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Preface

The 28th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2022) was held in Taiwan during December
5–9, 2022.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 364 submissions from all over the world, and the Program
Committee (PC) selected 98 papers for publication in the proceedings of the conference.
The two program chairs were supported by a PC consisting of 79 leading experts in
aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers). The strong conflict of interest rules imposed by IACR ensure
that papers are not handled by PC members with a close working relationship with the
authors. The two program chairs were not allowed to submit a paper, and PC members
were limited to two submissions each. Therewere approximately 331 external reviewers,
whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first-
round discussions the PC selected 224 submissions to proceed to the second round
and the authors were then invited to participate in an interactive rebuttal phase with
the reviewers to clarify questions and concerns. The second round involved extensive
discussions by the PC members.

Alongside the presentations of the accepted papers, the program of ASIACRYPT
2022 featured two invited talks by Jian Guo and Damien Stehlé. The conference also
featured a rump sessionwhich contained short presentations on the latest research results
of the field.

The four volumes of the conference proceedings contain the revised versions of the
98 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Using a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “Full Quantum Equivalence of Group
Action DLog and CDH, and More” by Hart Montgomery and Mark Zhandry, “Crypto-
graphic Primitives with Hinting Property” by Navid Alamati and Sikhar Patranabis, and
“SwiftEC: Shallue–van de Woestijne Indifferentiable Function to Elliptic Curves” by
Jorge Chavez-Saab, Francisco Rodriguez-Henriquez, and Mehdi Tibouchi. The authors
of all three papers were invited to submit extended versions of their manuscripts to the
Journal of Cryptology.

Many people have contributed to the success of ASIACRYPT 2022. We would like
to thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge and
expertise, and for the tremendous amount of work that was done with reading papers
and contributing to the discussions. We are greatly indebted to Kai-Min Chung and
Bo-Yin Yang, the General Chairs, for their efforts and overall organization. We thank
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Bart Preneel, Ron Steinfeld, Mehdi Tibouchi, Jian Guo, and Huaxiong Wang for their
valuable suggestions and help. We are extremely grateful to Shuaishuai Li for checking
all the files and for assembling the files for submission to Springer. We also thank
the team at Springer for handling the publication of these conference proceedings.

December 2022 Shweta Agrawal
Dongdai Lin
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New Algorithms and Analyses
for Sum-Preserving Encryption

Sarah Miracle(B) and Scott Yilek(B)

University of St. Thomas, St. Paul, USA
{sarah.miracle,syilek}@stthomas.edu

Abstract. We continue the study of sum-preserving encryption
schemes, in which the plaintext and ciphertext are both integer vectors
with the same sum. Such encryption schemes were recently constructed
and analyzed by Tajik, Gunasekaran, Dutta, Ellia, Bobba, Rosulek,
Wright, and Feng (NDSS 2019) in the context of image encryption. Our
first main result is to prove a mixing-time bound for the construction
given by Tajik et al. using path coupling. We then provide new sum-
preserving encryption schemes by describing two practical ways to rank
and unrank the values involved in sum-preserving encryption, which can
then be combined with the rank-encipher-unrank technique from format-
preserving encryption. Finally, we compare the efficiency of the Tajik
et al. construction and our new ranking constructions based on perfor-
mance tests we conducted on prototype implementations.

Keywords: Sum-preserving encryption · Image encryption ·
Format-preserving encryption

1 Introduction

A sum-preserving encryption scheme, recently studied by Tajik, Gunasekaran,
Dutta, Ellis, Bobba, Rosulek, Wright, and Feng [18] in the context of image
encryption, is a symmetric encryption scheme with an encryption algorithm
that takes as its plaintext input a vector of integers, and outputs as a cipher-
text another vector of integers with the same sum as the plaintext vector. For
applications, the vector components of both the plaintext and ciphertext will
typically be integers from 0 up to d, where d is called the component bound.

Tajik et al. introduced definitions and provided a practical construction
of sum-preserving encryption in order to build a separate primitive called
thumbnail-preserving encryption [12,20], which is a type of image encryption
in which a much smaller version, called a thumbnail, of an encrypted image
matches the thumbnail of the unencrypted image. The key idea is that, since
sum-preserving encryption turns the plaintext vector of integers into a cipher-
text vector with the same length and the same sum, then the mean will also
be preserved. Creating a thumbnail of an image involves replacing a b × b block
of pixels with the average pixel value in the block, so it follows that applying
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13793, pp. 3–31, 2022.
https://doi.org/10.1007/978-3-031-22969-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22969-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-22969-5_1
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sum-preserving encryption to each block will result in a ciphertext image with
the same thumbnail as the original image.

Sum-preserving encryption can be viewed as a special type of format-
preserving encryption (FPE). Format-preserving encryption schemes were orig-
inally studied by Brightwell and Smith [4] and were eventually formally defined
and analyzed by Bellare, Ristenpart, Rogaway, and Stegers [2]. They have since
been widely studied, have found numerous applications, and have even been
standardized [6,10]. Looking forward, one of the main techniques for construct-
ing FPE schemes, the rank-encipher-unrank construction analyzed in [2], will be
an important tool for constructing sum-preserving encryption schemes.

While Tajik et al. focused on the use of sum-preserving encryption in the
context of images, the fact that the primitive allows one to encrypt a vector
of data while maintaining a common statistical measure like mean opens up
the possibility of numerous applications for more general dataset encryption.
For example, suppose an instructor would like to encrypt her final exam scores
each semester before archiving them (which might be especially important given
student privacy laws like FERPA in the United States), yet she would still like
to be able to go back and compute exam averages to compare different course
sections or compare across semesters. Sum-preserving encryption seems to fit
the instructor’s requirements perfectly.

At the same time, as we will discuss later when introducing security notions,
there is the possibility that the sum or mean themselves leak important infor-
mation about the plaintexts. To see this, consider the extreme example in which
the same instructor gave a particularly easy final exam one semester and every
student got a score of 100 out of 100. Encrypting a vector of all 100 s in a sum-
preserving way will just result in another vector of all 100 s, so every student’s
exam score would be revealed by the ciphertext! Nevertheless, while such extreme
examples are concerning and are somewhat reminiscent of some of the security
issues that arise with other property-preserving encryption schemes (e.g., order-
preserving encryption [3]), we emphasize that sum-preserving encryption has
already found practical application in the context of image encryption, and can
likely be used safely in a number of other application settings, some of which we
discuss later in the paper.

1.1 Previous Construction

In order to build thumbnail encryption schemes, Tajik et al. set their sights on
building a sum-preserving encryption scheme on vectors with values 0–255. Sup-
pose (m1, . . . ,mn) with sum S is such a vector. With the obvious connection to
format-preserving encryption, they first explore using rank-encipher-unrank, one
of the common techniques for building FPE schemes, for sum-preserving encryp-
tion. With rank-encipher-unrank, plaintexts are first ranked, meaning mapped
to the set of integers {0, . . . , N − 1}, where N is the number of possible plain-
texts. Then a cipher with integer domain is applied to get another integer in
this same range, before finally an unrank algorithm maps that integer back into
the original plaintext domain. Tajik et al. observe that it should be technically



New Algorithms and Analyses for Sum-Preserving Encryption 5

possible to apply rank-encipher-unrank to sum-preserving encryption by first
representing the plaintext vector using the stars-and-bars representation from
combinatorics to get a vector 1m101m20 . . . 01mn , where each component of the
plaintext vector is given in unary with 0 s as separators. Such binary strings,
with S total 1 s (since S is the sum we wish to preserve), are a regular language,
and thus known techniques for ranking deterministic finite automata (DFAs)
could be applied [2]. Unfortunately, Tajik et al. point out such a method would
have very high time complexity and would be impractical for applications.

Tajik et al. then show that, while ranking vectors of length n with a particular
sum in general seems hard, it is actually possible to rank vectors of length 2
with a particular sum simply and efficiently. Given this ability to rank (and
thus rank-encipher-unrank) vectors of length 2, they go on to give a method to
encrypt longer vectors. The idea is to proceed in rounds and, in each round,
match up adjacent vector components and apply rank-encipher-unrank to each
pair. Since each pair is enciphered in a sum-preserving way, the entire vector
will also maintain its sum. Then the entire vector is shuffled before the next
round, effectively randomizing the points that will be matched up in the next
round. Because each round matches up points and then applies rank-encipher-
unrank to each matched pair, we refer to this algorithm as the matching-based
construction for the rest of the paper.

Tajik et al. observe their algorithm can be modeled as a Markov chain and the
number of necessary rounds to achieve security is then tied to the mixing time
of this chain. They discuss how the mixing time would relate to the eigenvalues
of the Markov chain transition matrix but, because such matrices are so large in
practice, were unable to explicitly compute these values. They go on to give some
heuristic arguments for what secure round choices might be, and ultimately test
performance with 1000, 3000, and 5000 rounds, but their paper does not provide
a mixing time proof for the matching-based construction.

1.2 Our Results

We continue the study of sum-preserving encryption and produce two main
results. First, we provide the first mixing-time proof of the matching-based
construction of Tajik et al., using a path-coupling technique due to Dyer and
Greenhill [7]. Second, we show it actually is possible (and practical) to use rank-
encipher-unrank to build sum-preserving encryption for vectors of length n by
giving new algorithms for directly ranking and unranking such vectors. Further,
we create prototype implementations of both the matching-based construction
of Tajik et al. and our new ranking constructions, and show that our ranking
constructions have significant performance benefits in a number of applications,
including the thumbnail encryption application that was the original motivation
for sum-preserving encryption. We now discuss each of these contributions in
more detail.

Mixing-Time Proof of the Tajik et al. Construction. Our first con-
tribution is to formally analyze the matching-based construction given by
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Tajik et al. [18] and give a bound on the mixing time. We begin by framing
their algorithm as a Markov chain MS with state space the set of all vectors of
length n with component bound d and sum S. Next we prove that the mixing
time τMS

of their Markov chain MS satisfies τMS
(ε) ≤ n ln(min(dn, 2S)ε−1).

Our proof uses a path coupling technique due to Dyer and Greenhill [7]. To
apply path coupling, we carefully select a custom distance metric and design a
coupling. Path coupling allows us to only consider a subset of pairs of config-
urations namely those that differ on only two points and show that using our
coupling the expected distance between two configurations will decrease after a
single step of MS . If the shuffling selected by MS pairs the two points that differ
together the distance decreases to zero. However if these points are not paired
together the situation is much more complex and requires a detailed coupling
and careful analysis. Much of the complexity comes because the two chains will
often have a different number of possible valid next configurations (since the
pairs of points have different sums) and thus each individual configuration is
selected with a different probability in each chain. The complete proof is given
in Sect. 3.

New Algorithms for Ranking/Unranking Sum-Preserving Vectors.
Second, we give algorithms for directly ranking and unranking sum-preserving
vectors based on two different total orders. The first is the standard lexicographi-
cal order. Stein [17] previously described an algorithm for unranking such vectors
using lexicographical order, for use in random sampling. Their algorithm relies
on pre-computing a table Cd where position (n, S) stores the number of vectors
of length n with sum S and component bound d. We improve on this algorithm
by using a cumulative sum table where each position (i, j) stores

∑n
k=i Cd(k, j).

Additionally we give a dynamic programming based justification for the compu-
tations required to fill the table (Sect. 4.3). Finally, in Sect. 4.1 we give a ranking
algorithm which also uses the cumulative sum table.

In order to handle applications with larger parameters d and n, we develop a
second set of rank and unrank algorithms based on a new total ordering we call
recursive block order. While recursive block order uses ideas that are reminiscent
to those used in orderings of monomials, specifically block order (see e.g., [8]) and
graded order (see e.g. [5]), these are combined differently and applied recursively
unlike in monomial orderings. At a high-level, in recursive block order configu-
rations are first ordered based on the sum of the first n/2 points. Configurations
with smaller “first-half” sums have lower rank. Configurations with the same
“first-half” sum are then ordered recursively according to the first n/2 points
or, if these are identical, the last n/2 points. We formally define this order, give
both rank and unrank algorithms, and go over an example in Sects. 4.2 and 4.5.

One of the main advantages of recursive block order is that it requires fewer
rows of the C table to be computed and stored. Specifically it only requires at
most 2 log n rows (and only log n if n is a power of 2). However, the dynamic
programming approach to filling the C table does not allow us to take advantage
of this and requires all n rows be computed. To address this, we present an
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alternative way to compute only the values needed from the C table using well-
known formulas derived from generating functions (see e.g. [1,15]).

Performance Comparison. We created prototype implementations of both
the Tajik et al. matching-based construction and our two ranking-base construc-
tions and ran a number of performance tests for a variety of applications with a
wide range of parameter choices for the vector length n and component bound
d. In short, we found that for a number of applications, including the thumbnail
encryption application that originally motivated sum-preserving encryption, our
new ranking-based constructions are significantly more efficient, even when the
matching-based construction is used with round numbers well below the bounds
we prove in Sect. 3. The matching-based construction appears to be the superior
choice when n is small but d is large (e.g., n = 30 and d = 100000). When n
is very large, in the thousands or higher, then neither the matching-based con-
struction nor our ranking constructions perform well, and new approaches are
likely needed. We discuss these and other details of our performance analysis in
Sect. 5.

2 Background on Sum-Preserving Encryption

In this section we define what a sum-preserving encryption scheme is, discuss
security goals, describe some example applications, and give details on previous
constructions. We note that much of this section closely follows the work of Tajik
et al. [18].

2.1 Syntax

We now give a formal definition of a sum-preserving encryption scheme. Let
n ≥ 1 be an integer called the vector length, and d > 0 be an integer called
the component bound. A d-bounded vector of length n is a vector of integers
(x1, . . . , xn) with 0 ≤ xi ≤ d. We denote by (Zd+1)n the set of all d-bounded
vectors of length n. A sum-preserving encryption scheme for (Zd+1)n is a pair
of algorithms (Enc,Dec) with the following properties.

– The (deterministic) encryption algorithm Enc : K × {0, 1}∗ × (Zd+1)n →
(Zd+1)n takes as input a key K ∈ K, a nonce T ∈ {0, 1}∗, and message
M ∈ (Zd+1)n, and outputs a ciphertext C ∈ (Zd+1)n which is also a d-
bounded vector of length n. Importantly, the encryption algorithm must be
sum-preserving, which means for all keys K ∈ K, all nonces T ∈ {0, 1}∗, and
all messages M ∈ (Zd+1)n, it is true that

∑
M =

∑
Enc(K,T,M), meaning

the sum of the message vector components
∑

M =
∑n

i=1 mi must be equal
to the sum of the ciphertext components

∑
Enc(K,T,M) =

∑n
i=1 ci, where

Enc(K,T,M) = (c1, . . . , cn).
– The decryption algorithm Dec : K × {0, 1}∗ × (Zd+1)n → (Zd+1)n takes as

input a key K ∈ K, a nonce T ∈ {0, 1}∗, and ciphertext C ∈ (Zd+1)n and
outputs a message vector M ∈ (Zd+1)n.
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For correctness we require that for all K ∈ K, all T ∈ {0, 1}∗, and all M ∈
(Zd+1)n, it must be the case that Dec(K,T,Enc(K,T,M)) = M .

Connection to bounded integer compositions. We note that d-bounded vectors of
length n with the sum of vector components equal to an integer S are also called
d-bounded (or restricted) n-part compositions of S or d-bounded n-compositions
of S. There has been much previous work studying restricted compositions. Much
of the previous work has surrounded the problems of enumerating all composi-
tions and counting the number of such compositions (see e.g., [1,13–15,19]). We
will use the terminology bounded n-composition throughout the paper.

2.2 Examples

To help better understand sum-preserving encryption, we now discuss some
example applications where it has either already been used or could potentially
be used. We will also revisit these same examples in Sect. 5 when we evaluate
our prototype implementations.

Example 1: Thumbnail-Preserving Image Encryption. Tajik et al. previously
used sum-preserving encryption to build a type of image encryption called
Thumbnail-preserving encryption, in which the thumbnail of an encrypted image
exactly matches the thumbnail of the unencrypted image. We can view image
data as a matrix of pixel values 0-255 with dimensions h×w×3, where each of the
three h×w matrices represents an RGB channel. Tajik et al. showed one can do
thumbnail-preserving encryption by taking m × m blocks and encrypting them
in a sum-preserving way. Then, when forming a thumbnail by replacing each
m × m block with a single pixel that is its average, the sum-preserving property
of encryption ensures the encrypted blocks have the same average as the unen-
crypted image blocks. Thus, to use this construction we need sum-preserving
encryption for vectors of length n = m ·m, the total number of pixels in a block,
and component bound d = 255, the maximum value of a pixel.

Example 2: Exam Scores. Suppose an instructor has a class with 300 students,
and vector of final exam scores which are each integers 0–100. The instructor
may want to encrypt this vector of scores in a way that the exam average can
be calculated from the encrypted vector alone. In this case we can use sum-
preserving encryption with vector length n = 300 and component bound d = 100.

Example 3: Employee Salaries. A small company with 30 employees wants to
encrypt a vector of employee salaries, which are integers between 30,000 and
100,000, in a way such that the average salary can be computed from the
encrypted salary vector. In this case we potentially have a few options for using
sum-preserving encryption. We could set n = 30, and d = 100000; in this case
the encrypted salaries will range from 0 to 100000, so we could get encrypted
salaries below the lowest actual salary of 30,000, and the top salary of 100,000
will also potentially be revealed by the vector, since no value will be above that.
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Due to this latter issue, the encryptor might instead choose to use a larger choice
of d. But, as we will discuss later in the implementation section, choosing a larger
d in this example could have significant performance consequences.

Example 4: Rating Dataset. Suppose a website has 5,000 user ratings, each
integers that are 0 to 4 stars. The website might want to encrypt this dataset
in a way that allows the average rating to still be computed. Sum-preserving
encryption with n = 5000 and d = 4 could be used.

We note that for some example applications, there may be possible solutions
other than using sum-preserving encryption. For example, one could encrypt the
data using a standard symmetric encryption scheme, and then simply append
the sum or mean of the original data to the ciphertext. However, sum-preserving
encryption has the benefit of also maintaining the format of the original mes-
sage, so it may be the superior solution when it is necessary, or even just more
convenient, for ciphertexts to still be d-bounded vectors.

2.3 Security Notions

Like previous work on format-preserving encryption and sum-preserving encryp-
tion, we aim to build sum-preserving encryption schemes that are indistin-
guishable from randomly chosen sum-preserving permutations on the same
domains. Formally, let Enc : K × {0, 1}∗ × (Zd+1)n → (Zd+1)n be a sum-
preserving encryption algorithm on d-bounded vectors of length n and let
Dec : K × {0, 1}∗ × (Zd+1)n → (Zd+1)n be the corresponding decryption algo-
rithm. To define PRP security, we say the prp-advantage of an adversary A
is

Advprp
Enc(A) = Pr

[
AEncK(·,·) ⇒ 1

]
− Pr

[
Aπ(·,·) ⇒ 1

]
.

The adversary is given access to either an encryption oracle that takes as input
a nonce and a message vector, or a randomly chosen family of permutations
π : {0, 1}∗ × (Zd+1)n → (Zd+1)n. We can also target a stronger security notion,
strong PRP security, if we additionally give the adversary either a decryption
oracle or an inverse permutation family π−1. The previous work of Tajik et
al. on sum-preserving encryption further restricted the definition above to only
consider adversaries that never repeat a nonce input to their oracles. They called
such adversaries nonce respecting (NR), and argued that this security notion is
meaningful for applications. Following Tajik et al., we will primarily focus on
security against NR adversaries, but will also discuss how to achieve the stronger
notions and the corresponding effects on performance.

Discussion. It is important to note there are inherent limitations in the security
we can achieve with sum-preserving encryption, even when achieving the security
notions just described. To see this, consider the exam score application described
above. If the exam is particularly easy and all 300 students achieve a score of
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100/100, then the resulting message vector with 100 repeated 300 times will
encrypt to exactly the same vector and end up revealing every student’s score. In
other applications, this may not be as problematic. For example, in the thumbnail
encryption example, a large block of white pixels will all have the maximum pixel
value of 255 and thus encrypt to another block of all white pixels. Yet if our goal
is to use such image encryption to hide details of the image like facial features,
then a large block of pixels staying the same color does not seem so damaging.

2.4 Previous Constructions

After defining sum-preserving encryption, Tajik et al. observe that one option
for constructing such schemes would be to use the rank-encipher-unrank con-
struction of [2], which is one of the common ways of building format-preserving
encryption schemes. We say that a set X has an efficient ranking if there is an
efficient algorithm rank : X → {0, . . . , |X | − 1} mapping elements of the set to
integers, and then an efficient inverse function unrank mapping integers back
into the set X . The idea behind rank-encipher-unrank is, given a point x ∈ X to
encipher, one can first rank x to get an integer nx in the range {0, . . . , |X | − 1}.
Then one applies a cipher that works on that integer domain to get another
integer ny in the same domain. Finally, applying unrank to ny yields another
point y ∈ X , which acts as the ciphertext.

Algorithms for ranking based on the DFA representation of a language are
known [2], so Tajik et al. observe it is technically possible to use this paradigm
for constructing sum-preserving encryption. The key idea is to use the stars-and-
bars representation of the message space: the individual elements of the vector
to encrypt are represented in unary and the symbol 0 can be used as a separator
between these unary sequences, so the vector (3, 1, 2) would be 11101011. It is
easy to come up with a regular expression for such binary strings, and from there
a DFA to be used in ranking. Unfortunately, Tajik et al. argue this would be far
too computationally expensive to be useful.

Tajik et al. then observe that, while ranking vectors of length n with a par-
ticular sum in general would be too computationally expensive, it is actually
straightforward to rank vectors of length 2. Let (a, b) ∈ {0, . . . , d}2 have sum
S = a + b. Then rank((a, b)) = a if S ≤ d and d + 1 − a otherwise, and
unrank(t) = (t, S − t) if S ≤ d and (d + 1 − r, S − d − 1 + r) otherwise.

Given a way to rank and unrank vectors of size 2, Tajik et al. then give an
efficient construction for encrypting longer vectors while preserving their sum.
Their algorithm proceeds in rounds. In each round, match up all of the points
in the vector with their neighbor and, for each pair of neighbors, apply rank-
encipher-unrank using the ranking and unranking formulas for length-2 vectors
just described. As a result, each pair of neighboring points in the vector will be
replaced by a new pair with the same sum, and the overall sum of the vector
will be maintained. The points of the vector are then randomly shuffled between
rounds (e.g., with the Knuth shuffle) so that the next round finds new neighbor-
ing points matched up.
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3 Analyzing the Matching-based Approach of Tajik et al.

In this section we formally analyze the matching-based construction given by
Tajik et al. [18] and described in Sect. 2.4. We begin by framing the algorithm
formally as a Markov chain MS (Sect. 3.1) and then use Markov chain analysis
techniques to bound the mixing time (Sects. 3.2 and 3.3). Finally in Sect. 3.4 we
apply our bound to each example application given in Sect. 2.2.

We begin by formally defining the mixing time. The time a Markov chain
M takes to converge to its stationary distribution μ is measured in terms of the
distance between μ and Pt, the distribution at time t. Let Pt(x, y) be the t-step
transition probability and Ω be the state space. The mixing time of M is

τM(ε) = min{t : ||Pt′ − μ|| ≤ ε,∀t′ ≥ t},

where ||Pt−μ|| = maxx∈Ω
1
2

∑
y∈Ω |Pt(x, y)−μ(y)| is the total variation distance

at time t.

3.1 The Sum-Preserving Markov Chain MS

Let the state space ΩS,d,n = Ω be the set of all d-bounded n-compositions of
S. Specifically, given a configuration x, each point x(i) for 1 ≤ i ≤ n satisfies
0 ≤ x(i) ≤ d and the sum of the points satisfies

∑n
i=1 x(i) = S. We analyze the

following Markov chain which is equivalent to the construction given by Tajik
et al. [18].

The Sum-Preserving Shuffle Markov chain MS

Starting at any valid configuration x0 ∈ Ω, iterate the following:

– At time t, choose a random shuffling R on all points uniformly at random
(u.a.r.).

– Pair adjacent points in R to create a perfect matching M.
– Independently, for each matched pair of points (pi, pj) ∈ M select values

for xt+1(pi) and xt+1(pj) u.a.r. from all valid choices that preserve the sum.
Namely, all choices that satisfy xt(pi)+xt(pj) = xt+1(pi)+xt+1(pj), xt+1(i) ≤
d, and xt+1(j) ≤ d.

Next we show that this Markov chain is irreducible (i.e. the state space Ω is
connected) and thus has a unique stationary distribution (see e.g., [11]) and
that the stationary distribution is uniform.

Lemma 1. The Markov chain MS is irreducible and has the uniform distribu-
tion on ΩS,d,n as its unique stationary distribution.

Proof. We will prove that MS is irreducible by defining a distance metric φ and
showing that there is always a move of MS that decreases the distance between
any two configurations. By repeatedly decreasing the distance it is thus possible
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to create a path between any two valid configurations. Define the distance φ
between two configurations x and y as follows.

φ(x, y) =
n∑

i=1

|x(i) − y(i)|. (1)

We claim there is always a valid transition of MS that will decrease the distance
between x and y. Select a point p+ which is larger in x than in y (i.e. x(p+) >
y(p+)) and a point p− that is smaller in x than in y. This is always possible
since x �= y and the sum of the points in x is the same as the sum of the points
in y. Next, decrease p+ by 1, increase p− by 1, and leave other points the same
in x. This creates a valid configuration x′ such that φ(x′, y) < φ(x, y) and (x, x′)
is a valid transition of MS . To see that this is a valid transition in MS select a
shuffling where these points are adjacent, it is clear there is a valid selection for
each pair of matched points that gives the desired transition.

Next, we will show that for all x, y ∈ Ω,P (x, y) = P (y, x) and thus by
detailed balance the uniform distribution must be the stationary distribution
(see e.g., [11]). Consider any x, y ∈ Ω. Let Tx,y be the set of all shufflings that
allow a transition from x to y (i.e. starting from x if one of these shufflings is
selected there is a way to select the values in the second step of the chain to
match y.) Note that if P (x, y) = 0 then Tx,y = ∅. It is clear that Ty,x = Tx,y

and for each shuffling t ∈ Tx,y each matched pair has the same sum in x as in y
implying that both chains have the same valid choices in the last step of MS .
Thus the probability of moving from x to y if t is selected is the same in both
configurations and therefore P (x, y) = P (y, x). 
�

3.2 Bounding the Mixing Time of MS

In order to bound the mixing time of MS we will use the path coupling method
due to Dyer and Greenhill [7] which is an extension of the well-known coupling
method (see e.g., [9]). A coupling of Markov chains with transition matrix P is
a stochastic process (Xt, Yt)∞

t=0 on Ω × Ω such that Xt and Yt are both Markov
chains with stationary distribution P and if Xt = Yt, then Xt+1 = Yt+1. In other
words when viewed in isolation each of the chains X and Y simulate the original
chain and once they agree, they will always agree. Informally, the coupling time
is the time until the two chains agree. A common technique is to select an
appropriate coupling and then use the coupling time to bound the mixing of
time of the Markov chain. This is often done by defining a distance metric and
showing that in expectation the distance between any two arbitrary pairs of
configurations is decreasing. The path coupling technique, which common in
the Markov chain community, only requires considering pairs of states that are
close according to the selected distance metric. In our case we will again use the
Manhattan distance metric and will only need to consider pairs of states that
differ on exactly 2 points.

More formally, we will use the following path coupling theorem due to Dyer
and Greenhill [7].
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Theorem 1. Let φ be an integer valued metric defined on Ω × Ω which takes
values in {0, ..., B}. Let U be a subset of Ω ×Ω such that for all (xt, yt) ∈ Ω ×Ω
there exists a path xt = z0, z1, ..., zr = yt between xt and yt such that (zi, zi+1) ∈
U for 0 ≤ i < r and

∑r−1
i=0 φ(zi, zi+1) = φ(xt, yt). Let M be a Markov chain

on Ω with transition matrix P . Consider any random function f : Ω → Ω such
that Pr[f(x) = y] = P (x, y) for all x, y ∈ Ω, and define a coupling of the Markov
chain by (xt, yt) → (xt+1, yt+1) = (f(xt), f(yt)). If there exists β < 1 such that
E[φ(xt+1, yt+1)] ≤ βφ(xt, yt), for all (xt, yt) ∈ U , then the mixing time of M
satisfies

τ(ε) ≤ ln(Bε−1)
1 − β

.

To apply the theorem, we will present a coupling and show that the expected
distance between any pair of configurations that differ by exactly two points
decreases by at least β after each step of the Markov chain (for an appropriately
choosen β). Note that here B is the maximum distance between two configura-
tions using the selected distance metric.

Next, we prove the following theorem giving an upper bound on the mixing
time of MS . Note that the mixing time (defined at the beginning of Sect. 3)
bounds the number of steps of MS needed and does not include the time to
implement each step. We believe our bound can be improved.

Theorem 2. Let n be the vector length, d the component bound, and S be the
fixed sum. Given these definition, the mixing time τMS

(ε) of the sum-preserving
Markov chain MS on state space Ωn,d,S satisfies

τMS
(ε) ≤ n ln(min(dn, 2S)ε−1).

Proof. In order to apply Theorem 1 we begin by formally defining φ, U, and
then bound B and β. As before, we define the distance φ(x, y) as in Eq. 1 as the
L1 norm (the Manhattan distance). Let U be the set of configurations x and y
which differ on exactly 2 points. Next, we will show that for all (x, y) ∈ Ω × Ω
there exists a path x = z0, z1, ..., zr = y between x and y such that (zi, zi+1) ∈ U

for 0 ≤ i < r and
∑r−1

i=0 φ(zi, zi+1) = φ(x, y).
Consider the path between any true arbitrary configurations given above in

the proof that MS is irreducible (Lemma 1). We claim this path satisfies the
conditions. Given a configuration zi to determine the next step in the path zi+1

two points p+ and p− are chosen where zi(p+) > y(p+) and zi(p−) < y(p−). A
shuffling is selected where these points are paired together and these are the only
two points that are modified. Namely, zi+1(p+) = zi(p+)−1, zi+1(p−) = zi(p−)−
1, and for all other points p, zi(p) = zi+1(p). It is thus clear that (zi, zi+1) ∈ U.
It is easily seen that for 0 ≤ i < r, φ(zi, zi+1) = 2 and φ(zi−1, y) = φ(zi, y) − 2
and thus the second distance requirement is satisfied.

To bound the maximum distance B recall that S is the sum over all points
S =

∑n
i=1 x(i). Since each point can contribute at most d to φ and there are n

points, B satisfies
B ≤ min(dn, 2S).
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In our coupling we will use the same shuffling in both x and y. If the two
points that differ get paired together in the shuffling then the valid choices for
all paired points are identical in both x and y, our coupling will choose the same
configurations in both chains, and the distance will decrease to 0. This happens
with probability 1/(n − 1) > 1/n. Otherwise, both of the two points that differ
between x and y will get paired with points that are the same in both x and y.
For all other pairs that do not include these points, our coupling will make the
same choice in both x and y. We will prove in Lemma 2 that no matter what
values the 2 points that differ have, there is a way to couple them so that the
distance never increases. Thus we have

E[φ(xt+1, yt+1)] ≤
(

1
n

)

· 0 +
(

n − 1
n

)

· φ(xt, yt) =
(

n − 1
n

)

· φ(xt, yt).

Letting β = n−1
n , B ≤ min(dn, 2S), and applying Theorem 1 gives

τMS
(ε) ≤ n ln(min(dn, 2S)ε−1).


�

3.3 Proof of Lemma 2 Coupling Two Points

It remains to show we can construct a coupling of any two points with different
values where the expected change in distance is zero. We will prove the following
lemma.

Lemma 2. Given two arbitrary points i and j with xt(i) = yt(i) and xt(j) �=
yt(j), there exists a coupling such that

|xt(j) − yt(j)| ≥ |xt+1(i) − yt+1(i)| + |xt+1(j) − yt+1(j)|.

Proof. Recall that for two points i and j with xt(i) + xt(j) = Sx, the values
xt+1(i), xt+1(j) are chosen uniformly from all possible choices with xt+1(i) +
xt+1(j) = Sx, xt+1(i) ≤ d, and xt+1(j) ≤ d. For example, if Sx = 4 and
d = 3 the options are (1, 3), (2, 2), (3, 1) and each is selected with probability
1/3. Since xt(j) �= yt(j), the two chains will often have a different number of
possible choices (see Fig. 1) and thus each individual configuration is selected
with a different probability in each chain.

We begin by creating an ordering of the possible choices for (xt+1(i), xt+1(j))
(and similarly for (yt+1(i), yt+1(j))) and then show how we will carefully pair
the choices to ensure that the distance never increases. This is especially difficult
because when the two chains have a different number of possible choices, one
configuration in x will needed to be paired with multiple configurations in y (or
vice versa). We can view the coupling as creating a weighted bipartite graph (as
shown in Fig. 1) where one partition is the possible choices in x and the other is
the choices in y. A valid coupling is a set of edges between the partitions where
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Fig. 1. The weighted bipartite graph visualizing the coupling for Sx = 3, Sy = 5, and
d = 5.

each edges is assigned a probability such that the sum of the edges adjacent to
each configuration is equal to the probability of that configuration.

We will order the choices by increasing value of xt+1(i) (or yt+1(i)) start-
ing from the lowest possible value (i.e. lexicographical order). For example, if
xt(i)+xt(j) = 3 there are 4 choices ordered (0, 3), (1, 2), (2, 1), (3, 0) and each has
probability 1/4. With configurations in this order, we will always couple a config-
uration in x to the lowest possible configuration in y while maintaining the cor-
rect probabilities. More specifically, let Sx = xt(i)+xt(j) and Sy = yt(i)+yt(j).
We will begin with the case that xt(i) + xt(j) <= d, yt(i) + yt(j) <= d, and
Sx < Sy = δ + Sx. We will handle the general case later. In this case, x has
Sx + 1 possible configurations ordered (0, Sx), (1, Sx − 1), . . . , (Sx, 0). Similarly,
y has Sy + 1 possible configurations ordered (0, Sy), (1, Sy − 1), . . . , (Sy, 0). We
start by pairing (adding an edge between) the lowest configurations (i.e.(0, Sx)
and (0, Sy)) with probability 1/(Sy +1). At this point, configuration (0, Sx) still
has probability 1/(Sx + 1) − 1/(Sy + 1) remaining. We will then pair it to the
next lowest configuration in y (i.e. (1, Sy − 1)) with the remaining probability
or 1/(Sy + 1) whichever is smaller. We will continue pairing (0, Sx + 1) with the
lowest configuration in y that has unused probability (i.e. it’s adjacent edges do
not add to 1/(Sy + 1)) until the edges assigned add to the correct probability
1/(Sx + 1). We then iterate through the remaining configurations in x (in the
ordering above) using the same algorithm. Specifically, pairing each with the
lowest configuration(s) in y that have remaining probability. For example, the
case xt(i) = yt(i) = 2, xt(j) = 1, and yt(j) = 4 is shown in Fig. 1.

It remains to show that using the coupling described above the distance will
never increase. Specifically we will show for each coupled pair (i.e. configurations
connected by an edge), the distance between those configurations is at most
δ = |xt(j) − yt(j)|. Let (i, Sx − i) for 0 ≤ i ≤ Sx be any valid configuration for
x. We want to show that given our coupling the edges leaving this configuration
only go to configurations in y at distance at most δ. Specifically we need to show
that all edges are to configurations in the range {(i, Sy −i), . . . , (i+δ, Sy −i−δ)}



16 S. Miracle and S. Yilek

(using the ordering defined above). Let Px(i, j) be the probability of all x points
in the range {(0, Sx), . . . , (i, j)} (and similarly define Py(i, j)). Recall that our
coupling will match a point in x to the lowest point(s) in y that have remaining
probability. Thus to show that (i, Sx − i) only gets mapped to points in the
appropriate range (i.e. the points in y at distance δ) we need to show that
the point in y just before that range (i − 1, Sy − i − 1) will have no remaining
probability and that (i, Sx−i) will not get matched to points after (i+δ, Sy−i−δ).
Specifically it suffices to prove the following.

Proposition 1.

1. For 0 < i ≤ Sx, Px(i − 1, Sx − i − 1) ≥ Py(i − 1, Sy − i − 1).
2. For 0 ≤ i < Sx, Px(i, Sx − i) ≤ Py(i + δ, Sy − i − δ).

Proof. Since there are Sx + 1 configurations for x and Sy + 1 = Sx + δ + 1
configurations for y we have the following

Px(i, j) =
i + 1

Sx + 1
, Py(i, j) =

i + 1
Sx + δ + 1

.

Given these definitions, it is straightforward to prove the proposition using basic
algebra. 
�

It remains to consider the more general case where either xt(i) + xt(j) > d or
yt(i)+yt(j) > d (or both). We will use the same coupling described above where
a configuration x is paired with the lowest configuration(s) in y with remaining
probability. Similar to what we did in the first case, for each valid configuration
for x we will map the configuration to two configurations in y. We will prove that
these two configurations and all configurations between them are at distance at
most δ. Then we will show that the x configuration will never get coupled to a
y configuration outside of this range.

Let nx be the number of valid x configurations and ny be the number of valid
y configurations. Without loss of generality, we will assume that nx ≤ ny. Let
(x1, x2) be the lowest configuration for x and (y1, y2) be the lowest configuration
for y. As before, if Sx ≤ d then x1 = 0, x2 = Sx and there are x2−x1+1 = Sx+1
configurations. However if Sx > d then x1 = d − nx, x2 = d and there are
x2−x1+1 = 2d−Sx+1 configurations (Sx−d, d), (d−Sx+1, d−1), . . . , (d, Sx−d).
We begin by proving that these initial configurations are at distance δ = |Sx−Sy|.

Lemma 3. Let δ = |Sx − Sy| be the initial distance between x and y. Assuming
nx ≤ ny and the possible configurations are ordered as described above we have.

1. The lowest configurations (x1, x2) and (y1, y2) as defined above satisfy.

φ((x1, x2), (y1, y2)) ≤ δ.

2. The highest configurations (x2, x1) and (y2, y1) as defined above satisfy.

φ((x2, x1), (y2, y1)) ≤ δ.
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3. For 0 < c ≤ x2 − x1, φ((x1 + c, x2 − c), (y1 + c, y2 − c)) ≤ δ.
4. For 0 < c ≤ x2 − x1, φ((x2 − c, x1 + c), (y2 − c, y1 + c)) ≤ δ.

Proof. Here we will consider four cases based on how Sx and Sy compare to d.
If both Sx, Sy ≤ d then (x1, x2) = (0, Sx) and (y1, y2) = (0, Sy). Here we have

|x1 − y1| + |x2 − y2| = |0 − 0| + |Sx − Sy| = δ.

Next, we will consider the case where exactly one of Sx, Sy is greater than d. If
Sx > d and Sy ≤ d. In this case (x1, x2) = (d − Sx, d) and (y1, y2) = (0, Sy).
Here we have

|x1 − y1| + |x2 − y2| = |Sx − d| + |d − Sy| = Sx − Sy = δ.

If instead Sy > d and Sx ≤ d the argument is identical. Finally if both Sx, Sy > d
we have (x1, x2) = (d − Sx, d) and (y1, y2) = (d − Sy, d). Here we have

|x1 − y1| + |x2 − y2| = |(Sx − d) − (Sy − d)| + |d − d| = |Sx − Sy| = δ.

It immediately follows that the final configurations (x2, x1) and (y2, y1) are
also at distance at most δ. Similarly it can easily be shown by the definition of
the L1 distance metric that third and fourth statements are true. 
�

To begin, if nx = ny then we will match each point (x1 + c, x2 − c) with
exactly one point (y1 + c, y2 − c) with weight 1/nx = 1/ny. By Lemma 3 these
points are distance at most δ and we are done.

Next, assume nx < ny and consider any general configuration for x,
(x1 + c, x2 − c). We will show that this configuration will only be matched with
configurations in between (and including) (y1 + c, y2 − c) and (y2 − (x2 − x1 −
c), y1 + (x2 − x1 − c)). By Lemma 3 parts 3 and 4, these configurations are both
at distance at most δ from (x1 + c, x2 − c). It also immediate follows that any
points between these are at distance at most d from (x1 + c, x2 − c).

Next we show that (x1+c, x2−c) will only be coupled to points in y between
and including (y1 + c, y2 − c) and (y2 − (x2 − x1 − c), y1 + (x2 − x1 − c)). Again
as in the first case to do this we need to show that (x1 + c, x2 − c) will never be
matched with anything below (y1 + c, y2 − c) or anything above (y2 − (x2 −x1 −
c), y1 + (x2 − x1 − c)). Specifically we prove the following.

1. For 0 < c ≤ x2 − x1, Px(x1 + c − 1, x2 − c + 1) > Py(y1 + c − 1, y2 − c + 1).
2. For 0 ≤ c < x2−x1, Px(x1+c, x2−c) ≤ Py(y2−(x2−x1−c), y1+(x2−x1−c)).

Recall that Px(x1 + c − 1, x2 − c + 1) is the probability of all configurations
for x up to and including (x1 + c − 1, x2 − c + 1). This includes c configurations
each with probability 1/nx and thus Px(x1 + c − 1, x2 − c + 1) = c/nx. Similarly
Py(y1 + c − 1, y2 − c + 1) = c/ny. Thus our first statement follows directly from
the fact that nx < ny.
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Using the fact that nx = x2 − x1 + 1 and ny = y2 − y1 + 1 we can prove the
second statement as follows.

c ≤ x2 − x1

c + 1 ≤ x2 − x1 + 1
c + 1 ≤ nx

(ny − nx)(c + 1) ≤ (ny − nx)nx

ny(c + 1) ≤ (ny − nx)nx + nx(c + 1)
(c + 1)/nx ≤ (ny − nx + c + 1)/ny

(c + 1)/nx ≤ (y2 − y1 − x2 + x1 + c + 1)/ny

Px(x1 + c, x2 − c) ≤ Py(y2 − (x2 − x1 − c), y1 + (x2 − x1 − c)).


�

3.4 Applying the Mixing Bound to Examples

Finally, we apply our upper bound on the mixing time (Theorem 2) to each
of the example applications given in Sect. 2.2. The results are given below in
Table 1. While our theorem gives the first formal proof bounding the mixing
time of MS that we are aware of, we expect that it is not a tight bound and
further improvements are possible. Thus, the number of rounds given in the table
while provably sufficient are likely more than needed.

Note that in our bound we have the term min(dn, 2S). Since we have not
specified a specific sum in any of the examples we used dn for the bounds in the
table. If the desired sum S satisfies S < dn/2 then our theorem could be used
to obtain a smaller upper bound.

Table 1. Our upper bound for the rounds needed in the matching-based algorithm of
Tajik et al.

Application ε = 10−10 ε = 2−80

10× 10 image block (n = 100, d = 255) 3,318 6,560
16× 16 image block (n = 256, d = 255) 8,733 17,034
32× 32 image block (n = 1024, d = 255) 36,351 69,555
Exam scores (n = 300, d = 100) 10,001 19,729
Salaries (n = 30, d = 100000) 1,139 2,111
Ratings (n = 5000, d = 4) 164,647 326,777
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4 Approaches Based on Ranking

In this section we describe algorithms for ranking and unranking d-bounded n-
compositions of S based on two different total orderings. The first is the standard
lexicographical order (Sect. 4.1) and the second is a new ordering we call recursive
block ordering (Sect. 4.2). Both orderings rely heavily on pre-computed informa-
tion which we describe in Sect. 4.3. Finally in Sects. 4.4 and 4.5 we describe the
unrank algorithms for both orderings.

4.1 Lexicographical Ranking

In this section, we will use the lexicographical ordering on d-bounded n-
compositions of S to generate a ranking. We will use the notation <L and >L to
refer to lexicographical order. Specifically let x, y ∈ ΩS,d,n be two arbitrary con-
figurations such that x �= y and let i be the smallest integer such that x(i) �= y(i).
If x(i) < y(i) then x <L y otherwise y >L x. For an example, see Fig. 2.

Fig. 2. The lexicographical ranking of configurations in ΩS,d,n = Ω6,3,3.

We begin by describing our ranking algorithm using the running example
S = 6, d = 3, and n = 3 shown in Fig. 2. To rank a configuration x according
to our ordering we start by determining how many configurations start with a
number strictly less than x(1). For example if x = (2, 3, 1) there are three such
configurations: (0, 3, 3), (1, 2, 3), and (1, 3, 2) (see Fig. 2). Next we determine the
position of (2, 3, 1) among configurations in Ω6,3,3 that start with 2. Since these
configurations all start with 2 the remaining sum must add to 6 − 2 = 4 and
there are 3 − 1 = 2 remaining points. Thus this is equivalent to determining
the rank of (3, 1) in Ω6−2,3,3−1 = Ω4,3,2 which is two. We then add the numbers
together to get 5, the rank of (2, 3, 1). More generally, let Cd(n, S) be the number
of n-compositions with sum S and component bound d and l-rankn,S(x) be the
lexicographical rank of x in ΩS,d,n. Given these definitions, we can define the
rank recursively as follows.
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Fig. 3. Lexicographic ranking algorithm with the cumulative sum table CUM.

l-rankn,S(x1, . . . , xn) =
{

0 if n = 1
∑

0≤i<x1
Cd(n − 1, S − i) + l-rankn−1,S−x1(x2, . . . , xn) if n > 1

It is straightforward to implement an algorithm for ranking given the definition
above and a pre-computed C table storing the needed values.

In order to improve the efficiency of our ranking algorithm we will actually
store the cumulative sum so position (i, j) in our table will store

∑n
k=i Cd(k, j).

Using this cumulative sum table CUM, we give a more efficient ranking algorithm
in Fig. 3. Note that the efficiency gain comes from not having to compute a sum
in each iteration of the for loop.

4.2 Recursive Block Ranking

Next, we give an alternative ranking algorithm based on a new total ordering
we call recursive block order. While recursive block order uses ideas that are
reminiscent to those used in orderings of monomials, specifically block order
(see e.g., [8]) and graded order (see e.g. [5]), these are combined differently and
applied recursively unlike in monomial orderings. We will use the notation <B

and >B to refer to recursive block order. Throughout this section we will assume
n is a power of two. We can fairly easily generalize our ordering and algorithms
to work when n is not a power of two and briefly describe the needed alterations
at the end of the section. Let x, y ∈ ΩS,d,n be two arbitrary configurations such
that x �= y. To compare x and y using recursive block order, we let xL be the
first n/2 points in x, and xR be the remaining points. Similarly define yL as the
first n/2 points in y and yL to be the remaining points. We begin by considering
the sum SxL

of the points in xL and similarly SyL
(the sum of the points in yL).
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If SxL
< SyL

then x <B y. Similarly, if SxL
> SyL

then x >B y. If the sums are
equal then we will apply our ordering recursively. Specifically, if xL �= yL then
x <B y if xL <B yL and x >B y if xL >B yL. Finally if xL is identical to yL

then x <B y if xR <B yR and x >B y if xR >B yR. As a base case, if n is 1
then there is only one configuration with rank 0. See Fig. 4 for an example of
recursive block order. We summarize these conditions in the table below.

SxL
< SyL

=⇒ x <B y (2)
SxL

> SyL
=⇒ x >B y (3)

SxL
= SyL

and xL <B yL =⇒ x <B y (4)
SxL

= SyL
and xL >B yL =⇒ x >B y (5)

SxL
= SyL

and xL = yL and xR <B xL =⇒ x <B y (6)
SxL

= SyL
and xL = yL and xR >B xL =⇒ x >B y (7)

Fig. 4. The recursive block ranking of some configurations in ΩS,d,n = Ω8,3,4.

Based on the above definition of recursive block order we will give a recursive
ranking algorithm. Again our algorithm will rely on pre-computed values stored
in the C table where Cd(n, S) is the number of n-compositions with sum S and
component bound d. Let b-rankn(x) be the recursive block rank of x in ΩSx,d,n.
In order to compute the rank of a configuration x we need to determine the
number of configurations y such that x >B y. Using the above definition of
recursive block order such configurations fit into three cases given by Eqs. 3, 5,
and 7 in the above table. Our algorithm will compute the number of configuration
for each case and add the three to determine the rank of x. Consider first the
case given by Eq. 3. Here, we need to compute the number of configurations y
that satisfy SxL

> SyL
. For each possible smaller sum SyL

(i.e. any sum less than
SxL

) we compute the number of configurations with this left sum. We do this by
using the C table to determine the number of choices for yL and multiplying by
the number of choices for yR. This is exactly

∑SxL
−1

s=0 C(n/2, s) · C(n/2, S − s).
The second case is given by Eq. 5, configurations with the same left sum but
yL <B xR. The number of such configurations yL is given by b-rankn/2(xL).
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Fig. 5. Recursive block ranking algorithm.

For each of these configurations there are C(n/2, SxR
) choices for yR. Thus the

total number of such configurations is b-rankn/2(xL) · C(n/2, SxR
). Finally the

last case corresponding to Eq. 7 is configurations with yL = xL and yR <B xR.
There are b-rankn/2(xR) such configurations. Combining these gives the following
recurrence for b-rankn(x) :

SxL
−1∑

s=0

C(n/2, s)·C(n/2, S−s)+b-rankn/2(xL)·C(n/2, SxR
)+b-rankn/2(xR) (8)

It is straightforward to design a recursive algorithm based on the above recur-
rence. Note that as a base case, if n = 1 then b-rank1(x) = 0 since there is
only one configuration. Based on this equation we give a recursive algorithm for
determining the recursive block rank in Fig. 5. A key advantage of this algorithm
is that it does not requirement the entire C table. As seen from Eq. 8 in order
to compute the rank of a configuration with n points we look at row n/2 of the
C table and make two recursive calls both with n/2 points. Thus we only need
to pre-compute the C table for rows that are powers of 2 resulting in only log n
rows. Note that if n is not a power of 2 it is straightforward to generalize the
rank algorithm and Theorem 4 below shows that we only need to at most double
the number of rows that need to be pre-computed.
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Lemma 4. The recursive calls in each level of the recursion tree for the recursive
block ranking algorithm will either all be the same size or have two unique sizes
that differ by one.

Proof. We will prove this using induction. As a base case the first call has a
single size. We will assume inductively that the conditions are satisfied at a level
i and show that they will continue to be satisfied at the next level. Recall that at
each step of the recursion the size will be split in half. We will consider 2 different
cases. If there is only one size x at level i then if x is even there will continue to
be one size x/2 at the next level. If x is odd then there will be exactly two sizes
that differ by one (x − 1)/2 and (x + 1)/2 at the next level. The second case we
will consider is if there are two sizes x and x + 1 that differ by one at level i. If
x is even then at the next step the calls will all have sizes x/2 or x/2 + 1. If x
is odd then at the next step the calls will all have sizes (x − 1)/2 or (x + 1)/2.
In all cases the conditions of the theorem are satisfied.

4.3 Pre-computing the C Table

To support the rank and unrank algorithms for lexicographical and recursive
block orderings we will need access to additional information stored in a table.
We consider two approaches for pre-computing the information needed based on
previous work in the area of counting restricted compositions. The first is based
on dynamic programming techniques. While this algorithm is faster per table
entry, it requires all values in the table to be computed. The second method
is based on generating functions and while slower, does not rely on previously
computed entries. This allows us to only compute the tables entries needed and
is thus useful for the recursive block ranking algorithm. Again let Cd(n, S) be
the number of n-compositions with sum S and maximum value d.

Filling the Table with Dynamic Programming. First we describe a
dynamic programming based approach to filling the C table. We begin by devel-
oping and justifying a recurrence for Cd(n, S). Note that this same recurrence is
given previously by Abramson [1] although with a different more combinatorial
explanation. For each n-composition with sum S > 0, n > 1 the first point is
either 0 or some number greater than 0. The number of such compositions that
start with 0 is equal to Cd(n − 1, S). For those that start with a number greater
than 0, consider the quantity Cd(n, S −1). For each of the compositions counted
by Cd(n, S−1) we can add one to the first point and obtain a n-composition with
sum S and first point greater than 0. However, if S > d some of these composi-
tions will have the first point set to d+1 which is not a valid composition. Thus,
in this case, Cd(n, S−1) is over counting the number of n-compositions that start
with a point greater than 0. If a n-composition starts with d + 1, the remaining
points are a (n − 1)-compositions of the remaining sum S − (d + 1). Thus the
excess number of compositions is exactly Cd(n−1, S − (d+1)). Combining these
ideas gives the following recurrence for the C table.
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Cd(n, S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if n = 1, S ≤ d

0 if n = 1, S > d

1 if n = 0
Cd(n−1, S) + Cd(n, S−1) if n > 0, S ≤ d

Cd(n−1, S) + Cd(n, S−1) − Cd(n−1, S−d−1) otherwise

It is straightforward to see how using a nested loop and the above recurrence
we can use fill the C table with dimensions n× (n∗d) in time Θ(n2d). The value
n∗d is chosen since this is the maximum possible sum. Note that Stein [17] uses a
very similar approach to fill the table but does not use the dynamic programming
framework or provide a justification for the recurrence. As mentioned above, in
order to improve the efficiency of our lexicographical ranking and unranking
algorithms we will actually store the cumulative sum so position (i, j) in the
CUM table will store

∑n
k=i Cd(k, j).

Filling the Table with Generating Functions. As an alternative approach
to fill in the table, we can use formulas derived from a generating function view
of the problem. This approach to counting restricted compositions is well estab-
lished (see e.g. [1], [15]) and we briefly provide the details here for completeness.
We will need the following well-known polynomial expansions:

1 − xn+1

1 − x
= 1 + x + x2 + . . . + xn (9)

(1 + x)n = 1 +
(

n

1

)

x +
(

n

2

)

x2 + . . . +
(

n

n

)

xn (10)

1
(1 − x)n

= 1 +
(

1 + n − 1
1

)

x +
(

2 + n − 1
2

)

x2 + . . . (11)

If f(x) is a polynomial, we will use the notation [xk]f(x) to mean the coefficient
of xk in f(x). So for example, [x3](1 + x)15 would mean the coefficient of x3 in
the expansion of (1 + x)15, which from the identities above we can see is

(
15
3

)
.

We can use generating functions to compute the value Cd(n, S) by noting
that Cd(n, S) will actually be the coefficient of the xS term in the polynomial

(1 + x + x2 + . . . + xd)n .

Given this, we can then use the above identities to derive a formula for Cd(n, S).

Lemma 5. Consider vectors of length n with component bound d that sum to
S. Then the number of such vectors is given by

Cd(n, S) = [xS ](1 + x + x2 + . . . + xd)n =
n∑

k=0

(−1)k

(
n

k

)(
n + S − (d + 1)k − 1

n − 1

)
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Proof. From Eq. (9) we can see that

[xS ](1 + x + x2 + . . . + xd)n = [xS ]
(

1 − xd+1

1 − x

)n

= [xS ](1 − xd+1)n · 1
(1 − x)n

We can apply Equations (10) and (11) to the two parts of this last polynomial
and see that

(1 − xd+1)n = 1 −
(

n

1

)

xd+1 + . . . + (−1)k

(
n

k

)

xk(d+1) + . . . + (−1)n

(
n

n

)

xn(d+1)

and
1

(1 − x)n
= 1 +

(
1 + n − 1

1

)

x +
(

2 + n − 1
2

)

x2 + . . .

Given these two equations, we are interested in ways to get xS . We need to
account for possibly each term in the first equation combining with a term in the
second equation. Specifically, if we have xk(d+1) from the first equation, then to
get xS we need the term xS−k(d+1) from the second. Summing up over all such
possibilities and using the fact that

(
n
k

)
=

(
n

n−k

)
we get

Cd(n, S) =
n∑

k=0

(−1)k

(
n

k

)(
S − k(d + 1) + n − 1

S − k(d + 1)

)

=
n∑

k=0

(−1)k

(
n

k

)(
n + S − k(d + 1) − 1

n − 1

)


�

In the next sections we describe the unrank algorithms for both lexicograph-
ical order and recursive block order. Both of these algorithms rely on the same
pre-computed information as the associated rank algorithms.

4.4 Lexicographical Unrank

Next we describe the unranking algorithm for lexicographical order l-unrank.
Note this is similar to the algorithm given by Stein [17] with the exception of
using the cumulative sum table. We begin by describing our unrank algorithm
again using the running example S = 6, d = 3, and n = 3 shown in Fig. 2. To
unrank an integer r according to lexicographical order we start by determining
x1. We can do this again using our C table. For example we know that x1 = 0
if the rank r is less than the number of configurations that start with 0 or r <
Cd(n−1, S). Similarly x1 = 1 if Cd(n−1, S) <= r < Cd(n−1, S−1)+Cd(n−1, S).
In our example, x1 is 1 if 1 ≤ r < 3. More generally,

x1 = max j :
S∑

i=S−j

Cd(n − 1, i) < r.
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Fig. 6. Lexicographic unranking algorithm with the cumulative sum table CUM.

We can use this idea to define the unrank algorithm recursively. At each step
i we will first determine xi using the formula above and then recursively call
the unrank algorithm to determine the remaining points l-unrankn−1,S−xi

(r −
∑S

i=S−j+1 Cd(n − 1, i)). Based on this idea we give an l-unrank algorithm in
Fig. 6 that again uses the cumulative sum table. Note that since we are using
the cumulative sum table, the algorithm could be improved by replacing the
while loop with a variation on binary search. More specifically, look at the value
in the first position, the second, the fourth and so forth until a value greater
than rank is found and then perform binary search.

4.5 Recursive Block Unrank

Finally we describe the unranking algorithm for the recursive block ordering
b-unrank. At a high-level our algorithm begins by determining the sum of the
left n/2 points. Next we determine the rank of xL (i.e. b-rankn/2(xL)) and the
rank of xR. Finally we apply our unrank algorithm recursively to each of these
ranks to determine xL and xR. Throughout this section we will use the running
example S = 8, d = 3, and n = 4 shown in Fig. 4.

We begin by showing how to determine the left sum SxL
. In our example we

know that SxL
= 2 if the rank r is less than the total number of configurations

with left sum 0,1, or 2. Since there are no configurations with left sum 0 or 1
the left sum is 2 if r < Cd(n/2, 2) · Cd(n/2, S − 2) = 3 · 1 = 3. More generally,

SxL
= min s : r <

s∑

i=0

Cd(n/2, i) · Cd(n/2, S − i).
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Fig. 7. Recursive block unranking algorithm.

Next we will determine the rank of xL. Note that each possible configuration
of the left n points will occur in the ranking one time for each possible right
configuration or Cd(n/2, S − SxL

) times. For example, in our running example
when SxL

= 3 then there are 2 possible configurations for xR namely (2, 3) and
(3, 2) so each possible left configuration shows up in the ordering consecutively
2 times. Thus to determine the rank of the left configuration we first subtract
the number of configurations with smaller sum from the rank and then divide
by the number of right configurations Cd(n/2, S − SxL

). To determine the right
rank we again subtract the number of configurations with smaller sum and then
determine the remainder when divided by Cd(n/2, S − SxL

). Finally once we
have the left and right ranks we can apply our b-unrank algorithm recursively to
each rank. We give our b-unrank algorithm in Fig. 7.

5 Implementation and Performance Comparison

To compare the matching-based algorithm of Tajik et al. to the ranking algo-
rithms we proposed in the previous section, we created prototype implementa-
tions of both and ran a number of performance tests. All implementations were
done in Python 3.9.7 and performance tests were conducted on a machine with
an Intel Core i5-8265U CPU @ 1.60 GHz (1 socket, 4 cores per socket, and 2
threads per core) and 8 GB of RAM, running 64-bit Ubuntu Linux 18.04. Before
looking at performance results, we discuss more details of our implementations.
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5.1 Implementation Details

Matching-Based Algorithm. We implemented the matching-based algorithm of
Tajik et al. as we described it earlier. In each round, adjacent points are matched
and rank-encipher-unrank is applied to each pair. We shuffled the points between
rounds using the Knuth shuffle, which was suggested by Tajik et al. Like the
previous work, we are considering NR security, so we implemented each rank-
encipher-unrank using addition mod N , where N depends on the points being
paired up and their sum. For our performance tests, we considered 50, 500, and
1000 rounds.

Ranking-Based Algorithms. We implemented both the lexicographic and recur-
sive block ranking algorithms from the previous section to use with rank-
encipher-encrypt. For lexicographic, we implemented the rank and unrank algo-
rithms that use the cumulative sum table (Fig. 3 and Fig. 6). We also considered
NR security, so the encryption portion was implemented using addition mod N ,
where N is the maximum rank given a vector length, component bound, and
sum.

For the lexicographic ranking algorithm, we used a 2d numpy array with
datatype object for the Cd(n, S) table so that we could store unlimited precision
Python integers in the arrays. This is necessary since the numbers in the table
get very large; for the 16× 16 image block example, the maximum value in the
table is over 2000 bits.

For the recursive block ranking algorithm, since we only need a much smaller
number of rows, we stored the needed rows of the Cd(n, S) table in a Python
dictionary indexed by n. We generated each entry using the generating function
formula in Lemma 5. We also used the Python decorator functools.cache to
memoize the choose function and speed up any repeated n choose k calculations
that take place while generating the table.

5.2 Performance Tests and Results

To compare the performance of the matching-based and ranking-based solutions,
we considered the applications mentioned earlier in Sect. 2.2 which have various
parameter choices for n and d. For each application, we generated five vectors
with n uniformly random elements chosen from 0 to d and measured the average
time to encrypt using the iPython %time built-in “magic” command.

For the matching-based algorithm, we tested three choices of rounds, 50,
500, and 1000. The results are shown in Table 2. For the ranking-based solu-
tions, we additionally measured the time to generate the Cd tables and also the
eventual sizes of those tables. We determined the size by applying the Python
sys.getsizeof method to each integer in the table, plus the result of apply-
ing sys.getsizeof to the table data structure itself. The results are shown in
Table 3. It is interesting to note that the lexicographic ranking algorithm failed
on the 32× 32 block image encryption application and on the ratings application,
due to the table size getting too large for the system to handle. The recursive
block ranking, on the other hand, was successful on those two applications.
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Table 2. Performance results for our implementation of the matching-based algorithm
of Tajik et al.

Application 50 rounds 500 rounds 1000 rounds

10× 10 image block (n = 100, d = 255) 0.06 s 0.39 s 0.77 s

16× 16 image block (n = 256, d = 255) 0.11 s 0.98 s 1.98 s

32× 32 image block (n = 1024, d = 255) 0.41 s 3.91 s 7.81 s

Exam scores (n = 300, d = 100) 0.12 s 1.14 s 2.26 s

Salaries (n = 30, d = 100000) 0.02 s 0.13 s 0.25 s

Ratings (n = 5000, d = 4) 1.84 s 18.5 s 37.8 s

Table 3. Performance results for our implementation of the ranking algorithms from
the previous section. Encryption (Enc.) time is the time to do rank-encipher-unrank.

Application Lexicographic Recursive Block

Table size Table time Enc. time Table size Table time Enc. time

10× 10 162 MB 1.81 s 0.009 s 9 MB 0.87 s 0.06 s

16× 16 1885 MB 13.1 s 0.013 32 MB 5.8 s .18 s

32× 32 Fail – – 271 MB 316 s 3.50 s

Exams 988 MB 7.17 s 0.011 s 15 MB 3.81 s .096 s

Salaries 4756 MB 79 s 0.34 s 672 MB 40.5 s 4.2 s

Ratings Fail – – 25 MB 271 s 0.40 s

5.3 Discussion

Looking at the results in Tables 2 and 3, we can come to a few conclusions.

For Thumbnail Encryption, Ranking is Likely the Better Choice. We can see
from the tables that for the 10× 10 and 16× 16 image block encryption appli-
cations, the lexicographic ranking encryption time is faster than the matching-
based solution with only 50 rounds. Even at the 32× 32 block size, the recursive
block ranking has faster encryption than 500 rounds of the matching-based solu-
tion. Since a large image contains thousands of such blocks, using the faster
ranking-based solutions could be especially beneficial and well-worth the time
and memory cost of generating and storing the table.

For Small n but Large d, the Matching-Based Algorithm is a Good Choice. From
the salaries application n = 30, d = 100000 we can see that the matching-based
algorithm performs well and, even at 1000 rounds, encrypts in 1/4 of a second.
The ranking solutions, on the other hand, are starting to hit their upper limits as
far as table size. Specifically, the lexicographic ranking table took nearly 80 s to
generate and ended up at 4756 MB in size. Even with this large table, encryption
time for lexicographic ranking was still slightly slower than 1000 rounds of the
matching-based algorithm. We also tried increasing n and d slightly to 50 and
250,000 and, as expected, the table size ended up being too large for our testing
machine.
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Ranking Solutions Should Scale Better if More Security is Desired. We have
done the performance tests with NR (nonce-respecting) security in mind, which
is consistent with previous work. However, if we instead want to target something
like strong PRP security, then the ranking solutions should still be reasonably
performant, while the matching solution will likely significantly slow down. The
reason for this is that with the matching solution encryptions happen n/2 times
(once for each pair of points) each round, and each of these, which are just
additions mod N with NR security, would likely need to be replaced with a
stronger cipher. With the ranking solutions, there is just a single cipher call
that would need to be swapped for something stronger. One challenge with this,
however, is that the numbers are very large with the ranking solutions (e.g.,
2000 bit numbers in the 16× 16 image example), so the inner cipher in rank-
encipher-unrank would need to support such large sizes. A strong, variable-length
cipher such as those in [16] may be a good choice. A closer look at these issues
and whether NR security or strong PRP security is the right target for sum-
preserving encryption applications would be interesting future work.

For larger n, New Constructions are Likely Necessary. We can see from the
ratings application that as n gets large both the matching solution and the
ranking solutions start to struggle. The matching solution with 1000 rounds
takes over 30 s to encrypt the vector with 5000 ratings; if we instead wanted to
encrypt a vector with 1 million ratings, we might estimate it to take 10 min or
longer! With the ranking solutions, our lexicographic table generation already
failed on the ratings application with n = 5000. The recursive block ranking, at
first glance, appears to be an acceptable solution, but the table generation time
appears to drastically increase as n grows. Already at n = 5000 the table took
almost 5 min to generate, and in additional tests with n = 10000 the table was
not finished after 30 min. Scaling this up to something like 1 million ratings is
just not practical. A better solution for very large n is likely to be a combination
of the matching and ranking solutions. The matching algorithm is already based
on the idea of applying rank-encipher-encrypt to smaller subvectors (of size 2),
so a natural extension is to apply our ranking algorithms to increase the size of
the subvectors enciphered each round. It is not immediately clear to us whether
our proof from Sect. 3 could be adapted to this situation, so we leave proving a
mixing time bound on this combined algorithm to future work.

Acknowledgements. We thank the anonymous Asiacrypt 2022 reviewers for provid-
ing detailed comments and suggestions for improving the presentation of our results.
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Abstract. Hybrid Homomorphic Encryption (HHE) reduces the
amount of computation client-side and bandwidth usage in a Fully Homo-
morphic Encryption (FHE) framework. HHE requires the usage of spe-
cific symmetric schemes that can be evaluated homomorphically effi-
ciently. In this paper, we introduce the paradigm of Group Filter Per-
mutator (GFP) as a generalization of the Improved Filter Permutator
paradigm introduced by Méaux et al.. From this paradigm, we specify
Elisabeth , a family of stream cipher and give an instance: Elisabeth-4 .
After asserting the security of this scheme, we provide a Rust implemen-
tation of it and ensure its performance is comparable to state-of-the-
art HHE. The true strength of Elisabeth lies in the available operations
server-side: while the best HHE applications were limited to a few mul-
tiplications server-side, we used data sent through Elisabeth-4 to homo-
morphically evaluate a neural network inference. Finally, we discuss the
improvement and loss between the HHE and the FHE framework and
give ideas to build more efficient schemes from the Elisabeth family.

1 Introduction

State-of-the-art. Hybrid Homomorphic Encryption (HHE) is a powerful solu-
tion to limit the performance overheads and ciphertext expansion that a direct
application of Fully Homomorphic Encryption (FHE) on private data causes.
Rather than directly encrypting private data homomorphically, its high-level
idea is to encrypt a symmetric key with the (expensive) FHE scheme and send
it to the server. Next, a client can send private data encrypted with the sym-
metric cipher to the server, which will homomorphically carry out symmetric
decryption before performing the private computations [36].
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While HHE can in principle be instantiated with any symmetric cipher,
it was rapidly observed that standard ciphers like the AES may not be the
best for this purpose [16,23]. Researchers therefore started to investigate the
improved performances that specialized ciphers (e.g. with limited multiplicative
complexity and/or depth) can lead to. Popular examples of such ciphers include
LowMC [2,3], Kreyvium [5], FLIP& FiLIP [34,35] or RASTA& DASTA [19,29].

As a first step, these ciphers have been optimized towards making their homo-
morphic decryption as efficient and low-noise as possible, independent of the appli-
cations. Recent benchmarks like [20] exhibit that parallel ciphers (e.g. LowMC ,
RASTA , or DASTA ) can reach slightly better throughputs than serial ciphers
(e.g. Kreyvium , FLIP or FiLIP ) at the cost of higher latency. Yet, while all these
ciphers lead to practical performances for their homomorphic decryption, it
remains that they are specified in F2 which, despite being convenient for sym-
metric cryptography, is not ideal when considering the global optimization goal of
performing signal processing on encrypted data. For example, standard machine
learning (e.g. classification) algorithms operate on reals or integers, which can then
be quantized in Zq with preferably large q’s. Hence, applying HHE with ciphers
specified in F2 requires expensive conversions from F2 to Zq.

Contributions. Building on this state-of-the-art, the general goal of this paper
is to show that the optimization of HHE can benefit from considering the full
toolchain going from the symmetric cipher to the data processing to perform
homomorphically. For this purpose, we first aim to design a symmetric encryp-
tion scheme that not only allows efficient (stand-alone) homomorphic decryption
but is also well suited for practically-relevant applications such as classification
with machine learning algorithms. We next aim to put forward the tradeoff
between the HHE performances and the constraints that it implies for machine
learning classification.

We first generalize the filter permutator design approach used by the FLIP and
FiLIP stream ciphers to arbitrary groups and instantiate this new construction
by specifying the Elisabeth stream cipher family. Besides the goal of enabling
homomorphic computations in Zq without expensive conversions, this new design
approach is driven by the recent work of Chillotti et al. [11], which generalizes the
TFHE scheme from [10] in order to enable efficient Programmable BootStrapping
(PBS). PBS is pushing for ciphers that combine (negacyclic) Look Up Tables
(LUTs) and additions in Zq with q a power of 2. We select q = 24 for our
first instance of Elisabeth , hence denoted Elisabeth-4 , by analyzing the current
cost of a PBS as a function of the LUT sizes. Overall, Elisabeth-4 only requires
two levels of PBS and a few additions in Zq, therefore enabling a very efficient
homomorphic decryption. We study the security of the group filter permutator
approach and our proposed instantiations. We also show that the (still stand-
alone) performances of Elisabeth-4 compare well with (and sometimes improve)
the aforementioned state-of-the-art ciphers optimized for FHE.

Next, we discuss the application of HHE to a classification based on a sim-
ple neural network. As a first step in this direction, we use the Fashion-MNIST
dataset for this purpose [40]. It contains 28× 28 grayscale images of 70,000 fash-
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ion products from 10 categories. This case study allows us to benchmark a full
protocol, including the (one-time) key exchange, the homomorphic (symmetric)
decryption, the homomorphic classification, and the result decryption. It con-
firms the interest in the HHE approach compared to the direct application of
FHE and the interest of Elisabeth-4 over binary ciphers (in particular FLIP and
FiLIPwhich share a similar design approach). It also emphasizes the tradeoff
between the accuracy of the machine learning classification and the HHE per-
formances.

We conclude the paper with a critical discussion of its limitations, which
allows us to identify important directions for further research. In particular,
we put forward (i) how improving TFHE to enable efficient PBS for larger
LUTs could improve the accuracy of machine learning classifications with larger
instances of Elisabeth , and (ii) how public preprocessing and other optimizations
could improve the efficiency of homomorphic classification.

Related Works. The observation that non-binary ciphers could be beneficial
to HHE has also been made in other recent works. In [27], the authors describe
MASTA a variant of RASTA adapted to Zq where q = 216 +1. In [13], the authors
describe the cipher HERAwhich is defined over Zq with q > 216. In [28], the
authors describe the RUBATO cipher, adapted to Zq where q ≈ 225. In [20], the
authors describe the family of ciphers PASTAwhich is defined over Fp with p a
16-bit prime. They also discuss how it can be combined with the homomorphic
computation of a 5× 5 matrix-vector multiplication. Their main difference with
our proposal is the need for a larger modulus, which is not compatible with the
efficient PBS of the generalized TFHE scheme we target. As a result, they are
not ideal for application to our machine learning classification problem with this
scheme.

We insist that we make no claim regarding the possibility to adapt HERA ,
PASTA , or other FHE-friendly ciphers to our case study. In particular, some
specific choices of parameters such as the selection of q = 24, are motivated
by current technological constraints (which also motivates the group generaliza-
tion of filter permutators). Instances of Elisabethwith larger q’s (discussed in
conclusion) or HERA -like & PASTA -like ciphers with smaller moduli will admit-
tedly look more and more similar, and it is an interesting long-term problem to
determine which cipher to use for which range of applications. By contrast, our
claim is that taking into account the data processing necessary to perform homo-
morphic operations when designing an FHE-friendly cipher can lead to improved
global performances, as the comparison between Elisabeth-4 and FiLIP showcases.
In this respect, we believe focusing on machine learning algorithms is a relevant
direction since they typically raise important privacy concerns [37]. Yet, since the
comparative performances of HHE schemes may be application-dependent, our
results also suggest the identification of relevant case studies for benchmarking
as an interesting topic of discussion for the FHE research community.
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2 Background

General notations. We use [n] to denote {1, . . . , n} and more generally [a, b]
for the set of integers c such that a ≤ c ≤ b. We will use the notation G to
denote a group with operation +, 0 for its neutral element, and − to denote the
inverse. For a vector a ∈ G

n we denote wH(a) its Hamming weight: wH(a) =
|{ai �= 0, i ∈ [n]}|. For two vectors a, b ∈ G

n we denote dH(a) their Hamming
distance: dH(a, b) = wH(a − b). log refers to the base-2 logarithm.

2.1 TFHE

By definition, a fully homomorphic encryption scheme can evaluate any arbitrary
operation on its ciphertexts. While this is technically true, depending on the
FHE scheme, some operations will be way easier to compute than others. The
efficiency of an HHE scheme therefore deeply relies on how the symmetric cipher
can use the efficient operations of the FHE scheme.

The Elisabeth stream cipher family has been conceived to take advantage of
the efficient operations of the FHE scheme TFHE [10] and implemented using
the operations available in the Concretelibrary [9].

In this section, we recall the core concepts of TFHE needed to understand
our contributions, for a detailed explanation of TFHE operations we refer the
reader to [9], from which we took most of the notations.

Encryption and Decryption. The encryption scheme at the core of TFHE1 is
based on Learning With Error (LWE). A variant relying on the General Learn-
ing With Error (GLWE) assumption introduced in [4] is used to perform some
homomorphic operations. The generality of GLWE allows encompassing con-
structions relying on LWE [38], Ring LWE (RLWE) [32] or trade-offs between
both under the same structure [31].

Let B be the set {0, 1}, q = 2p, Δ = 2δ and N = 2d be three powers of two.
We note BN [X] := B[X]/〈XN + 1〉 and Zq,N [X] := Zq[X]/〈XN + 1〉 .

Definition 1 (GLWE ciphertexts [4]). An encryption c of a message µ ∈
Zq/Δ,N [X] under secret key s := (s1(X), . . . ,sk(X)) ∈ BN [X]k is given by c ∈
(Zq,N [X])k+1 such that:

c :=

(
a1(X), . . . , ak(X), b(X) :=

k∑
i=1

ai(X) · si(X) + Δ · µ(X) + ε(X)

)

where the coefficients of the ai are uniformly sampled over Zq and the ones of
ε are sampled from a small discretized Gaussian noise.

1 i.e. Regev’s encryption scheme [38].

https://docs.rs/concrete/0.1.10/concrete/
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We call a := (a1, . . . , an) the mask and b the body of the ciphertext. Given
a ciphertext c and the secret key s, one decrypts c by computing µ∗(X) :=
b(X) − ∑k

i=1 ai(X) · si(X) = Δ · µ(X) + ε(X).
By choosing Δ such that Δ > ||ε||∞, one can recover µ from µ∗ by dividing

each coefficient by Δ (which is equivalent to shifting each coefficient δ bits to
the right). This means that the value of δ fixes the noise budget, that is the
maximal number of bits one allows the coefficients of ε to be written on. So, for
a given value of q, a bigger noise budget means a smaller message size.

In the following of the paper, we refer to LWE for a GLWE ciphertext with
N = 1 and to RLWE for a GLWE ciphertext with k = 1. The LWE ciphertexts
are the core of the TFHE scheme, whereas the other GLWE ciphertexts only
play a role in the product and bootstrapping.

Addition and Multiplication. GLWE ciphertexts encrypted under the same
secret key can be added coefficient-wise, the result of which gives an encryption of
the sum of the plaintexts in Zq,N [X]. By iterating, it is then possible to multiply
a ciphertext by a plain scalar. Note that, in both cases, the noises increase,
resulting in linear growth of the noise inside the ciphertext.

To perform the multiplication of a GLWE ciphertext by an encrypted (poly-
nomial) constant while managing the noise growth, TFHE uses another kind
of ciphertext. These ciphertexts are the generalization of the GSW scheme [24]
corresponding to GLWE, hence dubbed General GSW ciphertexts. Then, an
external product between GGSW and GLWE ciphertexts allows the multiplica-
tion between encrypted plaintexts.

Definition 2 (GGSW Ciphertexts). Let B = 2b ∈ N and � ∈ N. A GGSW
ciphertext C of a message m ∈ Zq,N [X] under secret key s := (s1, . . . ,sk) ∈
BN [X]k is defined as:

C =
(
GLWEs(−si

q
Bj m)

)
(i,j)∈[k+1]×[�]

∈ (Zq,N [X])�(k+1)×(k+1),

with sk+1 = −1.

We call B the basis and � the number of levels of the ciphertext C. A GSW
(resp. RGSW) ciphertext is a GGSW ciphertext made from LWE (resp. RLWE).

External Product. The external product between GGSW and GLWE cipher-
texts gives a GLWE ciphertext of the product of the input plaintexts. The exter-
nal product of a GGSW ciphertext C and a GLWE ciphertext c is defined as
C�c = Decomp(c) ·C, where Decomp is a transformation that flattens a vector
of k + 1 polynomials into a vector of �(k + 1) polynomials with coefficients in
[−B/2;B/2].

Programmable Boostrapping. Most of the homomorphic operations make
the noise grow. In order to achieve fully homomorphic encryption, it is necessary
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to have an operation to decrease the noise. This is what bootstrapping is used
for, by resetting the noise to a level independent of the noise level in the input
ciphertext. In addition to noise control, TFHE’s bootstrapping on LWE cipher-
texts, also noted PBS for Programmable BootStrapping, allows the evaluation
of a negacyclic look-up table L. Instead of giving a ciphertext of μ, it directly
gives a bootstrapped ciphertext of L[μ̄], where μ̄ is a noisy rescaling of μ on
[0, 2N − 1] and N is determined by the GLWE scheme used. More information
on PBS can be found in Appendix A.

Definition 3 (Negacyclic Look-Up Table (NLUT)). A negacyclic look-up
table over a group G is a look-up table L of length 2N that verifies the following
property:

∀i ∈ [0, N − 1], L[i + N ] = −L[i] ∈ G,

where = and − denote equivalence and inverse defined on G.

Keyswitch. The ciphertext output by the bootstrapping might be encrypted
under a different, possibly larger, key than the input ciphertext. The keyswitch-
ing operation allows to convert a ciphertext encrypted under sin into a ciphertext
encrypted under sout thanks to a keyswitching key K. K is a GGSW encryption
of 1, up to two details:

1. The last � rows of the matrix are cropped;
2. The ciphertexts composing each line are encrypted under sout rather than

sin.

The keyswitching of c = (a, b) is then computed as (0, b) − Decomp(a) · K. It
allows switching back to the scheme with the first key.

2.2 Boolean Functions and Cryptographic Criteria

In this part, we introduce Boolean functions and relevant cryptographic criteria
(taken from [6]) that we will use to study the security of the main stream-
cipher construction we propose in this article. Then we generalize the classic
cryptographic criteria on Boolean functions to functions from G

n to G where G

is a group.

Definition 4 ((Vectorial) Boolean function). An (n,m) vectorial Boolean
function F is a function from F

n
2 to F

m
2 . When m = 1 the (n, 1) vectorial Boolean

function is simply referred to as a Boolean function and we denote the space of
n-variable Boolean function as Bn. We call coordinate functions of F the m
Boolean functions fi associating for each x ∈ F

n
2 the i-th binary output of F (x).

We call component functions of F the 2m − 1 non-trivial linear combinations of
the coordinate functions of F .
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Definition 5 (Algebraic Normal Form (ANF) and degree). We call Alge-
braic Normal Form of a Boolean function f its n-variable polynomial represen-
tation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn)):

f(x) =
∑

I⊆[n]

aI

(∏
i∈I

xi

)
=

∑
I⊆[n]

aIx
I ,

where aI ∈ F2. The algebraic degree of f equals the global degree of its ANF:
deg(f) = max{I | aI=1} |I| (with the convention that deg(0) = −∞).

Definition 6 (Algebraic Immunity). The algebraic immunity of a Boolean
function f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g �=0

{deg(g) | fg = 0 or (f ⊕ 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator
of f (or f ⊕ 1).

Definition 7 (Balancedness and Resiliency). A Boolean function f ∈ Bn

is said to be balanced if its output is uniformly distributed, that is: |{x | f(x) =
0}| = |{x | f(x) = 1}|.

A Boolean function f is called be m-resilient if any of its restrictions obtained
by fixing at most m of its coordinates is balanced. We denote by res(f) the max-
imum resiliency (also called resiliency order) m of f and set res(f) = −1 if f is
unbalanced.

Definition 8 (Nonlinearity). The nonlinearity NL of an n-variable Boolean
function f , where n is a positive integer, is the minimum Hamming distance
between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

with dH(f, g) = #{x ∈ F
n
2 | f(x) �= g(x)} the Hamming distance between f and

g; and with g(x) = a · x + ε, a ∈ F
n
2 , ε ∈ F2 (where · is some inner product in

F
n
2 ; any choice of an inner product will give the same definition).

Additionally, we denote NLd the order-d nonlinearity of f , the minimum
Hamming distance between f , and all the functions of degree at most d.

Definition 9 (Direct Sum). Let f be a Boolean function of n variables and g
a Boolean function of m variables, f and g depending on distinct variables, the
direct sum h of f and g is defined by:

h(x, y) = DS(f, g) = f(x) ⊕ g(y), where x ∈ F
n
2 and y ∈ F

m
2 .

Additionally we denote DSt(f) when is the direct sum of t times the function f .
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Extending to Groups. The notions defined above on Boolean functions can
easily be extended to functions from G

n to G, we denote these extended notions
by the subscript G.

Definition 10 (Cryptographic criteria over G). For a function f from G
n

to G we denote:

– degG(f) the degree over G. It corresponds to the minimum degree over the
polynomial representations of f in the polynomial ring (G, ·)[x1, . . . , xn] when
such representations exist.

– resG(f) the resiliency order over G. f is balanced if and only if:

∀a ∈ G : |{x | f(x) = a}| = |G|n−1.

f is m-resilient if all the sub-functions obtained by fixing up to m variables
are balanced.

– NLG(f) the nonlinearity over G. The nonlinearity is taken as the minimum
Hamming distance between f and the affine functions: a0 +

∑n
i=1 aixi where

the ai describe G
n+1. Additionally, NLd

G(f) denotes the order-d nonlinearity
over G.

We also denote DSG(f, g) the direct sum f(x) + g(y) where x ∈ G
n and

y ∈ G
m and f and g are two n-variable and m-variable functions defined on

distinct variables.

3 Group Filter Permutator and Elisabeth-4

The improved filter permutator (IFP) paradigm [34] led to binary stream ciphers
efficient for HHE [30,34,35] where the homomorphic evaluation (of the stream
cipher decryption) is reduced to the evaluation of a unique filtering function.
Its connection with Goldreich’s pseudorandom generator [25], the different secu-
rity analyses [15,34,35] and cryptanalysis studies [8,21], built confidence in the
soundness of this design. They make it a natural starting point to design HHE
with a non-binary symmetric scheme.

Section 3.1 introduces the group filter permutator which generalizes the IFP
paradigm over F2 to any group. We then move towards the instantiation of group
filter permutators. For this purpose, we observe that concrete choices of param-
eters are driven by technological constraints (e.g., operations that are efficient in
TFHE (C)). Section 3.2 discusses these choices and explains how future advances
in the Concreteimplementation could benefit the stream cipher. The discussion
leads to the design of the stream cipher family Elisabeth and an instantiation in
Sect. 3.3 (full algorithm are detailed in Appendix B.2). Finally, the performances
of the transciphering alone are provided in Sect. 3.4.

https://tfhe.github.io/tfhe/
https://docs.rs/concrete/0.1.10/concrete/
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3.1 Design and Stream Cipher Families

The group filter permutator is defined by a group G with operation noted +,
a forward secure PRNG, a key size N , a subset size n, and a filtering function
f from G

n to G. To encrypt m elements of G under a secret key K ∈ G
N , the

public parameters of the PRNG are chosen and then the following process is
executed for each key-stream si (for i ∈ [m]):

– The PRNG is updated, its output determines a subset, a permutation, and a
length-n vector of G.

– the subset Si is chosen, as a subset of n elements over N ,
– the permutation Pi (a re-ordering) from n to n elements is chosen,
– the vector, called whitening and denoted by wi, from G

n is chosen,
– the key-stream element si is computed as si = f(Pi(Si(K)) + wi), where +

denotes the element-wise addition of G.

The GFP, depicted in Fig. 1, is a generalization of the improved filter per-
mutator [34] where G = F2. The XOR is replaced by the addition of G and the
Boolean function by a function from G

n to G.

Fig. 1. The group filter permutator design
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3.2 Look-Up Tables Specifications

In order to be efficiently evaluated homomorphically, Elisabethfilters should rely
on the most native TFHE homomorphic functions, which are modular additions
and NLUTs (see Definition 3) evaluation. The use of NLUTs leads to some non-
standard constraints for the design of Elisabeth . In particular, they are entirely
determined by the first half of their values and cannot be bijective. Indeed, 0
can only have an even number of antecedents: given a 2n size NLUT L, for each
i ∈ [0, 2n−1 − 1] such that L[i] = 0, we also have L[i + 2n−1] = −L[i] = 0. As
will be shown next, those peculiarities do not raise fundamental problems for
the security of the cipher and it is possible to reach the necessary cryptographic
criteria to ensure 128 bits of security with a cipher based on NLUTs and modular
additions.

On the choice of the NLUTs size. The choice of the size of the NLUTs is driven
by several conflicting arguments: on the one hand, smaller NLUTs increase the
amount of NLUTs that needs to be evaluated to reach a given level of security,
which therefore slows down the evaluation of the circuit. On the other hand,
bigger NLUTs lead to heavier computation: indeed, the NLUTs are homomor-
phically computed through a PBS, which is essentially a sequence of polynomial
multiplications. The bigger the NLUT, the bigger the polynomials involved in
the PBS. Since the cost of a polynomial multiplication is of O(N log N), where N
is the polynomial degree, there is a clear interest in taking smaller NLUTs. That
being said, Elisabeth’s final goal is to ensure the evaluation of neural networks
over the output of the transciphering. This goal is more easily achieved if the
output ciphertext contains bigger chunks of data. To find out where the trade-off
between smaller polynomials and bigger chunks of data lies, we designed Table 1
which gives the minimal size of polynomial needed to evaluate a NLUT of given
size for different LWE dimensions in TFHE. These values are hard minimums
computed before any specific choice of design for the encryption scheme, i.e. if
we wanted to evaluate a NLUT on a ciphertext that contains just enough noise
to ensure 128 bits of security. Every operation in the scheme performed before
a PBS could increase the noise in the ciphertext up to a point where bigger
polynomials are needed for the same NLUT size. Considering all the previous
arguments, we found that NLUTs of 4 bits would be the best trade-off as it
relaxes as much as possible the constraint on polynomial sizes while keeping
enough bits of message in a single ciphertext. We chose not to use bigger mes-
sages for several reasons: first, this guarantees that once the specifics of our
design have been set, the polynomial degree should remain small. Second, this
ensures that Elisabeth-4 will require a smaller noise budget to be evaluated than
any computation that could be performed afterward. By doing so, one ensures
that transciphering will not be the noisiest part of the evaluation server-side,
and thus can be computed with exactly the same parameters as the following
circuit. In a nutshell, in the vast majority of usecases, adding Elisabeth-4 before
the evaluation of a circuit will not require new parameters to be computed. With
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the current limitations of TFHE, using a bigger length for the NLUTs could not
only multiply the transciphering time by more than two but also slow down the
whole evaluation server-side. Nevertheless, the generality of the design enables
it to adapt easily to powers of two of the same order once future improvement
of TFHE regarding big(ger) integer computation would make it worthwhile to
use bigger NLUTs.

Table 1. Polynomial degrees required to evaluate NLUTs containing bigger elements,
in function of the LWE dimension. The LWE dimension is the number of elements in
the mask of a ciphertext. The NLUT length is both the number of elements in the
NLUT and the size of the group G over which the NLUT is defined.

LWE dimension
NLUT length

512 630 650 688 710 750 800 830 1024 2048 4096

16 512 512 512 512 512 512 512 512 512 1024 1024

32 1024 1024 1024 1024 1024 1024 1024 1024 1024 2048 2048

64 2048 2048 2048 2048 2048 2048 2048 2048 2048 4096 4096

128 4096 4096 4096 4096 4096 4096 4096 4096 4096 8192 8192

256 8192 8192 8192 8192 8192 8192 8192 8192 8192 16384 16384

3.3 Elisabeth-4

In order to benefit from Concrete [9] efficient operations, the design of Elisabeth is
a GFP defined over G = Z2� where the filtering function f is composed by
additions over G = Z2� and NLUTs that could be evaluated in parallel. A simple
way to follow these guidelines and allow a simpler security analysis is to make
the filter f rely on the direct sum construction: f is the addition (over G) of
functions acting on independent variables. To be even simpler, each sub-function
of f can be chosen to be the same function, which gives a highly parallelizable
design. Accordingly, splitting n in t parts of m (different) variables, Elisabeth’s
filters have the following shape:

f(x1, . . . , xn) = DSt
G(g(x1, . . . , xm)).

The general idea of Elisabeth ’s filters design is to use the fewest levels possible
of NLUT, in order to parallelize computation efficiently.

At the moment, as explained in Sect. 3.2, Concrete’s implementation leads to
fix G = Z16. Only one level of NLUTs of this size would not guarantee a secure
scheme for 128-bit security2. Hence, for this NLUT size we propose a filter with
two levels of NLUTs, following the 5-to-1 construction depicted in Fig. 2. The

2 Based on the analysis in Sect. 4, an adversary could retrieve the key by solving an
algebraic system of degree at most 4 over F2.

https://docs.rs/concrete/0.1.10/concrete/
https://docs.rs/concrete/0.1.10/concrete/


Towards Case-Optimized Hybrid Homomorphic Encryption 43

high-level idea of this construction is to mix 4 variables to get strong enough
algebraic properties and to use the fifth one to balance the output.

It gives the following instantiation of Elisabeth-4 : G = Z16, N = 256, n = 60,
t = 12, m = 5, and g is the 5-to-1 function. As will be shown in Sect. 4, a
random choice of NLUTs has a high probability to lead to secure instances of
Elisabeth . Therefore, and to mitigate the possibility of trapdoor the design by
targeting particular relations over G, we selected the 8 NLUTs required for g by
hashing the sentence “Welcome to Elisabeth, heir of FiLIP!”, using the following
process3:

– The sentence is encoded in UTF-8 and the 256 bits hash is computed using
SHA-2. Those 256 bits are then split into 8 blocks of 32 bits. Each NLUT Si

is determined using the i-th block.
– The 32 bits are themselves split in 8 blocks of 4 bits, which directly gives

the 8-th first coefficients of the size-16 NLUT, which determines entirely the
NLUT.

All the NLUTs obtained with this process are explicitly given in
Appendix B.1. We analyze this particular choice of NLUTs in Sect. 4.

x1

x2x3

x4

x1 x2 x5 x3 x4

S1

S2

S3

S4

S5 S6 S7 S8

Fig. 2. Elisabeth-4 ’s 5 to 1 inner function.

3 A python implementation of this protocol can be found here: https://github.
com/princess-elisabeth/sboxes generation.

https://github.com/princess-elisabeth/sboxes_generation
https://github.com/princess-elisabeth/sboxes_generation
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3.4 Implementation and Performances

Implementation. We implemented Elisabeth-4 over TFHE’s library
Concrete [9]4. The symmetric key used by Elisabeth-4 is encrypted under an
LWE key sin of length n, and the PBSs are performed under an RLWE key of
length k and a polynomial degree N . Since a side effect of the PBS is to switch
the secret key under which a message is encrypted from sin to sout, a KeySwitch
is needed after each PBS5. This KeySwitch can either happen right after the
PBS, or after several operations. Since a KeySwitch is a rather noisy operation,
the preferred approach was to perform it as close to the next PBS as possible.
KeySwitches from sout to sin were thus computed after the sum of the output
of 2 NLUTs and before an input ciphertext was added to this sum. The reason
why this input ciphertext is summed after rather than before the KeySwitch is
that it is encrypted under the secret key sin. For the same reason, a KeySwitch is
needed at the final step of the inner function, where we sum the fresh ciphertext
of x5 with the rest of the inner function. This KeySwitch can either be performed
on x5, from sin to sout with another KeySwitching key, or on every other part of
the final sum, with the same KeySwitching key than earlier. The first approach
allows faster computation, since this KeySwitch can be performed in parallel to
the rest of the evaluation of the inner function, but increases the amount of data
sent to the server before transciphering and has for side-effect that the output
ciphertext and the symmetric key are not encrypted under the same LWE key.
See Fig. 3 for an illustration of the KeySwitches integration inside Elisabeth-4 ’s
circuit.

Parameters. Depending on the positioning of the KeySwitches, two sets of
homomorphic parameters have been chosen for Elisabeth-4 , specified in Table 2.
These parameters have been selected to ensure 128 bits of security and 4 bits of
message integrity while optimizing evaluation time and key sizes. The integrity
of the message has been controlled using the noise formulas given in [12] and the
security is estimated based on the LWE security estimator [1].

Table 2. Set of recommended FHE parameters for Elisabeth-4 .

TFHE Parameters

Mode n k N log(σLWE) log(σGLWE) PBS KeySwitch inverse KeySwitch

log(B) � log(B) � log(B) �

two KS 784 3 512 −18.6658 −38.4997 19 1 6 2 19 1

single KS 863 −20.7494 7 - -

4 https://www.github.com/princess-elisabeth/Elisabeth.
5 Or, more precisely, between two PBS.

https://docs.rs/concrete/0.1.10/concrete/
https://www.github.com/princess-elisabeth/Elisabeth
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Fig. 3. Elisabeth-4 ’s homomorphic circuit. A gray edge represents operations under
secret key sin while black edges represent operations under sout. Yellow boxes are oper-
ations that take inputs encrypted under sin and output ciphertexts encrypted under
sout and orange boxes represent the opposite. (Color figure online)

Benchmark. Since Elisabeth-4 has been designed for server usage, it has been
tested on a 64-core computer equipped with AMD Ryzen Threadripper 3990X
64-Core Processor6. Results are in Table 3.

Table 3. Comparison of running time of different versions of Elisabeth-4 .

Timings

Cipher Time per ciphertext (ms) Time per bit (ms)

Elisabeth-4 (two KS) 91.143 22.786

Elisabeth-4 (single KS) 103.810 25.953

Elisabeth-4 (two KS, monothreaded) 1485.0 371.25

Elisabeth-4 (single KS, monothreaded) 1648.6 412.15

As Elisabeth-4 has been designed for TFHE, it will mainly be compared to
FiLIP , which has had its own specific implementation for TFHE [30]. In order
to make our comparisons more relevant, FiLIP has been reimplemented over
Concrete7, with the same parameters as described in [30]. For completeness, we
6 Note that this particular design is initially optimized for 48 cores.
7 https://github.com/princess-elisabeth/FiLIP.

https://docs.rs/concrete/0.1.10/concrete/
https://github.com/princess-elisabeth/FiLIP
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also provide a rough comparison of Elisabeth-4 with other state of the art encryp-
tion schemes for transciphering, namely LowMC [2], Kreyvium [5], RASTA [19],
FiLIP [34], DASTA [29], MASTA [27] and PASTA [20], all of which have been
benchmarked with the tools provided by [20], and HERA [14], on the same
machine used for benchmarking Elisabeth-4 . Table 4 collects the results of these
benchmarks.

Note that since these symmetric schemes have been designed with different
FHE cryptosystems in mind, comparisons between their performances must be
considered with care. For example, some homomorphic schemes are very efficient
at packing, that is storing many cleartexts inside one ciphertext, but depending on
the usecase following the transciphering, unpacking these cleartexts can be pretty
costly. From a high-level perspective, these results confirm that ciphers that are
more serial are also more interesting for latency, whereas the ones more parallel
are better suited for throughput. But they are not indicative of any real-world per-
formance in a specific usecase, which motivates the investigations of Sect. 5.

Table 4. Comparison of running time of different 128-bit security HHE, using either
TFHE (TFHE (C)or Concrete), BFV (HELib) or CKKS (CKKS). The parameters
used are the ones recommended by their original papers for 128 bits of security.

Cipher Homomorphic library Time per ciphertext (s) Time per bit (ms)

LowMC TFHE (C) 4283.678 16733

Kreyvium TFHE (C) 208.255 208255

RASTA 6 TFHE (C) 2424.503 6907

FiLIP 144 Concrete 0.134 134

FiLIP 1216 Concrete 0.586 586

FiLIP 1280 Concrete 0.627 627

DASTA 6 TFHE (C) 2387.674 6802

Elisabeth-4 (two KS) Concrete 0.091 22.75

Elisabeth-4 (single KS) Concrete 0.104 26

LowMC HELib 853.302 3333.21

Kreyvium HELib 8.222 8222

RASTA 6 HELib 163.131 464.76

DASTA 6 HELib 156.935 447.11

MASTA 5 HELib 22.096 20.31

PASTA 4 HELib 9.827 18.06

HERA CKKS 14.747 0.01

Note also that the seemingly less efficient performances of some cryptosys-
tems used in combination with TFHE (C)are explained by a trade-off on the
homomorphically encrypted key size: in order to make the ciphertexts used
smaller, most of their operations are performed through gate bootstrapping,
which significantly slow down the computation. FiLIP , which does not rely on
this approach, runs much faster but needs way bigger keys. Table 5 gives a com-
parison of these sizes with Elisabeth-4 , when transciphering towards TFHE (C).
In the case of Elisabeth-4 , we also included in this value the size of the KeySwitch
and PBS keys needed to evaluate the transciphering algorithm. Data that would

https://tfhe.github.io/tfhe/
https://docs.rs/concrete/0.1.10/concrete/
https://github.com/homenc/HElib
https://github.com/snucrypto/HEAAN
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://docs.rs/concrete/0.1.10/concrete/
https://docs.rs/concrete/0.1.10/concrete/
https://docs.rs/concrete/0.1.10/concrete/
https://tfhe.github.io/tfhe/
https://docs.rs/concrete/0.1.10/concrete/
https://docs.rs/concrete/0.1.10/concrete/
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/snucrypto/HEAAN
https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
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have been sent even without transciphering are not taken into account. Also
note that rather than sending or storing a full GLWE or GGSW ciphertext, it
is always possible to send only the body part of the ciphertext along with the
seed used to generate its mask. When several ordered ciphertexts are sent, a
single seed can be provided for all of them. It is supposed in Table 5 that such
compressions are used whenever possible.

Table 5. Comparison of public key sizes of FiLIP and Elisabeth-4when used in combi-
nation with TFHE.

Cipher Key sizes (kB)

FiLIP 144 1610613

FiLIP 1216 402653

FiLIP 1280 1610613

Elisabeth-4 (two KS) 20

Elisabeth-4 (single KS) 8

Tables 4 and 5 show that Elisabeth-4 gives a reduction of the data overhead
compared to FiLIP by a factor 20000 to 200000, for a speedup of a factor 5 to
27.5 per bit. Moreover, Elisabeth-4 outputs are 4-bits integer, which FiLIP could
only achieve through a costly series of PBS. Indeed, to reconstruct a multi-bit
message, every bit but the most significant one transciphered by FiLIP must be
shifted to the right as needed before being summed together. Each shift being
performed through a PBS, a 4-bits message would thus cost an additional 3 PBS
to be transciphered. The capacity to output multibit messages will prove useful
in actual usecases.

4 Security Analysis

4.1 Security of the Group Filter Permutator

The group filter permutator generalizes the IFP paradigm over F2 [34] to any
group. Accordingly, for the security analysis, we consider how the attacks known
on IFP apply in the general case, and we discuss new attacks arising from the
group. The security of IFP is discussed in [34], it is built on top of former
analyses on filter permutator [35] (FP) and the connection with Goldreich’s
pseudorandom generator [25]. The main differences between the FP paradigm
and the IFP paradigm are the addition of a subset selection before the per-
mutation and a whitening. These modifications allow to mitigate the impact of
guess and determine attacks on FP [21] and restricted inputs cryptanalysis [8].
The security analyses on IFP consider that no additional weakness arises from
the PRNG which is chosen forward secure to avoid malleability. The subsets,
permutations, and whitening are derived with no bias, hence the pseudorandom
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system obtained is not chosen in an adversarial way and the attacks applying on
IFP are the ones targeting the filtering functions. These attacks are adaptations
from the one applying on the filtered register, regrouped in [34] as algebraic-like
attacks, correlation-like attacks, and guess and determine strategies.

The complexity of the different attacks on IFP is derived from parameters
of the filtering function f . In the IFP case, f is a Boolean function and the
significant cryptographic criteria of Boolean functions have been studied over
the last decades for filtered registers. We argue that if the GFP is defined over
a field, such as Fq, the natural generalizations of such Boolean cryptographic
criteria over Fq would give a strong basis for the security analysis. Since GFP
is defined over G we analyze the security based on the properties over G and
over a field allowing a polynomial representation of f . At a high level since the
“+” operation is linear in G the first view angle aims at verifying the filter
breaks the linearity enough. The goal of the second perspective (over G

′) is
to prevent attacks arising from a cryptographic weakness of the function f in
another representation easy to obtain for an adversary. We consider the attacks
in the single-key setting, in the known plaintext-ciphertext pairs model, focusing
on key-recovery attacks. We make the standard assumption that an adversary
is limited by a data complexity of 2

λ
2 = 264.

For Elisabeth-4 since G = Z16 we study the properties of the filter f as a
function from G

n to G. Fixing the representation of each element of G as an
element of G′ = F

4
2 based on its binary decomposition fixes a vectorial Boolean

function F from F
4n
2 to F

4
2. We study F by analyzing the properties of its 15

non-null component Boolean functions, the 15 functions from F
4n
2 to F2.

Algebraic Attacks. The general principle of algebraic attacks is to consider
an algebraic system of equations derived for the key-stream: an attacker know-
ing plaintext-ciphertext pairs can rewrite key-stream outputs as multivariate
polynomials in the secret key elements, and solve the system to recover the
key. Various techniques can be used to solve such an algebraic system, as sim-
ple as linearization (considering each monomial as a new variable) followed by
Gaussian elimination and as complex as approaches using Grobner bases (such
as [22]). For the security estimation, we will use the approaches using lineariza-
tion, as they allow to have a good estimation of the attack complexity from the
algebraic degree of the system and the number of variables, whereas the com-
plexity of more complex attacks is often difficult to assess or interpolate from
toy examples. For a system of equations of degree d with N unknowns the attack
has complexity O(D)ω, where D is the number of monomials of degree lower or
equal to d, and ω is the exponent from the Gaussian elimination (fixed to log(7)
for our estimations).

Analyzing the security of Elisabeth-4 over G = Z16, an adversary could target
a system of equations in the polynomial ring K[x1, . . . , xN ] = (G, ·)[x1, . . . , xN ]
where · denotes the usual product in G. In this case where G = Z16, K is a ring
but not a field, hence not all the functions from Kn to K have a polynomial
representation. When f does not correspond to a polynomial over K[x1, . . . , xN ]



Towards Case-Optimized Hybrid Homomorphic Encryption 49

we consider no algebraic attack applies on the representation over G. Considering
K[x], since for all x ∈ G it holds x8 = x4, any polynomial in the univariate
representation is equivalent to a polynomial of degree at most 7, hence there are
at most 168 polynomial evaluations. In comparison, there are 1616 evaluations
from G to G. Accordingly, we assume that with high probability the function f
used for the filter does not admit a polynomial representation over K[x1, . . . , xn],
which avoids this attack, and experimentally we verify that the function does
not correspond to a low degree polynomial.

Over F2 more specific attacks have been exhibited. The algebraic attack of
Courtois-Meier [18] on filtered LFSR applies to the GFP: instead of considering
a system of equations given by a filtering function f (in our case one of the non-
null component functions of F ) the attacker finds low-degree functions g and h
such that fg = h and derive a system of degree AI(f) = max (deg(g), deg(h))
which has the same solutions as the initial system. Unlike the algebraic degree
that can be up to n for an n-variable Boolean function, it has been shown in [18]
that the algebraic immunity (AI) is at most �(n+1)/2�. Targeting this algebraic
system of lower degree the corresponding algebraic-attack has a complexity of
O(D)ω where D =

∑AI(f)
i=1

(
N
i

)
. The fast algebraic attack [17] is a variant of

the previous attack where the adversary considers functions g and h such that
fg = h as before with g and h still of low degree but with h of degree potentially
higher than AI(f). This attack can be more efficient than the previous one when
the relations between the consecutive key-stream equations allow eliminating
the monomials of degree between deg(g) and deg(h) in the system. In the case
of filtered LFSR, the linear relation given by the LFSR allows to eliminate the
monomials of degree larger than deg(g) using the Berlekamp-Massey algorithm,
hence it gives a better attack than the standard algebraic one. The permutations
used in the GFP do not provide such linear relations for consecutive key-stream
equations, hence the elimination step would be more costly in this context. On a
filtered LFSR the security estimation is O(D log2(D) + ED log(D) + Eω) where
D =

∑deg(h)
i=1

(
N
i

)
and E =

∑deg(g)
i=1

(
N
i

)
. This estimation will be used as an

indicator rather than a sharp limit, considering that the complexity of the best
attack of the algebraic kind would lie between this (too low) bound and the (too
high) one given by the algebraic attack of Courtois-Meier.

Correlation Attacks. Two kinds of correlation attacks are considered on IFP,
the first one uses the bias of the output (or a sub-part of the output) from
uniform to mount a distinguishing attack, the second one consists in approxi-
mating the key-stream equations by low-degree equations and in retrieving the
key by solving a noisy linear system such as a Learning Parity with Noise (LPN)
instance. Two main criteria permit to estimate the impact of such attacks. The
first one is the number of key elements to fix before having a non-uniform out-
put, often referred to as resiliency order for Boolean functions. Generalizing the
concept to any group G, a resiliency order of k means that the output of a
function from G

n to G remains uniformly distributed in G even fixing up to k
variables, and there exists an affectation of k + 1 variables such that the output
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is not uniform. The second criterion is the quality of the approximation (equiv-
alently the importance of the bias), it measures the Hamming distance between
f and a low-degree function. In particular, the distance to affine functions, the
nonlinearity, often leads to the best attacks in this context. For l the best affine
approximation of f , the nonlinearity NLG corresponds to dH(f, l) and an adver-
sary can consider the system of equation given by f as a noisy linear system given
by l with noise parameter NLG/(|G|n). Since affine non-constant functions are
well distributed (each element appears exactly |G|n−1 times), if the best affine
approximation is not a constant function then the nonlinearity gives a bound
on the bias from uniform. Consequently, both for the perspective from G and
from G

′ we will ensure a non-trivial resiliency order to prevent these attacks,
and we will consider the following rationals for the attack based on low-degree
approximation. For an approximation of degree d over G:

– D is the number of monomials of degree up to d,
– m is a positive integer lower than or equal to the number of equations available

to the adversary,
– NLd

G is the Hamming distance between f and its best degree d approximation,
– PD,m is the probability of having at least D equations over m with no error

(Computed from a binomial law with error parameter NLd
G/(|G|n)),

We will ensure that
(
m
D

)
P−1

D,mDω > 2λ, since this complexity bound matches the
one of an attack consisting in solving a linearized system with enough noiseless
equations.

In particular for Elisabeth-4 , over Z16 we will ensure a nontrivial resiliency
and a sufficient distance to degree-1 and degree-2 functions. Over F2 we will
ensure a nontrivial resiliency and a sufficient nonlinearity. We assume that con-
sidering higher degree approximations will lead to less efficient attacks since the
gain in approximating the function is lost by the increasing number of monomi-
als.

Guess and Determine Attacks. The cryptanalysis of [21] on an instance of
FP showed the strength of guess and determine attacks on this design when too
simple filters are used. The principle of the attack is to guess some elements of the
key and attack the resulting system with one of the previously described attacks.
Guess and determine attacks perform better than the former ones when the cost
of guessing elements (try the attack for the |G|� possibilities) is compensated by
the simplicity of the remaining system. As for IFP, in the GFP the subset selec-
tion and whitening decrease the interest of guess and determine attacks since
only a sub-part of the fixed elements of the key area in the selected subset for
each equation, and the whitening randomizes which sub-function is obtained.
In [35] the complexity of the guess and determine attacks is estimated based on
the cryptographic parameter of the weakest function that can be obtained by
fixing � variables. In [34] an involved algorithm is used to compute the complex-
ity of the attack targeting sub-functions with parameters lower than a threshold
and leverage it by the probability of obtaining such sub-functions by fixing �
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bits. Since this algorithm is practical only for bit-fixing stable families of func-
tions (see [7]), we will use the simpler approach of [35]. For the different attacks
listed above, the attack complexity is derived from the value of a filter’s param-
eter, hence we will consider the attacks obtained with weaker values taking into
account the minimal number of guesses needed to reach this value. Hence, the
complexity estimation is |G|�C(k) where C(k) is the complexity for a parameter
with value k and � the minimal number of guesses to obtain a sub-function with
this parameter value.

4.2 Security of Elisabeth-4

As described in Sect. 3.3 the design of Elisabeth relies on the use of direct sums,
repeating the same basis function in a few variables. In this part we show how
to derive the security estimations for Elisabeth-4 from the parameters of its basis
function, analyzing it over Z16 and over F2.

Analysis over Z16. Over Z16 the filtering function can be written as:

f(x1, . . . , xn) = DSG(DS12
G (h),DS12

G (xi)),

where h is the function from G
4 to G given by the combinations of the 8 NLUTs

given in Sect. 3.3 before adding x5. We experimentally compute the resiliency,
NLG and NL2

G of h and the sub-functions obtained from h by fixing 1 and 2
inputs, and list the results in Table 6. Then, the following proposition (Proposi-
tion 1) enables to bound the parameters of a direct sum over G and it is used to
bound the parameters of the 60-variable filter f and its sub-functions obtained
by guessing a limited number of inputs. Finally, we summarize the bounds on f
parameters and the associated attack complexity in Table 7 following the analy-
sis of Sect. 4.1. Additionally, we provide a primary analysis on the polynomials
and functions over G which studies how selecting random NLUTs benefits the
security over G.

Proposition 1 (G-direct sum properties). Let h = DS(f, g) be the direct
sum of f and g with n and m G-variables respectively. Then DSG(f, g) has the
following properties:

1. Resiliency: resG(h) ≥ resG(f) + resG(g) + 1.
2. Nonlinearity: NLG(h) ≥ max(|G|nNLG(g), |G|mNLG(f)).
3. Order-2 nonlinearity: NL2

G(h) ≥ max(|G|nNL2
G(g), |G|mNL2

G(f)).

Proof. We begin with the result on resG(h). For all t ∈ N ∪ −1 such that t ≤
resG(f)+ resG(g)+1, all choice of t variables corresponds to t1 variables of f and
t2 of g such that t = t1 + t2. If t1 ≤ resG(f) the corresponding (n − t1)-variable
sub-function f ′ of f is balanced hence the direct sum f ′ + g′ is also balanced.
If t1 > resG(f) then t2 ≤ resG(g), therefore the corresponding (m − t2)-variable
sub-function g′ of g is balanced hence the direct sum f ′ + g′ is also balanced. It
allows us to conclude resG(h) ≥ t.
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For the nonlinearity, an n + m affine function can be written as:

�a,b = a0 +
n∑

i=1

aixi +
m∑

j=1

bjyj ,

where the xi (resp. yj) denote the variables from the f part (resp. g). Then:

dH(h, �a,b) =
∑

v∈Gm

dH(f + g(v), �a + b · v) ≥ |G|mNLG(f).

Since f and g play similar roles, the same arguments lead to dH(h, �a,b) ≥
|G|nNLG(g), giving the final result.

Finally, the result for the order-2 nonlinearity can be directly adapted from
the proof for the nonlinearity. When the m variables of g are fixed, on one side
h equals f plus a constant, and on the other side any n + m degree-at-most-2
function equals a degree-at-most-2 function depending only in the variables of
f . Hence, the order-2 nonlinearity can be written as the sum of |G|m distances
(between f and a degree-at-most-2 function), each one greater than or equal to
NL2

G(f). Noting that f and g play a similar role allows us to conclude.

Table 6. Minimum G-cryptographic parameters for h after fixing up to � inputs. For
0 and 1 guess NLG(h) and NL2

G(h) are bounded using the worst value obtained with 2
guesses.

Number of fixed variables � 0 1 2

Resiliency resG −1 −1 −1

Nonlinearity NLG ≥ 55296 ≥ 3456 216

Order-2 nonlinearity NL2
G

≥ 53248 ≥ 3328 208

Table 7. Elisabeth-4 , minimal parameter bounds up to � fixed inputs and complexity
estimations for a key size N = 256 (1024 bits). The parameter bounds come from
applying Proposition 1 with the values from Table 6 and the complexity estimations
come from Sect. 4.1. We write “>> 128” when the complexity estimation overreaches
several hundreds.

Number of guesses � 0 [1, 12] [13, 23] [24, 35]

Resiliency 11 11 − � −1 −1

NLG/|G|n−� ≥ 0.84 ≥ 0.84 ≥ 0.84 0.84

Correlation attack complexity (bits) >> 128 >> 128 >> 128 >> 128

NL2
G
/|G|n−� ≥ 0.81 ≥ 0.81 ≥ 0.81 0.81

Order-2 Correlation attack complexity (bits) >> 128 >> 128 >> 128 >> 128

The results from Table 7 show that the attacks considered on G, correlation
attacks using approximations of degree 1 or 2, are impracticable with the chosen
filter.
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Polynomials and Functions from G
4 to G

As explained in Sect. 4.1, not all functions from G
N to G can be mapped to

polynomials in the polynomial ring K[x1, . . . , xN ] = (G, ·)[x1, . . . , xN ]. With the
same arguments, not all functions from G

4 to G admit a polynomial representa-
tion in K[x1, . . . , x4], and we show that in particular h does not correspond to
a polynomial using a simple necessary condition to be a polynomial. Moreover,
we show that most of the functions from this space are far in Hamming distance
from the polynomials. More precisely, the probability of a random function to
agree with a polynomial on at least half of the inputs is lower than 2−128.

Proposition 2. Let f a function from G
4 to G. If f(8, 8, 8, 8) − f(0, 0, 0, 0) �∈

{0, 8} then f is not a polynomial of (G, ·)[x1, . . . , x4].

Proof. All monomial of (G, ·)[x1, . . . , x4] have the form xi1
1 xi2

2 xi3
3 xi4

4 where i1
to i4 are positive integers. In (0, 0, 0, 0) all non-trivial monomial gives 0 and in
(8, 8, 8, 8) if one exponent is greater than 1 or more than one exponent is not
null a monomial gives 0, the remaining non trivial monomials give 8. Let p be a
polynomial of (G, ·)[x1, . . . , x4]:

p(x1, x2, x3, x4) =
∑

i1,i2,i3,i4∈N

ai1,i2,i3,i4x
i1
1 xi2

2 xi3
3 xi4

4 ,

where ai1,i2,i3,i4 ∈ G. Then, p(0, 0, 0, 0) = a0,0,0,0 and p(8, 8, 8, 8) = a0,0,0,0 +
8(a1,0,0,0 + a0,1,0,0 + a0,0,1,0 + a0,0,0,1) hence p(8, 8, 8, 8) − p(0, 0, 0, 0) ∈ {0, 8},
allowing to conclude.

Proposition 3. Let G be the space of functions from G
4 to G, the probability

that a function f taken uniformly at random in G agrees with a polynomial of
(G, ·)[x1, x2, x3, x4] on at least half of the inputs is lower than 2−128.

Proof. For this proof we use the formalization of error correcting codes. Each
function in G can be uniquely represented by its vector of outputs in G

164
, and

the polynomials of (G, ·)[x1, x2, x3, x4] form a linear code of the vector-space
(G, ·)164

with parameter [n, k, d]. First, we determine an upper bound on the
number of polynomials with different evaluations (which corresponds to an upper
bound on the code dimension k). Then we determine an upper bound on the
number of elements of G164

at Hamming distance lower than n/2 + 1. Finally,
we compare the last bound with the number of functions in G to conclude.

For x ∈ G the value of x4 is 0 if x is even and 1 if x is odd, since x8 has the
same property, all polynomial of (G, ·)[x] has a representative of degree at most 7.
Thereafter, for the polynomial ring (G, ·)[x1, x2, x3, x4] all monomial xi1

1 xi2
2 xi3

3 xi4
4

with exponents i1, i2, i3, i4 ∈ N has a representative with i1, i2, i3, i4 ∈ [0, 7].
Since it gives at most 84 = 212 monomials (that is k ≤ 212), there are at most
16212

= 2214
different polynomial representations.

Then, we use the standard packing/covering bound to determine the maxi-
mum number of elements covered by the union of Hamming balls of radius n/2
centered around the code elements (here the polynomials). Each ball contains
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B =
∑n/2

i=0(|G| − 1)i
(
n
i

)
elements, giving a total number of 2214

B elements: the
upper bound reached if no ball intersect.

Finally, since there are (16)16
4

= 2218
elements in G we can compute the

proportion p of functions coinciding on a least half of there inputs with a poly-
nomial:

p ≤ 2214
B

2218 =
∑215

i=0 15i
(
216

i

)
215·214 ≈ 2−215.67

< 2−128.

Proposition 3 shows that most of the functions from G
4 to G cannot be well

approximated by a polynomial. The same idea extends to functions from G
n to

G, therefore it makes the attack consisting in solving a noisy polynomial system
over G very unrealistic when the filter is a random function. Since h is not taken
at random from G, and neither is f , we cannot directly use this argument. This
is why we additionally provide bounds for the nonlinearity and distance from
degree-2 polynomials.

Analysis over F2. To perform the analysis over F2 we introduce Beth-4 , a
variation of Elisabeth-4 . The variation consists in replacing some additions over
Z16 by coordinate-wise XOR, it gives a scheme which security is easier to analyze
and conjectured at most as secure as Elisabeth-4 .

Formally, Beth-4 is a stream cipher following the GFP paradigm with G
′ = F

4
2

where the operation is the addition modulo 2 coordinate-wise. The addition
of the whitening and the addition of the key-stream with the plaintext are
considered in G

′, only the additions inside the 5-to-1 function remain in G.
More precisely, the filtering function F from (F4

2)
n to F

4
2 is computed as

DSG′(H(x20i−19, · · · , x20i), i ∈ [4n/5]) where H is determined by the truth table
obtained by considering the canonical embedding of G over G′ on the inputs and
outputs of the (G5 to G) function g defined in Sect. 3.3.

Since the design of Beth-4 uses direct sums and 20-variable Boolean functions
its security can be analyzed easily following the approach on IFP [34]. Seen over
G

′ = F
4
2, the addition in G corresponds to the addition (in F

4
2) more nonlinear

combinations of the coordinate functions due to caries. Therefore, the algebraic
system given by Elisabeth-4 is more complex over F2 than the one of Beth-4 , and
we assume that Elisabeth-4 is at least as secure as Beth-4 for the different attacks
we consider. Accordingly, in the following part, we determine the parameters
of the 20-variable component functions of the basis function of Beth-4 . Then,
we bound the significant cryptographic parameters of the 4n-variable component
Boolean functions. Finally, we give the complexity estimations for the security of
Beth-4 , we consider these values as lower bounds for the complexity estimations
on the security of Elisabeth-4 .

Over F
4
2 the filtering function can be written as F (x1, . . . , x4n) = DS12

G′(H),
where H is the function from F

20
2 to F

4
2 given by the NLUTs and addition

in G illustrated in Sect. 3.3. We experimentally compute the parameters of H
and give them in Table 8. Then, the following lemmas allow to determine the
cryptographic parameters of the function F , with or without guessed bits. The
structure of direct sum of F component functions is preserved even guessing bits,
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hence Lemma 1 on the cryptographic properties of direct sums enables to bound
the parameters (degree, nonlinearity, resiliency) of the obtained functions from
the parameters of H. Lemma 2 gives a lower bound on the AI of a direct sum
based on the degree of its sub-parts, it allows us to bound the AI of the obtained
functions from the degree of the components of H (with or without guessing
bits). Finally, the bounds on F ’s parameters are given in Table 9, together with
the complexity estimations following the analysis of Sect. 4.1.

Table 8. Minimum Boolean cryptographic parameters over H’s components after fixing
up to � binary inputs.

� 0 1 2 3

deg 12 10 9 8

res 0 −1 −1 −1

NL 509440 249216 120768 57920

Lemma 1 (Boolean direct sum properties (e.g. [35] Lemma 3)). Let
h = DS(f, g) be the direct sum of f and g n and m-variable Boolean functions
respectively. Then DS(f, g) has the following cryptographic properties:

1. Degree: deg(h) = max(deg(f), deg(g)).
2. Algebraic immunity: max(AI(f),AI(g)) ≤ AI(h) ≤ AI(f) + AI(g).
3. Resiliency: res(h) = res(f) + res(g) + 1.
4. Nonlinearity: NL(h) = 2mNL(f) + 2nNL(g) − 2NL(f)NL(g).

Lemma 2 ([33] Lemma 6). Let t ∈ N
∗, and f1, . . . , ft be t Boolean functions,

if for r ∈ [t] there exists r different indexes i1, · · · , ir of [t] such that ∀j ∈
[r], deg(fij

) ≥ j then AI(DS(f1, . . . , ft)) ≥ r.

Table 9. Beth-4 , minimal parameter bounds up to � fixed binary inputs and complexity
estimations (in bits) for key sizes N = 256 (1024 bits) and N = 1024 (4096 bits). The
complexity estimations come from Sect. 4.1, when � lies in an interval the complexity
given is the minimal one for this interval of guesses. AA refers to the algebraic attack
and FAA to the fast algebraic attack. The complexity of the fast algebraic attack is
computed taking deg(g) = 1 and deg(h) = AI(f) + 1.

Number of guesses � 0 [1, 10] 11 [12, 23] [24, 35]

Resiliency 11 11 − � 0 −1 −1

NL/24n−� 0.49 ≥ 0.48 ≥ 0.48 ≥ 0.47 ≥ 0.46

Correlation attack complexity (bits) >> 128 >> 128 >> 128 >> 128 >> 128

Algebraic immunity 12 12 11 10 9

AA complexity (bits) 4N = 1024 229 230 222 205 198

AA complexity (bits) 4N = 4096 288 289 276 254 242

FAA complexity (bits) 4N = 1024 110 111 114 108 113

FAA complexity (bits) 4N = 4096 136 137 139 131 134
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The results on the security of Beth-4 in Table 9 show that the correlation
attacks are impracticable with the chosen filter, which goes in the same direc-
tion as the analysis over G. Regarding the attacks on the algebraic kind, the
estimations for the fast algebraic attacks (FAA) are slightly below the threshold
of 128 bits of security when we consider a key size corresponding to 1024 bits.
The last row of the table shows that taking a bigger key (equivalent to 4096
bits) is sufficient to reach the threshold of 128 bits for this attack, and for the
cipher instance since the FAA gives by far the lower attack complexity. Since
as explained in Sect. 4.1 the complexity of FAA is underestimated on GFP, and
the level of security of Elisabeth-4 is assumed higher than the one of Beth-4 , we
consider that the key size of 1024 bits is an adequate choice for a security level
of 128 bits, and an interesting starting point for further cryptanalyses.

5 Case Study

Homomorphic encryption is useful to prevent privacy issues and transcipher-
ing will typically be used on personal data in a real-world scenario. Nowadays,
algorithms handling personal data, and already running server-side, are mainly
neural networks. Therefore, we next present a neural network evaluation with
HHE. The homomorphic evaluation of neural networks (i.e., the inference part)
using TFHE has already been studied in [11]. To the best of our knowledge,
our following investigations are the first to evaluate the combination of such a
complex FHE computation with a transciphering, which will allow us to discuss
the interest of HHE in more general terms.

We decided to evaluate a neural network over the standard dataset Fashion
MNIST (FMNIST)8. The neural network performs classification on 28×28 pixels
grayscale clothes pictures. This dataset has been created to provide a more chal-
lenging problem than MNIST, which is a handwritten text recognition dataset.
We note that this dataset itself does not pose privacy concerns and an even more
relevant usecase would be to classify medical data streams (e.g. monitored by
a smartwatch). Yet, it is a standard and well-documented one and serves as an
interesting first step for benchmarking. The challenges raised by more complex
data sets are discussed in the conclusions.

5.1 Network Design Under FHE Constraints

To make the homomorphic evaluation of the network as fast as possible as well as
taking into account the fact that Elisabeth-4 outputs 4-bit messages, the model
has to be designed with some constraints in mind.

TFHE for Machine Learning. As presented in Sect. 2.1, TFHE is efficient
for performing modular additions, multiplications with public scalars, and eval-
uation of homomorphic NLUTs. While most functions are not negacyclic, it is

8 https://github.com/zalandoresearch/fashion-mnist.

https://github.com/zalandoresearch/fashion-mnist
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actually possible to evaluate them through a PBS thanks to a small trick: any
arbitrary LUT of length N can be transformed into a negacyclic one of length
2N by appending its negation to it. When evaluating this lookup table, the user
is only interested in the value written in the first half of the table, that is the
slots 0 to N −1 = 2d−1 −1. These are the slots for which the most significant bit
is set to 0, so to ensure that the value retrieved from the table is in the first half,
one must guarantee that the MSB of the message is 0. This is done by adding
a bit of padding in the MSB of the plaintext. Since by design Elisabeth-4 does
not require this bit of padding, it has been decided to encrypt it along with
the message, leaving 3 effective bits for the actual message. Note that a recent
work from Chillotti et al. [12] suggests that bits of padding inside a PBS can be
avoided and could become obsolete in the future. The ability to compute arbi-
trary functions, especially non-linear ones, through a PBS gives the possibility
to efficiently evaluate the activation function of a neural network. Every other
operation in between two activation functions is linear and can be efficiently
computed with TFHE. The reader can also refer to [11] for more details on the
homomorphic evaluation of neural networks.

Neural Network. In order to classify FMNIST pictures, the Convolutional
Neural Network (CNN) [26] relies on a convolutional layer to extract features,
then on linear layers in order to perform the classification. Since the homomor-
phic inference is performed on 3-bit data (instead of originally 8 bits), the CNN
has been trained on unencrypted quantized data using Weight Decay [26] to pre-
vent overfitting. The reader will find below a picture of a grayscale picture from
the FMNIST dataset, which is degraded from 8 bits to 3 bits of quantization in
the right part.

Fig. 4. 784-pixels Fashion MNIST pictures

We use a sigmoid function on our data at the entrance of the neural network.
This (non-standard) operation is performed for 2 reasons:

– The sigmoid bounds the norm of the data we manipulate. Having smaller-
norm data reduce the noise growth during the homomorphic operation.
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– We are impelled to perform a PBS between Elisabeth-4 and the CNN, for the
reasons developed in the previous Subsect. 5.1 (mainly in order to add a bit of
padding). While doing it, we can evaluate the sigmoid without any additional
cost.

In order to perform homomorphic inference, the CNN expects a bootstrapped
LWE ciphertext encrypted under the input key sin. This implies that Elisabeth
is used with the single KeySwitch parameters in order to save a KeySwitch at
the exit of Elisabeth-4 ’s evaluation. The scalar weights inside the linear layers
are given in clear so that these layers are evaluated efficiently with TFHE. Still,
for noise management reasons, these weights ought to remain small (inside a
magnitude of 20 for the FMNIST implementation). The CNN does not output
normalized probability nor use a softmax function, as those operations would be
costly when performed homomorphically.

As detailed in the next subsection, not using these tools does not have a
big impact on the resulting accuracy, which remains high when we evaluate the
adapted-for-homomorphic CNN with unencrypted data.

5.2 Performance

In order to reduce the amount of data sent to the server, we chose to use a single
PBS key and a single KeySwitch key for the whole circuit, rather than different
keys for the transciphering and the homomorphic inference. The parameters
chosen with these constraints are given in Table 10. In clear, the trained network
gave 84.37% accuracy over 10,000 randomized inputs. When tested over the same
inputs, encrypted this time, the network kept a pretty similar accuracy of 84.18%.
The loss of accuracy in an homomorphized network is studied in [11].

One homomorphic inference took 427.23 seconds on average over 100 sam-
ples, versus 5.74 seconds per homomorphic inference without transciphering.
This means that the transciphering took 537.62 ms per 4-bit message (with
282 = 784 messages). This increase in transciphering time is explained by the
constraints put by the neural network on the PBS and KeySwitch keys it shares
with Elisabeth-4 . This is expected since Elisabeth-4 was designed so that its
parameters would be less restrictive than most usecases, in order to make sure
that transciphering would neither require its own set of public keys nor slow
down the rest of the computation. Note that we chose here to minimize band-
width consumption, but computation time could be further improved by sending
Elisabeth’s optimal PBS and KeySwitch keys along with the one used by the
neural network. That way, Elisabeth could run in optimal time, reducing the
transciphering time to 28 × 28 × 0.091143 = 71.46 seconds. The initial data
overload on the bandwidth would thus be higher and longer to compensate, but
the inference time would be greatly reduced. More details on this are given in
Fig. 6. Also note that the transciphering algorithm9 can be performed offline
even before the client starts sending their inputs, thus saving time during the
online phase.
9 Up to the point of summing with the ciphertext.
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Evaluating 1000 inferences of this model with Elisabeth-4 requires sending
400 MB over the network, against 5, 337 GB if LWE ciphertexts were sent directly
without compression, and 6, 272 MB if only LWE bodies and their correspond-
ing seed were sent. This represents a saving of at least 93.62% of bandwidth.
Figure 5 compares the bandwidth saved by Elisabeth-4 and FiLIP over seeded
LWE ciphertexts. It both confirms the interest of the HHE framework in general,
and the significant gains that Elisabeth-4 provides over FiLIP for our usecase.

Table 10. Set of FHE parameters used for Elisabeth-4 combined with a neural network.

TFHE Parameters

n k N log(σLWE) log(σGLWE) PBS KeySwitch

log(B) � log(B) �

754 1 2048 −17.8745 −52.0036 7 6 2 8

Fig. 5. Data sent per inference with different methods of compression. Elisabeth-4 has
a better usage of bandwidth if more than two inferences are performed. On the other
side, FiLIP needs 67366 or 269424 inferences (depending on the version) to become
cheaper in bandwidth usage than seeded ciphertexts.

Our implementation is available at:

https://github.com/princess-elisabeth/elisabeth usecase.

https://github.com/princess-elisabeth/elisabeth_usecase
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Fig. 6. Using Elisabeth-4 with its optimal parameters implies an overhead on band-
width usage since another PBS and KeySwitch have to be sent to the server. That
being the case, this overhead is compensated compared to seed-compression in only
2185 inferences. Note also that these inferences would take roughly 47 hours to com-
pute, whereas less than 400 inferences could be computed in the same amount of time
using the same keys for both Elisabeth-4 and the neural network.

6 Conclusion

Our results show that HHE can highly benefit from the optimization of a sym-
metric encryption scheme depending on the operations to be performed homo-
morphically. We introduced the family of stream ciphers Elisabeth for this pur-
pose and instantiated it with 4-bit components, motivated by current constraints
of the TFHE Concretelibrary. While the stand-alone homomorphic evaluation
of Elisabeth-4 only brings similar performances to state-of-the-art competitors,
its combination with the homomorphic classification of grayscale images from
the Fashion MNIST dataset leads to significant improvements. In particular, the
transciphering does not impact the accuracy of the inference (compared to the
direct homomorphic processing of fresh ciphertexts) and it enables large gains
in terms of bandwidth.

These results lead to several challenging open problems. First, they are based
on an admittedly simple usecase, where the quantization of the images in 3 bits
does not significantly affect its accuracy. It is expected that more challenging
case studies (e.g. medical data, where fine-grain details can be essential for the
classification) may require either more granular data (which would be calling
for larger NLUTs) or more complex models (which may change the cost bal-
ance between the transciphering and the homomorphic inference). Considering
larger instances of Elisabeth is an interesting direction regarding the first con-
cern. Optimizing machine learning for homomorphic computations and leverag-
ing transformations that would reduce the load of homomorphic computations
to perform are interesting directions regarding the second concern. For example,
the application of a Principal Component Analysis (PCA) [39], could be used
to reduce the number of dimensions of the Fashion MNIST images from 28 × 28

https://docs.rs/concrete/0.1.10/concrete/
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down to 10, however with a penalty on the accuracy of approximately 10%. PCA
therefore enables to choose a compromise between the amount of data sent and
the accuracy. Other types of features selection would certainly deserve further
investigation.

Another possible improvement client-side would be the encryption time. Even
though Elisabeth-4 encryption algorithm is reasonably fast, the generation of its
permutations and whitening values could be optimized and would represent an
interesting development.

Finally, studying how to apply other FHE-friendly symmetric encryption
and FHE schemes to practical-relevant case studies will be important, in order
to better assess which combination works best in which context. Besides, and
independent of the interest of the HHE framework, improving the loss of accuracy
that homomorphic implementations may imply, as observed with TFHE and the
Concretelibrary for example, is a critical optimization goal to further incentivize
the application of FHE in contexts where privacy requires it. We believe having
a first (and more) benchmark(s) is an essential seed to drive research towards
achieving these important goals.
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discussions.

Supplementary material

A Details on the Programmable Bootstrapping

In this part, we detail how works the PBS to apply an NLUT and bootstrap
a LWE ciphertext at the same time. First, we recall the definition of a crypto-
graphic multiplexer, and then we explain how the computation of a length-2N
NLUT is incorporated inside the bootstrapping.

Definition 11 (CMux). A Cryptographic Multiplexer (CMux in short) is an
operator that, given two GLWE ciphertexts c0 and c1 of µ0 and µ1 respectively
and a GGSW encryption B of a bit b, outputs a reencryption of µb. This can be
done in a single external product by computing B � (c1 − c0) + c0.

Given L(X) =
∑N

i=0 liX
i ∈ Zq,N [X], one can see that the constant term of

X−(i+N)L(X) = −X−iL(X) is −li, meaning that a negacyclic look-up table
of length 2N can be represented as a polynomial of Zq,N [X]: accessing the i-th
value of the look-up table is equivalent to multiplying the polynomial by X−i

then keeping the constant term.

https://docs.rs/concrete/0.1.10/concrete/
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Let cL be a GLWE encryption of such a polynomial10 and c be a LWE
encryption of a message μ. The goal of bootstrapping is to secretly select a
value of L based on the value of μ. Since there are 2N slots in L and since μ
can take q different values, one first needs to rescale μ from [0, q] to [0, 2N ],
an operation known as Modulus Switching. This is simply done by multiplying
each coefficient of c by 2N/q, then by rounding to the closest integer. Let call
(ā1, . . . , ān, b̄) the scaled coefficients obtained, and μ̄ the value of μ rescaled. One
now has to select the μ̄-th slot of the NLUT. This can be done approximately
by multiplying the polynomial L by X−b̄+

∑
āisi = X−μ̄−ε̄, where the āi and b̄

are publicly known. Thus, computing ACC ← cL ·X−b̄ can be done immediatly.
Multiplying by X

∑
āisi is done iteratively thanks to a series of CMuxes: by using

GGSW encryption Si of the bits of the LWE secret key s1 to sn, one computes
ACC ← CMux(Si,X

āi ACC,ACC) = ACC ·X āisi . This yields an encryption of a
polynomial which constant coefficient is L[μ̄∗]. Since it is not possible to directly
compute the rounding of μ̄∗ = μ̄ + ε̄ homomorphically to recover L[μ̄], the only
alternative is to introduce redundancy in L, so that L[μ̄∗] = L[μ̄] for small
enough values of ε̄. The actual number of values that the lookup table can hold
thus depends on both the degree of the polynomial and the maximal size ε̄ can
take: the bigger the polynomial the more redundancy can be introduced, the
smaller ε and the lesser redundancy is needed. Now, given a GLWE encryption
(a, b) of

∑
μiX

i under the secret key s = (
∑

s1,iX
i, . . . ,

∑
sk,iX

i) with a =
(
∑

a1,iX
i, . . . ,

∑
ak,iX

i) and b =
∑

biX
i, one can build an LWE encryption of

μ0 under the secret key (s1,0, . . . , s1,N−1, . . . , sk,0, . . . , sk,N−1) as:

(a1,0,−a1,N−1, . . . ,−a1,1, . . . , ak,0,−ak,N−1, . . . ,−ak,1, b0)

This operation is called sample extraction and does not increase the noise in the
ciphertext. A complete bootstrap cycle then consists of these three operations:
modulus switching, blind rotation of the negacyclic look-up table, and sample
extraction. The output noise of the bootstrapped ciphertext is independent of
the input ciphertext and depends only on the number of CMuxes that has been
performed, which in turn depends on the length of the LWE key. The noise
caused by each CMux depends on the degree N of the polynomials as well as on
the basis and number of levels of the GGSW used.

B Elisabeth-4 Specifications

This appendix describes the details of Elisabeth-4 ’s implementation.

B.1 NLUTs Table

We specify the Negacyclic Look-Up Tables used for Elisabeth-4 implementation.
Remember that the second half of each NLUT’s value is entirely determined by
the first.
10 Note that it is always possible to build a trivial encryption of L by appending it to

a vector of zeros.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 3 2 6 12 10 0 1 11 13 14 10 4 6 0 15 5

S2 4 11 4 4 4 15 9 12 12 5 12 12 12 1 7 4

S3 11 10 12 2 2 11 13 14 5 6 4 14 14 5 3 2

S4 5 9 13 2 11 10 12 5 11 7 3 14 5 6 4 11

S5 3 0 11 8 13 14 13 11 13 0 5 8 3 2 3 5

S6 8 13 12 12 3 15 12 7 8 3 4 4 13 1 4 9

S7 4 2 9 13 10 12 10 7 12 14 7 3 6 4 6 9

S8 10 2 5 5 3 13 15 1 6 14 11 11 13 3 1 15

B.2 Elisabeth-4 Algorithms

In this specification, notations from the article are used. For the reader’s comfort,
let us remind here a few of them:

– G = Z16.
– Si denotes the NLUTs.
– Addition (+) between two vectors of Gk denotes the adddition coefficient by

coefficient and substraction (−) denotes the inverse of the addition.

We define the Elisabeth-4 encryption scheme as its key generation, encryption
and decryption algorithm. Both encryption and decryption use the keystream
algorithm.

Algorithm 1: Elisabeth-4 .KeyGen()
output: Secret key sk ∈ G

256

begin

sk
$←− G

256

return sk
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Algorithm 2: Elisabeth-4 .KeyStream(sk)
input : Secret key sk ∈ G

256

Integer k ∈ N

output: Stream stream ∈ Gk

begin
for i in range(k) do

// aborted Knuth shuffling

for j in range(60) do
r = random int(j, 256)

// Use a forward-secure PRG as described in [34]

w = random int(0, 16) // Random element of G

swap(s[j], s[r])
s[j] = (s[j] + w)%16 // Whitening

Acc = 0
for b in range(12) do

for j in range(5) do
xj = s5b+j

for j in range(4) do
yj = Sj

[
xj + x(j+1)%4

]

r = 0
for j in range(4) do

r += S4+j

[
xj + y(j+1)%4 + y(j+2)%4

]

r += x4

Acc += r
streami = Acc

return stream

Algorithm 3: Elisabeth-4 .Enc(m, sk)

input : Message m ∈ G
k

Secrek key sk ∈ G
256

output: Ciphertext c ∈ G
k

begin
s = Elisabeth-4 .KeyStream(sk)
c = m + s
return c

Algorithm 4: Elisabeth-4 .Dec(c, sk)

input : Ciphertext c ∈ G
k

Secrek key sk ∈ G
256

output: Message m ∈ G
k

begin
s = Elisabeth-4 .KeyStream(sk)
m = c − s
return m
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Abstract. In recent years, several MILP models were introduced
to search automatically for boomerang distinguishers and boomerang
attacks on block ciphers. However, they can only be used when the key
schedule is linear. Here, a new model is introduced to deal with nonlinear
key schedules as it is the case for AES. This model is more complex and
actually it is too slow for exhaustive search. However, when some hints
are added to the solver, it found the current best related-key boomerang
attack on AES-192 with 2124 time, 2124 data, and 279.8 memory complex-
ities, which is better than the one presented by Biryukov and Khovra-
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tively. This represents a huge improvement for the time and memory
complexity, illustrating the power of MILP in cryptanalysis.

Keywords: AES · MILP · Boomerang attacks
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on COCONUT98 which has been proven resistant against differential attacks using
the decorrelation technique introduced by Vaudenay [Vau03]. Many techniques
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Assuming two differentials α → β and γ → δ (with probability p and q) on
two halves of the algorithm, and considering them as independent, one can build a
boomerang distinguisher with probability p2q2. The basic idea consists in encrypt-
ing pairs of messages with a fixed difference α, assuming that a high proportion of
them will follow the differential trail, and then apply another difference δ on both
ciphertexts. After decrypting these new ciphertexts, one could expect to have a dif-
ference α between the plaintexts with a significant probability. Such distinguishers
can be extended using standard methods to attacks recovering the secret key.

Since Wagner’s paper, a series of variants of boomerang attacks (amplified
boomerang, rectangle and sandwich) has drawn much attention on this tech-
nique. However, in 2011, Murphy et al. provided evidence on AES and DES that
the independence argument was not always valid [Mur11]: some boomerang dis-
tinguishers have probability 0 i.e., the boomerang never comes back. Moreover,
Kircanski showed in [Kir15] using an SAT solver that some previous rectangle
and boomerang attacks were based on incompatible characteristics.

Following such issues, the Boomerang Connectivity Table (BCT) has been
introduced in [CHP+18] as a new tool to study the connection between the two
trails. It can be seen as a precomputation of all the possible boomerangs at the
S-box level. BCT solved the problem of incompatibility in boomerang distin-
guishers pointed out by Murphy. Since then, many improvements and further
research into the BCT technique have enriched boomerang attacks.

Boomerang attacks have been applied successfully on AES [Bir04] and they
are the most efficient attacks on AES-192 and AES-256 [BKN09,BK09]. At first
glance, it is surprising that for these two versions, related-key boomerang attacks
allow to cover all the rounds of the cipher and do not break a reduced-round
version. However, it is well-known that for these versions, the diffusion in the
key schedule is slow. These papers rely on the fact that there are very short
local collisions if we can control the key schedule and the state of AES in a
related-key attack. Such model is useful since AES was considered to construct
a hash function at the end of the 2000s [GKM+09]. In [BKN09], Biryukov,
Khovratovich and Nikolic present an attack on AES-256 using 235 keys and
296 for each key in time and data. The same year, in [BK09], Biryukov and
Khovratovich improve the related key attack using only 4 keys on AES-192 with
2176/2123/2152 time/data/memory complexities and using 4 keys on AES-256
with 299.5/299.5/277 time/data/memory complexities. In [BDK+10], Biryukov
et al. show new attacks on 10-round AES-256 up to time complexity 245, data
244 and memory 233, illustrating the fact that these attacks can be very effective
in practice on round-reduced versions, which have been used most recently. The
latter attack has been further extended by Biryukov and Khovratovich to 13
rounds with complexity 276 in time, data and memory, but still in the related
subkey model [BK10]. More recently, Dunkelman et al. in [DKRS20] have intro-
duced a new technique, called retracing boomerang. By creating some correla-
tions, they have been able to improve the probability of the distinguisher to
p2q. They apply it on round-reduced AES and show that on 5-round AES we can
recover the secret key with very low data complexity (216.5).
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Some automatic tools have been developed for AES-128 in [BDF11] to look
for low data complexity attacks on round-reduced AES. Then, more advanced
differential attacks have been investigated in [DF13,DFJ13] leading to the best
attack on 7-round AES-128 with time/data/memory complexity around 2100 and
8 and 9 rounds for AES-192 and AES-256 respectively. Li et al. have extended
the former attack on AES-192 up to 9 rounds in [LJW14]. More recently, Mixed-
integer Linear Programming (MILP) have been considered to automatically find
boomerang distinguishers and attacks. For instance, Liu and Sasaki in [LS19],
Song et al. in [SQH19] and Delaune et al. in [DDV20] have looked for the best
distinguishers on the SKINNY blockcipher. In particular, Song’s work shows that
many boomerang distinguishers from [LGS17] against SKINNY and AES have a
higher probability than expected. Finally, in [QDW+21], Qin et al. extend MILP
capabilities to look for related-key rectangle attacks on SKINNY and ForkSkinny.
This is a much harder problem and it has been done previously with ad-hoc tools
in [BDF11,DF16] for Meet-in-the-middle (MITM) attacks on AES and impossible
differential attacks on AES, mCRYPTON, SIMON, IDEA, KTANTAN, PRINCE and ZORRO.
One of the most difficult task is to estimate the complexity of the attacks.

The current best time complexity for an attack on all rounds of AES-192 is
2189.7 for biclique attacks, and 2176 for related-key attacks. Table 1 shows some
existing attacks against AES-192.

Table 1. Summary of existing attacks against AES-192. Note that biclique attacks
against AES-192 are only accelerated exhaustive searches, with a complete loop on the
key space.

Key size Rounds Time Data Memory Type Reference

192 bits 8/12 2172 2107 296 MITM [DFJ13]

9/12 2182.5 2117 2165.5 [LJW14]

10/12 2183 2124 N/A Related-key Rectangle [KHP07]

2156 2156 265 Related-key Differential [GLMS18]

12/12 2176 2123 2152 Related-key Boomerang [BK09]

2190.16 280 28 Biclique [BKR11]

2190.83 2 260 [BCGS14]

2189.76 248 260 [TW15]

2124 2124 279.8 Related-key Boomerang Sect. 3

Our model and source codes will be publicly available at https://gitlab.inria.
fr/pderbez/asia-2022-aes

Our Contributions

Looking for attacks instead of distinguishers is a harder problem. It is worth
mentioning that for instance our attack on AES-192 is built from a distinguisher

https://gitlab.inria.fr/pderbez/asia-2022-aes
https://gitlab.inria.fr/pderbez/asia-2022-aes
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that has a lower probability than Biryukov’s attack, but that is easier to propa-
gate through the rest of the cipher. To this end, we have to tweak MILP models
that look only for boomerang distinguishers and that work only on linear key
schedules. When there are differences in a nonlinear key, they may not be pre-
dictable and the differences intervening in the trails cannot merely be described
as free or controlled as in [DDV20]. This makes the MILP model more complex as
it is discussed in Sect. 4.2. Finally, as mentioned before, one important feature is
the computation of the probability (Sect. 4.3) and objective function to evaluate
the cost of the attacks which is actually a rough approximation (Sect. 4.4).

Then, we propose the best related-key boomerang attack on AES-192 known
so far and we recover the one on AES-256 by Biryukov and Khovratovich, showing
that our tool is working.

Organization of the Paper

We will begin by giving an overview of AES and related key boomerang attacks
in Sect. 2. Then we will describe our new attack on AES-192 in Sect. 3. Next,
in Sect. 4, we will recall the MILP model introduced in [DDV20] to search for
boomerang distinguishers and explain how we adapted it to find our attack.
Finally, Sect. 5 concludes the paper.

2 AES and Boomerang Attacks

2.1 Description of AES

The Advanced Encryption Standard [DR02] is a Substitution-Permutation Net-
work (SPN) that can be instantiated using three different key sizes: 128, 192, and
256. The 128-bit plaintext initializes the internal state viewed as a 4 × 4 matrix
of bytes as values in the finite field F256, which is defined using the irreducible
polynomial x8+x4+x3+x+1 over F2. Depending on the version of the AES, Nr

rounds are applied to that state: Nr = 10 for AES-128, Nr = 12 for AES-192 and
Nr = 14 for AES-256. Each of the Nr AES rounds (Fig. 1) applies four operations
to the state matrix (except in the last round where the MixColumns operation
is missing):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times

in parallel on each byte of the state.
– ShiftRows (SR) shifts the i-th row left by i positions.
– MixColumns (MC) replaces each of the four columns C of the state by

M ×C where M is a constant 4×4 maximum distance separable matrix over
F256.

After the Nr-th round has been applied, a final subkey is added to the internal
state to produce the ciphertext. The key expansion algorithms to produce the
Nr + 1 subkeys are described in Fig. 2 for each keysize. We refer to the original
publication [DR02] for further details.



72 P. Derbez et al.

Fig. 1. Description of one AES round and the ordering of bytes in an internal state.

Fig. 2. Key schedules of the variants of the AES: AES-128, AES-192 and AES-256.

Notations. In this paper, we count the AES rounds from 0 and we refer to a
particular byte of an internal state x by x[i], as depicted in Fig. 1. Moreover, in
the ith round, we denote the internal state after AddRoundKey by xi, after
SubBytes by yi, after ShiftRows by zi and after MixColumns by wi. To
refer to the difference in a state x, we use the notation Δx. The first added
subkey is the master key k−1, and the one added after round i is denoted ki.

2.2 Probability of Boomerang Distinguishers

In a boomerang distinguisher, a cipher E is regarded as the composition of
two sub-ciphers E0 and E1 so that E = E1 ◦ E0. Suppose there exist both a
differential γ → θ for E0 and a differential λ → δ for E1 with probabilities p and
q respectively.

If we assume the two differentials are independent then we obtain a
boomerang distinguisher of probability:

P
(
E−1(E(P ) ⊕ δ) ⊕ E−1(E(P ⊕ γ) ⊕ δ) = γ

)
= p2q2.
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But in practice the independence assumption does not always hold, especially
at the junction of both the lower and upper differentials, and many counter-
examples have already been found [WKD07,Mur11,Kir15]. However, since the
work of Delaune et al. [DDV20], we know how to precisely compute the proba-
bility of a boomerang characteristic for any SPN, assuming round independence.
The idea is to compute the probability of transitions for each S-box indepen-
dently, using five different tables covering all the possible cases.

Definition 1. Given a n-bit S-box S and four differences γ, θ, λ, δ ∈ F
n
2 , the

DDT, BCT [CHP+18], U(pper)/L(ower)BCT [WP19] and EBCT [DDV20] are
defined as

DDT(γ, θ) = #{x ∈ F
n
2 | S(x) ⊕ S(x ⊕ γ) = θ}

BCT(γ, δ) = #{x ∈ F
n
2 | S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ}

UBCT(γ, θ, δ) = #
{

x ∈ F
n
2

∣
∣
∣
∣
S(x) ⊕ S(x ⊕ γ) = θ
S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ

}

LBCT(γ, λ, δ) = #
{

x ∈ F
n
2

∣
∣
∣
∣
S(x) ⊕ S(x ⊕ λ) = δ
S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ

}

EBCT(γ, θ, λ, δ) = #

⎧
⎨

⎩
x ∈ F

n
2

∣
∣
∣
∣
∣
∣

S(x) ⊕ S(x ⊕ γ) = θ
S(x) ⊕ S(x ⊕ λ) = δ
S−1(S(x) ⊕ δ) ⊕ S−1(S(x ⊕ γ) ⊕ δ) = γ

⎫
⎬

⎭

Fig. 3. Boomerang through
one S-box

Figure 3 helps to understand the notations
used in these definitions. Note that all those tables
are particular cases of the Extended BCT (EBCT)
in which some differences are free. Intuitively, the
UBCT (resp. LBCT) corresponds to the junc-
tion between the upper (resp. lower) trail and the
boomerang switch, while the EBCT deals with the
middle rounds of the switch. From them, one can
determine the associated probabilities by dividing
by 2n. Then the probability of a boomerang distin-
guisher is merely the product of the probabilities
of the transitions through all the S-boxes of the
characteristic. For a specific S-box, the table to be
used is determined by the set of its inputs/outputs
which are set to a fixed value in the upper and the
lower trail. This technique does not need middle

rounds to be defined, so it handles smoothly the switch between the lower and
the upper differentials of a boomerang.

2.3 Boomerang Attacks on AES

In [BK09], Biryukov and Khovratovich described the first attacks against the
full versions of both AES-192 and AES-256 working for all keys. These attacks
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are related-key boomerang attacks relying on the low diffusion in the AES key
schedules.

Related Keys. In the related-key model, the attacker is allowed to ask for the
encryption and/or the decryption of messages under different unknown keys,
related by chosen properties. More precisely, the attacker should be able to
provide an algorithm A which takes as input a master key kA and outputs the
related keys.

For boomerang attacks, the algorithm A typically specifies the differences
between some key bits. Because the key schedules of AES each involves non-
linear S-boxes, we need to take care of the values of the differences. In particular,
specifying non-zero differences both at the input and output of an S-box makes
the algorithm A unable to generate outputs for all keys, leading to a weak-key
attack. This is because there is no non-trivial differential transition through the
AES S-box that holds with probability one. Regarding related-key boomerang
attacks on AES, this means that the differences in the key bytes going through
S-boxes in the middle of the distinguisher will most likely be null. This can be
observed in both attacks as depicted in Fig. 4 and Fig. 5: the last column of
almost each subkeys (as well as the fourth column for AES-256) is fully inactive
for at least one of the trails.

