
Exploring SAT for Cryptanalysis:
(Quantum) Collision Attacks Against

6-Round SHA-3

Jian Guo1(B) , Guozhen Liu1 , Ling Song2 , and Yi Tu1

1 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

{guojian,guozhen.liu}@ntu.edu.sg, tuyi0002@e.ntu.edu.sg
2 College of Cyber Security, Jinan University, Guangzhou, China

Abstract. In this work, we focus on collision attacks against instances
of SHA-3 hash family in both classical and quantum settings. Since the 5-
round collision attacks on SHA3-256 and other variants proposed by Guo
et al. at JoC 2020, no other essential progress has been published. With
a thorough investigation, we identify that the challenges of extending
such collision attacks on SHA-3 to more rounds lie in the inefficiency of
differential trail search. To overcome this obstacle, we develop a SAT-
based automatic search toolkit. The tool is used in multiple intermediate
steps of the collision attacks and exhibits surprisingly high efficiency in
differential trail search and other optimization problems encountered in
the process. As a result, we present the first 6-round classical collision
attack on SHAKE128 with time complexity 2123.5, which also forms a quan-
tum collision attack with quantum time 267.25/

√
S, and the first 6-round

quantum collision attack on SHA3-224 and SHA3-256 with quantum time
297.75/

√
S and 2104.25/

√
S, where S represents the hardware resources of the

quantum computer. The fact that classical collision attacks do not apply
to 6-round SHA3-224 and SHA3-256 shows the higher coverage of quan-
tum collision attacks, which is consistent with that on SHA-2 observed
by Hosoyamada and Sasaki at CRYPTO 2021.

Keywords: SHA-3 · SAT-based automatic search tool · Collision
attacks · Quantum cryptanalysis

1 Introduction

The Keccak hash function [BDPVA13], designed by Bertoni et al. in 2008,
was standardized as the Secure Hash Algorithm-3 (SHA-3) [Dwo15] in 2015
by the National Institute of Standards and Technology (NIST) of the U.S.
The SHA-3 family has four instances with fixed digest lengths, namely, SHA3-
224, SHA3-256, SHA3-384 and SHA3-512, and two eXtendable-Output Functions
(XOFs) SHAKE128 and SHAKE256. Being one of the most important crypto-
graphic hash functions, SHA-3 (Keccak) has received intensive security analy-
sis. The most relevant security criteria for cryptographic hash functions include

More details are available in the full version of this paper: https://ia.cr/2022/184.
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13793, pp. 645–674, 2022.
https://doi.org/10.1007/978-3-031-22969-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22969-5_22&domain=pdf
http://orcid.org/0000-0001-8847-6748
http://orcid.org/0000-0002-0556-6404
http://orcid.org/0000-0001-9298-7313
http://orcid.org/0000-0002-2051-8806
https://ia.cr/2022/184
https://doi.org/10.1007/978-3-031-22969-5_22

646 J. Guo et al.

preimage resistance and collision resistance. Preimage attacks of SHA-3 were
investigated in [NRM11,MPS13,GLS16,LSLW17,LS19,Raj19,LHY21,HLY21].
The best-known practical attacks reach 3 rounds of SHAKE128 and SHA3-224
[GLS16,LS19]1 while the best-known theoretical ones can reach 4 rounds of all
its instances [MPS13,Raj19,HLY21]. With marginal time complexity gains over
bruteforce, theoretical preimage attacks cover up to 7/8/9 rounds for Keccak-
224/256/512, respectively [CKMS14,Ber10,MPS13].

More relevant to this research are the collision attacks on SHA-3 (Keccak)
with reduced number of rounds. In [DDS12,DDS14], Dinur et al. presented
practical collision attacks on 4 rounds of Keccak-224 and Keccak-256. The
actual collisions were found by combining a 3-round differential trail and a 1-
round connector (which connects the differential trail to valid initial values).
The same authors also presented practical collision attacks on 3-round Kec-
cak-384/Keccak-512, and theoretical collision attacks on 5/4-round Keccak-
256/Keccak-384 using internal differentials [DDS13]. Following the framework
proposed by Dinur et al. in [DDS12], Qiao et al. introduced 2-round connectors
by prepending a fully linearized round to the 1-round connectors and obtained
actual collisions for 5-round SHAKE128 [QSLG17]. Further, these connectors were
improved in [SLG17,GLL+20] to consume fewer degrees of freedom by using par-
tial linearization. Consequently, 3-round connectors became possible and prac-
tical collision attacks on 5-round SHA3-224 and SHA3-256 were obtained.

Collision Attack in Quantum Settings. In the previous works, collision
attacks of SHA-3 were studied only in classical settings. Recently, quantum colli-
sion attacks are attracting more attention and showing unexpected efficiencies.

The generic security margin of collision attacks in quantum settings has been
investigated with the recent progress in post-quantum security of cryptographic
schemes and primitives. Several quantum collision algorithms [BHT98,CNPS17]
were introduced to provide security bounds for generic hash functions. However,
the quantum collision attack against concrete hash functions was not published
until 2020 [HS20]. In this work, Hosoyamada and Sasaki demonstrated that
differential trails of low probability that couldn’t be utilized in classical colli-
sion attacks were exploited to mount quantum collision attacks of more rounds.
Later, the authors extended their quantum collision search algorithms to other
hash functions and proposed the first quantum collision attacks on SHA-2 at
CRYPTO 2021 [HS21]. Additionally, results of quantum rebound attacks on AES
hashing modes [DSS+20] and quantum multi-collision distinguishers [BGLP] on
dedicated hash functions were also presented.

Challenges. There are two major challenges in mounting quantum collision
attacks on SHA-3. The first is to search for differential trails that are more
suitable for quantum collision attacks, i.e., trails that cover as many rounds as
possible with the bound on the probability relaxed to 2−n. As a consequence,
the search space expands drastically which calls for more advanced and efficient

1 The preimage attack on 3-round Keccak-256 in [LHY21] has a time complexity 265,
but no concrete preimage is given.

Exploring SAT for Cryptanalysis 647

searching techniques. The second challenge lies in connecting the differential trail
with the initial state. When differential trails with lower probability are used,
more conditions are imposed on the internal state which should be satisfied by the
connector. Thus, to avoid being the bottle neck of the whole attack, connectors
must be constructed in more efficient way than before.

SAT-Based Cryptanalysis. Great attention from the cryptography commu-
nity has been paid on automatic tools for linear and differential trail search.
Normally, mathematical problems such as Boolean Satisfiability Problem (SAT),
Mixed Integer Linear Programming (MILP), Satisfiability Modulo Theories
(SMT), and other related methods are employed to construct such automatic
tools. Since the performance of automatic search is determined by the power of
the corresponding mathematical solvers, the efficiency is not particularly satis-
factory when cryptographic ciphers with large state sizes are analyzed. Practi-
cally, most of the previous related works focus on lightweight ciphers where the
automatic tools showed incredible strength.

The SAT problem decides whether a set of constraints could be satisfied by
giving valid assignments to variables. In the research line of SAT-based crypt-
analysis, Mouha and Preneel searched differential trails of ARX ciphers with
SAT method in [MP13]. Based on SAT, Sun et al. [SWW18] put forward an
automatic search method for ciphers with Sboxes to obtain differential trails of
more accurate as well as high probability. In [SWW21], Sun et al. proposed a new
encoding method to convert the Matsui’s bounding conditions into Boolean for-
mulas, which could reduce clauses and speed up the SAT solving phase. Besides,
Morawiecki and Srebrny presented preimage attack on 3-round Keccak hash
functions by developing a SAT toolkit [MS13].

Our Contributions. Inspired by Hosoyamada and Sasaki’s findings from
[HS20,HS21] that collision attacks in quantum settings can take advantage of
differential trails of low probability, we develop an automatic trail search toolkit
based on SAT and propose advanced collision attacks on SHA-3 in both classical
and quantum settings. The results of our work and the comparison with previous
works are listed in Table 1. Main contributions are summarized in the following.

1. The SAT-based automatic trail search toolkit To facilitate differential
trail search of the underlying permutation Keccak-f of SHA-3, an SAT-
based automatic search toolkit is developed. The toolkit is not only simple
to implement but also provides more flexibility and better efficiency in gener-
ating various differential trails compared to dedicated trail search strategies
in [DVA12,MDA17,LQT19]. It’s interesting to note that for cryptographic
primitives of large state size like Keccak-f , automatic tools such as the
MILP-based ones are unlikely to provide advantage in trail search. That’s
why specialized search techniques were proposed for SHA-3. Surprisingly, the
SAT-based automatic toolkit fills the vacancy and shows excellent perfor-
mance in trail search of the large-state Keccak-f .

648 J. Guo et al.

Table 1. Summary of collision attacks against the SHA-3 family

Target Type Rounds Time complexity Reference

SHA3-224 Classical 5 Practical [GLL+20]
Quantum 6 297.75/

√
S Sect. 4.4

SHA3-256 Classical 5 Practical [GLL+20]
Quantum 6 2104.25/

√
S Sect. 4.3

SHA3-384 Classical 4 2147 [DDS13]
SHA3-512 Classical 3 Practical
SHAKE128 Classical 5 Practical [GLL+20]

Classical 6 2123.5 Sect. 4.2
Quantum 6 267.25/

√
S

SHAKE256 - - - -

2. Advanced collision attack algorithms for SHA-3 Augmented with the
SAT-based automatic tool, the collision attack methods used in [DDS12,
DDS14,QSLG17,SLG17,GLL+20] are improved in multiple ways. Collision
attacks proposed in those works primarily consist of two phases, i.e., a phase
of differential trail search that ensures collision on the digest bits, also referred
to as the colliding trail search phase in our work, and a second phase of con-
structing “connectors” that generates message pairs satisfying the constraints
imposed by the padding rule and initial value of SHA-3 and the input dif-
ference of the colliding trail at the same time. Both phases are considerably
improved utilizing our automatic tool.

