◦
f (0) defined as above. πu(0)(x(0)) → πu(r)(x(r)) if and only if

|πu(0)(x(0)) �� πu(r)(x(r))| ≡ 1 (mod 2).

Propagation Rules of the Monomial Prediction. Each symmetric cipher
can be decomposed into a sequence of the basic operations XOR, AND and
COPY, hence it is sufficient to give propagation rules of the monomial prediction
for these basic operations. To model the propagation of the monomial prediction
for a vectorial Boolean function, a common method is to list all the possible
(input, output) tuples according to the definition of the monomial prediction [17].
These tuples can be transformed into a set of linear inequalities [4,21,22], which
are suitable for MILP modeling. The concrete propagation rules and models of
the monomial prediction are provided in [13, Sup.Mat. B].

Gurobi’s PoolSearchMode and Callback Functions. In our work, we
choose the Gurobi solver [1] as our MILP tool. Since our coefficient solver fol-
lows the idea of counting propagation trails similar to [11,12,17], we turn on
Gurobi’s PoolSearchMode with M.PoolSearchMode ← 1 to extract all possible
solutions of a model. By adding a lazy constraint to the MILP model from within
a callback function, Gurobi allows users to cut off a feasible solution during the
search. We use M.LazyConstraints ← 1 to turn on lazy constraints. For more on
Gurobi’s callback functions and PoolSearchMode, readers are requested to refer
to the Gurobi manual [2]. We would like to mention that the callback function
is also used in the code provided by [11,12].

2.4 Cube Attack

In the context of the cube attack, the output bit of a symmetric cipher is typically
regarded as a parameterized Boolean function f : F

n+m
2 → F2 whose inputs are

the public variables x ∈ F
n
2 and the secret ones k ∈ F

m
2 . For a constant bitvector

u ∈ F
n
2 indexed by I = {0 ≤ i ≤ n − 1 : ui = 1} ⊆ {0, 1, . . . , n − 1}, the ANF of

f(x,k) can be uniquely represented as

f(x,k) = p(x[ū],k) · xu + q(x,k),

where each term of q(x,k) misses at least one variable from {xi : ui = 1}.
xu is called a cube term, and Cu (or CI) is called a cube, which is the set
{x ∈ F

n
2 : x � u}. The sum of f over all values of the cube Cu is

⊕

x∈Cu

f(x,k) =
⊕

x∈Cu

(p(x[ū],k) · xu ⊕ q(x,k)) = p(x[ū],k),

which is exactly the coefficient of xu in f(x,k), denoted by Coe (f(x,k),xu ) in
our work. If we assign a fixed value to x[ū], then Coe (f(x,k),xu ) becomes a
Boolean function of k.
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As mentioned, the superpoly recovery is of significant importance in the
cube attack. If the recovered superpoly is constant 0 or 1, we actually find a
distinguisher for the cipher. If the superpoly is a Boolean function of k, then key
bits can be extracted. In particular, a balanced superpoly always contains one
bit of information on average. The remaining key bits can be recovered through
exhaustive search.

2.5 Superpoly Recovery with the Monomial Prediction/3SDPwoU

To the best of our knowledge, monomial prediction/3DSPwoU [11,12,17] can
reach the perfect accuracy in determining the existence of a certain monomial
in f . To recover the superpoly of a cube term xu with the monomial predic-
tion/3DSPwoU, the initial state variables of the MILP model are divided into
three parts: the public input (plaintext, IV or tweak), the secret input (the key
bits) and the constant input.

The public input variables are constrained to be equal to u. The secret input
variables are left as free variables without any constraints. For the constant 0
bits, we constrain the corresponding MILP variables to 0, while for the constant 1
bits, we let their variables be free. We then model the propagation of monomial
trails to f . Each solution of the model is a valid monomial trail of the form
kw xu � f . By collecting monomials kw xu occurring an odd number of times
in all solutions and adding them, we can obtain the superpoly of xu as

Coe (f, xu ) =
⊕

|kw xu ��f |≡1 (mod 2)

kw .

In [17], Hu et al. observed that for the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0),

if πu(0)(x(0)) � f , then for 0 < i < r,

|πu(0)(x(0)) �� f | ≡
∑

π
u (r−i) (x(r−i))→f

∣
∣
∣πu(0)(x(0)) �� πu(r−i)(x(r−i))

∣
∣
∣ (mod 2).

Instead of computing |πu(0)(x(0)) �� f | for a large r, we can compute
|πu(0)(x(0)) �� πu(r−i)(x(r−i))| for all πu(r−i)(x(r−i)) satisfying πu(r−i)(x(r−i)) →
f with a lower computational difficulty. In practice, such a divide-and-conquer
strategy resulted in a significant speed-up of the search.

3 Nested Monomial Predictions (NMP)

At Asiacrypt 2021, Hu et al. proposed a nested framework, called Nested Mono-
mial Predictions, to recover the superpoly of Trivium up to 845 rounds. In
this section, we briefly introduce the workflow of this framework and divide the
structure of this framework into two parts, namely the coefficient solver and the
term expander.



546 J. He et al.

3.1 The Workflow

Given a parameterized Boolean function which consists of a sequence of simple
vectorial Boolean functions as

f(x,k) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x,k),

let the output of f (i) be s(i+1). Assume we want to compute Coe (f,xu ). The
nested monomial predictions works as follows:

1. Initialize a variable rl = r and a set S
(rl)
u = {f}.

2. Choose rn such that 0 < rn < rl according to some criterion.
3. Express each term in S

(rl)
u as a polynomial of s(rn) using the monomial pre-

diction technique and save the terms of this polynomial in a multiset T
(rn).

4. Count the number of occurrences for each element in T
(rn) and add the ele-

ments occurring an odd number of times to a set S
(rn).

5. For each term πt(rn)(s(rn)) ∈ S
(rn), construct a MILP model of the monomial

prediction and invoke Gurobi to solve it. If the model has solutions and is
successfully solved, then this term is partitioned into S

(rn)
p and we can com-

pute Coe
(
πt(rn)(s(rn)),xu

)
, which is collected as a part of Coe (f,xu ); if the

model has no solutions, then this term is partitioned into S
(rn)
0 and discarded;

if the model isn’t solved in limited time, we partition this term into the set
S
(rn)
u .

6. If the set S
(rn)
u is not empty, we update the variable rl = rn and regard the set

S
(rn)
u as S

(rl)
u , then jump to step 2. Otherwise we have successfully compute

Coe (f,xu ).

In step 2 of NMP, rn is chosen as the round that makes the size of T
(rn) larger

than N for the first time, where N can take the value 10 000 or 100 000. Interested
readers can refer to [16] for more details.

3.2 The Structure of the Nested Monomial Prediction

In terms of the structure, the nested monomial prediction consists of two com-
ponents. In Sect. 3.1, step 3 and 4 are responsible for expanding terms in S

(rl)
u

into terms of a deeper round rn represented by S
(rn), while the step 5 attempts

to compute Coe
(
πt(rn)(s(rn)),xu

)
for each term πt(rn)(s(rn)) in S

(rn). This leads
to the following two concepts.

Term Expander. For an algorithm H of a specific cryptographic algorithm X, if
given the last round rl, the set S

(rl)
u containing terms of round rl, the next round

rn and other auxiliary parameters as input, the algorithm H can always output
all πt(rn)(s(rn))s satisfying

∑
π

t (rl)
(s(rl))∈S

(rl)
u

|πt(rn)(s(rn)) �� πt(rl)(s(rl))| ≡ 1

(mod 2), then we say H is a term expander of X.

Coefficient Solver. For an algorithm H of a specific cryptographic algorithm
X, if given the last round rl, a term πt(rl)(s(rl)) of round rl, u indicating the
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Algorithm 1: Generic structure of the nested monomial predictions [16]

1 Procedure SuperpolyRecFramework(the target output bit f(x, k), the target round r, u
indicating the cube term):

2 Prepare a polynomial p = 0

3 Initialize rl = r, S
(rl)
u = {f}

4 while S
(rl)
u �= ∅ do

5 rn = ChooseRiX(S
(rl)
u , rl, ...)

6 S
(rn) = TermExpanderX(S

(rl)
u , rl, rn, ...)

7 for π
t (rn) (s

(rn)) ∈ S
(rn) do

8 τ = ChooseTiX(rn)

9 (status, p(rn)) = CofSolverX(π
t (rn) (s

(rn)), rn, u , τ, ...)

10 if status = SOLVED then

11 p = p ⊕ p(rn)

12 else if status = TIMEOUT then

13 Insert π
t (rn) (s

(rn)) into S
(rn)
u

14 rl ← rn

15 S
(rl)
u ← S

(rn)
u

16 return p

cube term xu (or other parameters that can identify the cube), the time limit
τ and other auxiliary parameters as input, the algorithm H can always output
either Coe

(
πt(rl)(s(rl)),xu

)
, no solution or timeout, then we say H is a coefficient

solver of X.
In this paper, we denote the term expander and the coefficient solver by

TermExpanderX(S(rl)
u , rl, rn, ...) and CofSolverX(πt(rl)(s(rl)), rl,u, τ, ...) respec-

tively, where we use ... to represent arbitrary aux-
iliary parameters. TermExpanderX returns a set containing all πt(rn)(s(rn))s sat-
isfying

∑
π

t (rl)
(s(rl))∈S

(rl)
u

|πt(rn)(s(rn)) �� πt(rl)(s(rl))| ≡ 1 (mod 2). CofSolverX

returns a 2-tuple (status, result), where status takes SOLVED, NOSOLUTION
or TIMEOUT and result represents Coe

(
πt(rl)(s(rl)),xu

)
only when status =

SOLVED. Using these notions, the generic structure of the nested monomial
predictions can be described in Algorithm 1, where ChooseRiX and ChooseTiX
represent the process of selecting rn and τ .

Following the generic structure, the nested monomial predictions utilizes the
monomial prediction technique to build the term expander and the coefficient
solver. As a result, the superpoly recovery of the target output bit is divided into
superpoly recoveries of thousands of terms of fewer rounds, thereby reducing
the computational difficulty. Our work in this paper also follows the generic
structure, but with a more efficient term expander and coefficient solver.

4 New Coefficient Solver

4.1 Motivation

Although the monomial prediction technique can reach perfect accuracy in
detecting if kw xu → f , it requires counting the number of monomial trails.



548 J. He et al.

Such a task is impractical for a high number of rounds of a well-designed crypto-
graphic algorithms, as the number of monomial trails grows almost exponentially
with the number of rounds.

As mentioned in Sect. 2.5, the divide-and-conquer strategy can speed up the
search compared with counting the number of monomial trails directly. Inspired
by this, we construct a new coefficient solver that first divides the output bit of
the current round into terms of a quite deep round, then solve these terms using
the monomial prediction technique.

4.2 The Theory

For simplicity, we assume the term of the current round is πt(r)(s(r)) and we want
to compute Coe

(
πt(r)(s(r)),xu

)
with the coefficient solver. We divide πt(r)(s(r))

into terms of a reduced number rm < r of rounds. Naturally, we introduce the
concept of valuable terms to capture those terms in round rm that contribute to
Coe

(
πt(r)(s(r)),xu

)
.

Valuable Terms. According to the divide-and-conquer strategy, the monomial
trails of the form kw xu � πt(r)(s(r)) can be divided into monomial trails of the
form kw xu � πt(rm)(s(rm)) for each πt(rm)(s(rm)) satisfying πt(rm)(s(rm)) →
πt(r)(s(r)), e.g.,

|kw xu
�� πt(r) (s

(r))| ≡
∑

π
t (rm) (s

(rm))→π
t (r) (s

(r))

|kw xu
�� πt(rm) (s

(rm))| (mod 2). (2)

Note that if |kw xu
�� πt(rm)(s(rm))| = 0, πt(rm)(s(rm)) contributes nothing to

|kw xu
�� πt(r)(s(r))|. Therefore, to make it precise we rewrite the Eq. (2) as

|kw xu
�� πt(r) (s

(r))| ≡
∑

π
t (rm) (s

(rm))→π
t (r) (s

(r))

kw xu �π
t (rm) (s

(rm))

|kw xu
�� πt(rm) (s

(rm))| (mod 2). (3)

Terms satisfying (A) πt(rm)(s(rm)) → πt(r)(s(r)), (B) ∃kw such that kw xu �
πt(rm)(s(rm)) are called valuable terms of round rm, denoted by V T (rm). Usually
rm is chosen not too large, say 90 for Trivium. Once we have recovered all
V T (rm)s, we can compute Coe

(
πt(r)(s(r)),xu

)
easily by applying the monomial

prediction to compute Coe
(
V T (rm),xu

)
for each V T (rm). Briefly speaking, the

workflow of our coefficient solver is as follows:

1. Develop a method to recover V T (rm)s within the time limit τ . If it times out,
return TIMEOUT; else if no V T (rm) could be recovered, return NOSOLU-
TION; otherwise, if V T (rm)s are recovered successfully, go to step 2.

2. Apply the monomial prediction to each V T (rm) to compute Coe
(
V T (rm),xu

)
.

3. Sum all Coe
(
V T (rm),xu

)
s to compute Coe

(
πt(r)(s(r)),xu

)
and return

SOLVED.

How to Recover V T (rm). If a term πt(rm)(s(rm)) is a V T (rm), then two condi-
tions are necessary and sufficient, namely πt(rm)(s(rm)) → πt(r)(s(r)) (Condition
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A) and ∃kw s.t. kw xu � πt(rm)(s(rm)) (Condition B). We need to construct a
MILP model to describe these two conditions simultaneously.

At a first glance, both conditions can be described by the monomial predic-
tion with the following structure

rm rounds
︷ ︸︸ ︷

kw xu MP−−→ πt(rm)(s(rm)) =

r−rm rounds
︷ ︸︸ ︷

πt(rm)(s(rm)) MP−−→ πt(r)(s(r)) , (4)

where MP−−→ means the propagation is described according to the propagation
rules of MP. However, since we need to incorporate these two conditions into one
MILP model, such a structure is equivalent to computing Coe

(
πt(r)(s(r)),xu

)
by

the monomial prediction directly. We do not gain efficiency improvement from
valuable terms.

Note that when describing Condition B, the monomial prediction is so accu-
rate that we can even determine whether ∃kw s.t. kw xu → πt(rm)(s(rm)). There-
fore, a natural idea is to sacrifice some accuracy in exchange for efficiency. In
next section, we provide two variants of bit-based division properties for efficient
descriptions of Condition B. The first variant is called non-zero bit-based divi-
sion property (NBDP): it simply excludes the propagation of CBDP related to
constant 0 bits. The second is called the core monomial prediction (recall that
the monomial prediction is an explanation of division properties): it ignores the
role of constant bits and attempts to establish a set of rules to characterize those
non-constant bits. Both variants play important roles in our new algorithms for
recovering superpolies.

5 Two Variants of the Division Property for Describing
Condition B

In this section, we present two techniques to describe Condition B under the
assumption that non-cube public variables are set to 0. For convenience, we
always consider an rm-round cryptographic function f : F

n0
2 → F

n1
2 → · · · →

F
nrm
2 (n0 = n + m) with x,k as input and s(i+1) as output of the i-th round

(0 < i ≤ rm − 1), where x ∈ F
n
2 and k ∈ F

m
2 denote the public and secret

variables, respectively. Let the cube term be xu . The output term of round rm is
represented as πt(rm)(s(rm)). Correspondingly, Condition B should be expressed
as ∃kw s.t. kw xu � πt(rm)(s(rm)).

Flag Technique. Similar to [28], we propose a flag technique to classify bits.
In our work, we treat k as non-zero constants and set x[ū] to 0, then each bit
involved in the round function of f can be represented as an ANF of k and x[u].
For each involved bit b, we assign it an additional flag b.F ∈ {1c, 0c, δ}. 0c means
b is constant 0; δ means the ANF of b involves x[u], i.e., it contains a monomial
associated with at least one cube variable; 1c means b is non-zero and its ANF
doesn’t involve x[u]. Since the ANF will become intractable as the number of
rounds increases, these flags are precomputed according to COPY, XOR and
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AND without considering the effect of cancellation characteristics. Note that the
computation of our flags does not require the help of MILP models, and the flags
in [28] can be handled in the same way, although the authors of [28] encoded the
flags into their MILP models. We define =, ⊕ and × operations for the elements
of set {1c, 0c, δ} corresponding to the basic operations COPY, XOR and AND,
respectively. The = operation sets one element equal to another element. The ⊕
operation follows the rules:

⎧
⎪⎨

⎪⎩

1c ⊕ 1c = 1c ,

0c ⊕ x = x ⊕ 0c = x for arbitrary x ∈ {1c, 0c, δ} ,

δ ⊕ x = x ⊕ δ = δ for arbitrary x ∈ {1c, 0c, δ} .

The × operation follows the rules:
⎧
⎪⎨

⎪⎩

1c × x = x × 1c = x for arbitrary x ∈ {1c, 0c, δ} ,

0c × x = x × 0c = 0c for arbitrary x ∈ {1c, 0c, δ} ,

δ × δ = δ .

Bits flagged by x (x ∈ {1c, 0c, δ}) are referred to as x bits in this paper. For a
bit vector t(j), suppose the state bits in the j-th round are denoted by s(j), we
use Λ1c(t(j)), Λ0c(t(j)), Λδ(t(j)) to divide t(j) into three bit vectors according
to the 1c, 0c, δ part of s(j) respectively, i.e.,

Λx
i (t(j)) = t

(j)
i ∀ s

(j)
i .F = x, otherwise Λx

i (t(j)) = 0

for arbitrary x ∈ {1c, 0c, δ}. When introducing MILP models, for a MILP vari-
able v ∈ M.var assigned to the bit b, we may use v.F to represent b.F implicitly.
Once the cube term is given, the flags of all state bits of f are determined. A
specific example of our flag computation can be found in Example 1.

5.1 Non-zero Bit-Based Division Property (NBDP)

First, we revisit the roles of CBDP in recovering the superpoly from a perspective
of the monomial propagation.

Proposition 1. Given a term πt(rm)(s(rm)) of round rm. Assuming the initial
CBDP D1m+n

{0m||u} propagates to D1nrm

K(rm) after evaluating f through rm rounds, if

∃k(rm) ∈ K
(rm) such that k(rm) � t(rm), then there must ∃w � 0m,u′ � u s.t.

kw xu ′ � πt(rm)(s(rm)). The converse is also true.

Proof. Let the input and output multisets of CBDP be X
(0) and X

(r) respectively.
According to the definition of CBDP, we assume

∑
k||x∈X(0) kw xu ′

is unknown
for any w||u′ � 0m||u and

∑
k||x∈X(0) kw xu ′

= 0 for any w||u′ 
� 0m||u.
If ∃w � 0,u′ � u s.t. kw xu ′ � πt(rm)(s(rm)), then

∑
s(rm)∈X(rm)

πt(rm)(s(rm)) must be unknown, which means ∃k(rm) ∈ K
(rm) such that
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k(rm) � t(rm). Conversely, if ∃k(rm) ∈ K
(rm) such that k(rm) � t(rm),

then
∑

s(rm)∈X(rm) πt(rm)(s(rm)) must be unknown. We can deduce there
exists w � 0m,u′ � u s.t. kw xu ′ � πt(rm)(s(rm)), because otherwise∑

s(rm)∈X(rm) πt(rm)(s(rm)) would be 0 rather than unknown. ��
Based on Proposition 1, a natural idea to describe Condition B is to exclude

all division trails related to x[ū]. Since x[ū] is set to constant 0, we only need to
handle constant 0 bits during the propagation of CBDP. A lot of work has been
conducted on this research line ([25,28]). In our work, to deal with constant 0
bits, we follow three rules that are described in [28] for Copy, And and Xor, but
with our flag technique. These three rules are slightly adjusted and listed in [13,
Sup.Mat. C], together with some additional constraints that can be added to
remove redundancy.

In addition, to describe Condition B, the partial order in CBDP should also
consider the effect of constant 0 bits, so we modify the partial order in CBDP.

Definition 3 (The Partial Order). Let v′ and v be two bit vectors. We say
v′ �̂ v on y or simply yv ′ �̂ yv , if

{
v′

i = vi = 0 yi.F = 0c

v′
i ≥ vi yi.F 
= 0c

.

We denote this variant of CBDP as non-zero bit-based division property (NBDP).
Using NBDP, if ∃kw such that kw xu � πt(rm)(s(rm)), then there must exist
k(rm) propagated from 0m||u such that k(rm) �̂ t(rm) on s(rm). Hence, we can
construct a MILP model to recover V T (rm)s as follows:

rm rounds
︷ ︸︸ ︷

k0xu NBDP−−−−−→ πk(rm)(s(rm)) �̂
r−rm rounds

︷ ︸︸ ︷

πt(rm)(s(rm)) MP−−→ πt(r)(s(r)), (5)

where NBDP propagates from 0m||u to k(rm) in the first rm rounds. Such a
MILP model is described as NBDP-MPModelX in [13, Algorithm 4]. After extract-
ing all solutions of this MILP model, for each πt(rm)(s(rm)) we can count the
number of monomial trails between πt(rm)(s(rm)) and πt(r)(s(r)) to determine
if πt(rm)(s(rm)) → πt(r)(s(r)), then determine if this term πt(rm)(s(rm)) is a
V T (rm). In this way, a new coefficient solver can be developed by first recov-
ering V T (rm)s and then applying the monomial prediction to each V T (rm), as
stated in Sect. 4. We did test such a new coefficient solver for 846-round Triv-
ium by setting rm = 90, combined with the term expander used in NMP. As a
result, the superpoly of the cube term I3 in [13, Table 5] is recovered in about
two days on our platform. However, apart from this result, no other superpolies
were recovered.

The Bottleneck of Recovering V T (rm)s Based on Eq. (5). The number of
solutions of NBDP-MPModelX can be expressed as

∑

k(rm)∈F
nrm
2 ,t(rm)∈F

nrm
2

k(rm) 
̂ t(rm) on s(rm)

|0m||u K

�� k(rm)| · |πt(rm)(s(rm)) �� πt(r)(s(r))|,
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where k(rm) and t(rm) take all allowed values. Note that for a specific t(rm)

satisfying |πt(rm)(s(rm)) �� πt(r)(s(r))| > 0 with a high hamming weight, the sum

of all |0m||u K

�� k(rm)| satisfying k(rm) �̂ t(rm) on s(rm) may be extraordinarily
large, which makes it hard to extract all solutions of NBDP-MPModelX within
limited time.

5.2 Core Monomial Prediction (CMP)

To overcome the bottleneck of recovering V T (rm)s based on Eq. (5), we next pro-
pose an alternative approach to characterize Condition B from the perspective of
monomial propagation. This new technique is called Core Monomial Prediction
(CMP), which can be regarded as a relaxed version of monomial prediction.

Generalization of Condition B. Notice that given a non-zero term
πt(rm)(s(rm)), what determines whether Condition B holds is Λδ(t(rm)). More-
over, denoting the initial term kw ||xu in Condition B by πt(0)(s(0)), notice that
πΛδ(t(0))(s(0)) = k0||xu and πΛ1c (t(0))(s(0)) = kw ||x0. Let Λ1c(1n0) indicate the

1c bits of the initial state (round 0), that is, Λ1c
i (1n0) = 1 if s

(0)
i .F = 1c, other-

wise Λ1c
i (1n0) = 0. Obviously Λ1c(1n0) = 1m||0n. Considering in Condition B

we only require the existence of w, w can be any vector satisfying w � Λ1c(1n0).
Therefore, we can give a generalization of Condition B by

∃w � Λ1c(1n0), such that πΛδ(t(0))⊕w (s(0)) � πΛδ(t(rm))(s
(rm)). (6)

Naturally, we study how to describe

∃w � Λ1c(1ni), such that πΛδ(t(i))⊕w (s(i)) � πΛδ(t(j))(s
(j))

for arbitrary i < j. Note that in the process of generalizing Condition B, we
aggressively assume that πt(rm)(s(rm)) 
= 0, whereas in practice, it is entirely
possible that πt(rm)(s(rm)) equals to 0. Recalling that NBDP is derived by con-
sidering the effect of constant 0 bits in the propagation and partial order of
CBDP, whose propagation rules are established first, it is reasonable that we
first study the case where constant 0 bits are not taken into account.

The Definition and Propagation of CMP. Let g : F
nin
2 → F

nout
2 be a

vectorial Boolean function mapping z = (z0, · · · , znin−1) to y = (y0, · · · , ynout−1)
with yi = gi(z). In [17], the monomial prediction is defined as the problem of
determining the presence or absence of a particular monomial zu in yv , that
is, whether zu → yv . Similarly, the core monomial prediction is defined as the
problem of determining whether πΛδ(v)(y) contains at least one monomial, say
zu , whose δ part (πΛδ(u)(z)) is a particular monomial. We denote this problem

by whether πΛδ(u)(z) Core→ πΛδ(v)(y). Similar to the monomial trail, the definition
of CMP gives rise to the concept of the core monomial trail.

Definition 4 (Core Monomial Trail). Given the cube term xu , let
πΛδ(t(0))(s(0)) = k0||xu and s(i+1) = f (i)(s(i)) for 0 ≤ i < r. We call a sequence
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of monomials (πΛδ(t(0))(s(0)), πΛδ(t(1))(s(1)), . . . , πΛδ(t(r))(s(r))) an r-round core
monomial trail connecting πΛδ(t(0))(s(0)) and πΛδ(t(r))(s(r)) with respect to the
composite function f = f (r−1) ◦ f (i−2) ◦ · · · ◦ f (0) if

πΛδ(t(0))(s
(0)) Core→ · · · Core→ πΛδ(t(i))(s

(i)) Core→ · · · Core→ πΛδ(t(r))(s
(r)),

If there is at least one core monomial trail connecting πΛδ(t(0))(s(0)) to

πΛδ(t(r))(s(r)), we write πΛδ(t(0))(s(0)) Core� πΛδ(t(r))(s(r)). All core mono-
mial trails between πΛδ(t(0))(s(0)) and πΛδ(t(r))(s(r)) are denoted by the set

πΛδ(t(0))(s(0))
Core
�� πΛδ(t(r))(s(r)).

The monomial prediction determines whether πt(0)(s(0)) → πt(r)(s(r)) by
counting the number of monomial trails between πt(0)(s(0)) and πt(r)(s(r)).
However, the number of core monomial trails between πΛδ(t(0))(s(0)) and

πΛδ(t(r))(s(r)) can not reflect precisely whether πΛδ(t(0))(s(0)) Core→ πΛδ(t(r))(s(r)),
i.e., whether there exists a w � Λ1c(1n0) such that πΛδ(t(0))⊕w (s(0)) →
πΛδ(t(r))(s(r)). Since the information of 1c bits is ignored by the core monomial
trail, we can only draw a weaker conclusion from the existence of a core mono-
mial trail, that is, ∃w � Λ1c(1n0) such that πΛδ(t(0))⊕w (s(0)) � πΛδ(t(r))(s(r)).
Notice that this is exactly the generalization of Condition B, which means the
existence of a core monomial trail between πΛδ(t(0))(s(0)) and πΛδ(t(rm))(s(rm))
is another equivalent description of Condition B.

To better understand how core monomial trails are generated, we give a
concrete example.

Example 1. Let z = (z0, z1) = f (1)(y0, y1) = (y0y1, y0 + y1 + 1), y = (y0, y1) =
f (0)(x0, x1, x2, k0, k1) = (k0x0 + k1x0x2 + k0 + k1, k0k1x1 + k0k1x0 + k0). Con-
sider the cube term (x0, x1, x2)(1,1,0) = x0x1. First, we can compute the flags of
x,k,y,z, i.e.,

x0.F = x1.F = δ, x2.F = 0c. k0.F = k1.F = 1c.

y0.F = 1c × δ ⊕ 1c × δ × 0c ⊕ 1c ⊕ 1c = δ.

y1.F = 1c × 1c × δ ⊕ 1c × 1c × δ ⊕ 1c = δ.

z0.F = δ × δ = δ. z1.F = δ ⊕ δ ⊕ 1c = δ.

Since the ANF of f (0) is available, we can compute all monomials of y (x2 is set
to 0), i.e.,

(y0, y1)(0,0) = 1, (y0, y1)(1,0) = y0 = k0x0 + k0 + k1.

(y0, y1)(0,1) = y1 = k0k1x1 + k0k1x0 + k0.

(y0, y1)(1,1) = y0y1 = k0k1x0x1 + k0k1x0 + k0x0 + k0 + k0k1.
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Considering (y0, y1)Λδ((1,1)) = y0y1, then x0x1
Core→ y0y1 is the only core mono-

mial trail of f (0) connecting x0x1 and the δ part of monomials of y. Similarly,
we can compute all monomials of z as follows,

(z0, z1)(0,0) = 1, (z0, z1)(1,0) = z0 = y0y1, (z0, z1)(0,1) = z1 = y0 + y1 + 1,

(z0, z1)(1,1) = z0z1 = y0y1.

Since z0.F = z1.F = δ, we have (z0, z1)Λδ((1,0)) = z0 and (z0, z1)Λδ((1,1)) = z0z1.
Finally, we obtain two core monomial trails of f connecting x0x1 and the δ part
of monomials of z:

x0x1
Core→ y0y1

Core→ z0, x0x1
Core→ y0y1

Core→ z0z1.

Recalling in [17], the propagation rules of 3SDPwoU are revisited from the
algebraic perspective according to the definition of the monomial prediction. In
a similar way, the propagation rules of the core monomial prediction can be
derived from its definition. And we only give the rule of COPY an algebraic
proof, as the others can be interpreted in a same way. As mentioned, we do not
take constant 0 bits into account, so we assume the bits of z and y below are
all non-zero, i.e., their flags are not 0c.

Rule 1 (COPY). Let z = (z0, z1, . . . , zn−1) and y = (z0, z0, z1, z2, . . . , zn−1)
be the input and output vector of a COPY function. Let Λδ(u) = (u′

0, . . . , u
′
n−1)

and Λδ(v) = (v′
0, . . . , v

′
n). πΛδ(u)(z) Core→ πΛδ(v)(y) only when Λδ(v) satisfies

Λδ(v) =
{

(0, 0, . . . , u′
n−1), if u′

0 = 0 ,
(0, 1, . . . , u′

n−1), (1, 0, . . . , u′
n−1), (1, 1, . . . , u′

n−1), if u′
0 = 1 .

Proof. Let z.F = (z0.F, . . . , zn−1.F ) and y.F = (y0.F, . . . , yn.F ). πΛδ(v)(y) can

be expressed as πΛδ(v)(y) = z
v′
0∨v′

1
0 z

v′
2

1 · · · zv′
n

n−1. πΛδ(u)(z) Core→ πΛδ(v)(y) only
when Λδ((v′

0∨v′
1, v

′
2, . . . , v

′
n)) = (u′

0, u
′
1, . . . , u

′
n−1), where Λδ((v′

0∨v′
1, v

′
2, . . . , v

′
n))

depends on z.F .
Notice that Λδ((v′

0, . . . , v
′
n)) = (v′

0, . . . , v
′
n) according to y.F and yi.F =

zi−1.F for 2 ≤ i ≤ n, therefore v′
i = u′

i−1 for 2 ≤ i ≤ n. Next we consider
z0.F . If z0.F = y0.F = y1.F = 1c, then v′

0 = v′
1 = 0 and u′

0 = 0; otherwise
if z0.F = y0.F = y1.F = δ, we can deduce that v′

0 ∨ v′
1 = u′

0. To sum up, the
propagation rule of COPY can be concluded as v′

0 ∨ v′
1 = u′

0 and v′
i = u′

i−1 for
2 ≤ i ≤ n. ��
Rule 2 (AND). Let z = (z0, z1, . . . , zn−1) and y = (z0 ∧ z1, z2, . . . , zn−1) be
the input and output vector of an AND function. Let Λδ(u) = (u′

0, . . . , u
′
n−1)

and Λδ(v) = (v′
0, . . . , v

′
n−2). πΛδ(u)(z) Core→ πΛδ(v)(y) only when Λδ(u),Λδ(v)

satisfies

(v′
0, v

′
1, . . . , v

′
n−2) = (u′

0 ∨ u′
1, u

′
2, . . . , u

′
n−1) ,

v′
0 = u′

0, if z0.F = δ ,

v′
0 = u′

1, if z1.F = δ .
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Rule 3 (XOR). Let z = (z0, z1, . . . , zn−1) and y = (z0 ⊕ z1, z2, . . . , zn−1) be
the input and output vector of a XOR function. Let Λδ(u) = (u′

0, . . . , u
′
n−1) and

Λδ(v) = (v′
0, . . . , v

′
n−2). πΛδ(u)(z) Core→ πΛδ(v)(y) only when Λδ(v) satisfies

Λδ(v) =

{
(v′

0, u
′
2, . . . , u

′
n−1) with v′

0 ≥ u′
0 + u′

1, if {z0.F, z1.F} = {1c, δ} ,

(u′
0 + u′

1, u
′
2, . . . , u

′
n−1), otherwise .

The MILP models corresponding to propagation rules can be easily derived,
as shown in [13, Sup.Mat. D]. Next we consider the effect of constant 0 bits.
In the propagation of CMP, we treat constant 0 bits in the same way as
NBDP. Namely, we follow the rules listed in [13, Sup.Mat. C]. Recall in the
generalization of Condition B, we assume πt(rm)(s(rm)) is non-zero. However,
πΛδ(t(0))(s(0)) Core� πΛδ(t(rm))(s(rm)) cannot guarantee πt(rm)(s(rm)) 
= 0. There-
fore, like the proposal of the new partial order in NBDP, we propose a new
partial order to impose stricter constraints on πt(rm)(s(rm)).

Definition 5 (New Partial Order of CMP). Let v′ and v be two bit vectors.
We say v′ �̃ v on y or simply yv ′ �̃ yv , if

⎧
⎪⎨

⎪⎩

v′
i = vi = 0 yi.F = 0c ,

v′
i ≥ vi yi.F = 1c ,

v′
i = vi yi.F = δ .

Then, the generalization of Condition B (6) holds if and only if πΛδ(t(0))(s(0))
Core� πΛδ(t(rm))(s(rm)) and πt(rm)(s(rm)) �̃ πΛδ(t(rm))(s(rm)).

Recovering V T (rm)s with CMP. Based on the discussion above, we can con-
struct a MILP model using CMP to recover V T (rm)s as follows:

rm rounds
︷ ︸︸ ︷

k0xu CMP−−−−→ πΛδ(t(rm))(s
(rm)) �̃

r−rm rounds
︷ ︸︸ ︷

πt(rm)(s(rm)) MP−−→ πt(r)(s(r)) . (7)

A MILP model based on the structure in Eq. (7) is described as CMP-MPModelX
in [13, Algorithm 5].