Fig. 4. Difference in the subkeys for the attack against AES-192 in [BK09]. First line
is Δk, second line is ∇k. No difference are depicted in white bytes, known differences
in green bytes and unknown differences in blue bytes. (Color figre online)

Boomerang Attack Against AES-256. It is based on a boomerang distin-
guisher of probability 2−96 covering all rounds but the first one. The distinguisher
is extended by one round at the beginning as depicted in Fig. 6. The four keys
kA, kB , kC and kD are generated such that they have the differences as specified
in Fig. 5.

Then, the attack procedure is quite straightforward:

1. Ask for the encryption through both kA and kB of a structure of 29×8 plain-
texts such that bytes 0, 1, 2, 3, 5, 9, 10, 13 and 15 take all the possible values
while the remaining ones are constant.
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Fig. 5. Difference in the subkeys for the attack against AES-256 in [BK09]. First line
is Δk, second line is ∇k. No difference are depicted in white bytes, known differences
in green bytes and unknown differences in blue bytes.(Color figure online)

Fig. 6. Cancellations of difference in the first round of the attack against AES-256 in
[BK09]. No difference in white bytes, known differences in green bytes and unknown
differences in blue and gray bytes. Differences in blue bytes fully depend on the keys
and known differences.(Color figure online)

2. For each plaintext pA, look at the corresponding ciphertext cA, apply the
right difference to compute cC and ask for its decryption under key kC . Store
the resulting plaintext pC into a hash table indexed by the 7 constant bytes as
well as pA[2]⊕pC [2] and pA[3]⊕pC [3]. Indeed, while unknown, the difference
in bytes 2 and 3 of the plaintexts should be equal for both pairs to satisfy the
distinguisher.

3. Repeat the previous step from plaintext pB and key kD.
4. Look for collisions in the hash table to obtain 272+72−56−16 = 272 possible

quartets.
5. For each quartet, regarding the 2 pairs (pA, pB) and (pC , pD), we know the

difference at the input and at the output of 9 × 2 = 18 S-boxes. Each of
them has on average one solution for the corresponding values and thus each
quartet leads on average to one value for 18 × 2 = 36 bytes of key (9 for each
key). Each time a value is reached, we increase a counter.

6. Because the probability of the distinguisher is 2−96 and the probability that
one pair of the structure passes the first round is 2−72, we need on aver-
age 296+72−2×72 = 224 structures to get one right quartet. Thus we repeat
the previous steps until a counter reaches the value 3 which should hardly
correspond to a wrong value. This requires around 225.5 structures.

7. The remaining key bytes are gradually recovered as detailed in [BK09].
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This attack thus requires to encrypt and decrypt 225.5+72 = 297.5 messages for
each of the four related keys and to process the same number of quartets leading
to an overall complexity of 4× 297.5 = 299.5. Note that in the original attack the
authors propose to perform more filtering on the quartets before increasing the
counter, reducing the memory complexity to 277.5.

Boomerang Attack Against AES-192. The attack against this AES version
is similar to the attack against AES-256. But the key schedule of AES-192 has a
better diffusion and, in particular the differences in the ciphertexts are no longer
fully known. As a result, Biryukov and Khovratovich describe a procedure to
recover the keys with a data complexity of 2123, a time complexity of 2176 and
a memory complexity of 2152. We refer to [BK09] for further details.

3 New Attack on AES-192

In this section we describe our new attack against full AES-192 which is actually
very similar to the ones of Biryukov and Khovratovich. We found a slightly better
boomerang distinguisher that can be much easily turned into a key-recovery
attack.

3.1 Related Keys

Generating keys kB , kC and kD from an original key kA actually relies on a
boomerang distinguisher with probability 1 on the key schedule algorithm. First
we note that AES key schedules are such that all subkeys can be constructed
from one of them. Thus, starting from kA we apply the chosen difference on the
second subkey and compute the corresponding key kB . Then for both kA and
kB we apply the chosen difference on the eighth subkey and compute kC and
kD respectively. Because the differences form a boomerang of probability 1, we
can ensure that the difference between keys kC and kD on the second subkey is
equal to the difference between keys kA and kB .

In our new attack, we use related keys with differences as depicted in Fig. 7.
Actual values of the differences are given in Table 2.

3.2 The Attack

Our attack is based on the boomerang trail depicted in Fig. 8. The boomerang
distinguisher covers all rounds but the first and the last one and has probability
2−2(4×6)×2−2(5×6) = 2−108. Internal state differences are given in Appendix A. It
is worth mentioning here that the boomerang distinguisher used in the original
attack had probability 2−110, highlighting that a small change in the distin-
guisher might lead to a much better attack.

The attack procedure is as follows:
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Fig. 7. Key schedule for this attack. The subkeys for the upper trail are represented
above the ones of the lower trail

1. We first observe in Fig. 7 that the differences in the last row of the ciphertext
all come from the unknown difference at the output of the S-box of k11[12] (the
active byte on the last column of the round-key before the last round-key).
Thus differences in 8+3 = 11 linear combinations of bytes are fixed. Then,
because the number of bytes for which the difference is known is bigger for
the plaintexts than for the ciphertexts, it is better to start the attack from
the ciphertexts. Thus we first ask for the decryption under kA of a structure
of 25×8 = 240 ciphertexts such that bytes 1, 2, 5, 6, 9, 10, 13 and 14 are
constant as well as c[3] ⊕ c[7], c[3] ⊕ c[11] and c[3] ⊕ c[15], and while bytes 0,
3, 4, 8 and 12 take all the possible values.

2. We ask for the decryption of a similar structure under kC , taking care that
the constant values match the required difference in the 11 linear combination
of bytes given above.

3. In the trail, 2 plaintext bytes have an unknown difference. Luckily, for both
of them we know the expected difference after application of the S-box and
thus there are only 214 possible differences for the plaintexts. Hence, for each
ciphertext cA and each of the 214 possible differences, we look at the corre-
sponding plaintext pA, apply the difference to compute pB and ask for its
encryption under key kB . We finally store the resulting ciphertext cB into a
hash table.

4. We repeat the previous step from ciphertext cC and key kD.
5. We now look for collisions in the hash table on the 11 linear combinations of

bytes and should obtain on average 22(40+14)−11×8 = 220 possible quartets.
6. For each quartet, regarding the 4 pairs (pA, pB), (pC , pD), (cA, cC) and

(cB , cD), we know the difference at the input and at the output of 7×2 = 14 S-
boxes (2 from (pA, pB), 2 from (pC , pD), 5 from (cA, cC) and 5 from (cB , cD)).
In particular, this applies a 14 − 4 = 10-bit filter (4 Sboxes are already used
at Step 3) on the quartets and thus only 220−10 = 210 of them pass this test.
Each of them leads on average to 214 values for 28 bytes of key (7 for each
key). Each time a value is reached, we increase a counter.

7. Because the probability of the distinguisher is 2−108 and the probability that
one pair of the structure passes the last round is 2−40, we need on average
2108+40−2×40 = 268 structures to get one right quartet. Thus we repeat the
previous steps until a counter reaches the value 2. This requires around 269

structures.
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8. The remaining key bytes are gradually recovered using a right quartet and
available data.

Data Complexity. In this attack we decrypt 269+40 = 2109 messages under the
keys kA and kC respectively but we encrypt 269+40+14 = 2123 messages under
the keys kB and kD.

The Counter. As described in the procedure, we have to update a counter
around 210+14+69 = 293 times. This can be reduced to 279 by storing sequences
of 14 ordered pairs of 2 bytes instead of sequences of 28 bytes. Indeed, given the
input and output differences of an S-box, the symmetric of any solution for the
actual values is a solution as well. Furthermore, this barely affects the success
of the procedure since more than half of the sequences of 28 bytes are actually
sequences of 14 ordered pairs of 2 bytes.

Noisy Quartets. We generate through the procedure 279 sequences of 14
ordered pairs of 2 bytes. Theoretically, there are more than 28×28−1 = 2223

such sequences. Hence, we expect on average 2−49 noisy quartets increasing the
same counter.

Memory Complexity. The hash table used during Step 5 contains 2 × 240+14

= 255 messages. We also need to store 279 sequences of 28 bytes for the counter.
Thus the memory complexity is 279.8 128-bit blocks.

Time Complexity. Filling the hash table 269 times requires to process 2 ×
2109 + 2 × 2123 messages and the counter is updated 279 times. Regarding the
missing key bytes, we used the tool developed by Bouillaguet et al. [BDF11]
which found a procedure to enumerate all their possible values using only the
constraints on the round keys in 2104 operations. The idea is once we know the
value of the 4 keys on one byte, we know the differences on this byte in both
trails. In particular we obtain the differences in some of the blue bytes leading
to the knowledge of new actual values and so on. Then the 2104 solutions can be
tested against available data.

All in all, the data complexity is 2 × 2109 + 2 × 2123 ≈ 2124, the memory
complexity is 279.8 and the time complexity is 2 × 2109 + 2 × 2123 + 279 ≈ 2124.

4 New MILP Model

Our new attack against AES-192 was found using a new MILP model dedicated
to AES. In this section we thus describe this new model and discuss its limitation.

4.1 Previous Works

In 2020, both Delaune et al. [DDV20] and Hadipour et al. [HBS21] indepen-
dently proposed new MILP models to search for boomerang distinguishers
and applied them to the block ciphers SKINNY. Recently, at EUROCRYPT’22,
Dong et al. [DQSW21] improved those models by adding some new constraints
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Fig. 8. Boomerang attack against AES-192. We recall that white stands for no differ-
ence, blue for a set difference, green for a known difference and gray for a free variable.
(Color figure online)
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and a new objective function to directly search for the best rectangle attacks.
Their attacks were applied to two more rounds than the previous attack on
SKINNY and found better attacks on other block ciphers such as ForkSkinny,
Deoxys, GIFT, Serpent.

All those models highly rely on the linearity of the key schedule and the
simplicity of the internal linear layer of each target. Thus they are not well-
suited to study AES. When the key schedule is nonlinear, the differences in it
may be unpredictable. Therefore, the differences intervening in the trails cannot
merely be described as free or controlled as in [DDV20]: some differences take a
known specific value, some take an unknown (coming from the key) specific value
and some are free (they can take any value uniformly). Following the previous
model of [DDV20], we thus introduce a new model to search for boomerang
attacks.

4.2 New Variables and Constraints

For each step and for each trail, each of the 16 differences of the state or the
round key has to be described by three values answering the three following
questions: is it null? is it known? is it set to a specific value? Thus for any byte
a of an internal state or a round key we define three binary variables az, ak,
as containing the Boolean answers to those questions. Because we directly want
to search for attacks and not only distinguishers we also add an extra binary
variable ad indicating whether the byte a belongs to the distinguisher or to the
key-recovery phase.

There are several straightforward constraints involving those variables. The
first and most important one is az ≤ ak ≤ as which states that if the difference is
zero then it is known and if it is known it is set to a specific value. Furthermore,
if a is a key variable then its difference cannot be free and thus as = 1. We also
impose that each variable a belongs to the distinguisher in either the upper trail
or the lower one which is translated into the constraint:

ad,lo + ad,up ≥ 1.

Let us now describe precisely the constraints for each inner component of AES.

SubBytes. Let b = S(a) where S is the AES S-box. The first simple constraint
is az = bz since if the input or output difference is null then both the input
and output differences are null.
ShiftRows. This operation being a permutation of the bytes it does not
affect the variables.
MixColumns. Let (b1, b2, b3, b4) = MC(a1, a2, a3, a4). Because the matrix
used in this operation is Maximum Distance Separable (MDS) we can simplify
the constraints between the variables into

au
1 + . . . + bu4 ∈ {0, 1, 2, 3, 8}, for u ∈ {z, k, s, d}.
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This can be easily translated into MILP constraints by adding an extra binary
variable e and enforcing:

8 − au
1 − . . . − bu4 ≥ 5e

8 − au
1 − . . . − bu4 ≤ 8e

AddRoundKey. In this operation, variables are related by an equation of
the form a ⊕ b ⊕ c = 0. This corresponds to the 3 inequalities:

au − bu − cu ≥ −1
bu − cu − au ≥ −1
cu − au − bu ≥ −1

which ensure au + bu + cu 	= 2 for u ∈ {z, k, s, d}.

We now need some constraints about the variables that belong to the distin-
guisher and the other ones. First we force that all key variables belong to the
distinguisher. For the state variables, belonging to the distinguisher is a property
propagated with probability 1. According to the notation introduced in Sect. 2,
this means that for any r and i we have the following constraints:

propagation through SubBytes:
{

xr[i]d,up ≤ yr[i]d,up

xr[i]d,lo ≥ yr[i]d,lo

propagation through MixColumns:

{
4zr[i]d,up ≤ ∑3

j=0 wr[4
i/4� + j]d,up

4wr[i]d,lo ≤ ∑3
j=0 zr[4
i/4� + j]d,lo

In order to simplify the computation of the probability of the inner distin-
guisher, and more generally to simplify the whole attack, we add several extra
constraints, mainly to ensure that transitions through the linear layers happen
with probability 1. Here, we use the property that the constraint a + b + c ≥ 1
only removes the solution a = b = c = 0 and its variants (e.g. a + b + 1 − c ≥ 1
only removes a = b = 1 − c = 0). The new constraints are:

– Do not control difference outside the distinguisher:
⎧
⎪⎪⎨

⎪⎪⎩

xr[i]d,up + 1 − xr[i]s,up + yr[i]z,up ≥ 1
yr[i]d,lo + 1 − yr[i]s,lo + xr[i]z,lo ≥ 1
wr[i]d,up + wr[i]s,up + 1 − zr[4
i/4� + j]s,up ≥ 1 for j ∈ {0, 1, 2, 3}
zr[i]d,lo + zr[i]s,lo + 1 − wr[4
i/4� + j]s,lo ≥ 1 for j ∈ {0, 1, 2, 3}

– Transitions through the linear layers happen with probability 1:
{

1 − zr[i]d,up + zr[i]s,up + 1 − wr[4
i/4� + j]s,up ≥ 1 for j ∈ {0, 1, 2, 3}
1 − wr[i]d,lo + wr[i]s,lo + 1 − zr[4
i/4� + j]s,lo ≥ 1 for j ∈ {0, 1, 2, 3}

– Do not take back control inside the distinguisher:
⎧
⎪⎪⎨

⎪⎪⎩

1 − xr[i]d,up + 1 − yr[i]s,up + xr[i]s,up ≥ 1
1 − yr[i]d,lo + 1 − xr[i]s,lo + yr[i]s,lo ≥ 1
xr[i]s,up + xr[i]s,lo ≥ xr[i]d,up + yr[i]d,lo − 1
yr[i]s,up + yr[i]s,lo ≥ xr[i]d,up + yr[i]d,lo − 1
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Finally, as explained in Sect. 2.3, we want to ensure that all transitions
through the keyschedule happen with probability 1. In particular, if a is a key
variable and b = S(a), we need to ensure that if the difference in both a and b
are known then it is zero:

{
2ak,up + bk,up + bk,lo ≤ 2az,up + 2az,lo + 2
2ak,lo + bk,up + bk,lo ≤ 2az,up + 2az,lo + 2

Note that the above inequalities involve both trails because there is no non-trivial
transition through the BCT occurring with probability one.

4.3 Computing Probabilities

The probability of the inner distinguisher is computed as the product of the
probability of each individual S-box transition. However, since some differences
can be set but unknown, we have to extend the definitions of the BCT, UBCT,
LBCT, EBCT and DDT tables. More precisely, given b = S(a), we need to com-
pute the probability of the transition for each value of az,up, ak,up, as,up, bz,up,
bk,up, bs,up, az,lo, ak,lo, as,lo, bz,lo, bk,lo and bs,lo. In practice, only 59 configu-
rations are possible and for each of them we have to compute the associated
probability. The novelty here is that some of the differences cannot be chosen to
maximize the probability. For instance let consider the transition Δin −→ Δout

through the AES S-box. It is well known that we can choose (Δin,Δout) so that
the probability of this transition is 2−6. But now let assume that Δin is set to
an unknown non-zero value and we have to choose Δout. Whatever the choice
we make for it, in 126 cases the transition holds with probability 2−7, in 1 case
it holds with probability 2−6 and in 128 cases in holds with probability 0. Trans-
lated to the distinguisher, we would be able to compute the probability that the
probability of the distinguisher is not zero and, in that case, its average proba-
bility. Unfortunately, performing such precise computation for all configurations
was out of reach. Instead, we only computed the average probability and would
say that the transition Δin −→ Δout holds with probability 2−8 in the studied
case.

Overall we found 11 different possible probabilities: 20, 2−5.4, 2−6, 2−8, 2−12,
2−13.4, 2−14, 2−16, 2−20, 2−21.4 and 2−24. Using classical techniques to lower the
number of inequalities (mainly using the Quine-McCluskey algorithm), we were
able to include the computation of the probability into our MILP model by using
5 extra binary variables and 33 inequalities per S-box.

Because the distinguisher should allow to actually distinguish the block
cipher from a random permutation, we added a constraint to ensure that its
probability is higher than 2−127.

4.4 Objective Function

Precisely evaluating the complexity of a boomerang attack is highly non-trivial
and thus we chose to explore another direction. In our opinion, what matters the
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most for the complexity of the whole attack is on the one hand the probability of
the distinguisher (pdist, the − log2 of the probability) and on the other hand the
number of bytes in which the differences are known in both the plaintexts and the
ciphertexts. Furthermore, variables set to a specific values are more interesting
than free ones since they may depend on the same unknown differences. This is
actually the case in our new attack against AES-192. Thus, we set as objective
the following expression:

2 ×
(

15∑

i=0

p[i]k,up + c[i]k,lo
)

+ 6 ×
(

15∑

i=0

p[i]s,up + c[i]s,lo
)

− pdist,

and we asked the MILP solver Gurobi1 to maximize it. Note that we can choose
other coefficients than (2, 6) as long as they both are positive and sum to 8. It
mainly depends on how confident we are that unknown but set differences will
be related to each other.

4.5 Callback

The problem with our model is that we cannot exhaust all the possible relations
between the variables. For instance, whenever 5 variables of the same column of
zr and xr+1 are known, a linear combination of the round key bytes is known as
well. We used a callback to overcome this issue. When the MILP solver found a
solution, the callback checks whether it is a valid solution, and otherwise removes
it via lazy constraints. We refer interested readers to [DL22] for more information
regarding lossy modelization.

Assuming we have an equation of the form α1a1 ⊕ . . . ⊕ αnan = β where the
αi’s and β are constant, we need to add to the MILP model the constraints:

az
1 + . . . + az

n 	= n − 1
ak
1 + . . . + ak

n 	= n − 1
as
1 + . . . + as

n 	= n − 1
ad
1 + . . . + ad

n 	= n − 1

Because of the main constraints of the model, it is quite unlikely that the two
last constraints are violated. However, it happens regularly for the two first
ones. Checking if one such constraint is violated is actually pretty simple. We
first perform a Gauss-Jordan elimination on the system of equations describing
AES, echelonizing on the variables a for which au = 0 in the solution. Then we
go through those equations and for each of them we check whether it satisfies
the au

1 + . . . + au
n 	= n − 1. If one equation does not, and say for instance that

au
1 = 0, we add the constraint au

2 + . . . + au
n ≤ n − 2 + au

1 to the model.
During the callback, we check as well whether generating the keys can be

done using a boomerang of probability 1. Given the system of equations, we first
echelonize on state variables a for which ak,up = ak,lo = 0. Then we recursively

1 https://www.gurobi.com/.

https://www.gurobi.com/
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echelonize on the key variables a for which ak,up = ak,lo = 0 and appearing
linearly in the remaining equations (i.e. only a or S(a) appears). At the end
of the process, all the remaining variables should be known. Otherwise a lazy
constraint is added to the model.

4.6 Limitations

Actually our model was too slow to exhaust boomerang attacks on AES. We
identified two main problems:

1. When solving the relaxed problem in which all variables are not restricted to
integers, Gurobi does set az = ak = as whenever it is possible. For an integer
solution this would be either (0, 0, 0) which corresponds to a free variable
or (1, 1, 1) which corresponds to a zero difference. Unfortunately, this scales
badly with our constraints related to the probability of the distinguisher as
this leads to a probability equals to 1. Thus the bound in Gurobi is moving
very slowly.

2. Looking at the solutions for which the callback has to add a lazy constraint,
we noticed that in most cases Gurobi sets a column of xr+1 and 3 bytes of
the same column of zr with a null difference while the corresponding column
on kr was fully set to non-zero difference (known or unknown). The problem
is that on itself this configuration is possible but, in practice, it rarely passes
the callback constraint regarding the keys generation process.

Thus we had to add some additional constraints to the model. More precisely,
we ran the model by setting the number of active S-boxes in most of the relevant
states (3 on the upper trail and 3 on the lower one). As a result, we obtained
the attack against AES-192 described in Sect. 3. We also recovered the attack of
Biryukov et al. against AES-256.

Note that the model is very sensitive to those extra constraints. In practice,
when setting the right number of active S-boxes for 6 well-chosen states, Gurobi
takes less than an hour to output the optimal pattern. But for instance if we only
set the number of active S-boxes to be at most 3 (for the same 6 states), then
Gurobi was still far from the optimal pattern after few days. Thus we believe
it is worth improving the modelization of the problem to ensure the boomerang
attack we found against AES-192 is truly optimal.

5 Conclusion

In this paper we described a new related-(sub)keys attack against full AES-192.
Its complexity is 252 times lower than the original attack of Biryukov and
Khovratovich published at ASIACRYPT’09 while relying on a slightly better dis-
tinguisher. This highlights once again that directly searching the attack is very
important as distinguishers with similar probabilities might lead to key-recovery
attacks with very different complexities. Contrary to AES-256, AES-192 has a
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faster diffusion which makes the search of such attacks harder and is a good
testbed for our tool.

We also described the MILP model which helped us to find this attack. We
believe this model can still be improved a lot and opens an interesting research
direction regarding automatic search of boomerang attacks with nonlinear key
schedule.

A New Distinguisher on AES-192

Table 2. Key schedule difference in the AES-192 trail

ΔK0 ? 21 21 21 00 00 ΔK1 21 00 21 00 00 00 ΔK2 21 21 00 00 00 00

3e 3e 3e 3f 00 01 3e 00 3e 01 01 00 3e 3e 00 01 00 00

1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00 00

1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00 00

ΔK3 21 00 00 00 00 00 ΔK4 ? ? ? ? ? ? ΔK5 ? ? ? ? ? ?

3e 00 00 01 01 01 3e 3e 3e 3f 3e 3f ? ? ? ? ? ?

1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f ? ? ? ? ? ?

1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f ? ? ? ? ? ?

ΔK6 ? ? ? ? ? ? ΔK7 ? ? ? ? ? ? ΔK8 ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

∇K0 ? ? ? f8 33 f8 ∇K1 ? ? 33 cb f8 00 ∇K2 ? f8 cb 00 f8 f8

? ? ? 7c 7c 7c ? ? 7c 00 7c 00 ? 7c 00 00 7c 7c

? ? ? 7c 7c 7c ? ? 7c 00 7c 00 ? 7c 00 00 7c 7c

? ? ? ? 84 84 ? ? ? 00 84 00 ? ? 00 00 84 84

∇K3 f8 00 cb cb 33 cb ∇K4 f8 f8 33 f8 cb 00 ∇K5 f8 00 33 cb 00 00

7c 00 00 00 7c 00 7c 7c 7c 7c 00 00 7c 00 7c 00 00 00

7c 00 00 00 7c 00 7c 7c 7c 7c 00 00 7c 00 7c 00 00 00

? 00 00 00 84 00 84 84 84 84 00 00 84 00 84 00 00 00

∇K6 f8 f8 cb 00 00 00 ∇K7 f8 00 cb cb cb cb ∇K8 f8 f8 33 f8 33 f8

7c 7c 00 00 00 00 7c 00 00 00 00 00 7c 7c 7c 7c 7c 7c

7c 7c 00 00 00 00 7c 00 00 00 00 00 7c 7c 7c 7c 7c 7c

84 84 00 00 00 00 84 00 00 00 00 00 ? ? ? ? ? ?
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Table 3. Internal state difference in the AES-192 trail

ΔP ? 00 00 00 Δy1 00 00 00 00 Δy2 00 00 00 00 Δy3 00 00 00 00

00 00 00 ? 00 00 00 1f 00 1f 00 00 00 1f 1f 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Δy4 00 00 00 00 Δy5 00 00 00 00 Δy6 00 00 00 00 Δy7 ? ? ? ?

00 00 00 1f 00 00 00 00 00 ? ? ? ? ? ? ?

00 00 00 00 00 00 00 00 00 00 00 00 ? ? ? ?

00 00 00 00 00 00 00 00 00 00 00 00 ? ? ? ?

∇y6 7c 7c 7c 7c ∇y7 00 00 7c 00 ∇y8 7c 00 00 00 ∇y9 7c 7c 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

∇y10 00 00 7c 00 ∇y11 00 00 00 00 ∇y12 ? ? ? ? ΔC ? ? ? ?

00 00 00 00 00 00 00 00 00 00 00 00 7c 7c 7c 7c

00 00 00 00 00 00 00 00 00 00 00 00 7c 7c 7c 7c

00 00 00 00 00 00 00 00 00 00 00 00 ? ? ? ?
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Abstract. Ratcheting protocols let parties securely exchange messages
in environments in which state exposure attacks are anticipated. While,
unavoidably, some promises on confidentiality and authenticity cannot
be upheld once the adversary obtains a copy of a party’s state, ratch-
eting protocols aim at confining the impact of state exposures as much
as possible. In particular, such protocols provide forward security (after
state exposure, past messages remain secure) and post-compromise secu-
rity (after state exposure, participants auto-heal and regain security).

Ratcheting protocols serve as core components in most modern instant
messaging apps, with billions of users per day. Most instances, includ-
ing Signal, guarantee immediate decryption (ID): Receivers recover and
deliver the messages wrapped in ciphertexts immediately when they
become available, even if ciphertexts arrive out-of-order and preceding
ciphertexts are still missing. This ensures the continuation of sessions in
unreliable communication networks, ultimately contributing to a sat-
isfactory user experience. While initial academic treatments consider
ratcheting protocols without ID, Alwen et al. (EC’19) propose the first
ID-aware security model, together with a provably secure construction.
Unfortunately, as we note, in their protocol a receiver state exposure
allows for the decryption of all prior undelivered ciphertexts. As a conse-
quence, from an adversary’s point of view, intentionally preventing the
delivery of a fraction of the ciphertexts of a conversation, and corrupting
the receiver (days) later, allows for correctly decrypting all suppressed
ciphertexts. The same attack works against Signal.

We argue that the level of (forward-)security realized by the protocol
of Alwen et al., and mandated by their security model, is considerably
lower than both intuitively expected and technically possible. The main
contributions of our work are thus a careful revisit of the security notions
for ratcheted communication in the ID setting, together with a provably
secure proof-of-concept construction. One novel component of our model
is that it reflects the progression of physical time. This allows for for-
mally requiring that (undelivered) ciphertexts automatically expire after
a configurable amount of time.
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1 Introduction

We consider a communication model between two parties, Alice and Bob, as
it occurs in real-world instant messaging (e.g., in smartphone-based apps like
Signal). A key principle in this context is that the parties are only very loosely
synchronized. For instance, a “ping-pong” alteration of the sender role is not
assumed but parties can send concurrently, i.e., whenever they want to. Fur-
ther, specifically in phone-based instant messaging, a generally unpredictable
network delay has to be tolerated: While some messages are received split sec-
onds after they are sent, it may happen that other messages are delivered only
with a considerable delay.1 We refer to this type of communication (with no
enforced structure and arbitrary network delays) as asynchronous. We say that
asynchronous communication has in-order delivery if messages always arrive at
the receiver in the order they were sent (what Alice sends first is received by Bob
before what she sends later); otherwise, if in-order delivery cannot be guaranteed
by the network, we say that the communication has out-of-order delivery.

The central cryptographic goals in instant messaging are that the confiden-
tiality and integrity of messages are maintained. As communication sessions are
routinely long-lived (e.g., go on for months), and as mobile phones are so easily
lost, stolen, confiscated, etc., the resilience of solutions against state exposure
attacks has been accepted as pivotal. In such an attack, the adversary obtains a
full copy of the attacked user’s program state.2 We say that a protocol provides
forward security if after a state exposure the already exchanged messages remain
secure (in particular confidential), and we say that it provides post-compromise
security if after a state exposure the attacked participant heals automatically
and regains full security.

Past research efforts succeeded with proposing various security models and
constructions for the (in-order) asynchronous communication setting with state
exposures [10,14,17–19,24,26]. The rule of thumb “the stronger the model the
more costly the solution” applies also to the ratcheting domain, and the indicated
works can be seen as positioned at different points in the security-vs-cost trade-
off space. For instance, the security models of [17,24] are the strongest (for
excluding no attacks beyond the trivial ones) but seem to necessitate HIBE-like
building blocks [6], while [10,14,18] work with a relaxed healing requirement
(either parties do not recover completely or recovery is delayed) that can be
satisfied with DH-inspired constructions.

While the works discussed above exclusively consider communication with
in-order delivery, popular instant-messaging solutions like Signal are specifically
designed to tolerate out-of-order delivery [22, Sec. 2.6] in order to best deal with

1 E.g., delays of hours can occur if a phone is switched off over night or during a
long-distance flight.

2 Program states could leak because of malware executed on the user’s phone, by ana-
lyzing backup images of a phone’s memory that are stored insufficiently encrypted
in the cloud, by analyzing memory residues on swap drives, etc. Less technical con-
ditions include that users are legally or illegally coerced to reveal their states.
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the needs of users who want to effectively communicate despite temporary net-
work outages, radio dead spots, etc. Given this means that the protocols cannot
rely on ciphertexts arriving in the order they were sent, let alone that they arrive
at all, the immediate decryption (ID) property of such protocols demands that
independently of the order in which ciphertexts are received, and independently
of the ciphertexts that might still be missing, any ciphertext shall be decryptable
for immediate display in the moment it arrives.3 The ID property received first
academic attention in an article by Alwen, Coretti, and Dodis (ACD) [2]. As
the authors point out, while virtually all practical secure messaging solutions do
support ID, most rigorous treatments do not. The work of ACD aims at closing
this gap. We revisit and refine their results.

The main focus of ACD is on the Double Ratchet (DR) primitive which is
one of the core components of the Signal protocol [13,22]. DR was specifically
developed to allow for simultaneously achieving forward and post-compromise
security in ID-supporting instant messaging. ACD contribute a formal security
model for this primitive and detail how instant messaging can be constructed
from it. This approach, taken by itself, does not guarantee that their solution is
secure also in an intuitive sense: As everywhere else in cryptography, if a model
turns out to be weak in practical cases, so may be the protocols implementing it.
Indeed, we identified an attack that should not be successful against a secure ID-
supporting instant messaging protocol, yet if applied against the ACD protocol
(or Signal) it leads to the full decryption of arbitrarily selected ciphertexts.

Our attack is surprisingly simple: Assume Alice encrypts, possibly spread over
a timespan of months, a sequence of messages m1, . . . ,mL and sends the result-
ing ciphertexts c1, . . . , cL to Bob. An adversary that is interested in learning the
target message m1, arranges that all ciphertexts with exception of c1 arrive at
their destination. By the ID property, Bob decrypts the ciphertexts c2, . . . , cL

delivered to him and recovers the messages m2, . . . ,mL. Further, expecting that
the missing c1 is eventually delivered, he consciously remains in the position to
eventually decrypt c1. But if Bob can decrypt c1, the adversary, after obtaining
Bob’s key material via a state exposure, can decrypt c1 as well, revealing the
target message m1. Note that the attack is not restricted to targeting specifi-
cally the first ciphertext; it would similarly work against any other ciphertext,
or against a selection of ciphertexts, and the adversary would in all cases fully
recover the target messages from just one state exposure. That is, for an adver-
sary who wants to learn specific messages of a conversation secured with Signal
or the protocol of ACD, it suffices to suppress the delivery of the corresponding
ciphertexts and arrange for a state exposure at some later time. This obviously
contradicts the spirit of FS.

Main Conceptual Contributions. Our attack seems to indicate that the
immediate decryption (ID) and forward security (FS) goals, by their very nature,
are mutually exclusive, meaning that one can have the one or the other, but not
both. Our interpretation is less black and white and involves refining both the ID
and the FS notions. We argue that, while out-of-order delivery and ID features
3 In the user interface, placeholders could indicate messages that are still missing.
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are indeed necessary to deal with unreliable networks, it also makes sense to
put a cap on the acceptable amount of transmission delay. For concreteness,
let threshold δ specify a maximum delay that messages traveling on the network
may experience (including when transmissions are less reliable). Then ciphertexts
that are sent at a time t1 and arrive at a time t2 should be deemed useful and
decryptable only if Δ(t1, t2) ≤ δ, while they should be considered expired and
thus disposable if Δ(t1, t2) > δ. Once a threshold δ on the delay is fixed, the
ID notion can be weakened to demand the correct decryption of ciphertexts only
if the latter are at most δ old, and the FS notion can be weakened to protect
past messages under state exposure only if they are older than δ (or already have
been decrypted). As we show, once the two notions have been weakened in this
sense, they fit together without contradicting each other. That is, this article
promotes the idea of integrating a notion of progressing physical time into the
ID and FS definitions so that their seemingly inherent rivalry is resolved and
one can have both properties at the same time.

Our models and constructions see δ as a configurable parameter. The value
to pick depends on the needs of the participants. For instance, if Alice and Bob
are political activists operating under an oppressive regime, choosing δ < 10 mins
might be useful; more relaxed users might want to choose δ= 1week. Note that
for δ = ∞ our definitions ‘degrade’ to the no-expiration setting of ACD.

Main Technical Contributions. We start with a compact description of our
three main technical contributions. We expand on the topics subsequently.

In a nutshell, the contributions of this article are: (1) We introduce the con-
cept of evolving physical time to formal treatments of secure messaging. This
allows us to express requirements on the automatic expiration of ciphertexts
after a definable amount of time. (2) We propose new security models for secure
messaging with immediate decryption (ID). Our approach is to have the security
definitions disregard the unavoidable trivial attacks but nothing else; this ren-
ders our models particularly strong. By incorporating the progressing of physical
time into our notions, our FS and ID definitions are not in conflict with each
other. (3) We contribute a proof-of-concept protocol that provably satisfies our
security notions. Efficiency-wise our protocol might be less convincing than the
ACD protocol and Signal, but it is definitely more secure.

(1) Modeling physical time. Among the many possible approaches to for-
malizing evolving physical time, the likely most simple option is sufficient for our
purposes. In our treatments we assume that participants have access to a local
clock device that notifies them periodically through events referred to as ticks
about the elapse of a configurable amount of time.4 The clocks of all participants
are expected to be configured to the same ticking frequency (e.g., one tick every
one minute), but otherwise our synchronization demands are very moderate: The
only aspect relevant for us is that when Alice sends a ciphertext at a time t1
(according to her clock) and Bob receives the ciphertext at a time t2 (accord-

4 Modern computing environments provide such a service right away. For instance, in
Linux, via the setitimer system call or the alarm standard library function.

https://man7.org/linux/man-pages/man2/setitimer.2.html
https://man7.org/linux/man-pages/man2/alarm.2.html
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ing to his clock), then we expect that the difference Δ(t1, t2) be meaningful to
declare ciphertexts fresh or expired. More precisely, we deem ciphertexts with
Δ(t1, t2) ≤ δ, for a configurable threshold δ, fresh and thus acceptable, while
we consider all other ciphertexts expired and thus discardable. Note here that
threshold δ specifies both a maximum on the tolerated network delay and on
a possibly emerging clock drift between the sender’s and the receiver’s clock.
The right choice of threshold δ is an implementation detail which controls the
robustness-security trade-off.5 See above for a discussion on how to choose δ.

(2) Security models. We develop security models for secure messaging
with out-of-order delivery and immediate decryption (ID). We claim two main
improvements over prior definitions: (a) We incorporate physical time into all
correctness and security notions. For instance, when formulating the correctness
requirements, we do not demand the correct decryption of expired ciphertexts,
and our confidentiality definitions deem state exposure based message recovery
attacks successful if the targeted ciphertext is expired. (b) We formalize the max-
imum level of attainable security (under state exposures). Recall that ACD was
designed for analyzing Double Ratchet based constructions which were proven
to achieve only limited security already in the in-order delivery setting [17,24].6
In contrast, our models are designed to exclude the unavoidable ‘trivial’ attacks
but nothing else, thus guaranteeing the best-possible security. (In the full version
we review examples of such trivial attacks. We also list attacks that are included
in our model but excluded by the ACD model.)

(3)Our construction. We propose a proof-of-concept construction that prov-
ably satisfies our security definitions. Its cryptographic core is formed by two spe-
cialized types of key encapsulation mechanism (KEM): a KeKEM and a KuKEM.
In a nutshell, our KeKEM (key-evolving KEM) primitive is a type of KEM where
public and secret keys can be linearly updated ‘to the next epoch’, almost like
in forward-secure PKE. In contrast, our KuKEM (key-updatable KEM) primi-
tive allows for updating keys based on provided auxiliary input strings. In both
cases, key updates provide forward secrecy, i.e., ‘the updates cannot be undone’.7
Together with additional more standard building blocks like (stateful) signatures,

5 One might wonder about the resilience of computer clocks against desynchroniza-
tion attacks where the adversary aims at desynchronizing participants. We note that
instant messaging apps are typically run on mobile devices that have access to mul-
tiple independent clock sources (e.g., a local clock, NTP, GSM, and GNSS) that can
be compared and relied upon when consistent. Only the strongest adversaries can
arrange for a common deviation of all these clock sources simultaneously and even
in this case our solutions degrade gracefully: If all clocks stop, the security of our
solution doesn’t degrade below the security defined by ACD.

6 In a nutshell, DR provides optimal security only if used for ping-pong structured
communication [17,24]. In contrast, the constructions of [17,24] provide security for
any (in-order) communication pattern, though require stronger primitives than DR.

7 We note that similar KEM variants have been proposed and used in prior work
on instant messaging [6,17,24], so in this article we claim novelty for neither the
concepts nor the constructions.

https://en.wikipedia.org/wiki/Clock_drift
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/Satellite_navigation
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we finally obtain a secure instant messaging protocol. In addition to the crypto-
graphic core, a considerable share of our protocol specification is concerned with
data management: the KeKEM and KuKEM primitives require that senders and
receivers perform their updates in a strictly synchronized fashion; if ciphertexts
arrive out of order, careful bookkeeping is required to let the receiver update in
the right order and at the right time.

When compared to the constructions of ACD and Signal, our construction
is admittedly less efficient, primarily because (a) we employ the KuKEM and
KeKEM primitives that seem to require a considerable computational overhead,
and (b) the ciphertexts of our protocol are larger. Concerning (a), we note that
prior work like [17,24] that achieves strongest possible security for the much
less involved in-order instant messaging case uses the same primitives, and that
results [6] indicate that their use is actually unavoidable. We conclude from this
that the computational overhead that the primitives bring with them seems to
represent the due price to pay for the extra security. A similar statement can be
made concerning (b): If an instant messaging conversation is such that the sender
role strictly alternates between Alice and Bob, then the ciphertext overhead of
our protocol, when compared to Signal, is just a couple of bytes per message.
If the sender role does not strictly alternate, the ciphertext size grows linearly
in the number of messages that the sender still has to confirm to have arrived.
Recalling that the non-alternating case is precisely the one where Signal fails to
provide best-possible security, the ciphertext overhead seems to be fair given the
extra security that is achieved.

Related Work
We start with providing a more detailed comparison of our results with those of
the prior work mentioned above. We first remark that our results generalize the
findings of [17,24]: If in our models the physical time is ‘frozen’, messages are
always delivered, and messages are delivered in-order, they express exactly the
same security guarantees as [17,24]. It is clear that as soon as time starts ticking
our model is stronger: We allow state exposures once ciphertexts ‘expire’, while
this concept does not exist in [17,24]. For out-of-order delivery the picture is more
complicated: Note that when messages are delivered in-order, optimal security
demands that user states immediately ‘cryptographically diverge’ when receiving
an unauthentic ciphertext, but for out-of-order delivery the situation becomes
more nuanced. Consider the scenario where Alice sends a message and is then
state-exposed. Using the obtained state information, the adversary could now
trivially and perfectly impersonate Alice towards Bob for the second message.
That is, if Bob receives the second ciphertext first, there is no (cryptographic)
way for him to tell whether it is authentic or not, i.e., to distinguish whether
Alice sent or the adversary injected it. If the ciphertext was indeed sent by Alice,
correctness would require that Bob remains able to decrypt the first ciphertext.
Thus, the latter also has to hold if the ciphertext is unauthentic. Hence, in
contrast to the setting with in-order delivery, in the out-of-order setting there are
inherent limits to how much the states of Alice and Bob can ‘cryptographically
diverge’ once unauthentic ciphertexts are processed.
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Multiple weaker security definitions for secure messaging have been pro-
posed [2,10,14,18]. We provide a brief overview about what makes their security
notions suboptimal. In [10,14] the adversary is forbidden to impersonate a user
when a secure key is being established. Hence, in this case the authors do not
require recovery from a state exposure (which enables an impersonation attack).
In [2,18] the construction can take longer than strictly necessary to recover from
state exposures. This is encoded in the security games by artificially labeling
certain win conditions as trivial. See [9] for an extensive treatment of the limita-
tions of the ACD model. Moreover, in both works the user states are not required
to immediately ‘cryptographically diverge’ for future ciphertexts when accepting
an unauthentic ciphertext. We note that an important difference between our
KuKEM and Healable key-updating Public key encryption (HkuPke) introduced
in [18] is that HkuPke key updates are based on secret update information, while
our KuKEM is updated with adversarially controlled associated data.

The security definitions of [2,17,18] assume a slightly different understanding
of what it means to expose a participant. Our understanding is that exposures
reveal the current protocol state of a participant to the adversary, while their
approach is rather that exposures reveal the randomness used for the next send-
ing operation. The two views seem ultimately incomparable, and likely one can
find arguments for both sides. One argument that supports our approach is that
modern computing environments have RNGs that constantly refresh their state
based on unpredictable events (e.g., the RDRAND instruction of Intel CPUs or
the urandom device in Linux) so that if one of the situations listed in Footnote 2
leads to a state exposure then it still can be assumed that the randomness used
for the next sending operation is indeed safe. A third view considers state expo-
sures to leak a party’s state except for signing keys [1], which seems unrealistic
(to us).

See [12] for a treatment of secure messaging in the UC setting.
Our work is not the first to consider a notion of physical time in a cryp-

tographic treatment. See [25] for modeling approaches using linear counters, or
[11,20,21] for encrypting data ‘to the future’.

Recent work in the group messaging setting [4] similarly designs their proto-
col in a modular way and captures security in game based definitions. A main
component, continuous group key agreement (CGKA) was first defined in [3]
and the analysis of [5] shows, even in the passive case, no known CGKA proto-
col achieves optimal security without using HIBE.

Organization. This article considers the security and constructions of what we
refer to as bidirectional out-of-order messaging protocols, abbreviated BOOM.
In Sect. 3 we define the security model. In Sect. 4 we introduce non-interactive
components that we employ in our construction. This includes the mentioned
KuKEM and KeKEM primitives. In Sect. 5 we finally present our construction.

https://en.wikipedia.org/wiki/RDRAND
https://en.wikipedia.org/wiki//dev/random
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2 Notation

We write T or 1, and F or 0, for the Boolean constants True and False, respec-
tively. For t1, t2 ∈ N we let Δ(t1, t2) := t2 − t1 if t1 ≤ t2 and Δ(t1, t2) := 0 if
t1 > t2. For a, b ∈ N, a ≤ b, we let [a .. b] := {a, . . . , b} and [b] := [0 .. b] and
�a .. b� := [a .. (b − 1)] and �b� := [0 .. (b − 1)]. We further write �∞� for the set of
natural numbers N = {0, . . .}. Note that �0� represents the empty set.

We specify scheme algorithms and security games in pseudocode. In such
code we write var ← exp for evaluating expression exp and assigning the result
to variable var . If var is a set variable and exp evaluates to a set, we write
var ∪← exp shorthand for var ← var ∪ exp and var ∩← exp shorthand for var ←
var ∩exp. A vector variable can be appended to another vector variable with the
concatenation operator �, and we write var �← exp shorthand for var ← var �

exp. We do not overload the � operator to also indicate string concatenation,
i.e., the objects a � b and ab are not the same. We use [ ] notation for associative
arrays (i.e., the ‘dictionary’ data structure): Once the instruction A[·] ← exp
initialized all items of array A to the default value exp, individual items can
be accessed as per A[idx ], e.g., updated and extracted via A[idx ] ← exp and
var ← A[idx ], respectively, for any expression idx .

Unless explicitly noted, any scheme algorithm may be randomized. We use
〈 〉 notation for stateful algorithms: If alg is a (stateful) algorithm, we write
y ← alg〈st〉(x) shorthand for (st , y) ← alg(st , x) to denote an invocation with
input x and output y that updates its state st . (Depending on the algorithm,
x and/or y may be missing.) Importantly, and in contrast to most prior works,
we assume that any algorithm of a cryptographic scheme may fail or abort,
even if this is not explicitly specified in the syntax definition. This approach is
inspired by how modern programming languages deal with error conditions via
exceptions: Any code can at any time ‘throw an exception’ which leads to an
abort of the current code and is passed on to the calling instance. In particular,
if in our game definitions a scheme algorithm aborts, the corresponding game
oracle immediately aborts as well (and returns to the adversary).

Security games are parameterized by an adversary, and consist of a main
game body plus zero or more oracle specifications. The adversary is allowed
to call any of the specified oracles. The execution of the game starts with the
main game body and terminates when a ‘Stop with exp’ instruction is reached,
where the value of expression exp is taken as the outcome of the game. If the
outcome of a game G is Boolean, we write Pr[G(A)] for the probability (over
the random coins of G and A) that an execution of G with adversary A results
in the outcome T or 1. We define shorthand notation for specific combinations
of game-ending instructions: While in computational games we write ‘Win’ for
‘Stop with T’, in distinguishing games we write ‘Win’ for ‘Stop with b’ (where b
is the challenge bit). In any case we write ‘Lose’ for ‘Stop with F’. Further, for
a Boolean condition C, we write ‘Require C’ for ‘If ¬C: Lose’, ‘Penalize C’ for
‘If C: Lose’, ‘Reward C’ for ‘If C: Win’, and ‘Promise C’ for ‘If ¬C: Win’.
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3 Syntax and Security of BOOM

We formalize Bidirectional Out-of-Order Messaging (BOOM) protocols. The
scheme API assumes the four algorithms init, send, recv, tick and a timestamp
decoding function ts. The init, send, recv algorithms are akin to prior work
and implement instance initialization, message sending, and message receiving,
respectively.8 The tick algorithm enables a user’s instance to track the progres-
sion of physical time : It is assumed to be periodically invoked by the computing
platform (e.g., once every second), and has no visible effect beyond updating the
instance’s internal state. This allows us to model physical time with an integer
counter that indicates the number of occurred tick invocations of the corre-
sponding participant. Independently of physical time, a notion of logical time is
induced by the sequence in which messages are processed by a sender: We track
logical time with an integer counter that indicates the number of occurred send
invocations of the corresponding participant. The logical time associated with
a sending operation is also referred to as the operation’s sending index . When-
ever a ciphertext is produced, we assume a production timestamp is attached
to it. Formally, we demand that, given a ciphertext, the timestamp decoding
function ts recovers the physical time and logical time of the sender at the point
when it created the ciphertext by invoking the send algorithm. The timestamp
notion will prove crucial to formulate conditions related to ciphertext expiration.

We proceed with defining the syntax, the semantics (execution environment
and correctness), and the security notions associated with BOOM protocols.

Syntax. A (two-party) BOOM scheme for an associated-data space AD and a
message space M consists of a state space ST , a ciphertext space C, algorithms
init, send, recv, tick, and a timestamp decoding function ts. Algorithm init gen-
erates initial states stA, stB ∈ ST for the participants. Algorithm send takes a
state st ∈ ST , an associated-data string ad ∈ AD, and a message m ∈ M, and
outputs an (updated) state st ′ ∈ ST and a ciphertext c ∈ C. Algorithm recv
takes a state st ∈ ST , an associated-data string ad ∈ AD, and a ciphertext
c ∈ C, and outputs an (updated) state st ′ ∈ ST , an acknowledgment set A ⊆ N,
and a message m ∈ M. (The understanding of output A is that when c was
generated by the peer, then for all i ∈ A the peer had received the ciphertext
with sending index i.) Algorithm tick takes a state st ∈ ST and outputs an
(updated) state st ′ ∈ ST . Function ts takes a ciphertext c ∈ C and recovers a
logical timestamp (sending index) lt ∈ N and a physical timestamp pt ∈ N. If
P(N) denotes the powerset of set N, the BOOM API is thus as follows:

init → ST × ST tick〈ST 〉 ts : C → N × N

AD × M → send〈ST 〉 → C AD × C → recv〈ST 〉 → P(N) × M

8 More precisely, our recv algorithm has a dedicated output for reporting to the invok-
ing user which of the priorly sent own messages have been received by the peer; this
output does not exist in prior work.
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Semantics. We give game based definitions of correctness and security. Recall
that the form of secure messaging that we consider supports the out-of-order
processing of ciphertexts. This property, of course, has to be reflected in all
games, rendering them more complex than those of prior works that deal with
easier settings. To manage this complexity, we carefully developed our games
such that they share, among each other, as many code lines and game variables
as possible. In particular, the games can be seen as derived by individualizing a
common basic game body in order to express specific aspects of functionality or
security. This individualization is done by inserting an appropriate small set of
additional code lines.9 (For instance, the game defining authenticity adds lines
of code that identify and flag forgery events.) In the following we explain first
the BASIC game and then its refinements FUNC, AUTH, and CONF.10

Game BASIC. We first take a quick glance over the BASIC game of Fig. 1,
deferring the discussion of details to the upcoming paragraphs. The game body
[G00–G18] initializes some variables [G00–G13], invokes the init algorithm to
initialize states for two users A and B [G17], and invokes the adversary [G18].
The adversary has access to four oracles, each of which takes an input u ∈ {A, B}
to specify the targeted user. The Tick oracle gives access to the tick algorithm
[T00], the Send oracle gives access to the send algorithm [S00,S07], and the Recv
oracle, besides internally recovering the logical and physical sending timestamps
of an incoming ciphertext [R00], gives access to the recv algorithm [R01,R29].
Finally, the Expose oracle reveals the current protocol state of a user to the
adversary [E06]. The game variables and remaining code lines are related to
monitoring the actions of the adversary, allowing for identifying specific game
states and tracking the transitions between them. In particular we identified the
user-specific states in-sync and authoritative, the ciphertext properties sync-
preserving, sync-damaging, certifying, and vouching, and the transitions losing
sync, poisoning, and healing, as relevant in the BOOM setting. We explain these
concepts one by one.

We say that protocol actors are synchronized if their views on the communi-
cation is consistent. A little more precisely, a participant Alice is in-sync with her
peer Bob if all ciphertexts that Alice received are identical with ciphertexts that
Bob priorly sent. The complete definition, formalized as part of the BASIC game
as discussed below, further requires that the employed associated-data inputs are
matching, and that the processing of ciphertexts of an out-of-sync peer also ren-
ders the receiver out-of-sync. If Alice is in-sync with Bob, we refer to ciphertexts
that Alice can receive without losing sync as sync-preserving ; the ciphertexts
that would render her out-of-sync are referred to as sync-damaging .11

9 Removing or modifying existing lines will not be necessary. That said, restricting
the options to only add new lines might lead to also introducing a small number of
redundancies that could allow for simplifications.

10 The BASIC game itself is not used to model any kind of functionality or security. It
merely describes the execution environment.

11 The in-sync notion first surfaced in [7] in the context of unidirectional channels.
It was extended in [23] to handle bidirectional communication and associated-data
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Fig. 1. Game BASIC. We refer the reader to Footnote 14 for the interpretation of
VFu�ltu� in line [E02]. We write ū for the element such that {u, ū} = {A, B}.

As we consider communication algorithms that are stateful, any ciphertext
created by a participant may depend on, and may implicitly reflect, the full prior
communication history of that participant. That is, if from a sequence of sent
ciphertexts only a subset of ciphertexts arrive, then from what did arrive the
receiver should be able to extract information linked to what was sent before
but is still missing. In particular, any ciphertext that is received in-sync should
allow for identifying which earlier-sent though later-delivered ciphertexts are
authentic. We correspondingly say that in-sync received ciphertexts certify the
ciphertexts sent earlier by the same sender.

Ciphertexts can also make promises about the future: Every received cipher-
text may carry (cryptographic) information that is used to authenticate later
ciphertexts (of the same sender, up to their next exposure). Here we say that
ciphertexts (cryptographically) vouch for the ones sent later by the same par-
ticipant.

We finally discuss attack classes that are enabled by exposing the states
of users: Once a participant’s state becomes known by exposure, it is trivial
to impersonate the user, simply by invoking the scheme algorithms with the
captured state. We refer to states of a participant as authoritative if their actions
can not be trivially emulated by the adversary in this way. If an impersonation
happens right after an exposure, as the adversary can perfectly and permanently
emulate all actions of the impersonated party, in addition to all authenticity and
confidentiality guarantees being lost, there is also no option to recover into a safe
state. We refer to the transition into such a setting, more precisely to the action
of exploiting the state exposure of one participant by delivering an impersonating
ciphertext to the other participant, as poisoning the latter. A second option of

strings. Our definitions are based on [23], but adapted to tolerate the out-of-order
delivery of ciphertexts.



100 J. Pijnenburg and B. Poettering

the adversary after exposing a state is to remain passive (in particular, not to
poison the partner). In this case the healing property of ratcheting-based secure
messaging protocols shall automatically fully restore safe operations.

Coming back to the BASIC game of Fig. 1, we describe how the above con-
cepts are reflected in the game variables and code lines. We start with the game
body [G00–G18]. If u ∈ {A, B} refers to one of the two participants, integer ltu

(‘logical time’) reflects the logical time of u; integer ptu (‘physical time’) reflects
the physical time of u; Boolean flag isu (‘in-sync’) indicates whether u is in-
sync with their peer ū; set SCu (‘sent ciphertexts’) records the associated-data–
ciphertext pairs sent by u; set CERTu (‘certified’) indicates which of the peer ū’s
sending indices have been certified by receiving an in-sync ciphertext from them;
for each sending index i, set VFu[i] (‘vouches for’) indicates for which sending
indices of u the ciphertext with index i can vouch for; set AUu indicates for which
sending indices participant u is authoritative; flag poisonedu indicates whether
u was poisoned.

We next explain how these variables are updated throughout the game. The
cases of ltu [G01,S06] and ptu [G02,T01] are clear. Flag isu is initialized to T
[G03], and cleared [R23] in the moment that u receives a ciphertext that the
peer ū either didn’t send, or did send but after becoming out-of-sync [R17] (in
conjunction with [S02,S03], see next sentence).12 Set SCu is initialized empty
[G04] and populated [S03] for each sending operation in which u is in-sync
[S02].13 Set CERTu is initialized empty [G05] and, when a sync-preserving
ciphertext is received [R06,R06insync], populated with all indices prior to, and
including, the current one [R08]. All entries of array-of-sets VFu are initialized
to ‘all-indices’ [G06], expressing that, by default, each sending index crypto-
graphically vouches for its entire future (and past). This changes when u’s state
is exposed, as impersonating u then becomes trivial; the game reflects this by
updating all VFu entries related to the time preceding the exposure so that the
corresponding ciphertexts do not vouch for ciphertexts that are created after
the exposure [E02].14 Set AUu is initialized to ‘all-indices’ [G07], and indices
are removed from it by exposing u’s state, and added back to it by letting u
heal; more precisely, while exposing u’s state removes all indices starting with
the current one (marking the entire future as non-authoritative) [E03], receiving
a sync-preserving ciphertext from peer ū [R06,R06insync] adds the vouched-for
entries back [R09] (re-establishing authoritativeness up to the next exposure).
Finally, flag poisonedu is initialized clear [G13], and set [R20] when a sync-
damaging ciphertext is received (i.e., one that was not sent by peer ū [R17] and
is the first one making u lose sync [R18]) that was trivially injected after an
12 The mechanism of considering participants out-of-sync once they process (unmodi-

fied) ciphertexts from out-of-sync peers is taken from [23], see Footnote 11.
13 Note that the sending index of any ciphertext is uniquely recoverable (with func-

tion ts), implying that each execution of [S03] adds a new element to the set (colli-
sions cannot occur).

14 Line [E02] should be read as ‘For all 0 ≤ i < ltu: VFu[i] ← VFu[i] ∩ �ltu�’ and
expresses that all entries of VFu[·] that correspond with prior sending indices are
trimmed so that they cover no indices that succeed the current one (including).
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exposure of peer ū’s state (technically: was crafted for a non-authoritative index
[R19]).

This completes the description of the BASIC game. We refine it in the fol-
lowing to obtain three more games, but the basic working mechanisms of the
oracles and variables remain the same.

Game FUNC. We specify the expected functionality (a.k.a. correctness) of a
BOOM protocol by formulating requirements on how it shall react to receiving
valid and invalid ciphertexts. Concretely, in Fig. 2 we specify the corresponding
FUNC game as an extension of the BASIC game from Fig. 1. In the figure, the
code lines marked with neither ◦ nor • are taken verbatim from the BASIC game,
and the lines marked with ◦ are the ones to be added to obtain the FUNC game.
(Ignore the lines marked with • for now.) The FUNC game tests for a total of
seven conditions, letting the adversary ‘win’ if any one of them is not fulfilled.
Five of the conditions are checked for all operations (in-sync and out-of-sync):
The conditions are (1) that the ts decoding function correctly indicates the log-
ical and physical creation time of ciphertexts [S01]; (2) that no sending index
is received twice (single delivery of ciphertexts) [G10,R02,R25] (set RIu records
‘received indices’); (3) that expired ciphertexts are not delivered (the reported
sender’s physical time pt is compared with the receiver’s physical time ptu, toler-
ating a lag of up to δ time units) [R03]; (4) that physical timestamps increase as
logical timestamps do [G11,R04,R26] (set RTu records ‘received timestamps’);15
and (5) that the reported acknowledgment set A never shrinks and never lists
never-sent indices [G12,R05,R27] (set RAu records ‘received acknowledgments’).
Two additional conditions are checked for certified ciphertexts (this includes
all in-sync ciphertexts, as they certify themselves [R06,R07,R08]): The condi-
tions are (6) that the recv algorithm accurately reports the acknowledgment
set A [R13] (recall that set RIu holds the received indices [G10,R25], allowing
to associate this set with each (in-sync) sending operation [G08,S04], so that set
SRū[i] [S04,R13] indicates the indices that participant ū received from u before
ū used sending index i in their sending operation); and (7) that encrypted mes-
sages are correctly recovered via decryption [G09,S05,R14] (array SMu records
‘sent messages’). We say that a BOOM protocol is functional if the advantage
Advfunc(A) := Pr[FUNC(A)] is negligibly small for all realistic adversaries A.

Game AUTH. Our authenticity notion focuses on the protection of the integrity
of ciphertexts (INT-CTXT). In Fig. 2 we specify the corresponding AUTH game
as an extension of the BASIC game from Fig. 1. In the figure, the code lines
marked with neither ◦ nor • are taken verbatim from the BASIC game, and the
lines marked with • are the ones to be added to obtain the AUTH game. (This
time, ignore the lines marked with ◦.) A BOOM scheme provides AUTH secu-
rity if any adversarial manipulation (or injection) of ciphertexts is detected and
rejected. Taking into account that associated-data strings need to be protected
in the same vein, as a first approximation the notion could be formalized by

15 A relation R ⊆ N × N is monotone [R04] if for all (x, y), (x′, y′) ∈ R we have
x ≤ x′ ⇒ y ≤ y′.
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Fig. 2. Games FUNC and AUTH. The FUNC game includes the lines marked with ◦
but not the ones marked with •. The AUTH game includes the lines marked with •
but not the ones marked with ◦.

adding the instruction ‘Reward isu ∧ (ad , c) /∈ SCū’ to the Recv oracle.16 Note
however that delivering a forged ciphertext to a participant u is trivial if the state
of their peer ū is exposed, and thus a small refinement is due. Recalling that
set AUū lists the sending indices for which participant ū is authoritative, i.e.,
their actions not trivially emulatable, we reward the adversary only if the forgery
is made for an index contained in this set [R17,R18,R21]. Recall further that in-
sync delivered ciphertexts certify prior ciphertexts by the same sender, even if
the latter ciphertexts are delivered out-of-sync. In the game we thus reward the
adversary also if it forges on a certified index [R17,R22]. We say that a BOOM
protocol provides authenticity if the advantage Advauth(A) := Pr[AUTH(A)]

16 The instruction should be read as ‘Reward the adversary if it makes an in-sync partic-
ipant accept an associated-data–ciphertext pair for which at least one of associated-
data and ciphertext is not authentic’.
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is negligibly small for all realistic adversaries A. We refer the reader to the full
version for a formalization of the trivial attack excluded by the AUTH game,
and an overview of similar but non-trivial attacks that are allowed.

Games CONF0,CONF1. Our confidentiality notion is formulated in the style of
left-or-right indistinguishability under active attacks (IND-CCA). In Fig. 3 we
specify corresponding CONF0 and CONF1 games. The games are derived from
the BASIC game by adding the lines marked with • plus two new oracles: The
left-or-right Chal oracle [C00–C08], which behaves similar to the Send oracle
but processes one of two possible input messages [C03] depending on bit b that
encodes which game CONFb is played, and the Decide oracle [D00] that lets the
adversary control the return value of the game. (A successful adversary manages
to correlate this return value with bit b.)

Three new game variables keep track of the actions of the adversary: Vari-
able lxu (‘last exposure’, [G14,E04]) indicates the index of the last exposure of
user u. Set CHu (‘challenge’) represents the set of sending indices for which a
challenge query has been posed for u that peer ū still should be able to validly
decrypt. Indices are added to this set in the Chal oracle [G15,C06], and they are
removed from it as a reaction to three events. (1) The corresponding ciphertext
becomes invalid because the receiver already processed a ciphertext (the same
or a different one) with the same index [R28] (see the corresponding guarantee
in the FUNC game [G10,R02,R25]). (2) It becomes invalid because it expired
based on physical time: To capture the latter condition we denote with

ITC(u) := {lt : ∃ad , c, pt s.t. (ad , c) ∈ SCū ∧ ts(c) = (lt , pt) ∧ Δ(pt , ptu) ≤ δ}

(‘in-time ciphertexts’) for participant u the set of sending indices of ciphertexts
produced by peer ū for which the difference between generation time pt and the
physical time ptu of the receiver is less than δ. With the progression of physical
time the game removes those indices from set CHū that are not an element
of ITC(u) [T02]. (See the corresponding guarantee in the FUNC game [R03].)
(3) Receiving an out-of-sync ciphertext renders u’s state incompatible to decrypt
future challenge queries. Hence all future indices are removed from the challenge
set [R24]. Observe this corresponds with [C06]: indices are only added to CHu

for an in-sync peer. Finally, flag xpu (‘exposed’) indicates whether the state of u
has to be considered known to the adversary after a state exposure. This flag is
initially cleared [G16], set when u’s state is exposed [E05], and reset if u heals
by letting peer ū receive an in-sync ciphertext created after the last exposure
[R10,R11].

We next explain how the new variables help identifying four different trivial
attack conditions. The first two conditions consider cases where posing a Chal
query needs to be prevented because the receiver state is known due to imperson-
ation or exposure: (1) if participant ū’s state was exposed and ū is impersonated
to u, i.e., u is poisoned, all future encryptions by u for ū are trivially decryptable,
simply because the adversary can emulate all actions of ū [C01]; (2) encryptions
by an in-sync sender u for a state-exposed receiver ū are trivially decryptable
(recall that flag xpū traces the latter condition) [C02]. The next condition con-
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siders cases where posing an Expose query needs to be prevented because an
already made Chal query would become trivial to break: (3) if participant ū gen-
erated (challenge) ciphertext c for u, and the latter should still be able to validly
decrypt c, then exposing u makes c trivially decryptable [E00]. The last condi-
tion is unrelated to exposures: (4) if participant u in-sync decrypts a ciphertext,
by correctness the resulting message is identical to the encrypted message, and
thus has to be suppressed by the Recv oracle by overwriting it [R15,R16]. (Note
how line R16 corresponds with line R14 of FUNC.) This concludes the descrip-
tion of games CONFb. We say that a BOOM protocol provides confidentiality
if the advantage Advconf(A) := |Pr[CONF1(A)] − Pr[CONF0(A)]| is negligibly
small for all realistic adversaries A. We refer the reader to the full version for
a formalization of the trivial attacks excluded by the CONF game, and similar
but non-trivial attacks that are allowed.

Fig. 3. Games CONF0,CONF1. See text for the definition of function ITC [T02].

4 Non-interactive Primitives

In Sect. 3 we defined the syntax and security of BOOM protocols and we will
provide a secure construction in Sect. 5. The current section is dedicated to
presenting a set of cryptographic building blocks, in the spirit of public key
encryption (PKE) and signature schemes (SS), that will play crucial roles in our
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construction. Recall that a defining property of a BOOM protocol is that it pro-
vides maximum resilience against (continued) state exposure attacks, preventing
all but trivial attacks. If a construction would rely on regular PKE or SS schemes
as building blocks, the secret keys of the latter would leak on state exposure,
which in most cases would inevitably clear the way for an attack on confiden-
tiality or authenticity. We hence employ stateful variants of PKE and SS that
process their internal keying material after each use to an updated ‘refreshed’
version that limits the options of a state-exposing adversary to harm only future
operations. Some of the building blocks proposed here additionally fold an asso-
ciated data input into their state, and the assumption is that sender and receiver
(i.e., signer and verifier, or encryptor and decryptor) update their states with
consistent such inputs.17

While the specifics of our building blocks might be different from those of
prior work, it can be generally considered well-understood how to construct such
primitives. For instance, a forward-secure SS [8], which is a primitive close to
one of ours, can be built by coupling each signing operation with the generation
of a fresh signature key pair, the public component of which is signed and thus
authenticated along with the message; after the signing operation is complete,
the original signing key is disposed of and replaced by the freshly generated
one. Adding the support of auxiliary associated-data strings into such a scheme
is trivial (just authenticate the string along with the message) and is less a
cryptographic challenge than an exercise of maintaining the right data struc-
tures in the sender/receiver state. Similarly, forward-secure PKE [11], which is a
primitive close to one of ours as well, is routinely built from hierarchical identity-
based encryption (HIBE) by associating key validity epochs with the nodes of
a binary tree. Variants of forward-secure PKE that support key updates that
depend on auxiliary associated-data strings have been proposed in prior work as
well [17,24], using design approaches that can be seen as minor variations of the
original tree-based idea from [11].

For our BOOM construction in Sect. 5 we require three independent forward-
secure public key primitives which we refer to as updatable signature scheme,
key-updatable KEM, and key-evolving KEM, respectively. We specify their syntax
and explain the expected behavior below. We formalize the details and propose
concrete constructions in the full version. We note that our security definitions
and constructions can be seen as following immediately from the syntax and
expected functionality: While the security definitions give the adversary the
option to expose the state of any participant any number of times, and formalize
the best-possible security that is feasible under such a regime (i.e., maximum
resilience against state exposure attacks), the constructions, which all follow the
approaches of [8,11,17,24] discussed above, are engineered to re-generate fresh
key material whenever an opportunity for this arises.

17 Unlike regular signature schemes where for each signer there can be many indepen-
dent verifiers, and unlike regular public key encryption where for each decryptor
there can be many encryptors, for the primitives we consider in the current section
a strict one-to-one correspondence between sender and receiver is assumed.
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4.1 Updatable Signature Schemes (USS)

Like a regular signature scheme, a USS has algorithms gen, sign, vfy, where
sign creates a signature on a given message and vfy verifies that a given sig-
nature is valid for a given message. The particularity of USS is that signing
and verification keys can be updated, and that signatures only verify correctly
if these updates are performed consistently. More precisely, signing and verifica-
tion keys are replaced by signing and verification states, and update algorithms
updss,updvs (for ‘update signing state’ and ‘update verification state’, respec-
tively) can update these states to a new version, taking also an associated-data
input into account. Multiple such update operations can be performed in succes-
sion, on both sides. Signatures of the signer are recognized as valid by the verifier
only if the updates of both parties are in-sync, i.e., are performed with the same
sequence of update strings. Our security model provides the means to the adver-
sary to expose the state of the parties between any two update operations, and
requires unforgeability with maximum resilience to such exposures.

Formally, a key-updatable signature scheme for a message space M and an
associated-data space AD consists of a signing state space SS, a verification
state space VS, a signature space Σ, and algorithms gen, sign, vfy,updss,updvs
with APIs

gen → SS × VS M → sign〈SS〉 → Σ VS × M × Σ → vfy

AD → updss〈SS〉 AD → updvs〈VS〉.
Note that the vfy algorithm doesn’t have an explicit output. The assumption
behind this is that the algorithm signals acceptance by terminating normally,
while it signals rejection by aborting. (See Sect. 2 on the option of any algorithm
to abort.) We expect of a correct USS that for all (ss, vs) ∈ [gen], if ss and vs
are updated by invoking updss〈ss〉(·) and updvs〈vs〉(·) with the same sequence
ad1, . . . , ad l ∈ AD of associated data, then for all m ∈ M and σ ∈ [sign〈ss〉(m)]
we have that vfy(vs,m, σ) accepts. See the full version for examples of the
expected functionality a formalization of correctness and security, and a con-
struction.

4.2 Key-Updatable KEM (KuKEM)

A key-updatable key encapsulation mechanism is a stateful KEM variant with
algorithms gen, enc,dec and update properties like for USS: both the encapsu-
lator and the decapsulator can update their public/secret state material with
algorithms updps,updss (for ‘update public state’ and ‘update secret state’,
respectively) that also take an associated-data input into account. The decap-
sulator, if updated in-sync with the encapsulator, can successfully decapsulate
ciphertexts. Our security model formalizes IND-CCA-like security in a model
supporting exposing the state of both parties, with the explicit requirement that
state exposures neither harm the confidentiality of keys encapsulated for past
epochs, nor the confidentiality of keys encapsulated with diverged states.
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Formally, a key-updatable key encapsulation mechanism for a key space K
and an associated-data space AD, consists of a secret state space SS, a public
state space PS, a ciphertext space C, KEM algorithms gen, enc,dec and state
update algorithms updps,updss with APIs

gen → SS × PS PS → enc → K × C SS × C → dec → K

AD → updps〈PS〉 AD → updss〈SS〉.
We expect of a correct KuKEM that for all (ss, ps) ∈ [gen], if ss and ps are
updated by invoking updps〈ps〉(·) and updss〈ss〉(·) with the same sequence
ad1, . . . , ad l ∈ AD of associated data, then for all (k, c) ∈ [enc(ps)] and
k′ ∈ [dec(ss, c)] we have that k = k′. See the full version for a formalization
of correctness and security, and a construction.

4.3 Key-Evolving KEM (KeKEM)

A key-evolving key encapsulation mechanism consists of algorithms gen, enc,dec
like a regular KEM, but, as above, public and secret keys are replaced by pub-
lic and secret states, respectively, that can be updated. More precisely, the
encapsulator’s and decapsulator’s states can be updated ‘to the next epoch’
by invoking the evolveps (for ‘evolve public state’) algorithm and the evolvess
(for ‘evolve secret state’) algorithm, respectively. Note, however, that if a secret
state is updated, the decryptability of ciphertexts generated for older epochs is
not automatically lost; rather, ciphertexts associated to multiple epochs remain
decryptable until epochs are explicitly declared redundant by invoking the expire
algorithm.18 Our security model formalizes IND-CCA-like security in a model
supporting exposing the state of both parties, with the explicit requirement that
state exposures do not harm the confidentiality of keys encapsulated for expired
epochs. Note that our formalization of KeKEMs does not support updating
states with respect to an associated-data input.

Formally, a key-evolving key encapsulation mechanism for a key space K
consists of a secret state space SS, a public state space PS, a cipher-
text space C, KEM algorithms gen, enc,dec and state update algorithms
evolveps, evolvess, expire with APIs

N → gen → SS × PS PS → enc → K × C SS × N × C → dec → K

evolveps〈PS〉 evolvess〈SS〉 expire〈SS〉.
In the KeKEM setting it makes sense to number the epochs. Note that the
dec algorithm expects, besides the secret state and the ciphertext, an explicit
indication of the epoch number for which the ciphertext was created. For sim-
plicity, one would like to provide an absolute time to the dec algorithm, e.g.
Unix time, rather than the time offset relative to the generation time. For this
18 The expire algorithm expires always to oldest currently supported epoch. That is,

active epochs of KeKEMs always span a continuous interval.
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reason, the gen algorithm takes in an epoch number which can be used to spec-
ify the generation time and thus the first epoch need not necessarily start at
zero. Then the state can internally compute the relative offset on decapsulation.
As the full definition is quite involved and thus deferred to the full version, we
illustrate the functionality of a correct KeKEM using an example: If we invoke
(ss, ps) ← gen(5) to generate a state pair (and associating the number 5 with the
first state), then invoking 2-times evolveps〈ps〉 followed by (k, c) ← enc(ps), and
then 4-times evolvess〈ss〉, then invoking dec(ss, 7, c) will return k until expire〈ss〉
has been invoked for the third time (expiring epochs 5, 6, and finally 7). See the
full version for a formalization of correctness and security, and a construction.

5 Interactive Primitives and BOOM

This section exposes our Bidirectional Out-of-Order Messaging (BOOM) proto-
col, in three steps. In Sect. 5.1 we first present a BOOM-signature scheme, which
uses the USS introduced in Sect. 4.1 as building block. This scheme will be used
by our final BOOM construction in a black box manner by calling its sign and
vfy procedures on each message to add an authenticity layer. Next, we present a
BOOM-KEM scheme in Sect. 5.2. Our final BOOM construction will query the
BOOM-KEM in a black box manner by calling its enc and dec procedures to
obtain encryption keys for each message. The BOOM-KEM uses the KuKEM
and KeKEM building blocks introduced in Sect. 4.2 and Sect. 4.3, to ensure the
BOOM scheme can achieve confidentiality with its keys. The BOOM construc-
tion will additionally invoke its upd procedure to reflect the passing of time and
the expire procedure to indicate we no longer wish to be able to obtain ‘old’
decryption keys.

Despite the strong building blocks defined in Sect. 4, our BOOM protocols are
complex and involved. These difficulties stem from the data structures required
to manage out-of-order delivery of ciphertexts. These data structures obscure
the cryptographically novel core of our construction and render it difficult to
interpret. Therefore, we have separated the authenticity tool and the confiden-
tiality tool and present them in their own right. Note that this modularization
implies certain data structures will be duplicated across each tool, but an imple-
mentation could consolidate them.

5.1 BOOM-Signature Scheme

In Sect. 5.3 we will use a specialized signature scheme to achieve authenticity for
our BOOM construction. In this section we describe the inner workings of this
cryptographic tool.

Syntax. A BOOM-signature scheme for a message space M consists of a state
space ST , a signature space Σ, algorithms init, sign, vfy, and a (logical) time-
stamp decoder ts as follows:

init → ST × ST M → sign〈ST 〉 → Σ M × Σ → vfy〈ST 〉 ts : Σ → N.
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Construction. We provide a construction for a BOOM-signature scheme in
Fig. 4. The construction consists of four procedures: init, sign, vfy and ts. The
init procedure initializes the states for two users A and B. The sign procedure is
stateful and will output a signature σ for any message m, updating its state in
the process. The vfy procedure is also stateful and will verify any pair (m,σ) ∈
M × Σ. If σ is a correct signature on m, the state will update and vfy will
return control to the caller. If the signature does not correctly verify, the vfy
procedure will abort. The ts function returns the logical time (measured in signer
invocations).

On a very high level, sign generates a fresh USS key pair every iteration to
recover from (potential) state exposures and signs the hash of its sent transcript,
while vfy updates its state with the messages that have been received, so states
will diverge if the adversary injects a message, while managing out of order
delivery. We will now describe the variables and code lines in more detail.

Fig. 4. BOOM-signature construction. We use an updatable signature scheme (USS)
as building block. Function H is assumed to be a collision-resistant hash function. The
vfy procedure aborts if parsing fails.

For each user u ∈ {A, B} we initialize the signing index ltu and the verifying
index lt∗

u [i01], and the arrays Su and Vu, which will store information about
signed and verified messages, respectively [i02]. We generate pairs of USS signing
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and verification keys [i03] and initialize the set Pu of messages processed by the
current signing key to be empty [i04]. We initialize the accumulated signed tran-
script ASu [i05], set the first index [i06] and initialize the accumulated verified
transcript avu [i07]. Finally, we store everything in the users’ states [i08].

The sign procedure first generates a new USS key pair [s00]. Next, it computes
the hash of the message m, the signing index ltu, the set of processed messages
Pu, the verification state, and the array Su [s01]. It signs the hash with its old
key [s02]. It accumulates the new hash and signature in ASu [s03] and stores the
hash, processed set, verification key and signature in Su [s04]. The signing index,
processed set, verification key and array Su are appended to the signature [s05].
It increments the signing index ltu [s06] and stores the new signing key along
with an empty processed set [s07], before returning the signature [s08].

The vfy procedure parses the additional information embedded in the sig-
nature [v00] and recomputes the hash [v01]. If the verifying index lt∗

u is less
or equal than lt , the verifier will iteratively check signatures until it catches up
[v02–v17]. To be concrete, if lt∗

u = lt it will use the current value for the hash and
signature [v05] or if lt∗

u < lt it will obtain these values from S[lt∗
u] [v07]. It will

update a copy of its verification key for all indices the signer has processed since
generating its signing key [v08–v10] and verify the signature [v11]. Note it uses
the transcript for its signed messages to update its verification key, which should
match the transcript for the verified messages the signer has used to update its
signing key. If signature verification passes, it will replace the verification key
[v12]. Note that if USS.vfy failed the verification key remains unchanged, as if
[v09–v10] were never executed. Next, it accumulates the hash and signature in
its verified transcript avu [v13], stores the hash and signature in Vu[lt∗

u] for later
comparison [v14] and it will update its signing state with avu [v15]. It increments
the index lt∗

u [v16] and add lt∗
u to Pu to indicate it has processed this message

into its signing key [v17]. If the verifying index lt∗
u was strictly greater than lt ,

the verifier will check if an entry exists for this index [v19] and compare whether
it is equal to the value of the hash and signature [v20]. At last, the verifier will
remove the entry in Vu for index lt to prevent double delivery [v21].

Note for simplicity we omit code lines to ‘clean up’ variables that are no longer
needed. These lines are not required for security, but would help for efficiency.
For example, if a party learns its peer has processed signature i, it will no longer
have to include the first i entries of Su in its next signature.

5.2 BOOM-KEM Scheme

In Sect. 5.3 we will use a specialized KEM to achieve confidentiality for our
BOOM construction. In this section we describe the inner workings of this cryp-
tographic tool.

Syntax. A BOOM-KEM scheme for a key space K consists of a state space ST ,
a ciphertext space C, and algorithms init, upd, expire, enc, dec and the timestamp
decoder ts that recovers the logical and physical time.

init → ST × ST upd〈ST 〉 expire〈ST 〉 ts : C → N × N
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AD → enc〈ST 〉 → K × C AD × C → dec〈ST 〉 → K.

Construction. Internally our BOOM-KEM construction will invoke the
KuKEM primitive introduced in Sect. 4.2, the KeKEM primitive introduced in
Sect. 4.3, and a secure KEM combiner K such that if at least one of the input
keys is indistinguishable from a uniformly random string of equal length, then
so is the output key. In this article we will consider K a random oracle. An
implementation could use the CCA secure combiner presented in [16].

We noted both our KuKEM and KeKEM building block can be built generi-
cally from hierarchical identity-based encryption (HIBE, [15]). This strong com-
ponent, while inefficient, should come as no surprise as it has already been pro-
posed by [17] and [24] in the much simpler setting where every message is always
delivered, and always in order. Moreover, recent work [6] shows that if an expo-
sure additionally reveals the random coins used for the next send operation,
the use of KuKEM is required to achieve confidentiality. They hypothesize the
same implication holds without revealing the random coins and provide a strong
intuition, but a formal proof remains an open problem.

We remark that both our KuKEM and KeKEM can be built from a single
HIBE instance if one immediately delegates the master secret key to a ‘KuKEM
identity’ and to a ‘KeKEM identity’. We avoid doing so for two reasons. First
of all, these primitives correspond to two perpendicular security goals. It is con-
ceptually easier to grasp if we do not intertwine them. Secondly, KeKEM can be
built from a forward-secure KEM, which is a simpler primitive than the HIBE-
KEM used for KuKEM. Thus it may also be more efficient to separate them.

We provide a construction for a BOOM-KEM in Fig. 5. The construction
consists of six procedures: init, enc, dec, expire, upd and ts. A correct decryp-
tion procedure dec is determined by the encryption procedure: it mirrors the
operations in enc. As deriving the dec procedure is a rather vacuous technical
exercise we have omitted it from Fig. 5 to focus on the more interesting crypto-
graphic procedures instead. We have also omitted the ts procedure which simply
parses the timestamps embedded in each ciphertext. A full reconstruction of
all BOOM-KEM procedures is provided in the full version. The construction is
quite technical but the general idea is to generate a new KuKEM and a new
KeKEM instance with every enc invocation for post-compromise security. We
update the KeKEM for forward secrecy in physical time, and the KuKEM for
forward secrecy in logical time. The enc procedure will output a key dependent
on the output of the KuKEM encapsulation procedure, the KeKEM encapsula-
tion procedure and the associated data input.

We remark the physical time updates must be a separate primitive as simply
updating the KuKEM would render the users out-of-sync. For example, consider
the scenario where Alice sends a message, updating her KuKEM. Now physical
time advances and both Alice and Bob would update their KuKEM. Finally,
Bob receives Alice’s message and updates his KuKEM. Clearly the updates have
occurred in a different order, hence correctness would fail.

We note our security notion implies ciphertexts must contain information
about prior ciphertexts. To see that ciphertexts cannot be independent, consider
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Fig. 5. BOOM-KEM construction. Building blocks are a KeKEM, whose algorithms
are prefixed with ‘ke.’, a KuKEM, whose algorithms are prefixed with ‘ku.’ and a KEM
combiner K.

an adversary that exposes Alice and creates two ciphertexts. The adversary
will deliver the second ciphertext to Bob, rendering Bob out-of-sync. Now the
adversary can challenge Alice, making her send her first ciphertext, and since
Bob is out-of-sync, expose Bob. If Bob were able to decrypt any ciphertext with
logical index 1, the adversary could now decrypt Alice’s challenge ciphertext and
win the confidentiality game. Hence, the second ciphertext must ‘pin’ the first.

We achieve this with the KEM/DEM encryption paradigm. The enc pro-
cedure will embed past KuKEM ciphertexts in the current ciphertext. When
receiving a ciphertext, the dec procedure will decapsulate all embedded KuKEM
ciphertexts, store the DEM keys and destroy its capability to decapsulate again.
Reconsidering our example above, Bob is now only able to decrypt the first
ciphertext if it was encrypted with the same DEM key he obtained from the
second ciphertext, and Bob has no capability to decapsulate another KuKEM
ciphertext. The probability that Alice and the adversary had generated the same
KuKEM ciphertext for the first ciphertext is negligible.

We now discuss the procedures in more detail, starting with init. For each
user the init procedure initializes a sending index ltu, a receiving index lt∗

u, the
first physical time that is still recoverable ftu and the current physical time ptu

[i01–i02]. It initializes the array AS for the accumulated sent transcript and AR
for the accumulated received transcript [i03–i06]. The accumulated transcripts
will be used to update the KuKEM states, ensuring the user states diverge when
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users go out-of-sync. Because ciphertexts may be delivered out-of-order, or not
at all, each user will be maintaining several instances of each primitive, ready
to decapsulate ciphertexts for any of them. However, it will always encapsulate
to the latest one. Hence we initialize storage for multiple secret states, but only
one public state, and we store the first KeKEM and KuKEM instance [i07–
i10]. Finally, we initialize the array KC to store KuKEM ciphertexts [i11] and
the array DK to store DEM keys [i12], as described in the general construction
overview.

The enc procedure encapsulates keys for both the KeKEM and the KuKEM
[e00–e01], and stores the KuKEM ciphertext in KC, along with its receiver index
lt∗

u, indicating which public states were used for encapsulation [e02]. Next, it gen-
erates a new instance for both the KeKEM and the KuKEM [e03–e04]. It will
immediately update the secret state for the KuKEM with the received tran-
script [e05], as the adversary is allowed unrestricted expose queries if we are
out-of-sync. The enc procedure combines the KEM ciphertexts into one cipher-
text, adds the freshly generated public states, and includes the indices and the
sending transcript such that the receiver can correctly update its state [e06–e07].
Subsequently, it uses the KEM-combiner K to produce a key, using the asso-
ciated data and ciphertext as context [e09]. Finally, it increments the sending
index ltu [e10], accumulates the associated data and ciphertext into its transcript
[e11] and updates its public KuKEM state with it [e12].

The upd procedure is quite straightforward: it simply updates the public
state and evolves the secret states for all its KeKEM instances as physical time
advances. Similarly, the expire procedure will update all secret states.

Note that for simplicity we have omitted code lines to ‘clean up’ variables
that are no longer needed. These lines are not required for security, but would
help for efficiency. For example when a user has either received or expired all
messages encapsulated for its i-th KeKEM and KuKEM instance, it can drop
instance i, as later keys will always be encapsulated to later instances. As another
example we remark that, after receiving an acknowledgment from the other user
they have received message i, a user would no longer have to embed all their
KuKEM ciphertexts for indices less than or equal to i in their current ciphertext.

5.3 BOOM Construction

We first introduce a functional protocol and discuss it in detail before delving
into the full BOOM construction that achieves authenticity and confidentiality.
The functional protocol consists of all the unmarked code lines in Fig. 6. The pro-
tocol has four procedures: the initialization procedure init, which initializes the
users’ initial states; the sending procedure send, which takes a state, associated
data and a message, updates the state and outputs a ciphertext; the receiving
procedure recv, which takes a state, associated data and a ciphertext, updates
the state and outputs a message; and the time progression algorithm tick, which
updates the state.

For each user u, the init procedure initializes the logical time ltu and lt∗
u

[i03], the physical time ptu [i04], the set of received indices RIu [i04], the set of
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Fig. 6. The functional construction consists of the unmarked lines. The authentic con-
struction adds the lines marked with ◦. The BOOM construction consists of all lines.
BS is the BOOM-signature scheme construction in Fig. 4, BK is the BOOM-KEM
construction in Fig. 5, OTS is a (one-time) signature scheme, and E is a symmetric
encryption scheme.

received timestamps RTu [i05], the set of received acknowledgments RAu [i05],
and the arrays of hashed sent ciphertexts HSu and hashed received ciphertexts
HRu [i06]. The tick procedure increments the user’s physical time ptu [u00].

The send procedure takes associated data ad and message m as input. It
creates context ctx which includes the user’s current time (ltu, ptu), the hashes
of previously sent ciphertexts HSu[∗] and the set of received indices RIu [s00].
The context ctx together with the message m will form the ciphertext c [s07].
Finally, it stores the hash H(ad � c) of the associated data and the ciphertext
[s10], increments the logical time ltu [s11] and returns the ciphertext [s12].

The recv procedure first hashes the ciphertext [r00] and subsequently parses it
to obtain the message m [r02] and the context variables lt , pt , HS[∗] and R [r05].
Now, recall that ‘Require C’ is short for ‘If ¬C: Abort’. Thus the recv procedure
performs four sanity checks to guarantee functionality. (1) A ciphertext has
not yet been received for this logical time lt [r08]. (2) The ciphertext is fresh,
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that is the Δ difference between its physical creation time pt and the user’s
time ptu is ‘small’ [r09]. (3) Time is monotonic: a message that is newer in
logical time must be newer in physical time [r10]. (4) Only sent messages can
be acknowledged [r11]: Bob cannot acknowledge having received a message that
Alice never sent. Next, recv handles the out-of-order delivery. While u’s receiving
index lt∗

u is smaller or equal than lt , it will iteratively update its array HRu with
the received hashes that it obtains from HS[∗] or the current ciphertext itself
[r12–r15]. If u’s receiving index is greater than lt , it will require the hash h of
the current ciphertext is equal to the stored value for that index HRu[lt ] [r16].
Finally, it will update its set of received indices RIu [r17], its set of received
timestamps RTu [r18], its set of received acknowledgments RAu [r19], and return
(RAu,m) [r22].

We extend the functional protocol to an authentication protocol by including
the lines marked with ◦. The init procedure now initializes a BOOM-signature
scheme BS [i00]. The send procedure generates a fresh one-time signature key
pair (sk , vk) [s01], and calls BS.sign to obtain a signature σ1 on the verification
key vk [s02]. We add vk and σ1 to the context ctx [s03]. We use the signing
key sk to sign the associated data ad and ciphertext c [s022], and append the
signature σ2 to c [s09]. The recv procedure will parse the newly added signatures
and verification key [r01,r04]. It will first verify the signature on the verification
key vk by calling BS.vfy [r06]. Then it uses vk to verify the signature on the
associated data and ciphertext [r062].

It may appear peculiar not to sign the ciphertext directly with the BOOM-
signature. However, this design decision is made to simplify the confidentiality
construction. If we sign the ciphertext directly, the adversary could expose the
user to obtain its signing key and generate a new signature for the ciphertext.
Indeed, this would not break authenticity as the forgery is trivial. Nonetheless,
if the adversary submits the ciphertext to the Recv oracle with a different signa-
ture, the oracle will decrypt and return the (challenge) message. Now, because
the one-time signature key pair is generated during the send procedure, it can-
not be exposed. Thus, if the adversary succeeds in creating a valid but different
signature, this would break the strong unforgeability property.

This brings us to the lines marked with •. Including these lines provides
confidentiality, resulting in our BOOM protocol. The init procedure now also
initializes a BOOM-KEM BK [i01]. The send procedure provides the BOOM-
KEM with the verification key as context when requesting (k, c′) [s04], appends
c′ to the context [s05], and uses k to encrypt the message [s06].

The adversary could have exposed the sender’s state and created a (trivial)
forgery by generating its own one-time signature pair. The Recv oracle would
accept the ciphertext and attempt to decrypt it. Therefore, it is critical for
confidentiality that the key derivation is dependent on the verification key [s04].
The recv procedure parses the newly added c′ [r03] and inputs it, along with vk ,
to BK.dec to retrieve k [r20]. Subsequently, recv uses k to decrypt m [r20rypt].

The tick procedure now calls BK.upd [u01] because its state must advance
over time, even when no messages are exchanged, to achieve forward secrecy in
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physical time. Once time has advanced δ times it will start calling BK.expire [u02]
to indicate we no longer desire to be able to decrypt ‘old’ messages. Neither of
these procedures require the physical time as input because they advance linearly
over time, with the expire procedure lagging behind the update procedure. This
completes the description of our BOOM protocol in Fig. 6.

Our construction provides authenticity and confidentiality. The proofs are in
the full version.

Theorem 1. Let π be the BOOM construction in Fig. 6, let AUTH be the
authenticity game in Fig. 2 that calls π’s procedures in its oracles, let H be a
perfectly collision resistant hash function, and let A be an adversary that makes
at most qs Send queries. Then there exists an adversary A′ of comparable effi-
ciency such that

AdvAUTH
π (A) ≤ qs ·

(
AdvSUF

OTS(A′) +AdvAUTH
USS (A′)

)
.

Theorem 2. Let π be the BOOM construction in Fig. 6, let CONF be the con-
fidentiality game in Fig. 3 that calls π’s procedures in its oracles and let A be
an adversary that makes at most qc Chal queries and ε the probability that the
adversary successfully computes a pre-image of the random oracle. Then there
exists an adversary A′ of comparable efficiency such that AdvCONF

π (A) ≤

2qc

(
AdvCONF

keKEM(A′) +AdvCONF
kuKEM(A′) +AdvCONF

E (A′)
)
+AdvAUTH

π (A′) + ε.

6 Conclusion

After ACD [2] observed that research on secure messaging protocols routinely
only considers settings with a guaranteed in-order delivery of messages, while
most real-world protocols like Signal are actually designed for out-of-order deliv-
ery, we reassess the model and construction of ACD and argue that the intuitive
notion of forward secrecy is not provided. We identify that the reason for this is
the lack of modeling of physical time, which is required to express that cipher-
texts may time out and expire. We hence develop new security models for the
out-of-order delivery setting with immediate decryption. Our model incorporates
the concept of physical clocks and implements a maximally strong corruption
model. We finally design a proof-of-concept protocol that provably satisfies it.
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Abstract. Anonymity is an (abstract) security goal that is especially
important to threatened user groups. Therefore, widely deployed com-
munication protocols implement various measures to hide different types
of information (i.e., metadata) about their users. Before actually defin-
ing anonymity, we consider an attack vector about which targeted user
groups can feel concerned: continuous, temporary exposure of their
secrets. Examples for this attack vector include intentionally planted
viruses on victims’ devices, as well as physical access when their users
are detained.

Inspired by Signal’s Double-Ratchet Algorithm, Ratcheted (or Contin-
uous) Key Exchange (RKE) is a novel class of protocols that increase
confidentiality and authenticity guarantees against temporary exposure
of user secrets. For this, an RKE regularly renews user secrets such that
the damage due to past and future exposures is minimized; this is called
Post-Compromise Security and Forward-Secrecy, respectively.

With this work, we are the first to leverage the strength of RKE for
achieving strong anonymity guarantees under temporary exposure of user
secrets. We extend existing definitions for RKE to capture attacks that
interrelate ciphertexts, seen on the network, with secrets, exposed from
users’ devices. Although, at first glance, strong authenticity (and confi-
dentiality) conflicts with strong anonymity, our anonymity definition is
as strong as possible without diminishing other goals.

We build strongly anonymity-, authenticity-, and confidentiality-
preserving RKE and, along the way, develop new tools with applicability
beyond our specific use-case: Updatable and Randomizable Signatures as
well as Updatable and Randomizable Public Key Encryption. For both
new primitives, we build efficient constructions.
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1 Introduction

Anonymity. Traditionally, anonymity means that participants of a session can-
not be identified. As we will argue below, this notion of anonymity is very narrow.
Furthermore, in the context of this work, it is not immediately clear what the
identity of a session participant actually is. The reason for this is that we consider
a modular protocol stack that consists of a Session Initialization Protocol (SIP;
e.g., an authenticated key exchange) and an independent, subsequent Session
Protocol (SP; e.g., a symmetric channel or a ratcheted key exchange). According
to this modular composition paradigm, only the SIP actually deals with users
and their identities, and groups them into session participants who execute the
subsequent SP. While the SP may assign different roles to its session partici-
pants, the SP is (usually) agnostic about their identities. Thus, it cannot reveal
identities by definition. Nevertheless, the context of an SP session and the role
of its participant therein may suffice to identify the underlying identity.

Session Protocols. In this work, we focus on anonymity for SPs. Roughly,
we call an SP anonymity-preserving if its execution reveals nothing about its
context, including the session participants, the protocol session itself, the status
of a session, etc. We note that real-world deployment of an anonymity-preserving
SP requires more than that—e.g., an anonymous SIP, a delivery protocol that
transmits anonymous traffic across the Internet, or a mechanism that ensures a
large enough set of potential protocol users. While these external components
are outside the scope of our work, we mind the broader execution environment
of SPs to direct our definitions.

Exposure of Secrets. Intuitively, anonymity complements standard security
goals, such as confidentiality and authenticity, by requiring that publicly observ-
able context data (or metadata) remains hidden. More specifically, anonymity
means that ciphertexts on the network cannot be interrelated. In this work, we
augment this perspective by considering adversaries against anonymity who can
expose information that is secretly stored by the targeted users. Consequently,
our notion of anonymity requires that it is hard to interrelate these exposed user
secrets with publicly visible data.

Temporary exposure of user secrets is a realistic threat, especially against
cryptographic protocols with long-lasting sessions. The most prominent example
for this type of long-term protocols is secure messaging where sessions almost
never terminate and, hence, can last for several years. Therefore, anticipating
the exposure of participants’ locally stored secrets during the lifetime of a session
is advisable.

Ratcheted Key Exchange. Inspired by Signal’s Double-Ratchet Algo-
rithm [32], Ratcheted Key Exchange (RKE) is an SP primitive that provides
security in the presence of adversaries who can expose session participants’ local
secrets. The core idea of RKE is that the participants continuously establish new
symmetric session keys. Following the modular composition paradigm, these keys
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can be used by another subsequent SP, for instance, to encrypt payload data sym-
metrically. While establishing session keys, the participants update and renew
all their local secrets to recover from potential past exposures (Post-Compromise
Security; PCS), and delete old secrets before a potential future exposure occurs
(Forward-Secrecy; FS). So far, RKE was only used for preserving secrecy and
authenticity of session keys under the exposure of secrets. In order to also achieve
strong anonymity under exposure of secrets, we are the first to take advantage
of RKE.

Examining RKE constructions, one may doubt that this secrecy- and
authenticity-preserving primitive can be extended to also realize strong
anonymity: On the one hand, authenticity and anonymity generally tend to
be incompatible security goals. On the other hand, for continuously performing
updates, participants locally store structured information that is often encoded
in sent and received ciphertexts, or has traceable relations to the secrets stored
by other session participants. Avoiding this structure (and hiding all relations
between sender secrets, ciphertexts, and receiver secrets) is highly non-trivial.

We start with extending RKE syntactically to account for an environment
in which preserving anonymity is crucial. Then, we specify a security definition
that captures strong anonymity under exposure of secrets. This new definition
is compatible with strong secrecy and authenticity notions of RKE.

Flavors of RKE. To reduce complexity and maintain clarity, we consider unidi-
rectional RKE [5,8,34], which is a simple, natural notion of RKE that restricts
communication between two session participants, Alice and Bob, to flow only
from the former to the latter. We leave it an open, highly non-trivial1 prob-
lem for future work to extend our results to more complex bidirectional RKE
(e.g., [25,33,34]), RKE with immediate decryption (e.g., [3]), RKE in static
groups (e.g., [14]) and dynamic groups (e.g., [4,9,37]), resilient to concurrent
operations (e.g., [2,10]), etc. In the full version of this paper [17], we take a look
at the “unidirectional core” of each two-party RKE construction from the litera-
ture and present successful attacks against anonymity for all of them. We refrain
from also presenting (non-trivial) attacks against constructions from the group
setting without having a suitable anonymity definition that formally separates
trivial attacks from non-trivial ones.2

Further Related Work. The literature of anonymity-preserving cryptogra-
phy ranges from key-private public key encryption (e.g., [7,23,27]) to anonymous

1 Immediate extension and generalization of our results seems unlikely, given the
remarkable gap of complexity between non-anonymous unidirectional RKE and more
advanced non-anonymous types of RKE.

2 Note that all CGKA (or “group RKE”) constructions reveal structural information
like the group size via (publicly) sent ciphertexts. (Moreover, these constructions
let users store information about other members in the local user states, and most
constructions rely on an active server that participates in the protocol execution.)
However, without a formal, satisfiable anonymity definition, it is unclear which infor-
mation can theoretically be hidden, even by an ideal CGKA construction.
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signatures (e.g., [21,41]) to privacy-preserving key exchange (e.g., [24,38,42])
to anonymous onion encryption (e.g., [15,35]) and many other primitives. In
principle, our definitions are in line with these notions insofar that we require
indistinguishability of “everything that the adversary sees” for a real RKE exe-
cution (i.e., ciphertexts and exposed user secrets) from independently sampled
equivalents. While some previous works furthermore cover non-cryptographic
properties such as anonymous delivery mechanisms (see, e.g., [15]), our work
abstracts these external components. To the best of our knowledge, anonymity
under (temporary and continuous) exposure of user secrets has not been formally
studied before.

Nevertheless, anonymity, privacy, and deniability is generally considered rele-
vant in the domain of secure messaging. For example, the Signal messenger imple-
ments the Sealed Sender mechanism [39] to hide the identities of senders. Yet,
this mechanism is stateless and uses static long-term secrets, which means that
it is insecure under the exposure of receiver secrets. Besides this, several attacks
against the deployment of Sealed Sender [30,40] undermine its anonymity guar-
antees. The Sealed Sender mechanism is related to instances of the Noise protocol
framework [18,31] that also claims to reach various notions of anonymity. Yet,
the established symmetric session key in a Noise protocol session is static, which
means that its exposure breaks anonymity, too. Finally, there is an ongoing dis-
cussion about privacy and deniability in the MLS standardization initiative [6]
that is yet to be concluded.3 Related to this, Emura et al. [20] informally propose
changes to an early version of MLS by Cohn-Gordon et al. [14] in order to hide
the identities of group members. As mentioned above, this is a rather weak form
of anonymity. Finally, we note that none of our definitions requires deniability
and none of our constructions reaches deniability.

Contributions. Our main contributions are defining anonymity for Ratcheted
Key Exchange (RKE) and designing a construction that provably satisfies this
definition. However, we do not naïvely adopt and extend prior notions of RKE,
but we take a fresh look at this primitive, keeping in mind the overall execution
environment in which anonymity is important.

Along the way, we develop two new tools that we use to build our final RKE
construction. The first tool, Updatable and Randomizable Public Key Encryp-
tion (urPKE), realizes anonymous PKE with randomizable encryption keys and
updatable key pairs. We believe this has applications beyond our work, for exam-
ple, to Updatable PKE [4,16,26]. The second tool, Updatable and Randomizable
Signatures (urSIG), simultaneously provides strong anonymity and authenticity
guarantees. Roughly, it achieves strong unforgeability of signatures if the sign-
ing key is uncorrupted. Furthermore, the signer can derive multiple signing keys
that work for the same verification key. However, it should be hard to derive
the verification key from a signing key and, beyond that, hard to distinguish
whether two signing keys correspond to the same verification key. Surprisingly,

3 See the discussion thread initiated here: https://mailarchive.ietf.org/arch/msg/
mls/-1VF95d8od0lF_AFj2WMvk5SQXE/.

https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_AFj2WMvk5SQXE/
https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_AFj2WMvk5SQXE/
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both urPKE and urSIG can be built efficiently from cryptographic standard
components.

Due to the page limit, we focus on anonymity of RKE and its building
blocks in the main body of this paper. All novel definitions, constructions, and
proofs regarding other security goals such as authenticity and secrecy (which are
valuable contributions), are summarized in the subsequent technical overview
(Sect. 1.1). The full details of these summarized results can be found in the full
version [17].

1.1 Technical Overview

Unidirectional Ratcheted Key Exchange. Definitions and constructions
of Ratcheted Key Exchange (RKE) in the literature are highly complex. Since
we are the first to consider anonymity for this primitive, we want to focus on
the core challenges that arise due to the interplay of strong anonymity, confi-
dentiality, and authenticity. Furthermore, we present novel, insightful solutions
for these challenges. Thus, for didactic reasons, we condense the question of how
to define and construct anonymous RKE by considering the simplest variant of
this primitive—so called Unidirectional RKE (URKE) [5,8,34]. As we will see,
definitions and constructions of anonymous RKE become complex even for this
simple unidirectional variant.

An RKE session between two users begins with the initialization that
produces a secret state for each user RKE.init →$ (stS, stR). (In practice,
this abstract initialization can be instantiated by using an authenticated key
exchange protocol.) The users then continuously use their secret states to asyn-
chronously send ciphertexts to their partners. These ciphertexts establish fresh
symmetric keys (for the use in subsequent, higher layer SPs) and refresh the
secrets in both users’ states. While a fully bidirectional RKE scheme allows both
users to establish new symmetric keys, a unidirectional RKE scheme assigns dif-
ferent roles to the two users: only one user (Alice) sends ciphertexts to establish
new keys RKE.snd(stS, ad) →$ (stS, c, k) and the other user (Bob) receives these
ciphertexts to compute these (same) established keys RKE.rcv(stR, c, ad) →$
(stR, k). Either way, secrets in both users’ states are continuously renewed by
these operations.

Standard Security Goals. Secrecy and authenticity of established symmet-
ric keys for URKE have been studied in prior work [5,8,34]. These works extend
standard secrecy and authenticity notions by allowing the adversary to expose
the secret states of Alice and Bob before and after each of their send and receive
operations, respectively.

Key Secrecy. For secrecy of URKE [34], we require that all symmetric keys estab-
lished by Alice are indistinguishable from random keys unless Bob’s correspond-
ing secret state was exposed earlier. More precisely, the symmetric key estab-
lished by Alice’s ik-th ciphertext must be secure, unless Bob’s secret state was
exposed already after successfully processing the first ix ciphertexts from Alice,
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where ix < ik. By correctness, Bob’s (exposed) state after processing Alice’s first
ix ciphertexts can always be used to successfully process the subsequent ik − ix
ciphertexts from Alice and then compute the ik-th symmetric key. This notion
captures post-compromise security (PCS) and forward-secrecy (FS) on Alice’s
side, since all her established symmetric keys must remain secure independent
of whether her secret state is ever exposed. It also captures a strong notion of FS
on Bob’s side, since exposures of his state must not impact the secrecy of a key
established with ciphertext ik under two conditions: (1) the exposures occurred
after Bob received ciphertext i′

x, and ik ≤ i′
x, or (2) Bob falsely accepted an

earlier ciphertext if , if < ik that was not sent by Alice and Bob was exposed
subsequently at point i′

x, and if ≤ i′
x. This requires that Bob’s state becomes

incompatible with Alice’s state immediately after accepting a forged ciphertext.

Authenticity. Authenticity for URKE [19] requires that Bob must not falsely
accept a ciphertext if , unless Alice’s matching secret state was exposed. More
precisely, after successfully accepting if − 1 ciphertexts from Alice, Bob must
reject the if -th ciphertext if it was not sent by Alice, unless Alice’s secret state
was exposed after sending the ix-th ciphertext, where ix = if − 1. We call such
a successful trivial ciphertext forgery a trivial impersonation.

Robustness and Recover Security. We consider two additional properties for
URKE: robustness and recover security. The former requires that Bob will not
change his state when rejecting a ciphertext. Thus, Bob can uphold his com-
munication with Alice even if he sometimes receives (and rejects) false cipher-
texts that did not result in a trivial impersonation. When considering (receiver)
anonymity, robustness is a valuable feature as it allows Bob to perform “trial
decryptions” to check if a ciphertext was meant for him or not. Furthermore,
consider a setting in which Bob is the receiver of many independent URKE ses-
sions. Due to (sender) anonymity, he may not know the sender of a ciphertext,
so he can “trial decrypt” the ciphertext with all of his receiver states until one of
them accepts. We conclude that robustness is a crucial property for anonymous
RKE. Recover security [19] requires that, whenever Bob falsely accepts a trivial
impersonation ciphertext, he will never again accept a ciphertext sent by Alice.
This ensures that an adversary who conducted a successful trivial impersonation
cannot hide this attack by letting Alice and Bob resume their communication.

For comprehensibility, we make the simplifying assumption that Alice always
samples “good” randomness for her send operations. While “bad” randomness
can be a realistic threat in some scenarios, we note that URKE under bad
randomness—beyond causing more complex definitions and constructions—must
rely on strong and inefficient HIBE-like building blocks as Balli et al. [5] prove.
We leave it an open problem to extend our results to stronger threat models.

Known Constructions. RKE constructions only achieving the above prop-
erties can be built from standard public key encryption (PKE) and one-time
signatures (OTS) [19,25,34]. The idea is that Alice (1) generates fresh PKE key
pair (eki, dki) and OTS key pair (vki, ski) with every send operation i. She then
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(2) encrypts the new decryption key dki with the prior encryption key eki−1,
and she (3) signs the resulting PKE ciphertext as well as the new verification
key vki with the prior signing key ski−1. The composed URKE ciphertext con-
sists of PKE ciphertext, new verification key, and signature. Alice deletes all
prior values as well as the new decryption key dki and sends the composed
URKE ciphertext to Bob, who verifies the signature, decrypts the PKE cipher-
text, and stores (dki, vki). An additional hash-chain over the entire sent (resp.
received) transcript maintains consistency between Alice and Bob, and addi-
tional encrypted key material sent from Alice to Bob establishes the symmetric
session keys.

Shortcomings. To understand why the above construction does not provide
anonymity, note that standard (one-time) signatures can reveal the correspond-
ing verification key. Thus, it can be easy to link two subsequent URKE cipher-
texts by testing whether the signature contained in one ciphertext verifies
under the verification key contained in the other. (More detailed attacks against
anonymity of existing two-party RKE constructions are in the full version [17].)
To overcome this limitation, one could simply encrypt the verification key along
with the transmitted decryption key. This prevents adversaries who only see
ciphertexts transmitted on the network from linking these ciphertexts and,
thereby, attributing them to the same URKE session. As we will argue next,
this weak level of anonymity is inadequate for settings in which ratcheted key
exchange is deployed.

Defining (Strong) Anonymity. The main goal of ratcheted key exchange is
to continuously establish symmetric keys that remain secure even if the involved
users’ secret states are temporarily exposed earlier (PCS) and/or later (FS).
Hence, if temporary state exposure is considered a realistic threat against secrecy
of keys, it is also a realistic threat against anonymity. Consequently, we allow an
adversary against anonymity to expose both Alice’s and Bob’s states.

Ciphertext Anonymity. In a first attempt to define anonymity, we follow the stan-
dard concept from the literature: We require that ciphertexts sent from Alice
to Bob cannot be distinguished from ciphertexts sent in an independent URKE
session from Clara to David, even if the adversary can expose Alice’s and Bob’s
secret states. In this preliminary notion that we call ciphertext anonymity, adver-
saries can perform a trivial exposure that we have to forbid in order to obtain
a sound definition. Forbidding this attack, ciphertext anonymity requires that
Alice’s ic-th ciphertext must be indistinguishable from a ciphertext sent in an
independent URKE session, unless Bob’s secret state was exposed already after
successfully processing the first ix ciphertexts from Alice, where ix < ic. Note
that by authenticity, Bob’s (exposed) state after processing Alice’s first ix cipher-
texts can always be used to verify whether the subsequent ic−ix ciphertexts were
sent by Alice or by an independent user. This notion captures post-compromise
anonymity (PCA) and forward-anonymity (FA) on Alice’s side, since all her
ciphertexts must remain anonymous independent of whether her secret state is
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ever exposed. It also captures a strong notion of FA on Bob’s side, since exposures
of his state must remain harmless for the anonymity of a ciphertext ic under two
conditions: (1) the exposures were conducted after Bob received ciphertext i′

x,
and ic ≤ i′

x, or (2) Alice was trivially impersonated towards Bob with an earlier
ciphertext if , and if < ic and Bob was exposed after ciphertext i′

x, and if ≤ i′
x.

Full Anonymity. Our above description of ciphertext anonymity is not fully
formal and the attentive reader may have identified a gap. Consider an adversary
who exposes Alice’s state twice, once before seeing a ciphertext on the network
and once afterwards. By only checking if Alice’s state changed between these
exposures, the adversary can determine if the ciphertext was sent by Alice.
(Note that by authenticity, Alice’s state must change with every send operation
whereas the state does not change as long as Alice remains inactive.)

To mitigate the threat that Alice’s exposed URKE states reveal whether she
sent something, we extend the syntax of URKE by adding algorithm RKE.rr(stS)
→$ stS that (re-)randomizes her state on demand. Executing this algorithm
between two exposures, Alice’s state can be changed independent of whether
she sent a ciphertext. Thus, she can hide if she was the sender of a ciphertext
that the adversary observed.

Before specifying a corresponding (stronger) notion of anonymity, we present
another threat against anonymity. Consider an adversary who can observe all
URKE ciphertexts sent from Alice’s device. At some point, this adversary
exposes all secrets Alice stores on her device. If Alice has only one stored URKE
state, the adversary knows that all observed URKE ciphertexts were sent with
this state in the same single session. Since Alice may want to hide how many
URKE sessions are running on her device, and how many URKE ciphertexts
are sent in each of these sessions, she may want to set up “dummy” URKE
states. This scenario motivates that we require for anonymity that Alice’s and
Bob’s secret states must be indistinguishable from independent secret sender and
receiver states, respectively—beyond requiring that ciphertexts between Alice
and Bob must be indistinguishable from ciphertexts sent in an independent
session.

In summary, we require that all secret states that an adversary exposes and
all ciphertexts that an adversary observes on a network must be indistinguish-
able from independent secret states and ciphertexts, respectively, unless cor-
rectness, secrecy, and authenticity impose conditions that inevitably allow for
distinguishing them. This notion of anonymity is extremely strong and its precise
pseudo-code definition is rather complex. However, the basic concept is relatively
simple.

Security Experiment. An adversary A against anonymity plays a game in
which it has adaptive access to the following oracles: Snd, RR, Rcv, ExposeS ,
ExposeR. Internally, these oracles execute Alice’s RKE.snd algorithm, outputting
the resulting ciphertext, Alice’s RKE.rr algorithm, Bob’s RKE.rcv algorithm, and
expose Alice’s and Bob’s current secret states stS and stR, respectively. Access
to these oracles is standard in the literature on RKE (except for oracle RR for the
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additional RKE.rr algorithm). In addition, the adversary can adaptively query
oracles that depend on a challenge bit b that is randomly sampled at the begin-
ning of the game:

– ChallSnd equals oracle Snd iff b = 0; otherwise, it temporarily initializes a
new, independent URKE session with algorithm RKE.init, uses the temporary
sender to send a ciphertext with algorithm RKE.snd, and outputs this cipher-
text (the temporary URKE session is discarded immediately afterwards); ora-
cle Rcv silently ignores ciphertexts created by ChallSnd under b = 1

– ChallExposeS equals oracle ExposeS iff b = 0; otherwise, it initializes a
new, independent session with algorithm RKE.init (as above) and outputs the
resulting secret sender state

– ChallExposeR equals oracle ExposeR iff b = 0; otherwise, it behaves as oracle
ChallExposeS under b = 1, except that it outputs the resulting temporary
secret receiver state

The adversary wins the game if it determines challenge bit b without performing
a trivial attack that inevitably reveals this challenge bit.

Identifying Trivial Attacks. To complete the above anonymity definition, all
attacks that trivially reveal the challenge bit have to be identified, detected, and
forbidden. Our aim is to detect these attacks as precisely as possible such that the
restrictions limit the adversary as little as possible (leading to a strong definition
of anonymity). Interestingly, one class of trivial attacks is particularly hard to
detect in a precise way for the anonymity game: trivial impersonations. To give a
simple, clarifying example for this, we consider the following adversarial schedule
of oracle queries: (1) ChallExposeS → stSb, (2) Rcv(c′), where c′ is crafted by
the adversary4, (3) ExposeR → stR.

We begin with the case b = 1, which means that the adversary plays in
the random world. In this world, exposed state stSb = stS1 is a random sender
state that corresponds to a hidden temporary receiver state independent of Bob’s
actual receiver state stR at step (1). Thus, by authenticity, Bob should not accept
any adversarially crafted ciphertext c′ in this case. Put differently, impersonating
Alice towards Bob is non-trivial for this adversarial behavior in the random
world. This means that Bob will reject c′ with high probability and the exposed
receiver state of Bob in step (3) remains stR, which is independent of the sender
state stS1 exposed in step (1).

In contrast, if b = 0, which means that the adversary plays in the real world,
exposed sender state stSb = stS0 corresponds to the real receiver state of Bob stR
at step (1). Hence, stS0 can be used to craft a valid ciphertext forgery c′ that
trivially impersonates Alice towards Bob. If the adversary, indeed, performs such
a trivial impersonation by executing RKE.snd(stS0) →$ (stS′, c′, k′) and querying
Rcv(c′), Bob will compute RKE.rcv(stR, c′) → (stR′, k′).4 The state of Bob stR′

that is exposed in final step (3) corresponds to the state stS′ that the adversary
computed (in their head) during the impersonation. By authenticity, a pair of
4 For simplicity, we ignore the associated data input ad here.
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corresponding states (stS′, stR′) can always be identified as such by sending with
the sender state and receiving the result with the receiver state.

Our full anonymity game must, consequently, forbid the final exposure in
step (3) because otherwise the adversary can determine the challenge bit from
the exposed state.

The presented trivial attack serves as the simplest example for multiple, more
complicated trivial impersonations that our game must detect, which we describe
in Sect. 4.2.

Main Components of Construction. At a first glance, our new URKE
construction that fulfills the above anonymity notion follows the design princi-
ple of prior non-anonymous URKE constructions described earlier. That means
intuitively, in every send operation, Alice (1) generates new PKE and OTS key
pairs, (2) encrypts fresh secrets to Bob with which he can compute his matching
new PKE decryption key (and the symmetric session key), and she (3) signs
the resulting PKE ciphertext. Yet, the exact details of our construction are far
more sophisticated. We proceed with presenting the most important anonymity
requirements and the corresponding solutions implemented in our construction.

Hiding the Signature. Without presenting the full details of our anonymity defi-
nition yet, we note that it imposes the following intuitive requirements: (1) adver-
saries are allowed to see all (challenge) ciphertexts between sender and receiver;
(2) seen (challenge) ciphertexts must remain anonymous even if Alice’s state
was ever exposed by the adversary before; (3) the authenticity notion presented
above imposes the use of asymmetric authentication methods (i.e., signatures)
from Alice to Bob. Thus, Alice must have a signing key stored in her state (due
to (3)) that is potentially known by the adversary (due to (2)) and, simulta-
neously, her ciphertexts must be authenticated by corresponding signatures in
an anonymous way (due to (1)+(2)+(3)). To ensure that the adversary cannot
link matching signing keys (from Alice’s exposed states) and signatures (in the
sent ciphertexts), our construction encrypts signatures. This encryption of sig-
natures is implemented deterministically with a symmetric key that is encrypted
in the PKE ciphertext. Thus, the signature remains confidential while the signed
ciphertext is determined before the signature is created, which maintains authen-
ticity and anonymity.

Randomizing Signing Keys Anonymously. The second property required by our
anonymity notion focuses on Alice’s sender states before and after executing
the RKE.rr algorithm. The two sender states of Alice, exposed before and after
executing the RKE.rr algorithm, respectively, must be indistinguishable from two
freshly generated, independent sender states. That means, an adversary must not
learn whether the signing keys, stored in both states of Alice, produce signatures
that are valid under the same verification key.5 For this, we introduce the new
notion of Updatable and Randomizable Signatures (urSIG) below.

5 Note that RKE.rr only randomizes Alice’s state without any interaction with Bob.
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Randomizing Encryption Keys Anonymously. Much like the relationship between
two signing keys must be hidden by state randomizations, two PKE encryp-
tion keys, stored in Alice’s exposed states, should not be easily linked. Namely,
(a) encryption keys must look random, (b) there must be an routine that re-
randomizes them, and (c) it cannot be determined which ciphertexts were created
by them. For this, we introduce the new notion of Updatable and Randomizable
Public Key Encryption (urPKE) below.
Updatable and Randomizable Public Key Encryption. We start with
a high level overview of urPKE. As mentioned above, urPKE encryption keys
must look random, be re-randomizable, and look independent of the cipher-
texts that they produce. Our construction is based on ElGamal encryption.
The encryption key consists of ek ← (gr, gxr), where r and x are random
exponents and x = dk is the decryption key. For re-randomizing the encryp-
tion key, we apply the same random exponent r′ to both of its components
(ekr′

0 , ekr′
1 ). Encryption of message m takes a random exponent s to create

ciphertext c ← (eks
0,H(eks

0, eks
1) ⊕ m). Decryption follows immediately via

m ← H(c0, cdk0 ) ⊕ c1.
This idea has applications beyond our specific use-case. For example, we

point out how our construction can be extended to realize anonymous Updat-
able PKE [4,16,26] that is broadly used in the literature of RKE and secure
messaging.
Updatable and Randomizable Signatures. The security requirements for
our new signature primitive urSIG are more challenging. Concretely, an urSIG
scheme must provide the following properties: (a) verification keys must look
random, (b) deriving the matching verification key from a signing key must be
hard, and, beyond this, (c) determining whether two signing keys can produce
signatures valid under the same (unknown) verification key must be hard. While
ostensibly related to Designated Verifier Signatures, urSIG is a novel, incompa-
rable primitive.

Construction Idea. Although the above requirements appear contradictory, we
provide a simple construction. The idea is based on Lamport signatures [28].
Intuitively, we start generating the signing key by sampling 2 · � pre-images
sk′

i,b, (i, b) ∈ [�] × {0, 1}. To derive the matching verification key, we apply a
one-way function on each pre-image vk′

i,b ← f(sk′
i,b). Finally, we generate a PKE

key pair (ek, dk) that allows ciphertext re-randomization. The final verification
key consists of the decryption key dk and all images vk′

i,b. The final signing key
consists of the encrypted pre-images ski,b ← rPKE.enc(ek, sk′

i,b). To re-randomize
Alice’s verification key, she re-randomizes each component ciphertext ski,b. The
signature of message m = (m1, . . . , m�) consists of the respective signing key
components σ ← (sk1,m1 , . . . , sk�,m�

). To verify the signature, Bob decrypts each
component and applies the one-way function for comparison with his verification-
key component.

For strong unforgeability, we use a technique similar to the CHK transform [13,
29] by employing a strongly unforgeable OTS that signs the actual message. The
scheme above then signs the verification key of the strongly unforgeable OTS.
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Shrinking Signatures. A drawback of this basic urSIG scheme is that it has
large verification keys and large signatures. To mitigate the latter, we instantiate
the above construction with a bilinear map e : G1 × G2 → GT , where G1 is
the ciphertext space of the PKE scheme and G2 and GT are chosen such that
they are of sufficient size. This allows for aggregation of signing key components
(sk1,m1 , . . . , sk�,m�

) to obtain a compact signature σ; this aggregation is inspired
by BLS signatures [11,12]. The full details of this construction are in Sect. 6.

2 Preliminaries

We write h $← S to denote that the variable h is uniformly sampled from finite
set S. For integers N, M ∈ N, we define [N, M ] := {N, N + 1, . . . , M} (which
is the empty set for M < N) and [N ] := [0, N − 1]. We use bold notation v to
denote vectors. We define ∪← � as the operation which appends � to the data
structure it was called upon. If the data structure is a set, then � is added to
the set. If the data structure is a vector then � is appended to the end.

We write AB to denote that algorithm A has oracle access to algorithm B
during its execution. To make the randomness ω of an algorithm A on input x
explicit, we write A(x; ω). Note that in this notation, A is deterministic. For a
randomised algorithm A, we use the notation y ∈ A(x) to denote that y is a
possible output of A on input x.

Basic cryptographic assumptions and definitions used in our proofs are given
in the full version [17].

3 Ratcheted Key Exchange

Throughout this paper, we consider unidirectional communication, as defined
in several flavors in previous works [5,8,34]. Thus, messages flow from a fixed
sender to a fixed receiver; there is no communication from the receiver to the
sender. We now define the syntax and properties of unidirectional ratcheted key
exchange.

Syntax. A unidirectional ratcheted key exchange scheme RKE consists of four
algorithms RKE.init, RKE.snd, RKE.rcv and RKE.rr, where the algorithms are
defined as follows.

– (stS, stR) $← RKE.init returns a sender and receiver state.
– (stS, c, k) $← RKE.snd(stS, ad) on input a sender state stS and associated data

ad, outputs an updated sender state stS, a ciphertext c, and a key k.
– (stR, k) ← RKE.rcv(stR, c, ad) on input a receiver state stR, a ciphertext c

and associated data ad, outputs an updated receiver state stR and a key k
or a failure symbol ⊥.

– stS $← RKE.rr(stS) on input a sender state stS, outputs an randomized sender
state stS.
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The encapsulation space C and the key space K are defined via the support of
the RKE.snd algorithm. Let AD := {0, 1}∗ be the space of associated data.

State Randomization. All algorithms except RKE.rr are standard in the literature
of RKE. This new randomization algorithm is designed for settings in which the
sender wants strong anonymity. Assume Alice has at least one running RKE
session in which she sends periodically. To obfuscate both the number of running
RKE sessions and the number of real ciphertexts sent in each, Alice can generate
“dummy” RKE sender states. Whenever Alice executes RKE.snd with one of her
states, she can re-randomize all remaining states via RKE.rr. Looking ahead, our
definition of anonymity requires that all sender states are indistinguishable from
a freshly generated sender state, ensuring that it is hard to identify the state
that was just used for sending.6

Basic Consistency Requirements. In the full version [17], we formally spec-
ify three basic consistency notions for RKE: Robustness, Correctness, and
Recover Security. Robustness requires that whenever algorithm (stR′, k) ←
RKE.rcv(stR, c, ad) rejects a ciphertext c and associated data ad (and out-
puts k = ⊥), the output receiver state stR′ must be unchanged (i.e., stR = stR′),
which is crucial for ensuring strong anonymity. Correctness requires that, as long
as Bob only accepts ciphertexts sent by Alice (i.e., accepts no forged messages
from the attacker), keys output by Bob match those output by Alice. Finally,
recover security ensures that it is hard to perform a trivial impersonation of Alice
towards Bob without being detected eventually. More concretely, whenever Bob
computes a key that does not match the corresponding key computed by Alice,
Bob must never accept another ciphertext from Alice.

3.1 Secrecy and Authenticity

We provide compact notions of key-indistinguishability and authenticity for RKE
in the full version [17]. In both games, the adversary can control the protocol
execution via oracles Snd, RR, Rcv that internally run the respective algorithms.
Furthermore, the adversary can expose the sender state and receiver state via
oracles ExposeS and ExposeR, respectively.

Secrecy. In game KIND, which models secrecy of session keys, the adversary can
additionally query ChallSnd. This oracle internally executes algorithm RKE.snd
and, depending on random challenge bit b, either outputs the computed key k (if
b = 0) or a uniformly random key k′ (if b = 1). To correctly guess the challenge
bit b, the adversary can query all oracles with two limitations. These limitations

6 A corresponding randomization algorithm for the receiver state is meaningless in the
unidirectional RKE setting since, as soon as Bob’s state is exposed, he cannot hope
for any security guarantees after that.
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depend on whether the receiver accepted a ciphertext (via Rcv) that was not
sent by the sender (via Snd resp. ChallSnd). If the receiver never accepted a
malicious ciphertext, we say the receiver is in sync. As long as the receiver is in
sync, querying ExposeR is only permitted if all ciphertexts output by ChallSnd
were given to Rcv in the same order. Otherwise, exposing the receiver would
reveal challenges still in transit. For the same reason, querying ChallSnd is
forbidden if the receiver was exposed while in sync.

Authenticity. In game AUTH, the adversary wins when the receiver accepts a
ciphertext (via Rcv) that was not sent by the sender (via Snd resp. ChallSnd).
The only restriction is that ExposeS must not have been queried after the
last ciphertext, accepted by the receiver in sync (in Rcv), was sent (via Snd
resp. ChallSnd). This condition rules out trivial impersonations.

4 Anonymous Ratcheted Key Exchange

In anonymous ratcheted key exchange, any interaction of a fixed RKE instance,
consisting of a fixed sender and receiver, should be indistinguishable from an
interaction of a fresh RKE instance which is sampled uniformly at random. This
includes not only the indistinguishability of ciphertexts and keys, but also the
internal states. We capture these core requirements for our anonymity security
experiment in so-called utopian games below.

As opposed to KIND and AUTH, there are far more trivial attacks that need to
be considered. We elaborate on how we model security such that we can identify
and prevent trivial attacks, and give a detailed security notion for anonymity
in this section. Following the approach of Rogaway and Zhang [36], we give the
core of our definition (which we call utopian games), ignoring trivial attacks for
now.

Utopian Games. The definition of our utopian games U − ANONb is given in
Fig. 1. Our definitions are “real-or-random”-style and games are parameterized
by a bit b, where U−ANON0 denotes the real world execution, and in U−ANON1

all outputs of challenge oracles are random. At the beginning of the game, U −
ANONb

RKE samples the initial sender and receiver states and provides several
oracles to the adversary. As usual for RKE security, the adversary can control
the message flow and obtain internal states via oracles Snd, Rcv, RR, ExposeS

and ExposeR.
The remaining oracles provide the adversary with some challenge depending

on b. We define three different challenge oracles:

– ChallSnd models indistiguishability of ciphertexts and keys. It should be hard
to distinguish if the ciphertexts and keys are produced by running RKE.snd
on the real sender state (U−ANON0) or a random sender state (U−ANON1).

– ChallExposeS models indistinguishability of sender states. In U − ANON0

this oracle outputs the real sender state, whereas in U − ANON1 it outputs
a random sender state. At this point, we store the corresponding receiver
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Fig. 1. Utopian games U − ANONb for anonymity, where b ∈ {0, 1} and RKE is a
ratcheted key exchange scheme.

state in an additional variable ceStR which we require later to define trivial
attacks.

– ChallExposeR models indistinguishability of receiver states and is defined as
in ChallExposeS , only it instead outputs the real receiver state (U−ANON0)
or a random receiver state (U − ANON1).

4.1 Anonymity Definition

In this section, we show how to extend the utopian games to a full anonymity
security notion for RKE (cf. Fig. 2). Since identifying trivial attacks is quite
involved and needs a lot of additional book-keeping, the subsequent text aims to
give an in-depth description of our game-based definition on a syntactical level.
It provides the framework to prevent trivial attacks and should help the reader
to understand how all the tracing logic works. Apart from that, the security
game ANONb

RKE basically builds upon the logic of the corresponding utopian
game U−ANONb. A more high-level perspective and, in particular, descriptions
of the actual trivial attacks are given in the subsequent Sect. 4.2.

For comprehensibility, we assume that an RKE scheme, analyzed with our
anonymity notion, offers recover security, correctness, as well as authenticity. It is
notable that an adversary breaking authenticity also trivially breaks anonymity
(cf. the full version [17]).

Execution Model. Depending on the bit b, game ANONb
RKE either simulates the

real world as captured in utopian game U − ANON0
RKE or the random world as

captured in utopian game U − ANON1
RKE (cf. Fig. 1). In the following, we will

write U − ANON0 and U − ANON1 for brevity. Hence, ANONb runs the utopian
game U−ANONb as a subroutine and we allow access to all oracles. For example,
we denote oracle access by U − ANONb.Snd(ad), which will run a send query in
U−ANONb on input ad. We also allow access to internal variables. For example,
we write U − ANONb.stR to access the current receiver state in U − ANONb.

To ensure that the game ANONb can identify trivial attacks, we also need to
observe what would have happened if we had run the same sequence of queries
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Fig. 2. Full anonymity games ANONb for b ∈ {0, 1}, where lines in dashed boxes
disallow trivial attacks. We further distinguish between different trivial attacks (cf.
Sect. 4.2): Lines marked with ⊕ are due to correctness relations, those marked with � ,
� are due to state equality relations on sender resp. receiver side, those marked with
� are due to matching state relations, and i indicates an impersonation requirement.
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in the other utopian game 1 − b. We will explain this in more detail in Sect. 4.2.
First, we introduce additional book-keeping variables and describe our oracles.

Send Queries. Oracles Snd and ChallSnd take as input a string ad which it
forwards to utopian game U − ANONb to compute a ciphertext and key (c, k).
All tuples (c, ad) are stored in a list cad. Additionally, we have counters (s0, s1)
to keep track of the number of ciphertexts sent in game U − ANONb and the
number of ciphertexts that would have been sent in U − ANON1−b. On a Snd
query, we increment both counters. Since Snd results in updated sender states, we
already store the corresponding updated receiver state in a list stR by running
the RKE.rcv algorithm locally (line 47). Note that the first entry of stR at
position 0 is set to the initial receiver state U − ANONb.stR when the game
is initialized (line 05). We additionally store the current counter value s0 in a
set c.

On a ChallSnd query, we only increment s0 because the real sender state
is not used in U − ANON1. Thus, we also only need to store the corresponding
receiver state in case b = 0 (line 54). The value of the counter s0 is additionally
stored in the challenge set cc.

Exposures and Randomizations. Oracles ExposeS and ExposeR forward queries
to the utopian game and output the real sender state stS (resp. receiver state
stR). Additionally, the current sender counters (s0, s1) are added to a set xS.
We use boolean flags xS resp. xR to indicate that the sender resp. receiver was
exposed.

Challenge exposures are handled similarly, however now we use a list cxS
to store tuples (s0, s1) of a query to ChallExposeS . Thus, we have another list
cstR to additionally store the corresponding receiver state of the exposed sender
state. When b = 0, we simply copy the state stored in stR and for b = 1, we
store the receiver state U − ANON1.ceStR (belonging to the randomly chosen
sender state stS1). We use boolean flags cxS resp. cxR to register a challenge
sender resp. receiver exposure.

A randomization query via RR will reset the sender flags to fal, thus modeling
post-compromise anonymity on the sender’s side. Note that we do not need to
track the time of a receiver exposure. Once exposed, all subsequent updated
states can be computed locally by the adversary.

Before describing Rcv behaviour, we want to highlight the importance of
impersonations. We use boolean flags imp0, imp1 to indicate an impersonation
in U−ANON0 or U−ANON1. Both are initialized to fal and will be set to tru
if a sequence of queries leads to an impersonation in the corresponding utopian
game. Note that sequences of queries may lead to impersonations in both, none
or one utopian game(s).7 Thus, we need track whether an impersonation would

7 An impersonation may occur in one of the games when sender and receiver states are
not updated simultaneously. The sequence of oracle calls ChallSnd, ExposeS with a
subsequent impersonation attempt issued to Rcv will only impersonate U−ANON1,
since in U − ANON0 the challenge ciphertext needs to be received first.
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have happened. While it is easy to check the impersonation state of the simulated
game U−ANONb, i.e., the value of impb, it is more involved to determine imp1−b.
We will explain how this can be done below.

Receive Queries. Oracle Rcv advances receiver states. Since the adversary only
sees ciphertexts of U − ANONb, we first forward the adversary’s query (c, ad) to
U−ANONb. Similarly to the counters (s0, s1), we use counters (r0, r1) to track the
number of successfully received ciphertexts in games U−ANON0 and U−ANON1.
For U−ANON1−b, we can determine these numbers from the sequence of queries.
We introduce another book-keeping set rcvd, which stores the counter values
of send queries stored in c that have been successfully received in U − ANON1,
allowing us to keep track of which tuples stored in cad have been processed
by U − ANON1. Now, independent of whether this ciphertext has been received
successfully, we proceed in three steps.

Check for in-order-receive (lines 57–63). If the adversary intends to
receive a ciphertext output by Snd or ChallSnd (which we check by comparing
the query to the list cad) we need to decide if this query would have been
accepted in U−ANON1−b. Let r̂ be the index in cad such that the tuple stored
in cad[r̂] matches the adversary’s query. If b = 0, we need to decide whether
this query would lead to a successful receive in U − ANON1. At this point, we
only care about ciphertexts from Snd since challenge ciphertexts in U − ANON1
are produced by a random state. We denote the index of the next ciphertext in
cad that belongs to a send query by r′

1. Note that we can compute r′
1 using sets

c and rcvd. We say that U − ANON1 accepts this ciphertext if r̂ = r′
1 and we

will add r̂ to rcvd. If b = 1, it is easy to decide whether a ciphertext would have
been accepted in U − ANON0, since we only need to compare r̂ with r0. Since
any ciphertext stored in cad should not be accepted after an impersonation, the
statements in lines 60, 62 will always evaluate to false.

Check for impersonations after ExposeS (lines 65–71). We know that an
exposed sender state can lead to an impersonation, depending on when exposure
occurred and which ciphertexts have been received. Since we require authenticity,
an impersonation can only occur after an exposed sender state. Thus, in U −
ANON1 an impersonation will only be successful if the counter value r1 is in the
set xS. We add all the relevant tuples to a set S. Ignore line 66 for now. We
iterate over all entries (r̂0, r̂1) ∈ S and use stR[r̂b] to check if the ciphertext
decrypts under that state. If so, this may be an impersonation, which we will
decide next. Since we always have r̂1 = r1, a successful decryption implies an
impersonation in U − ANON1, so we set imp1 to tru. If r̂0 = r0, then we had
an impersonation in U − ANON0 as well. By RECOV security, once a sender is
impersonated, the receiver will no longer accept their ciphertexts. Thus once
imp0 ← tru, imp0 will always be tru independent of the counter comparison,
which is captured by the “or” statement in line 69. The result of this check
will be the same in both games ANON0 and ANON1, unless the case in line 66
happens. For an example of a sequence of queries triggering this case, we refer
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to the full version [17]. Note that if there exist multiple entries such that (r̂0, r̂1)
in S, but r0 	= r̂0 for all, then imp0 will always be set to the same value.

Check for impersonations after ChallExposeS (lines 72–76) Imperson-
ation can also occur using the sender state output by ChallExposeS . Similarly to
the previous step, we first identify relevant entries in the list cxS. In particular,
we look for all entries (r̂0, r̂1), where r̂b = rb. Since cxS is a list and we stored
the corresponding receiver states at the same position in list cstR, we need to
find the position of the tuples (r̂0, r̂1) and store these indices in a set I. This
structure is needed, since entries in cxS are not necessarily unique.8 Now we
proceed as in the previous step. An impersonation in U − ANON0 has occurred
if the counter r̂0 in cxS equals the current counter r0. Note that in U−ANON1,
there will not be an impersonation since the real receiver state should accept a
ciphertext output by a random sender state. Again, the outcome is the same for
both games ANONb. For b = 0, this can be observed by the fact that I maps to
indices where r̂0 = r0 and thus cstR[i] = cstR[j] for all i, j ∈ I and the check
only depends on the successful decryption using the current state. For b = 1,
since all entries in cstR contain different receiver states, there will be at most
one state that decrypts the ciphertext. Thus, r̂0 is uniquely defined and imp0 is
only set to tru if r̂0 = r0 (or if it has already been tru before).

We will increase the counter r1−b if the impersonation was successful. At the
very end, we will also increase counter rb if the query was accepted in the first
place. This concludes the description of Rcv.

4.2 Identifying Trivial Attacks

If we ignore trivial attacks, the adversary easily distinguishes ANON0 from
ANON1, since relations between outputs differ between games. We group these
relations into four categories: ability to decrypt, state equality, matching states,
and impersonations. In our pseudocode, we indicate restrictions on the adversary
with a symbol corresponding to a relation group. We briefly explain the relations
below, and we provide justification for all requirements in the full version [17].

Ability to Decrypt (Marked with ⊕). Our correctness definition captures that a
ciphertext computed with the sender state can always be decrypted with the
corresponding receiver state. Due to this, lines marked with (⊕) trace sequences
of oracle queries that allow an adversary to determine if a given ciphertext
decrypts successfully under an exposed receiver state in one game but not the
other, revealing the bit b.

Equality of States (Marked with � , � ). For both sender ( � ) and receiver (� )
exposures, our anonymity game allows the direct exposure of a real state and
challenge exposures which will output either a real or random state. Depending
on the sequence of queries, the output of two subsequent calls to ExposeS or
8 Imagine a sequence of queries ChallExposeS , RR, ChallExposeS . In this case, the

sender counters s0, s1 do not change. Also the receiver states appended to cstR0 are
the same, but the (random) receiver states appended to cstR1 are different, which
is crucial for identifying impersonations.
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ChallExposeS may inevitably be the same in ANON0 but not in ANON1, which
we detect with the marked code lines to prevent that this inconsistency trivially
reveals bit b.

Matching States (Marked with 
 ). We also consider sequences of queries that
may expose one party and challenge-expose the other. It is easy to see that the
adversary can test whether two such states are linked (which leaks bit b) by
creating a ciphertext with the exposed sender state and trial-decrypt with the
receiver state.

Impersonations (Marked with i ). As argued earlier, it is crucial to determine
whether a sequence of queries leads to an impersonation in any of the games
ANON0 and ANON1. Only then, we can detect whether the relations above lead
to a trivial attack. However, sometimes it is not possible to uniquely determine
the impersonation status in game ANON1−b. Whenever this is the case, we need
to disallow receiver exposures since the receiver’s state leaks whether the imper-
sonation attempt was successful.

Finally, we formalise the advantage of an adversary against RKE anonymity.

Definition 1. Consider the games ANONb for b ∈ {0, 1} in Fig. 2. We define
the advantage of an adversary A against anonymity of a ratcheted key exchange
scheme RKE as

AdvANON
A,RKE :=

∣
∣Pr[ANON0

RKE(A) ⇒ 1] − Pr[ANON1
RKE(A) ⇒ 1]

∣
∣ .

5 Updatable and Randomizable PKE

We construct two types of PKE with related properties: a randomizable PKE
scheme (rPKE) and an updatable and randomizable PKE scheme (urPKE).
An rPKE scheme is used in the updatable and randomizable signature scheme
(cf. Sect. 6.2) and urPKE is a direct building block in the overall construction of
ratcheted key exchange (cf. Sect. 7).

5.1 Randomizable PKE

In the following, we define the syntax and properties of an rPKE scheme.

Syntax. A randomizable public-key encryption scheme rPKE consists of four
algorithms rPKE.gen, rPKE.enc, rPKE.dec, rPKE.rr, which are defined as follows:

– (ek, dk) $← rPKE.gen outputs an encryption key and a decryption key.
– c $← rPKE.enc(ek, m) takes an ek, message m and returns an encryption c.
– m ← rPKE.dec(dk, c) takes dk, c and outputs the decrypted message m.
– (ek, c) $← rPKE.rr(ek, c) returns randomized ek and c.
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Compared to a standard public-key encryption scheme, the additional feature
lies in the rPKE.rr algorithm that allows to (re-)randomize encryption keys
and ciphertexts while preserving correctness. More formally, we require that
for all (ek, dk) ∈ rPKE.gen, m ∈ M, for random c $← rPKE.enc(ek, m) and for
an arbitrary number of randomizations (ek, c) $← rPKE.rr(ek, c), we have that
rPKE.dec(dk, c) = m.

We want to use an rPKE scheme as building block of the signature scheme in
Sect. 6. For this, we will need some additional properties that we define below.

Homomorphic Property. An rPKE scheme is called homomorphic if for an arbi-
trary but fixed public key (ek, _) ∈ rPKE.gen, there exists a group homomor-
phism rPKE.enc : (M, ⊗) × (R, ⊕) → (C, ⊗), where M, R, C are message space,
randomness space and ciphertext space of the rPKE and ⊕, ⊗ are the correspond-
ing group operations. More explicitly,

rPKE.enc(ek, m1; r1) ⊗ rPKE.enc(ek, m2; r2) = rPKE.enc(ek, m1 ⊗ m2; r1 ⊕ r2) ,

where r1, r2 ∈ R and ⊗ is taken component-wise.
Further, we want randomizations to be (computationally) indistinguishable,

which we capture in the following definition.

Definition 2 (IND − R). Let rPKE be a randomizable public key encryption
scheme. We require that a pair of encryption key and ciphertext that has been
randomized via rPKE.rr is indistinguishable from a freshly generated encryption
key and ciphertext. More formally, we define the advantage of a distinguisher D
for arbitrary 2� ∈ Z, (m0, . . . , m2�) ∈ M2� as

AdvIND−R
D,rPKE :=

∣
∣ Pr[D(ek, c0, . . . , c�, ek′, c′

0, . . . , c′
�) ⇒ 1]

− Pr[D(ek, c0, . . . , c�, êk, ĉ0, . . . , ĉ�) ⇒ 1]
∣
∣ ,

where (ek,_) $← rPKE.gen, ci
$← rPKE.enc(ek, mi), (ek′, c′

0, . . . , c′
�) ← rPKE.rr

(ek, c0, . . . , c�), (êk,_) $← rPKE.gen, ĉ0, . . . , ĉ�
$← rPKE.enc(ek, m�+1, . . . , m2�).

Construction. In Fig. 3, we construct an rPKE scheme based on the ElGamal
KEM and PKE scheme. Thus, we denote the corresponding scheme by rPKEEG.
An encryption key basically consists of an ElGamal encapsulation and KEM
key. The encryption and randomization algorithms then use the homomorphic
property of ElGamal.

Lemma 1. Scheme rPKEEG is homomorphic. Furthermore, it satisfies indistin-
guishability of randomizations under the DDH assumption. In particular, for any
adversary A, there exists an adversary B against DDH such that

AdvIND−R
A,rPKEEG

≤ AdvDDH
B,G .



140 B. Dowling et al.

Fig. 3. Randomizable PKE scheme rPKEEG.

5.2 Updatable and Randomizable PKE

In this section, we introduce the primitive of an updatable and randomizable
PKE, which will be used in our construction of ratcheted key exchange. The
syntax is similar to that of rPKE, but it extends it with the ability to update
the key pair. We briefly sketch the differences below.

Syntax. An updatable and randomizable public-key encryption scheme
urPKE consists of six algorithms urPKE.gen, urPKE.enc, urPKE.dec, urPKE.rr,
urPKE.nextDk and urPKE.nextEk, where the first three algorithms are defined as
for rPKE and the remaining ones follow the syntax:

– ek $← urPKE.rr(ek) outputs a randomized encryption key ek.
– dk ← urPKE.nextDk(dk, r) updates the decryption key with randomness r.
– ek ← urPKE.nextEk(ek, r) updates the encryption key with randomness r.

Note that the main difference to rPKE is that the randomization algorithm
urPKE.rr randomizes only the encryption key.

We now require the following additional properties.

Instance Independence. We say a urPKE scheme is instance-independent if for
uniformly chosen randomness r and any key pair (ek, dk) in the support of
urPKE.gen, the two distributions (urPKE.nextEk(ek, r), urPKE.nextDk(dk, r)) and
(ek′, dk′) $← urPKE.gen are the same.

Indistinguishability of Randomizations. Similar to rPKE, we require for IND − R
(formally defined in the full version [17]) security that an encryption key that
has been randomized is indistinguishable from a freshly generated encryp-
tion key. In particular, the two distributions (ek, ek1) and (ek, ek2), where
(ek, _) $← urPKE.gen, ek1 ← urPKE.rr(ek), (ek2, _) $← urPKE.gen should be
(computationally) indistinguishable under chosen ciphertext attacks.

Ciphertext Anonymity. For ciphertext anonymity of urPKE we require that
ciphertexts generated by a particular (and possibly exposed) encryption key
are indistinguishable from ciphertexts generated by a freshly chosen encryption
key under chosen ciphertext attacks. We provide a more fine-grained game-based
definition in the full version [17].
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Construction. We construct an updatable and randomizable PKE scheme
based on hashed ElGamal, which was first proven to be IND − C secure in [1].
The construction is also similar to the secretly key-updatable encryption scheme
of [26], thus we will only sketch it here. We give the full scheme in the full
version [17], including the proofs of the properties mentioned above.

Algorithms urPKE.gen, urPKE.enc, urPKE.dec follow the ideas from rPKE,
only that they hash the ElGamal KEM key used for encryption. Since the
ciphertext does not need to be randomized, urPKE.rr can still be performed
in the same way as the randomization of the encryption key in rPKE.rr. Algo-
rithms urPKE.nextDk and urPKE.nextEk asynchronously update the decryption
and encryption key by exponentiation with some uniformly chosen randomness.

6 Updatable and Randomizable One-Time Signatures

In this section we introduce our new signature primitive, namely updatable and
randomizable one-time signatures. The property of updatability refers to asyn-
chronous updates of the signing and verification keys. Randomizability refers to
the randomization of signing keys. These will be crucial to provide anonymity
guarantees of our ratcheted key exchange scheme.

Challenges. The main technical difficulty in designing the signature scheme lies
in maintaining unforgeability while achieving randomizability of signing keys.
More specifically, randomization must be implemented in a way such that both
the original signing key and one of its randomized versions produce signatures
that are unforgeable (if neither of both signing keys is corrupted); furthermore,
signatures from both signing keys must verify under the same single verification
key. Simultaneously, seeing the original and the randomized signing key should
be indistinguishable from seeing two independently sampled signing keys. (Note
that, by unforgeability, two independent signing keys will not produce signatures
valid under the same verification key.)

We conjecture that updatability of a signature scheme is easy for most alge-
braic signature schemes. Unforgeability usually reduces to hardness of inverting
some one-way function mapping from signing keys to verification keys. So it must
be hard to invert verification keys to get valid signing keys. Our randomization
requirements, intuitively, demand this for the opposite direction, too: obtaining
verification keys from signing keys must be hard. Strictly speaking, we require
an even stronger property: Without having the verification key, signing keys and
their signatures look random, independent of whether they correspond to the
same verification key. This might seem contradictory or, at least, very strong.

Outline. As a warm-up, we start with a definition and construction of updat-
able one-time signatures in Sect. 6.1. Then, we will extend the construction to
updatable and randomizable one-time signatures in Sect. 6.2. To achieve ran-
domizability, we use the ElGamal-based rPKE scheme introduced in Sect. 5.
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6.1 Warm-Up: Updatable Signatures

Syntax. An updatable signature scheme uSIG consists of five algorithms
uSIG.gen, uSIG.sig, uSIG.vfy, uSIG.nextSk, uSIG.nextVk. Let M be the message
space and R be the randomness space. Then the algorithms are defined as
follows:

– (vk, sk) $← uSIG.gen generates a verification key vk and signing key sk.
– σ $← uSIG.sig(sk, m) takes sk and a message m and returns a signature σ.
– {0, 1} ← uSIG.vfy(vk, m, σ) takes vk, m and σ and returns a bit indicating

whether σ is a valid signature for m.
– sk ← uSIG.nextSk(sk, r) asynchronously updates sk with randomness r.
– vk ← uSIG.nextVk(vk, r) asynchronously updates vk with randomness r.

Correctness. Apart from the standard correctness requirement, we require that
updates yield valid verification and signing keys. More formally, we require the
following:

(1) ∀(sk, vk) ∈ uSIG.gen, m ∈ M :

Pr[uSIG.vfy(vk, σ, m) = 1 | σ $← uSIG(sk, m)] = 1

(2) ∀(sk, vk) ∈ uSIG.gen, r ∈ R :

(uSIG.nextSk(sk, r), uSIG.nextVk(vk, r)) ∈ uSIG.gen

Intuition Updatability. At the core of our construction lies a slight variation
of Lamport one time signature scheme, where signing keys are group elements.
To shrink the size of signatures and to mitigate the lack of updateability we
instantiate the hash function with a hash function fulfilling one-wayness and the
homomorphic property. By one-wayness the unforgeability property of Lamport
signature scheme is unchanged and by the homomorphic property we can i)
optimize the signature length to a single element in the target group ii) update
signing and verification key.

To achieve this we use pairings. Let G be a pairing group with bilinear map
e : G1 ×G2 → GT . By the XDH assumption, DDH is hard in group G1 and CDH
is hard in groups G1 and G2. For fixed g2 ∈ G2, we then set H(h) := e(h, g2).
Clearly the homomorphic property of H follows from bilinearity of the pairing,

e(m1, g2) · e(m2, g2) = e(m1 · m2, g2) .

By the FAPI-2 Assumption [22], H is a one way function.

Construction. Our construction of an updatable one-time signature scheme
is given in Fig. 4. It follows the idea of the one-time Lamport signature scheme,
where we replace the hash function of the original scheme with a Type-II pairing.
Thus, let G be a pairing group and H : {0, 1}∗ → {0, 1}� a hash function.
Secret keys consist of 2� group elements in G1 and verification keys consist of 2�
group elements in GT . For the signature generation, we borrow the approach of
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aggregated BLS signatures [11,12]. Additionally following the “Hash-and-Sign”
approach, we first hash the message using H and then interpret the hash value
bit-wise. For the ith bit we choose the ith element of the signing key depending
on the bit value. The signature σ will then be the product of � group elements.
Verification uses the pairing to compute e(σ, g2) and compares the result to the
product of the respective � target group elements.

The idea for updating the signing and verification key is that we can multiply
each group element of the signing key ski,b with another group element Ri,b.
Verification keys can be updated by multiplying the respective target group
element with e(Ri,b, g2).

Fig. 4. Updatable one-time signature scheme uSIG for a pairing group G = (p,G1,G2,
GT , e, g1, g2), where H : {0, 1}∗ �→ {0, 1}� is a hash function.

In the full version [17] we prove one-time existential unforgeability of the
scheme.

6.2 Extension to Updatable and Randomizable Signatures
Syntax. An updatable and randomizable signature scheme urSIG shares the syn-
tax of an updatable signature scheme, i.e., the algorithms urSIG.gen, urSIG.sig,
urSIG.vfy, urSIG.nextSk, urSIG.nextVk are defined analogously. Additionally, there
is a sixth algorithm urSIG.rr, which is defined as follows
– sk $← urSIG.rr(sk) randomizes the signing key sk.

Correctness. We extend correctness requirements (1), (2) from the previous
section by the following: We require that for all (vk, sk) ∈ urSIG.gen, m ∈ M,
an arbitrary number of randomizations resulting in an randomized signing key
sk $← urSIG.rr(sk), a signature σ $← urSIG.sig(sk, m) still verifies correctly.

Below we define a similar security property as for randomizable PKE schemes,
which will be needed in the anonymity proof of our ratcheted key exchange
scheme.

In the full version [17] define additional security properties that are needed
for authenticity and recover security.
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Definition 3 (Indistinguishability of Randomizations). Let urSIG be a an
updatable and randomizable signature scheme. We require that a signing key that
has been randomized using urSIG.rr is indistinguishable from a freshly generated
signing key. More formally, we define the advantage of a distinguisher D as

AdvIND−R
D,urSIG := |Pr[D(sk, sk0) ⇒ 1] − Pr[D(sk, sk1) ⇒ 1]| ,

where the probability is taken over (sk, vk) $← urSIG.gen, sk0 ← urSIG.rr(sk) and
(sk1,_) $← urSIG.gen and the internal randomness of D.

Our Construction. In Fig. 5 we extend the updatable signature scheme in
Fig. 4 by the randomizable PKE in Fig. 3 to get an updatable and randomizable
one-time signature scheme.

Recall that signing keys in our updatable one-time signature scheme are
group elements. In order to achieve signing key randomization, the idea is to
encrypt those signing keys with ElGamal. However, this means that the ElGamal
encryption key must be part of the overall signing key and thus in turn be
randomized as well. Therefore, we do not use plain ElGamal encryption, but our
randomizable PKE encryption scheme rPKEEG.

Fig. 5. Our updatable and randomizable one-time signature scheme urSIG[rPKE, uSIG].

Finally, to achieve strong unforgeability we use the CHK transformation [13,
29] using a strongly unforgeable signature.

7 Construction of Anonymous RKE
Our construction of anonymous unidirectional RKE in Fig. 6 elegantly arises
from the two primitives presented in the last sections, urPKE and urSIG. Beyond
this, we use a hash function (modeled as a random oracle) and a pseudorandom
generator (PRG).
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Fig. 6. Construction of our RKE scheme RKE[urPKE, urSIG,H,PRG].