– Colliding trail search algorithms that generate colliding trails of any
rounds, any digest length, and high probability are presented. In other
words, search space of colliding trails is covered efficiently which has been
impossible in previous works.

– Improved connector construction algorithms are proposed. Differential
trails of the connectors (which are called connecting differential trails in
the rest of the paper) can not only be directly generated but also produce
sufficient degrees of freedom which has been the bottleneck in extending
the collision attacks to more rounds.

3. The first 6-round collision attacks on SHA-3 With the novel automatic
tool and the improved algorithms, we finally extend the 5-round collision
attacks on SHA-3 instances to 6-round. In detail, 6-round classical colli-
sion attacks on SHAKE128 with complexity 2123.5, 6-round quantum collision
attacks on SHA3-224 and SHA3-256 with complexity 297.75/

√
S and 2104.25/

√
S

respectively, are mounted. To the best of our knowledge, this is the first time
that quantum collision attacks are mounted on SHA-3 and one more round is
covered compared with previous results in classical setting.

Organization. The rest of the paper is organized as follows. In Sect. 2, an
overview of the SAT-aided collision attacks on SHA-3 instances is provided. In

Exploring SAT for Cryptanalysis 649

Sect. 3, specifications of SHA-3 hash functions and implementations of the SAT-
based automatic search toolkit are presented. Section 4 exhibits the first 6-round
collision attacks on SHA-3 in both classical and quantum settings. Section 5 con-
cludes the paper. Details of differential trails and message pairs are given in the
supplementary material.

2 Overview of SAT-Based Collision Attacks Against
SHA-3

In this section, limitations of previous collision attacks are discussed. Subse-
quently, the SAT-based automatic trail search toolkit that can be conveniently
applied to all kinds of cryptanalytic scenarios are introduced. Basic ideas used
to extend previous collision attacks by one round in both classical and quantum
settings are also presented.

2.1 Limitations of Previous Collision Attacks

As depicted in Fig. 1, the collision attacks on SHA-3 and Keccak instances take
a 3-stage analytic framework, i.e.,

– at stage 1, prepare nr2 -round colliding trails of high probability that ensure
d-bit digest collision. ΔSI and ΔSO stand for the input and output difference
of colliding trails.

– at stage 2, construct nr1-round connectors that promise a subspace of message
pairs which meet both the message difference ΔM imposed by the sponge
construction2 and the input difference ΔSI of the colliding trails.

– at the last stage, exhaustively enumerate the messages pairs generated with
the connectors until one message pair that collides in digest bits is found.

A continuous series of investigations [DDS12,DDS14,QSLG17,SLG17,
GLL+20] have been conducted on collision attacks against SHA-3. Both the
colliding trail search phase and the connector construction phase have been
intensively inspected. At first glance, it seems that there is no room for fur-
ther improvements. Actually, no essential progress has ever been published since
the last work [SLG17] presented five years ago. The lack of new results can be
explained from two aspects, i.e., the constrained and low-efficiency colliding trail
search algorithms, and the quick consumption of degrees of freedom from the
connectors by (full) linearization.

2.1.1 Difficulty in Generating Colliding Trails of More Rounds
Due to the huge state size of Keccak-f , trail search of any kind, be it the gen-
eral truncated differential trail or the colliding trail, is a difficult task. In previous
collision attacks, the strategy to search colliding trails is quite simple, i.e.,
2 In this attack model, collision messages of 1-block are generated. The constraints

imposed by the sponge construction include (1) the c-bit capacity, i.e., c continuous
“0” bits, and (2) 2-bit padding “11” which is concatenated with a “01” or “1111”
string at the tail of the message block.

650 J. Guo et al.

Fig. 1. Overview of (nr1+nr2)-round collision attack on SHA-3

1. General 3-round differential trails obtained from dedicated search algo-
rithms, e.g., [DVA12,MDA17,LQT19], are extended forward by one round
and exhaustively searched for possible d-bit collision.

2. When sufficient 3-round trails with digest collision are collected, extend them
backward by one round to determine satisfactory output differences for con-
nectors, which at the same time are the input differences ΔSI of the nr2 -round
colliding trails.

There are two problems regarding to this colliding trail search strategy. On
one hand, the exhaustive colliding trail search, especially the backward extension,
drain computing resources significantly. In practice, sophisticated implementa-
tion techniques and even GPU resources [SLG17] are introduced to speed up
the colliding trail search. However, without dramatical increase in computing
power, it’s unlikely that the search efficiency can be improved further. On the
other hand, the colliding trails are limited by the results of general truncated
differential trail search. For example, the 5-round practical collision attack on
SHA3-256 [GLL+20] is not possible until new results on general 3-round trails
[LQT19] are published. Particularly, even with ultimate computing power, bet-
ter colliding trails won’t be possible unless results of general trail search are
updated. Then it comes to the common trail search problem again which is a
challenging task.

2.1.2 Quick Consumption of Degrees of Freedom in Connector Con-
struction
The connector construction is comprised of two parts. In the first part, as
depicted in Fig. 1, connecting trails whose input difference (i.e., ΔM) and out-
put difference (i.e., ΔSI) are partially or fully fixed are constructed. In the
second part, data structures that output a subspace of message pairs following
the connecting trail are generated. Essentially, as long as the connecting trail
is determined, systems of equations (i.e., the data structures) on messages are
listed in which the degree of freedom (DF for short) are quickly consumed3. As

3 The practical algorithms are much more complex. We just describe in this abstract
way to express basic ideas.

Exploring SAT for Cryptanalysis 651

conditions of both ΔM and ΔSI are strict, the sophisticated Target Difference
Algorithms (TDA for short) are devised to determine the exact connecting trails.
When we try to extend the connector by one more round, ΔM and ΔSI are so
heavy that connecting trails are hard to generate. Even if the TDA generates
connecting trails, data structures become impossible to construct as almost all
DF is consumed to meet conditions of the heavy connecting trail. Therefore,
developing new connecting trail search methods to generate lighter connecting
trails would be a feasible way to save DF and possibly allow to extend collision
attacks for more rounds.

Summary. Limitations of collision attacks lie in inefficiency of differential trail
search, more specifically, the lack of effective search techniques for trails of special
requirements.

2.2 SAT-based Automatic Trail Search Toolkit

Automatic search has long been introduced to evaluate robustness of symmetric
primitives. However, it’s not the case of Keccak-f permutation. Indeed, the ini-
tial attempts with MILP method failed to generate good trails due to the large
Keccak-f state. Researchers have to develop dedicated techniques to investi-
gate the propagation properties of Keccak-f . On the other hand, automatic
search based on other mathematical problems, such as SAT and SMT, is not
properly studied. In this work, SAT-based automatic search shows productivity
in generating trails involved in collision attacks on SHA-3.

2.2.1 SAT-based Colliding Trail Search
With the SAT-based toolkit, differential trails that (1) satisfy the d-bit digest
collision, (2) cover more rounds, (3) follow any specific differential pattern, and
(4) meet any probability constraint can be effectively generated. The search
space is expanded to the extent that efficiency of automatic search tool outper-
forms dedicated search strategy. Moreover, as the new method does not rely on
truncated differential trails, colliding trail search will not be limited by progress
of such general trails any more. Cryptanalysts are also free from devising and
implementing sophisticated trail search algorithms. We emphasize that colliding
trails of low probability, e.g., with complexity near or even beyond the birthday
bound, are easily generated. Such trails are utilized to mount collision attacks
in quantum settings.

2.2.2 SAT-based Connecting Trail Search
Similar to the case of colliding trail search, the SAT-based connecting trail search
is effortlessly implemented. Good connecting trails that (1) follow the fixed input
and output differences of the connectors and (2) provide adequate DF for mes-
sages are generated. The idea of finding connecting trails with SAT gives insights
to the constrained-input constrained-output (CICO) problem [BPVA+11] of
sponge constructions. As the input and output differences of connecting trails are

652 J. Guo et al.

partially or fully fixed, this is generally a difficult problem. Except for the sophis-
ticated approach used in [DDS12,DDS14,QSLG17,SLG17,GLL+20], there is no
other progress on constructing connecting trails. The SAT-based connecting trail
search method presents the first general solution for the problem of bypassing
the constraints imposed by the sponge construction in collision attacks on SHA-3.

2.3 Improved (Quantum) Collision Attacks on SHA-3

With the SAT-based automatic tool, collision attacks on SHA-3 instances that
cover one more round are mounted in both quantum and classical settings.

2.3.1 6-Round Collision Attacks on SHAKE128
With the SAT-based tool, 4-round colliding trails of 256-bit digest collision are
generated. Although one round is extended compared to trails used in previous
works, the 4-round colliding trails are of low probability. To mount valid col-
lision attacks, one round of the colliding trails is merged into the connectors,
i.e., the 6-round collision attacks consist of a 3-round connecting trail and a 3-
round colliding trail. Due to the low probability, the 3-round connectors can only
be partially constructed, i.e., only a fraction of the third round conditions are
treated while the other constraints are left for the brute force stage. Ultimately,
a theoretical 6-round collision attack on SHAKE128 are mounted with complexity
2123.5 which is slightly better than the generic attack.