CMP versus MP. We can prove that the MILP model based on Eq. (7) has
fewer solutions than the MILP model based on Eq. (4). The number of solutions
of the MILP model based on Eq. (7) can be represented by

∑

t(rm)∈F
nrm
2

|k0xu
Core
�� πΛδ(t(rm))(s

(rm))| · |πt(rm)(s(rm)) �� πt(r)(s(r))|.

The number of solutions of the MILP model based on Eq. (4) can be represented
by

∑

t(rm)∈F
nrm
2 ,w∈F

m
2

|kw xu
�� πt(rm)(s(rm))| · |πt(rm)(s(rm)) �� πt(r)(s(r))|.
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Notice that we can always map a rm-round monomial trail kw xu → πt(1)(s(1)) →
· · · → πt(rm)(s(rm)) to a rm-round core monomial trail k0xu Core→ πΛδ(t(1))(s(1))
Core→ · · · Core→ πΛδ(t(rm))(s(rm)). Furthermore, notice that whether Condition B

holds can be determined by checking whether k0xu Core� πΛδ(t(rm))(s(rm)), which
means this mapping is surjective. As a result, for a specific non-zero monomial
πt(rm)(s(rm)), we have

∑

w∈F
m
2

|kw xu
�� πt(rm)(s(rm))| ≥ |k0xu

Core
�� πΛδ(t(rm))(s

(rm))|,

meaning the model based on Eq. (7) has fewer solutions.
In addition, recall that when modeling Condition B, the propagation model of

CMP only describes the δ part of monomials, and the 1c or 0c bits are constrained
to 0, while the propagation model of MP needs to consider not only the δ part,
but it also need to track the propagation of the 1c bits. The difference between
CMP and MP can be seen most intuitively from their algebraic interpretation,
which was described earlier in this paper.

Naturally, we believe the MILP model based on Eq. (7) can be solved faster
than the model based on Eq. (4). Indeed, taking the MILP model based on
Eq. (7) as the core component of our coefficient solver, we successfully recovered
the superpoly of 848-round Trivium, a result that can not be achieved by the
model based on Eq. (4).

The MILP models based on Eq. (7) can be further optimized using [13, Propo-
sition 2], where the XOR propagation rule (Rule 3) of CMP is reduced to

Λδ(v) = (u′
0 + u′

1, u
′
2, . . . , u

′
n−1).

Moreover, when constructing the MILP models based on Eq. (7) and Eq. (5) for
Acorn, this proposition helps to exclude some redundant propagation trails,
thus simplifying the models.

Towards New Coefficient Solver and Term Expander. Finally, we choose
the MILP model based on Eq. (7) to recover V T (rm)s in a more efficient way
than the monomial prediction. Notice that if πt(rm)(s(rm)) is a V T (rm), we can
split πt(rm)(s(rm)) into 1c part and δ part, namely

πt(rm)(s(rm)) = πΛδ(t(rm))(s
(rm)) · πΛ1c (t(rm))(s

(rm)).

πΛ1c (t(rm))(s(rm)) is the product of some 1c bits whose ANFs can be computed
beforehand, hence the monomial prediction technique is only applied to δ part of
πt(rm)(s(rm)) to compute Coe

(
πΛδ(t(rm))(s(rm)),xu

)
. Such a strategy can speed

up the coefficient solver for some ciphers.
Combined with the callback function interface provided in Gurobi, MILP

models based on Eq. (7) and Eq. (5) can also be extended to construct a new
term expander. However, we prefer this to be an implementation improvement
rather than a theoretical innovation. In other words, even if we use the term
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expander in NMP with our new coefficient solver, we can still get the results
listed in this paper, but it might take slightly more time. For this reason, we put
the introduction of our term expander in [13, Sup.Mat. E].

6 Applications

Using our designed term expander and coefficient solver, we can assemble a new
nested framework according to Algorithm 1. We apply this new nested framework
to four NLFSR-based ciphers, namely Trivium, Grain-128AEAD, Kreyvium
and Acorn. As a result, the exact ANFs of the superpolies for 846-, 847- and
848-round Trivium, 192-round Grain-128AEAD, 895-round Kreyvium and 776-
round Acorn are recovered. All experiments are performed using Gurobi Solver
(version 9.1.2) on a work station with high-speed processors, (totally 32 cores
and 64 threads). The source code (as well as some superpolies we recovered) is
available in our git repository.

In [11,12,16], the MILP models of Trivium, Grain-128AEAD, Kreyvium,
and Acorn for tracing the three-subset division/monomial trails are proposed.
In this section, the propagation models of monomial trails in [13, Sup.Mat. G]
are directly borrowed from [11,12,16] and we adjust them slightly to fit our new
framework. The MILP models of basic operations that NBDP and CMP rely on
are provided in [13, Sup.Mat. F]. As pointed out before, NBDP-MPModelX in [13,
Algorithm 4] and CMP-MPModelX in [13, Algorithm 5] are the most important
parts in the framework, so next we only describe how to construct these two
MILP models for a specific cipher, along with the selection of related parameters.

6.1 Superpoly Recovery for TRIVIUM up to 848 Rounds

As shown in [13, Sup.Mat. H], we applied our framework to Trivium and verified
the correctness of some previous superpolies with significantly less time cost.

Superpoly Recovery for 846-, 847- and 848-Round Trivium. To the best
of our knowledge, currently there is no effective method for choosing a good cube,
hence we heuristically choose cubes with similar structure to I0–I4. Finally, we
find some other cubes applicable to Trivium up to 848 rounds. They are listed
in Table 3. Since the sizes of these superpolies are too large, we only provide our
codes in the git repository. The details of these superpolies are given in Table 4.
The balancedness of each superpoly is estimated by testing 215 random keys.

6.2 Superpoly Recovery for 192-Round Grain-128AEAD

In [13, Sup.Mat. I], we introduce the specification of Grain-128AEAD and apply
our new framework to it. We successfully verified the results given in [16].
For 192-round Grain-128AEAD, we heuristically choose a 94-dimensional cube
indexed by {0, 1, 2, . . . , 95}\{42, 43}. The superpoly of this cube for 192-round
Grain-128AEAD is recovered in about 45 days using our new framework. The

https://github.com/viocently/ekignrb9lc.git
https://github.com/viocently/ekignrb9lc.git
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Table 3. Cube indices for the superpoly recovery of Trivium up to 848 rounds

I |I| Indices

I5 53

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,

57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I6 52

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57,

60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I7 51

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60,

62, 64, 66, 68, 70, 72, 77, 75, 79

I8 53

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,

57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I9 53

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,

57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

Table 4. Details related to the superpolies of 846-, 847- and 848-round Trivium.

I Round Status #Involved key bits Balancedness TimeCost

I3 846 New 80 0.50 1 day and 12 h

I5 846 New 80 0.50 16 h

I6 846 New 80 0.50 5 h

I7 846 New 80 0.50 11 h

I8 846 New 80 0.50 5 h

I9 846 New 80 0.50 1 day and 17.5 h

I6 847 New 80 0.50 9 days and 20.5 h

I7 847 New 80 0.50 2 days

I6 848 New 80 0.50 11 days

superpoly is a 34-degree polynomial involving 534 077 971 terms and 128 key
bits. The balancedness is estimated to be 0.49 after testing 215 random keys.
Since the size of this superpoly is too large, we only provide our codes in the
git repository.

6.3 Superpoly Recovery for 895-Round Kreyvium

As can be seen in [13, Sup.Mat. J], we verified the superpoly of the 119-
dimensional cube given in [16] with our new framework. For 895-round
Kreyvium, we heuristically choose a 120-dimensional cube indexed by

I2 = {0, 1, . . . , 127}\{66, 72, 73, 78, 101, 106, 109, 110}.

The superpoly of I2 for 895-Round Kreyvium is recovered in about two weeks
using our nested framework. The superpoly is a 7-degree polynomial that involves

https://github.com/viocently/ekignrb9lc.git
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19411 terms and 128 key bits. The balancedness is estimated to be 0.50 after
testing 215 random keys.

6.4 Superpoly Recovery for ACORN up to 776 Rounds

As can be seen in [13, Sup.Mat. K], we verified the results given in [33]
with our new framework. For 776-round Acorn, we heuristically choose two
127-dimensional cubes indexed by I1 = {0, 1, . . . , 127}\{1, 28} and I2 =
{0, 1, . . . , 127} \{2, 28}. The superpoly recoveries of these two cubes are com-
pleted after about 8 days using our nested framework.

The superpoly of I1 is an 8-degree polynomial involving 123 key bits and
2 464 007 terms, with k104, k105 and k115 as single balanced bits. Bits not involved
are k100, k103, k106, k114 and k126. The superpoly of I2 is an 8-degree polynomial
involving 121 key bits and 2 521 399 terms, with k104 and k126 as single balanced
bits. Bits not involved are k99, k100, k101, k103, k106, k110 and k112. The concrete
expressions of these two superpolies, denoted by pI1 and pI2 , are shown in [13,
Sup.Mat. N], where they are represented by 1c bits of 256th round.

7 Towards Efficient Key-Recovery Attacks

Though we have recovered more than one superpolies for 846- and 847-round
Trivium, how to recover the information of key bits from multiple superpolies
remains a problem. We briefly discuss several previous approaches to this prob-
lem in [13, Sup.Mat. L].

Cube Attacks Against 776-Round Acorn. Since the two superpolies of 776-
round Acorn do not involve full key bits, we can mount a key recovery attack
against 776-round Acorn as follows:

1. We can obtain the real values of the two superpolies during the online phase,
which requires 2127 Acorn calls.

2. We guess the values of {k0, ..., k127}\{k100, k103, k106} and check if the values
of the two superpolies are correct. As mentioned in [13, Sup.Mat. K], one
evaluation of the superpoly of Acorn is equivalent to one 256-round Acorn
call or approximately 1

3 776-round Acorn call, so the complexity of this step
is about 2 × 2125 × 1

3 ≈ 2124.4 776-round Acorn calls.
3. For the remaining 2126 candidates of key bits, we can find the correct key by

an exhaustive search with time complexity of 2126 776-round Acorn calls.

Therefore, the final complexity is slightly more than 2127 776-round Acorn calls
to recover all the secret key bits. Next we show how to mount the cube attack
using the superpoly involving full key bits.

Revisiting Möbius Transformation. Let f(x0, x1, . . . , xn−1) be a Boolean
function on x0, x1, ..., xn−1. The ANF of f is obtained by writing:

f =
⊕

(c0,...,cn−1)∈F
n
2

g0(c0, . . . , cn−1) ·
n−1∏

i=0

xci
i . (8)
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The process of Möbius transformation on f from ANF to truth table can be
represented by Algorithm 2, where t represents the t-th step and gn is exactly
f . For simplicity, we also use gt(e)(0 ≤ t ≤ n) to represent gt(c0, . . . , cn−1),
where e = c0 + c121 + · · · + cn−12n−1 and (c0, . . . , cn−1) is called the binary
representation of e. We assume in this paper that Möbius transformation requires
n × 2n−1 bitwise XORs and 2n-bits memory complexity.

Algorithm 2: Möbius transformation on f in Eq. (8)

1 Procedure MobiusTransformation(The ANF of f):
2 for t = 1 to n do
3 Initialize gt to be the same as gt−1

4 for j = 0 to 2n−t − 1 do
5 for k = 0 to 2t−1 − 1 do
6 gt(2

tj + 2t−1 + k) = gt−1(2
tj + 2t−1 + k) + gt−1(2

tj + k)

7 return gn

Proposition 3. Let f, g0, g1, . . . , gn be defined as above. After the t-th (1 ≤ t ≤
n − 1) step of Möbius transformation on the ANF of f , if we represent f as

f =
∑

(ct,...,cn−1)∈Fn−t

p(ct,...,cn−1)(x0, . . . , xt−1) ·
n−1∏

i=t

xci
i , (9)

where p(ct,...,cn−1)(x0, . . . , xt−1) is a Boolean polynomial of (x0, . . . , xt−1) deter-
mined by (ct, . . . , cn−1), then for any value of (ct, . . . , cn−1),

gt(x0, . . . , xt−1, ct, . . . , cn−1) = p(ct,...,cn−1)(x0, . . . , xt−1).

An intuitive description of Eq. (9) is, we regard (xt, . . . , xn−1) as variables and
(x0, . . . , xt−1) as constants, then p(ct,...,cn−1)(x0, . . . , xt−1) is exactly the coeffi-
cient of the monomial

∏n−1
i=t xci

i .

Proof. It can be easily verified that when t = 1, the conclusion holds. Assume
the conclusion holds for t = l (1 ≤ l ≤ n − 2), next we prove that the conclusion
is also true for t = l + 1.

According to Eq. (9), p(cl+1,...,cn−1)(x0, . . . , xl) can be expressed as the sum
of p(0,cl+1,...,cn−1)(x0, . . . , xl−1) and p(1,cl+1,...,cn−1)(x0, . . . , xl−1) · xl, that is,

gl(x0, . . . , xl−1, 0, cl+1, . . . , cn−1) + gl(x0, . . . , xl−1, 1, cl+1, . . . , cn−1) · xl.

Considering that xl takes 0 or 1, p(cl+1,...,cn−1)(x0, . . . , xl) is equal to
{

gl(x0, . . . , xl−1, 0, cl+1, . . . , cn−1), if xl = 0,

gl(x0, . . . , xl−1, 0, cl+1, . . . , cn−1) + gl(x0, . . . , xl−1, 1, cl+1, . . . , cn−1), if xl = 1.



Stretching Cube Attacks: Massive Superpolies 561

This is the same as how gl+1(x0, . . . , xl, cl+1, . . . , cn−1) is generated during
the process of Möbius transformation. Hence, gl+1(x0, . . . , xl, cl+1, . . . , cn−1) is
exactly p(cl+1,...,cn−1)(x0, . . . , xl). By mathematical induction, the conclusion is
true for all t (1 ≤ t ≤ n − 1). ��
Example 2. Let f(x0, x1, x2, x3) = x0x1x2 + x2x3 + x1x3 + x2. The process of
Möbius transformation on the ANF of f is shown in the following table, where
each row is the truth table of gt (0 ≤ t ≤ 4).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

g0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0

g1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0

g2 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

g3 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0

g4 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0

Consider g2. We regard (x0, x1) as constants and (x2, x3) as variables, f can be
expressed as f = (x0x1+1) ·x2+x1 ·x3+1 ·x2x3. Then g2(x0, x1, 0, 0) = 0, which
is the coefficient of x0

2x
0
3 in f ; g2(x0, x1, 1, 0) = x0x1 + 1, which is the coefficient

of x1
2x

0
3; g2(x0, x1, 0, 1) = x1, which is the coefficient of x0

2x
1
3; g2(x0, x1, 1, 1) = 1,

which is the coefficient of x1
2x

1
3. This corresponds to truth table of g2. Note that

g2(j) = g2(x0, x1, x2, x3), where j = x0 + x121 + x222 + x323.

We can further simplify Möbius transformation exploiting Proposition 3 and
the degree of f . Since this would not affect our final complexity, we discuss it
in [13, Sup.Mat. M]

Key Recovery During Möbius Transformation. Let f be as defined in
Eq. (8) and (x0, . . . , xn−1) be n secret key variables. It can be deduced from
Proposition 3 that if (ct, . . . , cn−1) = (0, . . . , 0), f(x0, . . . , xt−1, 0, . . . , 0) is equal
to gt(x0, . . . , xt−1, 0, . . . , 0), therefore after t steps of Möbius transformation, we
can already obtain the function values of f(x0, . . . , xt−1, 0, . . . , 0). Using this
property, we can recover the key during Möbius transformation. We use Exam-
ple 3 to illustrate our basic idea.

Example 3. Let f and its Möbius transformation be as defined in Example 2.
Now we want to recover the key from the equation f(x0, x1, x2, x3) = a.
1. At the beginning, f(0) = g0(0). If f(0) = a, we test whether (0, 0, 0, 0) is the
correct key by one encryption call. And if it is incorrect, we go to next step.
2. Compute g1(1) = g0(0) + g0(1), g1(0) = g0(0), then f(1) = g1(1). If f(1) = a,
we test whether (1, 0, 0, 0) is the correct key by one encryption call. And if it is
incorrect, go to next step.
3. First, we compute g1(3) = g0(2) + g0(3), g1(2) = g0(2). Compute g2(2) =
g1(2) + g1(0), g2(3) = g1(3) + g1(1), g2(0) = g1(0), g2(1) = g1(1), then f(2) =
g2(2), f(3) = g2(3). If f(2) = a, we test if (0, 1, 0, 0) is the correct key by one
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encryption call; if f(3) = a, we test if (1, 1, 0, 0) is the correct key by one encryp-
tion call. And if none of them is correct, go to next step.
4. First, we compute g1(i) (i = 4, 5, 6, 7) from g0(i) (i = 4, 5, 6, 7) and g2(i) (i =
4, 5, 6, 7) from g1(i) (i = 4, 5, 6, 7). Compute g3(j) (j = 0, . . . , 7) from g2(j) (j =
0, . . . , 7), then f(i) = g3(i) (i = 4, 5, 6, 7). If f(i) = a (i = 4, 5, 6, 7), we test if
the binary representation of i is the correct key by one encryption call. And if
none of them is correct, go to next step.
5. First, we compute g1(i) (i = 8, . . . , 15) from g0(i) (i = 8, . . . , 15), g2(i) (i =
8, . . . , 15) from g1(i) (i = 8, . . . , 15) and g3(i) (i = 8, . . . , 15) from g2(i) (i =
8, . . . , 15). Compute g4(j) (j = 0, . . . , 15) from g3(j) (j = 0, . . . , 15), then
f(i) = g4(i) (i = 8, . . . , 15). If f(i) = a (i = 8, . . . , 15), we test if the binary
representation of i is the correct key by one encryption call. And if none of them
is correct, we claim this equation has no solution.

In each step, we use the minimum memory and the least XOR operations to
calculate the necessary bits. In step 1, only 1-bit memory (g0(0)) is sufficient. In
step 2, 1 XOR and 2-bits memory (g1(1), g1(0)) are sufficient. In step 3, 2 + 1
XORs and 4-bits memory (g2(i) (i = 1, 2, 3, 4)) are sufficient. In step 4, 2+2+4
XORs and 8-bits memory (g3(j) (j = 0, . . . , 7)) are sufficient. Finally in step 5,
4 + 4 + 4 + 8 XORs and 16-bits memory (g4(j) (j = 0, . . . , 15)) are sufficient.
Note that in each step, the first computation can be regarded as performing
Möbius transformation on part of the ANF of f . For example, in step 4, we
first compute g2(i) (i = 4, 5, 6, 7) iteratively from g0(i) (i = 4, 5, 6, 7). This can
be regarded as performing Möbius transformation on the ANF of p(1,0)(x0, x1),
namely x0x1 + 1.

We summarize our key recovery strategy in Algorithm 3, which can be seen
as embedding the key testing procedure into a Möbius transformation with an
adjusted computational order. Though a more accurate estimation of the average
complexity can be given, here we roughly estimate the time cost (only considering
the loop starting at Line 8) of Algorithm 3 as one Möbius transformation together
with required encryption calls, that is, q · 2n encryption calls + n · 2n−1 XORs,
where q denotes the probability that f(x0, . . . , xn−1) = a. The cost of the com-
parison is ignored. The memory complexity in the worst case is 2n bits. Compar-
ing with the traditional key recovery method of first constructing a large truth
table and then performing queries, our method naturally saves the query cost.

Key Recovery Attacks on 848-Round Trivium. Our further evaluation
shows that the superpoly of 848-round Trivium, denoted by p(k0, ..., k79), is
a polynomial whose degree is upper bounded by 25. It contains about 230.5

terms, but is still very sparse compared with a random polynomial (a random
polynomial may contain about 279 terms). A natural idea is to treat p(k0, ..., k79)
as f in Algorithm 3. However, Möbius transformation also incurs memory access
cost. In the worse case, Algorithm 3 requires 280-bits memory and the memory
access cost of such a big table is unbearable. To address this difficulty, we propose
the following strategies:
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Algorithm 3: Recover the key from the equation f(x0, . . . , xn−1) = a

1 Procedure RecoverKey(The ANF of f):
2 for t = 1 to n do
3 Precompute the ANF of p(1,0,...,0)(x0, . . . , xt−2) from the ANF of f

4 if g0(0, . . . , 0) = a then
5 Check if (0, . . . , 0) is the correct key by calling the encryption oracle once
6 if The check passes then
7 return (0, . . . , 0)

8 for t = 1 to n do
9 Perform Möbius transformation on the ANF of p(1,0,...,0)(x0, . . . , xt−2) to obtain the

truth table of gt−1(x0, . . . , xt−2, 1, 0, . . . , 0)
/* When t = 1, we assume p(ct−1,...,cn−1)(x0, . . . , xt−2) = g0(ct−1, . . . , cn−1) */

10 for k = 0 to 2t−1 − 1 do
11 gt(2

t−1 + k) = gt−1(2
t−1 + k) + gt−1(k)

12 if gt(2
t−1 + k) = a then

13 Let (c0, . . . , cn−1) be the binary representation of 2t−1 + k
14 Check if (c0, . . . , cn−1) is the correct key by calling the encryption oracle once
15 if The check passes then
16 return (c0, . . . , cn−1)

17 gt(k) = gt−1(k)

18 return no solution found

1. We guess the values of (k40, . . . , k79). Let (v40, . . . , v79) denote the values
of (k40, . . . , k79), then the equation p(k0, . . . , k79) = a can be reduced to
p′(k0, ..., k39) = p(k0, . . . , k39, v40, . . . , v79) = a.

2. For each guess, treat p′(k0, ..., k39) as f and apply Algorithm3 to it. Once
Algorithm 3 returns the correct values of (k0, ..., k39), denoted by (v0, . . . , v39),
the correct key is found as (v0, . . . , v79).

Assuming reducing p(k0, . . . , k79) to p′(k0, ..., k39) for all guesses requires 240 ×
230.5 = 270.5 XORs, the final time complexity is approximately 279 Trivium
calls and 40× 279 XORs. Assuming one 848-round Trivium call is equivalent to
848 × 9 = 7632 XORs, finally our key recovery strategy requires slightly more
than 279 848-round Trivium calls, but only about 240-bits memory. Similarly,
we can recover the key of 192-round Grain-128AEAD and 895-round Kreyvium
with time complexity 2127 and 2127, respectively.

8 Conclusion

In this paper, we revisit the two core components of nested monomial predic-
tions, namely the coefficient solver and the term expander. The coefficient solver
is responsible for performing the superpoly recovery for a given term, while the
term expander is used to transform output bits into multiple terms of fewer
rounds. We try to improve the coefficient solver by first recovering valuable
intermediate terms of a middle round, then applying the monomial prediction
to each of them. This idea gives rise to two techniques called NBDP and core
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monomial prediction that identify the necessary condition that a valuable inter-
mediate term should satisfy. The core monomial prediction presents a substan-
tial improvement over monomial prediction in terms of efficiency of enumerating
solutions, hence we choose it to build our coefficient solver. Besides, we con-
struct an improved term expander using NBDP in order to spend less time on
useless terms of fewer rounds. We apply our new framework to Trivium, Grain-
128AEAD, Acorn and Kreyvium and recover superpolies for reduced-round
versions of the four ciphers with 848, 192, 776 and 895 rounds. This results in
attacks that are more efficient and cover more rounds than earlier work.
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Abstract. Secure software leasing is a quantum cryptographic primitive
that enables us to lease software to a user by encoding it into a quantum
state. Secure software leasing has a mechanism that verifies whether a
returned software is valid or not. The security notion guarantees that
once a user returns a software in a valid form, the user no longer uses
the software.

In this work, we introduce the notion of secret-key functional encryp-
tion (SKFE) with secure key leasing, where a decryption key can be
securely leased in the sense of secure software leasing. We also instanti-
ate it with standard cryptographic assumptions. More specifically, our
contribution is as follows.

– We define the syntax and security definitions for SKFE with secure
key leasing.

– We achieve a transformation from standard SKFE into SKFE with
secure key leasing without using additional assumptions. Especially,
we obtain bounded collusion-resistant SKFE for P/poly with secure
key leasing based on post-quantum one-way functions since we can
instantiate bounded collusion-resistant SKFE for P/poly with the
assumption.

Some previous secure software leasing schemes capture only pirate soft-
ware that runs on an honest evaluation algorithm (on a legitimate plat-
form). However, our secure key leasing notion captures arbitrary attack
strategies and does not have such a limitation. As an additional contribu-
tion, we introduce the notion of single-decryptor FE (SDFE), where each
functional decryption key is copy-protected. Since copy-protection is a
stronger primitive than secure software leasing, this notion can be seen
as a stronger cryptographic primitive than FE with secure key leasing.
More specifically, our additional contribution is as follows.

– We define the syntax and security definitions for SDFE.
– We achieve collusion-resistant single-decryptor PKFE for P/poly

from post-quantum indistinguishability obfuscation and quantum
hardness of the learning with errors problem.

1 Introduction

1.1 Background

Functional encryption (FE) [BSW11] is an advanced encryption system that
enables us to compute on encrypted data. In FE, an authority generates a mas-
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ter secret key and an encryption key. An encryptor uses the encryption key to
generate a ciphertext ctx of a plaintext x. The authority generates a functional
decryption key fsk from a function f and the master secret key. When a decryp-
tor receives fsk and ctx, it can compute f(x) and obtains nothing beyond f(x).
In secret-key FE (SKFE), the encryption key is the same as the master secret
key, while the encryption key is public in public-key FE (PKFE).

FE offers flexible accessibility to encrypted data since multiple users can
obtain various processed data via functional decryption keys. Public-key encryp-
tion (PKE) and attribute-based encryption (ABE) [SW05] do not have this prop-
erty since they recover an entire plaintext if decryption succeeds. This flexible
feature is suitable for analyzing sensitive data and computing new data from per-
sonal data without compromising data privacy. For example, we can compute
medical statistics from patients’ data without directly accessing individual data.
Some works present practical applications of FE (for limited functionalities):
non-interactive protocol for hidden-weight coin flips [CS19], biometric authenti-
cation, nearest-neighbor search on encrypted data [KLM+18], private inference
on encrypted data [RPB+19].

One issue is that once a user obtains fsk, it can compute f(x) from a cipher-
text of x forever. An authority may not want to provide users with the perma-
nent right to compute on encrypted data. A motivative example is as follows.
A research group member receives a functional decryption key fsk to compute
some statistics from many encrypted data for their research. When the member
leaves the group, an authority wants to prevent the member from doing the same
computation on another encrypted data due to terms and conditions. However,
the member might keep a copy of their functional decryption key and penetrate
the database of the group to do the same computation. Another motivation is
that the subscription business model is common for many services such as cloud
storage services (ex. OneDrive, Dropbox), video on demand (ex. Netflix, Hulu),
software applications (ex. Office 365, Adobe Photoshop). If we can keep a copy of
functional decryption keys, we cannot use FE in the subscription business model
(for example, FE can be used as broadcast encryption in a video on demand).
We can also consider the following subscription service. A company provides
encrypted data sets for machine learning and a functional decryption key. A
researcher can perform some tasks using the encrypted data set and the key.

Achieving a revocation mechanism [NP01] is an option to solve the issue
above. Some works propose revocation mechanisms for advanced encryption such
as ABE [SSW12] and FE [NWZ16]. However, revocation is not a perfect solution
since we need to update ciphertexts to embed information about revoked users.
We want to avoid updating ciphertexts for several reasons. One is a practical rea-
son. We possibly handle a vast amount of data, and updating ciphertexts incurs
significant overhead. Another one is more fundamental. Even if we update cipher-
texts, there is no guarantee that all old ciphertexts are appropriately deleted. If
some user keeps copies of old ciphertexts, and a data breach happens after revo-
cation, another functional decryption key holder whose key was revoked still can
decrypt the old ciphertexts.
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This problem is rooted in classical computation since we cannot prevent copy-
ing digital data. Ananth and La Placa introduce the notion of secure software leas-
ing [AL21] to solve the copy problem by using the power of quantum computation.
Secure software leasing enables us to encode software into a leased version. The
leased version has the same functionality as the original one and must be a quantum
state to prevent copying. After a lessor verifies that the returned software from a
lessee is valid (or that the lessee deleted the software), the lessee cannot execute the
software anymore. Several works present secure software leasing for simple func-
tionalities such as a sub-class of evasive functions (subEVS), PKE, signatures, pseu-
dorandom functions (PRFs) [AL21,ALL+21,KNY21,BJL+21,CMP20]. If we can
securely implement leasing and returning mechanisms for functional decryption
keys, we can solve the problem above. Such mechanisms help us to use FE in real-
world applications.

Thus, the main question in this work is as follows.

Can we achieve secure a leasing mechanism for functional decryption keys
of FE?

We can also consider copy-protection, which is stronger security than secure
leasing. Aaronson [Aar09] introduces the notion of quantum copy-protection.
Copy-protection prevents users from creating a pirate copy. It does not have a
returning process, and prevents copying software. If a user returns the original soft-
ware, no copy is left behind on the user, and it cannot run the software. Coladan-
gelo, Liu, Liu, and Zhandry [CLLZ21] achieve copy-protected PRFs and single-
decryptor encryption (SDE)1. Our second question in this work is as follows.

Can we achieve copy-protection for functional decryption keys of FE?

We affirmatively answer those questions in this work.

1.2 Our Result

Secure Key Leasing. Our main contributions are introducing the notion of SKFE
with secure key leasing and instantiating it with standard cryptographic assump-
tions. More specifically,

– We define the syntax and security definitions for SKFE with secure key leas-
ing.

– We achieve a transformation from standard SKFE into SKFE with secure key
leasing without using additional assumptions.

In SKFE with secure key leasing, a functional decryption key is a quantum state.
More specifically, the key generation algorithm takes as input a master secret key,
a function f , and an availability bound n (in terms of the number of ciphertexts),
and outputs a quantum decryption key fsk tied to f . We can generate a certificate
for deleting the decryption key fsk . If the user of this decryption key deletes fsk

1 SDE is PKE whose decryption keys are copy-protected.
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within the declared availability bound n and the generated certificate is valid,
the user cannot compute f(x) from a ciphertext of x anymore. We provide a
high-level overview of the security definition in Sect. 1.3.

We can obtain bounded collusion-resistant SKFE for P/poly with secure key
leasing from OWFs since we can instantiate bounded collusion-resistant SKFE for
P/poly with OWFs.2 Note that all building blocks in this work are post-quantum
secure since we use quantum computation and we omit “post-quantum”.

Our secure key leasing notion is similar to but different from secure software
leasing [AL21] for FE because adversaries in secure software leasing (for FE) must
run their pirate software by an honest evaluation algorithm (on a legitimate plat-
form). This is a severe limitation. In our FE with secure key leasing setting, adver-
saries do not necessarily run their pirate software (for functional decryption) by
an honest evaluation algorithm and can take arbitrary attack strategies.

We develop a transformation from standard SKFE into SKFE with secure
key leasing by using quantum power. In particular, we use (reusable) secret-
key encryption (SKE) with certified deletion [BI20,HMNY21], where we can
securely delete ciphertexts, as a building block. We also develop a technique based
on the security bound amplification for FE [AJL+19,JKMS20] to amplify the
availability bound, that is, the number of encryption queries before ct∗ is given.
This technique deviates from known multi-party-computation-based techniques
for achieving bounded many-ciphertext security for SKFE [GVW12,AV19].3 The
security bound amplification-based technique is of independent interest since
the security bound amplification is not directly related to the amplification of
the number of queries. These are the main technical contributions of this work.
See Sect. 1.3 and main sections for more details.

Copy-Protected Functional Decryption Keys. The other contributions are copy-
protected functional decryption keys. We introduce the notion of single-decryptor
FE (SDFE), where each functional decryption key is copy-protected. This notion
can be seen as a stronger cryptographic primitive than FE with secure key leasing,
as we argued in Sect. 1.1.

– We define the syntax and security definitions for SDFE.
– We achieve collusion-resistant public key SDFE for P/poly from sub-

exponentially secure indistinguishability obfuscation (IO) and the sub-
exponential hardness of the learning with errors problem (QLWE assump-
tion).

First, we transform single-key PKFE for P/poly into single-key SDFE for P/poly
by using SDE. Then, we transform single-key SDFEP/poly into collusion-resistant
2 If we start with fully collusion-resistant SKFE, we can obtain fully collusion-resistant

SKFE with secure key leasing.
3 These techniques [GVW12,AV19] work as transformations from single-key FE

into bounded collusion-resistant FE. However, they also work as transformations
from single-ciphertext SKFE into bounded many-ciphertext SKFE. Many-ciphertext
means that SKFE is secure even if adversaries can send unbounded polynomially
many queries to an encryption oracle.
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SDFE forP/poly by using an IO-based key bundling technique [KNT21,BNPW20].
We can instantiate SDE with IO and the QLWE assumption [CLLZ21,CV21] and
single-key PKFE for P/poly with PKE [SS10,GVW12].

1.3 Technical Overview

We provide a high-level overview of our techniques. Below, standard math font
stands for classical algorithms and classical variables, and calligraphic font stands
for quantum algorithms and quantum states.

Syntax of SKFE with Secure Key Leasing. We first recall a standard SKFE
scheme. It consists of four algorithms (Setup,KG,Enc,Dec). Setup is given a
security parameter 1λ and a collusion bound 1q and generates a master secret
key msk. Enc is given msk and a plaintext x and outputs a ciphertext ct. KG
is given msk and a function f and outputs a decryption key fsk tied to f . Dec
is given fsk and ct and outputs f(x). Then, the indistinguishability-security of
SKFE roughly states that any QPT adversary cannot distinguish encryptions of
x0 and x1 under the existence of the encryption oracle and the key generation
oracle. Here, the adversary can access the key generation oracle at most q times
and can query only a function f such that f(x0) = f(x1).

An SKFE scheme with secure key leasing (SKFE-SKL) is a tuple of six algo-
rithms (Setup,KG ,Enc,Dec, Cert ,Vrfy), where the first four algorithms form a stan-
dard SKFE scheme except the following difference onKG . In addition to a function
f , KG is given an availability bound 1n in terms of the number of ciphertexts. Also,
given those inputs,KG outputs a verification key vk together with a decryption key
fsk tied to f encoded in a quantum state, as (fsk , vk) ← KG(msk, f, 1n). By using
Cert , we can generate a (classical) certificate that a quantum decryption key fsk
is deleted, as cert ← Cert(fsk ). We check the validity of certificates by using vk
and Vrfy, as �/⊥ ← Vrfy(vk, cert). In addition to the decryption correctness, an
SKFE-SKL scheme is required to satisfy the verification correctness that states
that a correctly generated certificate is accepted, that is, � = Vrfy(vk, cert) for
(fsk , vk) ← KG(msk, f, 1n) and cert ← Cert(fsk ).

Security of SKFE-SKL. The security notion of SKFE-SKL we call lessor security
intuitively guarantees that if an adversary given fsk deletes it and the generated
certificate is accepted within the declared availability bound, the adversary can-
not use fsk any more. The following indistinguishability experiment formalizes
this security notion. For simplicity, we focus on a selective setting where the
challenge plaintext pair (x∗

0, x∗
1) and the collusion bound q are fixed outside of

the security experiment in this overview.