Construction. On initialization, a urPKE key pair and a urSIG key pair is gen-
erated, both of which are split between Alice’s and Bob’s state. Randomization
of Alice’s state works componentwise. When sending, Alice (1) generates a fresh
signature key pair, (2) encrypts the new verification key as well as random sym-
metric keys, and (3) signs the resulting ciphertext with her prior signing key.
(4) The signature is encrypted with one of the encrypted symmetric keys. Using
the random oracle on input of the other symmetric key, the composed ciphertext,
and the associated data string, Alice (5) derives the final session key as well as
two pseudorandom strings which update her two state components (encryption
key and signing key). Bob performs the corresponding decryption, verification,
hash evaluation, and key updates when receiving.

Consistency and Authenticity. By the correctness properties of urPKE and
urSIG, this URKE construction is correct, too. The construction provides robust-
ness since Bob either accepts with an actual session key (if decryption and ver-
ification succeed) or his state remains unchanged. We formally prove recover
security of this construction in the full version [17]. On an intuitive level, each
fresh signing key is “entangled” with the ciphertext that transmits it via the
key update in line 12. This means that Bob will only accept signatures from a
signing key if he received the corresponding verification key with the originally
transmitted ciphertext. Based on unforgeability of the urSIG scheme and colli-
sion resistance of the random oracle, this mechanism maintains recover security.
Authenticity similarly follows from the signature scheme’s unforgeability, which
we prove in the full version [17].
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Secrecy. In the presence of a passive adversary, the secrecy of session keys fol-
lows directly from the confidentiality of the urPKE scheme. In case of a trivial
impersonation—which, by authenticity, is the only successful way to let Bob
accept a forged ciphertext—, we need the consistency guarantees of the urSIG
scheme and the hash function to prove that Bob’s state immediately diverges
incompatibly from Alice’s state. We prove this informal claim in the full ver-
sion [17].

Anonymity. Below we establish our main theorem, namely anonymity of our
RKE construction. Additionally, we provide theorems and proofs for robustness,
recover security, authenticity and key indistinguishability in the full version [17].

Theorem 1 (Anonymity of RKE[urPKE, urSIG,H,PRG]). Let H : {0, 1}∗ →
{0, 1}λ be a random oracle. Let urPKE be an updatable and randomizable PKE
scheme. Let urSIG be an updatable and randomizable one-time signature scheme.
Let PRG be a pseudorandom generator. We show that RKE[urPKE, urSIG,H,PRG]
is secure with respect to ANON, such that

AdvANON
RKE ≤ (qS + qCS) · AdvANON

urPKE + qCS · Adv.
PRG

+ (qCE + qCS) · (AdvIND−R
urSIG + AdvIND−R

urPKEEG
) + 1

2λ
.

where qS, qCS, and qCE are the number of queries to oracles Snd, ChallSnd,
and ChallExposeS, respectively.

We provide a proof sketch below and defer the full proof to the full ver-
sion [17].

Proof (Sketch). Conceptually, the proof consists of three steps. First we show on
the sender side that after calls to oracles Snd and ChallSnd, the sender states
are statistically independent from prior ones. Similarly, after successful calls to
oracle Rcv, the receiver state is statistically independent from prior ones. The
forward anonymity and post-compromise anonymity guarantees follow from this
state independence. We prove this independence via (qS + qCS) applications of
the instance independence of urPKE.

In the second step, we replace all outputs of challenge oracles in the real world
with independently sampled values. We get this for free for oracle ChallExposeR,
since, by definition of our trivial attack detection and instance independence,
the adversary may call oracle ChallExposeR only on receiver states which are
statistically independent from any other oracle output. To replace the output
of oracle ChallSnd with random, we employ two hybrid arguments. In the first
hybrid argument, we show that the adversary cannot distinguish whether we
replaced challenge ciphertexts curPKE with random ciphertexts, implying a loss
factor of (qS + qCS) · AdvANON

urPKE. In the second hybrid argument, we replace all
outputs of the PRG in oracle ChallSnd with random, implying a loss factor
of qCS · AdvPRG. To replace the outputs of oracle ChallExposeS with uniform
random values, we again give two hybrid arguments. Here we loose a total factor
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of qCE · (AdvIND−R
urSIG +AdvIND−R

urPKEEG
). Finally, in the third step of the proof, we show

that the adversary cannot distinguish how often the sender state was advanced.
Recall that oracle ChallSnd is the only oracle which updates the sender state
depending on bit b. In order for the adversary to see a difference in updated
sender states, the adversary must expose the sender prior to and after a call
to oracle ChallSnd. By definition of the trivial attacks, the adversary must call
oracle RR before exposing the sender a second time. Using a hybrid argument,
we replace the sender state after a call to RR by uniform random values in
both worlds. Thus the adversary learns with both sender state exposures two
independent distributions of sender states, which implies a total loss factor of
qCS · (AdvIND−R

urSIG + AdvIND−R
urPKEEG

).
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Abstract. A number of recent works have constructed cryptographic
protocols with flavors of adaptive security by having a randomly-chosen
anonymous committee run at each round. Since most of these protocols
are stateful, transferring secret states from past committees to future,
but still unknown, committees is a crucial challenge. Previous works
have tackled this problem with approaches tailor-made for their specific
setting, which mostly rely on using a blockchain to orchestrate auxiliary
committees that aid in the state hand-over process. In this work, we
look at this challenge as an important problem on its own and initiate
the study of Encryption to the Future (EtF) as a cryptographic primi-
tive. First, we define a notion of an EtF scheme where time is determined
with respect to an underlying blockchain and a lottery selects parties to
receive a secret message at some point in the future. While this notion
seems overly restrictive, we establish two important facts: 1. if used to
encrypt towards parties selected in the “far future”, EtF implies wit-
ness encryption for NP over a blockchain; 2. if used to encrypt only
towards parties selected in the “near future”, EtF is not only sufficient
for transferring state among committees as required by previous works,
but also captures previous tailor-made solutions. To corroborate these
results, we provide a novel construction of EtF based on witness encryp-
tion over commitments (cWE), which we instantiate from a number of
standard assumptions via a construction based on generic cryptographic
primitives. Finally, we show how to use “near future” EtF to obtain “far
future” EtF with a protocol based on an auxiliary committee whose com-
munication complexity is independent of the length of plaintext messages
being sent to the future.
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1 Introduction

Most cryptographic protocols assume that parties’ identities are publicly known.
This is a natural requirement, since standard secure channels are identified by a
sender and a receiver. However, this status quo also makes it easy for adaptive (or
proactive) adversaries to readily identify which parties are executing a protocol
and decide on an optimal corruption strategy. In more practical terms, a party
with a known identity (e.g. IP address) is at risk of being attacked.

A recent line of work [3,15,16] has investigated means for avoiding adaptive
(or proactive) corruptions by having different randomly chosen committees of
anonymous parties execute each round of a protocol. The rationale is that parties
whose identities are unknown cannot be purposefully corrupted. Hence, having
each round of a protocol executed by a fresh anonymous committee makes the
protocol resilient to such powerful adversaries. However, this raises a new issue:

How can past committees efficiently transfer secret states to future yet-to-
be-assigned anonymous committees?

1.1 Motivation: Role Assignment

The task of sending secret messages to a committee member that will be elected
in the future can be abstracted as role assignment, a notion first introduced
in [3] and further developed in [15]. This task consists of sending a message to an
abstract role R at a given point in the future. A role is just a bit-string describing
an abstract role, such as R = “party number j in round sl of the protocol Γ”.
Behind the scenes, there is a mechanism that samples the identity of a random
party Pi and associates this machine to the role R. Such a mechanism allows
anyone to send a message m to R and have m arrive at Pi chosen at some point
in the future to act as R. A crucial point is: no one should know the identity of
Pi even though Pi learns that it is chosen to act as R.

The approaches proposed in [3,15,16] for realizing role assignment all use an
underlying Proof-of-Stake (PoS) blockchain (e.g. [9]). On a blockchain, a concrete
way to implement role assignment is to sample a fresh key pair (skR, pkR) for
a public key encryption scheme, post (R, pkR) on the blockchain and somehow
send skR to a random Pi without leaking the identity of this party to anyone.
Once (R, pkR) is known, every party has a target-anonymous channel to Pi and
is able to encrypt under pkR and post the ciphertext on the blockchain. Notice
that using time-lock puzzles (or similar notions) is not sufficient for achieving
this notion, since only the party or parties elected for a role should receive a
secret message encrypted for that role, while time-lock puzzles allow any party
to recover the message if they invest enough computing time.

A shortcoming of the approaches of [3,15,16] is that, besides an underlying
blockchain, they require an auxiliary committee to aid in generating (skR, pkR)
and selecting Pi. In the case of [3], the auxiliary committee performs cheap oper-
ations but can adversarially influence the probability distribution with which Pi
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is chosen. In the case of [15,16], the auxiliary committee cannot bias this proba-
bility distribution but must perform very expensive operations (using Mix-Nets
or FHE; see also Sect. 1.3). Moreover, these approaches have another caveat: they
can only be used to select Pi to act as R according to a probability distribution
already known at the time the auxiliary committee outputs (R, pkR). Hence, they
only allow sending messages to future committees that have been recently elected.
Later we explicitly consider this weaker setting—where we want to communicate
with a “near-future” committee (i.e., whose distribution is known)—and dub it
“Encryption to the Current Winner1” (ECW).

In this paper we further investigate solutions to the role-assignment prob-
lem2. Taking a step back from specific solutions to this problem, we strive to
obtain non-interactive solutions to encrypting to a future role with IND-CPA
security without the aid of an auxiliary committee. We improve on solutions rely-
ing on interaction with an auxiliary committee and shed light on the hardness
of achieving a fully non-interactive solution. We also discuss how to extend our
approach to IND-CCA2 security and how to allow winners of a role to authen-
ticate themselves when sending a message, achieving both goals using standard
assumptions.

1.2 Our Contributions

We look at the issue of sending messages to future roles as a problem on its
own and introduce the Encryption to the Future (EtF) primitive as a central
tool to solve it. Apart from defining this primitive and showing constructions
based on previous works, we propose constructions based on new insights and
investigate limits of EtF in different scenarios. Our general constructions for EtF
work by lifting a weaker primitive, namely encryption for the aforementioned
“near-future” setting, or ECW. Before providing further details, we summarize
our contributions as follows:

1 The word “winner” here refers to the party who is selected to perform a role according
to the underlying lottery of the PoS blockchain (see remainder of introduction).

2 The family of protocols we consider actually has two role-related aspects to solve.
The first—and the focus of this paper—is the aforementioned role assignment (RA)
which deals with the sending of messages to parties selected to perform future roles
of a protocol while hiding the identities of such parties. The other aspect is role
execution (RX) which focuses on the execution of the specific protocol that runs
on top of the RA mechanism, i.e., what messages are sent to which roles and what
specification the protocol implements. In [15] the so-called You Only Speak Once
(YOSO) model is introduced for studying RX. In the YOSO model the protocol
execution is between abstract roles which can each speak only once. Later these can
then be mapped to physical machines using an RA mechanism. The work of [15]
shows that given RA in a synchronous model, any well-formed ideal functionality
can be implemented in the YOSO model with security against malicious adaptive
corruption of a minority of machines. Concretely, [15] gives an ideal functionality
for RA and shows that a YOSO protocol for abstract roles can be compiled into the
RA-hybrid model to give a protocol secure against adaptive attacks.
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– A definition for the notion of Encryption to the Future (EtF) in terms of an
underlying blockchain and an associated lottery scheme that selects parties
in the future to receive messages for a role. We study the strength of EtF as a
primitive and prove that a non-interactive EtF scheme allowing for encryption
towards parties selected at arbitrary points in the future implies a flavor of
witness encryption for NP over a blockchain (referred to as BWE).

– A novel construction of Encryption to the Current Winner (ECW), i.e. EtF
where the receiver of a message is determined by the current state of the
blockchain, which can be instantiated without auxiliary committees from stan-
dard assumptions via a construction based on generic primitives.

– A transformation from ECW to EtF through an auxiliary committee holding
a small state, i.e., with communication complexity independent of plaintext
size |m| (in contrast to [3,15,16] where a committee’s state grows with |m|).

– An application of ECW as a central primitive for realizing role assignment in
protocols that require it (e.g. [3,15,16]).

Our EtF notion arguably provides a useful abstraction for the problem of
transferring secret states to secret committees. Our ECW construction is the first
primitive to realize role assignment without the need for an auxiliary committee.
Moreover, building on new insights from our EtF notion and constructions, we
show the first protocol for obtaining role assignment with no constraints on when
parties are chosen to act as the role. While our protocol uses auxiliary commit-
tees, it improves on previous work by only requiring a communication complexity
independent of the plaintext length. We elaborate on our results, discussing the
intuition behind the notion of EtF, its constructions and its fundamental limits.
We also invite the reader to use Fig. 1 as reference for the discussion below.

Encryption to the Future (EtF)—Sect. 3. As in previous works [3,15,16], an EtF
scheme is defined with respect to an underlying PoS blockchain. We naturally
use core features of the PoS setting to define what “future” means. The vast
majority of PoS blockchains (e.g. [9]) associates a slot number to each block
and uses a lottery for selecting parties to generate blocks according to a stake
distribution (i.e. the probability a party is selected is proportional to the stake
the party controls). Thus, in EtF, we let a message be encrypted towards a
party that is selected by the underlying blockchain’s lottery scheme at a given
future slot. We can generalize this and let the lottery select parties for multiple
roles associated to each slot (so that committees consisting of multiple parties
can be elected at a single point in time). We note that the goal of defining EtF
with respect to an underlying blockchain is to construct it without having to
assume very strong primitives such as (extractable) witness encryption for NP3.
Moreover, it is necessary to provide a non-interactive EtF scheme with a means
to publicly verify whether a given party has won the lottery to perform a cer-
tain role. Since this lottery predicate’s output must hold for all parties, we need

3 While one might define EtF in more general settings, namely without a blockchain, it
is unclear how to obtain interesting instantiations, that is from standard primitives.
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a consensus mechanism that allows for all parties to agree on lottery parame-
ters/outputs while allowing for third parties to verify this result. An important
point of our EtF definition is that it does not impose any constraints on the
underlying blockchain’s lottery scheme (e.g. it is not required to be anonymous)
or on the slot when a party is supposed to be chosen to receive a message sent
to a given role (i.e. party selection for a given role may happen w.r.t. a future
stake distribution).

Relation to “Blockchain Witness Encryption” (BWE)—Sect. 8. In order to study
how hard it is to realize EtF, we show that EtF implies a version of witness
encryption [14] over a blockchain (similar to that of [18] but without relying on
committees). The crux of the proof: if we can encrypt a message towards a role
assigned to a party only at an arbitrary point in the future, then we can easily
construct a witness encryption scheme exploiting EtF and a smart contract on
the EtF’s underlying blockchain. We also prove the opposite direction (BWE
implies EtF), showing that the notions are similar from a feasibility standpoint.
This shows another crucial point: to implement non-interactive EtF, we would
plausibly need strong assumptions (e.g., full-blown WE). This follows by observ-
ing that existing constructions of WE over blockchains (e.g., [18]) are interactive
in the sense that they rely on a committee that holds all encrypted messages
in secret shared form and periodically re-share them. On the other hand, in the
interactive setting, we show a construction of EtF with improved communica-
tion complexity that is independent from the size (or amount) of EtF encrypted
messages: the committee only needs to hold an IBE master secret key (secret
shared) and compute secret keys for specific identities. We note that the goal of
constructing BWE from EtF is not to provide a concrete instantiation based on
existing blockchains but rather to provide evidence that EtF is hard to construct
from standard assumptions. The underlying blockchain protocol and lottery we
use are standard Proof-of-Stake based blockchains with a VRF-based lottery and
smart contracts. The only non-realistic assumption we make is that the stake is
distributed in arbitrarily (i.e. it is all locked inside one smart contract) which
is an assumption on how the blockchain is operated rather than on how it is
constructed or why it is secure.

Encryption to the Current Winner (ECW)—Sect. 3. By the previous result we
know that, unless we turn to strong assumptions, we may not construct a fully
non-interactive EtF (i.e., without auxiliary committees); therefore, we look for
efficient ways to construct EtF under standard assumptions while minimizing
interaction. As a first step towards such a construction, we define the notion
of Encryption to a Current Winner (ECW), which is a restricted version of
EtF where messages can only be encrypted towards parties selected for a role
whose lottery parameters are available for the current slot, the one in which
we encrypt (this is as in previous constructions [3,15,16]). Unrestricted EtF,
on the other hand, allows for encrypting a message toward lottery winners that
will be determined at any arbitrary point in the future, including parties who
only join the protocol execution far in the future (after the ciphertext has been
generated).
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Constructing ECW (non-interactively)—Sect. 5. We show that it is possible to
construct a fully non-interactive ECW scheme from standard assumptions. Our
construction relies on a milder flavor of witness encryption, which we call Wit-
ness Encryption over Commitments (cWE) and define it in Sect. 4. This prim-
itive is significantly more restricted than full-fledged WE (see also discussion
in Remark 2), but still powerful enough: we show in Sect. 5.1 that ECW can be
constructed in a black-box manner from cWE, which in turn can be constructed
from oblivious transfer and garbled circuits [7]. This construction improves over
the previous results [3,15,16] since it does not rely on auxiliary committees.

Instantiating YOSO MPC using ECW —Sect. 6. The notion of ECW is more
restricted than EtF, but it can still be useful in applications. We show how
to use it as a building block for the YOSO MPC protocol of [15]. Here, each
of the rounds in an MPC protocol is executed by a different committee. This
same committee will simultaneously transfer its secret state to the next (near-
future) committee, which in turn remains anonymous until it transfers its own
secret state to the next committee, and so on. This setting clearly matches
what ECW offers as a primitive, but it also introduces a few more requirements:
1. ECW ciphertexts must be non-malleable, i.e. we need an IND-CCA secure
ECW scheme; 2. Only one party is selected for each role; 3. A party is selected
for a role at random with probability proportional to its relative stake on the
underlying PoS blockchain; 4. Parties selected for roles remain anonymous until
they choose to reveal themselves; 5. A party selected for a role must be able
to authenticate messages on behalf of the role, i.e. publicly proving that it was
selected for a certain role and that it is the author of a message. We show
that all of these properties can be obtained departing from an IND-CPA secure
ECW scheme instantiated over a natural PoS blockchain (e.g. [9]). First, we
observe that VRF-based lottery schemes implemented in many PoS blockchains
are sufficient to achieve properties 1, 2 and 3. We then observe that natural block
authentication mechanisms used in such PoS blockchains can be used to obtain
property 4. Finally, we show that standard techniques can be used to obtain an
IND-CCA secure ECW scheme from an IND-CPA secure ECW scheme.

Constructing EtF from ECW (interactively)—Sect. 7. Since we argued the
implausibility of constructing EtF non-interactively from standard assumptions,
we study how to transform an ECW scheme into an unrestricted EtF scheme
when given access to an auxiliary committee but with “low communication” (and
still from standard assumptions). We explain what we mean by “low commu-
nication” by an example of its opposite: in previous works [3,15,16] successive
committees were required to store and reshare secret shares of every message to
be sent to a party selected in the future. That is, their communication complex-
ity grows both with the number and the amount and length of the encrypted
messages. In contrast, our solution has communication complexity independent
of the plaintext length. How our transformation from ECW to EtF works: we
associate each role in the future to a unique identity of an Identity Based Encryp-
tion scheme (IBE); to encrypt a message towards a role we apply the encryption
of the IBE scheme. When, at any point in the future, a party for that role is
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selected, a committee generates and delivers the corresponding secret key for
that role/identity. To realize the latter step, we apply YOSO MPC instantiated
from ECW as shown in Sect. 6. In contrast to previous schemes, our auxiliary
committee only needs to hold shares of the IBE’s master secret key and so it
performs communication/computation dependent on the security parameter but
not on the length/amount of messages encrypted to the future.

Fig. 1. Dependency diagram for primitives in this work. Legend: primitives wrapped
in circles are introduced in this work; A → B: “We can construct B from A”; A ��� B:
“A is a special case of B”.

1.3 Previous Works

We compare previous works related to our notions of EtF and ECW (encryption
to future and current winner, respectively) in Fig. 2.

Fig. 2. The column “Committee?” indicates whether a committee is required. The
column “Communication” refers to the communication complexity in terms of the
number of all parties N , and the number of plaintexts (called deposited secrets in [18])
M of a given fixed length. We denote by an asterisk non-interactive solutions that
require sending a first reusable message during the initial step.
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Encryption to the Current Winner (ECW). We recall that ECW is an easier
setting than EtF: both the stake distribution and the randomness extracted
from the blockchain are static and known at the time of encryption. This means
that all of the parameters except the secret key of the lottery winner are available
to the encryption algorithm. We now survey works that solved this problem and
compare them to our solutions:

– “Can a Blockchain Keep a Secret?” (CaBKaS) [3]. The work of [3]
addresses the setting where a dynamically changing committee (over a public
blockchain) maintains a secret. The main challenge in order for the committee
to securely reshare its secret can be summarized as: how to select a small com-
mittee from a large population of parties so that everyone can send secure
messages to the committee members without knowing who they are? The
solution of [3] is to select the “secret-holding” committee by having another
committee, a “nominating committee”, that nominates members of the for-
mer (while the members of the nominating committee are self-nominated).
One can see the nominating committee as a tool providing the ECW func-
tionality. A major caveat in such a solution, however, is that to guarantee an
honest majority in the committees, [3] can only tolerate up to 1/4 as the frac-
tion of corrupted parties. This is because corrupted nominators can always
select corrupted parties, whereas honest nominators may select corrupted
parties by chance. We can improve this through our non-interactive ECW:
we can remove the nominating committee and just let the current committee
ECW-encrypt their secret shares to the roles of the next committee.

– “Random-Index PIR” (RPIR) [16]. The recent work of [16] defines a new
flavour of Private Information Retrieval (PIR) called Random-index PIR (or
RPIR) that allows each committee to perform the nomination task by them-
selves. While RPIR improves on [3] (not requiring a nominating committee
and tolerating up to 1/2 of corrupted parties), its constructions are inefficient,
either based on Mix-Nets or Fully Homomorphic Encryption (FHE). The con-
struction based on Mix-Nets uses k shufflers, where k is the security param-
eter, and has an impractical communication complexity of O(nk2), where n
is the number of public keys that each shuffler broadcasts. The FHE-based
construction gives a total communication complexity of O(k3) where O(k) is
the length of an FHE decryption share.

WE over Commitments (cWE). Benhamouda and Lin [4] defined a type of wit-
ness encryption, called “Witness Encryption for NIZK of Commitments”. In
their setting, parties first commit to their private inputs once and for all. Later,
an encryptor can produce a ciphertext so that any party with a committed
input that satisfies the relation (specified at encryption time) can decrypt. More
accurately, who can decrypt is any party with a NIZK showing that the com-
mitted input satisfies the relation. The authors construct this primitive based on
standard assumptions in asymmetric bilinear groups.

In our work, we generalize the encryption notion in [4], formalize it as cWE
and finally use it to construct ECW. While the original construction of [4] fits
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the definition of cWE, we observe it is an overkill for our application. Specifically
our setting does not require NIZKs to be involved in encryption/decryption. We
instead give more efficient instantiations based on two-party Multi-Sender Non-
Interactive Secure Computation (MS-NISC) protocols and Oblivious Transfer
plus Garbled Circuits.

Encryption to the Future (EtF). The general notion of EtF is significantly harder
to realize than ECW (as we show in Sect. 8). Below we discuss natural ideas to
obtain EtF. They can be seen as illustrating two extremes where our approach
(Sect. 7) lies in the middle.

– Non-Interactive—Using Witness Encryption [14]: One trivial approach to
realize EtF is to use full-fledged general Witness Encryption [14] (WE) for
the arithmetic relation R being the lottery predicate such that the party who
holds a winning secret key sk can decrypt the ciphertext. However, construct-
ing a general witness encryption scheme [14] which we can instantiate reliably
is still an open problem. Existing constructions rely on very strong assump-
tions such as multilinear maps, indistinguishability obfuscation or other com-
plexity theoretical conjectures [2]. The challenges in applying this straight-
forward solution are not surprising given our result showing that EtF implies
a flavor of WE.

– Interactive—Multiple Committees and Continuous Executions of ECW: A
simple way to achieve an interactive version of EtF is to first encrypt secret
shares of a message towards members of a committee that then re-share their
secrets towards members of a future anonymous committee via an invocation
of ECW (in our instantiations or those in [3] and [16]). This is essentially the
solution proposed in CaBKaS [3] where committees interact in order to carry
a secret (on the blockchain) into the future. Notice that, for a fixed security
parameter and corruption ratio, the communication complexity of the proto-
col executed by the committee in this solution depends on the plaintext mes-
sage length. On the other hand, for a fixed security parameter and corruption
ratio, the communication complexity of our committee-based transformation
from ECW to EtF is constant.

Other Works. Using blockchains in order to construct non-interactive primi-
tives with game-based security has been previously considered in [17]. Other
approaches for transferring secret state to future committees have been proposed
in [18], although anonymity is not a concern in this setting. On the other hand,
using anonymity to overcome adaptive corruption has been proposed in [12],
although this work considers anonymous channels among a fixed set of parties.

2 Preliminaries

Notation. For any positive integer n, [n] denotes the set {1, . . . , n}. We use λ

to denote the security parameter. We write a
$←− S to denote that a is sampled

according to distribution S, or uniformly randomly if S is a set. We write A(x; r)
to denote the output of algorithm A given an input x and a random tape r.
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2.1 Proof-of-Stake (PoS) Blockchains

In this work we rely on PoS-based blockchain protocols. In such a protocol, each
participant is associated with some stake in the system. A process called leader
election encapsulates a lottery mechanism that ensures (of all eligible parties)
each party succeeds in generating the next block with probability proportional
to its stake in the system. In order to formally argue about executions of such
protocols, we depart from the framework presented in [17] which, in turn, builds
on the analysis done in [13] and [21]. We invite the reader to re-visit the abstrac-
tion used in [17]. We present a summary of the framework in the full version [7]
and discuss below the main properties we will use in the remainder of this paper.
Moreover, we note that in [17] it is proven that there exist PoS blockchain pro-
tocols with the properties described below, e.g. Ouroboros Praos [9].

Blockchain Structure. A genesis block B0 = {(Sig.pk1, aux1, stake1), . . . ,
(Sig.pkn, auxn, staken), aux} associates each party Pi to a signature scheme pub-
lic key Sig.pki, an amount of stake stakei and auxiliary information auxi (i.e. any
other relevant information required by the blockchain protocol, such as verifiable
random function public keys). A blockchain B relative to a genesis block B0 is
a sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence
of slots sl1, . . . , slm such that Bi = (slj ,H(Bi−1), d, aux)). Here, slj indicates the
time slot that Bi occupies, H(Bi−1) is a collision resistant hash of the previ-
ous block, d is data and aux is auxiliary information required by the blockchain
protocol (e.g. a proof that the block is valid for slot slj). We denote by B�� the
chain (sequence of blocks) B where the last � blocks have been removed and if
� ≥ |B| then B�� = ε. Also, if B1 is a prefix of B2 we write B1 � B2. Each party
participating in the protocol has public identity Pi and most messages will be a
transaction of the following form: m = (Pi, Pj , q, aux) where Pi transfers q coins
to Pj along with some optional, auxiliary information aux.

Blockchain Setup and Key Knowledge. As in [9], we assume that the gen-
esis block is generated by an initialization functionality FINIT that registers all
parties’ keys. Moreover, we assume that primitives specified in separate func-
tionalities in [9] as incorporated into FINIT. FINIT is executed by the environment
Z as defined below and is parameterized by a stake distribution associating each
party Pi to an initial stake stakei. Upon being activated by Pi for the first time,
FINIT generates a signature key pair Sig.ski,Sig.pki, auxiliary information auxi

and a lottery witness skL,i, which will be defined as part of the lottery predicate
in Sect. 2.1, sending (Sig.ski,Sig.pki, auxi, skL,i, stakei) to Pi as response. After
all parties have activated FINIT, it responds to requests for a genesis block by
providing B0 = {(Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux}, where
aux is generated according to the underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even cor-
rupted parties have registered public keys and auxiliary information such that
they know the corresponding secret keys. Moreover, when our EtF construc-
tions are used as part of more complex protocols, a simulator executing the EtF
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and its underlying blockchain with the adversary will be able to predict which
ciphertexts can be decrypted by the adversary by simulating FINIT and learning
these keys. This fact will be important when arguing the security of protocols
that use our notion of EtF.

Evolving Blockchains. In order to define an EtF scheme, some concept of
future needs to be established. In particular we want to make sure that the initial
chain B has “correctly” evolved into the final chain B̃. Otherwise, the adversary
can easily simulate a blockchain where it wins a future lottery and finds itself
with the ability to decrypt. Fortunately, the Distinguishable Forking property
provides just that (see full version [7] and [17] for more details). A sufficiently long
chain in an honest execution can be distinguished from a fork generated by the
adversary by looking at the combined amount of stake proven in such a sequence
of blocks. We encapsulate this property in a predicate called evolved(·, ·). First,
let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with
validity predicate V and where the (α, β, �1, �2)-distinguishable forking property
holds. And let B ← GetRecords(1λ, st) and B̃ ← GetRecords(1λ, s̃t).

Definition 1 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}
It outputs 1 iff B = B̃ or the following holds (i) V (B) = V (B̃) = 1; (ii) B

and B̃ are consistent i.e. B�κ � B̃ where κ is the common prefix parameter; (iii)
Let �′ = |B̃|−|B| then it holds that �′ ≥ �1 +�2 and u − stakefrac(B̃, �′ −�1) > β.

Blockchain Lotteries. Earlier we mentioned the concept of leader election in
PoS-based blockchain protocols. In this kind of lottery any party can win the
right to become a slot leader with a probability proportional to its relative stake
in the system. Usually, the lottery winner wins the right to propose a new block
for the chain, introduce new randomness to the system or become a part of a
committee that carries out some computation. In our encryption scheme we take
advantage of this inherent lottery mechanism.

Independent Lotteries. In some applications it is useful to conduct multiple
independent lotteries for the same slot sl. Therefore we associate each slot with
a set of roles R1, . . . ,Rn. Depending on the lottery mechanism, each pair (sl,Ri)
may yield zero, one or multiple winners. Often, a party can locally compute if it,
in fact, is the lottery winner for a given role and the evaluation procedure may
equip the party with a proof for others to verify. The below definition details
what it means for a party to win a lottery.

Definition 2 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role R and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
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lottery for the role R in slot sl with respect to the blockchain B.
Formally, we write

lottery(B, sl,R, skL,i) ∈ {0, 1}
It is natural to establish the set of lottery winning keys WB,sl,R for parameters
(B, sl,R). This is the set of eligible keys satisfying the lottery predicate.

2.2 Commitment Schemes

We recall the syntax for a commitment scheme C = (Setup,Commit) below:

– Setup(1λ) → ck outputs a commitment key. The commitment key ck defines
a message space Sm and a randomizer space Sr.

– Commit(ck, s; ρ) → cm outputs a commitment given as input a message s ∈
Sm and randomness ρ ∈ Sr.

We require a commitment scheme to satisfy the standard properties of binding
and hiding. It is binding if no efficient adversary can come up with two pairs
(s, ρ), (s′, ρ′) such that s �= s′ and Commit(ck, s; ρ) = Commit(ck, s′; ρ′) for ck ←
Setup(1λ). The scheme is hiding if for any two s, s′ ∈ Sm, no efficient adversary
can distinguish between a commitment of s and one of s′.

Extractability. In our construction of ECW from cWE (Sect. 5.1), we require
our commitments to satisfy an additional property which allows to extract mes-
sage and randomness of a commitment. In particular we assume that our setup
outputs both a commitment key and a trapdoor td and that there exists an algo-
rithm Ext such that Ext(td, cm) outputs (s, ρ) such that cm = Commit(ck, s; ρ).
We remark we can generically obtain this property by attaching to the commit-
ment a NIZK argument of knowledge that shows knowledge of opening, i.e., for
the relation Ropn(cmi; (s, ρ)) ⇐⇒ cmi = Commit(ck, s; ρ).

2.3 (Threshold) Identity Based Encryption

In an IBE scheme, users can encrypt simply with respect to an identity (rather
than a public key). Given a master secret key, an IBE can generate secret keys
that allows to open to specific identities. In our construction of EtF (Sect. 7.1)
we rely on a threshold variant of IBE (TIBE) where no single party in the sys-
tem holds the master secret key. Instead, parties in a committee hold a partial
master secret key mski. Like other threshold protocols, threshold IBE can be
generically obtained by “lifting” an IBE through a secret sharing with homo-
morphic properties (see for example [20]).

Threshold IBE. A TIBE system consists of the following algorithms.

ΠTIBE.Setup(1λ, n, k) → (sp, vk, 	msk): It outputs some public system parameters
sp (including mpk), verification key vk, and vector of master secret key shares
	msk = (msk1, . . . ,mskn) for n with threshold k. We assume that all algorithms

takes sp as input implicitly.
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ΠTIBE.ShareKG(i,mski, ID) → θ = (i, θ̂): It outputs a private key share θ = (i, θ̂)
for ID given a share of the master secret key.

ΠTIBE.ShareVerify(vk, ID, θ) → 0/1: It takes as input the verification key vk, an
identity ID, and a share of master secret key θ, and outputs 0 or 1.

ΠTIBE.Combine(vk, ID, 	θ) → skID: It combines the shares 	θ = (θ1, . . . , θk) to pro-
duce a private key skID or ⊥.

ΠTIBE.Enc(ID,m) → ct: It encrypts message m for identity ID and outputs a
ciphertext ct.

ΠTIBE.Dec(ID, skID, ct) → m: It decrypts the ciphertext ct given a private key
skID for identity ID.

Correctness. A TIBE scheme ΠTIBE should satisfy two correctness properties:
1. For any identity ID, if θ = ΠTIBE.ShareKG(i,mski, ID) for mski ∈ 	msk,

then ΠTIBE.ShareVerify(vk, ID, θ) = 1.
2. For any ID, if 	θ = {θ1, . . . , θk} where θi = ΠTIBE.ShareKG(i,mski, ID),

and skID = ΠTIBE.Combine(vk, ID, 	θ), then for any m ∈ M and ct =
ΠTIBE.Enc(ID,m) we have ΠTIBE.Dec(ID, skID, ct) = m.

Structural Property: TIBE as IBE + Secret Sharing. We model threshold IBE in
a modular manner from IBE and assume it to have a certain structural property:
that it can be described as an IBE “lifted” through a homomorphic secret-
sharing [5,6,20]. TIBE constructions can often be described as such. We assume
this structural property to present our proofs for EtF modularly, but we remark
our results do not depend on it and they hold for an arbitrary TIBE. For lack
of space we refer the reader to the full version for details.

Assume a secure IBE (the non-threshold variant of TIBE). We can trans-
form it into a threshold IBE using homomorphic secret sharing algorithms
(Share,EvalShare,Combine). A homomorphic secret sharing scheme is a secret
sharing scheme with an extra property: given a shared secret, it allows to com-
pute a share of a function of the secret on it. The correctness of the homomorphic
scheme requires that running yi ← EvalShare(mski, f) on mski output of Share
and then running Combine on (a large enough set of) the yi-s produces the same
output as f(msk). We also require that Combine can reconstruct msk from a large
enough set of the mski-s. For security we assume we can simulate the shares not
available to the adversaries (if the adversary holds at most T = k shares). For
the resulting TIBE’s security we assume that, for an adversary holding at most T
shares, we can simulate: master secret key shares not held by the adversary (msk
shares simulation) and shares of the id-specific keys (key-generation simulation)
for the same shares. We finally assume we can verify that each of the id-specific
key shares are authenticated (robustness) and that shares of the master secret
key can be reshared (proactive resharing).

3 Modelling EtF

In this section, we present a model for encryption to the future winner of a
lottery. In order to argue about a notion of future, we use the blocks of an
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underlying blockchain ledger and their relative positions in the chain to specify
points in time. Intuitively, our notion allows for creating ciphertexts that can
only be decrypted by a party that is selected to perform a certain role R at a
future slot sl according to a lottery scheme associated with a blockchain protocol.
The winner of the lottery at a point in the future with respect to a blockchain
state B̃ is determined by the lottery predicate defined in Sect. 2.1, i.e. the winner
is the holder of a lottery secret key sk such that lottery(B̃, sl,R, sk) = 1. However,
notice that the winner might only be determined by a blockchain state produced
in the future as a result of the blockchain protocol execution. This makes it
necessary for the ciphertext to encode an initial state B of the blockchain that
allows for verifying that a future state B̃ (presented at the time of decryption)
has indeed been produced as a result of correct protocol execution. This require-
ment is captured by the evolving blockchain predicate defined in Sect. 2.1, i.e.
evolved(B, B̃) = 1 iff B̃ is obtained as a future state of executing the blockchain
protocol departing from B.

Definition 3 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the context of a blockchain ΓV is an EtF-scheme with evolved pred-
icate evolved and a lottery predicate lottery. The algorithms work as follows.

Encryption. ct ← Enc(B, sl,R,m) takes as input an initial blockchain B, a slot
sl, a role R and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a
ciphertext ct and a secret key sk and outputs the original message m or ⊥.

An EtF must satisfy the following properties:

Correctness. An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function μ such that for all sk, sl,R,m:
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view ← EXECΓ(A,Z, 1λ)
B = GetRecords(viewi)
B̃ = GetRecords(viewj)
ct ← Enc(B, sl,R,m)
evolved(B, B̃) = 1

:
lottery(B̃, sl,R, sk) = 0
∨ Dec(B̃, ct, sk) = m
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Security. We establish a game between a challenger C and an adversary A. In
Sect. 2.1 we describe how A and Z execute a blockchain protocol. In addition,
we now let the adversary interact with the challenger in a game GameIND-CPA

Γ,A,Z,E
described in Algorithm 1. The game can be summarized as follows:
1. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a role R for the slot sl and two messages m0

and m1 and sends it all to C.
2. C chooses a random bit b and encrypts the message mb with the param-

eters it received and sends ct to A.
3. A continues to execute the blockchain until some round r̃ where the

blockchain B̃ is obtained and A outputs a bit b′.
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If the adversary is a lottery winner for the challenge role R in slot sl, the
game outputs a random bit. If the adversary is not a lottery winner for the
challenge role R in slot sl, the game outputs b⊕ b′. The reason for outputting
a random guess in the game when the challenge role is corrupted is as follows.
Normally the output of the IND-CPA game is b ⊕ b′ and we require it to be
1 with probability 1/2. This models that the guess b′ is independent of b.
This, of course, cannot be the case when the challenge role is corrupted. We
therefore output a random guess in these cases. After this, any bias of the
output away from 1/2 still comes from b′ being dependent on b.

Algorithm 1. GameIND-CPA
Γ,A,Z,E

viewr ← EXECΓ
r (A, Z, 1λ) � A executes Γ with Z until round r

(B, sl,R, m0, m1) ← A(viewr
A) � A outputs challenge parameters

b
$←− {0, 1}

ct ← Enc(B, sl,R, mb)
st ← A(viewr

A, ct) � A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(A, Z, 1λ) � Execute from viewr until round r̃

(B̃, b′) ← A(viewr̃
A, st)

if evolved(B, B̃) = 1 then � B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,sl,R then � A does not win role R
return b ⊕ b′

end if
end if
return b̂

$←− {0, 1}

Definition 4 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said
to be IND-CPA secure if, for any A and Z, there exists a negligible function μ
such that for λ ∈ N:
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GameIND-CPA
Γ,A,Z,E = 1

]

− 1
∣
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∣ ≤ μ(λ)

Remark 1 (On the requirement of Proof-of-Stake for EtF). The EtF notion
requires the guarantee that an honest chain should be verifiable without interac-
tion with the network (i.e. verified by the EtF ciphertext). While this is possible
for Proof-of-Stake (PoS) blockchains, in a Proof-of-Work (PoW) blockchain the
adversary can always simulate a chain where it generates all blocks. In general
we require a blockchain in order to model time (via block height) for EtF.

3.1 ECW as a Special Case of EtF

In this section we focus on a special class of EtF. We call schemes in this class
ECW schemes. ECW is particularly interesting since the underlying lottery is
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always conducted with respect to the current blockchain state. This has the
following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role R in slot sl is already defined in B.

It is easy to see that this kind of EtF scheme is simpler to realize since there
is no need for checking if the blockchain has “correctly” evolved. Furthermore,
all lottery parameters like stake distribution and randomness extracted from the
blockchain are static. Thus, an adversary has no way to move stake between
accounts in order to increase its chance of winning the lottery.

Note that, when using an ECW scheme, the lottery winner is already decided
at encryption time. In other words, there is no delay and the moment a ciphertext
is produced the receiver is chosen.

4 Witness Encryption over Commitments (cWE)

Here, we describe witness encryption over commitments that is a relaxed notion
of witness encryption. In witness encryption parties encrypt to a public input for
some NP statement. In cWE we have two phases: first parties provide a (honestly
generated) commitment cm of their private input s. Later, anybody can encrypt
to a public input for an NP statement which also guarantees correct opening
of the commitment. Importantly, in applications, the first message in our model
can be reused for many different invocations.

Remark 2 (Comparing cWE and WE). We observe that cWE is weaker than
standard WE because of its deterministic flavor. In standard WE we encrypt
without having any “pointer” to an alleged witness, but in cWE it requires the
witness to be implicitly known at encryption time through the commitment (to
which it is bound). That is why—as for the weak flavors of witness encryption
in [4]—we believe it would be misleading to just talk about WE. This is true in
particular since we show cWE can be constructed from standard assumptions
such as oblivious transfer and garbled circuits (see full version [7]), whereas
constructions of WE from standard assumptions are still an open problem or
require strong primitives like indistinguishability obfuscation. Finally we stress
a difference with the trivial “interactive” WE proposed in [14] (Sect. 1.3): cWE
is still non-interactive after producing a once-and-for-all reusable commitment.

4.1 Definition

The type of relations we consider are of the following form: a statement x =
(cm, C, y) and a witness w = (s, ρ) are in the relation (i.e., (x, w) ∈ R) iff “cm
commits to some secret value s using randomness ρ, and C(s) = y”. Here, C is
a circuit in some circuit class C and y is the expected output of the function.
Formally, we define witness encryption over commitments as follows:
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Definition 5 (Witness encryption over commitments). Let C = (Setup,
Commit) be a non-interactive commitment scheme. A cWE-scheme for witness
encryption over commitments with circuit class C and commitment scheme C
consists of a pair of algorithms ΠcWE = (Enc,Dec):

Encryption phase. ct ← Enc(ck, x,m) on input a commitment key ck, a state-
ment x = (cm, C, y) such that C ∈ C, and a message m ∈ {0, 1}∗, generates
a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ck, ct, w) on input a commitment key ck, a
ciphertext ct, and a witness w, returns a message m or ⊥.

A cWE should satisfy correctness and semantic security as defined below.

(Perfect) Correctness. An honest prover with a statement x = (cm, C, y) and
witness w = (s, ρ) such that cm = Commit(ck, s; ρ) and C(s) = y can always
decrypt with overwhelming probability. More precisely, a cWE with circuit
class C and commitment scheme C has perfect correctness if for all λ ∈ N,
C ∈ C, ck ∈ Range(C.Setup), s ∈ Sm, randomness ρ ∈ Sr, commitment
cm ← C.Commit(ck, s; ρ), and bit message m ∈ {0, 1}∗, it holds that

Pr
[
ct ← Enc(ck, (cm, C, C(s)),m);m′ ← Dec(ck, ct, (s, ρ)) : m = m′] = 1

(Weak) Semantic Security. Intuitively, encrypting with respect to a false
statement (with honest commitment) produces indistinguishable ciphertexts.
Formally, there exists a negligible function μ such that for all λ ∈ N, all
auxiliary strings aux and all PPT adversaries A:
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ck ← C.Setup(1λ)

(st, s, ρ, C, y, m0, m1) ← A(ck, aux)

cm ← C.Commit(ck, s; ρ); b
$←− {0, 1}

ct ← Enc(ck, (cm, C, y), mb)

ct := ⊥ if C(s) = y, C �∈ C or |m0| �= |m1|

: A(st, ct) = b

⎤
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Later, to show the construction of ECW from cWE, we need a stronger notion
of semantic security where the adversary additionally gets to see ciphertexts of
the challenge message under true statements with unknown to A witnesses.
We formalize this property inthe full version [7] and show that weak semantic
security together with hiding of the commitment imply strong semantic security.

4.2 Constructions of cWE

From Multi-Sender 2P-NISC [1]. A cWE scheme can be constructed from pro-
tocols for Multi-Sender (reusable) Non-Interactive Secure Computation (MS-
NISC) [1]. In such protocols, there is a receiver R with input x who first broad-
casts an encoding of its input, and then later every sender Si with input yi

can send a single message to R that conveys only f(x, yi). This is done while
preserving privacy of inputs and correctness of output.
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In the full version [7] we provide a detailed explanation of how to construct
cWE using MS-NISC as in [1]. We here state the main points of the construction.

Let f be the function that on input y = (x, k) and x = w outputs k if and only
if (x, w) ∈ R. This will be the underlying function for the MS-NISC protocol.
We then obtain a cWE scheme over the relation R in the following way:

1. First, the receiver commits to its witness w by providing an encoding of it as
its first message in the MS-NISC protocol.

2. Secondly, to encrypt m under statement x, a sender samples a key k of size
|m| and provides an encoding of (x, k) as the second message in the MS-NISC
protocol and sends the ciphertext ct = m ⊕ k to the receiver.

3. Finally, the receiver obtains the key as the output of f(x = w, y = (x, k)) = k
iff w is a valid witness for the statement x encoded in the second message.
And it decrypts the ciphertext m = ct ⊕ k.

We observe that the above construction actually yields a stronger notion of cWE
where the statement x is private which is not a requirement in our setting. This
asymmetry between sender and receiver privacy was also observed by others [19]
and it opens the door for efficient constructions using oblivious transfer (OT)
and privacy-free garbled circuits as described in [23]. More details on the more
efficient construction of cWE using OT and garbled circuits are provided inthe
full version [7].

5 Construction of ECW

Here we show a novel construction of ECW from cWE. We then show alternative
constructions through instantiations from previous work.

5.1 ECW from cWE

In this section we realize the notion of ECW from cWE. We define our scheme
with respect to a set of parties P = {P1, . . . , Pn} executing a blockchain proto-
col Γ as described in Sect. 2.1, i.e. each party Pi has access to the blockchain
ledger and is associated to a tuple (Sig.pki, auxi, sti) registered in the genesis
block for which it has corresponding secret keys (Sig.ski, skL,i). Our construction
uses as a main building block a witness encryption scheme over commitments
ΠcWE = (EnccWE,DeccWE); we assume the commitments to be extractable. The
class of circuits C of ΠcWE includes the lottery predicate lottery(B, sl,R, skL,i).
We let each party publish an initial commitment of its witness. This way we can
do without any interaction for encryption/decryption through a one-time setup
where parties publish the commitments over which all following encryptions are
done. We construct our ECW scheme ΠECW as follows:

System Parameters: We assume that a commitment key Setup(1λ) → ck is
contained in the genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows:
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1. Compute a commitment cmi ← Commit(ck, skL,i; ρi) to skL,i using ran-
domness ρi. We abuse the notation and define Pi’s secret key as skL,i||ρi.

2. Compute a signature σi ← SigSig.ski(cmi).
3. Publish (cmi, σi) on the blockchain by executing Broadcast(1λ, (cmi, σi)).

Encryption Enc(B, sl,R,m): Construct a circuit C that encodes the predicate
lottery(B, sl,R, skL,i), where B, sl and R are hardcoded and skL,i is the wit-
ness. Let PSetup be the set of parties with non-zero relative stake and a valid
setup message (cmi, σi) published in the common prefix B�κ (if Pi has pub-
lished more than one valid (cmi, σi), only the latest one is considered). For
every Pi ∈ PSetup, compute cti ← EnccWE(ck, xi = (cmi, C, 1),m). Output
ct =

(

B, sl,R, {cti}Pi∈PSetup

)

.
Decryption Dec(B, ct, sk): Given sk := skL,i||ρi such that cmi =

Commit(ck, skL,i; ρi) and lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R
from ct, output m ← DeccWE(ck, cti, (skL,i, ρi)). Otherwise, output ⊥.

Theorem 1. Let C = (Setup,Commit) be a non-interactive extractable commit-
ment scheme and ΠcWE = (EnccWE,DeccWE) be a strong semantically secure cWE
over C for a circuit class C encoding the lottery predicate lottery(B, sl,R, skL,i)
as defined in Sect. 4. Let Γ be a blockchain protocol as defined in Sect. 2.1. ΠECW

is an IND-CPA-secure ECW scheme as per Definition 4.

The proof is provided inthe full version [7].

5.2 Other Instantiations

ECW from Target Anonymous Channels [3,16]. As mentioned before, another
approach to construct ECW can be based on a recent line of work that aims to
design secure-MPC protocols where parties should remain anonymous until they
speak [3,15,16]. The baseline of these results is to establish a communication
channel to random parties, while preserving their anonymity. It is quite clear
that such anonymous channels can be used to realize our definition of ECW for
the underlying lottery predicate that defines to whom the anonymous channel
is established. Namely, to encrypt m to a role R at a slot sl with respect to
a blockchain state B, create a target anonymous channel to (R, sl) over B by
using the above approaches and send m via this channel. Depending on the
lottery predicate that specifies which random party the channel is created for,
a recipient with the secret key who wins this lottery can retrieve m. To include
some concrete examples, the work of Benhamouda et al. [3] proposed the idea of
using a “nomination” process, where a nominating committee chooses a number
of random parties P, look up their public keys, and publish a re-randomization
of their key. This allows everyone to send messages to P while keeping their
anonymity. The work of [3] answered this question differently by delegating the
nomination task to the previous committees without requiring a nominating
committee. That is, the previous committee runs a secure-MPC protocol to
choose a random subset of public keys, and broadcasts the rerandomization of
the keys. To have a MPC protocol that scales well with the total number of
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parties, they define a new flavour of private information retrieval (PIR) called
random-index PIR (or RPIR) and show how each committee—playing the role
of the RPIR client—can select the next committee with the complexity only
proportional to the size of the committee. There are two constructions of RPIR
proposed in [16], one based on Mix-Nets and the other based on FHE. Since
the purpose of the constructions described is to establish a target-anonymous
channel to a random party, one can consider them as examples of a stronger
notion of ECW with anonymity and a specific lottery predicate that selects a
single random party from the entire population as the winner.
ECW from [10]. Derler and Slamanig [10] (DS) constructed a variant of WE
for a restricted class of algebraic languages. In particular, a user can conduct a
Groth-Sahai (GS) proof for the satisfiability of some pairing-product equations
(PPEs). Such a proof contains commitments to the witness using randomness
only known by this user. The proof can be used by anyone to encrypt a message
resulting in a ciphertext which can only be decrypted by knowing this random-
ness. More formally, they consider a type of WE associated with a proof system
Π = (Setup,Prove,Verify) consisting of two rounds. In the first round, a recipient
computes and broadcasts π ← Prove(crs, x, w). Later, a user can verify the proof
and encrypt a message m under (x, π) if Verify(crs, x, π) = 1. We note that the
proof π does not betray the user conducting the proof and therefore it can use
an anonymous broadcast channel to communicate the proof to the encrypting
party in order to obtain anonymous ECW. Moreover, although GS proofs may
look to support only a restricted class of statements based on PPEs, they are
expressive enough to cover all the statements arising in pairing-based cryptog-
raphy. This indicates the applicability of this construction for any VRF-based
lottery where the VRF is algebraic and encodable as a set of PPEs. Further
details are provided inthe full version [7]. This interactive ECW just described
yields an improvement in communication complexity at the cost of having an
extra round of interaction.
From Signatures of Knowledge. Besides the above instantiations, we point out
a (potentially more inefficient) abstract construction from zero-knowledge sig-
natures of knowledge (SoK) [8] (roughly, a non-malleable non-interactive zero-
knowledge proof). This is similar in spirit to the previous instantiation and can
be seen as a generalization. Assume each party has a (potentially ephemeral)
public key. At the time the lottery winner has been decided, the winners can
post a SoK showing knowledge of the secret key corresponding to their pk and
that their key is a winner of the lottery. To encrypt, one would first verify the
SoK and then encrypt with respect to the corresponding public key.

6 YOSO Multiparty Computation from ECW

In this section we show how ECW can be used as the crucial ingredient in setting
up a YOSO MPC. So far we have only focused on IND-CPA secure ECW, which
falls short of role assignment in the sense of [15]. In general role assignment
requires the following properties which are not provided by ECW (or EtF):



Encryption to the Future 171

1. Multiple parties must be able to send messages to the same role (in most
applications this requires IND-CCA).

2. Parties must authenticate messages on behalf of a role they executed in the
past (authentication from the past)

3. A party assigned to a given role must stay covert until the role is executed.

We will define a number of properties needed for EtF to realize applications such
as role assignment. We start by looking at CCA security for an EtF scheme. We
then introduce the notion of Authentication from the Past (AfP) and definition
of unforgeability and privacy guarantees. Finally, we introduce the notion of
YOSO-friendly blockchains that have inbuilt lotteries with properties that are
needed to conduct YOSO MPC and corresponding EtF and AfP schemes.

6.1 IND-CCA EtF

In this section we define what it means for an EtF to be IND-CCA secure.
This security property is useful in many applications where more encryptions
are done towards the same slot and role. As in the definition of IND-CPA, we
establish a game between a challenger C and an adversary A. We introduce a
decryption oracle, OEtF, which on input ct returns the decryption of ciphertext.
Furthermore, the OEtF maintains a list of ciphertext queries QEtF. Algorithm 2
shows the details of the game.

Algorithm 2. GameIND-CCA2
Γ,A,Z,E

viewr ← EXECΓ
r (AOEtF , Z, 1λ) � A executes Γ with Z until round r

(B, sl,R, m0, m1) ← AOEtF(viewr
A) � A outputs challenge parameters

b
$←− {0, 1}

ct ← Enc(B, sl,R, mb)
st ← AOEtF(viewr

A, ct) � A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(AOEtF , Z, 1λ) � Execute from viewr until round r̃

(B̃, b′) ← AOEtF(viewr̃
A, st)

if evolved(B, B̃) = 1 then � B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,R,sl ∧ ct /∈ QEtF then � A does not win role R
return b ⊕ b′

end if
end if
return g

$←− {0, 1}

Definition 6 (IND-CCA2 Secure EtF). Formally, an EtF-scheme E is said to
be IND-CCA2 secure in the context of a blockchain protocol Γ executed by PPT
machines A and Z if there exists a negligible function μ such that for λ ∈ N:

∣
∣
∣2 · Pr

[

GameIND−CCA2
Γ,A,Z,E = 1

]

− 1
∣
∣
∣ ≤ μ(λ)
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To add IND-CCA2 security to an IND-CPA secure EtF scheme (as defined
in Definition 4) we can use standard transformations such as [11,22]. In the
transformation based on [22] we could add to the setup of the blockchain a
CRS for a simulation-sound extractable NIZK. When encrypting m to a role
R the sender will send along a proof of knowledge of the plaintext m. We get
the challenge ciphertext from the IND-CPA game and use the ZK property
to simulate the NIZK proof. We can use the extraction trapdoor of the proof
system to simulate the CCA decryption oracles by simulation soundness. When
the IND-CCA2 adversary makes a guess, we make the same guess. The details
of the construction and proof follow using standard techniques and are omitted.
On the other hand, the popular transformation of [11] allows for simulating CCA
decryption oracles by observing the adversary’s queries to a random oracle, which
should not be an issue since an EtF scheme is likely already running on top of a
blockchain which is secure in the random oracle model. We leave the construction
of concretely efficient IND-CCA2 EtF as future work.

6.2 Authentication from the Past (AfP)

When the winner of a role R1 sends a message m to a future role R2 then it
is typically also needed that R2 can be sure that the message m came from
a party P which, indeed, won the role R1. Most PoS blockchains deployed in
practice have a lottery where a certificate can be released proving that P won
the role R1. In order to formalize this concept, we introduce an AfP scheme with
a corresponding EUF-CMA game representing the authentication property.

Definition 7 (Authentication from the Past). A pair of PPT algorithms
U = (Sign,Verify) is a scheme for authenticating messages as a winner of a
lottery in the past in the context of blockchain Γ with lottery predicate lottery.

Authenticate. σ ← AfP.Sign(B, sl,R, sk,m) takes as input a blockchain B, a
slot sl, a role R, a secret key sk, and a message m. It outputs a signature σ
that authenticates the message m.

Verify. {0, 1} ← AfP.Verify(B̃, sl,R, σ,m) uses the blockchain B̃ to ensure that
σ is a signature on m produced by the secret key winning the lottery for slot
sl and role R.

Furthermore, an AfP-scheme has the following properties:

Correctness. An AfP-scheme is said to be correct if for honest parties i and j,
there exists a negligible function μ such that for all sk, sl,R,m:
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

view ← EXECΓ(A, Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,R, sk, m)

:

lottery(B, sl,R, sk) = 0

∨ lottery(B̃, sl,R, sk) = 0

∨ AfP.Verify(B̃, sl,R, σ, m) = 1

⎤

⎥
⎥
⎦

− 1

∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ)

In other words, an AfP on a message from an honest party with a view of
the blockchain B can attest to the fact that the sender won the role R in slot
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sl. If another party, with blockchain B̃ agrees, then the verification algorithm
will output 1.

Security. We here describe the game detailed in Algorithm 3 representing the
security of an AfP scheme. The algorithm represents a standard EUF-CMA
game where the adversary has access to a signing oracle OAfP which it can
query with a slot sl, a role R and a message mi and obtain AfP signatures
σi = AfP.Sign(B, sl,R, skj ,mi) where skj ∈ WB,sl,R i.e. lottery(B, sl,R, skj) =
1. The oracle maintains the list of queries QAfP.
Formally, an AfP-scheme U is said to be EUF-CMA secure in the context of
a blockchain protocol Γ executed by PPT machines A and Z if there exists a
negligible function μ such that for λ ∈ N:

Pr
[

GameEUF−CMA
Γ,A,Z,U = 1

]

≤ μ(λ)

Algorithm 3. GameEUF-CMA
Γ,A,Z,U

view ← EXECΓ(A, Z, 1λ) � A executes Γ with Z
(B, sl,R, m′, σ′) ← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skA

L,j ∈ WB,sl,R) then � AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ

(viewr,r̃)(A, Z, 1λ) � Execute from viewr until round r̃

B̃ ← GetRecords(viewr̃
i )

if evolved(B, B̃) = 1 then
if AfP.Verify(B, sl,R, σ′, m′) = 1 then � A successfully forged an AfP

return 1
end if

end if
return 0

General AfP. In general we can add authentication to a message as follows.
Recall that Pi wins R if lottery(B, sl,R, skL,i) = 1. Here, R(x = (B, sl,R), w) =
lottery(x, w) is an NP relation where all parties know x but only the winner
knows a witness w such that R(x, w) = 1. We can therefore use a signature
of knowledge (SoK) [8] to sign m under the knowledge of skL,i such that
lottery(B, sl,R, skL,i) = 1. This will attest that the message m was sent by a
winner of the lottery for R. In [7], we show more efficient construction of AfP
by exploring the structure of PoS-based blockchains with VRF lotteries.

6.3 AfP Privacy

Just EUF-CMA security is not sufficient for an AfP mechanism to be YOSO
friendly. It must also preserve the privacy guarantees of the lottery predicate,
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guaranteeing that the adversary does not gain any undue advantage in predicting
when a party is selected to perform a role after it uses AfP to authenticate a
message. To appreciate this fact, we consider the case where instead of creating a
signature of knowledge of skL,i on message m we simply use a regular EUF-CMA
secure signature scheme to sign the message concatenated with skL,i, revealing
the signature public key, the resulting signature and skL,i itself as a means of
authentication. By definition, this will still constitute an existentially unforgeable
AfP but will also reveal whether the party who owns skL,i is the winner when
future lotteries are conducted. The specific privacy property we seek is that an
adversary, observing AfP tags from honest parties, cannot use this information
to enhance its chances in predicting the winners of lotteries for roles for which an
AfP tag has not been published. On the other hand, the identity of a party who
won the lottery for a given role is not kept private when it publishes an AfP tag
on behalf of this role, which is not an issue in a YOSO-setting since corruption
after-the-fact is futile. Specifically, we allow an AfP tag to be linked to the
identity of the party who generated it. Note, that this kind of privacy is different
from notions like k -anonymity since the success of the adversary in guessing
lottery winners with high accuracy depends on the stake distribution. The stake
distribution is public in most PoS-settings and, thus, a privacy definition must
take into account this inherent leakage.

Definition 8 (AfP Privacy). An AfP scheme U with corresponding lottery
predicate lottery is private if a PPT adversary A is unable to distinguish between
the scenarios defined in Algorithm 4 and Algorithm 5 with more than negligible
probability in the security parameter.

Scenario 0 (b = 0). In this scenario (Algorithm 4), A is first running the
blockchain Γ together with the environment Z. At round r, A is allowed to
interact with the oracle OAfP (see Definition 7). The adversary then continues
the execution until round r̃ where it outputs a bit b′.

Scenario 1 (b = 1). This scenario (Algorithm 5) is identical to scenario 0 but
instead of interacting with OAfP, the adversary interacts with a simulator
Sim.

Algorithm 4. b = 0
viewr ← EXECΓ

r (A, Z, 1λ)
AOAfP(viewr

A)
viewr̃ ← EXECΓ

(viewr,r̃)(A, Z, 1λ)

return b′ ← AOAfP(viewr̃
A)

Algorithm 5. b = 1
viewr ← EXECΓ

r (A, Z, 1λ)
ASim(viewr

A)
viewr̃ ← EXECΓ

(viewr,r̃)(A, Z, 1λ)

return b′ ← ASim(viewr̃
A)

We let GameAfP-PRIVΓ,A,Z,U denote the game where a coin-flip decides whether the
adversary is executed in scenario 0 or scenario 1. We say that the adversary wins
the game (i.e. GameAfP−PRIV

Γ,A,Z,U = 1) iff b′ = b. Finally, an AfP scheme U is called
private in the context of the blockchain Γ executed together with environment Z
if the following holds for a negligible function μ.
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∣
∣
∣2 · Pr

[

GameAfP-PRIVΓ,A,Z,U = 1
]

− 1
∣
∣
∣ ≤ μ(λ)

6.4 Round and Committee Based YOSO Protocols

Having IND-CCA2 ECW and an EUF-CMA secure and Private AfP, we can
establish a round-based YOSO model, where there is a number of rounds r =
1, 2, . . . and where for each round there are n roles Rr,i. We call the role Rr,i

“party i in round r”. We fix a round length L and associate role Rr,i to slot sl =
L · r. This L has to be long enough that in each round the parties executing the
roles can decrypt ciphertexts sent to them, execute the steps of the role, compute
encryptions to the roles in the next round and post these to the blockchain in
time for these to be available to the committee of round r+1 before slot (r+1)·L.
Picking such an L depends crucially on the underlying blockchain and network,
and we will here simply assume that it can be done for the blockchain at hand.

Using this setup, the roles Rr,i of round r can use ECW and AfP with the
aforementioned properties to send secret authenticated messages to the roles
Rr+1,i in round r + 1. They find their ciphertexts on the blockchain before slot
r ·L, decrypt using ECW, compute their outgoing messages, encrypt using ECW,
authenticate using AfP, and post the ciphertexts and AfP tags on the blockchain.

Honest Majority. In round based YOSO MPC it is critical that we can
assume some fraction of honesty in each committee Rr,1, . . . ,Rr,n. We discuss
here assumptions needed on the lottery for this to hold and how to guarantee
it. Assume an adversary that can corrupt parties identified by sk and a lottery
assigning parties to roles Rr,i. We map the corruption status of parties to roles
as follows:

1. If a role Rr,i is won by a corrupted party or by several parties, call the role
Malicious. Even if Rr,i is won by two honest parties, they will both execute
the role and send outgoing messages, which might violate security.

2. If a role Rr,i is won by exactly one honest party, call it Honest.
3. If a role Rr,i is not won by any party, call it Crashed. These roles will not

be executed and are therefore equivalent to a crashed party.

Note that because we assume corrupted parties know their lottery witness
skL,i in our model, we can, in poly-time, extract those witnesses and compute the
corruption status of roles. This will be crucial in our reductions. Imagine that a
role could be won by an honest party but also by a corrupted party which stays
completely silent but decrypts messages sent to the role. If we are not aware
of the corrupted party winning the role, we might send a simulated ciphertext
to the apparently honest role. The corrupted party also having won the role
would be able to detect this. Since any role won by an honest party could also
be corrupted by a silent malicious party, simulation would become impossible.

In order to realize YOSO MPC, we will need committees where a major-
ity of the roles are honest according to the description above. We capture this
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requirement in the definition below and argue how it can be achieved in the full
version [7].

Definition 9 (Honest Committee Friendly). We call a blockchain Γ honest
committee friendly if there exist n and H and T such that H > T s.t. we can
define a sequence of roles Rr,i for r = 1, . . . , poly(λ) and i = 1, . . . , n for a slot slr
and that for all r it holds that except with negligible probability there are at least
H honest roles in Rr,1, . . . ,Rr,n and at most T malicious roles. Furthermore, if
an honest party executing Rr,1, . . . ,Rr,n sends a message at slr, it is guaranteed
to appear on the blockchain before slot slr+1.

We are now ready to capture the above discussion using a definition.

Definition 10 (YOSO Friendly Blockchain). Let Γ be a blockchain with
a lottery predicate lottery(B, slr,Rr,i, skL,i) and let E = (Enc,Dec) and U =
(Sign,Verify) be an EtF and AfP for lottery(B, slr,Rr,i, skL,i), respectively. We
call (Γ, E ,U) YOSO MPC friendly if the following holds:

1. E is an IND-CCA2 secure EtF (Definition 6).
2. U is a secure and private AfP (Definition 7 and Sect. 8).
3. Γ is honest committee friendly (Definition 9).

We will later assume a YOSO friendly blockchain, and we argued above that
the existence of a YOSO friendly blockchain is a plausible assumption without
having given formal proofs of this. It is interesting future work to prove that
a concrete blockchain is a YOSO friendly blockchain in a given communication
model. We omit this as our focus is on constructing flavours of EtF.

7 Construction of EtF from ECW and Threshold-IBE

The key intuition about our construction is as follows: we use IBE to encrypt
messages to an arbitrary future (R, slfut) pair. When the winners of the role in slot
slfut are assigned, we let them obtain an ID-specific key for (R, slfut) from the
IBE key-generation algorithm using ECW as a channel. Notice that this key-
generation happens in the present while the encryption could have happened
at any earlier time. We generate the key for (R, slfut) in a threshold manner by
assuming that, throughout the blockchain execution, a set of committee members
each holds a share of the master secret key mski.

7.1 Construction

We now describe our construction. We assume an encryption to the current
winner ΠECW = (EncECW,DecECW) and a threshold IBE scheme ΠTIBE. In the
setup stage we assume a dealer acting honestly by which we can assign master
secret key shares of the TIBE.

Parameters: We assume that the genesis block B0 of the underlying blockchain
contains all the parameters for ΠECW.
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Setup Phase: Parties run the setup stage for the ΠECW. The dealer produces
(mpk, 	msk = (msk1, . . . ,mskn)) from TIBE setup with threshold k. Then it
chooses n random parties and gives a distinct mski to each. All learn mpk.

Blockchain Execution: The blockchain execution we assume is as in Sect. 3.
We additionally require that party i holding a master secret key share
mski broadcasts ctsk,i(sl,R) ← EncECW(B, sl,R, ski

(sl,R)), whenever the winner

of role R in slot sl is defined in the blockchain B, where ski
(sl,R) ←

ΠTIBE.IDKeygen(mski, (sl,R)).
Encryption Enc(B, sl,R,m): Each party generates cti ← ΠTIBE.Enc(mpk, ID =

(sl,R),m). Output ct = (B, sl,R, {cti}Pi
).

Decryption Dec(B, ct, sk): Party i outputs ⊥ if it does not have skL,i such
that lottery(B, sl,R, skL,i) = 1 for parameters B, sl,R from ct. Otherwise, it
retrieves enough (above threshold) valid ciphertexts ctsk,j(sl,R) from the current

state of the blockchain and decrypts each through ΠECW obtaining skj
(sl,R). It

then computes sk(sl,R) ← ΠTIBE.Combine(mpk, (skj
(sl,R))j). It finally outputs

m ← ΠTIBE.Dec(sk(sl,R), ct).

Resharing. We can ensure that the master secret key is proactively reshared
by modifying each party so that mski-s are reshared and reconstructed in the
evolution of the blockchain.

Correctness. Correctness of the construction follows from the correctness of the
underlying IBE and the fact that a winning role will be able to decrypt the
id-specific key by the correctness of the ECW scheme.

In the following we assume some of the extensions discussed in Sect. 6.

Theorem 2 (informal). Let ΓV be a YOSO MPC friendly blockchain, ΠTIBE

be a robust secure threshold IBE as in Sect. 2.3 with threshold n/2, and ΠECW a
secure IND-CCA2 ECW. The construction in Sect. 7.1 is a secure EtF.

We refer the reader to the full version for a proof of security [7].

8 Blockchain WE Versus EtF

In this section we show that an account-based PoS blockchain with sufficiently
expressive smart contracts and an EtF scheme for this blockchain implies a
notion of witness encryption on blockchains, and vice versa. The construction of
EtF from BWE is completely straightforward and natural: encrypt to the witness
which is the secret key winning the lottery. The construction of BWE from EtF
is also straightforward but slightly contrived: it requires that we can restrict the
lottery such that only some accounts can win a given role and that the decryptor
has access to a constant fraction of the stake on the blockchain and are willing
to bind them for the decryption operation. The reason why we still prove the
result is that it establishes a connection at the feasibility level. For sufficiently
expressive blockchains the techniques allowing to construct EtF and BWE are



178 M. Campanelli et al.

the same. To get EtF from simpler techniques than those we need for BWE we
need to do it in the context of very simple blockchains. In addition, the techniques
allowing to get EtF without getting BWE should be such that they prevent the
blockchain from having an expressive smart contract layer added. This seems like
a very small loophole, so we believe that the result shows that there is essentially
no assumptions or techniques which allow to construct EtF which do not also
allow to construct BWE. Since BWE superficially looks stronger than EtF the
equivalence helps better justify the strong assumptions for constructing EtF.

Definition 11 (Blockchain Witness Encryption). Consider PPT algo-
rithms (Gen,Enc,Dec) in the context of a blockchain ΓV is an BWE-scheme
with evolved predicate evolved and a lottery predicate lottery working as follows:

Setup. (pv, td) ← Gen() generates a public value pv and an extraction trapdoor
td. Initially pv is put on B.

Encryption. ct ← Enc(B,W,m) takes as input a blockchain B, including the
public value, a PPT function W , the witness recogniser, and a message m.
It outputs a ciphertext ct, a blockchain witness encryption.

Decryption. m/⊥ ← Dec(B̃, ct, w) in input a blockchain state B̃, including the
a public value pv, a ciphertext ct a witness w, it outputs a message m or ⊥.

Correctness. An BWE-scheme is correct if for honest parties i and j, PPT func-
tion W , and witness w such that W (w) = 1 the following holds with overwhelm-
ing probability: if party i runs ct ← Enc(B,W,m) and party j starts running
Dec(B̃, ct, w) in B̃ evolved from B, then eventually Dec(B̃, ct, w) outputs m.

Security. We establish a game between a challenger C and an adversary A. In
Sect. 2.1 we described how A and Z execute a blockchain protocol. In addition,
we now let the adversary interact with the challenger in a game GameIND−CPA

Γ,A,Z,E
which can be summarized as follows.

1. (pv, td) ← Gen() and put pv on the blockchain.
2. A executes the blockchain protocol Γ together with Z and at some round

r chooses a blockchain B, a function W and two messages m0 and m1 and
sends it all to C.

3. C chooses a random bit b and encrypts the message mb with the parameters
it received and sends ct to A.

4. A continues to execute the blockchain until some round r̃ where the blockchain
B̃ is obtained and the A outputs a bit b′.

The adversary wins the game if it succeeds in guessing b with probability notably
greater than one half without W (Extract(td, B̃, ct,W )) = 1.

EtF from BWE. We first show the trivial direction of getting EtF from BWE.
Let ΠBWE = (GenBWE,EncBWE,DecBWE) be an BWE scheme. Recall that one wins
the lottery if lottery(B, sl,R, sk) = 1. We construct a EtF scheme. To encrypt,
let W be the function W (w) = lottery(B, sl,R, w) and output EncBWE(B,W,m).
If winning the lottery for (sl,R) then let w be the secret key winning the lottery
and output Dec(B̃, ct, w). The proof is straightforward.

BWE from EtF. We describe a proof of this direction in the full version [7].
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Abstract. Authenticated encryption with associated data (AEAD)
forms the core of much of symmetric cryptography, yet the standard tech-
niques for modeling AEAD assume recipients have no ambiguity about
what secret key to use for decryption. This is divorced from what occurs
in practice, such as in key management services, where a message recip-
ient can store numerous keys and must identify the correct key before
decrypting. To date there has been no formal investigation of their secu-
rity properties or efficacy, and the ad hoc solutions for identifying the
intended key deployed in practice can be inefficient and, in some cases,
vulnerable to practical attacks.

We provide the first formalization of nonce-based AEAD that sup-
ports key identification (AEAD-KI). Decryption now takes in a vector of
secret keys and a ciphertext and must both identify the correct secret key
and decrypt the ciphertext. We provide new formal security definitions,
including new key robustness definitions and indistinguishability security
notions. Finally, we show several different approaches for AEAD-KI and
prove their security.

Keywords: Key identification · Authenticated encryption · Key
commitment · Key robustness

1 Introduction

Authenticated encryption with associated data (AEAD) is ubiquitously used in
practice. Standard formalizations of AEAD schemes model a “single-key” setting
where a single sender sends an encrypted message to a single receiver. Though
simple to analyze, this model is increasingly divorced from practice in a number
of important aspects.

A setting which has received little or no attention in the cryptographic litera-
ture is one where a message recipient will store numerous keys and must identify
the correct key to use before decryption can proceed. This practice can be seen
in cryptographic libraries such as Google’s Tink API [31], key management ser-
vices (KMS) such as for Amazon Web Services (AWS) [5], and multi-user Shad-
owsocks [29], among others. Notably, AEAD schemes and their security models
do not formally address the issue of key identification, producing a gap when
translating from cryptographic theory to practice.
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Two approaches for key identification are often used in practice. The first
is trial decryption, where one attempts to decrypt the ciphertext under each of
the keys held by the recipient. However, this is slow, even for a small number of
keys. As such, a second approach is often used: the sender attaches a previously
agreed-upon key identifier to each message it sends. For instance, this approach
is used by Tink, which derives 5-byte strings as the identifier. The recipient can
then efficiently use the identifier to look up the corresponding key. However, this
approach does not work in settings where keys must remain anonymous, such
as in anonymous messaging protocols. It is also unclear what security properties
(for both approaches) are being achieved in the case where there is potential
for adversarial modification of key identifiers and/or adversarial choice of some
of the recipient keys. Adversarially chosen keys can arise in settings where the
sender chooses a secret key to share with the recipient, which have resulted in
several recent attacks [2,14,18,22].

One example is multi-user Shadowsocks [29]. Shadowsocks is an anonymity
proxy that works by having a client encrypt their traffic under a shared password
with a server, which decrypts using AEAD. The multi-user mode allows multiple
passwords to be specified for a single server, which means that incoming pack-
ets must be trial decrypted under every possible user password. Len et al. [22]
describe an attack on this scheme where an attacker can insert a malicious pass-
word into this set of passwords, then mount a partitioning oracle attack that
enables the attacker to learn some target user’s password. Fundamentally, the
vulnerability is that Shadowsocks’s AEAD has no efficient and secure way to
identify the appropriate key.

Our Contributions. We initiate the formal study of AEAD that supports key
identification. The starting point is nonce-based AEAD [27], which we extend
to include in the formal syntax and semantics of encryption schemes the key
identification task: decryption takes in a vector of secret keys as well as a nonce,
associated data, and a ciphertext, and must both identify the correct secret key
and decrypt the ciphertext. This change, while conceptually simple, immediately
introduces a number of complexities. It forces scheme designers to specify how
the right key is identified, requires changes to notions of correctness, suggests
that we must give new security definitions that speak to issues such as adversaries
forcing the wrong key to be identified, and more.

We formalize a new cryptographic primitive called AEAD-KI, or AEAD with
key identification. Like AEAD, the primitive is composed of a triple of algorithms
for key generation, encryption, and decryption. Key generation takes in what we
call a key label so that AEAD-KI keys are composed of the traditional secret
key as well as the key label. This label acts as optional public metadata for
the key and models techniques in practice, e.g., URLs that suggest where to
locate the key or other kinds of static identifiers. Encryption takes in a key,
nonce, associated data, and message. Ciphertexts can opt to include a special
component, called a key tag. Decryption for AEAD-KI, in turn, accepts a vector
of keys, instead of one key as for AEAD. We use a vector instead of a set to
preserve information about the order of keys, which could affect the decryption
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outcome. Given the ciphertext (including the key tag), decryption returns both
the key that correctly decrypts the ciphertext as well as the resulting message.
If decryption determines that no key correctly decrypts the ciphertext, it simply
returns an error symbol ⊥.

We next consider which security definitions best capture the AEAD-KI set-
ting. Our first goal is to extend the standard AEAD security notions of confi-
dentiality and ciphertext integrity to AEAD-KI. A good starting point is trans-
forming the traditional all-in-one real-versus-random indistinguishability secu-
rity notion for AEAD due to Rogaway and Shrimpton [28] to the AEAD-KI set-
ting. Specifically, we can allow the attacker to interact with multiple encryption
key instances, reminiscent of the multi-user setting for encryption [6]. However,
this definition only allows for honest keys, which unfortunately does not capture
attacks in which a malicious key is somehow inserted into a recipient’s key vec-
tor. Indeed, attacks have already been shown in practice where malicious keys
are given to a recipient to prevent decryption under honest keys [2,14].

We therefore opt for a notion of security for which adversaries can insert
malicious keys into key vectors used during decryption queries. This renders
more complex how the security game should handle decryption oracles in order
to distinguish between honest and malicious keys. To handle these subtleties, we
introduce KI-nAE, a new security notion that uses a simulation-based approach
for the all-in-one definition. This definition captures a wide class of interfer-
ence attacks in which a malicious user somehow inserts a malicious key into a
recipient’s key vector in an attempt to interfere with honest keys.

A security property intrinsic to the key identification setting is key robust-
ness, a security goal first investigated in the context of public-key encryption [1]
and later investigated for authenticated encryption [16] (see also [2,8,14,18,22]).
Interestingly, robustness here functions as a form of correctness, as ensuring the
correct key decrypts a given ciphertext in the presence of many (potentially
adversarial) keys can only be guaranteed by robustness. We thus extend the
AEAD robustness notion called full robustness (FROB) [16] to the AEAD-KI
setting, which is straightforward. Interestingly, this extension however proves
insufficient to rule out some attacks. In particular, when decryption is given the
correct key within a key set, it should not fail to decrypt; such failures could leak
information about the (honest) keys composing a key vector. One way to handle
this is with an extended key robustness notion, but an observation due to Mihir
Bellare is that one can instead extend correctness to rule out such decryption
failures. See the body and the full version of this work for more details.

Approaches to AEAD-KI. We then turn to analyzing security of existing key
identification schemes as well as suggesting new ones. A summary of our analyses
appears in Fig. 1. We divide key identification into several categories. The first
approach utilizes the key label of the key as the key tag itself. Decryption can
then find all keys whose label matches the key tag of the ciphertext and perform
trial decryptions. (Note the second category, trial decryption, is a special case
where all labels are the empty string.) This reflects how, in practice, labels
are sometimes not unique and instead used to label a set of keys. Using key
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Fig. 1. Summary of various approaches to AEAD-KI that we consider. For each app-
roach, we also list whether it must use a FROB AEAD scheme and whether it provides
key anonymity.

labels obviates achieving key anonymity, since a ciphertext produced by a certain
key will always be flagged by the key’s label. Nevertheless, brute-force trial
decryption, a special case of the key label approach, can achieve anonymity,
although with the trade-off of increased computational costs. Since key labels
are not unique, they do not provide key commitment to AEAD schemes that
are not key committing. Nevertheless, we see this insecure construction arises
in practice, such as in the Tink library. Our analysis shows that if one instead
uses the key label approach with a key-committing AEAD scheme, then the
composition is key committing.

Next we turn to what we call “static” approaches, those where key tags are
deterministically computed from the secret key. These are similar to “key check
values”, legacy schemes for ensuring integrity of the key [17,26,30]. Since the key
tag for a key never changes, this approach also does not allow for key anonymity.
We further divide static key identifiers into two classes: static key hints and static
key commitments. Key hints are key tags computed from the key in a non-key-
committing way, typically using a non-collision resistant hash of the key. This
means that AEAD-KI schemes using key hints, like key labels, will need to trial
decrypt on all keys matching the key hint and use a FROB AEAD scheme to
achieve key robustness. The benefit of key hints is that they can often be short
and efficiently computed. In contrast, static key commitments, the second class
of static key identifiers, do commit to the key. These are typically a collision-
resistant hash of the key. While static key commitments might be less efficient
to compute than key hints, they can be used to build secure AEAD-KI from
non-FROB AEAD schemes.

Finally, both key hints and key identifiers can be made “dynamic” to provide
key anonymous counterparts of static schemes. This approach uses a nonce when
computing the key tag so that the key tag for a key is unique for each encryption
call. Like static identifiers, dynamic identifiers can be both key hints and key
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commitments, with security achieved when combining with any AEAD or FROB
AEAD, respectfully.

Further Related Work. Farshim, Orlandi, and Rosie [16] first proposed the
set of key robustness notions for symmetric primitives. Their strongest defini-
tion, full robustness, represents the goal of key commitment for AEAD schemes.
Grubbs et al. [18] suggest a notion of compactly committing AEAD, which is
useful in abuse moderation settings. Dodis et al. [14] describe an attack against
Facebook Messenger’s abuse moderation tooling that relies on AES-GCM, which
is not key committing. In this attack, a malicious sender can force an honest
recipient to use a malicious key to decrypt a message to abusive content that
cannot be reported. Len et al. [22] and Albertini et al. [2] showed that other
commonly used AEAD schemes, such as AES-GCM-SIV, ChaCha20-Poly1305,
and OCB3, are not key committing and they describe other practical attack
scenarios that exploit non-key committing AEAD schemes.

Albertini et al. also propose two approaches to adding key commitment to
AEAD schemes. One of these approaches is to compute a collision-resistant PRF
of the key, both deterministically and using a nonce for key anonymity. Our static
and dynamic identifiers parallel these schemes, but for the AEAD-KI setting.
Bellare and Hoang [8] propose a spectrum of new definitions for commitment
that capture not just committing to the key but also committing to the nonce,
associated data, and plaintext message. They also propose new key-committing
AEAD schemes based on AES-GCM and AES-GCM-SIV as well as a construc-
tion that transforms a legacy AEAD scheme into one that is key-committing
using what they call a committing PRF. This construction is similar to that
proposed by Albertini et al. (and indeed they note that Albertini et al.’s con-
struction can be viewed as a specific instantiation of their scheme). Their work
considers only the single-key setting, but their schemes can be used as the nec-
essary FROB AEAD schemes in our AEAD-KI constructions.

Degabriele et al. [13] propose nonce-set AEAD, which is similar to our AEAD-
KI formalism but instead for nonce sets. Their formalism considers decryption
accepting a set of nonces and then returning the correct nonce along with the
plaintext message.

Chan and Rogaway [12] formalize anonymous authenticated encryption,
which requires that ciphertexts maintain strong privacy when considering nonces
and associated data. They mention the need for robustness, although they only
consider robustness for honestly generated keys, which is implied by the typical
AEAD security notion as shown in [16]. Finally, Jaeger and Tyagi [21] consider
multi-user simulation-based security definitions for various standard symmetric
definitions where keys can be adaptively compromised.

2 Preliminaries

We follow the notational conventions used in [18]. We fix some alphabet Σ,
e.g. Σ = {0, 1}. For any x ∈ Σ∗, let |x| denote its length. We write x ←$ X
to denote uniformly sampling from a finite set X. We write X‖Y to denote
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concatenation of two strings. For a string X of n bits, we will write X[i, . . . , j]
for 1 ≤ i < j ≤ n to mean the substring of X beginning at index i and ending at
index j. For notational simplicity, we assume that one can unambiguously parse
Z = X‖Y into its two parts, even for strings of varying length. For strings X,Y ∈
{0, 1}∗ we write X ⊕ Y to denote taking the XOR of X[1, . . . ,min(|X|, |Y |)] ⊕
Y [1, . . . ,min(|X|, |Y |)]. For some table of values where yi is stored at key xi,
denoted as T[xi] ← yi, for a set of keys X = {xi : 1 ≤ i ≤ κ} for some integer κ,
T[X] denotes the set {T[xi] : xi ∈ X}. We denote a vector of elements as [·]. We
denote the value stored at index i in vector K as K[i]. For vector K, we denote
x ∈ K as x is an element of K and |K| as the number of elements in K. We also
denote K.add(x) to mean adding x to the end of vector K. We denote [n]� as the
�-bit representation of the integer n.

We use code-based games [10] to formalize security notions. Variables’ types
should be clear from context and are modeled as random variables in the prob-
ability distribution defined by the random coins used in execution. Pr [ G ⇒ y ]
denotes (over the random coins of G) that the game G outputs the value y.
For a scheme S, we will sometimes use “a GS adversary” to describe an adver-
sary in the game G instantiated with the scheme S. For an adversary A, GA

S

denotes the game G instantiated with the scheme S and specific adversary A.
Pr

[
GA

S ⇒ out
]

denotes the probability that game G instantiated with scheme
S and adversary A outputs out.

Authenticated Encryption. An authenticated encryption with associated
data (AEAD) scheme AEAD = (Kg,Enc,Dec) consists of a triple of algorithms.
Associated to any scheme AEAD is a key space K ⊆ Σ∗, nonce space N ⊆ Σ∗,
header space A ⊆ Σ∗, message space M ⊆ Σ∗, and ciphertext space C ⊆ Σ∗. The
randomized key generation algorithm Kg outputs a secret key K ∈ K. Encryp-
tion Enc is deterministic and takes as input a 4-tuple (K ,N ,AD ,M ) ∈ (Σ∗)4

and outputs ciphertext C or a distinguished error symbol ⊥. We require that
Enc(K ,N ,AD ,M ) 
= ⊥ if (K ,N ,AD ,M ) ∈ K × N × A × M. Decryption Dec
is deterministic and takes as input a tuple (K ,N ,AD ,C ) ∈ (Σ∗)4 and out-
puts value M or ⊥. An AEAD scheme is correct if for any (K ,N ,AD ,M ) ∈
K × N × A × M it holds that Dec(K ,N ,AD ,Enc(K ,N ,AD ,M )) = M .

The security notion we consider for AEAD schemes is nonce-based real-or-
random security under chosen-ciphertext attack [28]. We generalize this to a
multi-user setting [11] where an adversary can interact with multiple instances
of the AEAD scheme, which we call MU-nAEAEAD. The game pseudocode is
presented in Fig. 2. We restrict our attention to nonce-respecting adversaries,
meaning they never query the same nonce twice to Enc for the same key iden-
tifier id, and they only query a key identifier id < i to Enc and Dec. The
MU-nAEAEAD advantage of an adversary A is defined as

Advmu-nae
AEAD (A) = |Pr

[
MU-nAE1A

AEAD ⇒ 1
]
− Pr

[
MU-nAE0A

AEAD ⇒ 1
]
|.

Full Robustness. We use the full robustness notion for AEAD schemes from
Farshim et al. [16], but adapted to the nonce-based setting. Albertini et al. [2]
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Fig. 2. Games MU-nAE1 and MU-nAE0 are used for MU-nAEAEAD, or multi-user
real-or-random security, for scheme AEAD = (Kg,Enc,Dec).

also provide a FROB notion for nonce-based AEAD, with slightly different syn-
tax — our formulation is equivalent to theirs. Roughly, FROB security tasks
an adversary with providing two keys and a ciphertext such that both keys
successfully decrypt the ciphertext. We define the game in Fig. 3.

The FROBAEAD advantage of an adversary A is defined as

Advfrob
AEAD(A) = Pr

[
FROBA

AEAD ⇒ 1
]
.

Pseudo-random Functions. We use a multi-user variant of the traditional
pseudo-random function (PRF) definition (q.v., [7]) for two functions, where
the adversary is given access to oracles for both functions. We define the games
in Fig. 3. The game gives the adversary an additional GenKey oracle that allows
it to generate multiple keys. The MU-PRFF advantage of an adversary A is
defined as

Advmu-prf
F0,F1

(A) = |Pr
[
REALA

F0,F1
⇒ 1

]
− Pr

[
IDEALA ⇒ 1

]
|.

Collision Resistance. The collision resistance (CR) game for function F =
{0, 1}κ × {0, 1}� → {0, 1}n measures the ability of an adversary to find two key-
value pairs such that the evaluation of F on these inputs evaluates to the same
output. More formally, the CRF advantage of an adversary A is defined as

Advcr
F (A) = Pr [ K0, x0,K1, x1 ← A : (K0, x0) �= (K1, x1) ∧ F(K0, x0) =F(K1, x1) ] .

Pre-image Resistance. The pre-image resistance game for function F =

{0, 1}κ × {0, 1}� → {0, 1}n measures the ability of an adversary to find the
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Fig. 3. (Left) Game FROBAEAD is the full robustness security notion for scheme
AEAD = (Kg,Enc,Dec). (Center/Right) Games REAL and IDEAL are used for
MU-PRFF0,F1 , or multi-user PRF security for functions F0 = {0, 1}κ × {0, 1}�0 →
{0, 1}n0 and F1 = {0, 1}κ × {0, 1}�0 → {0, 1}n0 .

pre-image of a random range point for F. More formally, the PREF advantage of
an adversary A is defined as

Advpre
F (A) = Pr [ y ←$ {0, 1}n;K , x ← A(y) : F(K , x) = y ] .

3 Defining AEAD with Key Identification

We start by formalizing the notion of AEAD with key identification (AEAD-KI).
AEAD-KI extends AEAD schemes to the setting where a recipient stores mul-
tiple keys and must therefore choose which key to use for decryption. At a high
level, our formalization extends prior ones on AEAD in the following ways:

• We add a notion of key labels, which are potentially public, application-
defined strings associated to secret keys. For notational simplicity, we will
redefine a key to be a label, secret key pair.

• Decryption takes as input a vector of keys, instead of a single key. Decryption
must determine both which key to use, and the corresponding plaintext. We
model the keys used by decryption as a vector, instead of a set, to preserve
information about the order.

• Ciphertexts may include a key identification tag, to assist decryption. We
will explore a variety of ways to construct key identification tags, each with
different security and performance profiles.

These changes to our conceptualization of syntax and semantics of AEAD nec-
essarily require revisiting security as well. Later in this section we propose a
new simulator-based all-in-one security definition that captures confidentiality
and integrity for AEAD-KI schemes. Furthermore, we will see that the shift to
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AEAD-KI introduces a number of subtleties related to ciphertexts potentially
being decryptable under more than one key. We will therefore provide new key
robustness (also called key commitment) notions for AEAD-KI.

Syntax and Semantics. An AEAD-KI scheme is a triple of algorithms com-
bined with a key space K ⊆ Σ∗, key label space L ⊆ Σ∗, nonce space N ⊆ Σ∗,
associated data space A ⊆ Σ∗, message space M ⊆ Σ∗, ciphertext space C ⊆ Σ∗,
and key tag space T ⊆ Σ∗. We will often leave the spaces implicit and clear from
context. Thus we write that an AEAD-KI scheme AEKI = (Kg,Enc,Dec) consists
of the following algorithms:

• K ←$ AEKI.Kg(kid)
The randomized key generation algorithm takes as input the key label kid
to use for the generated secret key. The key label operates as metadata for
the secret key. Key generation outputs a key K ∈ L × K, which is a pair
composed of the key label and the secret encryption/decryption key. While
the encryption key must be kept secret, the key label can be public.

• (Tk ,C ) ← AEKI.Enc(K ,N ,AD ,M )
The nonce-based deterministic encryption algorithm takes as input tuple
(K ,N ,AD ,M ) ∈ (Σ∗)4 and outputs pair (Tk ,C ) ∈ T × C or a distinguished
error symbol ⊥. Notice that encryption returns, in addition to the encrypted
plaintext, a bit string Tk , which can be empty. We will refer to this as the key
tag, as we discuss more below. Both the key tag and the encrypted plaintext
form the ciphertext. We require that if (K ,N ,AD ,M ) ∈ K × N × A × M
then Enc(K ,N ,AD ,M ) 
= ⊥.

• (K ,M ) ← AEKI.Dec(K,N ,AD ,Tk ,C )
The decryption algorithm’s input is (K,N ,AD ,Tk ,C ) ∈ K∗ × (Σ∗)4 and its
output is (K ,M ) ∈ K × M or ⊥. Decryption is deterministic. Notice that
instead of a single key, decryption takes as input a vector of keys K, and we
denote vectors of length one or greater by K∗. Furthermore, in addition to
the plaintext, decryption returns the corresponding key that produced the
plaintext. If no key can decrypt, then the error symbol ⊥ is returned.

Correctness. When extending AEAD to allow for multiple keys, a meaningful
definition of correctness becomes more complex. We expect that when encrypting
with a key K to produce ciphertext C , and then decrypting C with any vector K
that includes K , the original plaintext should be recovered. However, this cannot
for practical schemes be guaranteed absolutely, since there may exist another key
that successfully decrypts the ciphertext. Indeed, the correct outcome that we
expect of a scheme that allows decryption to accept multiple keys now becomes
more like a security property of key robustness, where we have computational
guarantees that decryption succeeds for a single key. We therefore provide here a
simpler, absolute correctness definition and later focus on capturing the behavior
we want from AEAD-KI through key robustness, which we cover below.

Definition 1. An AEAD-KI scheme is correct if the following hold:
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(1) For any (K ,N ,AD ,M ) it holds that Pr [ (K ′,M ′) = (K ,M ) ] = 1 where
(K ′,M ′) ← Dec([K ],N ,AD ,Enc(K ,N ,AD ,M )) and the probability is over
the coins used by encryption;

(2) For any (K,N ,AD ,Tk ,C ) and (K ,M ) ← Dec(K,N ,AD ,Tk ,C ) it must be
that either (K ,M ) = ⊥ or K ∈ K; and

(3) For any K,K′ and any (N ,AD ,Tk ,C ), let (K ,M ) ← Dec(K,N ,AD ,Tk ,C )
and (K ′,M ′) ← Dec(K′,N ,AD ,Tk ,C ). If (K ,M ) 
= ⊥ and K ∈ K

′, then
(K ′,M ′) 
= ⊥.

The first condition lifts traditional perfect correctness for AEAD to the syn-
tax of AEAD-KI for decryption with a single key. The second condition addi-
tionally asks that decryption only ever output a key that was in the key vector.
The third correctness condition roughly requires that if Dec outputs some key
K for a key set K, any other K

′ containing K must decrypt to non-⊥. (Note
we do not require decryption with K

′ outputs K ; this property is guaranteed
by our key robustness security notion, which we discuss next.) For all schemes
we consider, correctness is easily established via inspection of their decryption
algorithm; we therefore will omit explicit analysis.

3.1 Key Robustness

As mentioned, in the AEAD-KI setting, key robustness is partly about correct-
ness: we expect that the key used to encrypt a plaintext should be the only one
to correctly decrypt the resulting ciphertext. However, when decryption allows
for multiple keys—some of which may be adversarially-chosen—this property
cannot be satisfied without some form of key robustness. Briefly, key robustness
guarantees that only a single key can be used to decrypt a given ciphertext.

Farshim et al. [15] first defined several key robustness notions for AEAD
schemes. Their strongest notion is called full robustness (FROB), and requires
an adversary to discover two keys that each successfully decrypt an adversarially
chosen nonce, associated data, and ciphertext (see Sect. 2). Bellare and Hoang [8]
recently introduced even stronger notions, such as their CMT3, which require
commitment to not just the key but also nonces and associated data. For sim-
plicity we stick with adapting the FROB notion. Analogous adaptations can be
made to lift CMT3 to the key identification setting, but some schemes would
require modification to meet them (e.g., including nonce and associated data in
key check value computations).

We define KI-FROB security for an AEAD-KI scheme via the game shown in
Fig. 4. It requires an adversary to find two key vectors and a nonce, associated
data, and ciphertext. Decryption is run with each key vector, and the adversary
wins should both decryptions succeed and the returned secret key, message pairs
are distinct. Note here that we are focused on the secret key, not key including
key label, thereby explicitly excluding as a win having distinct key labels. This is
to allow schemes that use multiple key labels for the same key. The KI-FROBAEKI

advantage of an adversary A is defined as

Advki-frob
AEKI (A) = Pr

[
KI-FROBA

AEKI ⇒ 1
]
.
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Fig. 4. Game KI-FROBAEKI represents full robustness for AEAD-KI scheme AEKI =
(Kg,Enc,Dec).

Finally, note an important property of our KI-FROB security notion: any
scheme meeting it is in some sense agnostic to the ordering of keys in the key
vector input to decryption. If two different orderings of the same key vector
caused different keys to be output, these two key vectors would give a KI-FROB
win. (Note that correctness condition (3) above implies that two different order-
ings of the same key vector must both either output ⊥ or both non-⊥.) Looking
ahead, it also means our KI-nAE definition need not account for distinguishing
attacks caused by the order of keys in the key vectors; they are ruled out for any
KI-FROB scheme.

3.2 All-in-one Confidentiality and Integrity

Just as for an AEAD scheme, we expect an AEAD-KI scheme to maintain confi-
dentiality and integrity. Towards formalizing what this means, one starting point
is existing indistinguishability style security definitions for AEAD (e.g., [28]).
However, an important modeling question is how to handle key vectors during
decryption. This suggests we should start instead with a multi-user style AEAD
security notion [11] which allows the adversary to request generation of many
keys and obtain encryption of plaintexts under keys of their choice.

To model key anonymity, we may additionally require that adversaries not be
able to distinguish between encryptions under different honest keys. To model
chosen-ciphertext attacks and, in particular, ciphertext integrity, we face addi-
tional choices about how much control to give adversaries over key vectors during
decryption. One option would be to allow adversaries to choose the key vector
but only allow honestly generated keys to be added to the vector. Unfortunately,
this would not capture attacks in which a malicious key is somehow inserted into
a recipient’s key vector, a scenario that arises in practice. For instance, Albertini
et al. [2] describe a vulnerability arising from such a scenario in the context of
key rotation within key management services.

We therefore opt for a stronger notion of security for which adversaries can
insert malicious keys into key vectors. This renders more complex how the secu-
rity game should handle decryption oracles, because we need to somehow demar-
cate between decryption queries that correspond to ciphertext forgeries and ones
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Fig. 5. Game KI-nAEAEKI is the all-in-one security notion for AEAD-KI schemes.

that should not: an adversary can always generate ciphertexts that decrypt under
an adversary-chosen key.

To handle these subtleties, we use a simulation-based approach and an
all-in-one confidentiality and ciphertext integrity notion. The pseudocode
games for the resulting KI-nAEAEKI security notion are shown in Fig. 5.
KI-nAEAEKI is parameterized by the simulator, a stateful tuple of algorithms
S = (Init,Kg,Enc,Dec). The adversary is given access to an honest key gen-
eration oracle GenHonestKey, an encryption oracle Enc, and a decryption
oracle Dec. Dec accepts as input a key vector K as well as ciphertext tuple
(N ,AD ,Tk ,C ). The key vector K is composed of tuples (honest, data), where
honest = true indicates that the key is honestly generated and data is the game-
generated key identifier for the key. If honest = false, then the key is malicious
and data is itself the key.

The game KI-nAE1 models interactions with the real scheme, and there-
fore calls the relevant AEKI algorithm to answer oracle queries. The ideal game
KI-nAE0 instead uses simulator S to generate the oracle outputs for the adver-
sary. Encryption provides leakage to the simulator. The encryption leakage algo-
rithm LEnc(id,M ) takes as input the game-generated key identifier and the plain-
text message and outputs the encryption leakage. We specify two concrete leak-
age functions, LidEnc and LanonEnc . The non-key anonymous algorithm LidEnc returns
as leakage both the game-generated key identifier and the size of the plaintext,
while LanonEnc only returns the size of the plaintext. In the latter case, this of course
means that the simulator will have no knowledge of which honest key the adver-
sary chose for encryption.
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The decryption oracle in KI-nAE0 works in two parts. In the first part, the
table of previous Enc outputs is scanned for each honest key. If the queried
ciphertext is in the table, the message is returned. Otherwise, if there are mali-
cious keys in K, the simulator is given its state, the ciphertext tuple, and K.

It may not be immediately obvious why this Dec is the “right” one. The main
advantage in defining Dec as we have is that for honest keys this decryption
oracle ensures our definition implies a variant of ciphertext integrity for AEAD-
KI: no matter the simulator’s behavior, crafting a new valid ciphertext for an
honest key automatically gives a distinguisher between real and ideal games.

We have two versions of KI-nAE, one key anonymous and one not. For a
simulator S, the more general (non-anonymous) KI-nAEAEKI advantage of an
adversary A with respect to S is defined as

Advki-nae
AEKI,S(A) =

∣
∣
∣ Pr

[
KI-nAE1A

AEKI ⇒ 1
]
− Pr

[
KI-nAE0A

AEKI,S,Lid
Enc

⇒ 1
] ∣
∣
∣.

Meanwhile, the key anonymous KI-nAE-KAAEKI advantage of an adversary A
with respect to S is defined as

Advki-nae-anon
AEKI,S (A) =

∣
∣
∣ Pr

[
KI-nAE1A

AEKI ⇒ 1
]
− Pr

[
KI-nAE0A

AEKI,S,Lanon
Enc

⇒ 1
] ∣
∣
∣.

We further note that while we chose to base our definitions on those for
nonce-based AEAD from [11,28], we can also adapt these definitions to other
settings, such as those for randomized symmetric encryption and the nonce-
hiding framework for the AE2 definitions proposed by Bellare et al. [9].

Malicious Keys and Ciphertexts. As discussed before, we opt to capture
the adversary providing both malicious keys and malicious ciphertexts since
this models real-world settings. However, we must explicitly give the simulator
all malicious keys because the adversary knows these keys as well and could
otherwise trivially distinguish. This makes it difficult for KI-nAE to capture key
robustness notions like KI-FROB. We therefore opt for separate key robustness
notions, mirroring the AEAD setting. We believe it is possible to give an all-in-
one definition that also implies KI-FROB; we leave this difficult, but interesting,
modelling question to future work.

4 Key Labels

One simple technique for key identification is assigning to each key a static
label and then prepending the key’s label to every ciphertext it produces. In
practice, labels typically are randomly-generated strings, URLs indicating where
to fetch the key, or even user identifiers. This approach is widely used by both
key management services (KMS), such as the Amazon Web Services (AWS)
KMS [5], Microsoft Azure Key Vault [24], and Oracle Key Vault [25]; as well
as cryptography libraries, such as Google’s Tink [31]. Relatedly, the popular
cryptographic library Libsodium [23] also recommends using a key label as a
way to add robustness to AEAD schemes.
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Fig. 6. A typical key label scheme KL which is parameterized by an AEAD scheme.

While key labels appear efficient and straightforward, they have not been
formally analyzed. For instance, key labels are often used with non-FROB AEAD
schemes, such as AES-GCM and ChaCha20-Poly1305. We will see in our analysis
that key labels do not automatically produce a KI-FROB AEAD-KI scheme.

We generalize the key labels construction as KL[AEAD] and provide the
pseudocode in Fig. 6. The scheme is parameterized by an AEAD scheme, used
for encryption and decryption. To simplify notation, we also refer to the scheme
as KL when the specific AEAD scheme used can be arbitrary or is obvious from
context. Key generation allows the caller to specify the key label kid, which is
then stored as part of the key. We model the label as input to generalize label
creation out-of-band and to enable adversarial inputs. Meanwhile, encryption
simply uses kid as the key tag. Decryption iterates through K to find the first key
with an identifier matching the key tag that successfully decrypts the ciphertext.

Analyzing Robustness. Utilizing a key label at first seems like a trivial and
practical way to add robustness to any AEAD-KI scheme. A ciphertext with
some key identifier can only be decrypted by the corresponding key. However, this
method fails when multiple keys can have the same label and a non-FROB AEAD
scheme is chosen. Notice, for instance, that KL does not enforce uniqueness
of labels. An adversary could choose two AEAD keys so that they have the
same label, compute an AEAD key multi-collision ciphertext [22] for these keys,
and attach the label to the ciphertext as the key tag. Decryption will then
proceed successfully for both keys because their labels match the key tag of the
ciphertext.

In the following theorem, we show that an FROB AEAD is both sufficient
and necessary for KL to be KI-FROB.

Theorem 1. Let A be a KI-FROB adversary for scheme KL[AEAD]. Then we
give FROB adversary B for AEAD such that

Advki-frob
KL[AEAD](A) ≤ Advfrob

AEAD(B).

Furthermore, let C be an FROB adversary for AEAD. Then we give a KI-FROB
adversary D for KL[AEAD] such that

Advfrob
AEAD(C) ≤ Advki-frob

KL[AEAD](D).
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B runs in time that of A and D runs in time that of C.

Proof. We first construct FROB adversary B against AEAD as follows. B runs
A, which returns K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD , Tk ,C ) and
Dec(K1,N ,AD ,Tk ,C ) return (K0,M0) and (K1,M1), respectively, where K0 =
(kid0,K ∗

0 ) and K1 = (kid1,K ∗
1 ). Note that A can only win the FROB game if

(K0,M0), (K1,M1) 
= ⊥ and K ∗
0 
= K ∗

1 , so let this be the case. B can return
K ∗

0 ,K ∗
1 ,N ,AD ,C , where again both keys successfully decrypt N ,AD ,C . Thus,

B wins game FROB for AEAD when A wins game KI-FROB for KL[AEAD].
We now construct KI-FROB adversary D against KL as follows. D runs C,

which returns K0,K1,N ,AD ,C . Then D creates KL key vectors K0 ← [(0n,K0)]
and K1 ← [(0n,K1)] and finally returns K0,K1,N ,AD , 0n,C . Since both K0,K1

have the same identifier, which matches the given key tag, the scheme KL will
try both keys when decrypting and successfully decrypt. Thus, we have that D
wins game KI-FROB for KL[AEAD] when C wins game FROB for AEAD. �

Analyzing KI-nAE. We now show that KL[AEAD] is KI-nAE secure for leak-
age algorithm LidEnc when AEAD is both FROB and MU-nAE secure. Notably,
encryption cannot be key anonymous: the label is static across calls to Enc
and the simulator can only simulate this by knowing which key was queried for
encryption. We provide the theorem statement and proof sketch below. The full
proof is provided in the full version of this work.

Theorem 2. Using LidEnc, let A be a KI-nAE adversary making at most q queries
to its oracles and querying at most m malicious keys. Then we give KI-nAE
simulator S and adversaries B, C such that

Advki-nae
KL[AEAD],S(A) ≤ Advfrob

AEAD(B) + Advmu-nae
AEAD (C) + mq/|K|.

Adversaries B, C run in time that of A with an O(q) overhead and simulator S
runs in time O(mq).

Proof Sketch: The KI-nAE simulator can simulate Enc queries by keeping track
of the label for each key and returning it as the key tag along with a random
string of the correct length for the encrypted plaintext. For Dec queries, the
simulator can iterate through the list of key data given in the key vector K and
check for malicious keys, for which it is directly given the secret key and can
decrypt itself for any that have a key label matching the key tag. If there are no
malicious keys or none that correctly decrypt, then the simulator returns ⊥.

We bound the advantage of A with a sequence of game hops. We first transi-
tion to a game in which Dec keeps iterating through K if A provides a malicious
key in K that was honestly generated by a call to GenHonestKey. We bound
the ability of A to distinguish between these games by mq/|K|, since there are
at most m malicious keys and at most q honest keys and A can only at best
guess one of the honest keys. We next transition to a game in which Dec skips
any malicious key that can decrypt a ciphertext output from a call to Enc. We
bound the ability of A to distinguish between these games by the FROB security
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of AEAD. Finally, we transition to a game in which Enc generates a random
string as the encrypted plaintext and Dec skips honest keys in the key vector
if they were not used to produce the queried ciphertext from a call to Enc.
We bound the ability of the adversary to distinguish between these games by
the MU-nAE security of AEAD. Since this last game guarantees that no mali-
cious key can decrypt an honestly generated ciphertext and that no honest key
can decrypt a malicious ciphertext, iterating through K in order in this game is
identical to iterating through the honest keys first and then the malicious keys,
proving our claim. �

Using Unique Random Identifiers. Thus far, we have relied on an FROB
AEAD scheme, due to the fact that KL allows duplicate key identifiers, which
follows practice (e.g., the Tink library). One might instead suggest somehow
enforcing uniqueness of key labels at the “application layer”, and using a non-
FROB AEAD. We argue below that this approach either fails to meet natural
security goals or greatly increases the complexity of the application layer; thus,
FROB AEADs are superior as the “base” AEAD for an KL-like construction.

To study this question, we first need to express application-level enforcement
of unique key labels in our AEKI formalism. A simple way to do this is to have
Dec check the identifiers for all keys in K and output ⊥ if two different keys have
the same identifier. This approach does not meet condition (3) of our correctness
notion above. Any key vector with repeated labels will cause decryption to fail,
even if it contains the correct key.

More subtly, this approach also fails to provide KI-FROB for the AEKI
scheme. To see why, note that because decryption is stateless, uniqueness can-
not be checked across different invocations. Thus, if the underlying AEAD is not
FROB, an adversary can choose two keys, produce a key multi-collision cipher-
text, assign both keys the same label that matches the ciphertext’s key tag, and
then put the keys in separate key vectors. Decryption will succeed for both key
vectors, even though their keys have non-unique labels.

Preventing this attack and providing KI-FROB for the AEKI scheme requires
stateful decryption: namely, the application must track all key identifier-secret
key pairs seen across all decryption operations. This seems difficult to implement
correctly and efficiently, and is certain to increase the complexity of the appli-
cation. Thus, we believe it is better to use FROB AEAD to cryptographically
guarantee KI-FROB security of AEKI.

Analyzing Trial Decryption. A special case of the key labels scheme is brute-
force trial decryption, which we refer to as TD[AEAD]. This scheme simply
assigns the empty string ε as the key label for all keys, meaning there are no
key identifiers, and decryption must always trial decrypt for all keys in the key
vector. The Tink library, for instance, allows keys to also have “raw” labels,
which indicate they have no identifier.

Notably, the multi-user Shadowsocks protocol we describe in the introduction
falls into this category. The attack described by Len et al. [22] is made possible
by the fact that the Shadowsocks protocol uses a non-FROB AEAD scheme. The
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benefit of our KI-FROB definition is that it demonstrates that such a scheme is
insecure when not using a FROB AEAD scheme.

While trial decryption still requires the use of an FROB AEAD scheme, it is
key anonymous. In the below theorem, we show that trial decryption meets our
stronger key anonymous encryption leakage model. We provide the full proof in
the full version of this work.

Theorem 3. Using LanonEnc , let A be a KI-nAE-KA adversary making at most
q queries to its oracles and querying at most m malicious keys. Then we give
KI-nAE-KA simulator S and adversaries B, C such that

Advki-nae-anon
TD[AEAD],S(A) ≤ Advfrob

AEAD(B) + Advmu-nae
AEAD (C) + mq/|K|.

Adversaries B, C run in time that of A with an O(q) overhead and simulator S
runs in time O(mq).

Proof Sketch: The KI-nAE simulator can simulate Enc queries by returning a
random string of the correct length for the encrypted plaintext. For Dec queries,
the simulator can iterate through the list of key data given in the key vector K

and check for malicious keys, for which it is directly given the secret key and
can decrypt itself. If there are no malicious keys or none that correctly decrypt,
then the simulator returns ⊥.

We bound the advantage of A with a sequence of game hops. We first transi-
tion to a game in which Dec keeps iterating through K if A provides a malicious
key in K that was honestly generated by a call to GenHonestKey. We bound
the ability of A to distinguish between these games by mq/|K|, since there are
at most m malicious keys and at most q honest keys and A can only at best
guess one of the honest keys. We next transition to a game in which Dec skips
any malicious key that can decrypt a ciphertext output from a call to Enc. We
bound the ability of A to distinguish between these games by the FROB security
of AEAD. Finally, we transition to a game in which Enc generates a random
string as the encrypted plaintext and Dec skips honest keys in the key vector
if they were not used to produce the queried ciphertext from a call to Enc.
We bound the ability of the adversary to distinguish between these games by
the MU-nAE security of AEAD. Since this last game guarantees that no mali-
cious key can decrypt an honestly generated ciphertext and that no honest key
can decrypt a malicious ciphertext, iterating through K in order in this game is
identical to iterating through the honest keys first and then the malicious keys,
proving our claim. �

While key labels are a simple and commonly used approach in practice for
identifying keys, here we have shown that a formal analysis surfaces subtleties.
In particular, key labels do not provide key anonymity, unless all keys have the
same label as in the less efficient trial decryption-based scheme. Moreover, a
key label approach must rely on the underlying AEAD scheme being FROB. In
the next section, we explore a different tactic called static key identifiers, which
computes the identifier from the key itself.
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Fig. 7. A key check value scheme KCV parameterized by encryption scheme AEAD =
(Kg,Enc,Dec) with associated key space K = {0, 1}k, key check value function Fkcv :
{0, 1}κ → {0, 1}n, and encryption key derivation function KDF : {0, 1}κ → {0, 1}k.

5 Static Key Identifiers

In this section we describe a class of AEAD-KI that uses what we call static
key identifiers. This technique computes a static identifier from the key that
along with the key label is used as the key tag. In practice, this static identifier
is often referred to as a key check value, also known as a key checksum value.
We formalize this approach as the AEAD-KI scheme KCV[AEAD,Fkcv,KDF],
shown in Fig. 7. The scheme has key space {0, 1}κ and is parameterized by
AEAD scheme AEAD = (Kg,Enc,Dec) with associated key space K = {0, 1}k,
key check value function Fkcv : {0, 1}κ → {0, 1}n, and encryption key derivation
function KDF : {0, 1}κ → {0, 1}k. For simplicity, we will sometimes refer to the
scheme as KCV when the parameters are obvious.

Key generation generates a secret key and attaches the input label kid as
part of the AEAD-KI key. For static identifier schemes, the key tag is composed
of both the key label and the key check value. This models what happens in
practice, as schemes may use the key label as a way to locate a key or set of
keys and then use the key check value as a commitment or integrity check of
the key. For instance, AWS uses the Amazon Resource Name (ARN) as a URL
for looking up keys, while an extra commitment string verifies this is the correct
key [4].

Encryption derives the key check value using the function Fkcv and separately
derives the AEAD secret key using the function KDF. Encryption adds the key
tag to the authentication scope of AEAD by appending it to the authenticated
data. Decryption iterates through the key vector to compute each key’s identifier
using Fkcv and find the first key with one matching Tk . If AEAD decryption with
this key succeeds, then the corresponding decrypted plaintext is returned.

Key check values have been widely used in practice [2,4,17,26,30] to derive
a value from the key, typically using a hash function or block cipher, that can
then be used to confirm the integrity of or identify the key during decryption.
These static key identifiers can be used in two ways: as static key hints or as
static key commitments. Static key hints use a non-CR function to derive an
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Fig. 8. Key check value functions used in practice. We list whether each function is a
key hint (KH) or key commitment (KC).

identifier from the key, meaning that key hints are not unique to a single key.
Because they are not used to commit to a key, they can be short and efficiently
computed, while still enabling AEAD-KI schemes to narrow down the scope of
keys to check during decryption. For instance, one common technique is taking
24 bits from the AES evaluation of the key over some fixed string. However, key
hints must be used with an FROB AEAD scheme in practice to guarantee robust
key identification.

Conversely, static key commitments do commit to the key and therefore do
not need to be used with an FROB AEAD scheme. In practice, this means key
commitments must employ a CR key check value function, which can be more
computationally intensive and require longer key tags. For instance, Albertini
et al. [2] suggest a variant of this method as their “generic solution” for adding
key commitment to AEAD schemes. Their Type I and II schemes in particular
feature a static identifier by computing two SHA256 hashes over the key and
using these values for the key identifier and AEAD encryption key. This scheme
has been adopted as the default method of key identification by AWS [4]. We
summarize some sample schemes used for both key hints and key commitments
in Fig. 8. Later in this section we will show detailed security results for both
types of static key identifiers.

Using a Key Derivation Function. Whenever a fixed value is computed from
the key as a key tag and then composed with an AEAD scheme that uses the
same key, there is the potential that the AEAD scheme uses the same value
for its internal computation. Since the key tag is sent in the clear, this could
lead to confidentiality or integrity vulnerabilities. Indeed, Iwata and Wang [20]
have shown that this does happen in practice. They describe forgery attacks for
several variants of CBC-MAC proposed by ISO/IEC 9797-1:2011 [19] when used
with the key check value suggested by ANSI X9.24-1:2009 [3].

To simplify the analysis of composing Fkcv with an AEAD scheme, we also
use key derivation function KDF to derive an independent AEAD encryption key.
In this section, we will show that KDF will need to be a CR PRF. For similar
reasons, Albertini et al. also use a CR PRF to derive a separate AEAD key. This
of course results in extra overhead and could be unnecessary if the key identifier
is never used in the internal computation of AEAD. One could analyze specific
key check value functions and AEAD schemes that can be safely used together
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without the need for a separate key derivation function; we leave this as an open
problem.

5.1 Static Key Hint

Static key hints are a sub-class of static key identifiers which compute the key
check value using a non-collision-resistant PRF. This means they can be short
and efficiently computed, e.g. using a universal hash or by truncating the output
of a hash function or block cipher. While key hints cannot be used to commit to
a key, they can be used to narrow down the search space of the given key vector
during decryption. However, in order to ensure that key robustness is achieved,
these key hints must rely on using an FROB AEAD scheme, as we show below.

Analyzing Robustness. Here we show that static key hints rely on using
an FROB AEAD scheme as well as collision-resistant function KDF to achieve
KI-FROB.

Theorem 4. Let A be an KI-FROB adversary for scheme KCV[AEAD,
Fkcv,KDF]. Then we give adversaries B, C such that

Advki-frob
KCV[AEAD,Fkcv,KDF](A) ≤ AdvcrKDF(B) + Advfrob

AEAD(C).

Adversaries B, C run in time that of A.

Proof. We prove the theorem using a sequence of game hops. Let game G0 be
the game FROB with the call to the decryption algorithm Dec replaced by the
pseudocode for KCV[AEAD,Fkcv,KDF].Dec(). Next we transition to game G1,
which is identical to G0 except that when KDF is called to derive the encryption
key from the keys in K1, it checks if there was some other different key K ∗ prior
to this call that output to the same encryption key derived from the keys in K0.
If this happens, then G1 will return 0.

We can upper bound the difference in advantage of A in G0 and G1 by the
probability that KDF finds a collision. We then provide the CR adversary B such
that its advantage in the CR game for KDF upper bounds this probability. B
runs A, which returns K0,K1,N ,AD ,Tk ,C . B then checks if there is some key
K0 ∈ K0 such that (kid0,K ∗

0 ) ← K0 and Ke ← KDF(K ∗
0 ) and some key K1 ∈ K1

such that (kid1,K ∗
1 ) ← K1 and Ke ← KDF(K ∗

1 ), and returns K ∗
0 ,K ∗

1 . Notice
that whenever KDF finds the collision in G1, then B wins the CR game for KDF.

Finally, we upper bound the advantage of A in game G1 by the advantage
of the following FROB adversary C against AEAD. C runs A, which returns
K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD ,Tk ,C ) and Dec(K1,N ,AD ,Tk ,C )
return (K0,M0) and (K1,M1), respectively. Also let (kid0,K ∗

0 ) ← K0 and
(kid1,K ∗

1 ) ← K1. Note that A can only win game G1 if (K0,M0) 
= ⊥
and (K1,M1) 
= ⊥ and K ∗

0 
= K ∗
1 , so let this be the case. C can return

K ∗
0 ,K ∗

1 ,N ,AD ,C , where both keys successfully decrypt N ,AD ,C . Thus, C wins
FROB for AEAD when A wins G1 for KCV. �



Authenticated Encryption with Key Identification 201

Analyzing KI-nAE. We now show that KCV[AEAD,Fkcv,KDF] is KI-nAE
secure for leakage algorithm LidEnc when AEAD is both FROB and MU-nAE
secure, Fkcv and KDF are multi-user PRFs, and KDF is pre-image resistant.
Notably, this means that encryption is not key anonymous. We provide the the-
orem statement and proof sketch below. We show the full proof in the full version
of this work.

Theorem 5. Using LidEnc, let A be a KI-nAE adversary making at most q queries
to its oracles, of which qk are to GenHonestKey, and querying at most m
malicious keys. Then we give KI-nAE simulator S and adversaries B, C,D, E
such that

Advki-nae
KCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qk · Advpre
KDF(C) + Advfrob

AEAD(D)

+ Advmu-nae
AEAD (E) +

q2k
2κ+1

.

B, C,D, E run in time that of A with O(q) overhead and S runs in time O(mq).

Proof Sketch: The KI-nAE simulator can simulate Enc queries by keeping track
of the label for each key and generating a random n-bit string as the key check
value kcv. It can then return the label appended with the key check value as
the key tag along with a random string of the correct length for the encrypted
plaintext. For Dec queries, the simulator can iterate through the list of key data
given in the key vector K and check for malicious keys, for which it is directly
given the secret key and can decrypt itself for any that have a matching key tag.
If there are no malicious keys or none that correctly decrypt, then the simulator
returns ⊥.

We bound the advantage of A with a sequence of game hops. We first tran-
sition to a game in which calls to Fkcv and KDF for honest keys are replaced
with calls to random functions. We bound the ability of A to distinguish these
games by the MU-PRF security of Fkcv and KDF. We next transition to a game
in which malicious keys in K queried to Dec are skipped if for KDF they are the
pre-image of some honestly generated AEAD encryption key Ke computed in
GenHonestKey. We bound the ability of A to distinguish these games by the
pre-image resistance security of KDF, multiplied by a factor of qk. Then we tran-
sition to a game in which malicious keys in K queried to Dec are skipped if they
can decrypt some honestly generated ciphertext output by GenHonestKey.
We bound the ability of A to distinguish between these games by the FROB
security of AEAD. We then transition to a game in which we eliminate collisions
when key K is chosen at random from the key space K, for which we use the
birthday bound q2k/2κ+1 to bound. Finally, we transition to a game in which Enc
generates a random string as the encrypted plaintext and Dec skips honest keys
in the key vector if they were not used to produce the queried ciphertext from
a call to Enc. We bound the distinguishing advantage by the MU-nAE security
of AEAD. Since this last game guarantees that no malicious key can decrypt an
honestly generated ciphertext and that no honest key can decrypt a malicious
ciphertext, iterating through K in order in this game is identical to iterating
through the honest keys first and then the malicious keys, proving our claim. �
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5.2 Static Key Commitment

Static key commitments are the second subclass of static key identifiers. They
compute the key check value using using a collision-resistant PRF. While this
means they must be longer and less efficient than key hints, they can commit to
the key, and thus can be used with non-FROB AEADs, as we now prove.

Theorem 6. Let A be a KI-FROB adversary for KCV[AEAD,Fkcv,KDF]. Then
we give CR adversary B, running in time that of A, for Fkcv such that

Advki-frob
KCV[AEAD,Fkcv,KDF](A) ≤ AdvcrFkcv

(B).

Proof. We construct adversary B as follows. It runs A, which returns K0,K1,N ,
AD ,Tk ,C . Let the values returned by decryption of the ciphertext for each key
vector be (K0,M0), (K1,M1). Also let (kid0,K ∗

0 ) ← K0 and (kid1,K ∗
1 ) ← K1. We

know that (K0,M0), (K1,M1) 
= ⊥ and K ∗
0 
= K ∗

1 for A to win. This also means
that Fkcv(K ∗

0 ) = Fkcv(K ∗
1 ). B can then return K0,K1 as a collision for Fkcv. �

Analyzing KI-nAE. While Albertini et al. do not explicitly prove security for
this scheme, they claim that it meets their real-or-random AE security definition.
However, any encryption scheme that attaches a fixed string to a ciphertext
trivially cannot meet this definition. The benefit of our KI-nAE definition is
that it captures security for non-key anonymous schemes. Indeed, our result
shows that if Fkcv is a pre-image resistant multi-user PRF, KDF is a multi-user
PRF, and AEAD is MU-nAE-secure, then KCV is KI-nAE-secure, for leakage
LidEnc. We provide the theorem statement and proof sketch here; the full proof is
in the full version of this work.

Theorem 7. Using LidEnc, let A be a KI-nAE adversary making at most q queries
to its oracles, of which qk are to GenHonestKey, and querying at most m
malicious keys. Then we give adversaries B, C,D such that

Advki-nae
KCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qk · Advpre
Fkcv

(C)

+ Advmu-nae
AEAD (D) +

q2k
2κ+1

.

B, C,D run in time that of A with a O(q) overhead and S runs in time O(mq).

Proof Sketch: The proof uses the same KI-nAE simulator as that for Theorem 5.
We again bound the advantage of A with a sequence of game hops. We first tran-
sition to a game in which calls to Fkcv and KDF for honest keys are replaced with
calls to random functions. We bound the ability of A to distinguish these games
by the MU-PRF security of Fkcv and KDF. We next transition to a game in which
malicious keys in K queried to Dec are skipped if for Fkcv they are the pre-image
of some honestly generated key check value kcv computed in GenHonestKey.
We bound the ability of A to distinguish these games by the pre-image resis-
tance security of Fkcv, multiplied by a factor of qk. We then transition to a game



Authenticated Encryption with Key Identification 203

Fig. 9. A nonce-based key check value scheme nKCV parameterized by AEAD =
(Kg,Enc,Dec) with key space K = {0, 1}k; key check value function Fkcv : {0, 1}κ ×
{0, 1}r → {0, 1}n, and encryption key derivation function KDF : {0, 1}κ → {0, 1}k.

in which we eliminate collisions when key K is chosen at random from the key
space K, for which we use the birthday bound q2k/2κ+1 to bound. Finally, we
transition to a game in which Enc generates a random string as the encrypted
plaintext and Dec skips honest keys in the key vector if they were not used to
produce the queried ciphertext from a call to Enc. We bound the distinguishing
advantage by the MU-nAE security of AEAD. Since this last game guarantees
that no malicious key can decrypt an honestly generated ciphertext and that
no honest key can decrypt a malicious ciphertext, iterating through K in order
in this game is identical to iterating through the honest keys first and then the
malicious keys, proving our claim. �

While static key identifiers are versatile in that they can be used either as
key hints or key commitments, they unfortunately do not provide key anonymity.
Next, we will see how dynamic identifiers enable anonymous key identification.

6 Dynamic Key Identifiers

In this section we describe the key anonymous counterpart to static key iden-
tifiers, which we call dynamic key identifiers. A dynamic identifier is computed
from the secret key during encryption using part of the input nonce. Unlike
the static identifier approach, this scheme cannot use key labels as part of the
key tag because key labels are fixed for a key and would therefore break key
anonymity. We formalize dynamic key identifiers as an AEAD-KI scheme with
nKCV[AEAD,Fkcv,KDF], shown in Fig. 9. The scheme has key space {0, 1}κ and
is parameterized by encryption scheme AEAD = (Kg,Enc,Dec) with associated
key space K = {0, 1}k, key check value function Fkcv : {0, 1}κ ×{0, 1}r → {0, 1}n,
and encryption key derivation function KDF : {0, 1}κ → {0, 1}k. For simplicity,
we may refer to the scheme as nKCV when the parameters are obvious.
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Encryption now takes in a nonce for which one part is used to derive the
key check value and the other is used in the AEAD computation. These nonces
do not need to be distinct. Encryption derives the key check value and AEAD
key from the secret key using the functions Fkcv and KDF, respectively. The key
check value kcv is computed on part of the nonce so that it changes for each
encryption call. Meanwhile, the AEAD key is computed on just the secret key,
meaning the AEAD key is fixed for each nKCV secret key. Unlike for KCV, here
the key check value by itself forms the key tag. Encryption adds the key tag to
the authentication scope of AEAD by appending it to the authenticated data.
Decryption iterates through the key vector to compute each key’s identifier using
Fkcv and find the first key with one matching Tk .

6.1 Dynamic Key Hint

Dynamic key hints are a subclass of dynamic key identifiers which compute the
key check value using using a non-collision-resistant PRF. Similar to static key
hints, they can be short and more efficiently computed than key commitments.
They are useful for narrowing down the search space of the given key vector
during decryption. However, in order to ensure that key robustness is achieved,
these key hints must rely on using an FROB AEAD scheme, as we show below.

Analyzing Robustness. Here we show that dynamic key hints rely on using a
CR function KDF and an FROB AEAD scheme to achieve KI-FROB.

Theorem 8. Let A be a KI-FROB adversary for scheme nKCV[AEAD,
Fkcv,KDF]. Then we give adversaries B, C running in time that of A such that

Advki-frob
nKCV[AEAD,Fkcv,KDF](A) ≤ AdvcrKDF(B) + Advfrob

AEAD(C).

Proof. We prove the theorem using a sequence of game hops. Let game G0 be the
game KI-FROB with the call to the decryption algorithm Dec replaced by the
pseudocode for nKCV[AEAD,Fkcv,KDF].Dec(). Next we transition to game G1,
which is identical to G0 except that when KDF is called to derive the encryption
key from the keys in K1, it checks if there was some other different key K ∗ prior
to this call that output to the same encryption key derived from the keys in K0.
If this happens, then G1 will return 0.

We can upper bound the difference in advantage of A in G0 and G1 by the
probability that KDF finds a collision. We then provide the CR adversary B such
that its advantage in the CR game for KDF upper bounds this probability. B
runs A, which returns K0,K1,N ,AD ,Tk ,C . B then checks if there is some key
K0 ∈ K0 such that (kid0,K ∗

0 ) ← K0 and Ke ← KDF(K ∗
0 ) and some key K1 ∈ K1

such that (kid1,K ∗
1 ) ← K1 and Ke ← KDF(K ∗

1 ), and returns K ∗
0 ,K ∗

1 . Notice
that whenever KDF finds the collision in G1, then B wins the CR game for KDF.

Finally, we upper bound the advantage of A in game G1 by the advantage
of the following FROB adversary C against AEAD. C runs A, which returns
K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD ,Tk ,C ) and Dec(K1,N ,AD ,Tk ,C )
return (K0,M0) and (K1,M1), respectively. Also let (ε,K ∗

0 ) ← K0, (ε,K ∗
1 ) ← K1,
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and N0‖N1 ← N . Note that A can only win game G1 if (K0,M0) 
= ⊥
and (K1,M1) 
= ⊥ and K ∗

0 
= K ∗
1 , so let this be the case. C can return

K ∗
0 ,K ∗

1 ,N1,AD ,C , where again both keys decrypt N1,AD ,C . Thus, C wins
FROB for AEAD when A wins G1 for nKCV. �

Analyzing KI-nAE. We now show that nKCV[AEAD,Fkcv,KDF] is KI-nAE-
KA secure for leakage algorithm LanonEnc when AEAD is both FROB and MU-nAE
secure, KDF is a pre-image resistant multi-user PRF, and Fkcv is a multi-user
PRF. Notably, this means that encryption is key anonymous. We assume that
the adversary A is a nonce-respecting adversary that never queries the same N0

or N1 to Enc. We provide the theorem statement and proof sketch below. The
proof is provided in the full version of this work.

Theorem 9. Using LanonEnc , let A be a KI-nAE adversary making at most q queries
to its oracles, of which qk are to GenHonestKey, and querying at most m
malicious keys. Then we give adversaries B, C,D, E such that

Advki-nae-anon
nKCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qk · Advpre
KDF(C) + Advfrob

AEAD(D)

+ Advmu-nae
AEAD (E) +

q2k
2κ+1

.

B, C,D, E run in time that of A with a O(q) overhead and S runs in time O(mq).

Proof Sketch: The KI-nAE simulator can simulate Enc queries by generating a
random n-bit string as the key check value kcv. It can then return the key check
value as the key tag along with a random string of the correct length for the
encrypted plaintext. For Dec queries, the simulator can iterate through the list
of key data given in the key vector K and check for malicious keys, for which it is
directly given the secret key and can decrypt itself for any that have a matching
key tag. If there are no malicious keys or none that correctly decrypt, then the
simulator returns ⊥.

We bound the advantage of A with a sequence of game hops. We first tran-
sition to a game in which calls to Fkcv and KDF for honest keys are replaced
with calls to random functions. We bound the ability of A to distinguish these
games by the MU-PRF security of Fkcv and KDF. We next transition to a game
in which malicious keys in K queried to Dec are skipped if for KDF they are the
pre-image of some honestly generated AEAD encryption key Ke computed in
GenHonestKey. We bound the ability of A to distinguish these games by the
pre-image resistance security of KDF, multiplied by a factor of qk. Then we tran-
sition to a game in which malicious keys in K queried to Dec are skipped if they
can decrypt some honestly generated ciphertext output by GenHonestKey.
We bound the ability of A to distinguish between these games by the FROB
security of AEAD. We then transition to a game in which we eliminate collisions
when key K is chosen at random from the key space K, for which we use the
birthday bound q2k/2κ+1 to bound. Finally, we transition to a game in which Enc
generates a random string as the encrypted plaintext and Dec skips honest keys
in the key vector if they were not used to produce the queried ciphertext from
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a call to Enc. We bound the distinguishing advantage by the MU-nAE security
of AEAD. Since this last game guarantees that no malicious key can decrypt an
honestly generated ciphertext and that no honest key can decrypt a malicious
ciphertext, iterating through K in order in this game is identical to iterating
through the honest keys first and then the malicious keys, proving our claim. �

6.2 Dynamic Key Commitment

Dynamic key commitments are the second subclass of dynamic key identifiers;
they instead compute the key check value using using a collision-resistant PRF.
While this means they must be longer and less efficient than their key hint coun-
terpart, they can be used to commit to the key. This also means that they can
be used with non-FROB AEAD schemes. Dynamic key commitments parallel
the Type III generic construction from Albertini et al. [2]. They are also similar
to the UtC transform proposed by Bellare and Hoang [8], although this scheme
is only considered in the traditional single-key setting. The UtC transform uses
a committing PRF that takes as input a key and nonce and outputs pair (P,L)
such that P is a string that commits to the key. L is then used as the encryp-
tion key. We note that a committing PRF can be used in place of KDF and
Fkcv, although our formalism allows for analyzing the security requirements for
deriving the key tag separately from deriving the key.

Furthermore, the NonceWrap scheme proposed by Chan and Rogaway [12]
can be considered a type of dynamic key commitment scheme. Their scheme
encrypts the ciphertext as C = AES(K1,N ‖032)‖AES-GCM(K2,N ,AD ,M ),
where the first string is a 128-bit “header”. During decryption, the correct key is
found from a set of possible keys by re-computing the header and verifying the 32-
bit all-zeros string remains intact. Interestingly, this scheme may be considered
a key commitment scheme when the nonce must be specified along with the
ciphertext, as in our formalization of KI-FROB. However, if, as the setting in
this work intends, the nonce does not need to be specified, then this scheme does
not meet KI-FROB and a key-committing AEAD should be used instead.

Analyzing Robustness. Here we show that dynamic key commitments rely
only on the collision-resistance of the function Fkcv to achieve KI-FROB. In
particular, this means that AEAD does not in fact have to be FROB.

Theorem 10. Let A be a KI-FROB adversary for KCV[AEAD,Fkcv,KDF].
Then we give CR adversary B, running in time that of A, for Fkcv such that

Advki-frob
nKCV[AEAD,Fkcv,KDF](A) ≤ AdvcrFkcv

(B).

B runs in time that of A.

Proof. We construct CR adversary B against Fkcv as follows. B runs A, which
returns K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD ,Tk ,C ) and
Dec(K1,N ,AD ,Tk ,C ) return (K0,M0) and (K1,M1), respectively. Also let
(ε,K ∗

0 ) ← K0, (ε,K ∗
1 ) ← K1, and N0‖N1 ← N . We know that (K0,M0) 
= ⊥ and

(K1,M1) 
= ⊥ and K ∗
0 
= K ∗

1 for A to win. B can then return (K ∗
0 ,N0), (K ∗

1 ,N0)
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as a collision for Fkcv since Fkcv(K ∗
0 ,N0) = Fkcv(K ∗

1 ,N0) = Tk . We therefore have
that B wins game CR for Fkcv when A wins game KI-FROB for nKCV.

Analyzing KI-nAE. We now show that nKCV[AEAD,Fkcv,KDF] is KI-nAE-
KA secure for leakage algorithm LanonEnc when AEAD MU-nAE secure, KDF is a
multi-user PRF, and Fkcv is a CR multi-user PRF. Again, this means that encryp-
tion is key anonymous. We assume that the adversary A is a nonce-respecting
adversary that never queries the same N0 or N1 across queries to Enc. We pro-
vide the theorem statement below; the full proof is provided in the full version
of this work.
Theorem 11. Using LanonEnc , let A be a KI-nAE adversary making at most q
queries to its oracles, of which qk are to GenHonestKey and qe are to Enc,
and querying at most m malicious keys. Then we give adversaries B, C,D such
that

Advki-nae-anon
nKCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qe · Advpre
Fkcv

(C)

+ Advmu-nae
AEAD (D) +

q2k
2κ+1

.

B, C,D run in time that of A with a O(q) overhead and S runs in time O(mq).

Proof Sketch: The proof uses the same KI-nAE simulator as that for Theorem 9.
We again bound the advantage of A with a sequence of game hops. We first
transition to a game in which calls to Fkcv and KDF for honest keys are replaced
with calls to random functions. We bound the ability of A to distinguish these
games by the MU-PRF security of Fkcv and KDF. We next transition to a game
in which malicious keys in K queried to Dec are skipped if for Fkcv they are the
pre-image of some honestly generated key check value kcv computed in Enc. We
bound the ability of A to distinguish these games by the pre-image resistance
security of Fkcv, multiplied by a factor of qe. We then transition to a game in
which we eliminate collisions when key K is chosen at random from the key
space K, for which we use the birthday bound q2k/2κ+1 to bound. Finally, we
transition to a game in which Enc generates a random string as the encrypted
plaintext and Dec skips honest keys in the key vector if they were not used to
produce the queried ciphertext from a call to Enc. We bound the distinguishing
advantage by the MU-nAE security of AEAD. Since this last game guarantees
that no malicious key can decrypt an honestly generated ciphertext and that
no honest key can decrypt a malicious ciphertext, iterating through K in order
in this game is identical to iterating through the honest keys first and then the
malicious keys, proving our claim. �
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Abstract. Privacy-Preserving Authenticated Key Exchange (PPAKE)
provides protection both for the session keys and the identity information
of the involved parties. In this paper, we introduce the concept of robust-
ness into PPAKE. Robustness enables each user to confirm whether itself
is the target recipient of the first round message in the protocol. With the
help of robustness, a PPAKE protocol can successfully avoid the heavy
redundant communications and computations caused by the ambiguity of
communicants in the existing PPAKE, especially in broadcast channels.

We propose a generic construction of robust PPAKE from key encapsu-
lation mechanism (KEM), digital signature (SIG), message authentication
code (MAC), pseudo-random generator (PRG) and symmetric encryption
(SE). By instantiatingKEM,MAC,PRG from theDDHassumption andSIG
from the CDH assumption, we obtain a specific robust PPAKE scheme
in the standard model, which enjoys forward security for session keys,
explicit authentication and forward privacy for user identities. Thanks to
the robustness of our PPAKE, the number of broadcast messages per run
and the computational complexity per user are constant, and in particular,
independent of the number of users in the system.

Keywords: Authenticated key exchange · Privacy · Robustness

1 Introduction

Authenticated Key Exchange (AKE) enables two parties to authenticate each
other and compute a shared session key. It has been widely deployed over Inter-
net, like IPsec IKE (Internet Key Exchange), TLS, Tor, Google’s QUIC proto-
col, etc. Generally, AKE focuses on the protection of session keys between two
parties against adversaries implementing both passive and active attacks. As
a well-studied topic, a variety of AKE schemes have been proposed, but little
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attention was paid to privacy of user identities in AKE. The research on Privacy-
Preserving AKE (PPAKE) was ignited by the chasing of privacy protection. For
instance, SKEME [14], TLS 1.3 [3], Tor [8] and private airdrop [12] all take
user privacy as one of important design principles. Recently two proposals for
PPAKE arise [19,20], aiming to provide protection for user identity besides their
session keys. Next we overview the recent two works, namely SSL-PPAKE [20]
and RSW-PPAKE [19].

SSL-PPAKE. In [20], Schäge, Schwenk, and Lauer (SSL) isolated a generic
PPAKE construction from TLS 1.3, QUIC, IPsec IKE, SSH and certain patterns
of NOISE to achieve user identity protection. We name it SSL-PPAKE.

SSL-PPAKE [20] has 4 rounds. In the first two rounds, Pi and Pj run a basic
Diffie-Hellman (DH) handshake to obtain a shared DH key K = gxy. In the
last two rounds, Pi and Pj use the shared DH key K = gxy to protect protocol
messages that contain identity-related data such as identities, public keys or
digital signatures. As pointed out in [20], due to the lack of authenticity in the
first two rounds, the SSL-PPAKE suffers a weakness on preserving the privacy
of initiator’s identity. More precisely, let us consider a broadcast channel with μ
users as an example. First we identify three facts about SSL-PPAKE.

Fact 1. In the 1st round, to protect the identity of its intended target recipient
Pj , initiator Pi has to broadcast gx in the system. As a result, every user is
able to receive gx.

Fact 2. In the 2nd round, every user Pjk has to respond to Pi by broadcasting
gyjk , here jk ∈ [μ]\{i}, since Pjk is uncertain about the intended recipient.

Fact 3. In the 3rd round, Pi receives all the messages {gyjk }jk∈[μ]\{i}, but it is
not able to identify the right message sent from the intended party Pj and
has to computes all DH keys {Ki,jk = gxyjk }jk∈[μ]\{i}. Consequently, Pi has
to encrypt the message in the third round with each Ki,jk individually to
obtain μ − 1 ciphertext Cjk = SE.Enc(Ki,jk , i|pki|authi) and broadcast the
μ − 1 ciphertexts to all users. Here SE.Enc denotes a symmetric encryption
algorithm, and authi denotes the authentication part of the protocol.

Now let us see how an adversary reveals the identity of the initiator. After
receiving gx from Pi, the adversary can simply select ỹ and send gỹ to Pi.
According to the facts, Pi will broadcast C̃ = SE.Enc(K̃ = gxỹ, i|pki|authi) in
the 3rd round. Then the adversary can compute K̃ = (gx)ỹ and easily decrypt
C̃ with K̃ to obtain the identity information i|pki.

RSW-PPAKE. To deal with the active attacks on the SSL-PPAKE scheme,
Ramacher, Slamanig and Weninger (RSW) [19] proposed three solutions in the
Random Oracle model.1 The first one has 3 rounds and assumes pre-shared
key between every pair of users. It resorts to the pre-shared key to accomplish
authentication. The third one converts an AKE to a PPAKE by encrypting every

1 No security proofs are provided for the three schemes in [19] and its full-version is
still not available.



212 Y. Lyu et al.

message of AKE with communication peer’s public key. However, it does not
achieve forward privacy for user identities. If any user’s secret key is corrupted,
the adversary can break forward privacy by decrypting the ciphertexts in the
previous runs to reveal the used identities. The second solution has 4 rounds
and does not possess forward privacy when the responder is corrupted. Here we
recall the second scheme and show the weakness on its forward privacy.

– In the first two rounds, similar to SSL-PPAKE, a Diffie-Hellman handshake
is implemented to share key K = gxy between Pi and Pj . Meanwhile, Pi has
to handshake with every Pjk and share Ki,jk = gxyjk with Pjk , jk ∈ [μ]\{i}.

– In the 3rd round, Pi uses Pj ’s public key pkj to encrypt a random string r and
obtains C = PKE.Enc(pkj , r), where PKE.Enc denotes a public-key encryp-
tion algorithm. Then it uses K to encrypt C to obtain a c0 = SE.Enc(K,C).
Pi signs i|j|c0|gx|gy to get the signature σi and encrypts its certificate
certi and σi with a derived key K ′ = H(K, r, gx, gy), resulting in c1 =
SE.Enc(K ′, certi|σi). In the real scenario, Pi cannot identify the right K from
{Ki,jk}jk∈[μ]\{i}, thus has to use each Ki,jk to obtain (c0,jk , c1,jk). Finally, Pi

broadcasts {(c0,jk , c1,jk)}jk∈[μ]\{i} to all users.
– In the 4th round, each user jk decrypts every pair in {(c0,jk , c1,jk)}jk∈[μ]\{i}

with its Diffie-Hellman key Ki,jk = gxyjk , trying to recover certi|σi. Only the
right responder Pj can certify the validity of certi|σi and recover r. After
that, Pj knows its partner is Pi. Then Pj broadcasts the hash value h :=
H(r, i|j|gx|gy|c0|c1) to Pi.

– Finally, Pi checks if h = H(r, i|j|gx|gy|c0|c1) holds (to authenticate Pj).

The attack is similar to that on SSL-PPAKE but here on forward pri-
vacy of RSW-PPAKE. After receiving gx from Pi, the adversary A can sim-
ply select ỹ and send gỹ to Pi. Then A also shares a key K̃ = gxỹ with Pi.
In the second phase, there must exist (c̃0, c̃1) ∈ {(c0,jk , c1,jk)}jk∈[μ]\{i} such
that (c̃0, c̃1) is computed with K̃. So A can always recover C = SE.Dec(K̃, c̃0).
Later A corrupts Pj and obtains skj . Then A decrypts C with skj to recover
r = PKE.Dec(skj , C). Finally A can identify Pi, Pj by finding i, j, c0,j , c1,j such
that h = H(r, i|j|gx|gy|c0,j |c1,j).

Our Approach to PPAKE. From the above analysis, we know that the SSL-
PPAKE provides no protection for the initiator’s identity, and the RSW-PPAKE
loses forward privacy for identities of both the initiator and the responder when
the responder is corrupted.

The reason for the attacks lies in the facts that each user replies the initiator
and the initiator cannot identify the message sent from the intended peer in the
2nd round. Thus the initiator has to reply messages to each individual user in
the third round. This leaks too much information, of which the adversary can
take advantage to break privacy of PPAKE, as shown before.

At the same time, these facts also lead to another drawback: the communi-
cation band of the protocol is as large as O(μ) and each user’s computational
complexity is as high as O(μ), since each user has to compute or deal with μ− 1
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messages in the 3rd round. Here μ is the number of users in the system. See
Fig. 1.

In this paper, we study how to avoid the above attacking problems and
improve efficiency of PPAKE. Our idea in a nutshell is to make PPAKE robust.

Fig. 1. The upper part is the information flows of rounds (1) (2) (3) (4) in SSL-PPAKE
and RSW-PPAKE [19,20]. The lower part is the information flows of rounds (1) (2)
(3) in our robust PPAKE. Here the parties communicate over a broadcast channel.

Robustness of PPAKE. We introduce the concept of robustness. It requires that
only one party Pj is able to ascertain that the message in the 1st round is for
him/her, hence correctly reply a message in the 2nd round.

Our robust PPAKE makes use of a key encapsulation mechanism KEM, a sig-
nature scheme SIG, a message authentication code MAC, a pseudo-random gen-
erator PRG and a symmetric encryption SE. The public/secret key pair (pk, sk)
of KEM and the verification/signing key (vk, ssk) of SIG serve as the long-term
key of a user. Our PPAKE has 3 rounds and is shown below. See Fig. 1.

Round 1 (Pi ⇒ Pj): Pi broadcasts gx and a ciphertext C to Pj , where (C,N) ←
KEM.Encap(pkj) with N the key encapsulated in C.

Round 2 (Pi ⇐ Pj): Pj decrypts C with its secret key skj to recover N , then
it uses N as the MAC key to compute a MAC tag σ1 = MAC(N, gx|C). Pj

broadcasts (gy, σ1). We require that when decrypting C, only Pj succeeds and
all other parties will get a special failure symbol ⊥, which is guaranteed by the
robustness of KEM (see more details later). Consequently, only Pj responds
in this round, and all other parties (except Pi and Pj) will terminate the
protocol in time.

Round 3 (Pi ⇒ Pj): Pi checks the validity of σ1 and computes the Diffie-
Hellman key K = gxy. Furthermore, it derives a session key k and a symmetric
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key k′ from K via (k, k′) ← PRG(K). It signs the message gx|C|σ1|gy to get
the signature σ2. Then it uses k′ to encrypt its identity i and σ2 to obtain
c ← SE.Enc(k′, i|σ2). Pi broadcasts c.
Similarly, Pj can obtain (k, k′) from K and decrypt c to get i|σ2. By checking
the validity of σ2 with Pi’s verification key vki, Pj ascertains its partner’s
identity i and accepts k as the session key.

We refer to Fig. 5 in Sect. 4 for the details of our PPAKE construction. Below is
a high-level analysis of our PPAKE.

– Robustness. For the robustness of PPAKE, we require that the underlying
KEM is robust in such a sense: if C is generated with pkj , then decrypting C
with any other secret key skjk will result in a decryption failure.

– Explicit mutual authentication. The authenticity of Pj is guaranteed by KEM
and MAC, and the authenticity of Pi is guaranteed by SIG. Hence our PPAKE
has explicit mutual authentication.

– Forward security for session keys. After excluding active attacks by authen-
ticity, K = gxy is pseudo-random by the DDH assumption. Hence, the session
key k, as output of PRG, is pseudo-random as well. Thanks to the ephemeral
randomness of x and y, session keys have forward security.

– Privacy for user identities. The privacy for user identities relies on KEM and
SE. We require that C does not leak information about pkj computationally,
and this is formalized by IK-CCA security. As a function output of C, σ1

does not leak any information either. Meanwhile, gx and gy are randomly
chosen and independent of i and j. Moreover, ciphertext c protects i and Pi’s
signature σ2. Therefore, identity information i, j is well-protected.

– Forward privacy for user identities. The forward privacy holds if the initiator
Pi is corrupted by A, since the knowledge of the signing key sski does not
help A to learn user’s identity in previous runs of PPAKE (recall that the user
privacy is guaranteed by KEM and SE). On the other hand, if the responder Pj

is corrupted by A, because of the robustness, the knowledge of skj can help A
to identify j as long as decrypting C in the previous runs of PPAKE does not
result in decryption failure. This suggests that the disclosure of responder’s
identity j is unavoidable due to the robustness of our PPAKE in the case of
responder corruption. However, the initiator’s identity i is still well-protected.
Therefore, our PPAKE achieves semi-forward privacy when the responder Pj

is corrupted and full forward privacy when the initiator Pi is corrupted.
– Constant communication and computational complexity. Thanks to the

robustness of our PPAKE, the number of broadcast messages per run and
the computational complexity per user are constant in our PPAKE, while
those in the SSL-PPAKE and RSW-PPAKE schemes are linear to the num-
ber μ of users.

Our Contribution. We summarize our contribution in this paper. We intro-
duce the concept of robustness into PPAKE, and present a formalized security
model for robust PPAKE. In the security model, we consider adversary’s passive
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attacks, active attacks, corruptions of users’ long-term keys, and revealing of
session keys. Based on the security model, we define user authenticity, forward
security for session keys, and forward privacy for user identities.

We propose a generic construction of 3-round robust PPAKE from KEM, SIG,
MAC, PRG and SE. By instantiating KEM, MAC, PRG from the DDH assumption
and SIG from the CDH assumption (together with a one-time pad SE), we obtain
a specific PPAKE scheme in the standard model.

– Our PPAKE scheme enjoys explicit mutual authentication, forward security
for session keys and forward privacy for user identities, and resists those
attacks on SSL-PPAKE and RSW-PPAKE.

– Our PPAKE scheme is efficient in the sense that both the communication
complexity of the protocol and the computational complexity per user is
independent of the number of users, thanks to its robustness.

The comparison of our scheme with other PPAKE schemes is shown in Table 1.

Table 1. Comparison among the PPAKE schemes, where μ refers to the number of
users. Comm denotes the communication complexity of the protocols in terms of
the number of group elements. Comp denotes the computational complexity per user,
where O(μ) means that Comp is linear to μ and O(1) means that Comp is independent
of μ. “#” denotes the number of rounds in the protocol. Forward Security is for
session keys, where “weak” prevents adversary from modifying the messages sent by the
two parties. Privacy denotes the privacy of user identity in case of no user corruption.
Forward Privacy denotes the forward privacy of user identity. CrpI denotes forward
privacy when initiator is corrupted. CrpR denotes forward privacy when responder
is corrupted. I (R) checks whether the privacy of initiator’s (responder’s) identity
is preserved. Mutual Auth denotes whether the PPAKE scheme achieves mutual
authentication. Std denotes whether the security of PPAKE is proved in the standard
model.

PPAKE
schemes

Comm Comp # Forward
security

Privacy Forward privacy Mutual
Auth

Std

CrpI CrpR
I R I R I R

IY [13] 6 O(1) 2 Weak � × � × � × × �
SKEME
[14]

16 O(1) 3 � � � × × × × � ×

SSL [20] 5μ O(μ) 4 � × � × � × � � �
RSW [19] 7μ − 5 O(μ) 4 � � � � � × × � ×
Ours 12 O(1) 3 � � � � � � × � �

On Modeling (Forward) Privacy in PPAKE. Our PPAKE works not only
for broadcast channel, but also for any public channel, as long as the identifiers
like IP or MAC addresses leak no identity information (as considered in [20] and
[19]). In these channels, after receiving a message from an initiator, every user
may give a response when not aware whether itself is the target recipient.
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Some of previous works [1,2,15,21] consider the settings of pre-shared sym-
metric long-term keys (or passwords) among each pair of users. In this setting, it
is easy to achieve authentication, but the assumption is too strong. Most recent
work [13] considered a special client-server setting, where client has no long-term
key. In this case, the client can be perfectly anonymous but authentication for
client is lost.

Our security model, like the security models of SSL-PPAKE [20] and RSW-
PPAKE [19], considers that many parties communicate over a public channel.
However, We consider a more comprehensive scenario than [19,20].