2.3.2 6-Round Quantum Collision Attacks on SHA3-224 and SHA3-256
The identical 4-round colliding trail is used to mount 6-round collision attacks
on SHA3-224 and SHA3-256. Constrained by the great amount of DF consumed,
it becomes impossible to construct even partial 3-round connectors for these
instances. Therefore, for SHA3-224 and SHA3-256, only 2-round connectors are fea-
sible. 6-round collision attacks on SHA3-224 and SHA3-256 cannot be mounted in
classical setting as complexity of the 4-round colliding trail exceeds the birthday
bound. Fortunately, colliding trails of low complexity can be employed to mount
quantum collision attacks. In a nutshell, 6-round quantum collision attacks on
SHA3-224 and SHA3-256 with complexity 297.75/

√
S and 2104.25/

√
S are presented.

3 SHA-3 and SAT-based Automatic Search Toolkit

In this section, we describe notations used in the collision attacks and specifica-
tions of the SHA-3 family hash functions. Afterwards, the SAT-based automatic
search toolkit developed for Keccak-f permutation is presented.

3.1 Notations

Most of the notations to be used in this paper are listed below.

Exploring SAT for Cryptanalysis 653

c Capacity of a sponge function
r Rate of a sponge function
d Length of the digest in bits
p Number of fixed bits in the initial state due to padding
nr Number of rounds
Keccak-f The underlying permutation of SHA-3 hahs functions
θ, ρ, π, χ, ι The five operations of the round function of Keccak-f . A subscript i

denotes the operation at the i-th round, e.g., χi denotes the χ layer at
the i-th round where i = 0, 1, 2, · · ·

λ Composition of θ, ρ, π and its inverse denoted by λ−1

RCi Round constant of the i-th round, where i = 0, 1, 2, · · ·
Ri(·) Keccak-f permutation reduced to the first i rounds
S(·) 5-bit Sbox operating on each row of Keccak-f state
δin, δout 5-bit input and output differences of an Sbox
DDT Differential distribution table, and DDT(δin, δout) = |{x : S(x) + S(x +

δin) = δout}| , where | · | denotes the size of a set
αi Input difference of the i-th round, where i = 0, 1, 2, · · ·
βi Input difference of χ in the i-th round, where i = 0, 1, 2, · · ·
wi Propagation weight (weight for short) of the i-th round
w(βi) Weight of βi, where βi is the input difference of χ
wrev(αi) Minimal reverse weight of αi

DF Degree of freedom of the solution space of connectors
M Padded message of M . Note that M is of one block in our attacks
M1||M2 Concatenation of strings M1 and M2

xi Bit value vector before λ of each round, where i = 0, 1, 2, · · ·
yi Bit value vector before χ of each round, where i = 0, 1, 2, · · ·
Eyi System of equations on yi of each round, where i = 0, 1, 2, · · ·

3.2 Description of SHA-3 Family

The SHA-3 family [Dwo15] consists of a subset of Keccak [BDPVA13] hash
functions that are built upon the sponge construction [BDPVA07,GJMG11] with
an internal permutation called Keccak-f .

3.2.1 Specification of KECCAK-f Permutation
The underlying permutation Keccak-f takes a large state size of 1600 bits and
there are 24 iterative rounds in total. Each round of Keccak-f is comprised of
five operations, namely, the four linear operations denoted by θ, ρ, π and ι, and
one solely nonlinear operation denoted by χ. The 1600-bit state is organized as
a 3-dimensional array of bits, i.e., 5 × 5 × 64, denoted with A[5][5][64]. Each of
the state bits indexed by the coordinate (i, j, k) in the state array is denoted
by A[i][j][k] where 0 ≤ i, j < 5, and 0 ≤ k < 64. The 5 step mappings of the
Keccak-f round are specified with the following transformations.

θ: A[i][j][k] ← A[i][j][k] ⊕ ∑4
j′=0 A[i − 1][j′][k] ⊕ ∑4

j′=0 A[i + 1][j′][k − 1].

654 J. Guo et al.

ρ: A[i][j] ← A[i][j] ≪ T (i, j),where T (i, j)s are constants.
π: A[j][2i + 3j] ← A[i][j].
χ: A[i][j][k] ← A[i][j][k] ⊕ (A[i + 1][j][k] ⊕ 1) · A[i + 2][j][k].
ι: A[0][0] ← A[0][0] ⊕ RCir ,where RCir is the ir-th round constant.

The multiplication used in χ operation is in GF(2). As ι won’t affect differences,
we ignore it in the rest of the paper unless otherwise stated.

3.2.2 Instances of SHA-3 Family
According to the bit length of digest, SHA-3 contains 6 instances, i.e., the four
variants SHA3-224/256/384/512 that have a fixed hash length (where the num-
bers 224/256/384/512 stand for the hash size) and the two variants SHAKE128
and SHAKE256 of extendable outputs. A multirate padding rule 10∗1 is defined for
all SHA-3 instances. For the four standardized instances SHA3-224/256/384/512,
a 2-bit string “01” is concatenated to the message before padded while the capac-
ity is specified as c = 2 × d. In regards to the two extendable variants, a 4-bit
string “1111” is concatenated to the messages, and the capacity is 256 and 512
bits for SHAKE128 and SHAKE256 respectively. The digest size d of SHAKE128
and SHAKE256 can vary, and therefore the collision resistance level is given by
min(d/2, 128) and min(d/2, 256) correspondingly.

3.3 SAT Implementation

In the following, the SAT solver, the descriptions of the Keccak-f permutation
and its differential propagation, and the objective functions are illustrated.

CryptoMiniSAT. We choose CryptoMiniSAT as the underlying solver to
implement our automatic toolkit. Since proposed in [SNC09], the conflict-driven
clause-learning(CLDL) SAT solver has been improved greatly [SNC10,Soo14,
Soo16,SBH+19,SDG+20,SSK+20]. Enhanced with a sequence of advanced
search strategies such as Gauss-Jordan elimination and target phases [QUE19],
CryptoMiniSAT shows outstanding performances among other SAT solvers.
Except for high performance, CryptoMiniSAT also provides a neat interface
for XOR expressions. In fact, most well-performed SAT solvers only understand
constraints in conjunctive normal form (CNF for short) and users must consider
the complicated problem of describing cryptographic primitives with CNFs. By
contrast, CryptoMiniSAT allows attackers concentrate on attacks while provid-
ing high performance and simple implementation.

To implement SAT-based automatic trail search method, two kinds of con-
straints are fed into CryptoMiniSAT, namely, conditions imposed by (1) differen-
tial propagation over round functions (or in other words the description of round
functions), and (2) objective functions such as the number of active Sboxes and
the propagation probability.

Exploring SAT for Cryptanalysis 655

Round Function. As depicted in the following model,

αr
θ−→ cr

π◦ρ−−→ βr
χ−→ αr+1

two state differences, i.e., αr (the input difference of the r-th round) and βr (the
input difference of the χ operation of the r-th round) are introduced to the SAT
implementation for a single r-th round. The 1600-bit difference αr is represented
by 1600 variables, i.e., variable of each bit (whose coordinate is αr[i][j][k] where
0 ≤ i, j < 5 and 0 ≤ k < 64) is indexed with (320 × j + 64 × i + k)αr

. This
way we establish the mapping relationship between the 1600 variables and the
corresponding state difference.

Recall that ρ and π are simply bit permutations. Differential propagations
over the two linear operations are described through mapping the indexes of
variables. For example, assuming that an active bit cr[i][j][k] is transformed
to βr[i′][j′][k′] through π ◦ ρ, then the index mapping of the two variables is
(320×j+64×i+k)cr

π◦ρ−−→ (320×(2×i+3×j)+64×j+(k−T (i, j))%64)βr
. These

operations are described with plain index transformation and no additional SAT
computation is required.

By definition, θ operation updates each bit through XORing itself to two
columns. Accordingly, θ is described with XOR clauses that could be directly
understood by CryptoMiniSAT. That is, the XOR sums of 320 columns (denoted
by α[i][k]) are described with 320 variables each of which is indexed by 64×i+k.
As a result, the mapping of variable indexes induced by θ operation is captured
with (320×j+64×i+k)cr = (320×j+64×i+k)αr

⊕(64×(i−1)+k)ColumnSum⊕
(64 × (i + 1) + (k − 1))ColumnSum. Here, the subscript ColumnSum indicates
the variables of column sums.

Practically, the three linear operations (i.e., θ, ρ and π) are treated as a
whole. The total index mapping of variables is described with (320× (2× i+3×
j) + 64 × j + (k − T (i, j))%64)βr

= (320 × j + 64 × i + k)αr
⊕ (64 × (i − 1) +

k)ColumnSum ⊕ (64 × (i + 1) + (k − 1))ColumnSum.
In regard to the only nonlinear operation χ which is generally considered

as 5-bit Sbox, both the difference distribution table (DDT for short) and the
operation itself are interpreted with truth tables. Specifically,

– The DDT is described with listing a truth table of 11 variables, including 10
variables that represent input and output difference and 1 variable marking
compatibility of DDT entries. When fed into Logical Friday (refer to http://
sontrack.com), 46 CNFs are generated to describe the DDT. Differential prop-
agation over χ, i.e., relationship between the input difference βr and output
difference αr+1, is then depicted with simply writing CNFs of each Sbox.