1. Throughout the experiment, A can get access to the following oracles, where
LKG is a list that is initially empty.
OEnc(x):This is the standard encryption oracle that returns Enc(msk, x)

given x.
OKG(f, 1n):This oracle takes as input a function f and an availability bound

1n, generate (fsk , vk) ← KG(msk, f, 1n), returns fsk to A, and adds
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(f, 1n, vk, ⊥) to LKG . Differently from the standard SKFE, A can query a
function f such that f(x∗

0) �= f(x∗
1). A can get access to the key generation

oracle at most q times.
OVrfy(f, cert):Also, A can get access to the verification oracle. Intuitively, this

oracle checks that A deletes leased decryption keys correctly within the
declared availability bounds. Given (f, cert), it finds an entry (f, 1n, vk, M)
from LKG . (If there is no such entry, it returns ⊥.) If � = Vrfy(vk, cert)
and the number of queries to OEnc at this point is less than n, it returns
� and updates the entry into (f, 1n, vk, �). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if A has
correctly deleted all leased decryption keys for functions f such that f(x∗

0) �=
f(x∗

1). If so, the challenger gives the challenge ciphertext ct∗ ← Enc(msk, x∗
coin)

for random bit coin ← {0, 1} to A, and otherwise the challenger output 0.
Hereafter, A is not allowed to send a function f such that f(x∗

0) �= f(x∗
1) to

OKG .
3. A outputs a guess coin′ of coin.

We say that the SKFE-SKL scheme is lessor secure if no QPT adversary can
guess coin significantly better than random guessing. We see that if A can use a
decryption key after once A deletes and the deletion certificate is accepted, A can
detect coin with high probability since A can obtain a decryption key for f such
that f(x∗

0) �= f(x∗
1). Thus, this security notion captures the above intuition. We

see that lessor security implies standard indistinguishability-security for SKFE.
We basically work with the above indistinguishability based selective security

for simplicity. In the full version, we also provide the definitions of adaptive
security and simulation based security notions and general transformations to
achieve those security notions from indistinguishability based selective security.

Dynamic Availability Bound vs. Static Availability Bound. In SKFE-SKL, we
can set the availability bound for each decryption key differently. We can also
consider a weaker variant where we statically set the single availability bound
applied to each decryption key at the setup algorithm. We call this variant SKFE
with static bound secure key leasing (SKFE-sbSKL). In fact, by using a technique
developed in the context of dynamic bounded collusion FE [AMVY21,GGLW21],
we can generically transform SKFE-sbSKL into SKFE-SKL if the underlying
SKFE-sbSKL satisfies some additional security property and efficiency require-
ment. For the overview of this transformation, see Sect. 2.2. Therefore, we below
focus on how to achieve SKFE-sbSKL. For simplicity, we ignore those additional
properties required for the transformation to SKFE-SKL.

SKFE-sbSKL with the Availability Bound 0 from Certified Deletion. We start
with a simple construction of an SKFE-sbSKL scheme secure for the availability
bound 0 based on an SKE scheme with certified deletion [BI20,HMNY21]. The
availability bound is 0 means that it is secure if an adversary deletes decryption
keys without seeing any ciphertext.

SKE with certified deletion consists of five algorithms (KG,Enc,Dec,Del ,Vrfy).
The first three algorithms form a standard SKE scheme except that Enc output
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a verification key vk together with a ciphertext encoded in a quantum state
ct . By using Del , we can generate a (classical) certificate that ct is deleted. The
certificate is verified using vk and Vrfy. In addition to the decryption correctness,
it satisfies the verification correctness that guarantees that a correctly generated
certificate is accepted. The security notion roughly states that once an adversary
deletes a ciphertext ct and the generated certificate is accepted, the adversary
cannot obtain any plaintext information encrypted inside ct , even if the adversary
is given the secret key after the deletion.

We now construct an SKFE-sbSKL scheme zSKFE-sbSKL that is secure for
the availability bound 0, based on a standard SKFE scheme SKFE = (Setup,KG,
Enc,Dec) and an SKE scheme with certified deletion CDSKE = (CD.KG,CD.Enc,
CD.Dec,CD.Del ,CD.Vrfy). In the setup of zSKFE-sbSKL, we generate msk ←
Setup(1λ, 1q) and cd.sk ← CD.KG(1λ), and the master secret key of zSKFE-sbSKL
is set to zmsk = (msk, cd.sk). To generate a decryption key for f , we generate a
decryption key for f by SKFE as fsk ← KG(msk, f) and encrypt it by CDSKE as
(cd.ct , vk) ← CD.Enc(cd.sk, fsk). The resulting decryption key is zfsk := cd.ct and
the corresponding verification key is vk. To encrypt a plaintext x, we just encrypt
it by SKFE as ct ← Enc(msk, x) and append cd.sk contained in zmsk, as zct :=
(ct, cd.sk). To decrypt zct with zfsk , we first retrieve fsk from cd.ct and cd.sk,
and compute f(x) ← Dec(fsk, ct). The certificate generation and verification are
simply defined as those of CDSKE since zfsk is a ciphertext of CDSKE.

The security of zSKFE-sbSKL is easily analyzed. Let (x∗
0, x∗

1) be the challenge
plaintext pair. When an adversary A queries f to OKG , A is given zfsk := cd.ct ,
where fsk ← KG(msk, f) and (cd.ct , vk) ← CD.Enc(cd.sk, fsk). If f(x∗

0) �= f(x∗
1),

A is required to delete zfsk without seeing any ciphertext. This means that A
cannot obtain cd.sk before zfsk is deleted. Then, from the security of CDSKE, A
cannot obtain any information of fsk. This implies that A can obtain a decryption
key of SKFE only for a function f such that f(x∗

0) = f(x∗
1), and thus the lessor

security of zSKFE-sbSKL follows form the security of SKFE.

How to Amplify the Availability Bound? We now explain how to amplify the avail-
ability bound from 0 to any polynomial n. One possible solution is to rely on the
techniques for bounded collusion FE [GVW12,AV19]. Although the bounded col-
lusion techniques can be used to amplify “1-bounded security” to “poly-bounded
security”, it is not clear how to use it starting from “0-bounded security”. For
more detailed discussion on this point, see Remark 2.3. Therefore, we use a
different technique from the existing bounded collusion FE. At a high level,
we reduce the task of amplifying the availability bound to the task of ampli-
fying the security bound, which has been studied in the context of standard
FE [AJL+19,JKMS20].

We observe that we can obtain an SKFE-sbSKL scheme with availability
bound n for any n that is secure with only inverse polynomial probability by
just using many instances of zSKFE-sbSKL in parallel. Concretely, suppose we
use N = αn instances of zSKFE-sbSKL to achieve a scheme with availabil-
ity bound n, where α ∈ N. To generate a decryption key for f , we generate
(zfsk

j
, vkj) ← zKG(zmskj , f) for every j ∈ [N ], and set the resulting decryp-
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tion key as (zfsk
j
)j∈[N ] and the corresponding verification key as (vkj)j∈[N ]. To

encrypt x, we randomly choose j ← [N ], generate zctj ← zEnc(zmskj , x), and set
the resulting ciphertext as (j, zctj). To decrypt this ciphertext with (zfsk

j
)j∈[N ],

we just compute f(x) ← zDec(zfsk
j
, zctj). The certification generation and veri-

fication are done by performing them under all N instances. The security of this
construction is analyzed as follows. The probability that the j∗ chosen when gen-
erating the challenge ciphertext collides with some of n indices j1, · · · , jn used
by the first n calls of the encryption oracle, is at most n/N = 1/α. If such a colli-
sion does not happen, we can use the security of j∗-th instance of zSKFE-sbSKL
to prove the security of this construction. Therefore, this construction is secure
with probability roughly 1 − 1/α (denoted by 1/α-secure scheme).

Thus, all we have to do is to convert an SKFE-sbSKL scheme with inverse
polynomial security into one with negligible security. As stated above, such secu-
rity amplification has been studied for standard FE. In this work, we adopt
the amplification technique using homomorphic secret sharing (HSS) [AJL+19,
JKMS20].

Amplification Using HSS. In this overview, we describe our construction using
HSS that requires the LWE assumption with super-polynomial modulus to give a
high-level intuition. However, our actual construction uses a primitive called set
homomorphic secret sharing (SetHSS) [JKMS20], which is a weak form of HSS
and can be based on OWFs.4 See Sect. 4 for our construction based on OWFs.

An HSS scheme consists of three algorithms (InpEncode,FuncEncode,Decode).
InpEncode is given a security parameter 1λ, a number 1m, and an input x, and
outputs m input shares (si)i∈[m]. FuncEncode is given a security parameter 1λ, a
number 1m, and a function f , and outputs m function shares (fi)i∈[m]. Decode
takes a set of evaluations of function shares on their respective input shares
(fi(si))i∈[m], and outputs a value f(x). Then, the security property of an HSS
scheme roughly guarantees that for any (i∗, x∗

0, x∗
1), given a set of input shares

(si)i∈[m]\{i∗} for some i∗, an adversary cannot detect from which of the challenge
inputs they are generated, under the existence of function encode oracle that is
given f such that f(x∗

0) = f(x∗
1) and returns (fi(si))i∈[m].

We describe SKFE-sbSKL scheme SKFE-sbSKL with the availability bound
n ≥ 1 of our choice using a HSS scheme HSS = (InpEncode,FuncEncode,Decode).
In the setup of SKFE-sbSKL, we first set up 1/2-secure SKFE-sbSKL scheme
SKFE-sbSKL′ with the availability bound n. This is done by parallelizing 2n
instances of zSKFE-sbSKL as explained before. We generate m master secret keys
msk1, · · · ,mskm of SKFE-sbSKL′. Then, to generate a decryption key for f by
SKFE-sbSKL, we first generate (fi)i∈[m] ← FuncEncode(1λ, 1m, f), and generate
a decryption key fsk

i
tied to fi under mski for each i ∈ [m]. To encrypt x by

SKFE-sbSKL, we first generate (si)i∈[m] ← InpEncode(1λ, 1m, x) and generate a
ciphertext cti of si under mski for each i ∈ [m]. The certification generation and

4 The definition of HSS provided below is not standard. We modify the definition to
be close to SetHSS. Note that HSS defined below can be constructed from multi-key
fully homomorphic encryption with simulatable partial decryption property [MW16].
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verification are done by performing those of SKFE-SKL′ for all of the m instances.
When decrypting the ciphertext (cti)i∈[m] by (fsk

i
)i∈[m], we can obtain fi(si) by

decrypting cti with fsk
i

for every i ∈ [m]. By combining (fi(si))i∈[m] using
Decode, we can obtain f(x).

The lessor security of SKFE-sbSKL can be proved as follows. Each of m
instances of SKFE-sbSKL′ is secure independently with probability 1/2. Thus,
there is at least one secure instance without probability 1/2m, which is negligible
by setting m = ω(log λ). Suppose i∗-th instance is a secure instance. Let (x∗

0, x∗
1)

be the challenge plaintext pair, and let (s∗
i )i∈[m] ← InpEncode(1λ, 1m, x∗

coin) for
coin ← {0, 1}. In the security experiment, from the security of SKFE-sbSKL′

under mski∗ , an adversary cannot obtain the information of si∗ except for its
evaluation on function shares for a function f queried to OKG that satisfies that
f(x∗

0) = f(x∗
1). Especially, from the security of SKFE-sbSKL′ under mski∗ , the

adversary cannot obtain an evaluation of si∗ on function shares for a function
f such that f(x∗

0) �= f(x∗
1), though A can query such a function to OKG . Then,

we see that the lessor security of SKFE-sbSKL can be reduced to the security of
HSS.5

In the actual construction, we use SetHSS instead of HSS, as stated before.
Also, in the main body, we abstract the parallelized zSKFE-sbSKL as index-based
SKFE-sbSKL. This makes the security proof of our construction using SetHSS
simple. Moreover, in the actual construction of an index-based SKFE-sbSKL, we
bundle the parallelized instances of zSKFE-sbSKL using a PRF. This modification
is necessary to achieve the efficiency required for the above transformation into
SKFE-SKL.

Goyal et al. [CGO21] use a similar technique using HSS in a different setting
(private simultaneous message protocols). However, their technique relies on the
LWE assumption unlike ours.

Single Decryptor PKFE. In this work, we also define the notion of single decryp-
tor PKFE, which is PKFE whose functional decryption key is copy-protected.
The definition is a natural extension of SDE (PKE with copy-protected decryp-
tion keys). An adversary A tries to copy a target functional decryption key sk f∗ .
More specifically, A is given sk f∗ and outputs two possibly entangled quantum
distinguishers D1 and D2 and two plaintexts (x0, x1) such that f∗(x0) �= f∗(x1).
If D1 or D2 cannot distinguish a given ciphertext is encryption of x0 or x1,
sk f∗ is copy-protected. If both D1 and D2 have sk f∗ , they can trivially distin-
guish the challenge ciphertext. Thus, the definition guarantees copy-protection
security. We provide a collusion-resistant single-decryptor PKFE scheme, where
adversaries obtain polynomially many functional decryption keys, based on IO.

We first show that a single-key single-decryptor PKFE can be constructed
from a single-key standard PKFE scheme and SDE scheme. The construction
is simple nested encryption. Namely, when encrypting a plaintext x, we first
encrypt it by the standard PKFE scheme and then encrypt the ciphertext by

5 Actual construction and security proof needs to use a technique called the trojan
method [ABSV15]. We ignore the issue here for simplicity.
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the SDE scheme. The secret key of the SDE scheme is included in the func-
tional decryption key of the resulting single-decryptor PKFE scheme. Although
a PKFE functional decryption key can be copied, the SDE decryption key cannot
be copied and adversaries cannot break the security of PKFE. This is because we
need to run the SDE decryption algorithm before we run the PKFE decryption
algorithm.

The security notion for SDE by Coladangelo et al. [CLLZ21] is not sufficient
for our purpose since SDE plaintexts are ciphertexts of the standard PKFE in
the construction. We need to extend the security notion for SDE to prove the
security of this construction because we need to handle randomized messages
(the PKFE encryption is a randomized algorithm). Roughly speaking, this new
security notion guarantees that the security of SDE holds for plaintexts of the
form g(x; r), where g and x respectively are a function and an input chosen by
an adversary and r is a random coin chosen by the experiment. We can observe
that the SDE scheme proposed by Coladangelo et al. [CLLZ21] based on IO
satisfies this security notion. Then, by setting g as the encryption circuit of the
standard PKFE, the security of the single-key single-decryptor PKFE scheme
above can be immediately reduced to the security of the SDE scheme. We also
extend adversarial quantum decryptors, which try to output an entire plaintext,
to adversarial quantum distinguishers, which try to guess a 1-bit coin used to
generate a ciphertext. We need this extension to use SDE as a building block.
It is easy to observe the SDE scheme by Coladangelo et al. [CLLZ21] is secure
even against quantum distinguishers.

Once we obtain a single-key single-decryptor PKFE scheme, we can transform
it into a collusion-resistant single-decryptor PKFE scheme by again using IO.
This transformation is based on one from a single-key standard PKFE scheme
into a collusion-resistant standard PKFE scheme [BNPW20,KNT21]. The idea
is as follows. We need to generate a fresh instance of the single-key scheme above
for each random tag and bundle (unbounded) polynomially many instances to
achieve collusion-resistance. We use IO to bundle multiple instances of single-key
SDFE. More specifically, a public key is an obfuscated circuit of the following
setup circuit. The setup circuit takes a public tag τ as input, generates a key pair
(pkτ ,mskτ ) of the single-key SDFE scheme using PRF value FK(τ) as randomness,
and outputs only pkτ . The master secret key is the PRF key K. We can generate
a functional decryption key for f by choosing a random tag τ and generating a
functional decryption key sk f,τ under mskτ . A functional decryption key of our
collusion-resistant scheme consists of (τ, sk f,τ ). A ciphertext is an obfuscated
circuit of the following encryption circuit, where a plaintext x is hardwired. The
encryption circuit takes a public tag τ , generates pkτ by using the public key
explained above, and outputs a ciphertext of x under pkτ . Due to this mechanism,
only one functional decryption key sk f,τ under mskτ is issued for each τ , but we
can generate polynomially many functional decryption keys by using many tags.
If we use a different tag τ ′, an independent key pair (pkτ ′ ,mskτ ′) is generated and
it is useless for another instance under (pkτ ,mskτ ). The IO security guarantees
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that the information about K (and mskτ ) is hidden.6 Thus, we can reduce the
collusion-resistance to the single-key security of the underlying single-decryptor
PKFE. Note that we need to consider super-polynomially many hybrid games
to complete the proof since the tag space size must be super-polynomial to
treat unbounded polynomially many tags. This is the reason why we need the
sub-exponential security for building blocks.

1.4 Organization

Due to the space limitation, we focus on SKFE-SKL in the rest of this version,
and we provide results on single decryptor FE in the full version. For the high-
level overview of our single-decryptor FE, please see Sect. 1.3. Also, please refer
the full version for preliminaries including notations.

In Sect. 2, we provide the definition of SKFE-SKL, and its variants SKFE-
sbSKL and index-based SKFE-sbSKL. In Sect. 3, we construct an index-based
SKFE-sbSKL scheme. In Sect. 4, we show how to transform an index-based
SKFE-sbSKL scheme into an SKFE-sbSKL scheme. In Sect. 5, we show how
to construct an SKFE-SKL scheme from an SKFE-sbSKL scheme.

2 Definition of SKFE with Secure Key Leasing

We introduce the definition of SKFE with secure key leasing and its variants.

2.1 SKFE with Secure Key Leasing

We first define SKFE with secure key leasing (SKFE-SKL).

Definition 2.1 (SKFE with Secure Key Leasing). An SKFE-SKL scheme
SKFE-SKL is a tuple of six algorithms (Setup,KG ,Enc,Dec, Cert ,Vrfy). Below, let
X , Y, and F be the plaintext, output, and function spaces of SKFE-SKL, respec-
tively.

Setup(1λ, 1q) → msk: The setup algorithm takes a security parameter 1λ and a
collusion bound 1q, and outputs a master secret key msk.

KG(msk, f, 1n) → (fsk , vk): The key generation algorithm takes a master secret
key msk, a function f ∈ F , and an availability bound 1n, and outputs a
functional decryption key fsk and a verification key vk.

Enc(msk, x) → ct: The encryption algorithm takes a master secret key msk and
a plaintext x ∈ X , and outputs a ciphertext ct.

Dec(fsk , ct) → x̃: The decryption algorithm takes a functional decryption key fsk
and a ciphertext ct, and outputs a value x̃.

Cert(fsk ) → cert: The certification algorithm takes a function decryption key fsk ,
and outputs a classical string cert.

6 We use puncturable PRFs and the puncturing technique here as the standard tech-
nique for cryptographic primitives based on IO [SW21].
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Vrfy(vk, cert) → �/⊥: The certification-verification algorithm takes a verification
key vk and a string cert, and outputs � or ⊥.

Decryption correctness: For every x ∈ X , f ∈ F , and q, n ∈ N, we have

Pr

⎡

⎣Dec(fsk , ct) = f(x)

∣

∣

∣

∣

∣

∣

msk ← Setup(1λ, 1q)
(fsk , vk) ← KG(msk, f, 1n)
ct ← Enc(msk, x)

⎤

⎦ = 1 − negl(λ).

Verification correctness: For every f ∈ F and q, n ∈ N, we have

Pr

⎡

⎣Vrfy(vk, cert) = �
∣

∣

∣

∣

∣

∣

msk ← Setup(1λ, 1q)
(fsk , vk) ← KG(msk, f, 1n)
cert ← Cert(fsk )

⎤

⎦ = 1 − negl(λ).

Definition 2.2 (Selective Lessor Security). We say that SKFE-SKL is a
selectively lessor secure SKFE-SKL scheme for X , Y, and F , if it satisfies the
following requirement, formalized from the experiment Expsel-lessorA,SKFE-SKL(1λ, coin)
between an adversary A and a challenger:
1. At the beginning, A sends (1q, x∗

0, x∗
1) to the challenger. The challenger runs

msk ← Setup(1λ, 1q). Throughout the experiment, A can access the following
oracles.
OEnc(x): Given x, it returns Enc(msk, x).
OKG(f, 1n): Given (f, 1n), it generates (fsk , vk) ← KG(msk, f, 1n), sends fsk

to A, and adds (f, 1n, vk, ⊥) to LKG . A can access this oracle at most q
times.

OVrfy(f, cert): Given (f, cert), it finds an entry (f, 1n, vk, M) from LKG . (If
there is no such entry, it returns ⊥.) If � = Vrfy(vk, cert) and the number
of queries to OEnc at this point is less than n, it returns � and updates
the entry into (f, 1n, vk, �). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f, 1n, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �. If

so, the challenger generates ct∗ ← Enc(msk, x∗
coin) and sends ct∗ to A. Other-

wise, the challenger outputs 0. Hereafter, A is not allowed to sends a function
f such that f(x∗

0) �= f(x∗
1) to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final
output of the experiment.

For any QPT A, it holds that

Advsel-lessorSKFE-SKL,A(λ) :=
∣

∣

∣Pr[Expsel-lessorSKFE-SKL,A(1λ, 0) = 1] − Pr[Expsel-lessorSKFE-SKL,A(1λ, 1) = 1]
∣

∣

∣

≤ negl(λ).

Remark 2.1 (On the adaptive security). We can similarly define adaptive lessor
security where we allow A to adaptively choose the challenge plaintext pair
(x∗

0, x∗
1). For standard FE, we can generically convert a selectively secure one

into an adaptively secure one without any additional assumption [ABSV15]. We
observe that a similar transformation works for SKFE with secure key leasing.
Thus, for simplicity, we focus on selective lessor security in this work. See the
full version for the definition and transformation.
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Remark 2.2 (On the simulation-based security). We can also define a simulation-
based variant of selective/adaptive lessor security where a simulator simulates
a challenge ciphertext without the challenge plaintext x∗ as the simulation-
based security for standard FE [BSW11,GVW12]. We can generically convert
indistinguishability-based lessor secure SKFE with secure key leasing into a
simulation-based lessor secure one without any additional assumptions as stan-
dard FE [DIJ+13]. See the full version for the simulation-based definition and
the transformation.

2.2 SKFE with Static-Bound Secure Key Leasing

In this section, we define SKFE with static-bound secure key leasing (SKFE-
sbSKL). It is a weaker variant of SKFE-SKL in which a single availability bound
n applied to every decryption key is fixed at the setup time. We design SKFE-
sbSKL so that it can be transformed into SKFE-SKL in a generic way. For this
reason, we require an SKFE-sbSKL scheme to satisfy an efficiency requirement
called weak optimal efficiency and slightly stronger variant of the lessor security
notion.7

Below, we first introduce the syntax of SKFE-sbSKL. Then, before introduc-
ing the definition of (selective) lessor security for it, we provide the overview of
the transformation to SKFE-SKL since we think the overview makes it easy to
understand the security notion.

Definition 2.3 (SKFE with Static-Bound Secure Key Leasing). An
SKFE-sbSKL scheme SKFE-sbSKL is a tuple of six algorithms (Setup,KG ,Enc,
Dec, Cert ,Vrfy). The only difference from a normal SKFE scheme with secure key
leasing is that KG does not take as input the availability bound n, and instead,
Setup takes it as an input. Moreover, Setup takes it in binary as Setup(1λ, 1q, n),
and we require the following weak optimal efficiency.

Weak Optimal Efficiency: We require that the running time of Setup and Enc
is bounded by a fixed polynomial of λ, q, and log n.

Overview of the Transformation to SKFE-SKL. As seen above, Setup and Enc
of an SKFE-sbSKL scheme SKFE-sbSKL is required to run in time log n. This is
because, in the transformation to SKFE-SKL, we use λ instances of SKFE-sbSKL
where the k-th instance is set up with the availability bound 2k for every k ∈ [λ].
The weak optimal efficiency ensures that Setup and Enc of all λ instances run in
polynomial time. The details of the transformation are as follows.

We construct an SKFE-SKL scheme SKFE-SKL from an SKFE-sbSKL scheme
SKFE-sbSKL = (Setup,KG ,Enc,Dec, Cert ,Vrfy). When generating a master secret
key skl.msk of SKFE-SKL, we generate mskk ← Setup(1λ, 1q, 2k) for every k ∈ [λ],
and set skl.msk := (mskk)k∈[λ]. To encrypt x by SKFE-SKL, we encrypt it by all
7 We borrow the term weak optimal efficiency from the paper by Garg, Goyal, Lu, and

Waters [GGLW21], which studies dynamic bounded collusion security for standard
FE.
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λ instances, that is, generate ctk ← Enc(mskk, x) for every k ∈ [λ]. The resulting
ciphertext is skl.ct := (ctk)k∈[λ]. To generate a decryption key of SKFE-SKL for
a function f and an availability bound n, we first compute k′ ∈ [λ] such that
2k′−1 ≤ n ≤ 2k′ . Then, we generate (fsk

k′ , vkk′) ← KG(mskk′ , f). The resulting
decryption key is skl.fsk := (k′, fsk

k′) and the corresponding verification key
is vk := vkk′ . Decryption is performed by decrypting ctk′ included in skl.ct :=
(ctk)k∈[λ] by fsk

k′ . The certification generation and verification of SKFE-SKL are
simply those of SKFE-SKL.

We now consider the security proof of SKFE-SKL. In the experiment
Expsel-lessorA,SKFE-SKL(1λ, 0), an adversary A is given the challenge ciphertext skl.ct∗ :=
(ct∗k)k∈[λ], where ct∗k ← Enc(mskk, x∗

0) for every k ∈ [λ]. The proof is done if we
can switch all of ct∗k into Enc(mskk, x∗

1) without being detected by A. To this end,
the underlying SKFE-sbSKL needs to satisfy a stronger variant of lessor security
notion where an adversary is allowed to declare the availability bound such that
KG does not run in polynomial time, if the adversary does not make any query
to the key generation oracle. For example, to switch ct∗λ, the reduction algorithm
attacking SKFE-sbSKL needs to declare the availability bound 2λ, under which
KG might not run in polynomial time. Note that Setup and Enc run in polyno-
mial time even for such an availability bound due to the weak optimal efficiency.
Thus, we formalize the security notion of SKFE-sbSKL as follows.

Definition 2.4 (Selective Strtong Lessor Security). We define selective
strong lessor security for SKFE-sbSKL in the same way as that for SKFE-SKL
defined in Definition 2.2 , except the following changes for the security experi-
ment.

– A outputs n at the beginning, and the challenger generates msk ←
Setup(1λ, 1q, n). If A makes a query to OKG or OVrfy, A is required to out-
put n such that KG and Vrfy run in polynomial time.

– OKG does not take 1n as an input.

Remark 2.3 (Insufficiency of existing bounded collusion techniques). In Sect. 1.3,
we stated that it is not clear how to use the existing bounded collusion
techniques [GVW12,AV19] for constructing SKFE-sbSKL. We provide a more
detailed discussion on this point.

The bounded collusion technique essentially enables us to increase the num-
ber of decryption keys that an adversary can obtain. Thus, to try to use the
bounded collusion technique in our context, imagine the following naive construc-
tion using standard SKFE SKFE and SKE with certified deletion CDSKE. This
construction is a flipped version of the naive construction provided in Sect. 1.3.
In the construction, we encrypt a ciphertext of SKFE by CDSKE, and we include
the key of CDSKE into the decryption key of the resulting scheme. The construc-
tion can be seen as an SKFE scheme with certified deletion (for ciphertexts)
that is secure if an adversary deletes the challenge ciphertext before seeing any
decryption key. The roles of ciphertexts and decryption keys are almost symmet-
ric in SKFE [BS18]. Thus, if we can amplify the security of this construction so
that it is secure if an adversary sees some decryption keys before deleting the
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challenge ciphertext, it would lead to SKFE-sbSKL. The question is whether
we can perform such an amplification using the existing bounded collusion tech-
niques [GVW12,AV19]. We observe that it is highly non-trivial to adapt the exist-
ing bounded collusion technique starting from “0-bounded” security. Especially,
it seems difficult to design such a transformation so that the resulting SKFE-
sbSKL obtained by flipping the roles of ciphertexts and decryption keys satisfies
weak optimal efficiency and security against unbounded number of encryption
queries such as Definition 2.4.

We develop a different technique due to the above reason. Namely, we reduce
the task of amplifying the availability bound of SKFE-sbSKL into the task of
amplifying the security bound of it. In fact, our work implicitly shows that
security bound amplification for FE can be used to achieve bounded collusion-
resistance. We see that we can construct bounded collusion secure FE from
single-key FE by our parallelizing then security bound amplification technique.

2.3 Index-Based SKFE with Static-Bound Secure Key Leasing

We define index-based SKFE-sbSKL. Similarly to SKFE-sbSKL, it needs to sat-
isfy weak optimal efficiency and (selective) strong lessor security.

Definition 2.5 (Index-Base SKFE with Static-Bound Secure Key Leas-
ing). An index-base SKFE-sbSKL scheme iSKFE-sbSKL is a tuple of six algo-
rithms (Setup,KG , iEnc,Dec, Cert ,Vrfy). The only difference from an SKFE-
sbSKL scheme is that the encryption algorithm iEnc additionally takes as input
an index j ∈ [n].

Decryption correctness: For every x ∈ X , f ∈ F , q, n ∈ N, and j ∈ [n], we
have

Pr

⎡

⎣Dec(fsk , ct) = f(x)

∣

∣

∣

∣

∣

∣

msk ← Setup(1λ, 1q, n)
(fsk , vk) ← KG(msk, f)
ct ← Enc(msk, j, x)

⎤

⎦ = 1 − negl(λ).

Verification correctness: For every f ∈ F and q, n ∈ N, we have

Pr

⎡

⎣Vrfy(vk, cert) = �
∣

∣

∣

∣

∣

∣

msk ← Setup(1λ, 1q, n)
(fsk , vk) ← KG(msk, f)
cert ← Cert(fsk )

⎤

⎦ = 1 − negl(λ).

Weak Optimal Efficiency: We require that the running time of Setup and Enc
is bounded by a fixed polynomial of λ, q, and log n.

Definition 2.6 (Selective Strong Lessor Security). We say that
iSKFE-sbSKL is a selectively strong lessor secure index-based SKFE-sbSKL
scheme for X , Y, and F , if it satisfies the following requirement, formalized
from the experiment Expsel-s-lessorA,iSKFE-sbSKL(1λ, coin) between an adversary A and a chal-
lenger:
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1. At the beginning, A sends (1q, n,KGj∗, x∗
0, x∗

1) to the challenger. If A makes
a query to OKG or OVrfy, A is required to output n such that KG and Vrfy run
in polynomial time. The challenger runs msk ← Setup(1λ, 1q, n). Throughout
the experiment, A can access the following oracles.
OEnc(j, x): Given j and x, it returns Enc(msk, j, x).
OKG(f): Given f , it generates (fsk , vk) ← KG(msk, f), sends fsk to A, and

adds (f, vk, ⊥) to LKG . A can access this oracle at most q times.
OVrfy(f, cert): Given (f, cert), it finds an entry (f, vk, M) from LKG . (If there

is no such entry, it returns ⊥.) If � = Vrfy(vk, cert), it returns � and
updates the entry into (f, vk, �). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �, and A

does not make a query with Encj∗ to OEnc at this point. If so, the challenger
generates ct∗ ← Enc(msk, j∗, x∗

coin) and sends ct∗ to A. Otherwise, the chal-
lenger outputs 0. Hereafter, A is not allowed to sends a function f such that
f(x∗

0) �= f(x∗
1) to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final
output of the experiment.

For any QPT A, it holds that

Advsel-s-lessoriSKFE-sbSKL,A(λ) :=
∣

∣Pr[Expsel-s-lessoriSKFE-sbSKL,A(1
λ, 0) = 1] − Pr[Expsel-s-lessoriSKFE-sbSKL,A(1

λ, 0) = 1]
∣

∣

≤ negl(λ).

3 Index-Base SKFE with Static-Bound Secure Key
Leasing

We present our index-based SFFE-sbSKL scheme in this section.

Tool. First, we introduce the definitions for reusable SKE with certified deletion
introduced by Hiroka et al. [HMNY21]

Definition 3.1 (Reusable SKE with Certified Deletion (Syntax)). A
secret key encryption scheme with certified deletion is a tuple of quantum algo-
rithms (KG,Enc,Dec,Del ,Vrfy) with plaintext space M and key space K.

KG(1λ) → sk: The key generation algorithm takes as input the security parameter
1λ and outputs a secret key sk ∈ K.

Enc(sk, m) → (vk, ct): The encryption algorithm takes as input sk and a plaintext
m ∈ M and outputs a verification key vk and a ciphertext ct .

Dec(sk, ct) → m′: The decryption algorithm takes as input sk and ct and outputs
a plaintext m′ ∈ M or ⊥.

Del (ct) → cert: The deletion algorithm takes as input ct and outputs a certifica-
tion cert.

Vrfy(vk, cert) → � or ⊥: The verification algorithm takes vk and cert and outputs
� or ⊥.
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Decryption correctness: There exists a negligible function negl such that for
any m ∈ M,

Pr
[

Dec(sk, ct) = m

∣

∣

∣

∣

sk ← KG(1λ)
(vk, ct) ← Enc(sk, m)

]

= 1 − negl(λ).

Verification correctness: There exists a negligible function negl such that for
any m ∈ M,

Pr

⎡

⎣Vrfy(vk, cert) = �
∣

∣

∣

∣

∣

∣

sk ← KG(1λ)
(vk, ct) ← Enc(sk, m)
cert ← Del (ct)

⎤

⎦ = 1 − negl(λ).

We introduce a variant of certified deletion security where the adversary
can send many verification queries, called indistinguishability against Chosen
Verification Attacks (CVA). We use this security notion to achieve SKFE with
secure key leasing in this section.

Definition 3.2 (IND-CVA-CD Security for Reusable SKE with Cer-
tified Deletion). Let Σ = (KG,Enc,Dec,Del ,Vrfy) be a secret key encryp-
tion with certified deletion. We consider the following security experiment
Expsk-cert-voΣ,A (λ, b).

1. The challenger computes sk ← KG(1λ).
2. A sends an encryption query m to the challenger. The challenger computes

(vk, ct) ← Enc(sk, m) to A and returns (vk, ct) to A. This process can be
repeated polynomially many times.

3. A sends (m0, m1) ∈ M2 to the challenger.
4. The challenger computes (vkb, ct b) ← Enc(sk, mb) and sends ct b to A.
5. Again, A can send encryption queries. A can also send a verification query

cert to the challenger. The challenger returns sk if � = Vrfy(vkb, cert), ⊥
otherwise. This process can be repeated polynomially many times.