Recall that [19,20] consider the scenario in which the sender and respon-
der in PPAKE are agent servers, and behind each server sits many users. The
adversary implements passive and active attacks over the channel between the
sender (agent server) and receiver (agent server) but has no access to the chan-
nel between the agent server and the end users. The privacy for user identity
in [19,20] essentially said that the adversary cannot tell which user the agent
server is delegating during the communications. In our paper, we are consider-
ing intact end-to-end user communications rather than limited communications
between agent servers. For the sake of privacy protection, messages must not
contain user identity explicitly, hence have to be broadcasted to all end users.
Each end user may respond the message even if she/he is not the target recipient.
Consequently, the initiator may have to deal with a pile of messages from differ-
ent recipients. Covering end-to-end user communications must consider adver-
sary accessing the channel connecting the end users. Hence, our security model
allows adversary’s eavesdropping, message insertion/modification/deletion over
the broadcast channel which connects end-users. Moreover, as pointed out in [20],
their security model only guarantees the privacy of user identities in accepted
sessions. Our model also protects user privacy for incomplete sessions and failed
sessions.

We stress that our model protects the forward privacy of user identities as
much as possible while achieving robustness. To achieve robustness, the first
message must be tied to the responder’s long term secret key. Once the respon-
der is corrupted, the adversary can identify whether the responder has received
messages (but may still do not know the identity of the initiator). Hence, the
forward privacy for responder when itself is corrupted is mutually exclusive with
the robustness of PPAKE. Consequently, the best forward privacy for robust
PPAKE to achieve is semi-forward privacy when the responder is corrupted and
full forward privacy when the initiator is corrupted. As shown in Table 1, our
PPAKE scheme achieves the best forward privacy as a robust PPAKE, and pro-
vides 3 out of 4 kinds of forward privacy, which is the most compared with other
PPAKE schemes.

2 Preliminary

Let ∅ denote an empty string. If x is defined by y or the value of y is assigned
to x, we write x := y. For μ ∈ N, define [μ] := {1, 2, . . . , μ}. Denote by x ←$ X
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the procedure of sampling x from set X uniformly at random. Let |X | denote
the number of elements in X . All our algorithms are probabilistic unless states
otherwise. We use y ← A(x) to define the random variable y obtained by exe-
cuting algorithm A on input x. We use y ∈ A(x) to indicate that y lies in the
support of A(x). We also use y ← A(x; r) to make explicit the random coins r
used in the probabilistic computation. If X and Y have identical distribution,
we simply denote it by X ≡ Y .

In the full version [18], we review the definition of digital signature and its
security notion of strongly existential unforgeability (sEUF-CMA), the definition
of message authentication code (MAC) and its security notion of strongly exis-
tential unforgeability (sEUF-CMA), the definition of pseudo-random generator
(PRG) and its pseudo-randomness, and the definition of ciphertext diversity and
semantic security of symmetric encryption (SE).

2.1 Key Encapsulation Mechanism

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KEM.Setup,KEM.Gen,Encap,Decap) consists of four algorithms:

– KEM.Setup : The setup algorithm outputs public parameters ppKEM, which
determines an encapsulation key space K, a public key space PK, a secret key
space SK, and a ciphertext space CT .

– KEM.Gen : Taking ppKEM as input, the key generation algorithm outputs a
pair of public key and secret key (pk, sk) ∈ PK × SK.

– Encap(pk) : Taking pk as input, the encapsulation algorithm outputs a pair of
ciphertext C ∈ CT and encapsulated key K ∈ K.

– Decap(sk, C) : Taking as input sk and C, the deterministic decapsulation
algorithm outputs K ∈ K ∪ {⊥}.

The correctness of KEM requires that for all ppKEM ∈ KEM.Setup, (pk, sk) ∈
KEM.Gen(ppKEM), and (C,K) ∈ Encap(pk), it holds that Decap(sk, C) = K.

We recall the IND-CPA and IND-CCA security of KEM.

Definition 2 (IND-CPA/IND-CCA Security for KEM). For a key encap-
sulation mechanism KEM, the advantage functions of an adversary A are defined
by AdvCPAKEM(A) :=

∣
∣
∣Pr

[

ExpCPA-0KEM,A ⇒ 1
]

− Pr
[

ExpCPA-1KEM,A ⇒ 1
]∣
∣
∣ and AdvCCAKEM(A) :=

∣
∣
∣Pr

[

ExpCCA-0KEM,A ⇒ 1
]

− Pr
[

ExpCCA-1KEM,A ⇒ 1
]∣
∣
∣, where the experiments ExpCPA-bKEM,A

and ExpCCA-bKEM,A for b ∈ {0, 1} are defined in Fig. 2. The IND-CPA/IND-CCA
security for KEM requires AdvCPAKEM(A)/AdvCCAKEM(A) = negl(λ) for all PPT A.

We recall the security notion indistinguishability of keys under chosen-
ciphertext attack (IK-CCA Security) formalized by Bellare et al. in [5].

Definition 3 (IK-CCA Security for KEM). For a key encapsulation
mechanism KEM, the advantage function of an adversary A is defined
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Fig. 2. The IND-CPA security experiment ExpCPA-bKEM,A and the IND-CCA security exper-
iment ExpCCA-bKEM,A of KEM, where in the latter the adversary can query the decapsulation
oracle ODec(·).

Fig. 3. The IK-CCA security experiment ExpIK-CCA-bKEM,A .

with AdvIK-CCAKEM (A) :=
∣
∣
∣Pr

[

ExpIK-CCA-0KEM,A ⇒ 1
]

− Pr
[

ExpIK-CCA-1KEM,A ⇒ 1
]∣
∣
∣, where the

experiment ExpIK-CCA-bKEM,A for b ∈ {0, 1} is defined in Fig. 3. The IK-CCA security
for KEM requires that AdvIK-CCAKEM (A) = negl(λ) for all PPT A.

Next we introduce the robustness and encapsulated key uniformity of KEM.

Definition 4 (Robustness of KEM). A key encapsulation mechanism KEM
has robustness if for all ppKEM ∈ KEM.Setup(1λ), it holds that

Pr

[
(pk1, sk1) ← KEM.Gen(ppKEM);

(pk2, sk2) ← KEM.Gen(ppKEM);C1 ← Encap(pk1)
: Decap(sk2, C1) �= ⊥

]
= negl(λ).

Definition 5 (Encapsulated Key Uniformity of KEM). A key encap-
sulation mechanism KEM has encapsulated key uniformity if for all ppKEM ∈
KEM.Setup(1λ), it holds that

– ∀r ∈ R, it holds that

{K|r′ ←$ R′, (pk, sk) ← KEM.Gen(ppKEM; r′), (C, K) ← Encap(pk; r)} ≡ {K|K ←$ K},

– ∀(pk, sk) ∈ KEM.Gen(ppKEM), it holds that

{K|r ←$ R, (C,K) ← Encap(pk; r)} ≡ {K|K ←$ K},

where R,R′ are the randomness spaces involved in Encap and Gen respectively.
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Definition 6 (γ-PK-Diversity of KEM). A key encapsulation mechanism
KEM has γ-pk-diversity if for all ppKEM ∈ Setup(1λ), it holds that

Pr
[

r ←$ R; (pk, sk) ←$ KEM.Gen(ppKEM; r);
r′ ←$ R; (pk′, sk′) ←$ KEM.Gen(ppKEM; r′) : pk = pk′

]

= 2−γ ,

where R is the randomness space involved in KEM.Gen algorithm.

3 Privacy-Preserving Authenticated Key Exchange

3.1 Definition of Privacy-Preserving Authenticated Key Exchange

Definition 7 (PPAKE). A privacy-preserving authenticated key exchange
scheme PPAKE = (PPAKE.Setup,PPAKE.Gen,PPAKE.Protocol) consists of two
probabilistic algorithms and an interactive protocol.

– PPAKE.Setup(1λ): The setup algorithm takes as input the security parameter
1λ, and outputs the public parameter ppPPAKE.

– PPAKE.Gen(ppPPAKE, i): The generation algorithm takes as input ppPPAKE and
a party identity i, and outputs a key pair (pki, ski).

– PPAKE.Protocol(Pi(resi) � Pj(resj)): The protocol involves two par-
ties Pi and Pj, who have access to their own resources, resi :=
(ski, ppPPAKE, {pku}u∈[μ]) and resj := (skj , ppPPAKE, {pku}u∈[μ]), respectively.
Here μ is the total number of users. After execution, Pi outputs a flag
Ψi ∈ {∅,accept, reject}, and a session key ki (ki might be empty string ∅),
and Pj outputs (Ψj , kj) similarly.

Correctness of PPAKE. For all ppPPAKE ∈ PPAKE.Setup(1λ), for any distinct
and honest parties Pi and Pj with (pki, ski) ← PPAKE.Gen(ppPPAKE, i) and
(pkj , skj) ← PPAKE.Gen(ppPPAKE, j), after the execution
of PPAKE.Protocol(Pi(resi) � Pj(resj)), it holds that Ψi = Ψj = accept and
ki = kj �= ∅.

Definition 8 (Robustness of PPAKE). A PPAKE scheme is robust if for
any party Pi who initializes the protocol, then with overwhelming probability,
only Pi’s intended peer Pj is able to determine the validity of the first message
sent by Pi when following the protocol specifications.

Remark 1. The correctness and robustness of PPAKE implies the following: in
the scenario of honest setting (i.e., all users are honest in the system), if Pi

broadcasts the first message and its intended peer is Pj , then only Pj is able to
ascertain that the message is for him/her and hence responds to this message.
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3.2 Security Model and Security Definitions for PPAKE

We will adapt the security model formalized by [4,11,16], which in turn followed
the model proposed by Bellare and Rogaway [6]. We also include replay attacks
[17]. In addition, we extend the security model so that the (forward) privacy for
user identity is taken into account.

Our security notions for PPAKE include user authenticity, forward secu-
rity for session key, and forward-privacy for user identity. These are charac-
terized by three security experiments named ExpAUTHPPAKE,μ,�,A, ExpIND

PPAKE,μ,�,A and
ExpPrivacyPPAKE,μ,�,A. In those experiments, we will formalize oracles for adversary A.
The passive and active attacks by adversary A is formalize by its querying to
oracles and obtaining answers from oracles. Note that the adversary can copy,
delay, erase, replay, and interpolate the messages transmitted over the public
channels, obtains some session keys from the PPAKE protocol instances, corrupt
some users by obtaining their long-term secret keys, etc.

3.2.1 Oracles
Firstly, we define oracles and their static variables to formalize the behaviour
of users and the attacks by the adversary. Suppose there are at most μ users
P1, P2, . . . , Pμ, and each user will involve at most � instances. Pi is formalized
by a series of oracles, π1

i , π2
i ,...,π�

i .

Oracle πs
i . Oracle πs

i will take a message as input and output a new message,
simulating user Pi’s execution of s-th PPAKE protocol instance. Each oracle
πs

i has access to Pi’s resource resi := (ski, ppPPAKE,PKList := {pku}u∈[μ]). πs
i

also has its own variables varsi := (stsi ,Pid
s
i , k

s
i , Ψ

s
i ).

– stsi : State information that has to be stored for πs
i ’s next round in the

execution of the protocol.
– Pids

i : The intended communication peer’s identity.
– ks

i ∈ K : The session key computed by πs
i . Here K is the session key space.

We assume that ∅ ∈ K.
– Ψs

i ∈ {∅,accept, reject} : Ψs
i indicates whether πs

i has completed the
protocol execution and accepted ks

i .
At the beginning, (stsi ,Pid

s
i , k

s
i , Ψ

s
i ) are initialized to (∅, ∅, ∅, ∅). We declare

that ks
i �= ∅ if and only if Ψs

i = accept.

Next, we formalize the oracles that dealing with A’s queries as follows.

Oracle Send(i, s, j,MsgList). For the query (i, s, j,MsgList), it means that A
invokes πs

i with MsgList, making πs
i to play the role of initiator with j being

the intended communication peer. Oracle πs
i will deal with each message in

MsgList to generate new messages MsgList′ according to the protocol speci-
fication and update its own variables varsi = (stsi ,Pid

s
i , k

s
i , Ψ

s
i ). The output

messages MsgList′ is returned to A. If MsgList = ∅, A asks oracle πs
i to send

the first round message to j (via broadcast channel).
If Send(i, s, j,MsgList) is the τ -th query asked by A and πs

i changes Ψs
i to

accept after that, then we say that πs
i is τ -accepted.
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Oracle Respond(OList,MsgList). For the query (OList,MsgList), it means that
A chooses an oracle set OList = {πt

j} to respond messages in MsgList. For
∀πt

j ∈ OList, πt
j executes the PPAKE protocol with messages in MsgList as

a potential recipient, and its variables vartj = (sttj ,Pid
t
j , k

t
j , Ψ

t
j ) are updated

accordingly. Those responding messages generated by OList constitute mes-
sage set MsgList′. The output message set MsgList′ is returned to A.

Oracle Corrupt(i). Upon A’s query i, the oracle reveals to A the long-term secret
key ski of party Pi. After this corruption, π1

i , . . . , π�
i will stop answering any

query from A. If Corrupt(i) is the τ -th query asked by A, we say that Pi is
τ -corrupted. If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.

Oracle RegisterCorrupt(i, pk). A’s query (i, pk) suggests that A registers a new
party Pi(i > μ). The oracle distributes (i, pki := pk) to all users. In this case,
we say that Pi is 0-corrupted.

Oracle SessionKeyReveal(i, s). The query (i, s) means that A asks the oracle
to reveal πs

i ’s session key. If Ψs
i �= accept, the oracle returns ⊥. Otherwise,

the oracle returns the session key ks
i of πs

i . If SessionKeyReveal(i, s) is the
τ -th query asked by A, we say that πs

i is τ -revealed. If A has never asked
SessionKeyReveal(i, s), we say that πs

i is ∞-revealed.
Oracle TestKey(i, s). The query (i, s) means that A chooses the session key of

πs
i for challenge (test). If Ψs

i �= accept, the oracle returns ⊥. Otherwise, the
oracle sets k0 = ks

i , samples k1 ←$ K. The oracle returns kb to A, where b is
the random bit chosen by the challenger.

Oracle TestPrivacy(i0, j0, i1, j1). A’s query is the privacy challenge and it con-
sists of two pairs of identities (i0, j0) and (i1, j1). The oracle builds μ new
oracles {π0

u}u∈[μ]. Let π0
ib

initialize the PPAKE protocol with π0
jb

being the
intended peer. After the initialization by π0

ib
, the adversary is allowed to

interfere the protocol execution. The transcript of the protocol execution is
returned to A, where b is the random bit chosen by the challenger.

3.2.2 Security Experiments of PPAKE
Now we are ready to describe the PPAKE experiments serving for authentication,
forward security for session key, and forward privacy for user identity.

Recall that μ is the number of users and � is maximum number of pro-
tocol executions per user. The security experiment ExpXPPAKE,μ,�,A, where X ∈
{AUTH, IND,Privacy}, is played between challenger C and adversary A.

1. C runs PPAKE.Setup to get PPAKE public parameter ppPPAKE.
2. For each party Pi, C runs PPAKE.Gen(ppPPAKE, i) to get the long-term key

pair (pki, ski). Next it chooses a random bit b ←$ {0, 1} and provides A with
the public parameter ppPPAKE and the list of public keys PKList := {pki}i∈[μ].

3. A has access to oracles Send,Respond,Corrupt,RegisterCorrupt,
SessionKeyReveal, TestKey,TestPrivacy by issuing queries in an adaptive way.
Note that A can issue only one query either to TestKey or to TestPrivacy, but
not both. The oracles will reply the corresponding answers to A as long as
the queries lead no trivial attacks.
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Fig. 4. The security experiments ExpAUTHPPAKE,μ,�,A(with plain text and text ),

ExpINDPPAKE,μ,�,A(with plain text and text ), ExpPrivacyPPAKE,μ,�,A(with plain text and text ).

The list of trivial attacks is given in Table 2.
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4. At the end of the experiment, A terminates with an output b∗.
5. If b∗ = b, the experiment returns 1; otherwise the experiment returns 0.

ExpIND
PPAKE,μ,�,A: If A ever queried oracle TestKey (only once), then ExpXPPAKE,μ,�,A
= ExpIND

PPAKE,μ,�,A, which is the experiment for forward security of session key.
Through TestKey, adversary A obtains a real session key ks

i of target oracle
πs

i or a random key. The forward security of session key requires that it is
hard for any PPT A to distinguish the two cases.

ExpPrivacyPPAKE,μ,�,A: If A ever queried oracle TestPrivacy (only once), then
ExpXPPAKE,μ,�,A = ExpPrivacyPPAKE,μ,�,A, which is the experiment for forward privacy
of user identity. Through TestPrivacy, A obtains a protocol transcript, which
is either the interaction of π0

i0
and π0

j0
or the interaction of π0

i1
and π0

j1
. The

forward privacy requires that it is hard for any PPT A to distinguish the two
cases.

ExpAUTHPPAKE,μ,�,A: If C checks whether event WinAuth happens (WinAuth is defined
in Definition 10) at the end of the experiment (either ExpIND

PPAKE,μ,�,A or
ExpPrivacyPPAKE,μ,�,A), this experiment is also regarded as ExpAUTHPPAKE,μ,�,A, which
is the experiment for authenticity. Roughly speaking, the authenticity of
PPAKE requires that if an oracle πs

i accepts a session key, then there must
exist a unique oracle πt

j such that the two oracles have essentially established
partnership. Meanwhile, the authenticity makes sure that replay attacks are
prevented in the sense that no oracle can make two distinct oracles accepts.

Details of the three experiments are given in Fig. 4.
To precisely describe the security notions for PPAKE, we have to forbid some

trivial attacks by A. To clearly describe trivial attacks, we first define partner.

Definition 9 (Partner). We say that an oracle πs
i is partnered to πt

j, denoted
as Partner(πs

i ← πt
j), if the following requirements hold:

– πs
i accepts with Ψs

i = accept and Pids
i = j.

– Upon the time πs
i accepts, the transcript of πs

i is consistent with that of πt
j,

i.e., the outputs of πs
i are the inputs of πt

j, and vice verse.

We write Partner(πs
i ↔ πt

j) if Partner(πs
i ← πt

j) and Partner(πt
j ← πs

i ).

We will keep track of the following variables for each party Pi and oracle πs
i :

– crpi: whether user i is corrupted.
– Aflags

i : whether the intended partner is corrupted when πs
i accepts.

– kRevs
i : whether the session key ks

i was revealed.
– T s

i : whether πs
i was tested.

– Tid : whether oracle TestPrivacy is queried.
– Tkey : whether oracle TestKey is queried.

For forward security for session key, we identify three trivial attacks.
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TA1 Suppose that when user i (formalize by πs
i ) accepts a session key ks

i , its
partner j (formalize by πt

j) has already been corrupted by A, then it is quite
possible that A impersonated j to obtain the shared session key ks

i . In this
case ks

i cannot be tested by TestKey(i, s), otherwise, it will be a trivial attack.
TA2 If a session key ks

i is accepted by user i (formalized by πs
i ) and is also

revealed to A, then ks
i cannot be tested, otherwise, it will be a trivial attack.

TA3 If two users (formalize by oracles πs
i and πt

j) are partnered with each other
and session key ks

i of πs
i is revealed to A, then session key kt

j of πt
j cannot be

tested due to ks
i = kt

j . Otherwise, it will be a trivial attack.

For the forward privacy for user identity, we identify three trivial attacks.

TA4 If user i is corrupted, then the adversary is able to impersonate the user
in a PPAKE protocol after the corruption. After the protocol execution, the
adversary will know the identity of its communicant peer. Hence, this is a
trivial attack on privacy of PPAKE when testing i with TestPrivacy.

TA5 The robustness of a PPAKE makes sure that only one target recipient j is
able to use its secret key skj to correctly respond the first round message. If
the secret key skj of the target recipient is corrupted by A, no privacy on j
is guaranteed. This is a trivial attack on forward privacy of robust PPAKE.

TA6 If the adversary can observe the response of each user after the user receives
the first message, then the identity of the responding user is clear to the
adversary. Hence, this is also a trivial attack on the privacy of robust PPAKE.
This trivial attack can be extended to any core part of the first message. To
exclude this trivial attack, if the adversary sees the first round message, it
is not allowed to feed a message containing the core part of the first round
message to other users and observe their responses.

In Table 2, we list the above trivial attacks TA1−−TA3 in ExpIND
PPAKE,μ,�,A

and trivial attacks TA4−−TA6 in ExpPrivacyPPAKE,μ,�,A.

3.2.3 Security Notions for PPAKE

Definition 10 (Authentication of PPAKE). Let WinAuth denote the event
that A breaks authentication in the security experiment ExpAUTHPPAKE,μ,�,A (see
Fig. 4). WinAuth happens iff ∃(i, s) ∈ [μ] × [�], s.t.

(1) πs
i is τ -accepted.

(2) Pj is τ̂ -corrupted with j := Pids
i and τ̂ > τ .

(3) Either (3.1) or (3.2) or (3.3) happens. Let j := Pids
i .

(3.1) There is no oracle πt
j that πs

i is partnered to.
(3.2) There exist two distinct oracles πt

j and πt′
j′ , to which πs

i is partnered.
(3.3) There exist two oracles πs′

i′ and πt
j with (i′, s′) �= (i, s), such that both πs

i

and πs′
i′ are partnered to πt

j.

The advantage of an adversary A in ExpAUTHPPAKE,μ,�,A is defined as

AdvAUTHPPAKE,μ,�,A := Pr
[
ExpAUTHPPAKE,μ,�,A ⇒ 1

]
= Pr

∃(i,s)
[(1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))] .
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Table 2. Trivial attacks TA1−−TA3 for security experiment ExpINDPPAKE,μ,�,A.
TA4−TA6 for security experiment ExpPrivacyPPAKE,μ,�,A. Note that Aflags

i = false is implic-
itly contained in TA2,TA3 because of TA1.

Types Trivial attacks Explanation

TA1 T s
i = true ∧ Aflags

i = true πs
i is tested but πs

i ’s partner is corrupted
when πs

i accepts session key ks
i

TA2 T s
i = true ∧ kRevs

i = true πs
i is tested and its session key ks

i is
revealed

TA3 T s
i = true ∧ Partner(πs

i ↔
πt

j) ∧ kRevt
j = true

πs
i is tested, πs

i and πt
j are partnered to

each other, and πt
j ’s session key kt

j is
revealed

TA4 Tid = true ∧ (crpi0 = true ∨ crpj0 =
true
∨crpi1 = true ∨ crpj1 = true)

When TestPrivacy(i0, j0, i1, j1) is queried,
one of i0, j0, i1, j1 has been corrupted

TA5 Tid = true ∧ b∗ = b ∧
(crpj0 = true ∨ crpj1 = true) ∧ j0 �=
j1

TestPrivacy(i0, j0, i1, j1) has been queried,
and either j0 or j1 has been corrupted
when checking b∗ = b

TA6 Tid = true ∧ A queried Respond
(OList,MsgList)
s.t. ((j0, ∗) ∈ OList ∨ (j1, ∗) ∈
OList) ∧ TfirstMsg ∩ MsgList �= ∅

TestPrivacy(i0, j0, i1, j1) is queried,
TfirstMsg is the first message in transcript,
A sees the output πt

j0
(MsgList) or

πt
j1
(MsgList) for some t ∈ [�] via querying

Respond with messages MsgList containing
essential information of TfirstMsg

Remark 2. Given (1)∧(2), (3.1) indicates a successful impersonation of Pi, (3.2)
suggests one instance of Pi has multiple partners, and (3.3) corresponds to a
successful replay attack. Definition 10 captures mutual explicit authentication
since πs

i is either an initiator or a responder.

Definition 11 (Forward Security for Session Key of PPAKE). In exper-
iment ExpIND

PPAKE,μ,�,A (see Fig. 4), Let b∗ be A’s output. Then ExpIND
PPAKE,μ,�,A ⇒ 1

iff b∗ = b. The advantage of A in ExpIND
PPAKE,μ,�,A is defined as

AdvIND
PPAKE,μ,�,A :=

∣
∣
∣Pr

[

ExpIND
PPAKE,μ,�,A ⇒ 1

]

− 1/2
∣
∣
∣ .

Forward security for session key asks AdvIND
PPAKE,μ,�,A ≤ negl(λ) for all PPT A.

Definition 12 (Forward Privacy for User Identity of PPAKE). Suppose
that A queries TestPrivacy(i0, j0, i1, j1) and b∗ is A’s output in ExpPrivacyPPAKE,μ,�,A
(see Fig. 4). Define event WinPrivacy as b∗ = b and neither j0 nor j1 are cor-
rupted unless j0 = j1 (i.e. (crpj0 = false ∧ crpj1 = false) ∨ j0 �= j1). Then
ExpPrivacyPPAKE,μ,�,A ⇒ 1 iff WinPrivacy happens. Forward privacy for user identity
requires that for all PPT A, its advantage function AdvPrivacyPPAKE,μ,�,A satisfies

AdvPrivacyPPAKE,μ,�,A :=
∣
∣
∣Pr

[

ExpPrivacyPPAKE,μ,�,A ⇒ 1
]

− 1/2
∣
∣
∣ ≤ negl(λ).
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Remark 3 (Difference with security models in [19,20]). In the security models in
[19,20], the initiator only deals with one responding message with accept or reject
and does not take into account other users’ responses. This feature excludes the
application of their PPAKE schemes in broadcast channels or similar scenarios.
In our security model, the initiator receives and processes all messages from other
users. This is especially important in the scenario where every user may give a
response when not aware whether itself is the target recipient. More precisely, in
our security model, the adversarial behaviors are reflected by the formalization
that A designates a list of messages for πs

i to deal with by Send or Respond
queries. In comparison, the security models in [19,20] only consider the case
that πs

i deals with a single message and after that πs
i will stop responding to

other messages (from other users).

Remark 4 (The best forward privacy for robust PPAKE). The best forward pri-
vacy for a robust PPAKE scheme is full forward privacy for initiator and semi-
forward privacy for responder. The reason is as follows. If the responder Pj is
corrupted, the robustness of PPAKE enables the adversary to use the respon-
der’s secret key to test the first round messages in previous sessions so as to
determine whether Pj is the intended recipient. Therefore, this is the optimal
forward privacy for robust PPAKE to achieve: full forward privacy for initiator
(no matter initiator or responder is corrupted) and forward privacy for responder
when initiator is corrupted.

4 Generic Construction of PPAKE and Its Security Proof

We propose a generic construction of PPAKE = (PPAKE.Setup,PPAKE.Gen,
PPAKE.Protocol) with session key space K1 from the following building blocks.

– A signature scheme SIG = (SIG.Setup,SIG.Sign,SIG.Ver).
– A key encapsulation mechanism scheme KEM = (KEM.Setup,Encap,Decap)

with encapsulation key space K.
– A one-time key encapsulation mechanism scheme otKEM = (otKEM.Setup,

otEncap, otDecap) with the encapsulation key space K′.
– A message authentication code scheme MAC = (MAC.Tag,MAC.Ver) with key

space K.
– A symmetric encryption scheme SE = (SEnc,SDec) with key space K2.
– A pseudo-random generator PRG : K′ → K1 × K2.

Our generic construction is given in Fig. 5.

PPAKE.Setup: The setup algorithm generates the public parameter ppPPAKE :=
(ppSIG, ppKEM, ppotKEM) by running SIG.Setup,KEM.Setup and otKEM.Setup.

PPAKE.Gen: The key generation algorithm takes as input ppPPAKE and a user
identity i, and generates a key pair (vki, sski) for SIG and a key pair (pki, ski)
for KEM. The public key of user i is (pki, vki) and the secret key is (sski, ski).
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Fig. 5. Generic construction of PPAKE

PPAKE.Protocol(Pi � Pj): The protocol between two parties Pi and Pj is as fol-
lows. Each party has access to their own resources resi = (sski, ski, ppPPAKE,
{ppu}u∈[μ]) and resj = (sskj , skj , ppPPAKE, {ppu}u∈[μ]) which contain the cor-
responding secret key, the public parameter and a list PKList consisting of
the public keys of all users. Each party initializes its local variables Ψi, ki and
sti with the empty string. The protocol consists of three rounds of commu-
nications.
The First Round: When party Pi initiates a session with party Pj

in PPAKE, Pi computes (C1, N) ← Encap(pkj) and generates an
ephemeral key pair (pkotKEM, skotKEM) ← otKEM.Gen(ppotKEM). It then
sends (pkotKEM, C1) to Pj and stores (pkotKEM, skotKEM, N,C1) as its state
sti.

The Second Round: After receiving message (pkotKEM, C1), Pj computes
N ← Decap(skj , C1). If N = ⊥, then Pj aborts, indicating that it
is not the intended recipient of this message. Otherwise, Pj invokes
(C2,K) ← otEncap(pkotKEM). It uses N as the MAC key to compute
a tag σ1 ← MAC(N, pkotKEM|C1|C2). Then it sends (C2, σ1) to Pi and
stores (pkotKEM, C1, C2, σ1, N,K) as its state stj .

The Third Round: After receiving message (C2, σ1), Pi retrieves its state
sti = (pkotKEM, skotKEM, N,C1). It verifies the validity of σ1 by check-
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ing whether MAC.Tag(N, pkotKEM|C1|C2, σ1) = 1 with the help of N . If
invalid, it rejects this message. Otherwise, it continues the protocol by
computing K ← Decap(skotKEM, C2). It then generates k̄|ki ← PRG(K),
where k̄ is used as the secret key for SE and ki as its session key. Pi uses
its signing key sski to sign pkotKEM|C1|C2|σ1 and obtain the signature
σ2 ← SIG.Sign(sski, pkotKEM|C1|C2|σ1). Then it encrypts the identity i
and the signature σ2 with k̄ and obtains c ← SEnc(k̄, i|σ2). It broadcasts
the ciphertext c, and sets Ψi = accept and outputs (Ψi, ki), indicating its
acceptance of ki as its session key.
After receiving c, Pj retrieves its state stj = (pkotKEM, C1, C2, σ1, N,K)
and generates (k̄, kj) ← PRG(K). It then uses k̄ to decrypt the cipher-
text c and obtains (i, σ2) ← SDec(k̄, c). Next it checks that the validity
of (i, σ2) by checking SIG.Ver(vki, pkotKEM|C1|C2|σ1, σ2) = 1. Pj rejects
in case of invalid. Otherwise, it sets Ψj = accept and outputs (Ψj , kj),
indicating its acceptance of kj as its session key with Pi.

Correctness. Correctness of PPAKE follows directly from the correctness of
SIG,KEM, otKEM,MAC and SE.

Robustness. Robustness of PPAKE follows directly from the robustness of KEM,
which guarantees that only Pj has Decap(skj , C1) �= ⊥.

Theorem 1. For the PPAKE construction in Fig. 5, suppose that the underlying
SIG is sEUF-CMA secure, MAC is sEUF-CMA secure, KEM is IND-CCA secure
and IK-CCA secure, otKEM is IND-CPA secure and has the properties of key
uniformity and public key diversity, and PRG is a pseudo-random generator,
and SE is semantic secure and has the property of ciphertext diversity, then
the PPAKE construction has explicit mutual authenticity, forward security and
forward privacy.

Before the proof, we will first define two sets Sentsi and Recvs
i for oracle πs

i .
Set Sentsi will store outgoing messages of the oracle and Recvs

i will store valid
incoming messages, respectively. We stress that valid messages in Recvs

i are those
incoming messages that pass the verification of MAC or SIG.

We know that Partner(πs
i ← πt

j) holds if the following conditions are satisfied.

– Pids
i = j and Ψs

i = accept.
– If πs

i is the initiator, i.e., πs
i has sent the first message, then Sentsi = Recvt

j =
{(pkotKEM, C1)} and Recvs

i = Senttj = {(C2, σ1)}.
– If πs

i is the responder, i.e., πs
i has received the first message, then Sentsi =

Recvt
j = {(C2, σ1)}, and Recvs

i = Senttj = {(pkotKEM, C1), c}.

Besides, we define a set S recording all the pairs (i, s) such that WinAuth = true.

Proof of Explicit Mutual Authenticity. To prove authenticity for PPAKE,
we now describe a sequence of games G0−−G3 and show that the advantage of A
in adjacent games. The full codes of G0−−G3 are also given in Fig. 6. Define Wini

as the event of WinAuth = true in Gi ∧ (i∗, s∗) ∈ S, where (i∗, s∗) ←$ [μ] × [�].
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Fig. 6. Games G0−−G3 for authenticity of PPAKE. Queries to OPPAKE ∈
{Send,Respond,Corrupt,RegisterCorrupt, SessionKeyReveal,TestPrivacy,TestKey} are
defined as in the original game in Fig. 4 and omitted here.

Game G0: G0 is the original experiment ExpAUTHPPAKE,μ,�,A. In addition, chal-
lenger C uses Sentsi and Recvs

i recording valid incoming valid messages
and outgoing messages for πs

i . This is only a conceptual change. So,
Pr [(i∗, s∗) ∈ S | WinAuth = true] = Pr [Win0]/Pr [WinAuth = true] ≥ 1

μ� . Then

Pr [WinAuth = true] ≤ μ� · Pr [Win0] . (1)

Game G1: In G1, challenger C first chooses (i∗, s∗) ←$ [μ] × [�]. At the end of
G1, if (i∗, s∗) /∈ S, G1 aborts by returning ⊥. Then for the specific pair (i∗, s∗),

Pr [Win1] = Pr [Win0] = Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3)] . (2)
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Game G2: In G2, if πs∗
i∗ is a responder, G2 is the same as G1. If πs∗

i∗ is an initiator
and Pids∗

i∗ = j∗, Sents
∗

i∗ �= ∅, C changes the behavior of πt
j∗ for t ∈ [�].

Note Sents
∗

i∗ �= ∅ implies that ∃(pk∗
otKEM, C∗

1 ) ∈ Sents
∗

i∗ , where
(pk∗

otKEM, sk∗
otKEM) ← otKEM.Gen(ppotKEM) and (C∗

1 , N∗) ← Encap(pkj∗). Mean-
while, πs∗

i∗ also has state sts
∗

i∗ = {pk∗
otKEM, sk∗

otKEM, N∗, C∗
1}. Then for ∀t ∈ [�],

if (pkotKEM, C1) ∈ Recvt
j∗ , oracle πt

j∗(pkotKEM, C1) will compute N ′ by N ←
Decap(skj∗ , C1) in G1. But in G2, πt

j∗(pkotKEM, C1) computes N ′ in the following
way.

– C1 = C∗
1 : πt

j∗ borrows N∗ from sts
∗

i∗ and sets N := N∗.
– C1 �= C∗

1 : πt
j∗ computes N ← Decap(skj∗ , C1) (as in G1).

Due to the correctness of KEM, we have

Pr [Win2] = Pr [Win1] . (3)

Game G3: In G3, if πs∗
i∗ is a responder, G2 is the same as G1. If πs∗

i∗ is an initiator,
then the encapsulation key N∗ is randomly chosen with N∗ ←$ K, instead of
N∗ ← Encap(pkj∗) as in G2.

Lemma 1. |Pr [Win2] − Pr [Win3]| ≤ μ · AdvCCAKEM(BKEM).

The formal proof of Lemma 1 is given in the full version [18]. Here we sketch
the proof. We construct adversary BKEM against IND-CCA security of KEM
scheme. BKEM will simulates G2/G3 for A. BKEM gets its challenge (C∗,K∗)
w.r.t. pk∗, it sets pkj∗ := pk∗ with j∗ ←$ [μ], and embeds C∗ into πs∗

i∗ ’s
output message (pk∗

otKEM, C∗
1 := C∗) and embeds K∗ into its state sts

∗
i∗ :=

(pk∗
otKEM, sk∗

otKEM, N∗ = K∗, C∗
1 = C∗). BKEM also asks its own DECAP oracle

ODecap to simulate decapsulation of C1 �= C∗ for oracle πt
j∗(pkotKEM, C1). Finally,

BKEM outputs 1 iff Win occurs and j∗ = Pids∗
i∗ . If K∗ is an encapsulated key for

C∗, BKEM simulates G2; if K∗ is random, BKEM simulates G3. Since j∗ = Pids∗
i∗

with probability 1/μ, we have |Pr [Win2] − Pr [Win3]| ≤ μ · AdvCCAKEM(BKEM).
Next, we analyze (1), (2), (3.1), (3.2), (3.3) in G3 so as to determine

Pr [WinAuth].
We define the event NoPartner(i, s) as (1) ∧ (2) ∧ (3.1) happens for (i, s).

Equivalently, πs
i accepts, the intended partner j := Pids

i is uncorrupted when πs
i

accepts, and there does not exist t ∈ [�] such that Partner(πs
i ← πt

j).

Lemma 2. In G3, we have Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3.1)]

= Pr [NoPartner(i∗, s∗)] ≤ AdvsEUF-CMA
MAC (BMAC) + μ · AdvsEUF-CMA

SIG (BSIG).

This proof of Lemma 2 relies on the sEUF-CMA security of SIG and MAC.
We consider the probability of event NoPartner(i∗, s∗) in two cases: πs∗

i∗ is
an initiator and πs∗

i∗ is a responder. In the first case, πs∗
i∗ must have received

a message (C∗
2 , σ∗

1) such that σ∗
1 is a valid MAC tag for some non-consistent
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message pk∗
otKEM|C∗

1 |C∗
2 , yielding a fresh and valid forgery for MAC. In the sec-

ond case, πs∗
i∗ must have received non-consistent messages (pk∗

otKEM, C∗
1 ) and c∗

whose decryption results in (j∗, σ∗
2), and σ∗

2 must be a valid signature for mes-
sage pk∗

otKEM|C∗
1 |C∗

2 |σ∗
1 . Due to the ciphertext diversity of SE, c �= c∗ implies that

(j∗, σ∗
2) �= (j′, σ∗

2). If NoPartner(i∗, s∗) happens, then (pk∗
otKEM|C∗

1 |C∗
2 |σ∗

1 , σ
∗
2)

must be a fresh and valid message-signature pair, yielding a successful forgery
for SIG. The formal proof is given in the full version [18].

Furthermore, considering the random selection of (i∗, s∗), in G3 we have

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ μ� · (AdvsEUF-CMA
MAC (BMAC) + μ ·AdvsEUF-CMA

SIG (BSIG)). (4)

By Lemma 1 and Eq. (1) (2) (3) and (4), we have the following corollary.

Corollary 1. In ExpAUTHPPAKE,μ,�,A, it holds that Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)]

≤ (μ�) ·
(

μ · AdvCCAKEM(BKEM) + AdvsEUF-CMA
MAC (BMAC) + μ · AdvsEUF-CMA

SIG (BSIG)
)

.

Lemma 3. In G3, we have

Pr
(i∗,s∗)

[(1) ∧ (2) ∧ (3.2)] ≤ (μ�)2 · (AdvpsPRG(BPRG) +
1

|K2|
).

If (1)∧ (2)∧ (3.2) happens for (i∗, s∗) in G3, then πs∗
i∗ will accept with session

key ks∗
i∗ and there exist two oracles πt

j and πt′
j′ subject to Partner(πs∗

i∗ ← πt
j)

and Partner(πs∗
i∗ ← πt′

j′). Then πs∗
i∗ must share the same session key with both

πt
j and πt′

j′ , which happens with negligible probability, due to the independent
randomness in πs∗

i∗ , πt
j and πt′

j′ , the key uniformity of otKEM, and the pseudo-
randomness of PRG. The formal proof is shown in the full version [18].

By Lemma 3 and Eq. (1) (2) (3), we have the following corollary.

Corollary 2. In ExpAUTHPPAKE,μ,�,A,we have

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] ≤ (μ�)3 ·
(

AdvpsPRG(BPRG) +
1

|K2|
)

+ (μ2�) ·AdvCCAKEM(BKEM).

Lemma 4. In ExpAUTHPPAKE,μ,�,A, we have

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)] ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + (μ�)2 · 2−γ .

Proof. If ∃(i∗, s∗) satisfies (1)∧ (2)∧ (3.3), then Ψs∗
i∗ = accept, Aflags∗

i∗ = false,
Partner(πs∗

i∗ ← πt
j) and Partner(πs′

i′ ← πt
j). We consider the following two cases.

– Initiator πs∗
i∗ . According to the definition, we know that Partner(πs∗

i∗ ←
πt

j) and Partner(πs′
i′ ← πt

j) implies (pk∗
otKEM, C∗

1 ) ∈ Sents
∗

i∗ = Recvt
j ,

(pk′
otKEM, C ′

1) ∈ Sents
′

i′ = Recvt
j , (C∗

2 , σ∗
1) ∈ Recvs∗

i∗ = Senttj ,
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(C ′
2, σ

′
1) ∈ Recvs′

i′ = Senttj . Then it holds that (pk∗
otKEM, C∗

1 , C∗
2 ) =

(pk′
otKEM, C ′

1, C
′
2). According to the γ -pk-diversity of otKEM, we know that

Pr [pk′
otKEM = pkotKEM] = 2−γ . Therefore, (1)∧ (2)∧ (3.3) happens for (i∗, s∗)

and (i′, s′) with probability at most 2−γ . As there are at most (μ�)2 choices of
(i∗, s∗) and (i′, s′), we can upper bound the probability of event (1)∧(2)∧(3.3)
by (μ�)2 · 2−γ in this case.

– Responder πs∗
i∗ . In this case, Partner(πs∗

i∗ ← πt
j) implies Partner(πt

j ← πs∗
i∗ )

and Partner(πs′
i′ ← πt

j) implies Partner(πt
j ← πs′

i′ ). This further implies that
(1) ∧ (2) ∧ (3.2) happens for (j, t). Therefore, we can upper bound the prob-
ability of event (1) ∧ (2) ∧ (3.3) by (1) ∧ (2) ∧ (3.2) in this case.

Combining the above two cases yields Lemma 4. ��

Finally, the authenticity of PPAKE follows from Corollary 1, 2 and Lemma 4 and

Pr [WinAuth] ≤3μ2� · AdvCCAKEM(BKEM) + μ� · AdvsEUF-CMA
MAC (BMAC) + (μ�)2 · 2−γ

+ 2(μ�)3 ·
(

AdvpsPRG(BPRG) +
1

|K2|
)

+ μ2� · AdvsEUF-CMA
SIG (BSIG).

(5)

Proof of forward security for session key. We now consider another
sequence of games G0−−G5 and analyze A’s advantages in these games. Let
Wini denote the event that Gi outputs 1, i.e. A’s output bit satisfies b∗ = b in Gi.
Let advi := |Pr [Wini] − 1/2|. Then |advi − advi+1| ≤ |Pr [Wini] − Pr [Wini+1]|.
The full codes of G0−−G4 are presented in Fig. 7.

Game G0: G0 is the original experiment ExpIND
PPAKE,μ,�,A. We add the sets Sentsi

and Recvs
i which is only a conceptual change. So,

AdvIND
PPAKE,μ,�,A := |Pr [Win0] − 1/2| = adv0. (6)

Game G1: Challenger C will check whether event WinAuth occurs in G1. If
WinAuth occurs, C will abort the game by returning 0. Otherwise, G1 is the same
as G0. Then |Pr [Win0] − Pr [Win1]| ≤ Pr [WinAuth]. By (5), we have

|adv0 − adv1| ≤ 3μ2� · AdvCCAKEM(BKEM) + μ� · AdvsEUF-CMA
MAC (BMAC) + (μ�)2 · 2−γ

+2(μ�)3 ·
(

AdvpsPRG(BPRG) + 1
|K2|

)

+ μ2� · AdvsEUF-CMA
SIG (BSIG).(7)

Game G2: In G2, if event Hit does not occur, C will return a random bit
θ ←$ {0, 1}. Otherwise, G2 is the same as G1. Event Hit is defined as fol-
lows. Randomly choose (i∗, s∗, j∗, t∗) ←$ ([μ] × [�])2. If A queried TestKey(i, s)
and TestKey(i, s) did not reply ⊥, then πs

i must accept and Aflags
i = false.

Accordingly, πs
i must have a unique partner πt

j such that Partner(πs
i ← πt

j). So
TestKey(i, s) uniquely determines a tuple (i, s, j, t). Event Hit occurs if and only if
(i∗, s∗, j∗, t∗) = (i′, s′, j′, t′). Obviously, Pr [Hit] = 1/(μ�)2. We have Pr [Win2] =
Pr [Hit]·Pr [Win1]+Pr

[

Hit
]

· 12 = Pr [Hit]·( 12 ±adv1)+Pr
[

Hit
]

· 12 = 1
2 ± 1

(μ�)2 ·adv1.

Hence,
adv1 = (μ�)2 · adv2. (8)
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Fig. 7. Games G0-G4 for forward security of PPAKE. Queries to OPPAKE where query
∈ {Send,Respond,Corrupt,RegisterCorrupt, SessionKeyReveal} are defined as in the orig-
inal game in Fig. 4.
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Game G3: In G3, the encapsulation key K shared πs∗
i∗ and πt∗

j∗ is generated by
K ←$ K. Recall that in G2, πs∗

i∗ computes K with (C,K) ← otEncap(pkotKEM)
while πt∗

j∗ computes K with K ← otDecap(skotKEM, C).

Lemma 5. |adv2 − adv3| ≤ |Pr [Win2] − Pr [Win3]| ≤ AdvCPAKEM(BotKEM).

Recall that in G2, if πs∗
i∗ accepts session key ks∗

i∗ and Aflags∗
i∗ = false, then there

must exist πt∗
j∗ such that Partner(πs∗

i∗ ← πt∗
j∗). To prove this lemma, we construct

an adversary BotKEM against the CPA security of otKEM. Given the challenge
(C∗,K∗) w.r.t pk∗, BotKEM embeds C∗ as C∗

2 and pk∗ as pk∗
otKEM in the transcript

between πs∗
i∗ and πt∗

j∗ and sets K∗ in the state sts
∗

i∗ or stt
∗

j∗ . Finally, A outputs a
guessing bit b∗. If b∗ = b, BotKEM outputs 1; otherwise, BotKEM outputs 0.

If K∗ is the encapsulated key for C∗, then BotKEM perfectly simulates G2 for
A; it K∗ is random, then BotKEM perfectly simulates G3 for A. Then, we have
|adv2 − adv3| ≤ |Pr [Win2] − Pr [Win3]| ≤ AdvCPAKEM(BotKEM).

The detailed proof is shown in the full version [18].

Game G4: In G4, the symmetric key and session key of πs∗
i∗ and πt∗

j∗ are uni-
formly sampled by (k̄, ks∗

i∗ = kt∗
j∗) ←$ K1 × K2. Recall that in G3, they are gen-

erated by k̄|ks∗
i∗ ← PRG(K). Due to the pseudo-randomness of PRG, we have

|adv3 − adv4| ≤ |Pr [Win3] − Pr [Win4]| ≤ AdvpsPRG(BPRG). (9)

Now that the session key of πs∗
i∗ is randomly chosen with ks∗

i∗ ←$ K, we have

adv4 = |Pr [Win4] − 1/2| = 0. (10)

Finally, the forward security of PPAKE follows from Lemma 5 and Eq. (6)–(10).

Proof of Forward Privacy for User Identity. To this end, we now consider
another sequence of games G′

0-G
′
7. Let Wini denote the event that WinPrivacy =

true in G′
i. Let advi := |Pr [Wini] − 1/2|. Then |advi − advi+1| := |Pr [Wini] −

Pr [Wini+1] |. The full codes of G′
0-G

′
7 are presented in Fig. 8.

Game G′
0: G

′
0 is the original experiment ExpPrivacyPPAKE,μ,�,A. We also add the sets

Sentsi and Recvs
i which is only a conceptual change. So,

AdvPrivacyPPAKE,μ,�,A := |Pr [WinPrivacy] − 1/2| = adv0 (11)

Game G′
1: At the end of G′

1, challenger C will check whether event WinAuth
occurs. If WinAuth occurs, C will abort the game by returning 0. Otherwise, G′

1

is the same as G′
0. Due to the difference lemma and (5), we have

|adv0 − adv1| ≤ 3μ2� · AdvCCAKEM(BKEM) + μ� · AdvsEUF-CMA
MAC (BMAC) + (μ�)22−γ

+ μ2� · AdvsEUF-CMA
SIG (BSIG) + 2(μ�)3 ·

(

AdvpsPRG(BPRG) + 1
|K2|

)

.(12)

GameG′
2: In G′

2, upon A’s query to oracle Tran(i, j), π0
i and π0

j will not respond
to any message in InsertList sent by A. Note that each oracle responds to only
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one valid message. If this valid message is not sent by A, then G′
2 is the same as

G′
1. If this valid message is sent by A (the message can only be inserted in the

second round or third round of our protocol), then this will lead to occurrence
of event NoPartner(i, 0), which is impossible. Hence, G′

2 is identical to G′
1, and

adv1 = adv2. (13)

Now we define an event named Hit. When A queries TestPrivacy(i, j, i′, j′),
a unique tuple (i, j, i′, j′) is determined. Even Hit happens iff (i∗0, j

∗
0 , i∗1, j

∗
1 ) =

(i, j, i′, j′), where (i∗0, j
∗
0 , i∗1, j

∗
1 ) ←$ [μ]4 is sample at the beginning the game.

Note that (i∗0, j∗
0 , i∗1, j

∗
1 ) follows a uniform distribution, so we have Pr [Hit] = 1

μ4 .

Game G′
3: At the end of G′

3, if event Hit does not occur, C will return a random
bit θ ←$ {0, 1} instead of detecting event Win. Otherwise, G′

3 is the same as G′
2.

We have Pr [Win3] = Pr [Hit] · Pr [Win2] + Pr
[

Hit
]

· 1
2 = Pr [Hit] · ( 12 ± adv2) +

Pr
[

Hit
]

· 1
2 = 1

2 ± 1
μ4 · adv2. As a result,

adv2 = μ4 · adv3. (14)

Game G′
4: In G′

4, the encapsulation key K shared by π0
i∗
b

and π0
j∗
b

is generated
by K ←$ K, instead of (C,K) ← otEncap(pk) and K ← otDecap(C) as in G′

3.
Similar to the proof of Lemma 5, we have

|adv3 − adv4| ≤ AdvCPAKEM(BotKEM). (15)

GameG′
5: In G′

5, the symmetric key and session key of π0
i∗
b

and π0
j∗
b

are generated
by (k̄, k0

i∗
b
) = (k̄, k0

j∗
b
) ←$ K1 × K2 instead of PRG(K) as in G′

4. Hence,

|adv4 − adv5| ≤ AdvpsPRG(BPRG). (16)

GameG′
6: In G′

6, If j0 = j1, then G′
6 is the same as G′

5. Otherwise, π0
i∗
b

generates
C∗

1 by (C∗
1 , N) ← Encap(pkj∗

1
), instead of (C∗

1 , N) ← Encap(pkj∗
b
) as in G′

5. By
IK-CCA security of KEM, we know that (C∗

1 , N) w.r.t pkj∗
0

is indistinguishable
to that w.r.t pkj∗

1
. So we have Lemma 6 with proof shown in the full version [18].

Lemma 6. |adv5 − adv6| ≤ |Pr[Win5] − Pr[Win6]| ≤ AdvIK-CCAKEM (BKEM).

Game G′
7: G′

7 is almost the same as G′
6, except for the answer generation

of oracle TestPrivacy(i, j, i′, j′) (which is TestPrivacy(i∗0, j
∗
0 , i∗1, j

∗
1 )). In G′

7, c∗ is
an encryption of (i∗1, σ

∗
2) where σ∗

2 is computed using the signing key sski∗
1
.

However, in G′
6, c∗ is an encryption of (i∗b , σ

∗
2) with σ∗

2 a signature generated by
the signing key sski∗

b
. The semantic security of SE makes sure that this change

is indistinguishable, as shown in Lemma 7.

Lemma 7. |adv6 − adv7| ≤ |Pr[Win6] − Pr[Win7]| ≤ AdvSemSE (BSE).
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Fig. 8. Games G′
0−−G′

7 for forward privacy of PPAKE. Queries to OPPAKE where query
∈ {Send,Respond,Corrupt,RegisterCorrupt, SessionKeyReveal} are defined as in the orig-
inal game in Fig. 4.
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The formal proof is given in the full version [18].
Finally, in G′

7, all the messages in Transcript = {(pk∗
otKEM, C∗

1 ), (C
∗
2 , σ∗

1), c
∗}

are independent of b, so we have

adv7 = |Pr [Win7] − 1/2| = 0. (17)

Finally, the forward privacy of PPAKE follows from Lemma 6, 7 and (11)–(17).

5 Instantiations of PPAKE

In this section, we present concrete instantiations for the building blocks of our
PPAKE including KEM, otKEM, SIG, MAC, PRG and SE. This yields a specific
PPAKE scheme based on the DDH assumption over a cyclic group G and the
CDH assumption over a bilinear group in the standard model. The details of the
instantiations are shown in the full version [18].

KEM. We employ the Cramer-Shoup KEM (CS-KEM) scheme over a cyclic
group G of order q. It is well known that CS-KEM is IND-CCA secure.
Its public parameter is (G, q, g1, g2). Now we show its robustness. Given a
ciphertext C = (u1, u2, v) ∈ G

3 under public key pk = (c = gx1
1 gx2

2 , d =
gy1
1 gy2

2 , h = gz1
1 gz2

2 ) ∈ G
3, we know that u1 = gr, u2 = gr and v = crdαr =

ux1+αy1
1 ux2+αy2

2 , where α is the hash value of (u1, u2). When decrypting C
with another independent and random secret key (x′

1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2), we

have that Pr
[

v = u
x′
1+αy′

1
1 u

x′
2+αy′

2
2

]

with probability 2/q. Therefore, C will
be rejected except with probability 2/q.

otKEM. We employ the Elgamal-KEM scheme over a cyclic group G of order q.
It is well known that Elgamal-KEM is IND-CPA secure. The public key is
given by pk = gx ∈ G and the ciphertext is C = gy ∈ G and the encapsulated
key is K = gxy. The encapsulated key K = gxy is uniformly distributed,
when either the secret key sk = x or the randomness y used in otKEM.Encap
is independently and randomly chosen over Zq. Hence, ElGamal-KEM has
encapsulated key uniformity. Meanwhile, when x, x′ ←$ Zq, two public keys
pk = gx = gx′

= pk′ collide, i.e., pk = gx = gx′
= pk′ with probability 1/q.

Hence it has log q-pk-diversity.
SIG. We employ the BSW signature scheme [7] over a bilinear group with bilin-

ear map e : G′ × G
′ → G1. Its sEUF-CMA security is based on the CDH

assumption over G
′. Its signature space is Σ = G

′2 × Zq.
MAC. We use the MAC scheme [9] over a cyclic group G of order q. Its sEUF-

CMA security is based on the DDH assumption over G. The MAC key is
(ω, x, x′) ∈ Z

3
q and the tag for message m is given by σ = (u, v1, v2) ∈ G

3,
where u is uniformly chosen, v1 = uω and v2 = ux�+x′

with � the hash value
of (u, v1,m). Its tag space is G

3.
PRG. We use the PRG scheme [10], where PRG : Zq → Z

5
q. The PRG scheme is

based on the DDH assumption over a cyclic group of order q.
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SE. We can use one time pad over Zq as our SE scheme, which has information-
theoretical semantic security. The secret key space, the plain text space and
the cipher text space is K = M = C = Zq with q a prime.

Assembling the above schemes according to our generic construction, we have
a specific PPAKE scheme, with communication complexity (G+3G)+(G+3G)+
(2G′ + 2Zq) = 8G+ 2G′ + 2Zq. The security of the PPAKE scheme is based on
the DDH assumption over G and the CDH assumption over the bilinear group
G

′. The detail of the scheme is shown in the full version [18].
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Abstract. Recent practical applications using advanced cryptographic
protocols such as multi-party computations (MPC) and zero-knowledge
proofs (ZKP) have prompted a range of novel symmetric primitives
described over large finite fields, characterized as arithmetization-
oriented (AO) ciphers. Such designs, aiming to minimize the number of
multiplications over fields, have a high risk of being vulnerable to alge-
braic attacks, especially to the higher-order differential attack. Thus, it
is significant to carefully evaluate the growth of their algebraic degree.
However, the degree estimation for AO ciphers has been a challenge for
cryptanalysts due to the lack of general and accurate methods.

In this paper, we extend the division property, a state-of-the-art
framework for finding the upper bound of the algebraic degree over
binary fields, to the scope of F2n . It is a generic method to detect the
algebraic degree for AO ciphers, even applicable to Feistel ciphers which
have no better bounds than the trivial exponential one. In this general
division property, our idea is to evaluate whether the polynomial repre-
sentation of a block cipher contains some specific monomials. With a deep
investigation of the arithmetical feature, we introduce the propagation
rules of monomials for field-based operations, which can be efficiently
modeled using the bit-vector theory of SMT. Then the new searching
tool for degree estimation can be constructed due to the relationship
between the algebraic degree and the exponents of monomials.

We apply our new framework to some important AO ciphers, including
Feistel MiMC, GMiMC, and MiMC. For Feistel MiMC, we show that the
algebraic degree grows significantly slower than the native exponential
bound. For the first time, we present a secret-key higher-order differen-
tial distinguisher for up to 124 rounds, much better than the 83-round
distinguisher for Feistel MiMC permutation proposed at CRYPTO 2020.
We also exhibit a full-round zero-sum distinguisher with a data complex-
ity of 2251. Our method can be further extended for the general Feistel
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structure with more branches and exhibit higher-order differential dis-
tinguishers against the practical instance of GMiMC for up to 50 rounds.
For MiMC in SP-networks, our results correspond to the exact algebraic
degree proved by Bouvier et al. We also point out that the number of
rounds in MiMC’s specification is not sufficient to guarantee the security
against the higher-order differential attack for MiMC-like schemes with
different exponents. The investigation of different exponents provides
some guidance on the cipher design.

Keywords: Degree evaluation · Division property · Finite field ·
MiMC · Feistel network

1 Introduction

The recent progress of advanced cryptographic protocols such as multi-party
computations (MPC) and zero-knowledge proofs (ZKP) has motivated new
insights into the design paradigm. These innovative primitives, characterized
as arithmetization-oriented (AO) ciphers, focus more on the arithmetic metrics.
In the case of MPC-friendly constructions, the goal is to minimize the num-
ber of multiplications in large finite fields. Examples include MiMC [3] and its
generalizations Feistel MiMC and GMiMC [2,3], HadesMiMC [24], Vision and
Rescue [4] and Ciminion [21].

AO cipher designs are quite different from the traditional ones. Instead of sym-
metric primitives whose non-linear layers are usually composed of relatively small
S-boxes (typically 4 or 8 bits), AO ciphers tend to use the non-linear function
with an explicit and compact algebraic representation over large finite fields (e.g.,
power maps like x �→ xd for some odd integer d). Statistical attacks such as dif-
ferential [9] and linear cryptanalysis [31], which are two of the most powerful
classical cryptanalytic tools, appear not to threaten the security of these new
primitives. Consequently, algebraic attacks, especially the higher-order differ-
ential attack [29], usually determine their overall security level. As a concrete
example, Eichlseder et al. proposed a new upper bound on the algebraic degree
for low-degree key-alternating ciphers over F2n [22], based on which they suc-
cessfully mounted a key-recovery attack on full-round MiMC. Fairly speaking,
the algebraic degree is the most crucial security property of AO ciphers. It is of
great importance to devise new tools for their degree estimations.

Related Work. Different methods and tools for degree evaluation have always
been an important topic in the literature. Trivially, the algebraic degree of
the composition of two functions F and G is bounded by deg(F ◦ G) ≤
deg(F ) · deg(G). However, if iterated, the resulting exponential bound fails to
show the real growth of the algebraic degree for many cryptographic primitives,
especially after a high number of rounds. The first improvement of the triv-
ial bound was proposed by Canteaut and Videau at EUROCRYPT 2002 [15].
Later, Boura et al. focused on the iterated SPN schemes over F

t
2n and presented
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a tighter upper bound [12]. Subsequently, more improved upper bounds for SPN
schemes were proposed through comprehensive consideration of the underlying
building blocks. By further studying the influence of the algebraic degree of
F−1, Boura and Canteaut [10] proposed a tighter bound than [12]. Recently at
FSE 2022 [18], the influence of the linear layer on the algebraic degree was also
noticed and the current best bounds for SPN schemes with large and low-degree
S-boxes over F

t
2n were presented. Moreover, for Even-Mansour schemes, a spe-

cial case of SPN schemes, Eichlseder et al. pointed out that the algebraic degree
grows linearly with the number of rounds [22] for ciphers with low-degree round
functions. As an application, they managed to give a higher-order differential
distinguisher on almost full MiMC. Very recently, by carefully tracing the evolu-
tion of the exponents, Bouvier et al. presented a tighter bound for ciphers based
on iterated power functions [14], leading to the exact algebraic degree estima-
tion for MiMC. However, there is no improved bound for Feistel schemes except
the trivial bound. Consequently, although the general method is more univer-
sal, if we are not able to exploit the information of the components in a more
fine-grained way, the resulting algebraic degree will not be accurate enough.

Besides the above-mentioned methods, another approach for degree estima-
tion is based on division property, a state-of-the-art framework for finding inte-
gral property proposed by Todo at EUROCRYPT 2015 [34]. It is currently the
optimal way to estimate the algebraic degree in terms of accuracy as pointed out
in [17]. The division property was initially word-oriented and then extended to
bit level [35], referred to as the bit-based division property and three-subset bit-
based division property [35]. Subsequently, there was a lot of research focusing
on this topic to explain the imperfect nature inherent or extend the applica-
tion scope with the help of automatic approaches [11,13,20,26,30,33,37,38]. At
EUROCRYPT 2020, Hao et al. proposed the three-subset bit-based division
property without unknown subset (3SDPwoU) [25] and achieves perfect accu-
racy. The monomial prediction proposed by Hu et al. [27] is another language of
division property from a complete polynomial viewpoint. It allows us to precisely
determine whether or not a specific monomial appears in the ANF. Besides, they
also provide a framework to detect the integral properties more precisely than
but with similar efficiency as the two-subset division property for block ciphers.
Throughout this paper, we use the division porperty and monomial prediction to
denote the same technology without making strict distinctions. Despite of their
powerfulness, the division property/monomial prediction requires the ANF of
local components, which is too complicated to be calculated or stored in prac-
tice for large finite fields. Even if we know the ANF, the existing tools cannot
handle the modeling for S-boxes with a size larger than 32 bits [36] in practical
time to the best of our knowledge. Overall, the bit-based division property fails
to be useful for AO ciphers. However, AO ciphers can be directly regarded as mul-
tivariate polynomials over public variables (e.g., plaintext variables) and secret
variables (e.g., key variables) in F2n . This inspires us to focus on the algebraic
essentials of division property and thus take benefit from the concise polynomial
representations over fields.
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1.1 Our Contribution

In this paper, we extend the division property, a state-of-the-art method for
finding integral properties over binary fields, to the scope of the binary exten-
sion field F2n , called general monomial prediction (GMP). It is a generic method
to evaluate the algebraic degree for ciphers over fields, in the way of studying
whether or not the polynomial representation of a block cipher described over
F2n contains some specific monomials by decomposing the cipher into a sequence
of simpler functions and tracing the monomial propagations. We then propose
the propagation rules of the monomials based on the arithmetical features and
model them with the aid of the bit-vector theory of Satisfiability Modulo The-
ories (SMT). Finally, by tracing the evolution of exponents for the monomials,
we construct an SMT-based searching tool for the degree estimation of ciphers
over F2n . We apply our algorithm to some important arithmetization-oriented
block ciphers, including MiMC, Feistel MiMC, GMiMC, and their variants. The
full version of the paper can be found in [1]. All the source codes are available
at https://github.com/iljido/GeneralMonomialPrediction.

– For Feistel MiMC, we show in particular that its algebraic degree grows obvi-
ously slower than the originally believed one. More precisely, after an initial
linear growth, the algebraic degree grows rather slow for a long period, along
with several large plateaus until reaching the maximal degree. While the pre-
vious work only handles the permutation Feistel MiMC, using our results, for
the first time we present a secret-key higher-order differential distinguisher
covering a total of 124 rounds. It is 41 rounds more than the previous best
distinguisher of permutation Feistel MiMC. We also establish a known-key
zero-sum distinguisher for the full-round Feistel MiMC over F2n with a data
complexity of 2251. Our method can be extended to more branches and we
successfully find the currently longest secret-key higher-order differential dis-
tinguisher for practical instance of block cipher GMiMC reaching up to 50
rounds, 10 rounds longer than the previous best distinguisher.

– We also investigate the algebraic degree of MiMC-like schemes with generic
exponents d. For exponents of the form d = 2l −1, we extend the higher-order
differential distinguishers by one or two more rounds for different instances
compared to the currently best results in [22]. For exponents of the form
d = 2l +1, we find distinguishers with lower data complexities for d = 5, 9, 17.
Our results for MiMC with d = 3 are consistent with the exact algebraic
degree proved in [14]. Based on our results, we point out that the formula for
the number of rounds used in MiMC specification [3] is not sufficient to guar-
antee security against the higher-order differential attack. This investigation
of different exponents provides some guidance on the design.

– Moreover, we present a comprehensive analysis of the degree growth of MiMC-
like schemes in (unbalanced) Feistel networks and prove a theoretical upper
bound that improves the trivial exponential bound.

All the results are summarized in Table 1, Table 2 and Table 3. Our experi-
ments are implemented in the AMD EPYC 7302 CPU @ 3.0 GHz with 8 threads.

https://github.com/iljido/GeneralMonomialPrediction
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Table 1. Higher-order differential distinguishers for FeistelMiMC3(129, r).

Security #Rounds Target Attack Time Source

Permutation Block Cipher #Rounds Cost

129 164 � − 82 2127† − [8]

� � 82 2127 < 1 min Sect. 5.1

258 166 � − 83 2129 − [8]

� � 83 2129 < 1 min Sect. 5.1

� � 124 2257 < 5 min Sect. 5.1
† This complexity is calculated using the formula in [8] with subgroup of size 2127.

Table 2. Zero-sum distinguishers for FeistelMiMC3(129, r).

Security #Rounds Attack Source

#Rounds Cost

129 164 162 2127† [8]

163 2127 Sect. 5.1

258 166 164 2129 [8]

165 2129 Sect. 5.1

166 2251 Sect. 5.1
† This complexity is calculated using the formula in
[8] with subgroup of size 2127.

1.2 Outline

The rest of this paper is organized as follows. In Sect. 2, we revisit some back-
ground knowledge about polynomial representations, the monomial prediction,
and SMT solvers. In Sect. 3, we propose the principle of general monomial pre-
diction and present the new searching model for degree estimation. For a better
insight into the degree estimation, we prove a theoretical upper bound on the
algebraic degree for ciphers in (unbalanced) Feistel-networks with low-degree
round functions in Sect. 4. Section 5 shows the applications to MiMC, Feistel
MiMC, and GMiMC. We conclude the paper in Sect. 6.

2 Preliminaries

2.1 Notations

Let F
n
2 denote the n-dimensional vector space over the finite field F2. F

t
2n denotes

the t-fold Cartesian product of the binary extension field F2n . For any n-bit
vector u = (u[0], · · · , u[n − 1]) ∈ F

n
2 , the Hamming weight of u is wt(u) =

∑n−1
i=0 u[i]. For any a ∈ F2n , we have a =

∑n−1
i=0 a[i] · 2i for a[i] ∈ {0, 1} and

wt(a) =
∑n−1

i=0 a[i]. For any a, a′ ∈ F2n , we define a � a′ if a[i] ≤ a′[i] for all
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Table 3. Distinguishers for different instances of MiMCd(129, r).

d/l n · logd(2) Attack Source

#Rounds Cost

d = 2l − 1 7/3 46 45 2127 [22]

45 2124 Sect. 5.2

46 2127 Sect. 5.2

15/4 34 32 2126 [22]

32 2125 Sect. 5.2

33 2125 Sect. 5.2

31/5 27 25 2124 [22]

25 2121 Sect. 5.2

27 2128 Sect. 5.2

d = 2l + 1 3/1 82 80 2128 [22]

81 2127 [14]

81 2127 Sect. 5.2

5/2 56 54 2125 [14]

54 2124 Sect. 5.2

55 2128 [22]

55 2127 [14]

55 2127 Sect. 5.2

9/3 41 40 2127 [22]

40 2125 [14]

40 2124 Sect. 5.2

41 2128 [14]

41 2127 Sect. 5.2

17/4 32 31 2127 [22]

32 2128 [14]

32 2127 Sect. 5.2

i, a � a′ if a[i] ≥ a′[i] for all i. We use ⊕ as addition over F2 or F2n . 0n or 1n

represents the all-zeros or all-ones vector of length n, respectively.

Polynomial Representations. Let F : F
t
2n → F2n be a function over

F2n [x0, x1, · · · , xt−1]/
〈
x2n

0 − x0, x
2n

1 − x1, · · · , x2n

t−1 − xt−1

〉
. F can be uniquely

expressed by a polynomial over F2n with t variables x0, x1, · · · , xt−1 ∈ F2n , as

F (x0, · · · , xt−1) =
∑

v=(v0,··· ,vt−1)∈{0,1,··· ,2n−1}t

ϕ(v) · πv (x) (1)

where the coefficient ϕ(v) ∈ F2n . We call the degree of a single variable in
F as univariate degree and the degree of F as a multivariate polynomial as
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multivariate degree. The maximum univariate degree is 2n − 1. When t = 1,
the maximum univariate degree is 2n − 2 if F is invertible since the maximal
algebraic degree of invertible functions over F2n is n − 1.

In Eq. (1), πv (x) =
∏t−1

i=0 xvi
i = xv0

0 · ... · xvt−1
t−1 is called a monomial over F2n .

If the coefficient of πv (x) in F is a constant c �= 0, we say πv (x) is contained
by F , denoted by πv (x) → F . Otherwise, if the coefficient of πv (x) in F is 0,
πv (x) is not contained by F , denoted by πv (x) � F .

As is well-known, the function F can as well be represented at bit level with
N = n ·t variables. The i-th output element is defined by the coordinate function

Fi(y0, · · · , yN−1) =
∑

u=(u0,··· ,uN−1)∈{0,1}N

ρi(u) · πu (y). (2)

The coefficient ρi(u) ∈ F2 can be computed by the Möbius transform. πu (y) =
∏N−1

i=0 yui
i = yu0

0 · ... · yuN−1
N−1 is called a monomial. If the coefficient of πu (y) in Fi

is 1, we say πu (y) is contained by Fi, denoted by πu (y) → Fi. Otherwise, πu (y)
is not contained by Fi, denoted by πu (y) � Fi.

This representation is also referred to as algebraic normal form (ANF) of
Boolean functions. Essentially, we can see that the polynomial representation
and ANF of F are equivalent when n = 1.

Definition 1 (ANF and Algebraic Degree). Let f : F
n
2 → F2 be a Boolean

function. Its algebraic normal form (ANF) is given as

f(x) = f(x[0], x[1], · · · , x[n − 1]) =
⊕

u∈Fn
2

ρ(u) · xu (3)

where the coefficient ρ(u) ∈ F2 and xu =
∏n−1

i=0 x[i]u[i]. Then the algebraic degree
of f is defined as

δ(f) = max{wt(u) | u ∈ F2n , ρ(u) �= 0}.

If f : F
n
2 → F

m
2 is a vectorial Boolean function, then the algebraic degree is

defined as the maximal algebraic degree of its coordinate functions fi, i.e., δ(f) =
max{δ(fi) | 0 ≤ i < m}.

The link between the algebraic degree and the univariate degree of a vectorial
Boolean function is well-known.

Proposition 1 ([16]). For any univariate function F : F2n → F2n as

F (x) =
∑

v∈{0,1,··· ,2n−1}
ϕ(v) · xv,

the algebraic degree of F as a vectorial Boolean function is the maximum Ham-
ming weight of the exponents for the non-vanishing monomials, i.e.,

δ(F ) = max
0≤v≤2n−1

{wt(v) | ϕ(v) �= 0}.

Corollary 1. For x0, x1, · · · , xt−1 ∈ F2n , the algebraic degree of a monomial
πu (x) = xu0

0 · ... · x
ut−1
t−1 is given by

∑t−1
i=0 wt(ui).
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2.2 Monomial Prediction

In this paper, we mainly take the framework of the monomial prediction to
simplify the exposition. The monomial prediction, proposed by Hu et al. in [27],
is another language of division property from a pure algebraic perspective. By
counting the so-called monomial trails, the monomial prediction can determine if
a monomial of the plaintext or IV appears in the polynomial of the output of the
cipher, proved to be equivalent to the three-subset bit-based division property
without unknown subsets [25].

Let f : F
n0
2 → F

nr
2 be a composite vectorial Boolean function of a sequence

of smaller functions f (i) : F
ni
2 → F

ni+1
2 , 0 ≤ i ≤ r − 1, as

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)

where x(i+1) = f (i)(x(i)). Considering the function f (i), if the ANF of f (i) is
available, we can find the monomial πu(i+1)(x(i+1)) that contains the monomial
πu(i)(x(i)) for any u(i) easily, denoted by πu(i)(x(i)) → πu(i+1)(x(i+1)). If we can
find an r-round transition connecting πu(0)(x(0)) and πu(r)(x(r)) as

πu(0)(x(0)) → πu(1)(x(1)) → · · · → πu(r)(x(r)),

then the r-round transition is denoted by πu(0)(x(0)) � πu(r)(x(r)), called a
monomial trail. The set of all monomial trails from πu(0)(x(0)) to πu(r)(x(r))
are denoted by πu(0)(x(0)) �� πu(r)(x(r)). The size of the monomial trails deter-
mines whether πu(0)(x(0)) → πu(r)(x(r)). If there is no trail from πu(0)(x(0)) to
πu(r)(x(r)), we say πu(0)(x(0)) �� πu(r)(x(r)) and hence πu(0)(x(0)) � πu(r)(x(r)).

2.3 SMT Solvers

A recent approach to construct automatic tools is to formulate the searching
problems into some mathematical problems and delegate the solving task to
the powerful off-the-shelf solvers. The Satisfiability Modulo Theories (SMT) [6]
is a problem of determining whether logical formulas in the first-order logic is
satisfiable. It is a generalization of the Boolean Satisfiability Problem (SAT) [19].
SMT formulas provide much richer modeling language than SAT formulas such
as bit-vectors, which give more flexibility in the interpretation of mathematical
problems.

A bit-vector variable is a string of Boolean variables that can represent either
a bit-vector or an integer. The set of the basic bit-vector operations is a combi-
nation of arithmetic operations and bit-wise operations. We list the operations
used in the following sections in Table 4.

There are many public available solvers to solve SMT problems. We construct
our model using the CVC [7] input language and take STP [23] and Cryptomin-
isat5 [32] as our solvers in the paper. For more details about STP and CVC,
readers are encouraged to refer to http://stp.github.io/.

http://stp.github.io/
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Table 4. Basic bit-vector operations.

x ∧ y bit-wise AND of x and y x + y addition of x and y

x ∨ y bit-wise OR of x and y x × y multiplition of x and y

x ⊕ y bit-wise XOR of x and y x = y x is equal to y

x || y concatenation of x and y x �= y x is not equal to y

x � i x left shift by i bits x ≤ y x is less than or equal to y

x � i x right shift by i bits x ≥ y x is greater than or equal to y

3 General Monomial Prediction

Let y = F (x) be a function from F
t
2n to F

s
2n . We focus on the exponents of

x so that the algebraic degree can be estimated based on its relationship with
the Hamming weight of exponents. In Sect. 3.1, we will introduce how to trace
the transition of the exponents by generalizing the monomial prediction from
F2 to the finite field F2n , referred to as general monomial prediction (GMP).
Since any function F can be represented as a sequence of basic operations such
as XOR, AND, COPY, m-COPY, and POWER, we give the propagation rules
for these basic functions by investigating the arithmetical features in Sect. 3.2
and provide their SMT models in Sect. 3.3. Finally in Sect. 3.4, by setting the
initial constraints and stopping rules appropriately, the problem of degree esti-
mation for ciphers over fields can be converted into an SMT problem and solved
efficiently.

3.1 Definition of General Monomial Prediction

Let y = F (x) be a function from F
t
2n to F

s
2n , where x = (x0, · · · , xt−1) and

y = (y0, · · · , ys−1). By general monomial prediction we mean the problem of
whether a particular monomial yv is contained by xu , denoted by xu → yv .
Notice that we make no distinction between the secret variables and public
variables here and they are all treated as symbolic variables. While it is a trivial
problem if the polynomial representation of F is available, F is usually too
complicated to be computed or stored in practice for most symmetric primitives
and we are limited to knowing the local components of F .

Let F : F
t0
2n → F

tr
2n be a composite function over F2n consisting of a sequence

of smaller functions F (i) : F
ti
2n → F

ti+1
2n , 0 ≤ i ≤ r − 1, as

F = F (r−1) ◦ F (r−2) ◦ · · · ◦ F (0).

We assume that x(i) and x(i+1) are the input and output variables of F (i),
where x(i) = (x(i)

0 , · · · , x
(i)
ti−1). Each x

(i)
j is a variable over F2n . For a given pair of

(u(i),u(i+1)), if the polynomial representation of F (i) is available, one can deter-
mine whether πu(i)(x(i)) → πu(i+1)(x(i+1)). We emphasize that πu(i)(x(i)) →
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πu(i+1)(x(i+1)) if and only if the coefficient of πu(i)(x(i)) in πu(i+1)(x(i+1)) is a
constant c �= 0. If there exists a trail such that

πu(0)(x(0)) → · · · πu(i)(x(i)) → · · · → πu(r)(x(r)),

there exists a trail connecting πu(0)(x(0)) and πu(r+1)(x(r+1)), which naturally
leads to the definition of general monomial trail.

Definition 2 (General Monomial Trail). Let F (i) be a sequence of polyno-
mials over F2n for 0 ≤ i < r, while x(i+1) = F (i)(x(i)). We call a sequence of
monomials (πu(0)(x(0)), πu(1)(x(1)), · · · , πu(r)(x(r))) an r-round general mono-
mial trail connecting πu(0)(x(0)) and πu(r)(x(r)) with respect to the composite
function F = F (r−1) ◦ F (r−2) ◦ · · · ◦ F (0) if

πu(0)(x(0)) → πu(1)(x(1)) → · · · → πu(r)(x(r)).

If there is at least one general monomial trail connecting πu(0)(x(0)) and
πu(r)(x(r)), we write πu(0)(x(0)) � πu(r)(x(r)). Otherwise, πu(0)(x(0)) ��
πu(r)(x(r)). When n = 1, general monomial trail is equivalent to monomial trail.

Proposition 2. πu(0)(x(0)) � πu(r)(x(r)) if πu(0)(x(0)) → πu(r)(x(r)), and thus
πu(0)(x(0)) �� πu(r)(x(r)) implies πu(0)(x(0)) � πu(r)(x(r)).

Proof. We proceed by induction on r. Assuming that this proposition holds for
r < s, we now prove that it also holds for r = s. When r = s, we expand
πu(s)(x(s)) on πu(s−1)(x(s−1)) as

πu(s)(x(s)) =
⊕

π
u (s−1) (x(s−1))→π

u (s) (x(s))

ϕ(u(s−1)) · πu(s−1)(x(s−1)), ϕ(u(s−1)) �= 0.

Since πu(0)(x(0)) → πu(s)(x(s)), there is at least one πu(s−1)(x(s−1)) contained by
πu(s)(x(s)) satisfying πu(0)(x(0)) → πu(s−1)(x(s−1)). According to the assumption
that πu(0)(x(0)) � πu(s−1)(x(s−1)), we have πu(0)(x(0)) � πu(s)(x(s)). �

Example 1. Let x0, x1, y, z ∈ F23 with the irreducible polynomial f(x) = x3 +
x + 1. z = 2y3, y = x3

0 ⊕ 2x0 ⊕ x2
1.

Considering the monomial x5
0, we can compute all the monomials of y as

y0 ≡ 1,

y1 ≡ x3
0 ⊕ 2x0 ⊕ x2

1,

y2 ≡ x6
0 ⊕ 4x2

0 ⊕ x4
1,

y3 ≡ 2x7
0 ⊕ x6

0x
2
1 ⊕ 4x5

0 ⊕ x3
0x

4
1 ⊕ 3x3

0 ⊕ 4x2
0x

2
1 ⊕ x2

0 ⊕ 2x0x
4
1 ⊕ x6

1,

y4 ≡ x5
0 ⊕ 6x4

0 ⊕ x1,

y5 ≡ 6x7
0 ⊕ 2x6

0 ⊕ x5
0x

2
1 ⊕ 7x5

0 ⊕ 6x4
0x

2
1 ⊕ x3

0x1 ⊕ 2x0x1 ⊕ x0 ⊕ x3
1,

y6 ≡ 4x7
0 ⊕ x6

0x1 ⊕ 6x6
0 ⊕ x5

0x
4
1 ⊕ 6x4

0x
4
1 ⊕ x4

0 ⊕ 6x3
0 ⊕ 4x2

0x1 ⊕ x5
1
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y7 ≡ 6x7
0x

4
1 ⊕ 4x7

0x
2
1 ⊕ 2x7

0x1 ⊕ 2x6
0x

4
1 ⊕ x6

0x
3
1 ⊕ 6x6

0x
2
1 ⊕ 6x6

0 ⊕ x5
0x

6
1 ⊕ 7x5

0x
4
1,

⊕ 4x5
0x1 ⊕ 2x5

0 ⊕ 6x4
0x

6
1 ⊕ x4

0x
2
1 ⊕ 7x4

0 ⊕ x3
0x

5
1 ⊕ 6x3

0x
2
1 ⊕ 3x3

0x1 ⊕ 4x3
0

⊕ 4x2
0x

3
1 ⊕ x2

0x1 ⊕ 6x2
0 ⊕ 2x0x

5
1 ⊕ x0x

4
1 ⊕ 3x0 ⊕ x7

1.

Similarly, we can compute all the monomial of z

z0 ≡ y0, z1 ≡ 2y3, z2 ≡ 4y6, z3 ≡ 4y3 ≡ 3y2,

z4 ≡ 6y12 ≡ 6y5, z5 ≡ 7y15 ≡ 7y, z6 ≡ 5y18 ≡ 5y4, z7 ≡ y21 ≡ y7.

There are four monomial trails connecting x5
0 and monomials of z:

x5
0 → y3 → z1, x5

0 → y4 → z6, x5
0 → y5 → z4, x5

0 → y7 → z7.

Comparison with Word-Based Division Property. At a first glance, the
general monomial prediction is similar to the word-based division property as
both of them are described at the word level. However, we emphasize that they
are completely different, especially in the way of extracting information. While
the word-based division property can only exploit the information of the degree,
our general monomial prediction can essentially utilize the internal structure of
the ciphers in a more fine-grained way. Actually, it is more like the bit-based
division property since word is the minimum unit of polynomials over F2n .

Comparison with Bit-Based Division Property. From the example above
we can see that the obvious difference between the general monomial prediction
and bit-based division property is the range of the variables. Given a specific
monomial m, there are two possible cases for the coefficient c in the ANF of
a block cipher: c = 1 or c = 0, i.e., the ANF contains exactly m or the ANF
does not contain m. However, since the coefficient c for ciphers over fields ranges
over the 2n elements of F2n , the existence of a monomial m represents multiple
states. As long as c �= 0, the monomial m does appear in the polynomial rep-
resentations. Recall that two-subset bit-based division property can essentially
allow us to derive one of two possible results: the ANF of a block cipher does
not contain any multiple of the monomial m, or we do not know any thing about
the monomial. Given a specific monomial m for ciphers over fields, we can derive
one of the following two results for the general monomial prediction according
to Proposition 2:

– The monomial m with a corresponding coefficient c �= 0 does not appear in
the polynomial representation if there is no general monomial trail from m
to the polynomial representation of the block cipher,

– We do not know anything about the monomial.

Essentially, we believe that the concept of the general monomial prediction is
more common with the conventional bit-based division property. Moreover, we
emphasize that due to the field-based structure for ciphers described over F2n ,
the word-based/bit-based division property fails to be useful in this case.
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3.2 Propagation Rules of Basic Field-Based Operations

Considering a sequence of monomials

(πu(0)(x(0)), πu(1)(x(1)), · · · πu(r)(x(r))),

where x(i) and x(i+1) are the input and output of F (i). Each pair (u(i),u(i+1))
is a valid monomial trail through F (i) if and only if πu(i)(x(i)) →
πu(i+1)(x(i+1)) (Notice that x(i) and x(i+1) are only symbolic variables.). How-
ever, each u(i) is defined in F2n where the size of n is typically larger than 32.
So we are not able to depict the possible propagations by simple observation
or exhaustive search. As any arithmetization-oriented cipher can be represented
as a sequence of basic operations such as XOR, AND, COPY, m-COPY, and
POWER, we carefully investigate the arithmetical feature of operations and
prove the propagation rules. Our propagation rules put no restrictions on the
irreducible polynomial since we do not care about the exact value of the coeffi-
cients.

Rule 1 (Field-based XOR). Let F be a function compressed by an XOR over
F2n , where the input x = (x0, x1, · · · , xn−1) and the output y is calculated as
y = (x0 ⊕x1, x2, · · · , xn−1). Considering a monomial of x as xu , the monomial
yv contains xu iff

v = (v, u2, · · · , un−1),

where v = u0 + u1, v � u0.

Proof. We have

(x0 ⊕ x1)v ≡
⊕

0≤u0≤v

pv(u0) · (xu0
0 xv−u0

1 ),

where pv(u0) = 1 if
(

v
u0

)
is odd and pv(u0) = 0 if

(
v
u0

)
is even.

(
v
u0

)
is the binomial

coefficient. Clearly,
(

v
u0

)
is odd if and only if u0 � v according to the Lucas’s

theorem. Therefore, if xu0
0 · xu1

1 → (x0 ⊕ x1)v, there must be pv(u0) = 1 and we
have u0 + u1 = v, u0 � v. Conversely, if u0 + u1 = v, u0 � v, we have pv(u0) = 1
and xu0

0 · xu1
1 → (x0 ⊕ x1)v. �

Rule 2 (Field-based AND). Let F be a function compressed by an AND
over F2n , where the input x = (x0, x1, · · · , xn−1) and the output y is calculated
as y = (x0x1, x2, · · · , xn−1). Considering a monomial of x as xu , the monomial
yv contains xu iff

v = (u0, u2, · · · , un−1),

where (u0, u1) = (i, i), for 0 ≤ i ≤ 2n − 1.

Proof. Since
(x0x1)v = (x0x1)u0 = xu0

0 xu0
1 = xu0

0 xu1
1 ,

we have xu0
0 xu1

1 → (x0x1)v if v = u0 = u1 = i for 0 ≤ i ≤ 2n − 1. Conversely if
v = u0 = u1 = i for 0 ≤ i ≤ 2n − 1, there must be xu0

0 xu1
1 = (x0x1)i = (x0x1)v

and xu0
0 xu1

1 → (x0x1)v. �
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Rule 3 (Field-based COPY). Let F be a COPY function over F2n , where
the input x = (x0, x1, · · · , xn−1) and the output y is calculated as y = (x0, x0, x1,
· · · , xn−1). Considering a monomial of x as xu , the monomial yv contains xu

iff

v = (v0, v1, u1, u2, · · · , un−1),

where

(v0, v1) =

{
(0, 0), if u0 = 0;
(i, u0 − i), (j, u0 + 2n − 1 − j), else.

for 0 ≤ i ≤ u0, u0 ≤ j ≤ 2n − 1.

Proof. For u0 = 0, if xu0
0 → xv0+v1

0 , there must be v0 + v1 = 0, which implies
(v0, v1) = (0, 0). Conversely if u0 = 0 and (v0, v1) = (0, 0), we have xu0

0 =
xv0+v1
0 = x0

0 and xu0
0 → xv0+v1

0 .
Let us now consider u0 �= 0. When v0 + v1 ≤ 2n − 1, if xu0

0 → xv0+v1
0 we have

u0 = v0 + v1 and it holds that (v0, v1) = (i, u0 − i) for 0 ≤ i ≤ u0. Conversely if
(v0, v1) = (i, u0 − i) for 0 ≤ i ≤ u0, we have v0 + v1 = u0 and xu0

0 → xv0+v1
0 .

When v0 + v1 > 2n − 1, we have v0 + v1 = t + 2n − 1 and xv0+v1
0 ≡ xt, 0 <

t ≤ 2n − 1. If xu0
0 → xv0+v1

0 , we have xu0
0 → xt

0 and u0 = t. Therefore it
holds that (v0, v1) = (j, u0 + (2n − 1) − j) for u0 ≤ j ≤ 2n − 1. Conversely if
(v0, v1) = (j, u0 +(2n −1)− j) for u0 ≤ j ≤ 2n −1, we have v0 +v1 = u0 +2n −1
and xu0

0 ≡ xu0+2n−1
0 ≡ xv0+v1

0 . Then xu0
0 → xv0+v1

0 . �
Rule 4 (Field-based POWER). Let F be a POWER function over F2n ,
where the input x = (x0, x1, · · · , xn−1) and the output y is calculated as y =
(xd

0, x1, · · · , xn−1), for gcd(d, 2n − 1) = 1. Considering a monomial of x as xu ,
the monomial yv contains xu iff

u = (v, u1, · · · , un−1),

where

v =

{
u0, if u0 = 0 or 2n − 1;

(d−1)u0 mod (2n − 1), else.

Proof. For u0 = 0, if (x0)0 → (x0)dv then v must be 0. Conversely if v = 0, we
have (x0)u0 → (x0)dv. For u0 = 2n − 1, if (x0)2

n−1 → (x0)dv, then v must be
2n − 1. Conversely if v = 2n − 1, we have (x0)d×(2n−1) ≡ x2n−1

0 and x2n−1
0 →

x2n−1
0 .

If u0 �= 0 and u0 �= 2n − 1, if xu0
0 → (xd

0)
v we have u0 = dv mod (2n − 1).

Conversely if u0 = dv mod (2n − 1), we have (xd
0)

v ≡ x
dv mod (2n−1)
0 ≡ xu0

0 .
Therefore (x0)u0 → (x0)dv. Then we have v = (d−1)u0 mod (2n − 1). �
Rule 5 (Field-based m-COPY). Let F be a m-COPY function over F2n ,
where the input x = (x0, x1, · · · , xn−1) and the output y is calculated as y =
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(x0, · · · , x0︸ ︷︷ ︸
m

, x1, · · · , xn−1). Considering a monomial of x as xu , the monomial

yv contains xu iff

v = (v0, v1, · · · , vm−1, u1, u2, · · · , un−1),

where

(v0, · · · , vm−1) =

{
(0, 0, · · · , 0), if u0 = 0;
(is0, · · · , ism−2, i

s
m−1) for 0 ≤ s ≤ m − 1, else.

Here, ism−1 = u0 + (s − 1)(2n − 1) − ∑m−2
j=0 isj , 0 ≤ isj ≤ 2n − 1 for 0 ≤ j < m.

Proof. For u0 = 0, if x0
0 → x

v0+v1+···+vm−1
0 there must be (v0, v1, · · · , vm−1) =

(0, 0, · · · , 0). Conversly, if (v0, v1, · · · , vm−1) = (0, 0, · · · , 0) we have (x0)u0 →
(x0)v0+v1+···+vm−1 .
Let us consider u0 �= 0. We have 0 < v0 + v1 + · · · + vm−1 ≤ m · (2n − 1). When
s(2n − 1) < v0 + v1 + · · · + vm−1 ≤ (s + 1)(2n − 1), 0 ≤ s ≤ m − 1, we have
v0 + · · · + vm−1 = t + (s − 1)(2n − 1), 0 < t ≤ 2n − 1.
If xu0

0 → x
v0+v1+···+vm−1
0 , we have xu0

0 → xt
0 and thus u0 = t. Therefor it holds

that (v0, v1, · · · , vm−1) = (is0, i
s
1, · · · , ism−2, u0 + (s − 1)(2n − 1) − ∑m−2

j=0 isj) for
0 ≤ isj ≤ 2n − 1.
Conversely if (v0, v1, · · · , vm−1) = (is0, i

s
1, · · · , ism−2, u0+(s−1)(2n−1)−∑m−2

j=0 isj)
for 0 ≤ isj ≤ 2n − 1, we have v0 + v1 + · · · + vm−1 = u0 + (s − 1)(2n − 1) and

xu0
0 ≡ x

u0+(s−1)(2n−1)
0 ≡ x

v0+v1+···+vm−1
0 . Then xu0 → x

v0+v1+···+vm−1
0 . �

Example 2. Let x0, x1, y, z ∈ F23 with the irreducible polynomial f(x) = x3 +
x + 1. y = (x0 ⊕ 3x1)3. Compute (u0, u1) when xu0

0 · xu1
1 � yv, v = 2.

Consider z = x0 ⊕ 3x1, then y = z3. Then we need to compute all the
monomial trails xu0

0 xu1
1 � zw � yv. According the Rule 4, we have w = 3v mod

(7) = 6 mod (7), w = 6. As w = u0 + u1 and u0 � w, we have u0 = 0, 2, 4, 6.
Then we deduce that (u0, u1, w, v) = (6, 0, 6, 2), (4, 2, 6, 2), (2, 4, 6, 2), (0, 6, 6, 2)
by the propagation rules. It is verified by

y2 = x6
0 ⊕ 5x4

0 · x2
1 ⊕ 7x2

0 · x4
1 ⊕ 6x6

1 → (u0, u1, v) = (6, 0, 2), (4, 2, 2), (2, 4, 2), (0, 6, 2).

3.3 Bit-Vector Models for Field-Based Operations

In this subsection, we take advantage of the bit-theory of SMT and translate the
propagations into a system of equations involving both arithmetic operations
and bit-based operations. The solutions to the constraints are all the possible
monomial trails through the basic operations. Moreover, we avoid arithmetic
multiplications and arithmetic modular to obtain efficient bit-vector constraints.
The models for XOR, AND, COPY, m-COPY, and POWER are introduced as
follows.
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Model 1 (Field-based XOR). Let (u0, u1)
XOR−−−→ (v) denote the monomial

trails through the field-based XOR function, where two n-bit words are compressed
to one n-bit word using an XOR operation. Then, it can be depicted using the
following constraints:

⎧
⎪⎨

⎪⎩

u0 + u1 = v,

v ∧ u0 = u0,

u0, u1, v are n-bit variables.

The constraint v ∧ u0 = u0 excludes the invalid trails for v � u0.

Model 2 (Field-based AND). Let (u0, u1)
AND−−−→ (v) denote the monomial

trails through the field-based AND function, where two n-bit words are compressed
to one n-bit word using an AND operation. Then, it can be depicted using the
following constraints:

⎧
⎪⎨

⎪⎩

u0 = v,

u1 = v,

u0, u1, v are n-bit variables.

Model 3 (Field-based COPY). Let (u) COPY−−−−→ (v0, v1) denote the monomial
trails through the field-based COPY function, where one n-bit word is copied to
two n-bit words using a COPY operation. Then, it can be depicted using the
following constraints:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v0 + v1 + t = t || u,

u || t �= 0n || 11,
u, v0, v1 are n-bit variables,
t is a 1-bit variable.

Proof. For u = 0, the only valid trail is v0 + v1 = 0 since t �= 1. For u �= 0, we
have v0 + v1 = u when t = 0 and v0 + v1 + 1 = 1 || u = u + 2n when t = 1.

�
Model 4 (Field-based m-COPY). Let (u) m−COPY−−−−−−−→ (v0, v1, · · · , vm−1)
denote the monomial trails through the field-based m-COPY function, where one
n-bit word is copied to m n-bit words using an m-COPY operation. Then, it can
be depicted using the following constraints:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v0 + v1 · · · + vm−1 + t = t || u,

u || t �= 0n || q, 0 < q ≤ m − 1
t ≤ m − 1,

u, v0, v1 are n-bit variables,
t is a s-bit variable, s = �log2(m − 1)� + 1.



256 J. Cui et al.

The constraints
u || t �= 0n || q, 0 < q ≤ m − 1

is implemented in STP solver with an IF-THEN-ELSE branch statement as
follows

ASSERT (IF u = 0n THEN t = 0s ELSE t ≥ 0s);

Model 5 (Field-based POWER). Let (u) POWER−−−−−−→ (v) denote the mono-
mial trails through the field-based POWER function, where one n-bit word is
transmitted to another n-bit word using a POWER operation, gcd(d, 2n −1) = 1,
Then, it can be depicted using the following constraints:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d × v + t = t || u,

t ≤ d − 1,

u, v are n-bit variables,
t is an s-bit variable, s = �log2(d − 1)� + 1.

Moreover, when d = 2l + 1 or d = 2l − 1, we can avoid multiplications and give
more efficient constraints as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(v � l) ± v + t = t || u,

t ≤ d − 1,

u, v are n-bit variables,
t is an s-bit variable, s = �log2(d − 1)� + 1.

Proof. When u = 0, we have d × v = t × (2n − 1). Since gcd(d, 2n − 1) = 1, we
have gcd(d, t × (2n − 1)) ≤ t < d, then d is not divisible by t × (2n − 1) if t �= 0.
Then we have v = 0.

When u = 2n − 1, d × v = (1 + t) × (2n − 1). If t = d − 1, v = 2n − 1. If
t �= d − 1, there are no solutions since d is not divisible by (t + 1) × (2n − 1) for
0 < t + 1 < d.

When u �= 0 and u �= 2n − 1, we have d × v = u + t × (2n − 1) and thus
u = dv mod (2n − 1). �

3.4 Detecting the Upper Bound of the Algebraic Degree

In this subsection, we describe how to detect the upper bound of the algebraic
degree for block ciphers considering round keys. All the round keys k(i) are
regarded as independent input variables defined over F2n for 0 ≤ i < r. Suppose
the input of the statement is defined over F

t
2n , that is, the length of the word

size is n and the number of words is t. For 0 ≤ i < r, let πu(i)(x(i)) denote
the input monomials of the i-th round function, respectively. Then πu(r)(x(r))
denotes a monomial of ciphertext we are interested in and is usually set as a unit
vector to study a certain word of the ciphertext in practice. πv (i)(k(i)) denotes
the monomial of the i-th round key. We use equations to add constraints for
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variables u(i), u(i+1), and v(i) according to the function between them. The
monomial trails through the public function described in the models are intro-
duced in Sect. 3.3. Notice that the monomials πv (i)(k(i)) are treated equivalently
as πu(i)(x(i)) when we add constraints.

Initial Constraints. According to Proposition 2, if we want to determine
whether a specific monomial πũ(r)(x(r)) does not contain any (key-related) mono-
mial πv (0),··· ,v (r)(k(0), · · · ,k(r)) ·πũ(0)(x(0)), we only need to check whether there
exist some trails from the monomial πv (0),··· ,v (r)(k(0), · · · ,k(r)) · πũ(0)(x(0)) to
πũ(r)(x(r)). Given an initial vector Iu = (ũ(0)

0 , · · · , ũ
(0)
t−1), where ũ

(0)
i ∈ F2n , we

use
u
(0)
i = ũi

(0) for 0 ≤ i < t

to add the initial constraints on u(0) and search for the general monomial trails.
Notice that we do not add any constraints on (v(0), · · · ,v(r)) since they are all
free variables over F2n .

However, in the higher-order differential attacks [29], we are interested in
the algebraic degree of F . If the algebraic degree of F is δ(F ), then we have⊕

v∈V⊕c F (v) = 0 if the dimension of the affine vector space V ⊕ c is strictly
greater than δ(F ). We then use Corollary 1 that the algebraic degree of monomial
xu0
0 · ... · x

ut−1
t−1 is given by

∑t−1
i=0 wt(ui). Therefore, if we want to determine the

algebraic degree of a certain monomial πu(r)(x(r)), we only need to check whether
πu(r)(x(r)) contains any term in the set Sl for d ≤ l ≤ Δ, where

Sl = {πv (0),··· ,v (r)(k(0), · · · ,k(r)) · πu(0)(x(0)) |
t−1∑

i=0

wt(u(0)
i ) = l} (4)

and Δ denotes the maximum algebraic degree. According to Proposition 2, if the
monomial πu(r)(x(r)) contains no monomials in Sl for d ≤ l ≤ Δ, the algebraic
degree δ(F ) is strictly less than d and the upper bound of the algebraic degree
is d − 1.

Stopping Rules. If we consider the algebraic degree of the i′th ciphertext word,
then we use {

u
(r)
i = 1, if i = i′,

u
(r)
i = 0, if i �= i′.

to add the stopping rules on u(r).

Detecting the Upper Bound of the Algebraic Degree. Let us denote
the stopping constraints as Γ = (0, · · · , 0

︸ ︷︷ ︸
i′

, 1, 0, · · · , 0
︸ ︷︷ ︸
t−i′−1

). If we want to deter-

mine whether the upper bound of the algebraic degree for a certain monomial
πu(r)(x(r)) is d−1, we only need to check whether πu(r)(x(r)) contains any term
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Algorithm 1: δ = SearchDegree(Mr,Δ, Γ )
Input: The r-round SMT model Mr, the maximum algebraic degree Δ, the

stopping constraints Γ
Output: The algebraic degree δ

1 M ← Mr;
2 δ = 0;
3 for i = 0; i < t; i ← i + 1 do

4 M.con ← u
(r)
i = Γ [i];

5 for i = Δ; i ≥ 0; i ← i − 1 do

6 M.con ← ∑
j wt(u

(0)
j ) = i;

7 solve the r-round SMT model M;
8 if the problem is satisfiable then
9 δ = i;

10 break;

11 return δ;

in the set Sl. Sl is defined in Equation (4). For l ≤ Δ, if there is no general
monomial trail from any monomial contained by Sl to π

(r)
u (x(r)) for d ≤ l ≤ Δ,

the upper bound of the algebraic degree is d − 1. Therefore, we use constraint
∑

i

wt(u(0)
i ) = l (5)

from l = Δ in a decreasing order to add the initial constraint on u(0). Δ denotes
the theoretical upper bound of the algebraic degree with a maximum value of
n · t − 1 for permutations.

The framework of the whole algorithm is illustrated in Algorithm 1. When the
SMT solver finds the solution for the first satisfiable problem, an assignment of
the variables that makes the problem satisfiable is obtained. Then the searching
process finishes and we have found the upper bound of the algebraic degree δ.

4 Theoretical Upper Bound for MiMC-Like
Constructions in (Unbalanced) Feistel Network

In this section, for a better insight into the behavior of the degree growth, we
firstly investigate the algebraic degree of MiMC-like constructions in the (unbal-
anced) Feistel network. Based on the upper bound given in [22] valid for the
MiMC-like construction in Even-Mansour schemes, we propose a new linear
upper bound in Sect. 4.1. Besides, we show that higher-order differential distin-
guisher can be established using the special structure of the function in Sect. 4.2.
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4.1 Theoretical Upper Bound on the Algebraic Degree

Considering Ek : F
t
2n → F

t
2n as an (unbalanced) Feistel-network cipher, t ≥ 2.

The j-th (expanding) round function is defined as

(x
(j)
0 , x

(j)
1 , · · · , x

(j)
t−1) ← (x

(j−1)
1 ⊕ F (x

(j−1)
0 ), · · · , x

(j−1)
t−1 ⊕ F (x

(j−1)
0 ), x

(j−1)
0 ), (6)

where F (x) := (x⊕k(j−1))d. k = (k(0), · · · , k(r−1)) denotes a sequence of round
keys.

We firstly focus on the univariate degree of Ek. The maximum Hamming
weight of the exponent for a single variable xi in x

(r)
j is represented by δxi

(x(r)
j ).

Example 3. Let y = x2
0x

7
1 ⊕ x5

0x
3
1 ⊕ x8

0x
5
1, then we have

δx0(y) = 2, δx1(y) = 3.

Recalling the upper bound given in [22] valid for the MiMC-like construction
in Even-Mansour schemes, we apply this idea to the (unbalanced) Feistel network
and prove the following Lemma 1.

Lemma 1. Considering Ek : F
t
2n → F

t
2n as an (unbalanced) Feistel-network

cipher represented as in Equation (6). For 0 ≤ i, j < t, r ≥ 1, we have

δxi
(x(r)

j ) ≤

⎧
⎪⎨

⎪⎩

min{�log2(d
r−(i+θ(j)) + 1)�, n}, if r > i + θ(j),

1, else if r = i − j + t · θ(j),
0, else.

where

θ(j) =

{
0, if 0 ≤ j < t − 1,
1, if j = t − 1.

Proof. Notice that the degree of xi grows differently in the different branches of
the (unbalanced) Feistel network. When j < t − 1, we have that the maximum
exponents of xi in x

(i)
j is d. Then the exponents of xi in r-th round are upper

bounded by dr−i if r > i. This means that the upper bound of δxi
(x(r)

j ) is the

maximum integer l that satisfies 2l − 1 ≤ dr−i. Since δxi
(x(r)

j ) ≤ n we have

δxi
(x(r)

j ) ≤ min{�log2(dr−i + 1)�, n}. For the case of r ≤ i, by simple observa-

tion the maximum exponents of xi in x
(i−j)
j is 1 when i > j and x

(r)
j does not

contain the variable xi otherwise. Hence we have δxi
(x(r)

j ) = 1 if r = i − j and

δxi
(x(r)

j ) = 0 otherwise.
When j = t − 1, due to the structure of the (unbalanced) Feistel network we

have δxi
(x(r)

t−1) = δxi
(x(r−1)

0 ). Then we can derive δxi
(x(r)

j ) in the same way before.

Since the maximum exponents of xi in x
(i+1)
j is d, we have that the exponents in

r-th round are upper bounded by dr−(i+1) and δxi
(x(r)

j ) ≤ min{�log2(dr−(i+1) +

1)�, n} for r > i+1. For the case of r ≤ i, the maximum exponents of xi in x
(i−j+1)
j

is 1 and we have δxi
(x(r)

j ) = 1 if r = i − j + 1. �
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Using Corollary 1, we propose the upper bound on the algebraic degree of
MiMC-like constructions in (unbalanced) Feistel network as follows.

Proposition 3. Considering Ek : F
t
2n → F

t
2n as a (unbalanced) Feistel-network

cipher represented as in Equation (6). Let Rj = logd(2n − 1) + (t − 1 + θ(j)),
The algebraic degree of Ek satisfies that

δ(x(r)
j ) ≤

{∑t−1
i=0 δxi

(x(r)
j ), if r < Rj ,

t · n − 1, else.

The proof can be found in the full version of the paper [1].

Discussion of Proposition 3. By the proof of Proposition 3, we can see that
the growth of the algebraic degree is almost linear. When r ≥ Rj , δ(x(r)

i ) is
always t · n − 1. However, we point out that it is not always the case. Taking
the polynomial (x0 ⊕ k0)27(x1 ⊕ k1)18 as a simple example, the algebraic degree
is wt(27) + wt(18) = 6 for the appearance of monomial x27

0 x18
1 . However, when

n = 3, actually we have

(x0 ⊕ k0)27(x1 ⊕ k1)18 ≡ (x0 ⊕ k0)6(x1 ⊕ k1)4

and the algebraic degree is wt(6) + wt(4) = 4. The deviation is caused by the
offset of exponents when the degree is over 2n − 1, which is difficult to give a
condition to guarantee when a particular monomial will change. Moreover, the
relatively simple algebraic structure also leads to sparser terms and this decreases
the practical degree.

4.2 Constructing Higher-Order Differential Distinguishers
by Considering Different Numbers of Branches

As is well known, if the algebraic degree of F is strictly smaller than d − 1, then
for any subspace V ⊆ F

N
2 with dimension s ≥ d, we have

⊕
x∈V⊕c F (x) = 0.

Unfortunately, the opposite does not hold in general. Even if the summing over
all the x ∈ V ⊕ c of dimension s ≤ d always results in a zero-sum, we cannot
make sure if the algebraic degree is d since it can be caused by some special
structure of the function. However, this provides us with a new approach for
detecting the higher-order differential distinguisher. For multivariate polynomial
Fk : F

t
2n → F2n defined as

Fk(x0, · · · , xt−1) =
∑

u=(u0,··· ,ut−1)∈{0,1,··· ,2n−1}t

ϕk(u) ·
t−1∏

i=0

xui
i ,k ∈ F

r
2n .

We limit ourselves to consider the sum of the Hamming weight for the exponents
of different branches, denoted by

∑
i∈X

δxi
(x(r)

j ) for some certain j. X represents
the set of the branches we are interested in. Then by tracing the upper bound of
∑

i∈X
δxi

(x(r)
j ) precisely, we can establish higher-order differential distinguishers.

The following theorem is a corollary of Proposition 1 in [8].



On the Field-Based Division Property 261

Corollary 2. Let Fk : F
t
2n → F2n be multivariate polynomial defined as

Fk(x0, · · · , xt−1) =
∑

u=(u0,··· ,ut−1)∈{0,1,··· ,2n−1}t

ϕk(u) ·
t−1∏

i=0

xui
i ,k ∈ F

r
2n .

If there exist m variables xj0 , xj1 , · · · , xjm−1 satisfies that for each non-vanishing
monomial in Fk there is

⊕m−1
w=0 hw(ujw) ≤ s − 1, we have

⊕

v∈V⊕c

Fk(v) = 0. V =

{(l0, l1, · · · , lt−1) | (lj0 , lj1 , · · · , ljm−1) ∈ V } for any affine subspace V ⊆ F2m×n

of dimension at least s.

Proof. Each non-vanishing monomial of Fk can be written in the form of ϕk(u) ·
xu0
0 xu1

1 · · · · · x
ut−1
t−1 with ϕk(u) �= 0. Since the dimension of V is at least s, then

we have ∑

(xj0 ,··· ,xjm−1 )∈V

x
uj0
j0

· ... · x
ujm−1
jm−1

= 0

and for each monomial of Fk we have

∑

(x0,··· ,xt−1)∈V⊕c

ϕk(u) ·
t−1∏

i=0

xui
i = 0.

Consequently,
⊕

v∈V⊕c

Fk(v) = 0.

5 Applications to Feistel MiMC, MiMC and GMiMC

We apply our algorithm to some competitive arithmetization-oriented block
ciphers, including MiMC and its generalization Feistel MiMC and GMiMC. All
of them use x �→ x3 as their round function, but are based on different design
strategies. The original MiMC introduced by Albrecht et al. [3] is a family of
block ciphers dedicated to applications that support operations in large finite
fields posing largest performance bottleneck. Due to its outstanding performance
in applications such as MPC, SNARKs and STARKs, it quickly became the opti-
mal choice for many use cases. In the same specification, a variant of MiMC was
proposed by inserting the original design into the Feistel structure, named Feistel
MiMC or MiMC-2n/n. This first application of Feistel networks in AO ciphers
brings more flexibility of being able to rely on a larger field size. In that spirit,
Albrecht et al. proposed GMiMC [2], a family of block ciphers based on different
types of Feistel networks which can operate on different numbers of branches.

5.1 Application to Feistel MiMC

In this subsection, we focus on Feistel MiMC, an r-round block cipher in Feistel
network with n-bit block size and the same key size operating on F2n . The i-th
round function F (i) is depicted in Fig. 1 and defined as

(x(i)
0 , x

(i)
1 ) ← (x(i−1)

1 ⊕ (x(i−1)
0 ⊕ k(i−1))d, x

(i−1)
0 )



262 J. Cui et al.

k = (k(0), . . . , k(r−1)) denotes a sequence of r round subkeys. The round con-
stants are omitted for simplicity since they can be regarded as part of the round
keys and do not affect the upper bound of the algebraic degree. We denote Feis-
tel MiMC specified by exponent d and block size n as FeistelMiMCd(n, r). When
d = 3, the number of rounds to achieve n-bit security is rn = 2n · log3(2)+1 and
the number of rounds to achieve 2n-bit security is rN = �2n · log3(2)� + 3. As
far as we know, the best higher-order differential distinguisher in the literature
is the 83-round one proposed in [8] for the permutation Feistel MiMC.

Fig. 1. The round function F (i) of FeistelMiMCd(n, r).

Detect the algebraic degree of FeistelMiMCd . Let πu(0)(x(0)) denote the
monomials of the input statements of FeistelMiMCd. πu(i)(x(i)) and πv (i)(k(i))
denote the output statements of the i-th round function F (i) and the monomial
of the i-th round key, respectively. We introduce auxiliary variables and the
whole SMT model Mr is described as

Mr ←

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(u(i)
0 ) COPY−−−−→ (u(i+1)

1 ,m(i)) for 0 ≤ i < r,

(v(i),m(i)) XOR−−−→ (pi) for 0 ≤ i < r,

(p(i)) POWER−−−−−−→ (q(i)) for 0 ≤ i < r,

(q(i), u(i)
1 ) XOR−−−→ (u(i+1)

0 ) for 0 ≤ i < r,

By setting the initial constraints and stopping rules, Algorithm 1 is implemented
to search the algebraic degree of FeistelMiMCd(n, r). We denote the algebraic
degree of the left branch and the right branch by δ(x(r)

0 ) and δ(x(r)
1 ), respectively.

Without loss of generality, we only search for δ(x(r)
0 ) due to the structure of the

Feistel network, i.e., δ(x(r)
1 ) = δ(x(r−1)

0 ).

Comparison of Our Results with Theoretical Bounds. We have prac-
tically verified our results on small-scale instances of FeistelMiMC3(n, r) with
block size n = 13 and found that our detected bounds correspond to the practi-
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cal results. A concrete comparison of different degree bounds for δ(x0) is given in
Fig. 2 for FeistelMiMC3(129, r). The trivial upper bound is defined as 2r. Mean-
while, we also depict the trivial lower bound to explicitly understand the security
margin. Indeed, since the monomials x3r

0 and x3r−1

1 always appears in x
(r)
0 inde-

pendently from the choice of round constants or round keys, we can define the
trivial lower bound as max{wt(3r), wt(3r−1)}.

We notice that both our detected bound and our theoretical bound present
a linear growth in the initial stage. A more substantial difference appears when
the algebraic degree is reaching the maximal, namely when r > Rj . While the
theoretical bound predicts that δ(x(r)

0 ) reaches the maximal degree directly after
the linear growth, the detected bounds show that there is still a long stage of slow
growth before achieving the maximum algebraic degree. During some consecutive
rounds, the algebraic degree even remains constant, called a plateau in [14]. Some
plateaus cover a few rounds, e.g., δ(x(r)

0 ) stays constant at 254 for only 2 rounds.
The largest plateau appears when the algebraic degree is 2n − 2. It remains
constant for an especially long time, covering a total of 27 rounds. Our results
indicate that the stage of slow growth significantly influences the growth of
the algebraic degree. Therefore, more rounds than previously predicted may be
necessary to guarantee security against high-order differential distinguishers. For
FeistelMiMC3(129, r), our detected bound can produce the distinguisher for 124
rounds, which extends the theoretical distinguisher for 41 rounds.

We would like to mention that our Algorithm 1 can also be applied to search
for the univariate degree δxi

(x(r)
j ) by slightly modifying the initial constraints

as
wt(u(0)

i ) = l

for i ∈ {0, 1}, respectively. Then if wt(u(0)
i ) ≤ s − 1, we can always construct

a higher-order differential distinguisher with a data complexity of 2s for branch
i. As an example, for FeistelMiMC3(129, r), we can exhibit a distinguisher with
data complexity 2127/2129 for 82/83 rounds, both resulting in a zero-sum in the
output of the right branch.

Comparison of Our Bounds with Different Exponents. We also applied
our algorithm to different exponents d and observe the influence of exponents
on the degree growth. A simple observation of Fig. 3 is that the linear rate of
the initial linear growth goes up with d and the number of rounds for the slow
growth (i.e., from the round R0 until reaching the maximal algebraic degree)
is reduced. The number of rounds for the slow growth is 42 rounds for d = 3
whereas it is 30 rounds for d = 5 despite the Hamming weight of d is the same.
For d = 31, the number of rounds for the slow growth is only 15, with the largest
plateau covering 10 rounds.

Known-Key Zero-Sum Distinguisher for the Full FeistelMiMC3(129, r).
The known-key distinguishers for block ciphers were introduced by Knudsen and
Rijmen at ASIACRYPT 2007 [28] and have been a major research direction in
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Fig. 2. Comparison of different degree bounds δ(x
(r)
0 ) for FeistelMiMC3(129, r).

Fig. 3. Comparison of our degree bounds δ(x
(r)
0 ) for FeistelMiMCd(129, r) with different

exponents d.

cryptanalysis since then. There is no secret material involved in the computation
and the attacker aims to find a structural property for the cipher which an ideal
cipher would not have. It is also related to the distinguishers for permutation
since the analysis is often done in the known-key model. A well-known powerful
distinguisher for the known-key setting is the so-called zero-sum distinguisher [5].
The idea is based on the inside-out approach, where the attacker starts from the
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middle rounds and chooses a set of internal states so that the sum of the inputs
and outputs are all zero when computing backwards and forwards.

Let us consider FeistelMiMC3(129, r). By choosing a subspace of the right
input branch of dimension 127, the distinguisher can be extended forwards for
82 rounds, with the output of the right branch achieving zero-sum property. The
inverse of FeistelMiMC3(129, r) still follows the Feistel network. When computing
backwards, the active branch is now the left one. Then the distinguisher can be
extended backwards for 81 rounds, resulting in a zero-sum property in the right
output branch. This eventually leads to a distinguisher with complexity 2127 for
a total of 82 + 81 = 163 rounds. Besides, by saturating the branch x1, we can
further derive a zero-sum distinguisher of 83+82 = 165 rounds. Moreover, since
the upper bound of the algebraic degree δ(x(r)

0 ) is 250 for 83 rounds, we can
establish a zero-sum distinguisher covering a total of 83 × 2 = 166 rounds by
choosing a subspace of dimension D = 251. With the largest non-trivial vector
space F

257
2 , we can deduce the longest zero-sum distinguisher covering a total of

124 × 2 = 248 rounds, much more than rN = 166 rounds for 2n-bit security.

5.2 Application to MiMC

In this subsection, we consider the algebraic degree of different variants of MiMC
and investigate some possible choices for the generic exponents d. MiMC [3] is
an r-round key-alternating block cipher with an n-bit block size and the same
key size. Each round consists of three steps: a key addition with the master key
k, a round constant addition of ci ∈ F2n , and the application of the non-linear
function Rd := xd over F2n with (d, 2n − 1) = 1.After r round iterations, an
additional k is added at last. To simplify the representation, we equivalently
regard k ⊕ ci as the round key ki and the instance MiMCd(n, r) is defined by

MiMCd(n, r) := Rd(· · · Rd(Rd(x ⊕ k0) ⊕ k1) · · · ) ⊕ kr (7)

where Rd(x) := xd.

Comparison of Different Choices for Exponents d. Referring to the anal-
ysis proposed in MiMC, the best choice of the exponents seems to be of the form
d = 2l−1 for integer l. We then apply our searching algorithm for MiMCd(129, r)
with d ∈ {3, 7, 15, 31}, respectively. Appendix A in [1] compares the different
upper bounds of the algebraic degree. δ

(d,r)
MP denotes the algebraic degree found

by our algorithm, while δ
(d,r)
[EGL+20] denotes the theoretical upper bounds in [22]

given as δ
(d,r)
[EGL+20] = �log2(dr + 1)�. We also verified our bounds on small-scale

instances and the observed degree is denoted by δ(d,r).
We observe that for MiMCd(129, r) with d ∈ {3, 7, 15, 31}, the higher-order

differential distinguisher can be established for up to 81, 46, 33, 27 rounds, respec-
tively. However, according to the formula for the number of rounds used in MiMC
specification [3], the total rounds are 82, 46, 34, 27 rounds, respectively. The dis-
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tinguishers even can cover the full-round MiMCd for d = 7 and 31 while the
security margin is only 1 round for d = 3 and 15. Therefore, it invalidates the
security claims of the designers and we expect that more rounds than previously
predicted in MiMC-like schemes are necessary to guarantee the security against
the higher-order differential distinguisher.

We also investigate the algebraic degree of MiMCd(n, r) with d = 2l + 1.
Besides the theoretical bound δ

(d,r)
[EGL+20], the work of [14] proposed another the-

oretical bound for d = 2l + 1, represented by δ
(d,r)
[BCP22]. δ

(d,r)
[BCP22]

1 is given as

δ
(d,r)
[BCP22] =

{
2 × �kr/2 − 1�, kr = �r log2(d)�, for l = 1,

�r log2(d)� − l + 1, for l > 1.

When d = 3, δ
(3,r)
[BCP22] is exact for up to more than 16000 rounds of MiMC.

Appendix A in [1] compare the different upper bounds of the algebraic degree
for MiMCd(129, r) for exponents d = 2l + 1. When d = 3, our detected bound
seems to coincide with δ

(3,r)
[BCP22], the exact algebraic degree. However, with the

increase of d, the theoretical bounds δ
(d,r)
[EGL+20] and δ

(d,r)
[BCP22] do not match the

observed bound δ(d,r) as well as d = 3, even if the weight of d is the same. Instead,
the upper bound found by our algorithm seems to coincide to the observed degree
well. Overall, our bounds provide a more precise evaluation of the algebraic
degree. This leads to the full-round or almost full-round higher-order differential
distinguishers for different instances of MiMCd. All the results are summarized
in Table 3.

5.3 Application to GMiMC

In this subsection, we focus on GMiMCerf , which achieves the best performance
among all the variants of GMiMC and has been chosen in the StarkWare chal-
lenges. We denote GMiMCerf specified by branch number t and block size n as
GMiMC(n, t) for simplicity. It is an r-round block cipher in unbalanced Feistel
network with an expanding round function, defined as

(x(i)
0 , x

(i)
1 , · · · , x

(i)
t−1) ← (x(i−1)

1 ⊕ F (x(i−1)
0 ), · · · , x

(i−1)
t−1 ⊕ F (x(i−1)

0 ), x(i−1)
0 ),

where x
(i)
j denotes the input of the j-th branch for round i.F represents the

cubic mapping over finite field as

F (x) := (x ⊕ k(i−1))3.

k = (k(0), · · · , k(r−1)) is a sequence of round keys and we omit the round con-
stants for simplicity. The overall round function of GMiMC(n, t) is illustrated in
Fig. 4.
1 [14] also gives an improved bound when d �= 3. However, the cost for computing the

Hamming weight is exponential in r, which means that the bound is infeasible to be
determined computationally.
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Fig. 4. The round function of GMiMC(n, t) .

Higher-Order Differential Distinguisher for GMiMCerf . With Model 4, we
can apply Algorithm 1 to search for the higher-order differential distinguisher
by slightly modifying the initial constraints as

∑

i∈X

wt(u(0)
i ) = l.

X denotes the set of branches we focus on, For a concrete example, we search
for the degree growth of GMiMC(33, 8).

By saturating three branches (x5, x6, x7) of GMiMC(33, 8), our algorithm
finds zero-sum in all the output variables after 29 rounds. Due to the structure
of the unbalanced Feistel structure, we can extend the distinguishers for t − 1
more rounds according to Proposition 3 in [8], as a total of 36 rounds. Moreover,
we can modify the initial constraint as

t−1∑

i=0

wt(u(0)
i ) = t · n − 1

and search for the longest higher-order differential distinguisher. If the model is
infeasible, then the corresponding algebraic degree is strictly less than n · t − 1
and we can always construct the distinguisher with the largest non-trivial vector
space. The longest distinguisher we can find covers a total of 43 rounds with
all the output branches achieving zero-sum property, which can be naturally
extended to 50 rounds in the same way as before. It is 10 rounds longer than
the distinguisher for permutation GMiMC(33, 8) found in [8].

6 Conclusion

While the traditional block ciphers defined over F2 possess a far-developed analy-
sis toolbox, there is a lack of cryptanalytic methods for the novel arithmetization-
oriented ciphers due to the quite different design constraints. In this paper, we
introduce a novel extension of the division property, called general monomial pre-
diction. It is a generic technique to detect the algebraic degree for ciphers over
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F2n by evaluating whether the polynomial representation of a block cipher con-
tains some specific monomials. Through tracing the transition of the exponents,
we develop a searching tool for the degree estimation of ciphers based on the
relationship between the exponents of monomials and the algebraic degree. We
apply our algorithm to some competitive arithmetization-oriented block ciphers
including MiMC, Feistel MiMC, and GMiMC. As a result, we successfully find
the currently best degree bounds and get much longer distinguishers than pre-
vious results for several instances. Overall, our methods provide a better esti-
mation for the algebraic degree in case of ciphers over the finite field F2n and
furthermore, help to establish a more accurate number of rounds necessary to
guarantee the security level.
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Abstract. CCA-like game-based security definitions capture confiden-
tiality by asking an adversary to distinguish between honestly computed
encryptions of chosen plaintexts. In the context of voting systems, such
guarantees have been shown to be sufficient to prove ballot privacy (Asi-
acrypt’12). In this paper, we observe that they fall short when one seeks
to obtain receipt-freeness, that is, when corrupted voters who submit
chosen ciphertexts encrypting their vote must be prevented from proving
how they voted to a third party.

Since no known encryption security notion can lead to a receipt-free
ballot submission process, we address this challenge by proposing a novel
publicly verifiable encryption primitive coined Traceable Receipt-free
Encryption (TREnc) and a new notion of traceable CCA security fill-
ing the definitional gap underlined above.

We propose two TREnc instances, one generic achieving stronger
guarantees for the purpose of relating it to existing building blocks, and
a dedicated one based on SXDH. Both support the encryption of group
elements in the standard model, while previously proposed encryption
schemes aiming at offering receipt-freeness only support a polynomial-
size message space, or security in the generic group model.

Eventually, we demonstrate how a TREnc can be used to build receipt-
free protocols, by following a standard blueprint.

Keywords: New primitive · Public-key encryption · Receipt-freeness

1 Introduction

A protocol offers receipt-freeness when players are unable to demonstrate to a
third party which input they provided during a protocol execution. The need for
receipt-freeness is most acute in order to prevent vote selling in the context of
elections [7], which is our motivating application.

Receipt-free voting. In voting protocols, the random coins used by the voters
can often be used as a receipt. For instance, in the famous protocol by Cramer
et al. [20], of which a variant is used by the IACR in its own elections, a voter
encrypts his vote with the election public key, and the resulting ciphertext is
posted on a public bulletin board in order to support the verifiability of the
election. If the voter decides to reveal to a third party the randomness used in
the encryption process, that party can re-encrypt the claimed vote intent with
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13793, pp. 273–303, 2022.
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the randomness provided by the voter and verify that the resulting ciphertext
appears on the bulletin board: the randomness used for encryption is, in effect,
a receipt for the vote.

Since the seminal work of Benaloh [7], numerous protocols explored mech-
anisms that would guarantee that the random coins used by a voter are insuf-
ficient to explain his ballot as it is posted on the bulletin board for the needs
of verification. In a first line of works [7,25,38], every possible voting choice is
encrypted, the resulting ciphertexts are rerandomized and shuffled by the elec-
tion authorities and made available to the voter. Furthermore, the permutations
applied during the shuffle are also transmitted to the voter using secure chan-
nels. The voter then picks the ciphertext encoding his choice, and submits it for
display on the bulletin board. Such a protocol guarantees that the voter ignores
the randomness used to encrypt his ballot, and the protocol is designed in such
a way that the voter is unable to prove which permutation he received, typi-
cally using designated-verifier zero-knowledge proofs. Such protocols are however
quite demanding in terms of resources, as they require to encrypt a number of
ciphertext proportional to the number of voting options, and a communication
bandwidth to the voters that is proportional to the number of authorities. The
more recent protocol of Kiayias et al. [28] faces similar challenges in terms of
complexity, and also only considers a weaker form of receipt-freeness that focuses
on voters preparing their ballot honestly.

More recently, Blazy et al. [10] proposed a simpler voting flow supporting
receipt-freeness based on signatures on randomizable ciphertexts (SRC): the vot-
ers encrypt their vote and sign the resulting ciphertext, which is then transmitted
to a re-encryption authority that re-randomizes the ciphertext, adapts the sig-
nature accordingly and posts the result on the bulletin board. The voter remains
able to verify that a vote with a valid signature is posted on the board on his
behalf, but is unable to explain the vote content thanks to the re-randomization
step. Furthermore the SRC guarantees that the content of the encrypted ballot
cannot be modified during the re-encryption process. This approach was further
refined by Chaidos et al. [15], who also propose a simple game-based definition
of receipt-freeness, which we adopt here, and more efficient SRCs keep being
proposed [5,15].

This approach makes the ballot submission process asymptotically optimal
for the voter, in the sense of Cramer et al. [20]: the protocol complexity for the
voter becomes logarithmic in the number of voting options and independent of
the number of election authorities, contrary to a dependency that is at least
linear in both these factors when the approaches of [7,25,28,38] are used.

Receipt-free ballot submission. These works, by offering a simple ballot submis-
sion process in one pass, raise the natural question of identifying a public key
encryption primitive that would support a receipt-free ballot submission pro-
cess. Such a primitive would support a modular analysis of voting protocols
that would be built around it, including various tallying approaches (based on
mix-nets and homomorphic tallying for instance), and approaches to individual
verifiability (based on the so-called Benaloh challenge [6] or on code voting for
example [17]).
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This question has been answered in the context of private (rather than
receipt-free) ballot submission: it is well-known that a CCA-secure encryption
scheme can be used to obtain a private ballot submission, a requirement that can
be relaxed to NM-CPA security when the tally takes place in a single decryption
round [9,22,41].

These works highlight the importance of some form of non-malleability in a
submission process. From a practical point of view, non-malleability is needed
in order to be able to detect (and prevent) non-independent ballot submissions
(e.g., ballot copies) that would violate the privacy of the vote. From a technical
point of view, security proofs require the availability of a decryption oracle used
to extract the votes submitted by the adversary.

CCA security is however problematic in the context of receipt-free ballot
submission, since we need to be able to re-randomize encrypted votes, so that
the voter cannot explain the vote content anymore. The exploration of CCA-
like security notions that would support some form of controlled malleability
has been a fertile research area, which resulted in the definition of the notions
of replayable-CCA (RCCA) security [14], homomorphic-CCA (HCCA) secu-
rity [36], and controlled-malleable CCA (CM-CCA) security [16] for instance.
As far as we know, all these works rely on the same CCA blueprint, in which an
adversary submits one or more messages to a challenger, who answers either with
an honest encryption of the messages or with something else, and the adversary
must decide what he received with the help of a decryption oracle that accepts to
decrypt any ciphertext that is not “recognizably” related to the challenge cipher-
texts. The same holds in any other encryption primitives with CCA-like security
with enhanced decryption capabilities. While they give more flexible ways to
decrypt ciphertexts (based on identities, attributes and so on [11,26,37,39]), the
challenge ciphertext is computed when the adversary sends a chosen message.
Eventually, and following an observation which dates back at least to [25], deni-
able encryption [12] also only focusses on honestly computed ciphertexts that
can then be explained for any other plaintexts.

This blueprint is however inadequate when turning to encryption schemes
that would support the design of protocols that support receipt-freeness: in such
a setting, we need to consider an adversary who sends to the challenger chosen
ciphertexts, that may not be computed as a random encryption of a plaintext
vote: they could have been maliciously computed.

Our contributions

1) TCCA security. In this work, we investigate for the first time the implication
of defining the notion of traceable CCA security (TCCA), a CCA-like security
notion in which adversarially-chosen ciphertexts are submitted in the challenge
phase. The challenge ciphertext is produced by randomizing one ciphertext or
another, and we recognize derivatives of the challenge ciphertext thanks to a
non-malleable public trace which is present in any ciphertext. To avoid trivial
attacks, both ciphertexts given in the challenge phase must trace to each other,
i.e., they must have the same trace.
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This makes it possible for voters to submit a ciphertext of their choice, which
will then be re-randomized by an authority, and can still be tracked by the voters
using the trace.

For honestly produced ciphertexts, our security notion also implies traditional
confidentiality properties, so that ballot privacy remains guaranteed should the
re-randomizing authority be corrupted. So, non-malleability really serves two
purposes here: (1) it guarantees that the re-randomizing authority cannot pro-
duce a ciphertext that would be related to an honestly produced one and have
a different trace (which would violate ballot privacy), and (2) it guarantees that
the re-randomizing authority cannot produce a ciphertext that would have the
same trace as a given one but would decrypt to a different plaintext.

2) TREnc. We introduce Traceable Receipt-free Encryption (TREnc) as a new
primitive with the following features:

– Traceability. Honestly generated ciphertexts are traceable in the sense that it
is infeasible to modify the encrypted message;

– Randomizability. Valid ciphertexts are fully re-randomizable, up to the trace;
– TCCA security. Given a pair of ciphertexts that trace to each other, it is

unfeasible to guess which one is randomized, even with access to a decryption
oracle which decrypts any ciphertexts that do not trace to the challenge
ciphertext, except before the challenge phase.

We also provide:

1. A generic TREnc that can be instantiated from existing building blocks that
offer security in the standard model, and whose CRS is public-coin;

2. A pairing-based TREnc under the SXDH assumption in the standard model,
where the public key only contains 13 first-source group elements and 6 s-
source group elements, and the ciphertext contains 13 first-source group ele-
ments and 5 s-source group elements.

Both approaches improve on the state of the art: the previous SRC-based
solutions either require costly bit-by-bit encryption [10,15], or only offer security
in the generic group model [5].

3) A TREnc based voting scheme. Eventually, we show how to turn a TREnc
into a simple voting scheme in a generic way, following the Enc2Vote blueprint
previously used to turn a CCA-secure encryption scheme into a private voting
scheme [9].

We demonstrate that the resulting voting scheme satisfies a notion of receipt-
freeness that is equivalent in spirit to the one of Chaidos et al. [15], but fixes a
small technical issue in that definition that makes their security game trivial to
win (making it impossible to build a protocol that is receipt-free according to
their definition).

Other related works. We focus on offering receipt-freeness in the context of
voting, which is the context in which receipt-freeness was introduced [7], and
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which remains the main application context in which receipt-freeness is desired.
Voting can however be seen as a special type of secure function evaluation pro-
tocol, in which specific tallying functions are evaluated and, as such, the notion
of receipt-freeness, and the related notion of coercion-resistance have also been
defined in the general multi-party computation setting [4,13,35,40]. We keep
our focus on the voting context in order to clarify various design choices that
are most meaningful in the voting setting compared to the general MPC setting:
our primitive is targetted for a ballot submission process in which voters submit
their ballot in one pass and do not communicate with each other, contrary to
most MPC protocols, and we design mechanisms in which the ballot submission
process can be fast, even on devices with limited computational power, while
the verification of an election may require a longer period of time and use a
dedicated computing infrastructure. Despite our focus on voting, it may be the
case that TREnc mechanisms find applications in other contexts.

2 Traceable Receipt-Free Encryption

We propose a new public key encryption primitive and associated security
notions that would support the receipt-free submission of votes in a protocol.
As a first task, we identify the fundamental ingredients that are needed for our
new encryption primitive.

An encryption scheme. We expect voters to submit their vote in an encrypted
form, in order to guarantee the privacy of the votes.

Receipt-free encryption. Voters willing to sell their vote may choose to submit
an arbitrary encrypted vote, which may be in the range of honestly produced
ciphertexts but sampled according to a different distribution, or even just a
sequence of bits that would not be within the range of the encryption mechanism.
By deviating from the normal encryption process, the voter hopes to obtain a
receipt that could be used to demonstrate his vote intent to a third party.

If the encrypted vote that is tallied is produced by the voter only, then the
voter will always have a receipt: the random coins used to encrypt the ballot.
In order to avoid this, we rely on the existence of a semi-trusted authority: that
authority will be trusted to prevent a dishonest voter from obtaining a receipt
for his vote, but will not be trusted for the correctness of the election result, and
will not be trusted for the privacy of votes encrypted by honest voters.

Concretely, in order to achieve receipt-freeness, this semi-trusted authority
tests the validity of a voter submitted ciphertext (without the need of any secret
key) and re-randomizes every valid ciphertext before posting it on a public bul-
letin board.

Traceable Receipt-Free Encryption. In order to make it possible for a voter
to check that his ballot has not been unduly modified by this semi-trusted
re-randomizing authority, it must be possible to extract a trace from any
valid ciphertext. A honest re-randomization process would keep the trace is
unchanged, hence making ciphertexts traceable, while no corrupted authority
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should be able to modify a ciphertext in such a way that it would decrypt to a
different vote while keeping the trace unchanged.

Furthermore, we need to make sure that this trace cannot serve as a receipt
for the vote. In order to make sure that it is the case, we split the encryption
process in two steps, that guarantee that any trace can be associated to any
possible vote intent. Concretely, an encryption starts with the generation of a
secret link key, which is then used, together with the encryption public key, to
encrypt any possible vote. This guarantees that, even if a voter leaks the link
key associated to his ballot as a receipt, the ballot could still encrypt any vote.1

2.1 Syntax

We now have the ingredients that we need to define a Traceable Receipt-Free
Encryption scheme, or TREnc.

Definition 1 (Traceable Receipt-Free Encryption). A Traceable Receipt-
Free Encryption scheme (TREnc) is a public key encryption scheme (Gen,
Enc,Dec) that is augmented with a 5-tuple of algorithms (LGen, LEnc,Trace,
Rand,Ver):

– LGen(pk; r): The link generation algorithm takes as input a public encryption
key pk in the range of Gen and randomness r, and outputs a link key lk.

– LEnc(pk, lk,m; r): The linked encryption algorithm takes as input a pair of
public/link keys (pk, lk), a message m and randomness r and outputs a cipher-
text.

– Trace(pk, c) : The tracing algorithm takes as input a public key pk, a ciphertext
c and outputs a trace t. We call t the trace of c.

– Rand(pk, c; r): The randomization algorithm takes as input a public key pk, a
ciphertext c and randomness r and outputs another ciphertext.

– Ver(pk, c): The verification algorithm takes as input a public key pk, a cipher-
text c and outputs 1 if the ciphertext is valid, 0 otherwise.

In many cases, we will omit the randomness r from our notations. It is then
assumed that it is selected uniformly at random.

We require several correctness properties from the additional algorithms of a
TREnc. The first requires that encrypting a message m by picking a link key lk

1 Of course, this also means that, if a corrupted re-randomizing authority obtains a
voter’s secret link key (e.g., by corrupting the voter’s voting client), then it might be
able to produce a ciphertext that encrypts a different vote intent but would still trace
to the original voter trace. Just as other attacks related to corrupted voting clients,
such attacks can be prevented by traditional continuous ballot testing procedures [6],
in which a voter would have the option to ask an authority to spoil a ballot posted
on the bulletin board, which would then be verifiability decrypted for verification,
and later replaced by a fresh new ballot produced by the voter, using a fresh link
key.
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using LGen and computing LEnc(pk, lk,m) produces a ciphertext that is identi-
cally distributed to a fresh encryption of m using Enc. The second requires that
the Trace of a ciphertext does not depend on the message that is encrypted. The
third requires that randomizing a ciphertext does not change the corresponding
plaintext neither the corresponding trace. The last requires that every honestly
computed ciphertext passes the verification algorithm.

Definition 2 (TREnc correctness). We require that a TREnc scheme sat-
isfies the following correctness requirements.

Encryption compatibility. For every pk in the range of Gen and message m,
the distributions of Enc(pk,m) and LEnc(pk, LGen(pk),m) are identical.

Link traceability. For every pk in the range of Gen, every lk in the range
of LGen(pk), the encryptions of every pair of messages (m0,m1) trace to
the same trace, that is, it always holds that Trace(pk, LEnc(pk, lk,m0)) =
Trace(pk, LEnc(pk, lk,m1)).

Publicly Traceable Randomization. For every pk in the range of Gen, every
message m and every c in the range of Enc(pk,m), we have that Dec(sk, c) =
Dec(sk,Rand(pk, c)) and Trace(pk, c) = Trace(pk,Rand(pk, c)).

Honest verifiability. For every pk in the range of Gen and every messages m,
it holds that Ver(pk,Enc(pk,m)) = 1

2.2 Security Definitions

Verifiability We require several security properties from a TREnc. Our first
property is fairly standard: a TREnc is verifiable if the Ver algorithm guarantees
that a ciphertext is within the range of Enc. In other words, the ciphertext can
be explained by some message m, some link key lk, and some coins, even if they
are not easily computable.

Definition 3 (Verifiability). A TREnc is verifiable if for every PPT adver-
sary, the following probability is negligible in λ:

Pr[Ver(pk, c) = 1 and c �∈ Enc(pk, ·)|(pk, sk) ← Gen(1λ); c ← A(pk, sk)].

TCCA security. We now turn to our central security definition, security against
traceable chosen ciphertexts attacks, or TCCA security, which differs from all
existing CCA-like notions by letting the adversary submit pairs of ciphertexts
instead of pairs of messages, reflecting that we need security in front of adver-
sarially chosen ciphertexts. In the TCCA security game (Fig. 1), the adversary
receives the public key and has access to a decryption oracle, as usual. It then
submits a pair of ciphertexts that must be valid and have identical traces. One
of the ciphertexts is randomized and returned to the adversary, who must decide
which one it is. After receiving this challenge ciphertext, the adversary can still
query the decryption oracle, but only on ciphertexts that have a trace different of
his challenge ciphertext. So, the challenger must faithfully decrypt pre-challenge
ciphertexts that have the same trace as the challenge ciphertext. Looking ahead,
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this decryption capability offers an easy but necessary means allowing simulating
the result of an election when proving receipt-freeness.

TCCA security guarantees that, if a voter submits a ciphertext that is ran-
domized before it is posted on a public bulletin board, then the resulting cipher-
text becomes indistinguishable from any other ciphertext that would have the
same trace, and we know from the link traceability that the encryption of any
vote could have that trace. This essentially guarantees the absence of a vote
receipt.

Definition 4 (TCCA). A TREnc is TCCA secure if for every PPT adversary
A = (A1,A2) the experiment ExptccaA (λ) defined in Fig. 1 (left) returns 1 with a
probability negligibly close in λ to 1

2 .

Fig. 1. TCCA and trace experiments. In the TCCA experiment, A2 has access to
a decryption oracle ODec�(·) which, on input c, returns Dec(c) if Trace(pk, c) �=
Trace(pk, c�) and test otherwise.

It is naturally possible to write a multi-challenge version of the ExpTCCA
A (λ)

experiment, which we call q − TCCA, in which the adversary can submit q pairs
of ciphertexts. This leads to an equivalent definition, as demonstrated in the full
version [21]. We also stress that in the challenge query the adversary may know
the random coins underlying c0 and c1 and may have drawn them from a specific
secret distribution. The randomization leading to the challenge ciphertext c�

should thus erase any subliminal information binding c� to the message in cb.
This definition introduces some technical difficulty when it comes to proving
the TCCA security as it becomes harder to program the public key to ease the
transition toward a game where we are able to inject an independent message in
the plaintext in an undetectable way. Indeed, we have no clue at the setup time
about the distribution of (c0, c1) and their common trace while the emulation of
Rand(pk, cb) must preserve it without even knowing the underlying link keys.

TCCA security is reminiscent of the notion of publicly detectable replayable-
CCA (pd-RCCA) security proposed by Canetti et al. [14]. The pd − RCCA
security game is essentially the same as the CCA game, except for two main
differences: a publicly computable equivalence relation is defined on ciphertexts
and, after the challenge ciphertext has been received, the challenger will refuse



Traceable Receipt-Free Encryption 281

to decrypt any ciphertext that is equivalent to this challenge ciphertext. Fur-
thermore, ciphertexts that are in the same equivalence class must decrypt to
the same message (for completeness, the full definition is available in the full
version [21]). The pd-RCCA security game looks appealing in the context of
voting, because it captures this idea of having the possibility to re-randomize
ciphertexts while also keeping a trace that could be detected through the equiv-
alence relation. And, indeed, RCCA-secure encryption has been used in previous
proposals of receipt-free voting schemes [15].

There are three central differences, though, which motivate the introduction
of the TCCA security game.

– The challenge ciphertexts of the pd − RCCA security game are always hon-
estly computed and, as such, pd − RCCA security does not offer any guar-
antee in the face of maliciously produced ciphertexts, as it would be the case
when a voter tries to obtain a receipt for his vote.

– Contrary to pd − RCCA security, it can be observed that TCCA security says
nothing about the hiding property of the Enc algorithm, since the adversary
must distinguish based on outputs of Rand. An extreme case could define
Enc as the identity function, Trace as mapping to a single constant trace,
and Rand actually performing the encryption work, and this could still offer a
TCCA secure scheme. The confidentiality requirements on Enc will be handled
through the traceability and strong randomization properties below.

– There is no requirement for TCCA security that trace equivalent ciphertexts
decrypt to the same message: a single link key can be used to encrypt any
message, and all the resulting ciphertexts would have the same trace (by the
link traceability correctness property). We recall that this non-binding feature
is essential for receipt-free voting.

As such, TCCA security is not comparable to pd-RCCA security. It is shown
in the full version of the paper [21] that, under (different) additional conditions,
implications can be proven in both directions for a natural variant of pd-RCCA
security adapted to TREnc schemes.

Traceability and Strong Randomization. While TCCA security relates to a model
in which the voting client may be corrupted but the re-randomization server is
honest, we now focus on two central properties that are important when the
voting client is honest and the re-randomization server might be corrupted.

The traceability property guarantees to the sender of a honestly encrypted
message that no efficient adversary would be able to produce another ciphertext
that traces to the same trace and would decrypt to a different message, even if
the adversary knows the secret decryption key. So, even if a TREnc offers some
form of ciphertext malleability, its traceability implies the non-malleability of the
plaintexts. This is an important feature for the verifiability of a voting system: as
long as the link key used to encrypt a vote remains secret, and the voter submits
a single ciphertext encrypted with that link key, the voter is guaranteed that any
ciphertext that would trace to his original ciphertext encrypts his original vote.
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(But, of course, using the link key, it remains possible to produce ciphertexts
with the same trace that would decrypt to any vote.)

Definition 5 (Traceability). A TREnc is traceable if for every PPT adver-
sary A = (A1,A2), the experiment ExptraceA (λ) defined in Fig. 1 (right) returns
1 with a probability negligible in λ.

The second property, strong randomization, requires that the output of the
Rand algorithm applied to any valid ciphertext is distributed just as a random
encryption of the same message with the same link key.

Definition 6 (Strong Randomization). A TREnc is strongly randomizable
if for every c ∈ LEnc(pk, lk,m) with pk in the range of Gen and lk in the range
of LGen(pk), the following computational indistinguishability relation holds:

Rand(pk, c) ≈c LEnc(pk, lk,m)

Requiring strong randomization together with TCCA security guarantees
that Enc actually hides messages. CPA security comes easily: when the CPA
adversary sends (m0,m1) to the TCCA adversary, the TCCA adversary can
encrypt the 2 messages using a single random link key and send them to the
TCCA challenger, which will return a randomization of one of them. Strong
randomization guarantees that this is distributed exactly like an encryption of
one of the two messages, and we can send the result to the CPA adversary, who
will then offer the answer expected for the TCCA game. We show a stronger
implication to RCCA security in the full version of the paper [21].

3 Towards a Generic TREnc

We are now interested in exploring how a TREnc could be designed from existing
tools. The core TREnc security feature comes from the TCCA security game,
in which the adversary submits a pair of ciphertexts with identical traces and
receives a re-randomization of one of them. If we want relate this game to a more
standard RCCA-style security definition in which the adversary submits a pair
of plaintext and receives an encryption of one of them, we need to be able to
translate a re-randomization query on two ciphertexts into an encryption query
on the two corresponding plaintexts. But there is an additional constraint that
needs to be satisfied: the ciphertext resulting from the encryption query needs
to have the same trace as the original ciphertexts. In other words, we need to
be able to decrypt the challenge ciphertexts from the TCCA game, but also to
extract the link key that they contain. We capture this last idea in an augmented
version of a TREnc, which we call extractable TREnc.

3.1 Extractable TREncs

Essentially, an extractable TREnc makes it possible to produce encryption keys
together with a trapdoor using a TrapGen algorithm. Using that trapdoor, it
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becomes possible to extract, from any ciphertext, a link key that makes it possible
to produce new ciphertexts with the same trace as the original one. This in turn
implies the possibility to break the traceability of the scheme.

Definition 7 (Extractable TREnc). An extractable TREnc is a TREnc with
two additional algorithms TrapGen and LExtr:

– TrapGen(1λ): The trapdoor generation algorithm takes as input the security
parameter and outputs a tuple of public/secret/trapdoor keys (pk, sk, tk). We
require the distribution of the (pk, sk) pairs produced by TrapGen(1λ) to be
identical to the one of the outputs of Gen(1λ).

– LExtr(tk, c): The link extraction algorithm takes as input the trapdoor key and
a ciphertext and returns a link key lk such that, if c is in the range of Enc(pk, ·)
with pk in the range of Gen, then c is in the range of LEnc(pk, lk, ·).
It is fairly natural to require that ciphertexts can only be consistent with one

single link key, hence guaranteeing a unique link key extraction.

Definition 8 (Unique Extraction). An extractable TREnc has unique
extraction if, for every (pk, sk, tk) in the range of TrapGen and lk in the range of
LGen(pk), we have that:

– LExtr(c, tk) = lk whenever c ∈ LEnc(pk, lk, ·);
– LExtr(c0, tk) = LExtr(c1, tk) whenever we have Trace(pk, c0) = Trace(pk, c1)

and c0, c1 ∈ Enc(pk, ·).

3.2 A TREnc Flavored Variant of pd-RCCA Security

Based on an extractable TREnc, we now propose an RCCA-like security defi-
nition, pd�-RCCA-security, which shares much of the spirit of the pd − RCCA
notion of Canetti et al. [14], but is rather tailored as a useful intermediary
notion for achieving TCCA security: we will show that any pd�-RCCA-secure
extractable TREnc is also TCCA secure. Eventually, we will show how to achieve
pd�-RCCA-security from existing tools.

Definition 9 (pd�-RCCA). An extractable TREnc is pd�-RCCA-secure if for
any PPT adversary A = (A1,A2), the experiment Exppd

�-RCCA
A (λ) in Fig. 2

returns 1 with a probability negligibly close on λ to 1
2 .

Just as in the pd − RCCA security definition, our adversary receives a public
key, then can make decryption queries, make a challenge query on a pair of plain-
texts, receive an encryption c� of one of them, and then make more decryption
queries, provided that they are not about ciphertexts that are equivalent to c�.
Here the notion of equivalent ciphertext is defined by ciphertexts with identical
traces, which does not imply that they decrypt to the same plaintext, contrary
to the compatibility requirement of pd − RCCA security. The extra features
of pd�-RCCA security, which come naturally in the context of an extractable
TREnc, are that:
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Fig. 2. pd�-RCCA experiment. Here, ODec�(sk, c) is a decryption oracle that returns
test if Trace(pk, c) = Trace(pk, c�) and Dec(sk, c) otherwise.

– On top of having access to a decryption oracle, the adversary has access to a
LExtr oracle giving him the ability to extract the link key from any ciphertext.

– During his challenge query, the adversary can provide a link key on top of
its two plaintexts: the challenge ciphertext will then be computed using that
link key.

As announced, a pd�-RCCA-secure and strongly randomizable extractable
TREnc is also TCCA-secure.

Theorem 1. If a TREnc scheme T is extractable, strongly randomizable, and
pd�-RCCA-secure, then it is TCCA secure. More precisely, if the advantages
of any PPT adversary at strong randomization and pd�-RCCA experiment are
respectively bounded by εSR and ε, then for any PPT adversary A, we have
Pr[ExptccaA,T (λ) = 1] ≤ 1

2 + εSR + ε.

Proof. (See the full version for details.) The decryption queries from the TCCA
adversary are forwarded to the pd�-RCCA challenger. When the TCCA adver-
sary makes his challenge query on (c0, c1), the reduction obtains the corresponding
link key and plaintexts by querying the pd�-RCCA challenger, and sends them as
pd�-RCCA challenge. The resulting ciphertext is correctly distributed thanks to
strong randomizability, and has the correct trace thanks to the extractability. The
winning probability of the TCCA adversary is then negligibly close to the winning
probability of the resulting pd�-RCCA adversary. ��

3.3 Building a pd�-RCCA-Secure Extractable TREnc

We are now ready to build a TREnc. As a first natural building block, we
use a signature on randomizable ciphertexts (SRC), as introduced by Blazy et
al. [10]. In an SRC, any signed ciphertext can be publicly re-randomized, and the
signature can be publicly adapted so that it remains valid for the new ciphertext.

We can easily obtain the structure of a TREnc from an SRC by defining the
LGen function as setting lk as a fresh signing key for the SRC, and the LEnc
function as encrypting the plaintext using a randomizable encryption scheme,
then signing that ciphertext using lk. The trace of a ciphertext would then be
the signature verification key.
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This offers a promising skeleton, but it is not sufficient to obtain pd�-RCCA
security: as it is, the adversary could simply remove the signature from the
challenge ciphertext, sign that ciphertext with a fresh key in order to obtain a
different trace, and ask for the decryption of the result, which would be granted.

A natural solution to this problem is to link the trace to the ciphertext using
tag-based encryption [29] mechanism. In a tag-based encryption scheme, the
encryption and decryption functions take an arbitrary tag as an extra input,
and the decryption of a ciphertext with an incorrect tag will fail. We rely on
the standard notion of weak-CCA security for tag based encryption [34], which
is the CCA security game excepted that the challenge ciphertext is produced
using an adversarially chosen tag, and that no decryption query can be made
using that tag (only) after the challenge phase. This security game nicely fits our
pd�-RCCA security game, in which the trace derived from the link key submitted
by the adversary can be used as a tag, and guarantees that no ciphertext can be
modified in such a way that it successfully decrypts with a tag that is different of
the original one. We note that we must be able to decrypt pre-challenge queries
that already contains the “challenge tag” of the adversary, which prevents us
from only relying on (weak) selective-tag security.

But we still need to be able to extract the link key from a tag-based cipher-
text. This can be done fairly easily, by augmenting our encryption process with
the requirement to encrypt the link key using a randomizable CPA-secure encryp-
tion scheme, and to add a randomizable ZK proof that the encrypted link key
is indeed the one that is used as tag for the tag-based encryption. Extraction
would then simply proceed by decrypting that CPA ciphertext. (In particular,
it does not rely on any extraction property of the ZK proof system: we just need
its soundness).

To summarize, we build an extractable TREnc from the following ingredients:

– A randomizable weakly CCA secure tag-based encryption scheme (TBGen,
TBEnc,TBDec).

– An SRC compatible with the tag-based encryption scheme, which includes a
signature scheme (SGen,Sign,SVer).

– A randomizable CPA secure public key encryption scheme (EGen,EEnc,EDec).
– A randomizable NIZK proof system (Prove,VerifyProof) that, on input (ctbe,

cextr) and associated public keys, demonstrates that cextr is an encryption
with EEnc of the signing key whose corresponding verification key has been
used as a tag in order to compute ctbe using TBEnc.