– Similarly, variables that correspond to the input and output values of χ are
connected with CNFs generated from χ truth table. Empirically, 11 variables
are needed to construct truth tables and 29 CNFs are produced.

In summary, 1600× 2+ 320 = 3520 variables are used to describe one round
of Keccak-f permutation in the SAT-based implementation. The relationship
among variables are specified with methods illustrated above. Identical round

http://sontrack.com
http://sontrack.com

656 J. Guo et al.

description that is of different variable sets is implemented for each round. Mul-
tiple rounds are described by connecting each round, i.e., (1) the input variables
of each round are the output variables of its previous round and (2) the output
variables of each round are the input variables of its next round.

Objective Function. In the context of 6-round collision attacks on SHA-3, the
number of active Sboxes and the propagation weight (weight for short)4 are
the two mainly considered objectives. To describe the objectives, constraints on
integers (i.e., number of active Sboxes and weights) are transformed to CNFs.
The sequential encoding method [Sin05] is employed to describe addition over
integers, e.g.,

∑n−1
i=0 xi ≤ w where w ≥ 1. In this process, (n × (w + 1) − w)

auxiliary variables are introduced. More specifically,

– Constraint on the Number of Active Sbox. To describe the number of active
Sboxes of each χ, 320 variables are introduced to indicate whether an Sbox is
active or not. The sum of all the variables needs to satisfy a threshold weight
(say w), e.g.,

∑319
i=0 xi ≤ w. Accordingly, (320 × (w + 1) − w) extra variables

are introduced to transform the constraint on the number of active Sboxes to
CNFs.

– Constraint on the Propagation Weight. The DDT entries take 4 possible
values (i.e., 2, 4, 8, and 32), and the corresponding propagation weights
belong to {0, 2, 3, 4}. As shown in Eq. 1, four auxiliary variables denoted by
(p0, p1, p2, p3) are introduced to represent the weight of each Sbox, meaning
that (320×4×(w+1)−w) extra variables are added to describe constraints on
the weight of a whole state. Likewise, the weight constraint which is obtained
through summing up all the variables is then transformed to CNFs.

(p0, p1, p2, p3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 1, 1, 1), DDT(δin, δout) = 2;
(0, 1, 1, 1), DDT(δin, δout) = 4;
(0, 0, 1, 1), DDT(δin, δout) = 8;
(0, 0, 0, 0), DDT(δin, δout) = 32.

(1)

3.4 SAT-based Automatic Search Toolkit

In this section, we explain how to implement various trail search algorithms
based on the SAT implementation. Let’s first review some definitions and con-
cepts introduced in [DVA12,BPVA+11]. The 6-round attack model presented in
Sect. 4.1.3 is placed here in advance to better explain definitions.

Probabilistic Property of χ. As the algebraic degree of χ is 2, its DDT shows
some interesting properties. For a given input difference, all its compatible
output differences share equal propagation probability. Correspondingly, for
a given βi, all its compatible αi+1 take the same probability or weight. For a

4 The propagation weight is defined as the opposite of the binary logarithm of the
propagation probability. For example, if the propagation probability of a differential
trail is 2−32, the corresponding weight is 32.

Exploring SAT for Cryptanalysis 657

Fig. 2. The 6-round collision attack model

given output difference, as the degree of χ−1 is 3, there exist one or several
compatible input differences that hold a better probability than the other
input differences. Likewise, for a given αi, there exist some compatible βi−1

that have the best differential probability, which is also called the minimum
reverse weight (and generally denoted by wrev(αi)).

Trail core. As depicted in Fig. 2, a general 4-round differential trail consists
of input and output differences of all four rounds, i.e., (α2, α3, α4, α5, α6).
Recall that as λ is a linear transformation, αi propagates to βi determin-
istically. The 4-round differential trail is also denoted by (β2, β3, β4, β5).
Comparatively, the 4-round trail core is composed of three differences, i.e.,
(β3, β4, β5), taking advantage of the property that the minimal reverse weight
of α3 can be directly computed to evaluate the family of 4-round trails that
have (β3, β4, β5) as their tail.

In the Fig. 2 model, (β3, β4, β5) represents the colliding trail

3.4.1 SAT-based Colliding Trail Search
To set up the colliding trail search model, description of differential trail
(α3,β3,α4,β4,α5,β5,αd

6) needs to be added into the SAT model. Differential prop-
agation over the round functions is implemented in the way introduced in last
section. At this stage, only constraints that are exclusively imposed by the col-
liding trails are introduced. Aligned with the requirements for constructing col-
liding trails in [GLL+20], the SAT-based search method is implemented from
two aspects, i.e., the digest collision and the connector construction.

From the perspective of collision search, we don’t have to check α6 for d-
bit collision (denoted by αd

6). Rather, extra constraints on β5 that ensure αd
6

collision are considered. Take colliding trail search of SHAKE128 as an example,
to guarantee the first 4 lanes of α6 to be 0, the input difference to the first 64
Sboxes of β5 must belong to the set {00000, 00001, 00101, 10101, 00011,
01011, 00111, 10111, 01111, 11111}. The candidate input differences listed
above form a space which is represented by CNFs. Through adding the corre-
sponding CNFs on variables of β5 to the system, constraints on digest collision
is implemented.

On the other hand, to maximally facilitate the connector, the minimum
reverse weight of α3 (denoted by wrev(α3)) and propagation weight w(β3) +
w(β4) + w(βd

5) of the colliding trail are taken into consideration. Altogether,

658 J. Guo et al.

the objective function of wrev(α3) + w(β3) + w(β4) + w(βd
5) is described with

CNFs and added to the system. In some situations, the constraints on weight
are replaced by the constraints on the number of active Sboxes, i.e., AS(α3) +
AS(α4) + AS(β4) + AS(βd

5) which results in (320 × 3 × (w + 1) − w) + (64 ×
(w + 1) − w) auxiliary variables included to the SAT system.

With this implementation, 3-round colliding trails are not only generated
more efficiently but also of better probability. In contrast, the best 3-round
colliding trail used in previous collision attack on SHA3-256 is of probability
2−43. It’s worth noticing that 4-round colliding trails which could be utilized to
mount collision attacks of 6 rounds is generated for the first time. Table 2 gives
comparison of search efficiency. It demonstrates that the new SAT-based trail
search is superior to earlier strategies in both efficiency and effectiveness.

Table 2. Comparison of the SAT-based tools with other dedicated approaches

Type Permutation Rounds Weight Time Reference

Colliding trail Keccak-f [1600] 3 43 Several weeks1 [GLL+20]
3 32 2 s2 Sect. 3.4.1
4 141 5mins2 Sect. 3.4.1

General trail Keccak-f [1600] 4 134 - [MDA17]
133 47.76 h Sect. 3.4.3

Keccak-f [800] 4 104 - [MDA17]
95 28.42 h Sect. 3.4.3

a There are two stages, i.e., the forward extension executed with one CPU core
and the backward extension deployed with three NVIDIA GeForce GTX970
GPUs.
b The SAT-based implementation is deployed with one 3.6GHz Intel Core i9.

3.4.2 SAT-based Connecting Trail Search
In accordance with the considerations for constructing connecting trails that
promise valid connectors, the trail search of (α0,β0,α1,β1,α2,β2) is specified with
two phases.

Phase 1. In the first phase, (β1, β2) are to be determined for given α3. First,
description of the differential trail (β1,α2,β2,α3) are added to the SAT system.
Afterward, constraints on propagation weight of β1 and β2 are established, i.e.,
CNFs of a minimal w(β1) + w(β2) are listed. By now, 6400 + 320 variables are
used to describe the connecting trail where 6400 variables are introduced for the
2-round propagation and 320 variables correspond to conditions of the summed
weight. And we also restrict weight of each round, namely, w(β1) ≤ w1 and
w(β2) ≤ w2 which results in an extra (1280 × (w1 + 1) − w1) + (1280 × (w2 +
1)−w2) variables. The objective function of weight is described with the method
illustrated in the last section. Overall, this model needs 6400 + 320 + (1280 ×
(w1 + 1) − w1) + (1280 × (w2 + 1) − w2) variables.

Exploring SAT for Cryptanalysis 659

Phase 2. The input difference of χ0 of the first round is determined in this
phase with the SAT-based implementation. Given the output difference α1, vari-
ables that represent a pair of messages (x1

0,x2
0) and the input difference β0 are

introduced to describe the half round propagation. Precisely, constraints on bit
positions of capacity and padding are depicted by fixing the corresponding vari-
ables to be 0 or some settled value. Constraints on w(β0), the weight of β0, are
also covered to make sure that the degree of freedom will be maximally produced
for connectors. Simply put, CNFs for objective function of a minimal w(β0) are
added to the SAT model. With the SAT-based implementation, connecting trails
that yield much greater DF are generated.

3.4.3 SAT-based Truncated Trail Search
Except for the special trail search scenarios, SAT-based solution also performs
well in general truncated differential trail search. As can be seen from the exper-
imental results, SAT-based implementation handles 3-round Keccak-f permu-
tation quickly. It turns out that 3-round trail cores generated with the SAT-based
automatic trail search method are consistent with results from previous works
[DVA12,MDA17,LQT19].