6. A outputs b′ ∈ {0, 1}.

We say that Σ is IND-CVA-CD secure if for any QPT A, it holds that

Advsk-cert-voΣ,A (λ) :=
∣

∣Pr[Expsk-cert-voΣ,A (λ, 0) = 1] − Pr[Expsk-cert-voΣ,A (λ, 1) = 1]
∣

∣ ≤ negl(λ).

Theorem 3.1. Known reusable SKE with certified deletion scheme [HMNY21]
satisfies IND-CVA-CD security.

We prove this theorem in the full version.

Scheme Description. We construct an index-based SKFE-sbSKL scheme
iSKFE-sbSKL = (iSetup, iKG , iEnc, iDec, iCert , iVrfy) using the following tools:

– An SKFE scheme SKFE = (Setup,KG,Enc,Dec).
– An SKE scheme with Certified Deletion CDSKE = (CD.KG,CD.Enc,CD.Dec,
CD.Del ,CD.Vrfy).
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– A PRF F.

The description of iSKFE-sbSKL is as follows.

iSetup(1λ, 1q, n):
– Generate K ← {0, 1}λ.
– Output skl.msk := (q, n, K).

iKG(msk, f):
– Parse (q, n, K) ← skl.msk.
– Compute rj‖wj ← FK(j), mskj ← Setup(1λ, 1q; rj), and cd.skj ←

CD.KG(1λ; wj) for every j ∈ [n].
– Generate fskj ← KG(mskj , f) for every j ∈ [n].
– Generate (cd.ct j , vkj) ← CD.Enc(cd.skj , fskj) for every j ∈ [n].
– Output skl.fsk := (cd.ct j)j∈[n] and vk := (vkj)j∈[n].

iEnc(skl.msk, j, x):
– Parse (q, n, K) ← skl.msk.
– Compute rj‖wj ← FK(j), mskj ← Setup(1λ, 1q; rj), and cd.skj ←

CD.KG(1λ; wj).
– Generate ctj ← Enc(mskj , x).
– Output skl.ct := (j, ctj , cd.skj).

iDec(skl.fsk , skl.ct):
– Parse (cd.ct j)j∈[n] ← skl.fsk and (j, ctj , cd.skj) ← skl.ct.
– Compute fskj ← CD.Dec(cd.skj , skl.fsk

j
).

– Output y ← Dec(fskj , ctj).
iCert(skl.fsk ):

– Parse (cd.ct j)j∈[n] ← skl.fsk .
– Compute certj ← CD.Del (cd.ctj) for every j ∈ [n].
– Output cert := (certj)j∈[n].

iVrfy(vk, cert):
– Parse (vkj)j∈[n] ← vk and (certj)j∈[n] ← cert.
– Output � if � = CD.Vrfy(vkj , certj) for every j ∈ [n], and otherwise ⊥.

It is clear that iSKFE-sbSKL satisfies correctness and weak optimal efficiency.
For security, we have the following theorem.

Theorem 3.2. If SKFE is selective indistinguishability-secure, CDSKE is IND-
CVA-CD secure,8 and F is a secure PRF, then iSKFE-sbSKL satisfies selective
strong lessor security.

Proof of Theorem 3.2. We define a sequence of hybrid games to prove the theo-
rem.

Hyb0: This is the same as Expsel-s-lessorA,iSKFE-sbSKL(1λ, 0).
1. At the beginning, A sends (1q, n, qj∗, x∗

0, x∗
1) to the challenger. The chal-

lenger generates K ← {0, 1}λ. Below, we let rj‖wj ← FK(j), mskj ←
Setup(1λ, 1q; rj), and cd.skj ← CD.KG(1λ; wj) for every j ∈ [n]. Through-
out the experiment, A can access the following oracles.

8 see Definition 3.2 for the defition of IND-CVA-CD.
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OEnc(j, x): Given j and x, it generates ctj ← Enc(mskj , x) and returns
skl.ct := (j, ctj , cd.skj).

OKG(f): Given f , it does the following.
– Compute fskj ← KG(mskj , f) for every j ∈ [n].
– Compute (cd.ct j , vkj) ← CD.Enc(cd.skj , fskj) for every j ∈ [n].
– Sets skl.fsk := (cd.ct j)j∈[n] and skl.vk := (vkj)j∈[n].

It sends skl.fsk to A and adds (f, skl.vk, ⊥) to LKG . A is allowed to
make at most q queries to this oracle.

OVrfy(f, cert := (certj)j∈[n]): Given (f, cert := (certj)j∈[n]), it finds an
entry (f, vk, M) from LKG . (If there is no such entry, it returns ⊥.) If
� = Vrfy(vkj , certj) for every j ∈ [n], it returns � and updates the
entry into (f, vk, �). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �,

and A does not make a query with Encj∗ to OEnc at this point. If so,
the challenger generates ct∗j∗j∗ ← Enc(mskj∗j∗ , x∗

0) and sends skl.ct∗ :=
(j∗, ct∗j∗j∗ , cd.skKGj∗) to A. Otherwise, the challenger outputs 0. Hereafter,
A is not allowed to sends a function f such that f(x∗

0) �= f(x∗
1) to OKG .

3. A outputs coin′. The challenger outputs coin′ as the final output of the
experiment.

Hyb1: This is the same as Hyb0 except that rj‖wj is generated as a uniformly
random string for every j ∈ [n].

We have |Pr[Hyb0 = 1] − Pr[Hyb1 = 1]| = negl(λ) from the security of F.

Hyb2: This hybrid is the same as Hyb1 except that when A sends f to OKG ,
if f(x∗

0) �= f(x∗
1), the challenger generates cd.ct j∈[n]j∗ included in skl.fsk :=

(cd.ct j)j∈[n] as (cd.ct j∗j∗ , vkj∗j∗) ← CD.Enc(cd.sk0j∗ , 0).

We can show that |Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| = negl(λ) from the secu-
rity of CDSKE as follows. We say A is valid if when A requests the challenge
ciphertext, for any entry (f, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds

that M = �, and A does not make a query with Encj∗ to OEnc at this point.
In the estimation of |Pr[Hyb1 = 1] − Pr[Hyb2 = 1]|, we have to consider the case
where A is valid since if A is not valid, the output of the experiment is 0. In
this transition of experiments, we change a plaintext encrypted under cd.skj∗ .
If A is valid, A cannot obtain cd.skj∗j∗ before A is given skl.ct∗, and A returns
all ciphertexts under cd.skj∗j∗ before it gets cd.skj∗ . Although the reduction
does not have vkj∗ here, it can simulate OVrfy by using the verification oracle in
IND-CVA-CD game. Then, we see that |Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| = negl(λ)
follows from the security of CDSKE under the key cd.skj∗ .

Hyb3: This hybrid is the same as Hyb2 except that the challenger generates ct∗j∗j∗

included in skl.ct∗ as ct∗j∗j∗ ← Enc(mskj∗ , x∗
1).

By the previous transition, in Hyb2 and Hyb3, A can obtain a decryp-
tion key under mskj∗ for a function f such that f(x∗

0) = f(x∗
1). Thus,

|Pr[Hyb2 = 1] − Pr[Hyb3 = 1]| = negl(λ) holds from the security of SKFE.
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Hyb4: This hybrid is the same as Hyb3 except that we undo the changes from
Hyb0 to Hyb2. Hyb4 is the same as Expsel-s-lessorA,iSKFE-sbSKL(1λ, 1).

|Pr[Hyb3 = 1] − Pr[Hyb4 = 1]| = negl(λ) holds from the security of F and
CDSKE.

From the above discussions, iSKFE-sbSKL satisfies selective lessor security. �

4 SKFE with Static-Bound Secure Key Leasing

We construct an SKFE-sbSKL scheme SKFE-sbSKL = (sbSKL.Setup, sbSKL.KG ,
sbSKL.Enc, sbSKL.Dec, sbSKL.Cert , sbSKL.Vrfy) from the following tools:

– An index-based SKFE-sbSKL scheme iSKFE-sbSKL = (iSetup, iKG , iEnc, iDec,
iCert , iVrfy).

– A set homomorphic secret sharing SetHSS = (SetGen, InpEncode,FuncEncode,
Decode).

– An SKE scheme SKE = (E,D).

The description of SKFE-sbSKL is as follows.

sbSKL.Setup(1λ, 1q, n):
– Generate params := (p, �, (Ti)i∈[m]) ← SetGen(1λ).
– Generate mski ← iSetup(1λ, 1q, N) for every i ∈ [m], where N = n/p.
– Generate K ← {0, 1}λ.
– Output sbskl.msk := (params, N, (msk)i∈[m], K).

sbSKL.KG(sbskl.msk, f):
– Parse (params, N, (msk)i∈[m], K) ← sbskl.msk.
– Generate scti ← E(K, 0) for every i ∈ [m].
– Generate (fi)i∈[m] ← FuncEncode(params, f).
– Generate (fsk

i
, vki) ← iKG(mski, F [fi, scti]) for every i ∈ [m], where the

circuit F is described in Fig. 1.
– Output sbskl.fsk := (fsk

i
)i∈[m] and sbskl.vk := (vki)i∈[m].

sbSKL.Enc(sbskl.msk, x):
– Parse (params, N, (msk)i∈[m], K) ← sbskl.msk.
– Generate (si)i∈[m] ← InpEncode(params, x).
– Generate i ← [N ] for every i ∈ [m].
– Generate cti ← iEnc(mski, i, (si, 0, 0)) for every i ∈ [m].
– Output sbskl.ct := (cti)i∈[m].

sbSKL.Dec(sbskl.fsk , sbskl.ct):
– Parse (fsk

i
)i∈[m] ← sbskl.fsk and (cti)i∈[m] ← sbskl.ct.

– Compute yI ← iDec(fsk
i
, cti) for every i ∈ [m].

– Output y ← Decode((yi)i∈[m]).
sbSKL.Cert(sbskl.fsk ):

– Parse (fsk
i
)i∈[m] ← sbskl.fsk .

– Compute certi ← iCert(fsk
i
) for every i ∈ [m].

– Output sbskl.cert := (certi)i∈[m].
sbSKL.Vrfy(sbskl.vk, sbskl.cert):
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– Parse (vki)i∈[m] ← sbskl.vk and (certi)i∈[m] ← sbskl.cert.
– Output � if � = iVrfy(vki, certi) for every i ∈ [m], and otherwise ⊥.

We show the correctness of SKFE-sbSKL. Let sbskl.fsk := (fsk
i
)i∈[m] be a

decryption key for f and let sbskl.ct := (cti)i∈[m] be a ciphertext of x. From
the correctness of iSKFE-sbSKL, we obtain fi(si) by decrypting cti with fsk

i
for every i ∈ [m], where (fi)i∈[m] ← FuncEncode(params, f) and (si)i∈[m] ←
InpEncode(params, x). Thus, we obtains f(x) ← Decode((fi(si))i∈[m]) from the
correctness of SetHSS. It is clear that SKFE-sbSKL also satisfies verification cor-
rectness.

Fig. 1. Description of F [fi, scti](si,K, b).

Also, the weak optimal efficiency of SKFE-sbSKL easily follows from that of
iSKFE-sbSKL since the running time of algorithms of SetHSS is independent of
n. Note that sbSKL.Enc samples indices from [N ] = [n/p], but it can be done in
time log n.

For security, we have the following theorems.

Theorem 4.1. If iSKFE-sbSKL is a selectively strong lessor secure index-based
SKFE-sbSKL scheme and SetHSS is a set homomorphic secret sharing scheme,
and SKE is a CPA secure SKE scheme, then SKFE-sbSKL is selectively strong
lessor secure.

Proof of Theorem 4.1. We define a sequence of hybrid games to prove the theo-
rem.

Hyb0: This is the same as Expsel-s-lessorA,SKFE-sbSKL(1λ, 0).
1. At the beginning, A sends (1q, n, x∗

0, x∗
1) to the challenger. The chal-

lenger generates params := (p, �, (Ti)i∈[m]) ← SetGen(1λ), mski ←
iSetup(1λ, 1q, N) for every i ∈ [m], and K ← {0, 1}λ, where N = n/p.
Throughout the experiment, A can access the following oracles.
OEnc(xk): Given the k-th query xk, it returns sbskl.ctk generated as fol-

lows.
– Generate (sk

i )i∈[m] ← InpEncode(params, xk).
– Generate ki ← [N ] for every i ∈ [m].
– Generate ctki ← iEnc(msk, i, ki, (sk

i , 0, 0)) for every i ∈ [m].
– Set sbskl.ctk := (ctki )i∈[m].

OKG(f): Given f , it generates sbskl.fsk and sbskl.vk as follows.



590 F. Kitagawa and R. Nishimaki

– Generate (fi)i∈[m] ← FuncEncode(params, f).
– Generate scti ← E(K, 0) for every i ∈ [m].
– Generate (fsk

i
, vki) ← iKG(mski, F [fi, scti]) for every i ∈ [m].

– Set sbskl.fsk := (fsk
i
)i∈[m] and sbskl.vk := (vki)i∈[m].

It sends sbskl.fsk to A and adds (f, sbskl.vk, ⊥) to LKG .
OVrfy(f, cert := (certi)i∈[m]): Given (f, cert := (certi)i∈[m]), it finds an

entry (f, vk, M) from LKG . (If there is no such entry, it returns ⊥.) If
� = Vrfy(vki, certi) for every i ∈ [m], it returns � and updates the
entry into (f, vk, �). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �,

and the number of queries to OEnc at this point is less than n. If so, the
challenger sends sbskl.ct∗ computed as follows to A.

– Generate (s∗
i )i∈[m] ← InpEncode(params, x∗

0).
– Generate ∗i ← [N ] for every i ∈ [m].
– Generate ct∗i ← iEnc(mski, (s∗

i , 0, 0)) for every i ∈ [m].
– Set sbskl.ct∗ := (ct∗i )i∈[m].

Otherwise, the challenger outputs 0. Hereafter, A is not allowed to sends
a function f such that f(x∗

0) �= f(x∗
1) to OKG .

3. A outputs coin′. The challenger outputs coin′ as the final output of the
experiment.

Below, we call i ∈ [m] a secure instance index if i∗ �= ik holds for every k ∈ [n].
We also call i ∈ [m] an insecure instance index if it is not a secure instance index.
Let Ssecure ⊆ [m] be the set of secure instance indices, and Sinsecure = S \Ssecure.
Since each ik is sampled from [N ] = [n/p], for each i ∈ [m], i is independently
included in Sinsecure with probability at most n/N = p. Then, from the existence
of unmarked element property of SetHSS, without negligible probability, there
exists e ∈ [�] such that e /∈ ⋃

i∈Sinsecure
Ti. Below, for simplicity, we assume that

there always exists at least one such instance index, and we denote it as e∗.

Hyb1: This is the same as Hyb0 except that we generate ik for every i ∈ [m] and
k ∈ [n] and i∗ for every i ∈ [m] at the beginning of the experiment. Note that
by this change, secure instance indices and i∗ are determined at the beginning
of the experiment.

|Pr[Hyb0 = 1] − Pr[Hyb1 = 1]| = 0 holds since the change at this step is only
conceptual.

Hyb2: This is the same as Hyb1 except that when A makes a query f to OKG , if
f(x∗

0) = f(x∗
1), it generates scti as scti ← E(K, fi(s∗

i )) for every i ∈ Ssecure.

|Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| = negl(λ) holds from the security of SKE.

Hyb3: This is the same as Hyb2 except that the challenger generates ct∗i as
ct∗i ← iEnc(mski, i∗i, (0, K, 1)) for every i ∈ Ssecure.
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|Pr[Hyb2 = 1] − Pr[Hyb3 = 1]| = negl(λ) holds from the selective lessor secu-
rity of iSKFE-sbSKL. We provide the proof of it in Proposition 4.1.

Hyb4: This is the same as Hyb3 except that the challenger generates (s∗
i )i∈[m] as

(s∗
i )i∈[m] ← InpEncode(params, x∗

1).

|Pr[Hyb3 = 1] − Pr[Hyb4 = 1]| = negl(λ) holds from the selective indistin-
guishability-security of SetHSS. We provide the proof of it in Proposition 4.2.

Hyb5:This is the same as Hyb4 except that we undo the changes from Hyb0 to
Hyb3. This is the same experiment as Expsel-s-lessorA,SKFE-sbSKL(1λ, 1).

|Pr[Hyb4 = 1] − Pr[Hyb5 = 1]| = negl(λ) holds from the security of SKE and
iSKFE-sbSKL.

Proposition 4.1. |Pr[Hyb2 = 1] − Pr[Hyb3 = 1]| = negl(λ) holds if
iSKFE-sbSKL is selectively lessor secure.

Proof of Proposition 4.1. We define intermediate experiments Hyb2,i′ between
Hyb2 and Hyb3 for i′ ∈ [m].

Hyb2,i′ : This is the same as Hyb2 except that the challenger generates ct∗i as
ct∗i ← iEnc(mski, i∗i, (0, K, 1)) for every i such that i ∈ Ssecure and i ≤ i′.

Then, we have

|Pr[Hyb2 = 1] − Pr[Hyb3 = 1]|
≤

∑

i′∈m

∣

∣Pr[Hyb2,i′−1 = 1 ∧ i′ ∈ Ssecure] − Pr[Hyb2,i = 1 ∧ i′ ∈ Ssecure]
∣

∣ , (1)

where we define Hyb2,0 = Hyb2 and Hyb2,m = Hyb3. To estimate each term of
Equation (1), we construct the following adversary B that attacks selective lessor
security of iSKFE-sbSKL.

1. B executes A and obtains (1q, n, x∗
0, x∗

1). B generates params := (p, �,
(Ti)i∈[m]) ← SetGen(1λ). B generates ik ← [N ] for every i ∈ [m] and
k ∈ [n] and i∗ ← [N ] for every i ∈ [m], and identifies Ssecure and Sinsecure,
where N = n/p. If i′ /∈ Ssecure, B aborts with output 0. Otherwise, B
behaves as follows. Below, we let Ssecure,<i′ = Ssecure ∩ [i′ − 1]. B computes
(s∗

i )i∈[m] ← InpEncode(params, x∗
0). B also generates K ← {0, 1}λ. B sends

(1q, N, i′∗, (s∗
i′ , 0, 0), (0, K, 1)). B also generates mski ← iSetup(1λ, 1q, N) for

every i ∈ [m] \ {i′}. B simulates oracles for A as follows.
OEnc(xk): Given the k-th query xk, B returns sbskl.ctk generated as follows.

– Generate (sk
i )i∈[m] ← InpEncode(params, xk).

– If k ≤ n, use (ik)i∈[m] generated at the beginning. Otherwise, Gener-
ate ki ← [N ] for every i ∈ [m].

– Query (ki′ , (sk
i′ , 0, 0)) to its encryption oracle and obtain ctki′ .

– Generate ctki ← iEnc(mski, ik, (sk
i , 0, 0)) for every i ∈ [m] \ {i′}.
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– Set sbskl.ctk := (ctki )i∈[m].
OKG(f): Given f , B returns sbskl.fsk computed as follows.

– Generate (fi)i∈[m] ← FuncEncode(params, f).
– Generate scti ← E(K, 0) for every i ∈ Sinsecure. Generate also scti ←

E(K, fi(s∗
i )) for every i ∈ Ssecure if f(x∗

0) = f(x∗
1), and otherwise

generate scti ← E(K, 0) for every i ∈ Ssecure.
– Query F [fi′ , scti′ ] to its key generation oracle and obtain (fsk

i′ , vki′).
– Generate (fsk

i
, vki) ← iKG(mski, F [fi, scti]) for every i ∈ [m] \ {i′}.

– Set sbskl.fsk := (fsk
i
)i∈[m].

Also, B adds (f, (vki)i∈[m]\{i′}, ⊥) to LKG .
OVrfy(f, cert := (certi)i∈[m]): Given (f, cert := (certi)i∈[m]), it finds an entry

(f, (vki)i∈[m]\{i′}, ⊥) from LKG . (If there is no such entry, it returns ⊥.) B
sends (f, certi′) to its verification oracle and obtains Mi′ . If M = � and
� = Vrfy(vki, certi) for every i ∈ [m] \ {i′}, B returns � and updates the
entry into (f, (vki)i∈[m]\{i′}, �). Otherwise, B returns ⊥.

2. When A requests the challenge ciphertext, B checks if for any entry
(f, (vki)i∈[m]\{i′}, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �.

If so, B requests the challenge ciphertext to its challenger and obtains ct∗i′ .
B also generates ct∗i ← iEnc(mski, 0i∗, (0, K, 1)) for every i ∈ Ssecure,<i′ and
ct∗i ← iEnc(mski, 0i∗, (s∗

i , 0, 0)) for every i ∈ [m] \ (Ssecure,<i′ ∪ {i′}). B sends
sbskl.ct := (ct∗i )i∈[m] to A. Hereafter, B rejects A’s query f to OKG such that
f(x∗

0) �= f(x∗
1).

3. When A outputs coin′, B outputs coin′.

B simulates Hyb2,i′−1 (resp. Hyb2,i′) if B runs in Expsel-s-lessorB,SKFE-sbSKL(1λ, 0) (resp.
Expsel-s-lessorB,SKFE-sbSKL(1λ, 1)) and i′ ∈ Ssecure. This completes the proof. �

Proposition 4.2. |Pr[Hyb3 = 1] − Pr[Hyb4 = 1]| = negl(λ) holds if SetHSS is a
set homomorphic secret sharing.

Proof (of Proposition 4.2). We construct the following adversary B that attacks
the selective indistinguishability-security of SetHSS.

1. Given params := (p, �, (Ti)i∈[m]), B executes A and obtains (1q, n, x∗
0, x∗

1). B
generates ik ← [N ] for every i ∈ [m] and k ∈ [n] and i∗ ← [N ] for every
i ∈ [m], and identifies Ssecure, Sinsecure, and the unmarked element e∗, where
N = n/p. B sends (e∗, x∗

0, x∗
1) to the challenger and obtains (s∗

i )i∈[m]e∗ /∈ ,
where [m]e∗ /∈ denotes the subset of [m] consisting of i such that e∗ /∈ Ti. B
also generates mski ← iSetup(1λ, 1q, N) for every i ∈ [m] and K ← {0, 1}λ. B
simulates oracles for A as follows.
OEnc(xk): Given the k-th query xk, B returns sbskl.ctk generated as follows.

– Generate (sk
i )i∈[m] ← InpEncode(params, xk).

– If k ≤ n, use (ik)i∈[m] generated at the beginning. Otherwise, Gener-
ate ki ← [N ] for every i ∈ [m].

– Generate ctki ← iEnc(mski, ki, (sk
i , 0, 0)) for every i ∈ [m].

– Set sbskl.ctk := (ctki )i∈[m].
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OKG(f): Given f , B returns sbskl.fsk computed as follows.
– Queries f to its function encode oracle and obtain (fi, yi :=

fi(s∗
i ))i∈[m]) if f(x∗

0) = f(x∗
1). Otherwise, compute (fi)i∈[m] ←

FuncEncode(params, f).
– Generate scti ← E(K, 0) for every i ∈ Sinsecure. Generate also scti ←
E(K, fi(s∗

i )) for every i ∈ Ssecure if f(x∗
0) = f(x∗

1), and otherwise
generate scti ← E(K, 0) for every i ∈ Ssecure.

– Generate (fsk
i
, vki) ← iKG(mski, F [fi, scti]) for every i ∈ [m].

– Set sbskl.fsk := (fsk
i
)i∈[m].

Also, B adds (f, (vki)i∈[m], ⊥) to LKG .
OVrfy(f, cert := (certi)i∈[m]): Given (f, cert := (certi)i∈[m]), it finds an entry

(f, (vki)i∈[m], ⊥) from LKG . (If there is no such entry, it returns ⊥.) If
� = Vrfy(vki, certi) for every i ∈ [m] and the number of queries to OEnc
at this point is less than n, B returns � and updates the entry into
(f, (vki)i∈[m], �). Otherwise, B returns ⊥.

2. When A requests the challenge ciphertext, B checks if for any entry
(f, (vki)i∈[m]\{i′}, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �.

If so, B generates ct∗i ← iEnc(mski, i∗i, (0, K, 1)) for every i ∈ Ssecure
and ct∗i ← iEnc(mski, i∗i, (s∗

i , 0, 0)) for every i ∈ Sinsecure, and B sends
sbskl.ct := (ct∗i )i∈[m] to A. Otherwise, B outputs 0 and terminates. Hereafter,
B rejects A’s query f to OKG such that f(x∗

0) �= f(x∗
1).

3. When A outputs coin′, B outputs coin′.

B simulates Hyb3 (resp. Hyb4) if B runs in Expsel-indSetHSS,B(1λ, 0) (resp.
Expsel-indSetHSS,B(1λ, 1)). This completes the proof. �

From the above discussions, SKFE-sbSKL satisfies selective strong lessor secu-
rity. �

Remark 4.1 (Difference from FE security amplification). A savvy reader notices
that although we use the technique used in the FE security amplification by Jain
et al. [JKMS20], we do not use their probabilistic replacement theorem [JKMS20,
Theorem 7.1 in eprint ver.] and the nested construction [JKMS20, Section 9 in
eprint ver.] in the proofs of Theorem 4.1. We do not need them for our purpose
due to the following reason.

Jain et al. need the nested construction to achieve a secure FE scheme whose
adversary’s advantage is less than 1/6 from one whose adversary’s advantage is
any constant ε ∈ (0, 1). We do not need the nested construction since we can
start with a secure construction whose adversary’s advantage is less than 1/6 by
setting a large index space in the index-based construction.

Jain et al. need the probabilistic replacement theorem due to the following
reason. We do not know which FE instance is secure at the beginning of the FE
security game in the security amplification context, while the adversary in set
homomorphic secret sharing must declare the index of a secure instance at the
beginning. In our case, whether each index-based FE instance is secure or not
depends on whether randomly sampled indices collide or not. In addition, we can
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sample all indices used in the security game at the beginning of the game, and a
secure FE instance is fixed at the beginning. Thus, we can apply the security of
set homomorphic secret sharing without the probabilistic replacement theorem.

5 SKFE with Secure Key Leasing

We construct an SKFE-SKL scheme SKFE-SKL = (SKL.Setup,SKL.KG ,SKL.Enc,
SKL.Dec,SKL.Cert ,SKL.Vrfy) from an SKFE-sbSKL scheme SKFE-sbSKL
= (sbSKL.Setup, sbSKL.KG , sbSKL.Enc, sbSKL.Dec, sbSKL.Cert , sbSKL.Vrfy). The
description of SKFE-SKL is as follows.

SKL.Setup(1λ, 1q):
– Generate mskk ← sbSKL.Setup(1λ, 1q, 2k) for every k ∈ [λ].
– Output skl.msk := (mskk)k∈[λ].

SKL.KG(skl.msk, f, 1n):
– Parse (mskk)k∈[λ] ← skl.msk.
– Compute k′ such that 2k′−1 ≤ n ≤ 2k′ .
– Generate (fsk

k′ , vkk′) ← sbSKL.KG(mskk′ , f).
– Output skl.fsk := (k′, fsk

k′) and vkk′ .
SKL.Enc(skl.msk, x):

– Parse (mskk)k∈[λ] ← skl.msk.
– Generate ctk ← sbSKL.Enc(mskk, x) for every k ∈ [λ].
– Output skl.ct := (ctk)k∈[λ].

SKL.Dec(skl.sk f , skl.ct):
– Parse (k′, fsk

k′) ← skl.fsk and (ctk)k∈[λ] ← skl.ct.
– Output y ← sbSKL.Dec(fsk

k′ , ctk′).
SKL.Cert(skl.sk f ):

– Parse (k′, fsk
k′) ← skl.sk f .

– Output cert ← sbSKL.Cert(fsk
k′).

SKL.Vrfy(vk, cert):
– Output �/⊥ ← sbSKL.Vrfy(vk, cert).

The correctness of SKFE-SKL follows from that of SKFE-sbSKL. Also, we
can confirm that all algorithms of SKFE-SKL run in polynomial time since
sbSKL.Setup and sbSKL.Enc of SKFE-sbSKL run in polynomial time even for
the availability bound 2λ due to its weak optimal efficiency. For security, we
have the following theorem.

Theorem 5.1. If SKFE-sbSKL satisfies selective strong lessor security, then
SKFE-SKL satisfies selective lessor security.

Proof of Theorem 5.1. We define a sequence of hybrid games to prove the theo-
rem.

Hyb0: This is the same as Expsel-lessorA,SKFE-SKL(1λ, 0).
1. At the beginning, A sends (1q, x∗

0, x∗
1) to the challenger. The challenger

runs mskk ← sbSKL.Setup(1λ, 1q, 2k) for every k ∈ [λ]. Throughout the
experiment, A can access the following oracles.
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OEnc(x): Given x, it generates ctk ← sbSKL.Enc(mskk, x) for every k ∈ [λ]
and returns skl.ct := (ctk)k∈[λ].

OKG(f, 1n): Given (f, 1n), it computes k such that 2k−1 ≤ n ≤ 2k, gener-
ates (fsk

k
, vkk) ← sbSKL.KG(mskk, f), and sets skl.fsk := (k, fsk

k
). It

returns skl.fsk to A and adds (f, 1n, vkk, ⊥) to LKG . A can access this
oracle at most q times.

OVrfy(f, cert): Given (f, cert), it finds an entry (f, 1n, vk, M) from LKG .
(If there is no such entry, it returns ⊥.) If � = Vrfy(vk, cert) and the
number of queries to OEnc at this point is less than n, it returns �
and updates the entry into (f, 1n, vk, �). Otherwise, it returns ⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f, 1n, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M = �.

If so, the challenger generates ct∗k ← sbSKL.Enc(mskk, x∗
0) for every k ∈ [λ]

and sends skl.ct∗ := (ct∗k)k∈[λ] to A. Otherwise, the challenger outputs 0.
Hereafter, A is not allowed to sends a function f such that f(x∗

0) �= f(x∗
1)

to OKG .
3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final

output of the experiment.

We define Hybk′ for every k′ ∈ [λ].

Hybk′ : This hybrid is the same as Hybk′−1 except that ct∗k′ is generated as ct∗k′ ←
Enc(mskk′ , x∗

1).

Hybλ is exactly the same experiment as Expsel-lessorA,SKFE-SKL(1λ, 1).
For every k′ ∈ [λ], we let SUCk′ be the event that the output of the experiment

Hybk′ is 1. Then, we have

Advsel-lessorSKFE-SKL,A(λ) = |Pr[Hyb0 = 1] − Pr[Hybλ = 1]| ≤
λ

∑

k′=1

∣

∣Pr[SUCk′−1] − Pr[SUCk′ ]
∣

∣ .

Proposition 5.1. It holds that
∣

∣Pr[Hybk′−1 = 1] − Pr[Hybk′ = 1]
∣

∣ = negl(λ) for
every k′ ∈ [λ] if SKFE-sbSKL is selectively lessor secure.

Proof (of Proposition 5.1). We construct the following adversary B that attacks
selective lessor security of SKFE-sbSKL with respect to mskk′ .

1. B executes A and obtains (1q, x∗
0, x∗

1) from A. B sends (1q, x∗
0, x∗

1, 2k′) to the
challenger. B generates mskk ← sbSKL.Setup(1λ, 1q, 2k) for every k ∈ [λ]\{k′}.
B simulates queries made by A as follows.
OEnc(x): Given x, B generates ctk ← sbSKL.Enc(mskk, x) for every k ∈ [λ] \

{k′}. B also queries x to its encryption oracle and obtains ctk′ . B returns
skl.ct := (ctk)k∈[λ].

OKG(f, 1n): Given (f, 1n), B computes k such that 2k−1 ≤ n ≤ 2k. If k �= k′,
B generates (fsk

k
, vkk) ← sbSKL.KG(mskk, f), and otherwise B queries f

to its key generation oracle and obtains fsk
k

and sets vkk := ⊥. B returns
skl.fsk := fsk

k
. B adds (f, 1n, vkk, ⊥) to LKG .
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OVrfy(f, cert): Given (f, cert), it finds an entry (f, 1n, vk, M) from LKG . (If
there is no such entry, it returns ⊥.) If vk = ⊥, B sends cert to its verifica-
tion oracle and obtains M , and otherwise it computes M = Vrfy(vk, cert).
If M = � and the number of queries to OEnc at this point is less than n, it
returns � and updates the entry into (f, 1n, vk, �). Otherwise, it returns
⊥.

2. When A requests the challenge ciphertext, the challenger checks if for any
entry (f, 1n, vk, M) in LKG such that f(x∗

0) �= f(x∗
1), it holds that M =

�. If so, B requests the challenge ciphertext to its challenger and obtains
ct∗k′ , generates ct∗k ← sbSKL.Enc(mskk, x∗

1) for every 1 ≤ k < k′ and ct∗k ←
sbSKL.Enc(mskk, x∗

0) for every k′ < k ≤ λ, and sends skl.ct∗ := (ct∗k)k∈[λ] to
A. Otherwise, the challenger outputs 0. Hereafter, A is not allowed to sends
a function f such that f(x∗

0) �= f(x∗
1) to OKG .

3. When A outputs coin′, B outputs coin′ and terminates.

B simulates Hybk′−1 (resp. Hybk′) for A if B runs in Expsel-lessorB,SKFE-sbSKL(1λ, 0)
(resp. Expsel-lessorB,SKFE-sbSKL(1λ, 1).). This completes the proof. �

From the above discussions, SKFE-SKL satisfies selective lessor security. �
By Theorem 5.1, 4.1 and 3.2 and the fact that all building blocks used to

obtain these theorems can be based on OWFs, we obtain the following theorem.

Theorem 5.2. If there exist OWFs, there exists selectively lessor secure SKFE-
SKL for P/poly (in the sense of Definition 2.2).

Although we describe our results on SKFE-SKL in the bounded collusion-
resistant setting, our transformation from standard SKFE to SKFE-SKL also
works in the fully collusion-resistant setting. The fully collusion-resistance guar-
antees that the SKFE scheme is secure even if an adversary accesses the key gen-
eration oracle a-priori unbounded times. Namely, if we start with fully collusion-
resistant SKFE, we can obtain fully collusion-resistant SKFE-SKL by our trans-
formations.
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Abstract. We propose three constructions of classically verifiable non-
interactive zero-knowledge proofs and arguments (CV-NIZK) for QMA
in various preprocessing models.
1. We construct a CV-NIZK for QMA in the quantum secret parame-

ter model where a trusted setup sends a quantum proving key to the
prover and a classical verification key to the verifier. It is information
theoretically sound and zero-knowledge.