And the blueprint of our TREnc is as follows:

– TrapGen uses TBGen to produces a key pair (tpk, tsk), and EGen to produce
a key pair (eextr, dextr). It returns pk = (tpk, eextr), sk = tsk and tk = dextr.

– LGen sets lk as a signing key obtained from Sign. We assume that the corre-
sponding signature verification key vk can be derived from lk.

– LEnc encrypts the message m as follows:
• ctbe = TBEnc(tpk, lk,m);
• σ = Sign(lk, ctbe);
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• cextr = EEnc(eextr, lk);
• π = Prove(ctbe, cextr; lk)

The ciphertext is made of these 4 elements, together with vk.
– Dec returns TBDec(tsk, vk, ctbe)
– Trace returns vk.
– Rand re-randomizes ctbe, adapts σ accordingly, re-randomizes cextr, and re-

randomizes and adapts π.
– Ver accepts a TREnc ciphertext if the two ciphertexts that it contains are

valid, if the signature is valid, and if the ZK proof verifies.
– LExtr returns EDec(tsk, cextr).

A complete description of this generic TREnc, together with proofs of its
security, is available in the full version of the paper [21], where we rely on the
standard security notions of all the above ingredients. Exploring whether some of
these notions can be relaxed is an interesting scope for further research. Finally,
we mention that pairing-based realizations exist for all these ingredients and that
it would be appealing to understand how to construct a secure post-quantum
TREnc. The main obstacle we see relates to the controlled-malleability feature
of our new primitive (i.e., any ciphertext must support an unbounded number
of randomization) which makes it less straightforward to realize in general, and
for instance based on lattices.

Remark 1. This section showed that the notion of extractable TREnc offers
a convenient companion for a TREnc: it is possible to build an extractable
TREnc from relatively common, yet strong, building blocks, and the proof of
TCCA security of this TREnc comes relatively easily because we can design
a pd − RCCA-like security notion for extractable TREnc that implies our new
TCCA security notion. The resulting construction is however expected to be
fairly expensive since, in the standard model, all known instantiations of the
building blocks relies on a bit-by-bit decomposition of the message or the secret
singing key of which the ciphertext must contain a (malleable) ZK proof of. Nev-
ertheless, providing this extractability feature is an artifice for the construction
that is not necessary for the security of the TREnc, but as far as we know there
is no obvious generic construction leading to a TREnc without extractability.
In the next section we turn to the construction of an ad-hoc efficient instance
of a TREnc based on a standard computational assumption that also avoid the
costly bit-by-bit decomposition.

4 Pairing-Based Construction Under SXDH

This section provides a secure TREnc in the standard model, only relying on
the SXDH assumption and on a CRS. Contrary to our previous construction,
this one is not extractable – extractability was just a convenience but does not
offer any security benefit. This allows us to get a more efficient solution, here, in
asymmetric bilinear groups. Moreover, our construction enjoys a short public-key
and short ciphertexts as they only contain a constant number of group elements
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to encrypt a full group element, contrary to previous proposals that required to
process the message bit by bit [10,15].

We first introduce the cryptographic assumptions on which we will rely, as
well as the main existing building block that we will use: linearly homomorphic
structure-preserving signatures.

4.1 Computational Setting

We rely on an efficient Setup algorithm that generates common public parameters
pp. Given a security parameter λ, Setup(1λ) generates a bilinear group pp =
(G, Ĝ,GT , p, e, g, ĝ, ĥ) of prime order p > 2poly(λ) for some polynomial poly,
where g ←$G and ĝ, ĥ ←$ Ĝ are random generators and e : G × Ĝ → GT is a
bilinear map. In this setting, we rely on the SXDH assumption, which states that
the DDH problem must be hard in both G and Ĝ. Following the Groth-Sahai
standard notation, we also define the linear map ι : G → G

2 with ι : Z 
→ (1, Z).

4.2 Linearly Homomorphic Structure-Preserving Signatures

A central tool for our efficient TREnc construction is linearly homomorphic
structure-preserving signatures. The structure preserving [2] [1] property makes
it possible to sign messages that are group elements (and not just bits as in
schemes based on the Waters signature), while the additional linearly homomor-
phic feature, introduced by Libert et al. [32], will be used to make the signatures
randomizable while guaranteeing the non-malleability of the plaintext.

Keygen(pp, n): given the public parameter pp and the (polynomial) space
dimension n ∈ N, choose χi, γi ←$Zp and compute ĝi = ĝχi ĥγi , for i = 1 to n.
The private key is sk = {(χi, γi)}n

i=1 and the public key is pk = {ĝi}n
i=1 ∈ G

n.
Sign(sk, (M1, . . ., Mn)): to sign a vector (M1, . . . ,Mn) ∈ G

n using sk =
{(χi, γi)}n

i=1, output σ = (Z,R) =
(∏n

i=1 Mχi

i ,
∏n

i=1,M
γi

i

)
.

SignDerive(pk,{(ωi, σ
(i))}�

i=1): given pk as well as 	 tuples (ωi, σ
(i)), parse

σ(i) as σ(i) =
(
Zi, Ri

)
for i = 1 to 	. Return the triple σ = (Z,R) ∈ G, where

Z =
∏�

i=1 Zωi
i , R =

∏�
i=1 Rωi

i .
Verify(pk, σ, (M1, . . ., Mn)): given σ = (Z,R) ∈ G

2 and (M1, . . . ,Mn), return
1 if and only if (M1, . . . ,Mn) �= (1G, . . . , 1G) and (Z,R) satisfies

e(Z, ĝ) · e(R, ĥ) =
∏n

i=1e(Mi, ĝi). (1)

4.3 Intuition of Our Construction

To encrypt a message m ∈ G, we combine a CPA encryption c = (c0, c1, c2) of
the form c0 = m · fθ, c1 = gθ, c2 = hθ and a randomizable publicly verifiable
proof that logg c1 = logh c2, à la Cramer-Shoup. For that purpose, we can rely
on the idea to include a one-time LHSP signature on top of c as first suggested in
[32]. That means that the public key contains an LHSP signature Σ on (g, h) so
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that we can derive a signature on (g, h)θ if indeed (c1, c2) lies in span〈(g, h)〉 by
computing π = Σθ. Such a proof is quasi-adaptive [27] as the CRS depends on the
language of which we have to prove membership. Here, the public key includes a
CRS that contains a signature on the basis of the linear subspace span〈(g, h)〉 of
G

2. Given c and the LHSP signature π one can easily randomize the ciphertext
as follows: compute c′ = c · (f, g, h)θ′

, and adapt the proof π′ = π · Σθ′
. While

this solution is perfectly randomizable and the signing key allows to perfectly
simulate the proof, it only provides a CCA1 security. Still, this technique has
been enhanced to provide tag-based simulation-sound proof system which is
reminiscent to building CCA-like secure encryption. The underlying technique
is to generate a one-time key pair (opk, osk) of some one-time signature scheme
that will be discussed in the next paragraph, and to define the tag as τ = H(opk),
for some collision-resistant hash function H,2 before computing π that (c1, c2)
lies in span〈(g, h)〉 based on τ . The ciphertext is then completed by signing (c, π)
with osk, resulting in the ciphertext (c, π, σ, opk). A natural solution would be to
borrow the first solution due to [33] but it only provides selective-tag simulation
soundness. Since we will be using opk as the trace of our TREnc construction, the
TCCA security implies that our underlying tag-based encryption must achieve
tag-based weak CCA security, and selective-tag security is not enough. Indeed,
the tag τ∗ = H(opk∗) involved in the challenge ciphertext may be chosen by the
adversary at any time. Furthermore, we must be able to answer any pre-challenge
decryption queries, so even those that already used τ∗. That means that we
cannot program the public key to embed τ∗ that will help us to incorporate an
SXDH instance in the computation of the challenge ciphertext. Fortunately, by
including a signature Σu on (g, h, 1, 1) and another signature Σv on (1, 1, g, h)
in the public key, given a tag τ , the computation of π = (Στ

uΣv)θ due to [30]
is an LHSP signature on (cτ

1 , c
τ
2 , c1, c2) which gives us the expected security and

still enjoys a perfect randomizability, but for the given tag τ (and trace opk),
only, which is still what we were looking for.

Now, we come back on the signature σ of (c, π). Usually, (opk, osk) is a key
pair of a strongly unforgeable signature scheme providing non-malleability of
ciphertext. However, we want to keep the malleability of the ciphertext as we
want to be able to fully randomize it up to opk that will serve as our trace,
but we also want to retain the non-malleability of the encrypted message m
to satisfy traceability. Here again, in the standard model under SXDH, LHSP
signature scheme comes in handy. If our fresh key pair (opk, osk) is generated
from a one-time LHSP signature scheme, we can fix the message and preserve
the randomizability of (c, π) by computing one-time LHSP signatures σ1 on
(g, c0, c1, c2) and σ2 on (1, f, g, h). Like this, when we randomize (c, π, σ1, σ2)
as c′ = c · (f, g, h)θ′

, π′ = π · (Στ
uΣv)θ′

we can also adapt the signature σ′
1 =

σ1 · σθ′
2 on (g, c′

0, c
′
1, c

′
2) = (g, c0, c1, c2) · (1, f, g, h)θ′

, and simply keep σ2. While
the correctness follows by inspection, we have several comments to make that
are less obvious. First, the reason why we are no more able to modify m is

2 H must not only be second-preimage resistance as in [29] since the adversary can
choose opk∗ adaptively.
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due to the presence of the constant g that must be the first component of the
signed vector associated to σ1 and any adaptation σ′

1. Modifying m requires
computing a one-time LHSP signature on a vector necessarily outside the span
generated by (g, c0, c1, c2) and (1, f, g, h). Second, the signature σ2 is unchanged
during the randomization. Still, it is a signature on a fixed vector and the one-
time LHSP signing algorithm is deterministic. Moreover, if we have two distinct
signatures on a single vector we can solve SXDH. That means that any other
adversarially generated ciphertext for opk (as the adversary might know osk)
will have to share σ2 and our randomizability holds. Third, while the tag-based
simulation-sound QA-NIZK proof π can be simulated if we embed a random
triple (F,G,H) into (c0, c1, c2) we also have to produce a valid looking adaptation
of σ1 while we do not know osk∗. To avoid extracting osk from a costly bit-
by-bit proof of knowledge in the standard model since osk consists of random
scalars,3 we would like to add (1, F,G,H) in the public key and requires the
ciphertext to further compute a signature σ3 on it with osk. However, if we reveal
(1, F,G,H), computing (g, c∗

0, c
∗
1, c

∗
2) = (g, c0, c1, c2) · (1, f, g, h)θ∗ · (1, F,G,H)ρ∗

allows deriving a valid σ∗
1 = σ1 · σθ∗

2 · σρ∗
3 but c∗ = (c∗

0, c
∗
1, c

∗
2) will not be

random even if (F,G,H) is random. Fortunately, it is actually sufficient for the
traceability to use (opk, osk) to sign the shorter vectors (g, c0, c1), (1, f, g) and
(1, F,G), and keep H away from the adversary’s view to have a statistically
random c∗ in the reduction. When (1, F,G) is not in span〈(1, f, g)〉, the proof
π simply prevents the adversary from randomizing ciphertexts with (1, F,G)
without losing validity.

For technical reason, we hide σ1 in the ciphertext and make a randomizable
NIWI Groth-Sahai proof to show the randomizability and the TCCA security of
the scheme. While we can adapt the σ1 component when we randomize one of
the two ciphertexts given by the adversary in the challenge phase (or in the ran-
domization experiment), and that trace to each other, since the adversary might
know osk it might infer more information about how we adapt this signature
into σ∗

1 if we left it in the clear.

4.4 Description

Gen(1λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2poly(λ) together
with g, h ←$G and ĝ, ĥ ←$ Ĝ.
1. Pick random α, β ←$Zp and set f = gαhβ .
2. Pick δ ←$Zp and compute (F,G,H) = (f, g, h)δ.
3. Generate a Groth-Sahai CRS crsw = (�w1, �w2) ∈ G

4 to commit to groups
elements of G, where �w1 = (w11, w12) and �ww = (w21, w22) are generated
in the perfect NIWI mode, i.e., crsw ←$G

4.

3 There is no fully structure-preserving signature schemes under SXDH and none with
full randomizability (except in the generic group model [24]), which might still not
be enough to be combined with a ciphertext as an SRC). And, we are not aware of
any fully structure-preserving LHSP signature scheme, where the secret keys only
contain source group elements.
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4. Define the vector v = (g, h) and generate 2 key pairs (sku, pku) and
(sku, pku) for the one-time linearly homomorphic signature of Sect. 4.2
in order to sign vectors of dimension n = 2, given the common public
parameters ĝ, ĥ. Let pku = {û1, û2} and pkv = {v̂1, v̂2}. Using sku (resp.
skv), generate a one-time LHSP signature Σu = (Zu, Ru) (resp. Σv =
(Zv, Rv)) on v. In other words, for pkqazklhsp = {û1, û2, v̂1, v̂2}, Σu, Σv are
one-time LHSP signatures on the rows of the matrix

P =

(
g h 1 1
1 1 g h

)

.

The private key consists of SK = (α, β) and the public key PK ∈ G
13 × Ĝ

6 is

PK =
(
f, g, h, F, G, crsw, Σu, Σv, pkqazklhsp , ĝ, ĥ

)
.

Enc(PK, m): to encrypt a message m ∈ G, first run LGen(PK): Generate a key
pair (osk, opk) for the one-time linearly homomorphic signature of Sect. 4.2
from the public generators ĝ, ĥ in order to sign vectors of dimension 3. Let
lk = osk = {(ηi, ζi)}3i=1 be the private key, of which the corresponding public
key is opk = {f̂i}3i=1. Then, conduct the following steps of LEnc(PK, lk,m):
1. Pick θ ←$Zp and compute the CPA encryption c = (c0, c1, c2), where

c0 = mfθ, c1 = gθ and c2 = hθ, and keep the random coin θ.
Next steps 2–3 are dedicated to the tracing part.

2. To allow tracing, authenticate the row space of the matrix T=
(
Ti,j

)
1≤i,j≤3

T =

⎛

⎜
⎝

g c0 c1

1 f g

1 F G

⎞

⎟
⎠ (2)

by using lk = osk. Namely, sign each row �Ti = (Ti,1, Ti,2, Ti,3) of T result-
ing in σ = (σi)3i=1 ∈ G

6, where σi = (Zi, Ri) ∈ G
2.

3. To allow strong randomizability, commit to σ1 using the Groth-Sahai
CRS crsw by computing CZ = ι(Z1)�wz1

1 �wz2
2 and CR = ι(R1)�wr1

1 �wr2
2 . To

ensure that σ1 is a valid one-time LHSP signature on (g, c0, c1) compute
the proof π̂sig = (P̂1, P̂2) ∈ Ĝ

2 such that P̂1 = ĝz1 ĥr1 and P̂2 = ĝz2 ĥr2 .
Next step 4 shows the validity of c associated to the tag τ = H(opk).

4. Given θ and τ = H(opk), compute a randomizable simulation-sound
proof that (c1, c2) ∈ span〈(g, h)〉. Namely, derive the LHSP sig-
nature π = (Στ

uΣv)θ =: (Zπ, Rπ) on the vector (cτ
1 , c

τ
2 , c1, c2) =

((g, h, 1, 1)τ (1, 1, g, h))θ.
Output the ciphertext

CT =
(
c,CZ ,CR, σ2, σ3, π, π̂sig, opk = {f̂i}3i=1

)
∈ G

13 × Ĝ
5

Trace(PK,CT): Parse PK and CT as above, and output opk in the obvious way.
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Rand(PK,CT): If PK and CT do not parse as the outputs of Gen and Enc, abort.
Otherwise, conduct the following steps:
1. Parse the CPA encryption part c = (c0, c1, c2), pick θ′ ←$Zp and compute

c′ = c · (f, g, h)θ′
, so that c′

0 = c0f
θ′

, c′
1 = c1g

θ′
and c′

2 = c2h
θ′

.
2. Implicitly adapt the committed signature σ1 of the tracing part. First,

compute σ̃1 = (Z̃1, R̃1) = (Zθ′
2 , Rθ′

2 ) = σθ′
2 , which consists of a one-time

LHSP signature on (1, f, g)θ′
for opk. Second, adapt the commitments

C ′
Z = CZ · ι(Z̃1)�w

z′
1

1 �w
z′
2

2 and C ′
R = CR · ι(R̃1)�w

r′
1

1 �w
r′
2

2 , for some random
scalars z′

1, z
′
2, r

′
1, r

′
2 ←$Zp, which should commit to the valid one-time

LHSP signature σ′
1 = σ1σ

θ′
2 on (g, c′

0, c
′
1) for opk. Third, adapt the proof

π̂sig =(P̂1, P̂2) as π̂′
sig =(P̂ ′

1, P̂
′
2), where P̂ ′

1= P̂1 · ĝz′
1 ĥr′

1 and P̂ ′
2= P̂2 · ĝz′

2 ĥr′
2 .

3. Adapt the proof of the validity of the CPA ciphertext. Namely, computes
π′ = π · (Στ

uΣv)θ′
= (Zπ(Zτ

uZv)θ′
, Rπ(Rτ

uRv)θ′
), where τ = H(opk).

Output the re-randomized ciphertext

CT =
(
c′,C ′

Z ,C ′
R, σ2, σ3, π

′, π̂′
sig, opk

)
.

Ver(PK,CT): First, abort and output 0 if PK or CT does not parse properly.
Second, verify the validity of the signatures σ2 and σ3 on the 2 last rows
{�Ti}3i=2 of the matrix T, and output 0 if it does not hold. Third, verify that:
1. The committed signature of the tracing part is valid, i.e., σ1 = (Z1, R1)

is a valid one-time LHSP signature on the vector (g, c1, c2). To hold, the
commitments CZ ,CR and the proof π̂sig = (P̂1, P̂2) must satisfy

E(CZ , ĝ) · e(CR, ĥ) = E(ι(g), f̂1) · E(ι(c0), f̂2) · E(ι(c1), f̂3)

· E(�w1, P̂1) · E(�w2, P̂2)) ; (3)

2. The proof that the CPA ciphertext is valid, i.e., π = (Zπ, Rπ) is a valid
one-time LHSP signature on the vector (cτ

1 , c
τ
2 , c1, c2), which must satisfy

e(Zπ, ĝ) · e(Rπ, ĥ) = e(c1, ûτ
1 v̂1) · e(c2, ûτ

2 v̂2), (4)

where τ = H(opk).
If at least one of theses checks fails, output 0, otherwise, output 1.

Dec(SK,PK,CT): If Ver(PK,CT) = 0, output ⊥. Otherwise, given SK = (α, β)
and c = (c0, c1, c2) included in CT, compute and output m = c0 · c−α

1 · c−β
2 .

4.5 Security

The security of our pairing-based TREnc relies solely on the SXDH assumption.
We first show the verifiability of this TREnc as it eases the analysis of the
traceability and the randomizability properties. The verifiability essentially relies
on the unforgeability of LHSP signatures since it also implies the (simulation-)
soundness of the (quasi-adaptive) proof of (subspace) membership. We refer to
the full version of the paper [21] for all the proofs of the theorems.
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Theorem 2. The above TREnc is verifiable under the SXDH assumption. More
precisely, for any adversary A, we have Pr[ExpverA (λ) = 1] ≤ εsxdh + 1/p.

Theorem 3. The above TREnc Π is traceable under the SXDH assumption.
More precisely, for any adversary A, we have Pr[ExptraceA,Π (λ) = 1] ≤ 2·εsxdh+2/p.

Strong randomizability essentially relies on the verifiability, which shows that
computationally-bounded adversary only produces (except with negligible prob-
ability) valid ciphertexts that are honest (but, possibly with biased randomness),
and the perfect randomization of honest ciphertexts.

Theorem 4. The above TREnc is strongly randomizable under the SXDH
assumption. More precisely, for any adversary A = (A1,A2), where A2 is pos-
sibly unbounded, we have Pr[ExprandA (λ) = 1] ≤ εsxdh + 2/p.

Theorem 5. The above TREnc is TCCA-secure under the SXDH assump-
tion and the collision resistance of the hash function. More precisely, we have
Pr[ExptccaA,Π(λ) = 1] ≤ 1

2 + εcr + 2 · εsxdh + Ω(2−λ).

4.6 Efficiency

This TREnc instance is reasonably efficient. In particular, in order to encrypt
a message, which is typically the bottleneck in voting applications because it
must run more or less transparently on low-end voter devices, we can encrypt
one group element using 29 exponentiations in G and 10 exponentiations in Ĝ.
This group element would make it possible to encode up to a few hundred bits
in practice, depending on the chosen security parameter.

In contrast, the SRC aiming at similar applications and used in the Bele-
niosRF election system [15] requires 33 exponentiations in G and 22 exponentia-
tions in Ĝ for the (signed) encryption of only 1 bit. In general, their construction
requires 11k + 22 exponentiations in G and 10k + 12 exponentiations in Ĝ in
order to encrypt k bits. These estimates are based on the reference code of the
SRC, since the paper does not entirely specify the algorithms (especially how
commitments and proofs are computed).

5 Voting Scheme Based on Traceable Receipt-Free
Encryption

Traceable Receipt-Free Encryption schemes are particularly well suited for the
design of voting systems offering receipt freeness, that is, systems in which voters
cannot demonstrate how they voted to a third party.

We are now formalizing the notion of voting system (Sect. 5.1) and receipt-
freeness (Sect. 5.2), using a definition closely related to the one of Chaidos et
al. [15], while fixing two technical issues that it contains, then show how to build
a receipt-free voting scheme from a TREnc (Sect. 5.3).
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5.1 Definitions and Notations

We define voting protocols in a way that largely follows the SOK from Bernhard
et al. [8] and BeleniosRF [15]. In our voting protocols, we consider the following
parties:

– The voters are participating in the election and are willing to cast a ballot
representing their vote intent.

– The election administrator is organizing the election and is responsible for
coordinating the protocol execution.

– The ballot box manager is gathering the ballots of the voters on a bulletin
board BB and provides a public view PBB of those ballots, for verifiability.

– The trustees are responsible for correctly tallying the ballot box and providing
a proof of the correctness of the tally. We consider a k-threshold tallying
system, that is k honest trustees are required to compute the tally of the
election.

These parties are standard entities in the voting literature. In some cases, we
will also refer to the ballot box manager as the rerandomizing server, in order
to make its receipt-freeness related role more visible. We also define a family
of deterministic results functions ρm which given m votes, returns the result of
the election for these votes. The following definition encompasses the procedures
used in a voting system.

Definition 10 (Voting System). A Voting System is a tuple of probabilis-
tic polynomial-time algorithms (SetupElection, Vote, ProcessBallot, TraceBallot,
Valid, Append, Publish, VerifyVote, Tally, VerifyResult) associated to a result func-
tion ρm : Vm ∪ {⊥} → R where V is the set of valid votes and R is the result
space such that:

– SetupElection(1λ): on input security parameter 1λ, generate the public and
secret keys (pk, sk) of the election.

– Vote(id, v): when receiving a voter id and a vote v, outputs a ballot b and
auxiliary data aux. It will also be possible to call Vote(id, v, aux) in order to
obtain a ballot (without auxiliary data this time) for vote v using aux. This
auxiliary data will be useful to define security and enables the creation of
ballots that share the same aux.

– ProcessBallot(b): on input ballot b, outputs an updated ballot b′. In our case,
b′ would be a rerandomization of b.

– TraceBallot(b): on input ballot b, outputs a tag t. The tag is the information
that a voter can use to trace his ballot, using VerifyVote.

– Valid(BB, b): on input ballot box BB and ballot b, outputs 0 or 1. The algorithm
outputs 1 if and only if the ballot is valid.

– Append(BB, b): on input ballot box BB and ballot b, appends ProcessBallot(b)
to BB if Valid(BB, b) = 1.

– Publish(BB): on input ballot box BB, outputs the public view PBB of BB, which
is the one that is used to verify the election. Depending on the context, it may
be used to remove some voter credentials for instance.
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– VerifyVote(PBB, t): on input public ballot box PBB and tag t, outputs 0 or 1.
This algorithm is used by voters to check if their ballot has been processed and
recorded properly.

– Tally(BB, sk): on input ballot box BB and private key of the election sk, outputs
the tally r and a proof Π that the tally is correct w.r.t. the result function ρm.

– VerifyResult(PBB, r,Π): on input public ballot box PBB, result of the tally r and
proof of the tally Π, outputs 0 or 1. The algorithm outputs 1 if and only if Π
is a valid proof that r is the election result, computed w.r.t. ρm, corresponding
to the ballots on PBB.

For all of these algorithms except SetupElection, the public key of the election pk
is an implicit argument.

These algorithms are used as follows in a typical election, the election author-
ities first generate the election public and secret keys with SetupElection. Then,
using the public key of the election, each voter can prepare a ballot bwith the
Vote algorithm and send it to the ballot box manager. The voter also keeps
TraceBallot(b) in order to be able to trace its ballot on the election public bul-
letin board. Each time the ballot box manager receives a ballot, it checks if it
is valid with the Valid algorithm. If this is the case, it runs the ProcessBallot
algorithm on it and appends the resulting ballot to the ballot box using Append.

The ballot box manager also applies Publish on the ballot box in order to
obtain the content that is made available on a public bulletin board PBB. Voters
can check that their ballot has been correctly recorded on PBBusing VerifyVote.

Eventually, the trustees run the Tally algorithm on the ballot box in order
to compute the election result and a proof of correctness of this result. Anyone
can use these, together with the content of PBB, in order to verify the election
result using VerifyResult.

This definition differs from [8,15] in two important ways. First, we intro-
duce the TraceBallot algorithm. Such a procedure is implicit other voting system
descriptions, often because voters simply check the presence on PBBof their bal-
lot, in which case TraceBallotwould simply be the identity function. In our case,
TraceBallotmust extract the signature verification key that is generated at voting
time by Vote, making this algorithm non-trivial.

The correctness guarantees of the various algorithms listed above are as usual
and follow the intuitions given above. We only formalize the correctness guar-
antee of TraceBallot, which is novel.

Definition 11 (Tracing correctness). For every v, BB, (b, aux) ←
Vote(id, v) and t ← TraceBallot(b), after Append(BB, b) we have that
VerifyVote(Publish(BB), t) = 1 with overwhelming probability.

As a second difference, we omit the voter registration procedure, of which
we make no use here: it is used in some protocols in order to obtain some forms
of delegated verifiability where an extra authority is partially trusted to handle
voter credentials, but this is not our focus. To make things concrete here, one
can imagine that voter authentication is handled with a process similar to the
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one used in Helios [3], where the ballot box manager distributes credentials (e.g.,
passwords) to the voters and publishes the voter names next to their ballot on
PBB. Voters who did not vote can then verify that there is no ballot recorded
for them, and auditors can sample voters and contact them to perform similar
verification steps. (We make no claim regarding the effectiveness of this process
in practice – it is just here for context.)

5.2 Receipt-Freeness

We adopt here a definition of receipt-freeness that is similar to the one of Chaidos
et al [15]. Various other definitions exist, but they are either too informal for
our purpose (e.g., [25]), or focus on the stronger notion of coercion resistance, in
which voters need to adopt a specific counter-strategy depending on instructions
of the coercer (e.g., [4,31,35,40]).

This definition requires that voters should not be able to pick a ballot, possi-
bly from a distribution that deviates from the honest one, in such a way that no
third party, by looking at the election public bulletin board, and knowing exactly
how the voter’s announced ballot was built, is able to decide whether that bal-
lot was submitted by the voter rather than another ballot that could encode a
vote for a different candidate. This definition also considers that the channels
between the voters and the ballot box manager is private and, indeed, with-
out the assumption that such private channels are available, achieving receipt-
freeness in a verifiable election is impossible [18].

Definition 12 (Receipt-Freeness). A voting system V has receipt-freeness if
there exists algorithms SimSetupElection and SimProof such that no PPT adver-
sary A can distinguish between games Expsrf,0A,V (λ) and Expsrf,1A,V (λ) defined by the
oracles in Fig. 3, that is for any efficient algorithm A:

∣
∣
∣Pr

[
Expsrf,0A,V (λ) = 1

]
− Pr

[
Expsrf,1A,V (λ) = 1

]∣∣
∣

is negligible in λ.

In this game, parameterized by a bit β, the adversary has access to the
following oracles:

– Oinit: initializes the voting system. It generates the public and privates keys of
election and returns the public key to the adversary. When β = 1, a simulated
setup may be performed, depending on the computational model, which will
offer some trapdoor information that may be needed to produced a simulated
tally correctness proof for instance. Eventually, two empty ballot boxes are
created: the real ballot box BB0 that will be tallied and the fake ballot box
BB1. Both boxes will be populated during the game, but the adversary will
only see Publish(BBβ).

– OreceiptLR(b0, b1): Lets the adversary cast ballots b0 in the real ballot box
BB0 and b1 in the fake ballot box BB1, as long as both ballots are valid and
have the same trace. This oracle is the central one for receipt-freeness.
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Fig. 3. Oracles used in the Expsrf,βA,V (λ) experiment. The adversary first calls Oinit and
then can call Oboard and OreceiptLR as much as it wants. Finally, the adversary calls
Otally, receives the result of the election and must return its guess, which is the output
of the experiment.

– Oboard: Returns Publish(BBβ), which represents its view of the public bulletin
board.

– Otally: Returns the result of the election based on the ballots on BB0, as well
as a proof of correctness of the tally. If β = 1, this proof is simulated w.r.t.
the content derived from BB1.

Several observations can be made about this game. First, and as expected,
it can be seen that the ballot box manager is considered to behave honestly. A
dishonest ballot box manager could simply replace ProcessBallot and Publish with
the identity function, which would make the game trivial to win, independently
of any cryptographic operation. The Tally operation is also performed honestly:
dishonest talliers could decrypt all the ballots individually, which would again
make the game trivial to win. In practice, this assumption can be mitigated by
using a distributed decryption process, which is always possible using MPC but
can typically be done more efficiently.

Second, this game prompts for the introduction of an extra correctness
requirement on the definition of Vote and TraceBallot, in order to make sure
that ballots that encode different votes and have the same tag can be computed.

Definition 13 (Ballot traceability for receipt freeness). For every pub-
lic key pk in the range of SetupElection, the ballots produced for every pair of
voting choices (v0, v1) with the same auxiliary data trace to the same tag. That
is, for b0, aux ←$Vote(id, v0), b1 ←$Vote(id, v1, aux), we have TraceBallot(b0) =
TraceBallot(b1).

Without this extra constraint, we could imagine a TraceBallot algorithm
which returns a tag depending on the vote inside the ballot. For example if
TraceBallot(b) = b as we discussed earlier, then Oreceipt(b0, b1) does nothing
except if the two ballots are identical and the adversary can never win the receipt-
freeness game. It is thus natural to require that a tag returned by TraceBallot
can be reached with any possible voting choice.
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The related constraint that TraceBallot(b0) = TraceBallot(b1) is actually
missing from Chaidos’ definition [15], and makes their game trivial to win in
most natural case, including with their own protocol: an adversary could simply
submit two ballots that have different traces (or are signed with different keys
in the wording of their paper), and immediately identify which bulletin board
he sees.

Compared to Chaidos’ definition, we also removed the Ocorrupt oracle, as we
simply assume that all the voters are under adversarial control. We also omitted
their Ocast and OvoteLR oracles, because OreceiptLR subsumes them.

5.3 Voting Scheme

We now explain how a generic voting system can be built from a TREnc. The
protocol in itself is of little interest: it essentially follows previous proposals [10,
15]. Its central interest is that defining it from a TREnc makes the proof of
its receipt-freeness almost immediate, and independent of any specific TREnc
instance.

A detailed pseudocode description is proposed in Fig. 4. The protocol exe-
cutes as follow. The election authorities set-up the election in the following way.
They create an empty bulletin board and create the pair of public and private
keys (pk, sk) of the election by running the Gen algorithm of the TREnc scheme
with the desired security parameter. pk is distributed to every party taking part
to the election and sk is given to the tallier. Note that sk can be generated in a
distributed way, so that decryption requires the contribution of multiple trustees
– our TREnc constructions are compatible with standard threshold key genera-
tion protocols for discrete log based cryptosystems, which can be used as usual
since the decryption of a ciphertext is independent from the link key and the
Trace algorithm [19,23]. We consider a unique tallier in the following.

When a user wants to cast a vote v, they first generate a link key lk by
running the LGen(pk) algorithm, then encrypts the vote with the LEnc(pk, lk, v)
algorithm in order to obtain a ballot b, while aux is defined as lk. The voter then
sends the encrypted ballot to the ballot box manager of the voting system. It is
utterly important that the user erases the link key as soon as possible, as the
integrity of their vote may rely on the secrecy of this key. The voter will however
store TraceBallot(b) = Trace(b) in order to verify that a ballot with the correct
trace eventually appears on the public bulletin board.

When the ballot box manager receives a new ballot b, he verifies the validity
of the ballot by checking that Ver(b) succeeds and that no ballot with the same
trace was recorded before. Invalid ballots are dropped and valid ones are going
through Append(BB, b), which runs ProcessBallot(b) = Rand(pk, b) and appends
the result to BB.

The user can verify that their vote is on the bulletin board by checking
with the TraceBallot algorithm if any entry in the public bulletin board has
the same trace as the one they recorded when they produced their ballot. The
traceability property of the TREnc then guarantees that nobody (including the
rerandomizing server and the election authorities who hold the decryption key)



298 H. Devillez et al.

could have forged another valid ciphertext of another vote linked to this ballot
with non-negligible probability.

Once every voter has cast a vote, the tallier can gather the ballots on the
bulletin board and compute the result of the election r, as well as a proof of
correctness Π. The exact details of this process will depend on the ballot format
and the result function ρm that the voting protocol requires. One standard way of
performing this operation would be to process all the published ballots through
a verifiable mixnet: our TREnc ciphertexts are compatible with various standard
options that operate on votes encrypted as vectors of group elements, including
the Verificatum mixnet [42].

Fig. 4. Instantiation of our voting scheme from a generic TREnc scheme. Publish is
simply the identity function. Tally and VerifyResult are instantiated via standard tech-
niques, depending on the result function (homomorphic tallying, verifiable mixnet, . . . ).

5.4 Security of the Voting Scheme

This voting scheme has receipt freeness, as claimed in the following theorem.

Theorem 6. If the TREnc used in the voting scheme is TCCA secure and ver-
ifiable and if the proof system used to prove the correctness of the tally is zero-
knowledge, then the voting scheme has receipt freeness. More precisely, if the
advantage of any adversary at distinguishing a simulator from an honest prover
of the proof system is bounded by εZK and if the advantage of any adversary
at the TCCA experiment is bounded by a negligible function εTCCA, then every
adversary at the receipt freeness game making qr OreceiptLR requests has an
advantage bounded by εZK + qrεTCCA.

Proof. The proof uses two different games, where the first one is the receipt-
freeness game. In each of those games, we pick a random bit β corresponding to
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either the real ballot box (β = 0) or the fake ballot box (β = 1). The adversary
is expected to guess in which case it is and to output a bit β′. We note Si the
event that β = β′ in the i-th game. We show that S0, the probability of an
adversary to win the receipt freeness game, is negligibly close in λ to 1

2 .

Game0(λ): We define Game0(λ) as the original receipt freeness experiment and A
as a PPT adversary for the game. We set SimSetup as the simulation trapdoor
for the proof systems used in the tally and SimProof(BB, r) as an algorithm
simulating fake proofs of the decryption of the ciphertexts in BB into the
plaintexts listed in r. By definition, A wins the game with probability Pr[S0].

Game1(λ): If β = 0, we generate the keys of the election with SimSetup instead
of the honest Setup algorithm. We also give a simulated proof of the tally as
in the case β = 1.
Game0(λ) → Game1(λ) : Since the proof system of the tally is zero-knowledge,
|Pr[S0] − Pr[S1]| ≤ εZK .

In the second game, the only difference between β = 0 and β = 1 are now in the
OreceiptLR oracle. We can reduce the q − TCCA experiment (the q challenge
variant of the TCCA game, which is proven to be equivalent to TCCA security
up to a factor q in the full version) to Game1(λ) in the following way. We build an
adversary against the q − TCCA challenger by instantiating the voting system
and simulating an efficient adversary for Game1(λ). Each time we are asked
to append ballots to the bulletin board from a OreceiptLR oracle call, we ask
the challenger to decrypt them. Then, we give both ballots as a challenge to the
challenger and receive a randomized ballot that we append to our bulletin board.
There are qr such requests. After all the requests, we can compute the result of
the election as we have the plaintext of every ballot in BB0. Moreover, we can use
SimProof to simulate a proof that our bulletin board has been correctly tallied.
Hence, this adversary wins the q − TCCA game with the same probability as the
simulated adversary wins the second game and Pr[S1] ≤ qrεTCCA. We conclude
that the probability that the adversary wins the receipt freeness experiment,
Pr[S0], is bounded by εZK + qrεTCCA.

It is immediate that our voting scheme also satisfies ballot traceability
(Def. 13), thanks to the link traceability of the TREnc (Def. 2).

This demonstrates the receipt-freeness of our protocol against an adversary
who sees the public bulletin board, and assuming a honest ballot box man-
ager. Our protocol also offers privacy against a malicious ballot box manager,
as demonstrated in the full version. As can be expected, proving privacy against
such an adversary requires taking advantage of the strong-randomization prop-
erty of the TREnc, which was not necessary for receipt-freeness.

It is also important to note that the notions of receipt-freeness and ballot
privacy only make sense when applied to voting protocols that satisfy some extra
correctness requirements (see Bernhard et al. [8] for instance) – a pathological
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Valid process that would just drop all but one ballot could result in this ballot
been tallied alone, which could satisfy the definition or receipt-freeness but would
obviously be problematic from a privacy point of view. The notions of strong
consistence, correctness, and validity, defined in the full version of the paper,
address these questions.

We do not detail the verifiability of our voting system, which would require
to introduce a substantial machinery. We outline how this could work here:

– Individual verifiability requires that a voter who successfully completes the
VerifyVote verification steps can be convinced that his vote is properly
recorded. If the voter’s voting client is honest, this follows from the traceabil-
ity property of the TREnc and the single use of lk, which guarantee that any
ballot with the same trace as the ballot submitted by the voter would decrypt
to the right vote. Detecting a malicious voting client that may encrypt a vote
different of the one chosen by the voter is more tricky. One option would
be to consider a variation on the Benaloh challenge, in which voters would
have the option to decide to spoil a ballot that has been posted on the public
bulletin board, and either ask for its decryption, or for the randomness used
both during the Vote process and during ProcessBallot. Any newly created
ballot would need to be generated using a fresh lk.

– Eligibility verifiability could proceed by adding the voter’s name next to each
ballot on the public bulletin board, and let auditors check whether these are
legitimate voters. Weaker but more convenient options include relying on a
trusted authentication server and/or on a PKI.

– Universal verifiability, which guarantees that the tally is computed correctly,
would result from the tallying process, e.g., from a verifiable mix-net.
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Abstract. The Oblivious Cross-Tags (OXT) protocol due to Cash et
al. (CRYPTO’13) is a highly scalable searchable symmetric encryp-
tion (SSE) scheme that allows fast processing of conjunctive and more
general Boolean queries over encrypted relational databases. A long-
standing open question has been to extend OXT to also support queries
over joins of tables without pre-computing the joins. In this paper, we
solve this open question without compromising on the nice properties
of OXT with respect to both security and efficiency. We propose Join
Cross-Tags (JXT) - a purely symmetric-key solution that supports effi-
cient conjunctive queries over (equi-) joins of encrypted tables without
any pre-computation at setup. The JXT scheme is fully compatible with
OXT, and can be used in conjunction with OXT to support a wide class
of SQL queries directly over encrypted relational databases. JXT incurs
a storage cost (over OXT) of a factor equal to the number of potential
join-attributes in a table, which is usually compensated by the fact that
JXT is a fully symmetric-key solution (as opposed to OXT which relies
on discrete-log hard groups). We prove the (adaptive) simulation-based
security of JXT with respect to a rigorously defined leakage profile.

1 Introduction

The advent of cloud computing allows individuals and organizations to outsource
the storage and processing of large volumes of data to third party servers. How-
ever, clients typically do not trust service providers to respect the confidentiality
of their data [CZH+13]. This lack of trust is often further reinforced by threats
from malicious insiders and external attackers. One solution is to upload data
in an encrypted form, with the client keeping the secret key.

Consider a client that offloads an encrypted relational database of (poten-
tially sensitive) credit-card transactions to an untrusted server. At a later point
of time, the client might want to issue a query of the form retrieve all transac-
tions for a particular merchantID for a given time. Ideally, we want the client
to be able to perform this task without revealing any sensitive information
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to the server, such as the actual transactions, the merchantID underlying the
given query, etc. Moreover, one could consider even more complicated Boolean
queries over additional attribute-value pairs. Unfortunately, techniques such as
fully homomorphic encryption [Gen09], that potentially allow achieving such an
“ideal” notion of privacy, are unsuitable for practical deployment due to large
performance overheads.

Searchable Symmetric Encryption. Searchable symmetric encryp-
tion (SSE) [SWP00,Goh03,CGKO06,CK10,PRZB11,CJJ+13,CJJ+14,KM18,
CNR21] is the study of provisioning symmetric-key encryption schemes with
search capabilities. The most general notion of SSE with optimal security guar-
antees can be achieved using the work of Ostrovsky and Goldreich on Oblivious
RAMs [GO96]. More precisely, using these techniques, one can evaluate a func-
tionally rich class of queries on encrypted data without leaking any information
to the server. However, such an ideal notion of privacy comes at the cost of
significant computational or communication overhead.

A large number of existing SSE schemes prefer to trade-off security for prac-
tical efficiency by allowing the server to learn “some” information during query
execution. The information learnt by the server is referred to as leakage. Some
examples of leakage include the database size, the query pattern (which queries
have the same attribute-value pair) and the access pattern. Practical implemen-
tations of such schemes can be made surprisingly efficient and scalable using
specially designed data structures. This line of works on efficient SSE schemes
that trade-off leakage for efficiency was initiated by Curtmola et al. [CGKO06],
who introduced and formalized the simulation-based framework for proving the
security of SSE schemes with respect to a given leakage function. Subsequently,
Chase and Kamara [CK10] introduced the concept of “structured encryption” -
a generalization of SSE to structured databases, along with the corresponding
security definitions.

For any SSE scheme to be truly practical, it should at least support con-
junctive queries, i.e., given a set of attribute-value pairs (w1, . . . ,wn), it should
be able to find and return the set of records that match all of these attribute-
value pairs. The example query above, namely, “retrieve all transactions for a
particular merchantID for a given time” is an instance of a conjunctive query.
There exist dedicated SSE schemes that can support conjunctive, disjunctive
and general Boolean queries over attribute-value pairs in relational databases
[CJJ+13,CJJ+14,KM17,LPS+18,PM21].

A very important class of queries that any relational database should support
are queries over joins of tables. We illustrate the concept of joins by extending
the above example. Consider the scenario where the credit-card processor has
two tables: (Table A) a transactions table and (Table B) a merchants informa-
tion table. Instead of the earlier query “retrieve all transactions for a particular
merchantID for a given time” in Table A, the new query may be “retrieve all
records for a given time hhmm in a given city cc” in the join of Table A and
Table B, where the join is over the attribute merchantID. More formally, the
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result of such a query is

{(〈A; r1〉, 〈B; r2〉) | ∃ merchantID mid :
(recordID = 〈A; r1〉, time = hhmm, merchantID = mid) ∈ Table A

and

(recordID = 〈B; r2〉, city = cc, merchantID = mid) ∈ Table B}

Unfortunately, the above schemes are unable to handle such queries on joins
of tables without prohibitive pre-computation of joins. This inability to effi-
ciently and flexibly support queries over joins of tables is indeed a major
impediment to actual deployment of these schemes. Only a handful of recent
works [KM18,CNR21] address search queries over joins of tables; we will review
their techniques subsequently.

Oblivious Cross-Tags (OXT). The work of Cash et al. [CJJ+13] showed for
the first time how to design an SSE scheme for conjunctive (and more general
Boolean) queries, for which (i) the encrypted database has memory requirement
that is linear in the size of the database, (ii) searches require a single round of
communication (query followed by response), and (iii) the leakage to the server
is low. Their scheme, called Oblivious Cross-Tags (OXT), relies on specially
structured pseudorandom functions (PRFs), such as those that can be enabled
using hard discrete-log groups.

Since our work is closely related to OXT, we give a brief overview. In its
simplest embodiment, the SSE scheme OXT precomputes an encrypted version
of a database (using a secret symmetric key) and stores it at a server that is
presumed to be honest-but-curious. A client with access to this symmetric key,
breaks a (2-) conjunctive query b = b1 ∧b2 into two search tokens for the server.
The first search token yields all entries for the first conjunct b1 and the second
search token is used to search for exactly the conjunct b2 using a “cross-tag helper
token” stored as part of the entries for b1. The cross-tag helper is independent
of the second attribute and hence only one cross-tag helper per record-attribute
pair is stored. Since there is one data element anyway for each record-attribute
pair, this at most doubles the total space requirement. For example, consider
the conjunctive query above: (time hhmm and merchantID mid). The client
computes two PRF values (using its secret key): one for (time; hhmm), say p1,
and another for (merchantID; mid), say p2. It sends to the server a key k1 derived
from p1, and a token = hp2/p1 (in a DDH-hard group with generator h). The
attributes (time, merchantID) are also revealed to the server.

The server uses k1 to search for an encrypted set (stored in the encrypted
database) corresponding to (time; hhmm) as well as uses k1 to decrypt it. Next,
for each record, in this decrypted set D, the server can also find a “cross-tag
helper token” z = p1 ∗ rind (where, rind stands for randomized-record-index).
The search token hp2/p1 raised to the power z yields a cross-tag hp2∗rind, which is
then checked in a lookup-table called XSet. This lookup-table XSet stored with
the server has every valid member of the form hp2∗rind, and hence this check allows
the server to confirm the record in D to satisfy the conjunct. Note, the size of
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this set XSet is exactly the number of records times the number of attributes (as
in each record, for each attribute there is exactly one value such as mid). This is
exactly the size of the database. That this lookup-table reveals no information, a
priori, is proved under the DDH assumption1; hence the name oblivious cross-tag
(OXT).

Note that, both the client and the server have to perform exponentiations (in
the DDH-hard group) during this search protocol. Moreover, the number of these
exponentiations can be large, as there will be one such exponentiation per entry
in the decrypted set D. Similarly, during the setup stage, i.e. when the database
is encrypted and the XSet is computed, an exponentiation is required for every
attribute-value pair in the database. Hence, the setup maybe computationally
intensive for large databases.

1.1 The New JXT Protocol

Our first contribution is to show that if the number of attributes in a table is
small, say m, then the encrypted database with a size blowup by a factor m, can
achieve the same security as OXT without the use of DDH, and more precisely
using only symmetric-key primitives such as PRFs and symmetric-key encryp-
tion in the standard model. As a result, the search computation becomes con-
siderably faster as there is no exponentiation (by either the client or the server).
Further, the setup becomes much faster, as the XSet computation requires no
exponentiations.

Next, as a main contribution of this work, we show that the above modifica-
tion to OXT also allows us to search over (equi-) joins of tables without any pre-
computation of joins2. We refer to this new protocol as Join Cross-Tags (abbre-
viated as JXT). Moreover, since joins are usually performed over a limited set
of attributes (e.g. primary keys or high-entropy attributes3), the size blowup to
the encrypted database is small; more precisely, a t fold blowup, where t is the
number of attributes in a table over which joins are allowed. Recall the example
join query “retrieve all records for a given time hhmm in a given city cc” in the
join of Table A and Table B, where the join is over the attribute merchantID.
The JXT protocol can support this query (over encrypted databases) without
any pre-computation of joins of the two tables. The only requirement is that both
encrypted tables must be configured to support join over the attribute merchan-
tID4. As mentioned previously, if merchantID is amongst the few attributes (say,
t many) that a table supports for join, the space requirement for that encrypted
1 The actual protocol is slightly more complicated to be fully secure and provably

secure under DDH, but the above description gives the main gist of OXT.
2 Throughout this paper, when we refer to joins, we mean equi joins.
3 By high entropy attribute we mean the information-theoretic entropy of the column

corresponding to the attribute. For example, the attribute gender has low entropy,
whereas the attribute name can have high entropy in a table.

4 By configuration we mean the (pre-) computation of the encrypted table. We remind
the reader that this pre-computation does not involve join pre-computation, as each
table is encrypted independently.
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table only increases t-fold. Some other tables may not even have the attribute
merchantID, but these may have other small number of attributes over which
join is allowed.

We provide a more detailed overview of the ideas behind the JXT protocol
subsequently in Sect. 1.2.

Comparison with Pre-computation of Joins. It is worth contrasting this
approach to one where joins are pre-computed (for instance, in [KM18,CNR21]
as discussed under related work in Sect. 1.4 later), and this is best exhibited
by considering the above example. The transactions table A is likely to be tall
and skinny, i.e. have many records and few attributes. On the other hand, the
merchant information table B is likely to be short and wide. However, their join
will have at least as many records as table A and at least as many attributes
as table B, i.e. tall and wide. This can cause a considerable blowup in storage
requirement. Since JXT does not pre-compute joins, it avoids such blowups, as
well as other blowups caused by the possibilities of pair-wise joins of many tables.
We present a more detailed comparison of JXT with the above pre-processing
based approaches to Sect. 1.4.

Modular Setup and Flexible Updates. The JXT approach also allows for
a modular setup stage, as well as flexible table additions and updates. Some
tables are updated much faster than others, and hence can be re-setup on their
own without the need to re-setup tables that are more or less constant5. This
allows flexibly adding new tables and updating existing tables in an independent
manner without having to re-perform setup across all tables in the encrypted
database. This is not supported by any of the existing approaches where joins
are pre-computed [KM18,CNR21], and constitutes one of the most appealing
aspects of our JXT construction.

Storage and Search Overheads. We provide a high-level summary of the
overheads incurred by JXT in terms of storage and search processing. Suppose
that a table has a total of n attributes, with t ≤ n amongst these being “join
attributes”; i.e. attributes over which the table can be joined with other tables
in the database. Also, assume that the table has a total of m records (equiva-
lently, rows). Then, in JXT, the corresponding encrypted table incurs a storage
overhead of O(mnt), which is O(t)-fold blowup to the storage required for the
plaintext table. Also, given a 2-conjunctive query over the join of two tables
that involves an attribute-value pair w1 from the first table and an attribute-
value pair w2 from the second table, the computational overhead at the server is
O(�1�2), where �1 and �2 are the numbers of records matching the attribute-value
pairs w1 and w2 in the first and second table, respectively.

5 We remark here that the transactions database is encrypted for post-transactional
audit, fraud detection, money-laundering detection, machine learning etc. The real-
time transactions database is usually updated and used without encryption, as it
runs in a secure domain. It is later encrypted on a periodic basis for above additional
functionalities.
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Compatibility with OXT. An important feature of JXT is that it is fully
compatible with OXT. For example, consider the two tables A and B above
and suppose table A has few attributes (say e.g. four) and table B has many
attributes (say, e.g. twenty). Also, suppose that some of these attributes are the
attributes over which joins can be performed. Then, the OXT protocol can be
used to support Boolean queries within each table (spanning many attributes),
as well as Boolean queries across tables using the JXT part for the join. So for
example, the query maybe a 4-conjunct “retrieve all records for a given time and
a given amount in a given city and a given merchant category” in the join of
Table A and Table B, where the join is over the attribute merchantID.

Further, there is a “multi-client” extension of OXT where the client does
not own the secret key; instead, an authority owns the secret key and the client
computes its PRF based search tokens using an oblivious-PRF (OPRF) protocol
with the authority [JJK+13]. JXT is also fully compatible with this multi-client
extension of OXT. In fact, JXT can be easily extended to the scenario where dif-
ferent databases are owned by different entities operating under a single author-
ity, and a client can perform a search query over join of tables owned by different
entities; this requires that the entities setup their respective encrypted databases
using “oblivious” help from the authority.

1.2 The Main Idea of Our JXT Protocol

We now present a brief overview of the main ideas behind our new JXT protocol.

Breaking a Join Query into Sub-queries. To begin with, we show that
a 2-conjunctive (join) query q = q1 ∧ q2 over the join of a pair of tables (say
Tables A and B), with the join being over a third attribute, e.g. merchantID,
can be broken into normal sub-queries, i.e. non-join queries, that are either over
table A or table B. These sub-queries might be simple or conjunctive, but over
a single table. We illustrate this with our running example from above, i.e. the
query “retrieve all records for a given time hhmm in a given city cc” in the
join of Table A and Table B, where the join is over the attribute merchantID.
In this case, the first sub-query a can be viewed as the simple keyword search
for the attribute-value pair (time = hhmm) in Table A. Now, suppose that for
all records matching this first sub-query a in Table A, we create a set of the
corresponding values of merchantID, say of the form {mid}. We can now define
a second set of sub-queries B in Table B, with one sub-query for each mid in the
aforementioned set. Each such sub-query b (in the set B) is of the form “retrieve
all records for a given city cc for a given merchantID mid”. Note that b is a
2-conjunctive query itself.

Handling Sub-queries. It is easy to see that each sub-query b in B can be
executed securely using the original OXT protocol, if we could somehow use the
results of the first sub-query a to derive the tokens needed by OXT server to
execute b. In other words, we wish to design a protocol such that executing a in
Table A generates a set of tokens that an OXT server can use in the same way as
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it would use tokens issued directly by an OXT client for query b in Table B. The
challenging part is to implement the search in Table A to mimic this client for
OXT query b in Table B, without introducing additional rounds of interaction
between the client and the server. Achieving this constitutes the technical core
of our new JXT protocol.

As explained earlier in the Introduction, in the original OXT protocol, a client
with access to the symmetric key, breaks a 2-conjunctive query b = b1 ∧ b2 into
two search tokens for the OXT server. Similarly, to enable the JXT protocol, we
would need two search tokens for each b in B, as it is a 2-conjunctive query. The
first search token should yield all entries for the first conjunct b1 ((city = CC)
for our example), and the second search token is used to search for the second
conjunct b2 ((merchantID = mid), in our example) using a “cross-tag helper
token” stored (in the OXT server) as part of the entries for the first conjunct.
The OXT client computes two PRF values (using its secret key): one for b1
(city; cc), say p1, and another for b2 (merchantID; mid), say p2. It sends to the
server a key k1 derived from p1, and a token = hp2/p1 (in a DDH-hard group
with generator h). In the JXT protocol, we require that executing a in Table A
precisely generates this token hp2/p1.

Implementing Search in Table A. The first challenge we face is to implement
the search in Table A in a manner that mimics the client for the second set of
OXT queries in Table B. We achieve this as follows. At a high level, our idea is
to amend the encrypted table A to store the PRF value p2 for the merchantID
mid in each record in the set keyed by (time; hhmm), such that the search token
in query a (corresponding to (time = hhmm)) can be used to retrieve these p2
values. However, note that doing this näıvely has two disadvantages. First of
all, it would reveal the occurrence of the same p2 value across many different
queries. More crucially, this potentially causes a quadratic blowup in storage,
since we would need to store the p2 value for each attribute-value pair in the
record, when storing it as a set of records keyed by say, (time, hhmm).

We tackle this as follows. If we restrict the join attributes to be a limited set,
say of size t, then the blowup is only t-fold. This is a reasonable assumption in
practice, since the join attribute is typically either the primary key (i.e. takes a
unique value for each record) or a high-entropy attribute, and there are likely
to be only a limited number of candidate join attributes per table. In order to
hide the occurrences of join attributes across different queries, we embed nonces
or counters in the pseudorandom values. As in OXT, this allows us to avoid
cross-query leakage.

Implementing Search in Table B. Since we are willing to allow a t-fold
blowup in the encrypted database, we now show that with a 2*t-fold blowup,
we can actually get rid of the complicated discrete-log based approach of OXT
for handling conjunctive queries, at least for the OXT part that we are emulating
inside JXT. Recall in OXT, for each first conjunct b1 we stored the “cross-tag
helper token” z = p1 ∗ rind. Instead, we now store t different helper tokens
zt = p1 ∗ rindt (or simply p1 + rindt), where rindt is a different pseudorandom
value for each t ∈ [t]. This way, the search token for b2 need not be hp2/p1
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Fig. 1. We illustrate here how the leakage across join queries depends on the ordering
of the attribute-value pairs and/or the join ordering. Query 1 is “select * from
(Transactions join Merchants on merchantID) where time = 4PM and city = LA.”
Query 2 is “select * from (Transactions join Merchants on merchantID) where
amount = 50 and city = LA.” The conditional intersection pattern leakage reveals
that yind1 is same in the two queries. Even though xind16 maybe same as xind7,
this information is not leaked. The join-distribution pattern leakage also reveals that
in the Transactions table, there are additional sets of records, each record in the set
sharing the same merchantID (i.e., (redacted) 5GUYS from Query 1 has two records
and (redacted) Taxi from Query 2 has two records as well). However, if the order
in which the tables are joined is reversed, i.e., the query is over “Merchants join
Transactions”, then the join-distribution leakage is null. This is because merchantID is
the primary key in the Merchants table. For more details, see Sect. 5.1.

anymore, but just p2 − p1. This, when added to the particular cross-tag helper
token would yield rindt, which can then be checked for membership6 in XSett.
Security is maintained because for different t, rindt is random and independent.
The search token for b2 is now just p2 − p1, which is readily obtained from the
search for b1 in table A as described above. Of course, the actual protocol is
slightly more complicated as we embed nonces in the PRF values to attain full
security. The detailed protocol for JXT appears in Sect. 3 and Figs. 2 and 3.

1.3 The Leakage Profile of JXT

An astute reader may wonder about the leakage of JXT and how it compares to
the leakage profile of the OXT protocol. The leakage profile of OXT (i.e. leakage
to the server) is known to be technically abstruse, but at the same time a careful
analysis also shows that in practice the leakage of OXT is benign given that much

6 Note that we have t different XSets, but their total size is same as the single XSet
of OXT.
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of this leakage can also be obtained a priori by auxiliary means. We remark that
the OXT leakage profile is abstruse mainly because the OXT protocol achieves
high scalability while supporting Boolean search queries. Further, the rigorous
definition of the leakage profile allows for a simulation-based security proof of
OXT. The leakage profile for JXT also follows the same model, with some addi-
tional leakage over OXT leakage, which is to be expected because the queries
are across tables and express an existential quantifier over the join attribute.
Nevertheless, we describe below that in practice the leakage is still benign. In
this Introduction section, this is best illustrated using an example as in Fig. 1.
A rigorous definition of the leakage profile is given in Sect. 5.1.

The leakage of JXT can be split into six main categories: (a) database size,
(b) result pattern of the queries, (c) equality pattern across the queries, (d) size
pattern of the queries, (e) conditional intersection pattern across queries, and (f)
join-attribute distribution pattern of the queries. While the first five are more
or less similar to OXT leakage (but, see Sect. 5.1 for subtle differences), the last
one is obviously new to JXT.

We illustrate the concept of join-attribute distribution pattern leakage using
the running example. For the query over the join of Tables A and B with respect
to the attribute merchantID, it reveals the frequency distribution of values taken
by merchantID across records matching the attribute-value pair in the “first
slot”, i.e. records in Table A matching the time hhmm.

The extent of this leakage depends on the “entropy” of the join attribute
merchantID in the first table i.e. Table A. In this particular example, merchantID
is the primary key in Table A, and takes a unique value for each record. Hence,
in this case, the join-attribute distribution pattern leakage is essentially query-
invariant (as each possible value occurs with frequency exactly 1), and hence,
benign. In other examples, the join attribute may not be a primary key in the
first table. However, if it is still a “high-entropy” attribute in the first table, it is
likely to take a unique value for each record (or each value with frequency close
to 1), and hence, the leakage can be minimal.

Now, just as in OXT, the client has the choice to order the conjuncts in
a query, as well as the order in which the tables are joined. The way OXT is
designed is that the first conjunct usually leaks the most information (as the
server gets to decrypt information related to the first conjunct). Thus, usually,
the attribute that has lesser entropy is not made the first conjunct in a query,
as the size pattern leakage has the potential to un-blind the attribute-value
pair for a low-entropy attribute (such as gender). A similar design principle is
followed in JXT, and the order of the tables being joined can make a difference
to the leakage, as illustrated in Fig. 1. In particular, the table in which the join
attribute is the primary-key (or high-entropy attribute) should be made the first
table in a join query. If such an ordering is always possible, then the additional
join-attribute distribution pattern leakage can be null (in case of primary-keys)
or minimal (in case of high-entropy attributes).

Security Proofs. We formally prove the (adaptive) simulation-based security
of JXT with respect to the above leakage profile (formally defined in Sect. 5.1).
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Our proofs follow the same simulation-based framework that was originally pro-
posed by Curtmola et al. in [CGKO06] (and is widely adopted in the SSE litera-
ture [CK10,CJJ+13]). Our proofs employ purely symmetric-key primitives such
as PRFs and symmetric-key encryption in the standard model.

1.4 Related Work

The SPX Scheme. In [KM18], Kamara and Moataz showed how to encrypt
a relational database in such a way that it can efficiently support a large class
of SQL queries, including join queries. However, their proposed protocol (called
SPX) crucially relies on explicitly pre-computing joins over all attributes that
share a common domain. In our context, SPX essentially pre-computes joins of
tables over all attributes configured for joins. On the other hand, our proposed
JXT protocol avoids all such pre-computation of joins (and the associated storage
overheads as discussed earlier).

We note, however, that there are scenarios where SPX provides better query
complexity than JXT. Consider a join query over tables Tab1 and Tab2, where
each individual table has m1 and m2 matching records, respectively, but the
number of matching records in the join of Tab1 and Tab2 is empty. This is an
extreme case where SPX outperforms JXT since the computational and com-
munication complexity incurred by JXT is O(m1 · m2), while that incurred by
SPX is O(1).

We also note that the SPX protocol leaks less information during join queries
as compared to JXT. This is another consequence of the pre-processing of joins
at setup in SPX. In particular, SPX does not incur two kinds of leakage that
JXT does: the conditional intersection pattern leakage and the join attribute
distribution pattern leakage. We view these types of leakage as tradeoffs for
efficiency and flexibility (w.r.t. table updates) that JXT achieves by avoiding
pre-computation of joins at setup.

The CNR Scheme. In a more recent work [CNR21], Cash et al. introduced
the interesting concept of partially pre-computed joins, which potentially has
a lower result pattern leakage than is usually expected (we refer to their con-
struction as CNR henceforth). In CNR, the server only learns the projection of
the actual result set onto the two tables, and the client has to do extra work
to extract the exact set of records matching the join query. However, the stor-
age requirement for their scheme is at least as much as would be required in a
scheme that pre-computes joins of tables at setup. Finally, it is not immediately
obvious if their scheme is compatible with OXT, which is the state-of-the-art
for conjunctive (and more general Boolean) queries. As in SPX, there are sce-
narios where CNR provides better query complexity than JXT by virtue of the
partial pre-computation of joins at setup. Additionally, CNR also does not incur
the conditional intersection pattern leakage and the join attribute distribution
pattern leakage.
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Property-Preserving Encryption. Finally, there exist solutions based on
property-preserving encryption (PPE) that allow handling a large class of SQL
queries over encrypted relational databases. However, these schemes are vulner-
able to leakage-abuse attacks [IKK12,NKW15,CGPR15,ZKP16,BKM20]. For
example, PPE-based schemes such as CryptDB [PRZB11] typically use deter-
ministic encryption and its variants to support conjunctive (and other Boolean
queries), as well as join queries. These techniques typically leak frequency infor-
mation about the underlying plaintext data, which can be potentially exploited
in certain settings to completely break query privacy [NKW15]. Our proposed
JXT protocol, on the other hand, does not use any PPE-like techniques, and only
incurs benign leakage (similar to those in OXT) that are resistant to leakage-
abuse attacks (see [BKM20] for an overview of why leakage incurred by schemes
such as OXT are not exploitable via leakage-abuse attacks in practice).

1.5 Open Questions and Future Research Directions

Our work gives rise to many interesting open questions and directions of future
research. We summarize some of them below.

Joins over Arbitrary and Low-Entropy Attributes. While it is true that
JXT does not support joins over arbitrary attributes (in particular, the attributes
over which the encrypted database was not configured to support joins), in prac-
tice, it is indeed the case that the designer of the tables knows in advance which
attributes are likely candidates for joins. We leave it as an open problem to ana-
lyze the leakage of the JXT protocol when a join is performed over an attribute
which has “low-entropy” in both the tables.

Joins over Three or More Tables. We also leave it as an interesting direction
of future research to extend JXT to support queries over joins of three or more
tables (without pre-computation). We do believe that our techniques presented
in this paper can be extended to support joins over three (or more) tables.
However, a detailed discussion of such an extension is beyond the scope of this
paper, as formalizing the implications for its leakage is likely to be non-trivial
and could involve some unexpected issues. In addition, a detailed security proof
for such an extension would require careful analysis.

Concretely, we expect the key non-triviality to arise in the search protocol,
where the client needs to send to the server a significantly more complicated
combination of join tokens to enable searching over joins of three (or more)
tables, while leaking as little information as possible beyond the leakage for the
two-join case. For instance, a naive extension from two-joins to three-joins might
leak whether a particular record is in the join of two tables, but not in the join
of all three tables. We would ideally want to avoid such “sub-query leakage”,
which could otherwise lead to attacks.

JXT for Dynamic Databases. We also leave it open to extend JXT to support
dynamic addition/deletion of records directly to the encrypted database (e.g.,
in the spirit of [PM21], which extends OXT to the dynamic setting). Another
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open problem is to extend JXT to achieve lower result pattern leakage, as in the
scheme due to Cash et al. [CNR21] discussed above.

Implementation. We acknowledge that implementing and testing JXT over
massive relational databases with TBs of data is important from a performance
analysis point of view. However, given the potentially significant implementation-
level challenges involved, we leave this as an interesting and challenging follow-up
project (similar to the follow-up to OXT by Cash et al. [CJJ+14]).

2 Definitions and Tools

Notation. We write [n] for the set {1, . . . , n}. For a vector v we write |v| for
the dimension (length) of v and for i ∈ [|v|] we write v[i] for the i-th compo-
nent of v. All algorithms (including adversaries) are assumed to be probabilistic
polynomial-time (PPT) unless otherwise specified. If A is an algorithm, then
y ← A(x) means that the y is the output of A when run on input x. If A is ran-
domized then y is a random variable. We refer to λ ∈ N as the security parameter,
and denote by poly(λ) and neg(λ) any generic (unspecified) polynomial function
and negligible function in λ, respectively.7

2.1 Relational Databases and Join Queries

Syntax. A relational database DB = {Tabi}i∈[N ] is represented as a collection
of tables. Each table Tabi is in turn composed of records over a set of attribute-
value pairs Wi. For simplicity, we represent Tabi as a list of tuples of the form
{(indi,�,wi,�)}�∈[L], where each record-identifier indi,� is a bit-string in {0, 1}λ and
each attribute-value-pair wi,� ∈ Wi is an (arbitrary-length) bit-string in {0, 1}∗.
For the sake of search it is sufficient to represent a record as its associated
attribute-value pair set Wi.

Identifiers. An identifier indi,� is a value that can be revealed to the server
storing the database (for instance, a permutation of the original record indices).
It can be used by the server to efficiently retrieve the corresponding (encrypted)
record and send it to the client. We assume throughout the paper that any
identifier ind corresponding to a record in a table Tabi is appended with the
table number i. In other words, two distinct tables Tabi and Tabj cannot have
a record identifier ind in common.

Join Attributes. We assume that for each table Ti, the set of all attributes
{attr∗i,t}t∈[T ] that it shares with other tables in the database DB is fixed at
setup and has size upper-bounded by some polynomial function of the security
parameter. We refer to such attributes as “join attributes”. Looking ahead, these
join attributes are used to perform join queries across tables.

7 Note that a function f : N → N is said to be negligible in λ if for every positive
polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large.
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Inverted Index. For an attribute-value pair w ∈ Wi, we define DBTabi(w) as
the set of identifiers of records that contain an entry matching w. In other words,
DBTabi

(w) is a set of the form:

DBTabi(w) = {(ind | (ind,w) ∈ Tabi}.

We refer to the collection of sets {DBTabi
(w�)}w�∈Wi

as the “inverted index”
for the table Tabi.

Inverted Join Index. For an attribute-value pair w ∈ Wi, we additionally
define DBJoin

Tabi
(w) as the set of identifiers of records that contain an entry match-

ing w, along with the attribute-value pairs corresponding to the join attributes
for the same record. In other words, DBJoin

Tabi
(w) is a set of the form:

DBJoin
Tabi

(w) =
{
(ind, {w∗

t }t∈[T ]) |
(ind,w) ∈ Tabi ∧ ∀t ∈ [T ](ind,w∗

t ) ∈ Tabi

}
.

We refer to the collection of sets {DBJoin
Tabi

(w�)}w�∈Wi
as the “inverted join

index” for the table Tabi.

Join Query. A join query over a pair of tables Tabi1 and Tabi2 with corre-
sponding attribute-value pair sets W1 and W2, respectively, is specified by a
tuple

q = (i1, i2,w1,w2, attr
∗),

where w1 ∈ W1, w2 ∈ W2, and attr∗ is a special “join attribute” that defines the
join relation between the tables Tabi1 and Tabi2 for the query q.

We write DB(q) to be the set of tuples of the form (ind1, ind2) that “sat-
isfy” the query q, where ind1 and ind2 are identifiers corresponding to records
in the tables Tabi1 and Tabi2 , respectively. Formally, this means that for each
(ind1, ind2) ∈ DB(q), the following conditions hold simultaneously:

((ind1,w1) ∈ Tabi1) ∧ ((ind2,w2) ∈ Tabi2) ,

∃γ s.t. ((ind1, 〈attr∗, γ〉) ∈ Tabi1) ∧ ((ind2, 〈attr∗, γ〉) ∈ Tabi2)

2.2 SSE Syntax and Security Model

In this section, we formally define searchable symmetric encryption (SSE). Before
presenting the formal definition, we present certain assumptions we make in the
rest of the paper.

– In the rest of the paper, we assume that any plaintext record is identified
by its index ind while, the corresponding encrypted version of the record
is identified by a “randomized index” rind (computed as a pseudorandom
mapping applied on the original index ind).
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– We also assume that the output from the SSE protocol for a given search
query are the indices (or identifiers) ind corresponding to the records that
satisfy the query. A client program can then use these indices to retrieve the
encrypted records and decrypt them. We adopt this formulation because it
allows us to decouple the storage of payloads (which can be done in a variety
of ways, with varying types of leakage) from the storage of metadata, which
is the focus of our protocol (e.g., a client may retrieve the encrypted records
from the same server running the query or from a different server, or may
only retrieve records not previously cached, etc.)

We note here that a similar formulation is used by almost all existing works
on SSE, and more generally structured encryption [CGKO06,CK10,CJJ+13,
CJJ+14].

Formal Definition of SSE. A searchable symmetric encryption (SSE) scheme
Π consists of an algorithm EDBSetup and a protocol Search between the client
and server, all fitting the following syntax:

– EDBSetup takes as input a database DB, and outputs a secret key K along
with an encrypted database EDB.

– The Search protocol is between a client and server, where the client takes as
input the secret key K and a query q and the server takes as input EDB. At
the end, the client outputs a set of identifiers, and the server has no output.

Correctness. We say that an SSE scheme is correct if for all inputs DB and
queries q, if (K,EDB) $← EDBSetup(DB), after running Search with client input
(K, q) and server input EDB, the client outputs the set of indices DB(q).

Adaptive Security of SSE. We recall the semantic security definitions of SSE
from [CGKO06,CK10]. The definition is parameterized by a leakage function
L, which describes what an adversary (the server) is allowed to learn about
the database and queries. Formally, security says that the server’s view during
an adaptive attack (where the server selects the database and queries) can be
simulated given only the output of L.

Definition 1. Let Π = (EDBSetup,Search) be an SSE scheme and let L be a
stateful algorithm. For algorithms A (denoting the adversary) and S (denoting a
simulator), we define the experiments (algorithms) RealΠA(λ) and IdealΠA,S(λ)
as follows:

RealΠA(λ): A(1λ) chooses DB. The experiment then runs

(K,EDB) ← EDBSetup(DB),

and gives EDB to A. Then A repeatedly chooses a query q. To respond, the
game runs the Search protocol with client input (K, q) and server input EDB
and gives the transcript and client output to A. Eventually A returns a bit
that the game uses as its own output.
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IdealΠA,S(λ): The game initializes a counter cnt = 0 and an empty list q. A(1λ)
chooses DB. The experiment runs EDB ← S(L(DB)) and gives EDB to A.
Then A repeatedly chooses a query q. To respond, the game records this as
q[i], increments i, and gives to A the output of S(L(DB,q)). (Note that here,
q consists of all previous queries in addition to the latest query issued by A.)
Eventually A returns a bit that the game uses as its own output.

We say that Π is L-semantically-secure against adaptive attacks if for all adver-
saries A there exists an algorithm S such that

| Pr[RealΠA(λ) = 1] − Pr[IdealΠA,S(λ) = 1] |≤ neg(λ).

We note that in the security analysis of our SSE schemes we include the client’s
output, the set of indices DB(ψ(w̄)), in the adversary’s view in the real game, to
model the fact that these ind’s will be used for retrieval of encrypted record pay-
loads.

Selective Security of SSE. We also consider a weaker version of selective secu-
rity for SSE that is identical to the adaptive security definition except that:
(a) in the real world experiment, the adversary A does not get to choose its
queries adaptively, but is required to specify all such queries non-adaptively at
the beginning of the protocol along with the plaintext database DB, and receives
EDB and the transcript and client output corresponding to each of its queries
together at the end of the experiment. Also, (b) in the ideal world experiment,
the adversary A directly receives as output the final response of a non-adaptive
simulator S, computed as S(L(DB, {q[N ]}i∈[Q])), where Q is the total number
of queries issued by the adversary A non-adaptively.

2.3 TSets

We recall the definition of syntax and security for a tuple set, or TSet. Intuitively,
a TSet allows one to associate a list of fixed-sized data tuples with each attribute-
value pair in the database, and later issue related tokens to retrieve these lists.
We will use it in our SSE protocols for join queries as an “expanded inverted
join index”.

TSet Syntax. Formally, a TSet implementation Σ = (TSetSetup,TSetGetTag,
TSetRetrieve) will consist of three algorithms with the following syntax:

– TSetSetup takes as input T = (T1, . . . ,TN ), where each Ti for i ∈ [N ] is an
array of lists of equal-length bit strings indexed by the elements of Wi, and
outputs (TSet,KT ).

– TSetGetTag takes as input the key KT and a tuple (i,w) and outputs stagi.
– TSetRetrieve takes as input TSet and stagi, and returns a list of strings.

TSet Correctness. We say that Σ is correct if for all {Wi}i∈[N ], all T =
(T1, . . . ,TN ), and any w ∈ Wi, we have

TSetRetrieve(TSet, stag) = Ti[w],

when (TSet,KT ) ← TSetSetup(T) and stag ← TSetGetTag(KT , (i,w)).
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Intuitively, T holds lists of tuples associated with attribute-value pairs and
correctness guarantees that the TSetRetrieve algorithm returns the data associ-
ated with the given attribute-value pair.

TSet Security. The security goal of a TSet implementation is to hide as much
as possible about the tuples in T = (T1, . . . ,TN ) and the attribute-value pairs
these tuples are associated to, except for the vectors Ti[w1],Ti[w2], . . . of tuples
revealed by the client’s queried attribute-value pairs w1,w2, . . .. (For the purpose
of TSet implementation we equate client’s query with a single attribute-value
pair).

The formal definition of security is similar to that of keyword-search based
SSE for single-keyword queries. Since the list of tuples associated to searched
attribute-value pairs can be viewed as information provided to the server, this
information is also provided to the simulator in the security definition below.

We parameterize the TSet security definition with a leakage function LT that
describes what else the adversary is allowed to learn by looking at the TSet and
stag values. For most implementations this leakage will reveal something about
the structure of T, and consequently also the structure of DB.

Definition 2. Let Σ = (TSetSetup,TSetGetTag,TSetRetrieve) be a TSet imple-
mentation, and let A, S be an adversary and a simulator, and let LT be a stateful
algorithm. We define two games, RealΣA and IdealΣA as follows.

RealΣA(λ): A(1λ) outputs {Wi}i∈[N ],T = (T1, . . . ,TN ) with the above syntax.
The game computes

(TSet,KT ) ← TSetSetup(T),

and gives TSet to A. Then A repeatedly issues queries q ∈ W, and for each q
the game gives stag ← TSetGetTag(K, q) to A. Eventually, A outputs a bit,
which the game also uses as its output.

IdealΣA,S(λ): The game initializes a counter i = 0 and an empty list q. A(1λ)
outputs {Wi}i∈[N ],T = (T1, . . . ,TN ) as above. The game runs TSet ←
S(LT (T)) and gives TSet to A. Then A repeatedly issues queries q ∈ W,
and for each q the game stores q in q[i], increments i, and gives to A the
output of S(LT (T,q),T[q]). Eventually, A outputs a bit, which the game also
uses as its output.

We say that Σ is a LT -adaptively-secure TSet implementation if for all adver-
saries A there exists an algorithm S such that

| Pr[RealΣA(λ) = 1] − Pr[IdealΣA,S(λ) = 1] |≤ neg(λ).

3 Join Cross-Tags (JXT): SSE for Joins

In this section, we formally describe our new JXT protocol for searching over
joins of tables in encrypted relational databases. The JXT protocol consists of
two protocols:
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– The EDBSetup protocol is a randomized algorithm executed locally at the
client. This protocol takes as input the plaintext database and generates the
encrypted database EDB, which is to be outsourced to the (untrusted) server.
The encrypted database EDB consists of two data structures - the TSet and
the XSet. The EDBSetup protocol also generates a secret key K, which is
stored locally at the client and is used subsequently to generate query tokens.

– The Search protocol is used to execute queries over joins of encrypted tables
in the encrypted database EDB. At a high level, it is a two-party protocol
executed jointly by the client and the server, where the client’s input is the
query to be executed and the server’s input is the encrypted database EDB.
It consists of a single round of communication (i.e. a query message from the
client to the server, followed by a response message from the server to the
client). At the end of the protocol, the client is expected to learn the set of
record indices (across the two tables) matching the join query.

We now expand in more details on how each of the aforementioned protocols
function. In what follows, we assume that: (a) F : {0, 1}λ × {0, 1}∗ → {0, 1}λ

is a family of pseudorandom functions, (b) SKE = (Gen,Enc,Dec) is an IND-
CPA secure symmetric-key encryption algorithm with λ-bit keys, and (c) Σ =
(TSetSetup,TSetGetTag,TSetRetrieve) is a secure TSet as defined in Sect. 2.

3.1 The EDBSetup Algorithm of JXT

We now describe the EDBSetup algorithm of JXT. A summary of how the algo-
rithm works appears in Fig. 2.

We note that in JXT, each table Tab is processed independently; so we focus
on the processing for a single table. Given a table Tab, let W denote the set of
attribute-value pairs across this table Tab. Also, let {attr∗t }t∈[T ] denote the set
of T special attributes over which we allow the table Tab to be joined with other
tables in the database. We begin by describing how the XSet component of the
encrypted database is generated for a given table.

Generating the XSet Table-Wise. For each record with identifier ind in the
table Tab, let {w∗

t }t∈[T ] denote the set of attribute-value pairs for this record
with identifier ind corresponding to the T special “join attributes”. For each
t ∈ [T ], the EDBSetup algorithm computes the values

xindt = F (KI , t, ind), xwt = F (KW ,w∗
t ),

where KI ,KW ∈ {0, 1}λ are uniformly sampled keys for the PRF family F .
Additionally, the EDBSetup algorithm computes the “cross-tag”

xtagt = xwt + xindt,

where xwt and xindt are as described above. The XSet corresponding to the table
Tab is then populated with all such xtag values.
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Fig. 2. The setup algorithm of Join Cross-Tags (JXT.EDBSetup). We assume that each
record index ind in a table Tabi is appended with the table number i.

Remark. Looking ahead, the XSet is used primarily for membership-testing,
hence we can implement this using a Bloom filter to save storage (this is essen-
tially similar to what is done for the XSet in the OXT protocol).

Generating the TSet Table-Wise. We now describe how to generate the TSet
component for the table Tab. For each attribute-value pair w in the set W for
the table Tab, the EDBSetup algorithm does the following:

– It generates a pair of “padding elements” of the form

z0 = F (KZ ,w ‖ 0), z′
0 = F (KZ′ ,w ‖ 0),

where KZ and KZ′ are again uniformly sampled keys for the PRF family F .
– Suppose that the attribute-value pair w occurs in a record with identifier ind,

and let {w∗
t }t∈[T ] denote the set of attribute-value pairs for this record with

identifier ind corresponding to the T special “join attributes”. To each such
record, the EDBSetup algorithm assigns a unique counter value cnt ≥ 1 and
computes the following additional “padding elements”:

zcnt = F (KZ ,w ‖ cnt), z′
cnt = F (KZ′ ,w ‖ cnt).
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– In addition, for each t ∈ [T ], the EDBSetup algorithm computes

xindt = F (KI , t, ind), xwt = F (KW ,w∗
t ),

yt = xindt − (z0 + zcnt), y′
t = xwt − (z′

0 + z′
cnt).

Remark. Note that xindt and xwt are generated identically as in the computa-
tion of the TSet. In fact, while we duplicate the generation of these elements
for ease of understanding, in a real execution of the algorithm, these values
can be generated exactly once and re-used for the generation of the XSet and
the TSet.

– Finally, the EDBSetup algorithm computes the randomized index ct for the
index ind as

Kenc,w = F (Kenc,w), ct = Enc(Kenc,w, ind),

where Kenc is again a uniformly sampled key for the PRF family F .

Overall, the TSet entry corresponding to the attribute-value pair w consists
of an entry corresponding to each record ind containing w, where each such entry
is a tuple of the form (ct, {yt, y

′
t}t∈[T ]), generated as described above. The actual

TSet is then generated using the secure T-Set implementation Σ.

3.2 The Search Protocol of JXT

We now describe how the Search protocol works on a join query of the form
q =

(
i, j,w(1),w(2), attr∗i,j

)
, which essentially denotes a query over the join of the

tables Tabi and Tabj , where the join is computed with respect to the special
attribute attr∗i,j , which is a designated “join attribute” for both tables Tabi and
Tabj . A concise summary of how the protocol works appears in Fig. 3.

At a high level, the search protocol can be divided into three parts:

– [Round-1 (Client→Server)]: The client generates a “query message” and
sends it across to the server.

– [Round-2 (Server→Client)]: The server generates a “response message”
and sends it across to the client.

– [Local Computation (Client)]: The client performs some local computa-
tion to retrieve the final set of record identifiers matching the query.

We describe how each of these parts work.

[Round-1:] Query Message (Client→Server). The client sends to the server
the table indices i and j, along with the join attribute attr∗i,j over which the query
is to be executed. The client also sends to the server the stag values stag(1) and
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Fig. 3. The search protocol of Join Cross-Tags (JXT.Search).

stag(2), which allow the server to recover the TSet entries corresponding to the
attribute value pairs w(1) and w(2), respectively. In addition, corresponding to
each TSet entry for the attribute value pairs w(1) and w(2), the client sends across
to the server a sequence of terms of the form

xjointoken(1)[1], xjointoken(1)[2], . . .
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xjointoken(2)[1], xjointoken(1)[2], . . .

until the server sends the signals stop(1) and stop(2), respectively, indicating that
there are no more TSet entries to process for either attribute-value pair. These
terms are generated as follows: for a given counter value cnt(1) ∈ {1, 2, . . .}, the
term xjointoken(1)[cnt(1)] is generated as:

xjointoken(1)[cnt(1)] = F (KZ′ ,w(1) ‖ cnt(1)) + F (KZ ,w(2) ‖ 0).

Similarly, for a given counter value cnt(2) ∈ {1, 2, . . .}, the term
xjointoken(2)[cnt(2)] is generated as:

xjointoken(2)[cnt(2)] = F (KZ′ ,w(1) ‖ 0) + F (KZ ,w(2) ‖ cnt(2)).

[Round-2:] Response Message (Server→Client). The server uses the stag
values sent across by the client to recover the TSet entries corresponding to the
attribute-value pairs w(1) and w(2). More specifically:

– The server uses stag(1) (received from the client as part of the first round
message) to recover the TSet entries corresponding to the attribute-value
pair w(1) from the T-Set corresponding to table Tabi. Suppose that each such
entry is a tuple of the form

(ct(1), {y
(1)
t , y′(1)

t }t∈[T ]).

Also, let y′(1)
t∗ be the entry from among {y′(1)

t }t∈[T ] corresponding to the
attribute attr∗i,j over which the query is being executed. The server computes

xtoken
(1)
t∗ = xjointoken(1)[cnt(1)] + y′(1)

t∗ .

– Similarly, the server uses stag(2) (also received from the client as part of
the first round message) to recover the TSet entries corresponding to the
attribute-value pair w(2) from the T-Set corresponding to table Tabj . Suppose
that each such entry is a tuple of the form

(ct(2), {y
(2)
t , y′(2)

t }t∈[T ]).

Again, let y
(2)
t∗ be the entry from among {y

(2)
t }t∈[T ] corresponding to the

attribute attr∗i,j over which the query is being executed. The server computes

xtoken
(2)
t∗ = xjointoken(2)[cnt(2)] + y

(2)
t∗ .
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Now, for each such pair of TSet entries (where the first entry corresponds
to the attribute-value pair w(1) from the T-Set for table Tabi, and the second
corresponds to the attribute-value pair w(2) from the T-Set for table Tabj), the
server computes a candidate xtag value of the form

xtag(1,2) = xtoken
(1)
t∗ + xtoken

(2)
t∗ ,

and checks the membership of xtag(1,2) in the XSet corresponding to Tabj .

– If the membership-test returns true, then the server infers that the pair of
records match constitute a matching record in the join of the two tables;
hence it sends back the corresponding randomized identifiers (ct(1), ct(2)) to
the client.

– If the membership test returns false, then the server discards the correspond-
ing randomized identifiers.

Local Computation (Client): Finally, the client decrypts the set of random-
ized record identifiers (i.e., the tuples of the form (ct(1), ct(2))) sent across by
the client, and decrypts them to retrieve the set of plaintext record identifiers
corresponding to the records matching the query q.

Realizing TSet and XSet. We note here that an implementation of JXT can
use the same selectively/adaptively secure implementations of TSet (built from
purely symmetric-key cryptographic primitives) as used by OXT [CJJ+13].
We also note here that one could equivalently use an encrypted multi-map
(EMM) [CK10,KM17,KM19] instead of a TSet in JXT. Also note that dur-
ing the search protocol, the server uses the XSet purely for membership-testing.
This allows implementing the XSet using a Bloom filter, as in OXT. These obser-
vations provide evidence for the overall compatibility of JXT with OXT.

Correctness. We now formally argue that the JXT protocol is correct. More
concretely, we state and prove the following theorem:

Theorem 1. Assuming that SKE satisfies decryption correctness and Σ is a
correct TSet implementation, the JXT protocol satisfies correctness.

Proof. Consider a query of the form q = (i, j,w(1),w(2), attr∗i,j), and suppose
that there exists an index-pair (ind1, ind2) ∈ DB(q). We now argue that the
client recovers (ind1, ind2) as an outcome of the Search protocol. To see this,
observe the following. Since the aforementioned conditions hold true, the server
must retrieve the following TSet entries corresponding to w(1) and w(2) (this
follows from the correctness of the TSet implementation σ):

(ct(1), {y
(1)
t , y′(1)

t }t∈[T ]), (ct(2), {y
(2)
t , y′(2)

t }t∈[T ]),

where ct(1) = Enc(Kenc,w, ind1) and ct(2) = Enc(Kenc,w, ind2), and letting y′(1)
t∗

and y
(2)
t∗ be the respective entries corresponding to the attribute attr∗i,j ,

y′(1)
t∗ = F (K(2), 〈attr∗i,j , γ〉) − (F (KZ′ ,w(1) ‖ 0) + F (KZ′ ,w(1) ‖ cnt(1))),
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y
(2)
t∗ = F (KI , t

∗ind2) − (F (KZ ,w(2) ‖ 0) + F (KZ ,w(2) ‖ cnt(2))),
for some appropriate counter values cnt(1) and cnt(2). In addition, the client
sends across to the server the values xjointoken(1)[cnt(1)] and xjointoken(2)[cnt(2)]
where

xjointoken(1)[cnt(1)] = F (KZ′ ,w(1) ‖ cnt(1)) + F (KZ ,w(2) ‖ 0),

xjointoken(2)[cnt(2)] = F (KZ′ ,w(1) ‖ 0) + F (KZ ,w(2) ‖ cnt(2)).
Consequently, as per the Search protocol, the server computes

xtoken
(1)
t∗ = F (K(2), 〈attr∗i,j , γ〉) − F (KZ′ ,w(1) ‖ 0) + F (KZ ,w(2) ‖ 0),

and

xtoken
(2)
t∗ = F (KI , t

∗ind2) − F (KZ ,w(2) ‖ 0) + F (KZ′ ,w(1) ‖ 0).

Next, the server computes the candidate xtag as

xtag(1,2) = xtoken
(1)
t∗ + xtoken

(2)
t∗ = F (KI , t

∗ind2) + F (K(2), 〈attr∗i,j , γ〉).

Note that this is nothing but the xtag corresponding to the index-attribute value
pair (ind2,w∗ = 〈attr∗i,j , γ〉). Finally, assuming that the symmetric-key encryp-
tion scheme SKE satisfies correctness of decryption, the client recovers the index-
pair (ind1, ind2). A similar argument can be used to show that the client does
not recover any index-pair (ind′

1, ind
′
2) /∈ DB(q). This completes the proof of

correctness for the JXT protocol.

On Bloom Filter and False Positives. We point out that using a Bloom
filter to realize the XSet data structure potentially introduces false positives.
The rate of such false positives can be programmed by setting the parameters of
the Bloom filter, thus yielding a tradeoff between storage and false positive rate.
As an alternative to Bloom filter, one could use any non-lossy data structure that
allows checking for set-membership. This would prevent false positives, albeit at
the cost of some extra storage at the server end.

4 Complexity Analysis of JXT

In this section, we analyze the asymptotic complexity of JXT.

Storage Overhead. We first discuss the storage overhead for each table. Recall
that in JXT, the TSet and XSet for the encrypted database are built table-wise.
Hence, the total storage overhead for JXT is essentially the sum of the overheads
for each individual table. Suppose that a table Tab has a total of n attributes,
with T ≤ n amongst these being “join attributes”; i.e. attributes over which the
table can be joined with other tables in the database. Also, assume that Tab has
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a total of m records (equivalently, rows). We enumerate below the number of
entries in the TSet and XSet corresponding to Tab.

Recall that for each attribute-value pair w in the set W for the table Tab, the
TSet stores as many entries as the number of records containing the attribute-
value pair w, where each such entry is a tuple of the form: (ct, {yt, y

′
t}t∈[T ]). In

other words, each entry is a collection of (2T + 1) objects. Hence, the total
number of TSet entries for Tab is

∑
w∈W(2T + 1)|DBTab(w)|. But note that∑

w∈W |DBTab(w)| = m · n, where m and n are the total number of records and
attributes in the table Tab, respectively. Hence, |TSet(Tab)| = m · n · (2T + 1).
In other words, the TSet incurs an O(T )-fold overhead over the storage required
for the plaintext table Tab.

Next, recall that the XSet for the table Tab has T entries corresponding to
each record index ind. More concretely, for each record with identifier ind in the
table Tab, let {w∗

t }t∈[T ] denote the set of attribute-value pairs for this record
with identifier ind corresponding to the T special “join attributes”. Then, for
each t ∈ [T ], the EDBSetup algorithm stores a unique xtagt entry corresponding
to the pair (ind,w∗

t ). Thus, we have |XSet(Tab)| = m · T .
We note, however, that the XSet is implemented using a Bloom filter; conse-

quently, the storage overhead for the XSet is significantly lower. As in OXT, we
expect the overhead for the XSet in JXT to be low enough for the server to be
able to store it in the RAM. The TSet will typically be stored on the disk.

Computational and Communication Overheads. We now present an
asymptotic analysis for the computational and communication overheads when
executing a search query over the joins of two tables Tab1 and Tab2. Suppose that
the query involves two attribute-value pairs w1 and w2, and is to be executed
over the join of Tab1 and Tab2 w.r.t. the attribute attr∗.

Computational Overhead (Client). The client computes the stag values corre-
sponding to w1 and w2 using O(1) invocations of the stag-generation algorithm
for the TSet (the exact overhead depends on the implementation of the TSet;
however, for efficient implementations such as the one for OXT [CJJ+13], this
is a constant overhead). The client also computes xjointoken(1) and xjointoken(2)

values; the number of such computations is |DBTab1(w1)| + |DBTab2(w2)|. Hence,
the comp. overhead is O(|DBTab1(w1)| + |DBTab2(w2)|).

Computational Overhead (Server). The server’s computation can be broadly
divided into two categories: (a) TSet lookups (using the stag values sent across by
the client), and (b) xtag computations and membership-checks. The total num-
ber of TSet lookups performed by the server corresponding to w1 and w2 is again
DBTab1(w1)| + |DBTab2(w2). The number of xtag computations is larger; in par-
ticular, the server computes (and checks membership of) a candidate xtag entry
corresponding to each pair (xjointoken(1)[cnt(1)], xjointoken(2)[cnt(2)]). Hence, the
computational overhead at the server is O(|DBTab1(w1)| · |DBTab2(w2)|). Note
that this computational overhead is unavoidable since in the worst case, we have
|DB(q)| = |DBTab1(w1)| · |DBTab2(w2)|, and the server must perform at least as
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much computation as is required to compute and send across to the client the
final result set pertaining to the join query.

Communication Overhead. The message from the client to the server consists of
O(DBTab1(w1)| + DBTab2(w2)|) terms, while the message from the server to the
client consists of |DB(q)| terms. Hence, the overall communication complexity is
O(|DBTab1(w1)| + |DBTab2(w2)| + |DB(q)|).

Bloom Filter Configuration. We note here that the configuration of the Bloom
filter used is expected to influence the performance of an actual implementation
of JXT. We propose using Bloom filter configurations similar to those used in
implementations of OXT reported in prior work [CJJ+13,CJJ+14].

5 Leakage Profile and Security of JXT

In this section, we formally describe the leakage profile of our JXT protocol(i.e.
leakage to the server) for join queries, and prove its security with respect to this
leakage profile.

5.1 The Leakage Profile of JXT

We represent a sequence of Q join queries by q = (i1, i2, s1, s2, attr∗), where
an individual join query is represented (as per the definition of join queries
introduced in Sect. 2) as a five-tuple q[�] = (i1[�], i2[�], s1[�], s2[�], attr∗[�]). The
leakage profile of JXT for such a sequence of join queries is a tuple of the form
L = (n,RP,EP1,EP2,SP1,SP2, JD, IP) where:

– n is an N -sized list, where for each i ∈ [N ], n[i] represents the total number
of occurrences of all attribute-value pairs in Wi across records in table Tabi.

– RP is the result pattern leakage, i.e. the set of records matching each query.
Formally, we represent RP as a Q-sized list, where for each � ∈ [Q], we have
RP[�] = DB(q[�]). Here, DB(q) for q = q[�] is as defined in Sect. 2.

– EP1 is the equality pattern over s1 indicating which queries have equal
attribute-value pairs in the first coordinate. Formally, we represent EP1 as a
Q × Q table with entries in {0, 1}, where EP1[�, �′] = 1 if s1[�] = s1[�′], and 0
otherwise.

– Similarly, EP2 is the equality pattern over s2 indicating which queries have
equal attribute-value pairs in the second coordinate. Formally, we represent
EP2 as a Q×Q table with entries in {0, 1}, where EP2[�, �′] = 1 if s2[�] = s2[�′],
and 0 otherwise.

– SP1 is the size pattern over s1, i.e. the number of records matching the first
attribute-value pair in each join query. Formally, we represent SP1 as a Q-
sized list, where for each � ∈ [Q], we have SP1[�] = |DBTabi1[�](s1[�])|.

– Similarly, SP2 is the size pattern over s2, i.e. the number of records matching
the second attribute-value pair in each join query. Formally, we represent SP2

as a Q-sized list, where for each � ∈ [Q], we have SP2[�] = |DBTabi2[�](s2[�])|.
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– JD is the join attribute distribution pattern over s1, which is represented as
a collection of Q multi-sets. The �th entry in this collection, i.e., JD[�] is a
multi-set of (global) randomized encodings of the join attribute values corre-
sponding to the join attribute attr∗[�] in the records matching the attribute-
value pair s1[�] in the table Tabi1[�]. More formally, for each � ∈ [Q], we have
the multi-set8

JD[�] =
{
encode(val∗) : (ind, s1[�]) ∈ Tabi1[�] and (ind, 〈attr∗[�], val∗〉) ∈ Tabi1[�]

}
.

– IP is the conditional intersection pattern, which is a Q × Q table with entries
defined as explained next. For each �, �′ ∈ [Q], IP[�, �′] is an empty set if one
of the following conditions holds:

• (i1[�], i2[�], attr∗[�]) �= (i1[�′], i2[�′], attr∗[�′]).
• JD[�] ∩ JD[�′] is empty.

Otherwise, IP[�, �′] is non-empty, and is defined as the intersection of all record
identifiers matching the keywords s2[�] and s2[�′] in the table Tabi2[�]. More
formally, we have IP[�, �′] = DBTabi2[�](s2[�]) ∩ DBTabi2[�](s2[�

′]).

5.2 Discussion on Leakage Components and Comparison with OXT

In this section, we present a discussion on the various components in the leakage
profile of JXT, and also compare the same with OXT. Note that one fundamental
difference between JXT and OXT is that while JXT supports queries over joins of
multiple tables, OXT only supports “unilateral queries”, where each such query
is defined over a single table. This difference manifests in subtle distinctions
between the leakage profiles for JXT and OXT, as described below.

The n-Leakage. Suppose that a table Tabi has a total of ni attributes (equiv-
alently, columns) and a total of mi records (equivalently, rows). We note
here that n[i] is nothing but ni · mi, i.e., the total number of entries in the
table. We note that this information (or an upper bound thereof) is leaked by
almost all existing SSE schemes in the literature with efficient search capabili-
ties [CGKO06,CJJ+13,CJJ+14,LPS+18], including OXT.

Result Pattern. The RP leakage allows the server to learn the set of
identifiers corresponding to records in the result set for the query. Such
a leakage is considered benign and is incurred by nearly all existing SSE
schemes (notably [CGKO06,CK10,CJJ+13,CJJ+14]), including OXT. However,
one subtle difference with OXT is that in JXT, the RP leakage spans across mul-
tiple tables, while in OXT, the RP leakage is confined to a single table. This,
of course, is a direct consequence of the fact that JXT handles queries over the
join of multiple tables, which OXT does not support.

Remark. We note here that our analysis of the result pattern leakage of JXT
is rather conservative; an astute reader may observe that during the Search

8 Note that a multi-set additionally reveals the frequency of each entry.
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protocol in JXT, the server does not learn the actual plaintext identifiers for
the records in the result set; it only learns the randomized/encrypted versions
of these identifiers, which are then locally decrypted at the client.

Equality and Size Patterns. The EP leakage reveals repetitions of attribute-
value pairs across join queries (including the “coordinate” of the join query where
the repetition occurs), while the SP leakage reveals the individual frequency of
each attribute-value pair in a given join query. The EP leakage can be mitigated
by having more than one TSet entry per attribute-value pair, and the client using
stag values that point to different entries for the same attribute-value pair across
multiple queries, while the SP leakage can be potentially mitigated by artificially
“padding” the number of TSet entries corresponding to each attribute-value pair;
this would leak an upper bound rather than the exact frequency.

The EP and SP leakage can be viewed as consequences of our strategy
of avoiding join pre-computations in the setup phase (and the corresponding
blowup in storage overheads); since JXT processes each table individually rather
than pre-computing their joins, processing a query over the join of two tables
inevitably requires some independent searches over the individual TSet entries
for each table. In particular, the EP and SP leakage of JXT are conceptually sim-
ilar to the EP and SP leakage in OXT, albeit with the difference that in OXT,
a unilateral search query over two conjuncts (referred to in OXT as the s-term
and the x-term) incurs these leakage for only one of the terms (the s-term). We
view the additional leakage in JXT as a necessary trade-off for the additional
capability of handling join queries (or more concretely, existential quantifiers
over the join attributes) with comparable efficiency.

Join Attribute Distribution Pattern. The JD leakage is new to JXT and is
a direct consequence of the fact that it handles queries over joins of tables. For a
given query over the join of two tables with respect to a common attribute (say
attr∗), it reveals the frequency distribution of values taken by attr∗ across records
matching the attribute-value pair in the “first slot”. The extent of this leakage
depends on the “entropy” of the join attribute in the first table. For example,
consider the case where the join-attribute is a primary key or a “high-entropy”
key in the first table. In this case, it is likely to take a unique value for each record,
and hence the JD leakage is essentially query-invariant (as each possible value
occurs with frequency close to 1), and hence, benign. Thus the JD leakage can
be mitigated by planning join queries (i.e., by ordering the attribute-value pairs
in the “first” and “second” slots) such that join attribute is a primary/“high-
entropy” key in the first table.

Conditional Intersection Pattern. The IP leakage of JXT is quite subtle; for
a pair of queries over the join of the same tables over the same common attribute
attr∗, it reveals the intersection of records matching the attribute-value pairs in
the “second slot” provided that the attribute-value pairs in the “first slot” have
matching records with identical 〈attr∗, val∗〉 entries. This leakage is conditioned
on the fact that the attribute-value pairs in the “first slot” have such matching
records; if such matching records do not exist, then this leakage is empty.
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We note that the IP leakage is essentially guaranteed to be empty in either
of the following scenarios: (a) the join-attribute is a primary key or a “high-
entropy” key in the first table, in which case, it is likely to take a unique value
for each record, or (b) the attribute-value pairs in the “second slot” share the
same attribute but different values, in which case, they cannot match with the
same record. In particular, similar to the JD leakage, the IP leakage can also be
mitigated by planning join queries such that join attribute is a primary/“high-
entropy” key in the first table. This bears similarities with the IP leakage of
OXT, where the leakage can be minimized by re-arranging the conjuncts in each
unilateral query such that the s-term has low frequency.

To summarize, the overall leakage profile of JXT bears many similarities with
the leakage profile of OXT, and can be made benign in practice by simple query-
planning strategies that do not compromise on practical search performance.

5.3 The Security Theorems for JXT

In this section, we state the theorems for the selective and adaptive security of
JXT.

Selective Security of JXT. Let L be the leakage profile of JXT as described
in Sect. 5.1. We state the following theorem.

Theorem 2. Assuming that F is a secure PRF family, SKE is an IND-CPA
secure symmetric-key encryption scheme, and Σ is a n-selectively secure TSet
implementation, the JXT protocol is L-semantically simulation-secure against
selective attacks.

Proof Overview. We defer a detailed proof of this theorem to the full version
of our paper [JP21]. The proof of selective security proceeds via a sequence of
games between a simulator S and an adversary A, where the first game is iden-
tical to the “ideal-world” game played between the simulator and the adversary
A as described in Definition 1, while the final game is identical to the “real-
world” game played between the simulator S and the adversary A. We establish
formally that the view of the adversary A in each pair of consecutive games is
computationally indistinguishable.

The crux of our selective security proof is that the simulator for JXT can
initialize the XSet to uniformly random elements, and program the outputs of
the PRFs accordingly while making sure that the search tokens corresponding
to a given join query are generated in a consistent manner. The programming
is done given the leakage of JXT corresponding to the various search queries.
Additionally, the simulator for JXT can directly invoke the simulator for the
selectively secure TSet to simulate the TSet entries at setup and the correspond-
ing stag values during searches. We refer to the full version of our paper [JP21]
for the detailed description of the simulator, as well as for descriptions of the
hybrids that allows us to prove the indistinguishability of this simulation from
a real execution of JXT.
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Adaptive Security of JXT. Again, let L be the leakage profile of JXT as
described in Sect. 5.1.

Theorem 3. Assuming that F is a secure PRF family, SKE is an IND-CPA
secure symmetric-key encryption scheme, and Σ is a n-adaptively secure TSet
implementation, the JXT protocol is L-semantically simulation-secure against
adaptive attacks.

Proof Overview. We again defer a detailed proof of this theorem to the full version
of our paper [JP21]. In our adaptive proof of security, we assume an instantiation
of adaptively secure TSet in the standard model. While the original construction
of TSet [CJJ+13] requires random oracles for adaptive security, the authors
of [CJJ+13] also discuss an alternative instantiation of adaptively secure TSets
in the standard model without incurring additional rounds of communication.
The idea is to send the actual addresses in the TSet (i.e., the outputs of PRF
evaluation) directly to the server instead of sending the PRF key (or the stag),
and allowing the server to compute PRF outputs on its own. In the context
of our JXT protocol, using the standard model instantiation of TSet increases
the communication overhead for the TSet component, but not the (asymptotic)
communication overhead for the overall search protocol.
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Abstract. We introduce a new notion of public key encryption, knowl-
edge encryption, for which its ciphertexts can be reduced to the public-
key, i.e., any algorithm that can break the ciphertext indistinguisha-
bility can be used to extract the (partial) secret key. We show that
knowledge encryption can be built solely on any two-round oblivious
transfer with game-based security, which are known based on various
standard (polynomial-hardness) assumptions, such as the DDH, the
Quadratic(N th) Residuosity or the LWE assumption.

We use knowledge encryption to construct the first three-round
(weakly) simulatable oblivious transfer. This protocol satisfies (fully)
simulatable security for the receiver, and weakly simulatable security
((T, ε)-simulatability) for the sender in the following sense: for any poly-
nomial T and any inverse polynomial ε, there exists an efficient simulator
such that the distinguishing gap of any distinguisher of size less than T
is at most ε.

Equipped with these tools, we construct a variety of fundamen-
tal cryptographic protocols with low round-complexity, assuming only
the existence of two-round oblivious transfer with game-based security.
These protocols include three-round delayed-input weak zero knowl-
edge argument, three-round weakly secure two-party computation, three-
round concurrent weak zero knowledge in the BPK model, and a two-
round commitment with weak security under selective opening attack.
These results improve upon the assumptions required by the previous
constructions. Furthermore, all our protocols enjoy the above (T, ε)-
simulatability (stronger than the distinguisher-dependent simulatabil-
ity), and are quasi-polynomial time simulatable under the same (poly-
nomial hardness) assumption.

1 Introduction

We study the problem of constructing generic public-key encryption with a nat-
ural property that the public key can be reduced to its ciphertexts, i.e., any
algorithm that breaks the ciphertext indistinguishability can be used to extract
c© International Association for Cryptologic Research 2022
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the (partial) secret key. We call such a public-key encryption scheme knowledge
encryption. Although we often have the impression of public key encryption that
only the one holding the secret key can decrypt/distinguish a ciphertext, almost
none of known constructions provably achieves this property. Instead, they only
guarantee that, if an algorithm can break the ciphertext indistinguishability,
then we can use it to find a solution to a random instance of certain hard prob-
lem (rather than finding the corresponding secret key). The only exception we
aware of is the public-key encryption based on Rabin’s trapdoor permutations,
for which one can establish the equivalence between breaking the ciphertext
indistinguishability and finding a secret key.

Essentially, the decryption of a knowledge encryption scheme can be viewed
as a proof of knowledge of the (partial) secret key. From this prospective, the
concepts of conditional disclosure of secret (CDS) [1,4,23] and witness encryption
(WE) [20] in the literature are close to our knowledge encryption. Specifically, a
public key of a CDS (WE) scheme is generated from a publicly known instance
x (for WE, x serves as the pubic key) of an NP language L, and guarantees that
if x /∈ L, then the receiver obtains nothing about the encrypted message.

But the decryption of CDS/WE schemes provides only a sound proof that
the corresponding public key is valid (i.e., x ∈ L), rather than proof of knowledge
(or, extractability) of the witness of x ∈ L. Goldwasser et al. [29] put forward the
notion of extractable witness encryption, which, similar in spirit to our knowl-
edge encryption, requires that any algorithm that breaks the ciphertext indis-
tinguishability can be used to extract the witness for the instance x. However,
their scheme requires rather strong (unfalsifiable) knowledge assumptions.

Motivation. Our study is motivated by the recent works [9,16,34] on crypto-
graphic protocols with low round-complexity beyond the known black-box bar-
riers. At a very high level, the idea of behind these constructions is to design a
protocol in such a way that any distinguisher with relatively large distinguish-
ing advantage (inverse polynomial) ε can be used to extract certain secret of
the adversary, which can be used for a successful simulation (except with prob-
ability ε). Thus, for a given distinguisher, the simulator now can first exploit
the power of it to extract some secret information from the adversary and then
simulate in a straightforward manner. This distinguisher-dependent simulation
technique was introduced by Jain et al. in [34] and used to achieve delayed-
input weak zero knowledge argument and weakly secure two-party computation
for certain functionalities in three round, which bypass the well-known lower
bounds on the round-complexity [27] and are round-optimal under polynomially
hard falsifiable assumptions while black-box reduction/simulation are used to
prove the soundness/security for receiver [38]. Bitansky et al. [9] introduced an
ingenious homomorphic trapdoor simulation paradigm and presented a three-
round weak zero knowledge argument, without requiring “delayed-input” or the
simulator to work in distributional setting. Latter, the distinguisher-dependent
simulation was also used to achieve oblivious transfer (OT) in three round with
distinguisher-dependent simulatable security for the sender [31].
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Deng [16] introduced an individual simulation technique and exploited a vari-
ant of Rabin encryption (the only known “knowledge encryption”) to realize the
above-mentioned design idea. The work of [16] proposed a two-round commit-
ment satisfying (T, ε)-simulatable security under selective opening attack and a
three-round concurrent (T, ε)-zero knowledge argument in the bare public-key
model (both bypassing the black-box lowerbounds [3,44,45]), where the (T, ε)-
simulatability is defined as follows: For any polynomial T and any inverse poly-
nomial ε, there exists a simulator such that the distinguishing gap of any dis-
tinguisher of size less than T is at most ε. Note that the (T, ε)-simulatability is
stronger1 than the distinguisher-dependent simulatability since it depends only
on the size of the distinguisher (not on the distinguisher per se).

All above protocols require specific number-theoretic assumptions. This state
of the art leaves the several intriguing questions:

Can we construct oblivious transfer in three-round that achieves simulat-
able security for both sides? Can we base the above protocols on more
general assumptions?

1.1 Our Contribution

We introduce the notion of knowledge encryption. Like CDS, a knowledge
encryption scheme is associated with an NP language L, and the public/secret
key pair (pk, sk) is generated from an instance x ∈ L and its witness w. We let
the public key (secret key) contain the instance x (witness w, respectively). We
require the following properties from a knowledge encryption scheme:

1 Indistinguishability: ciphertext indistinguishability holds for any (x,w) ∈ RL;
2 Witness extractability: for any algorithm that can break the ciphertext indis-

tinguishability can be used to extract the witness w (part of the secret key).
This holds even when the public key is maliciously generated.

3 Public key simulation: for any (x,w) ∈ RL, there is a simulator that, taking
only x as input, can output a public key that is indistinguishable from the
honestly generated one.

We show that knowledge encryption can be built solely on any two-round
OT with game-based security, which are known based on various standard
(polynomial-hardness) assumptions, such as the DDH [40], the Quadratic(Nth)
Residuosity [33] or the LWE assumption [10].

Equipped with knowledge encryption, we obtain the following results assum-
ing only the existence of two-round OT with game-based security (against
polynomial-time adversaries):

• The first three-round (T, ε)-simulatable OT with fully simulatable secu-
rity for the receiver and (T, ε)-simulatable security for the sender.

1 Note that the result of [14] that distinguisher-dependent simulatability can be
upgraded to (T, ε)-simulatability holds only for zero knowledge protocols.
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Achieving polynomially simulatable security (of any kind) for both parties
of OT in three rounds has been an elusive. Previous work on three-round
OT achieves either one-sided (distinguisher-dependent) simulatability for the
sender [31], or game-based security for both parties [13].

• A variety of protocols achieving (T, ε)-simulatable security, includ-
ing three-round delayed-input (T, ε)-zero knowledge argument, three-round
(T, ε)-secure two-party computation for independent-input functionalities,
three-round concurrent (T, ε)-zero knowledge in the BPK model and two-
round commitment with (T, ε)-security under selective opening attack.
Prior works on these protocols either require an additional assumption–the
existence of dense encryption, or are only known based on the Factoring
assumption [16]. The three-round protocol of secure two-party computation
in [4] is built on a rather strong assumptions of the existence of succinct ran-
domized encodings scheme, which are only known based on indistinguishable
obfuscation. Furthermore, as mentioned before, the (T, ε)-simulatability we
achieve is stronger than the notion of distinguisher-dependent simulatability
achieved by the work of [34].
Our result on weak zero knowledge is incomparable to the work of [9]: The
protocol in [9] requires both LWE and Factoring (or standard Bilinear-Group)
assumptions, but the common input need not to be delayed to the last round.

• Quasi-polynomial time simulatable under polynomial hardness
assumption: All above protocols are quasi-polynomial time simulatable
under the same (polynomial hardness) assumption.
Previous results achieving quasi-polynomial time simulatable security (e.g.,
see [42] and [35]) usually require quasipolynomial/exponential hardness
assumption.

1.2 Technique Overview

Knowledge Encryption. Before describing our construction, we briefly recall
the idea behind a CDS scheme for an NP relation RL. Given input (x,w) ∈ RL

of length λ+ �, the receiver uses the algorithm OT1 to encode w bit-by-bit, and
publishes his public key (x,OT1(w1),OT1(w2) · · · ,OT1(w�)); to encrypt a bit
m ∈ {0, 1}, the sender first garbles the following circuit C: on input (x,w,m),
C checks if (x,w)∈RL, if so, outputs m; otherwise outputs ⊥. After obtaining
a garbled circuit Ĉ and the associated labels {labi,b}i∈[λ+�+1],b∈{0,1}, the sender
sends the ciphertext c := (Ĉ, {labx

i,xi
}i∈[λ], {OT2(lab

w
i,0, lab

w
i,1)}i∈[�], lab

m
m) to the

receiver, which retrieves the labels {labw
i,wi

}i∈[�] and then decrypts c using the
evaluating algorithm of the garbling scheme.

To achieve the witness extractability property, our key idea is to embed a sim-
ple decoding mechanism in the above circuit C, which enables us to reduce the
instance x to random ciphertexts. Specifically, we let C to take an extra input
y of length � and define it as follows: on input ((x,w, y,m), if (x,w) ∈ RL and
y = 0�, output m; if (x,w) ∈ RL and the Hamming weight of ‖y‖1 ≥ 1, output
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Σ�
i=1yiwi mod 2; if (x,w) /∈ RL, output ⊥. With this modification, when encrypt-

ing a bit m, the honest sender always chooses y = 0�, garbles the above circuit C
and then sets the ciphertext to be c := (Ĉ, {labx

i,xi
}i∈[λ], {OT2(lab

w
i,0, lab

w
i,1)}i∈[λ],

{laby
i,0}i∈[�], lab

m
m).

It is not hard to see that this modification does not affect the indistinguisha-
bility of the scheme. On the other hand, the witness extractability property fol-
lows from the following observations. Note first that, for every i ∈ [�], one can
always choose a bad y which has 1 on the i-th coordinate and zero on all others,
and compute a ciphertext with such a y. Due to the security of the underlying
garbling scheme, no polynomial size circuit can distinguish these bad ciphertexts
from the honestly-generated ones. Thus, for any polynomial size circuit that
decrypts honestly-generated ciphertexts correctly with high probability, when
given a bad ciphertext as input, it would output Σ�

i=1yiwi mod 2 = wi correctly
with almost the same probability. One can apply this reasoning to ciphertext
distinguishers and prove the witness extractability property.

An alternative construction from CDS and random-self-reducible encryptions
is presented in the full version of this paper [17].

Nearly Optimal (T, ε)-Extractor for Knowledge Encryption. Applying
the result of [16], we will have a nearly optimal (T, ε)-extractor for any (possibly
malicious) key generation algorithm of knowledge encryption in the following
sense: for any polynomial T and any inverse polynomial ε, the extractor out-
performs any circuits of size T in extracting the witness for x in the public key
except for probability ε.

Looking ahead, the (T, ε)-simulatability of all our protocols relies on this
nearly optimal extractor. When receiving the public key(s) of knowledge encryp-
tion from an adversary, the corresponding simulator will run this extractor to
extract the witness for x, and if it succeeds, then the simulation can be done;
if it fails, then the optimality of the extractor guarantees that no other circuits
(distinguishers) of size T can extract the witness either (except for small proba-
bility ε), and thus the simulator can encrypt a dummy message in its last round,
which cannot be told apart from an real execution by any distinguishers of size T
except for probability ε (by the witness extractability of knowledge encryption.)

Three-Round OT with (T, ε)-Simulatability for Both Parties. A natural
idea here is to have the receiver generate a pair of public keys pk0, pk1 of knowl-
edge encryption from two NP instances x0 and x1, for one of which it knows
a valid witness so that it can receive one message encrypted by the sender.
However, there are two challenges that arise from this approach:

1 We need to make sure that the receiver knows a witness for only one of these
two instances (to achieve the sender security), while at the same time one
needs to know both witnesses for x0 and x1 to extract the two messages from
the sender in the proof of receiver security.

2 There is no way for the receiver to tell honest ciphertexts from “bad” ones.

One may think of the following solution to the first challenge: the sender
generates some hard instance y (and prove to the receiver that it knows a witness
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for y in three rounds), and then the receiver proves that it knows either a witness
for y or only one of x0 and x1 is in the language L (for some suitable language)
in a two-round WI protocol. However, among other issues, there is no known
two-round WI protocol based on two-round OT.

To this end, we have the sender generate two images y0 and y1 of a one-
way function f and prove to the receiver that it knows one pre-image of y0
or y1 via a three-round WI protocol2. Given the pair (y0, y1) and input b, the
receiver prepares two instances x0 and x1 in the following way: it runs the HVZK
simulator of the Σ-protocol to obtain an acceptable proof (a, b, z) of knowledge of
one preimage of y0 or y1, and sets xb = (y0, y1, a, b) and x1−b = (y0, y1, a, 1− b),
where xi = (y0, y1, a, i) is said to be a YES instance if and only if there exists a
z such that (a, i, z) is acceptable. The receiver now generates pkb honestly using
the valid witness z for xb = (y0, y1, a, b), and runs the key simulator of knowledge
encryption to obtain the other public key pk1−b. In the third round, the sender
encrypt its two message under the two public keys respectively and send the two
ciphertexts to the receiver.

Notice that the receiver does not know a witness for the instance x1−b on the
public key pk1−b, since otherwise it would be able to compute a preimage of y0
or y1 generated by the sender at random (which is infeasible due to the fact that
the WI proof actually hides the two preimages of y0 or y1.) This observation,
together with the existence of nearly optimal extractor (as mentioned above)
that outperforms any other circuits of a-priori bounded size for extracting a
witness of x0 or x1, one can prove the (T, ε)-simulatable security for the sender.

Our proof of the (fully) simulatable security for the receiver departs from
the traditional proof strategy that is usually done by extracting the sender’s two
messages from a WI proof of knowledge. Our simulator extracts the sender’s
two messages by decryption. Using rewinding strategy3 the simulator extracts a
preimage of y0 and y1, then generates two Yes instance x0 and x1 and two valid
public keys. When receiving the two ciphertexts from the sender, it can decrypt
to obtain both messages4 and send them to the functionality. Note that, although
these ciphertexts from the sender may be generated maliciously (as mentioned in
the above second challenge) and adaptively (depending on the receiver’s public
keys), we can still prove the simulatable security for the receiver since the public
keys of the receiver in the real model execution and the ones in the ideal model
execution are indistinguishable.

2 Note that the three-round WI and the Σ-protocol used in our construction can be
based on non-interactive commitment. As noted in [12], combing the recent work
of [39] with the work [24], one can build non-interactive commitment from two-
round (perfectly correct) OT with game-based security. Thus, two-round OT with
game-based security as we define is sufficient for constructing all primitives used in
our protocol.

3 Here we actually need Goldriech-Kahan technique to bound the running time of the
extractor, see the detailed proof in the full version of this paper [17].

4 If the simulator fails to decrypt a ciphertext, it sets the corresponding “plaintext” to
be ⊥.
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(T, ε)-zero knowledge and (T, ε)-secure two-party computation. At a high
level, our construction of (T, ε)-zero knowledge protocol follows the paradigm of
[2,36]. The prover and the verifier execute a three-round OT as constructed above
(denoted by (OT1,OT2,OT3) the three OT step algorithms respectively), where
the verifier plays the role of the receiver and chooses a random bit β ← {0, 1}
as the receiver’s input in the second round. In the last round of OT, the prover
prepares two acceptable Σ-proofs (α, 0, γ0), (α, 1, γ1) for the statement x ∈ L,
and sends x and (α,OT3(γ0, γ1)) to the verifier. Finally, the verifier recovers γβ

from OT and checks whether (α, β, γβ) is an acceptable proof. In order to reduce
the soundness error, we have the prover and the verifier run this protocol λ times
in parallel. The (T, ε)-zero knowledge of the protocol essentially follows from the
(T, ε)-simulatable security for sender of the underlying OT and the fact that
the nearly optimal extractor guaranteed by Lemma 2 works well for (possibly
malicious) parallelized key generator of knowledge encryption.

One can also prove a sort of soundness of the above protocol due to the simu-
latable security for receiver of the underlying OT. However, we do not know how
to show it satisfies adaptive soundness/argument of knowledge, which is natu-
rally required in settings where the prover can choose statements to be proven
adaptively. Inspired by [34], we use additional knowledge encryption schemes to
achieve adaptive argument of knowledge. In addition to executing the above pro-
tocol, the prover generates two public keys of knowledge encryption and proves
to the verifier that one of them is generated honestly in a three-round WI proto-
col. In the last round, it encrypts each of γ0 and γ1 twice under the two public
keys, and sends these encryptions along with the third OT messages (which
now encode both (γ0, γ1) and the randomnesses used in these encryptions). We
observe that these additional encryptions does not harm zero knowledge prop-
erty of the above protocol since the WI proof for the sender’s two public keys
actually hides both secret keys. On the other hand, it does help us achieve
adaptive argument of knowledge: One can extract a secret key by rewinding the
prover and decrypt those encryptions in the original transcript obtained before
rewinding, which will reveal a witness for the statement in that transcript.

Equipped with the above three-round OT and weak zero knowledge argu-
ment, we follow the GMW paradigm [28] to give a three-round protocol for (T, ε)-
secure two-party computation for independent-input functionalities. We stress
that the (T, ε)-simulatable security against malicious receiver of our two-party
computation protocol only holds for independent-input functionalities, since for
the proof of (T, ε)-simulatability against malicious receiver to go through, we
need to make sure that one can freely sample the sender’s input x even when
the malicious receiver’s input y is fixed. This is roughly also the reason that we
achieve (T, ε)-zero knowledge only for delayed-input argument.

Our protocols of commitment with weak security under selective opening
attack and concurrent weak zero knowledge argument (in the BPK model) simply
follows by replacing the corresponding encryption scheme in the constructions
of [16] with our knowledge encryption (and revising their protocol accordingly
so that the simulation can go through with a witness for the instance on the
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public key of knowledge encryption). Furthermore, when using our construction
of (T, ε)-zero knowledge argument of knowledge in the extractable commitment
of [34], we obtain a three-round extractable commitment from two-round OT
with game-based security.

1.3 More Related Work

Related Work on Simulatable Oblivious Transfer. The work of [13,19,
41] achieved fully-simulatable black-box construction of OT in four-round from
certified/full domain trapdoor permutations or strongly uniform key agreement
protocol, which are also round optimal for black-box constructions [37]. In the
common reference string model, fully-simulatable secure (even UC-secure) OT
can be achieved in two rounds from various assumptions [18,43], such as DDH,
LWE, CDH or LPN assumptions.

Related Work on Two/Multi-party Computation. Katz and Ostro-
vsky [37] showed that four-round is necessary for black-box two-party compu-
tation for general functionalities where only one party receives the output. The
construction of four-round black-box two-party computation was constructed
in [15,41]. Garg et. al [21] study two-party computations with simultaneous mes-
sage transmission and give a four-round construction for general functionalities
where both parties receive the output. Four-round secure multi-party computa-
tion can be constructed from various assumptions [5,32]. Recently, Choudhuri
et. al [12] constructed a four-round construction only from four-round fully-
simulatable OT. In the CRS model, Benhamouda and Lin [6] and Garg and Srini-
vasan [22] presented the two-round constructions from two-round semi-malicious
OT protocol and NIZK or two-round fully-simulatable OT respectively.

2 Preliminaries

Throughout this paper, we let λ denote the security parameter. Given a positive
integer m, a and b, we denote by [m] the set {1, 2, · · · ,m}, and by [a, b] the
set {a, a + 1, · · · , b}. We often write a string x as a concatenation of its bits,
x = x1‖x2‖· · ·‖xn, where xi is the i-th bit of x. For a given y, we denote by ‖y‖1
the Hamming weight of y. We use the standard abbreviation PPT to denote prob-
abilistic polynomial time. We will use the terms (non-uniform) PPT algorithm
and polynomial-size circuits interchangeably. When writing a polynomial-size
circuit C, we mean a polynomial-size family of circuits C = {Cλ}λ∈N. For two
random ensembles X := {Xλ}λ∈N and Y := {Yλ}λ∈N, we write X c≈ Y to mean
X := {Xλ}λ∈N and Y := {Yλ}λ∈N are indistinguishable against all polynomial-
size circuits.

Due to space limitations, most of standard definitions (e.g., commitment
schemes, Σ-protocol, game-based secure OT, garbled circuits etc.) are deferred
to the full version of this paper [17].
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2.1 Interactive Argument

Let L be an NP language and RL be its associated relation. For a given x ∈ L,
we use RL(x) to denote the set of valid witnesses to x. An interactive argument
(P, V ) for L is a pair of PPT algorithms (called the prover and the verifier), in
which the prover P wants to convince the verifier V of a statement x ∈ L. For a
given (x,w) ∈ RL, we denote by OutV (P (w), V )(x) the output of V at the end
of an execution of (P, V ), and by ViewP (w)

V (x) the view of V in an interaction.

Definition 1 (Argument). A protocol (P, V ) for an NP language L is an argu-
ment if the following two conditions hold:

• Completeness: For any x ∈ L and w ∈ RL(x), OutV (P (w), V )(x) = 1.
• Computational soundness: For any polynomial-size prover P ∗, there exists

a negligible function negl(·) such that for any x /∈ L of length λ,

Pr[OutV (P ∗, V )(x) = 1] < negl(λ).

Additionally, an interactive argument system is called public-coin if at every
verifier step, the verifier sends only truly random messages.

Delayed-Input and Adaptive Computational Soundness. We call an
argument is delayed-input if the statement x is sent to verifier only in the last
round. Note that delayed-input argument system would enable a cheating prover
to choose a false statement adaptively (depending on the interaction history) to
fool the verifier. We consider such an adaptive cheating prover and define adap-
tive computational soundness in a natural way: A delayed-input argument is
called adaptive computational sound if its computational soundness condition
holds even against adaptive cheating prover.

Argument of Knowledge and Adaptive Argument of Knowledge. The
adaptive argument of knowledge property is defined in similar way to the argu-
ment of knowledge, except that here we need to deal with the issue that the
statement may be chosen adaptively. We follow the definition in [7,8] to define
three-round adaptive argument of knowledge.

Definition 2. A three-round delayed-input argument system with message
(a1, a2, a3) for NP language L is called an adaptive argument of knowledge if
there exists an oracle extractor E and a polynomial poly such that for any PPT
malicious prover P ∗, any noticeable function ε and any security parameter λ ∈ N:

if Pr

⎡
⎢⎣V (x, (a1, a2, a3)) = 1

∣∣∣∣∣∣∣

a1 ← P ∗

a2 ← V (λ, a1)
x, a3 ← P ∗(a1, a2)

⎤
⎥⎦ ≥ ε(λ),

then Pr

⎡
⎢⎣

V (x, (a1, a2, a3)) = 1∧
EP ∗

(x, (a1, a2, a3)) /∈ RL(x)

∣∣∣∣∣∣∣

a1 ← P ∗

a2 ← V (λ, a1)
x, a3 ← P ∗(a1, a2)

⎤
⎥⎦ ≤ negl(λ),

where E runs in expected time bounded by poly(λ)/ε.
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An argument system is zero knowledge [30] if the view of the (even mali-
cious) verifier in an interaction can be efficiently reconstructed. We consider
a weak version of zero-knowledge as defined in [14,16], (T, ε)-zero-knowledge,
which relaxes the definition of zero-knowledge and requires that, for any poly-
nomial T and inverse polynomial ε, there exists an efficient simulator such that
the distinguishing gap of any T -size distinguisher is at most ε.

Definition 3 ((T, ε)-Zero-Knowledge). An argument (P, V ) is (T, ε)-zero-
knowledge if for any polynomial-size malicious verifier V ∗, any polynomial T and
any inverse polynomial ε, there exists a polynomial-size simulator S = {Sλ}λ∈N

such that for any T -size distinguisher D = {Dλ}λ∈N, and any statement
x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

∣∣∣Pr
[
Dλ(View

P (w)
V ∗ (x)) = 1

]
− Pr [Dλ(Sλ(x)) = 1]

∣∣∣ < ε(λ).

2.2 Oblivious Transfer

A 1-out-of-2 oblivious transfer protocol (OT) (S,R) is a two-party protocol
between a sender S and a receiver R. The sender S has input of two strings
(m0,m1) and the receiver R has input a bit b. At the end of the protocol, the
receiver R learns mb (and nothing beyond that), whereas the sender S learns
nothing about b. We denote the output of receiver OutR(S(m0,m1), R(b))(1λ).

There are two notable security definitions in the literature, the game-based
security [1,40] and the simulation-based security [25]. In this paper our goal is
to achieve simulation-based security, which is defined as follows..

Message Space. We let the message space M to include the special symbol
⊥, i.e., M := {0, 1}n∪ ⊥. Jumping ahead, in the proof of receiver’s security of
our construction, the simulator may extract (by decryption) two messages like
(m,⊥) or (⊥,⊥) from a corrupted sender. In this case, the simulator will not
abort, instead, it views ⊥ as a message and send these two messages to the
functionality.

Simulation-Based Security. We follow the standard real/ideal paradigm and
define the simulation-based security of OT. Roughly, to prove security in the
real/ideal paradigm, one first defines an ideal functionality F executed by a
trusted party, then constructs a simulator Sim that interacts with F and the
adversary, and then shows that the output of Sim is indistinguishable from the
real execution.

The ideal functionality of OT is provided in Fig. 1.
We denote by REALΠ,R∗(τ)(1λ,m0,m1, b)(resp., REALΠ,S∗(τ)(1λ,m0,m1, b))

the distribution of the output of the malicious receiver (resp., the malicious
sender and the honest receiver) during a real execution of the protocol Π (with
m0,m1 as inputs of the sender, b as choice bit of the receiver), and by
IDEALFOT ,SimR∗(τ)(1λ,m0,m1, b) (resp., IDEALFOT ,SimS∗(τ)(1λ,m0,m1, b)) the
distribution of the output of the malicious receiver (resp., the malicious sender
and the honest receiver) during a ideal execution where τ is the auxiliary input.
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Fig. 1. The oblivious transfer functionality FOT

Definition 4 (Oblivious Transfer with Simulation-based Security). A
protocol Π = (S,R) securely computing FOT if it satisfies the following proper-
ties:

• Simulatable Security for Receiver: For any polynomial-size malicious
sender S∗, there exists a polynomial-size simulator Sim such that for any
auxiliary input τ ∈ {0, 1}∗, any m0,m1 ∈ {0, 1}n, b ∈ {0, 1},

{REALΠ,S∗(τ)(1λ,m0,m1, b)} c≈ {IDEALFOT ,SimS∗(τ)(1λ,m0,m1, b)}.

• Simulatable Security for Sender: For any polynomial-size malicious
receiver R∗, there exists a polynomial-size simulator Sim such that for any
auxiliary input τ ∈ {0, 1}∗, any m0,m1 ∈ {0, 1}n, b ∈ {0, 1},

{REALΠ,R∗(τ)(1λ,m0,m1, b)} c≈ {IDEALFOT ,SimR∗(τ)(1λ,m0,m1, b)}.

In this paper, we follow the definition of weak simulatability in [14,16] and
give a definition of simulatable (T, ε)-security for sender of an OT protocol (S,R).

Definition 5 ((T, ε)-Simulatable Security for Sender). For any polynom-
ial-size malicious receiver R∗, any polynomial T , any inverse polynomial ε,
any auxiliary input distribution Z and τ ← Z, there exists a polynomial-
size simulator Sim such that for any T -size distinguisher D = {Dλ}λ∈N, any
m0,m1 ∈ {0, 1}n, b ∈ {0, 1}:

∣∣Pr[Dλ(REALΠ,R∗(τ)(1λ,m0,m1, b))] = 1

− Pr[Dλ(IDEALFOT ,Sim(τ)(1λ,m0,m1, b))] = 1
∣∣ ≤ ε(λ).

(1)

Remark 1. Notice that traditional security definitions (such as the definition of
sender’s security above) require that the black-box simulator can deal with any
auxiliary input τ , while, in our definition of (T, ε)-sender’s security, we weaken
this requirement by switching the order of the qualifiers and require only that
for any auxiliary input τ drawn from a (known) distribution, there is a desired
individual simulator. We make this change for the reason that, in the proof of
(T, ε)-simulatability for the sender of our OT protocol, the simulator will apply
the nearly-optimal extractor (similar to the one in [16]) for extracting some
secret keys from the malicious receiver, and such an extractor is really sensitive
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and works well only when all input distributions (including the auxiliary input
distribution) of the malicious receiver are well defined.

Still, as we will see, this weaker notion also has wide applications in protocol
composition. We can plug a protocol Πi satisfying this weaker security into a
global protocol Π composed from a series of subprotocols Π1,Π2, ...,Πn, and
achieve (T, ε)-simulation security of Π, as long as all these subprotocols are
simulatable and specified in advance5. One can view all messages from subpro-
tocols Πj �=i as auxiliary input drawn from the distributions over the transcripts
of these subprotocols, which are well defined when we simulate the subprotocol
Πi in the proof of (T, ε)-simulatability of Π.

2.3 Secure Two-Party Computation

In this subsection we present the definition of secure two-party computation,
independent-input functionalities and the (T, ε)-security. Parts of the definition
of secure two-party computation are taken verbatim from [4]. In this paper, we
only consider the case where only one party (a.k.a receiver R) learns the output.
The other party is referred to as the sender S. Sender S has input x and receiver
R has input y. For a given deterministic functionality F , they execute a protocol
to jointly compute F (x, y), and R obtains F (x, y) at the end of execution. As
observed in [37], a two-party computation protocol which only one party learns
the output can be easily transformed into the one where both parties receive the
output by computing a modified functionality that outputs signed values.

We follow the real/ideal paradigm to define the simulation-based security of
two-party computation. The ideal model execution proceeds as follows:

Ideal Model Execution. Ideal model execution is defined as follows.

• Input : Each party obtains an input, denoted u (u = x for S and u = y for
R).

• Send inputs to trusted party : The parties now send their inputs to the trusted
party. The honest party always sends u to the trusted party. A malicious
party may, however, can send a different input to the trusted party.

• Aborting Adversaries: An adversarial party can then send a message ⊥ to
the trusted party to abort the execution. Upon receiving this, the trusted
party terminates the ideal world execution. Otherwise, the following steps
are executed.

• Trusted party answers receiver R: Suppose the trusted party receives inputs
(x′, y′) from S and R respectively. It sends the output out = F (x′, y′) to
receiver.

• Outputs: If the receiver R is honest, then it outputs out. The adversarial party
(S or R) outputs its entire view.

5 One exceptional case is the UC composition [11], where Π may be composed with
arbitrarily unknown protocols.
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We denote the adversary participating in the above protocol to be B and the
auxiliary input to B is denoted by τ . We define IDEALF2pc,B to be the joint
distribution over the outputs of the adversary and the honest party from above
ideal execution.

Real Model Execution. We next consider the real model in which a real two-
party protocol is executed (and there exists no trusted third party). In this case,
a malicious party may follow an arbitrary feasible strategy. In particular, the
malicious party may abort the execution at any time (and when this happens
prematurely, the other party is left with no output).

Let Π be a two-party protocol for computing F . Note that in the two-party
case at most one of S,R is controlled by an adversary. We denote the adversarial
party to be A and the auxiliary input to A is denoted by τ . We define REALΠ,A
to be the joint distribution over the outputs of the adversary and the honest
party from the real execution.

Definition 6 (Security). Let F and Π be described above. We say that Π
securely computes F if for every polynomial-size malicious adversary A in the
real world, there exists a polynomial-size adversary B for the ideal model, such
that for any auxiliary input τ ∈ {0, 1}∗.

{REALΠ,A(τ)(1λ, x, y)} c≈ {IDEALF2pc,B(τ)(1λ, x, y)}.

In this paper, we only consider independent-input functionalities, as
defined [34].

Definition 7 (Independent-Input Functionalities). An independent-input
functionality is defined as a functionality between two parties, Alice and Bob. Let
(Q,R,U) denote the joint distribution over inputs of both parties, where Alice’s
input is sampled efficiently from Q and Bob’s input is sampled efficiently from
distribution R, and U denotes their common public input. Then, a functional-
ity F over (X = (Q,U) × Y = (R,U)) is independent-input for Alice if Q is
independent of (R,U).

Similar to (T, ε)-zero knowledge, we define (T, ε)-security for a protocol of
two-party computation as follows.

Definition 8 ((T, ε)-Security). Let F and Π be described above. We say Π
computes F with (T, ε)-security if for any polynomial-size malicious adversary
A in the real model, any polynomial T , any inverse polynomial ε, and any auxil-
iary input distribution Z, there exists a polynomial-size adversary B in the ideal
model, such that for any T -size distinguisher D := {Dλ}λ∈N,

∣∣Pr[Dλ(REALΠ,A(τ)(1λ, x, y))] = 1

− Pr[Dλ(IDEALF2pc,B(τ)(1λ, x, y))] = 1
∣∣ ≤ ε(λ).

where the probabilities is over the coin of joining parties and τ ← Z.



Knowledge Encryption and Its Applications to Simulatable Protocols 347

3 Knowledge Encryption and the Nearly Optimal
Extractor for Key Generation

We now introduce a new concept of encryption– knowledge encryption. Roughly,
a knowledge encryption is a public-key encryption scheme for which ciphertexts
can be reduced to the public-key, i.e., any algorithm with large (ciphertexts)
distinguishing advantage can be used to extract the (partial) secret key. Like
CDS/WE schemes, a public-key of a knowledge encryption scheme is gener-
ated from a (publicly known) instance x of an NP language L, but it provides
stronger security guarantee in that the decryption of knowledge encryption actu-
ally constitutes a proof of knowledge of the corresponding (partial) secret key:
While CDS/WE schemes guarantee that the receiver obtains nothing about
the encrypted message when x /∈ L, knowledge encryption ensures that any
receiver that can decrypt ciphertexts must know a valid witness of x (and hence
x ∈ L). The semantic security of knowledge encryption is required to hold when
(x,w) ∈ RL and the public key is honestly generated. This is in contrast to that
of CDS/WE schemes, which only consider semantic security for false statements.

Definition 9 (Knowledge Encryption). A knowledge encryption scheme
with respect to an NP relation RL is a triple of PPT algorithms
(KE.Gen,KE.Enc,KE.Dec):

• KE.Gen(1λ, x, w) : On input the security parameter λ ∈ N and statement
x ∈ L ∩ {0, 1}λ, w ∈ RL(x), Gen outputs a key pair (pk, sk), where the public
key is of the form pk = (k, x).

• KE.Enc(pk,m) : On input the public key pk and a message m ∈ {0, 1}, KE.Enc
outputs a ciphertext c.

• KE.Dec(sk, c) : On input the secret key sk and ciphertext c, KE.Dec outputs a
message m (if c is undecryptable, we set m to be “ ⊥ ”).

We require the following properties from above scheme:

• Completeness: For any λ ∈ N, m ∈ {0, 1} and x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

Pr

[
KE.Dec(sk, c) = m

∣∣∣∣∣
(pk, sk) ← KE.Gen(1λ, x, w)

c ← KE.Enc(pk,m)

]
= 1.

• Indistinguishability: For any polynomial-size distinguisher D = {Dλ}λ∈N,
there exists a negligible function negl such that for any security parameter
λ ∈ N and x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

Pr

[
Dλ(pk, c) = m

∣∣∣∣∣
(pk, sk) ← KE.Gen(1λ, x, w)

m ← {0, 1}; c ← KE.Enc(pk,m)

]
<

1
2
+ negl(λ).

• Witness Extractability: There exists a PPT extractor E satisfying that,
for any public key pk∗ = (k∗, x), polynomial-size distinguisher D = {Dλ}λ∈N

and inverse polynomial ε, if

|Pr[Dλ(KE.Enc(pk∗, 0)) = 1] − Pr[Dλ(KE.Enc(pk∗, 1)) = 1]| ≥ ε,
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then
Pr[EDλ(pk∗, 11/ε) = w ∧ (x,w) ∈ RL] ≥ 1 − negl(λ),

where E runs in time polynomial in ε−1 and λ.
• Public Key Simulation: There exists a PPT simulator KE.KeySim such

that for any (x,w) where x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

{KE.Gen(1λ, x, w)} c≈ {KE.KeySim(1λ, x)}.

Remark 2. One can also define the security properties of knowledge encryp-
tion over a randomly chosen (according to certain distribution) instance x. We
choose our definition because it gives great flexibility in applications, especially
in the applications where several parties jointly compute the instance x for some
public key of knowledge encryption, like our construction of three-round OT.
However, we note that the distributional version of our definition may admit
more instantiations, for example, the public-key encryption based on Rabin’s
one-way permutation is also a distributional knowledge encryption scheme.

In the rest of this section, we first present how to construct knowledge encryp-
tion from two-round OT, and then we will apply techniques of [16] and prove
that, for any key generator of knowledge encryption, there exists a nearly opti-
mal extractor for the witness of x such that when it fails, no circuit of a-priori
bounded size can distinguish ciphertexts except with small probability.

3.1 Knowledge Encryption from Two-Round OT

In this section, we give a construction of knowledge encryption from two-round
OT. At a high level, this construction follows the two-party-function-evaluation
approach used in CDS scheme, and relies on the following two ingredients:

• A two-round OT (OT1,OT2) with game-based security, and,
• A garbling circuit scheme GC = (Garble,Eval).

Note that the garbling circuit scheme can be based on any one-way function,
which is already implied by the existence of two-round OT with game-based
security.

The main idea behind our construction is to modify the circuit C to be
garbled in a CDS scheme and embed a simple decoding mechanism in C, which
enables us to reduce the instance x to random ciphertexts. Specifically, we let C
take an extra input y of length � and define it as follows:

C(x,w, y,m) =

⎧
⎨
⎩

m if (x,w) ∈ RL and y = 0�,
Σ�

i=1yiwi mod 2 if (x,w) ∈ RL and ‖y‖1 ≥ 16,
⊥ if (x,w) /∈ RL.

(2)

6 In the following proofs, we only consider the case that ‖y‖1 = 1. In this case, C will
output a coordinate of w, and the extractor will extract the witness bit-by-bit.
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The formal description of knowledge encryption for RL
7 from two-round OT

is shown in Fig. 2.

Fig. 2. The construction of knowledge encryption from two-round OT

Theorem 1. Assuming the existence of two-round OT protocol with computa-
tional game-based security, there exists a knowledge encryption scheme.

Proof. We prove that the construction presented in Fig. 2 is a knowledge encryp-
tion scheme. Since the two-round OT with game-based security implies the exis-
tence of garbling scheme, our construction can be based solely on the two-round
OT with game-based security. Note first that it is easy to verify the completeness
property.

Indistinguishability. For a given pair (x,w) ∈ RL, denote by Dm the distribu-
tion {pk, c|pk ← KE.Gen(1λ, x, w), c ← KE.Enc(pk,m)} for m = {0, 1}. We prove
D0

c≈D1 by a standard hybrid argument. Consider the following distributions.

D1,m: the same as Dm except that the public key is generated by using (x,w∗) /∈
RL, i.e., pk ← KE.Gen(1λ, x, w∗) (w.o.l.g.,we assume that such a w∗ exists,
see footnote 7.)

D2,m: the same as D1,m except that it computes {OT2(lab
w∗
i,w∗

i
, labw∗

i,w∗
i
)}i∈[�] in

the key generation, rather than {OT2(lab
w∗
i,0 , labw∗

i,1 )}i∈[�].
D3,m: the same as D2,m except that it generates the labels and garbled circuit

using the simulator of GC, i.e., (Ĉ, {labi,bi
}) ← Sim(1λ, φ(C),⊥).

7 For ease of presentation, we assume that for every x ∈ L ∩ {0, 1}λ there is a string
w∗ ∈ {0, 1}� such that (x, w∗) /∈ RL. For any NP relation RL that does not satisfy
this condition, one can easily extend it to a new relation:

R′
L := (x, w′) ∈ {0, 1}λ × {0, 1}�+1 : w′ = w‖1 and (x, w) ∈ RL,

for which w‖0 is not a valid witness (for any instance x).
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Note that the only difference between Dm and D1,m is the first OT messages on
those positions i where wi �= w∗

i . Due to the receiver’s security of the underlying
two-round OT, one can prove that Dm

c≈D1,m by a standard hybrid argument.
From the sender’s security of the underlying two-roundOT, it followsD1,m

c≈ D2,m.
Furthermore, we have D2,m

c≈ D3,m, since for (x,w∗) /∈ RL, the circuit garbled
in the distribution D2,m on input (x,w∗, y,m) always outputs ⊥. Observing that
both D3,0 and D3,1 are generated by the simulator of the garbling scheme and are
independent of the message m, one can see that D3,0 ≡ D3,1. This concludes the
proof of indistinguishability of our knowledge encryption scheme.

Public Key Simulation. One can easily construct a simulator for simulating
the public key: On input x, the simulator chooses {ri}i∈[�] at random and outputs
pk = ({OT1(1λ, 0; ri)}i∈[�], x). This simulated public key is indistinguishable
from the honestly-generated one due simply to the receiver’s security of the
underlying two-round OT.

Witness Extractability: Here our basic goal is to build an efficient extractor
such that for any pk∗ = (k∗, x) and any distinguisher D8 with high distinguishing
advantage, the extractor, with oracle access to D, can extract a witness for x
except for negligible probability.

Fix an arbitrary public key pk∗ = ((k∗ = (ot∗1,1, · · · , ot∗1,�)), x). We use the
sender’s security property (which is against unbounded receiver) of the two-
round OT to define w∗ ∈ {0, 1}� as follows: For each i ∈ [�], if for any (δ0, δ1),
OT2,i(δ0, δ1) is indistinguishable from OT2,i(δ0, δ0) against any polynomial-size
adversary, w∗

i = 0, otherwise w∗
i = 1.

Suppose that D is a polynomial-size distinguisher and ε is an inverse poly-
nomial such that

|Pr[D(KE.Enc(pk∗, 0)) = 1] − Pr[D(KE.Enc(pk∗, 1)) = 1]| ≥ ε(λ), (3)

we construct a desirable oracle machine ED to complete the proof of the witness
extractability property.

We first argue that the definition of w∗, together with the inequality (3),
implies (x,w∗) ∈ RL. Suppose otherwise (x,w∗) /∈ RL. Let {Dj,m}j∈[3],m∈{0,1}
be as above. For every j ∈ [3] and m ∈ {0, 1}, Denote by Dj,m|pk∗ the distribu-
tion conditioned on pk∗. Then, for each m ∈ {0, 1}, we have KE.Enc(pk∗,m) ≡
D1,m|pk∗ and D1,m|pk∗ c≈ D2,m|pk∗ (by definition of w∗). Furthermore, apply-
ing the same reasoning as in the proof of the indistinguishability property, we
also have D2,m|pk∗ c≈ D3,m|pk∗ (for each m ∈ {0, 1}) and D3,0|pk∗ ≡ D3,1|pk∗.
Putting together, we conclude that KE.Enc(pk∗, 0) and KE.Enc(pk∗, 1) are indis-
tinguishable, which contradicts the inequality (3).

We now turn to the construction of the oracle machine ED assuming the
distinguisher D satisfies the inequality (3). Our main idea is to run D on fake
ciphertexts by manipulating the input y and use its distinguishing advantage to
compute the witness w∗ bit-by-bit.
8 D might know of the random coins used to sample pk∗.
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Denote by y(j) the string with the j-th coordinate being 1 and all oth-
ers being 0. Observe that, by the definition of circuit C, when choosing y(j)
to compute a ciphertext, it will be decrypted to w∗

j . We formally define such
an encryption algorithm KE.Enc′(pk∗, 0) as follows: KE.Enc′(pk∗, 0) acts exactly
the same as KE.Enc(pk∗, 0) except that it chooses y′ = y(j) = y′

1‖y′
2‖ · · · ‖y′

�

(as a result, the i-th label with respect to y generated by KE.Enc′(pk∗, 0) is
laby

j,1, rather than laby
j,0). A ciphertext generated by KE.Enc′(pk∗, 0) can be

viewed as a ciphertext of w∗
j , and furthermore, the distribution KE.Enc′(pk∗, 0)

is actually indistinguishable from KE.Enc(pk∗, w∗
j ). To see this, consider the fol-

lowing distribution DS : run the simulator Sim for garbling scheme and obtain
(Ĉ,{labx

i,xi
}i∈[λ],{labw

w∗
i
}i∈[�], {laby

y′
i
}i∈[�], lab

m
m) ← Sim(1λ,φ(C),w∗

j ), and output

ciphertext c=(Ĉ,{labx
i,xi

}i∈[λ], {OT2(lab
w
i,w∗

i
, labw

i,w∗
i
)}i∈[�], {laby

i,y′
i
}i∈[�], lab

m
m).

Note that w∗
j = C(x,w∗, y′ = y(j), 0) = C(x,w∗, y = 0�, w∗

j ), and for this
reason, the above ciphertext simulator can be viewed as a simulator for both
KE.Enc′(pk∗, 0), which garbles C on input (x, y′ = y(j), 0), and KE.Enc(pk∗, w∗

j ),
which garbles C on input (x, y = 0�, w∗

j ). Similarly to the proof of the indistin-
guishability property, due to the sender’s security of the two-round OT and the
security of the garbling scheme, one can prove that both KE.Enc′(pk∗, 0) and
Enc(pk∗, w∗

j ) are indistinguishable from DS . Thus,

KE.Enc′(pk∗, 0))
c≈ KE.Enc(pk∗, w∗

j )). (4)

This means the distinguisher D can tell apart KE.Enc′(pk∗, 0)) from
KE.Enc(pk∗, 1−w∗

j )), which gives rise to the following oracle extraction machine
ED.

ED(pk∗, 11/ε)

1. For each j ∈ [λ]:
(a) Run D on input KE.Enc(pk∗, 0) λε−2 times with fresh randomness

(for both D and KE.Enc) each time. Denote by d0,k the output of
D(KE.Enc(pk∗, 0)) in the k-th repetition. Compute d0 = λ−1ε2Σk∈[p]d0,k.

(b) Run D on input KE.Enc(pk∗, 1) λε−2 times with fresh randomness
(for both D and KE.Enc) each time. Denote by d1,k the output of
D(KE.Enc(pk∗, 1)) in the k-th repetition. Compute d1 = λ−1ε2Σk∈[p]d1,k.

(c) Run D on input KE.Enc′(pk∗, 0) λε−2 times with fresh randomness
(for both D and KE.Enc) each time. Denote by d̂k the output of
D(KE.Enc′(pk∗, 0)) in the k-th repetition. Compute d̂ = λ−1ε2Σk∈[p]d0,k.

(d) If |d0 − d̂| > |d1 − d̂|, then set ŵj = 1, if else, set ŵj = 0.
2. Output ŵ = ŵ1‖ŵ2‖ · · · ‖ŵ�.

We denote by u0 the probability Pr[D(KE.Enc(pk∗, 0)) = 1], by u1

the probability Pr[D(KE.Enc(pk∗, 1)) = 1] and by û the probability
Pr[D(KE.Enc′(pk∗, 0)) = 1]. By Chernoff bound, we have

Pr[|d0 − u0| ≥ δu0] ≤ 2e−δ2u0p/3.
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Set δu0 = ε/8. Due to that u0 ≤ 1, we have that δ ≥ ε/8. Therefore,

Pr[|d0 − u0| ≥ ε/8] ≤ 2e−λ/26·3. (5)

Similarly,

Pr[|d1 − u1| ≥ ε/8] ≤ 2e−λ/26·3, and (6)

Pr[|d̂ − û| ≥ ε/8] ≤ 2e−λ/26·3. (7)

From the (in)equalities (3) and (4), we also have |u0−u1| ≥ ε and |û−uw∗
j
| ≤

negl. Putting together with the inequalities (5),(6),(7), it follows

Pr[|d1−w∗
j

− d̂| > |dw∗
j

− d̂|] ≥ 1 − negl,

which implies that,

Pr[w∗
j �= ŵj |ŵ ← ED(pk∗, 11/ε)] ≤ negl(λ).

Note also that (x,w∗) ∈ RL, we have

Pr[ŵ ← ED(pk∗, 11/ε) ∧ (x, ŵ) ∈ RL] ≥ 1 − negl(λ),

as desired. ��
An alternative construction based on RSR encryption and CDS scheme

appears in the full version of this paper [17].

3.2 Nearly-Optimal Extractor for Knowledge Encryption

Following [16], we show the existence of the nearly optimal (T, ε)-extractor for
any (malicious) key generation algorithm of knowledge encryption, which essen-
tially states that, for any ciphertext distinguisher of size T , the probability that
the extractor fails to extract a valid witness for the instance x on the public key
whereas the ciphertext distinguisher succeeds is less than ε. For any (malicious)
key generator that generates multiple public keys simultaneously, this property
holds for each one of them, even if the distinguisher takes the output of the
nearly optimal extractor as input.

For a given polynomial t, denote by x[t] the set of t strings {xk}k∈[t]. We first
recall the lemma on the existence of nearly-optimal (T, ε)-extractor for any hard
distributions in [16].