We take 4-round differential trail search as an example to explain the SAT-
based trail search implementation. The 4-round trail is modelled with

β2
χ−→ α3

λ−→ β3
χ−→ α4

λ−→ β4
χ−→ α5

λ−→ β5
χ−→ α6.

First, CNF description of the differential trail (α3,β3,α4,β4,α5,β5) is added to the
SAT system. As 6 differences are involved, 10560 = 1600× 6+ 3× 320 variables
are required to describe the difference propagation. Similar to the colliding trail
search implementation, constraint on the sum of weight w = wrev(α3) + w(β3)
+ w(β4) + w(β5) where w ≤ 133 is also added to the SAT system. Another
685947 = (1280 × 4 × (133 + 1) − 133) auxiliary variables are included in the
process of transforming the objective function to CNFs. In total, there are 696507
variables in this SAT-based 4-round differential trail search implementation.

With respect to search efficiency, although it displays unexpectedly well per-
formance in 3-round trail search, it cannot traverse the search space of 4-round
trails efficiently. A tight lower bound on propagation weight for 4-round dif-
ferential trails is unfortunately not settled in this paper. However, two better
4-round trails of weight 133 which is the lowest known weight so far are gener-
ated. Table 8 in supplementary material B shows the two trails (refer to the full
version [GLST22]).

660 J. Guo et al.

The SAT-based differential trail search implementation is further extended to
other Keccak permutations [BPVA+11] such as Keccak-f [800]. Analogous to
Keccak-f (which is also denoted by Keccak-f [1600]), similar round functions
are iterated for multiple rounds in Keccak-f [800] only that its state size is of
800 bits. Table 9 in supplementary material B shows a good trail that improves
the lower bound of 4-round trails for Keccak-f [800]. Table 2 gives an overview
of the advantage of the automatic search compared to previous works.

Summary. By picking up different compositions of constraints on the num-
ber of active Sboxes and weight or even considering a single state not in the
whole, we obtain variant SAT models with different efficiency. The SAT-based
automatic search toolkit helps us understand the differential propagation prop-
erty of Keccak-f in a distinct viewpoint. It also demonstrates that automatic
solvers perform efficiently on cryptographic primitives with large state size.

4 Collision Attacks Against SHA-3 Instances in Classical
and Quantum Settings

In this section, a classical 6-round collision attack on SHAKE128, and two 6-round
quantum collision attacks on SHA3-224/SHA3-256 are mounted.

4.1 Basic Attack Strategy

Aided by the SAT-based automatic search toolkit, we propose advanced collision
attacks on SHA-3 instances based on the analytic framework described in Sect. 2.
The enhanced collision attack is comprised of three phases, i.e.,

– Phase 1, generate nr2 -round colliding trails of d-bit digest with the SAT-based
tool.

– Phase 2, generate nr1 -round connecting trails that link the conditions of
sponge construction and the input difference of the colliding trail with the
SAT-based tool.

– Phase 3, construct connectors that generate a subspace of messages which
follow the nr1 -round connecting trails.

The brute force phase where collision messages are generated will not be included
as only theoretical collision attacks are presented in this work.

4.1.1 Generating Colliding Trails
Based on the SAT implementation techniques elaborated in Sect. 3, we add the
implementation of colliding trail search algorithms to the toolkit. Except that the
d-bit collision must be satisfied, the propagation weight of the 4-round colliding
trail core must also be small enough to promise a possible 6-round collision attack.
Eventually, several 4-round colliding trail cores are generated. We select the best
one to mount collision attacks. Without considering the connector, weight of the
4-round colliding trail is 141 (i.e., 89+24+20+8 = 141). The propagation weight
of the 4-round trail core is shown in Fig. 3 while the exact differences are listed in
Trail No.1 (shown in Table 5) of supplementary material B.

Exploring SAT for Cryptanalysis 661

Fig. 3. The 4-round colliding trail model. The 4-round trail is purposely placed at the
last 4 rounds of a 6-round differential trail to be consistent with the collision attack
model. In the last round, only d-bit collision is concerned and denoted by αd

6.

4.1.2 Generating Connecting Trails
As shown in Fig. 3, even the minimal weight (i.e., ≥ 141) of 4-round colliding
trails exceeds the birthday bound (e.g., 128 for SHAKE128 and SHA3-256). It’s
impractical to randomly select a 4-round colliding trail and generate the corre-
sponding 2-round connecting trail. We develop a two-step approach to determine
the connecting trails. The input difference of the 4-round colliding trail core is
generated in combination with the differences of connecting trails. Let’s explain
the idea with the 6-round collision attack model shown in Fig. 4.

– In the first step, the input difference (i.e., β2) of the 4-round colliding trail
core (β3, β4, β5) is determined together with the input difference (i.e., β1) of
the second round of the connecting trails. Practically, the 2-round differential
trails (β1, β2) that are not only compatible with α3, but also of minimal weight
are generated with the SAT-based tool.

– In the second step, the lightest β0 (in terms of weight) that are compatible
with α1 and meet the restrictions on α0 imposed by the sponge construction
are generated with the SAT-based tool.

To demonstrate the strength of the SAT-based method, we compare exper-
imental results on SHA3-256 with previous work. In previous results, when the
first round of the connector is processed, the DF remained is estimated to be
around 124 (for more illustration refer to Sect. 5.2 of [GLL+20]). In comparison,
the new connecting trails provide a DF up to 330 ∼ 430 which is surprisingly
superior. This accords with the number of active Sboxes of β0. Almost all of the
320 Sboxes of β0 are active (e.g., the number of nonactive Sboxes is around 10)
with the previous target difference algorithm, while with our SAT-based strategy
there are around 40 ∼ 50 nonactive Sboxes in β0. Without the extra gain of DF,
it’s impossible to extend the attack by one round.

Remark 1. The three undetermined differences β0, β1, and β2 cannot be gener-
ated all at once. On one hand, even if (β0, β1, β2) are determined in one step, the
distribution of weights (i.e., w(β0), w(β1), and w(β2)) is random. In our experi-
ments, such (β0, β1, β2) cannot sustain a good connector in general. On the other
hand, the SAT-based toolkit cannot support searching such trails efficiently.

4.1.3 Constructing Connectors
The connecting trails, combined with the colliding trails, constitute the full 6-
round differential trail with which the connectors that generate a subspace of
messages that follow the connecting trails can be constructed. Considering that

662 J. Guo et al.

weight of the 4-round colliding trail exceeds the birthday bound, to mount a valid
attack, we transfer the first round of the colliding trail to the connector. In detail,
the 6-round collision attack on SHAKE128 consists of a 3-round connector and a
3-round colliding trail (refer to Fig. 4). As for SHA3-224 and SHA3-256, 6-round
quantum collision attacks that consist of a 2-round connector and a 4-round
colliding trail are mounted (refer to Fig. 4). We highlight that the connecting
trails cannot provide enough DF to satisfy all the constraints in connectors even
for theoretical attacks. Therefore, merely a fraction of constraints of the last
round of 2/3-round connectors are picked up to be processed.

Fig. 4. The 6-round collision attack model

2-Round Connectors. We improve the algebraic-aided method adopted by
previous works [DDS12,DDS14,QSLG17,SLG17,GLL+20] to construct connec-
tors that generate message pairs following partially the output difference of the
connectors.

Principally, the systems of linear equations on messages are listed and solved.
The linear equations correspond to the conditions of sponge functions and dif-
ferences of the connecting trail. The 2-round connector model exhibited in Fig. 5
illustrates how the system of linear equations is established.

1. First, linear equations of the (c + p)-bit conditions imposed by the sponge
construction are listed, where c and p correspond to the capacity and padding
bits respectively. Take the case of SHA3-256 as an example, the capacity is
c = 256× 2 = 512 bits, and the padding rule is 10∗1. To provide as many DF
as possible, we set the padding as fixed “11” string. Also the 2-bit string “01”
is concatenated to the tail of the message block. In total, a 4-bit fixed string
(i.e., “0111”) is considered as the p-bit condition.
Linear equations on the (c+ p)-bit conditions are directly listed on the input
messages x0. As y0 and x0 are linked with the linear transformation λ, the
linear equations on x0 are easily transferred to equations on y0. In the case
of 2-round connectors, the systems of linear equations on y0 are listed and
denoted by Ey0 .

Exploring SAT for Cryptanalysis 663

Fig. 5. The 2-round and 3-round connectors (Color figure online)

2. Next, linear equations on y0 that meet conditions imposed by first round dif-
ferential (β0, α1) are added to Ey0 . Message pairs constructed from the solu-
tions of the current Ey0 system must follow the (β0, α1) differential. Details
on how the equations can be listed are illustrated with Property 1 of the
supplementary material A.

3. To list equations of conditions imposed by the second round differential
(β1, α2), the first round must be bypassed. Linearization and partial lineariza-
tion techniques on χ operation proposed in [QSLG17,SLG17] are borrowed
directly to ensure that the y1 bits can be expressed by the linear combinations
of involved y0 bits. Consequently, Ey1 , the system of linear equations on y1
for (β1, α2), is transferred to a group of linear equations on y0.
To this end, extra equations on y0 that allows the involved y1 bits linear
with respect to the χ operation must be added to Ey0 . Practically, as there
is a whole round between y1 and y0, the x1 bits that are involved to the
corresponding y1 bits according to λ operation are linearized. The principal
property exploited to linearize x1 bits is briefly summarized in Property 2 of
the supplementary material A.
The DF left after the last two steps cannot sustain solving all the β1 active
Sboxes. A greedy algorithm that sorts the active Sboxes of β1 by the number
of unlinearized x1 bits is utilized to choose the β1 Sboxes to be treated5.
To sum up, linear equations on y0 that linearize the involved x1 bits of par-
tially chosen β1 Sboxes are added to Ey0 in this step.