2. Assuming the quantum hardness of the learning with errors problem,
we construct a CV-NIZK for QMA in a model where a trusted party
generates a CRS and the verifier sends an instance-independent quan-
tum message to the prover as preprocessing. This model is the same as
one considered in the recent work by Coladangelo, Vidick, and Zhang
(CRYPTO ’20). Our construction has the so-called dual-mode prop-
erty, which means that there are two computationally indistinguish-
able modes of generating CRS, and we have information theoretical
soundness in one mode and information theoretical zero-knowledge
property in the other. This answers an open problem left by Coladan-
gelo et al., which is to achieve either of soundness or zero-knowledge
information theoretically. To the best of our knowledge, ours is the first
dual-mode NIZK for QMA in any kind of model.

3. We construct a CV-NIZK for QMA with quantum preprocessing in
the quantum random oracle model. This quantum preprocessing is
the one where the verifier sends a random Pauli-basis states to the
prover. Our construction uses the Fiat-Shamir transformation. The
quantum preprocessing can be replaced with the setup that distributes
Bell pairs among the prover and the verifier, and therefore we solve
the open problem by Broadbent and Grilo (FOCS ’20) about the pos-
sibility of NIZK for QMA in the shared Bell pair model via the Fiat-
Shamir transformation.

1 Introduction

1.1 Background

The zero-knowledge [GMR89], which ensures that the verifier learns noth-
ing beyond the statement proven by the prover, is one of the most central
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concepts in cryptography. Recently, there have been many works that con-
structed non-interactive zero-knowledge (NIZK) [BFM88] proofs or arguments
for QMA, which is the “quantum counterpart” of NP, in various kind of models
[ACGH20,CVZ20,BG20,Shm21,BCKM21,BM21]. We note that we require the
honest prover to run in quantum polynomial-time receiving sufficiently many
copies of a witness when we consider NIZK proofs or arguments for QMA. All
known protocols except for the protocol of Broadbent and Grilo [BG20] only
satisfy computational soundness. The protocol of [BG20] satisfies information
theoretical soundness and zero-knowledge in the secret parameter (SP) model
[Ps05] where a trusted party generates proving and verification keys and gives
them to the corresponding party while keeping it secret to the other party as
setup.1 A drawback of their protocol is that the prover sends a quantum proof
to the verifier, and thus the verifier should be quantum. Therefore it is natural
to ask the following question.

Can we construct a NIZK proof for QMA with classical verification
assuming a trusted party that generates proving and verification keys?

In addition, the SP model is not a very desirable model since it assumes a
strong trust in the setup. In the classical literature, there are constructions of NIZK
proofs for NP in the common reference string (CRS) model [BFM88,FLS99,PS19]
where the only trust in the setup is that a classical string is chosen according to
a certain distribution and then published. Compared to the SP model, we need
to put much less trust in the setup in the CRS model. Indeed, several works
[BG20,CVZ20,Shm21] mention it as an open problem to construct a NIZK proofs
(or even arguments) for QMA in the CRS model. Though this is still open, there
are several constructions of NIZKs for QMA in different models that assume less
trust in the setup than in the SP model [CVZ20,Shm21,BCKM21]. However, all
of them are arguments. Therefore, we ask the following question.

Can we construct a NIZK proof for QMA with classical verification in a
model that assumes less trust in the setup than in the SP model?

The Fiat-Shamir transformation [FS87] is one of the most important tech-
niques in cryptography that have many applications. In particular, NIZK can
be constructed from a Σ protocol: the prover generates the verifier’s challenge
β by itself by applying a random oracle H on the prover’s first message α, and
then the prover issues the proof π = (α, γ), where γ is the third message gen-
erated from α and β = H(α). It is known that Fiat-Shamir transform works in
the post-quantum setting where we consider classical protocols secure against
quantum adversaries [LZ19,DFMS19,DFM20]. On the other hand, it is often
pointed out that (for example, [Shm21,BG20]) this standard technique cannot
be used in the fully quantum setting. In particular, due to the no-cloning, the
application of random oracle on the first message does not work when the first
message is quantum like so-called the Ξ-protocol constructed by Broadbent and
Grilo [BG20]. Broadbent and Grilo left the following open problem:
1 The SP model is also often referred to as preprocessing model [DMP90].
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Is it possible to construct NIZK for QMA in the CRS model (or shared
Bell pair model) via the Fiat-Shamir transformation?

Note that the shared Bell pair model is the setup model where the setup dis-
tributes Bell pairs among the prover and the verifier. It can be considered as a
“quantum analogue” of the CRS [Kob03].

1.2 Our Results

We answer the above questions affirmatively.

1. We construct a classically verifiable NIZK (CV-NIZK) for QMA in the QSP
model where a trusted party generates a quantum proving key and classical
verification key and gives them to the corresponding parties. We do not rely
on any computational assumption for this construction either, and thus both
soundness and the zero-knowledge property are satisfied information theoret-
ically. This answers our first question. Compared with [BG20], ours has an
advantage that verification is classical at the cost of making the proving key
quantum. The proving key is a very simple state, i.e., a tensor product of
randomly chosen Pauli X, Y , or Z basis states. We note that we should not
let the verifier play the role of the trusted party for this construction since
that would break the zero-knowledge property.

2. Assuming the quantum hardness of the learning with errors problem (the
LWE assumption) [Reg09], we construct a CV-NIZK for QMA in a model
where a trusted party generates a CRS and the verifier sends an instance-
independent quantum message to the prover as preprocessing. We note that
the CRS is reusable for generating multiple proofs but the quantum message
in the preprocessing is not reusable. In this model, we only assume a trusted
party that just generates a CRS once, and thus this answers our second ques-
tion. This model is the same as one considered in [CVZ20] recently, and we
call it the CRS + (V → P ) model. Compared to their work, our construction
has the following advantages.
(a) In their protocol, both soundness and the zero-knowledge property hold

only against quantum polynomial-time adversaries, and they left it open
to achieve either of them information theoretically. We answer the open
problem. Indeed, our construction has the so-called dual-mode prop-
erty [GOS12,PS19], which means that there are two computationally
indistinguishable modes of generating CRS, and we have information
theoretical soundness in one mode and information theoretical zero-
knowledge property in the other. To the best of our knowledge, ours is
the first dual-mode NIZK for QMA in any kind of model.

(b) Our protocol uses underlying cryptographic primitives (which are lossy
encryption and oblivious transfer with certain security) only in a black-
box manner whereas their protocol heavily relies on non-black-box usage
of the underlying primitives. Indeed, their protocol uses fully homomor-
phic encryption to homomorphically runs the proving algorithm of a
NIZK for NP, which would make the protocol extremely inefficient. On
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Table 1. Comparison of NIZKs for QMA.

Reference Soundness ZK Ver. Model Assumption Misc

[ACGH20] comp. comp. C SP LWE + QRO

[CVZ20] comp. comp. Q+C CRS + (V → P ) LWE AoQK

[BG20] stat. stat. Q SP None

[Shm21] comp. comp. Q MDV LWE Reusable

[BCKM21] comp. comp. Q MDV LWE Reusable and single-witness

[BM21] comp. stat. C CRS iO + QRO (heuristic)

Section 3 stat. stat. C QSP None

Section 4 stat. comp. comp. stat. Q+C CRS + (V → P ) LWE Dual-mode

Section 5 comp. (query) comp. (query) C V → P/Bell pair QRO

In column “Soundness” (resp. “ZK”), stat., and comp. mean statistical, and computa-
tional soundness (resp. zero- knowledge), respectively. Also, comp.(query) means that
only the number of queries should be polynomial. In column “Ver.”, “Q” and “C” mean
that the verification is quantum and classical, respectively, and “Q+C” means that the
verifier needs to send a quantum message in preprocessing but the online phase of
verification is classical. QRO means the quantum random oracle.

the other hand, our construction uses the underlying primitives only in
a black-box manner, which results in a much more efficient construction.
We note that black-box constructions have been considered desirable for
both theoretical and practical reasons in the cryptography community
(e.g., see introduction of [IKLP06]).

(c) The verifier’s quantum operation in our preprocessing is simpler than
that in theirs: in the preprocessing of our protocol, the verifier has only
to do single-qubit gate operations (Hadamard, bit-flip or phase gates),
while in the preprocessing of their protocol, the verifier has to do five-
qubit (entangled) Clifford operations. In their paper [CVZ20], they left
the following open problem: how far their preprocessing phase could be
weakened? Our construction with the weaker verifier therefore partially
answers the open problem.

On the other hand, Coladangelo et al. [CVZ20] proved that their protocol is
also an argument of quantum knowledge (AoQK). We leave it open to study
if ours is also a proof/argument of knowledge.

3. We construct a CV-NIZK for QMA with quantum preprocessing in the quan-
tum random oracle model. This quantum preprocessing is the one where the
verifier sends a random Pauli-basis states to the prover. Our construction uses
the Fiat-Shamir transformation. Importantly, the quantum preprocessing can
be replaced with the setup that distributes Bell pairs among the prover and
the verifier. The distribution of Bell pairs by the setup can be considered as
a “quantum analogue” of the CRS. This result gives an answer to our third
question (and the second question as well). (Note that both the soundness
and zero-knowledge property of the construction are computational one, but
it does not mean that we use some computational assumptions: just the oracle
query is restricted to be polynomial time.)



Classically Verifiable NIZK for QMA with Preprocessing 603

Comparison Among NIZKs for QMA. We give more comparisons among our
and known constructions of NIZKs for QMA. Since we already discuss compar-
isons with ours and [BG20,CVZ20], we discuss comparisons with other works.
A summary of the comparisons is given in Table 1.

Alagic et al. [ACGH20] gave a construction of a NIZK for QMA in the
SP model. Their protocol has an advantage that both the trusted party and
verifier are completely classical. On the other hand, the drawback is that only
computational soundness and zero-knowledge are achieved, whereas our first two
constructions achieve (at least) either statistical soundness or zero-knowledge.
Their protocol also uses the Fiat-Shamir transformation with quantum random
oracle like our third result, but their setup is the secret parameter model, whereas
ours can be the sharing Bell pair model, which is a quantum analogue of the
CRS model.

Shmueli [Shm21] gave a construction of a NIZK for QMA in the malicious
designated-verifier (MDV) model, where a trusted party generates a CRS and
the verifier sends an instance-independent classical message to the prover as
preprocessing. In this model, the preprocessing is reusable, i.e., a single prepro-
cessing can be reused to generate arbitrarily many proofs later. This is a crucial
advantage of their construction compared to ours. On the other hand, in their
protocol, proofs are quantum and thus the verifier should perform quantum com-
putations in the online phase whereas the online phase of the verifier is classical
in our constructions. Also, their protocol only satisfies computational soundness
and zero-knowledge whereas we can achieve (at least) either of them statistically.

Recently, Bartusek et al. [BCKM21] gave another construction of a NIZK for
QMA in the MDV model that has an advantage that the honest prover only
uses a single copy of a witness. (Note that all other NIZKs for QMA including
ours require the honest prover to take multiple copies of a witness if we require
neglible completeness and soundness errors.) However, their construction also
requires quantum verifier in the online phase and only achieves computational
soundness and zero-knowledge similarly to [Shm21].

Subsequently to our work, Bartusek and Malavolta [BM21] recently con-
structed the first CV-NIZK argument for QMA in the CRS model assuming
the LWE assumption and ideal obfuscation for classical circuits. An obvious
drawback is the usage of ideal obfuscation, which has no provably secure instan-
tiation.2 They also construct a witness encryption scheme for QMA under the
same assumptions. They use the verification protocol of Mahadev [Mah18] and
therefore the LWE assumption is necessary. If our CV-NIZK in the QSP model is
used, instead, a witness encryption for QMA (with quantum ciphertext) would
be constructed without the LWE assumption, which is one interesting applica-
tion of our results.

2 In the latest version, they give a candidate instantiation based on indistinguishability
obfuscation and random oracles. However, the instantiation is heuristic since they
obfuscate circuits that involve the random oracle, which cannot be done in the
quantum random oracle model.
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1.3 Technical Overview

Classically Verifiable NIZK for QMA in the QSP Model. Our starting point is
the NIZK for QMA in [BG20], which is based on the fact that a QMA lan-
guage can be reduced to the 5-local Hamiltonian problem with locally simulatable
history states [BG20,GSY19]. (We will explain later the meaning of “locally sim-
ulatable”.) An instance x corresponds to an N -qubit Hamiltonian Hx of the form
Hx =

∑M
i=1 pi

I+siPi

2 , where N = poly(|x|), M = poly(|x|), si ∈ {+1,−1}, pi > 0,
∑M

i=1 pi = 1, and Pi is a tensor product of Pauli operators (I,X, Y, Z) with at
most 5 nontrivial Pauli operators (X,Y,Z). There are 0 < α < β < 1 with
β −α = 1/poly(|x|) such that if x is a yes instance, then there exists a state ρhist
(called the history state) such that Tr(ρhistHx) ≤ α, and if x is a no instance,
then for any state ρ, we have Tr(ρHx) ≥ β.

The completeness and the soundness of the NIZK for QMA in [BG20] is
based on the posthoc verification protocol [FHM18], which is explained as fol-
lows. To prove that x is a yes instance, the prover sends the history state to the
verifier. The verifier first chooses Pi with probability pi, and measures each qubit
in the Pauli basis corresponding to Pi. Let mj ∈ {0, 1} be the measurement result
on jth qubit. The verifier accepts if (−1)⊕jmj = −si and rejects otherwise. The
probability that the verifier accepts is 1 − Tr(ρHx) when the prover’s quantum
message is ρ, and therefore the verifier accepts with probability at least 1−α if x
is a yes instance and the prover is honest whereas it accepts with probability at
most 1−β if x is a no instance. (See Lemma 2.3 and [FHM18].) The gap between
completeness and soundness can be amplified by simple parallel repetitions.

The verifier in the posthoc protocol is, however, not classical, because it has
to receive a quantum state and measure each qubit. Our first idea to make the
verifier classical is to use the quantum teleportation. Suppose that the prover
and verifier share sufficiently many Bell pairs at the beginning. Then the prover
can send the history state to the verifier with classical communication by the
quantum teleportation. Though this removes the necessity of quantum commu-
nication, the verifier still needs to be quantum since it has to keep halves of Bell
pairs and perform a measurement after receiving a proof.

To solve the problem, we utilize our observation that the verifier’s measure-
ment and the prover’s measurement commute with each other, which is our
second idea. In other words, we can let the verifier perform the measurement at
the beginning without losing completeness or soundness. In the above quantum-
teleportation-based protocol, when the prover sends its measurement outcomes
{(xj , zj)}j∈[N ] to the verifier, the verifier’s state collapses to XxZzρhistZ

zXx

where ρhist denotes the history state and XxZz means
∏N

j=1 X
xj

j Z
zj

j . Then the
verifier applies the Pauli correction XxZz and then measures each qubit in a
Pauli basis. We observe that the Pauli correction can be applied even after the
verifier measures each qubit because X

xj

j Z
zj

j before a Pauli measurement on the
jth qubit has the same effect as XOR by zj or xj after the measurement (see
Lemma 2.2). Therefore, if a trusted party generates Bell pairs and measures half
of them in random Pauli basis and gives the unmeasured halves to the prover as
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a proving key while the measurement outcomes to the verifier as a verification
key, a completely classical verifier can verify the QMA promise problem.

The last remaining issue is that the distribution of bases that appear in Pi

depends on the instance x, and thus we cannot sample the distribution at the
setup phase where x is not decided yet. To resolve this issue, we use the following
idea (which was also used in [ACGH20]). The trusted party just chooses random
bases, and the verifier just accepts if they are inconsistent to Pi chosen by the
verifier in the online phase. Since there are only 3 possible choices of the bases
and Pi non-trivially acts on at most 5 qubits, the probability that the randomly
chosen bases are consistent to Pi is at least 3−5.3 Therefore we can still achieve
inverse-polynomial gap between completeness and soundness.

The zero-knowledge property of the NIZK for QMA in [BG20] uses the local
simulatability of the history state. It roughly means that a classical description
of the reduced density matrix of the history state for any 5-qubit subsystem can
be efficiently computable without knowing the witness. Broadbent and Grilo
[BG20] used this local simulatability to achieve the zero-knowledge property
as follows. A trusted party randomly chooses (x̂, ẑ) $← {0, 1}N × {0, 1}N , and
randomly picks a random subset SV ⊆ [N ] such that 1 ≤ |SV | ≤ 5. Then it gives
(x̂, ẑ) to the prover as a proving key and gives {(x̂j , ẑj)}j∈SV

to the verifier as
a verification key where x̂j and ẑj denote the j-th bits of x̂ and ẑ, respectively.
The prover generates the history state ρhist and sends ρ′ = X x̂Z ẑρhistZ

ẑX x̂ to
the verifier as a proof. The verifier then measures each qubit as is done in the
posthoc verification protocol. This needs the quantum verifier, but as we have
explained, we can make the verifier classical by using the teleportation technique.

An intuitive explanation of why it is zero-knowledge is that the verifier can
access at most five qubits of the history state, because other qubits are quan-
tum one-time padded. Due to the local simulatability of the history state, the
information that the verifier gets can be classically simulated without the wit-
ness. This results in our classically verifiable NIZK for QMA in the QSP model.
In our QSP model, the trusted setup sends random Pauli basis states to the
prover and their classical description to the verifier. Furthermore, the trusted
setup also sends randomly chosen (x̂, ẑ) $← {0, 1}N × {0, 1}N to the prover, and
{(x̂j , ẑj)}j∈SV

to the verifier with randomly chosen subset SV .

Classically Verifiable NIZK for QMA in the CRS + (V → P ) Model. We want
to reduce the trust in the setup, so let us first examine what happens if the ver-
ifier runs the setup as preprocessing. Unfortunately, such a construction is not
zero-knowledge since the verifier can know whole bits of (x̂, ẑ) and thus it may
obtain information of qubits of ρhist that are outside of SV , in which case we can-
not rely on the local simulatability. Therefore, for ensuring the zero-knowledge
property, we have to make sure that the verifier only knows {(x̂j , ẑj)}j∈SV

. Then
suppose that the prover chooses (x̂, ẑ) whereas other setups are still done by the
verifier. Here, the problem is how to let the verifier know {(x̂j , ẑj)}j∈SV

. A naive

3 There is a subtle issue that the probability depends on the number of qubits on
which Pi non-trivially acts. We adjust this by an additional biased coin flipping.
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solution is that the verifier sends SV to the prover and then the prover returns
{(x̂j , ẑj)}j∈SV

. However, such a construction is not sound since it is essential
that the prover “commits” to a single quantum state independently of SV when
reducing soundness to the local Hamiltonian problem. So what we need is a pro-
tocol between the prover and verifier where the verifier only gets {(x̂j , ẑj)}j∈SV

and the prover does not learn SV . We observe that this is exactly the function-
ality of 5-out-of-N oblivious transfer [BCR87].

Though it may sound easy to solve the problem by just using a known two-
round 5-out-of-N oblivious transfer, there is still some subtlety. For example, if
we use an oblivious transfer that satisfies only indistinguishability-based notion
of receiver’s security (e.g., [NP01,BD18]),4 which just says that the sender cannot
know indices chosen by the receiver, we cannot prove soundness. Intuitively, this
is because the indistinguishability-based receiver’s security does not prevent a
malicious sender from generating a malicious message such that the message
derived on the receiver’s side depends on the chosen indices, which does not
force the prover to “commit” to a single state.

If we use a fully-simulatable [Lin08] oblivious transfer, the above problem
does not arise and we can prove both soundness and zero-knowledge. However,
the problem is that we are not aware of any efficient fully-simulatable 5-out-of-N
oblivious transfer based on post-quantum assumptions (in the CRS model). The
LWE-based construction of [PVW08] does not suffice for our purpose since a CRS
can be reused only a bounded number of times in their construction. Recently,
Quach [Qua20] resolved this issue, and proposed an efficient fully-simulatable
1-out-of-2 oblivious transfer based on the LWE assumption.5 We can extend
his construction to a fully-simulatable 1-out-of-N oblivious transfer efficiently.
However, we do not know how to convert this into 5-out-of-N one efficiently
without losing the full-simulatability. We note that a conversion from 1-out-of-
N to 5-out-of-N oblivious transfer by a simple 5-parallel repetition loses the
full-simulatability against malicious senders since a malicious sender can send
different inconsistent messages in different sessions, which should be considered
as an attack against the full-simulatability. One possible way to prevent such
an inconsistent message attack is to let the sender prove that the messages in
all sessions are consistent by using (post-quantum) CRS-NIZK for NP [PS19].
However, such a construction is very inefficient since it uses the underlying 1-
out-of-N oblivious transfer in a non-black-box manner, which we want to avoid.

We note that the parallel repetition construction preserves
indistinguishability-based receiver’s security and fully-simulatable sender’s secu-
rity for two-round protocols. Therefore, we have an efficient (black-box) con-
struction of 5-out-of-N oblivious transfer if we relax the receiver’s security to
the indistinguishability-based one. As already explained, such a security does not
suffice for proving soundness. To resolve this issue, we add an additional mech-
anism to force the prover to “commit” to a single state. Specifically, instead of

4 The indistinguishability-based receiver’s security is also often referred to as half-
simulation security [CNs07].

5 Actually, his construction satisfies a stronger UC-security [Can20,PVW08].
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directly sending (x, z) by a 5-out-of-N oblivious transfer, the prover sends a com-
mitment of (x, z) and then sends (x, z) and the corresponding randomness used
in the commitment by a 5-out-of-N oblivious transfer. When the verifier receives
{xj , zj}j∈SV

and corresponding randomness, it checks if it is consistent to the
commitment by recomputing it, and immediately rejects if not. This additional
mechanism prevents a malicious prover’s inconsistent behavior, which resolves
the problem in the proof of soundness.

Finally, our construction satisfies the dual-mode property if we assume appro-
priate dual-mode properties for building blocks. A dual-mode oblivious transfer
(in the CRS model) has two modes of generating a CRS and it satisfies statis-
tical (indistinguishability-based) receiver’s security in one mode and statistical
(full-simulation-based) sender’s security in the other mode. The construction of
[Qua20] is an instantiation of a 1-out-of-2 oblivious transfer with such a dual-
mode property, and this can be converted into 5-out-of-N one as explained
above. We stress again that it is important to relax the receiver’s security to
the indistinguishability-based one to make the conversion work. A dual-mode
commitment (in the CRS model) has two modes of generating a CRS and it is
statistically binding in one mode and statistically hiding in the other mode. We
can use lossy encryption [BHY09,Reg09] as an instantiation of such a dual-mode
commitment. Both of dual-mode 5-out-of-N oblivious transfer and lossy encryp-
tion are based on the LWE assumption (with super-polynomial modulus for the
former) and fairly efficient in the sense that they do not rely on non-black-box
techniques. Putting everything together, we obtain a fairly efficient (black-box)
construction of a dual-mode NIZK for QMA in the CRS + (V → P ) model.

NIZK for QMA via Fiat-Shamir Transformation. Finally, let us explain our
construction of NIZK for QMA via the Fiat-Shamir transformation. It is based
on so-called the Ξ-protocol for QMA [BG20], which is equal to the standard
Σ-protocol except that the first message is quantum. Because the first message is
quantum, the Fiat-Shamir technique cannot be directly applied. Our idea is again
to use the teleportation technique: if we introduce a setup that sends random
Pauli basis states to the prover and their classical description to the verifier, the
first message can be classical. We thus obtain a (classical) Σ-protocol in the QSP
model, where the trusted setup sends random Pauli basis states to the prover and
their classical description to the verifier. This task can be, actually, done by the
verifier, not the trusted setup, unlike our first construction. We therefore obtain
a (classical) Σ-protocol with quantum preprocessing (Definition 5.2), where the
verifier sends random Pauli basis states to the prover as the preprocessing.

We then apply the (classical) Fiat-Shamir transformation to the Σ-protocol
with quantum preprocessing, and obtain the CV-NIZK for QMA in the quantum
random oracle plus V → P model (Definition 5.1), where V → P means the
communication from the verifier to the prover as the preprocessing. Note that
we are considering a classical Σ-protocol with quantum preprocessing differently
from previous works. By a close inspection, we show that an existing security
proof for classical Σ-protocol in the QROM [DFM20] also works in our setting.
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Importantly, in this case, unlike the previous two constructions, the quantum
preprocessing can be replaced with the setup that distributes Bell pairs among
the prover and the verifier. As a corollary, we therefore obtain NIZK for QMA
in the shared Bell pair model (plus quantum random oracle). The distribution of
Bell pairs by a trusted setup can be considered as a “quantum analogue” of the
CRS, and therefore we can say that we obtain NIZK for QMA in the “quantum
CRS” model via the Fiat-Sharmir transformation.

2 Preliminaries

2.1 Quantum Computation Preliminaries

Here, we briefly review basic notations and facts on quantum computations.
For any quantum state ρ over registers A and B, TrA(ρ) is the partial trace

of ρ over A. We use I to mean the identity operator. (For simplicity, we use the
same I for all identity operators with different dimensions, because the dimension
of an identity operator is clear from the context.) We use X, Y , and Z to mean

Pauli operators i.e., X :=
(

0 1
1 0

)

, Z :=
(

1 0
0 −1

)

, and Y := iXZ. We use H to

mean Hadamard operator, i.e., H := 1√
2

(
1 1
1 −1

)

. We also define the T operator

by T :=
(

1 0
0 eiπ/4

)

. The CNOT := |0〉〈0|⊗I + |1〉〈1|⊗X is the controlled-NOT

operator.

We define V (Z) := I, V (X) := H, and V (Y ) := 1√
2

(
1 1
i −i

)

so that

for each W ∈ {X,Y,Z}, V (W ) |0〉 and V (W ) |1〉 are the eigenvectors of W
with eigenvalues +1 and −1, respectively. For each W ∈ {X,Y,Z}, we call
{V (W ) |0〉 , V (W ) |1〉} the W -basis.

When we consider an N -qubit system, for a Pauli operator Q ∈ {X,Y,Z},
Qj denotes the operator that acts on j-th qubit as Q and trivially acts on all
the other qubits. Similarly, Vj(W ) denotes the operator that acts on j-th qubit
as V (W ) and trivially acts on all the other qubits. For any x ∈ {0, 1}N and
z ∈ {0, 1}N , XxZz means

∏N
j=1 X

xj

j Z
zj

j .
We call the state 1√

2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) the Bell pair. We call the set

{|φx,z〉}(x,z)∈{0,1}2 the Bell basis where |φx,z〉 := (XxZz ⊗ I) |0〉⊗|0〉+|1〉⊗|1〉√
2

. Let
us define U(X) := V (X), U(Y ) := V (Y )X, and U(Z) := V (Z).

Lemma 2.1. (State Collapsing). If we project one qubit of a Bell pair onto
V (W )|m〉 with W ∈ {X,Y,Z} and m ∈ {0, 1}, the other qubit collapses to
U(W )|m〉.
Lemma 2.2. (Effect of XxZz before measurement). For any N -qubit state
ρ, (W1, ...,WN ) ∈ {X,Y,Z}N , and (x, z) ∈ {0, 1}N × {0, 1}N , the distributions
of (m′

1, ...m
′
n) sampled in the following two ways are identical.
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1. For j ∈ [N ], measure j-th qubit of ρ in Wj basis, let mj ∈ {0, 1} be the
outcome, and set

m′
j :=

⎧
⎨

⎩

mj ⊕ xj (Wj = Z),
mj ⊕ zj (Wj = X),

mj ⊕ xj ⊕ zj (Wj = Y ).

2. For j ∈ [N ], measure j-th qubit of XxZzρZzXx in Wj basis and let m′
j ∈

{0, 1} be the outcome.

The proofs of the above lemmas are straightforward. The following lemma is
implicit in previous works, e.g., [MNS18,FHM18].

Lemma 2.3. Let H := 1
2

[
I + s(

∏
j∈SX

Xj)(
∏

j∈SY
Yj)(

∏
j∈SZ

Zj)
]
be an N -

qubit projection operator, where s ∈ {+1,−1}, and SX , SY , and SZ are disjoint
subsets of [N ]. For any N -qubit quantum state ρ, suppose that for all j ∈ SW ,
where W ∈ {X,Y,Z}, we measure j-th qubit of ρ in the W -basis, and let mj ∈
{0, 1} be the outcome. Then we have Pr

[
(−1)

⊕

j∈SX ∪SY ∪SZ
mj = −s

]
= 1 −

Tr(ρH).

2.2 QMA and Local Hamiltonian Problem

For any QMA promise problem L = (Lyes, Lno) and x ∈ Lyes, we denote by
RL(x) to mean the (possibly infinite) set of all quantum states w such that
Pr[V (x, w) = 1] ≥ 2/3.

Recently, Broadbent and Grilo [BG20] showed that any QMA problem can
be reduced to a 5-local Hamiltonian problem with local simulatability. (See also
[GSY19].) Moreover, it is easy to see that we can make the Hamiltonian Hx be
of the form Hx =

∑M
i=1 pi

I+siPi

2 where si ∈ {+1,−1}, pi ≥ 0,
∑M

i=1 pi = 1, and
Pi is a tensor product of Pauli operators (I,X,Z, Y ) with at most 5 nontrivial
Pauli operators (X,Y,Z). Then we have the following lemma.

Lemma 2.4. (QMA-completeness of 5-local Hamiltonian problem with
local simulatability [BG20]). For any QMA promise problem L = (Lyes, Lno),
there is a classical polynomial-time computable deterministic function that maps
x ∈ {0, 1}∗ to an N -qubit Hamiltonian Hx of the form Hx =

∑M
i=1 pi

I+siPi

2 ,

where N = poly(|x|), M = poly(|x|), si ∈ {+1,−1}, pi > 0,
∑M

i=1 pi = 1, and
Pi is a tensor product of Pauli operators (I,X, Y, Z) with at most 5 nontrivial
Pauli operators (X,Y,Z), and satisfies the following: There are 0 < α < β < 1
such that β − α = 1/poly(|x|) and

– if x ∈ Lyes, then there exists an N -qubit state ρ such that Tr(ρHx) ≤ α, and
– if x ∈ Lno, then for any N -qubit state ρ, we have Tr(ρHx) ≥ β.

Moreover, for any x ∈ Lyes, we can convert any witness w ∈ RL(x) into a state
ρhist, called the history state, such that Tr(ρhistHx) ≤ α in quantum polyno-
mial time. Moreover, there exists a classical deterministic polynomial time algo-
rithm Simhist such that for any x ∈ Lyes and any subset S ⊆ [N ] with |S| ≤ 5,
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Simhist(x, S) outputs a classical description of an |S|-qubit density matrix ρS

such that ‖ρS − Tr[N ]\Sρhist‖tr = negl(λ) where Tr[N ]\Sρhist is the state of ρhist
in registers corresponding to S tracing out all other registers.

2.3 Classically-Verifiable Non-interactive Zero-Knowledge Proofs

Definition 2.1. (CV-NIZK in the QSP model). A classically-verifiable
non-interactive zero-knowledge proof (CV-NIZK) for a QMA promise problem
L = (Lyes, Lno) in the quantum secret parameter (QSP) model consists of algo-
rithms Π = (Setup,Prove,Verify) with the following syntax:

Setup(1λ): This is a QPT algorithm that takes the security parameter 1λ as input
and outputs a quantum proving key kP and a classical verification key kV .

Prove(kP , x, w⊗k): This is a QPT algorithm that takes the proving key kP , a
statement x, and k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input and
outputs a classical proof π.

Verify(kV , x, π): This is a PPT algorithm that takes the verification key kV , a
statement x, and a proof π as input and outputs  indicating acceptance or
⊥ indicating rejection.

We require Π to satisfy the following properties for some 0 < s < c < 1 such
that c − s > 1/poly(λ). Especially, when we do not specify c and s, they are set
as c = 1 − negl(λ) and s = negl(λ).

c-Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr
[
Verify(kV , x, π) =  : (kP , kV ) $← Setup(1λ), π $← Prove(kP , x, w⊗k)

]
≥ c.

(Adaptive Statistical) s-Soundness. For all unbounded-time adversary A,

we have

Pr
[
x ∈ Lno ∧ Verify(kV , x, π) =  : (kP , kV ) $← Setup(1λ), (x, π) $← A(kP )

]
≤ s.

(Adaptive Statistical Single-Theorem) Zero-Knowledge. There exists a
PPT simulator Sim such that for any unbounded-time distinguisher D, we have

∣
∣
∣Pr

[
DOP (kP ,·,·)(kV ) = 1

]
− Pr

[
DOS(kV ,·,·)(kV ) = 1

]∣
∣
∣ = negl(λ)

where (kP , kV ) $← Setup(1λ), D can make at most one query, which should be
of the form (x, w⊗k) where w ∈ RL(x) and w⊗k is unentangled with D’s internal
registers,6 OP (kP , x, w⊗k) returns Prove(kP , x, w⊗k), and OS(kV , x, w⊗k) returns
Sim(kV , x).
6 Though our protocols are likely to remain secure even if they can be entangled,

we assume that they are unentangled for simplicity. To the best of our knowledge,
none of existing works on interactive or non-interactive zero-knowledge for QMA
[BJSW20,CVZ20,BS20,BG20,Shm21,BCKM21] considered entanglement between
a witness and distinguisher’s internal register.
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It is easy to see that we can amplify the gap between completeness and
soundness thresholds by a simple parallel repetition. Moreover, we can see that
this does not lose the zero-knowledge property. Therefore, we have the following
lemma.

Lemma 2.5. (Gap Amplification for CV-NIZK). If there exists a CV-
NIZK for L in the QSP model that satisfies c-completeness and s-soundness, for
some 0 < s < c < 1 such that c−s > 1/poly(λ), then there exists a CV-NIZK for
L in the QSP model (with (1 − negl(λ))-completeness and negl(λ)-soundness).

3 CV-NIZK in the QSP Model

In this section, we construct a CV-NIZK in the QSP model (Definition 2.1).
Specifically, we prove the following theorem.

Theorem 3.1. There exists a CV-NIZK for QMA in the QSP model (without
any computational assumption).

Our construction of a CV-NIZK for a QMA promise problem L is given in
Fig. 1 where Hx, N , M , pi, si, Pi, α, β, and ρhist are as in Lemma 2.4 for L and
Vj(Wj) is as defined in Sect. 2.1.

To show Theroem 3.1, we prove the following lemmas.

Lemma 3.1. (Completeness and Soundness). ΠNIZK satisfies
(
1 − α

N ′
)
-

completeness and
(
1 − β

N ′

)
-soundness where N ′ := 35

∑5
i=1

(
N
i

)
.

Lemma 3.2. (Zero-Knowledge). ΠNIZK satisfies the zero-knowledge property.

Since
(
1 − α

N ′
) −

(
1 − β

N ′

)
= β−α

N ′ ≥ 1/poly(λ), by combining Lemmas 2.5,
3.1 and 3.2 and Theorem 3.1 follows.

In the following, we give proofs of Lemmas 3.1 and 3.2.