Lemma 1 (Nearly-Optimal (T, ε)-Extractor for t-Instance Sampler
[16]). Let L be an NP language and poly be the size of the circuits for deciding
the NP-language RL. Let Samp be an arbitrarily t-instance sampling algorithm
over L with input distribution ensemble R := {Rλ}λ∈N. Let F := {Fλ}λ∈N be a
probabilistic (not necessarily efficient-computable) machine.
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1. For every polynomial T, ε−1, there exists a probabilistic circuit family Ext :=
{Extλ}λ∈N of size O( t

ε (T+poly)) such that for every j ∈ [t], every probabilistic
circuit family C := {Cλ}λ∈N of size T and every security parameter λ ∈ N,

Pr

⎡
⎢⎣
(xj , w

∗
j ) ∈ RL∧

(xj , w
′
j) /∈ RL

∣∣∣∣∣∣∣

r ← R;x[t] ← Samp(1λ, r);
w′

[t] ← Ext(x[t], r, F (r));

w∗
j ← C(x[t], r, F (r), w[t]);

⎤
⎥⎦ < ε(λ).

2. There exists a probabilistic circuit family Ext := {Extλ}λ∈N of quasi-
polynomial size such that for every probabilistic circuit family C := {Cλ}λ∈N

of polynomial size, the above probability is negligible.

The original version of this lemma in [16] considers only a deterministic function
F , however, it is easy to verify that the same proof also yields the above lemma
with respect to a probabilistic (possibly unbounded) function F .

We consider an arbitrary key generator KE.Gen∗ that outputs t public keys
simultaneously. We write its input as r (including possibly its random coins, NP
instances and the corresponding witnesses), and assume that r are drawn from
certain distribution ensemble R := {Rλ}λ∈N.

The following lemma can be viewed as a knowledge encryption version of
Lemma 4 in [16] (which holds only with respect to the Rabin’s encryption based
on factoring). For the sake of completeness, we provide its proof in the full
version [17].

Lemma 2. Let t be a polynomial. Let KE.Gen∗ be any t-public-key generator
of knowledge encryption with respect to an NP language L, whose output is
of the form pk

∗
[t] = {(k∗

k, xk)}k∈[t], and let the input distribution ensemble be
R := {Rλ}λ∈N. Let F := {Fλ}λ∈N be a probabilistic (not necessarily efficient-
computable) machine.

1. For every polynomial T and every inverse polynomial ε, there exists a proba-
bilistic circuit family Ext := {Extλ}λ∈N of polynomial size such that for every
j ∈ [t], every probabilistic distinguisher D := {Dλ}λ∈N of size T and any
security parameter λ ∈ N,

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

D(pk
∗
[t], c, r, F (r), w′

[t]) = 1∧
(xj , w

′
j) /∈ RL

∣
∣
∣
∣
∣
∣
∣
∣

r ← R; pk
∗
[t] ← KE.Gen∗(1λ, r)

w′
[t] ← Ext(pk

∗
[t], r, F (r));

c ← KE.Enc(pk∗
j , 0);

⎤

⎥
⎥
⎦

−

Pr

⎡

⎢
⎢
⎣

D(pk
∗
[t], c, r, F (r), w′

[t]) = 1∧
(xj , w

′
j) /∈ RL

∣
∣
∣
∣
∣
∣
∣
∣

r ← R; pk
∗
[t] ← KE.Gen∗(1λ, r)

w′
[t] ← Ext(pk

∗
[t], r, F (r));

c ← KE.Enc(pk∗
j , 1);

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

< ε(λ).
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2. There exists a probabilistic circuit family Ext := {Extλ}λ∈N of quasi-
polynomial size such that for every probabilistic distinguisher D := {Dλ}λ∈N

of polynomial size, the above holds with respect to a negligible function ε.

Remark 3. The proof strategy of [16] for this kind of lemma only works if the
algorithms Ext and D take the same input (except that D is also given the
output of Ext as input). However, in the security reduction, D usually sees a
complete session transcript, but the simulator has only a partial transcript when
it applies Ext to extract some secrets from the adversary. This is the reason
why we have both Ext and D take an extra input F (r), which represents some
messages in a session generated after the point that the simulator did extraction.
Although F (r) may not be efficiently computable from the input of Ext, but in
our cases, the simulator is able to compute it efficiently with the randomness
used in generating certain transcript prefix.

4 Three-Round Simulatable Oblivious Transfer

In this section, we show how to use the knowledge encryption scheme to construct
a three-round OT scheme with simulatable security for the receiver and (T, ε)-
simulatable security for the sender.

Our protocol proceeds as follows. The sender generates two images y0 and y1
of a one-way function f and prove to the receiver that it knows one pre-image of
y0 or y1 via a three-round WI protocol. Given the pair (y0, y1) and input b, the
receiver prepares two instances x0 and x1 in the following way: it runs the HVZK
simulator of the Σ-protocol to obtain an acceptable proof (a, b, z) of knowledge of
one preimage of y0 or y1, and sets xb = (y0, y1, a, b) and x1−b = (y0, y1, a, 1− b),
where xi = (y0, y1, a, i) is said to be a YES instance if and only if there exists a
z such that (a, i, z) is acceptable. The receiver now generates pkb honestly using
the valid witness z for xb = (y0, y1, a, b), and runs the key simulator of knowledge
encryption to obtain the other public key pk1−b. In the third round, the sender
encrypts its two message under the two public keys respectively and sends the
two ciphertexts to the receiver.

We give a formal description of our construction in Fig. 3, which is based on
the following ingredients:

• A one-way function f .
• A three-round public-coin witness indistinguishable argument (WI1,WI2,WI3)

with special soundness and negligible soundness error for language Lf .
• A Σ-protocol (a, e, z) with 1-bit challenge for language Lf .
• A knowledge encryption scheme (KE.Gen,KE.Enc,KE.Dec) for language LΣ .

where Lf , LΣ are defined as follows:

Lf := {(y0, y1)|∃x s.t. f(x) = y0 ∨ f(x) = y1}
LΣ := {(y0, y1, a, e)|∃z s.t. (a, e, z) is an acceptable proof for (y0, y1) ∈ L}
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Fig. 3. Three-round oblivious transfer protocol

Note that non-interactive commitment can be built from two-round (perfectly
correct) OT with game-based security (see footnote 2). Thus, two-round OT with
game-based security as we define is sufficient for constructing all primitives used
in our protocol.

Theorem 2. Assuming the existence of two-round OT with game-based security
(against polynomial-time adversaries), there exists a three-round OT protocol
with fully simulatable security for the receiver and (T, ε)-simulatable security
for the sender. Furthermore, the same protocol also achieves quasi-polynomial
simulatable security for the sender under the same assumption.

Due to space limitation, we defer the detailed proof to the full version of this
paper [17]. Here we only provide a sketch of proof.

proof sketch. The simulatable security for the receiver can be proven using
rewinding simulation strategy (once a preimage is obtained by rewinding, the
simulator can generate two valid public keys and decrypt both ciphertexts9 from
the sender), but one must be careful in the analysis of the running time of the
rewinding simulator, which actually requires the Goldreich-Kahan technique [26]
to make sure that the simulator will run in expected polynomial time.

9 Like the honest receiver, the simulator sets the “plaintext” of an undecryptable
ciphertext to be ⊥.
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The (T, ε)-simulatable security for the sender can be proven by constructing
the following simulator. The simulator generates the first message by following
the honest sender strategy. Upon receiving two public keys pk0 = (k0, x0), pk1 =
(k1, x1) of knowledge encryption from the malicious receiver, it applies the nearly
optimal extractor for the receiver and tries to extract one witness of xi. For the
case that the simulator extracts two witnesses, it aborts the simulation; For
the case that the simulator extracts at most one valid witness, it sets b′ = 0
if a valid z0 is extracted s.t. (x0 = (y0, y1, a, 0), z0) ∈ RLΣ

and sets b′ = 1
if else. Then it sends b′ to FOT and encrypts the message mb′ received from
FOT under both public keys pkb′ and pk1−b′ . For the first case, we prove that
it happens only with negligible probability. For the second case, we will use
the (near) optimality of the extractor to prove that the simulation and the real
execution are indistinguishable against distinguishers of certain size except for
small probability.

When replacing (T, ε)-extractor with a quasi-polynomial extractor (guaran-
teed by Lemma 2) in the simulation of the receiver’s view, the second part of
Theorem 2 follows.

5 Three-Round Weak Zero-Knowledge Argument
of Knowledge

In this section, we construct a delayed-input (T, ε)-zero-knowledge argument sat-
isfying adaptive argument of knowledge, which is based on the following ingre-
dients:

• A 3-round OT (OT1,OT2,OT3) presented in Fig. 3.
• A one-way function f .
• A knowledge encryption scheme (KE.Gen,KE.Enc,KE.Dec) for language L′

f .
• A 3-round public-coin WI protocol (WI1,WI2,WI3) with special-soundness

property for language Lpk.
• A Σ-protocol (α, β, γ) with 1-bit challenge space for an NP language L.

where L′
f , Lpk are defined as follows:

L′
f : {y|∃δ s.t. f(δ) = y}

Lpk : {pk0, pk1|∃b, skb, rKE
, (yb, δb) ∈ L′

f s.t. (pkb, skb) = KE.Gen(1λ, yb, δb; rKE
)}

We formally present our construction in Fig. 4. Due to space limitation, we
give only the statement of our result in this section. The proof can be found in
the full version [17].

Theorem 3. Assuming the existence of two-round OT protocol with game-
based security (against polynomial-time adversaries), there exists a three-round
delayed-input (T, ε)-zero-knowledge adaptive argument of knowledge. Further-
more, the same protocol also satisfies witness hiding and quasi-polynomial sim-
ulatable zero knowledge under the same assumption.
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Fig. 4. Three-round argument system for NP

6 Two-Party Secure Computation

Equipped with the three-round OT and zero knowledge argument constructed
in previous sections, we now follow the GMW paradigm [28] to give a three-
round protocol for weakly secure two-party computation for independent-input
functionalities. We use the following ingredients in our construction:

• A 3-round OT (OT1,OT2,OT3) (presented in Fig. 3).
• A 3-round delayed-input weak zero knowledge argument (ZK1,ZK2,ZK3)

(presented in Fig. 4) for language L2pc.
• A garbling circuit scheme GC = (Garble,Eval),

where L2pc is defined as follows: (Ĉ, {labx
i,xi

}i∈[n], {ot1,i, ot2,i, ot3,i}i∈[n]) ∈ L2pc

if and only if there exists a random tape for the honest sender (on input ot2,i) to
generate messages (Ĉ, {labx

i,xi
}i∈[n], {ci,b = KE.Enc(pk1i,b, lab

y
i,b)}i∈[n],b∈{0,1})(ci,b

is the ciphertexts in ot3,i under the public key pk1i,b contained in ot2,i).
We assume that the independent-input functionality C maps (x, y) of length

2n to a string of length n. The protocol is formally presented in Fig. 5.

Theorem 4. Assuming the existence of two-round OT protocol with game-based
security (against polynomial-time adversaries), there exists a three-round two-
party computation protocol for independent-input functionalities that achieves
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Fig. 5. 3-round two-party weak secure computation

(T, ε)-security against malicious receiver and standard security against malicious
sender. Furthermore, the same protocol also achieves quasi-polynomial simulat-
able security against malicious receiver under the same assumption.

We provide the proof of Theorem 4 in the full version of this paper [17].

7 More Applications

In this section we present direct applications of our results in previous sections
to various protocols, including extractable commitment, selective opening secure
commitment and concurrent zero knowledge argument in the BPK model. Com-
pared with existing protocols, all our new constructions only rely on two-round
OT with game-based security. Since one can prove the security of these new
constructions using essentially the same security proof strategies in [16,34], we
will not repeat these proofs here.

The work [34] provides a transformation of non-interactive commitment into
a three-round extractable commitment via three-round weak zero knowledge
argument of knowledge. When using our construction of (T, ε)-zero knowledge
argument of knowledge in their transformation, we have the following result.

Theorem 5. Assuming the existence of two-round OT with game-based secu-
rity (against polynomial-time adversaries), there exists a three-round extractable
commitment scheme.
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The commitment with (T, ε)-security under selective opening attack and con-
current (T, ε)-zero knowledge argument (in the BPK model) in [16] are con-
structed from Rabin encryption scheme (based on hardness of Factoring). We
can also replace the Rabin encryption scheme with our knowledge encryption
(and revise their protocol accordingly so that the simulation can go through
with a witness for the instance on the public key of knowledge encryption), and
obtain the following result.

Theorem 6. Assuming the existence of two-round OT with game-based security
(against polynomial-time adversaries), there exist:

1. Two-round commitment scheme with (T, ε)-security under selective opening
attacks.

2. Three-round concurrent (T, ε)-zero knowledge argument with concurrent
soundness in the BPK model, which also satisfies concurrent witness hiding
in the same model.

3. All above protocols satisfy (fully) quasi-polynomial simulatable security.
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Abstract. We propose four public-key encryption schemes with tight
simulation-based selective-opening security against chosen-ciphertext
attacks (SIM-SO-CCA) in the random oracle model. Our schemes only
consist of small constant amounts of group elements in the ciphertext,
ignoring smaller contributions from symmetric-key encryption, namely,
they have compact ciphertexts. Furthermore, three of our schemes have
compact public keys as well.

Known (almost) tightly SIM-SO-CCA secure PKE schemes are due to
the work of Lyu et al. (PKC 2018) and Libert et al. (Crypto 2017). They
have either linear-size ciphertexts or linear-size public keys. Moreover,
they only achieve almost tightness, namely, with security loss depending
on the security parameters.

Different to them, our schemes are the first ones achieving both tight
SIM-SO-CCA security and compactness. Our schemes can be divided
into two families:
Direct Constructions. Our first three schemes are constructed directly

based on the Strong Diffie-Hellman (StDH), Computational DH
(CDH), and Decisional DH assumptions. Both their ciphertexts and
public keys are compact. Their security loss is a small constant. Inter-
estingly, our CDH-based construction is the first scheme achieving all
these advantages based on a weak, search assumption.

A Generic Construction. Our last scheme is the well-known Fujisaki-
Okamoto transformation. We show that it can turn a lossy encryp-
tion scheme into a tightly SIM-SO-CCA secure PKE. This transfor-
mation preserves both tightness and compactness of the underlying
lossy encryption, which is in contrast to the non-tight proof of Heuer
et al. (PKC 2015).

Keywords: Selective-opening security · Public-key encryption · Tight
security · Random oracle model

1 Introduction

Selective-opening (SO) security is a stronger security notion for encryption
schemes. It considers encryption security in the multi-challenge setting. More
precisely, an adversary is given multiple challenge ciphertexts and it is allowed
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to corrupt some of them to get the corresponding randomness. SO security guar-
antees that even with this additional capability an adversary still cannot learn
any information about the remaining ‘unopened’ messages.

The motivation of constructing SO secure encryption is that removing cryp-
tographic information is hard and expensive in practice and adversaries can hack
into a user’s computer and reveal the randomness used in generating a cipher-
text. In some scenario, it is even a requirement to reveal the randomness to
publicly verify a user’s computation.

Definitions of Selective-Opening Security. There are two types of defi-
nitions for SO security, the indistinguishability-based (IND-based) ones (weak-
IND-SO and full-IND-SO) [3,8] and the simulation-based (SIM-based) one (SIM-
SO) [3]. They are not polynomial-time equivalent to each other. For SIM-SO
security, it requires that for every SO adversary its output can be efficiently
simulated by a simulator that sees only the opened messages. SIM-SO notion is
the most common one to study [20,22,25,28,29], since it does not require the
message distribution to be efficiently conditionally resamplable (cf. [3]). More-
over, previous work showed that SIM-SO-CCA and full-IND-SO-CCA notions
are the strongest SO security [2,8,25].

Tight Reductions. When we prove the security of a cryptographic scheme Π,
we often construct a reduction to show that breaking the security of Π implies
breaking the underlying assumption Γ . For concrete security, we argue that if
an adversary A has advantage ε in breaking Π then we have another adversary
B that breaks Γ with advantage ε′ = ε/L, and the factor L is called the security
loss.

A cryptographic scheme is called tightly secure if L is a small constant,
assuming that the running time of A is approximately the same as B (up to
a constant factor). A tight reduction can give quantitatively higher guarantees
than a loose one. From a more practical perspective, a tight reduction allows
shorter key-length recommendations based on the best known attacks against
the underlying assumption. This can potentially yield more efficient schemes.
Currently, our community aims to reduce the cost for tight security and construct
efficient and tightly secure cryptographic schemes (such as the signature scheme
in [12]). Hence, it is more desirable to have an efficient and tightly secure scheme,
compared to its non-tight counterparts.

Our Goal: Compact PKE with Tight SIM-SO-CCA Security. In this
paper, we are interested in efficient and tightly SIM-SO-CCA secure public-key
encryption schemes. We aim at schemes with compact ciphertexts and public
keys. Here ‘compact’ means constant-size, and SIM-SO-CCA security provides
security against chosen-ciphertext attacks in addition to the SIM-SO security.
We discuss the state of the art in approaching this goal as follows:

(Almost) Tight, yet Non-compact Schemes. While there are compact
and tightly IND-CCA secure PKE schemes [16,18], known tightly SIM-SO-CCA
PKE schemes [27,29] are still non-compact wrt. either ciphertext size or public
key size. Moreover, the security reductions in both schemes are not fully tight,
but almost tight (in the terminology of [11]), namely, the security loss depends on
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the message bit-length that is a polynomial of the security parameter. Although
almost tightness is already interesting, our goal is to achieve security loss with
small constants, and it was unknown even with random oracles.

To provide more details, the scheme of Lyu et al. [29] is a recent PKE scheme
with tight SIM-SO-CCA security, and its ciphertexts consist of O(|m|) group ele-
ments, where |m| is the bit-length of the message. In a nutshell, their construction
is a generic construction that tightly turns a IND-CCA secure key encapsulation
mechanism (KEM) to a SIM-SO-CCA secure PKE, and their technique is to
encrypt the message “bit-by-bit”. Hence, their resulting construction does not
preserve the compactness of the underlying KEM in terms of ciphertext over-
head. Namely, even if we instantiate it with a compact KEM, it cannot give us a
compact PKE with tight SIM-SO-CCA. Furthermore, we note that this bit-wise
approach is used in many SIM-SO secure schemes [3,14,28].

While the scheme of Libert et al. [27] has compact ciphertexts, its public keys
are not compact. Besides the large public key, their encryption algorithm needs
to homomorphically evaluate the evaluation circuit of a PRF over GSW [17]
ciphertexts that encrypts a PRF key. Hence, their scheme is very impractical.

Compact, yet Non-tight Schemes. The work of Heuer et al. [20] is an excep-
tion to the bit-wise approach. It is the first work that proves SIM-SO-CCA
security of practical PKE schemes, such as DHIES [1], OAEP [5], and Fujisaki-
Okamoto (FO) [15], in the random oracle model [4]. All these schemes have
compact ciphertexts. However, their security reduction is not tight, due to the
guessing strategy in their security proofs. For instance, their proof for the FO
transformation lose a factor of O(μ · Qh), where μ and Qh are numbers of chal-
lenge ciphertexts and random oracle queries, respectively.

Finally, we stress that, even though there exist compact and (almost) tightly
SIM-SO-CPA secure schemes from [3,25], it is not known how to transform them
into SIM-SO-CCA by preserving its tightness and compactness. This is the case
even in the random oracle model, given the non-tight bounds from the work of
Heuer et al. [20].

1.1 Our Contribution

We construct the first compact PKE schemes with tight SIM-SO-CCA security
in the random oracle model. More precisely, we propose four PKE schemes fol-
lowing two main ideas. We highlight that our first three schemes achieve tight
SIM-SO-CCA security and compact ciphertexts and compact public keys at the
same time. Table 1 compares our schemes with other known SO secure PKE
schemes under the Diffie-Hellman assumptions.

Three Direct Constructions. Our first construction, PKEStDH, is a direct
construction of tightly SIM-SO-CCA secure PKE based on the strong Diffie-
Hellman (StDH) assumption [1]. We then use the twinning technique from [10]
to remove the decision oracle in the StDH assumption and construct our second
tight scheme (called PKETDH) based on the twin DH (TDH) assumption. The
TDH assumption is tightly implied by the standard computational DH (CDH)
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Table 1. Comparison of our constructions with other SO secure PKE schemes. We
ignore schemes that are non-tight and significantly less efficient than ours. |G| is the
bit-length of group G. � is the message bit-length, which is independent of the group
size, and it can be any polynomial in the security parameter λ. μ and Qh are numbers
of challenge ciphertexts and random oracle queries, respectively. The SO security losses
of DHIES and FO can be found in [20, Theorem 6] and [21, Theorem 6].

Scheme Security Ass. Loss |pk| |m| |c| − |m| RO?
BHY [3] IND-SO-CPA DDH 1 2|G| |G| |G| No
HJR [25] SIM-SO-CPA DDH O(�) (� + 1)2|G| � |G| No
LLHG [29] SIM-SO-CCA DDH O(�) 6|G| � 3�|G| No
DHIES proved in [20] SIM-SO-CCA StDH O(μ) |G| � |G| Yes
FO proved in [21] SIM-SO-CCA DDH O(μQh) |G| � |G| Yes
PKEStDH (Fig. 4) SIM-SO-CCA StDH 8 |G| � 2|G| Yes
PKETDH (Fig. 10) SIM-SO-CCA CDH 8 2|G| � 2|G| Yes
PKEDDH (Fig. 11) SIM-SO-CCA DDH 10 |G| � 4|G| Yes
FO1 (in full version [7]) IND-SO-CCA DDH 2 2|G| � |G| Yes
FO2 (Fig. 16) SIM-SO-CCA DDH O(�) (� + 1)2|G| � |G| Yes

assumption. Hence, this yields the first tightly SIM-SO-CCA secure PKE based
on such a standard search assumption.

Both schemes have very short ciphertexts and public keys. Concretely, there
are 2 group elements in the ciphertext overhead for PKEStDH and PKETDH, and 1
element for PKEStDH’s public key and 2 for PKETDH.

We also show that the decision oracle in the proof of PKEStDH can be removed
using the decisional DH assumption. However, the resulting scheme PKEDDH has
longer ciphertexts than the previous two, although it is still compact. All these
schemes have small-constant security loss and compact ciphertexts and compact
public keys.

Fourth Construction: Fujisaki-Okamoto, Revisited. Our last contribu-
tion is to prove that a lossy encryption [3] can be transformed to a PKE with
tight SO security via the well-known Fujisaki-Okamoto (FO) transformation
[15]. The transformation preserves the tightness (up to a small constant) and
compactness of the underlying lossy encryption.

Roughly speaking, a lossy encryption scheme has normal and lossy keys.
Under normal keys, the scheme behave as a normal PKE. But under lossy keys,
there exists an opener that can explain a ciphertext to any message by outputting
the suitable randomness. An opener is not necessarily efficient. Especially, if the
lossy encryption does not have an efficient opener (e.g., the BHY scheme [3]),
then we can only show tight IND-SO-CCA security of the FO transformation.
However, if the lossy encryption has an efficient opener (e.g., the HJR scheme
[25]), then it yields tight SIM-SO-CCA security of the FO transformation.

Our result implies that tight IND-SO-CCA and SIM-SO-CCA security can be
achieved from any assumption that has suitable lossy encryption. For a fair com-
parison, we implement our generic construction with DDH-based lossy encryp-
tion schemes from [3,25]. They both have only 1 group element in the cipher-
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Table 2. Concrete security and efficiency comparison. All schemes are instantiated
with P256, and we consider μ = 232, qH = 232, |m| = 32 bytes, and the output length
of hash is 32 bytes. We consider the concrete security loss in the “Bit Security”.

Scheme Security Ass. Bit security |pk| |m| |c| − |m|
BHY [3] IND-SO-CPA DDH 128 64 32 32
HJR [25] SIM-SO-CPA DDH 120 2113568 32 32
LLHG [29] SIM-SO-CCA DDH 120 192 32 24576
DHIES proved in [20] SIM-SO-CCA StDH 96 32 32 64
FO proved in [21] SIM-SO-CCA CDH 64 32 32 32
PKEStDH (Fig. 4) SIM-SO-CCA StDH 125 32 32 96
PKETDH (Fig. 10) SIM-SO-CCA CDH 125 64 32 96
PKEDDH (Fig. 11) SIM-SO-CCA DDH 124 32 32 160
FO1 (in full version [7]) IND-SO-CCA DDH 127 64 32 32
FO2 (Fig. 16) SIM-SO-CCA DDH 120 2113568 32 32

text (cf. Table 1). Our proof for the FO transformation is compactness- and
tightness-preserving. Hence, for SIM-SO-CCA security, since the HJR scheme
has non-compact public keys, it is also the case for our scheme. Similarly, the
HJR scheme has only almost tightness, so has ours. We suppose that the size of
ciphertexts is more critical than that of public keys, since ciphertexts have to be
sent frequently over the internet for each communication, while public keys are
stored in a server and can be used for a very long time.

Efficiency Comparison. In Table 2 we estimate our concrete efficiency and
compare it with other known SO secure schemes. We focus on schemes based
the Diffie-Hellman assumptions and ignore those non-tight and significantly less
efficient than ours (e.g., [23]). We estimate the efficiency of all schemes using
the same NIST P256 curve. According to the corresponding security proofs, we
consider the security level achieve by those schemes.

Our schemes significantly reduce the cost for tight SIM-SO-CCA, compared
to LLHG. Moreover, our schemes are comparable to the practical PKE schemes,
such as FO and DHIES. For instance, our FO2 has the same ciphertext size, but
it achieves a higher level of security, thanks to the tight security proof. Both
PKEStDH and PKETDH are comparable to DHIES.

Practical Relevance. When a RO-based scheme is implemented in practice,
one would instantiate the RO with a hash function, such as SHA-3. For SIM-
SO-CCA PKE schemes in the ROM (including the previous work of Heuer et
al. [20] and ours), we should be more careful and pay extra attention to the
impossibility result of Bellare et al. [2]. More precisely, it shows that if a PKE
scheme is binding then it cannot be SIM-SO secure. In a nutshell, it uses the
binding property to construct an adversary such that there is no simulator can
conclude the SIM-SO security. Hence, in the programmable ROM, the work



368 J. Pan and R. Zeng

of Heuer et al. and our schemes can all bypass it, since they are not binding
according to the definition in [2]. The programmability is crucial for our proofs.

However, if one simply replaces the RO with, for instance, SHA-3, the sit-
uation becomes rather complex. For our fourth construction, it is not binding
and the security results remain, since it uses lossy encryption and it allows us
to generate encryption collisions. This is also the reason why [2] does not apply
to lossy encryption schemes. For the scheme of Heuer et al. and our first three
direct constructions, they will become binding in this case. Hence, the impossibil-
ity result of Bellare et al. applies, and they cannot have SIM-SO-CCA security.
But the attack in [2] does not imply an adversary breaking IND-SO security,
which means the scheme of Heuer et al. and our first three direct constructions
can have IND-SO-CCA security, since SIM-SO-CCA implies IND-SO-CCA. An
alternative solution could be finding a suitable programmable hash function in
the standard model to instantiate our first three direction constructions. We
leave constructing compact and tight SIM-SO-CCA secure PKE in the standard
model as an interesting open problem.

1.2 Technical Overview

Technical Goal: Openability and Tightness. Selective-opening security
is usually difficult to achieve. This is because the simulator S has to be able
to ‘open’ any challenge ciphertext by producing the corresponding message and
randomness. An adversary can verify whether a ciphertext has been correctly
opened using the public encryption algorithm. It is not entirely trivial how to
provide this openability efficiently. During the security proof, the simulator needs
to embed a problem instance into the unopened ciphertexts, since usually it can-
not open a ciphertext with a problem instance. Even worse, achieving tightness
introduce an additional layer of complexity to the problem, namely, this opening
procedure should be done in a tight fashion.

The work of Heuer et al. provides efficient openability by reprogramming
the random oracle (RO) and guessing one unopened ciphertext. This unopened
ciphertext will be embedded a problem challenge. We recall Heuer et al.’s strat-
egy [20] of proving DHIES as an example to illustrate the aforementioned chal-
lenges in achieving tight SIM-SO-CCA security. The work of Heuer et al. is also
the starting point of our work.

We consider the DHIES scheme with one-time pad as the symmetric encryp-
tion. Let G := 〈g〉 be a group with order p, and pk := gx be a public key. A
ciphertext C of DHIES has the form

C := (R := gr, d := K ⊕ m,MACk(R, d)) ,

where (K, k) := H(R, pkr) and H is modeled as a RO. MACk produces a MAC
tag using k.

To prove its SIM-SO-CCA security, we use the strong Diffie-Hellman (StDH)
assumption which states that given a StDH instance (X = gx, Y ) and oracle
access to dhpX , it is hard to compute Y x. Here, dhpX(Ŷ , Ẑ) outputs the Boolean
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value of Ẑ = Ŷ x. The reduction for SIM-SO-CCA security of DHIES firstly
define pk := X and guesses the i∗-th ciphertext will not be opened (i∗ $← [μ]).
Then Y is embeded into Ci∗ by Ri∗ := Y . By using the dhpX oracle and the
RO patching technique [20], the reduction simulates the whole security game
without knowing the secret x. We can prove that the adversary cannot get any
information about (Ki∗ , ki∗) = H(Y, Y x) unless it computes Y x, which breaks
the StDH assumption. Thus, di∗ is uniformly random and independent of Ri∗ .

Unfortunately, since the above strategy needs to guess i∗, it requires a loss of
μ, and the resulting security is non-tight and depends on the number of challenge
ciphertext. One may consider using the random self-reducibility of StDH and
embedding a randomized instance into challenge ciphertext Ci as Ri := Y · gsi

where si
$← Zp (for all i ∈ [μ]). However, after doing so, one cannot open any

ciphertext, since the discrete logarithm of Y is unknown. This is why the guessing
approach is required.
Our Solution I: DHIES with Double Randomness. Our first solution is
a direct improvement on the DHIES scheme by doubling the randomness R in
the ciphertext. We only give some rough idea here and refer Sect. 3 for more
details.

More precisely, we modify the generation of ciphertexts in DHIES: Instead
of sampling a single r, we firstly choose a random bit b

$← {0, 1}, and then we
choose rb

$← Zp and R1−b
$← G (without knowing R1−b’s discrete logarithm).

Our modified DHIES scheme has ciphertexts with form:

C = (R0, R1, d = K ⊕ m, h(k, R0, R1, d)) ,

where (K, k) := H(b, R0, R1, pkrb), H is a RO, and h is a collision-resistant hash
function. We note that sampling a random group element without knowing its
discrete logarithm can be done in many widely-used groups like a subgroup of
Z

∗
q where q is a safe prime and prime-order elliptic curves.

After the modification, a ciphertext can have two valid randomness, namely,
(b, rb, R1−b) and (1 − b, r1−b, Rb), in the view of an adversary, by carefully pro-
gramming the RO H. Based on this, our simulator can embed the StDH instances
to all challenge ciphertexts and open any ciphertext.
Our Solution II: Lossy Encryption. The idea of having multiple valid ran-
domness can be implemented by a lossy encryption, since under its lossy keys
a ciphertext can be explained to different messages. Based on this, we use the
lossy encryption as a tool to revise the security proof for the Fujisaki-Okamoto
transformation and give a tight proof for its SIM-SO-CCA security. Another
view of our second solution is that we transform the lossy-encryption-based
SIM-SO-CPA secure PKE to a SIM-SO-CCA secure one, tightly.
Open Problems. We leave constructing (almost) tightly SIM-SO-CCA secure
PKE with compact ciphertexts and compact public keys in the standard model
as an interesting open problem. Moreover, our direction constructions are based
on the Diffie-Hellman assumptions. We will study how to extend them in the
post-quantum setting (for instance, with lattices).
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2 Preliminaries

Let n be an integer. [n] denotes the set {1, ..., n}. Let A be an algorithm. If A is
probabilistic, then y

$← A(x) means that the variable y is assigned to the output
of A on input x. If A is deterministic, then we write y := A(x). We write AO to
indicate that A has classical access to oracle O. A ⇒ out denotes the event that
A outputs out. Unless we state it explicitly, all our algorithm are probabilistic
polynomial-time (PPT). Throughout this paper, λ is the security parameter.
The terms such as ‘PPT’ and ‘negligible’ are defined wrt λ.
Games. We use the code-based games [6] to define and prove security. We implic-
itly assume that Boolean flags are initialized to false, numerical types are ini-
tialized to 0, sets are initialized to ∅, while strings are initialized to the empty
string ε. Pr[GA ⇒ 1] denotes the probability that the final output GA of game
G running an adversary A is 1. Let Ev be an (classical and well-defined) event.
We write Pr[Ev : G] to denote the probability that Ev occurs during the game G.
Random Oracle. We use lazy sampling to simulate random oracles in this
paper. Let X and Y be two finite sets and H : X → Y be a random oracle
in a security game G. During the simulation of G, we use a list H to record all
query-respond pairs of H. On query x, the game simulator samples y

$← Y, sets
H[x] := y (which means that now H(x) = y), and then returns y as the respond.
We say x has been queried, or simply x ∈ H, if and only if H[x] = y for some
y ∈ Y. For x /∈ H, we always have H[x] = ⊥ /∈ Y.

2.1 Cryptographic Assumptions

Let G be an cyclic group with a generator g and prime order p. Let X = gx

and Y = gy for some x, y ∈ Zp. The CDH value of X and Y is written as
cdh(X, Y ) = gxy. Here we suppose that (G, g, p) is a public parameter.
Definition 1 (Multi-Instance DDH (mDDH)). We say the mDDH problem
is hard on G if for any A, the mDDH advantage of A against G

AdvmDDH
G (A) :=

∣
∣
∣ Pr

[
A(g1, (gri

0 , gri
1 )i∈[µ]) ⇒ 1

]

− Pr
[
A(g1, (gri

0 , g
r′

i
1 )i∈[µ]) ⇒ 1

]
∣
∣
∣

is negligible, where μ is the number of challenges, g0 := g, g1 := gω
0 for some

ω
$← Zp, and ri, r′

i
$← Zp for some i ∈ [μ].

By the random self-reducibility of DDH [13], mDDH assumption is tightly
equivalent to DDH assumption (i.e., single-instance version of mDDH).

Definition 2 (Strong Diffie-Hellman (StDH) Problem [1]). For a fixed
X ∈ G, let dhpX be the gap oracle that given (Y ′, Z ′) ∈ G

2 outputs whether
cdh(X, Y ′) = Z ′ or not. We say the StDH problem is hard on G if for any A,
the StDH advantage of A against G, AdvStDH

G (A), is negligible.

AdvStDH
G (A) := Pr

[

(X, Y ) $← G
2, AdhpX (·,·)(X, Y ) ⇒ cdh(X, Y )

]
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Definition 3 (Twin Diffie-Hellman (TDH) Problem [10]). For fixed
X0, X1 ∈ G, let 2dhpX0,X1 be an oracle that on input (Y ′, Z ′

0, Z ′
1) ∈ G

3, deter-
mines whether cdh(X0, Y ′) = Z ′

0 and cdh(X1, Y ′) = Z ′
1. We say the TDH prob-

lem is hard on G if for any A, the TDH advantage of A against G
AdvTDH

G (A) := Pr
[
A2dhpX0,X1 (·,·,·)(X0, X1, Y ) ⇒ (cdh(X0, Y ), cdh(X1, Y ))

]

is negligible, where X0, X1, Y
$← G.

Definition 4 (Multi-Instance StDH (mStDH)). Let μ be the number of
instance. We say the mStDH problem is hard on G if for any A, given
X, Y1, ..., Yμ

$← G, the mStDH advantage of A against G, AdvmStDH
G (A), is negli-

gible.
AdvmStDH

G (A) := Pr
[
AdhpX (·,·)(X, (Yi)i∈[µ]) ⇒ cdh(X, Yi) for some i ∈ [μ]

]

Definition 5 (Multi-Instance TDH (mTDH)). Let μ be the number of
instance. We say the mTDH problem is hard on G if for any A, given X0, X1, Y1, ...,

Yμ
$← G, the mTDH advantage of A against G, AdvmStDH

G (A), is negligible

AdvmStDH
G (A) := Pr

[

A2dhpX0,X1 (·,·,·)(X0, X1, (Yi)i∈[μ])

⇒ (cdh(X0, Yi), cdh(X1, Yi)) for some i ∈ [μ]
]

The mStDH and mTDH assumptions are tightly implied by the StDH and
TDH assumption, respectively. This can be showed naturally by the random
self-reducibility of the Diffie-Hellman assumption. We state the lemmas here
and leave the proof in our full version paper [7].

Lemma 1 (StDH tight−−−→ mStDH). For any mStDH adversary A, there exists
an StDH adversary B such that AdvmStDH

G (A) ≤ AdvStDH
G (B).

Lemma 2 (TDH tight−−−→ mTDH). For any mTDH adversary A, there exists an
TDH adversary B such that AdvmTDH

G (A) ≤ AdvTDH
G (B).

Definition 6 (Collision Resistance). A hash function h has collision resis-
tance if for all adversary A, the CR advantage of A against h

AdvCRh (A) := Pr
[

x �= x′ ∧ h(x) �= h(x′)|(x, x′) $← A(h)
]

is negligible. A hash function family H is collision-resistant if for all h
$← H,

AdvCRh (A) is negligible.

2.2 Public-Key Encryption Scheme
Definition 7 (PKE). A Public-Key Encryption (PKE) scheme PKE consists
of three polynomial-time algorithms (KG,Enc,Dec) and a message space M, a
randomness space R, and a ciphertext space C. KG outputs a public and secret
key pair (pk, sk). The encryption algorithm Enc, on input pk and a message
m ∈ M, outputs a ciphertext c ∈ C. We also write c := Enc(pk,m; r) to indicate
the randomness r ∈ R explicitly. The decryption algorithm Dec, on input sk and
a ciphertext c, outputs a message m′ ∈ M or a rejection symbol ⊥ /∈ M.
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Fig. 1. The COR game for a PKE scheme PKE and A. A might have access to some
oracle O (e.g., random oracles, decryption oracles). It depends on the specific reduction.

Correctness of PKE. Some of our PKE schemes do not have perfect correct-
ness, and the correctness bound of PKE might depend on some computational
bound, e.g., the collision bound of hash function. Following [24], we use a game
COR to define PKE correctness.

Definition 8 (PKE Correctness). Let PKE := (KG,Enc,Dec) be a PKE
scheme with message space M and A be an adversary against PKE. The COR
advantage of A is defined as

AdvCOR
PKE (A) := Pr

[

CORA
PKE ⇒ 1

]

,

where the COR game is defined in Fig. 1. If there exists a constant δ such that
for all adversary A, AdvCOR

PKE (A) ≤ δ, then we say PKE is (1 − δ)-correct.

Selective Opening Security. Selective Opening (SO) security preserves con-
fidentiality even if an adversary opens the randomnesses of some ciphertexts. We
use simulation-based approach to define SO security as in [20]. We consider two
types of SO security definition: Simulation-based SO security against Chosen-
Ciphertext Attacks (SIM-SO-CCA, Definition 9) and Indistinguishability-based
SO security against Chosen-Ciphertext Attacks (IND-SO-CCA, Definition 10).

Definition 9 (SIM-SO-CCA security). Let PKE be a PKE scheme with
message space M and randomness space R and A := (A0, A1) be an adversary
against PKE. Let μ be the number of challenge ciphertexts Let Rel be a relation.
We consider two games defined in Fig. 2, where A is run in REAL-SO-CCAPKE
and a SO simulator S := (S0, S1) in IDEAL-SO-CCAPKE. Ma is a distribution
over M chosen by A0. We define the SIM-SO-CCA advantage function

AdvSIM-SO-CCA
PKE (A, S, μ,Rel) :=

∣
∣
∣ Pr

[

REAL-SO-CCAA
PKE ⇒ 1

]

− Pr
[

IDEAL-SO-CCAS
PKE ⇒ 1

]∣
∣
∣,

PKE is SIM-SO-CCA secure if, for every adversary A and every relation Rel,
there exists a simulator S such that AdvSIM-SO-CCA

PKE (A, S, μ,Rel) is negligible.

Definition 10 (IND-SO-CCA security). Let PKE be a PKE scheme with
message space M and randomness space R and A := (A0, A1, A2) be an adver-
sary against PKE. Let μ be the number of challenge ciphertext.
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Fig. 2. The SO security games for PKE schemes. S1 only learn the lengths of challenge
messages mi instead of the challenge ciphertexts.

We consider the game defined in Fig. 3. Samp and ReSamp are efficient algo-
rithms output by A0, where Samp outputs μ messages according to some dis-
tribution (determined by A0) over M, and ReSamp(I, m0) resamples m0[i] for
i /∈ I according to the same distribution of Samp and then outputs m1. For i ∈ I,
m0[i] = m1[i]. We define the IND-SO-CCA advantage function

AdvIND-SO-CCA
PKE (A, μ) :=

∣
∣
∣ Pr

[

IND-SO-CCAA
PKE,0 ⇒ 1

]

− Pr
[

IND-SO-CCAA
PKE,1 ⇒ 1

]∣
∣
∣.

PKE is IND-SO-CCA secure if AdvIND-SO-CCA
PKE (A, μ) is negligible for any A.

3 Direct Constructions

We construct a compact and tightly SIM-SO-CCA PKE, PKEStDH, from the
strong Diffie-Hellman assumption. We also weaken this assumption using the
twinning technique from [10], and the resulting scheme is only based on the
Computational Diffie-Hellman assumption at the cost of being less efficient.

3.1 Construction from the Strong Diffie-Hellman Assumption

Let G be a group with order p. Let H : {0, 1} × G
3 → M × {0, 1}l, h : {0, 1}l ×

G
2 → {0, 1}� be hash functions. We construct a compact and tightly SIM-SO-

CCA PKE scheme PKEStDH = (KG,Enc,Dec) with message space M as in Fig. 4.
The randomness space of PKEStDH is the set {0, 1} × Zp × G.

Correctness. The correctness of PKEStDH depends on the hash function h. If h is
not collision resistant, then there is a decryption error. For instance, a ciphertext
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Fig. 3. The SO security games for PKE schemes. S1 only learn the lengths of challenge
messages mi instead of the challenge ciphertexts. For i ∈ I,m0[i] = m1[i], and for
i ∈ [μ]\I, m0[i] has the same distribution with m1[i] but not necessary to be the same.

Fig. 4. Our Direct Construction of SIM-SO-CCA secure PKE schemes from the mStDH
assumption, PKEStDH = (KG,Enc,Dec)

c of m is generated using b = 1, which means it uses τ1 = h(k1, R0, R1, d)
with (K1, k1) := H(1, R0, R1, Z1). If there is a collision as h(k1, R0, R1, d) =
h(k0, R0, R1, d) and (K1, k1) �= (K0, k0), then c will be decrypted incorrectly
as m′ := d ⊕ K0 �= m = d ⊕ K1. Hence, the correctness error AdvCOR

PKEStDH(A) is
bounded by the collision probability of h. If h is modeled as a random oracle,
then AdvCOR

PKEStDH(A) ≤ qh

2� . In our tight proof, we require collision resistance of a
standard hash function, and thus we use the similar requirement here, namely,
AdvCOR

PKEStDH(A) ≤ AdvCRh (A).

On Sampling of a Group Element. We require that a group element of G
can be sampled without knowing the corresponding exponent. A concrete exam-
ple is as follow: Let p be a prime s.t. q = rp + 1 is also a prime for some r. Let G
be a subgroup of Zq and with order p. Canetti et al. [9, Sect. 4.3.2] showed how
to sample a group element from such G without knowing exponent. Other exam-
ples are some widely-used standard elliptic-curve groups, such as NIST P256,
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NIST P384, and Curve25519. To generate a random point without knowing the
exponent, we can pick a random x-coordinate, compute the point, and then use
the cofactor to check whether the point is in its prime subgroup.

Theorem 1. PKEStDH in Fig. 4 is SIM-SO-CCA secure (Definition 9) if the
mStDH problem is hard on G and H and h are modeled as random oracles.
For any SIM-SO-CCA adversary A and relation Rel, there exists a simulator S
and an adversary B such that:

AdvSIM-SO-CCA
PKEStDH (A, S, μ,Rel) ≤ 8AdvmStDH

G (B) + 2n2
H

|M| + 2(n2
H + n2

h)
2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and μ is the number of challenge ciphertexts. nH = μ + qH + 2nDec and nh =
μ + qh + 2nDec are the total numbers of queries to H and h, respectively.

By Lemma 1, PKEStDH in Fig. 4 is SIM-SO-CCA secure under the StDH
assumption, and the security reduction is tight.

Corollary 1. PKEStDH in Fig. 4 is SIM-SO-CCA secure (Definition 9) if the
StDH problem is hard on G and H and h are modeled as random oracles. For
any SIM-SO-CCA adversary A and relation Rel, there exists a simulator S and
an adversary B such that:

AdvSIM-SO-CCA
PKEStDH (A, S, μ,Rel) ≤ 8AdvStDH

G (B) + 2n2
H

|M| + 2(n2
H + n2

h)
2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and μ is the number of challenge ciphertexts. nH = μ + qH + 2nDec and nh =
μ + qh + 2nDec are the total numbers of queries to H and h, respectively.

Proof (Theorem 1). The theorem is proved by the game sequence in Figs. 5 and
6. In G0, we use lazy sampling to simulate Random oracles H and h. We assume
that from G0 to G8, there is no collision among the outputs of random oracle h,
the first parts of outputs of H (i.e., K), and the second parts of outputs of H
(i.e., k). Let nH and nh be the total numbers of queries (including the queries
from the game simulator) to H and h, respectively. By collision bounds,

∣
∣
∣ Pr

[

REAL-SO-CCAA
PKEStDH ⇒ 1

]

− Pr
[

GA
0 ⇒ 1

]
∣
∣
∣ ≤ n2

H

|M| + n2
H + n2

h

2l

Game G1: We generate Ri,1−bi
:= gri,1−bi by choosing ri,1−bi

$← Zp, and compute
Zi,1−bi

:= Xri,1−bi . This modification does not change A’s view since Ri,1−bi
is

still distributed uniformly at random. Therefore, we have

Pr
[

GA
0 ⇒ 1

]

= Pr
[

GA
1 ⇒ 1

]

Game G2: We modify Dec oracle. When A queries Dec on c := (R0, R1, d, T ),
if T is the tag of one of the challenge ciphertexts (i.e., T = Ti for some i ∈
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Fig. 5. Games G0–G2 for proving Theorem 1. Random oracle h is simulated as usual
(i.e., similar to the simulation of H in G0).

[μ]), then Dec returns ⊥. By the definition of SIM-SO-CCA security, we have
(R0, R1, d, T ) /∈ c. Thus, if T = Ti, we have (R0, R1, d) �= (Ri,0, Ri,1, di). From
this, we can find a collision for h, since T must equal to h(k0, R0, R1, d) or
h(k1, R0, R1, d). We have assumed there is no collision among the output of h,
so we have

Pr
[

GA
1 ⇒ 1

]

= Pr
[

GA
2 ⇒ 1

]

Game G3: In this game, we simulate Dec by searching for the corresponding keys
from the random oracle queries, instead of computing Z0, Z1 as in G2. Intuitively,
this does not change the view of A, since a ciphertext is valid if A has asked the
corresponding random oracle queries before. Otherwise, the ciphertext is invalid
and the decryption will only output ⊥.

Concretely, G3 use the following three lists Hval,Hinv, and Hdec to keep track
of the oracle queries to H, and each of them stores a particular type of oracle
queries, namely:

– (b, R0, R1, Z) ∈ Hval if A has queried H on (b, R0, R1, Z) and Z = Rx
b . We

call this type of hash queries valid.
– (b, R0, R1, Z) ∈ Hinv if A has queried H on (b, R0, R1, Z) and Z �= Rx

b . We
call this type of hash queries invalid.

– (b, R0, R1) ∈ Hdec if A has queried Dec with (R0, R1) as parts of a ciphertext.
It is clear that Hval ∩ Hinv = ∅.
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Fig. 6. Games G3–G9 for proving Theorem 1.

Oracles H and Dec in G3 are simulated in the following ways:

– Dec oracle: On input (R0, R1, d, T ), the simulator tries to search (Kb, kb)
(b ∈ {0, 1}) from Hval (see Items 40 and 41). If it fails, the simulator samples
a random key pair (Kb, kb) and store (b, Kb, kb) in Hdec. Then the simulator
decrypts (R0, R1, d, T ) as usual.

– H oracle: On input (b, R0, R1, Z), the simulator firstly checks if (b, R0, R1) ∈
Hdec. If (b, R0, R1) ∈ Hdec and Z = Rx

b , then the simulator sets Hval[b, R0, R1,
Z] = (Kb, kb) and removes (b, R0, R1) from Hdec. Then the simulator checks
whether (b, R0, R1, Z) has been queried, and if so returns the recorded
response (see Items 29 and 30). Otherwise, it determines (b, R0, R1, Z) should
be added to Hval or to Hinv by checking Z = Rx

b (see Items 33 and 34), and
samples a fresh (K, k) and records it in Hval or Hinv. The output distribution
of H in this game is still uniformly random.

Now consider the case that A queries Dec on (R0, R1, d, T ) but A has
not queried H on the corresponding H-query of (R0, R1, d, T ). In this case,
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the simulator cannot extract (K0, k0) and (K1, k1) from Hval. Instead of using
x to compute Z0 and Z1 as in G2, the game simulator of G3 samples fresh
key pairs (K0, k0) and (K1, k1) and adds (0, R0, R1) and (1, R0, R1) into Hdec.
Lately, when A queries H on (b, R0, R1, Z) where Z = Rx

b , the game simula-
tor “patches” (b, R0, R1, Z) into Hval, i.e., sets Hval[b, R0, R1, Z] = (Kb, kb), and
removes (b, R0, R1) from Hdec (see Items 26 to 28).

We note that the use of these three lists is internal but the outputs of H and
Dec are the same as in G2. Thus,

Pr
[

GA
2 ⇒ 1

]

= Pr
[

GA
3 ⇒ 1

]

Game G4: G4 aborts if A queries H on (1 − bi, Ri,0, Ri,1, Zi,1−bi
) with Zi,1−bi

=
Rx

i,1−bi
and c[i] is not opened for some 1 ≤ i ≤ μ. We note that this abort

condition lead to the CDH value of X and Ri,1−bi
. Hence, we can bound the

probability of this abort event with the multi-challenge strong Diffie-Hellman
(mStDH) assumption.

Fig. 7. mStDH adversary B1 in bounding the difference between G3 and G4. The sim-
ulation of Dec and h are the same as in G4 in Fig. 6.

The reduction B1 against the mStDH assumption is constructed in Fig. 7. On
input (X, Y1, ..., Yμ), B1 sets Ri,1−bi

:= Yi. It can simulate G4 without x, since
it can use its dhpX oracle to check whether Z = cdh(X, Ri,1−bi

). Therefore,
∣
∣
∣Pr

[

GA
3 ⇒ 1

]

− Pr
[

GA
4 ⇒ 1

]
∣
∣
∣ ≤ AdvmStDH

G (B1)
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Game G5: We introduce the abort rule in the H oracle: If A queries H(bi, Ri,0,
Ri,1, Rx

i,bi
) for some i ∈ [μ], then G5 aborts. Let Bad be this querying event and

Badj be the event that Bad happens in Gj . The adversary cannot detect this
modification unless it triggers Bad5. We have

∣
∣
∣Pr

[

GA
4 ⇒ 1

]

− Pr
[

GA
5 ⇒ 1

]
∣
∣
∣ ≤ Pr [Bad5]

Here we cannot bound Pr [Bad5] using mStDH yet, since if the adversary
queries Open(i), then the simulator has to returns ri,bi

, where is unknown when
constructing reduction from mStDH. We will bound it later. Our strategy is
to decouple c[i] with H(bi, Ri,0, Ri,1, Rx

i,bi
) and then use the randomness (1 −

bi, ri,1−bi
, Ri,bi

) to explain c[i] (and thus we do not need ri,bi
and can construct

reduction from mStDH).
Game G6: The difference to G5 is that when generating c[i], we choose random
key pair (Ki, ki) independent of H(bi, Ri,0, Ri,1, Rx

i,bi
), and when A opens c[i],

then we define H(bi, Ri,0, Ri,1, Rx
i,bi

) as (Ki, ki).
By abort condition in H, H(bi, Ri,0, Ri,1, Rx

i,bi
) will not be defined before c[i]

is opened, so this modification does not change A’s view, we have
∣
∣
∣Pr

[

GA
5 ⇒ 1

]

− Pr
[

GA
6 ⇒ 1

]
∣
∣
∣ ≤ Pr [Bad6] , Pr [Bad5] = Pr [Bad6]

Game G7: We modify the simulation of Open: When A opens c[i], we set
H(1 − bi, Ri,0, Ri,1, Rx

i,1−bi
) := (Ki, ki), but not H(bi, Ri,0, Ri,1, Rx

i,bi
). More-

over, instead of returning (bi, ri,bi
, Ri,1−bi

), we return its complement, (1 −
bi, ri,1−bi

, Ri,bi
).

We argue that if Bad7 does not occur, then the view of A in G7 is the same
as in G6. This is because G7 does not abort means that A has queried neither
H(bi, Ri,0, Ri,1, Rx

i,bi
) for some i ∈ [μ]\I nor H(1−bi, Ri,0, Ri,1, Rx

i,1−bi
) for some

i ∈ [μ]\I. Hence, A has no information about these two values, and, as a result,
A cannot tell the change in Open. We have

∣
∣
∣Pr

[

GA
6 ⇒ 1

]

− Pr
[

GA
7 ⇒ 1

]
∣
∣
∣ ≤ Pr [Bad7] , Pr [Bad6] = Pr [Bad7]

To conclude our argument, we construct a reduction B2 against the mStDH
assumption to bound Pr [Bad7]. B2 has a similar structure with B1 in Fig. 7,
except that now B2 embeds Yi into Ri,bi

(by setting Ri,bi
:= Yi for all i ∈ [μ]).

The construction of B2 is shown in Fig. 8.
In B2’s construction, it does not have ri,bi

and cannot compute Zi,bi
= Rx

i,bi
.

But it is not a problem, since B3 can program the random oracle H. More
precisely, it leaves Zi,bi

as unknown and choose a random pair (Ki, ki) (cf. Item
10). Now if Bad7 does not happen then the response of H(bi, Ri,0, Ri,1, Zi,bi

) is
anyway random to A and it does not change its view. If Bad7 happens, then
B2 can find out Zi,bi

= gri,bi
·x by its dhp oracle and extract the solution to the

mStDH problem. Thus, we have

Pr [Bad5] = Pr [Bad6] = Pr [Bad7] ≤ AdvmStDH
G (B2)
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Fig. 8. mStDH adversary B2 in bounding Bad7. It simulates G7 for A. The simulation
of Dec and h are the same as in Fig. 6. If A queries H on bi, Ri,0, Ri,1, Ri,1−bi for some
i ∈ [μ]\I, B2 aborts the simulation and return a random solution.

Now all challenge ciphertexts are encrypted by random key (Ki, ki). From
G8 we conclude the proof by undoing the other changes in a reverse order.

Game G8: We undo the abort rules in the H oracle, and explain the randomness
of c[i] using (bi, ri,bi

, Ri,1−bi
). That is, we withdraw the modifications made in

G7, G5 and G4. Since now the computation of (Ki, ki) is independent of bi and
1−bi, we can construct reduction from mStDH as we did in G4 and G7. Roughly,
if we want to embed the challenge into Ri,bi

, then we can specify the random bit
of c[i] as 1 − bi and explain the randomness of c[i] by reprogramming H, and so
we do not need the exponent of Ri,bi

. We have
∣
∣
∣Pr [G7 ⇒ 1] − Pr [G8 ⇒ 1]

∣
∣
∣ ≤ 4AdvmStDH

G (B)

Game G9: We undo the modification made in G2. We have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1]

Now we can construct a SIM-SO-CCA simulator S that simulates G9 for A
and interacts with the IDEAL-SO-CCA game to conclude the proof. The con-
struction of simulator is shown in Fig. 9.

S samples di uniformly from M and computes Ki as di ⊕mi (when A opens
c[i]), which is equivalent to sampling Ki firstly and then computing di := Ki ⊕
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Fig. 9. SIM-SO-CCA simulator S that simulates G9 to conclude the proof of Theorem
1. We ignore the simulation of H, h, and Dec which are the same as in G9 in Fig. 6.

mi. Therefore, S perfectly simulates G9. Note that at the start of the proof we
assume that from G0 to G8, there is no collision among the outputs of random
oracle h, the first parts of outputs of H (i.e., K), and the second parts of outputs
of H (i.e., k). Here we need to add back this collision bound. That is,

∣
∣
∣ Pr

[

GA
9 ⇒ 1

]

− Pr
[

IDEAL-SO-CCAS
PKEStDH ⇒ 1

]∣
∣
∣ ≤ n2

H

|M| + n2
H + n2

h

2l

By combining all the probability bounds, we have
∣
∣
∣ Pr

[

REAL-SO-CCAA
PKEStDH ⇒ 1

]

− Pr
[

IDEAL-SO-CCAS
PKEStDH ⇒ 1

]∣
∣
∣

≤ 8AdvmStDH
G (B) + 2n2

H

|M| + 2(n2
H + n2

h)
2l

,

as stated in Theorem 1.

3.2 Construction from the Twin Diffie-Hellman Assumption

Using the twinning technique from [10], we can remove the use of StDH assump-
tion in PKEStDH and have a scheme based on the standard CDH assumption.
Let G be a group with prime order p and generator g. Let H : {0, 1} × G

3 →
M × {0, 1}l, h : G2 × {0, 1}l → {0, 1}� be hash functions. We propose a PKE
scheme PKETDH = (KG,Enc,Dec) (shown in Fig. 10) based on TDH. The random-
ness space of PKETDH is {0, 1} × Zp × G. By [10], the TDH problem is tightly
equivalent to the CDH problem. We give the security theorem of PKETDH in the
full version [7]. The probability bounds are identical to Theorem 1.
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Fig. 10. Our Direction Construction of SIM-SO-CCA secure PKE schemes from the
TDH assumption, PKETDH = (KG,Enc,Dec)

3.3 Direct Construction from the Decisional Diffie-Hellman
Assumption

Our third direct construction is based on THE DDH assumption. Let G be
a group with prime order p and two generators g0 and g1. Let H : {0, 1} ×
G

3 → M × {0, 1}l, h : {0, 1}l × G
2 → {0, 1}� be hash functions. The PKE

scheme PKEDDH = (KG,Enc,Dec) with message space M is shown in Fig. 11. The
randomness space of PKEDDH is the set {0, 1} × Zp × G

2.
Correctness. Similar to PKEStDH, the correctness of PKEDDH depends on the
hash function h. The correctness error AdvCOR

PKEStDH(A) is bounded by the collision
probability of h, namely, AdvCOR

PKEDDH(A) ≤ AdvCRh (A).

Theorem 2. PKEDDH in Fig. 11 is SIM-SO-CCA secure (Definition 9) if the
mDDH problem is hard on G and H and h are modeled as random oracles.
Concretely, for any SIM-SO-CCA adversary A and relation Rel, there exists a
simulator S and a adversary B such that:

AdvSIM-SO-CCA
PKEDDH (A, S, μ,Rel) ≤ 10AdvmDDH

GGen (B) + 6μqH

p
+ 2n2

H

|M| + 2(n2
H + n2

h)
2l

where qH and nDec are the numbers of A’s queries to H and Dec, respectively,
and μ is the number of challenge ciphertexts. nH = μ + qH + 2nDec and nh =
μ + qH + 2nDec are the total numbers of queries to H and h, respectively.

PKEDDH is based on the DDH-based non-committing KEM in [26], plus the
double-randomness technique. The proof of Theorem 2 is similar to Theorem 1.
In the reduction, we can embed the DDH challenge into one of (Rb,0, Rb,1) and
(R1−b,0, R1−b,1), and then claim the ciphertext to another one. Since we always
have the secret key (x0, x1) in reduction, the decryption oracle can be simulated
in a straightforward way. We leave the proof in our full version paper [7].
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Fig. 11. SIM-SO-CCA secure PKE scheme PKEDDH = (KG,Enc,Dec)

4 Generic Construction: From Lossy Encryption
to SO-CCA PKE

In this section, we prove the tight SO security of Fujisaki-Okamoto’s (FO)
transformation [15] assuming that the underlying PKE is a lossy encryption
[3]. More precisely, if the lossy encryption scheme has efficient opener (e.g., the
one from [25]), then FO is SIM-SO-CCA-secure. If the lossy encryption does not
have efficient opener (e.g., the one from hash proof systems [3,19]), then FO is
IND-SO-CCA secure.

We recall the notion of lossy encryption and the FO transformation. Then we
prove the tight SO security of FO’s transformation in the random oracle model.

Definition 11 (Lossy Encryption [3]). Let wPKE := (wKG,wEnc,wDec) be
a PKE scheme with message space M and randomness space R. wPKE is lossy
if it has the following properties:

– wPKE is correct according to Definition 8.
– Key indistinguishability: We say wPKE has key indistinguishability if there is

an algorithm LKG such that, for any adversary B, the advantage function

Advkey-indwPKE (B) := | Pr [B(pk) ⇒ 1] − Pr
[

B(pk′) ⇒ 1
]

|

is negligible, where (pk, sk) $← wKG and (pk′, td) $← LKG.
– Lossiness: Let (pk′, td) $← LKG and m,m′ be arbitrary messages in M′, the

statistical distance between wEnc(pk′,m) and wEnc(pk′,m′) is negligible.
– Openability: Let (pk′, td) $← LKG, m and m′ be arbitrary messages, and r

be arbitrary randomness. For ciphertext c := wEnc(pk′,m; r), there exists
an algorithm open such that open(td, pk′, c, r,m′) outputs r′ where c =
wEnc(pk′,m′; r′). Here open can be inefficient.
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We extend the above lossiness definition to a multi-challenge setting. The
multi-challenge lossiness is implied by the single-challenge one using hybrid argu-
ment. Since it is only a statistical property, the hybrid argument will not affect
tightness of the computational advantage.

Definition 12 (Multi-Challenge Lossiness). Let (pk′, td) $← LKG, μ be the
number of challenge, and r1, r′

1, ...rμ, r′
μ be arbitrary messages in M′. Multi-

challenge Lossiness requires that statistical distance between {wEnc(pk′, ri)}i∈[μ]
and {wEnc(pk′, r′

i)}i∈[μ] is negligible. We write the distance as εm-enc-los
wPKE .

We require γ-spreadness for our construction.

Definition 13 (γ-Spreadness). Let wPKE := (wKG,wEnc,wDec) be a PKE
scheme with message space M, randomness space R, and ciphertext space C. We
say wPKE is γ-spread if for every key pair (pk, sk) $← wKG, and every message
m ∈ M,

max
c∈C

Pr
r

$←R
[c = wEnc(pk,m; r)] ≤ 2−γ .

4.1 Construction

Let wPKE := (wKG,wEnc,wDec) be a lossy encryption scheme with message
space M′ and randomness space R′. Let H : M′ → M and G : M′ × M → R′

be two hash functions. The FO transformation FO := (KG,Enc,Dec) is defined
in Fig. 12. Here we use the one-time pad as the symmetric part to encrypt the
message. The randomness space of FO is R′.

Fig. 12. Fujisaki-Okamoto’s transformation FO with lossy encryption wPKE.

As shown in [24], if wPKE is (1 − δ)-correct and G is modeled as a random
oracle, then FO is (1 − qGδ)-correct where qG is the number of queries to G.

Theorems 3 and 4 show the tight SIM-SO-CCA and IND-SO-CCA security
of FO, respectively. We only prove Theorem 3 in the main body and leave that
of Theorem 4 in our full version paper [7], since both proofs are similar and the
SIM-SO-CCA security is more common.

Theorem 3. FO in Fig. 12 is SIM-SO-CCA secure if G and H are modeled as
random oracles, and wPKE is a lossy encryption with efficient openability and
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γ-spreadness. Concretely, for any SIM-SO-CCA adversary A and relation Rel,
there exists a simulator S and B such that:

AdvSIM-SO-CCA
FO (A, S, μ,Rel) ≤ Advkey-indwPKE (B) + 2εm-enc-los

wPKE

+ μnDec
2γ

+ 2n2
H

|M| + 2n2
G

|R′| + 4μ2 + 5μ(qG + qH)
|M′| ,

where qH , qG, and nDec are the numbers of A’s queries to G, H, and Dec, respec-
tively, μ is the number of challenge ciphertexts, and nG = μ + nDec + qH and
nH = μ + nDec + qG are the number of queries (including the simulator) to G
and H, respectively.

Theorem 4. FO in Fig. 12 is IND-SO-CCA secure (Definition 10) if G and
H are modeled as random oracles, and wPKE is a lossy encryption and γ-
spreadness. Concretely, for any IND-SO-CCA adversary A, there exists B such
that:

AdvIND-SO-CCA
FO (A, μ) ≤ 2(Advkey-indwPKE (B) + 3εm-enc-los

wPKE + μnDec
2γ

)

+ 2n2
H

|M| + 2n2
G

|R′| + 6μ2 + 5μ(qG + qH)
|M′| ,

where qH , qG, and nDec are the numbers of A’s queries to G, H, and Dec, respec-
tively, μ is the number of challenge ciphertexts, and nG = μ + nDec + qH and
nH = μ + nDec + qG are the number of queries (including the simulator) to G
and H, respectively.

4.2 Proof of Theorem 3

We prove it by the game sequence as in Fig. 13. G0 is the original game except
that we use lazy sampling to simulate ROs G and H. We assume that, from G0
to G9, there is no collision among ri’s and the outputs of H and G. Let nG and
nH be the number of queries to G and H, respectively. By the security game in
Fig. 13, nG = μ + nDec + qG and nH = μ + nDec + qH . We have

∣
∣
∣ Pr

[

REAL-SO-CCAA
FO ⇒ 1

]

− Pr
[

GA
0 ⇒ 1

]
∣
∣
∣ ≤ n2

H

|M| + μ2

|M′| + n2
G

|R′|

Game G1: We modify Dec. Instead of using sk to simulate Dec, we use the
randomness recorded in G to decrypt given ciphertexts (see Items 40 to 42). This
simulation method is exact the same as the one in the original FO transformation
[15]. By the argument in [15], if wPKE is γ-spread, then we have

∣
∣
∣Pr

[

GA
0 ⇒ 1

]

− Pr
[

GA
1 ⇒ 1

]
∣
∣
∣ ≤ μ · nDec

2γ

Game G2: We switch the public key to lossy mode by (pk′, td) $← LKG. Since in
this game the decryption oracle are simulated without using sk, we can simulate
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Fig. 13. Games G0–G7 for proving Theorem 3.

G2 with pk′. By the key indistinguishability of the lossy encryption,
∣
∣
∣Pr

[

GA
1 ⇒ 1

]

− Pr
[

GA
2 ⇒ 1

]
∣
∣
∣ ≤ Advkey-indwPKE (B0)

Game G3: This is a preparation step. We choose some internal randomness r′
i

for the opening queries in the next games. We abort G3 if A queries either H
or G with r′

i before opening c[i]. Since r′
i (for i ∈ [μ]) are internal and never

revealed to A, the probability that A queries r′
i for some i is qH+qG

|M′| . We also
require all r′

i’s are different. By the union bound and collision bound, we have
∣
∣
∣Pr

[

GA
2 ⇒ 1

]

− Pr
[

GA
3 ⇒ 1

]
∣
∣
∣ ≤ μ · (qH + qG)

|M′| + μ2

|M′|
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Game G4: We further modify the abort rules in H and G. If A queries H or G
with ri and c[i] is unopened, then G4 aborts. Let QueryBadj be the event that
such abort event occurs in Gj , i.e., A queries H (resp., G) on ri (resp, (ri, di))
where c[i] is unopened. Then we have

∣
∣
∣Pr

[

GA
3 ⇒ 1

]

− Pr
[

GA
4 ⇒ 1

]
∣
∣
∣ ≤ Pr [QueryBad4]

Here we cannot bound Pr [QueryBad4] directly yet, since all ei are correlated
to H(ri) and G(ri, di). We will bound Pr [QueryBad4] later. Our strategy for
that is to decouple ei with G(ri, di) and H(ri). In the end, A can query ri for
i ∈ [μ]\I (i.e., c[i] is unopened) with negligible probability.

Game G5: We modify the generation of Ri and Ki. In this game, Ri and Ki are
chosen uniformly, instead of using H and G. Moreover, upon Open(i), we set
H(ri) := Ki and G(ri, di) := Ri. By the abort rules in G and H, A can learn
neither H(ri) nor G(ri, di) before opening c[i]. Thus, we have

Pr
[

GA
4 ⇒ 1

]

= Pr
[

GA
5 ⇒ 1

]

, Pr [QueryBad4] = Pr [QueryBad5]

Game G6: We further modify the computation of di and Ki. In this game, di

are chosen uniformly at random, and Ki are computed as Ki := di ⊕ mi. In G5
Ki is distributed uniformly at random. Hence, this modification is conceptual.

Pr
[

GA
5 ⇒ 1

]

= Pr
[

GA
6 ⇒ 1

]

, Pr [QueryBad5] = Pr [QueryBad6]

Game G7: Upon Open(i), we compute the opened randomness R′
i with respect

to r′
i and Ei using the open algorithm (see Item 29), and then set G(r′

i, di) := R′
i

and H(r′
i) := Ki. Looking ahead, this modification is necessary for the later

modification that c[i] = (Ei, di) can be claimed to r′
i. A detects this modification

if it queries H(r′
i) or G(r′

i, di). This modification does not affect the occurring
probability of QueryBad7, since r′

i is perfectly hidden. Therefore,
∣
∣
∣Pr

[

GA
6 ⇒ 1

]

− Pr
[

GA
7 ⇒ 1

]
∣
∣
∣ ≤ μ(qG + qH)

|M′| , Pr [QueryBad6] = Pr [QueryBad7]

In G7, we have the following observation: Before A opens i, Ri are inde-
pendent of ri, r′

i, Ki, and di, so Ei can be viewed as a ciphertext that Ei :=
wPKE(pk′, ri; Ri) where the randomness Ri is sampled independently and uni-
formly. Therefore, by the Lossiness of pk′, we can replace wPKE(pk′, ri; Ri) as
another ciphertext wPKE(pk′, r′′

i ; R′′
i ) where r′′

i and R′′
i are sampled indepen-

dently and uniformly, and A cannot distinguish such replacement except with
εm-enc-los
wPKE . We move the description of G7-G9 to Fig. 14.

Game G8: We modify the generation of ciphertext Ei and simulation of Open. In
this game, Ei is an encryption of a randomly chosen r′′

i with randomness R′′
i (see

Item 14) which are independent of ri, r′
i, Ri, di. When A opens c[i] = (Ei, di),

the game simulator reprograms H and G so that c[i] can be “explained” by
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Fig. 14. Games G7–G9 for proving Theorem 3.

message mi and randomness r′
i (i.e., Enc(pk,mi; r′

i) = c[i]), and returns (mi, r′
i).

By the lossiness of wPKE, the statistical distance between {wPKE(pk′, ri)}i∈[μ]
with {wPKE(pk′, r′′

i )}i∈[μ] is εm-enc-los
wPKE . Hence, we have

∣
∣Pr

[

GA
7 ⇒ 1

]

− Pr
[

GA
8 ⇒ 1

]∣
∣ ≤ εm-enc-los

wPKE

|Pr [QueryBad7] − Pr [QueryBad8]| ≤ εm-enc-los
wPKE

Now Pr [QueryBad8] can be bounded. Since ri and r′
i are chosen uniformly

and independent of c[i] (for i ∈ [μ]), we have

Pr [QueryBad8] ≤ μ(qG + qH)
|M′| , Pr[QueryBad7] ≤ εm-enc-los

wPKE + μ(qG + qH)
|M′|

Since now r′
i are independent of Ei before opening, and ri is redundant in

the simulation, we withdraw all the abort events defined in H and G, and no
longer reprogram H(ri) and G(ri, di).

Game G9: the aborts event defined in H and G are withdraw, and we no longer
generate ri and reprogram H(ri) and G(ri, di) when c[i] is opened. Since in
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Fig. 15. SIM-SO-CCA simulator S that simulates G9 to conclude the proof of Theorem
3. Here we ignore the details about simulation of H, G, and Dec which are the same
as in Fig. 14.

G9, for i ∈ [μ], ri are independent of c[i], and r′
i are independent of c[i] before

opening, the probability that A can detect this modification is 2μ(qG+qH)
|M′| . Note

that we have assumed that there is no collision among r′
is. So, we have

∣
∣Pr

[

GA
8 ⇒ 1

]

− Pr
[

GA
9 ⇒ 1

]∣
∣ ≤ 2μ(qG + qH)

|M′| + μ2

|M′|

Now we can construct a simulator S that interacts with the IDEAL-SO-CCA
game and simulate G9 for A. The construction of S is shown in Fig. 15. The
main difference between G9 and S is that r′

i is sampled uniformly and Ki is
computed when A queries Open(i), which is conceptual. We have assumed that
all r′

i’s and all K’s are pair-wise distinct, and the outputs of ROs H and G are
different. Hence, we have

∣
∣
∣ Pr

[

GA
9 ⇒ 1

]

− Pr
[

IDEAL-SO-CCAS
FO ⇒ 1

]∣
∣
∣ ≤ n2

H

|M| + μ2

|M′| + n2
G

|R′|

Combining all the above difference, we conclude Theorem 3 as
∣
∣
∣ Pr

[

REAL-SO-CCAA
FO ⇒ 1

]

− Pr
[

IDEAL-SO-CCAS
FO ⇒ 1

]∣
∣
∣

≤ Advkey-indwPKE (B) + 2εm-enc-los
wPKE + μnDec

2γ
+ 2n2

H

|M| + 2n2
G

|R′| + 4μ2 + 5μ(qG + qH)
|M′|

4.3 Instantiations from DDH

We instantiate FO using the DDH-based lossy encryption from Bellare et al. [3]
and Hofheinz et al. [25]. We describe the one with [25] here, since it leads to
an (almost) tightly SIM-SO-CCA secure PKE, which is the main focus of this
paper. Due to space limitation, we leave the one with [3] in our full version paper
[7].
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Fig. 16. A DDH-based scheme FO2 with efficient opener.

An Instantiation with Hofheinz et al.’s Lossy Encryption [25]. We
use Hofheinz et al.’s DDH-based lossy encryption to instantiate FO. Follow-
ing the notation in [25], we use the matrix Diffie-Hellman notation [13] to
describe this scheme. Let G be a group with prime order p and generator g.
Let A := (ai,j)(i,j)∈[l]×[k] be a matrix in Z

l×k
p , then the group representation

of A, denoted as [A], is defined as (gai,j )(i,j)∈[l]×[k]. Given r and [A], one can
efficiently compute [Ar] (if their sizes match). We refer [13] for more details .

Let N be a positive integer. Let H : {0, 1}N → M and G : {0, 1}N × M →
Z

N+1
p be two hash functions. Let h : G → {0, 1} be a universal hash function.

The instantiated PKE scheme FO2 is shown in Fig. 16. Hofheinz et al.’s DDH-
based lossy encryption has efficient opener, and it is (log(p))-spread, thus by
Theorem 3, FO2 has tight SIM-SO-CCA security.

Corollary 2. FO2 in Fig. 16 is SIM-SO-CCA secure (Definition 9) if the DDH
problem is hard on G. Concretely, for any SIM-SO-CCA adversary A and rela-
tion Rel, there exists a simulator S and B such that:

AdvSIM-SO-CCA
FO (A, S, μ,Rel) ≤ N · AdvDDH

G (B) + 2μ

p
+ μnDec

p

+ 2n2
H

|M| + 2n2
G

pN+1 + 4μ2 + 5μ(qG + qH)
2N

,

where qH , qG, and nDec are the numbers of A’s queries to G, H, and Dec, respec-
tively, μ is the number of challenge ciphertexts, and nG = μ + nDec + qH and
nH = μ + nDec + qG are the number of queries (including the simulator) to G
and H, respectively.
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Abstract. In this work, we propose the first identity-based matchmak-
ing encryption (IB-ME) scheme under the standard assumptions in the
standard model. This scheme is proven to be secure under the symmetric
external Diffie-Hellman (SXDH) assumption in prime order bilinear pair-
ing groups. In our IB-ME scheme, all parameters have constant number
of group elements and are simpler than those of previous constructions.
Previous works are either in the random oracle model or based on the q-
type assumptions, while ours is built directly in the standard model and
based on static assumptions, and does not rely on other crypto tools.

More concretely, our IB-ME scheme is constructed from a variant
of two-level anonymous IBE. We observed that this two-level IBE with
anonymity and unforgeability satisfies the same functionality of IB-ME,
and its security properties cleverly meet the two requirements of IB-ME
(Privacy and Authenticity). The privacy property of IB-ME relies on the
anonymity of this two-level IBE, while the authenticity property is corre-
sponding to the unforgeability in the 2nd level. This variant of two-level
IBE is built from dual pairing vector spaces, and both security reductions
rely on dual system encryption.

Keywords: Matchmaking encryption · Identity-based encryption ·
Standard assumptions · Standard model

1 Introduction

Matchmaking Encryption (ME) is a new form of encryption proposed by Ate-
niese et al. [3] in Crypto 2019, in which both the sender and the receiver (each
with its own attributes) can specify fine-grained access policies the other party
must satisfy in order for the message to be revealed. Using ME, a sender with
attributes σ ∈ {0, 1}∗ encrypts messages after generating the policy R of the
intended receiver, and a receiver with attributes ρ ∈ {0, 1}∗ obtains a decryp-
tion key dkS from an authority before decrypting the ciphertext from a sender
c© International Association for Cryptologic Research 2022
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satisfying the specified policy S. This receiver will correctly decrypt the cipher-
text and obtain the message if and only if the sender’s attributes σ match the
policy S specified by the receiver, and at the same time the receiver’s attributes ρ
match the policy R specified by the sender. The implementation of matchmaking
encryption in an identity-based setting is dubbed identity-based matchmaking
encryption (IB-ME), where both the sender and the receiver specify a single
identity instead of general policies.

Differently from ME, each identity is chosen by the sender or receiver on
the fly without talking to the authority in an identity-based setting. Now each
identity x ∈ {0, 1}∗ will represent an access policy A, which means that we use
snd and rcv to represent the target policies S and R specified by the receiver and
the sender, respectively. The sender’s identity σ ∈ {0, 1}∗ and its target policies
rcv can be embedded in the ciphertext. The receiver with an identity ρ can now
additionally specify a target identity snd ∈ {0, 1}∗ on the fly, and obtain the
correct message as long as the sender’s identity σ match the receiver’s policy
snd and vice-versa (i.e., ρ = rcv and σ = snd). From this perspective, IB-ME
can be considered as a more expressive version and generalization of anonymous
identity-based encryption, in which both the sender and the receiver can specify
a target communicating entity in a privacy-preserving manner.

Ateniese et al. [3] provide generic frameworks for constructing ME from func-
tional encryption and propose the first IB-ME scheme with provable security
under the bilinear Diffie-Hellman (BDH) assumption, but in the random oracle
model. They also deploy experiments to prove their construction is practical and
created an anonymous bulletin board over a Tor network. Following their work,
Francati et al. [16] give the first IB-ME construction satisfying privacy in the
plain model (without random oracles), but based on q-ABDHE assumption and
non-interactive zero-knowledge (NIZK) proof systems. Meanwhile, they exhibit
a generic transform taking as input any private IB-ME and outputting an IB-
ME satisfying both enhanced privacy and authenticity. These leave the following
problem:

Can we construct IB-ME under the standard assumptions
in the standard model?

1.1 Our Results

In this work, we present the first IB-ME scheme under the standard assumptions
in the standard model. This scheme is based on the SXDH assumption in prime
order bilinear pairing groups. The construction is direct and does not rely on
other cryptographic tools such as non-interactive zero-knowledge proof systems.
We summarize existing IB-ME schemes in Table 1 and several salient features of
this work from the following two aspects:

– First, we adopt a variant of two-level IBE with anonymity modified from
Chen’s anonymous IBE and signature scheme [13] to form our construction.
This two-level IBE with anonymity and unforgeability satisfies the same func-
tionality of IB-ME, and its security properties cleverly meet the two require-
ments of IB-ME (privacy and authenticity). The privacy property of IB-ME
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Table 1. Comparison with existing IB-ME schemes

Reference Model Assumption

AFNV19 [3] Random Oracle BDH
FGRV21 [16] Standard q-ABDHE + NIZK
Ours Standard SXDH

relies on the anonymity of the 1st level IBE, while the authenticity property is
corresponding to the unforgeability in the 2nd level. The usage of this variant
of two-level anonymous IBE allows our scheme to technically ensure that the
identities chosen by the sender and receiver can be checked simultaneously
without revealing any information other than whether the match is successful
or not.

– Second, this variant of two-level IBE is built from Okamoto and Takashima’s
dual pairing vector spaces [25] and its security reductions rely on Waters’s
dual system encryption [32]. During the security proof process, we draw on
the idea of delegation functionality in Okamoto and Takashima’s hierarchical
inner-product encryption [26] and slightly extended the dual system method-
ology to fit our IB-ME scheme. We rely on an information theoretic argument
instead of computational arguments in the final step of the proof. This is the
first work to build identity-based matchmaking encryption by combining dual
pairing vector spaces and dual system encryption under the standard assump-
tions.

1.2 Technical Overview

To achieve the above results, we propose a new technique for designing IB-ME
schemes, its construction is straightforward and does not rely on other crypto
tools. More concretely, we present a variant of two-level IBE with anonymity
and unforgeability that satisfies the same functionality of IB-ME. Moreover,
its security properties cleverly meet the two requirements of IB-ME (privacy
and authenticity). An IB-ME scheme consists of five algorithms, namely Setup
that generates the master public key mpk and master secret key msk, SKGen
that generates the encryption key ekσ using the sender’s identity σ, RKGen
that generates the decryption key dkρ using the receiver’s identity ρ, Enc that
encrypts the message using ekσ and a target identity rcv, and Dec that decrypts
the ciphertext using dkρ and a target identity snd. Decryption can be successful
if and only if the attributes of the sender and receiver satisfy the target identity
respectively, i.e. σ = snd ∧ ρ = rcv. At the same time, an IB-ME should satisfy
two main security properties: privacy and authenticity [3].

Informally, in this variant of two-level IBE, the algorithms RKGen and Enc
associated by identities ρ and rcv are the first level, while the second level con-
sists of the algorithms SKGen and Dec associated by identities σ and snd. The
privacy property of IB-ME relies on the anonymity of this 2-level IBE, while the
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Fig. 1. Security requirements of IB-ME

authenticity property is corresponding to the unforgeability in the 2nd level as
all shown in Fig. 1. Decryption can only be done when both levels are matched
successfully. Different from IBE, a part of the two keys ekσ, dkρ need to be gen-
erated from msk, and each identity-related parameter needs to be generated
separately. More concretely, it can be observed that in game Gib-priv

Π,A (λ) defin-
ing privacy, the adversary outputs two sets of challenge pairs (m0, rcv0, σ0) and
(m1, rcv1, σ1) after querying oracles, and then outputs b′ for guessing. In game
Gib-auth

Π,A (λ) defining authenticity, the adversary is actually similar to being unable
to forge a ciphertext ct about the message m. The former can be considered as
a property of anonymity, while the latter generates an unforgeable signature.
Therefore, a two-level anonymous IBE (a signature scheme can be derived from
the same IBE) can be used to instantiate this construction and can achieve the
security requirements simultaneously.

Our first thought was to use Lewko-Waters composite order IBE scheme [21]
for the advantage of its efficiency and shorter parameters, but in view of its
difficulty in extending to high-dimensional spaces, we finally decided to choose
the prime-order group IBE scheme based on DPVS as the basis of our construc-
tion. Meanwhile, since a part of the decryption key dkρ needs to be generated
from msk, we borrow some ideas from constructing hierarchical inner-product
predicate encryption. Specifically, Chen’s anonymous IBE [13] and Okamoto and
Takashima’s HIPE [26] together form the blueprint of this variant of two-level
IBE. Thus the message and all identities can be hidden in the high-dimensional
basis vectors of the linear subspace. As for security, the privacy property is consis-
tent with proving the full security and anonymity of the 1st level IBE through the
dual system encryption methodology. When proving the authenticity property
which is similar to the unforgeability of signatures, we make a transformation
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from IB-ME to IBE and land it on the security of this IBE system. The rest of
the proof is similar to that in [13,19].

1.3 Related Work

The idea of using some unique information about the identity of a user as his
public encryption key was conceived by Shamir [30] in 1984 and is known as
Identity-Based Encryption (IBE). In an identity-based encryption system, a
sender who has access to the public parameters can encrypt a message using
the target receiver’s identity, and the ciphertext can only be decrypted by a
receiver who satisfies this identity. We now have constructions of IBE schemes
from a large class of assumptions, namely pairings, quadratic residuosity and lat-
tices, starting with the early constructions in the random oracle model [7,15,17],
to more recent constructions in the standard model [2,5,6,9,14].

In order to overcome the limitations of partitioning [31], Waters presented a
new methodology dubbed dual system encryption [32] for obtaining fully secure
IBE and HIBE systems from simple assumptions. It was further developed in sev-
eral subsequent works [21–24] by Lewko and Waters to enhance the security and
the efficiency. Most of these works have used composite order groups as a con-
venient setting for instantiating the dual system, but with the introduction of
dual pairing vector spaces (DPVS) by Okamoto and Takashima [25,26,28], which
is a brand new technique based on bilinear pairing groups of prime order, some
practical and flexible works emerged. A number of functional encryption schemes
[13,20,27,29] that intelligently combine dual system encryption and DPVS have
a better performance. Then Lewko et al. successfully explored a general frame-
work [19] based on pair encoding [4] summarized by Attrapadung for convert-
ing composite order pairing-based cryptosystems into prime order settings and
obtained fully secure IBE and HIBE schemes. Chen et al. presented a modular
framework [10] based on predicate encodings [33] proposed by Wee for the design
of efficient adaptively secure attribute-based encryption (ABE) schemes for a large
class of predicates under the standard k-Lin assumption in prime-order groups and
obtained concrete efficiency improvements for several ABE schemes.

The notion of IB-ME proposed by Ateniese et al. in [3] is a generalization
of IBE where the sender and the receiver can both specify a target identity.
Following their works, Xu et al. [34] proposed matchmaking attribute-based
encryption by extending the IB-ME scheme, and apply it to construct a secure
fine-grained bilateral access control data sharing system in cloud-fog computing.
They also introduced a new cryptographic tool called lightweight matchmaking
encryption [35] and constructed a secure cloud-fog IoT data sharing system with
bilateral access control.

Organization: The rest of this paper is organized as follows: Sect. 2 introduces
the necessary preliminaries on dual pairing vector spaces and SXDH assumption.
We give the definitions of IBE and recall the syntax and security of IB-ME in
Sect. 3. We detail our scheme and prove its security in Sect. 4. A brief conclusion
and future works are in Sect. 5.
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2 Preliminaries

In what follows, we first introduce some notations used in this work. Then we
give a few preliminaries related to groups with efficiently computable bilinear
maps and define the Symmetric External Diffie-Hellman assumption.

Notation: If S is a finite set, then r
R← S denotes sampling r uniformly at random

from S. If f is an algorithm or function, then y ← f(x) denotes the output of
this algorithm with x as input. y := x denotes that y is defined or substituted by
x. Unless otherwise specified, algorithms in this work are randomized and PPT
stands for probabilistic polynomial time. We use lowercase letters (e.g., r, s, t) to
denote elements in vectors or matrices, bold lowercase letters (e.g., b1,d2, f∗

3 )
to denote vectors and bold uppercase letters (e.g., A) to denote matrices. We
say a function ε(λ) is negligible in λ, if ε(λ) = o(1/λc) for every c ∈ Z, and we
write negl(λ) to denote a negligible function in λ.

2.1 Dual Pairing Vector Spaces

Our constructions are based on dual pairing vector spaces proposed by Okamoto
and Takashima [25,26]. In this work, we concentrate on the asymmetric version
[27]. We only briefly describe how to generate random dual orthonormal bases.
See [25–27] for a full definition of dual pairing vector spaces.

Definition 1 (Asymmetric bilinear pairing groups). Asymmetric bilinear
pairing groups (q,G1, G2, GT , g1, g2, e) are a tuple of a prime q, cyclic (multi-
plicative) groups G1, G2 and GT of order q, g1 �= 1 ∈ G1, g2 �= 1 ∈ G2, and a
polynomial-time computable nondegenerate bilinear pairing e : G1 × G2 → GT

i.e., e(gs
1, g

t
2) = e(g1, g2)st and e(g1, g2) �= 1.

In addition to referring to individual elements of G1 and G2, we will also consider
“vectors” of group elements. For v = (v1, . . . , vn) ∈ Z

n
q and gβ ∈ Gβ , we write

gvβ to denote an n-tuple of elements of Gβ for β = 1, 2:

gvβ := (gv1
β , . . . , gvn

β ).

For any a ∈ Zq and v,w ∈ Z
n
q , we have:

gav
β := (gav1

β , . . . , gavn

β ), gv+w
β := (gv1+w1

β , . . . , gvn+wn

β ).

Then we define

e(gv1 , gw2 ) :=
n∏

i=1

e(gvi
1 , gwi

2 ) = e(g1, g2)v·w.

Here, the dot product is taken modulo q.
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Dual Pairing Vector Spaces. For a fixed (constant) dimension n, we will choose
two random bases B := (b1, . . . ,bn) and B

∗ := (b∗
1, . . . ,b

∗
n) of Zn

q , subject to
the constraint that they are “dual orthonormal”, meaning that

bj · b∗
k = 0 (mod q)

whenever j �= k, and
bj · b∗

j = ψ (mod q)

for all j, where ψ is a random element of Zq. We denote such algorithm as
Dual(Zn

q ).
Then for generators g1 ∈ G1 and g2 ∈ G2, we have

e(gbj

1 , g
b∗

k
2 ) = 1

whenever j �= k, where 1 here denotes the identity element in GT .
More generally, we can sample multiple tuple of “dual orthonormal” bases.

Namely, for fixed (constant) dimension n1, . . . , nd, we will choose d tuples of two
random bases Bi := (b1,i, . . . ,bni,i) and B

∗
i := (b∗

1,i, . . . ,b
∗
ni,i

) of Zni
q , subject

to the constraint that they are “dual orthonormal”, meaning that

bj,i · b∗
k,i = 0 (mod q)

whenever j �= k, and
bj,i · b∗

j,i = ψ (mod q)

for all j, where ψ is a random element of Zq. We denote such algorithm as
Dual(Zn1

q , . . . ,Znd
q ).

2.2 SXDH Assumptions

Definition 2 (DDH1: Decisional Diffie-Hellman Assumption in G1).
Given a group generator G, we define the following distribution:

G := (q,G1, G2, GT , g1, g2, e)
R← G,

a, b, c
R← Zq,

D := (G; g1, g2, ga
1 , gb

1).

We assume that for any PPT algorithm A(with output in {0,1}),

AdvDDH1
A (λ) :=

∣∣Pr[A(D, gab
1 )] − Pr[A(D, gab+c

1 )]
∣∣ .

is negligible in the security parameter λ.

The dual of above assumption is Decisional Diffie-Hellman assumption in G2

(denoted as DDH2), which is identical to Definition 2 with the roles of G1 and
G2 reversed. We say that:

Definition 3. The Symmetric External Diffie-Hellman assumption holds if
DDH problems are intractable in both G1 and G2.
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2.3 Subspace Assumptions via SXDH

In this subsection, we present subspace assumptions derived from the SXDH
assumption. We will rely on these assumptions later to instantiate our encryption
schemes. These are analogues of the DLIN-based Subspace assumptions given in
[12,19,27].

Definition 4 (DS1: Decisional Subspace Assumption in G1). Given a
group generator G(·), define the following distribution:

G := (q,G1, G2, GT , g1, g2, e)
R← G(1λ),

(B,B∗) R← Dual(ZN
q ); τ1, τ2, μ1, μ2

R← Zq,

U1 := g
μ1b

∗
1+μ2b

∗
K+1

2 , . . . , UK := g
μ1b

∗
K+μ2b

∗
2K

2 ,

V1 := gτ1b1
1 , . . . , VK := gτ1bK

1 ,

W1 := g
τ1b1+τ2bK+1
1 , . . . ,WK := gτ1bK+τ2b2K

1 ,

D := (G; gb
∗
1

2 , . . . , g
b∗

K
2 , g

b∗
2K+1

2 , . . . , g
b∗

N
2 , gb1

1 , . . . , gbN
1 , U1, . . . , UK , μ2)

where K,N are fixed positive integers that satisfy 2K ≤ N . We assume that for
any PPT algorithm A (with output in {0, 1}),

AdvDS1
A (λ) := |Pr[A(D,V1, . . . , VK) = 1] − Pr[A(D,W1, . . . ,WK) = 1]|

is negligible in the security parameter λ.

For our construction, we only require the assumption for K = 4 and N = 8.
Furthermore, we do not need to provide μ2 to the distinguisher. Informally, this
means that, given τ1, τ2, μ1, μ2

R← Zq and

U1 = g
μ1b

∗
1+μ2b

∗
5

2 , U2 = g
μ1b

∗
2+μ2b

∗
6

2 , U3 = g
μ1b

∗
3+μ2b

∗
7

2 , U4 = g
μ1b

∗
4+μ2b

∗
8

2 ,

the distributions (V1, V2, V3, V4) and (W1,W2,W3,W4) are computationally
indistinguishable, where:

V1 = gτ1b1
1 , V2 = gτ1b2

1 , V3 = gτ1b3
1 , V4 = gτ1b4

1 ;

W1 = gτ1b1+τ2b5
1 ,W2 = gτ1b2+τ2b6

1 ,W3 = gτ1b3+τ2b7
1 ,W4 = gτ1b4+τ2b8

1 .

Lemma 1. If the DDH assumption in G1 holds, then the Subspace assumption
in G1 stated in Definition 4 also holds. More precisely, for any adversary A
against the Subspace assumption in G1, there exist probabilistic algorithms B
whose running times are essentially the same as that of A, such that

AdvDS1
A (λ) ≤ AdvDDH1

B (λ).

Proof. Detailed proofs can be found in [12].

The dual of the Subspace assumption in G1 is Subspace assumption in G2

(denoted as DS2), which is identical to Definition 4 with the roles of G1 and
G2 reversed. Similarly, we can prove that the Subspace assumption holds in G2

if the DDH assumption in G2 holds.
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2.4 Statistical Indistinguishability Lemma

We require the following lemma for our security proofs, which is derived from
[27].

Lemma 2. For p ∈ Zq, let Cp :=
{
(x,v)|x · v = p,0 �= x,0 �= v ∈ Z

n
q

}
. For

all (x,v) ∈ Cp, for all (z,w) ∈ Cp, and A R← Z
n×n
q (A is invertible with

overwhelming probability),

Pr[xA� = z ∧ vA−1 = w] =
1

#Cp
.

3 Identity-Based Matchmaking Encryption

In what follows, we first recall the definitions of identity-based encryption and
signatures. Then we introduce the definition of identity-based matchmaking
encryption presented in [3].

3.1 Identity-Based Encryption

In the IBE setting, a functionality F̂ is defined over a key space and an index
space using sets of identities. The key space K and index space I for IBE then
corresponds to all identities id. Here

F̂ (id, (id′,m)) :=
{

m if id′ = id
⊥ otherwise.

An Identity-Based Encryption [7] scheme consists of following four algorithms:
Setup, KeyGen, Enc, and Dec.

– Setup(λ) → (pp,mk): The setup algorithm takes in the security parameter λ,
and outputs the public parameters pp, and the master key mk.

– KeyGen(pp,mk, id) → skid: The key generation algorithm takes in the public
parameters pp, the master key mk, an identity id and produces a secret key
skid for that identity.

– Enc(pp, id,m) → ctid: The encryption algorithm takes in the public parame-
ters pp, an identity id, a message m and outputs a ciphertext ctid encrypted
under that identity.

– Dec(pp, skid, ctid) → m: The decryption algorithm takes in a secret key skid,
and a ciphertext ctid, and outputs the message m when the ctid is encrypted
under the same id.

The security notion of anonymous IBE was formalized by [1], which is defined
by the following game, played by a challenger B and an advertisider A.

– Setup: The challenger B runs the setup algorithm to generate pp and mk. It
gives pp to the adversary A.
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– Phase 1: The adversary A adaptively requests key for identities id, and is
provided with corresponding secret key skid, which the challenger B generates
by running the key generation algorithm.

– Challenge: The adversary A gives B two challenge pairs (m0, id
∗
0) and (m1, id

∗
1).

The challenge identities must not have been queried in Phase 1. The chal-
lenger B sets β ∈ {0, 1} randomly, and encrypts mβ under id∗

β by running the
encryption algorithm. It send the ciphertext to the adversary A.

– Phase 2: This is the same as Phase 1 with the added restriction a secret key
for id∗

0, id
∗
1 cannot be requested.

– Guess: The adversary A must output a guess β′ for β.

The advantage AdvIBEA (λ) of an adversary A is defined to be Pr[β′ = β] − 1/2.

Definition 5. An Identity-Based Encryption scheme is secure and anonymous
if all PPT adversaries achieve at most a negligible advantage in the above security
game.

Remark 1: The security notion of non-anonymous IBE is defined as above with
restriction that id∗

0 = id∗
1.

3.2 Signature Schemes

A signature scheme is made up of three algorithms, (KeyGen,Sign,Verify) for
generating keys, signing, and verifying signatures, respectively.

– KeyGen(1λ) : The key generation algorithm takes in the security parameter
1λ, and outputs the public key pk, and the secret key sk.

– Sign(sk,m) : The signing algorithm takes in the secret key sk and a message
m, and produces a signature σ for this message.

– Verify(pk, σ,m) : The verifying algorithm takes in the public key pk and a
signature pair (σ,m), and outputs valid or invalid.

The standard notion of security for a signature scheme is called existential
unforgeability under a chosen message attack [18], which is defined using the
following game between a challenger C and an adversary A.

– Setup : The challenger C runs the key generation algorithm to generate pk
and sk. It gives pk to the adversary A.

– Query : The adversary A adaptively requests for messages m1, . . . ,mν ∈
{0, 1}∗, and is provided with corresponding signatures σ1, . . . , σν by running
the sign algorithm Sign.

– Output : Eventually, the adversary A outputs a pair (σ,m).

The advantage AdvSigA (λ) of an adversary A is defined to be the probability that
A wins in the above game, namely

(1) m is not any of m1, . . . ,mν ;
(2) Verify(pk, σ,m) outputs valid.
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Definition 6. A signature scheme is existentially unforgeable under an adap-
tive chosen message attack if all PPT adversaries achieve at most a negligible
advantage in the above security game.

We assume that for any PPT algorithm A, the probability that A wins in the
above game is negligible in the security parameter 1λ. We note that the security
of the signature scheme can follow from the security of IBE scheme by applying
Naor’s transform [7,8].

3.3 Syntax of IB-ME

In IB-ME, attributes and policies are treated as binary strings. We denote with
rcv and snd the target identities or policies chosed by the sender and the receiver,
respectively. We say that a match (resp. mismatch) occurs when σ = snd and
ρ = rcv (resp. σ �= snd or ρ �= rcv). The receiver can choose the target identity
snd on the fly. More formally, an IB-ME scheme is composed of the following
five polynomial-time algorithms:

– Setup(1λ) → (mpk,msk): Upon input the security parameter 1λ, the ran-
domized setup algorithm outputs the master public key mpk and the master
secret key msk.

– SKGen(mpk,msk, σ) → ekσ: Upon input the master secret key msk and the
identity σ, the randomized sender-key generator outputs an encryption key
ekσ for σ.

– RKGen(mpk,msk, ρ) → dkρ: Upon input the master secret key msk and the
identity ρ, the randomized receiver-key generator outputs a decryption key
dkρ for ρ.

– Enc(mpk, ekσ, rcv,m) → ct: Upon input the encryption key ekσ for identity
σ, a target identity rcv and a message m ∈ M, the randomized encryption
algorithm produces a ciphertext ct linked to both σ and rcv.

– Dec(mpk, dkρ, snd, ct) → m: Upon input the decryption key dkρ for identity
ρ, a target identity snd and a ciphertext ct, the deterministic decryption
algorithm outputs either a message m or ⊥.

Correctness. Correctness of IB-ME simply says that in case of a match the
receiver obtains the plaintext.

Definition 7 (Correctness of IB-ME). An IB-ME scheme Π=(Setup,
SKGen,RKGen,Enc,Dec) is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ),
∀m ∈ M, ∀σ, ρ, rcv, snd ∈ {0, 1}∗ such that σ = snd and ρ = rcv:

Pr[Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m] ≥ 1 − negl(λ),

where ekσ
R← SKGen(msk, σ) and dkρ

R← RKGen(msk, ρ).
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3.4 Security of IB-ME

We now define privacy and authenticity of IB-ME. Recall that privacy captures
secrecy of the sender’s inputs (σ, rcv,m). This is formalized by asking the adver-
sary to distinguish between Enc(ekσ0 , rcv0,m0) and Enc(ekσ1 , rcv1,m1) where
(m0,m1, σ0, σ1, rcv0, rcv1) are chosen by the attacker. The definition of authen-
ticity intuitively says that an adversary cannot compute a valid ciphertext under
the identity σ, if it does not hold the corresponding encryption key ekσ produced
by the challenger.

Fig. 2. Games defining privacy and authenticity security of IB-ME. Oracles O1,O2 are
implemented by SKGen(msk, ·),RKGen(msk, ·).

Definition 8 (Privacy of IB-ME). We say that an IB-ME Π satisfies privacy
if for all valid PPT adversaries A = (A1,A2):

∣∣∣∣Pr[G
ib-priv
Π,A (λ) = 1] − 1

2

∣∣∣∣ ≤ negl(λ)

where game Gib-priv
Π,A (λ) is depicted in Fig. 2. Adversary A is called valid if ∀ρ ∈

QO2 it satisfies the following invariant:

(Mismatch condition) : ρ �= rcv0 ∧ ρ �= rcv1.

Definition 9 (Authenticity of IB-ME). We say that an IB-ME Π satisfies
authenticity if for all valid PPT adversaries A:

Pr[Gib-auth
Π,A (λ) = 1] ≤ negl(λ)

where game Gib-auth
Π,A (λ) is depicted in Fig. 2.

Definition 10 (Secure IB-ME). We say that an IB-ME Π is secure if it
satisfies privacy (Def.8) and authenticity (Def.9).
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4 The Proposed IB-ME Construction

We are now ready to give the concrete construction of our IB-ME scheme.

4.1 Construction

– Setup(1λ) → (mpk,msk): This algorithm takes in the security parameter 1λ

and generates a bilinear pairing G := (q,G1, G2, GT , g1, g2, e) for sufficiently
large prime order q. The algorithm samples random dual orthonormal bases
(D,D∗) R← Dual(Z8

q). Let d1, ...,d8 denote the elements of D and d∗
1, ...,d

∗
8

denote the elements of D∗. Let gT := e(g1, g2)d1·d∗
1 . It also picks α, η

R← Zq

and outputs the master public key as

mpk := {G; gα
T , gη

T , gd1
1 , gd2

1 },

and the master secret key

msk := {α, η, gd3
1 , gd4

1 , g
d∗

1
2 , g

d∗
2

2 , g
d∗

3
2 , g

d∗
4

2 }.

– SKGen(mpk,msk, σ) → ekσ: This algorithm picks r
R← Zq. The encryption

key is computed as
ekσ := g

ηd3+r(σd3−d4)
1 .

– RKGen(mpk,msk, ρ) → dkρ: This algorithm picks s, s1, s2
R← Zq. The decryp-

tion key is computed as

dkρ := {k1 = g
αd∗

1+s1(ρd
∗
1−d∗

2)+sd∗
3

2 , k2 = g
s2(ρd

∗
1−d∗

2)+sd∗
4

2 , k3 = (gη
T )

s}.

– Enc(mpk, ekσ, rcv,m) → ct: This algorithm picks z
R← Zq and forms the

ciphertext as

ct := {C = m · (gα
T )

z,C0 = ekσ · g
z(d1+rcvd2)
1 }.

– Dec(mpk, dkρ, snd, ct) → m: This algorithm computes the message as

m :=
C

e(C0, k1 · ksnd
2 ) · k−1

3

.

Correctness: Correctness follows when snd = σ and rcv = ρ:

e(C0, k1 · ksnd
2 )

=e(gηd3+r(σd3−d4)+z(d1+rcvd2)
1 , g

αd∗
1+(s1+s2·snd)(ρd∗

1−d∗
2)+s(d∗

3+sndd∗
4)

2 )

=e(g1, g2)ηsd3·d∗
3+rs(σd3·d∗

3−sndd4·d∗
4)+αzd1·d∗

1+z(s1+s2·snd)(ρd1·d∗
1−rcvd2·d∗

2)

=e(g1, g2)ηsd3·d∗
3+αzd1·d∗

1 = (gT )ηs+αz

C

e(C0, k1 · ksnd
2 ) · k−1

3

=
m · (gα

T )
z

(gT )ηs+αz · g−ηs
T

= m
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4.2 Security Analysis

As for security, it can be proved that our proposed IB-ME scheme is secure (Def.
10) according to the Theorem 1 and Theorem 2, namely satisfies privacy (Def.
8) and authenticity (Def. 9) simultaneously.

Theorem 1. The proposed IB-ME scheme satisfies privacy under the Symmet-
ric External Diffie-Hellman assumption. More precisely, for any PPT adversary
A breaks the privacy property of our IB-ME scheme, there exist probabilistic
algorithms B0,B1,1,B1,2, . . . ,Bν,1,Bν,2 whose running times are essentially the
same as that of A, such that

AdvIB-ME
A (λ) ≤ AdvDDH1

B0
(λ) +

ν∑

κ=1

(
AdvDDH2

Bκ,1
(λ) + AdvDDH2

Bκ,2
(λ)

)
+ (12ν + 3)/q

where ν is the maximum number of A’s key queries.

Proof Outline: There are many similarities between the proof of our scheme and
the anonymous IBE scheme in [12]. We will follow a similar strategy of proving
fully secure anonymous IBE, adopting the dual system encryption methodol-
ogy by Waters [32] to prove that our IB-ME satisfies privacy under the SXDH
assumption. The hardest part of the security proof is how to prove the negligi-
ble gap between two different forms of dkρ, especially when it is composed of
three different keys k1, k2 and k3. In order to solve this problem, apart from the
concepts of semi-functional ciphertexts and semi-functional keys in our proof,
we introduce the concept of inter -semi -functional secret key and provide algo-
rithms that generate them. More precisely, inter-semi-functional key means that
k1 is semi-functional and k2 is normal, while semi-functional key means that
both k1 and k2 are semi-functional, and k3 always remains the same. We note
that these algorithms are only provided in a sequence of security games for the
proof, and are not part of the IB-ME scheme. In particular, they do not need
to be efficiently computable from the master public key and the master secret
key. Meanwhile, another ν games are added into the proof, and for κ from 1 to
ν, all the decryption keys will be converted into semi-functional keys step by
step according to the sequence of changing normal key to inter -semi-functional
key first in Gameκ,1 and then changing it to semi-functional key in Gameκ,2. In
other words, we consider k1 and k2 in dkρ as two independent keys and generate
their semi-functional keys in the KeyGenSF algorithm respectively. We first
require that the challenger can simulate the two different forms of k1, and then
require it can simulate the two different forms of k2 with the adversary. Then,
we adopt the same procedure as in the security model definition, treating the
output of SKGen algorithm as a part of the input to Enc algorithm, from which
the corresponding semi-functional ciphertext is generated.
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KeyGenSF: The algorithm picks s, s1, s2, {si,1}i=5,...,8
R← Zq and forms the

inter-semi-functional secret key as

dk(inter-SF)ρ := { k1 = g
αd∗

1+s1(ρd
∗
1−d∗

2)+sd∗
3+[s5,1d

∗
5+s6,1d

∗
6+s7,1d

∗
7]

2 ,

k2 = g
s2(ρd

∗
1−d∗

2)+sd∗
4

2 , k3 = (gη
T )

s}; (1)

The algorithm picks s, s1, s2, {si,j}i=5,...,8;j=1,2
R← Zq and forms the semi-

functional secret key as

dk(SF)ρ := { k1 = g
αd∗

1+s1(ρd
∗
1−d∗

2)+sd∗
3+[s5,1d

∗
5+s6,1d

∗
6+s7,1d

∗
7]

2 ,

k2 = g
s2(ρd

∗
1−d∗

2)+sd∗
4+[s5,2d

∗
5+s6,2d

∗
6+s8,2d

∗
8]

2 , k3 = (gη
T )

s}. (2)

Hereafter we will ignore k3 since it is always correctly generated.

EncryptSF: The algorithm picks z, r, r5, r6, r7, r8
R← Zq and forms a semi-

functional ciphertext as
ekσ := g

ηd3+r(σd3−d4)
1

CT
(SF)
ekσ,rcv := {C : = m · (gα

T )
z,C0 := ekσ · g

z(d1+rcvd2)+[r5d5+r6d6+r7d7+r8d8]
1

= g
ηd3+r(σd3−d4)+z(d1+rcvd2)+[r5d5+r6d6+r7d7+r8d8]
1 }. (3)

Hereafter we will ignore C since it is always correctly generated. We observe
that if one applies the decryption procedure with a (inter) semi-functional key
and a normal ciphertext, decryption will succeed because (d∗

5,d
∗
6,d

∗
7,d

∗
8) are

orthogonal to all of the vectors in exponent of C0, and hence have no effect on
decryption. Similarly, decryption of a semi-functional ciphertext by a normal key
will also succeed because (d5,d6,d7,d8) are orthogonal to all of the vectors in
the exponent of the key. When both the ciphertext and key are semi-functional,
the result of decryption procedure e(C0, k1 · ksnd

2 ) · k−1
3 will have an additional

term, namely

e(g1, g2)r5(s5,1+snd·s5,2)d5·d∗
5+r6(s6,1+snd·s6,2)d6·d∗

6+r7s7,1d7·d∗
7+r8·snd·s8,2d8·d∗

8

= g
(r5s5,1+r6s6,1+r7s7,1)+snd(r5s5,2+r6s6,2+r8s8,2)
T .

Decryption will then fail unless r5s5,1 + r6s6,1 + r7s7,1 ≡ 0 (mod q) and r5s5,2 +
r6s6,2 + r8s8,2 ≡ 0 (mod q). If this modular equation holds, we say that this key
and ciphertext pair is nominally semi-functional.

For a probabilistic polynomial-time adversary A which makes ν key queries
rcv1, . . . , rcvν , our proof of security consists of the following sequence of games
between A and a challenger B.

– GameReal: is the real security game.
– Game0: is the same as GameReal except that the challenge ciphertext is semi-

functional.
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– Gameκ,1: for κ from 1 to ν, Gameκ,1 is the same as Game0 except that the
first κ-1 keys are semi-functional, the κ-th key is inter-semi-functional and
the remaining keys are normal.

– Gameκ,2: for κ from 1 to ν, Gameκ,2 is the same as Game0 except that the
first κ keys are semi-functional and the remaining keys are normal.

– GameFinal: is the same as Gameν,2, except that the challenge ciphertext is a
semi-functional encryption of a random message in GT and under two random
identities in Zq. We denote the challenge ciphertext in GameFinal as CT(R)

ekσR
,rcvR

.

We prove following lemmas to show the above games are indistinguishable by
following an analogous strategy of [13,19,20]. Our main arguments are compu-
tational indistinguishability (guaranteed by the Subspace assumptions, which
are implied by the SXDH assumption) and statistical indistinguishability. The
advantage gap between GameReal and Game0 is bounded by the advantage of
the Subspace assumption in G1. Additionally, we require a statistical indistin-
guishability argument to show that the distribution of the challenge ciphertext
remains the same from the adversary’s view. For κ from 1 to ν, the advantage
gaps between Gameκ-1,2 and Gameκ,1, and between Gameκ,1 and Gameκ,2 are
bounded by the advantage of Subspace assumption in G2. Similarly, we require
a statistical indistinguishability argument to show that the distribution of the
κ-th semi-functional key remains the same from the adversary’s view. Finally, we
statistically transform Gameν,2 to GameFinal in one step, i.e., we show the joint
distributions of

(
mpk,CT

(SF)
ekσ∗

β
,rcv∗

β
,
{
dk(SF)ρ�

}

�∈[ν]

)
and

(
mpk,CT

(R)
ekσR

,rcvR
,
{
dk(SF)ρ�

}

�∈[ν]

)

are equivalent for the adversary’s view.
We let AdvGameReal

A denote an adversary A’s advantage in the real game.

Lemma 3. Suppose that there exists an adversary A where |AdvGameReal
A (λ) −

AdvGame0
A (λ)| = ε. Then there exists an algorithm B0 such that AdvDS1

B0
(λ) =

ε − 2/q, with K = 4 and N = 8.

Proof. B0 is given

D :=
(
G; gb

∗
1

2 , g
b∗

2
2 , g

b∗
3

2 , g
b∗

4
2 , gb1

1 , . . . , gb8
1 , U1, U2, U3, U4, μ2

)

along with (T1, T2, T3, T4). And in D we have that U1 = g
μ1b

∗
1+μ2b

∗
5

2 , U2 =
g

μ1b
∗
2+μ2b

∗
6

2 , U3 = g
μ1b

∗
3+μ2b

∗
7

2 , U4 = g
μ1b

∗
4+μ2b

∗
8

2 . We require that B0 decides
whether (T1, T2, T3, T4) are distributed as

(gτ1b1
1 , gτ1b2

1 , gτ1b3
1 , gτ1b4

1 ) or (gτ1b1+τ2b5
1 , gτ1b2+τ2b6

1 , gτ1b3+τ2b7
1 , gτ1b4+τ2b8

1 ).

B0 simulates GameReal or Game0 with A depending on the distribution of
(T1, T2, T3, T4). To compute the master public key and master secret key, B0
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chooses a random invertible matrix A ∈ Z
4×4
q . We then implicitly set dual

orthonormal bases D,D∗ to:

d1 := b1, . . . ,d4 := b4, (d5, . . . ,d8) := (b5, . . . ,b8)A,

d∗
1 := b∗

1, . . . ,d
∗
4 := b∗

4, (d∗
5, . . . ,d

∗
8) := (b∗

5, . . . ,b
∗
8)(A

−1)�.

We note that D,D∗ are properly distributed, and reveal no information about
A. Moreover, B0 cannot generate g

d∗
5

2 , g
d∗

6
2 , g

d∗
7

2 , g
d∗

8
2 , but these will not be needed

for creating normal keys. B0 chooses random value α, η ∈ Zq and computes
gT := e(g1, g2)d1·d∗

1 . It then gives A the master public key

mpk :=
{
G; gα

T , gη
T , gd1

1 , gd2
1

}
.

The master secret key

msk :=
{

α, η, gd3
1 , gd4

1 , g
d∗

1
2 , g

d∗
2

2 , g
d∗

3
2 , g

d∗
4

2

}

is known to B0, which allows B0 to respond to all of A’s key queries by calling
the normal key generation algorithm.

A sends B0 two pairs (m0, rcv
∗
0, σ

∗
0) and (m1, rcv

∗
1, σ

∗
1). B0 chooses a random

bit β ∈ {0, 1} and picks r′ R← Zq and then encrypts mβ under rcv∗
β and ekσ∗

β
as

follows:
ekσ∗

β
:= gηb3

1 (T
σ∗

β

3 · T−1
4 )r

′
,

C := mβ ·
(
e(T1, g

b∗
1

2 )
)α

= mβ · (gα
T )

z,

C0 := ekσ∗
β

· T1 · T
rcv∗

β

2 = gηb3

1 (T
σ∗

β

3 · T−1
4 )r

′ · T1 · T
rcv∗

β

2 ,

where B0 has implicitly set r := r′τ1 and z := τ1. It gives the ciphertext ct =
(C,C0) to A.

Now, if (T1, T2, T3, T4) are equal to (gτ1b1
1 , gτ1b2

1 , gτ1b3
1 , gτ1b4

1 ), then
this is a properly distributed normal encryption of mβ . In this case,
B0 has properly simulated GameReal. If (T1, T2, T3, T4) are equal to
(gτ1b1+τ2b5

1 , gτ1b2+τ2b6
1 , gτ1b3+τ2b7

1 , gτ1b4+τ2b8
1 ) instead, then the ciphertext ele-

ment C0 has an additional term of

τ2(b5 + rcv∗
βb6) + r′τ2(σ∗

βb7 − b8)

in its exponent. The coefficients here in the basis b5,b6,b7,b8 form the vector
τ2(1, rcv∗

β , r′σ∗
β ,−r′). To compute the coefficients in the basis d5,d6,d7,d8, we

multiply the matrix A−1 by the transpose of this vector, obtaining the new
vector τ2A−1(1, rcv∗

β , r′σ∗
β ,−r′)�. Since A is random (everything else given to

A has been distributed independently of A), these coefficients are uniformly
random except with probability 2/q (namely, the cases τ2 defined in Subspace
problem is zero, (r5, r6, r7, r8) defined in Eq. 3 is the zero vector) from Lemma 2.
Therefore in this case, B0 has properly simulated Game0. This allows B0 to
leverage A’s advantage ε between GameReal and Game0 to achieve an advantage
ε − 2

q against the subspace assumption in G1, namely AdvDS1
B0

(λ) = ε − 2
q . �
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Lemma 4. Suppose that there exists an adversary A where |AdvGameκ-1,2
A (λ) −

Adv
Gameκ,1
A (λ)| = ε. Then there exists an algorithm Bκ,1 such that AdvDS2

Bκ,1
(λ) =

ε − 6/q, with K = 4 and N = 8.

Proof. Bκ,1 is given

D :=
(
G; gb1

1 , gb2
1 , gb3

1 , gb4
1 , g

b∗
1

2 , . . . , g
b∗

8
2 , U1, U2, U3, U4, μ2

)

along with (T1, T2, T3, T4). And in D we have that U1 = gμ1b1+μ2b5

1 , U2 =
gμ1b2+μ2b6

1 , U3 = gμ1b3+μ2b7

1 , U4 = gμ1b4+μ2b8

1 . We require that Bκ,1 decides
whether (T1, T2, T3, T4) are distributed as

(gτ1b
∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 , g
τ1b

∗
4

2 ) or (gτ1b
∗
1+τ2b

∗
5

2 , g
τ1b

∗
2+τ2b

∗
6

2 , g
τ1b

∗
3+τ2b

∗
7

2 , g
τ1b

∗
4+τ2b

∗
8

2 ).

Bκ,1 simulates Gameκ-1,2 or Gameκ,1 with A depending on the distribution
of (T1, T2, T3, T4). To compute the master public key and master secret key,
Bκ,1 chooses a random invertible matrix A ∈ Z

4×4
q . We then implicitly set dual

orthonormal bases D,D∗ to:

d1 := b1, . . . ,d4 := b4, (d5, . . . ,d8) := (b5, . . . ,b8)A,

d∗
1 := b∗

1, . . . ,d
∗
4 := b∗

4, (d∗
5, . . . ,d

∗
8) := (b∗

5, . . . ,b
∗
8)(A

−1)�.

We note that D,D∗ are properly distributed, and reveal no information about
A. Bκ,1 chooses random value α, η ∈ Zq and compute gT := e(g1, g2)d1·d∗

1 . It
then gives A the master public key

mpk :=
{
G; gα

T , gη
T , gd1

1 , gd2
1

}
.

The master secret key

msk :=
{

α, η, gd3
1 , gd4

1 , g
d∗

1
2 , g

d∗
2

2 , g
d∗

3
2 , g

d∗
4

2

}

is known to Bκ,1, which allows Bκ,1 to respond to all of A’s key queries by call-
ing the normal key generation algorithm. Since Bκ,1 also knows g

d∗
5

2 , g
d∗

6
2 , g

d∗
7

2 , g
d∗

8
2 ,

it can easily produce (inter) semi-functional keys. To answer the first κ-1 key
queries that A makes, Bκ,1 runs the KeyGenSF algorithm to produce semi-
functional keys and gives these to A. To answer the κ-th key query for ρκ,
Bκ,1 picks s, s2

R← Zq and responds with:

dkρκ
:=

{
k1 = g

αb∗
1+sb∗

3
2 · (T ρκ

1 T−1
2 ), k2 = g

s2(ρκb
∗
1−b∗

2)+sb∗
4

2 , k3 = (gη
T )

s
}

.

Noting that k2 is a normal key, Bκ,1 needs to determine whether k1 is semi-
functional or normal key and this implicitly sets s1 := τ1. If (T1, T2, T3, T4) are
equal to (gτ1b

∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 , g
τ1b

∗
4

2 ), then this is a properly distributed normal key.
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If (T1, T2, T3, T4) are equal to (gτ1b
∗
1+τ2b

∗
5

2 , g
τ1b

∗
2+τ2b

∗
6

2 , g
τ1b

∗
3+τ2b

∗
7

2 , g
τ1b

∗
4+τ2b

∗
8

2 ),
then this is a inter-semi-functional key, whose exponent vector includes

τ2(ρκb5
∗ − b6

∗ + 0 · b7
∗ + 0 · b8

∗) (4)

as its component in the span of b∗
5,b

∗
6,b

∗
7,b

∗
8. To respond to the remaining key

queries, Bκ,1 simply runs the normal key generation algorithm.
At some point, A sends Bκ,1 two pairs (m0, rcv

∗
0, σ

∗
0) and (m1, rcv

∗
1, σ

∗
1). Bκ,1

chooses a random bit β ∈ {0, 1} and picks r′ R← Zq and then encrypts mβ under
rcv∗

β and ekσ∗
β

as follows:

ekσ∗
β
:= gηb3

1 (U
σ∗

β

3 · U−1
4 )r

′
,

C := mβ ·
(
e(U1, g

b∗
1

2 )
)α

= mβ · (gα
T )

z,

C0 := ekσ∗
β

· U1 · U
rcv∗

β

2 = gηb3

1 (U
σ∗

β

3 · U−1
4 )r

′ · U1 · U
rcv∗

β

2 ,

where Bκ,1 has implicitly set r := r′μ1 and z := μ1. The “semi-functional part”
of the exponent vector here is:

μ2(b5 + rcv∗
βb6) + r′μ2(σ∗

βb7 − b8) (5)

We observe that if rcv∗
β = ρκ (which is not allowed) and the decryption algorithm

gives an attribute sndκ that can correctly decrypt the ciphertext, i.e., sndκ = σ∗
β ,

then vectors in Eqs. 4 and 5 would be orthogonal in the decryption algorithm,
resulting in a nominally semi-functional ciphertext and key pair. It gives the
ciphertext ct = (C,C0) to A.

We now argue that since rcv∗
β �= ρκ, in A’s view the vectors in Eqs. 4 and 5

are distributed as random vectors in the spans of d∗
5,d

∗
6,d

∗
7,d

∗
8 and d5,d6,d7,d8

respectively. To see this, we take the coefficients of vectors in Eqs. 4 and 5 in
terms of the bases b∗

5,b
∗
6,b

∗
7,b

∗
8 and b5,b6,b7,b8 respectively and translate

them into coefficients in terms of the bases d∗
5,d

∗
6,d

∗
7,d

∗
8 and d5,d6,d7,d8. Using

the change of basis matrix A, we obtain the new coefficients (in vector form) as:

τ2A�(ρκ,−1, 0, 0)�, μ2A−1(1, rcv∗
β , r′σ∗

β ,−r′)�.

Since the distribution of everything given to A except for the κ-th key and the
challenge ciphertext is independent of the random matrix A and rcv∗

β �= ρκ, we
can conclude that these coefficients are uniformly except with probability 4/q
(namely, the cases τ2 or μ2 defined in Subspace problem is zero, {si,1}i=5,...,8 or
(r5, r6, r7, r8) defined in Eqs. 1 and 3 is the zero vector) from Lemma 2. Thus,
Bκ,1 has properly simulated Gameκ,1 in this case.

If (T1, T2, T3, T4) are equal to (gτ1b
∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 , g
τ1b

∗
4

2 ), then the coefficients
of the vector in Eq. 5 are uniformly except with probability 2/q (namely, the
cases μ2 defined in Subspace problem is zero, (r5, r6, r7, r8) defined in Eq. 3 is
the zero vector) from Lemma 2. Thus, Bκ,1 has properly simulated Gameκ-1,2 in
this case.
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In summary, Bκ,1 has properly simulated either Gameκ-1,2 or Gameκ,1 for A,
depending on the distribution of (T1, T2, T3, T4). It can therefore leverage A’s
advantage ε between these games to obtain an advantage ε − 6/q against the
Subspace assumption in G2, namely AdvDS2

Bκ,1
(λ) = ε − 6/q. �

Lemma 5. Suppose that there exists an adversary A where |AdvGameκ,1
A (λ) −

Adv
Gameκ,2
A (λ)| = ε. Then there exists an algorithm Bκ,2 such that AdvDS2

Bκ,2
(λ) =

ε − 6/q, with K = 4 and N = 8.

Proof. This proof is very similar to the proof of the previous lemma and Bκ,2 is
given

D :=
(
G; gb1

1 , gb2
1 , gb3

1 , gb4
1 , g

b∗
1

2 , . . . , g
b∗

8
2 , U1, U2, U3, U4, μ2

)

along with (T1, T2, T3, T4). And in D we have that U1 = gμ1b1+μ2b5

1 , U2 =
gμ1b2+μ2b6

1 , U3 = gμ1b3+μ2b7

1 , U4 = gμ1b4+μ2b8

1 . We require that Bκ,2 decides
whether (T1, T2, T3, T4) are distributed as

(gτ1b
∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 , g
τ1b

∗
4

2 ) or (gτ1b
∗
1+τ2b

∗
5

2 , g
τ1b

∗
2+τ2b

∗
6

2 , g
τ1b

∗
3+τ2b

∗
7

2 , g
τ1b

∗
4+τ2b

∗
8

2 ).

Bκ,2 simulates Gameκ,1 or Gameκ,2 with A depending on the distribution
of (T1, T2, T3, T4). To compute the master public key and master secret key,
Bκ,2 chooses a random invertible matrix A ∈ Z

4×4
q . We then implicitly set dual

orthonormal bases D,D∗ to:

d1 := b1, . . . ,d4 := b4, (d5, . . . ,d8) := (b5, . . . ,b8)A,

d∗
1 := b∗

1, . . . ,d
∗
4 := b∗

4, (d∗
5, . . . ,d

∗
8) := (b∗

5, . . . ,b
∗
8)(A

−1)�.

We note that D,D∗ are properly distributed, and reveal no information about
A. Bκ,2 chooses random value α, η ∈ Zq and compute gT := e(g1, g2)d1·d∗

1 . It
then gives A the master public key

mpk :=
{
G; gα

T , gη
T , gd1

1 , gd2
1

}
.

The master secret key

msk :=
{

α, η, gd3
1 , gd4

1 , g
d∗

1
2 , g

d∗
2

2 , g
d∗

3
2 , g

d∗
4

2

}

is known to Bκ,2, which allows Bκ,2 to respond to all of A’s key queries by call-
ing the normal key generation algorithm. Since Bκ,2 also knows g

d∗
5

2 , g
d∗

6
2 , g

d∗
7

2 , g
d∗

8
2 ,

it can easily produce (inter) semi-functional keys. To answer the first κ-1 key
queries that A makes, Bκ,2 runs the KeyGenSF algorithm to produce semi-
functional keys and gives these to A. To answer the κ-th key query for ρκ,
Bκ,2 picks s, s1, {si,1}i=5,...,8

R← Zq and responds with:

dkρκ
:= {k1 = g

αd∗
1+s1(ρd

∗
1−d∗

2)+sd∗
3+[s5,1d

∗
5+s6,1d

∗
6+s7,1d

∗
7]

2 ,

k2 = g
sb∗

4
2 · (T ρκ

1 T−1
2 ), k3 = (gη

T )
s}.
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Noting that k1 is a semi-functional key, Bκ,2 needs to determine whether
k2 is semi-functional or normal key and this implicitly sets s2 :=
τ1. If (T1, T2, T3, T4) are equal to (gτ1b

∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 , g
τ1b

∗
4

2 ), then this
is a properly distributed normal key. If (T1, T2, T3, T4) are equal to
(gτ1b

∗
1+τ2b

∗
5

2 , g
τ1b

∗
2+τ2b

∗
6

2 , g
τ1b

∗
3+τ2b

∗
7

2 , g
τ1b

∗
4+τ2b

∗
8

2 ), then this is a semi-functional
key, whose exponent vector includes

τ2(ρκb5
∗ − b6

∗ + 0 · b7
∗ + 0 · b8

∗) (6)

as its component in the span of b∗
5,b

∗
6,b

∗
7,b

∗
8. To respond to the remaining key

queries, Bκ,2 simply runs the normal key generation algorithm.
At some point, A sends Bκ,2 two pairs (m0, rcv

∗
0, σ

∗
0) and (m1, rcv

∗
1, σ

∗
1). Bκ,2

chooses a random bit β ∈ {0, 1} and picks r′ R← Zq and then encrypts mβ under
rcv∗

β and ekσ∗
β

as follows:

ekσ∗
β
:= gηb3

1 (U
σ∗

β

3 · U−1
4 )r

′
,

C := mβ ·
(
e(U1, g

b∗
1

2 )
)α

= mβ · (gα
T )

z,

C0 := ekσ∗
β

· U1 · U
rcv∗

β

2 = gηb3

1 (U
σ∗

β

3 · U−1
4 )r

′ · U1 · U
rcv∗

β

2 ,

where Bκ,2 has implicitly set r := r′μ1 and z := μ1. The “semi-functional part”
of the exponent vector here is:

μ2(b5 + rcv∗
βb6) + r′μ2(σ∗

βb7 − b8) (7)

We observe that if rcv∗
β = ρκ (which is not allowed) and the decryption

algorithm gives an attribute sndκ that can correctly decrypt the ciphertext, i.e.,
sndκ = σ∗

β , then vectors in Eqs. 6 and 7 would be orthogonal in the decryption
algorithm, resulting in a nominally semi-functional ciphertext and key pair. It
gives the ciphertext ct = (C,C0) to A.

We now argue that since rcv∗
β �= ρκ, in A’s view the vectors in Eqs. 6 and 7

are distributed as random vectors in the spans of d∗
5,d

∗
6,d

∗
7,d

∗
8 and d5,d6,d7,d8

respectively. To see this, we take the coefficients of vectors in Eqs. 6 and 7 in
terms of the bases b∗

5,b
∗
6,b

∗
7,b

∗
8 and b5,b6,b7,b8 respectively and translate

them into coefficients in terms of the bases d∗
5,d

∗
6,d

∗
7,d

∗
8 and d5,d6,d7,d8. Using

the change of basis matrix A, we obtain the new coefficients (in vector form) as:

τ2A�(ρκ,−1, 0, 0)�, μ2A−1(1, rcv∗
β , r′σ∗

β ,−r′)�.

Since the distribution of everything given to A except for the κ-th key and the
challenge ciphertext is independent of the random matrix A and rcv∗

β �= ρκ, we
can conclude that these coefficients are uniformly except with probability 4/q
(namely, the cases τ2 or μ2 defined in Subspace problem is zero, {si,j}i=5,...,8;j=1,2

or (r5, r6, r7, r8) defined in Eqs. 2 and 3 is the zero vector) from Lemma 2. Thus,
Bκ,2 has properly simulated Gameκ,2 in this case.
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If (T1, T2, T3, T4) are equal to (gτ1b
∗
1

2 , g
τ1b

∗
2

2 , g
τ1b

∗
3

2 , g
τ1b

∗
4

2 ), then the coefficients
of the vector in Eq. 7 are uniformly except with probability 2/q (namely, the
cases μ2 defined in Subspace problem is zero, (r5, r6, r7, r8) defined in Eq. 3 is
the zero vector) from Lemma 2. Thus, Bκ,2 has properly simulated Gameκ,1 in
this case.

In summary, Bκ,2 has properly simulated either Gameκ,1 or Gameκ,2 for A,
depending on the distribution of (T1, T2, T3, T4). It can therefore leverage A’s
advantage ε between these games to obtain an advantage ε − 6/q against the
Subspace assumption in G2, namely AdvDS2

Bκ,2
(λ) = ε − 6/q. �

Lemma 6. For any adversary A, AdvGameFinal
A (λ) ≤ Adv

Gameν,2
A (λ) + 1/q.

Proof. To prove this lemma, we show the joint distributions of
(
mpk,CT

(SF)
ekσ∗

β
,rcv∗

β
,
{
dk(SF)ρ�

}

�∈[ν]

)

in Gameν,2 and that of
(
mpk,CT

(R)
ekσR

,rcvR
,
{
dk(SF)ρ�

}

�∈[ν]

)

in GameFinal are equivalent for the adversary’s view, where CT
(R)
ekσR

,rcvR
is a semi-

functional encryption of a random message in GT and under two random iden-
tities in Zq.

For this purpose, we pick A := (ξi,j)
R← Z

4×4
q and define new dual orthonor-

mal bases F := (f1, . . . , f8), and F
∗ := (f∗

1 , . . . , f∗
8 ) as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
f4
f5
f6
f7
f8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

ξ1,1 ξ1,2 ξ1,3 ξ1,4 1 0 0 0
ξ2,1 ξ2,2 ξ2,3 ξ2,4 0 1 0 0
ξ3,1 ξ3,2 ξ3,3 ξ3,4 0 0 1 0
ξ4,1 ξ4,2 ξ4,3 ξ4,4 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

d3

d4

d5

d6

d7

d8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f∗
1

f∗
2

f∗
3

f∗
4

f∗
5

f∗
6

f∗
7

f∗
8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −ξ1,1 −ξ2,1 −ξ3,1 −ξ4,1

0 1 0 0 −ξ1,2 −ξ2,2 −ξ3,2 −ξ4,2

0 0 1 0 −ξ1,3 −ξ2,3 −ξ3,3 −ξ4,3

0 0 0 1 −ξ1,4 −ξ2,4 −ξ3,4 −ξ4,4

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∗
1

d∗
2

d∗
3

d∗
4

d∗
5

d∗
6

d∗
7

d∗
8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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It is easy to verify that F and F
∗ are also dual orthonormal, and are distributed

the same as D and D
∗.

Then the master public key, challenge ciphertext, and queried secret keys,
(mpk,CT

(SF)
ekσ∗

β
,rcv∗

β
, {dk(SF)ρ�

}�∈[ν]) in Gameν,2 are expressed over bases D and D
∗ as

mpk :=
{
G; gα

T , gη
T , gd1

1 , gd2
1

}
, ekσ∗

β
:= g

ηd3+r(σ∗
βd3−d4)

1 ,

CT
(SF)
ekσ∗

β
,rcv∗

β
:= {C = m · (gα

T )
z,

C0 = ekσ∗
β

· g
z(d1+rcv∗

βd2)+[r5d5+r6d6+r7d7+r8d8]

1

= g
ηd3+r(σ∗

βd3−d4)+z(d1+rcv∗
βd2)+[r5d5+r6d6+r7d7+r8d8]

1 },

dk(SF)ρ�
:= {k1 = g

αd1
∗+s1,�(ρ�d1

∗−d2
∗)+s�d3

∗+[s5,1,�d5
∗+s6,1,�d6

∗+s7,1,�d7
∗]

2 ,

k2 = g
s2,�(ρ�d1

∗−d2
∗)+s�d4

∗+[s5,2,�d5
∗+s6,2,�d6

∗+s8,2,�d8
∗]

2 ,

k3 = (gη
T )

s }�∈[ν].

Then we can express them over bases F and F
∗ as

mpk :=
{
G; gα

T , gη
T , gf11 , gf21

}
, ekσ∗

β
:= g

ηd3+r(σ∗
βd3−d4)

1 ,

CT
(R)
ekσR

,rcvR
:= {C = m · (gα

T )
z,

C0 = ekσ∗
β

· g
z(d1+rcv∗

βd2)+[r5d5+r6d6+r7d7+r8d8]

1

= g
ηf3+(r3f3+r4f4+r1f1+r2f2)+[r5f5+r6f6+r7f7+r8f8]
1 },

dk(SF)ρ�
:= {k1 = g

αf1
∗+s1,�(ρ�f1

∗−f2
∗)+s�f3

∗+[t5,1,�f5
∗+t6,1,�f6

∗+t7,1,�f7
∗+t8,1,�f8

∗]
2 ,

k2 = g
s2,�(ρ�f1

∗−f2
∗)+s�f4

∗+[t5,2,�f5
∗+t6,2,�f6

∗+t7,2,�f7
∗+t8,2,�f8

∗]
2 ,

k3 = (gη
T )

s }�∈[ν].

where

r1 := z − r5ξ1,1 − r6ξ2,1 − r7ξ3,1 − r8ξ4,1,

r2 := z · rcv∗
β − r5ξ1,2 − r6ξ2,2 − r7ξ3,2 − r8ξ4,2,

r3 := r · σ∗
β − r5ξ1,3 − r6ξ2,3 − r7ξ3,3 − r8ξ4,3,

r4 := −r − r5ξ1,4 − r6ξ2,4 − r7ξ3,4 − r8ξ4,4;⎧
⎪⎪⎨

⎪⎪⎩

t5,1,� := α · ξ1,1 + s1,�ρ� · ξ1,1 − s1,� · ξ1,2 + s� · ξ1,3 + s5,1,�

t6,1,� := α · ξ2,1 + s1,�ρ� · ξ2,1 − s1,� · ξ2,2 + s� · ξ2,3 + s6,1,�

t7,1,� := α · ξ3,1 + s1,�ρ� · ξ3,1 − s1,� · ξ3,2 + s� · ξ3,3 + s7,1,�

t8,1,� := α · ξ4,1 + s1,�ρ� · ξ4,1 − s1,� · ξ4,2 + s� · ξ4,3

⎫
⎪⎪⎬

⎪⎪⎭
�∈[ν]

,
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⎧
⎪⎪⎨

⎪⎪⎩

t5,2,� := s2,�ρ� · ξ1,1 − s2,� · ξ1,2 + s� · ξ1,4 + s5,2,�

t6,2,� := s2,�ρ� · ξ2,1 − s2,� · ξ2,2 + s� · ξ2,4 + s6,2,�

t7,2,� := s2,�ρ� · ξ3,1 − s2,� · ξ3,2 + s� · ξ3,4

t8,2,� := s2,�ρ� · ξ4,1 − s2,� · ξ4,2 + s� · ξ4,4 + s8,2,�

⎫
⎪⎪⎬

⎪⎪⎭
�∈[ν]

,

which are all uniformly distributed if (r5, r6, r7, r8) defined in Eq. 3 is a non-
zero vector, since

(
z, r, {ξi,j}i∈[4],j∈[4], {si,j,�}i=5,...,8;j=1,2;�∈[ν]

)
are all uniformly

picked from Zq.
In other words, the coefficients (z, z · rcv∗

β , rσ∗
β ,−r) of d1,d2,d3,d4 in

the C0 term of the challenge ciphertext is changed to random coefficients
(r1, r2, r3, r4) ∈ Z

4
q of f1, f2, f3, f4, thus the challenge ciphertext can be viewed as

a semi-functional encryption of a random message in GT and under two random
identities in Zq. Moreover, all coefficients {ti,j,�}i=5,...,8;j=1,2;�∈[ν] of f∗

5 , f∗
6 , f∗

7 , f∗
8

in the {dk(SF)ρ�
}�∈[ν] are all uniformly distributed since {si,j,�}i=5,...,8;j=1,2;�∈[ν] of

d∗
5,d

∗
6,d

∗
7,d

∗
8 are all independent random values. Thus

(
mpk,CT

(SF)
ekσ∗

β
,rcv∗

β
,
{
dk(SF)ρ�

}

�∈[ν]

)

expressed over bases F and F
∗ is properly distributed as

(
mpk,CT

(R)
ekσR

,rcvR
,
{
dk(SF)ρ�

}

�∈[ν]

)

in GameFinal.
In the adversary’s view, both (D,D∗) and (F,F∗) are consistent with the

same master public key. Therefore, the challenge ciphertext and queried secret
keys above can be expressed as keys and ciphertext in two ways, in Gameν,2 over
bases (D,D∗) and in GameFinal over bases (F,F∗). Thus, Gameν,2 and GameFinal
are statistically indistinguishable except with probability 1/q (namely, the case
(r5, r6, r7, r8) defined in Eq. 3 is the zero vector). �
Lemma 7. For any adversary A, AdvGameFinal

A (λ) = 0.

Proof. The value of β is independent from the adversary’s view in GameFinal.
Hence, AdvGameFinal

A (λ) = 0. �
In GameFinal, the challenge ciphertext is a semi-functional encryption of a

random message in GT and under two random identities in Zq, independent
of the two messages and the challenge identities provided by A. Thus, our IB-
ME scheme satisfies the privacy property defined in Def. 8 under the SXDH
assumption.

Theorem 2. The proposed IB-ME scheme satisfies authenticity under the
Symmetric External Diffie-Hellman assumption. More precisely, for any PPT
adversary A break the authenticity of our IB-ME scheme, its advantage
Adv

Gameib-auth
A (λ) is negligible.
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Proof. The authenticity property intuitively says that if an adversary does not
hold the corresponding encryption key ekσ produced by the challenger, it cannot
compute a valid ciphertext under the identity σ. Thus, it is corresponding to the
unforgeability of signature, and we can directly reduce the authenticity to the
security of the IBE system.

Assume that there is a PPT adversary A which breaks the authenticity prop-
erty with advantage ε, we then employ it to build another PPT algorithm B to
break a fully secure IBE system which consists of the following algorithms:

– IBE.Setup(1λ) : The same as the Setup algorithm, except that the master
public key is mpk := {G;α, gα

T , gη
T , gd1

1 , gd2
1 , g

d∗
1

2 , g
d∗

2
2 , g

d∗
3

2 , g
d∗

4
2 }, and the mas-

ter secret key is msk := {η, gd3
1 , gd4

1 }.
– IBE.KeyGen(msk, σ) : The same as the SKGen algorithm, and the secret key

is skσ := g
ηd3+r(σd3−d4)
1 .

– IBE.Enc(mpk, σ,m) : Similar to the RKGen algorithm, and the ciphertext is
ct := {C = m · (gη

T )
s,C0 = g

s(d∗
3+σd∗

4)
2 }.

– IBE.Dec(mpk, skσ, ct) : Compute the message as m := C/e(C0, skσ).

Oracles O1,O2 are implemented by SKGen(mpk,msk, ·) and RKGen(mpk,msk, ·)
and are simulated by B as follows:

1. SKGen(mpk,msk, ·): A launches a query for identity σ to O1,then B trans-
fers this identity σ to the IBE system for generating secret key. It uses the
IBE.KeyGen algorithm’s output to answer this query and returns the secret
key skσ to B. Finally, B uses this secret key skσ from IBE as ekσ to answer
A’s query for the encryption key.

2. RKGen(mpk,msk, ·): A launches a query for identity ρ to O2,then B transfers
this identity ρ to the IBE system. It uses mpk (in IBE) to generate the
corresponding keys, randomly picks s, s1, s2

R← Zq, computes

k1 = g
αd∗

1+s1(ρd
∗
1−d∗

2)+sd∗
3

2 , k2 = g
s2(ρd

∗
1−d∗

2)+sd∗
4

2 , k3 = (gη
T )

s,

and returns these keys to B. Finally, B uses dkρ = {k1, k2, k3} to answer A’s
query for the decryption key.

Suoopse that AdvGameib-auth
A (λ) = ε, where ε is a non-negligible value. Then we

can build an algorithm B whose AdvIBEB (λ) = ε as follow:
Upon A making a query of (σ, ρ), B generates the encryption key and decryp-

tion key to answer this query by simulating O1,O2, and sends (ekσ, dkρ) back to
A. Then A can find another σ∗ �= snd with ε probability such that σ∗ is also valid
for decryption of ct, and sends σ∗ to B. Note that the fact snd and σ∗ are both
valid for ctσ,rcv implies for a ciphertext associated with σ in the underlying IBE,
there would be two different secret keys associated with snd and σ∗ respectively.
The skσ∗ in IBE is identical to the ekσ∗ in IB-ME. Therefore, B can make secret
key query for snd, and challenge (m0, σ0) and (m1, σ

∗). Then B can distinguish
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the challenge ciphertext easily by using the secret key associated with σ∗ and
break this IBE system.

This means that by this simulation, we have successfully reduced the authen-
ticity of IB-ME to the security of this IBE system. And we have

Adv
Gameib-auth
A (λ) ≤ AdvIBEB (λ).

That is to say, if an adversary cannot successfully break the IBE system we
constructed, it cannot forge a valid ciphertext in our IB-ME scheme either.
We show that this IBE system is fully secure in the full version [11], i.e., the
advantage of B winning the IBE game defined in Def. 5 is negligible. Thus for
any PPT adversary A, its advantage of breaking the authenticity property of
our IB-ME scheme is negligible. �

Note that we have challenged m and σ at the same time, but in fact, we do
not need to challenge identity σ at all. That is to say the security of a trivial
IBE is sufficient and anonymity is not required. Because another σ∗ �= snd can
be obtained from A during the proof, and B sends identity snd and (m0,m1) to
the challenger, the same result can be obtained.

5 Conclusion

In this paper, we propose the first identity-based matchmaking encryption
scheme under the standard assumptions in the standard model. We construct
our IB-ME scheme by a variant of two-level anonymous IBE, which is based
on Okamoto and Takashima’s dual pairing vector spaces, and its security reduc-
tions rely on Waters’s dual system encryption under the SXDH assumption. Our
directly constructed scheme does not rely on other cryptographic tools such as
non-interactive zero-knowledge proof systems. Meanwhile, we leave several ques-
tions. First, although all parameters in our scheme have constant numbers of
group elements, the size should be shorter and the number of pairing for decryp-
tion should be reduced to improve efficiency. Second, construct IB-ME schemes
that satisfy the enhanced privacy [16] under standard assumptions. Third, prac-
tical extensions such as revocability and traceability are further works.
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Abstract. Anonymity of public key encryption (PKE) requires that, in
a multi-user scenario, the PKE ciphertexts do not leak information about
which public keys are used to generate them. Corruptions are common
threats in the multi-user scenario but anonymity of PKE under corrup-
tions is less studied in the literature. In TCC 2020, Benhamouda et al.
first provide a formal characterization for anonymity of PKE under a
specific type of corruption. However, no known PKE scheme is proved
to meet their characterization.

To the best of our knowledge, all the PKE application scenarios which
require anonymity also require confidentiality. However, in the work by
Benhamouda et al., different types of corruptions for anonymity and
confidentiality are considered, which can cause security pitfalls. What’s
worse, we are not aware of any PKE scheme which can provide both
anonymity and confidentiality under the same types of corruptions.

In this work, we introduce a new security notion for PKE called
ANON-RSOk&C security, capturing anonymity under corruptions. We
also introduce SIM-RSOk&C security which captures confidentiality
under the same types of corruptions. We provide a generic framework
of constructing PKE scheme which can achieve the above two security
goals simultaneously based on a new primitive called key and message
non-committing encryption (KM-NCE). Then we give a general construc-
tion of KM-NCE utilizing a variant of hash proof system (HPS) called
Key-Openable HPS. We also provide Key-Openable HPS instantiations
based on the matrix decisional Diffie-Hellman assumption. Therefore, we
can obtain various concrete PKE instantiations achieving the two secu-
rity goals in the standard model with compact ciphertexts. Furthermore,
for some PKE instantiation, its security reduction is tight.
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1 Introduction

Anonymity of PKE Under Corruptions. The (single-user) IND-CCA secu-
rity has been the de facto standard security for public-key encryption (PKE)
schemes and is the target security of NIST PKE standardization for the next
decades. It provides message confidentiality under CCA attacks. Meanwhile,
anonymity is another security requirement for PKE and is not provided by the
IND-CCA security. Roughly speaking, anonymity of PKE requires that, in a
multi-user scenario, the PKE ciphertexts do not leak information about which
public keys are used to generate them. The IK-CPA/CCA security given by
Bellare et al. [2] is the first formalization of anonymity of PKE.

In such multi-user scenarios, multiple key pairs are generated, potentially
correlated plaintexts are encrypted and sent to many receivers. Both the secret
keys and the encrypted messages could be leaked due to accidents and/or adver-
sarial attacks, which affects both the confidentiality and the anonymity of the
PKE scheme. Researchers capture such threats by formalizing different types
of corruptions in different multi-user scenarios. Many efforts have been made
to establish confidentiality under corruptions and the study to selective-opening
attacks are such examples.

However, anonymity of PKE under corruptions is much less studied. To the
best of our knowledge, it is not considered until recently by Benhamouda et al. [5]
in TCC 2020. They propose anonymity against selective-opening for PKE which
is the first (and, to the best of our knowledge, also the only) formal definition of
anonymity for PKE under corruptions. We will call this security as ANON-COR
(anonymity under corruptions) security in this work. The ANON-COR security
defined in [5] is as follows. Given n public keys of n users, an adversary submits
t messages of its choice, and then receives t challenge ciphertexts, which are
encryptions of the t messages under t distinct random public keys out of the n
user public keys. Next, the adversary can adaptively corrupt Q < n users one
at a time, obtaining their secret keys. (We will call such kind of corruption as
post-challenge user corruption.) ANON-COR security requires that no feasible
adversary can corrupt more than Q

n + ε (for some constant ε > 0) fraction of the
ciphertext-encrypting keys with non-negligible probability.

Unfortunately, no known PKE scheme is proved to have ANON-COR secu-
rity. Actually, Benhamouda et al. [5] only prove that their suggested PKE scheme
achieves a simplified version of ANON-COR security (where the adversary is
restricted to corrupt some users at once) and conjecture that it also achieves
the ANON-COR security. They leave constructing an ANON-COR secure PKE
scheme as an interesting problem.

Furthermore, we think the ANON-COR security is restricted in the following
sense.
– Non-adaptive. The ANON-COR security is non-adaptive in the sense that

the adversary is not allowed to obtain any user secret key before seeing the
challenge ciphertexts. This restricts its application scenario since, in the real-
world, some users may be fully controlled by the adversary from the very
beginning and the adversary may corrupt other users at any time.
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– Single-challenge. The ANON-COR security considers a single-challenge set-
ting where each public key is used only once to encrypt a single challenge
message. This restriction limits its application scenario since, in practice,
each public key is often used multiple times (for example, the application
scenario in [5]1).

Thus, we raise the following research question.

Q1: For PKE schemes, can we provide an achievable security formalization
which provides anonymity under more adaptive corruptions in the multi-
challenge setting?

Anonymity and Confidentiality Under the Same Types of Corrup-
tions. We are not aware of any application scenario which only requires anonymity
but not confidentiality of PKE schemes2. To the best of our knowledge, all the PKE
application scenarios in the real world which require anonymity also require con-
fidentiality. As an example, Benhamouda et al. [5] consider a blockchain applica-
tion scenario which requires both of the two security guarantees. However, Ben-
hamouda et al. capture the two security guarantees under different types of cor-
ruptions. More precisely, as shown in [5, Sect. 2.6], the scheme E1 requires both
anonymity under post-challenge user corruption (ANON-COR security) and con-
fidentiality under the receiver selective opening (RSO) corruption.

Although the ANON-COR security is called “anonymous against selective-
opening” in [5], we want to note that the post-challenge user corruption consid-
ered in ANON-COR security is different from the RSO corruption considered
for confidentiality. The RSO corruption [3,14] considers an adversary, after see-
ing many challenge ciphertexts for different receivers (together with their public
keys), is able to open a subset of the challenge ciphertexts (via corrupting a sub-
set of the receivers to obtain their secret keys and received messages). However,
the ANON-COR adversary is not able to specify some challenge ciphertexts and
open them.

When the two security guarantees (anonymity and confidentiality) are both
required, it is more desirable to capture them under the same types of cor-
ruptions. Taking [5] as an example, where anonymity and confidentiality are
both required for the scheme E1 in [5], it does not make sense for the adversary
to attack anonymity only using the post-challenge user corruption and attack

1 In the Committee-Selection phase of the evolving-committee proactive secret shar-
ing scheme considered in [5], some users are selected as committee members. Each
committee member will encrypt one fresh secret key using its long term public key
(ct ← E1.Encpk(esk)). Since the same user may be selected as a committee member
multiple times, the user’s public key may be used multiple times to encrypt multiple
messages.

2 Actually, it does not make sense to only consider the anonymity of some PKE with-
out considering its confidentiality. If confidentiality can be sacrificed, one can trivially
achieve anonymity by assigning the identity map as the encryption and decryption
algorithm, so that the ciphertext equals the message and is independent of any public
key.
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confidentiality only using the RSO corruption. Actually, there is no anonymity
guarantee under the RSO corruption and no confidentiality guarantee under the
post-challenge user corruption. This implies that, when the adversary is able to
use both post-challenge user corruption and RSO corruption, it is possible that
neither anonymity nor confidentiality holds for the PKE scheme. Consequently,
when the two security guarantees are required under corruptions, they should
be captured under the same types of corruptions.

Unfortunately, we are not aware of any PKE schemes which can provide the
two security guarantees under the same types of corruptions. Thus, we raise our
second research question.

Q2: Can we construct a PKE scheme which provides both anonymity and
confidentiality under the same types of corruptions?

We answer the above two research questions affirmatively in this work.
Our Contributions. In this work:

– We formalize the notion of ANONymity under Receiver Selective Opening
attacks (in the k-challenge setting), adaptive user Corruptions and Chosen
Plaintext / Ciphertext Attacks, which we call ANON-RSOk&C-CPA/CCA
security for short. To capture confidentiality under the same types of corrup-
tions, we also formalize the notion of SIM-RSOk&C-CPA/CCA security.

– We provide a generic framework of constructing PKE schemes, achieving both
ANON-RSOk&C-CCA security and SIM-RSOk&C-CCA security (we denote
them as AC-RSOk&C-CCA security for simplicity), based on a new primitive
called key and message non-committing encryption (KM-NCE).

– We give a general construction of KM-NCE utilizing a variant of hash proof
system (HPS) [9] which we call Key-Openable HPS.

– Finally, we provide Key-Openable HPS instantiations from the matrix deci-
sional Diffie-Hellman (MDDH) assumption [10].