4. At last, the system of equations on y1 (i.e., Ey1) of the partially treated β1

Sboxes is transferred to linear equations on y0 with the linearization equations
generated in the last step, and added to the system Ey0 .

The Algorithm 1 shown in supplementary material A provides a concise descrip-
tion on construction of the 2-round connector. When a consistent system of
linear equations on y0 (i.e., Ey0) is successfully generated, the alleged 2-round
connector is constructed. The solution space of Ey0 is composed of a subspace
of messages, i.e., y0. A pair of messages (y1

0 , y
2
0) generated through XOR-ing y1

0

5 The other β1 Sboxes that are not treated are indicated with red block in Fig. 5.

664 J. Guo et al.

with β0, while y1
0 is a random solution of Ey0 , follows (1) the input difference α0

and (2) a fraction of the output difference α2 of the 2-round connector.

3-round Connector. In constructing 3-round connector, χ0 of the first round
is fully linearized, making the first round a linear layer. As a result, the 3-round
connector can be viewed as a 2-round connector. We adopt the model shown in
Fig. 5 to explain how the system of linear equations of the 3-round connector is
constructed.

1. First, list linear equations on y0 for (1) the (c + p)-bit conditions and (2)
the constraints imposed by the first round (β0, α1) differential. The system
of linear equations is denoted by Ey0 .

2. Next, fully linearize the χ0 layer of the first round and transfer the equations
on y0 to equations on y1. Namely, additional equations on y0 that corresponds
to linearizing each active and non-active Sbox of (β0, α1) differential are added
to the current Ey0 . Expressions of the linearized χ0 are utilized to convert the
system of linear equations on y0 (i.e., Ey0) to the system of linear equations
on y1 (i.e., Ey1).

3. List linear equations on y1 for constraints imposed by the second round
(β1,α2) differential. Add those equations to the present system of equations
Ey1 .

4. With the same greedy algorithm utilized in 2-round connector construction,
select a fraction of conditions of β2 to solve and linearize the related x2 bits.
Add the equations on y1 that linearize the involved x2 bits of the partially
treated (β2,α3) differential to the current Ey1 system.

5. List equations on y2 for conditions imposed by the partially solved (β2,α3)
differential of the last round of the 3-round connector. Convert the system
of linear equations on y2 to equations on y1 based on the linearization of
involved x2 bit in the last step. Add the y1 equations generated at this step
to the whole Ey1 system.

When all equations are listed and organized in the system of equations on y1
(i.e., Ey1), the 3-round connector is successfully constructed. A subspace of
message pairs generated from the solution space of Ey1 satisfy that (1) the
input conditions imposed by sponge constructions are met and (2) the output
difference of the 3-round connector is partially met as expected. The Algorithm
2 in supplementary material A illustrates construction of the 3-round connector.

4.2 Collision Attack Against 6-Round SHAKE128

Following the basic attack strategy, a collision attack on 6-round SHAKE128 is
mounted. The model in Fig. 6 gives basic details of the attack.

Exploring SAT for Cryptanalysis 665

Fig. 6. The 6-round collision attack model for SHAKE128

As discussed in Sect. 4.1.2, the minimal weight of the best 4-round colliding
trail core exceeds the birthday bound. To make the collision attack feasible,
the first round of the 4-round colliding trail is transferred to the connector.
Hence, the 6-round collision attack consists of a 3-round connector and a 3-
round colliding trail. Propagation weight of each round is identified in Fig. 6.
The 4-round colliding trail core is specified in Table 5 of supplementary material
B, more specifically, the (β3, β4, β5) differences of Trail No.1. The probability of
the 3-round colliding trail is 2−52 (where 2−52 = 2−24 · 2−20 · 2−8). The two-step
SAT-based connecting trail search method described in Sect. 4.1.2 is applied
to first determine (β1,β2) differences and fix β0 difference subsequently. The
connecting trail is listed in Table 7, i.e., Trail No.3 in supplementary material
B.

Now that the whole 6-round differential trail is determined, the 3-round con-
nector can be constructed with the method illustrated in Sect. 4.1.3. The third
round of the 3-round connector is partially solved, e.g., in our experiment, 36 out
of the 116 constraints of (β2,α3) are solved. The DF of the 3-round connector is
276. Alternatively, the 3-round connector generates a subspace of 227 messages
that satisfy the 36 conditions of the input difference α3 of the colliding trail. A
pair of solution messages are given in Table 10 of supplementary material B.

The unsolved conditions of (β2,α3) are treated together with the colliding
trail through exhaustive search. In the brute force phase, message pairs generated
from connectors are verified for whether satisfying α3 or not. If not, simply
abandon the current pair and try another one. Otherwise, further check the
256-bit digests of the pair until a collision is encountered.

Remark 2. Apart from the current work that exemplifies the collision resistance
of a typical 128-bit security level, inner collisions [GJMG11] could also be ana-
lyzed with the same idea. As indicated in [GLL+20] (an inner collision of a
160-bit Keccak Challenge), the inner collision attack that constructs collision on
capacity bits yields collisions of any digest length.

Complexity. The overall complexity includes complexity of both the connector
construction phase and the exhaustive search phase.

6 Indeed, the size of solution space is not always 227 (or DF=27). This is an average
number calculated from our experiments repeated on 214.3 connectors.

666 J. Guo et al.

– In the exhaustive search phase, the time complexity is 2132 6-round SHAKE128
computations (where 2132 = 2116−36 · 252). However, taking advantage of the
early-abort technique, the search process is sped up by iteratively filtering out
half of the message pairs at each step. The cost of computing each additional
bit constraint on β2 equals to 11

1600 · 16 = 2−9.8 6-round SHAKE128 computation
as 11 bits of α2 states are involved. When checking all the 2132 message pairs
with one bit constraint, only half of the pairs satisfy the restriction while
the other half are discarded, i.e., the so-called early-abort. For the remaining
message pairs, another bit constraint will be checked and filter out half of
those message pairs. This iterative process continues on the surviving message
pairs until all the bit constraints on β2 are checked. 1/2 of the messages stop
by first bit constraint, 1/4 by the second bit constraint, 1/8 by the third bit etc.
Hence the time complexity would be 2132 · 2−9.8 · (1 · 1/2+2 · 1/4+3 · 1/8+ · · ·)
= 2123.2 6-round SHAKE128 computations.

– In the connector construction phase, the time complexity corresponds to the
time used to construct 2105 (i.e.,2132/227 = 2105) connectors. Let’s first dis-
cuss the equivalent conversion of implementation efficiency between connec-
tor construction and 6-round SHAKE128. The computation cost of 6-round
SHAKE128 is 6 · ((4 · 320 + 2 · 1600)

︸ ︷︷ ︸
θ

+3 · 1600︸ ︷︷ ︸
χ

+ 64︸︷︷︸
ι

) = 56064 bitwise oper-

ations. Further, solving systems of linear equations dominates the time of
connector construction7. The time complexity of Gauss-Jordan elimination
for system of boolean equations is O(m2n) bitwise operations [HJ12], where
m is the number of equations and n is the number of variables. In the
worst case, there are 1600 non-redundant equations in the final system, i.e.,
m = 1600. The complexity would be no greater than 16003 = 4.096×109 bit-
wise operations. Consequently, time cost of constructing a connector equals
to 4.096 × 109/56064 = 216.2 6-round SHAKE128. The time complexity in con-
nector construction is equivalent to 2105 · 216.2 = 2121.2 6-round SHAKE128
computations.

In total, time complexity of the classical collision attack is 2123.2+2121.2 =2123.5

6-round SHAKE128 computations. Complexity of quantum collision attack8 is
267.25/

√
S.

Table 3 gives an overview of the time complexity tradeoff between brute force
search phase and connector construction phase according to the number of con-
straints on β2 solved. The more the constraints are solved, the smaller the DF
of connectors is, the better the brute force complexity is and the worse the
connector complexity is.

7 Refer to Remark 3 for more discussion on the cost of connectors.
8 Complexity analysis of quantum collision attack will be illustrated in Sect. 4.3.

Exploring SAT for Cryptanalysis 667

Table 3. Summary of complexity corresponding to the number of constraints solved

#constraints DF Data Connector Brute force Total
of connector complexity complexity complexity complexity

35 28 133 121.2 124.2 124.4
36 27 132 121.2 123.2 123.5
37 23 131 124.2 122.2 124.5
38 22 130 124.2 121.2 124.3
39 20 129 125.2 120.2 125.2
40 15 128 129.2 119.2 129.2
41 13 127 130.2 118.2 130.2
42 10 126 132.2 117.2 132.2
43 7 125 134.2 116.2 134.2
44 4 124 136.2 115.2 136.2
45 1 123 138.2 114.2 138.2

Remark 3. Experiments on 214.3 connectors show that solving systems of equa-
tions dominates the time of connector construction. In particular,

– when fully linearizing the first round, due to the large DF, almost all Sboxes
are successfully linearized in the first try and very occasionally it needs extra
tries;

– when partially linearizing the second round where no more than 40 constraints
are treated, about 1/3 tests succeed with the first or a second try for each Sbox
while around 2/3 tests collapse and we should start the partial linearizing
process again. But as this process consumes 0.01s on average (compared with
0.8s used to construct the whole connector) it won’t affect the complexity
analysis.