Proof. of Lemma 3.1. We prove this lemma by considering virtual protocols that
do not change completeness and soundness. First, we consider the virtual pro-
tocol 1 described in Fig. 2. There are two differences from the original protocol.
The first is that kV includes the whole (x̂, ẑ) instead of {x̂j , ẑj}j∈SV

. This differ-
ence does not change the (possibly malicious) prover’s view since kV is not given
to the prover. The second is that the setup algorithm generates N Bell pairs and
gives each halves to the prover and verifier, and the verifier obtains (m1, ...,mN )
by measuring his halves in Pauli basis. Because the verifier’s measurement and
the prover’s measurement commute with each other, in the virtual protocol 1,
the verifier’s acceptance probability does not change even if the verifier chooses
(W1, ...,WN ) and measures ρV in the corresponding basis to obtain outcomes
(m1, ...,mN ) before ρP is given to the prover. Moreover, conditioned on the
above measurement outcomes, the state in P collapses to

⊗N
j=1(U(Wj)|mj〉)

(See Lemma 2.1). Therefore, the virtual protocol 1 is exactly the same as the
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Setup(1λ): The setup algorithm chooses (W1, ..., WN )
$← {X, Y, Z}N , (m1, ..., mN )

$←
{0, 1}N , (x̂, ẑ)

$← {0, 1}N × {0, 1}N , and a uniformly random sub-
set SV ⊆ [N ] such that 1 ≤ |SV | ≤ 5, and outputs a proving

key kP :=
(

ρP :=
⊗N

j=1(U(Wj)|mj〉), x̂, ẑ
)

and a verification key kV :=

(W1, ..., WN , m1, ..., mN , SV , {x̂j , ẑj}j∈SV ).
Prove(kP , x, w): The proving algorithm parses (ρP , x̂, ẑ) ← kP , generates the history

state ρhist for Hx from w, and computes ρ′
hist := X x̂Z ẑρhistZ

ẑX x̂. It measures j-th
qubits of ρ′

hist and ρP in the Bell basis for j ∈ [N ]. Let x := x1‖x2‖...‖xN , and z :=
z1‖z2‖...‖zN where (xj , zj) ∈ {0, 1}2 denotes the outcome of j-th measurement. It
outputs a proof π := (x, z).

Verify(kV , x, π): The verification algorithm parses
(W1, ..., WN , m1, ..., mN , SV , {x̂j , ẑj}j∈SV ) ← kV and (x, z) ← π, chooses
i ∈ [M ] according to the probability distribution defined by {pi}i∈[M ] (i.e., chooses
i with probability pi). Let

Si := {j ∈ [N ] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is
consistent to (SV , {Wj}j∈SV ) if and only if Si = SV and the jth Pauli operator of
Pi is Wj for all j ∈ Si. If Pi is not consistent to (SV , {Wj}j∈SV ), it outputs �. If Pi

is consistent to (SV , {Wj}j∈SV ), it flips a biased coin that heads with probability
1 − 3|Si|−5. If heads, it outputs �. If tails, it defines

m′
j :=

⎧

⎨

⎩

mj ⊕ xj ⊕ x̂j (Wj = Z),
mj ⊕ zj ⊕ ẑj (Wj = X),

mj ⊕ xj ⊕ x̂j ⊕ zj ⊕ ẑj (Wj = Y )

for j ∈ Si, and outputs � if (−1)
⊕

j∈Si
m′

j = −si and ⊥ otherwise.

Fig. 1. CV-NIZK ΠNIZK in the QSP model.

original protocol from the prover’s view, and the verifier’s acceptance probability
of the virtual protocol 1 is the same as that of the original protocol ΠNIZK for
any possibly malicious prover.

Next, we further modify the protocol to define the virtual protocol 2 described
in Fig. 3. The difference from the virtual protocol 1 is that instead of setting
m′

j , the verification algorithm applies a corresponding Pauli Xx⊕x̂Zz⊕ẑ on ρV ,
and then measures it to obtain m′

j . By Lemma 2.2, this does not change the
distribution of (m′

1, ...,m
′
N ). Therefore, the verifier’s acceptance probability of

the virtual protocol 2 is the same as that of the virtual protocol 1 for any possibly
malicious prover.

Therefore, it suffices to prove (1 − α
N ′ )-completeness and (1 − β

N ′ )-soundness
for the virtual protocol 2. When x ∈ Lyes and π is honestly generated, then ρ′

V

is the history state ρhist, which satisfies Tr(ρhistHx) ≤ α, by the correctness of
quantum teleportation. For any fixed Pi, the probability that Pi is consistent to
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Setupvir-1(1
λ): The setup algorithm generates N Bell-pairs between registers P and V

and lets ρP and ρV be quantum states in registers P and V, respectively. It chooses

(x̂, ẑ)
$← {0, 1}N × {0, 1}N . It chooses a uniformly random subset SV ⊆ [N ] such

that 1 ≤ |SV | ≤ 5, and outputs a proving key kP := (ρP , x̂, ẑ) and a verification
key kV := (ρV , SV , x̂, ẑ).

Provevir-1(kP , x, w): This is the same as Prove(kP , x, w) in Figure 1.

Verifyvir-1(kV , x, π): The verification algorithm chooses (W1, ..., WN )
$← {X, Y, Z}N ,

and measures j-th qubit of ρV in the Wj basis for all j ∈ [N ], and lets
(m1, ..., mN ) be the measurement outcomes. The rest of this algorithm is the same
as Verify(kV , x, π) given in Figure 1.

Fig. 2. The virtual protocol 1 for ΠNIZK

Setupvir-2(1
λ): This is the same as Setupvir-1(1

λ) in Figure 2.
Provevir-2(kP , x, w): This is the same as Prove(kP , x, w) in Figure 1.
Verifyvir-2(kV , x, π): The verification algorithm parses (ρV , SV , x̂, ẑ) ← kV and (x, z) ←

π, computes ρ′
V := Xx⊕x̂Zz⊕ẑρV Zz⊕ẑXx⊕x̂, chooses (W1, ..., WN )

$← {X, Y, Z}N ,
measures j-th qubit of ρ′

V in the Wj basis for all j ∈ [N ], and lets (m′
1, ..., m

′
N ) be

the measurement outcomes.
It chooses i ∈ [M ] and defines Si ⊆ [N ] similarly to Verify(kV , x, π) in Figure 1.
If Pi is not consistent to (SV , {Wj}j∈SV ), it outputs �. If Pi is consistent to
(SV , {Wj}j∈SV ), it flips a biased coin that heads with probability 1 − 3|Si|−5. If

heads, it outputs �. If tails, it outputs � if (−1)
⊕

j∈Si
m′

j = −si and ⊥ otherwise.

Fig. 3. The virtual protocol 2 for ΠNIZK

(SV , {Wj}j∈SV
) and the coin tails is 1

N ′ . Therefore, by Lemma 2.3 and Lemma
2.4, the verifier’s acceptance probability is 1 − 1

N ′ Tr(ρhistHx) ≥ 1 − α
N ′ .

Let A be an adaptive adversary against soundness of virtual protocol 2.
That is, A is given kP and outputs (x, π). We say that A wins if x ∈ Lno and
Verify(kV , x, π) = . For any x, let Ex be the event that the statement output
by A is x, and ρ′

V,x be the state in V right before the measurement by Verify
conditioned on Ex. Similarly to the analysis for the completeness, by Lemma 2.3
and Lemma 2.4, we have

Pr[A wins] =
∑

x∈Lno

Pr[Ex]

(
1 − 1

N ′ Tr(ρ′
V,xHx)

)
≤

∑

x∈Lno

Pr[Ex]

(
1 − β

N ′

)
≤ 1 − β

N ′ .

Proof. of Theorem 3.2. We describe the simulator Sim below.

Sim(kV , x): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
) ←

kV and does the following.
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1. Generate the classical description of the density matrix ρSV
:=

Simhist(x, SV ) where Simhist is as in Lemma 2.4.
2. Sample {xj , zj}j∈SV

according to the probability distribution of out-
comes of the Bell-basis measurements of the corresponding pairs of qubits
of

(∏
j∈SV

X
x̂j

j Z
ẑj

j

)
ρSV

(∏
j∈SV

Z
ẑj

j X
x̂j

j

)
and

⊗
j∈SV

(U(Wj) |mj〉). We
emphasize that this measurement can be simulated in a classical proba-
bilistic polynomial time since |SV | ≤ 5.

3. Choose (xj , zj)
$← {0, 1}2 for all j ∈ [N ] \ SV .

4. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

We prove that the output of this simulator is indistinguishable from the real
proof. For proving this, we consider the following sequences of modified simula-
tors. We note that these simulators may perform quantum computations unlike
the real simulator.

Sim1(kV , x): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
) ←

kV and does the following.
1. Generate the classical description of the density matrix ρSV

:=
Simhist(x, SV ) where Simhist is as in Lemma 2.4. (This step is the same
as the step 1 of Sim(kV , x).)

2. Generate ρ̃′
hist :=

(∏
j∈SV

X
x̂j

j Z
ẑj

j

)
ρSV

(∏
j∈SV

Z
ẑj

j X
x̂j

j

)
⊗ I[N]\SV

2|[N]\SV | .

3. Measure j-th qubits of ρ̃′
hist and ρP :=

⊗N
j=1(U(Wj)|mj〉) in the Bell

basis for j ∈ [N ], and let (xj , zj) be the j-th measurement result.
4. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

Clearly, the distributions of {xj , zj}j∈SV
output by Sim(kV , x) and Sim1(kV , x)

are the same. Moreover, the distributions of {xj , zj}j∈[N ]\SV
output by Sim(kV , x)

and Sim1(kV , x) are both uniformly and independently random. Therefore, output
distributions of Sim(kV , x) and Sim1(kV , x) are exactly the same.

Next, we consider the following modified simulator that takes a witness w ∈
RL(x) as input.

Sim2(kV , x, w): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
)

← kV and does the following.
1. Generate the history state ρhist for Hx from w.
2. Generate (x̂j , ẑj)

$← {0, 1}2 for j ∈ [N ] \ SV and let x̂ := x̂1‖...‖x̂N and
ẑ := ẑ1‖...‖ẑN .

3. Compute ρ′
hist := X x̂Z ẑρhistZ

ẑX x̂.
4. Measure j-th qubits of ρ′

hist and ρP :=
⊗N

j=1(U(Wj)|mj〉) in the Bell
basis for j ∈ [N ], and let (xj , zj) be the j-th measurement result.

5. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .
We have ρ′

hist =
(∏

j∈SV
X

x̂j

j Z
ẑj

j

)
TrN\SV

[ρhist]
(∏

j∈SV
Z

ẑj

j X
x̂j

j

)
⊗ I[N]\SV

2|[N]\SV |

from the view of a distinguisher that has no information on {x̂j , ẑj}j∈[N ]\SV
.

By Lemma 2.4, we have ‖ρSV
−Tr[N ]\SV

ρhist‖tr = negl(λ). Therefore, we have
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‖ρ̃′
hist − ρ′

hist‖tr = negl(λ). This means that Sim1(kV , x) and Sim2(kV , x, w)
are statistically indistinguishable from the view of a distinguisher that makes
at most one query.
Finally, noting that the output distribution of Sim2(kV , x, w) is exactly the
same as that of Prove(kP , x, w), the proof of Lemma 3.2 is completed.

4 Dual-Mode CV-NIZK with Preprocessing

In this section, we extend the CV-NIZK given in Sect. 3 to reduce the amount
of trust in the setup at the cost of introducing a quantum preprocessing and
relying on a computational assumption. In the construction in Sect. 3, we assume
that the trusted setup algorithm honestly generates proving and verification
keys, which are correlated with each other, and sends them to the prover and
verifier, respectively, without revealing them to the other party. Here, we give a
construction of CV-NIZK with preprocessing that consists of the generation of
common reference string by a trusted party and a single instance-independent
quantum message from the verifier to the prover. We call such a model the CRS
+ (V → P ) model. We note this is the same model as is considered in [CVZ20].
Moreover, our construction has a nice feature called the dual-mode property,
which has been considered for NIZKs for NP [GS12,GOS12,PS19].

4.1 Definition

We give a formal definition of a dual-mode CV-NIZK in the CRS +
(V → P ) model.

Definition 4.1. (Dual-Mode CV-NIZK in the CRS + (V → P ) Model).
A dual-mode CV-NIZK for a QMA promise problem L = (Lyes, Lno) in the CRS
+ (V → P ) model consists of algorithms Π = (CRSGen,Preprocess,Prove,Verify)
with the following syntax:

CRSGen(1λ,mode): This is a PPT algorithm that takes the security parameter 1λ

and a mode mode ∈ {binding, hiding} as input and outputs a classical common
reference string crs. We note that crs can be reused and thus this algorithm is
only needed to run once by a trusted third party.

Preprocess(crs): This is a QPT algorithm that takes the common reference string
crs as input and outputs a quantum proving key kP and a classical verification
key kV . We note that this algorithm is supposed to be run by the verifier as
preprocessing, and kP is supposed to be sent to the prover while kV is supposed
to be kept on verifier’s side in secret. We also note that they can be used only
once and cannot be reused unlike crs.

Prove(crs, kP , x, w⊗k): This is a QPT algorithm that takes the common reference
string crs, the proving key kP , a statement x, and k = poly(λ) copies w⊗k of
a witness w ∈ RL(x) as input and outputs a classical proof π.

Verify(crs, kV , x, π): This is a PPT algorithm that takes the common reference
string crs, the verification key kV , a statement x, and a proof π as input and
outputs  indicating acceptance or ⊥ indicating rejection.
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We require Π to satisfy the following properties for some 0 < s < c < 1 such
that c − s > 1/poly(λ). Especially, when we do not specify c and s, they are set
as c = 1 − negl(λ) and s = negl(λ).

c-Completeness. For all mode ∈ {binding, hiding}, x ∈ Lyes ∩ {0, 1}λ, and
w ∈ RL(x), we have

Pr

⎡

⎢
⎣Verify(crs, kV , x, π) =  :

crs
$← CRSGen(1λ,mode)

(kP , kV ) $← Preprocess(crs)
π

$← Prove(crs, kP , x, w⊗k)

⎤

⎥
⎦ ≥ c.

(Adaptive) Statistical s-Soundness in the Binding Mode. For all
unbounded-time adversary A, we have

Pr

⎡

⎢
⎣x ∈ Lno ∧ Verify(crs, kV , x, π) =  :

crs
$← CRSGen(1λ, binding)

(kP , kV ) $← Preprocess(crs)
(x, π) $← A(crs, kP )

⎤

⎥
⎦ ≤ s.

(Adaptive Multi-theorem) Statistical Zero-Knowledge in the Hiding
Mode. There exists a PPT simulator Sim0 and a QPT simulator Sim1 such
that for any unbounded-time distinguisher D, we have

∣
∣
∣Pr

[
DOP (crs,·,·,·)(crs) = 1 : crs $← CRSGen(1λ, hiding)

]

− Pr
[
DOS(td,·,·,·)(crs) = 1 : (crs, td) $← Sim0(1λ)

]∣
∣
∣ ≤ negl(λ)

where D can make poly(λ) queries, which should be of the form (kP , x, w⊗k)
where w ∈ RL(x) and w⊗k is unentangled with D’s internal registers,7

OP (crs, kP , x, w⊗k) returns Prove(crs, kP , x, w⊗k), and OS(td, kP , x, w⊗k) returns
Sim1(td, kP , x).

Computational Mode Indistinguishability. For any non-uniform QPT dis-
tinguisher D, we have

|Pr [D(crsbinding) = 1] − Pr [D(crshiding) = 1]| ≤ negl(λ)

where crsbinding
$← CRSGen(1λ, binding) and crshiding

$← CRSGen(1λ, hiding).

Though Definition 4.1 does not explicitly require anything on soundness in
the hiding mode or the zero-knowledge property in the binding mode, we can
easily prove that they are satisfied in a computational sense.

Finally, we note that we can amplify the gap between the thresholds for
completeness and soundness by parallel repetitions similarly to CV-NIZK in the
QSP model as discussed in Sect. 2.3. As a result, we obtain the following lemma.
7 We remark that kP is allowed to be entangled with D’s internal registers unlike
w⊗k. See also footnote 6.
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Lemma 4.1. (Gap amplification for dual-mode CV-NIZK in the CRS
+ (V → P ) model). If there exists a dual-mode CV-NIZK for L in the CRS +
(V → P ) model that satisfies c-completeness and s-soundness, for some 0 < s <
c < 1 such that c − s > 1/poly(λ), then there exists a dual-mode CV-NIZK for
L in the CRS + (V → P ) model (with (1 − negl(λ))-completeness and negl(λ)-
soundness).

Since this can be proven similarly to Lemma 2.5, we omit a proof.

4.2 Building Blocks

We introduce two cryptographic bulding blocks for our dual-mode CV-NIZK in
the CRS + (V → P ) model.

Lossy Encryption. Intuitively, a lossy encryption scheme is a public key encryp-
tion scheme with a special property that we can generate a lossy key that is
computationally indistinguishable from an honestly generated public key, for
which there is no corresponding decryption key.

Dual-Mode Oblivious Transfer. The second building block is a k-out-of-n dual-
mode oblivious transfer. Though this is a newly introduced definition in this
paper, 1-out-of-2 case is already implicit in existing works on universally com-
posable (UC-secure) [Can20] oblivious transfers [PVW08,Qua20]. Due to the
space limitation, we only give its syntax and intuitive explanations for the secu-
rity requirements.

Definition 4.2. (Dual-mode oblivious transfer (sketch)). A (2-round) k-
out-of-n dual-mode oblivious transfer with a message space M consists of PPT
algorithms ΠOT = (CRSGen,Receiver,Sender,Derive).

CRSGen(1λ,mode): This is an algorithm supposed to be run by a trusted
third party that takes the security parameter 1λ and a mode mode ∈
{binding, hiding} as input and outputs a common reference string crs.

Receiver(crs, J): This is an algorithm supposed to be run by a receiver that takes
the common reference string crs and an ordered set of k indices J ∈ [n]k as
input and outputs a first message ot1 and a receiver’s state st.

Sender(crs, ot1,µ): This is an algorithm supposed to be run by a sender that takes
the common reference string crs, a first message ot1 sent from a receiver and
a tuple of messages µ ∈ Mn as input and outputs a second message ot2.

Derive(crs, st, ot2): This is an algorithm supposed to be run by a receiver that
takes a receiver’s state st and a second message ot2 as input and outputs a
tuple of messages µ′ ∈ Mk.

We require the following properties.
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Correctness. For all mode ∈ {binding, hiding}, J = (j1, ..., jk) ∈ [n]k, and
µ = (μ1, ..., μn) ∈ Mn, we have

Pr

⎡

⎢⎣Derive(crs, st, ot2) = (μj1 , ..., μjk) :

crs
$← CRSGen(1λ,mode)

(ot1, st)
$← Receiver(crs, J)

ot2
$← Sender(crs, ot1,µ)

⎤

⎥⎦ ≥ 1 − negl(λ).

Statistical Receiver’s Security in the Binding Mode. Intuitively, this
security requires that the indices chosen by a receiver are information theoreti-
cally hidden from a sender in the binding mode.

Statistical Sender’s Security in the Hiding Mode. Intuitively, this secu-
rity requires that we can extract the indices of messages which a (possibly mali-
cious) receiver tries to learn by using a trapdoor in the hiding mode.

Computational Mode Indistinguishability. This requires that common ref-
erence strings generated in binding and hiding modes are computationally indis-
tinguishable.

Lemma 4.2. If the LWE assumption holds, then there exists k-out-of-n dual-
mode oblivious transfer for arbitrary 0 < k < n that are polynomial in λ.

Proof. (sketch). First, we can see that the LWE-based UC-secure OT by Quach
[Qua20] can be seen as a 1-out-of-2 dual-mode oblivious transfer. This construc-
tion can be converted into 1-out-of-n dual-mode oblivious transfer by using the
generic conversion for an ordinary oblivious transfer given in [BCR86] observing
that the conversion preserves the dual-mode property.8 By k-parallel repetition
of the 1-out-of-n dual-mode oblivious transfer, we obtain k-out-of-n dual-mode
oblivious transfer.

4.3 Construction

In this section, we construct a dual-mode CV-NIZK in the CRS +
(V → P ) model. As a result, we obtain the following theorem.

Theorem 4.1. If the LWE assumption holds, then there exists a dual-mode CV-
NIZK in the CRS + (V → P ) model.

Let L be a QMA promise problem, and Hx, N , M , pi, si, Pi, α, β, and ρhist
be as in Lemma 2.4 for the language L. We let N ′ := 35

∑5
i=1

(
N
i

)
similarly to

Lemma 3.1. Let ΠLE = (InjGenLE, LossyGenLE,EncLE,DecLE) be a lossy encryption
scheme over the message space MLE = {0, 1}2 and the randomness space RLE

. Let ΠOT = (CRSGenOT,ReceiverOT,SenderOT,DeriveOT) be a 5-out-of-N dual-
mode oblivious transfer over the message space MOT = MLE × RLE .Then our
dual-mode CV-NIZK ΠDM = (CRSGenDM,PreprocessDM,ProveDM,VerifyDM) for
L is described in Fig. 4.

Then we prove the following lemmas.
8 Alternatively, it may be possible to directly construct 1-out-of-n dual-mode oblivious

transfer by appropriately modifying the construction by Quach [Qua20].
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CRSGenDM(1
λ,mode): The CRS generation algorithm generates crsOT

$←
CRSGenOT(1

λ,mode).

– If mode = binding, then it generates (pk, sk)
$← InjGenLE(1

λ).

– If mode = hiding, then it generates pk
$← LossyGenLE(1

λ).
Then it outputs crsDM := (crsOT, pk).

PreprocessDM(crsDM): The preprocessing algorithm parses (crsOT, pk) ← crsDM and

chooses (W1, ..., WN )
$← {X, Y, Z}N , (m1, ..., mN )

$← {0, 1}N , and a uniformly
random subset SV ⊆ [N ] such that 1 ≤ |SV | ≤ 5. Let J = (j1, ..., j5) ∈ [N ]5

be the elements of SV in the ascending order where we append arbitrary in-

dices when |SV | < 5. It generates (ot1, st)
$← ReceiverOT(crsOT, J) and out-

puts a proving key kP :=
(

ρP :=
⊗N

j=1(U(Wj)|mj〉), ot1
)

and a verification key

kV := (W1, ..., WN , m1, ..., mN , SV , st).
ProveDM(crsDM, kP , x, w): The proving algorithm parses (crsOT, pk) ← crsDM and

(ρP , ot1) ← kP , generates (x̂, ẑ)
$← {0, 1}N × {0, 1}N , generates the history state

ρhist for Hx from w, and computes ρ′
hist := X x̂Z ẑρhistZ

ẑX x̂. It measures j-th
qubits of ρ′

hist and ρP in the Bell basis for j ∈ [N ]. Let x := x1‖x2‖...‖xN , and
z := z1‖z2‖...‖zN where (xj , zj) denotes the outcome of j-th measurement. For

j ∈ [N ], it generates ctj := EncLE(pk, (x̂j , ẑj);Rj) where Rj
$← RLE and x̂j and

ẑj denote the j-th bits of x̂ and ẑ, respectively. It sets μj := ((x̂j , ẑj), Rj) for

j ∈ [N ] and generates ot2
$← SenderOT(crsOT, ot1, (μ1, ..., μN )). It outputs a proof

π := (x, z, {ctj}j∈[N ], ot2).
VerifyDM(crsDM, kV , x, π): The verification algorithm parses (crsOT, pk) ← crsDM,

(W1, ..., WN , m1, ..., mN , SV , st) ← kV , and (x, z, {ctj}j∈[N ], ot2) ← π. It runs

µ′ $← DeriveOT(crsOT, st, ot2) and parses (((x̂′
1, ẑ

′
1), R

′
1), ..., ((x̂

′
5, ẑ

′
5), R

′
5)) ← µ′. If

EncLE(pk, (x̂
′
i, ẑ

′
i);R

′
i) �= ctji for some i ∈ [5], it outputs ⊥. Otherwise, it recovers

{x̂j , ẑj}j∈SV by setting (x̂ji , ẑji) := (x̂′
i, ẑ

′
i) for i ∈ [|SV |]. It chooses i ∈ [M ] ac-

cording to the probability distribution defined by {pi}i∈[M ] (i.e., chooses i with
probability pi). Let

Si := {j ∈ [N ] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is
consistent to (SV , {Wj}j∈SV ) if and only if Si = SV and the jth Pauli operator of
Pi is Wj for all j ∈ Si. If Pi is not consistent to (SV , {Wj}j∈SV ), it outputs �. If Pi

is consistent to (SV , {Wj}j∈SV ), it flips a biased coin that heads with probability
1 − 3|Si|−5. If heads, it outputs �. If tails, it defines

m′
j :=

⎧

⎨

⎩

mj ⊕ xj ⊕ x̂j (Wj = Z),
mj ⊕ zj ⊕ ẑj (Wj = X),

mj ⊕ xj ⊕ x̂j ⊕ zj ⊕ ẑj (Wj = Y )

for j ∈ Si, and outputs � if (−1)
⊕

j∈Si
m′

j = −si and ⊥ otherwise.

Fig. 4. Dual-Mode CV-NIZK ΠDM.
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Lemma 4.3. ΠDM satisfies
(
1 − α

N ′ − negl(λ)
)
-completeness.

Proof. By the correctness of ΠOT, it is easy to see that the probability that an
honestly generated proof passes the verification differs from that in ΠNIZK in
Fig. 1 only by negl(λ). Since ΠNIZK satisfies

(
1 − α

N ′
)
-completeness as shown in

Lemma 3.1, ΠDM satisfies
(
1 − α

N ′ − negl(λ)
)
-completeness.

Lemma 4.4. ΠDM satisfies the computational mode indistinguishability.

Proof. This can be reduced to the computational mode indistinguishability of
ΠOT and ΠLE in a straightforward manner.

Lemma 4.5. ΠDM satisfies statistical
(
1 − β

N ′ + negl(λ)
)
-soundness in the

binding mode.

Lemma 4.6. ΠDM satisfies the statistical zero-knowledge property in the hiding
mode.

By combining Lemmas 4.1 to 4.6 and

(
1 − α

N ′ − negl(λ)
)

−
(

1 − β

N ′ + negl(λ)
)

=
β − α

N ′ − negl(λ) =
1

poly(λ)
,

we obtain Theorem 4.1.
In the following, we give proof sketches of Lemmas 4.5 and 4.6.

Soundness in the Binding Mode. For a cheating prover, we consider a modified
soundness game where the challenger extracts {x̂j , ẑj}j∈SV

from {ctj}j∈SV
by

just decrypting them instead of deriving {(x̂j , ẑj), Rj}j∈SV
from ot2 and then

checking the consistency to {ctj}j∈SV
as in the actual verification algorithm.

This does not decrease adversary’s winning probability since {x̂j , ẑj}j∈SV
derived

from ot2 should be equal to decryption of {ctj}j∈SV
or otherwise the verifica-

tion algorithm immediately rejects. In this game, the challenger does not use
st of ΠOT. Therefore, by the receiver’s security of ΠOT, adversary’s winning
probability changes negligibly even if we generate ot1 by the simulator Simrec.
At this point, the challenger obtain no information about SV . Then soundness
in this game can be reduced to the soundness of ΠNIZK in Fig. 1 against aug-
mented cheating provers with an additional capability to choose {x̂j , ẑj}j∈[N ].
By carefully examining the proof of the soundness of ΠNIZK, one can see that the
proof works against such augmented cheating provers as well. (Note that what
is essential for the soundness of ΠNIZK is that SV is hidden from the cheating
prover.)

Zero-Knowledge in the Hiding Mode. In the hiding mode, pk of ΠLE is in the
lossy mode, and thus {ctj}j∈[N ] can be simulated only from pk by encrypting all
0 message. Moreover, by sender’s security in the hiding mode of ΠOT, ot2 can be
simulated from {x̂j , ẑj}j∈SV

where SV is a subset such that |SV | = 5 extracted
from ot1. Therefore, the zero-knowledge property of ΠDM can be reduced to the
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zero-knowledge property of ΠNIZK in Fig. 1 against augmented malicious verifiers
with an additional capability to choose SV and ρP . By carefully examining the
proof of the zero-knowledge property of ΠNIZK, one can see that the proof works
against such augmented malicious verifiers as well. (Note that what is essential
for the zero-knowledge property of ΠNIZK is that {x̂j , ẑj}j /∈SV

is hidden from the
malicious verifier.)

5 CV-NIZK via Fiat-Shamir Transformation

In this section, we construct CV-NIZK in the quantum random oracle model via
the Fiat-Shamir transformation.

5.1 Definition

We give a formal definition of CV-NIZK in the QRO + (V → P ) model.

Definition 5.1. (CV-NIZK in the QRO + (V → P ) Model). A CV-NIZK
for a QMA promise problem L = (Lyes, Lno) in the QRO + (V → P ) model
w.r.t. a random oracle distribution ROdist consists of algorithms Π =
(Preprocess,Prove,Verify) with the following syntax:

Preprocess(1λ): This is a QPT algorithm that takes the security parameter 1λ

as input, and outputs a quantum proving key kP and a classical verification
key kV . We note that this algorithm is supposed to be run by the verifier as
preprocessing, and kP is supposed to be sent to the prover while kV is supposed
to be kept on verifier’s side in secret. We also note that they can be used only
once and cannot be reused.

ProveH(kP , x, w⊗k): This is a QPT algorithm that is given quantum oracle access
to the random oracle H. It takes the proving key kP , a statement x, and
k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input, and outputs a
classical proof π.

VerifyH(kV , x, π): This is a PPT algorithm that is given classical oracle access
to the random oracle H. It takes the verification key kV , a statement x, and a
proof π as input, and outputs  indicating acceptance or ⊥ indicating rejec-
tion.

We require Π to satisfy the following properties.

Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

⎡

⎢
⎣Verify

H(kV , x, π) =  :
H

$← ROdist

(kP , kV ) $← Preprocess(1λ)
π

$← ProveH(kP , x, w⊗k)

⎤

⎥
⎦ ≥ 1 − negl(λ).
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Adaptive Statistical Soundness. For all adversaries A that make at most
poly(λ) quantum random oracle queries, we have

Pr

⎡

⎢
⎣x ∈ Lno ∧ VerifyH(kV , x, π) =  :

H
$← ROdist

(kP , kV ) $← Preprocess(1λ)
(x, π) $← AH(kP )

⎤

⎥
⎦ ≤ negl(λ).

Adaptive Multi-theorem Zero-Knowledge. For defining the zero-knowledge
property in the QROM, we define the syntax of a simulator in the QROM follow-
ing [Unr15]. A simulator is given quantum access to the random oracle H and
classical access to reprogramming oracle Reprogram. When the simulator queries
(x, y) to Reprogram, the random oracle H is reprogrammed so that H(x) := y
while keeping the values on other inputs unchanged. Then the adaptive multi-
theorem zero-knowledge property is defined as follows:

There exists a QPT simulator Sim with the above syntax such that for any
QPT distinguisher D, we have

∣
∣
∣Pr

[
DH,OH

P (·,·,·)(1λ) = 1 : H
$← ROdist

]

− Pr
[
DH,OH,Reprogram

S (·,·,·)(1λ) = 1 : H
$← ROdist

]∣
∣
∣ ≤ negl(λ)

where D’s queries to the second oracle should be of the form (kP , x, w⊗k)
where w ∈ RL(x) and w⊗k is unentangled with D’s internal registers,9

OH
P (kP , x, w⊗k) returns ProveH(kP , x, w⊗k), and OH,Reprogram

S (kP , x, w⊗k) returns
SimH,Reprogram(kP , x).

Remark 5.1. Remark that the “multi-theorem” zero-knowledge does not mean
that a preprocessing can be reused many times. It rather means that a single
random oracle can be reused as long as a fresh preprocessing is run every time.
This is consistent to the definition in the CRS + (V → P ) model (Definition
4.1) if we think of the random oracle as replacement of CRS.

5.2 Building Blocks

We use the two cryptographic primitives, a non-interactive commitment scheme
and a Σ-protocol with quantum preprocessing, for our construction.

Definition 5.2. (Σ-protocol with Quantum Preprocessing). A Σ-
protocol with quantum preprocessing for a QMA promise problem L = (Lyes, Lno)
consists of algorithms Π = (Preprocess,Prove1,Verify1,Prove2,Verify2) with the
following syntax:

9 We remark that kP is allowed to be entangled with D’s internal registers unlike w⊗k.
See also footnote 6.
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Preprocess(1λ): This is a QPT algorithm that takes the security parameter 1λ

as input, and outputs a quantum proving key kP and a classical verification
key kV . We note that this algorithm is supposed to be run by the verifier as
preprocessing, and kP is supposed to be sent to the prover while kV is supposed
to be kept on verifier’s side in secret. We also note that they can be used only
once and cannot be reused.

Prove1(kP , x, w⊗k): This is a QPT algorithm that takes the proving key kP , a
statement x, and k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input,
and outputs a classical message msg1 and a state st.

Verify1(1λ): This is a PPT algorithm that takes the security parameter 1λ, and
outputs a classical message msg2, which is uniformly sampled from a certain
set.

Prove2(st,msg2)We use the two cryptographic primitives This is a QPT algo-
rithm that takes the state st and the message msg2 as input, and outputs a
classical message msg3.

Verify2(kV , xx,msg1,msg2,msg3): This is a PPT algorithm that takes the veri-
fication key kV , the statement x, and classical messages msg1,msg2,msg3 as
input, and outputs  indicating acceptance or ⊥ indicating rejection.

We require Π to satisfy the following properties.

c-Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Verify2(kV , x,msg1,msg2,msg3) = 
 :

(kP , kV )
$← Preprocess(1λ)

(msg1, st)
$← Prove1(kP , x, w⊗k)

msg2
$← Verify1(1

λ)

msg3
$← Prove2(st,msg2)

⎤

⎥

⎥

⎥

⎥

⎦

≥ c.

(Adaptive Statistical) s-soundness. For all adversary (A1,A2), we have

Pr

⎡

⎢

⎢

⎢

⎢

⎣

x ∈ Lno ∧ Σ.Verify2(kV , x,msg1,msg2,msg3) = 
 :

(kP , kV )
$← Preprocess(1λ)

(x, st,msg1)
$← A1(kP )

msg2
$← Verify1(1

λ)

msg3
$← A2(st,msg2)

⎤

⎥

⎥

⎥

⎥

⎦

≤ s.

Special Zero-Knowledge. There exists a QPT algorithm Sim such that for
any x ∈ Lyes, w ∈ RL(x), msg2, and QPT adversary (A1,A2), we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1

λ)

(msg1, st)
$← Prove1(kP , x, w⊗k)

msg3
$← Prove2(st,msg2)

⎤

⎥

⎥

⎦

− Pr

[

A2(stA, x,msg1,msg2,msg3) = 1 :
(kP , stA)

$← A1(1
λ)

(msg1,msg3)
$← Sim(kP , x,msg2)

]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ).

High Min-Entropy. Prove1 can be divided into the “quantum part” and “clas-
sical part” as follows:
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ProveQ
1 (kP , x, w⊗k): This is a QPT algorithm that outputs a classical string st′.