When plugging the HPS instantiations into the general construction frame-
work, we can obtain an AC-RSOk&C-CCA secure PKE scheme in the standard
model which provides anonymity and confidentiality simultaneously under both
adaptive user corruptions and RSO corruptions. Moreover, our scheme enjoys
the properties that 1) the ciphertext is compact (i.e., ciphertext overhead3 is the
size of a constant number of group elements [15], or more generally, is indepen-
dent of the message length [12]), and 2) the security reduction is tight4. To the
best of our knowledge, our scheme is the first PKE scheme achieving anonymity
under adaptive corruptions (which is stronger than the ANON-COR security),
thus solving the problem raised by Benhamouda et al. [5] in TCC 2020. Also, our
scheme is the first PKE scheme achieving RSOk -CCA security in the standard
model with compact ciphertexts and tight security.
3 Ciphertext overhead means the ciphertext bitlength minus plaintext bitlength [15].
4 Tight reduction means that the security loss of the reduction is independent of the

number of users, the number of challenges and the number of queries raised by the
adversary.
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AC-RSOk& C security derived from KM-NCE. We take the approach of non-
committing encryption [7,8,12] to achieve AC-RSOk&C security. We introduce
a new primitive called key and message non-committing encryption (KM-NCE),
which is some kind of “message & public key-non-committing” encryption. Infor-
mally, KM-NCE allows one to generate fake ciphertexts via a fake encryption
algorithm, and enables one to open k fake ciphertexts to any k messages under
any public key (by showing an appropriate secret key) via an opening algorithm.

We formalize two security properties for KM-NCE. One is a single-user
and k -challenge security notion called KMNCk -CPA/CCA security (c.f., Def-
inition 4), and the other is robustness (c.f., Definition 5). Intuitively, KMNCk -
CPA/CCA security requires that the real secret key together with k real cipher-
texts (encrypting k messages chosen by the adversary) should be computation-
ally indistinguishable from the opened secret key and k fake ciphertexts.

KM-NCE serves as our core technical tool, and we show that KMNCk -
CPA/CCA secure and robust KM-NCE implies AC-RSOk&C-CPA/CCA secure
PKE. Due to the relative simplicity of KMNCk -CPA/CCA security (single-user,
no simulator) in comparison to AC-RSOk&C-CPA/CCA security (multi-user,
simulation-based), it is easier and conceptually simpler to construct KM-NCE
and prove its security first than constructing AC-RSOk&C-CPA/CCA secure
PKE directly.
Generic Construction of KM-NCE. To construct KM-NCE, we propose a new
building block called Key-Openable HPS, by equipping Hash Proof System (HPS)
[9] with a hashing key opening algorithm HOpenk . Informally, given k instances,
k hash values and the random coins used to sample them, a projection key (public
key of HPS), and a corresponding hashing key (secret key of HPS) as the input,
HOpenk can output another hashing key such that 1) the outputted hashing key
corresponds to the same projection key and 2) the given k hash values are exactly
hash values of the k instances under the outputted hashing key. We also define
some new properties for the key-openable HPS, including openabilityk (c.f., Defi-
nition 9) and universalityk+1 (c.f., Definition 10). By using key-openable HPS as
an essential building block, we present a generic construction of KMNCk -CCA
secure KM-NCE.
Instantiations. For concrete instantiations, we provide key-openable HPS instan-
tiations based on the MDDH assumption. Due to the good versatility of the
MDDH assumption, we can obtain various concrete instantiations of KM-NCE.
Plugging the concrete instantiations into our general framework, we obtain AC-
RSOk&C-CCA secure PKE schemes with compact ciphertexts in the standard
model. For some concrete PKE instantiation, we can even tightly prove its AC-
RSOk&C-CCA security.
Related Works. The anonymity of PKE is first formalized by Bellare et al.
[2] and they call it “key-privacy”. Many follow up works continue research in
this direction, such as [1,13,21]. Anonymity for PKE under corruptions is firstly
considered by Benhamouda et al. [5].

The IND-CCA security in the multi-user setting with adaptive user corrup-
tions except challenge is given in [4,20]. Lee et al. [20] propose the first PKE



428 Z. Huang et al.

scheme in the random oracle model with tight IND-CCA security reduction in
the multi-user setting with adaptive user corruptions except challenge.

In the research area of receiver selective opening (RSO) corruption for PKE,
Bellare et al. [3] point out that IND-CPA security does not imply SIM-RSO-CPA
security. Hazay et al. [14] show that RSO security can be achieved from variants
of non-committing encryption. Subsequent works [12,16,18,19] consider CCA
security in the RSO setting and provide PKE schemes with RSO-CCA security.
Yang et al. [23] consider RSO-CCA security in the multi-challenge setting. SIM-
RSO-CCA secure PKE schemes with compact ciphertexts are proposed by Hara
et al. [12] and Huang et al. [16].

2 Preliminaries

We assume that the security parameter λ is an (implicit) input to all algorithms.
For any positive integer n, we use [n] to denote the set {1, · · · , n}. For a finite set
S, we use |S| to denote the size of S. For random variables X and Y over a finite
set S, their statistical distance is Δ(X ,Y) := 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]|.

We recall the formal definitions of PKE, collision-resistant hash functions
and universal hash functions together with the leftover hash lemma in the full
version [17].

3 Anonymity and Confidentiality Under Corruptions

In this section, we firstly introduce the notion of Anonymity under Receiver
Selective Opening attacks (in the multi-challenge setting), adaptive user Corrup-
tions and Chosen Plaintext/Ciphertext Attacks, which we call ANON-RSOk&C-
CPA/CCA security (k ∈ N). Then, we introduce the notion of SIM-RSOk&C-
CPA/CCA security (k ∈ N), to capture confidentiality under the same types of
corruptions. Finally, we also introduce the notion of AC-RSOk&C-CPA/CCA
security, to capture ANON-RSOk&C-CPA/CCA security and SIM-RSOk&C-
CPA/CCA security in one notion for convenience.

3.1 Anonymity Under Corruptions

ANON-RSOk& C Security. We formalize a simulation-based anonymity definition

under receiver selective opening attacks and adaptive user corruptions, which we call

ANON-RSOk&C security (k ∈ N).
Informally speaking, assume that there are n users, and that a PPT adversary

is allowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys)
at any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge
ciphertext vector of length t < n. ANON-RSOk&C security requires that what-
ever the adversary (seeing the challenge ciphertext vector) deduces about which
public keys are used to generate the challenge ciphertext vector, can also be
deduced without seeing any challenge ciphertexts.

Formal definition is as follows.
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Fig. 1. Experiments for defining ANON-RSOk&C-CPA/CCA security of scheme PKE.

Definition 1. (ANON-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is ANON-RSOk& C-ATK secure (where ATK ∈ {CPA,CCA} and k ∈ N

is a constant), if for any polynomially bounded n, t (where 0 < t ≤ n), and any PPT
adversary A = (A1, A2), there is a PPT simulator S = (S1, S2), such that for any PPT
distinguisher D, the advantage Advanon-rso&c-atk

PKE,A,S,D,n,t,k (λ) :=

∣
∣
∣Pr[D(Expanon-rso&c-atk-real

PKE,A,n,t,k (λ)) = 1] − Pr[D(Expanon-rso&c-atk-ideal
PKE,S,n,t,k (λ)) = 1]

∣
∣
∣

is negligible, where Expanon-rso&c-atk-real
PKE,A,n,t,k (λ) and Expanon-rso&c-atk-ideal

PKE,S,n,t,k (λ) are defined
in Fig. 1, and atk ∈ {cpa, cca}. In both of the experiments, we require that for all Distpk
output by A1 and S1, it holds that (1) Distpk is efficiently samplable, and (2) for all
(ij)j∈[t] ←$ Distpk, ij1 �= ij2 for any distinct j1, j2 ∈ [t].

Remark 1. Our security notion ANON-RSOk&C-CPA/CCA grants the adver-
sary multiple, adaptive opening queries (i.e., Oop), like [6].

Remark 2. In Expanon-rso&c-atk-real
PKE,A,n,t,k (λ) where atk ∈ {cpa, cca}, there are totally

n public keys (pki)i∈[n], and only t of them (i.e., (pkij
)j∈[t]) are used to generate

the challenge ciphertexts (c∗
j,γ)j∈[t],γ∈[k ]. Note that (i) by querying the opening

oracle Oop on j ∈ [t] directly, A can obtain skij
corresponding to some specified

(c∗
j,γ)γ∈[k ]; (ii) by querying the corruption oracle Ocor,1 or Ocor,2, A can obtain
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some corresponding secret keys of the n public keys, but cannot ask for the secret
key corresponding to some specified c∗

j,γ since it may not know the value of ij .

ANON-RSOk&C-CPA ⇒ ANON-COR. We show that ANON-RSOk&C-CPA
security implies the ANON-COR security [5].

Informally, the experiment for defining ANON-COR security is as follows. At
the beginning, the challenger generates n public keys (pki)i∈[n], and sends them
to an adversary A. After receiving t (t < n) messages from A, the challenger
randomly samples t distinct public keys from (pki)i∈[n], uses them to encrypt
the t messages respectively, and sends the t ciphertexts back to A. Then, A
can access to a corruption oracle adaptively, by querying it on any i ∈ [n]
and receiving ski as a response. Denote by Q the total number of corruption
queries made by A. ANON-COR security requires that for any ε > 0 and any
λ < t,Q < n(1 − ε), no PPT adversary A can compromise more than Q

n + ε
fraction of the ciphertext-encrypting keys with non-negligible probability. Formal
definition of ANON-COR security is given in the full version [17].

Note that any ANON-COR adversary can be seen as an ANON-RSOk&C-
CPA adversary A which (i) ignores (c∗

j,γ)2≤γ≤k for all j ∈ [t] if k > 1, (ii) does
not query Ocor,1 or Oop, (iii) queries Ocor,2 Q times, and (iv) the output dis-
tribution Distpk always samples t distinct indexes i1, · · · , it uniformly random
from [n]. The fraction of the ciphertext-encrypting keys that ANON-COR adver-
sary compromises over (pkij

)j∈[t] can be computed directly from experiment
Expanon-rso&c-cpa-real

PKE,A,n,t,k (λ). ANON-RSOk&C-CPA security guarantees that there
is a simulator S such that Expanon-rso&c-cpa-ideal

PKE,S,n,t,k (λ) and Expanon-rso&c-cpa-real
PKE,A,n,t,k (λ)

are indistinguishable. Note that in Expanon-rso&c-cpa-ideal
PKE,S,n,t,k (λ), S has no informa-

tion about (ij)j∈[t] except for the responses obtained via querying O(s)
cor,1,O

(s)
cor,2.

Hence, the fraction of the “ciphertext-encrypting” indexes that S compro-
mises over (ij)j∈[t] is nearly Q

n . Therefore, the indistinguishability between
Expanon-rso&c-cpa-ideal

PKE,S,n,t,k (λ) and Expanon-rso&c-cpa-real
PKE,A,n,t,k (λ) implies the advantage of

the ANON-COR adversary is negligible.

3.2 Confidentiality Under Corruptions

SIM-RSOk& C Security. In order to capture confidentiality under the same corrup-

tions which are considered in ANON-RSOk&C security, we introduce a new security
notion, called SIM-RSOk&C security. We stress that SIM-RSOk&C security is
similar to SIM-RSOk security [23], except that the SIM-RSOk&C adversary is
allowed to corrupt the receivers at any time (i.e., even before seeing the challenge
ciphertexts).

Informally, assume that there are n users, and that a PPT adversary is
allowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys)
at any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge
ciphertext vector of length n. SIM-RSOk&C security requires that whatever the
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Fig. 2. Experiments for defining SIM-RSOk&C-CPA/CCA security of scheme PKE.

adversary (seeing the challenge ciphertext vector) deduces about the challenge
messages, can also be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 2. (SIM-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,Gen,
Enc,Dec) is SIM-RSOk& C-ATK secure (where ATK ∈ {CPA,CCA} and k ∈ N is
a constant), if for any polynomially bounded n > 0, and any PPT adversary A =
(A1, A2), there is a PPT simulator S = (S1, S2), such that for any PPT distinguisher
D, the advantage Advsim-rso&c−atk

PKE,A,S,D,n,k (λ) :=

∣
∣
∣Pr[D(Expsim-rso&c-atk-real

PKE,A,n,k (λ)) = 1] − Pr[D(Expsim-rso&c-atk-ideal
PKE,S,n,k (λ)) = 1]

∣
∣
∣

is negligible, where Expsim-rso&c-atk-real
PKE,A,n,k (λ) and Expsim-rso&c-atk-ideal

PKE,S,n,k (λ) are defined in
Fig. 2, and atk ∈ {cpa, cca}. In both of the experiments, we require that for all Distm
output by A1 and S1, Distm is efficiently samplable.
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SIM-RSOk&C-ATK ⇒ SIM-RSOk -ATK. We claim that SIM-RSOk&C-ATK
security (ATK ∈ {CPA,CCA}) implies simulation-based RSO security in the
multi-challenge setting (i.e., SIM-RSOk -ATK security) [23].

Generally, SIM-RSOk -ATK security requires that for any PPT adversary A
in the real experiment of SIM-RSOk -ATK, there is a simulator S, such that
the final output of the ideal experiment and that of the real experiment are
indistinguishable. Standard SIM-RSO-ATK security [12,14,16] is a special case
of SIM-RSOk -ATK security (i.e., k = 1). For completeness, formal definition of
SIM-RSOk -ATK security is given in the full version [17].

The reason that SIM-RSOk&C-ATK security implies SIM-RSOk -ATK secu-
rity is as follows. Note that any SIM-RSOk -ATK adversary A can be seen as
a SIM-RSOk&C-ATK adversary which does not query the corruption oracles
Ocor,1,Ocor,2. SIM-RSOk&C-ATK security guarantees the existence of a simu-
lator S ′, such that the final output of the ideal experiment and that of the real
experiment are indistinguishable. Hence, for the final output of the ideal exper-
iment ((m∗

i,γ)i∈[n],γ∈[k ],Distm, Iop, Icor, out), it also holds that Icor = ∅ (i.e., S ′

has never queried O(s)
cor,1,O

(s)
cor,2). Hence, a SIM-RSOk -ATK simulator S can be

constructed from S ′.

3.3 Combining Anonymity and Confidentiality Under Corruptions

We introduce the notion of AC-RSOk&C-CPA/CCA security, to capture ANON-
RSOk&C-CPA/CCA security and SIM-RSOk&C-CPA/CCA security in one
notion for convenience.

Informally, assume that there are n users, and that a PPT adversary is
allowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys)
at any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge
ciphertext vector of length t < n. AC-RSOk&C security requires that whatever
the adversary (seeing the challenge ciphertext vector) deduces about which pub-
lic keys or messages are used to generate the challenge ciphertext vector, can
also be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 3. (AC-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,Gen,
Enc,Dec) is AC-RSOk& C-ATK secure (where ATK ∈ {CPA,CCA} and k ∈ N is
a constant), if for any polynomially bounded n, t (where 0 < t ≤ n), and any PPT
adversary A = (A1, A2), there is a PPT simulator S = (S1, S2), such that for any
PPT distinguisher D, the advantage Advac-rso&c−atk

PKE,A,S,D,n,t,k (λ) :=

∣
∣
∣Pr[D(Expac-rso&c-atk-real

PKE,A,n,t,k (λ)) = 1] − Pr[D(Expac-rso&c-atk-ideal
PKE,S,n,t,k (λ)) = 1]

∣
∣
∣

is negligible, where Expac-rso&c-atk-real
PKE,A,n,t,k (λ) and Expac-rso&c-atk-ideal

PKE,S,n,t,k (λ) are defined in
Fig. 3, and atk ∈ {cpa, cca}. In both of the experiments, we require that for all Dist
output by A1 and S1, it holds that (1) Dist is efficiently samplable, and (2) for all
(ij , (m

∗
j,γ)γ∈[k ])j∈[t] ←$ Dist, ij1 �= ij2 for any distinct j1, j2 ∈ [t].
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Fig. 3. Experiments for defining AC-RSOk&C-CPA/CCA security of scheme PKE.

Note that, AC-RSOk&C security can be easily simplified to guarantee only
ANON-RSOk&C security (when the adversary chooses a distribution Dist that
has no entropy in the message part) and can also be simplified to guarantee only
SIM-RSOk&C security (by letting n = t).

4 AC-RSOk&C Secure PKE from KM-NCE

In this section, we introduce a new primitive called key and message non-
committing encryption (KM-NCE), and two security requirements, KMNCk -
CPA/CCA and robustness, for it. Then, we show that KMNCk -CPA/CCA secure
and robust KM-NCE implies AC-RSOk&C-CPA/CCA secure PKE.

4.1 Key and Message Non-committing Encryption

Now we provide the definition of key and message non-committing encryption
(KM-NCE) and security properties for this primitive. Informally, a KM-NCE
scheme is a PKE scheme with the property that there is a way to generate fake
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ciphertexts without any public key, such that any k fake ciphertexts can be
later opened to any k messages (by showing an appropriate secret key). This
primitive is an extension of receiver non-committing encryption (RNCE) in [8,
12,14]. Generally speaking, the main differences between KM-NCE and RNCE
are that (i) KM-NCE is defined in the k-challenge setting, for some constant k,
and (ii) the algorithm, generating fake ciphertexts, of KM-NCE does not take
any public key as input, while that of RNCE needs the public key.

For k ∈ N, a key and message non-committing encryption scheme KM-NCE in
the k-challenge setting, with a message space M, consists of six PPT algorithms
(Setup,Gen,Enc,Dec,Fake,Openk ).

– Setup: The setup algorithm, given a security parameter 1λ, outputs a public
parameter pp.

– Gen: The key generation algorithm, given pp, outputs a public key pk, a secret
key sk and a trapdoor key tk.

– Enc: The encryption algorithm, given pp, pk and a message m ∈ M, outputs
a ciphertext c.

– Dec: The (deterministic) decryption algorithm, given pp, sk and c, outputs
m ∈ M ∪ {⊥}.

– Fake: The fake encryption algorithm, given pp, outputs a fake ciphertext c′

and a trapdoor td.
– Openk : The opening algorithm, given (pp, tk, pk, sk), k fake ciphertexts

(c′
γ)γ∈[k ], k trapdoors (tdγ)γ∈[k ] correponding to (c′

γ)γ∈[k ], and k messages
(mγ)γ∈[k ], outputs a secret key sk′.

For KM-NCE, standard correctness is required. Formally, we require that
for any pp generated by Setup, any (pk, sk, tk) generated by Gen(pp) and any
m ∈ M, it holds that Dec(pp, sk,Enc(pp, pk,m)) = m.

Definition 4. (KMNCk -CPA/CCA). For k ∈ N, a KM-NCE scheme
KM − NCE = (Setup,Gen,Enc,Dec,Fake,Openk ), in the k-challenge setting, is
KMNCk -ATK secure (where ATK ∈ {CPA,CCA}), if for any PPT adversary
A = (A1,A2,A3), the advantage Advkmnc−atk

KM−NCE,A,k (λ) :=
∣
∣
∣Pr[Expkmnc-atk-real

KM−NCE,A,k (λ) = 1] − Pr[Expkmnc-atk-sim
KM−NCE,A,k (λ) = 1]

∣
∣
∣

is negligible, where experiment Expkmnc-atk-real
KM−NCE,A,k (λ) and Expkmnc-atk-sim

KM−NCE,A,k (λ) are
defined in Fig. 4, and atk ∈ {cpa, cca}.

We also define a statistical robustness for KM-NCE.

Definition 5 (Robustness). A KM-NCE scheme KM-NCE = (Setup,Gen,
Enc,Dec,Fake,Openk ), in the k-challenge setting (k ∈ N), is robust, if the prob-
ability εrobKM-NCE(λ) :=

Pr
[
pp ←$ Setup(1λ), (pk, sk, tk) ←$ Gen(pp),

(c, td) ←$ Fake(pp)
: Dec(pp, sk, c) �= ⊥

]

is negligible.
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Fig. 4. Experiments for defining KMNCk -CPA/CCA security of scheme KM-NCE.

4.2 Generic Construction of AC-RSOk&C Secure PKE
from KM-NCE

In this section, we show that for k ∈ N, a KMNCk -CPA (resp. KMNCk -CCA)
secure and robust KM-NCE scheme implies an AC-RSOk&C-CPA (resp. AC-
RSOk&C-CCA) secure PKE scheme. Specifically, we have the following theorem.

Theorem 1. If a KM-NCE scheme KM-NCE = (Setup,Gen,Enc,Dec,Fake,
Openk ), in the k-challenge setting (k ∈ N), is KMNCk -CPA (resp. KMNCk -
CCA) secure and robust, then PKE = (Setup,Gen,Enc,Dec) is an AC-RSOk&C-
CPA (resp. AC-RSOk&C-CCA) secure PKE scheme.5

Proof of Theorem 1. We just prove that a KMNCk -CCA secure and robust
KM-NCE scheme implies an AC-RSOk&C-CCA secure PKE scheme. The proof
for the case of CPA is analogous and much easier, so we omit the details here.

Let n and t be arbitrary polynomials satisfying 0 < t ≤ n. Let A = (A1,A2)
be any PPT adversary attacking PKE = (Setup,Gen,Enc,Dec) in the sense of
AC-RSOk&C-CCA, and D be any PPT distinguisher. Without loss of generality,
we assume that A never repeats an oracle query. Specifically, we assume that if
A1 has queried oracle Ocor,1 on some i, then A2 will not query Ocor,2 on i.

We proceed in a series of games.
Game G−1: This is exactly the Expac-rso&c-cca-real

PKE,A,n,t,k (λ) experiment, i.e., G−1 =
Expac-rso&c-cca-real

PKE,A,n,t,k (λ).

5 For PKE = (Setup,Gen,Enc,Dec), we require that (i) the public parameter pp gen-
erated by Setup can be used for multiple users, and (ii) Gen does not output tk (i.e.,
the key generation algorithm of PKE firstly invokes the key generation algorithm of
KM-NCE to generate (pk, sk, tk), and then outputs (pk, sk), ignoring tk).
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More specifically, in G−1, the challenger firstly generates pp ← $ Setup(1λ)
and ((pki, ski, tki) ←$ Gen(pp))i∈[n], and sends (pp, (pki)i∈[n]) to A1. The chal-
lenger initiates Iop := ∅ and Icor := ∅, and keeps track of all A’s issued
queries to Ocor,1,Ocor,2,Oop by maintaining these two sets. Then, the chal-
lenger answers A1’s Ocor,1,Odec oracle queries with (ski)i∈[n]. After receiving
Dist, the challenger samples (ij , (m∗

j,γ)γ∈[k ])j∈[t] ← Dist, computes (c∗
j,γ ←

$ Enc(pp, pkij
,m∗

j,γ))j∈[t],γ∈[k ], sets that C := {(ij , c∗
j,γ) | j ∈ [t], γ ∈ [k ]},

and sends (c∗
j,γ)j∈[t],γ∈[k ] to A2. Then, the challenger continues to answer A2’s

Ocor,2,Oop,Odec oracle queries with (ski)i∈[n]. Finally, when A2 returns out, the
challenger returns ((ij , (m∗

j,γ)γ∈[k ])j∈[t],Dist, Iop, Icor, out) as its final output.
Game G0: Game G0 is the same as G−1, except that two sets Iop-sk and Icor-sk

are introduced in G0. Informally, Iop-sk is introduced to ensure that if A2 submits
a query Ocor,2(i) such that the secret key corresponding to pki has already been
given to A via oracle Oop, then the challenger will directly return the secret key
previously given to A2; Icor-sk is introduced to ensure that if A2 submits a query
Oop(j) such that the secret key corresponding to pkij

has already been exposed
to A in a previous corruption query, then the challenger will directly return the
secret key previously given to A2.

Specifically, the differences between G0 and G−1 are as follows. The challenger
additionally initiates Iop-sk := ∅ and Icor-sk := ∅ at the beginning, and answers
A’s Ocor,1,Ocor,2,Oop oracle queries as below:

– on a query Ocor,1(i) where i ∈ [n], the challenger sets Icor := Icor ∪ {i} and
Icor-sk := Icor-sk ∪ {(i, ski)}, and returns ski to A1;

– on a query Ocor,2(i) where i ∈ [n], the challenger firstly sets Icor := Icor∪{i}.
If there is some j′ ∈ Iop such that ij′ = i, then there must be some tuple
(j′, i, ski) ∈ Iop-sk, and in this case the challenger sets Icor-sk := Icor-sk ∪
{(i, ski)}, and returns ski to A2; otherwise, it sets Icor-sk := Icor-sk∪{(i, ski)},
and returns ski to A2;

– on a query Oop(j) where j ∈ [t], the challenger firstly sets Iop := Iop ∪ {j}.
If ij ∈ Icor, there must be some tuple (ij , skij

) ∈ Icor-sk, and in this case
the challenger sets Iop-sk := Iop-sk ∪ {(j, ij , skij

)}, and returns skij
to A2;

otherwise, it sets Iop-sk := Iop-sk ∪ {(j, ij , skij
)}, and returns skij

to A2.

Since all the secret keys (ski)i∈[n] are generated at the beginning and will
not be updated during the proceedings of G−1, the modifications introduced in
game G0 do not change A’s view. Hence, Pr[D(G0) = 1] = Pr[D(G−1) = 1].

Game G
̂i (̂i ∈ [n]): For all î ∈ [n], G

̂i is the same as G
̂i−1, except that

(1) when generating the challenge ciphertexts, if there is some j′ ∈ [t] such that
(ij′ /∈ Icor) ∧ (ij′ = î), the challenger generates (c∗

j′,γ)γ∈[k ] with algorithm
Fake instead of Enc, i.e., ((c∗

j′,γ , td∗
j′,γ) ←$ Fake(pp))γ∈[k ];

(2) for A2’s each Ocor,2 oracle query i, if there is some j′ ∈ [t] sat-
isfying (j′ /∈ Iop) ∧ (ij′ = î), the challenger returns sk′

ij′ ←
$ Openk (pp, tkij′ , pkij′ , skij′ , (c∗

j′,γ , td∗
j′,γ ,m∗

j′,γ)γ∈[k ]) to A2; otherwise, it
answers this query as in G

̂i−1;
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(3) for A2’s each Oop oracle query j, if the corresponding ij satisfies (ij /∈
Icor)∧(ij = î), the challenger returns sk′

ij
←$ Openk (pp, tkij

, pkij
, skij

, (c∗
j,γ ,

td∗
j,γ ,m∗

j,γ)γ∈[k ]) to A2; otherwise, it answers this query as in G
̂i−1.

Game Gn+̂i (̂i ∈ [n]): For all î ∈ [n], game Gn+̂i is the same as Gn+̂i−1, except
that for A2’s each Odec oracle query (i, c), if (∃(ij , c∗

j,γ) ∈ C s.t. ij = î ∧ c∗
j,γ =

c) ∧ (i /∈ Icor), the challenger returns ⊥ to A2; otherwise, it answers this query
as in game Gn+̂i−1.

We present the following two lemmas whose proofs are given in the full version
[17].

Lemma 1. For each î ∈ [n], |Pr[D(G
̂i) = 1] − Pr[D(G

̂i−1) = 1]| ≤
Advkmnc−cca

KM−NCE,B,k (λ) for some PPT adversary B.

Lemma 2. For each î ∈ [n], |Pr[D(Gn+̂i) = 1] − Pr[D(Gn+̂i−1) = 1]| ≤ t · k ·
εrobKM-NCE(λ).

Note that in game G2n, (i) when generating the challenge ciphertexts, for each
j ∈ [t] such that ij /∈ Icor, the corresponding challenge ciphertexts (c∗

j,γ)γ∈[k ] are
generated with algorithm Fake; (ii) any Ocor,2 oracle query i ∈ [n] such that
i = ij′ for some j′ /∈ Iop is answered with algorithm Openk ; (iii) any Oop oracle
query j ∈ [t] such that ij /∈ Icor is answered with algorithms Openk ; (iv) any
Odec oracle query (i, c) is answered with ⊥ if there is some j ∈ [t] and γ ∈ [k ]
such that (ij , c∗

j,γ = c) ∈ C and c∗
j,γ is generated with algorithm Fake. Now, a

PPT simulator S = (S1,S2) can be constructed, which simulates G2n perfectly
for A. Hence, we derive that

Expac-rso&c-cca-ideal
PKE,S,n,t,k (λ) = G2n.

Due to space limitations, the detailed description of S will be given in the full
version [17].

Therefore, Advac-rso&c-cca
PKE,A,S,D,n,t,k (λ) = |Pr[D(G−1) = 1] − Pr[D(G2n) = 1]|

≤ n · Advkmnc-cca
KM−NCE,B′,k (λ) + n · t · k · εrobKM-NCE(λ) (1)

for some PPT adversary B′. This completes the proof of Theorem 1. �

5 KM-NCE from Key-Openable Hash Proof System

In this section, we present a generic construction of KM-NCE that is needed in
the AC-RSOk&C secure PKE construction in Sect. 4.2. Our main building block
is a new variant of Hash Proof System (HPS), called Key-Openable HPS. We
firstly recall the definition of HPS from [9], and then formalize our new Key-
Openable HPS. Next, we show how to construct KM-NCE from Key-Openable
HPS. Jumping ahead, we will give concrete instantiations of Key-Openable HPS
from the matrix decisional Diffie-Hellman assumption in Sect. 6.
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5.1 Recall: Hash Proof System

In this subsection, we recall the formal definition of HPS according to [9]. For
applications in constructing KM-NCE, we require that HPS has two parameter
generation algorithms, a master parameter generation algorithm MPar and an
(ordinary) parameter generation algorithm Par.

Definition 6 (Hash Proof System). A hash proof system HPS =
(MPar,Par,Pub,Priv) consists of a tuple of PPT algorithms:

– mpar ← $ MPar(1λ): The master parameter generation algorithm outputs a
master public parameter mpar, which implicitly defines the universe set X
and the hash value space Π.
We assume that there are PPT algorithms for sampling x ←$ X uniformly
and sampling π ←$ Π uniformly. We require mpar to be an implicit input of
other algorithms.

– par ←$ Par(mpar): The (ordinary) parameter generation algorithm takes mpar
as input, and outputs an (ordinary) public parameter par, which implicitly
defines (L,SK,PK, Λ(·), α), where L ⊆ X is an NP-language, SK is the hash-
ing key space, PK is the projection key space, Λ(·) : X −→ Π is a family of
hash functions indexed by a hashing key sk ∈ SK, and α : SK −→ PK is the
projection function.
We assume that Λ(·) and α are efficiently computable and there are PPT
algorithms for sampling x ← $ L uniformly together with a witness w, and
sampling sk ←$ SK uniformly. We require par to be an implicit input of other
algorithms.

– π ← Pub(pk, x, w): The public evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ L, with the help of a projection key pk = α(sk) and a
witness w for x ∈ L.

– π ← Priv(sk, x): The private evaluation algorithm outputs the hash value π =
Λsk(x) ∈ Π of x ∈ X , directly using the hashing key sk.

Perfect correctness (a.k.a. projectiveness) of HPS requires that, for all possible
mpar ←$ MPar(1λ) and par ←$ Par(mpar), all hashing keys sk ∈ SK with pk :=
α(sk) the corresponding projection key, all x ∈ L with all possible witnesses w,
it holds that Pub(pk, x, w) = Λsk(x) = Priv(sk, x).

HPS is associated with a subset membership problem (SMP), which asks
whether an element is uniformly chosen from L or X . SMP can be extended to
multi-fold SMP by considering multiple elements.

Definition 7 (Multi-fold SMP). The multi-fold SMP related to HPS is
hard, if for any PPT adversary A and any polynomial Q, it holds that
AdvQ-msmp

HPS,A (λ) :=
∣
∣ Pr[A(mpar, par, {xγ}γ∈[Q]) = 1]−Pr[A(mpar, par, {x′

γ}γ∈[Q])
= 1]

∣
∣ ≤ negl(λ), where mpar ← $ MPar(1λ), par ← $ Par(mpar), xγ ← $ L and

x′
γ ←$ X for each γ ∈ [Q].
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Tag-based HPS. We recall a tag-based variant of HPS from [9,22], by allowing
the hash functions Λ(·) to have an additional element called label/tag as input.
More precisely, in a tag-based HPS, the public parameter par also implicitly
defines a tag space T . Meanwhile, the hash functions Λ(·), the public evaluation
algorithm Pub and the private evaluation algorithm Priv also take a tag τ ∈ T
as input. Accordingly, perfect correctness requires Pub(pk, x, w, τ) = Λsk(x, τ) =
Priv(sk, x, τ) for all tags τ ∈ T .

5.2 Key-Openable HPS

We present the formal definition of our new Key-Openable HPS.

Definition 8 (Key-Openable Hash Proof System). Let k ∈ N. A key-
openable hash proof system HPS = (MPar,Par,Pub,Priv,HOpenk ) consists of a
tuple of PPT algorithms:

– (MPar,Par,Pub,Priv) is a hash proof system as per Definition 6. Recall that
the master parameter mpar output by MPar(1λ) implicitly defines (X ,Π),
and there are PPT algorithms for sampling x ←$ X uniformly and sampling
π ← $ Π uniformly. We denote by RX and RΠ the randomness spaces for
sampling x ←$ X and π ←$ Π respectively.

– In addition to public parameter par, Par(mpar) also outputs a trapdoor infor-
mation td, which will be later used by HOpenk .

– sk′/⊥ ←$ HOpenk (td, pk, sk, (xγ , rxγ
, πγ , rπγ

)γ∈[k ]): The hashing key opening
algorithm takes as input the trapdoor td, a projection key pk ∈ PK, a hashing
key sk ∈ SK satisfying pk = α(sk), and k tuples (xγ , rxγ

, πγ , rπγ
)γ∈[k ] where

xγ ∈ X with sampling randomness rxγ
∈ RX and πγ ∈ Π with sampling

randomness rπγ
∈ RΠ for each γ ∈ [k ], and outputs another hashing key

sk′ ∈ SK satisfying pk = α(sk′) and πγ = Λsk′(xγ) for each γ ∈ [k ], or a
special symbol ⊥ indicating the failure of opening.

Tag-based Key-Openable HPS. A key-openable HPS = (MPar,Par,Pub,Priv,
HOpenk ) is a tag-based key-openable HPS, if (MPar,Par,Pub,Priv) is a tag-based
HPS (cf. Sect. 5.1), and HOpenk also takes a set of tags (τγ)γ∈[k ] as input so that
its output sk′ satisfies pk = α(sk′) and πγ = Λsk′(xγ , τγ) for each γ ∈ [k ].

Below we define a new statistical property for (tag-based) key-openable
HPS, called openabilityk . It stipulates the statistical indistinguishability between
(sk(0), (π(0)

γ )γ∈[k ]) and (sk(1), (π(1)
γ )γ∈[k ]), where sk(0) is a uniformly sampled

hashing key, π
(0)
γ = Λsk0(xγ) for xγ ← $ X with randomness rxγ

, π
(1)
γ is

uniformly sampled from Π with randomness r
π
(1)
γ

, and sk(1) is generated by

HOpenk (td, pk, sk(0), (xγ , rxγ
, π

(1)
γ , r

π
(1)
γ

)γ∈[k ]). Here the subscript k indicates the
opening of hashing key w.r.t. k hash values. For tag-based key-openable HPS,
the adversary can additionally determine the tags (τγ)γ∈[k ] w.r.t. which the hash
values are computed. It is not hard to see that this property implies the usual
smoothness property of HPS [9] and also implies that L is a sparse subset of X .
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Fig. 5. Experiment for defining the Openabilityk property of (tag-based) key-openable
HPS, where the framed parts only appear in the experiment for tag-based HPS.

Fig. 6. Experiment for the Universalk+1 property of tag-based key-openable HPS.

Definition 9 (Openabilityk). A (tag-based) key-openable HPS is openablek ,
if for any (unbounded) adversary A, it holds that ε

openk

HPS,A(λ) := |Pr[Expopenk

HPS,A(λ)
= 1] − 1/2| ≤ negl(λ), where Expopenk

HPS,A(λ) is defined in Fig. 5.

Next we define a statistical property for tag-based HPS, called universalk+1,
which is an extension of the universal2 property proposed in [9].

Definition 10 (Universalk+1). A tag-based key-openable HPS is universal
k+1, if for any (unbounded) adversary A, it holds that ε

univk+1
HPS,A (λ) :=

Pr[Expunivk+1
HPS,A (λ) = 1] ≤ negl(λ), where Expunivk+1

HPS,A (λ) is defined in Fig. 6.

Finally, we define a statistical property, called efficient randomness resam-
pling on Π, which demands that besides the (aforementioned) sampling algo-
rithm of Π which samples uniform element π ∈ Π with sampling randomness rπ,
there is a randomness resampling algorithm ReSmpΠ that takes as input π ∈ Π
and outputs a sampling randomness rπ. These two ways of sampling/resampling
are statistically indistinguishable.

Definition 11 (Efficient Randomness Resampling on Π). The hash
value space Π of HPS supports efficient randomness resampling, if there
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Fig. 7. Construct. of KM-NCE = (Setup,Gen,Enc,Dec,Fake,Openk ) from HPS, H̃PS,
H.

exists a PPT algorithm ReSmpΠ , s.t. the statistical distance εΠ-resmp
HPS (λ) :=

Δ((π, rπ), (π′, r′
π′)) ≤ negl(λ), where mpar ← $ MPar(1λ), π ← $ Π with sam-

pling randomness rπ, π′ ←$ Π and r′
π′ ←$ ReSmpΠ(π′).

5.3 Generic Construction of KM-NCE from Key-Openable HPS

The building blocks for constructing KM-NCE are as follows.

– Let HPS = (MPar,Par,Pub,Priv,HOpenk ) be a key-openable HPS, whose
hash value space Π is an (additive) group and has an efficient randomness
resampling algorithm ReSmpΠ .

– Let H̃PS = (M̃Par, P̃ar, P̃ub, P̃riv, H̃Openk ) be a tag-based key-openable HPS,
which shares same universe X and same language L with HPS.

– Let H = {H : X × Π → T } be a family of collision-resistant hash functions,
where Π is the hash value space of HPS and T is the tag space of H̃PS.

We present the generic construction of KM-NCE = (Setup,Gen,Enc,Dec,Fake,
Openk ) from HPS, H̃PS and H in Fig. 7. The message space is Π. Note that
our generic construction of KM-NCE from key-openable HPS is reminiscent of
[11], which constructs PKE scheme from another variant of HPS (the so-called
quasi-adaptive HPS).

The perfect correctness of KM-NCE follows from those of HPS and H̃PS
directly. Next, we show its KMNCk -CCA security.

Theorem 2 (KMNCk -CCA security of KM-NCE). Assume that (1) HPS is
openablek , has a hard multi-fold SMP, supports efficient randomness resampling
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on Π, (2) H̃PS is universalk+1 and openablek , (3) H is collision-resistant. Then
the KM-NCE in Fig. 7 is KMNCk -CCA secure.

Concretely, for any PPT adversary A against the KMNCk -CCA security of
KM-NCE that makes at most Qd decryption queries, there exist PPT adversaries
B1, B2 and unbounded adversaries B3, B4, B5, s.t.

Advkmnc-cca
KM-NCE,A,k (λ) ≤ Advk-msmp

HPS,B1
(λ) + 2 · Advcr

H,B2
(λ) + 2Qd · ε

univk+1

˜HPS,B3
(λ) (2)

+ 2ε
openk

HPS,B4
(λ) + 2εopenk

˜HPS,B5
(λ) + 2k · εΠ-resmp

HPS (λ).

Proof of Theorem 2. We prove the theorem by defining a sequence of games
G0-G8, with G0 = Expkmnc-cca-real

KM-NCE,A,k (λ) and G8 = Expkmnc-cca-sim
KM-NCE,A,k (λ), and show-

ing adjacent games indistinguishable. By Pri[·] we denote the probability of a
particular event occurring in game Gi.
Game G0: This is the Expkmnc-cca-real

KM-NCE,A,k (λ) experiment. Thus, Pr[G0 = 1] =
Pr[Expkmnc-cca-real

KM-NCE,A,k (λ) = 1].
In this game, when receiving (m∗

γ)γ∈[k ] from A, the challenger generates c∗
γ

using the real encryption algorithm Enc(pp, pk ,m∗
γ ). More precisely, it samples

x∗
γ ←$ L with witness w∗

γ , computes d∗
γ := Pub(pk, x∗

γ , w∗
γ)+m∗

γ , τ∗
γ := H(x∗

γ , d∗
γ),

π̃∗
γ := P̃ub(p̃k, x∗

γ , w∗
γ , τ∗

γ ), and sets c∗
γ := (x∗

γ , d∗
γ , π̃∗

γ). It returns (c∗
γ)γ∈[k ] to

A. When answering decryption queries Odec(c) for A with c = (x, d, π̃), the
challenger computes τ := H(x, d), and outputs ⊥ immediately if c ∈ {c∗

γ}γ∈[k ] ∨
π̃ �= Λ̃

˜sk(x, τ). Otherwise, it computes m := d − Λsk(x) and returns m to A. In
the last step of this game, the challenger sends the real secret key sk = (sk, s̃k)
to A.
Game G1: It is the same as G0, except that, for each γ ∈ [k ], when generating
c∗
γ = (x∗

γ , d∗
γ , π̃∗

γ), the challenger computes d∗
γ and π̃∗

γ using sk = (sk, s̃k) instead
of using the witness w∗

γ of x∗
γ . Namely, d∗

γ := Λsk(x∗
γ)+m∗

γ and π̃∗
γ := Λ̃

˜sk(x
∗
γ , τ∗

γ ).
By the perfect correctness of HPS and H̃PS, this change is conceptual. So Pr[G1 =
1] = Pr[G0 = 1].
Game G2: It is the same as G1, except that, for each γ ∈ [k ], when generating
c∗
γ = (x∗

γ , d∗
γ , π̃∗

γ), the challenger samples x∗
γ ←$ X instead of x∗

γ ←$ L. Note that
neither the witness w∗

γ of x∗
γ (if x∗

γ ←$ L) nor the sampling randomness rx∗
γ

of
x∗

γ (if x∗
γ ←$ X ) is needed in G1 and G2, thus it is straightforward to construct a

PPT adversary B1 against the multi-fold SMP, such that |Pr[G2 = 1]−Pr[G1 =
1]| ≤ Advk-msmp

HPS,B1
(λ).

Game G3: It is the same as G2, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger adds a new rejection rule: it
outputs ⊥ immediately if τ ∈ {τ∗

γ }γ∈[k ], where τ = H(x, d) and τ∗
γ = H(x∗

γ , d∗
γ)

for each γ ∈ [k ].
Let Bad denote the event that A ever queries Odec(c) with c = (x, d, π̃), such

that (x, d) /∈ {(x∗
γ , d∗

γ)}γ∈[k ] but τ ∈ {τ∗
γ }γ∈[k ]. We first show that G2 and G3 are

identical if Bad does not occur, i.e., either (x, d) = (x∗
γ0

, d∗
γ0

) for some γ0 ∈ [k ]
or τ /∈ {τ∗

γ }γ∈[k ]. In the case that (x, d) = (x∗
γ0

, d∗
γ0

) for some γ0 ∈ [k ], Odec(c)
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would be rejected both in G2 and G3 due to c = c∗
γ0

∈ {c∗
γ}γ∈[k ]∨π̃ �= Λ̃

˜sk(x, τ). In
the case that τ /∈ {τ∗

γ }γ∈[k ], the new rejection rule added in G3 does not apply, so
Odec(c) is the same in G2 and G3. Overall, G2 and G3 are identical when Bad does
not occur, thus by the difference lemma, |Pr[G3 = 1] − Pr[G2 = 1]| ≤ Pr3[Bad].

To bound Pr3[Bad], it is straightforward to construct a PPT adversary B2

against the collision resistance of H, so that Pr3[Bad] ≤ Advcr
H,B2

(λ). Conse-
quently, |Pr[G3 = 1] − Pr[G2 = 1]| ≤ Advcr

H,B2
(λ).

Game G4: It is the same as G3, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger adds a second new rejection rule:
it outputs ⊥ immediately if x ∈ X \ L. We note that this new rule may not
be PPT checkable, thus the challenger may not be PPT. This does not matter,
since the following arguments (before this rule is removed) are statistical.

Let Forge denote the event that A ever queries Odec(c) with c = (x, d, π̃), such
that τ /∈ {τ∗

γ }γ∈[k ], π̃ = Λ̃
˜sk(x, τ) but x ∈ X \L. Clearly, G3 and G4 are identical

unless Forge occurs, thus by the difference lemma, |Pr[G4 = 1] − Pr[G3 = 1]| ≤
Pr4[Forge].

To bound Pr4[Forge], we analyze the information about s̃k that A may obtain
in game G4 before it finishes the Odec queries: A obtains p̃k = α(s̃k) in pk and
obtains {π̃∗

γ = Λ̃
˜sk(x

∗
γ , τ∗

γ )}γ∈[k ] in {c∗
γ}γ∈[k ]; for Odec queries, the challenger will

not output m unless x ∈ L (due to the new rejection rule added in G4), thus
Odec reveals nothing about s̃k beyond p̃k = α(s̃k).

Then by the universalk+1 property of tag-based H̃PS, for one Odec(c) query
made by A, it holds that τ /∈ {τ∗

γ }γ∈[k ], π̃ = Λ̃
˜sk(x, τ) but x ∈ X \ L with

probability at most ε
univk+1

˜HPS,B3
(λ). By a union bound over at most Qd number of

Odec queries, we get that Pr4[Forge] ≤ Qd · ε
univk+1

˜HPS,B3
(λ). Thus, |Pr[G4 = 1] −

Pr[G3 = 1]| ≤ Qd · εunivk+1

˜HPS,B3
(λ). For completeness, we provide a description of the

reduction algorithm B3 in the full version [17].
Game G5: It is the same as G4, except that, for each γ ∈ [k ], when generating
c∗
γ = (x∗

γ , d∗
γ , π̃∗

γ), the challenger samples d∗
γ ←$ Π uniformly (instead of d∗

γ :=
Λsk(x∗

γ) + m∗
γ). Moreover, in the last step of this game, the challenger computes

e∗
γ := d∗

γ − m∗
γ ∈ Π and resamples re∗

γ
←$ ReSmpΠ(e∗

γ) for each γ ∈ [k ], then

invokes sk′ ←$ HOpenk (td, pk, sk, (x∗
γ , rx∗

γ
, e∗

γ , re∗
γ
)γ∈[k ]), and sends (sk′, s̃k) to A.

We have the following lemma whose proof is given in the full version [17].

Lemma 3. There exists an unbounded B4 against the openablek property of
HPS, s.t. |Pr[G5 = 1] − Pr[G4 = 1]| ≤ 2 · ε

openk

HPS,B4
(λ) + 2k · εΠ-resmp

HPS (λ).

Game G6: It is the same as G5, except that, for each γ ∈ [k ], when generating
c∗
γ = (x∗

γ , d∗
γ , π̃∗

γ), the challenger samples π̃∗
γ ←$ Π̃ uniformly with randomness

rπ̃∗
γ

(instead of π̃∗
γ := Λ̃

˜sk(x
∗
γ , τ∗

γ )). Moreover, in the last step of this game,

the challenger computes s̃k
′
←$ H̃Openk (t̃d, p̃k, s̃k, (x∗

γ , rx∗
γ
, π̃∗

γ , rπ̃∗
γ
, τ∗

γ )γ∈[k ]), and

sends (sk′, s̃k
′
) to A. We have the following lemma. The proof of this lemma is

similar to that of Lemma 3, and is given in the full version [17].
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Lemma 4. There exists an unbounded B5 against the openablek property of tag-
based H̃PS, s.t. |Pr[G6 = 1] − Pr[G5 = 1]| ≤ 2 · ε

openk

˜HPS,B5
(λ).

Game G7: It is the same as G6, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger removes the second new rejection
rule added in G4. In other words, it does not check whether x ∈ L or x ∈ X \ L
anymore. We note that the challenger in G7 is now PPT again.

The change from G6 to G7 is symmetric to that from G3 to G4. By a similar
argument, we get |Pr[G7 = 1] − Pr[G6 = 1]| ≤ Qd · ε

univk+1

˜HPS,B3
(λ).

Game G8: It is the same as G7, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger removes the first new rejection
rule added in G3. In other words, it does not check whether τ ∈ {τ∗

γ }γ∈[k ] or not
anymore.

The change from G7 to G8 is symmetric to the change from G2 to G3. Similarly,
we have that |Pr[G8 = 1] − Pr[G7 = 1]| ≤ Advcr

H,B2
(λ).

Finally, we note that G8 is exactly the Expkmnc-cca-sim
KM-NCE,A,k (λ) experiment.

– For each γ ∈ [k ], c∗
γ := (x∗

γ , d∗
γ , π̃∗

γ), where x∗
γ ←$ X with sampling random-

ness rx∗
γ
, d∗

γ ←$ Π, and π̃∗
γ ←$ Π̃ with randomness rπ̃∗

γ
, the same as the c∗

γ

generated by Fake(pp).
– Odec(c) queries are answered by Dec(pp, sk , c) when c /∈ {c∗

γ}γ∈[k ].

– In the last step, (sk′, s̃k
′
) is generated by first computing e∗

γ := d∗
γ −

m∗
γ ∈ Π and resampling re∗

γ
← $ ReSmpΠ(e∗

γ) for each γ ∈ [k ],

then invoking sk′ ← $ HOpenk (td, pk, sk, (x∗
γ , rx∗

γ
, e∗

γ , re∗
γ
)γ∈[k ]) and s̃k

′
←

$ H̃Openk (t̃d, p̃k, s̃k, (x∗
γ , rx∗

γ
, π̃∗

γ , rπ̃∗
γ
, τ∗

γ )γ∈[k ]) with τ∗
γ := H(x∗

γ , d∗
γ), the same

as Openk (pp, tk , pk , sk , (c∗
γ , rc∗

γ
,m∗

γ )γ∈[k ]) where rc∗
γ

= (rx∗
γ
, rπ̃∗

γ
).

Thus, Pr[G8 = 1] = Pr[Expkmnc-cca-sim
KM-NCE,A,k (λ) = 1].

Taking all things together, we obtain (2), thus Theorem 2 follows. �
Finally, we show the robustness.

Theorem 3 (Robustness of KM-NCE). The proposed KM-NCE in Fig. 7 is
robust (cf. Definition 5) with εrobKM-NCE(λ) ≤ 1/|Π̃|, where Π̃ is the hash value
space of H̃PS.

Proof of Theorem 3. For pp ←$ Setup(1λ), (pk , sk , tk) ←$ Gen(pp), (c, td) ←
$ Fake(pp), we analyze the probability εrobKM-NCE(λ) = Pr[Dec(pp, sk , c) �= ⊥].

– For (pk , sk , tk) ←$ Gen(pp), we have sk = (sk, s̃k) where s̃k ←$ S̃K.
– For (c, td) ←$ Fake(pp), we have c = (x, d, π̃) where x ←$ X , d ←$ Π and

π̃ ←$ Π̃.
– Then in Dec(pp, sk , c), it first checks whether or not π̃ = Λ̃

˜sk(x, τ) holds,
where τ := H(x, d), and returns ⊥ if the check fails.

Since π̃ is uniformly chosen from Π̃ and independent of x, d and s̃k, so the check
π̃ = Λ̃

˜sk(x, τ) passes with probability 1/|Π̃|. Overall, we have εrobKM-NCE(λ) =
Pr[Dec(pp, sk , c) �= ⊥] ≤ Pr[π̃ = Λ̃

˜sk(x, τ)] = 1/|Π̃|. �
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6 Concrete Instantiations

In this section, we show concrete instantiations of key-openable HPS based on the
matrix decisional Diffie-Hellman (MDDH) assumption [10]. As a result, we can
obtain concrete instantiations of KM-NCE, which in turn yields AC-RSOk&C-
CCA secure PKE schemes with compact ciphertexts. For certain instantiation,
the resulting PKE can even achieve tight AC-RSOk&C-CCA security.

6.1 Recall: Matrix Distribution

We recall the definition of matrix distribution defined in [10].
In this section, we use bold uppercase letters to represent matrices and bold

lowercase letters to represent (column) vectors. Let GGen be a PPT algorithm
that on input 1λ returns G = (G, q, P ), a description of an (additive) cyclic
group G with a generator P of order q which is a λ-bit prime. For a ∈ Zq, define
[a] := aP ∈ G as the implicit representation of a in G. More generally, for a
matrix A = (aij) ∈ Z

n×m
q , we define [A] as the implicit representation of A

in G, i.e., [A] := (aijP ) ∈ G
n×m. Note that from [a] ∈ G it is generally hard

to compute the value a (discrete logarithm problem is hard in G). Obviously,
given [a], [b] ∈ G and a scalar x ∈ Z, one can efficiently compute [ax] ∈ G and
[a + b] ∈ G. Similarly, for A ∈ Z

m×n
q ,B ∈ Z

n×t
q ,AB ∈ Z

m×t
q , given [A],B

one can efficiently compute [A]B := [AB] ∈ G
m×t and given A, [B], one can

efficiently compute A[B] := [AB] ∈ G
m×t.

Definition 12 (Matrix Distribution). Let d, k ∈ N
+. Dd+k ,d is called a

matrix distribution if it outputs matrices in Z
(d+k)×d
q of full rank d in poly-

nomial time.

As in [10], let Ud+k ,d be the uniform distribution over Z
(d+k)×d
q . Without loss

of generality, for A ←$ Dd+k ,d, we assume that A (the upper square submatrix
of A) is invertible.

Definition 13 (The Dd+k ,d-Matrix Decision Diffie-Hellman Assump-
tion, Dd+k ,d-MDDH). Let Dd+k ,d be a matrix distribution. The Dd+k ,d-Matrix
Decision Diffie-Hellman (Dd+k ,d-MDDH) Assumption holds relative to GGen if
for each PPT adversary A, the advantage

Advmddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]|

is negligible, where the probability is taken over G ← $ GGen(1λ),A ←
$ Dd+k ,d,w ←$ Z

d
q and u ←$ Z

d+k
q .

As shown in [10], Dd+k ,d-MDDH assumption is a generalization of a large
range of assumptions. By setting the matrix distribution D�,k to specific dis-
tributions, Dd+k ,d-MDDH assumption can capture DDH assumption, k-Linear
assumption, k-Cascade assumption and many other assumptions.

The MDDH assumption can be generalized into a multi-instance version. We
recall the Q-fold MDDH assumption as defined in [10].
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Definition 14 (Q-fold Dd+k ,d-Matrix Decision Diffie-Hellman Assump-
tion). Let Q be a positive integer and Dd+k ,d be a matrix distribution. The Q-fold
Dd+k ,d-Matrix Decision Diffie-Hellman Assumption holds relative to GGen if for
each PPT adversary A, the advantage

AdvQ-mddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, [A], [AW]) = 1] − Pr[A(G, [A], [U]) = 1]|

is negligible, where the probability is taken over G ← $ GGen(1λ),A ←
$ Dd+k ,d,W ←$ Z

d×Q
q and U ←$ Z

(d+k)×Q
q .

6.2 Openablek HPS Instantiation

In this subsection, we provide a key-openable HPS instantiation with openablek
and efficient randomness resampling properties based on the MDDH assumption.
This HPS can be seen as a generalization of the DDH-based HPS in [9]. Inspired
by the technique in [12,15], we are able to make the hash value space of our HPS
to be compact and efficient randomness resamplable. Meanwhile, this does not
affect the openability of our HPS.

More precisely, fixing some group generation algorithm GGen, some positive
integers d, k , some matrix distribution Dd+k ,d and some polynomial l = l(λ)
(which can be set as the desired message length of the PKE scheme), consider
HPS = (MPar,Par,Pub,Priv,HOpenk ) in the following.

– MPar(1λ). The master parameter generation algorithm runs G = (G, q, P ) ←
$ GGen(1λ). Let Hu = {Hu : G → {0, 1}} be a family of universal hash
functions based on group G. The algorithm selects Hu ← $ Hu and returns
mpar := (G, d, k , l,Dd+k ,d,Hu) which implicitly defines the instance space
X := G

d+k with randomness space RX := Z
d+k
q and the hash value space

Π := {0, 1}l with randomness space RΠ := Z
l
q. Given mpar, one can effi-

ciently sample a uniform element x from X by selecting rx = x ←$ RX and
setting x := [rx] = [x]. For simplicity, we define an efficiently computable
function Hu,l : G

l → {0, 1}l where Hu,l([a]) := (Hu([a1]), · · · ,Hu([al])) for all
[a] = [a1, · · · , al] ∈ G

l. Then, one can also efficiently sample a uniform ele-
ment π from Π by selecting rπ = π ←$ RΠ and setting π := Hu,l([π]) ∈ Π.6

– Par(mpar). The (ordinary) parameter generation algorithm selects matrix A ∈
Z
(d+k)×d
q ←$ Dd+k ,d, then it returns par := [A] and td := A.

The public parameter par (together with mpar) implicitly defines the language
as L := [span(A)] = {[Aw] | w ∈ Z

d
q}. The hashing key space SK := Z

(d+k)×l
q

and the projection key space PK := G
d×l. The projection function α maps

sk = S ∈ SK to pk = [P] ∈ PK where [P] = [A�]S and α is efficiently
computable given par and sk. For sk = S ∈ SK, the hash function Λsk(·) maps

6 Actually, π is only statistical close to uniform. According to the leftover hash lemma
together with the union bound, the statistically distance between π and uniform dis-

tribution over Π is bounded by l
2

√
2
q
, which is exponentially small for polynomially

bounded l. Therefore, we omit this statistical distance here.
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Fig. 8. Randomness resample algorithm ReSmpΠ for hash value space Π = {0, 1}l of
the hash proof system HPS. The algorithm OnebitReSmp will return ⊥ and terminate
after λ iterations, which makes it a polynomial-time algorithm.

an element x = [x] ∈ X to Hu,l(S�[x]) ∈ Π and it is efficiently computable
given sk and x.
Given par, one can efficiently sample a uniform element x from language
L together with a witness w by choosing w = w ← $ Z

d
q and computing

x = [x] = [A]w.
– Pub(pk, x, w). Given public key pk = [P] ∈ PK, an instance x = [x] =

[Aw] ∈ L, and its witness w = w, the public evaluation algorithm outputs
π = Hu,l([P�]w) ∈ Π.

– Priv(sk, x). Given secret key sk = S ∈ SK and x = [x] ∈ X , the private
evaluation algorithm outputs π = Hu,l(S�[x]) ∈ Π.

– HOpenk (td, pk, sk, (xγ , rxγ
, πγ , rπγ

)γ∈{1,··· ,k}). Given td = A, pk = [P], sk =
S, xγ = [xγ ], rxγ

= xγ , πγ = Hu,l([πγ ]) and rπγ
= πγ ∈ Z

l
q for all γ ∈

{1, · · · , k}, the open algorithm computes sk′ = S′ ∈ Z
(d+k)×l
q by solving the

following system of linear equations,

S′� (A | x1 | · · · | xk ) = (S�A | π1 | · · · | πk ) mod q. (3)

Note that, given td = A and the randomnesses (rxγ
= xγ)γ∈{1,··· ,k},

one can easily compute the square matrix M = (A | x1 | · · · | xk ) ∈
Z
(d+k)×(d+k)
q . If M is invertible, one can easily compute and output S′� =

(S�A | π1 | · · · | πk ) ·M−1 mod q. If M is not invertible, algorithm HOpenk
outputs ⊥.

Note that the hash value space Π = {0, 1}l is an additive group with group
operation ⊕ (string xor). We define its randomness resample algorithm ReSmpΠ

in Fig. 8.

Theorem 4. The above instantiation HPS (1) is a key-openable HPS; (2)
has a hard multi-fold SMP under the multi-fold Dd+k ,d-MDDH assumption
(i.e., for any PPT adversary A, there exists a PPT adversary B such that
Advk-msmp

HPS,A (λ) ≤ Advk-mddh
Dd+k,d,GGen,B(λ)); (3) is openablek and (4) supports effi-

cient randomness resampling on Π with algorithm ReSmpΠ .

We put the proof of Theorem 4 in the full version [17].

6.3 Openablek and Universalk+1 Tag-Based HPS Instantiation

In this subsection, we provide a tag-based key-openable HPS instantiation with
both openablek and universalk+1 properties based on the MDDH assumption.
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This tag-based HPS can be seen as a generalization of the tag-based HPS from
the DDH assumption in [9]. More precisely, fixing some group generation algo-
rithm GGen, some positive integers d, k and some matrix distribution Dd+k ,d,
consider instantiation H̃PS = (M̃Par, P̃ar, P̃ub, P̃riv, H̃Openk ) in the following.

– M̃Par(1λ). The master parameter generation algorithm runs G = (G, q, P ) ←
$ GGen(1λ) and returns m̃par := (G, d, k ,Dd+k ,d) which implicitly defines the
instance space X := G

d+k with randomness space RX := Z
d+k
q and the hash

value space Π̃ := G with randomness space R
˜Π := Zq.7 Given mpar, one can

efficiently sample a uniform element x from X by selecting rx = x ←$ RX
and set x = [rx] = [x]. One can also efficiently sample a uniform element π̃

from Π̃ by selecting rπ̃ ←$ R
˜Π and set π̃ = [rπ̃].

– P̃ar(m̃par). The (ordinary) parameter generation algorithm selects matrix A ∈
Z
(d+k)×d
q ←$ Dd+k ,d, then it returns p̃ar := [A] and t̃d := A.

The public parameter p̃ar (together with m̃par) implicitly defines the language
as L := [span(A)] = {[Aw] | w ∈ Z

d
q}.8 The hashing key space S̃K := Z

2d+2k
q

and the projection key space P̃K := G
2d. The projection function α̃ maps s̃k =

s =
(
s1
s2

)

∈ S̃K (where s1, s2 ∈ Z
d+k
q ) to p̃k = [p] =

[
p1

p2

]

=
[
A�

A�

]

s ∈

P̃K (where [pi] =
[
A�si

]
∈ G

d for i ∈ {1, 2}) and α̃ is efficiently computable

given p̃ar and s̃k. The tag space is T := Zq. For s̃k = s ∈ S̃K, the hash
function Λ̃

˜sk(·, ·) maps an element x = [x] ∈ X together with a tag τ ∈ T to

π̃ = s�
[

x
τx

]

=
[
s�
1 x + τs�

2 x
]

∈ Π̃ and it is efficiently computable given s̃k, x

and τ .
Given p̃ar, one can efficiently sample a uniform element x from language
L together with a witness w by choosing w = w ← $ Z

d
q and computing

x = [x] = [Aw].
– P̃ub(p̃k, x, w, τ). Given public key p̃k = [p], witness w = w of instance x =

[Aw] and tag τ , the public evaluation algorithm outputs the hash value π̃ =
[
p�]

(
w
τw

)

.

– P̃riv(s̃k, x, τ). Given secret key s̃k = s, x = [x] and tag τ , the private evaluation

algorithm outputs π̃ = s�
[

x
τx

]

.

– H̃Openk (t̃d, p̃k, s̃k, (xγ , rxγ
, π̃γ , rπ̃γ

, τγ)γ∈{1,··· ,k}). Given trapdoor t̃d = A,
public key p̃k = [p], secret key s̃k = s, instance xγ = [xγ ] with random-
ness rxγ

= xγ , hash value π̃γ = [rπ̃γ
] with randomness rπ̃γ

and tag τγ for all

7 To get an instantiation H̃PS which satisfies the conditions of Theorem 2, H̃PS needs
to share the same universe set X with HPS. In that way, we can set (G, d, k , Dd+k,d)
in m̃par to be exactly the same with the ones in mpar.

8 Similarly, we set p̃ar := par and t̃d := td to make sure H̃PS shares the same language
L with HPS.
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γ ∈ {1, · · · , k}, the open algorithm computes s̃k
′

= s′ ∈ Z
2d+2k
q by solving

the following system of linear equations.

s′�E = (s�
1 A, s�

2 A, rπ̃1 , · · · , rπ̃k
) mod q, E =

(
A x1 · · · xk

A τ1x1 · · · τkxk

)

. (4)

Matrix E has 2d + 2k rows and 2d + k columns.
• If matrix (A | x1 | · · · | xk ) has full column rank d + k , then matrix E

has full column rank 2d + k and there are qk possible solutions for s′ to
make Eq. (4) hold. Algorithm H̃Openk selects and outputs a uniformly
random solution.

• Otherwise, algorithm H̃Openk outputs ⊥.
Note that given t̃d = A, tags (τγ)γ∈{1,··· ,k} and the randomnesses (rxγ

=
xγ)γ∈{1,··· ,k}, one can easily compute the matrix E. The right hand side of

Eq. (4) is also efficiently computable given s̃k =
(
s1
s2

)

and randomnesses

(rπ̃γ
)γ∈{1,··· ,k}.

Theorem 5. The above instantiation H̃PS (1) is a tag-based key-openable HPS;
(2) is universalk+1 and (3) is openablek .

We put the proof of Theorem 5 in the full version [17].

6.4 Concrete AC-RSOk&C-CCA Secure PKE Instantiation

We instantiate our PKE scheme by plugging the instantiations, HPS in Sect. 6.2
and H̃PS in Sect. 6.3, into the generic KM-NCE construction in Fig. 7. By Theo-
rem 1, we immediately get a PKE instantiation that can achieve AC-RSOk&C-
CCA security in the standard model with compact ciphertexts. If we set the
matrix distribution Dd+k ,d (i.e., the matrix distribution used to sample matrix A
by the key generation algorithm Gen) to be uniform matrix distribution Ud+k ,d,
the resulting PKE can achieve tight AC-RSOk&C-CCA security.

Fixing some group generation algorithm GGen, some positive integers d, k ,
some matrix distribution Dd+k ,d and some polynomial l = l(λ), the instantiation
PKE = (Setup,Gen,Enc,Dec) with message space {0, 1}l is shown in Fig. 9. This
scheme can be viewed as a generalization of the DDH-based scheme in [12, Fig. 3]
and both schemes are variants of the Cramer-Shoup encryption scheme [9].

We can see that, for the PKE scheme in Fig. 9, the ciphertext length is
(d + k + 1) × |G| + l for messages of length l and the ciphertext overhead is
the size of a constant number of group elements (since d and k are both fixed
constants), which is also independent of the message length. This suggests that
the PKE instantiation in Fig. 9 has compact ciphertexts [12,15].

We note that our PKE can achieve tight AC-RSOk&C-CCA security for cer-
tain instantiation. Taking a closer look at the AC-RSOk&C-CCA security of our
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Fig. 9. Concrete AC-RSOk&C-CCA secure PKE instantiation.

MDDH-based PKE instantiation, we obtain the following inequality by combin-
ing Eq. (1) in Theorem 1, Eq. (2) in Theorem 2 and Theorem 4 together.

Advac-rso&c-cca
PKE,A,S,D,n,t,k (λ) ≤ n · Advkmnc-cca

KM−NCE,B′,k (λ) + n · t · k · εrobKM-NCE(λ)

≤ n · Advk-mddh
Dd+k,d,GGen,B1

(λ) + 2n · Advcr
H,B2

(λ) + 2Qdn · ε
univk+1

˜HPS,B3
(λ) + 2n · ε

openk

HPS,B4
(λ)

+ 2n · ε
openk

˜HPS,B5
(λ) + 2kn · εΠ-resmp

HPS (λ) + n · t · k · εrobKM-NCE(λ). (5)

The 2Qdn·εunivk+1

˜HPS,B3
(λ)+ 2n·εopenk

HPS,B4
(λ)+2n·εopenk

˜HPS,B5
(λ)+2kn·εΠ-resmp

HPS (λ)+n·
t·k ·εrobKM-NCE(λ) part in Eq. (5) does not affect tightness of the reduction since it is
statistically small. Only reductions to computational properties matter to tight-
ness of the reduction, i.e., the term n · Advk-mddh

Dd+k,d,GGen,B1
(λ) + 2n · Advcr

H,B2
(λ).

This security loss n and 2n are introduced because 1) in the proof of Theo-
rem 1 (KMNCk -CCA + robustness ⇒ AC-RSOk&C-CCA), we handle one user
at a time with n game transitions ( cf. Lemma 1), and in each transition,
a term Advkmnc−cca

KM−NCE,B′
1,k (λ) is incurred; 2) according to Theorem 2, the term

Advkmnc−cca
KM−NCE,B′

1,k (λ) contains Advk-msmp
HPS,B′′

1
(λ) + 2 ·Advcr

H,B2
(λ); and 3) according

to Theorem 4, Advk-msmp
HPS,B′′

1
(λ) ≤ Advk-mddh

Dd+k,d,GGen,B1
(λ).

Alternatively, if we set the matrix distribution to be uniform matrix distribu-
tion (i.e., Dd+k ,d := Ud+k ,d), we can avoid such security loss by integrating the
proofs of Theorem 1, Theorem 2 and Theorem 4. We can handle the n reductions
to the k-fold Ud+k ,d-MDDH assumption (i.e., n · Advk-mddh

Ud+k,d,GGen,B1
(λ)) and the

2n reductions to the collision-resistance of H (i.e., 2n · Advcr
H,B2

(λ)) for all n
users at one time (while keeping the reductions to other statistical properties
unchanged, namely one user at a time). Specifically,

– we can change all the kn ciphertexts (of all n users) at one time, correspond-
ing to the game transition G1 to G2 in the proof of Theorem 2, and the
indistinguishability can be reduced to the Ud+k,d-MDDH assumption using
Lemma 5 in below;
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– we can handle collisions of all users at one time, corresponding to the game
transitions G2 to G3 and G7 to G8 in the proof of Theorem 2.

With this strategy, we obtain a tight reduction with Advmddh
Ud+k,d,GGen,B1

(λ) +
2 · Advcr

H,B2
(λ), instead of n · Advk-mddh

Ud+k,d,GGen,B1
(λ) + 2n · Advcr

H,B2
(λ), to the

computational properties. Thus, the PKE scheme enjoys tight security reduction.

Lemma 5. For any adversary A, any positive integer d, k, n, any matrix
distribution Dd+k,d and any group generation algorithm GGen, we define
the advantage Adv(n,k)-mddh

Dd+k,d,GGen,A(λ) := |Pr[A(G, ([Ai], [Xi])n
i=1) = 1] −

Pr[A(G, ([Ai], [X′
i])

n
i=1) = 1]| where G ← $ GGen(1λ),Ai ← $ Dd+k,d,Wi ←

$ Z
d×k
q ,Xi := AiWi and X′

i ← $ Z
(d+k)×k
q for all i ∈ {1, · · · , n}. Then, for

any PPT adversary A and uniform matrix distribution Ud+k,d, there exists a
PPT adversary B such that

Adv(n,k)-mddh
Ud+k,d,GGen,A(λ) ≤ Advmddh

Ud+k,d,GGen,B(λ) +
k + 1
q − 1

.

We put the proof of Lemma 5 in the full version [17].
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Abstract. We give the first examples of public-key encryption schemes
which can be proven to achieve multi-challenge, multi-user CCA security
via reductions that are tight in time, advantage, and memory. Our con-
structions are obtained by applying the KEM-DEM paradigm to variants
of Hashed ElGamal and the Fujisaki-Okamoto transformation that are
augmented by adding uniformly random strings to their ciphertexts.

The reductions carefully combine recent proof techniques introduced
by Bhattacharyya’20 and Ghoshal-Ghosal-Jaeger-Tessaro’22. Our proofs
for the augmented ECIES version of Hashed-ElGamal make use of a
new computational Diffie-Hellman assumption wherein the adversary is
given access to a pairing to a random group, which we believe may be of
independent interest.

Keywords: Public-key cryptography · Provably security ·
Memory-tightness

1 Introduction

Secure deployment of cryptography requires concrete analysis of schemes to
understand how the success probabilities of attackers grow with the amount
of resources they employ to attack a system. The use of reduction-based cryp-
tography enables such analysis by using an attacker with running time t and
success probability ε to construct a related adversary with running time t′ and
success probability ε′ against a computational problem whose security is better
understood. A gold standard for concrete security reductions are tight reduc-
tions for which t′ ≈ t and ε′ ≈ ε. We refer to such a reduction as TA-tight
(time-advantage-tight) to distinguish it from other notions of tightness.

Auerbach, Cash, Fersch, and Kiltz [3] argued that the memory usage of an
attacker can be crucial in determining its likelihood of success. This kicked of a
line of works [7,9–12,17–19,24,28,30,31] on memory-aware cryptography which
accounts for the memory usage of attackers in security analyses. Auerbach, et
al. focused in particular on incorporating memory considerations into the study
of reductions. We refer to a reduction as TAM-tight if it is TA-tight and addi-
tionally s ≈ s′ where these variables, respectively, denote the amount of memory
used by the original adversary and the reduction adversary.
c© International Association for Cryptologic Research 2022
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In this work, we construct the first public-key encryption schemes with TAM-
tight proofs of multi-challenge (and multi-user) chosen-ciphertext attack (CCA)
security. Our schemes are based on variants of the Hashed ElGamal and Fujisaki-
Okamoto transformation key encapsulation mechanisms. These variants augment
ciphertexts with random strings that are included in hash function calls.

Multi-challenge setting. As mentioned, our focus in this work is on multi-
challenge and multi-user security. This is simply motivated by the fact that
encryption schemes get deployed across many different users each of whom will
encrypt many messages, so it is important to understand how the security of a
scheme degrades as the number of encryptions increase. In particular, the goal
of tight proofs is to show that security does not meaningfully degrade. Multiple
papers [16,22,25] have looked at this in the non-memory-aware setting, providing
schemes with TA-tight proofs of security. However, extending any of these proofs
to the memory-aware setting is quite difficult.

Prior works on memory-tight CCA secure encryption have identified a pri-
mary difficulty in the multi-challenge setting which lies in how the decryption
oracle handles challenge ciphertexts. Simply decrypting a challenge ciphertext
would lead to trivial attacks against any scheme, so instead the decryption oracle
has to recognize these ciphertexts and respond to them in a special manner.1

This makes writing memory-tight security proofs difficult because the reduction
adversary must emulate this differing behavior on decryption queries for chal-
lenge or non-challenge ciphertexts, but it is unclear how to go about identifying
which are challenge ciphertexts other than remembering and checking against all
ciphertexts that were previously returned to encryption queries. In the single-
challenge setting is a non-issue, because storing the single challenge ciphertext
requires minimal memory.

Memory-tightness of Hashed ElGamal. In recent years, several papers
have discussed the challenge of providing memory-tight security proofs for
Hashed ElGamal. Auerbach, et al. [3] gave it at as an example of a proof they
considered the memory complexity of, but were unable to improve. Follow-up
work by Bhattacharyya [7] and Ghoshal and Tessaro [19] analyzed this further,
giving what might seem at first to be contradictory results. Bhattacharyya gave
a memory-tight proof for Hashed ElGamal in the single-challenge setting while
Ghoshal and Tessaro proved a lower-bound establishing that a memory-tight
proof for Hashed ElGamal was not possible.

Resolving this contradiction requires more precisely understanding each result.
The lower bound applies specifically for reductions to Strong Computational
Diffie-Hellman (CDH) security [2] which are “black-box” in several ways, includ-
ing that they do not depend on the particular group used. Ghoshal and Tessaro
note that Bhattacharyya’s result (for single-challenge security) avoids the lower
bound by not being black-box in this manner; it depends on the group having an

1 An alternate definitional style would disallow the adversary from querying challenge
ciphertexts to its decryption oracle, but prior the works argue this is an inappropriate
restriction in the memory-bounded setting [17,18].
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Fig. 1. TAM-tight reductions we provide. Transformations T, aV, and aUK are FO
transforms discussed in Sect. 5. Results are multi-user, multi-challenge security.

efficient pairing. However, for efficiency it is preferable to implement schemes using
elliptical curves for which efficient pairing are believed not to exist.

Our result for Hashed ElGamal is black-box in the sense of Ghoshal and Tes-
saro. We avoid the lower-bound without requiring an efficient pairing by intro-
ducing and using an assumption (Pair CDH) which is stronger than Strong CDH,
but is reasonable to assume holds in typical groups based on elliptic curves.2 We
discuss this assumption in more detail momentarily. Indeed, Ghoshal and Tes-
saro say in their paper [19, Sec. 3.1, p.42], “it appears much harder to extend
our result to different types of oracles than [the Strong CDH oracle], as our proof
is tailored at this oracle.” Our new security notion gives an example of such an
oracle to which their result cannot be extended.

1.1 Our Results

We summarize our results in Fig. 1. Omitted proofs and results are provided in
the full version of this paper [23].

Hashed ElGamal. Our first results consider the security of Hashed ElGamal.
Following Bhattacharyya, we actually consider two variants which we refer to
as the ECIES [1] and the Cramer-Shoup [8] variants. The negative results of
Ghoshal and Tessaro apply only to the ECIES variant. In both, the decryption
key is a value x P Zp̊ and the encapsulation key is X “ gx. Here g is a generator
of a group of prime order p. For encapsulation, one samples a fresh y Ð$ Zp̊ and
returns gy as the ciphertext. For ECIES the derived key is H(Xy), while for
Cramer-Shoup it is H(gy,Xy). Our main results concern “augmented” versions
of both of these schemes where the ciphertexts are instead (a,gy) where a is a
uniformly random bitstring used as an additional input to the hash function.

2 Technically, the lower bound also does not apply because we are considering an
augmented scheme which differs from the one analyzed by Ghoshal and Tessaro.
However, the augmentation is not important for this comparison, because in the
single-challenge setting where the lower-bound was proven, Pair CDH TAM-tightly
implies security of the non-augmented scheme as well.
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To understand these results, let us discuss the high level idea of proving secu-
rity for ECIES. A standard, single-challenge proof would work from the Strong
CDH assumption in the random oracle model. In Strong CDH an adversary is
given X “ gx, Y “ gy, and an oracle O which on input B,C tells whether
Bx “ C. Its goal is to return Xy. The only way to distinguish H(Xy) from
random is to query H on input Xy. So a reduction adversary will give X as
the encryption key, Y as the challenge ciphertext, simulate random oracle and
decapsulation queries, and checks if any of the random oracle queries are Xy

in which case it returns that. The oracle O is used for checking whether ran-
dom oracle queries are Xy (for a random oracle query Z, one queries O(Y,Z)
to check) and for maintaining consistency between random oracle and decapsu-
lation queries for non-challenge ciphertexts. A decapsulation query for Y and
a random oracle query for Y,Z should return the same result if Y x “ Z. The
reduction can maintain this consistency by remembering all of the queries made
to both oracles and then using O to check for this consistency. This is neither
time- nor memory-tight.

Bhattacharyya was able to make this TAM-tight by introducing a new tech-
nique for this consistency aspect. They simulate the random oracle H(C) by
h(e(g, C)) where h is a random function and e is a pairing. Then the output
of a non-challenge decapsulation query B can be simulated as h(e(X,B)). In
our proof we use a similar technique, but replace the requirement for a pairing-
friendly group by using a new variant of CDH we will discuss momentarily.

The first step in making the proof work in the multi-challenge setting is to
use Diffie-Hellman rerandomization techniques so we can have multiple Diffie-
Hellman challenges. We let the u-th user’s public key be Xxu and the i-th cipher-
text by Y yi . For memory-tightness, we pick xu and yi using a (pseudo-)random
function.3 Then if the adversary makes a random oracle query H(C) where
C “ Xxu·y·yu , we have C1{(xu·yu) “ Xy. A challenge here is to know which u
and i to use for such a random oracle query. A reduction could check each choice
of u, i, but this would lose time-tightness. At the same time, for a decapsulation
query B we must be able to identify if B was a prior challenge query. Storing
all prior challenge queries loses memory-tightness.

Both of these issues are solved by our addition of an auxiliary string a to
each ciphertext and hash query. The idea here is based on memory-tightness
techniques of GGJT [17], in that we are going to hide the pertinent information
we need in a. Rather than sampling a at random, if the i-th challenge query is
made to user u then our reduction adversary picks a to be the “encryption” of
(u, i). Now on future random oracle and decapsulation queries we can recover u, i
by “decrypting” a. This allows us to properly simulate the view of the adversary.

Pair CDH security. As we have been mentioning, we avoid the need for groups
with pairing in our result for ECIES by making use of a new computational
assumption. This assumption, we refer to as Pair CDH security, extends CDH
security by giving the adversary access to an oracle which, on input A and B

3 In the body, this is separated out as a proof that single-challenge CDH tightly implies
multi-challenge CDH.
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(with discrete logarithms a and b) computes a and b then returns a random
function applied to a · b. This acts, in essence, as a pairing from the group under
consideration to a randomly chosen group. Our use of this in our security proof
for ECIES takes advantage of the fact that (i) the pairing is only needed for the
proof, not in the construction itself and (ii) the proof does not require the ability
to efficiently perform group operations with the output of the pairing. We think
this notion may be of further interest if other proofs can be found where better
tightness can be achieved using a pairing only in the reduction.

To justify our new assumption we analyze how it compares to existing
assumptions. Pair CDH security is implied by CDH security if the group under
consideration has an efficient pairing. This holds because we can emulate the ran-
dom pairing by first applying the efficient pairing and then applying a random
function (which may be pseudorandomly instantiated for efficiency). In turn,
Pair CDH implies the Gap CDH assumption because a pairing can be used to
check whether given group elements form a Diffie-Hellman triple.

These results do not justify the use of Pair CDH security for typical groups
based on elliptic curves which do not have pairings. For this, we turn to non-
standard models (i.e. algebraic or generic group models [13,26,29]). In these
models, we are able to show that CDH and Pair CDH are equivalent because
learning anything from the oracle requires the ability to find non-trivial collisions
in the pairing. The ability to find such collisions can in turn be used to solve the
discrete logarithm problem.

Fujisaki-Okamoto Transformation. The other KEMs we consider are those
derived from the Fujisaki-Okamoto Transformation which starts with a CPA
secure public key encryption scheme and applies several random oracle based
transformations to construct a CCA secure KEM. Hofheinz, Hövelmanns, and
Kiltz [21] gave a nice modular approach for proving the security of several vari-
ants of this transformation. Bhattacharyya showed how to make these proofs
memory-tight in the single-challenge setting (in some cases requiring one addi-
tional intermediate transformation). We extend these to the multi-challenge set-
ting. For the final step of the transform, we need to consider an augmented trans-
form of the existing scheme in which random strings are added to each ciphertext
and incorporated into the hash queries. As before, our reduction samples these
string as the encryption of the pertinent information it would need to identify
challenge ciphertexts and respond to them appropriately.

For these results, we require that the starting CPA scheme have good
multi-challenge security. This is a significantly weaker starter point than multi-
challenge CCA security because it avoids the issue of having to be able to identify
challenge ciphertexts for the decryption oracle.

Lifting to public-key encryption. The approaches described above are
for key encapsulation mechanisms. This raises the question of whether these
tight reductions can be applied to public-key encryption via the KEM-DEM
paradigm. It uses a KEM to generate a new symmetric key for a data encapsula-
tion mechanism to encrypt the actual message with. This was previously looked
at by GGJT [17], who gave a TAM-tight proof of security. However, because of
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their particular motivations, the proof assumed the KEM was constructed from
a public-key encryption scheme. We show that (with some modifications) the
proof works with generic KEMs as well.

2 Preliminaries

2.1 Notation

We recall basic notion and security definitions we will use in our paper.

Pseudocode. For our proofs, we use the code based framework of [6]. If A is
an algorithm, then x Ð AO(x1, x2, ...; r) denotes running A on inputs x1, x2, ...
with coins r and having access to the set of oracles O to produce output x. We
use the notation Ð$ instead of Ð when not explicitly specifying the coins r. If
S is a set, |S| denotes its size and x Ð$ S denotes sampling x uniformly from
S. We use the symbol K to indicate rejection. When not specified, tables are
initialized empty and integers are initialized to 0.

Security notions are defined with games such as the one in Fig. 3. The prob-
ability that the game G outputs true is Pr[G]. We sometimes use a sequence
of “hybrid” games in one figure for our proofs. We use comments of the form
//G[i,j) to indicate that a line of code is included in games Gk for i ď k ă j. To
identify changes made to the kth hybrid, one looks for lines of code commented
as //G[i,k) for code that is no longer included in the kth hybrid and //G[k,j) for
code that is new to the kth hybrid.

Complexity Measures. Following ACFK [3], we measure the local complexi-
ties of algorithms and do not include the complexity of oracles that they interact
with. We focus on the worst case runtime Time(A) and memory used for local
computation Mem(A) of any algorithm A.

Functions and ideal models. We define Fcs(D,R) (resp. Inj(D,R)) to be the
set of all functions (resp. injections) mapping from D to R. For f P Inj(D,R),
we define f´1 to be its inverse (with f´1(y) “ K if y has no preimage). If Dt

and Rt are sets for each t P T , then we define Fcs(T,D,R) (resp. Inj(T,D,R)) to
be the set of functions f so that f(t, ·) P Fcs(Dt, Rt) (resp. f(t, ·) P Inj(Dt, Rt)).
We let ft(·) “ f(t, ·).

For f P Inj(D,R) we let f˘ denote the function defined by f˘(`, x) “ f(x)
and f˘(´, x) “ f´1(x). We often write f(x) or f´1(x) in place of f˘(`, x) or
f˘(´, x). We let Inj˘(D,R) “ {f˘ : f P Inj(D,R)} and extend this to define
Inj˘(T,D,R) analogously.

Ideal models (e.g. the random oracle or ideal cipher model) are captured by
having a scheme S specify a set of functions S.IM. Then, at the beginning of a
security game for S, a random H P S.IM is sampled. The adversary and some
algorithms of the scheme S are then given oracle access to H. The standard
model is captured by S.IM being a singleton set containing the identity function.

If F and G are sets of functions, then we define (F,G) “ F ˆ G “ { f ˆ
g : f P F, g P G }. Here, f ˆ g is the function defined by f ˆ g(0, x) “ f(x)
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and f ˆ g(1, x) “ g(x). In the code of an algorithm expecting oracle access to
f ˆ g P F ˆ G, we write f(x) or g(x) with the natural meaning. We extend this
notation to more than two sets of functions as well.

Switching lemma. Our proofs make use of the indistinguishability of random
functions and injections, as captured by the following standard result.

Lemma 1 (Switching Lemma). Fix T , D, R and N “ mintPT |Rt|. For any
adversary A making at most q queries, it holds that |Pr[Af ñ 1]´Pr[Ag ñ 1]| ď
0.5 · q2{N , where the probability is taken over the randomness of A, sampling
f Ð$ Fcs(T,D,R), and sampling g Ð$ Inj(T,D,R).

2.2 Memory-Tightness Background

F-oracle adversaries. We adopt GGJT’s [17] oracle adversary formulation
for our proofs in the memory-aware setting, i.e., we allow reductions to access
uniformly random functions or invertible random injections. Our reductions are
of the form shown below for some set of functions F and algorithm B. We call
such an adversary A an F-oracle adversary.

Adversary AO(in)
f Ð$ F
out Ð$ BO,f (in)
Return out

The complexity of adversary A would include the (large) complexity of sampling,
storing, and computing f . However, as proposed in [17], we present theorems in
terms of the reduced complexity of an oracle aided adversary which is defined as
Time˚(A) “ Time(B) and Mem˚(A) “ Mem(B).

We refer readers to Lemma 2 of [17] which bounds how much an adversary
may be aided by a random object by replacing it with a pseudorandom version
of the object. Pseudorandom injections can typically be instantiated by appro-
priately chosen encryption schemes.

There is a small issue when pseudorandomly instantiating a random function
if the game A plays is inefficient. This is the case for some of our reduction
adversaries playing CDH variants wherein they have access to some inefficient
oracle based on the group. Then the pseudorandomness reduction adversary
from [17] will be inefficient because it simulates the game that A is playing.
However, we can simply use pseudorandom schemes believed to be secure even
against adversaries with access to the inefficient oracle. This seems reasonable
as we can choose a pseudorandom scheme which seems unrelated to the group.

Message encoding techniques. The message encoding technique proposed
by GGJT in [17] programs randomness that a reduction provides to an adver-
sary in a special way that stores retrievable state information. This is achieved
by generating randomness as the output of random injections. The reduction
may then invert randomness generated thusly to retrieve state information. For
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Fig. 2. Syntax of a public key encryption scheme PKE, key encapsulation mechanism
KEM, and symmetric key encryption scheme SKE. The ideal model oracle is H.

example, consider a key encapsulation mechanism that outputs ciphertexts of
the form (a, c) where a is uniformly random. Then a reduction can simulate
challenge ciphertexts by setting a “ f(i) where f is a random injection and i
is some pertinent information the reduction would want to know if the adver-
sary later makes oracle queries for the same ciphertext. Then the reduction can
recover this information during future queries as i Ð f´1(a).

Map-then-random-function. We describe the main proof technique of Bhat-
tacharyya [7], namely “map-then-rf”.4 This technique allows the reduction to
use the composition of an injection and a random function to replace a random
function. This relies on the simple fact that if h P Inj(D,S), then sampling f
according to f Ð$ Fcs(D,R) or g Ð$ Fcs(S,R); f Ð g ˝ h are equivalent, mean-
ing, if g is a random function, and h is any injection, then f Ð g ˝h is a random
function. This allows a reduction to compute the output f(x) given h(x), even
if it does not know x.

2.3 Public Key Encryption

Syntax. A public key encryption scheme, PKE, specifies three algorithms - the
key generation algorithm (PKE.K) that returns a pair of keys (ek, dk) where ek
is the encryption key and dk is the corresponding decryption key, the encryption
algorithm (PKE.E) that takes the encryption key ek and a message m and returns
ciphertext c, and the decryption algorithm PKE.D that takes the decryption key
dk and a ciphertext c and returns message m (or the special symbol K to indicate
rejection). The syntax of these algorithms is given in Fig. 2.

Perfect correctness requires PKE.DH(dk, c) “ m for all (ek, dk) P [PKE.K],
all m, all H P PKE.IM, and all c P [PKE.EH(ek,m)]. The weaker notion of
δ-correctness requires that for all (not necessarily efficient) D,

Pr[PKE.DH(dk,PKE.EH(ek,m)) ‰ m : m Ð$ DH(ek, dk)] ď δ(q)

where q upper bounds the number of H queries D makes. The probability is
over (ek, dk) Ð$ PKE.K, H Ð$ PKE.IM, and the coins of D and PKE.E. When
not stated otherwise, schemes are assumed to be perfectly correct.

4 Bhattacharyya actually uses “map-then-prf”, as they were not using the oracle adver-
sary formulation.
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Fig. 3. Game defining mu-$cca security of PKE.

We define the encryption keyspace as PKE.Ek “ {ek : (ek, dk) P [PKE.K]}
and assume that for each ek P PKE.Ek and allowed message length n, there exists
a set PKE.C(ek, n) such that PKE.EH(ek,m) P PKE.C(ek, |m|) always holds. We
assume this set is disjoint for distinct message lengths and let PKE.C´1(ek, c)
return n such that c P PKE.C(ek, n). We let PKE.R denote the set from which
PKE.E draws its randomness. Sometimes we assume that all messages to be
encrypted are drawn from a set PKE.M of equal length messages and then let
PKE.C simply denote the set of all possible ciphertexts.

Indistinguishable from Random Security. We consider indistinguishable
from random, chosen ciphertext attack ($CCA) security as captured by Fig. 3.
The definition multi-user and multi-challenge (allowing multiple challenges per
user). It requires ciphertexts output by the encryption scheme be indistinguish-
able from random, even when given access to a decryption oracle. In this game,
the adversary obtains the encryption key eku for user u by querying New(u). It
makes an encryption query Enc(u,m) to receive a challenge encryption of m by
u and a decryption query Dec(u, c) to have u decrypt c. The adversary needs
to distinguish between the real world (b “ 1) in which a query to Enc(u,m)
returns a real encryption of m and the ideal world (b “ 0) in which the same
query returns a uniformly random element of PKE.C(eku, |m|).

Table entry M [u, c] stores the message encrypted in user u’s challenge cipher-
text c. If the adversary queries Dec with a challenge ciphertext it returns M [u, c]
rather than performing the decryption. Prior works on memory-aware cryptogra-
phy [17,19] considered other ways a decryption oracle might respond to challenge
ciphertexts and argued that this is the “correct” convention. The advantage of
an adversary A is0 Advmu-$cca

PKE (A) “ Pr[Gmu-$cca
PKE,1 (A)] ´ Pr[Gmu-$cca

PKE,0 (A)]. In this
and future definition we let U denote the set of allowed user identifiers u.

The general framework of capturing multi-user security by allowing the
attacker to access separate instances of oracles for each user with shared secret
bit across them is originally due to Bellare, Boldyreva, and Micali [5] who pro-
vided a definition for IND-CPA secure public-key encryption.

One-Wayness Security. Following the one-wayness security definitions in [21],
we define variants of one-wayness security of PKE schemes in the multi-user,
multi-challenge setting in Fig. 4. We define three variants - One-Wayness under
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Fig. 4. Game defining mu-ow-w security of PKE for w P {cpa, pca, pcva}.

Chosen Plaintext Attacks (OW-CPA), One-Wayness under Plaintext Checking
Attacks (OW-PCA) and One-Wayness under Plaintext and Validity Checking
Attacks (OW-PCVA). The difference between each variant w P {cpa, pca, pcva}
is in the auxilliary oracle(s) O that the adversary is given access to.

In each variant, the adversary is tasked with finding the decryption of a
challenge ciphertext which encrypt a message randomly sampled from PKE.M.
In the game Gmu-ow-cpa

PKE , the adversary does not have access to any auxilliary
oracle as indicated by O Ð K. In the game Gmu-ow-pca

PKE , the adversary has access
to the Plaintext Checking Oracle PCO which takes as input a valid message-
ciphertext pair, and returns true if the message is a valid decryption of the
ciphertext and false otherwise. The adversary has access to both oracles, PCO
and CVO, in Gmu-ow-va

PKE where CVO takes as input a ciphertext, and returns
true if the ciphertext decrypts to a valid message. For each variant, we define
Advmu-ow-w

PKE (A) “ Pr[Gmu-ow-w
PKE ]. Note that an adversary may re-query Chal(u, i)

to get back the same ciphertext. This makes it hard to prove one-wayness, but
easier write proofs starting from one-wayness. We sometime assume challenge
identifiers, i, are drawn from a fixed set I.

2.4 Key Encapsulation Mechanisms

Syntax. A key encapsulation mechanism, KEM, consists of three algorithms
- the key generation algorithm (KEM.K) that returns a pair of keys (ek, dk)
where ek is the encapsulation key and dk is the corresponding decapsulation key,
the encapsulation algorithm (KEM.E) that takes the encapsulation key ek and
returns a ciphertext-key pair (c,K) where K P KEM.K and the decapsulation
algorithm KEM.D that takes the decapsulation key dk and a ciphertext c and
returns a key K (or K to indicate rejection). The syntax of these algorithms is
shown in Fig. 2. Perfect correctness requires that KEM.DH(dk, c) “ K for all
(ek, dk) P [KEM.K], all H P KEM.IM, and all (c,K) P [KEM.EH(ek)].

We define encryption keyspace KEM.Ek “ {ek : (ek, dk) P [KEM.K]}. For ek P
KEM.Ek we let KEM.C(ek) denote the ciphertext set {c : (c,K) P [KEM.E(ek)]}
and define |KEM.C| “ minekPKEM.Ek |KEM.C(ek)|. We let KEM.R denote the set
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Fig. 5. Game defining mu-$cca security of KEM.

from which KEM.K draws it randomness. We say that KEM is ε-uniform if for
all ek P KEM.Ek, H P KEM.IM, and (not necessarily efficient) D it holds that

Pr[D(c) “ 1 : c Ð$ KEM.C(ek)] ´ Pr[D(c) “ 1 : (c, ·) Ð$ KEM.EH(ek)] ď ε.

Indistinguishable from Random Security. Our notion of $CCA security
for KEMs is presented in Fig. 5, which requires that keys and ciphertexts out-
put by the scheme be indistinguishable from random. The adversary is given a
user instantiation oracle New, encapsulation oracle Encap, and a decapsulation
oracle Decap. Its goal is to distinguish between the real world (b “ 1) where
Encap returns true outputs from KEM.E and the ideal world (b “ 0) where it
returns a pair (c,K) chosen uniformly at random from KEM.C(ek) ˆ KEM.K.

The table T stores the keys corresponding to challenge ciphertexts output
by the encapsulation oracle. The decapsulation oracle uses T to respond to chal-
lenge queries. The advantage of an adversary A is defined as Advmu-$cca

KEM (A) “
Pr[Gmu-$cca

KEM,1 (A)] ´ Pr[Gmu-$cca
KEM,0 (A)]. We also define CCA security (via Advmu-cca

KEM

and Gmu-cca
KEM,b ) analogously to $CCA security, except in the Encap oracle c0 is set

to equal c1 rather than being sampled at random.

2.5 Symmetric Key Encryption

Syntax. A symmetric key encryption scheme, SKE, consists of three algo-
rithms - the key generation algorithm (SKE.K) that returns a key K, the
encryption algorithm (SKE.E) that takes the key K and a message m and
returns ciphertext c, and the decryption algorithm SKE.D that takes the key
K and a ciphertext c and returns message m (or K to indicate rejection).
The syntax of these algorithms is given in Fig. 2. Perfect correctness requires
that SKE.DH(K, c) “ m for K P [SKE.K], all m, all H P SKE.IM, and all
c P [SKE.EH(K,m)]. We define the ciphertext, message, and expansion lengths
of SKE by SKE.cl(|m|) “ |SKE.EH(K,m)| (requiring this to hold for all H,K,m),
SKE.ml(SKE.cl(l)) “ l, and SKE.xl “ minl SKE.cl(l) ´ l respectively.
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Fig. 6. Game defining mu-$cca security of SKE.

Indistinguishable from Random CCA Security. Our notion of $CCA
security for SKE schemes is captured by Fig. 6, which requires that ciphertexts
output by the encryption scheme be indistinguishable from ciphertexts chosen
at random. In this game, the adversary is given access to an encryption oracle
Enc and a decryption oracle Dec. The adversary needs to distinguish between
the real world (b “ 1), where Enc returns an encryption of m under Ku and the
ideal world (b “ 0) where the output of Enc is sampled uniformly at random.
The advantage of an adversary A is defined as Advmu-$cca

SKE (A) “ Pr[Gmu-$cca
SKE,1 (A)]´

Pr[Gmu-$cca
SKE,0 (A)]. We will only need “one-time” security in which the adversary

only makes one encryption query per user.

3 Diffie-Hellman Definitions

In this section, we introduce the Computational Diffie-Hellman (CDH) assump-
tions we need for our later proofs. The first is a multi-user, multi-challenge
variant of Strong CDH (which we need for one of our coming KEM proofs). We
verify this is TAM-tightly implied by single-challenge variants. The second is a
new definition we introduce, Pair CDH, which gives the adversary oracle access
to a pairing from the group under consideration to a random group. We provide
several results to understand the plausibility of Pair CDH security. We show
that it always implies Gap CDH security and is {AM,TM}-tightly equivalent to
CDH in algebraic/generic group models [13,26,29] or if the group has a pairing.

3.1 Group Syntax

A prime order group G is a tuple (g, p, ˝) where g is a group generator of prime
order p under the group operation ˝. In our definitions we will treat the group
as a priori fixed. We typically omit writing the group operation ˝ explicitly and
instead write group operations using multiplicative notation. We let xgy “ {ga :
a P N}. The discrete log(arithm) of an element X P xgy is the value dlog(X) P Zp

such that gdlog(X) “ X. We let 1G “ g0 denote the identity element. A pairing
from G “ (g, p, ˝) to G2 “ (g2, p2, ˝2) is a map e : xgy ˆ xgy → xg2y satisfying
e(gx,gy) “ gxy

2 . We let Time(G) and Mem(G) denote the time and memory
complexity of computing exponentiations or multiplications in xgy.
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Fig. 7. Security games capturing several variants of the computational Diffie-Hellman
problem, namely, CDH, Gap CDH, Strong CDH, and Pair CDH. The last of these is
a new notion we introduce which gives the attacker access to a pairing from G to a
random group.

3.2 Computational Diffie-Hellman Variants

In this paper we will make use of several variants of the Computational Diffie-
Hellman assumption. These security notions are defined by the game shown
in Fig. 7. In each, the adversary is given access to a gx and gy with the goal
of producing gxy. For our later security proofs, it was useful to write “multi-
user” and “multi-challenge” version of these games. Thus rather than giving the
adversary a single gx, we give it access to an oracle New which on input a
string u (which we think of as identifying a user) returns a fresh gxu . Similarly,
the adversary is given access to an oracle Chal which on inputs string u and
i (which we think of as identifying a challenge) returns a fresh gyu,i . For the
memory-tightness of future proofs, it is important that the attacker can repeat
queries, obtaining the same result as before. The goal of the attacker is to return
gxuyu,i for any choice of u and i.

The different variants of CDH are captured by the games differing in what
(if any) auxiliary oracle O the adversary is given. The standard notion of CDH
security is captured by the game Gcdh in which the adversary is not given any aux-
iliary oracle, as expressed by the code O Ð K. Gap CDH security [27] is captured
by Ggcdh in which the adversary’s oracle Gap takes as input a tuple (A,B,C)
and outputs a boolean indicating whether this is a valid Diffie-Hellman tuple
(i.e. C “ gdlog(A) dlog(B)). The Strong CDH game Gscdh [2] is a weakened version
of Gap CDH in which the oracle only allows tuples of the form (gxu , B,C).

The final variant is a new security notion we introduce called Pair CDH.
In this game Gpcdh, the adversary is given access to the oracle Pair which on
input (A,B) returns f(gab) where a, b are the discrete logs of A,B and f is a
random injection. This oracle can be thought of being a pairing to a random
group G2 “ (g2, p, ˝2) where g2 “ Pair(g,g) and h ˝2 h′ “ f(f´1(h) ˝ f´1(h′)).
Note that A is not able to efficiently compute the operation ˝2.
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Fig. 8. Adversary used for Lemma 2.

For x P {cdh, scdh, gcdh, pcdh} we define AdvxG(A) “ Pr[Gx
G
(A)]. We some-

times need to restrict user identifiers, u, to be from some fixed set U and challenge
identifiers, i, to be a from a fixed set I.

Multi-challenge security. Standard proofs use Diffie-Hellman rerandomiza-
tion techniques to show that single-challenge security TA-tightly implies multi-
challenge security for most variants of Diffie-Hellman-based security notions.
The following lemma extends this to TAM-tightness for the notions considered
in this paper. The proof is an extension of standard Diffie-Hellman rerandom-
ization techniques that picks the values used for rerandomization as the output
of a random function, rather than picking them randomly and storing them.

Lemma 2 (Single-challenge ñ multi-challenge). Let G be a group and
x P {cdh, scdh, gcdh, pcdh}. Let A be an adversary for Gx

G
with (qNew, qChal, qO) “

Query(A). Then we can construct a (Fcs(U ,Zp̊),Fcs(U ˆ I,Zp̊))-oracle adver-
sary Bx (given in the proof) such that

AdvxG(A) “ AdvxG(Bx)
Query(Bx) “ (1, 1, qO)
Time˚(Bx) “ O(Time(A) ` (qNew ` qChal ` qO ` 1)Time(G))
Mem˚(Bx) “ O(Mem(A) ` 2Mem(G)).

Proof of Lemma 2). Consider the adversary Bx shown in Fig. 8. It makes a single
query New(1) to obtain a group element X and a single query Chal(1, 1) to
obtain a group element Y . Then it runs A. Let x “ dlog(X) and y “ dlog(Y ).

It responds to SimNew(u) queries with Xx′
u for x′

u the output of its random
function. Letting xu “ xx′

u, note that Xx′
u “ gxu and xu is uniformly random

because x′
u is. So this oracle has the correct distribution. It responds to SimChal

queries with Y y′
u,i for y′

u,i output by its random function. Letting yu,i “ yy′
u,i,

note that Y y′
u,i “ gyu,i and that yu,i is uniformly random because y′

u,i is.
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For CDH, Gap CDH, or Pair CDH security Bx gives A direct access to O. For
Strong CDH security (x “ scdh), Bx simulates the oracle by replacing a query
(u,B,C) with a query (1, B,C1{x′

u) which has the same behavior.
When A finally halts and outputs (u, i, Z) the adversary Bx halts and outputs

(1, 1, Z1{(x′
uy′

u,i)). We claim that Bx wins whenever A would. To see this, note
that if A wins then Z “ gxuyu,i “ g(xx′

u)(yy′
u,i) and so Z1{(x′

uy′
u,i) “ gxy. ��

3.3 Studying Pair CDH

Pair CDH is a new computational assumption that we’ve introduced for this
work. In this section we provide a few results to give a sense of its difficulty.
Namely, we note that Pair CDH security implies Gap CDH security and that it
is equivalent to CDH security in certain settings (if G has an efficient pairing
to some G2, in the algebraic model, and in the generic group model). Given
Lemma 2, we focus on the case that the adversary makes only single query each
to New and Chal. For brevity, we sketch the relationships here.

Pair CDH ñ Gap CDH. To see that Pair CDH security implies Gap CDH
security we need only note that Gap(A,B,C) “ true if and only if Pair(A,B) “
Pair(g, C). Hence a Pair CDH adversary can efficiently simulate the view of a
Gap CDH adversary.

CDH ` pairing ñ Pair CDH. We claim that CDH security implies Pair
CDH security if G has an efficient pairing e to some group G2 with generator
g2. We can achieve TAM-tightness in this implication by using a Inj(xg2y,Zp)-
oracle adversary. Letting f ′ denote the random injection, our CDH adversary
can simulate Pair by responding to queries for (A,B) with f ′(e(A,B)). If a “
dlog(A) and b “ dlog(B), then f ′(e(A,B)) “ f ′(e(g,g)ab). Note that F (·) “
e(g,g)(·) is an injection and so f(·) “ f ′(e(g,g)(·)) is a random injection. Hence
this perfectly emulates Pair.

CDH ` AGM/GGM ñ Pair CDH. We claimed that CDH security implies
Pair CDH security in the algebraic group model. More precisely, we {AM,TM}-
tightly show that CDH security implies Pair CDH security using a Fcs(Z6

p,Zp)-
oracle adversary. We show a way to imperfectly simulate Pair for algebraic
adversaries such that distinguishing this from the real oracle requires the ability
to solve the discrete log problem (given gc for a random c, find c). Noting that
CDH security implies discrete log security gives our claim.

Let X and Y denote the challenge group elements and let x “ dlog(X)
and y “ dlog(Y ). An algebraic adversary, when making an oracle query (A,B)
to Pair is required to additionally provide “explanations” (a1, a2, a3) and
(b1, b2, b3) such that A “ ga1Xa2Y a3 and B “ gb1Xb2Y b3 . Then the true Pair
would respond with f((a1 ` a2x ` a3y) · (b1 ` b2x ` b3y)). Our CDH adversary
will think of this input to f as a degree-two polynomial PA,B(x,y) P Zp[x,y]
whose coefficients it can compute given the explanations for A and B. Let-
ting (c1, c2, . . . , c6) denote these coefficients and f ′ P Fcs(Z6

p,Zp), we simulate
the output of Pair as f ′(c1, c2, . . . , c6). Distinguishing this from the true oracle
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requires finding (A,B) and (A′, B′) such that PA,B ‰ PA′,B′ (as polynomials),
but PA,B(x, y) “ PA′,B′(x, y). Using analysis techniques from [4], we can use the
ability to find such “colliding” polynomials to solve the discrete log problem. We
provide details of this analysis in the full version [23].

To achieve TM-tightness, the discrete log reduction picks two of the Pair
oracle queries at random and assumes that they give colliding polynomials. To
achieve AM-tightness, we can check every pair of queries for collisions using
the memory-tight rewinding technique of Auerbach, et al [3]. Namely, each time
we reach a new Pair oracle query while running the Pair CDH adversary, we
pause and run an extra copy of that adversary from the start using the same
coins. While running this extra copy, each time it makes a Pair oracle query
we check if this gives a colliding polynomial with the query we paused at in the
first adversary. Ignoring memory tightness, A could simply remember all of the
Pair oracle queries and check them at the end of execution, but then it is not
clear how to achieve better time efficiency than checking each pair of queries.

When working in a generic group model [26,29] we can use the same line
of reasoning and then information theoretically bound the probability that an
adversary finds colliding polynomials by O(q2{p) where q is the number of queries
the Pair CDH adversary makes.

4 Hashed ElGamal KEMs

In this section we present the first example of KEMs with TAM-tight proofs in
the multi-challenge setting. The KEMs we consider are variants of the ECIES
and Cramer-Shoup Hashed ElGamal KEMs. These variants augment the existing
schemes by adding random strings to the ciphertexts and random oracle queries.
Our reductions make use of these strings to store pertinent information that will
be needed to answer later oracle queries.

4.1 Augmented ECIES

Augmented Version. We start with the ECIES [1] variant of Hashed ElGamal.
Our augmented version of ECIES includes a random string a in the ciphertext.
The augmented ECIES key encapsulation mechanism aECIES[G,K, l] is param-
eterized by a group G “ (g, p, ˝), key space K, and length of the random string,
l. The parameters G,K, and l are fixed for an instantiation of ECIES, so we use
aECIES and aECIES[G,K, l] interchangeably. We define the scheme as follows
with aECIES.K “ K and aECIES.IM “ Fcs({0, 1}l ˆ G,K).

aECIES.K

x Ð$ Z
∗
p

ek Ð gx

dk Ð x
Return (ek, dk)

aECIES.EH(ek)
a Ð$ {0, 1}l

y Ð$ Z
∗
p

Y Ð gy

Z Ð eky

K Ð H(a, Z)
Return ((a, Y ),K)

aECIES.DH(dk, (a, Y ))
Z Ð Y dk

K Ð H(a, Z)
Return K
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Overview of existing techniques and associated challenges. Bhat-
tacharyya [7] studied ECIES in the memory-aware setting. They pointed out
the technique of simulating random oracles with PRFs introduced in [3] cannot
be used for this family of KEMs, as in general, decapsulation queries cannot
be simulated by the reduction. For example, if a PRF F is used to compute
hashes as F(k, Z) instead of the random oracle H, for a decapsulation query Y
the reduction would need to return F(k, Y dk) which it cannot compute.5

Bhattacharyya used the map-then-prf technique as a workaround for groups
with pairings. In this technique, the input Z to the random oracle is first operated
on by a bilinear map e(g, Z), and then by the PRF F. Hence, the query H(Z)
is simulated as F(k, e(g, Z)) and a decapsulation query for Y can be simulated
as F(k, e(ek, Y )) for all non-challenge ciphertexts. The reduction remembers the
challenge ciphertext and returns appropriately when it is queried to Decap.

This does not scale to the multi-user, multi-challenge setting since it requires
that the reduction remembers all the challenge ciphertexts, incurring a memory
overhead. Our solution for augmented ECIES combines Ghoshal et al.’s message
encoding technique [17] with the map-then-rf technique. We encode the identi-
fying information of challenge ciphertexts in a using a random injection so that
this information can be recovered when an appropriate oracle query is made. To
avoid the need for an efficiently computable pairing we make use of our new Pair
CDH assumption. Our result is captured in Theorem 1.

Theorem 1 (Pair CDH ñ $CCA). Let aECIES “ aECIES[G,K, l] where
G “ (g, p, ˝) is a prime order group. Define D1 “ {0, 1}l ˆ G and D2 “ U ˆ
[qEncap]. Let A be an adversary with Query(A) “ (qNew, qEncap, qDecap, qH) and
assume 2l ą |U|·qEncap. Then Fig. 12 gives a (Fcs(D1,K), Inj(D2, {0, 1}l))-oracle
adversary B such that

Advmu-$cca
aECIES (A) ď 2Advpcdh

G
(B) ` q2Encap

2l
` 2qEncap(2qDecap ` |U| · qH)

2l(p ´ 1)
Query(B) “ ((qNew ` qEncap), (qEncap ` qDecap ` qH), (qEncap ` qDecap ` 2qH))
Time˚(B) “ O(Time(A)) and Mem˚(B) “ O(Mem(A)).

Choosing the auxiliary string length. When instantiating this scheme one
must choose the parameter l which determines the length of a. Larger l incurs
a communication cost, while too small of a l can harm the concrete security
results. We can expect the q2Encap{2l term to dominate the information theoretic
part of the bound. With cautious choice of l “ 256, the size of the ciphertext
is not too significantly increased, but even with qEncap “ 264 encapsulations (an
intentional overestimate of what seems likely) we get q2Encap{2l “ 2´128.

Several of coming theorems use of an auxiliary string a of length l. Similar
reasoning applies and l “ 256 seems like a sufficient choice for all of them.

5 We discuss the use of PRFs to match prior work, but in the oracle adversary frame-
work, we use random function oracles instead.
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Intuition. For each Encap query, our Pair CDH adversary programs the ran-
dom string a as the output of a random injection applied to user identity u and
counter i and simulates the random oracle H(a, Z) as H(a,Pair(g, Z)). This
allows us to simulate decapsulations because Pair(gx,gy) “ Pair(g,gxy).

Our adversary simulates j-th challenge ciphertexts Yu.i as Chal(u, i). To
determine if a decapsulation query (u, a, Y ) is for a challenge ciphertext, the
reduction first inverts a to obtain (v, j). If v “ u, it re-queries Chal(u, j) obtain
the corresponding ciphertext Yu,j . If Y “ Yu,j , the reduction assumes this was
a challenge ciphertext. Finally, when the adversary A queries the oracle H with
(a, Z) such that a´1 “ (u, j) and Pair(g, Z) “ Pair(New(u),Chal(u, j)), the
reduction outputs Z and wins the Pair CDH game.

Proof (of Theorem 1). We use a sequence of hybrids H1
0 through H1

1, H
2
0 through

H2
2, and H3

0 through H3
3 presented in Figs. 9, 10, and 11 where we establish the

following claims that upper bound the advantage of adversary A.

1. Advmu-$cca
aECIES (A) “ 2Pr[H1

0] ´ 1
2. Pr[H1

0] ď Pr[H1
1] ` q2

Encap

2·2l
3. Pr[H1

1] “ Pr[H2
0] “ Pr[H2

1]
4. Pr[H2

1] “ Pr[H2
2] “ Pr[H3

0]
5. Pr[H3

0] “ Pr[H3
1]

6. Pr[H3
1] ď Pr[H3

2] ` qEncap(2qDecap`|U|·qH)
2l(p´1)

7. Pr[H3
2] ď Pr[H3

3] ` Pr[bad]
8. Pr[H3

3] ď 1
2

9. Pr[bad] ď Advpcdh
G

(B)

Transition to H1
0. We claim that the view of A in H1

0 is identical to its view
in Gmu-$cca

aECIES,b (Fig. 5) if b is chosen uniformly. In the latter, Encap1 returns a
ciphertext-key pair (c1,K1) such that c is the encapsulation of K1, and Encap0
returns a ciphertext-key pair (c0,K0) where c0 and K0 are uniformly random
elements of the ciphertext space and key space respectively. The same holds for
the Encap oracle in H1

0. The table T in Gmu-$cca
aECIES,b is indexed by (u, c) and stores

the key that was returned by the Encapb oracle for ciphertext c. The table T
in H1

0 behaves analogously. The Decap oracle in Gmu-$cca
aECIES,b returns key Kb that

was output by the Encapb oracle when queried on a challenge ciphertext, and
returns honest decapsulations otherwise. The same is true for H1

0. Note that H1
0’s

final output is whether b′ “ b, so standard conditional probability calculations
give that Advmu-$cca

aECIES (A) “ 2Pr[H1
0] ´ 1.

Transition H1
0 to H1

1. In H1
1, we make the following changes.

1. In the Encap oracle we switch from
(a) sampling the values a(.,.) uniformly to assigning them as the output of a

random injection g evaluated on (u, i).
(b) sampling the values y(.,.) uniformly to assigning them the output of a

random function h evaluated on (u, i). Switching to the random function
h does not change the view of the adversary because the ordered pair
(u, i) never repeats.

2. In the Decap oracle we switch the If condition from checking whether
T [u, a, Y ] ‰ K to evaluating the boolean u “ v ^ j P I[u]^Y “ gh(u,i). These
conditons are equivalent since T [u, a, Y ] ‰ K iff a “ g(u, j) and Y “ gh(u,j)

for some j P I[u].
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Fig. 9. First set of hybrids H1
0 through H1

1 used for proof of Theorem 1.

The only change in the adversary’s view comes from 1(a). The switching lemma
(Lemma 1) gives us Pr[H1

0] ď Pr[H1
1] ` q2

Encap

2·2l .

Transition H1
1 to H2

0. The transition to hybrid H2
0 is shown in Fig. 10. We have

highlighted the ways in which H2
0 differs from H1

2. Our changes are the following.

1. In the Encap oracle, the table T̃ has been added to record the responses to
the H queries made within Encap.

2. In the H oracle, an If block is added to check if the input tuple (a, Z) was
previously queried to H from within the Encap oracle. In essence, the If
block returns H(a, Z) when queried on a challenge ciphertext. The H oracle
would behave the same way without the If block, as in H1

1.

Hence, Pr[H1
1] “ Pr[H2

0].

Transition H2
0 to H2

1. In game H2
1, we introduce the pairing oracle Pair. It is

only used by oracles within the game; the adversary does not have direct access
to it. Note that Pair(g, Z) “ Pair(gxu , Y ) iff Z “ Y xu .

In the H oracle, we switch the condition from checking T̃ [a, Z] ‰ K to evaluat-
ing the boolean j P I[u]^Pair(g, Z) “ Pair(Xu, Y ) where (u, j) “ g´1(a), Y “
gh(u,j). These two conditions are equivalent. Note that T̃ [a, Z] ‰ K means it was
filled in an encapsulation query. Suppose this was the j-th query and was to u.
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Fig. 10. Second set of hybrids H2
0 through H2

2 used for proof of Theorem 1.
Grey highlighting is used to show the difference between H1

1 and H2
0. Note that Pair is

used internally by other oracles and is not directly accessible to A.

Then a “ g(u, j) must hold, j would have been added to I[u], and Z “ X
h(u,j)
u

(so Pair(g, Z) “ Pair(Xu, Y )). Thus, Pr[H2
0] “ Pr[H2

1].

Transition H2
1 to H2

2(map-then-rf). In H2
2, the random function H is replaced

by a random function H̃ from Fcs(D1,K) where D1 “ {0, 1}l ˆ Zp. We replaced
the function H as H(a, Z) “ H̃(a,Pair(g, Z)). Then H is a random function if
H̃ is, Pair(g, .) is an injection. Hence, Pr[H2

1] “ Pr[H2
2].

Transition H2
2 to H3

0. Game H3
0 is shown in Fig. 11. We have highlighted the

ways in which H3
0 differs from H2

2. In H3
0, the key K0

(.,.) is assigned the output of a
random function E from Fcs(D1,K), instead of sampling it at random. This does
not change the adversary’s view as a never repeats. Hence, Pr[H2

2] “ Pr[H3
0].

Transition H3
0 to H3

1. In H3
1, the table T is no longer used. The change is in the

Decap oracle where the If condition evaluates whether the bit b is 0. Note that
the Decap oracle always returns Kb. When b “ 0, it returns E(a,Pair(g, Z))
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Fig. 11. Third set of hybrids H3
0 through H3

3 used for proof of Theorem 1.

which is what was used to compute K0 in Encap. The If condition evaluates to
false under two cases

1. (a,Y) is a challenge ciphertext and b “ 1
2. (a,Y) is not a challenge ciphertext.

In both these cases, the Decap oracle returns H̃(a,Pair(g, Z)) which is the same
as K1. Therefore, this modification does not change the view of the adversary
and Pr[H3

0] “ Pr[H3
1].

Transition H3
1 to H3

2. In H3
2 we change the If statements in the H and Decap

oracles. In both places, we remove the check j P I[u]. H3
1 and H3

2 differ only under
the following events:

1. The adversary makes a Decap query for (u, a, Y ) such that (u, j) “ g´1(a)
and Y “ gh(u,j) but j R I[u].
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2. The adversary makes a H query for (a, Z) such that Pair(g, Z) “
Pair(Xu, Y ) and Y “ gh(u,j) (where (u, j) “ g´1(a)) but j R I[u].

To cause either of these events, the adversary must “guess” a point a in the
image of g other than the at most qEncap such points for which it was given the
corresponding ciphertexts by Encap. We analyze the probability of this event
in H3

1 where the behaviors of Decap and H can only depend on the values of
h(u, ·) and g(u, ·) for inputs in I[u]. Hence, A only learns about h(u, ·) and g(u, ·)
through its queries to Encap. At some fixed point in time, let n denote the total
number of Encap queries that A has made so far and nu denote the number of
Encap queries it has made to user u.

First consider a query Decap(u, a, Y ). For this to differ between the games it
must hold that a is in the image of g(u, ·). There are qEncap total such values, of
which the adversary has already seen nu from Encap. This is out of the 2l values
in the codomain, of which the adversary has already seen n from Encap. Thus
there is a (qEncap ´ nu){(2l ´ n) ď (qEncap ´ nu ` n){2l ď 2qEncap{2l chance that
the adversary picks such an a. The adversary must additionally have guessed
the correct gh(u,j), which it has an at most 1{(p ´ 1) chance of having done.

Now consider a query H(a, Z). For this to differ between the games it must
hold that a is in the image of g(·, ·). There are |U| · qEncap total such values,
of which the adversary has already seen n from Encap. This is out of the 2l

values in the codomain, of which the adversary has already seen n from Encap.
Thus there is a (|U| · qEncap ´ n){(2l ´ n) ď |U| · qEncap{2l chance that the
adversary picks such an a. The adversary must additionally have guessed the
correct X

h(u,j)
u , which it has an at most 1{(p ´ 1) chance of having done.

Applying a union bound over all Decap and H queries gives the claimed
bound Pr[H3

1] ď Pr[H3
2] ` (2qEncapqDecap ` |U| · qEncapqH){(2l · (p ´ 1)).

Transition H3
2 to H3

3. In H3
3, the table T̃ is removed. The change is in the H

oracle, wherein if the adversary queries the H oracle with a challenge cipher-
text, the H oracle aborts. Using the fundamental lemma of game playing, this
probability is bounded as Pr[H3

2] ď Pr[H3
3] ` Pr[bad].

In H3
3, the adversary is unable to compute H(a, Z) for challenge ciphertexts

using the H oracle or the Decap oracle. The Decap oracle returns Kb on all
challenge ciphertexts (which is the same value that was returned by the Encap
oracle) and the H oracle aborts on challenge ciphertexts. Therefore, the adver-
sary’s view in H3

3 is independent of the bit b. Hence, Pr[H3
3] ď 1{2.

To bound Pr[bad], we construct an adversary B given in Fig. 12 against the
Pair CDH security of G. We claim that B perfectly simulates H3

3 for A. Note
that the challenge ciphertext is computed using B’s challenge oracle, and the If
condition in the H has been replaced with a call to B’s Pair oracle. Whenever
the flag bad is set, B outputs the corresponding (u, j, Z) and wins the Pair CDH
game. Therefore, Pr[bad] ď Advpcdh

G
(B). ��
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Fig. 12. Adversary B for Theorem 1; O “ {New,SimEncapb,SimDecap,SimH}.

4.2 Augmented Cramer-Shoup KEM

Augmented Version. In this section we present a memory-tight reduction for
an augmented version of the Cramer-Shoup KEM [8]. The augmented Cramer-
Shoup key encapsulation mechanism aCS[G,K, l] is parameterized by a group
G “ (g, p, ˝), key space K, and length of the random string, l. The parameters
G,K, and l are constants for any instantiation of the Cramer-Shoup KEM and
hence, we override notation and use aCS and aCS[G,K, l] interchangably. We let
aCS.IM “ Fcs({0, 1}l ˆ G

2,K) and define the scheme as follows.

aCS.K

x Ð$ Z
∗
p

ek Ð gx

dk Ð x
Return (ek, dk)

aCS.EH(ek)
a Ð$ {0, 1}l

y Ð$ Z
∗
p

Y Ð gy

Z Ð eky

K Ð H(a, Y, Z)
Return ((a, Y ),K)

aCS.DH(dk, (a, Y ))
Z Ð Y dk

K Ð H(a, Y, Z)
Return K

Overview of existing techniques and associated challenges. A tra-
ditional security reduction for the Cramer-Shoup KEM from the Strong CDH
problem in the single-user, single-challenge setting would use l “ 0 and the
lazy sampling technique to simulate H as a random oracle. The reduction would
maintain a table T to store H queries and corresponding responses. When the
adversary makes a decapsulation query on Y , the reduction would check the table
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to see if an entry T [Y,Z] exists such that Gap(X,Y,Z) “ true where X “ gx is
the public key. If the entry exists, it would return the corresponding value, and
if it does not exist, the reduction would sample a new uniformly random element
K from the key set K. The reduction would then store T [Y, ] Ð K and return
K. The second entry would be filed in the table T when the adversary makes
a hash query for (Y,Z) such that Gap(X,Y,Z) “ true. The reduction wins the
Strong CDH game if it outputs a Z such that Z “ gxy, which it does by waiting
for the Cramer-Shoup adversary to query its hash oracle on inputs (Y,Z) such
that Gap(X,Y,Z) “ true.

Like with ECIES, the random oracle simulation using PRF technique cannot
be used here as it is not possible for the reduction to simulate decapsulation
queries using the PRF. Bhattacharya avoided this issue using the map-then-
prf technique, defining H(Y,Z) so that when Z “ Y dk, H(Y,Z) is computable
from ek, Y . This allows properly responding to decapsulation queries when the
reduction only has access to Y and cannot compute Z “ Y dk.

This proof breaks in the multi-challenge setting because it is not clear how
to identify and respond to challenge ciphertexts without simply storing them all.
Once again, augmentation with a random string a allows encoding the informa-
tion needed to respond to queries appropriately. Our result is captured by the
following theorem. The proof of Theorem 2 is given in the full version [23].

Theorem 2 (Strong CDH ñ $CCA). Let G “ (g, p, ˝) be a group of prime
order p. Let K and l be fixed. Define aCS “ aCS[G,K, l].

Let D1 “ {0, 1}l ˆ G ˆ G Y {‹} and D2 “ U ˆ [qEncap]. Let A be a mu-$cca
adversary with Query(A) “ (qNew, qEncap, qDecap, qH) and assume 2l ą 2qEncap.
We construct a (Fcs(D1,K) ˆ Inj(D2, {0, 1}l))-oracle adversary B such that

Advmu-$cca
aCS (A) ď 2AdvscdhG (B) ` q2Encap

2l
` 2qEncap(2qDecap ` |U| · qH)

2l(p ´ 1)
Query(B) “ (qNew, (qEncap ` qDecap ` qH), qH)
Time˚(B) “ O(Time(A)) and Mem˚(B) “ O(Mem(A)).

Intuition. For this proof, we program the random string a as the output of a
random injection g applied to a user identity u and a counter i and simulate the
random oracle H using the random function H̃(α(a, Y, Z)) where α is an injection
from {0, 1}l ˆ G ˆ G Y {‹} to {0, 1}l ˆ {0, 1} ˆ G

2 that can be computed with
knowing Z when Z “ Y ek.

Our reduction adversary plays the Strong CDH game where it gets its chal-
lenge ciphertexts Y from the oracle Chal(u, i). To determine if a decapsula-
tion query (u, a, Y ) is for a challenge ciphertext, the reduction first inverts a
to obtain (v, j). If u “ v, it queries Chal(u, j) to obtain the ciphertext Yu,j .
Then it can simply check if Y “ Yu,j . Finally, when the adversary A queries the
oracle H with (a, Y, Z) such that g´1(a) “ (u, j) and Strong(u, Y, Z) “ true
and Y “ Chal(u, j), the reduction outputs (u, j, Z) and wins the Strong CDH
game.
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5 Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto [14,15] transformations use a random oracle to construct
an IND-CCA secure KEM from a weakly (IND-CPA) secure PKE scheme. Bhat-
tacharyya presented memory-tight reductions for the modules analyzed in [21]
in the single-user, single-challenge setting [7]. In our work, we use the message
encoding technique along with map-then-rf technique to prove memory-tight
reductions for one version of the Fujisaki-Okamoto transformations in the multi-
user, multi-challenge setting. In the following subsections, we present the defini-
tions and memory-tight reductions for the transformations T, aV, and aUK.

5.1 Transformation T [IND-CPA → OW-PCA]

The transformation T constructs a deterministic OW-PCA secure public
key encryption scheme TKE “ T[PKE] from an IND-CPA secure public
key encryption scheme PKE. We define TKE as follows with TKE.IM “
Fcs(PKE.M,PKE.R) ˆ PKE.IM and TKE.M “ PKE.M.

TKE.EHˆH′
(ek,m)

c Ð PKE.EH′
(ek,m;H(m))

Return c

TKE.DHˆH′
((ek, dk), c)

m′ Ð PKE.DH′
(dk, c)

If m′ “ K or PKE.EH′
(ek,m′;H(m′)) ‰ c

Return K
Return m′

For key generation, TKE.K samples (ek, dk) Ð$ PKE.K and outputs (ek, (ek, dk)).
Note that TKE is tidy, meaning that if m “ TKE.DHˆH′

((ek, dk), c), then c “
TKE.EHˆH′

(ek,m).
We present a memory-tight reduction for T in the multi-user, multi-challenge

setting using the randomness programming technique. Our result is captured in
Theorem 3, whose proof is given in the full version [23].

Theorem 3 (IND-CPA ñ OW-PCA). Let TKE “ T[PKE]. If PKE is δ-
correct, then TKE is δ′-correct for δ′(q) “ (q ` 1)δ(q). Let A be an adversary
against TKE with Query(A) “ (qNew, qChal, qPCO, qH). Assume PKE’s algo-
rithms make at most qPKE oracle queries and define q˚ “ qH ` qChal(qPKE `
1) ` qPCO(2qPKE ` 1) ` qPKE. We construct an (Fcs(PKE.M,PKE.R), Inj˘(U ˆ
I,PKE.M))-oracle adversary B such that

Advmu-ow-pca
TKE (A) ď Advmu-cpa

PKE (B) ` |U| · δ′(q˚) ` 0.5q2Chal ` |U||I|(qH ` qPCO ` 1)

|PKE.M|
Query(B) “ (qNew, qChal)

Time˚(B) “ O(Time(A))

Mem˚(B) “ O(Mem(A)).

The notion of CPA security we require is interesting in that the adversary’s
encryption queries are of the form (u, i,m) where i is a “challenge identifier”
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and if it exactly repeats a query (u, i,m) it is given back the ciphertext from the
earlier query.

Intuition. For this proof, we program the random messages m to be the output
of a random injection g applied to user identifier u and counter i. Our reduction
adversary simulates the Chal oracle for A by its own encryption oracle on
g(u, i). If any message that A queries to its random oracle or outputs at the end
of execution is in the image of g, then out reduction assumes it is in the real
world and outputs 1. In the ideal world, the view of A is independent of g so we
can information theoretically bound the probability it finds such a message.

5.2 Transformation aV [OW-PCA → OW-PCVA]

The augmented transformation aV constructs a deterministic OW-PCVA secure
public key encryption scheme VKE “ aV[TKE] from a deterministic OW-PCA
secure scheme TKE. The unaugmented V transformation was given (with a single-
user, single-challenge memory-tight reduction) in [7]. Our augmentation adds a
random string to the encryption key which is included with every hash function
query. We define VKE as follows with VKE.IM “ Fcs({0, 1}l ˆTKE.M, {0, 1}γ)ˆ
TKE.IM and VKE.M “ TKE.M, where l and γ are fixed.

VKE.EHˆH′
((a, ek),m)

c1 Ð TKE.EH′
(ek,m)

c2 Ð H(a,m)
c Ð (c1, c2)
Return c

VKE.DHˆH′
((a, ek, dk), c)

(c1, c2) Ð c

m′ Ð TKE.DH′
(dk, c1)

If m′ “ K or H(a,m′) ‰ c2 or TKE.EH′
(ek,m′) ‰ c1

Return K
Return m′

For key generation, VKE.K samples a Ð$ {0, 1}l and (ek, dk) Ð$ TKE.K, then
returns ((a, ek), (a, ek, dk)). Note that aV is tidy and if T is tidy and δ′-correct,
then aV is δ′-correct.

We present a memory-tight reduction for aV in the multi-user, multi-
challenge setting using the randomness programming technique. Our result is
captured in Theorem 4 whose proof is given in the full version of the paper [23].

Theorem 4 (OW-PCA ñ OW-PCVA). Let VKE “ aV[TKE] and sup-
pose TKE is δ′-correct. Let A be an adversary against VKE with Query(A) “
(qU, qChal, qPCO, qCVO, qH). Assume TKE’s algorithms make at most qTKE ora-
cle queries and define q˚ “ qTKE(qH ` qChal ` 2qPCO ` 2qCVO). We con-
struct an (Fcs({0, 1}l ˆ TKE.M, {0, 1}γ),Fcs(TKE.C, {0, 1}γ), Inj˘(U , {0, 1}l))-
oracle adversary B against TKE such that

Advmu-ow-va
VKE (A) ď Advmu-ow-pca

TKE (B) ` 4|U| · δ′(q˚) ` 0.5|U|2{2l ` qCVO{2γ

Query(B) “ (qNew, qChal, qPCO, qH · qTKE)
Time˚(B) “ O(Time(A)) and Mem˚(B) “ O(Mem(A)).
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5.3 Augmented Transformation aUK [OW-PCVA → $IND-CCA]

The transformation aUK constructs an IND-CCA secure key encapsulation mech-
anism aUEM “ aUK[VKE] from a deterministic, OW-PCVA secure public key
encryption scheme VKE. We define aUEM as follows where aUEM.K “ VKE.K
and aUEM.IM “ Fcs({0, 1}l ˆ VKE.M ˆ VKE.C,K) ˆ VKE.IM (K is an arbitrary
set used as the key set of aUEM).

aUEM.EHˆH′
(ek)

m Ð$ VKE.M
a Ð$ {0, 1}l

c Ð VKE.EH′
(ek,m)

K Ð H(a,m, c)
Return ((a, c),K)

aUEM.DHˆH′
(dk, (a, c))

m Ð VKE.DH′
(dk, c)

If m “ K
Return K

K Ð H(a,m, c)
Return K

The following theorem gives our security result.

Theorem 5 (OW-PCVA ñCCA). Let aUEM “ aUK[VKE] where VKE is
tidy and δ′-correct. Let A be an adversary against aUEM with Query(A) “
(qNew, qEncap, qDecap, qH). Assume VKE’s algorithms make at most qVKE oracle
queries and define q˚ “ qVKE(2qH`qEncap`2qDecap). Let D1 “ {0, 1}lˆVKE.MY
{‹} ˆ VKE.C and D2 “ U ˆ I,. We construct an (Inj˘(D2, {0, 1}l),Fcs(D1,K),
Fcs(D1,K))-oracle adversary B such that

Advmu-cca
aUEM (A) ď 2Advmu-ow-va

VKE (B) ` 2|U| · δ′(q∗) ` 6|U| · |I|{2l

Query(B) “ (qNew, (qEncap ` qDecap ` qH), qH, qDecap)
Time˚(B) “ O(Time(A)) and Mem˚(B) “ O(Mem(A)).

Intuition. This proof is very similar to the proof of Theorem 2. Once again, we
program the random string a to be the output of the injective function g(u, i),
and the message m to be the output of the random function h(u, i). We use
the map-then-rf technique to simulate the oracle H using the random function
H̃(α(a,m, c)) where α is an injective function.

The reduction adversary gets challenge ciphertexts c from the Chal oracle.
To simulate the H oracle it uses the PCO oracle and to simulate the Decap
oracle, it uses its CVO oracle. When the aUEM adversary queries the H oracle
with a tuple (a,m, c) such that PCO(u,m, c) “ 1 and c “ Chal(u, j) where
(u, j) “ g´1(a), the reduction outputs (u, j,m).

6 Memory-Tight Reduction for PKE Schemes

In this section, we provide a modified version of the TAM-tight security proof
from [17] to show the security of the KEM/DEM construction of public key
encryption. Thus, combining one of the KEMs studied in the rest of the paper
with an appropriate symmetric encryption scheme gives a PKE scheme with a
TAM-tight reduction in the multi-user, multi-challenge setting.
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KEM/DEM Scheme. Let SKE be a symmetric key encryption scheme and KEM
be a key encapsulation mechanism. Then the KEM/DEM encryption scheme
KD “ KD[KEM,SKE] is defined as follows, with KD.IM “ KEM.IM ˆ SKE.IM.

KD[KEM,SKE].K
(ek, dk) Ð$ KEM.K
Return (ek, dk)

KD[KEM,SKE].EHˆH′
(ek,m)

(ck,K) Ð$ KEM.EH(ek)
cd Ð$ SKE.EH′

(K,m)
Return (ck, cd)

KD[KEM,SKE].DHˆH′
(dk, c)

(ck, cd) Ð c
K Ð KEM.DH(dk, ck)
If K “ K then return K
Return SKE.DH′

(K, cd)

The following theorem TAM-tightly proves the security of KD.

Theorem 6. Let SKE be a symmetric key encryption scheme, KEM be a ε-
uniform key encapsulation mechanism, and KD “ KD[SKE,KEM]. Let T ′ “
U ˆ ⋃

ekPKEM.Ek KEM.C(ek) ˆ N, Let T “ U ˆ KEM.Ek, D(u,ek) “ [qEnc] and
R(u,ek) “ KEM.C(ek). D′

(u,ck,l) “ {0, 1}l, and R′
(u,ck,l) “ {0, 1}SKE.cl(l). Let A

be a mu-$cca adversary against KD with Query(A) “ (qNew, qEnc, qDec, qH).
Then we can construct a (SKE.IM, Inj˘(T ′,D′, R′))-oracle adversary BKEM and
(KEM.IM,Fcs(U ,KEM.R), Inj˘(T,D,R))-oracle adversary against BSKE such that

Advmu-$cca
KD (A) ď 2Advmu-$cca

KEM (BKEM) ` Advmu-$cca
SKE (BSKE) ` qEnc · ε

` 1.5q2Enc ` 2qEncqDec

|KEM.C| ` q2Enc ` 2qDec

2SKE.xl
.

The complexities of BKEM and BSKE basically match those of A. Moreover, BSKE

makes at most one encryption query per user.

Instantiating KD. This result proves the multi-challenge, multi-user security
of KD, but requires appropriate choices of KEM and SKE. Naturally, one could
choose any of the KEMs studied earlier in this work for the first component.6

For the symmetric encryption we need a scheme which achieves single-challenge,
multi-user security. We are not aware of any TAM-tight multi-user analysis of
symmetric encryption scheme, so one instead needs to pick a scheme whose multi-
user, single challenge security is sufficiently strong against memory-unbounded
adversaries. One reasonable option could be GCM with a random nonce. In the
ideal cipher model, Hoang, Tessaro, and Thiruvengadam [20] showed a strong
bound for this setting which is essentially independent of the number of users.
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Abstract. We introduce the short-lived proof, a non-interactive proof
of knowledge with a novel feature: after a specified period of time, the
proof is no longer convincing. This time-delayed loss of soundness hap-
pens “naturally” without further involvement from the prover or any
third party. We propose definitions for short-lived proofs as well as the
special case of short-lived signatures. We show several practical construc-
tions built using verifiable delay functions (VDFs). The key idea in our
approach is to allow any party to forge any proof by executing a large
sequential computation. Some constructions achieve a stronger property
called reusable forgeability in which one sequential computation allows
forging an arbitrary number of proofs of different statements. We also
introduces two novel types of VDFs, re-randomizable VDFs and zero-
knowledge VDFs, which may be of independent interest. Our construc-
tions for short-lived Σ-protocols and signatures are practically efficient
for provers and verifiers, adding a few hundred bytes of overhead and
tens to hundreds of milliseconds of proving/verification time.

Keywords: Zero-knowledge proofs · Signatures · VDFs · Time-based
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1 Introduction

A digital signature is forever. Or at least, until the underlying signature scheme
is broken or the signing key is breached. This is often much more than what
is required for real world applications: a signature might need to only provide
authenticity for a few seconds to conduct an authenticated key exchange or verify
the provenance of an email. At best, the long-lived authentication provided by
standard signatures is often unnecessary. In certain cases, however, it may have
significant undesirable consequences.

An illustrative example is the DKIM protocol [53] used by modern SMTP
servers to sign outgoing email on behalf of the entire domain (e.g., example.com)
with a single key. DKIM is primarily intended to prevent email spoofing [27]. As
such, these signatures only need a lifetime of minutes for recipient SMTP servers
to verify and potentially filter email. However DKIM signatures do not expire
c© International Association for Cryptologic Research 2022
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and instead provide long-lasting evidence of authenticity for old email messages,
such as ones leaked through illicit data breaches [72]. As a result, cryptographers
have suggested that DKIM servers should periodically rotate keys and reveal old
private keys to provide deniability for old DKIM signatures [45].

Our Approach. A short-lived proof convinces the verifier of the following: either
a claimed statement x is true or someone expended at least t steps of sequential
work to forge the proof. The proof incorporates a random beacon value (e.g., the
day’s newspaper headline) to ensure it was not created before a specific time T0.
If a verifier observes the proof within Δ units of time after T0, she will believe
it is a valid proof if Δ < t because it would be impossible to have forged the
proof within that time period. Once Δ ≥ t, the proof is no longer convincing as
it may have been constructed through the forgery process.

Our constructions build on recent advances in time-based cryptography,
specifically verifiable delay functions (VDFs) [16,64,77]. Under the hood, the
sequential computation required for forging a proof or signature in all of our
schemes is equivalent to evaluating a VDF on a random input.

Cryptographic Deniability. The idea that signatures should not be permanently
verifiable is a special case of cryptographic deniability. This is often weaker than
intuition suggests. Informally, deniability for signatures means there is no addi-
tional cryptographic proof that Alice sent a particular message. There may still
be circumstantial proof such as logs or testimony, but these would exist whether
or not cryptography was used at all.

A simple approach to deniability, as suggested for DKIM, is to publish secret
information after running a protocol which enables any party to forge transcripts.
Other approaches include deniable key exchange protocols (e.g., OTR messag-
ing [21]) or designated verifier proofs/signatures [49] which limit verifiability to
a specified set of parties. By contrast, short-lived proofs are non-interactive and
publicly verifiable yet become deniable after a specified period of time with-
out any further action by the prover. For signatures, the signer can maintain a
long-lived key even as messages signed with it expire.

The fact that short-lived signatures provide deniability without the sender
needing to interact with the recipient (or even know the receivers’ public key)
makes them uniquely qualified for achieving deniability in several practical sce-
narios, as we discuss in Sect. 10. An example is sending email with a single
signature to a large, potentially unknown group of recipients. To our knowledge,
ours is the first primitive to enable this.

To summarize our contributions, as outlined in Table 1:

• We define short-lived zero-knowledge proofs (§4) and short-lived signatures
(§8). Reusable forgeability captures the useful property of a single slow com-
putation enabling efficient proof forgery for any statement (§4.1).

• We propose a short-lived proof construction (with reusable forgeability) from
any generic non-interactive zero-knowledge proof scheme and any VDF (§5).
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Table 1. A comparison of our constructions. The symbol �� denotes schemes with a
time-space tradeoff in the delay parameter t (see §9).

Scheme Section Reusable
forgeability

No pre-
computation

VDF required Proof/Sign type

short-lived proofs

Generic ZK §5 � � any [16] Generic SNARK

Σ-Precomp §6.2 � � any [16] Σ-protocol

Σ-rrVDF §6.3 � �� re-randomizable (§A) Σ-protocol

Σ-zkVDF §7 �� � zero-knowledge (§7.1) Σ-protocol

short-lived signatures

Generic ZK §8 � � any [16] Generic SNARK

Σsign ∨ zkVDF §8 �� � zero-knowledge (§7.1, §C) Σ signatures

Sign-Trapdoor §8.1 � � trapdoor ( [64,77]) RSA

Sign-Watermark §8.2 �� � watermarkable ( [77], §B) RSA

• We propose a short-lived proof construction (§6.2) for any Σ-protocol (§2.2)
and any VDF with a Σ-protocol for verification. Our basic scheme requires
precomputation per-proof, which we can eliminate by introducing the concept
of re-randomizable VDFs .

• We introduce the notion of zero-knowledge VDFs (§7) and use it to build a
short-lived proof with reusable forgeability for Σ-protocols.

• We show that our general Σ-construction can be instantiated with Σ-
signatures such as Schnorr (§8). We further introduce highly efficient short-
lived signature schemes (§8.1) from trapdoor VDFs [77] and watermarkable
VDFs which are as compact as a single VDF proof and offer reusable forge-
ability.

2 Preliminaries

2.1 Zero-knowledge Proofs and Arguments

We start with a basic background on zero-knowledge proofs, while referring
the reader to [74] for more comprehensive introduction. Zero-knowledge proofs
concern a relation R ⊂ X × W — a set of pairs (x,w) where x is called the
statement or instance and w is called the witness. For example, for the relation
of Diffie-Hellman tuples, we might write: RDH3 = {(x = (g, g1, g2, g3), w =
(a, b))|g1 = ga ∧g2 = gb ∧g3 = gab}. The set of all values x such that there exists
a witness w for which (x,w) ∈ R is the language LR. It has been shown that all
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NP-languages have a zero-knowledge proof system [43]. A non-interactive zero
knowledge proof system ΠR for R is a trio of algorithms (we consider R to be
hard-coded into all three):

– Π.Setup(λ) → pp
– Π.Prove(pp, x, w) → π
– Π.Verify(pp, x, π) → Accept/Reject

A proof system is complete if, for all (x,w) ∈ R, given a proof π ←
Prove(pp, x, w), the verification algorithm Verify(pp, x, π) outputs Accept. A proof
system is sound if an unbounded malicious prover (who does not know w) can-
not produce an acceptable proof with probability greater than 2−κ for knowledge
error κ. The weaker notion of computational soundness holds for polynomial-time
malicious provers; for simplicity we refer to such argument systems as proofs.

A proof of knowledge has an additional property roughly stating that an
adversary must “know” a witness w to compute a proof for (x,w) ∈ R. Knowl-
edge soundness for proofs-of-knowledge is formalized by defining an algorithm
A which outputs an accepted proof π and demonstrating an efficient algorithm
Extract which can interact with A and output a witness w such that (x,w) ∈ R.
Depending on the proof construction, the extractor may need to rewind A (a
rewinding extractor) or inspect A’s internal state (a non-black box extractor).

A proof of knowledge is zero knowledge if the proof π reveals nothing about
the witness w. Formally, this is established by demonstrating an efficient algo-
rithm Simulate which, given any statement x ∈ LR can output simulated proofs
π̃ indistinguishable from real proofs such that Verify(pp, x, π̃) → Accept. Simulate
may require additional power, such as the ability to program the random oracle
to give specified responses.

If the system produces succinct (e.g., constant or poly-logarithmic sized)
arguments, it is a SNARK (or zk-SNARK) for R, of which there are now many
known constructions [13,42,46].

2.2 Sigma Protocols

Our constructions in Sects. 6 and 7 target a special class of interactive zero-
knowledge proof systems called Σ-protocols [70]. A Σ-protocol [70] is a three-
move interactive protocol between a prover P and verifier V:

1. P runs Σ.Commit(x) → a and sends a to V.
2. V runs Σ.Challenge() → c and sends c to P.
3. P runs Σ.Respond(x,w, a, c) → z and sends z to V.
4. V accepts if Σ.Verify(x, a, c, z) → Accept.

We write ΣR to denote a Σ-protocol for relation R. A Σ-protocol has special
soundness if there exists an algorithm Σ.Extract(x, a, c, c′, z, z′) which outputs a
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witness w for x given any two accepting transcripts of the form (x, a, c, z) and
(x, a, c′, z′) with c �= c′. A Σ-protocol is honest verifier zero-knowledge if it has
an efficient algorithm Σ.Simulate(x) → (ã, c̃, z̃) such that Σ.Verify(x, ã, c̃, z̃) →
Accept and the distribution of (x, ã, c̃, z̃) is indistinguishable from transcripts of
a genuine interaction between a verifier and prover knowing a witness w.

Every Σ-protocol can be transformed into a non-interactive, fully secure (i.e.,
no honesty assumption on the verifier) zero-knowledge proof in the random oracle
model using the Fiat-Shamir heuristic [39], in which the challenge is generated
as c = O(x, a) where O is the random oracle. Σ.Extract and Σ.Simulate make
use of rewinding the other party and programming the random oracle.

2.3 Disjunction of Σ-protocols

The set of relations with Σ-protocols is closed under conjunction and disjunc-
tion [32]. The classic protocol for disjunction of Σ-protocols, which we denote
Σ-OR, is due to Cramer et al. [32].1 Let ΣR1 and ΣR2 be Σ-protocols for relations
R1 and R2 respectively. Assume the prover wants to prove the disjunction of the
statement x = (x1, x2) and knows a witness w1 showing that (x1, w1) ∈ R1

(knowing w2 showing that (x2, w2) ∈ R2 is a symmetric case). The proof is
constructed as follows:

Protocol ΣR1∨R2(x1, w1, x2,−) :

1. P runs ΣR2 .Simulate(x2) → (ã2, c̃2, z̃2)
2. P runs ΣR1 .Commit(x1) → a1

3. P send (a1, ã2) to V
4. V sends c = Σ.Challenge() to P
5. P sets c1 = c ⊕ c̃2
6. P runs ΣR1 .Respond(x1, w1, a1, c1) → z1
7. P sends (c1, c̃2, z1, z2) to V
8. V accepts if c = c1 ⊕ c̃2 and both:

• ΣR1 .Verify(x1, a1, c1, z1) → Accept
• ΣR2 .Verify(x2, ã2, c̃2, z̃2) → Accept

2.4 Beacons

A beacon [65] is a continual source of unpredictable public randomness. A bea-
con’s output at time Ti should be uniformly random and unpredictable as of
time Ti−1. We assume that beacon values are drawn uniformly randomly from a
space |B| ≥ 2λ for the security parameter λ. All our protocols assume an input
beacon value denoted b. In practice, NIST operates a centralized beacon which
publishes 512 random bits every minute [4]. The drand project operates a public
beacon publishing 256 bits every 30 s [2] using a multi-party randomness proto-
col [73]. Other potential beacons include web server challenges [48], stock market
prices [26], and blockchain data [20].
1 Ciampi et al. [25] later introduced a different Σ-OR protocol with certain advantages

over the Cramer et al. construction.
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2.5 Verifiable Delay Functions

Verifiable delay functions (VDFs) are defined by a trio of algorithms:2

• VDF.Setup(λ, t) → pp
• VDF.Eval(pp, b) → (y, π)
• VDF.Verify(pp, b, y, π) → Accept/Reject

Boneh et al. formalized VDFs and offer formal security definitions [16]. Infor-
mally, VDFs satisfy three important properties: (1) Verifiability, meaning that
the verification algorithm is efficient (at most polylogarithmic in t and λ) and
always accepts when given genuine output from Eval. (2) VDF evaluation must
be a function, meaning that Eval is a deterministic algorithm and it is computa-
tionally infeasible to find two pairs (b, y), (b, y′) with y �= y′ that Eval will accept.
And (3) VDFs must impose a computational delay. Roughly speaking, computing
a VDF successfully with non-negligible probability over a uniformly distributed
challenge b should be impossible without executing t sequential steps. Through-
out this paper, we will refer to this property as “t-Sequentiality” to emphasize
the time delay parameter. All of our constructions reduce forging a proof to
evaluating a VDF on a random input. Formally:

Property 1 (Sequentiality of VDFs (from [16])). For functions σ(t), p(t), the VDF
is (p, σ)-Sequential if for all randomized algorithms A0 which run in total time
O(poly(t, λ)), and A1 which run in parallel time σ(t) on at most p(t) processors,
the probability of winning the following game is negligible:
1. pp ← Setup(λ, t)
2. α ← A0(λ, pp, t) // advice string
3. Challenger samples VDF input b
4. yA ← A1(α, pp, b)
5. Adversary wins if yA = y where y, π ← Eval(pp, b)

VDFs constructions have been proposed from generic succinct proofs [16],
repeated squaring in groups of unknown order [64,77], permutation polyno-
mials [16], isogenies [37], and homomorphic encryption [50]. Earlier work pro-
posed “weak” VDFs based on computing square roots mod p [35,55]. Proof-of-
sequential work (PoSW) [28,56] is a similar primitive that does not require the
evaluation to have a unique mapping. Modern VDF constructions are in fact
the most efficient known PoSW constructions; for simplicity we present all our
constructions using the notation and terminology of VDFs.

An important limitation of all VDF constructions is that they can only guar-
antee a certain number of steps of sequential computation are required. The real-
world or “wall-clock” time needed to execute this computation varies based on
the speed of available computing platforms. To manage this limitation, conven-
tional wisdom suggests using a VDF with a relatively simple evaluation function
for which highly optimized hardware is available to honest parties, limiting the
speedup available to attackers. For this reason, repeated-squaring based VDFs
are considered the most practical candidates today.
2 The VDF challenge is traditionally denoted x. We use b to avoid confusion with x

as the statement of a zero-knowledge proof.
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2.6 VDFs from Repeated Squaring

We focus in particular on VDF constructions which utilize repeated squaring in
a group of unknown order, as these have useful algebraic properties for building
short-lived proofs and signatures. VDF evaluation is simply y = VDF.Eval(b) =
b2

t

. Wesolowski [77] and Pietrzak [64] introduced two distinct approaches for
efficiently proving that y = b2

t

in a group of unknown order:

Wesolowski Proofs: First, the Prover provides ỹ, claiming ỹ = b2
t

. The verifier
provides a random prime 
 as a challenge. Both parties compute, via long divi-
sion, the unique values q, r such that 2t = q
 + r and 0 ≤ r < 
. Finally, the
prover outputs a proof π = bq. The verifier accepts if and only if ỹ = q�br.

Pietrzak Proofs: As before, the Prover provides ỹ, claiming ỹ = b2
t

. The prover
then provides a value v and asserts that v = b2

t/2
. The verifier chooses a random

challenge r and they both compute ỹ′ = ỹ · vr, b′ = v · br. The verifier could
manually verify that ỹ′ = (b′)(2

t/2) by computing t
2 squarings, half as many

as the original problem of verifying that ỹ = b(2
t). Alternately, the prover can

recursively prove that ỹ′ = (b′)(2
t/2). Typically, this is done for d rounds, each

halving the size of the exponent, until the verifier manually checks the remaining
exponent of size 2t/2d .

Boneh et al. [17] provide a detailed comparison of the two proof constructions.
Wesolowski proofs are shorter (two group elements instead of O(log t)) but more
difficult to compute and rely on slightly stronger assumptions. In this work we
observe a new property of both constructions, re-randomizability (§6.3), and
introduce a new zero-knowledge variant of Wesolowski proofs (§7).