Overall, neglected time is consumed in listing equations which is consistent with
the observations from [GLL+20].

Remark 4. Experimental results outlined in Table 4 conforms to the theoretical
complexity analysis of the connector construction phase. The average execution
time of each connector construction (denoted by Tc) is 0.8 s. In our C++ imple-
mentation, around 220 6-round SHAKE128 are computed in each second. The time
of connector construction equals to 2105 ·219.67 = 2124.67 SHAKE128 computations
which validates the attack.

4.3 Quantum Collision Attack Against 6-Round SHA3-256

The colliding trail used in 6-round collision attacks on SHAKE128 is also used
in attacks on SHA3-256 and SHA3-224. As shown in Fig. 7, the 6-round colli-
sion attack on SHA3-256 consists of a 2-round connector and a 4-round colliding

668 J. Guo et al.

Table 4. Summary of the results of collision attacks on 6-Round SHA-3 instances

Target Type Trail core Tc DF Complexity Solution

SHAKE128 Classical No. 3 0.8s 27 2123.5 Table 10
Quantum 267.25/

√
S

SHA3-256 Quantum No. 1 3s 5 2104.25/
√
S Table 11

SHA3-224 Quantum No. 2 3s 22 297.75/
√
S Table 12

Fig. 7. The 6-round collision attack model for SHA3-256

trail. Note that, the (β1, β2) used in the attack on SHAKE128 is also applied
here. The entire 6-round differential trail is given in Table 5, i.e., Trail No.1 in
supplementary material B. The 2-round connector solves 226 out of the total
264 conditions imposed by (β1,α2). The solution space of the 2-round connector
ensures a subspace of message pairs that follow partial α2 difference as expected.
In our experiment, the 2-round connector is constructed in 3 s on average. The
DF of the connector is 5. Or to put it differently, the size of the solution space
is 25. Example of a pair of messages that follow the connector is given in Table
11 of supplementary material B.

The unsolved conditions (i.e., 38 left) of (β1,α2) are treated together with
the colliding trail whose weight is 116 + 24 + 20 + 8 = 168. In classical settings,
the time complexity of the brute force phase is 238 ·2168 = 2206 6-round SHA3-256
computations with which a valid collision attack cannot be conducted. However,
such differential trails of low probability can be exploited in quantum settings.

Quantum Collision Attack. As stated in [HS21], no existing quantum col-
lision attack on a random function could outperform classical attack based on
parallel rho method [VOW94] in terms of time-space tradeoff. We follow their
way and consider a quantum collision attack valid if its time complexity is less
than 2n/2/S, where n denotes the digest length, and S is the hardware size required
for the attack (or in other words, S is the maximum size of quantum comput-
ers and classical computers). Note that instead of designing concrete quantum
circuits matching the theoretical bound of time-space tradeoff, the authors of
[HS21] assume such quantum circuits exist already and concentrate on complex-
ity evaluation of the quantum attacks. We adopt the same strategy in [HS21] to
mount the 6-round quantum collision attack on SHA3-256.

Suppose there exists a quantum circuit C1 for the connector construction of
depth Tc and width Sc. That is, the quantum circuit constructs a connector in

Exploring SAT for Cryptanalysis 669

time Tc with Sc qubits. Similarly, suppose there exists another quantum circuit
C2 of depth Ts and width Ss for the one-block SHA-3 variants, i.e., the quantum
implementation of the 6-round targets (in this case SHA3-256). The idea that
converts the classical attacks to the quantum collision attacks is described as
follows.

1. Prepare message pairs (M,M ′) with the quantum circuit C1.
2. For each (M,M ′) pair, compute the digests with quantum circuit C2, and

check whether they are identical.
3. Repeat the above two steps until a collision is found.

Complexity. Considering the solution space of the 2-round connector (which is
25), 2201 connectors are needed in theory. There are simply two kinds of opera-
tions in the quantum implementation of connectors, namely, listing the system
of boolean equations and solving it with Gaussian-Jordan elimination, both of
which are linear operations. Compared with Ts of the nonlinear SHA-3 variants
(or more specific the χ operation), the depth Tc of C1 where only linear opera-
tions are involved is negligible [AMG+16]. Hence, time complexity of quantum
collision attack is dominated by the time complexity of the exhaustive search
phase.

Suppose we have a quantum computer of size S, taking parallelization into
account, the time complexity of Grover search [Gro96] in the exhaustive search
phase is

TA · (π/4) ·
√

SA/(p · S),

where p is the probability of finding a collision in the classical setting, and TA

(resp. SA) is the depth (resp. width) of the quantum collision attack. The depth
(resp. width) of the quantum circuits of the SHA-3 variants (i.e., C2) are defined
as the unit depth (resp. width), meaning that Ts = 1 and Ss = 1. Specifically,
as the state size and the digest size are 2 × 1600 + 256 = 3456 bits, we regard
at least 3456 qubits are required in circuit C2. The overall depth and width are
evaluated with the following analysis.

– Depth (TA). As Tc is negligible, TA = Ts = 1.
– Width (SA). In the quantum circuits of connectors (i.e., C1), the quantum

states include (1) the auxiliary m qubits (as there are 264 conditions, m =
264) that mark whether a condition will be treated or not in the partial
linearizing step and (2) the k×1601 qubits that store the k boolean equations
(k ≤ 1600) of the system of linear equations. The overall SA = Sc + Ss =
(m + k × 1601 + 3456)/3456 ≤ (264 + 1600 × 1601 + 3456)/3456 = 7429.

Therefore, the total time complexity of the quantum collision attack on 6-round
SHA3-256 is

1 · (π/4) ·
√

(742 × 2
206

)/S = 2
104.25/

√
S.

9 More auxiliary qubits may be required for intermediate variables (e.g., in greedy
algorithm and Gaussian-Jordan elimination) in C1. Those variables are of the state
size multiplied by a constant. As the worst case of Gaussian-Jordan elimination is
considered and C2 also contains intermediate variables, this evaluation is reasonable.

670 J. Guo et al.

Comparing to the generic attack cost under the time-space metric which is 2128/S,
our quantum collision attack is valid as long as S ≤ 247.5.

Remark 5. In the quantum search, we should prepare 2206 messages which brings
to the concern that whether it’s possible to construct so many connectors. This
concern could be answered through introducing multi-blocks. The first block
(which is identical for the two messages) provides distinct capacity bits at each
time which are used to construct different connectors of the same connecting
trails. We can try as many as 2512 first blocks which are sufficient for the attack.

4.4 Quantum Collision Attack Against 6-Round SHA3-224

As shown in Fig. 8, the 6-round trail of SHA3-224 (which is listed in Table 6
of supplementary material B) is comprised of the same colliding trail used in
attacks on SHAKE128 and SHA3-256 and a 2-round connecting trail searched with
the SAT-based tool. In our experiment, the 2-round connectors are averagely
constructed in 3 s. The size of the solution space is 222. Example of a pair of
messages that follow the connector is given in Table 12 of supplementary material
B. The 2-round connector solves 240 out of the 268 conditions imposed by the
(β1,α2) differential. Therefore, the classical complexity of the brute-force phase
is 228+113+24+20+8 = 2193 6-round SHA3-224 computations. Similar to the attack
on SHA3-256, we mount 6-round quantum collision attack on SHA3-224. Likewise,
we adopt the strategy utilized in [HS21]. Suppose we have a quantum computer
of size S, the complexity of our attack is

1 · (π/4) ·
√

(((268 + 1600 × 1601 + 3424)/3424) × 2
193

)/S = 2
97.75/

√
S.

under the time-space metric 2112/S, and the quantum collision attack is faster
than the generic attack when S ≤ 228.5.

Fig. 8. The 6-round collision attack model for SHA3-224

5 Conclusion

We investigate the previous collision attacks on SHA-3, identify the limitations
of ideas, methods, and techniques employed in those attacks, and summarize
directions that can be improved to mount collision attacks on SHA-3 that cover
more rounds. Briefly, if the colliding trails that cover more rounds and connecting
trails that promise more degree of freedom in constructing connectors are gener-
ated, the collision attacks are most likely to be improved. The major challenge

Exploring SAT for Cryptanalysis 671

lies in the fact that differential trails of Keccak-f permutation are difficult to
search as the large state size results in a search space that is too enormous to
be covered effectively. Luckily, we observe that the automatic search tool, i.e.,
the SAT solver performs extraordinarily well in modeling the differential prop-
agation of Keccak-f . In this work, a powerful SAT-based automatic search
toolkit is proposed to overcome the clarified challenges. We demonstrate that
the SAT-based trail search methods are applicable to all kind of analytic sce-
narios where trails are involved. With the SAT-based toolkit, advanced collision
attacks on SHA-3 instances are presented. Totally, a 6-round collision attack on
SHAKE128 of complexity 2123.5, a 6-round quantum collision attack on SHA3-256
of complexity 2104.25/

√
S, and a 6-round quantum collision attack on SHA3-224 of

complexity 297.75/
√

S are proposed. It’s not only that the 6-round classical and
quantum collision attacks are introduced for the first time but also shows that
quantum collision attack is able to cover more rounds or targets than classical
collision attacks.