ProveC
1 (st′): This is a PPT algorithm that outputs msg1 and st.

Moreover, for any st′ generated by ProveQ
1 , we have

max
msg∗

1

Pr[ProveC
1 (st′) = msg∗

1] = negl(λ).

Lemma 5.1. (Gap Amplification for Σ-protocol with quantum prepro-
cessing). If there exists a Σ-protocol with quantum preprocessing for a promise
problem L that satisfies c-completeness, s-soundness, special zero-knowledge, and
high min-entropy for some 0 < s < c < 1 such that c − s > 1/poly(λ), then
there exists a Σ-protocol with quantum preprocessing for L with (1 − negl(λ))-
completeness, negl(λ)-soundness, special zero-knowledge, and high min-entropy.

Proof. It is clear that the parallel repetition can amplify the completeness-
soundness gap, and that the high min-entropy is preserved under the parallel
repetition. We can also show that parallel repetition preserves the special zero-
knowledge property by a standard hybrid argument.

By applying a similar trick as in Sect. 3 to the quantum Σ-protocol of [BG20],
we obtain the following theorem.

Theorem 5.1. If a non-interactive commitment scheme exists, then there exists
a Σ-protocol with quantum preprocessing for QMA.

As mentioned in Sect. 5.1, a non-interactive commitment scheme uncondi-
tionally exists in the QROM. Therefore, the above theorem implies the following
corollary.
Corollary 5.1. There exists a Σ-protocol with quantum preprocessing for
QMA in the QROM.

5.3 Construction

In this section, we construct a CV-NIZK in the QRO + (V → P ) model. As a
result, we obtain the following theorem.

Theorem 5.2. There exists a CV-NIZK for QMA in the QRO +
(V → P ) model.

Let L = (Lyes, Lno) be a QMA promise problem, H be a random ora-
cle, and ΠΣ = (Σ.Preprocess, Σ.Prove1, Σ.Verify1, Σ.Prove2, Σ.Verify2) be a
Σ-protocol with quantum preprocessing (with (1 − negl(λ))-completeness and
negl(λ)-soundness). Then our CV-NIZK in the QRO + (V → P ) model ΠQRO =
(PreprocessQRO,ProveQRO,VerifyQRO) for L is described in Fig. 5.

Lemma 5.2. ΠQRO satisfies (1 − negl(λ))-completeness and adaptive negl(λ)-
soundness.

Correctness is clear. Soundness is shown by using the measure-and-reprogram
lemma shown in [DFM20].

Lemma 5.3. ΠQRO satisfies adaptive multi-theorem zero-knowledge property.

This is proven by using adaptive reprogramming lemma shown in [GHHM20].
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PreprocessQRO(1
λ): It runs Σ.Preprocess(1λ) → (Σ.kV , Σ.kP ), and outputs kV :=

Σ.kV and kP := Σ.kP .
ProveH

QRO(kP , x, w⊗k): It parses Σ.kP ← kP , and runs Σ.Prove1(kP , x, w⊗k) →
(msg1, st). It computes msg2 := H(x,msg1). It runs Σ.Prove2(st,msg2) → msg3. It
outputs π := (msg1,msg3).

VerifyH
QRO(kV , x, π): It parses Σ.kV ← kV and (msg1,msg3) ← π. It computes

Σ.Verify2(kV , x,msg1, H(x,msg1),msg3). If the output is ⊥, it outputs ⊥. If the
output is �, it outputs �.

Fig. 5. CV-NIZK in the QRO + (V → P ) model ΠQRO.

Shared Bell-Pair Model. Remark that the verifier of ΠQRO just sends a state
ρP :=

⊗N
j=1(U(Wj)|mj〉) for (W1, ...,WN ) $← {X,Y,Z}N and (m1, ...,mN ) $←

{0, 1}N while keeping (W1, ...,WN ,m1, ...,mN ) as a verification key. This step
can be done in a non-interactive way if N Bell-pairs are a priori shared between
the prover and verifier. That is, the verifier can measure his halves of Bell
pairs in a randomly chosen bases (W1, ...,WN ) to get measurement outcomes
(m1, ...,mN ). Apparently, this does not harm either of soundness or zero-
knowledge since the protocol is the same as ΠQRO from the view of the prover
and the malicious verifier’s power is just weaker than that in ΠQRO in the sense
that it cannot control the quantum state to be sent to the prover. Thus, we
obtain the following theorem.

Theorem 5.3. There exists a CV-NIZK for QMA in the QRO + shared Bell
pair model.
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Abstract. While unconditionally-secure quantum bit commitment
(allowing both quantum computation and communication) is impossible,
researchers turn to study the complexity-based one, a.k.a. computational
quantum bit commitment. A computational canonical (non-interactive)
quantum bit commitment scheme refers to a kind of schemes such that
the commitment consists of just a single (quantum) message from the
sender to the receiver that later can be opened by uncomputing the com-
mit stage. In this work, we study general properties of computational
quantum bit commitments through the lens of canonical quantum bit
commitments. Among other results, we in particular obtain the follow-
ing two:
1. Any computational quantum bit commitment scheme can be con-

verted into the canonical (non-interactive) form (with its sum-
binding property preserved).

2. Two flavors of canonical quantum bit commitments are equivalent ;
that is, canonical computationally-hiding statistically-binding quan-
tum bit commitment exists if and only if the canonical statistically-
hiding computationally-binding one exists. Combining this result
with the first one, it immediately implies (unconditionally) that com-
putational quantum bit commitment is symmetric.

Canonical quantum bit commitments can be based on quantum-secure
one-way functions or pseudorandom quantum states. But in our opinion,
the formulation of canonical quantum bit commitment is so clean and
simple that itself can be viewed as a plausible complexity assumption
as well. We propose to explore canonical quantum bit commitment from
perspectives of both quantum cryptography and quantum complexity
theory in the future.

Keywords: Quantum bit commitment · Quantum binding · Round
complexity · Parallel composition

1 Introduction

In the classical world, bit commitment is an important cryptographic primi-
tive. A bit commitment scheme defines a two-stage interactive protocol between

The full version of this paper is referred to [50].
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a sender and a receiver, providing two security guarantees, hiding and bind-
ing. Informally, the hiding property states that the committed bit is hidden
from the receiver during the commit stage and afterwards until it is opened,
while the binding property states that the sender can only open the commit-
ment as at most one bit value (0 or 1, exclusively) in the reveal stage later.
Unfortunately, unconditionally (or information-theoretically)-secure bit commit-
ment is impossible. As a compromise, we turn to consider complexity-based
bit commitment, a.k.a. computational bit commitment. The one-way function
assumption is a basic computational hardness assumption without any mathe-
matical structure; it is the minimum assumption in complexity-based cryptog-
raphy [25]. From a one-way function we can construct two flavors of bit commit-
ments: computationally-hiding (statistically-binding) bit commitment [37] and
(statistically-hiding) computationally-binding bit commitment [24,38]. However,
a major disadvantage of these constructions is that they are interactive: at least
two or even polynomial numbers of messages are needed to exchange in the
commit stage, and which seems inherent [23,34].

As quantum technology develops, existing cryptosystems are facing possible
quantum attacks in the near future. Regarding bit commitment, we thus have to
study bit commitment secure against quantum attacks, a.k.a. quantum bit com-
mitment. A general quantum bit commitment scheme itself could be a hybrid of
classical and quantum computation and communication. When the construction
is purely classical, we often call it “(classical) bit commitment scheme secure
against quantum attacks” or “post-quantum bit commitment scheme”1.

The concept of quantum bit commitment was proposed almost three decades
ago, aiming to make use of quantum mechanics to realize bit commitments
[6,10]. Unfortunately, unconditionally-secure quantum bit commitment is impos-
sible either [33,35]. Based on complexity assumptions such as quantum-secure
one-way permutations or functions, we can also construct two flavors of quan-
tum bit commitments [2,14,17,30,31,52]. An interesting observation about these
constructions is that almost all of them (except for the one in [14]) are non-
interactive (in both the commit and the reveal stages). This is a great advantage
over the classical bit commitment. And this motivates us to ask the following
question:

Is quantum bit commitment inherently non-interactive? Or, can any quan-
tum bit commitment scheme be “compressed” into a non-interactive one
that is still useful in applications?

This possible non-interactivity of quantum bit commitment is intriguing: if it is
true, then replacing post-quantum bit commitments with quantum bit commit-
ments in applications can potentially reduce the round complexity of the whole
construction.

While the idea of using quantum bit commitments in applications sounds
wonderful, unfortunately, it is well-known that the general binding property of
1 Even in case, it is still legal to call it “quantum bit commitment scheme”. This is

because classical computation and communication can be simulated by quantum
computation and communication, respectively, in a standard way.
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quantum bit commitment, i.e. sum-binding, is much weaker than the classical-
style binding2 [12,17,44,52], or unique-binding hereafter. This is because a quan-
tum cheating sender may commit to a bit 0 and 1 in an arbitrary superposition,
resulting in the committed value no longer unique. Thus, it is questionable a pri-
ori whether quantum bit commitments could be useful in cryptographic appli-
cations, let alone the notorious difficulty (or general impossibility) of quantum
rewinding [21] in security analysis.

Canonical Quantum Bit Commitment. Motivated by the study of complete
problems for quantum zero-knowledge [28,45,49] and more general quantum
interactive proofs [11,41], the so-called canonical (non-interactive) quantum bit
commitment3 was proposed [18,52].

Roughly speaking, by a canonical quantum bit commitment scheme, the com-
mitment consists of just a single (quantum) message from the sender to the
receiver, which can be opened later by uncompute the commit stage. Its def-
inition is sketched at the beginning of “Our contributions” shortly and given
in Definition 2 formally. A canonical quantum bit commitment scheme satis-
fies the so-called honest-binding property, which guarantees that any cheating
sender in the reveal stage cannot open an honest commitment to the bit 0 as
1, and vice versa. This honest-binding property appears even weaker than sum-
binding. Both flavors of canonical quantum bit commitments can be constructed
from quantum-secure one-way functions [30,31,52], or pseudorandom quantum
states by a more recent result [36] and this work.

Though its binding property appears extremely weak, interestingly, it turns
out that canonical quantum bit commitment is sufficient to construct quantum
zero-knowledge [18,51,52] and quantum oblivious transfer4 [18]. However, the
corresponding security (that will be based on quantum bit honest-binding) there
are more tricky to establish than the corresponding security based on unique-
binding.

Other Quantum Commitments and Binding Properties. There are also
other (classical or quantum) constructions of commitments that satisfy some
stronger binding properties (but which may not hold for general quantum bit
commitments) than sum-binding, including collapse-binding commitments [43,
44], and extractable commitments [5,22]; they are likely to be more versatile
than general quantum bit commitments in applications. However, both of them
need interactions in the standard model, losing the possible advantage of the
non-interactivity of quantum bit commitments.

2 That is, any quantum cheating sender cannot generate a commitment that can be
opened as both 0 and 1 successfully with non-negligible probability.

3 In the prior work (e.g. [18,51,52]) and an earlier draft of this paper (back in 2020), it
is called “generic” form. However, this name is misleading as pointed out by Ananth,
Qian, and Yuen [4], who also suggest the current name “canonical” to us. And we
accept.

4 In [18], a quantum oblivious transfer with a security that is weaker than the full
simulation-security [5,22] but still very useful in many scenarios was achieved.
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Restricting to quantum statistically-binding commitments, statistical unique-
binding can be achieved based on quantum one-way permutations [2], or even
functions by a recent result [7]. More recently, Ananth, Qian and Yuen [3] also
propose an extractor-based quantum statistical-binding property, hereafter AQY-
binding, and show that it can be satisfied by a construction of quantum bit
commitment based on pseudorandom quantum states. Though these binding
properties seem much stronger than the honest-binding property guaranteed by
canonical statistically-binding quantum bit commitment (whose instantiations
can be found either in [52], [50, Appendix D], or [36]), commitments satisfying
these binding properties turn out to be no more useful (at least in theory, as far
as we can tell) than canonical statistically-binding quantum bit commitments in
applications [18]. More discussion on this point is referred to Subsect. 1.2 (where
we will discuss the extractor-based AQY-binding property in greater detail.)

Yet in some other work certain strong quantum binding properties are pro-
posed for applications [12,16], but no instantiations of the corresponding com-
mitments based on well-founded complexity assumptions are known even today.

This Work. In this work, we show that the canonical quantum bit commitment
captures the computational hardness underlying general computational quantum
bit commitments, by providing a compiler that can transform any computational
quantum bit commitment scheme into the canonical (non-interactive) form. This
not only answer the motivating question aforementioned affirmatively, but also
allows us to study general properties of quantum bit commitments through the
lens of canonical quantum bit commitments.

We further propose to study canonical quantum bit commitment in the future
not only as a cryptographic primitive in the MiniQCrypt world (named after
[22]), but also as a basic (quantum) complexity-theoretic object whose existence
is an interesting open problem in its own right. Our proposal is based on our
current knowledge about canonical quantum bit commitment summarized as
follows: (Refer to Subsect. 1.3 for more detail.)

1. Its formulation is clean and simple (Definition 2), inducing two basic quantum
complexity-theoretic open questions: one is on the existence of quantum state
ensembles that are computationally indistinguishable but far apart in the
trace distance, while the other on the existence of unitaries that cannot be
efficiently realized.

2. It is robust (Theorem 6), implying that the two basic open questions men-
tioned in the 1st item above are essentially the same question.

3. It captures the computational hardness underlying general computational
quantum bit commitments (Theorem 4).

4. It is useful in quantum cryptography [3,5,18,51,52].
5. Conversely, it is also implied by some basic quantum cryptographic primitives

such as quantum zero-knowledge [52] and quantum oblivious transfer [14].
6. It is implied by quantum complexity assumptions such as quantum-secure

one-way functions and pseudorandom quantum states in the MiniQCrypt
world [14,30,31,36,52]. But the converse is unknown.
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Before introducing our contribution of this work in greater detail, we stress
that in this paper when we talk about statistical or computational binding with-
out explicitly mentioning other properties of binding, we mean the most general
sum-binding property (or equivalently, honest-binding w.r.t. canonical quantum
bit commitments, as will become clear shortly). In spite of this, we have already
known that canonical quantum bit commitments can satisfy some stronger bind-
ing properties than sum-binding that are interesting and useful in applications
[18,50,51]. We expect further exploration on the binding properties of canonical
quantum bit commitments in the future.

1.1 Our Contribution

We first sketch what a canonical quantum bit commitment scheme looks like; its
formal definition is given in Definition 2. Informally speaking, a canonical (non-
interactive) quantum bit commitment scheme can be represented by an ensemble
of unitary polynomial-time generated quantum circuit pair {(Q0(n), Q1(n))}n,
where n is the security parameter. For the moment, let us drop the security
parameter n to simplify the notation. Both quantum circuits Q0 and Q1 perform
on a quantum register pair (C,R), which are composed of qubits. To commit a
bit b ∈ {0, 1}, the sender (of bit commitment) first initializes the register pair (C,
R) in all |0〉’s state and then performs the quantum circuit Qb on them, sending
the commitment register C to the receiver. In the reveal stage, the sender sends
the bit b together with the decommitment register R to the receiver, who will
first perform the inverse of the quantum circuit Qb (since it is unitary) on the
register pair (C, R), and then measure each qubit of (C, R) in the computational
basis. The receiver will accept (i.e. the opening is successful) if and only if the
measurement outcome of each qubit is 0. We say that the scheme (Q0, Q1) is
hiding if the reduced quantum state of Q0 |0〉 in the register C and that of Q1 |0〉
are indistinguishable, and that the scheme is binding if there does not exist a
unitary performing on the register R that transforms the quantum state Q0 |0〉
into Q1 |0〉.

We obtain four main results on properties of canonical and more general
quantum bit commitments as follows:

1. Honest-binding is equivalent to sum-binding (w.r.t. the canonical
form)

Among various binding properties proposed for quantum (including post-
quantum) commitments [2,12,16,17,44,51,52], honest-binding [52] is the weak-
est. Informally, it states that any cheating sender (in the reveal stage) cannot
open an honest commitment to 0 (resp. 1) as 1 (resp. 0). Its formal definition
w.r.t. a canonical quantum bit commitment scheme is given in Definition 2. A
priori, honest-binding seems to be too weak to be useful: anyway, it is unrealistic
to restrict a cheating sender’s behavior to be honest in the commit stage!

Sum-binding is a general binding property of quantum bit commitment [17].
Roughly, let p0 and p1 denote the probability that a cheating sender (in the reveal
stage) can open the commitment (generated in the commit stage in which the
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sender is also cheating) as 0 and 1, respectively. Then sum-binding requires that
p0 + p1 < 1 + negl(n), where negl(·) is some negligible function of the security
parameter. The formal definition of sum-binding w.r.t. a canonical quantum bit
commitment scheme is given in Definition 3.

While it is trivial that sum-binding implies honest-binding, in this work we
show that the converse is also true w.r.t. canonical quantum bit commitments5

(Theorem 2). This in turn establishes an equivalence between its semi-honest
security (against an honest-but-curious attacker, i.e. honest-hiding and honest-
binding; refer to Definition 2) and the full security (against an arbitrary attacker)
(Theorem 3). This equivalence not only explains at a high level why previous
applications of canonical quantum bit commitments only make use of its honest-
binding property [18,51,52], but also enables us to simplify the security analysis
of canonical quantum bit commitments schemes6. As an application, we can sig-
nificantly simplify the DMS construction [17] of computationally-binding quan-
tum bit commitment based on quantum-secure one-way permutations7. (The
detail is referred to [50, Section 5]).

2. Quantum bit commitment is inherently non-interactive
We answer the motivating question raised before affirmatively, i.e. quantum

bit commitment is inherently non-interacitve, by proving a round-collapse theo-
rem (Theorem 4). This theorem can also be viewed as an extension of converting
an arbitrary non-interactive quantum bit commitment scheme into the canon-
ical form [18,52]. Its basic idea follows the non-interactive case, with the only
non-trivial thing lying in identifying a sufficient yet as weak as possible condi-
tion under which the same idea works for such an extension. A priori, one may
expect that for the compression of rounds, the original scheme itself should be
firstly secure (against quantum attacks), with some additional structure require-
ments (if needed). Surprisingly, it turns out the condition for the round com-
pression could be extremely weak : even the original quantum bit commitment
scheme need not be fully secure; instead, it is sufficient that its purification is
semi-honest secure! In greater detail, we construct a general compiler that can
convert any (interactive) quantum bit commitment scheme whose purification
is semi-honest secure into a quantum bit commitment scheme of the canonical
form. This resulting scheme (of the canonical form), which will be referred to
as the “compressed scheme”, has perfect completeness and satisfies the same
flavor of hiding and binding properties as the original scheme. This theorem is
interesting by noting that we do not have a classical counterpart of it yet, which
seems even unlikely [23,34]. An immediate consequence of the round-collapse
theorem is that any known quantum bit commitment scheme (of either flavor

5 We do not claim that this holds for a general quantum bit commitment; the two
simple schemes presented in [50, Appendix C] also serve as two counterexamples in
this regard.

6 Then it suffices to show its semi-honest security.
7 Strictly speaking, we simplify the security analysis of the DMS scheme after it is

firstly converted into the canonical form (which is straightforward).
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and based on any complexity assumption) can be converted into the canonical
form (Theorem 5).

If we want to apply the round-collapse theorem in applications, (seeing from
its statement) the relationship between the semi-honest security of the origi-
nal scheme and its purification becomes important. We thus initiate a study
towards this relationship. (The detail is referred to [50, Section 7, 9, and 10].)
On one hand, we identify many situations in which the semi-honest security of
the original scheme extends to its purification. On the other hand, we find two
counterexamples for which such an extension is impossible. (The detail is referred
to [50, Appendix C]). A bridge that connects these two notions of security is the
security against a special kind of attack which we will refer to as the “purification
attack”, i.e. attacking by purifying all the party’s (honest) operations prescribed
by the protocol. A typical purification attack is not to perform the expected mea-
surements. It turns out that an (interactive) quantum bit commitment scheme
is secure against the purification attack if and only if its purification is semi-
honest secure [50, Proposition 15]. But in comparison, the security against the
purification attack is more convenient to work with in security analysis than the
semi-honest security of the purified scheme. We believe that this security against
the purification attack as well as techniques developed to establish it (refer to
“Technical overview” for a discussion) are of independent interest.

As an interesting application, we apply the round-collapse theorem to com-
press the classical NOVY scheme [38], obtaining yet another construction
(besides ones given in [17,30,31]) of non-interactive computationally-binding
quantum bit commitment based on quantum-secure one-way permutations [50,
Section 9]. This is interesting because we even do not know whether the original
NOVY scheme itself is secure against quantum attacks (when the underlying
quantum one-way permutation used is quantum secure). We also highlight that
our quantum security analysis here is (interestingly) much simpler than the clas-
sical analysis of the NOVY scheme in [38]. This simplification mainly comes from
that it suffices to show that the NOVY scheme is secure against the purification
attack (for the purpose of round compression).

3. Quantum bit commitment is symmetric, or two flavors of quantum
bit commitments are equivalent

Almost two decades ago, Crépeau, Légaré and Salvail [14] gave a way that
virtually can transform any quantum bit commitment scheme that is computa-
tionally hiding and statistically unique-binding into another one of the opposite
flavor, i.e. computationally binding and statistically hiding. In this work, we
generalize this result significantly by proving a symmetry8 in the sense as stated
in the following (unconditional) theorem:

Theorem 1. Computationally-hiding statistically-binding quantum bit commit-
ments exist if and only if statistically-hiding computationally-binding quantum
bit commitments exist.

8 This symmetry is in the same sense as that of oblivious transfer [48].
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The high-level idea of proving the theorem above is as follows. By the virtue
of the round-collapse theorem, it suffices to prove that the theorem holds w.r.t.
canonical quantum bit commitments (Theorem 6). In greater detail, given a
canonical quantum bit commitment scheme, we first feed it to a somewhat sim-
plified CLS construction [14] to convert its flavor, and then feed the resulting
scheme to the general compiler guaranteed by the round-collapse theorem to
obtain the final scheme (which will be in the canonical form automatically).

Our security analysis are significantly simpler than the related ones given in
[12,14]. Basically, the simplification comes from two aspects:

1. By the virtue of our round-collapse theorem (Theorem 4), the original CLS
scheme (with a canonical quantum bit commitment scheme plugged in) can be
simplified in the first place to just satisfy the security against the purification
attack before the compression.

2. Proving the security against the purification attack turns out to be much
easier than the full security.

Towards proving Theorem 6, we develop several techniques to establish the
security against the purification attack. Most of these techniques are adapted
from those used in [18,51]. Among others, we in particular show a computational
collapse caused by canonical quantum computationally-binding commitments
[50, Appendix F], which might be of independent interest. More discussion on
our techniques is referred to “Technical overview”.

We finally remark that as a by-product of the symmetry, we automatically
obtain a construction of canonical statistically-hiding computationally-binding
quantum bit commitment based on quantum-secure one-way functions or pseu-
dorandom quantum states. This is achieved by first plugging in the somewhat
simplified CLS construction a canonical computationally-hiding statistically-
binding quantum bit commitment scheme that is either based on quantum-
secure one-way functions or pseudorandom quantum states, and then com-
pressing the resulting scheme. We remark that the construction of statistically-
hiding computationally-binding quantum bit commitment based on pseudoran-
dom quantum states is previously unknown.

4. Quantum statistical string sum-binding (w.r.t. the canonical form)
A natural way to commit a string is to commit it in a bitwise fashion using

a quantum bit commitment scheme. So it is interesting to explore what binding
property can be obtained if a quantum bit commitment scheme is composed in
parallel. Since a canonical quantum bit commitment scheme satisfies the sum-
binding property, ideally, we may hope to prove such a dream version of the
quantum string sum-binding property as

∑
s∈{0,1}m ps < 1 + negl(n), where ps

denotes the success probability that the cheating sender can open a (claimed)
string commitment as the m-bit string s, and negl(·) denotes some negligible
function of the security parameter n. However, this string sum-binding property
seems too strong to be true generally when m = poly(n), in which case the
sender can attack by committing to a superposition of exponentially many m-
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bit strings [12]. Then bounding the error induced by such a superposition by a
negligible quantity becomes technically hard or even impossible9.

In spite of the above, we manage to show that composing a canonical
statistically-binding quantum bit commitment scheme in parallel indeed gives rise
to a quantum string commitment scheme satisfying a dream version of the quan-
tum statistical string sum-binding property (Theorem 7). Since our proof relies
heavily on that the error (incurred by the statistical binding error) decreases
exponentially in the Hamming distance between the committed string and the
string to reveal, it does not extend to the case quantum computational binding.

1.2 Related (More Recent) Work

More recently10, Bitansky and Brakerski [7] construct a non-interactive
statistically-binding quantum bit commitment scheme based on quantum-secure
one-way functions. Their scheme deviates from the canonical one given in [52],
managing to achieve unique-binding and the classical reveal stage, but at the
cost of more complex construction and analysis.

Morimae and Yamakawa [36] construct a statistically-binding quantum bit
commitment scheme based on pseudorandom quantum states [26], a quantum
complexity assumption arguably weaker than quantum-secure one-way functions
[32]. Interestingly, we find their construction is just in the canonical form. So
by results of this work, their security analysis of quantum statistical binding
can be simplified to just show the quantum statistical honest-binding (rather
than sum-binding) property. Moreover, combining results in this work (Theorem
6), it follows that both flavors of canonical quantum bit commitments can be
constructed based on pseudorandom quantum states.

Ananth, Qian and Yuen [3] also construct a statistically-binding quantum
bit commitment scheme based on pseudorandom quantum states, which has
two messages in the commit stage and a single classical message in the reveal
stage. Clearly, this scheme is not in the canonical form. But they show that it
satisfies a strong (statistical) binding property such that an (inefficient) extractor
is associated with scheme, which can be used to extract (and thus collapse)
the committed value from the commitment at the end of the commit stage. We
find11 that this idea of introducing an extractor to quantum statistically-binding
commitments is very similar in spirit to the analysis framework introduced in [18]
but only for canonical perfectly/statistically-binding quantum bit commitments.
More discussion on the comparison between them is referred to [50, Appendix B],
where by tweaking techniques used in [18], we in particular prove that canonical
statistically-binding quantum bit commitments automatically satisfy the AQY-
binding property.
9 To the best of our knowledge, however, no impossibility result is known yet. In [12],

authors only vaguely argue that this seems impossible for quantum computationally-
binding commitments.

10 After the upload of the first preprint of this work to Cryptology ePrint Archive [50]
in 2020.

11 This is also observed in [36, Appendix B].
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While the extractor-based AQY-binding definition is more readily usable by
cryptographers, there seems no obvious way to extend it to the case of quantum
computational binding (when the commitment is statistically hiding). This is
because then the quantum commitments to different values are negligibly close
(in the trace distance); we cannot hope that a similar extractor exists. In con-
trast, the formalization of canonical quantum bit commitment schemes provide
a uniform way to capture both flavors of quantum bit commitments.

Moreover, Ananth, Qian and Yuen [3] propose studying pseudorandom quan-
tum states, instead of quantum-secure one-way functions, as a basic quantum
complexity assumption for quantum (rather than post-quantum) cryptography.
In this regard, we feel that it would be equally interesting to study the existence
of canonical quantum bit commitment schemes as a basic quantum complexity
assumption for quantum cryptography. More discussion on this point is referred
to the next subsection.

1.3 Quantum Bit Commitments: Seeing from Both Quantum
Cryptography and Quantum Complexity Perspectives

Based on previous results and results in this paper, now let us give an overview
of quantum bit commitments from quantum cryptography and quantum com-
plexity perspectives, respectively.

Seeing from the quantum cryptography perspective, on one hand quan-
tum bit commitment can be constructed from quantum-secure one-way func-
tions/permutations [2,7,14,17,30,31,52], or pseudorandom quantum states [3,
26,36]. It is interesting to explore whether quantum bit commitments imply
pseudorandom quantum states (of any sort) conversely12. On the other hand,
quantum bit commitments are useful, and may help reduce the round complex-
ity of cryptographic constructions [18,51,52]. In particular, there exists a cer-
tain equivalence between quantum bit commitment and quantum zero-knowledge
[52], and an equivalence between quantum bit commitment and quantum obliv-
ious transfer [3,5,14,18,54]. Thus, quantum bit commitment is likely to be an
important primitive in the MiniQCrypt world [22]. It is interesting to explore
more cryptographic applications of quantum bit commitments in the future.

Seeing from the quantum complexity perspective, whether computational
quantum bit commitments exist is an interesting open problem. As mentioned,
canonical quantum bit commitment are motivated by the study of complete prob-
lems for quantum zero-knowledge [45,49] and more general quantum interactive
proofs [11,41]. The existence of canonical statistically-hiding computationally-
binding quantum bit commitment schemes is closely related to the quantum com-
plexity of unitaries [1]. In greater detail, suppose that (Q0, Q1) is a canonical
statistically-hiding computationally-binding quantum bit commitment scheme.
Then its statistical hiding property implies that quantum states Q0 |0〉CR and

12 We do not expect that quantum bit commitments can imply quantum-secure one-
way functions, simply because a canonical quantum bit commitment scheme concerns
quantum states rather than any sort of functions.
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Q1 |0〉CR only differ up to a unitary U performing on the decommitment register
R. This is because restricting to the commitment register C, the corresponding
two reduced quantum states are negligibly close in the trace distance. However,
the computational binding property implies that this unitary U is not efficiently
realizable!

We can motivate the study of canonical computationally-hiding statistically-
binding quantum bit commitment by comparing it with a pair of efficiently
constructible probability distributions that are computationally indistinguishable
but statistically far apart in the classical setting. They look quite similar; we
may view the former as the quantum counterpart of the latter. Goldreich shows
that the existence of the latter implies one-way functions [20, an exercise in
Chap. 3] and pseudorandom generators [19]. In a try to translate this result to
the quantum setting, it brings us back to the open question of whether quantum
bit commitments imply pseudorandom quantum states (which are the quantum
analog of pseudorandom generators) [3,26,36].

We finally remark that the round-collapse theorem and the equivalence
between two flavors of quantum bit commitments established in this paper indi-
cate that the open question regarding the existence of computational quantum
bit commitments is very robust. And it will be more robust if the answer to
the following open question, which concerns quantum hardness amplification, is
“yes”: can the computational binding error of a canonical quantum bit com-
mitment scheme be reduced by parallel repetition, say from 1/2 or even inverse
polynomial to some negligible quantity? This question looks very similar to the
amplification of the hardness of inverting an arbitrary one-way function in classi-
cal cryptography [53]. More interestingly, if the answer to this question is indeed
“yes”, then combining it with results in [18,45,51,52] will complete a proof for
an equivalence between quantum bit commitment and quantum zero-knowledge
like in the classical setting [40].

1.4 Technical Overview

Honest-Binding Implies Sum-Binding. The proof is just a simple applica-
tion of the quantum rewinding lemma (Lemma 1) once used in [18,51,52], which
in a nutshell is another variant (other than the one used in [42] that is designed
specific for sigma protocols) of the gentle measurement lemma [47].

Round Compression. Our compiler for the round compression is inspired by
the equivalence between the semi-honest security and the full security w.r.t.
canonical quantum bit commitments (Theorem 3).

Informally speaking, the compiler itself is extremely simple: in the new (non-
interactive) commit stage, the sender will simulate an honest execution of the
commit stage of the original (possibly interactive) scheme, and then send the
original receiver’s system as the commitment to the new receiver. Later in the
reveal stage, the new sender will send the residual system to the new receiver,
who will check the new sender’s whole computation in the commit stage via
the quantum reversible computation. For this construction to be legal, possible
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irreversible computation of both parties in the commit stage prescribed by the
original scheme should be simulated by corresponding unitary computation (in a
standard way) in the first place. This procedure of simulation is typically referred
to as the “purification” (of a quantum protocol).

At the first glance, the compiler constructed as above seems too simple to
be true: how can the idea of simply letting the new sender delegate all the
computation in the commit stage of (the purification of) the original scheme
work? After all, the new sender may deviate arbitrarily, and there seems no
way of restricting its behavior by just exchanging a single message in the (non-
interactive) commit stage! Clearly, this idea of compression does not work for
commitments in classical cryptography.

The reason why our compiler works is by the virtue of Theorem 3: it suffices
to show that the resulting compressed quantum bit commitment scheme (which
is just in the canonical form by our construction) is semi-honest secure. This
also provides some intuition why in the formal statement of our round-collapse
theorem (Theorem 4), it requires that the (purification) of the original scheme
(rather than the original scheme itself), or purified scheme hereafter, be semi-
honest secure. As for the proof of the round-collapse theorem, while the honest-
hiding property of the compressed scheme is trivial, its honest-binding property
can be roughly argued in the below.

Suppose (for contradiction) that at the beginning of the reveal stage, there
is a cheating sender who can transform the quantum state of the whole system
when a bit 0 is committed to the state when a bit 1 is committed, by just
performing some unitary operation U on its own system. This will gives rise to an
attack against the honest-binding property of the purified scheme as follows: the
sender commits to the bit 0 honestly following the purified scheme in the commit
stage. In the reveal stage, it first performs the operation U on its own system,
transforming the whole system to a state that is close to the state when the bit 1
is committed, and then proceeds honestly to open the commitment as 1. While
the intuition underlying this reduction is simple, to turn it into a formal proof,
we need a large amount of (and tedious) work in formalizing an execution of (the
commit stage of) a general (interactive) quantum bit commitment scheme and
its purification [50, Section 6], as well as their semi-honest security [50, Section 7].

Last, we would like to compare our round compression of a general interactive
quantum bit commitment scheme with that of a quantum interactive proof [27]
or a zero-knowledge proof [29]. Ideas in these two settings are very similar:
both of them rely heavily on the reversibility of quantum computation. The
key difference lies in that for the latter, since (even) the honest prover could
be computationally unbounded, an (interactive) swap test is introduced for the
purpose of checking the computation. In comparison, in our setting this test is
not necessary; this is because (as typical in cryptography) both the honest sender
and the honest receiver of bit commitment are polynomial-time bounded.

Proving an Equivalence Between Two Flavors of Canonical Quantum
Bit Commitments. The basic idea to convert the flavor of a canonical quan-
tum bit commitment scheme is to use the CLS construction [14]. In a nutshell,
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the original CLS scheme in [14] uses classical statistically unique-binding bit
commitments (e.g. Naor’s scheme [37]) to realize a 1-out-of-2 quantum oblivious
transfer (QOT) [13], which in turn can be used to construct a computationally-
binding quantum bit commitment scheme. In [18], it is shown that commitments
used in the CLS scheme, or QOT subprotocol more precisely, can be replaced
with canonical statistically/perfectly-binding quantum bit commitments. Then
combined with the round-collapse theorem (Theorem 4), this already proves one
direction of the equivalence.

For the other direction of the equivalence, however, it is still open whether one
can use computationally-binding quantum bit commitments in the CLS scheme
to obtain a statistically-binding quantum bit commitment scheme. Technically,
this is because we do not know whether using computationally-binding quantum
bit commitments can force the receiver of BB84 qubits in the QOT subprotocol
to measure these qubits upon receiving them. (We note that this is not a big
problem when statistically-binding quantum bit commitments are used [14,18]).
To overcome this difficulty, in [12] a tailored quantum string binding property
is proposed, by which they show that quantum commitments satisfying such
binding property are sufficient to show the security of the QOT protocol. Unfor-
tunately, we do not know whether quantum commitments satisfying such binding
property are instantiatable even today. In this work, we overcome this technical
difficulty by proving a computational collapse theorem [50, Appendix F], as will
be discussed shortly.

Actually, for our purpose of converting the flavor of canonical quantum bit
commitments, it suffices for us to use a somewhat simplified CLS construction:
all intermediate verifications of quantum commitments within the original CLS
scheme can be removed. We can do this is by the virtue of the round-collapse
theorem, namely, we only need a scheme whose purification is semi-honest secure
for the purpose of the round compression. In particular, we only need such a
QOT that satisfies the following security property: after the interaction, the
purified receiver of QOT does not know the other bit that the honest sender is
given as input, while the purified sender of QOT does not know which input bit
the honest receiver is aware of. This security is already much weaker than the
security against an arbitrary quantum attack considered in [14,18,54], let alone
the recently achieved simulation security [5,15,22]. Hence, one can imagine that
it is much easier to establish.

For the formal security analysis, we will first prove the semi-honest security
of this somewhat simplified CLS scheme, and then manage to extend it to its
purification. For such an extension, a crucial step is to show that quantum
commitments will cause an implicit collapse of the quantum state just like the
measurements prescribed by the QOT subprotocol were really performed. To
this end, we will use techniques introduced in the below.

Arguing the Security Against the Purification Attack. Seeing from the
statement of our round-collapse theorem, to apply it, one needs first to show that
the purification of the original (interactive) quantum bit commitment scheme is
semi-honest secure, or equivalently, the original scheme is secure against the
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purification attack. It turns out that this security is closely related to the semi-
honest security, thus often much easier to establish than the full security. In
particular, we show that in many interesting scenarios, the semi-honest security
of the original scheme extends to its purification. For such an extension, the basic
idea is to show that collapses prescribed by the original scheme are enforced
even after the purification. To have a taste of how to do this, note that messages
sent through the classical channel automatically collapse; when a message is
uniquely determined by some other collapsed messages, it can be viewed as
having collapsed as well.

A non-trivial case in which collapses are enforced is by quantum commit-
ments, as argued in [18] and within the proof of Theorem 6 in this paper. That is,
committing to a superposition using canonical statistically- or computationally-
binding quantum bit commitments (in a bitwise fashing) can be viewed as an
implicit way of measuring it (but without leaking its value)! In greater detail,
when canonical statistically-binding quantum bit commitments are used, col-
lapses can be shown using techniques (i.e. perturbation and commitment mea-
surement) developed in [18]. When canonical computationally-binding quantum
bit commitments are used, we will show a “computational collapse” (named after
[12]) by proving a computational collapse theorem [50, Appendix F] in this work.
The technique used towards proving this theorem is inspired by the proof of the
quantum computational string predicate-binding property in [51], which basi-
cally is a way of bounding exponentially many negligible errors in an arbitrary
superposition by a negligible quantity. We remark that currently, this computa-
tional collapse theorem is only known to be suitable to apply when the security
against the purification attack is considered; whether it can be extended to be
suitable for the security analysis against an arbitrary quantum attack (like in
[12]) is left as an interesting open problem.

Last, we stress that the semi-honest security of an arbitrary (interactive)
quantum bit commitment scheme does not extend to its purification generally ;
two counterexamples are presented in [50, Appedix C].

1.5 Follow-Up Work

In preparing the camera-ready version of this extended abstract, we notice that
there is a follow-up work [9].

After reading an earlier draft of the full version of this extended abstract
[50] (the version uploaded to Cryptology ePrint Archive this February, 2022),
authors of [9] call the two ensembles of efficiently-generated quantum state that
are far in the trace distance but quantum computationally indistinguishable the
“EFI pair”. (As we have argued in this extended abstract, EFI pair and canonical
statistically-binding quantum bit commitment are actually the same object seen
from different perspectives). They further explore the connections between EFI
pairs and some other cryptographic applications that are not discussed in this
extended abstract, in particular multiparty secure computations for classical
functionalities and quantum zero-knowledge proofs for languages beyond NP.
(Note that within NP, an equivalence between (instance-dependent) canonical
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statistically-binding quantum bit commitments (hence EFI pairs) and quantum
zero-knowledge proofs has already been established in [52] back in 2015).

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we review necessary preliminaries. In Sect. 3, we formally introduce the defini-
tion of a canonical quantum bit commitment scheme and its honest-hiding and
honest-binding properties. In Sect. 4, we show that w.r.t. canonical quantum bit
commitment, its honest-binding property is equivalent to the sum-binding prop-
erty. This equivalence will be used to prove the round-collapse theorem in Sect. 5.
As an application of the round-collapse theorem, in Sect. 6 we prove an equiva-
lence between two flavors of quantum bit commitments. In Sect. 7, a very strong
quantum string sum-binding property of the parallel composition of canonical
statistically-binding quantum bit commitments is established. We conclude with
Sect. 8, where several open problems are also raised.

2 Preliminaries

Notation. Denote [n] = {1, 2, . . . , n} for an integer n. Denote by Un the uniform
distribution/random variable ranging over the set {0, 1}n, i.e. all binary strings

of length n. We use “ $←” to denote the action of choosing an element uniformly
random from a given set, e.g. x

$← Un. Let negl(n) denote an arbitrary negligible
(i.e. asymptotically smaller than any inverse polynomial) function of the security
parameter n. Given two strings s, s′ ∈ {0, 1}n, let dist(s, s′) denote the Hamming
distance between s and s′.

Quantum Formalism. Quantum registers/systems we use in this paper are
composed of multiple qubits. We sometimes explicitly write quantum register(s)
as a superscript of an operator or a quantum state to indicate on which register(s)
this operator performs or which register(s) hold this quantum state, respectively.
For example, we may write UA, |ψ〉A or ρA, highlighting that the operator U
performs on the register A, and the register A is in pure state |ψ〉 or mixed state
ρ, respectively. When it is clear from the context, we often drop superscripts to
simplify the notation.

We use F(·, ·) to denote the fidelity of two quantum states [46]. Given a
projector Π on a Hilbert space, we call {Π,1 − Π} the binary measurement
induced by Π. This binary measurement is typically induced by a verification,
for which we call it succeeds, accepts, or the outcome is one, if the measured
quantum state collapses to the subspace on which Π projects.

For a bit b ∈ {0, 1}, let |b〉+ and |b〉× be the qubits in the state |b〉 w.r.t. the
standard basis and Hadamard basis, respectively. For the former, we often drop
“+” and just write |b〉.

We work with the standard unitary quantum circuit model. In this model, a
quantum algorithm can be formalized in terms of uniformly generated quantum
circuit family, where the “uniformly generated” means the description of the
quantum circuit coping with n-bit inputs can be output by a single classical
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polynomial-time algorithm on the input 1n. We assume without loss of generality
that each quantum circuit is composed of quantum gates chosen from some fixed
universal, finite, and unitary quantum gate set [39]. Given a quantum circuit
Q, we also overload the notation to use Q to denote its corresponding unitary
transformation; Q† denotes its inverse.

(In)distinguishability of Quantum State Ensembles

Definition 1 ((In)distinguishability of quantum state ensembles). Two
quantum state ensembles {ρn}n and {ξn}n are quantum statistically (resp. com-
putationally) indistinguishable, if for any quantum state ensemble {σn}n and any
unbounded (resp. polynomial-time bounded) quantum algorithm D which outputs
a single classical bit,

|Pr[D(1n, ρn ⊗ σn) = 1] − Pr[D(1n, ξn ⊗ σn) = 1]| < negl(n)

for sufficiently large n.

Remark. The quantum state ensemble {σn}n in the definition above plays the
role of the non-uniformity given to the distinguisher D. Since a mixed quantum
state can always be purified, we can assume without loss of generality that the
state σn is pure.

A Quantum Rewinding Lemma

Lemma 1 (A quantum rewinding [18]). Let X and Y be two Hilbert spaces.
Unit vector |ψ〉 ∈ X ⊗ Y. Orthogonal projectors Γ1, . . . , Γk perform on the space
X ⊗ Y, while unitary transformations U1, . . . , Uk perform on the space Y. If
1/k · ∑k

i=1

∥
∥Γi(Ui ⊗ 1X) |ψ〉∥∥2 ≥ 1 − η, where 0 ≤ η ≤ 1, then

∥
∥
∥(U†

k ⊗ 1X)Γk(Uk ⊗ 1X) · · · (U†
1 ⊗ 1X)Γ1(U1 ⊗ 1X) |ψ〉

∥
∥
∥ ≥ 1 −

√
kη. (1)

3 Canonical (Non-interactive) Quantum Bit Commitment

The definition of a canonical (non-interactive) quantum bit commitment scheme
is as follows.

Definition 2. A canonical (non-interactive) quantum bit commitment scheme
is represented by an ensemble of polynomial-time uniformly generated quantum
circuit pair {(Q0(n), Q1(n))}n as follows, where we drop the security parameter
n to simplify the notation:

– In the commit stage, to commit a bit b ∈ {0, 1}, the sender performs the
quantum circuit Qb on the quantum register pair (C,R)13 initialized in all
|0〉’s state. Then the sender sends the commitment register C to the receiver,
whose state at this moment is denoted by ρb.

13 Their size depend on the security parameter n.
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– In the subsequent (canonical) reveal stage, the sender announces the bit b,
and sends the decommitment register R to the receiver. The receiver will first
perform Q†

b on the quantum register pair (C, R) and then measure each qubit
of (C, R) in the computational basis, accepting if measurement outcomes are
all 0’s.

The hiding (or concealing) and the binding properties of the scheme are
defined as follows:

– (Honest)-hiding. We say that the scheme is statistically (resp. computation-
ally) hiding if quantum states ρ0 and ρ1 are statistically (resp. computation-
ally) indistinguishable14.

– ε-(honest-)binding. First prepare the quantum register pair (C, R) in the
state Q0 |0〉15. We say that the scheme is computationally (resp. statistically)
ε-binding if for any state |ψ〉 of an auxiliary register Z, and any polynomial-
time (resp. physically) realizable unitary transformation U performing on reg-
isters (R, Z), the reduced state of the quantum register pair (C, R) after the
transformation U is performed is far from the state Q1 |0〉. Or formally,

∥
∥
∥
(
Q1 |0〉 〈0| Q†

1

)CR
URZ

(
(Q0 |0〉)CR |ψ〉Z )∥∥

∥ < ε. (2)

By the reversibility of quantum computation, this binding property can be
equivalently defined by swapping the roles of Q0 and Q1, in which case the
inequality (2) becomes

∥
∥
∥
(
Q0 |0〉 〈0| Q†

0

)CR
URZ

(
(Q1 |0〉)CR |ψ〉Z )∥∥

∥ < ε. (3)

As typical in cryptography, We say that the scheme is computationally (resp.
statistically) binding (without referring to the parameter ε) when the function
ε(·) is a negligible function (of the security parameter n).

Remark

1. We call the binding property defined above honest-binding, because informally
it states that any cheating sender cannot open the honest commitment to a
bit b as 1− b. That is, in the definition of honest-binding, a cheating sender is
honest in the commit stage but may deviate arbitrarily in the reveal stage. In
this regard, the attack (U, |ψ〉) of the sender just happens in the reveal stage.
Honest-binding is the weakest binding property that any meaningful quantum
bit commitment scheme should satisfy. This definition will be generalized to
the case of interactive quantum bit commitment schemes in [50, Section 7].

14 Strictly speaking, it should be understood as the corresponding two quantum state
ensembles indexed by the security parameter n are indistinguishable.

15 Here the notation |0〉 should be understood as multiple |0〉’s, the number of which
depends on the security parameter; we just write a single |0〉 to simplify the notation.
We will follow this rule throughout this paper.
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2. The hiding property of a bit commitment scheme is only defined w.r.t. the
commit stage. For the hiding property defined above, since the commit stage
is non-interactive (so that the receiver will send nothing during the com-
mit stage), the hiding against a semi-honest (i.e. honest-but-curious) receiver
and that against an arbitrary receiver are just the same security property. In
this regard, the honest-hiding is also the hiding against an arbitrary quan-
tum receiver. However, in the sequel when we consider a general (interactive)
quantum bit commitment scheme, these two notions are not necessarily equiv-
alent.

3. As commented in [52], the reveal stage in the definition above is canonical in
the sense that it is similar to the canonical opening of a classical bit commit-
ment: the sender sends all its random coins used in the commit stage to the
receiver, who then checks that these coins explain (i.e. are consistent with)
the conversation generated during the commit stage.

4. In [18,52], it is argued informally that any non-interactive statistically-
binding quantum bit commitment scheme can be converted into a scheme
of the canonical form. Actually, the same argument extends to the setting of
non-interactive computationally-binding quantum bit commitment schemes
in a straightforward way. In this work, we will further extend it, showing that
any (interactive) quantum bit commitment scheme can be converted into this
canonical form (Theorem 4).

5. In the sequel, to simplify the notation we often drop the security parameter
n and just write (Q0, Q1) to represent a canonical quantum bit commitment
scheme.

6. We can commit to a binary string s ∈ {0, 1}m in a bitwise fashion using a
canonical quantum bit commitment scheme (Q0, Q1). Then the corresponding
quantum circuit is given by

Qs
def
=

m⊗

i=1

Qsi , (4)

where si is the i-th bit of the string s and each quantum circuit Qsi performs
on one copy of the quantum register pair (C, R).

7. As discussed in “Introduction”, this definition of a canonical quantum bit
commitment scheme can also be viewed as a quantum complexity assumption
that is weaker than quantum-secure one-way functions and pseudorandom
quantum states [26].

4 Honest-Binding is Equivalent to Sum-Binding

Sum-binding is a general binding property of quantum bit commitment. Its def-
inition w.r.t. a canonical quantum bit commitment scheme is as follows.

Definition 3 (Sum-binding). At the beginning of the commit stage, the cheat-
ing sender prepares the whole system (C, R, Z) in an arbitrary quantum state
|ψ〉. Then it sends the commitment register C to the receiver. In the reveal stage,
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to open the bit commitment as 0 (resp. 1), the sender performs U0 (resp. U1) on
the system (R, Z) and then send the decommitment register R to the receiver. Let
p0 (resp. p1) be the success probability that the sender opens the bit commitment
as 0 (resp. 1). The sum-binding requires that p0 + p1 < 1 + negl(n).

Compared with honest-binding (Definition 2), sum-binding is a security
against an arbitrary quantum sender, who may deviate from the scheme in both
the commit and the reveal stages. Clearly, sum-binding implies honest-binding,
by noting that if we fix p0 or p1 in Definition 3 to be 1, then we end up with
honest-binding. Interestingly, it turns out that the opposite direction is also true,
i.e. the seemingly weaker honest-binding also implies sum-binding. Combining
them we have the following theorem.

Theorem 2. Honest-binding is equivalent to sum-binding w.r.t. a canonical
quantum bit commitment scheme (of either flavors).

Proof. It is left to prove that honest-binding implies sum-binding. It turns out
that an attack which breaks the sum-binding property can be directly used to
break the honest-binding property without much modification. Detail follows.
We remark that the proof below holds for either flavors of canonical quantum
bit commitment schemes.

Let n be the security parameter. According to its definition (Definition 3),
an arbitrary attack of the sum-binding property of a canonical quantum bit
commitment scheme (Q0, Q1) can be modeled by (U0, U1, |ψ〉). Now assume that
the attack (U0, U1, |ψ〉) breaks the sum-binding property; that is,

∥
∥
∥
(
Q0 |0〉 〈0| Q†

0

)CR · URZ
0 |ψ〉

∥
∥
∥
2

+
∥
∥
∥
(
Q1 |0〉 〈0| Q†

1

)CR · URZ
1 |ψ〉

∥
∥
∥
2

> 1 +
1
p
,

where p(·) is some polynomial of the security parameter n. We apply
the quantum rewinding lemma (Lemma 1) to the inequality above, with
the parameters k, η, U1, U2, Γ1 and Γ2 in the lemma replaced by 2, 1/2 −
1/(2p), U0, U1, Q0 |0〉 〈0| Q†

0 and Q1 |0〉 〈0| Q†
1, respectively. We obtain

∥
∥
∥(U†

1 )RZ
(
Q1 |0〉 〈0| Q†

1

)CR
URZ
1 (U†

0 )RZ · (
Q0 |0〉 〈0| Q†

0

)CR
URZ
0 |ψ〉CRZ

∥
∥
∥

≥ 1 −
√

1 − 1
p

>
1
2p

. (5)

An intuitive interpretation of this inequality is that the success probability of first
opening the bit commitment as 0 and then as 1 is at least some non-negligible
quantity.

We are next to devise an attack of the honest-binding property of the scheme
(Q0, Q1) given the attack (U0, U1, |ψ〉). Specifically, suppose that in the commit
stage, the sender (honestly) prepares the quantum state Q0 |0〉 in the quantum
register pair (C, R) and sends the commitment register C to the receiver. Later
at the beginning of the reveal stage, the sender receives the quantum state |ψ〉,
which is stored in quantum registers (C′,R′,Z′) that are of the same size as
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registers (C,R,Z), respectively. Then the cheating sender S∗ proceeds as follows
to try to open the quantum bit commitment as 1:

1. Perform the unitary transformation U0 on the quantum registers (R′,Z′).
2. Perform the binary measurement induced by the projector Q0 |0〉 〈0| Q†

0 on
the quantum register pair (C′,R′). (Intuitively, we expect that conditioned on
its outcome being 1, the reduced state of the register Z′ will help the sender
S∗ cheat.)

3. Perform the unitary transformation U1U
†
0 on the registers (R,Z′).

4. Send the decommitment register R to the receiver.

To show that S∗ breaks the honest-binding property of the scheme (Q0, Q1),
it suffices to prove a lower bound of the probability of both the following two
events happening simultaneously: (1) the measurement outcome in the step 2
being 1; and (2) the cheating sender S∗ succeeds. (Note that S∗ may also cheat
successfully while the measurement outcome of the step 2 is 0; but its probability
can be ignored for a lower bound of S∗’s success probability.) This probability
is given by the expression

∥
∥
∥
∥
(U

†
1 )

RZ′ (
Q1 |0〉 〈0| Q

†
1
)CR

U
RZ′
1 · (U†

0 )
RZ′ (

Q0 |0〉 〈0| Q
†
0
)C′R′

U
R′Z′
0

(
(Q0 |0〉)CR |ψ〉C′R′Z′ )

∥
∥
∥
∥

2
.

A key observation is that conditioned on the measurement outcome in the
step 2 being 1, both the quantum register pair (C, R) and (C′,R′) will be in the
state Q0 |0〉 at the end of the step 2. Thus, from then on, switching to perform
unitaries U0, U1 on registers (R′,Z′) (as opposed to (R,Z′)) and opening the
commitment in the register C′ will result in the same success probability. That
is, the expression above is equal to

∥
∥
∥
∥
(U

†
1 )

R′Z′ (
Q1 |0〉 〈0| Q

†
1
)C′R′

U
R′Z′
1 (U

†
0 )

R′Z′ · (
Q0 |0〉 〈0| Q

†
0
)C′R′

U
R′Z′
0

(
(Q0 |0〉)CR |ψ〉C′R′Z′ )

∥
∥
∥
∥

2
.

Since now the quantum registers (C, R) are untouched, this expression will
simplify to

∥
∥
∥(U†

1 )R′Z′(
Q1 |0〉 〈0| Q†

1

)C′R′
UR′Z′

1 (U†
0 )R′Z′ · (

Q0 |0〉 〈0| Q†
0

)C′R′
UR′Z′

0 |ψ〉C′R′Z′∥∥
∥

2

.

But this final expression can be lowerbounded by applying the inequality (5),
if we identify registers (C, R, Z) in the l.h.s. of the inequality (5) with registers
(C′,R′,Z′) here, respectively. This will yield a lower bound 1/4p2, which is non-
negligible.

Hence, S∗ breaks the honest-binding property of the scheme (Q0, Q1).

Remark. We highlight that the security reduction above is uniform.
Combing the second remark following Definition 2 with Theorem 2, we have

the following theorem as an immediate corollary.

Theorem 3. A canonical quantum bit commitment scheme (Q0, Q1) (of either
flavor) is secure if and only if it is semi-honest secure.
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5 A Round-Collapse Theorem

In this section, we will prove a round-collapse theorem (Theorem 4), which can
be viewed as an extension of converting an arbitrary non-interactive quantum
bit commitment scheme into the canonical form [18,52]. To understand the state-
ment and the proof of this theorem, in the first place we should have given a for-
mal treatment of a general quantum two-party interactive protocols, their purifi-
cations, as well as their semi-honest and related security. However, we cannot
do this in this extended abstract due to the limited space. Now let us informally
introduce these notions, while moving their formal treatments to [50, Section 6,
7].

Roughly, a general quantum two-party interactive protocols allows both clas-
sical and quantum computation and communication. We can assume without
loss of generality that quantum computation is limited to measurements in the
computational basis, as well as quantum operations realized by polynomial-size
quantum circuits composed of unitary quantum gates. A purification of an inter-
active protocol refers to the protocol obtained by simulating all classical com-
putation and communication, as well as quantum measurements of the original
protocol, by unitary quantum operations in a standard way. The purification
attack against one party of the protocol refers to the attack by purifying all this
party’s operations.

Restricting to quantum bit commitment schemes, for our purpose we will
define their semi-honest security as that both the semi-honest sender and receiver
will follow the protocol in the commit stage; but in the reveal stage later,
the semi-honest sender may deviate the protocol. Correspondingly, the purifi-
cation attack against the receiver refers to the attack by purifying all the honest
receiver’s operations in the commit stage. And the purification attack against
the sender refers to the attack by purifying all the honest sender’s operations in
the commit stage; but the attack in the reveal stage could be arbitrary.

Theorem 4 (Round-collapse). If a quantum bit commitment scheme is
secure against the purification attack (or equivalently, its purification is semi-
honest secure), then it can be compressed into a scheme of the canonical form
(Definition 2) such that:

1. It has perfect completeness. That is, if both the sender and the receiver follow
the scheme honestly, then the receiver will not reject or abort in both the
commit and the reveal stages.

2. Both the hiding and binding properties of the original scheme are preserved
after the compression. That is, if the original scheme is statistically (resp.
computationally) hiding (resp. binding), then the new scheme is also statisti-
cally (resp. computationally) hiding (resp. binding) as well.

At a high level, our compiler achieves the round-collapse by delegating the
computation of both parties in the commit stage prescribed by the purification of
the original scheme to the new sender. Later in the reveal stage, the new receiver
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will check this computation in the commit stage via the reversible quantum
computation.

Due to the space limitation, the proof of the round-collapse theorem can be
found in [50].

As a simple application of the round-collapse theorem, we can compress
Naor’s bit commitment scheme [37] to get a non-interactive one [50, Appendix
D]. Nevertheless, this application seems not a big deal, since there already exists
a more straightforward (and somewhat simpler) construction (also inspired by
Naor’s scheme [52]). Two non-trivial applications are referred to the subsequent
section and [50, Section 9], respectively.

Since the purification attack is just a special kind of attack among all possible
attacks, the following theorem is an immediate corollary of Theorem 4.

Theorem 5. Any secure (against an arbitrary quantum attack) interactive
quantum bit commitment scheme, in particular post-quantum secure (classical)
bit commitment scheme, can be compressed into a non-interactive one of the
canonical form (Definition 2) with perfect completeness and the same flavors of
the hiding and binding properties.

Remark. We stress again that in this work we consider general quantum binding
properties that all quantum bit commitment schemes can satisfy, for which sum-
binding is likely to be the strongest. A specific quantum bit commitment scheme
may satisfy even stronger binding properties (e.g. [2,5,7,22,43,44]) than sum-
binding. But if we feed it into our compiler for the round-compression, these
stronger binding properties may be lost; the resulting/compressed scheme is
only guaranteed sum-binding (or equivalently honest-binding, since it is of the
canonical form).

6 Application: An Equivalence Between Two Flavors
of Quantum Bit Commitments

In this section, we show that quantum bit commitment is symmetric, or two
flavors of quantum bit commitments are equivalent (Theorem 1). This is an
immediate corollary of the following theorem combined with the round-collapse
theorem (Theorem 4).

Theorem 6. Canonical computationally-hiding statistically-binding quantum
bit commitments exist if and only if canonical statistically-hiding
computationally-binding quantum bit commitments exist.

Towards establishing the equivalence above, our basic idea is first using a
construction that is a simplification of the CLS scheme [14] to convert the flavor
of the given quantum bit commitment scheme, and then compressing the result-
ing (interactive) scheme into a canonical one using the round-collapse theorem
(Theorem 4).
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In greater detail, our construction for the purpose of converting the flavor
of quantum bit commitments is basically the parallel composition of the atomic
(interactive) scheme as described in Fig. 1, which we denote by QBC(n), with
the security parameter n (which we often drop to simplify the notation). Let
QBC(n)⊗n denote the parallel composition of n copies of the scheme QBC(n).
This construction is almost the CLS scheme given in [14], but with a significant
simplification: all intermediate verifications of the commitments by the sender
are removed. In spite of this, we will still call it CLS scheme in this paper.
Intuitively, these intermediate verifications can be removed because by the virtue
of the round-collapse theorem (Theorem 4), we only need a scheme that is just
secure against the purification attack for the purpose of the compression. That
is, we only need to show that the CLS scheme QBC(n)⊗n is secure against
the purification attack, or the purified CLS scheme is both honest-hiding and
honest-binding. This simplification of the construction will induce a significant
simplification of the analysis of the original CLS scheme [14], which is for the
full security and quite technically involved.

Security parameter: n

Commit stage: Let b ∈ {0, 1} be the bit to commit.

– (S1) For i = 1, 2, . . . , n, the sender chooses a bit xi
$← {0, 1} and a basis

θi
$← {+, ×}, sending the qubit |xi〉θi

to the receiver.

– (R2) For i = 1, 2, . . . , n, the receiver chooses a basis θ̂i
$← {+, ×} and measures

each received qubit |xi〉θi
in the basis θ̂i, obtaining the outcome x̂i. Then com-

mit to (θ̂i, x̂i) in a bitwise fashion using a canonical quantum bit commitment
scheme (Q0, Q1). (We can assume that the bases “+” and “×” are encoded as
0 and 1, respectively.)

– (S3) The sender sends all θi’s, i = 1, 2, . . . , n, to the receiver.

– (R4) The receiver chooses a random bit c
$← {0, 1}, as well as two random

subsets of indices I0, I1 ⊂ [n] such that |I0| = |I1| = n/3, I0 ∩ I1 = ∅, and
θi = θ̂i for each i ∈ Ic. Then send (I0, I1) to the sender.

– (S5) The sender chooses a bit a0
$← {0, 1} and sets a1 = a0 ⊕b. Then compute

â0 =
⊕

i∈I0
xi ⊕ a0, â1 =

⊕
i∈I1

xi ⊕ a1, and send (â0, â1) to the receiver.
– (R6) The receiver computes the bit dc =

⊕
i∈Ic

x̂i ⊕ âc.

Reveal stage:

– The sender sends the bits b and (a0, a1) to the receiver.
– The receiver verifies that b = a0 ⊕ a1 and dc = ac.

Fig. 1. The atomic scheme QBC, which composed in parallel gives a scheme that is a
somewhat simplification of the original CLS scheme

Due to the space limitation, the proof of Theorem 6 is referred to [50,
Section 10].
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7 Parallel Composition of a Canonical Statistically-
Binding Quantum Bit Commitment Scheme

In cryptography, a typical way to commit a string is to commit it in a bitwise
fashion using a bit commitment scheme. We naturally ask, what binding property
can we obtain if we commit a string in a bitwise fashion using a canonical
quantum bit commitment scheme? The answer to this question on the parallel
composition of quantum bit commitments turns out to be elusive, especially
w.r.t. computationally-binding quantum bit commitment [12].

In this section, we will study the parallel composition of a canonical
statistically-binding quantum bit commitment scheme, establishing a very strong
quantum string binding property. We also show that this binding property
implies the CDMS-binding property of quantum string commitment (referred
to [50, Section 11]), which is useful in quantum cryptography [12]. However, we
do not expect the same binding property extends to canonical computationally-
binding quantum bit commitment schemes.

We first define the sum-binding property of a general quantum string com-
mitment scheme.

Definition 4 (Sum-binding). Suppose that a possibly cheating sender inter-
acts with an honest receiver prescribed by a quantum string commitment scheme,
and completes the commit stage. For any string s ∈ {0, 1}m(n), where m(·) is a
polynomial of the security parameter n, let ps denote the success probability that
the sender can open the commitment as the string s in the reveal stage. We say
that this quantum string commitment scheme is sum-binding if

∑

s∈{0,1}m

ps < 1 + negl(n). (6)

Remark. The sum-binding property defined above is very strong for quantum
string commitment in the following sense. Note that a cheating sender can triv-
ially achieve

∑
s∈{0,1}m ps = 1, by committing to an arbitrary superposition of

the strings in {0, 1}m honestly and then open the commitment honestly. But
showing that the advantage of any cheating sender in opening a commitment is
negligible is likely to be hard or even impossible [12]. Roughly speaking, the main
difficulty comes from that there are exponentially many strings (2m, exactly) in
{0, 1}m, but we still hope to bound the sum of exponentially many advantages
by a negligible quantity.

In spite of the difficulty mentioned above, we can prove the following par-
allel composition theorem w.r.t. a canonical statistically-binding quantum bit
commitment scheme.

Theorem 7 (Parallel composition). Suppose that a canonical quantum bit
commitment scheme (Q0, Q1) is statistically binding. Then the quantum string
commitment scheme obtained by composing it in parallel is statistically sum-
binding. Formally, if the scheme (Q0, Q1) is statistically ε(n)-binding where the
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function ε(·) is negligible, then
∑

s∈{0,1}m

ps ≤ 1 + O(m2ε). (7)

The proof of the theorem above will be information-theoretic, thus does not
extend to the computational setting. Due to the space limitation, its proof is
referred to [50, Section 11].

8 Conclusion and Open Problems

In this work, we study general properties of complexity-based/computational
quantum bit commitments. Specifically, we show that any quantum bit commit-
ment scheme can be compressed into the canonical form (Theorem 4), which is
non-interactive and whose semi-honest security implies the full security (Theo-
rem 3). This yields several applications [50, Appendix D and Section 9], allowing
us to not only obtain new constructions of quantum bit commitment but also
simplify the security analysis of existing ones. Moreover, it also enables us to
establish an equivalence between two flavors of quantum bit commitments (The-
orem 6). Regarding the parallel composition, we establish a very strong quantum
statistical string sum-binding property by composing a canonical statistically-
binding quantum bit commitment scheme in parallel (Theorem 7).

We propose to study quantum bit commitments in the future from both quan-
tum cryptography and quantum complexity theory perspectives. In the below,
we summarize and raise some open problems that are related to this work and
beyond:

1. Can canonical quantum bit commitments satisfy any stronger binding prop-
erties than sum-binding that are interesting? The answer to this question is
“yes” ([18,51] and [50, Appendix B]). We expect further exploration towards
this open question in the future.

2. In this work, we plug a canonical computationally-binding quantum bit com-
mitment scheme in a somewhat simplified CLS scheme for the purpose of
converting its flavor (Sect. 6). This construction essentially realizes a quan-
tum oblivious transfer (QOT) that satisfies the following security require-
ments: the purified receiver of QOT does not know the other bit that the
honest sender is given as input , while the purified sender of QOT does not
know which input bit the honest receiver is aware of. We highlight that this
security is neither the security against an arbitrary quantum attack nor the
simulation security [5,22] that is preferable in cryptography. Recall that we
prove a computational collapse theorem ([50, Appendix F]) for the analysis
this security. So a natural open question is, can this computational-collapse
technique be extended to show the same security but against an arbitrary
quantum attack (as opposed to against the purification attack) for the orig-
inal QOT protocol (or some of its variant like the one considered in [12])
with a canonical computationally-binding quantum bit commitment scheme
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plugged in [13]? Possibly combine it with the quantum sampling technique
devised in [8]? Though this security is not as good as the simulation security,
the corresponding construction is much simpler (in particular, consisting of
constant number of rounds). And it might be sufficient in some interesting
applications, just like [14] and here for the purpose of converting the flavor
of quantum bit commitment.

3. In this work, we show that the NOVY bit commitment scheme can be com-
pressed into the canonical form and shown secure against quantum attacks
[50, Section 9]. A natural and interesting extension of this result would be
compressing the construction of statistically-hiding computationally-binding
(classical) bit commitment scheme based on one-way functions [24] into the
canonical form and showing its quantum security (when the underlying one-
way function used is quantum secure).

4. As mentioned in Sect. 1.3, it is interesting to explore whether quantum bit
commitments conversely imply pseudorandom quantum states (of any sort).

5. This open question regards quantum hardness amplification. The big ques-
tion here is, if a unitary operation U is hard to realize (e.g. requires super-
polynomial number of elementary quantum gates), then is the unitary oper-
ation U⊗n (i.e. perform the unitary operation U n times in parallel) harder?
Specific to a canonical quantum bit commitment scheme, we ask: can the par-
allel composition of quantum bit commitments reduce the binding error? The
answer is a trivial “yes” w.r.t. a canonical statistically-binding quantum bit
commitment scheme, whose binding error can be captured by an information-
theoretic notion known as fidelity [52]. However, the answer becomes unclear
when it comes to a canonical computationally-binding quantum bit commit-
ment scheme. In particular, can the parallel composition reduce the computa-
tional binding error from, say 1/2 or even inverse polynomial, to a negligible
quantity? This question looks very similar to the question of amplifying the
one-wayness of one-way functions in classical cryptography [53]. If the answer
to this question is “yes”, then combining it with results in [18,45,51,52] will
complete the proof for an equivalence between quantum bit commitment and
quantum zero-knowledge like in the classical setting [40].

6. Some fancier open questions include: can quantum bit commitment find more
applications in quantum cryptography? Are there any other quantum crypto-
graphic applications (besides quantum zero-knowledge and quantum oblivious
transfer) that also imply quantum bit commitment? That is, can quantum
bit commitment serve as the foundation of quantum cryptography?

7. Finally, the perhaps biggest open question that is related to the quantum com-
plexity theory is: do computational quantum bit commitments really exist?
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