Acknowledgements. This research is partially supported by Nanyang Technologi-
cal University in Singapore under Start-up Grant 04INS000397C230, and Ministry of
Education in Singapore under Grants RG91/20 and MOE2019-T2-1-060. Ling Song
is supported by the National Natural Science Foundation of China (Grants 62022036,
62132008).

References

[AMG+16] Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck,
J.: Estimating the cost of generic quantum pre-image attacks on SHA-2
and SHA-3. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 317–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69453-5_18

[BDPVA07] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions.
In: ECRYPT Hash Workshop, vol. 2007. Citeseer (2007)

[BDPVA13] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
313–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9_19

[Ber10] Bernstein, D.J.: Second preimages for 6 (7?(8??)) rounds of keccak. NIST
mailing list (2010)

[BGLP] Bao, Z., Guo, J., Li, S., Pham, P.: Quantum multi-collision distinguishers
(2020)

[BHT98] Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and
claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998.
LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0054319

[BPVA+11] Bertoni, G., Peeters, M., Van Assche, G., et al. The keccak reference
(2011)

[CKMS14] Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.K.: 1st and 2nd
Preimage Attacks on 7, 8 and 9 Rounds of Keccak-224,256,384,512. SHA-3
workshop, August 2014

https://doi.org/10.1007/978-3-319-69453-5_18
https://doi.org/10.1007/978-3-319-69453-5_18
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319

672 J. Guo et al.

[CNPS17] Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quan-
tum collision search algorithm and implications on symmetric cryptog-
raphy. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 211–240. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70697-9_8

[DDS12] Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and
keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
442–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
34047-5_25

[DDS13] Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds
of SHA-3 using generalized internal differentials. In: Moriai, S. (ed.) FSE
2013. LNCS, vol. 8424, pp. 219–240. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43933-3_12

[DDS14] Dinur, I.: Dunkelman, orr, shamir, adi: improved practical attacks on
round-reduced keccak. J. Cryptol. 27(2), 183–209 (2014)

[DSS+20] Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum aHashing
with Low Quantum Random Access Memories. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 727–757. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3_25

[DVA12] Daemen, Joan, Van Assche, Gilles: Differential propagation analysis of
Keccak. In: Canteaut, Anne (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-
5_24

[Dwo15] Dworkin, M.J.: SHA-3 standard: Permutation-based hash and extendable-
output functions (2015)

[GJMG11] Guido, B., Joan, D., Michaël, P., Gilles, V.A.: Cryptographic sponge func-
tions (2011)

[GLL+20] Guo, J.: Liao, Guohong, Liu, Guozhen, Liu, Meicheng, Qiao, Kexin, Song,
Ling: Practical collision attacks against round-reduced sha-3. J. Cryptol.
33(1), 228–270 (2020)

[GLS16] Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanal-
ysis of round-reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10031, pp. 249–274. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6_9

[GLST22] Guo, J., Liu, G., Song, L., Tu, Y.: Exploring SAT for cryptanalysis:
(Quantum) collision attacks against 6-Round SHA-3 (Full Version) (2022).
https://eprint.iacr.org/2022/184

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, pp. 212–219 (1996)

[HJ12] Han, C.-S., Jiang, J.-H.R.: When Boolean satisfiability meets gaussian
elimination in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.)
CAV 2012. LNCS, vol. 7358, pp. 410–426. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7_31

[HLY21] He, L., Lin, X., Hongbo, Yu.: Improved preimage attacks on 4-round
keccak-224/256. IACR Trans. Symmetric Cryptol. 2021(1), 217–238
(2021)

[HS20] Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum com-
puters by using differential trails with smaller probability than birthday
bound. In: Advances Cryptology-EUROCRYPT, vol. 249, p. 12106 (2020)

https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-030-64834-3_25
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-642-34047-5_24
https://doi.org/10.1007/978-3-662-53887-6_9
https://eprint.iacr.org/2022/184
https://doi.org/10.1007/978-3-642-31424-7_31

Exploring SAT for Cryptanalysis 673

[HS21] Hosoyamada, A., Sasaki, Y.: Quantum collision attacks on reduced sha-
256 and sha-512. IACR Cryptol. ePrint Arch. 292 (2021)

[LHY21] Lin, X., He, L., Hongbo, Y.: Improved preimage attacks on 3-round
KECCAK-224/256. IACR Trans. Symmetric Cryptol.2021(3), 84–101
(2021)

[LQT19] Liu, G., Qiu, W., Tu, T.: New techniques for searching differential trails
in keccak. IACR Trans. Symmet. Cryptol. 2019, 407–437 (2019)

[LS19] Ting Li and Yao Sun. Preimage attacks on round-reduced KECCAK-
224/256 via an allocating approach. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019–38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part
III, volume 11478 of LNCS, pages 556–584. Springer, 2019

[LSLW17] Li, T.: Sun, Yao, Liao, Maodong, Wang, Dingkang: Preimage attacks on
the round-reduced KECCAK with cross-linear structures. IACR Trans.
Symmetric Cryptol. 2017(4), 39–57 (2017)

[MDA17] Mella, S., Daemen, J.J.C., Van Assche, G.: New techniques for trail bounds
and application to differential trails in Keccak . IACR Trans. Symmet.
Cryptol. 2017(1), 329–357 (2017)

[MP13] Mouha, N., Preneel, B.: Towards finding optimal differential characteris-
tics for ARX: application to salsa20. Cryptology ePrint Archive, Report
2013/328 (2013). https://eprint.iacr.org/2013/328

[MPS13] Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of
round-reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 241–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43933-3_13

[MS13] Morawiecki, P.: Srebrny, Marian: a sat-based preimage analysis of reduced
Keccak hash functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)

[NRM11] Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-
round Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT
2011. LNCS, vol. 7107, pp. 236–254. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25578-6_18

[QSLG17] Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-
reduced keccak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 216–243. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7_8

[QUE19] SEPARATE DECISION QUEUE. Cadical at the sat race 2019. SAT
RACE 2019, p. 8 (2019)

[Raj19] Rajasree, M.S.: Cryptanalysis of round-reduced KECCAK using non-
linear structures. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT
2019. LNCS, vol. 11898, pp. 175–192. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-35423-7_9

[SBH+19] Soos, M., Biere, A., Heule, M., Jarvisalo, M., Suda, M.: Cryptominisat 5.6
with yalsat at the sat race 2019. In: Proceedings of SAT Race, pp. 14–15
(2019)

[SDG+20] Soos, M., Devriendt, J., Gocht, S.,. Shaw, A., Meel, K.S.: CryptoMiniSat
with CCAnr at the sat competition 2020. In: SAT Competition , p. 27
(2020)

[Sin05] Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality con-
straints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831.
Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73

https://eprint.iacr.org/2013/328
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/978-3-030-35423-7_9
https://doi.org/10.1007/11564751_73

674 J. Guo et al.

[SLG17] Song, L., Liao, G., Guo, J.: Non-full Sbox linearization: applications to
collision attacks on round-reduced Keccak. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0_15

[SNC09] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to crypto-
graphic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02777-2_24

[SNC10] Soos, M., Nohl, K., Castelluccia, K.: Cryptominisat, SAT Race solver
descriptions (2010)

[Soo14] Soos, M.: Cryptominisat v4. SAT Competition, p. 23 (2014)
[Soo16] Soos, M.: The CryptoMiniSat 5 set of solvers at sat competition 2016. In:

Proceedings of SAT Competition, p. 28 (2016)
[SSK+20] Soos, M., Selman, B., Kautz, H., Devriendt, J., Gocht, S.: CryptoMiniSat

with Walksat at the SAT competition 2020. In: SAT Competition 2020,
pp. 29 (2020)

[SWW18] Sun, L., Wang, W., Wang. M.: More accurate differential properties of
led64 and midori64. IACR Trans. Symmet. Cryptol. 2018, 93–123 (2018)

[SWW21] Sun, L., Wang, W., Wang, W.: Accelerating the search of differential and
linear characteristics with the sat method. IACR Trans. Symmet. Cryptol.
2021, 269–315 (2021)

[VOW94] Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with appli-
cation to hash functions and discrete logarithms. In: Proceedings of the
2nd ACM Conference on Computer and Communications Security, pp.
210–218 (1994)

https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24

	Exploring SAT for Cryptanalysis: (Quantum) Collision Attacks Against 6-Round SHA-3
	1 Introduction
	2 Overview of SAT-Based Collision Attacks Against SHA-3
	2.1 Limitations of Previous Collision Attacks
	2.2 SAT-based Automatic Trail Search Toolkit
	2.3 Improved (Quantum) Collision Attacks on SHA-3

	3 SHA-3 and SAT-based Automatic Search Toolkit
	3.1 Notations
	3.2 Description of SHA-3 Family
	3.3 SAT Implementation
	3.4 SAT-based Automatic Search Toolkit

	4 Collision Attacks Against SHA-3 Instances in Classical and Quantum Settings
	4.1 Basic Attack Strategy
	4.2 Collision Attack Against 6-Round SHAKE128
	4.3 Quantum Collision Attack Against 6-Round SHA3-256
	4.4 Quantum Collision Attack Against 6-Round SHA3-224

	5 Conclusion
	References