3 Related Work

Jakobsson et al. introduced the idea of using disjunctive statements to provide
deniability [49]. Given a statement x to be proven to Bob in zero knowledge, the
proof is transformed into the statement: {either x or I know Bob’s private key}.
A proof of this compound statement, which is called a designated verifier proof,
is only convincing to Bob. If Bob is confident that nobody else knows his private
key and that he did not compute the proof, then he knows the second clause is
false and therefore x is true. Anybody else is unsure if x is true or if Bob forged
the proof by satisfying the second clause. Another approach to constructing
signatures with the designated-verifier property is chameleon signatures [52],
which use a standard hash-and-sign construction but with a chameleon hash
function whose trapdoor is known by the intended verifier.

Many of our constructions3 follow a similar disjunctive template, with the
essential statement being {either x or someone solved a VDF of difficulty t on a

3 An initial version of this work appeared as a Masters thesis [30].
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beacon value derived from b which was unknown before time T }. VDFs requires
t sequential steps (which approximate elapsed time).

Several other works have used disjunctive proofs to provide different notions
of deniability. Baldimtsi et al. showed the constructions and applications for
proofs-of-work-or-knowledge (PoWorKs) of the form {either x or someone solved
a proof-of-work puzzle} where the puzzle requires w units of parallelizable com-
putation [8]. Time-traveling simulators, introduced by Goyal et al. [44], provide
a similar deniability notion in which a proof is convincing until a blockchain
grows to a certain length. Specter et al. proposed {either x or someone has seen
value v released at time T} for a v to be published at a future time T [72]. This
proposal is closest to our own work, as we discuss further in Sect. 10.2.

Similar time-based deniability notions for signatures specifically have been
considered by several authors (we believe ours is the first to expand to gen-
eral proofs). Ferradi et al. [38] in 2015 presented a protocol for what they call
fading signatures using the RSW time-lock puzzle and a trusted authority to
pre-compute some solutions using the trapdoor. Their notion is weaker in that
verification is slow, requiring t sequential steps. In hindsight, with the benefit of
modern VDFs the slow verification time of their approach could be fixed.

The connection between VDFs and time-based deniability was made by
Wesolowski who presented an interactive identification scheme that becomes
deniable after the passage of time [77, §8]. Wesolowski also described a time-
limited signature protocol which improved on the Ferradi et al. construction
in an unpublished 2016 manuscript [76]. Our Sign-Trapdoor construction (§8.1)
improves on this protocol by making it transferable, non-interactive, and a true
signature (rather than an authentication protocol).

Contemporaneous to our work, Beck et al. [10] propose a construction for
what they call time-deniable signatures, which utilize time-lock puzzles. Col-
burn [30] described a folklore construction (called Folk+) in which a time-lock
puzzle encapsulating the signing key is published along with a signature. Green
et al.’s construction works similarly, except to enable continuous use of the key
the time-lock puzzle encapsulates a restricted signing oracle which can only
sign messages with a timestamp before a chosen expiration date. This construc-
tion appears inherently limited to signatures. It also utilizes completely different
cryptographic techniques and as a result the reported signing time is over 4 s per
message, orders of magnitude slower than our signature constructions.

Other time-based cryptographic primitives have been proposed including
encryption, commitments, and signatures [15,66,75]. In the context of the cited
literature, a timed signature [15] is a commitment to a signature that has been
shared and can later be revealed. However if the committer aborts before reveal-
ing, the recipient can perform sequential work to uncover the signature. Dodis
and Yum introduced a similar idea of time-capsule signatures [33] which become
valid after a certain period of time when a time-server releases some informa-
tion. We are essentially solving the inverse problem: instead of a signature being
hidden for time Δt and then becomes unforgeable, a short-lived signature is
unforgeable for Δt and then becomes deniable.
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Definition 1 (Short-Lived Proofs) Let λ be a security parameter. Let LR be
a language in NP and R be a relation such that (x, w) ∈ R if and only if w is
a witness showing x ∈ LR. Let B be a space of beacon values where |B| ≥ 2λ.
A short-lived proof system Πt

R with time delay t ∈ Z is a quartet of randomized
algorithms (Setup,Prove,Forge,Verify):

• Setup(L, λ, t) → pp produces a set of public parameters pp
• Prove(pp, x, w, b) → π produces a proof π if (x, w) ∈ R
• Forge(pp, x, b) → π produces a proof π for any x
• Verify(pp, x, π, b) → Accept/Reject

Πt
R must satisfy the following properties:

• Completeness: For all (x, w) ∈ R and b ∈ B, π ← Prove(pp, x, w, b) runs in
time less than t and Verify(pp, x, π, b) outputs Accept.

• t-Forgeability: For all x, b ∈ B, π ← Forge(pp, x, b) runs in time (1+ ε)t for
some positive constant ε and Verify(pp, x, π, b) outputs Accept.

• t-Soundness: For all x and for any pair of adversary algorithms A0 (precom-
putation) which runs in total time O(poly(t, λ)) and A1 (online) which runs
in parallel time σ(t) with at most p(t) parallel processors, if

Pr

⎡
⎢⎢⎢⎢⎣

α ← A0(pp, x);

b
$← B;

π ← A1(pp, x, b, α);

Verify(pp, x, π, b) = Accept

⎤
⎥⎥⎥⎥⎦

> neg(λ)

then there exists an algorithm Extract with rewinding access to A1 such that
with probability 1 − neg(λ) the algorithm Extract(pp, x, b) outputs a witness w
such that (x, w) ∈ R. The probability is over the choice of b and the random
coins used by each algorithm.

• Indistinguishability: For all (x, w) ∈ R, b ∈ B the distributions
{Prove(pp, x, w, b)} and {Forge(pp, x, b)} (taken over the random coins used
by each algorithm) are computationally (resp. statistically) indistinguishable.

4 Definitions

Definition 1 provides our main definition of short-lived proofs. The public param-
eters pp potentially encapsulate both setup needed for an underlying proof sys-
tem and setup needed for an underlying VDF. Either or both may represent
a trusted setup if they require a secret parameter that can be used to break
security assumptions if not destroyed. The Setup algorithm is also given both a
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description of the language L and delay parameter t. Some underlying proof sys-
tems may require setup specific to L (others may offer universal setup) and some
underlying VDFs require hard-coding the delay parameter t. In the remainder
of the paper, we will generally omit pp to keep notation simpler.

The critical security property, t-Soundness,4 closely follows the security def-
inition used for VDFs [16]. In our case, the (potentially long-running) pre-
processing algorithm A0 receives not only the public parameters of a VDF func-
tion but also the statement x on which the adversary wishes to forge a proof.
Once the random beacon value b is known, the attacker’s clock starts running
and the online algorithm A1 must attempt to forge a proof in fewer than σ(t)
time steps (which in all of our constructions reduces to the intractability of
solving an underlying VDF in fewer than σ(t) time steps).

Note that short-lived proof schemes are inherently zero-knowledge as the
Forge algorithm serves as a simulator which produces valid proofs in polynomial-
time without knowing a witness. Receiving a proof in time less than t breaks
deniability as it must have been produced by Prove, but does not help the verifier
break zero-knowledge as the same transcript could still be produced by Forge at a
later time. Thus, t-Forgeability and Indistinguishability implies zero-knowledge
and we do not to define a separate zero-knowledge property or an additional
simulator5.

4.1 Reusable Forgeability

A basic short-lived proof scheme allows the Forge algorithm time to perform
a unique slow computation for each pair (x, b). In practice, this means that
forging multiple proofs can be expensive, weakening the deniability as it becomes
less plausible that somebody paid the cost of forging. To this end, some short-
lived proof schemes may offer a stronger reusable forgeability property in which
performing one slow computation for a beacon value b enables efficiently forging a
proof for any statement x without performing a full additional slow computation.
Even better, some schemes might allow forging a proof of any statement for any
beacon value from a set B = {b1, . . . bk} after just one slow computation. We
call this property k-reusable forgeability (with basic reusable forgeability being
the special case of k = 1). In practice, the set B can comprise all prior beacon
values, enhancing deniability as one slow computation at any point in the future
could enable forgery of all prior proofs.

Definition 2 (k-Reusable Forgeability). A k-reusably forgeable short-lived
proof system Πt

R is a short-lived proof with two additional functions:

4 Our notion of t-soundness corresponds to knowledge soundness, we denote it as t-
soundness for conciseness.

5 Computational and statistical indistinguishability imply computational and statis-
tical zero-knowledge, respectively. Thus, it might be possible to design a simulator
that achieves statistical zero-knowledge while Forge only achieves computational
indistinguishability.
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• GenAdvice(pp,B) → α takes a set B of size |B| ≤ k and produces (in time
(1 + ε)t) an advice string α

• FastForge(pp, x, b, α) → π produces a proof π for any x

These new functions satisfy the following properties, in addition to all prop-
erties of a general short-lived proof system:

• Reusable Forgeability: For all x and for all B ⊆ B and b ∈ B, given advice
string α ← GenAdvice(pp,B) the algorithm FastForge(pp, x, b, α) → π runs in
parallel time less than t and Verify(pp, x, π, b) outputs Accept.

• Indistinguishability II: For all (x,w) ∈ R, B ⊆ B and b ∈ B, given
advice string α ← GenAdvice(pp, b) the distributions {Forge(pp, x, b)} and
{FastForge(pp, x, b, α)} (taken over the random coins used by each algorithm)
are computationally (resp. statistically) indistinguishable.

Our generic protocol (§5) offers 1-reusable forgeability immediately and
extends easily to offer k−reusable forgeability for arbitrary k (with proving over-
head logarithmic in k). Obtaining 1-reusable forgeability is also possible (though
not as easy) for our Σ-constructions.

5 Short-lived Proofs from Generic Zero-Knowledge

Given any VDF scheme and a non-interactive zero-knowledge proof system Π
for all languages in NP, we can produce a short-lived proof for any relation R
for an NP language LR. We do this by taking the disjunction (∨) of R with the
VDF relation RVDF:

RVDF = {(x = b, w = (y, π)) | VDF.Verify(b, y, π)} (1)

The language LRVDF is in NP because VDF verification must run in polyno-
mial time. Therefore, the disjunction LR∨RVDF is in NP and the proof protocol
ΠR∨RVDF is a short-lived proof for R:

Theorem 1 (SLP from Generic Zero-Knowlege). Let R be a relation for
a language in NP, Π be a zero-knowledge argument of knowledge system for
languages in NP and VDF be a verifiable delay function with delay parameter t.
Then Πt

R = ΠR∨RVDF
is a short-lived proof protocol with reusable forgeability for

R with time delay t

Proof. The required properties follow directly from definitions of the underlying
primitives. Completeness of Πt

R is due to the completeness of ΠR as a prover
with a witness can satisfy relation R and ignore the VDF branch. t-Forgeability
follows from the correctness property of the underlying VDF, ensuring that
Forge can produce convincing forgeries in (1 + ε)t steps by running VDF.Eval(b)
and using the output (y, π) to satisfy the VDF branch of the disjunction. The
Indistinguishability property followsmmediately from the zero-knowledge prop-
erty of Π, preventing the adversary from knowing which half of the disjunction
was satisfied and meaning an efficient simulator exists as required.
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The t-Soundness property relies on the t-Sequentiality (Property 1) of the
VDF. The restrictions on algorithms A0,A1 in the t-Soundness definition are
identical to those in the t-Sequentiality definition, meaning such algorithms will
not be able to solve the VDF with non-negligible probability. This means that
any adversary able to produce proofs must know a witness w for x, which the
extractor for ΠR can then efficiently extract.

Finally, to show that this scheme offers reusable forgeability, note that the
exact same VDF computation VDF.Eval(b) required is independent of the state-
ment x. Thus, it can be computed once and reused across proofs for that beacon.

�

6 Short-lived Proofs from Σ-protocols

While our generic construction offers reusable forgeability and works for all
NP-languages, generic zero-knowledge proof systems have practical drawbacks
including complexity, high prover costs (§9) and trusted setup in some con-
structions. We would like to construct short-lived variants for Σ-protocols, an
important class of efficient zero-knowledge proofs. They are also natural to con-
sider given that Wesolowski proofs [77] are Σ-protocols and Pietrzak proofs are
a multi-round generalization.

6.1 Non-solution: Σ-OR Proofs

A first, insecure attempt at a short-lived proof for a relation R with a Σ-protocol
ΣR is to simply combine ΣR with the verification protocol ΣVDF for some VDF
scheme, for example using the classic Σ-OR construction outlined in Sect. 2.3.

Unfortunately, this generic composition does not yield a short-lived proof
system because proofs are distinguishable from forgeries. Standard VDF proofs
reveal the unique6 value y = VDF.Eval(b) to the verifier as part of the proof
statement. This means that the algorithm VDF.Prove, which simulates the VDF
half of a Σ-OR composition, must provide a fake value y′ �= y as part of the proof
whereas the Forge algorithm will simulate the R half of the proof and provide the
genuine y = VDF.Eval(b). Our definition of Indistinguishability does not preclude
the adversary from running for t steps, meaning they can simply compute the
genuine value y themselves by running VDF.Eval(b) and then determine if a proof
was constructed using Prove or Forge.

6.2 Short-lived Sigma Proofs from Precomputed VDFs

To ensure indistinguishability, we introduce the construction Σ-Precomp (Pro-
tocol 1) which works for any Σ-protocol by modifying the input to the VDF
instead of the challenge. Assume the prover has precomputed a VDF on a ran-
dom input value b∗. Just as in the Cramer et al. construction, given a challenge
6 Proofs of sequential work do not have unique solutions, unlike VDFs, meaning they

might be used directly in a Σ-OR composition.
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Σ-Precomp

Setup
input : relation R, parameters λ, t
output : public parameters pp

1. pp ← VDF.Setup(λ, t)

Precompute
input : pp
output : (b∗, y∗, π∗

VDF)

1. Sample b∗ $← B
2. (y∗, π∗

VDF) ← VDF.Eval(b∗)

Verify
input : pp, x, b, proof (a, c1, z, y, c2, πVDF)
output : Accept/Reject

1. Obtain c = O(x ‖ b ‖ a).
2. Accept if c = c1 ⊕ c2 and both:

• ΣR.Verify(x, a, c1, z) → Accept
• VDF.Verify(b ⊕ c2, y, πV) → Accept

Forge
input : pp, statement x, beacon value b
output : proof (ã, c̃1, z̃, y, πVDF, c2)

1. (ã, c̃1, z̃) ← ΣR.Simulate(x)
2. Obtain c = O(x ‖ b ‖ ã)
3. Set c2 = c ⊕ c1
4. (y, πVDF) ← VDF.Eval(b ⊕ c2).

Prove
pre-computed: (b∗, y∗, π∗

VDF)
input : pp, x, w, b
output : proof (a, c1, z, y∗, π∗

VDF, c2)

1. a ← ΣR.Commit(x)
2. Challenge c = O(x ‖ b ‖ a)
3. Set c2 = b∗ ⊕ b and c1 = c ⊕ c2
4. z = ΣR.Respond(x, w, a, c1).

Protocol 1: Short-lived proofs using precomputed VDFs given a relation R
with Σ-protocol ΣR and a VDF scheme VDF

c, the prover chooses two values c1, c2 such that c1 ⊕ c2 = c and c1 is the chal-
lenge used with ΣR. Instead of using c2 as the challenge for the VDF proof, it is
used to modify the VDF input, evaluating on the point b ⊕ c2. The intuition is
that the genuine prover can choose c2 freely and thus set c2 = b ⊕ b∗, mapping
the VDF input to a value b∗ for which it has already precomputed the solution.
However, a forger who is simulating ΣR cannot choose c1 freely and thus c2 is
an unpredictable random value, which requires the forger to solve a VDF on a
random point (b ⊕ c2).

Theorem 2 (Proof for Σ-Precomp). Let R be a relation for a language
in NP with Σ-protocol ΣR and VDF be a verifiable delay function with delay
parameter t. Protocol 1 is a short-lived proof scheme for relation R in the random
oracle model.

Proof. Completeness and t-forgeability of Σ-Precomp follow directly from the
completeness of ΣR and correctness of the VDF.

Indistinguishability: For an input x, witness w and beacon b, let
(a, c1, z, y, π, c2) and (ã, c̃1, z̃, ỹ, π̃, c̃2) be the outputs of Prove(x, b;w) and
Forge(x, b) and let c, c̃ be the respective challenges.
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First, we note that c2, c̃2 are uniformly distributed in both algorithms. In
Prove, c2 = b⊕b∗ where b is the beacon output produced only after b∗ is sampled
(as the honest prover must have pre-computed the VDF output on b∗ first). In
Force, c̃2 = c̃ ⊕ c̃1 where c̃ is generated after c̃1. This means the VDF proofs are
generated on uniformly random inputs (c2⊕b) and (c̃2⊕b), respectively, making
the two VDF sub-transcripts (y, π, c2) and (ỹ, π̃, c̃2) indistinguishable.

Next, we note that c1, c̃1 are both uniformly distributed, as well. In Prove,
c1 = c⊕ c2 where c is a random oracle output independent of c2. By the security
of ΣR.Simulate, the value c̃1 is generated in Forge must be indistinguishable
from a randomly generated challenge. Again by the security of ΣR.Simulate, the
sub-transcripts (a, c1, z) and (ã, c̃1, z̃) are indistinguishable.

Finally, all pairs of sub-challenges (c1, c2) are equally likely to be generated
by both Prove and Forge. This comes from the fact that each algorithm generates
one sub-challenge that is uniformly distributed (c2 for Prove and c1 for Forge)
and then creates the other challenge using c, which is a random oracle output.

t-Soundness: We define an extractor E which, given a pair of algorithm (A0,
A1) which output accepting proofs, either (1) extracts a witness w from A1 for
statement x and relation R or (2) computes a VDF output on a random input in
fewer than t steps, violating the t-Sequentiality (Property 1) of the underlying
VDF.

E first runs A0 and A1 to obtain an accepting transcript (a, c, c1, c2, z, y, π).
E then receives a random VDF input bchal from a challenger for the VDF t-
sequentiality game. Next, the extractor rewinds A1 to obtain a new transcript
(a, c′, c′

1, c
′
2, z

′, y′, π′) while programming the random oracle to fix c′ = bchal ⊕b⊕
c1. As c �= c′, we have the following two cases:
Case 1: If c1 �= c′

1, then from the special soundness of ΣR, a witness for x can
be extracted by calling ΣR.Extract(x, a, c1, c

′
1, z, z′).

Case 2: If c1 = c′
1, the two VDF proofs are on inputs d = b ⊕ c2 = b ⊕ c ⊕ c1

and d′ = b ⊕ c′
2 = b ⊕ c′ ⊕ c′

1 = b ⊕ c′ ⊕ c1. As the extractor programmed
the random oracle to ensure c′ = bchal ⊕ b ⊕ c1, we have d′ = bchal. As both
transcripts are accepting, VDF.Verify(bchal, y′, π′) = Accept. As A1 runs in fewer
than t steps, E requires fewer than t steps to produce y′ as it only rewound and
reran the adversary after after obtaining bchal. Thus, E can output y′ and win
the t-Sequentiality game for the underlying VDF.

Assuming the underlying VDF is t-Sequential, Case 2 cannot happen except
with non-negligible probability. Therefore E correctly outputs a witness for x
(Case 1) with overwhelming probability.

Size Overhead: Transforming a normal proof into a short-lived one using
Σ-Precomp adds the VDF output, the VDF proof and the sub-challenge used in
the VDF. In the case of Wesolowski’s VDF [77], the output and proof are both
a group element each and the challenge is λ (security parameter) bits long. For
2048-bit RSA groups with λ = 128, the total size overhead comes to 528 bytes.

The primary drawback of Σ-Precomp is that each precomputed VDF must
only be used once. If the same VDF challenge b∗ is visible in two proofs, an
adversary can conclude (with overwhelming probability) that both proofs were
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generated by Prove, breaking Indistinguishability. Additionally it does not offer
reusable forgeability as a new VDF evaluation on a random point is required for
every run of Forge.

6.3 Optimization with Re-randomizable VDFs

The biggest drawback of this construction is that it requires precomputation
before every call to Prove. However, the prover simply needs a fresh, random
VDF input/output pair and not a solution on any specific point. We can greatly
improve the practicality of this scheme if it is possible to quickly generate VDF
solutions (and proofs) on random points. We introduce the notion of a re-
randomizable VDF that has this property: given a VDF solution (b, y, π) and pos-
sibly some auxiliary data α, an efficient algorithm VDF.Randomize(b, y, π, α) →
(b′, y′, π′) outputs a randomly distributed solution.

Now, each time Prove is called, instead of precomputing a VDF solution (step
1 of Prove in Protocol 1), a new VDF solution on a random point is produced
by calling VDF.Randomize. Indistinguishability of proofs and forgeries reduces
to the indistinguishability of random VDF solutions and those generated by
re-randomizing a known solution. We propose a definition for re-randomizable
VDFs in Appendix A of the full version [7], capturing the necessary indistin-
guishability property.

For VDFs based on repeated squaring, a random exponent r is chosen and
the input/output pair (b, y) is mapped to (b′ = br, y′ = yr), maintaining the
relationship that y′ = (b′)2

t

. Unfortunately this homomorphism does not apply
to proofs: given (y, π) ← VDF.Eval(b) and a randomized solution (br, yr) we
cannot obtain a correct proof by simply computing πr. However, for repeated-
squaring VDFs we can compute a proof for (br, yr) in fewer than t steps using
the same advice string α used to compute π when y was originally computed.
Wesolowski [77] describes such an advice string of length O(

√
t) that allows a

prover to compute a proof in O(t/ log t) steps. This algorithm may still be to
slow to re-randomize VDF proofs in reasonable time using commodity hardware.
By contrast, Pietrzak proofs can be re-randomized in just O(

√
t) steps using an

advice string of length O(
√

t). We provide the details of this re-randomization
algorithm (originally suggested by Boneh et al. [17]) in Appendix A.1 of the full
version [7].

This homomorphism was observed by Wesolowski, who warned that it was
a potential security weakness to be prevented by hashing to a random group
element as part of VDF computation [77, Remark 3]; here we use it in a con-
structive way. It has similarly been used by Thyagarajan et al. to build verifiable
timed signatures [75] and by Malavolta and Thygarajan to construct additively
homomorphic and fully homomorphic time-lock puzzles [57].

7 Short-lived Proofs from zkVDFs

The previous Σ-based constructions did not provide reusable forgeability (Def-
inition 2). The fundamental problem is that (unlike our generic approach in
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Sect. 5), they require Forge to solve the VDF on a new random value b∗ derived
from b for each forgery, rather than a solution on b itself which could be used for
multiple forgeries. We cannot include a standard VDF proof for b in short-lived
proofs because all known VDF proof schemes reveal the VDF output y = Eval(b)
which would clearly distinguish proofs from forgeries.

To avoid this distinguishability problem, we propose using a novel zero-
knowledge VDF (zkVDF) which proves knowledge of the output without reveal-
ing it. Of course, since VDF verification is (by definition) an NP statement, it
is possible to construct a zkVDF from any VDF using a generic zero-knowledge
proof system to prove knowledge of VDF solutions. Our construction in Sect. 5
essentially does this (embedded within a disjunction). Later in this section, we
will present a more efficient construction based on Wesolowski proofs [77].

Given a Σ-protocol for RzkVDF and any relation R for which we have a Σ-
protocol ΣR, we can use the standard Σ-OR construction to create a disjunction
protocol ΣR∨RzkVDF which we call Σ-zkVDF. To obtain reusable forgeability,
we set the VDF input to be the beacon value b. Thus, VDF.Eval(b) need be
performed only once to generate advice to quickly forge others proofs with b.

Theorem 3 (SLP from zkVDF and Σ-OR). Let R be a relation for a
language in NP, ΣR be a zero-knowledge Σ-protocol for R and ΣRzkVDF

be a Σ-
protocol for a zkVDF with delay parameter t. Letting x and w be the statement
and witness for relation R and b be the beacon, the following is a short-lived
proof protocol with reusable forgeability for R with time delay t:

Σ-zkVDF

• Prove(x,w, b): perform ΣR∨RzkVDF
by simulating ΣRzkVDF

with input b and run-
ning ΣR with statement x and witness w

• Forge(x, b): perform ΣR∨RzkVDF
by simulating ΣR for statement x and running

ΣRzkVDF
with input b

• Verify(x, b, π): verify ΣR∨RzkVDF
with statement x for ΣR and input b for

ΣRzkVDF

The proof is identical to that of Theorem 1. Owing to the security of Σ-
OR compositions, the verifier cannot tell if the proof was generated by honestly
computing the ΣR branch (requiring knowledge of the witness) or the ΣRzkVDF

branch (requiring the VDF solution on beacon b). Appendix D of the full ver-
sion [7] contains the proof.

7.1 zkVDF Construction

In this section we present a Σ-based zkVDF construction built off of Wesolowski
proofs [77]. To do so, we introduce a new zero-knowledge Σ-protocol for proof
of knowledge of a power (Protocol 2) using an idea similar to that introduced
by Boneh et al. [18, §3.2] for proof of knowledge of discrete log in a group of
unknown order. Our zero-knowledge proof that y = gu sends a blinded value
y′ = y · hv = guhv (for a random v) instead of y itself. A proof of the following
theorem is provided in Appendix C of the full version [7].
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zk-PoKP

Parameters: security parameter λ, group of unknown order G ← GGen(λ), h
$← G,

B ≥ 22λ|G|; random oracle HashToPrime which outputs from the set Primes(λ) of the
first 2λ prime numbers

Prove
input: g ∈ G, u ∈ Z, witness y ∈ G such that y = gu

output: proof π = 〈a, Q, r2〉

1. Sample v
$← [−B, B]

2. Compute a = Commit(y, v) = y · hv

3. Compute 	 = Challenge(a) = HashToPrime(a)
4. Let u = q1	 + r1, v = q2	 + r2 such that 0 ≤ r1, r2 ≤ 	
5. Compute Q = gq1hq2

6. Respond(	) = Q, r2

Simulate
inputs: g ∈ G, u ∈ Z, simulated challenge 	̃
output: simulated proof π̃ = 〈ã, Q̃, r̃2〉

1. Sample q̃1, ṽ
$←− [−B, B]

2. Let ũ = q̃1	̃ + r̃1 and ṽ = q̃2	̃ + r̃2 such that 0 ≤ r̃1, r̃2 ≤ 	̃
3. Compute Q̃ = gq̃1hq̃2

4. Compute ã = Q̃�̃gr1hr̃2

Verify
input: g ∈ G, u ∈ Z, proof π = 〈a, Q, r2〉
output: Accept/Reject

1. Compute 	 = HashToPrime(a)
2. Let u = q1	 + r1 such that 0 ≤ r1 ≤ 	

3. Check that a
?
= Q�gr1hr2

Protocol 2: Σ-protocol for proof-of-knowledge of a power in a group of unknown
order.

Theorem 4 (Zero-Knowledge Proof of Knowledge of Power). Proto-
col 2 is an honest-verifier zero-knowledge argument of knowledge for the relation
RPoKP = {((g, u); y) : gu = y}.

7.2 Efficiency of zk-PoKP and Σ-zkVDF

The zk-PoKP Simulate algorithm of Protocol 2 is efficient and takes time
O(λ log |G|+polylog(t)). The most significant cost is computing five group expo-
nentiations with small exponents, each involving O(log B) = O(λ log |G|) steps.
This makes the Σ-zkVDF prover efficient as it runs the zk-PoKP simulation
algorithm.
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The Forge algorithm for Σ-zkVDF must execute the Prove algorithm of
zk-PoKP. This naively takes time O(t), as it involves computing a large power
Q�. For multiple forgeries, this can be improved significantly using a precom-
puted advice string, identical to that used for re-randomizable VDFs (Sect. 6.3).
With an advice string of size O(

√
t), the Prove algorithm requires only O(t/ log t)

steps. Unlike the case for general re-randomizable VDFs, our zk-PoKP construc-
tion is inherently based off of Wesolowski proofs and cannot utilize the more effi-
cient advice string approach used for re-randomizing Pietrzak proofs. Designing
a Pietrzak-style zk-PoKP is an interesting open problem.

Proof Size: The zkVDF proof contains two group elements (a,Q) and the remain-
der r2. When using 2048-bit RSA groups and λ = 128, the total size comes to 529
bytes: 512 bytes for the two group elements and 17 bytes (λ lg λ) for the value r2.
The Σ-zkVDF construction additionally includes one sub-challenge (the other is
implicit), which adds an extra λ bits (16 bytes), making the total overhead for
transforming a normal proof into a short-lived one just 545 bytes. The algorithm
Σ-zkVDF.Prove requires running the zk-PoKP simulator. The significant opera-
tions are raising a group element to a power of size B twice, where B ≈ 22λ|G|,
and then raising two elements to a power of up to λ twice. In Sect. 9, we evaluate
the cost of these operations for 2048-bit RSA groups.

8 Short-lived Signatures

A key special case of zero-knowledge proofs is digital signatures. We define a
short-lived signature scheme as follows:

Definition 3 (Short-Lived Signatures). Let λ be a security parameter and
B be a space of beacon values where |B| ≥ 2λ. A short-lived signature scheme
with time delay t is a tuple of algorithms:

• Setup(λ, t) → pp
• KeyGen(pp) → (pk, sk)
• Sign(pp, sk,m, b) → σ takes a message m and beacon b and outputs (in time

less than t) a signature σ.
• Forge(pp,m, b) → σ takes a message m and beacon b and outputs (in time

less than (1 + ε)t) a signature σ.
• Verify(pp, pk,m, b, σ) → Accept/Reject

The following properties are satisfied:

• Correctness: For all m, b ∈ B, if σ ← Sign(pp, sk,m, b), then
Verify(pp, pk,m, b, σ) → Accept.

• Existential Unforgeability: For all pairs of adversary algorithms A0 (pre-
computation) which runs in total time O(poly(t, λ)) and A1 (online) which
runs in parallel time σ(t) with at most p(t) processors, the probability that
(A0,A1) win the following game is negligible:
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1. Challenger C runs pp ← Setup(λ, t) and (pk, sk) ← KeyGen(pp). C sends
pp, pk to (A0,A1).

2. The adversary runs A0(pp, pk) ↔ C interactively with the challenger,
adaptively sending chosen message/beacon queries (mi, bi) to the chal-
lenger and receiving σi ← Sign(pp, sk, bi,mi) in response.

3. A0 outputs an advice string α.
4. C samples a random beacon value b

$← B and sends it to the adversary.
5. The adversary runs A1(pp, pk, α, b) ↔ C interactively with the challenger,

adaptively sending chosen message/beacon queries (mi, bi) to the chal-
lenger and receiving σi ← Sign(pp, sk, bi,mi) in response.

6. A1 outputs a claimed forgery (m∗, b, σ∗) and wins if (m∗, b) �= (mi, bi) for
all i and Verify(pp, pk,m∗, b, σ∗) = Accept.

• Indistinguishability: For all m, b ∈ B, given a random (pk, sk) ←
KeyGen(pp) the distributions {Sign(pp, sk,m, b)} and {Forge(pp,m, b)} (taken
over the random coins used by each algorithm and randomly generated private
key) are computationally (resp. statistically) indistinguishable.

This definition closely follows our definition of short-lived proofs and stan-
dard security properties for signatures. We present a game-based definition for
short-lived signature unforgeability, in contrast with our probabilistic soundness
definition for short-lived proofs, to more closely match standard unforgeability
definitions for signature schemes. The primary distinction is that the second
adversary A1 is required to run in fewer than t steps (otherwise it could simply
run the provided Forge algorithm).

Note that while our Indistinguishability definition compares distributions of
output, some signature schemes are deterministic(e.g., RSA [68], BLS [19]). In
this case, it is necessary that Sign and Forge produce the same exact signature
with overwhelming probability.

We observe that our generic constructions in Sect. 5 can be used to trans-
form any signature scheme into short-lived signature scheme by implementing
a zero-knowledge proof for knowledge of a signature. Furthermore, our Σ-based
constructions in Sect. 6 can also be used for Σ-based signature schemes such as
Schnorr [70] or DSA [1,51].

8.1 Construction from Trapdoor VDFs

We present a short-lived signature construction from trapdoor VDFs [77] in Pro-
tocol 3. Trapdoor VDFs require a trusted setup which yields a secret evaluation
key (the trapdoor) enabling efficient evaluation. Normally, this trapdoor repre-
sents a security risk if not destroyed. However, we observe that in the case of
short-lived signatures, the trapdoor can serve as a signing key. Repeated-squaring
VDFs in RSA groups are trapdoor VDFs: the public parameters include an RSA
modulus N and the trapdoor is the factors p, q such that N = p · q. With the
trapdoor, raising an element to any large exponent z (e.g. z = 2t) is efficient, as
z can be reduced modulo ϕ(N) = (p − 1)(q − 1) into an equivalent exponent of
size less than N . Note that this trapdoor is equivalent to the private key used
for traditional RSA signatures.
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Sign-Trapdoor

KeyGen
input : λ, delay parameter t
output : key pair (pk, sk)

1. Generate keys
(pk, sk) ← tdVDF.Setup(λ, t)

Sign
input : message m, beacon value b
output : signature σ

1. x = Hash(m ‖ b)
2. σ = (y, π) ←

tdVDF.TrapdoorEval(sk, x)

Forge
input : message m, beacon value b
output : signature σ

1. x = Hash(m ‖ b)
2. Compute with delay:

σ = (y, π) ← tdVDF.Eval(x)

Verify
input : message m, beacon b, σ = (y, π)
output : Accept/Reject

1. x = Hash(m ‖ b)
2. Check that tdVDF.Verify(pk, x, y, π, t)

Protocol 3: Short-Lived Signatures from a trapdoor VDF scheme

Theorem 5 (Short-Lived Signatures from Trapdoor VDFs). Assuming
that Hash is a random oracle and tdVDF is a trapdoor VDF, Protocol 3 is a
short-lived signature scheme.

Proof. The correctness of this scheme comes from the correctness of the underly-
ing trapdoor VDF. Indistinguishability is trivial as signing and forgery produce
the exact same VDF output, given that VDFs are deterministic.

Existential unforgeability comes from the definition of a trapdoor VDF and
modeling Hash as a random oracle. Since the challenger chooses b randomly
during the existential forgery game after the precomputation of A0, the value
x∗ = Hash(m∗||b) will be randomly distributed for any message m∗. Thus, the
online algorithm A1 must evaluate the VDF on a random input in fewer than
t steps. The adversary’s ability to query for signatures on chosen pairs (mi, bi)
is new from the traditional VDF security model. However since each such pair
leads to a VDF evaluation by the challenger on xi = Hash(mi||bi), the adversary
can only learn VDF evaluations on a polynomial number of random inputs. This
ability could be simulated by A0 precomputing the VDF on a polynomial number
of random inputs and passing the results as part of the advice string α. Thus,
any pair (A0,A1) which make queries could be converted into an equivalent
pair (A′

0,A′
1) which make no queries but rely on A′

0 to precompute random
VDF solutions instead. Winning the signature forgery game with no querying
capability is then equivalent to evaluating the VDF on a random input. The
VDF security definition states that no suitably bounded algorithms (A′

0,A′
1)

can do so with non-negligible probability. �
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Table 2. Additional costs to transform a standard proof/signature into a short-lived
proof/signature. λ is the security parameter, 〈G〉 denotes the size of a group element,
exp

G
(e) is the cost of raising a group element to a power of size e, and t is the VDF

delay parameter. For concrete evaluations, λ = 128 and G is a 2048-bit RSA group.
The Generic zk-SNARK method was implemented using Groth16 [47]. All evaluations
were performed on a 2.3 GHz 8-Core Intel Core i9 laptop with 16 GB memory.

Protocol Proof Size Overhead Proving Time Overhead

zk-SNARKs (§5) 0 for Groth16 ∼60 s

Σ-Precomp (§6.2) 2〈G〉 + λ 528 bytes O(T ) precomputation

Σ-rrVDF (§6.3) 2〈G〉 + λ 528 bytes O(T/k) precomputation

Σ-zkVDF (§7) 2〈G〉 + 2λ 545 bytes 2exp
G
(22λ|G|) + 2exp

G
(2λ) 120 ms

Sign-Trapdoor (§8.1) 〈G〉 + λ 272 bytes exp
G
(2λ) 10 ms

Sign-Watermark (§8.2) 〈G〉 + λ 272 bytes exp
G
(2λ) 10 ms

8.2 Construction from Watermarkable VDFs

The construction in Protocol 3 does not offer reusable forgeability, as the Forge
evaluates a VDF on a message-dependent value x = Hash(m ‖ b). We construct
an efficient signature scheme (Protocol 5) with reusable forgeability using water-
markable VDFs which embed a prover-chosen watermark (μ) during proof gener-
ation. Watermarkable VDFs were presented informally by Wesolowski [77, §7.2];
we propose a definition capturing the essential security property of watermark
unforgeability in Appendix B of the full version [7]. The key idea to construct a
watermarkable VDF is to embed the watermark into the Fiat-Shamir challenge,
computing 
 ← HashToPrime(y ‖ μ) instead of 
 ← HashToPrime(y).

Short-lived Signatures from Watermarkable VDFs To build a short-lived
signature scheme using a watermarkable VDF, we use the beacon value as the
input to the VDF and the message as the watermark. This enables reusable
forgeability, as once a forger has computed y = VDF.Eval(b) for a specific beacon
value, along with its associated advice string α, they can sign a new message
by computing a new proof using the same advice string. This is equivalent to
proof re-randomization, which can be done in significantly fewer than t steps as
discussed in Sect. 6.3. We note that reusability is more limited for this signature
scheme as the precomputation is specific to an individual user’s public key. A
single VDF evaluation enables efficient forgery of any statement by a given signer,
but will not work between different signers.

9 Implementation and Performance Evaluation

9.1 zk-SNARK Construction

We implement the generic ZK algorithm using zk-SNARKs, which produce
succinct non-interactive proofs for large computations. With zk-SNARKs, the
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statement is represented in a format similar to algebraic circuits and prover effi-
ciency depends on the size of the circuit in gates. Given a base circuit for relation
R and an efficient circuit representation of VDF.Verify, it is straightforward to
compile a circuit that is the disjunction of the two as outlined in Sect. 5. We
implemented a VDF circuit using Wesolowski VDF proofs [77] using a 2048-bit
RSA modulus and the “bellman-bignat” library [62].

The total size of the VDF verification circuit is just over 5 million gates. The
large size is due to the costly “hash-to-prime” involved in Wesolowski verifica-
tion. We composed this circuit with an elliptic curve signature verification circuit
(acting as the base relation R) of size under 1000 gates. All proofs were gener-
ated using the Groth16 construction [47] which produces proofs of constant size
around 300 bytes and with verification time under 10 ms. As proofs are constant
size and the verification cost is minimal, there is no added overhead on verifiers
for short-lived proofs. However, proof generation incurs a significant added cost
of around 60 s.

9.2 Σ-based Constructions

Table 2 compares the performance of our algorithms. Our Σ-constructions, which
require only a few exponentiations in a group of unknown order, are signifi-
cantly more efficient than the zk-SNARK method. We evaluated them using
Wesolowski proofs in a 2048-bit RSA group, which is conjectured to provide
close to λ = 128 bits of security [9]. We denote the cost of raising a group ele-
ment to an exponent of magnitude 22λ|G| as expG(22λ|G|) (this is the value of
B in Protocol 4). A single exponentiation takes around 40 ms. The costliest of
the Σ-constructions is Σ-zkVDF which takes two expG(22λ|G|) operations and
three expG(2λ) operations (<10 ms each), leading to a total overhead of under
0.12 s. Section 7.2 contains more details on the size overhead of the Σ-zkVDF
construction. Our signature constructions add one or two more group elements
to the size of the base proof/signature. With 2048-bit RSA groups, each element
is of size 〈G〉 = 256 bytes.

9.3 Re-randomization Improvements

Three of our constructions (based on re-randomizable VDFs, zero-knowledge
VDFs, watermarkable VDFs) can utilize a precomputed advice string α to speed
up computation. For Σ-rrVDF, α is used to speed up the Prove algorithm; for
Σ-zkVDF and Sign-Watermark, α speeds up FastForge.

In Appendix A.1 of the full version [7], we outline such an advice string of
size O(

√
t) for Pietrzak proofs which enables proof computation in O(

√
t) steps.

This advice string is applicable to Σ-rrVDF and Sign-Watermark protocols, for
which Pietrzak proofs can be used. Table 3 highlights the practical performance
of this approach for different delay parameters. We provide numbers for 2048-
bit and 1024-bit RSA groups and assume that hardware implementations (e.g.
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Table 3. The time taken for re-randomizing a Pietrzak proof on commodity hardware
for RSA groups with delay parameters and specialized hardware speed assumptions.
The lengths of the advice strings range from 1 MB to 16 MB. The lengths of the proofs
range from 2.6 KB to 8.0 KB. The proof verification time is under 50 ms and 150 ms
for 1024-bit and 2048-bit RSA groups, respectively.

Re-Rand Time

Hardware Speed Delay log t RSA-2048 RSA-1024

225 ops/s 1 min 31 28 s 8 s

15 min 35 110 s 35 s

230 ops/s 1 min 36 145 s 58 s

15 min 40 720 s 240 s

FPGAs) for RSA arithmetic can perform up to 225 and 230 operations per sec-
ond.7 The improvements achieved by our advice string enable Pietrzak proofs
to be rerandomized in minutes with commodity hardware, whereas Wesolowski
proofs would still take days with comparably sized advice strings ([77], Section
4.1).

10 Applications

10.1 Deniable Messaging and Email

Deniable messaging protocols aim to ensure that a purported transcript of a
secure communication session between Alice and Bob, along with copies of all
cryptographic keys used, does not provide convincing evidence of what Alice and
Bob actually communicated or (in some cases) that they communicated at all.
Generally, a secure messaging (chat) protocol is run between two participants,
identified by public keys bound somehow to their real-world identities. When
both participants are online, they can use a key agreement protocol to establish
an ephemeral shared MAC key for message integrity. Even if the long-term keys
are compromised, the transcript could be forged by either party [69], as popu-
larized by Off-the-Record messaging (OTR) [21]. Deliberate publication of the
MAC key after the session can extend forgeability to anyone.

Deniability can be extended to offline recipients in a store-and-forward sys-
tem through non-interactive designated verifier signatures [49] or ring signa-
tures formed between a sender and a recipient [21,69]—however both require
prior knowledge of each recipient’s public key. Email is a particularly challeng-
ing environment, as in addition to being asynchronous and unidirectional the
sender cannot assume knowledge of the recipient’s public key. OTR’s authors
believed email is too difficult for an OTR-like protocol [21].

7 Öztürk [78] reported a speed for ∼ 224 squarings/second in 2019 in an optimized
FPGA implementation used to break the RSA LCS-35 timelock puzzle [67].
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Our work suggests a different (and complementary) approach to deniability:
a sender with an identifiable public key can provide a short-lived signature on
their messages. Recipients within the validity period of the signature can validate
the message’s authenticity, while the message becomes indistinguishable from a
forgery after a period of time and therefore deniable by the original sender.
Short-lived messages do not require any knowledge about the recipient, inter-
action, or follow-up steps, making them very versatile. They can be broadcast
asynchronously to a group of unidentified recipients with a single communica-
tion, and even forwarded with no additional cryptographic effort, making them
suitable for email as well as messaging protocols.

10.2 Deniable Domain Authentication

A specific case of deniable authentication arises with the DomainKeys Identified
Mail (DKIM) standard for email. Originally proposed to address email forgeries
and spam, DKIM requires that the sender’s mail server sign every outbound
email with a domain-bound key. For example, all email originating from the
mail server for example.com would be signed with a key bound to the DNS
record of example.com, however (unlike the use case above) the signature will
not distinguish between mail from alice@example.com and bob@example.com.
By 2015, DKIM headers were present in 83% of all inbound mail to Gmail [34].

Over the past two decades, email dumps—the public release of private email
messages from breached servers—have received extensive news coverage [27].
DKIM signatures increase the value of email dumps by certifying their authen-
ticity. The call to periodically release past DKIM private signing keys was popu-
larized by Matthew Green [45]. DKIM signatures do not require validity beyond
the network latency of reaching a recipient’s mail server.

Specter et al. proposed KeyForge and TimeForge [72] to replace DKIM with
Forward Forgeable Signatures (FFS) that become non-attributable after a spec-
ified time (e.g., 15 min). Both KeyForge and TimeForge require future action to
ensure deniability: respectively, a secret value released by the signer, or a future
signed update to a beacon-like service called a publicly verifiable timekeeper. If
the time-keeper’s private key is lost then all signatures become permanently
attributable. Alternately, if the time-keeper is silently compromised then signa-
tures are immediately forgeable. Short-lived signatures can fulfill the same role
as a drop-in replacement for DKIM, while requiring no follow-up action by any-
one and hence deniability is guaranteed at the time of signing. Both TimeForge
and short-live signatures expand the current length of a 2048-bit RSA DKIM
signature. Our trapdoor RSA-based short-lived signature adds a single group
element (200% expansion) while TimeForge signatures expand by 329% [72].

TimeForge also has advantages: no costly VDFs need to be evaluated (or
threatened) to provide deniability and the timing of deniability is precise,
whereas for short-lived signatures the deniability time period depends on how
fast VDFs can be evaluated. Our approaches are complementary: a signature
could be both short-lived and forgeable after the release of information as in
TimeForge, attaining the advantages of both.
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10.3 Receipt-Free Voting

Numerous cryptographic voting protocols involve encoding a voter’s selection
with an additively homomorphic encryption scheme. A voter wants ballot casting
assurance [14] that a posted ciphertext decrypts to her choice, however she
should not be able to transfer this assurance to anyone else. As the literature
moves toward a more realistic view of voters as humans casting ballots at polling
places, vote casting needs to be accessible and bare-handed (i.e., no assumption
of an additional device at casting time). The dominant approach (exemplified
in Helios [5], STAR-Vote [11], and Microsoft’s ElectionGuard [3]) is the Benaloh
challenge [14]: (1) a voter asks for an encryption of a candidate si, (2) the
voting machine commits (e.g., on paper) a ciphertext c, (3) the voter chooses
to audit the ballot or cast it, and (4) if auditing, the voting machine produces
the plaintext and randomness (si, r) such that c = Enc(si, r); and the voter
restarts at (1). Later, aided by a computer, the voter validates all transcripts.
This protocol has two drawbacks. If a voter asks for an encryption of candidate
Bob, receives one for candidate Alice instead, audits it and receives a proof for
Alice, the voter is convinced the machine is malicious (she knows she asked
for Bob) but the transcript will not convince a third party that the machine
misbehaved. The second drawback is that auditing is probabilistic (and a low
audit frequency is observable by the machine itself).

Alternatives to the Benaloh challenge mitigate these drawbacks but add com-
plexity for the voter. A collection of techniques [49,59,60] use quite different pro-
tocols to produce a similar outcome: the voter leaves with a receipt that contains
the ciphertext c and n proofs that c = Enc(si) for each of the n candidates. One
proof is real and the rest are forgeries, but the transcript does not reveal which
one is real. These protocols vary, but at a high level, either the machine prepares
the forgeries and the voter releases a value (e.g., a challenge) for construction of
the real proof; or the machine prepares the real proof, and the voter releases a
value (e.g., a trapdoor or private key) for the forgeries.

A short-lived proof can be used in this second paradigm to eliminate all the
pre-constructed values (i.e., challenges, keys, trapdoors) the voter must bring
into the polling place, replacing them with a simple clock. The voter experience
is as follows: (1) a voter selects candidate si, (2) the voting machine commits
(e.g., on paper) the time T , the name of si (in plaintext), a ciphertext c, and a
short-lived (e.g., 60 s) proof that c = Enc(si), (3) the voter checks that T and
si are correct, (4) after two minutes, the machine (possibly a different machine
at a different station within the polling place) produces n− 1 forged receipts for
each leftover si with the same c and same (and now outdated) T .

Commonly used encryption schemes for voting, like exponential Elgamal and
Paillier, have efficient Σ-protocol proofs of plaintext values and be adapted to
use any of our Σ-protocol-based short-lived proof constructions. A time param-
eter of 60 s provides reasonable assurance if the beacon and voter’s clock are
synchronized to within one second, while not delaying the time to vote sub-
stantially. Voters could choose to shred their initial receipt or wait for a set of
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forged receipts. Attention is required to mitigate side-channel information (like
forensics of the paper) to infer the order in which the proofs are printed.

11 Concluding Remarks

We observe that the existence of the Forge algorithm for short-lived proofs cir-
cumvents Pass’ observation [63] that non-interactive zero-knowledge proofs in the
random oracle model are not deniable. Normally, because the simulator requires
programmable access to the random oracle, verifiers cannot simulate proofs and
hence possession of a proof demonstrates interaction with a genuine prover. In
our case, the Forge algorithm does not require programmable random oracle
access, only the ability to compute a slow function. Short-lived proofs therefore
can offer deniability as they can be forged with no special ability except time.

In practice, this is an important limitation if the time taken to compute a
proof is known and is insufficient to produce a forgery. For example, if a short-
lived proof π is convincingly timestamped at time T1 and the beacon value b
used to compute π was not known until time T0, with T1 − T0 < t, then π could
not have been computed via Forge. Thus, deniability for short-lived proofs relies
on the assumption that it is not feasible to convincingly timestamp all data. For
example, in the case of deniable DKIM signatures, it must be the case that signed
emails are not routinely timestamped en masse. We note that other solutions to
this problem, including key expiry/rollover or the KeyForge/TimeForge schemes
of Specter et al. [72], have the exact same limitation.

Recall that we offer constructions for proofs and signatures based on Σ-
protocols, where deniability is added by combining the original statement with
a VDF-related statement in a disjunction. As noted in Sect. 3, designated verifier
proofs, proofs of work-or-knowledge, and KeyForge/TimeForge also add denia-
bility via disjunction with a second statement. It is straightforward to combine
these approaches. For example, a statement could be proven in zero knowledge
to be true only if the proof is received by a specific recipient before a signed
timekeeper statement is released or a VDF could have been computed. In this
way, a proof can gain deniability in the absence of any trusted third party action
in the future (as with short-lived proofs) while also gaining deniability without
requiring anybody to solve a VDF if the third party acts faithfully.

We conclude with several open problems arising from our work:

• Short lived proofs require someone to evaluate a VDF. It might be possible
to piggyback off of an existing party computing VDFs, such as a computa-
tional time-stamping service [54], some other party computing a long-running
continuous VDF [36] or a decentralized protocol using chained VDFs [29,40].

• Our Σ-zkVDF construction (§7) only provides 1-reusable forgeability. It might
be possible to extend this to k-reusable forgeability using an RSA-style accu-
mulator to combine past beacon values (while keeping the accumulator value
secret to avoid undermining deniability).
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• Our zk-PoKP construction in Protocol 2 is based on Wesolowski proofs.
Constructing a zk-PoKP algorithm based on Pietrzak proofs would allow
a Σ-zkVDF forger to leverage the more efficient re-randomization algorithm
for Pietrzak proofs, enabling significantly faster forging times.

• While our watermarkable VDF signature construction (§8.2) offers reusable
forgeability, it requires a VDF computation per-signer (as each signer uses
unique public parameters). An ideal scheme might use similar accumulator
techniques to forge proofs from a set of signers after just one VDF evaluation.

• Another, potentially much more efficient, approach to achieve generic short-
lived proofs is to take an existing generic proof scheme which relies on a
Σ-protocol and replace that component with a short-lived equivalent (e.g.
our Σ-zkVDF construction). While this would not retain the k-reusability of
our generic approach in §5, it would avoid the cost of verifying a VDF within
the proof system itself. This approach potentially applies to many popu-
lar zero-knowledge proof systems, including Bulletproofs [22], Marlin [24],
PLONK [41], Sonic [58], Spartan [71], Supersonic [23], or STARKs [12].

• Another approach to obtain short-lived SNARKs is through composition tech-
niques that construct zero-knowledge proofs of disjunctions of SNARKs with
Σ-protocols (zkVDFs in our case) as proposed by Agrawal et al. [6]. This
would avoid the costly encoding of VDFs as arithmetic circuits (which require
millions of gates) leading to interesting tradeoffs between shorter proving
times and larger proof sizes.
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Abstract. In this paper, we study zero-knowledge (ZK) proofs for cir-
cuit satisfiability that can prove to n verifiers at a time efficiently. The
proofs are secure against the collusion of a prover and a subset of t
verifiers. We refer to such ZK proofs as multi-verifier zero-knowledge
(MVZK) proofs and focus on the case that a majority of verifiers are
honest (i.e., t < n/2). We construct efficient MVZK protocols in the
random oracle model where the prover sends one message to each veri-
fier, while the verifiers only exchange one round of messages. When the
threshold of corrupted verifiers t < n/2, the prover sends 1/2+o(1) field
elements per multiplication gate to every verifier; when t < n(1/2 − ε)
for some constant 0 < ε < 1/2, we can further reduce the communi-
cation to O(1/n) field elements per multiplication gate per verifier. Our
MVZK protocols demonstrate particularly high scalability: the proofs are
streamable and only require a memory proportional to what is needed
to evaluate the circuit in the clear.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover P, who knows a witness w, to con-
vince a verifier V that C(w) = 0 for a circuit C, in the way that V learns nothing
beyond the validity of the statement. One important type of ZK proofs is non-
interactive ZK (NIZK), where the prover just needs to send one message to a
verifier. This is particularly useful as the prover’s message (i.e., the proof) can
be reused to convince multiple verifiers. The efficiency of NIZK proofs has been
significantly improved in recent years, based on different frameworks (e.g., [3,10–
13,15,17,18,34,35,42,44,48,49,54] and references therein). Another important
type of ZK proofs is designated-verifier ZK (DVZK), where an interactive proto-
col needs to be executed between the prover and the verifier. Compared to NIZK,
DVZK protocols can often achieve a higher efficiency to prove to one verifier and
scale to a very large circuit with a small memory. For example, recent DVZK
proof systems [6,8,27,28,50,51] can prove tens of millions of gates per second
with very limited bandwidth. However, such an advantage diminishes when the
number of verifiers increases: DVZK protocols require the prover to execute the
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protocol with every verifier, while an NIZK proof enables all verifiers to verify
the proof concurrently after the prover generates and publishes the proof.

In this work, we explore the middle ground between NIZK and DVZK: we
study the efficiency of ZK proofs when a prover wants to prove to multiple
verifiers (i.e., multi-verifier ZK, MVZK in short). This setting was first studied
by Abe, Cramer and Fehr [2]. Specifically, we consider that a prover P needs
to convince n verifiers V1, . . . ,Vn, and the adversary can potentially corrupt a
subset of t verifiers and optionally the prover. More specifically, we focus on the
honest-majority setting, meaning that t < n/2 verifiers could be corrupted and
can collude with the prover. Such an MVZK protocol is closely connected to
DVZK in which the prover can only prove to a designated set of verifiers who
are known ahead of the protocol execution. However, due to the fact that there
is a majority of honest verifiers, it turns out the MVZK protocol can achieve
some surprising features, e.g., being non-interactive between the prover and the
verifiers in the information-theoretic setting.

Because of the involvement of multiple verifiers, there are two types of com-
munications: 1) between the prover and verifiers and 2) between different veri-
fiers. We say that the protocol is a non-interactive multi-verifier ZK (NIMVZK)
proof if the prover only sends one message to each verifier. We say that the
protocol is a strong NIMVZK proof if it is an NIMVZK and that there is only
one round of communication between verifiers. We allow the verifiers to commu-
nicate for one round because without any communication between the verifiers,
constructing NIMVZKs appears as difficult as constructing NIZKs.

In the MVZK setting, the known protocol [2] or those that can be implicitly
constructed from the known techniques [14,16] either are not concretely efficient
or only prove some specific circuits instead of generic circuits. Furthermore, none
of the prior work considers how to stream the MVZK proofs, which is a crucial
property to prove large-scale circuits.

1.1 Our Contribution

In this paper, we propose streamable NIMVZK protocols on generic circuits
with both theoretical insights and practical implication. The protocols work in
the honest-majority setting, meaning that the number t of corrupted verifiers
is less than n/2, where n is the total number of verifiers. Compared to NIZKs,
our NIMVZK protocols are much cheaper in terms of computational cost and
use significantly less memory. Compared to DVZK, our protocols have three
advantages: 1) the computation is still cheaper; 2) we can achieve the strongly
non-interactive property; and 3) the communication is lower, especially when the
number of verifiers is large. Specifically, our results are summarized as follows:

1. We present an information-theoretic NIMVZK protocol, where the prover
sends 1 + o(1) field elements per multiplication gate to every verifier in one
message (thus non-interactive), and the verifiers interact in both communi-
cation and rounds logarithmic to the circuit size. We consider the protocol as
a stepping stone to introduce the following two main NIMVZK protocols.
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2. Assuming a random oracle (and thus in the computational setting), we con-
struct a strong NIMVZK proof based on Shamir secret sharing, where the
verifiers only need to communicate for one round. The prover needs to send
1/2+o(1) field elements per multiplication gate to each verifier and the com-
munication cost between verifiers is still logarithmic.
The challenge is that the message sent by the prover consists of the shares
of every verifier that are private information and thus cannot be revealed.
This makes the verifiers have no way to compute the public message that can
be used as the input of a random oracle in the Fiat-Shamir transform. We
proposed an efficient approach to allow Fiat-Shamir to work across multiple
verifiers, i.e., enabling the prover to generate a small public message that can
be securely used in the Fiat-Shamir transform, even if a minority of verifiers
collude with the malicious prover.

3. When the corruption threshold is smaller (i.e., t < n(1/2 − ε) for some con-
stant 0 < ε < 1/2), we use packed secret sharing (PSS) [30] to construct a
strong NIMVZK protocol for proving a single generic circuit, which further
reduces the communication complexity to O(1/n) field elements per multipli-
cation gate per verifier, while the communication complexity between veri-
fiers is logarithmic to the circuit size. If applying the state-of-art secure multi-
party computation (MPC) protocol [39] based on PSS to design an interactive
MVZK protocol, the resulting protocol can achieve the same communication
complexity. However, the constant in the O notation is significantly larger
than our protocol.
For a single generic circuit, PSS has been used in MPC protocols [24,31,32,39]
in the honest-majority setting, but the overhead is often high due to the con-
straint how to pack the wire values to realize secure evaluation of the circuit.
In the ZK setting, our strong NIMVZK protocol can remove the constraint,
and achieve optimality for packing wire values and significantly better effi-
ciency for checking correctness of packed sharings. For example, the state-of-
the-art PSS-based MPC protocol [39] incurs a total communication cost of
O(n5k2) to check the consistency between packed input sharings and output
sharings, where k > εn + 1/2 is the number of secrets packed in a single
sharing. When being improved in the ZK setting, the total communication
cost of our protocol can be reduced to O(n2k2). Furthermore, we develop a
non-interactive verification technique for checking correctness of PSS-based
multiplication tuples, while the approach used in MPC [39] requires logarith-
mic rounds.

In summary, we designed concretely efficient MVZK protocols, which provide the
attractive properties of NIZK (non-interactivity) and DVZK (memory efficiency
and prover-computation efficiency). Although it is not applicable to all settings
(due to the assumption of honest-majority verifiers), when it is applicable, the
performance improvements to existing protocols are huge.

Streamable Property of Our NIMVZK. Although the communication com-
plexity between the prover and verifiers is linear to the circuit size, all our pro-
tocols as described above are streamable, meaning that the prover can generate
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and send the proof on-the-fly and no party needs to store the whole proof during
the protocol execution. As a result, the memory consumption of our protocols
is proportional to what is needed to evaluate the statement in the clear. Fur-
thermore, we make our strong NIMVZK proofs streamable in the way that the
rounds among verifiers keep unchanged (i.e., only one round between verifiers is
needed for proving multiple batches of gates).

Asymmetric Property of Our Strong NIMVZK. One surprising feature of
our two strong NIMVZK protocols in the computational setting is the asymmetry
among verifiers. Specifically, among all verifiers, a subset of t verifiers only has
a sublinear communication complexity: each verifier only receives O(n+ log |C|)
field elements from the prover, and only needs to send O(n) field elements to
other verifiers, where |C| is the number of multiplication gates in a circuit C. It
makes the protocols particularly suitable for the applications where the verifiers
are a mix of powerful servers and lower-resource mobile devices.

1.2 Applications

Non-interactive MVZK proofs have the following applications:

1. Drop-in replacement to NIZK and DVZK. NIMVZK can be used in
normal ZK applications as long as the identifies of the verifiers are known
ahead of time and satisfy the security requirement (e.g., a majority of verifiers
are honest for our NIMVZK protocols). For example, as described in [21], a
ZK proof could potentially be used by Apple for auditing their Child Sexual
Abuse Material detection protocol. Our NIMVZK protocol can be used when
such an auditing needs to be performed to multiple agencies efficiently.

2. Honest-majority MPC with input predicate check. In some computa-
tional tasks, it is desired to execute the MPC protocol among multiple parties
only if the input of every party is valid, where the validity is defined by some
predicate. Although generic MPC can realize this functionality, using our
NIMVZK protocols could further reduce the overhead of proving the pred-
icate. As our protocols are based on Shamir sharings, it can be seamlessly
integrated with MPC protocols also based on Shamir sharings.

3. Private aggregation systems. Systems like Prio [23] use a set of servers
to collect and aggregate users’ data. To prevent mistakes and attacks, users
need to prove to the servers that their data is valid, which was done via
secret-shared non-interactive proof in Prio. However, the protocol assumes
the prover not to collude with any verifier for soundness. Our protocol could
be a more efficient alternative and is sound even when a user colludes with a
minority of servers. On the other hand, for zero-knowledge, Prio can tolerate
all-but-one corrupted servers, while our protocols need to assume an honest
majority of servers.
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1.3 Related Work

The concept of multi-verifier ZK proofs was first discussed by Burmester and
Desmedt [19], where they focus on how to save broadcasts. Lepinski, Micali and
shelat [45] proposed a fair ZK proof, which ensures that even malicious verifiers
who collude with the prover can learn nothing beyond the validity of the state-
ment if the honest verifiers accept the proof. More recently, Baldimtsi et al. [5]
proposed a crowd verifiable zero-knowledge proof, where the focus is to trans-
form a Sigma protocol to their setting. All of the above works focus on extending
the ZK functionality rather than the concrete efficiency of ZK proofs.

Abe, Cramer and Fehr [2] first studied the MVZK setting, and proposed a
strong NIMVZK protocol for circuit satisfiability if at most t < n/3 verifiers
are corrupted. Their protocol builds on the technique [1], and adopts the Ped-
ersen commitment and verifiable secret sharing. Due to the usage of public-key
operations for every non-linear gate, their protocol is not concretely efficient. In
addition, the ZK proof by Groth and Ostrovsky [43] could be transformed into
a strong NIMVZK proof in the corruption threshold of t < n/2, but their proof
requires public-key operations per gate and thus is not concretely efficient. Com-
pared to the NIMVZK proofs [2,43], our proofs do not require any public-key
operation and are concretely efficient.

Although Boneh et al. [14] did not explicitly consider the MVZK setting, the
ZK proofs proposed by them work in this setting. However, these protocols are
only efficient applicable for circuits that can be represented by low-degree poly-
nomials (instead of generic circuits). Recently, Boyle et al. [16] shown how to
use the ZK proof [14] to design honest-majority MPC protocols with malicious
security. However, they only considered how to prove correctness of degree-2
relations, and did not involve MVZK proofs on generic circuits yet. In addi-
tion, Boyle et al. [16] proposed an approach based on Fiat-Shamir to make the
ZK proof on inner-product tuples non-interactive, where the difference between
the secret and randomness needs to be sent. One can generalize their approach
into our MVZK framework, and make the resulting MVZK proof strongly non-
interactive. However, their approach requires 3× larger communication than
ours. Both works [14,16] did not consider how to make the ZK proofs stream-
able, which is addressed by our work.

One can also use maliciously secure MPC protocols in the honest-majority
setting (e.g., [16,22,32,38–41,46,47]) to directly obtain interactive MVZK
proofs. However, both of communication and computation costs will be signifi-
cantly larger than our NIMVZK protocols. While NIZK can be transformed into
NIMVZK directly, these NIZK proofs with performance similar to our proofs
(e.g., recent succinct non-interactive proofs [13,18,48,53,54]) require memory
linear to the circuit size, which could lead to a huge memory consumption for
circuits with billions of gates. Our NIMVZK protocols are streamable, and the
memory consumption of these protocols is proportional to what is needed to
evaluate the circuit in the clear (meaning that these protocols only need a
small memory cost for proving very large circuits). Compared to MVZK that
is constructed from the recent VOLE-based DVZK proofs [6,8,27,28,50,51] by
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executing the protocol with every verifier, our strong NIMVZK proofs reduce
round complexity from O(1) to only one round between the prover and verifiers,
and significantly improve efficiency.

Very recently, two works by Applebaum et al. [4] and Baum et al. [7] also
presented MVZK protocols in the setting that a majority of verifiers are honest.
Applebaum et al. [4] focuses on a theoretical perspective, and gave two strong
NIMVZK protocols based on “Minicrypt”-type assumptions in the plain model.
Baum et al. [7] adopted an approach similar to ours, and aim to construct con-
cretely efficient MVZK protocols. In particular, they proposed two NIMVZK
protocols that allow to identify the cheating verifiers (and thus have stronger
security than ours); however, their protocols only tolerate a smaller number of
corrupted verifiers (either t < n/3 or t < n/4). Neither of the works [4,7] adopted
packed secret sharings and achieve the communication complexity of O(1/n) per
multiplication gate per verifier.

2 Preliminaries

We discuss some important preliminaries here and provide more preliminaries
(e.g., security model) in the full version [52].

Notation. We use λ and ρ to denote the computational and statistical security
parameters, respectively. We use x ← S to denote that sampling x uniformly at
random from a finite set S. For a, b ∈ Z with a ≤ b, we write [a, b] = {a, . . . , b}.
We will use bold lower-case letters like x for column vectors, and denote by xi

the i-th component of x with x1 the first entry. For two vectors x,y of dimension
m, x � y denotes the inner product of x and y (i.e., x � y =

∑
i∈[1,m] xi · yi).

Sometimes, when the dimension of vectors x,y is 1 (i.e., x = x and y = y),
we abuse the notation x � y to denote the multiplication x · y for the sake of
simplicity. We use logk to denote the logarithm in base k, and denote by log the
logarithm notation log2 for simplicity. For a finite field F, we use K to denote
a degree-r extension field of F. In particular, we fix some monic, irreducible
polynomial f(X) of degree r and write K ∼= F[X]/f(X). Every field element
w ∈ K can be denoted uniquely as w =

∑
h∈[1,r] wh · Xh−1 with wh ∈ F for

all h ∈ [1, r]. When we write arithmetic expressions involving both elements of
F and elements of K, it is understood that field elements in F are viewed as the
polynomials lying in K that have only constant terms. For a circuit C, we use
|C| to denote the number of multiplication gates.

Zero-Knowledge Functionality. Our ZK functionality for proving circuit sat-
isfiability against multiple verifiers is shown in Fig. 1. Let n be the total number
of verifiers. We consider the MVZK protocols in the honest-majority setting, i.e.,
the adversary allows to corrupt at most t < n/2 verifiers. The adversary is also
allowed to corrupt the prover. When the prover is honest, functionality Fmvzk

defined in Fig. 1 captures zero-knowledge, meaning that t malicious verifiers can-
not learn any information on the witness. When the prover is malicious, Fmvzk
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Fig. 1. Zero-knowledge functionality for honest-majority verifiers.

captures soundness, i.e., the malicious prover cannot make the honest verifiers
accept if C(w) �= 0, even though it colludes with t malicious verifiers.

We can consider MVZK protocols as special MPC protocols. Thus, we adopt
the notion of security with abort in the MPC setting to define Fmvzk and other
functionalities defined in the subsequent sections, where the corrupted verifiers
may receive output while the honest verifiers do not. Our definition does not
guarantee unanimous abort, meaning that some honest verifiers may receive out-
put while other honest verifiers abort. Nevertheless, it is easy to tune our pro-
tocols to satisfy the security notion of unanimous abort, by having the verifiers
broadcast whether they will abort or not at the end of the protocol execution [36].

Communication Model. The default communication between the prover and
verifiers is private channel, unless otherwise specified. We assume that all ver-
ifiers are connected via authenticated channels. In the computational setting,
the prover sometimes needs to communicate with all verifiers over a broadcast
channel. Since we allow abort, the broadcast channel can be established using a
standard echo-broadcast protocol [36], where the communication overhead can
be improved to be constant small using a collision-resistant hash function. In
our strong NIMVZK protocols, the verifiers need to exchange the shares in one
round at the end of protocol execution. In parallel with the communication of
shares, every verifier can send the hash output of the messages broadcast by the
prover to all other verifiers. Therefore, although the echo-broadcast protocol is
used in our MVZK proofs, we can still achieve strongly non-interactive.

Linear Secret Sharing Scheme. In our NIMVZK protocols, we will exten-
sively use linear secret sharing schemes (LSSSs) with a threshold t. A t-out-of-n
LSSS enables a secret x to be shared among n parties, such that no subset of
t parties can learn any information on x, while any subset of t + 1 parties can
reconstruct the secret. To align with the description of our NIMVZK protocols,
we let the prover P play the role of the dealer and let every verifier Vi obtain
the shares. We require that LSSS supports the following procedures:
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– [x] ← Share(x): In this procedure, a dealer P shares a secret x among the
parties V1, . . . ,Vn, such that Vi gets a share xi for i ∈ [1, n]. The sharing of
x output by this procedure is denoted by [x].

– x ← Open([x]): Given a sharing [x], this procedure is executed by parties
V1, . . . ,Vn. At the end of the execution, if [x] is not valid, then all honest
parties abort; otherwise, every party will output x.

– Linear combination: Given the public coefficients c0, c1, . . . , c� and secret shar-
ings [x1], . . . , [x�], V1, . . . ,Vn can locally compute [y] =

∑�
i=1 ci · [xi]+c0, such

that y =
∑�

i=1 ci · xi + c0 holds.

We describe two LSSS instantiations shown in the full version [52], where one is
Shamir secret sharing and the other is packed secret sharing (a generalization of
Shamir secret sharing). For Shamir secret sharing, for a vector x = (x1, . . . , xm),
we will use [x] to denote ([x1], . . . , [xm]). For packed secret sharing, for a vector
x ∈ F

k, we will use [x] to denote a single packed sharing that stores k secrets of
x. We assume that the shares of any t parties are uniformly random, which is
satisfied by the two instantiations.

3 Technical Overview

We describe the ideas in our NIMVZK protocols and how we come up with these
constructions in this section. We leave the full details and their proofs of security
in later sections.

3.1 Information-Theoretic Non-interactive MVZK

We introduce our non-interactive MVZK proofs starting from an information-
theoretic NIMVZK protocol that is a warm-up to describe the techniques in our
strong NIMVZK protocols.

Our Approach for NIMVZK. Our NIMVZK proofs follow the “commit-and-
prove” paradigm, where secrets are committed using Shamir sharings and the
security of commitments is guaranteed in the honest-majority setting. At a high
level, our information-theoretic protocol (as well as other two protocols discussed
later) have the following steps.

1. For the output z of each circuit-input gate or multiplication gate, the prover
runs Share(z) to distribute the shares of [z] to all verifiers. Since LSSS is used,
the addition gates can be locally computed by the verifiers.

2. For a circuit with N multiplication gates, we have N multiplication triples
([xi], [yi], [zi]) over a field F that the verifiers need to check. All parties jointly
sample a uniform element χ ∈ K, and then compute the inner-product tuple:

[x] :=
(
[x1], . . . , χN−1 · [xN ]

)
, [y] := ([y1], . . . , [yN ]) , [z] :=

∑N
i=1χ

i−1 · [zi].

If there exists one incorrect multiplication triple, then the inner-product tuple
defined as above is also incorrect, except with probability N−1

|K| .
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3. The verifiers check correctness of the inner-product tuple ([x], [y], [z]) with
logarithmic communication.

In the information-theoretic setting, the verifiers can call a coin-tossing func-
tionality (shown in the full version [52]) to sample the coefficient χ, but χ is
not available to the prover while keeping non-interactive between the prover and
verifiers. The distributed ZK proofs by Boneh et al. [14] could check correctness
of an inner-product tuple, but it only works when the prover knows the secrets.
To use their protocol directly, we would need the verifiers to send χ to the prover,
and then the round complexity between the prover and verifiers will be at least
3 rounds. Our task is to design a non-interactive protocol that verifies correct-
ness of an inner-product tuple, where the secrets are shared among verifiers and
unknown to the prover. We adapt the checking approach by Goyal et al. [40,41]
(building upon the technique [14]) from the MPC setting to the MVZK setting,
and construct a verification protocol to check correctness of inner-product tuples.
In particular, our verification protocol makes the prover generate the random
sharings and random multiplication triples (instead of letting the verifiers run
the DN multiplication protocol [25] that is done in [40,41]), which is sufficient
for MVZK as zero-knowledge only needs to hold for an honest prover.

3.2 Distributing Fiat-Shamir for Strong Non-interactive MVZK

With the above preparation, we now discuss how to construct a strong NIMVZK
proof, where the verifiers communicate for only one round. This is a highly non-
trivial task, as it is even unclear how to sample a random coefficient χ ∈ K as
needed in step 2.. Since every verifier can only send one message to other verifiers,
using a secure coin-tossing protocol is not possible. The other randomness source
that we can use is random oracle (i.e., adopting the Fiat-Shamir heuristic).
However, only the shares are sent by the prover where the shares need to be
kept secret, and thus the verifiers has no way to compute a public message that
can be used as the input of a random oracle. This was in fact attempted in the
distributed ZK proof [14] as well, but their non-interactive solution does not
allow the prover to collude with any verifier.

Let’s first review how Boneh et al. [14] use Fiat-Shamir in the case that
all verifiers do not collude with the prover. Suppose that the prover P sends a
message Msgi along with a randomness ri to a verifier Vi for i ∈ [1, n], where
Msgi and ri need to be kept secret. Every verifier Vi can send νi := H(Msgi, ri)
to other verifiers where H is a random oracle, and then generates a random
challenge χ :=

⊕
i∈[1,n] νi, when ignoring some details for simplicity. Prover P

can also compute the challenge χ as it knows all messages and randomness. When
the prover is corrupted (and thus we are concerning soundness), all verifiers are
assumed to be honest and thus can exchange the correct values {νi}i∈[1,n], so that
the verifiers can compute a random challenge χ to execute the protocol. However,
when P colludes with a verifier Vi∗ , this method does not work anymore: P can
cheat when the challenge is some value χ∗ �= ⊕

i∈[1,n] H(Msgi, ri); after receiving
the values of other verifiers, Vi∗ can compute νi∗ = H(Msgi∗ , ri∗) and the correct
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challenge χ, and then send ν′
i∗ = νi∗ ⊕ χ ⊕ χ∗ to every other verifier such that

the invalid proof can still go through.
Because of the round-complexity requirement on the verifier side, we cannot

let the verifiers to sample χ. So it appears that in order to get a strong NIMVZK,
we must find an approach to enable the prover to generate public messages via
some sort of Fiat-Shamir transformation in the distributed setting so that: 1) the
protocol tolerates the collusion of the prover and a minority of verifiers, and
2) does not require the verifiers to interact more than one round. Let H,H′ be
two random oracles with exponentially large ranges. Our technique to support
Fiat-Shamir is presented as follows.

1. Suppose that the prover P sends (Msgi, ri) to every verifier Vi over a private
channel, where Msgi consists of the shares held by Vi for our protocols.

2. Now, P also broadcasts commitments comi := H(Msgi, ri) for all i ∈ [1, n]
to all verifiers, where the broadcast does not increase the rounds between
verifiers that has been explained in Sect. 2.

3. Every verifier Vi checks that comi = H(Msgi, ri). As we assume that t < n/2,
we can guarantee that a majority of commitments in com1, . . . , comn are
computed correctly.

4. The verifiers can generate a random challenge χ := H′(com1, . . . , comn), as
they now know the public messages com1, . . . , comn. Then, the verifiers use
χ to transform the verification of N multiplication triples into that of an
inner-product tuple as described in Sect. 3.1.

If H has a 2λ-bit output length and thus is collision-resistant, then it would make
comi binding and the proof can easily go through, where all the commitments
{comi} held by n − t honest verifiers will uniquely define the secrets on all
wires. However, we make a key observation that it is sufficient to prove security,
if the challenge χ is guaranteed to be defined after the secrets on all wires
have been determined (i.e., χ is independent of these secrets). Therefore, it is
unnecessary to require the collision resistance for H, but rather we only need H
to be second preimage-resistant, which allows to achieve better efficiency, e.g.,
using the construction [26]. In particular, if χ has been defined and known by the
malicious prover, then it must make a query (com1, . . . , comn) to random oracle
H′. Then, the malicious prover cheats to find a pair (Msg′

i, r
′
i) associated with χ,

and then sends it to some honest verifier Vi. The cheat will not be detected only
if comi = H(Msg′

i, r
′
i), which is equivalent to find either a preimage or a second

preimage of comi. The Fiat-Shamir approach as described above only introduces
a small communication overhead, i.e., O(n2λ) bits in total between the prover
and all verifiers that is independent of the circuit size.

Through the above approach, the verifiers can generate a random challenge
non-interactively, and then use it to convert the verification of multiplication
triples into that of an inner-product tuple. We can simplify the verification tech-
nique (shown in Sect. 3.3) by viewing Shamir secret sharing as a special case of
packed secret sharing, and then use it to verify the inner-product tuple in one
round between verifiers. The resulting strong NIMVZK protocol is streamable
while keeping the round complexity between verifiers unchanged (see below).



Non-interactive Zero-Knowledge Proofs to Multiple Verifiers 527

3.3 More Efficient Strong NIMVZK from Packed Secret Sharing

The above discussion shows a strong NIMVZK protocol where a prover sends
one message to each verifier and the verifiers communicate only one round. It
is secure against the adversary corrupting up to a minority of verifiers (i.e.,
t < n/2) and the prover. However, the downside is the communication of 1/2 +
o(1) field elements per multiplication gate per verifier, and a majority of the
proof is used to transmit the shares of wire values. We now discuss the strong
NIMVZK protocol that reduces the communication cost to O(1/n) field elements
per multiplication gate per verifier, when the threshold of corrupted verifiers
t < n(1/2 − ε) for any 0 < ε < 1/2. This protocol adopts packed secret sharing
(PSS) [30] as the underlying LSSS, where each sharing packs k = O(n) secrets.

Using packed secret sharing efficiently for a single generic circuit is a huge
challenge, because the layout of the circuit could be complicated for packing
k gates, and it is not possible to move around any individual wire when using
PSS. In fact, because of this, prior MPC works [9,37] using PSS focus on SIMD
operations (i.e., repeated circuits). For a single generic circuit, the state-of-the-
art PSS-based MPC protocol [39] requires to evaluate the circuit layer-by-layer
that needs the rounds linear to the circuit depth, and splits each output wire
into different output wires that each can be used only once. Fortunately, we
observe that even a single generic circuit can be packed optimally in the context
of zero-knowledge, and can remove the constraints in MPC. Particularly, the
prover can prove a circuit in a streamable way without the constraint of proving
the circuit layer-by-layer, as the prover knows all the wire values.

Consistency Check of Wire Values. In our NIMVZK protocol, if the out
degree of a gate is greater than 1, we allow an output wire to appear multiple
times (instead of splitting the output wire into multiple output wires), which
enables us to obtain better communication. In this case, we need to use the
consistency check to ensure that the same wire is assigned with the same value.
Specifically, for each input packed sharing [y], if the j-th secret yj comes from
the i-th secret xi stored in an output packed sharing [x], then we need to check
xi = yj . This corresponds to the wire that carries the value xi = yj . Following
the work [39], we refer to ([x], [y], i, j) as a wire tuple. For the consistency check
of wire tuples, we reduce the total communication complexity from O(n5k2) in
MPC [39] to O(n2k2) for our strong NIMVZK protocol. For each i, j ∈ [1, k],
let ([x1], [y1], i, j), . . . , ([xm], [ym], i, j) be the wire tuples with the same indices
i, j. We use the random-linear-combination approach to check the consistency.
Specifically, the prover P samples two random vectors x0,y0 such that x0,i =
y0,j , and then distributes the shares of [x0] and [y0] to all verifiers. To support
Fiat-Shamir, we need P to generate these shares in two steps: 1) distributing
the shares of two random sharings [r] and [s]; and 2) broadcasts the differences
u = x0+r and v = y0+s to all verifiers. Then the verifiers can locally compute
[x0] := u − [r] and [y0] := v − [s]. P and all verifiers can generate a random
challenge α = H′(χ,u,v, i, j), where χ is another random challenge related to
the secrets {(xh,yh)}h∈[1,m]. Then, the verifiers can now check correctness of
the following wire tuple:
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[x] :=
∑m

h=1α
h · [xh] + [x0], [y] :=

∑m
h=1α

h · [yh] + [y0].

This check can be done by letting the verifiers open ([x], [y]) and check xi = yj .
When streaming the strong NIMVZK protocol, the verification of wire tuples do
not increase the rounds between verifiers (see Sect. 6.1 for details).

Verification of PSS-Based Inner-Product Tuples. Once we enable Fiat-
Shamir as shown in Sect. 3.2, we also get another benefit that now the chal-
lenge χ is also known to the prover P. Thus, we can non-interactively transform
the verification of PSS-based multiplication tuples into that of a packed inner-
product tuple. We present a non-interactive technique to verify the correctness
of a packed inner-product tuple, which is inspired by prior work [14,16,39–41].
We also adapt the technique by Baum et al. [8] from the DVZK setting to
the MVZK setting in order to further improve computational efficiency. Our
verification approach has lower round complexity than that used in PSS-based
MPC [39] (one round vs logarithm rounds). At a high level, our protocol for
verifying correctness of a packed inner-product tuple works as follows:

1. Suppose that all verifiers hold the shares of a dimension-M packed inner-
product tuple (([x1], . . . , [xM ]), ([y1], . . . , [yM ]), [z]), where {xi,yi}i∈[1,M ]

and z are secret vectors in K
k. Prover P knows all the secret vectors, and

wants to prove z =
∑

i∈[1,M ] xi ∗ yi where ∗ denotes the component-wise
product.

2. The verifiers recursively reduce the dimension of (([x1], . . . , [xM ]), ([y1], . . . ,
[yM ]), [z]) to 2. This is performed by splitting a packed inner-product tuple
(([x1], . . . , [xm]), ([y1], . . . , [ym]), [z]) into two inner-product tuples (([a1,1],
. . . , [a1,�]), ([b1,1], . . . , [b1,�]), [c1]) and (([a2,1], . . . , [a2,�]), ([b2,1], . . . , [b2,�]),
[c2]), where � = m/2 and [z] = [c1]+[c2]. Then, we use a protocol to compress
the two packed inner-product tuples into one inner-product tuple.

3. To realize the above splitting step, P can directly distribute the shares of
[c1] = [

∑
h∈[1,�] a1,h ∗ b1,h] to all verifiers. However, this does not support

Fiat-Shamir, as no public message is available. Instead, we let P distribute the
shares of a random packed sharing [r], and then broadcast a public message
u = c1 + r to all verifiers, who can locally compute [c1] := u− [r]. Then, the
verifiers can locally compute [c2] := [z] − [c1].

4. We adopt the polynomial approach to compress two packed inner-product
tuples (([a1,1], . . . , [a1,�]), ([b1,1], . . . , [b1,�]), [c1]) and (([a2,1], . . . , [a2,�]),
([b2,1], . . . , [b2,�]), [c2]) into a single tuple (([x1], . . . , [x�]), ([y1], . . . , [y�]), [z]),
which has been used in prior work such as [39]. Differently, we will use the
Fiat-Shamir transform to realize the non-interactive compression. Specifically,
the parties compute the sharings of polynomials [fj(·)], [gj(·)] for j ∈ [1, �] and
[h(·)], such that fj(i) = ai,j , gj(i) = bi,j and h(i) = ci for i ∈ [1, 2]. Then P
needs to convince the verifiers that h(X) =

∑
j∈[1,�] fj(X)∗gj(X), which can

be realized by proving h(α) =
∑

j∈[1,�] fj(α)∗gj(α) for a random challenge α.
P and all verifiers can generate α by computing H′(γ,msg) where γ is the chal-
lenge used in the previous iteration and msg is the public message sent in the
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current iteration. Now, the parties can define ([xj ] = [fj(α)], [yj ] = [gj(α)])
for j ∈ [1, �] and [z] = [h(α)], and execute the next iteration.

5. Let (([x1], [x2]), ([y1], [y2]), [z]) be the packed inner-product tuple after the
dimension reduction was completed. We can adapt the randomization tech-
nique [14,39] to check the correctness of this tuple. In the same way, we
can split it into two multiplication tuples ([x1], [y1], [z1]) and ([x2], [y2], [z2])
with [z] = [z1] + [z2]. The prover P can distribute the shares of a random
multiplication tuple ([x0], [y0], [z0]) with z0 = x0 ∗ y0 to all verifiers in the
way compatible with Fiat-Shamir. Then, P and the verifiers can compress
{([xi], [yi], [zi])}i∈[0,2] into ([x], [y], [z]). All verifiers can run the Open proce-
dure to obtain (x,y,z) and check that z = x ∗ y.

Streaming Strong NIMVZK with the Same Round Complexity. We can
use the strong NIMVZK protocol to prove a very large circuit in a streamable
way, such that between the prover and verifiers are non-interactive for proving
a batch of N = k · M multiplication gates each time, and the verifiers still
communicate only one round for proving the whole circuit. For a batch of N =
k ·M multiplication gates, the parties can transform M PSS-based multiplication
tuples into a packed inner-product tuple with dimension M , and then compress
it into a packed inner-product tuple denoted by IPtuple1 with dimension M/2c

for some integer c ≥ 1. For another batch of multiplication gates, the parties can
generate another packed inner-product tuple IPtuple2 with dimension M/2c in
the same way. Then, the prover and verifiers can compress IPtuple1 andIPtuple2
into a packed inner-product tuple IPtuple3 with the same dimension M/2c, where
the challenge α for this compression is computed with random oracle H′ and
two challenges to obtain IPtuple1 andIPtuple2. After the whole circuit has been
evaluated, the verifiers can check correctness of the final packed inner-product
tuple (with dimension M/2c) stored in memory by communicating only one
round. As a result, all parties only need memory linear to what is needed to
evaluate the statement in the clear.

4 Information-Theoretic NIMVZK Proof

We present a non-interactive multi-verifier zero-knowledge (NIMVZK) protocol
with information-theoretic security in the (Fcoin,Fverifyprod)-hybrid model, assum-
ing an honest majority of verifiers, where Fcoin is a coin-tossing functionality
shown in the full version [52]. Functionality Fverifyprod allows to verify the cor-
rectness of an inner-product tuple secretly shared among verifiers. It is possible
to instantiate Fverifyprod using prior work on fully linear PCP (or IOP) [14], but
we can improve its communication (or rounds) by adapting the technique by
Goyal et al. [40,41] in the MPC setting to the MVZK setting.
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Fig. 2. Zero-knowledge verification functionality for an inner-product tuple.

4.1 From General Adversaries to Maximal Adversaries for MVZK

Before we describe the NIMVZK protocol, we prove an important lemma that
can be used to simplify the proofs of the MVZK protocols in this paper and the
future works. Informally, this lemma states that if an MVZK protocol is secure
against exactly t malicious verifiers, then the protocol is also secure against at
most t malicious verifiers. The proof of this lemma is based on that of a similar
lemma for honest-majority MPC by Genkin et al. [33]. This lemma allows us
to only consider the maximum adversaries who corrupt exactly t verifiers, and
thus simplifies the security proofs of MVZK protocols. One caveat is that the
proof of this lemma needs to specially deal with the case that the honest verifiers
will receive output as well as the possible random-oracle queries (e.g., the Fiat-
Shamir transform [29] is used).

Lemma 1. Let Π be an MVZK protocol proving the satisfiability of a circuit C
for n ≥ 2t+1 verifiers. Then, if protocol Π securely realizes Fmvzk in the presence
of any malicious adversary corrupting exactly t verifiers, then Π securely realizes
Fmvzk against any malicious adversary corrupting at most t verifiers.

The proof of the above lemma is given in the full version [52]. The above lemma
can be applied to not only our information-theoretic NIMVZK protocol but also
the strong NIMVZK proofs in the computational setting that will be described
in Sect. 5 and Sect. 6.

4.2 Our Information-Theoretic NIMVZK Protocol

In Fig. 3, we describe the detailed NIMVZK protocol with information theoretic
security in the (Fcoin,Fverifyprod)-hybrid model. For each circuit-input gate or
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Fig. 3. Information-theoretic NIMVZK protocol in the (Fcoin,Fverifyprod)-hybrid model.

multiplication gate, the prover directly shares the output value to all verifiers.
The verifiers can locally compute the shares on the output wires of addition
gates. Then, all verifiers check the correctness of all multiplication gates by
transforming multiplication triples into an inner-product tuple and then calling
functionality Fverifyprod. In parallel, the verifiers also check correctness of the
single circuit-output gate via running the Open procedure.

In Fig. 2, we give the precise definition of functionality Fverifyprod. In particu-
lar, if the prover is honest, the adversary can only obtain the shares of corrupted
verifiers from this functionality, which does not reveal any information on the
secrets. In other words, this functionality naturally captures zero-knowledge. If
the prover is corrupted, this functionality reveals all secrets to the adversary, as
the secrets have been known anyway by the adversary. We can view deciding the



532 K. Yang and X. Wang

correctness of an inner-product tuple as a statement which is shared among n ver-
ifiers. Functionality Fverifyprod guarantees that the malicious prover cannot make
any honest verifier accept a false statement, and thus captures soundness. In
the full version [52], we present an efficient protocol to securely realize Fverifyprod,
where the communication and round complexities are O((n + τ) logτ |C|) field
elements per verifier and logτ |C|+3 rounds between verifiers respectively, where
τ ≥ 2 is a parameter.

Theorem 1. Protocol Π it
nimvzk shown in Fig. 3 securely realizes functionality

Fmvzk with information-theoretic security and soundness error N−1
|K| in the

(Fcoin,Fverifyprod)-hybrid model in the presence of a malicious adversary corrupt-
ing up to a prover and t verifiers.

The proof of this theorem can be found in the full version [52].

5 Strong NIMVZK Proof in the Honest-Majority Setting

In this section, we present a strong NIMVZK proof based on the Fiat-Shamir
transform, where a minority of verifiers are allowed to be corrupted and collude
with the prover. Our strong NIMVZK protocol adopts a non-interactive com-
mitment based on random oracle to non-interactively transform the verification
of multiplication triples into the verification of an inner-product tuple. This pro-
tocol still works in the Fverifyprod-hybrid model, where functionality Fverifyprod can
now be non-interactively realized using the Fiat-Shamir transform.

In Fig. 4, we describe the strong NIMVZK protocol Π fs
snimvzk in the Fverifyprod-

hybrid model, where the shares are computed over a field F and the verification of
multiplication gates is performed over an extension field K with |K| ≥ 2λ. The
strong NIMVZK protocol is the same as the protocol shown in Fig. 3, except
for the verification of multiplication gates. In the strong NIMVZK protocol,
the verification of multiplication gates is executed non-interactively using a non-
interactive commitment based on a random oracle H1, where a commitment com
on a message x is defined as H1(x, r) for a randomness r ∈ {0, 1}λ. However,
we do not require that the commitment is binding. Instead, we only need the
commitment to be hard to find a pair (x′, r′) such that H1(x′, r′) = H1(x, r)
and x′ �= x, after H1(x, r) has been defined. This has been explained in Sect. 3.2
(see the proof of Theorem 2 for details). The random challenge χ ∈ K is now
generated using another random oracle H2 and the public commitments, instead
of calling Fcoin. In this case, the prover can compute the secrets (x,y, z) under-
lying the inner-product tuple using the public coefficient χ and the secret wire
values. At first glance, the secrets (x,y, z) seem to be useless for the protocol
execution of Π fs

snimvzk. Nevertheless, the prover can use (x,y, z) to compute all
the secrets involved in the protocol that securely realizes functionality Fverifyprod.
In this case, we can securely compute Fverifyprod in a strongly non-interactive way
by making the prover distribute the shares of all secrets non-interactively and
all verifiers interact only one round for Open.
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Fig. 4. Strong non-interactive MVZK protocol in the Fverifyprod-hybrid model and ran-
dom oracle model.

Theorem 2. Let H1 and H2 be two random oracles. Protocol Π fs
snimvzk shown

in Fig. 4 securely realizes functionality Fmvzk with soundness error at most
Q1n+(Q2+1)N

2λ in the Fverifyprod-hybrid model in the presence of a malicious adver-
sary corrupting up to a prover and t verifiers, where Q1 and Q2 are the number
of queries to random oracles H1 and H2 respectively.

The proof of the above theorem is given in the full version [52].
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Optimizations. For Shamir secret sharing , P can send a random seedi ∈
{0, 1}λ to Vi for each i ∈ [1, t], who computes all its shares with seedi and
a pseudo-random generator (PRG). This reduces the communication by a half.
Furthermore, for each i ∈ [1, t], P can send comi = H1(seedi, ri) to Vi, who checks
the correctness of comi using seedi and ri. This will reduce the computational
cost of generating and verifying t commitments. Using the optimization, the
communication among verifiers is asymmetry. In particular, among all verifiers,
t verifiers V1, . . . ,Vt only has a sublinear communication complexity. That is,
each verifier only receives O(n + log |C|) field elements from the prover, and
only needs to send O(n) field elements to other verifiers. It makes our strong
NIMVZK protocol particularly suitable for the applications where V1, . . . ,Vt are
lower-resource mobile devices and the other verifiers are powerful servers.

Strong NIMVZK Proof for Inner-Product Tuples. Boneh et al. [14] intro-
duced a powerful tool, called distributed zero-knowledge (DZK) proof (a.k.a., ZK
proof on a distributed or secret-shared statement), to prove the inner-product
statements (and other useful statements). We can use their DZK proof with
logarithmic communication to securely realize functionality Fverifyprod shown in
Fig. 2. When applying the Fiat-Shamir transform [16] into their DZK proof, the
prover non-interactively sends a proof to all verifiers, and the verifiers execute
one-round communication to verify correctness of an inner-product tuple. Note
that the proof on the inner-product statement can be sent in parallel with our
proof on circuit satisfiability shown in Fig. 4. Therefore, using the DZK proof
to instantiate Fverifyprod, our MVZK protocol is strongly non-interactive. While
Boneh et al. [14] originally instantiated the DZK proof with replicated secret
sharing, Boyle et al. [16] shown that their DZK proof also works for verifiable
Shamir secret sharing meaning that a consistency check is needed to guarantee
either all verifiers hold a consistent sharing of the secret or honest verifiers abort.

We can simplify the technique by Boneh et al. [14] by avoiding the use of verifi-
able secret sharing, and slightly optimize the communication from 4.5 log |C|+5n
field elements to 3 log |C| + 3n field elements. We can also improve the hash
computation cost for Fiat-Shamir. The improved approach has been described in
Sect. 3 by considering Shamir secret sharing as a special case of packed secret shar-
ing. The detailed protocol to strongly non-interactively realize Fverifyprod can be
directly obtained by simplifying the PSS-based protocol Πpss

verifyprod shown in Fig. 8
of Sect. 6.2 via setting the number of packed secrets k = 1.

6 Strong NIMVZK Proof with Lower Communication

Based on packed secret sharing (PSS), we present a strong NIMVZK proof with
communication complexity O(|C|/n) per verifier, when the threshold of cor-
rupted verifiers t < n(1/2−ε) for any 0 < ε < 1/2. Our strong NIMVZK protocol
is highly efficient for proving satisfiability of a single generic circuit. In the ZK
setting, we use PSS optimally. In particular, we eliminate the constraints in the
state-of-the-art PSS-based MPC protocol [39] including: 1) evaluating a circuit
layer-by-layer, 2) interactively permuting the secrets in a single packed sharing,
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Fig. 5. ZK verification functionality for packed inner-product tuples.

3) interactively collecting the secrets from different packed sharings and 4) split-
ting an output wire into multiple output wires, where all these constraints will
make the rounds and communication cost significantly larger than our protocol.

Firstly, we discuss how to transform a general circuit C into another circuit
C ′ with the same output and |C ′| = |C| + O(k), such that 1) the number of
circuit-input wires, addition gates and multiplication gates is the multiple of k;
2) there are at least k circuit-output wires; 3) the gates with the same type are
divided into groups of k. This is done by adding “dummy” wires and gates, and is
described in the full version [52]. Then, we present the detailed strong NIMVZK
protocol in the Fpss

verifyprod-hybrid model, where Fpss
verifyprod verifies the correctness of

a packed inner-product tuple. Next, we present a strong non-interactive MVZK
protocol to securely realize functionality Fpss

verifyprod.

6.1 Strong NIMVZK Based on Packed Secret Sharing

Before showing the detailed strong NIMVZK protocol, we give the definition of
functionality Fpss

verifyprod.

Functionality for Verifying Packed Inner-Product Tuples. Let HH ⊂ H
be a fixed (d+1)-sized subset of honest verifiers and HC = H\HH , where recall
that H is the set of all d + k honest verifiers and d is the degree of polynomials
for PSS. For a degree-d packed sharing [x], we use [x]H to denote the whole
sharing that is reconstructed from the shares of honest verifiers in HH . Given
the shares of honest verifiers in H as input, we can reconstruct the whole sharing
[x] as follows:
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1. Use the d+1 shares of honest verifiers in HH to reconstruct the whole sharing
[x]H. Define the shares of corrupted verifiers on [x] as that on [x]H. Following
prior MPC work [39], we always assume that the corrupted verifiers in C hold
the correct shares that they should hold, while they may use incorrect shares
during the protocol execution, where C is the set of corrupted verifiers.

2. Define the secrets of [x] to be that of [x]H.
3. Define the shares of [x] held by honest verifiers in H as the shares input by

the verifiers directly.

The zero-knowledge verification functionality for packed inner-product tuples
is shown in Fig. 5. This functionality takes as input a packed inner-product tuple
and then checks correctness of the tuple, where each sharing packs k secrets. This
functionality sends the shares of corrupted verifiers for each packed sharing to
the adversary, where the shares are computed by the above approach based on
the shares of honest verifiers in HH . If the prover is corrupted, this functionality
also sends the shares of all honest verifiers and the secrets in all packed sharings
to the adversary, as these shares and secrets have been known by the adversary.

PSS-Based Strong NIMVZK Protocol from the Fiat-Shamir Trans-
form. Our PSS-based strong non-interactive MVZK protocol in the Fpss

verifyprod-
hybrid model is described in Figs. 6 and 7, where the circuit is defined over a
field F and the verification is performed over an extension field K with |K| ≥ 2λ.

The prover and all verifiers first transform the circuit C into an equivalent
circuit C ′, which satisfies the requirements of packed secret sharings. For an
input vector w ∈ F

k, if the j-th secret of w for j ∈ [1, k] corresponds to a
dummy circuit-input wire, the secret is set as 0. If w corresponds to k dummy
circuit-input wires, then w = 0k and [w] can be locally generated by all verifiers
without any communication (as shown in the full version [52]).

Using the non-interactive commitment based on a random oracle, we adopt
a similar approach as described in the previous section to transform the check of
multiplication tuples into the check of a packed inner-product tuple. Then, by
calling functionality Fpss

verifyprod, the verifiers can check correctness of the packed
inner-product tuple. Note that the prover can compute the secrets of the packed
inner-product tuple, which will be useful for designing a strongly non-interactive
protocol to securely realize Fpss

verifyprod as shown in Sect. 6.2.
During the protocol execution, we need to check the consistency of some

secrets stored in two different packed sharings. We perform the consistency check
using the random-linear-combination approach based on the Fiat-Shamir trans-
form, which is inspired by the recent checking approach by Goyal et al. [39]
for information-theoretic MPC. In particular, the prover will generate a packed
input sharing [y] on k multiplication gates, addition gates or circuit-output gates,
such that the j-th secret yj of [y] comes from the i-th secret xi of a packed out-
put sharing [x] of k circuit-input gates, multiplication gates or addition gates.
We need to check that xi = yj to guarantee the consistency of yj . This corre-
sponds to the wire which carries the value xi = yj in the circuit. We refer to
a tuple ([x], [y], i, j) as a wire tuple following prior work [39]. We perform the
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Fig. 6. PSS-based strong NIMVZK in the Fpss
verifyprod-hybrid model and random oracle

model.
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Fig. 7. PSS-based strong NIMVZK in the Fpss
verifyprod-hybrid model and random oracle

model, continued.
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consistency check of wire tuples in the total communication complexity O(nk2)
elements between the prover and verifiers and O(n2k2) elements among verifiers.

Theorem 3. Let H1 and H2 be two random oracles. Protocol Πpss
snimvzk shown in

Figs. 6 and 7 securely realizes functionality Fmvzk with soundness error at most
Q1n+(Q2+1)(M+N)

2λ in the Fpss
verifyprod-hybrid model in the presence of a malicious

adversary corrupting up to a prover and t = d − k + 1 verifiers, where degree-d
packed sharings are used in protocol Πpss

snimvzk, each sharing packs k secrets, and
Q1 and Q2 are the number of queries to H1 and H2 respectively.

The proof of Theorem 3 can be found in the full version [52].
Protocol Πpss

snimvzk shown in Figs. 6 and 7 are streamable, i.e., the circuit can be
proved on-the-fly. The prover P can prove a batch of addition and multiplication
gates each time, and stores the secrets that will be used as the input wire values
in the next batches of gates. In Sect. 3.3, we give an approach overview on how
to stream our protocol Πpss

snimvzk with the same round among verifiers. In the full
version [52], we provide more details.

6.2 Strong NIMVZK Proof for Packed Inner-Product Tuples

Below, we present a strongly non-interactive MVZK protocol with logarith-
mic communication complexity to verify packed inner-product tuples, which is
inspired by the technique by Goyal et al. [39] for MPC that is in turn built on the
techniques [14,40,41]. While the MPC protocol [39] requires logarithmic rounds
to check correctness of packed inner-product tuples, our strong NIMVZK pro-
tocol needs only one round between verifiers. Furthermore, our protocol reduces
the communication overhead for verification by making the prover generate the
random sharings and messages associated with secrets, compared to the verifi-
cation of packed inner-product tuples directly using the MPC protocol [39].

Our PSS-based strong NIMVZK protocol Πpss
verifyprod for verifying a packed

inner-product tuple is described in Fig. 8. This protocol invokes two sub-
protocols Πpss

inner-prod and Πpss
compress that are described in Figs. 9 and 10 respec-

tively, where Πpss
inner-prod is used to generate the inner product of two vectors and

Πpss
compress is used to compress two packed inner-product tuples into a single tuple.

In the dimension-reduction and randomization phases of this protocol, we adapt
the approach by Baum et al. [8] used in the DVZK setting to non-interactively
generate a challenge α used in sub-protocol Πpss

compress based on the Fiat-Shamir
transform. Based on the round-by-round soundness [8,20], we can prove that the
soundness error of our protocol is negligible (see Theorem 4). In the dimension-
reduction phase of Πpss

verifyprod, we always assume that the dimension m of the
packed inner-product tuple is the multiple of 2 for each iteration. If not, we can
pad the dummy zero sharing [0] into the packed inner-product tuple to satisfy
the requirement, where [0] can be locally computed by all verifiers.

In the protocol Πpss
verifyprod shown in Fig. 8, we assume that P and all veri-

fiers input a public challenge χ, which is determined after the secrets packed in
the input inner-product tuple (([x1], . . . , [xM ]), ([y1], . . . , [yM ]), [z]) have been
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Fig. 8. One-round ZK verification protocol for packed inner-product tuples.
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Fig. 9. Non-interactive inner-product protocol for packed sharings secure up to additive
errors.

Fig. 10. Protocol for compressing packed inner-product tuples.

defined. In particular, χ can be defined as H2(com1, . . . , comn) as shown in
Fig. 7. When using Πpss

verifyprod to realize functionality Fpss
verifyprod, χ ∈ K can be

generated by P and all verifiers in the main NIMVZK protocol shown in Figs. 6
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and 7. For the sake of simplicity, we ignore the case that the adversary (who
corrupts P) did not make a query to obtain χ but made a query to get a chal-
lenge α = H2(χ, · · · ) used in protocol Πpss

verifyprod, which occurs with probability at
most 1

|K| ≤ 1
2λ . When the adversary makes a query (com1, . . . , comn) to random

oracle H2 and obtains χ, the challenge χ is determined after the secrets stored in
the input packed tuple have been defined, except with probability at most Q1n

2λ

following the proof of Theorem 3.

Sub-protocol for Computing Inner Product. Sub-protocol Πpss
inner-prod shown

in Fig. 9 is used to compute the inner product of two vectors ([x1], . . . , [x�])
and ([y1], . . . , [y�]). The prover now knows all the challenges due to the use
of the Fiat-Shamir transform, and thus holds all the secrets involved in the
verification procedure. Thus, the prover can directly distribute the shares of [z]
with z =

∑
h∈[1,�] xh ∗ yh to all verifiers. To support Fiat-Shamir, the verifiers

need to know public messages instead of secret shares. Therefore, we first let the
prover generate a random packed sharing [r], and then make it broadcast the
public difference u = z + r to all verifiers. The prover and verifiers also need
to output the message u, which will be used in the Fiat-Shamir transform of
the main verification protocol. When the prover is malicious, it can introduce an
additive error to the sharing [z] output by the verifiers, which is harmless when
integrating Πpss

inner-prod into the main protocol Πpss
verifyprod.

Sub-protocol for Compression. Sub-protocol Πpss
compress shown in Fig. 10 is

used to compress m packed inner-product tuples into a single packed inner-
product tuple. In particular, this protocol invokes the sub-protocol Πpss

inner-prod
instead of calling an inner-product functionality, which seems necessary to sup-
port Fiat-Shamir, where the messages related to the secrets need to be used as
the input of a random oracle H2. For every protocol execution of Πpss

compress, the
prover and all verifiers generate a random challenge α ∈ K using the Fiat-Shamir
transform. To realize non-interactively recursive compression in the main verifi-
cation protocol, the prover and verifiers also input the public challenge γ from
the previous iteration and the public messages produced in the current iteration.

Theorem 4. Let H2 : {0, 1}∗ → K be a random oracle. Protocol Πpss
verifyprod shown

in Fig. 8 securely realizes functionality Fpss
verifyprod with soundness error at most

4�log M�+5Q2
2λ−3

in the presence of a malicious adversary corrupting up to the prover
and exactly t verifiers, where Q2 is the number of queries to random oracle H2.

The proof of Theorem 4 is given in the full version [52].
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Abstract. Key Transparency (KT) systems allow end-to-end encrypted
service providers (messaging, calls, etc.) to maintain an auditable direc-
tory of their users’ public keys, producing proofs that all participants
have a consistent view of those keys, and allowing each user to check
updates to their own keys. KT has lately received a lot of attention, in
particular its privacy preserving variants, which also ensure that users
and auditors do not learn anything beyond what is necessary to use the
service and keep the service provider accountable.

Abstractly, the problem of building such systems reduces to con-
structing so-called append-only Zero-Knowledge Sets (aZKS). Unfortu-
nately, existing aZKS (and KT) solutions do not allow to adequately
restore the privacy guarantees after a server compromise, a form of Post-
Compromise Security (PCS), while maintaining the auditability prop-
erties. In this work we address this concern through the formalization
of an extension of aZKS called Rotatable ZKS (RZKS). In addition to
providing PCS, our notion of RZKS has several other attractive features,
such as a stronger (extractable) soundness notion, and the ability for a
communication party with out-of-date data to efficiently “catch up” to
the current epoch while ensuring that the server did not erase any of the
past data.

Of independent interest, we also introduce a new primitive called a
Rotatable Verifiable Random Function (VRF), and show how to build
RZKS in a modular fashion from a rotatable VRF, ordered accumulator,
and append-only vector commitment schemes.

Keywords: Key Transparency · Zero-knowledge sets · Verifiable
random functions · Post-compromise security

1 Introduction

End-to-end encrypted communication systems (E2EE), including encrypted chat
services (such as WhatsApp [45], Signal [38], Keybase [21], iMessage [2]) and
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encrypted calls (Zoom [6], Webex [44], Teams [32]), are becoming increasingly
common in today’s world. E2EE systems require each user to publish a public
key, and use the corresponding secret key along with their communication part-
ners’ public keys to compute a shared secret which can be used to secure the
communication. To enable this, service providers (such as Apple, Zoom, Meta,
Microsoft, etc.) need to maintain a directory that maps each user to their pub-
lic keys, a Public Key Infrastructure (PKI) analogous to the one in place to
secure the web. The end-to-end guarantees depend on the authenticity of these
public keys, as otherwise a malicious service provider (or one who is hacked or
compelled to act maliciously) can replace an honest user’s identity public key
with another public key whose secret key is known to the provider, and thus
implement a meddler-in-the-middle (MitM) attack without the communicating
users ever noticing.

Key Transparency. To mitigate this issue, many E2EE communication sys-
tems provide users with “security codes”, i.e. digests of the communication part-
ners’ identity public keys rendered as lists of digits or words, or QR codes.
To detect potential meddler-in-the-middle attacks, the communicating users are
expected to manually check these codes, either by reading them aloud (in calls),
scanning them with their phone apps, or otherwise sharing them out-of-band.
It is well understood that this has severe usability challenges [3,18,19,43]. Key
Transparency (KT)1 systems augment these checks with a fully automated solu-
tion that improves both usability and security.

KT systems enable service providers to maintain an auditable directory that
maps each user’s identifier (such as a username, phone number or email address)
to their identity public keys (analogously to how Certificate Transparency [26]
allows to monitor PKI certificates). Providers compute and advertise a short
(signed) “commitment” com to the whole directory, and update it (creating a
new epoch) whenever users join the directory or update their keys. When users
query a particular label label (a key in the map, such as a username), they get
the corresponding value val (i.e. public key) and a proof π that this (label, val)
pair is consistent with com.2 Clients are then encouraged to periodically monitor
the directory to make sure their own identifier maps to the correct keys, thus
detecting any attempt to MitM their communications.

Assuming cryptographic soundness of such proofs, to ensure that all clients
receive the same answer when they query for the same label, it is enough to
ensure they all have the same commitment com. To achieve this, KT relies on
clients gossiping the commitment [29], or on public and untamperable ledgers
such as blockchains [22]. While the implementation of such gossiping schemes is
not part of the design (and definition) of KT, and they have seen little practical

1 KT is known under various names in the literature, such as auditable registries, ver-
ifiable key directories, auditable directories etc. For the purpose of this manuscript,
we will stick to using KT.

2 Additionally, if no (label, val) pair exists for a given label, the proof π becomes an
absence proof for this label.
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deployment3 [14,28], improvements in this respect seem feasible, and even the
potential for users to independently check might deter the server from misbe-
having.

Auditing. Although the basic functionality already goes a long way towards
holding the server accountable for providing incorrect keys to users, clients would
incur a high burden if they had to check the server’s consistency at every epoch,
especially clients whose keys do not change often as the directory evolves. To
mitigate that, most KT systems provide additional auditing functionality, where
more resourceful parties (called auditors) can continuously check that certain
properties of the directory are maintained across updates (such as the fact that
old keys are never erased, and newer ones are simply appended). Technically,
when updating the old commitment com to directory D with a newer commit-
ment com’ to D′, the server can issue a certain proof πS asserting that D ⊆ D′

(and, ideally, revealing nothing more beyond |D′ \D|). While any user can be an
auditor, in practice it is envisioned that relatively few external auditors would
continuously monitor the server in this way, and most clients would rely on that
assurance. This also justifies relatively large update proofs (with size propor-
tional to |D′ \D|). Such KT systems are called auditable. In addition to keeping
the server honest, auditable KTs might ease the need of clients to check their
keys at every epoch, if trusted auditors exist. For example, if a client checked
earlier that their keys were correct w.r.t. some (audited) old value com’, and
later got the current value of com from a trusted auditor, they can be sure their
keys are still correct w.r.t. com, thus eliminating the need to ask the server to
prove this fact again.

To the best of our knowledge, Keybase [25] is the first deployment of an
auditable public key directory; they published the first KT digest on April
2014 [24]. Keybase was created as a more user-friendly and secure replacement for
PGP, so their KT favors full transparency and auditability over privacy guaran-
tees. For example, Keybase publicly advertises [23] how many devices each user
has the Keybase client app installed on, and how often their keys change (i.e.,
the app is reinstalled). While this is an acceptable tradeoff for many, this pri-
vacy leakage can also be a concern, as surfaced in [27], which studied the privacy
concerns of using Keybase for US journalists and lawyers. There could be other
important business reasons for requiring privacy as well. A business might not
want to use a KT system if doing so means revealing to the world how much
churn the company has. If the KT system is used to authenticate group member-
ship as well, revealing which groups a user is part of could leak the organizational
structure of the business and facilitate social engineering attacks. In fact, Google
and Zoom advocate for adding privacy to KT systems [6,17]. In addition to being
privacy-conscious (which is a good practice anyway), these industry leaders are
also concerned about current and future laws and regulations, such as GDPR.
Indeed, once a major system is in play, it is extremely hard to change it when a
new privacy law/regulation comes into effect. For example, creating a publicly
3 While Keybase posts its KT digests to a blockchain, official Keybase clients do not

check them.
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visible and immutable trail of a user’s encryption key changes in a Key Trans-
parency directory would likely cause a GDPR violation. Similarly, if a user asks
the provider to delete their account and all traces, doing so would be very hard
without privacy built-in.

Privacy-Preserving KT. Motivated by these and other considerations,
new KT schemes were developed with privacy. Broadly speaking, privacy can
be divided in two categories: content-privacy and metadata-privacy. Content-
privacy hides public keys and usernames from unauthorized parties (e.g., auditors
and other users who wouldn’t otherwise be able to query for those usernames).
KT systems supporting content privacy include [20,28,40–42]. Metadata-privacy
also hides information such as when each user first registered in the KT, when
and how often their keys change, correlations between multiple updates, etc.
on top of content-privacy. We denote metadata-hiding KT schemes as privacy-
preserving KT (ppKT) [7,17,29]. In ppKT, both external auditors and users
should learn as little as possible beyond the data they are actively querying.
For example, KT commitments and proofs for a certain user identifier should
not reveal information about other users’ keys and how often they are changing.
Similarly, auditors should enforce that no data is ever deleted from the directory,
while learning as little as the total number of keys being updated.

Unlike KT systems without any privacy, in which the key directory data
structure can be built entirely on symmetric key primitives like Merkle Trees [10],
practical KT systems (with either content-privacy or metadata-privacy) achieve
privacy through asymmetric primitives such as Verifiable Random Functions
(VRFs) [31].4 Ignoring some important details, given a (label, val) pair, the server
holding the VRF’s secret key will use a pseudorandom label y = VRF(label)
in place of the original label. Then: (a) pseudorandomness of y ensures that
no information about the original label is leaked; (b) verifiability of y ensures
that it can be convincingly opened to the original label; and (c) uniqueness of
y = VRF(label) ensures that each label can be used only once.5

Key Rotation and Post Compromise Security. With the growing pop-
ularity and user-base of E2EE communication systems, ppKT is very close to
real-world, large-scale deployments [6,13,17]. However, as with any real world
system, a ppKT system will likely get compromised at some point, so there
should be a robust plan to recover from such a compromise, should it happen.
One subtle observation in this regard is that current ppKT systems all require the
server to maintain a secret key sk (e.g., the secret key to the VRF, as explained
above), in addition to simply storing the users’ data. Thus, recovering from such
compromise necessitates updating the secret/public keys of the server, which
is called key rotation. In addition, even if no evidence of actual compromise
is ever found, periodically rotating secret keys is considered an industry best

4 Informally, a VRF [31] is similar to a standard pseudorandom function (PRF), except
the secret key owner is also committed to the entire function in advance, and can
selectively open some of its outputs in a verifiable manner..

5 Property (c) is why VRF is needed, and regular commitments to label do not work.
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practice and sometimes mandated by regulations [35,36]. For ppKT, rotating
the key would ideally ensure that compromise of the server would only violate
the privacy of past records (which is unavoidable, as the server stores this data
anyway), but not of future records.6 In other words, the primary goal of key
rotation is to achieve what is known as post compromise security (PCS): the pri-
vacy of ppKT systems should be seamlessly restored in case of (possibly silent)
key compromise. This is the main question we address in this work:

How easy is it to add PCS to a ppKT, while maintaining high efficiency?

A Naive Solution. To see why this question is non-trivial, let us look at a
naive attempt to add key rotation to any existing ppKT, such as SEEMless [7].
The first idea is to simply pick a fresh key pair (skt, pkt) for a ppKT with every
rotation number t, and basically view the final database D as a disjoint union of
t smaller databases D1, . . . , Dt, where Di corresponds to the key pair (ski, pki).
On the surface, this seems to maintain the efficiency of the base ppKT, since the
server can figure out which “mini-database” Di contains a given record (id, pkid)
and provide a proof only for this value of i. Unfortunately, this does not work, as
the server also needs to provide (i−1) absence proofs that id does not belong to
any of the previous databases D1, . . . , Di−1. Otherwise, the server could insert
(id, pkid) in database i, (id, pk′

id) in database i′, and provide different clients with
different answers to the same query, even if a good base ppKT is used. And in the
case of id not belonging to the entire database D, the server must provide t such
absence proofs. Given that clients might need to lookup many identifiers at once
and that providers will have to handle a large volume of queries simultaneously,
this multiplicative slowdown is unacceptable for practical use.

A better approach—and indeed the approach we take in this work—is to
transfer the entire database D when switching from skt−1 to skt, thereby ini-
tializing Dt = Dt−1, and then growing Dt when new data items are appended.
This ensures that the efficiency of key lookup, the most frequent and important
operation in ppKT, is indeed inherited from the base ppKT to which we are
adding PCS, because it is always done w.r.t. the latest public key pkt. Of course,
now the server also needs to prove that it honestly initialized Dt = Dt−1, so that
the users or auditors performing this (potentially expensive, but rare) check are
convinced that no data was added, removed, or modified. Moreover, this check
should be done in a privacy-preserving way, so that auditors learn as little as
possible about the database D = Dt−1 = Dt at this moment, beyond the fact
that it was correctly “copied” during key rotation.

Unfortunately, none of the existing ppKT systems appear friendly to such
(key) rotation proofs, while generic zero-knowledge proofs would be prohibitively

6 The effect of compromise on authenticity/auditability is rather minimal anyway, as
the key used to sign the commitments would typically be authenticated using the web
PKI, and thus can be revoked upon compromise using existing techniques. Moreover,
learning the secret server state doesn’t help break the binding of the commitment
to the entire set of current records in the directory.
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inefficient given large database sizes in typical ppKT systems. As our main tech-
nical contribution, we overcome this difficulty by designing a specialized, but still
highly efficient, ppKT system which supports efficient key rotation, and hence
provides PCS against (possibly silent) server compromises.

1.1 Our Contributions

Before our concrete solution, we list our contributions from the modeling and
definitions perspective.

Modeling and Definitions. First, much like earlier works on ppKT [7,17,29]
we abstract the primitive that we need. Our primitive, which we term Rotatable
Zero Knowledge Set (RZKS), is a natural extension of the so-called append-only
zero-knowledge set (aZKS) from [7].

At a high level, aZKS is a primitive where a prover can incrementally commit
to a dictionary D, and later prove (in zero-knowledge) a statement of the form
that a certain (label, val) pair belongs to the dictionary, or that a certain label
does not belong to the dictionary (for any val). Moreover, there is at most one val
for any label, and this val cannot be modified once it is assigned. To model the
incremental nature of aZKS, the prover can also prove the “append-only” prop-
erty to the auditors, such that two commitments com and com′ correspond to
two dictionaries D and D′, where D is a subset of D′, in almost7 zero-knowledge.

Our RZKS notion extends aZKS in several ways. First, and most importantly
from the perspective of PCS, we allow a new algorithm for key rotation. Syntax-
wise, it is the same as the append algorithm of aZKS: given a (possibly empty)
set S of fresh {(label, val)}-pairs to be appended to the current database, we
update the commitment com to D to a new commitment com′ to D′ = D ∪ S,
and output a proof πR that this operation was done “consistently”. However,
unlike the regular append operation given by proof πS , the proof size and time
for the rotation operation is allowed to be proportional to the entire database
D′, as opposed to the number of appended elements |S|. What we gain though
is the PCS property: unlike with the regular append, compromising the server’s
state (including D) before the rotation does not help the attacker learn any new
information about newly appended elements S, or any elements appended in the
future (including those by the standard append operation). (As a bonus, it also
wipes out the minimal leakage of regular append mentioned in Footnote 7.)

Second, and of independent interest, we extend the aZKS functionality to
support what we call extension proofs. Such proofs allow a party to verify that a
given newer commitment comt′ commits to a given older commitment comt (and,
therefore, also implies that both comt′ and comt commit to the same sequence
com1, com2, . . . , comt−1), for any t′ > t (as opposed to the append-only proofs in
aZKS only supporting t′ = t+1). Here, t and t′ are the total number of appends
and rotations that were performed to produce the dictionary corresponding to
7 According to a well-defined leakage profile. For [7], the only such leakage reveals if

a label known to be missing in D is later inserted in D′, which seems acceptable for
the main application to KT.
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each commitment. These extension proofs are extremely efficient (only logarith-
mic in the number of epochs t′), as they can be instantiated using Merkle Tree
append-only proofs [7,41].

Note that, by themselves, extension proofs do not prove that the database
has evolved consistently (for example, it is possible that Dt �⊆ Dt′). However,
auditors still check that each successive epoch correctly performs append or
rotation operations. As a result, extension proofs allow users to confirm that the
commitments they receive are authentic and represent a consistently evolving
database by occasionally verifying commitments with a trusted auditor, instead
of verifying every commitment they receive, which would be a frequent and
expensive operation. Concretely, suppose a user receives a series of commitments
comt1 , . . . , comtn from the server, possibly over a long period of time, along with
extension proofs from each comti to the next comti+1 (which the user verifies).
Then, by verifying just comtn with an auditor, blockchain, or other gossiping
mechanism, the user can guarantee the consistency of every previous comti they
received with those other sources’ views. Furthermore, if the user trusts that
the source they are verifying against has also verified that the database evolved
consistently at each epoch, they can infer that each Dti ⊆ Dti+1 . This also allows
auditors and other clients to only gossip about the latest commitment com′ and
forget any previous commitments. If an older commitment comold is ever needed,
the server can always provide comold and the extension proof from comold to com′.

Third, each query also explicitly indicates the epoch at which the queried pair
was added to the RZKS directory, which can be verified without any increase
in the proof size (obtaining this information in an aZKS would require multiple
proofs). We believe that this information can be helpful in practical applications,
as older records/keys are often considered more trustworthy than newer ones (the
owner has had more time to react to a compromise), and quickly comparing the
age of two records can be helpful for more complex applications of RZKS beyond
standard KT8. Moreover, while previous ppKT do not allow to determine this
efficiently, they do not hide this information either.

Finally, our notion of RZKS strengthens the soundness definition of aZKS
presented in [7]. Namely, the latter mandates that an adversary cannot produce
valid proofs of conflicting statements (for example, proving that the same key
maps to different values, possibly in different epochs). Instead, we notice that the
soundness of the SEEMless construction of [7] is proven in the Random Oracle
model anyway, where we can achieve much stronger forms of soundness. Indeed,
our RZKS notion demands a very strong form of extractability-based soundness.
Roughly, we require the existence of an extractor, which, given any malicious
commitment com produced by the attacker (and its random oracle queries), can
extract the entire database D for which the attacker can later produce verifying

8 For example, Keybase uses its KT dictionary to also store other statements signed by
a user’s device, such as when a user wants to add another user to a group: knowing
that the statement was signed before the key that signed it is revoked/rotated is
important for the security of the system.
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membership proofs. We believe this stronger property makes it easier to reason
about the security of applications of RZKS.

RZKSConstruction. Finally, we show how to build an efficient RZKS system.
Our starting point is the aZKS construction from SEEMless [7]. SEEMless uses—
in a black-box way—a verifiable random function (VRF) [31] and cryptographic
hash function to build their aZKS, and recommends the specific DDH-based
VRF from the upcoming VRF standard [16].

Recall, a VRF allows the secret key owner (e.g., server) to compactly com-
mit to an entire random-looking function f , but in a way that allows them to
convincingly open individual function outputs f(x), without compromising the
randomness of yet unopened outputs f(x′) for x′ �= x. In the aZKS construction
of [7], when appending a (x = label, v = val) pair to D, the server uses the VRF
output f(x) to decide where to put a commitment to v in some Merkle Tree T
that it builds. If this place is occupied, the server knows that D already contains
some v′ associated with label x, and can reject the request. Otherwise, it inserts
some commitment to v into the Merkle Tree T , and uses the new root of T as
the modified commitment value com′ to D′ = D ∪ {(x, v)}. Intuitively, the use
of VRF ensures privacy, as it hides information about the labels that would oth-
erwise be leaked by Merkle proofs of “neighboring” labels. On the other hand,
VRF uniqueness and verifiability properties ensure that the server cannot cheat.

One can now consider how to extend the scheme above to support key rota-
tion, provided that the underlying VRF can support what we call VRF rotation
proofs. Intuitively, a RZKS rotation proof will switch the VRF key from f1 to f2,
rebuild the Merkle Tree T1 into T2 using the same commitments to each of the
values, and openly reveal the one-to-one correspondence between leaves of T1

and T2 associated with all keys x present in the original database D before the
rotation. However, recall that the value x itself should be hidden from auditors
verifying consistency of key rotation, which leads to the following problem we
solve in this work. We need to design a VRF with a fast zero-knowledge proof
showing that two VRF outputs y1 and y2 under two independent keys f1 and f2
correspond to the same secret input x: y1 = f1(x) and y2 = f2(x). We call this
novel type of VRFs rotatable. We discuss them next, and defer the rest of the
details of our final RZKS construction to Sect. 5.2, simply highlighting here its
modularity: it is built from any rotatable VRF, commitments and other generic
building blocks instantiable from Merkle Trees.9

Rotatable VRFs. Unfortunately, supporting an efficient ZK proof mentioned
above is not sufficient for the type of rotatable VRFs we need for RZKS. To
achieve PCS for RZKS, our VRF also needs to satisfy a novel type of “non-
committing property”: upon compromise, the attacker learns of a compact secret
key sk for the VRF, which suddenly explains a lot of VRF outputs {y} that
the attacker saw prior to the corruption (but did not know the corresponding
inputs {x}). More concretely, we use a simulation-based rotatable VRF defini-

9 Namely, so called ordered accumulators, and append-only vector commitment
schemes. See Sect. 5.1.
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tion, extending the earlier “simulatable VRF” notion of [9] to handle rotations.
Under this notion, the simulator must in particular “win” in the following game
(which is the most challenging part of our definition explaining the heart of the
problem). The simulator must commit to a VRF public key pk, get a bunch of
random strings {y} as various VRF outputs of unknown inputs {x}, answer ran-
dom oracle queries from the attacker, then learn the hidden set {x}, and finally
produce a secret key sk that correctly explains that f(x) = y for all matching
(x, y) pairs of the corresponding sets {x} and {y}.

This problem seems to relate to the area of non-committing encryption
(NCE) [5,34], where one compact secret is supposed to open many previously
committed ciphertexts in a certain way. As with non-committing encryption [34],
building standard model “non-committing” VRF is impossible, as one short secret
key sk cannot “explain away” arbitrarily many random looking outputs y. On the
other hand, given that several NCE schemes exist in the random oracle model
(e.g., [4]), one might hope that the same simple ideas10 will work in our VRF
setting as well. Unfortunately, this does not appear to be the case, due to the
inherently algebraic structure of VRF proofs. To understand this inherent ten-
sion, let us consider the concrete efficient VRF (from the VRF standard [16])
recommended by the authors of SEEMless. In this VRF, the secret key sk for
the VRF is a random exponent α, the public key pk = gα (for public generator
g), and the VRF value y = f(x) = F ′(F (pk, x)α), where F is a random oracle
and F ′ is an “extractor” meant to map a random group element to a random bit-
string. (The proof π that y = f(x) is the value z = F (pk, x)α and the standard
Fiat-Shamir variant of the Σ-protocol for the DDH tuple (g, pk, F (pk, x), z) [12].)

When rotating the key pair (α, gα) to a fresh key pair (β, gβ), first we need
to ensure that there exists an efficient ZK proof showing that two random values
y and y′ satisfy the relation y = F ′(F (gα, x)α) and y′ = F ′(F (gβ , x)β). As
the first obstacle, this seems hard due the outside extractor F ′. Fortunately,
this problem is trivially solved by getting rid of the “outer extractor” F ′, and
thinking of the VRF as outputting a group element (rather than bit-string)
y = F (pk, x)α. Indeed, the standard VRF proof in [16] shows that the above VRF
is already secure. The next problem comes from the fact that the old VRF f and
the new VRF f ′ have different public keys gα and gβ hashed inside the “inner
random oracle” F . Once again, it turns out that the VRF proof just needs some
domain separation, and goes through if we redefine the output y = F (salt, x)α,
where salt is some unpredictable value which does not need to change with any
rotation.11

This already gives us the ability to construct (at least “syntactically”) the
required ZK proof of rotation when moving from sk = α to sk′ = β. Indeed, for
any unknown x, if y = F (x)α and y′ = F (x)β , the server can simply prove that

10 Namely, to a posteriori program random oracle in a manner depending on the strings
y, on appropriate inputs involving the secret key sk.

11 For simplicity of exposition, we omit salt from our description, but recommend that
each application uses a fresh salt.
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the tuple (gα, gβ , y, y′) is a proper DDH tuple (using witness w = β/α).12 As we
said, though, we also need to provide the PCS property mentioned above. And
this appears hopeless at first glance. Indeed, the public key pk = gα commits
to α information-theoretically. Moreover, when programming the random oracle
query F (x), the simulator does not know yet which random output y corresponds
to x. Hence, the simulator has no chance to correctly program F (x) = y1/α. For
regular (“non-rotatable”) VRFs, we would try to fake the Fiat-Shamir proofs
for correctness. In fact, this would extend to rotatable VRFs without the PCS
property (i.e., without corruptions of α); but, of course, this is not very inter-
esting from the application perspective. In the case of corruptions, however, the
simulator is committed to the secret key α, and will be caught cheating with
certainty.

Our Solution: GGM Analysis. Interestingly, the difficulty of completing the
simulation-based PCS proof for our tweaked construction y = F (x)α does not
seem to translate to an explicit attack on the resulting rotatable VRF. Rather, we
cannot build a sufficiently adaptive simulator to prevent the type of attack in the
previous paragraph. So we ask the question if the construction might be actually
be secure, despite the natural proof breaking down. Somewhat surprisingly, we
give supporting evidence that this is the indeed the case, by providing such a
security analysis in the generic group model (GGM) of Shoup [37].13

Recall that in Shoup’s GGM, all group elements have random bit-string rep-
resentations, and the group operation � also has a random multiplication table
�(a, b) (subject to associativity of multiplication). As such, most security assump-
tions in standard groups (e.g., DDH) will hold in the GGM unconditionally. But
now the simulator can commit to the public key pk = gα without committing to
α information-theoretically. Intuitively, since the attacker does not know value
α before the compromise, and has a bounded number of multiplication queries
to explore, the simulator can simply choose a random value of α as the secret
key, and will have enough freedom to “mess” with the multiplication table �(a, b)
to simultaneously satisfy many equations of the form yi = F (xi)α (as well as
pk = gα). However, the formal proof of this statement is rather subtle, and
forms one of the main technical novelties of this work. For example, the group
laws mandate certain relationships that the attacker can always satisfy, so the
simulator has to be extremely careful not to “overplay its hand” and program
the multiplication table too aggressively. We present the full simulation proof
in Sect. 4.4, and hope that our GGM proof technique will find applications for
analyzing other “non-committing” algebraic primitives.

Interpretation of Our Result. On a philosophical point, we suggest that
the value of our GGM security proof should be understood in light of the fact

12 Our final ZK proof will aggregate many such individual input rotation proofs into
one compact proof.

13 We stress that we only use GGM for the ZK property of our construction. Our
stronger extractability-based soundness is still proven in the random oracle model,
and does not require the GGM.
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that ROM-based proofs seem to be inherently stuck, at least for the natural
rotatable VRF that we consider. Aside from the obvious consideration that we
focused on finding a practical solution to a natural problem for which we could
not find an explicit attack, we note that the requirements in our definition of
rotatable VRFs are quite strong. Basically, the simulator has to answer all ideal
queries without knowing any of the input/output behavior of the VRF, and then
must produce a single secret key consistent with not only these ideal queries, but
also all fake proofs (including rotation). From this perspective, we feel that it
is quite surprising that we managed to overcome these difficulties at all, even
relying on the GGM. The GGM proof can also be considered a sanity check
that our scheme is likely to be secure under weaker models/assumptions, pro-
vided one correspondingly weakens our extremely demanding simulation security
definition.

More generally, while the ROM model is obviously preferred to the GGM,
practitioners do not mind relying on the GGM, provided it solves an interest-
ing problem. Indeed, we can point to several examples of interesting primitives
where standard analyses appear to be stuck, and the GGM provided meaning-
ful answers to these questions. Most notably, Signal leverages in production a
protocol which can only be proven secure in the GGM model to achieve group pri-
vacy [11,39]. Other important examples include optimal structure-preserving sig-
nature schemes [1] and state-restoration soundness analysis of Bulletproofs [15].

2 Notation and Preliminaries

We use square brackets [a1, a2, . . . , an] to denote ordered lists of objects, and
curly brackets {a, b, c, . . . } for sets. We represent maps D = {(a, b), (c, d), . . . }
as sets of label-value pairs. If D is a set of pairs, we denote with D(·) = {a, c, . . . }
the set of the first components of each pair (the domain of the corresponding
map), and with D(·) = {b, d, . . . } the set of the second components (the range of
the map). When clear from context, we slightly abuse notation and write a ∈ D
(instead of a ∈ D(·)) if there is a pair (a, ·) in the set, and (when unique) we
denote the corresponding value with D[a]. Similarly, we use C[i] to denote the
i-th element of list C (1-indexed), and last(C) to denote its last element.

We denote with λ the security parameter. Given two security games I and R,
each parameterized by an algorithm A (the adversary), we define the advantage
of A in distinguishing the two experiments as

∣
∣Pr[IA = 1] − Pr[RA = 1]

∣
∣. In

each figure defining a security experiment, we denote with AO...(a1, . . . , an) an
execution of algorithm A on input a1, . . . , an with access to all the oracles defined
in that figure.

We use the following conventions to describe algorithms. When a hash func-
tion takes more than one input (or a pair), we assume that there is a well defined
way to serialize and deserialize such a tuple into a bitstring. Given a boolean
b, we use ensure b as shorthand for “if not b, return 0”. We use “parse a as
(a1, . . . , an)” to denote that an algorithm tries to unpack a tuple of objects, and
if the tuple does not have the appropriate length the algorithm returns a dummy
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output/error. In a security game, we use “assert b” to denote that if b is false,
the experiment is immediately terminated with a special return value ⊥; during
an oracle call, we use “require b” to indicate that if b is false the oracle call by
the adversary is interrupted without output, and any effects on the state of this
call are reverted.

In the full version of the paper, we recall the Diffie-Hellman assumption, and
briefly discuss the Random Oracle Model and Generic Group Model assumptions
that our work depends on.

3 Rotatable Zero Knowledge Set

In this section, we formally define Rotatable Zero Knowledge Sets (RZKS). The
primitive Zero-Knowledge Set was introduced in [8,30] and extended to append-
only ZKS (aZKS) in [7]. We extend the notion of aZKS from SEEMless to add
new properties as well as strengthen the soundness guarantees in our new prim-
itive: RZKS.

Definition 1. A Rotatable Zero Knowledge Set (RZKS) consists of a tuple
of algorithms Z = (Z.GenPP, Z.Init, Z.Update, Z.PCSUpdate, Z.VerifyUpd,
Z.Query, Z.Verify, Z.ProveExt, Z.VerExt) defined as follows:

� pp ← Z.GenPP(1λ): This algorithm takes the security parameter and produces
public parameter pp for the scheme. All other algorithms take these pp as
input implicitly, even when not explicitly specified.

� (com, st) ← Z.Init(pp): This algorithm takes as input the public parameters,
and produces a commitment com to an empty datastore D0 = {} and an initial
server/prover state st. A datastore D will be a collection of (labeli, vali, t)
tuples, where t is an integer indicating that the tuple has been added to the
datastore as part of the t-th Update or PCSUpdate operation (we call this an
epoch). Labels will be unique across the datastore (it can be thought of as a
map). Each server state st will contain a datastore and a digest, which we will
refer to as D(st) and com(st). Similarly, each commitment will include the
epoch t(com) of the datastore to which it is referring. (Alternatively, these
can be thought of as deterministic functions which are part of the scheme.)

� (com′, st′, πS) ← Z.Update(pp, st, S), (com′, st′, πS) ← Z.PCSUpdate(pp, st, S):
Both algorithms take in the public parameters, the current state of the prover
st, and a list S = {(label1, val1), (label2, val2), . . . , (labeln, valn)} of new (label,
value) pairs to insert (the labels must be unique and not already part of
D(st)). The algorithm outputs an updated commitment to the datastore, an
updated internal state st′, and a proof πS that the update has been done
correctly. Intuitively, com′ is a commitment to the updated datastore D(st′)
at epoch t(st′) = t(st) + 1, which extends D(st) by also mapping each labeli
in S to the pair (vali, t(st′)). As we will see, Update and PCSUpdate have
different tradeoffs between their efficiency and the privacy guarantees they
offer.
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� 0/1 ← Z.VerifyUpd(pp, comt−1, comt, πS): This deterministic algorithm takes
in two commitments to the datastore output at successive invocations of
Update, and verifies the above proof.

� (π, val, t) ← Z.Query(pp, st, u, label): This algorithm takes as input a state st,
an epoch u ≤ t(st), and a label. If a tuple (label, val, t) ∈ D(st) and t ≤ u,
it returns val, t and a proof π. Else, it returns val = ⊥, t = ⊥ and a non-
membership proof π. In both cases, proofs are meant to be verified against
the commitment comu output during the u-th update.

� 1/0 ← Z.Verify(pp, com, label, val, t, π): This deterministic algorithm takes a
(label, val, t) tuple, and verifies the proof π with respect to the commitment
com. If val = ⊥ and t = ⊥, this is considered a proof that label is not part of
the data structure at epoch t(com).

� πE ← Z.ProveExt(pp, st, t0, t1): This algorithm takes the state of the prover
and two epochs t0, t1, and returns a proof πE that the datastore after the
t1-th update is an extension of the datastore after the t0-th update. Proofs
are meant to be verified against the commitments comt0 and comt1 output
by Update during the t0-th and t1-th update.

� 1/0 ← Z.VerExt(pp, comt0 , comt1 , πE): This deterministic algorithm takes two
datastore commitments and a proof (generated by ProveExt) and verifies it.

We require a RZKS to satisfy the following security properties:

Completeness. We will say that an RZKS satisfies completeness if for all PPT
adversaries A, the probability that the game described in Fig. 1 outputs 0 is
negligible in λ.

Intuitively, all updates and queries should behave as expected by their
descriptions in the definition. Furthermore, all proofs produced by various updat-
ing or querying algorithms should verify when properly queried to the corre-
sponding verification algorithms. More formally, an adversary only breaks com-
pleteness if it is able to construct a sequence of queries such that one of the asser-
tions in Fig. 1 fails. For example, the assertion D(st′) = D(st) ∪ {(labeli, vali, t +
1)}i∈[j] in Update(S) will only fail if the elements added in S are not correctly
added to the state of the datastore. Similarly, in Query(label, u) we assert that
P.Verify(comu, label, val′, t′, π) succeeds, where (val′, t′, π) are those produced by
the corresponding call to P.Query.

Soundness. We will say that an RZKS satisfies soundness if there exists an
extractor Extract such that for all PPT adversaries A, the advantage of A in
distinguishing the two experiments described in Fig. 2 is negligible in λ. Note
that all the algorithms executed in the experiment get implicit access to the
Ideal oracle, as they might need to make, e.g., random oracle calls.

The extractor Extract is required to provide various functionalities based on
its first input:
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Fig. 1. Completeness for RZKS and OA (an Ordered Accumulator, defined in Sect. 5.1)
primitives (denoted with P). Some of the oracles are only applicable to one primitive.
In this experiment, the adversary can read all the game’s state and the oracle’s inter-
mediate variables, such as comi∀i, st, y. The experiment returns 1 unless one of the
assertions is triggered. These checks enforce that the data structure is updated con-
sistently, that the outputs of query reflect the state of the data structure, and that
honestly generated proofs pass verification as intended.

– pp′, st ← Extract(Init): Samples public parameters indistinguishable from
honestly generated public parameters such that extraction will be possible.
Also generates an initial state.

– Dcom ← Extract(Extr, st, com): Takes in the internal state and a commitment
to the datastore. Outputs the set of (label, val, i) committed to.

– Ccom ← Extract(ExtrC, st, com): Takes in the internal state and a commitment
to the datastore. Outputs the set of previous commitments, indexed by epoch.
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– out, st ← Extract(Ideal, st, in): Simulates the behavior of some ideal function-
ality (for example a random oracle or generic group). Takes in any input and
produces an output indistinguishable from the output the ideal functionality
would have on that input.

One small subtlety of the definition here is that we do not allow the extractor
to update its state outside of Ideal calls. The only advantage that the extractor
gets over an honest party is its control over the ideal functionality. This allows
for easier composition, since a larger primitive utilizing RZKS will not need to
simulate extractor state.

An adversary breaks soundness if it either distinguishes answers to Ideal
queries in the real game from those produced by the extractor, or if it causes some
assertion to be false in the ideal game. Each assertion in the ideal game captures
some way in which the extractor could be caught in an inconsistent state. For
example, let us consider the assertion D[com][label] = (val∗, i∗) in CheckVerD.
This will be false if the adversary can provide a proof that (label, val∗, i∗) is in
the datastore with digest com, but the extractor expects this datastore to either
not contain label or to contain (label, val, i) for some different (val, i).

Our soundness definition strengthens the traditional one by providing
extractability. aZKS soundness already guarantees that a (malicious) prover is
unable to produce two verifying proofs for two different values for the same label
with respect to an aZKS commitment it has already produced. However, that
definition does not guarantee that the malicious prover knew the entire collection
of (label, value) pairs at the time it produced the commitment. Extractability
requires that by mandating that the entire datastore can be extracted from the
commitment, except with negligible probability.

We also explicitly guarantee consistency among the RZKS commitments pro-
duced over epochs. Informally, consistency guarantees that each commitment to
an epoch also binds the server to all previous commitments (i.e. these can be
extracted from the former). In particular, when the client swaps a commitment
coma with a more recent one comb by verifying an extension proof, and then
checks with an auditor that comb is legitimate, the client can be sure that any
auditor who checked all consecutive audit proofs up to comb must also have
checked the same coma for epoch a. This is modeled in the security game by the
assertions in the ExtractC, CheckVerUpdC, and CheckVerExt oracles.

Zero Knowledge. We will say that an RZKS is zero knowledge for leakage function
L = (LUpdate, LPCSUpdate, LQuery, LProveExt, LLeakState) if there exists a simulator S
such that every PPT malicious client algorithm A has negligible advantage in
distinguishing the two experiments of Fig. 3.

The stateful simulator S is required to provide various functionalities:

– com′, pp′ ← S(Init): Samples public parameters and an initial commitment
indistinguishable from honest public parameters such that it will be possible
to simulate proofs.
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Fig. 2. Soundness for RZKS and OA (both denoted by P). In the ideal world, the
map D stores, for each commitment com, the datastore that the Extract algorithm
output for that commitment. In addition the map C stores, for each commitment, the
(ordered) list of commitments to previous epochs. When the adversary provides proofs,
we require that the proofs are consistent with such data structures. In the real world
(not pictured), the public parameters are generated as pp ← P.GenPP(1λ), and all the
oracles do nothing and return no output, except for the Ideal oracle, which implements
the ideal objects (such as random oracles) that we abstract to prove security of the
primitives (and that are controlled by the extractor in the ideal world). In both cases,
P’s algorithms implicitly get access to the Ideal oracle as needed.

– (com′, π) ← S((PCS)Update, l): Takes in some leakage l about an Update
(or, analogously, PCSUpdate) query on input S, i.e. in the experiment
l ← LUpdate(S) (or l ← LPCSUpdate(S)). Outputs a commitment com′ indis-
tinguishable from a commitment to the previous datastore with the elements
of S appended. Furthermore simulates a proof π that the update was done
correctly.

– (π, val′, t′) ← S(Query, l): Takes in leakage l ← LQuery(u, label) about the
entry indexed by (u, label) in the datastore. Outputs val′, t′ which would have
been returned by an honest query. Also simulates a proof π that D[label] =
(val′, t′), or an absence proof if label �∈ D.
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– π ← S(ProveExt, l): Takes in partial information l ← LProveExt(t0, t1) from
a ProveExt query the between epochs t0 and t1. Outputs an extension proof
that the commitment provided at epoch t1 binds to the one at epoch t0.

– st ← S(Leak, l): Takes in partial information l ← LLeakState() about the data-
store and outputs a simulated state consistent with the information given.

– out ← S(Ideal, in): Simulates the behavior of some ideal functionality. Takes
in any input and produces an output indistinguishable from the output the
ideal functionality would have on that input.

Note that the particular leakage given will be construction specific, but should
be designed to be as minimal as possible. Our choice of leakage will be described
in detail in Sect. 5.3. In the experiment, the only information the simulator has
access to is the output of the leakage function, as well as the queries made to
the Ideal oracle. The simulator’s ability to control the ideal oracle is crucial for
security proofs to go through.

Informally, zero knowledge here means that the proofs generated by any
sequence of honest calls to RZKS algorithms can be simulated given access to
minimal information about the queries made. The adversary breaks zero knowl-
edge if it is able to generate a sequence of queries such that it can distinguish
the output of the simulator from honestly generated outputs and proofs. For
example, if the simulator is unable to simulate query proofs, then an adversary
could succeed by calling the Update({label, val}) oracle for some (label, val), then
the (π, val, 1) ← Query(label, 1) oracle, and running RZKS.Verify on π. Since the
simulator can’t simulate query proofs, π generated in the ideal world will not
verify and so will be distinguished from π generated in the real world.

Post-compromise security is modelled by allowing for LeakState calls, which
reveal the state in its entirety. When the adversary queries this oracle, the simu-
lator is required to output a state that appears consistent with whatever proofs it
has revealed before. Healing from compromise is modelled by having a dedicated
leakage function for PCSUpdate (different from Update). Note that since all the
leakage functions share state, calling LeakState or PCSUpdate might affect the
leakage of other future queries.

3.1 Application to Key Transparency

Recall that in an aZKS, the value associated with each label cannot be updated:
the prover can only add new (label, value) pairs to the directory. In SEEMless [7],
the server uses aZKS to commit to its public key directory by setting the label to
(userID || version number) and value to the public key of the user corresponding
to that ID. Every update to the underlying public key directory becomes a
new label addition to the aZKS. The server collects a batch of these additions
and periodically updates the directory, creating a new epoch and publishing a
new aZKS commitment. Clients must hold on to all previous commitments until
they have double-checked them with the auditors (to ensure that the server is
not violating the append-only property and that every client is seeing the same
commitments). If clients want to retain the ability to hold the server accountable
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Fig. 3. Zero Knowledge (with leakage) security experiments for RZKS. S is a state-
ful algorithm (whose state we omit to simplify the notation). The leakage functions
LUpdate, LQuery, . . . also share state among each other.

even if auditors are temporarily offline, or if they wish to do the audit themselves
in the future, they need to hold on to all the commitments indefinitely, which is
inefficient. To solve this problem, SEEMless suggests building a hashchain over
all the aZKS commitments, so that the client only needs to remember the tail.
This is an improvement, but to skip between two distant commitments, the client
has to download all the epochs in between; moreover, the security guarantees
deriving from this are not formalized. In contrast, we propose a more efficient
solution and formalize its security: we add the ProveExt and VerExt algorithms,
which allow the server to directly prove that any given datastore commitment
stems from another.

Thus, our advantage over SEEMless lies both in the fact that we give the
ability to heal from server state compromise and that we allow the client to
only keep the very latest commitment, and to efficiently update to the next one
without losing the ability to hold the server accountable later.
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4 Rotatable Verifiable Random Functions

In this section, we introduce the notion of a Rotatable Verifiable Random Func-
tion, a key component of our RZKS construction. Verifiable Random Functions
(VRFs), introduced in [33], are the asymmetric analogues of Pseudorandom
Functions: the secret key is necessary to compute the (random-looking) function
on any input, as well as a proof that the computation was performed correctly,
which can be checked against the corresponding public key. We extend VRFs
by adding “rotation” algorithms, which generate a new VRF key pair alongside
zero-knowledge proofs that outputs of the new and old VRF on the same (hid-
den) input are associated. In addition, our rotatable VRFs also satisfy stricter
soundness properties.

Definition 2. A Rotatable Verifiable Random Function is a tuple of algorithms
VRF = (GenPP, KeyGen, Query, Verify, Rotate, VerRotate) defined as follows:

� pp ← VRF.GenPP(1λ): This algorithm takes the security parameter and pro-
duces public parameter pp for the scheme. All other algorithms take these pp
as input, even when not explicitly specified.

� (sk, pk) ← VRF.KeyGen(pp): The key generation algorithm takes in the global
pp and outputs the public key pk and secret key sk.

� (y, π) ← VRF.Query(pp, sk, x): The query algorithm takes in pp, the secret key
sk and input x, and outputs the evaluation y of the VRF defined by sk on
input x, as well as a proof π. We denote with VRF.Eval(sk, x) the first output
y of the Query algorithm (i.e. Eval does not return a proof).

� 1/0 ← VRF.Verify(pp, pk, x, y, π): This deterministic function verifies the proof
π that y is the output of the VRF defined by pk on input x.

� sk′, pk′, π ← VRF.Rotate(pp, sk,X): Given a secret key14 and a list of inputs
X, this algorithm outputs an updated secret key, an updated public key,
and a proof π that the set of VRF output pairs P = {(VRF.Eval(sk, x),
VRF.Eval(sk′, x))}x∈X satisfies the relationship that each pair corresponds
to the same input x (without leaking information about X beyond its size).

� 0/1 ← VRF.VerRotate(pp, pk, pk′, P, π): Given two public keys pk, pk′ and list
of P pairs (y, y′), this deterministic algorithm checks the proof π that each
pair consists of the output of the VRFs identified by pk, pk′ on the same input
x.

For correctness, we require that for all λ, n ∈ N, all sets of inputs X1, . . . , Xn,
and all inputs x:

Pr[pp ←VRF.GenPP(1λ); sk0, pk0 ← VRF.KeyGen(pp);
ski, pki, πi ← VRF.Rotate(ski−1,Xi) for i = 1, . . . , n;
y, π ← VRF.Query(skn, x) : VRF.Verify(pkn, x, y, π) = 1] = 1.

14 Given that the old key sk and new key are independent from one another, we could
have equivalently defined Rotate as taking any two secret keys as input.
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Moreover, for all λ, n > 0 and all sets of inputs X1, . . . , Xn:

Pr[pp ← VRF.GenPP(1λ); sk0, pk0 ← VRF.KeyGen(pp);
ski, pki, πi ← VRF.Rotate(ski−1,Xi) for i = 1, . . . , n : VRF.VerRotate(pkn,

{(VRF.Eval(skn−1, x),VRF.Eval(skn, x))}x∈Xn
, πn) = 1] = 1.

4.1 Rotatable VRF Security

Informally, VRFs satisfy two properties. Uniqueness mandates that for any pub-
lic key and input x, there is only one y which can be proven to be output by the
function on input x. Pseudorandomness guarantees that, for an honestly gen-
erated key pair sk, pk and given oracle access to the query oracle on arbitrary
inputs, it is hard to distinguish the output of the function on any other (not yet
queried) input from a uniformly random value.

We augment the uniqueness and pseudorandomness requirements into sound-
ness and zero-knowledge respectively.

Soundness (Strengthened Uniqueness). We will say that a VRF satisfies sound-
ness if there exists an Extractor such that for all PPT adversaries A, the advan-
tage of A in distinguishing the experiments of Fig. 4 is negligible.

The extractor Extract is required to provide three functionalities based on its
first input:

– pp, st ← Extract(Init): Samples public parameters indistinguishable from
honestly generated public parameters such that extraction will be possible.
Also generates an initial state.

– x ← Extract(Extr, st, pk, y): Takes in an adversarially chosen public key pk
and output y of the function. Outputs the only input x for which the adversary
can produce an accepting proof.

– out, st ← Extract(Ideal, st, in): Simulates the behavior of some ideal function-
ality (for example a random oracle or generic group). Takes in any input and
produces an output indistinguishable from the output the ideal functionality
would have on that input.

As with RZKS, we do not allow the extractor to update its state outside
Ideal calls.

In the ideal experiment, the table T keeps track of the outputs of the extrac-
tor. An assertion is triggered (and the adversary can trivially win) if the extrac-
tor gives different answers to the same query over time, if the same answer
is returned for multiple inputs under the same public key, or if the adversary
produces an accepting proof for an input different than what the extractor had
predicted (these requirements together capture uniqueness). Moreover, the game
also enforces that proofs of rotation are consistent with the extractor’s output
and the equality condition is respected. In the real experiment, assertions are
never triggered, so indistinguishability ensures that public parameters, as well
as the answers to ideal queries, give the adversary the same view.
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Zero Knowledge (Strengthened Pseudorandomness). We will say that a VRF sat-
isfies zero-knowledge if there exists a simulator such that for all PPT adversaries
A, the advantage of A in distinguishing the experiments of Fig. 5 is negligible.

The stateful simulator S is required to provide various functionalities:

– pp, pk0 ← S(Init): Samples public parameters and an initial public key such
that it will be possible to simulate proofs.

– y ← S(Corrupted-Eval, i, x): Takes in a corrupted generation i and input
x, and outputs the evaluation of the VRF on i and x. If this is called, the
adversary has already obtained the corresponding secret key for generation i,
so the simulator is forced to output a value consistent with what the adversary
could compute itself.

– π ← S(Explain, i, label, y): Takes in a generation, input, and output. Outputs
a simulated proof that the output of the oracle Eval(i, x) = y.

– pkicur , πR ← S(Rotate, P ): Takes in a set P of pairs (y, y′). Samples a new
public key pkicur and outputs a simulated proof that for each (y, y′) ∈ P there
exists an x such that Eval(icur−1, x) = y and Eval(icur, x) = y′.

– skicrpt+1, . . . , skicur ← S(Corrupt,D): Takes in all queries made to Eval. Out-
puts a collection of secret keys consistent with output of all oracle queries
made so far.

– out ← S(Ideal, in): Simulates the behavior of some ideal functionality. Takes
in any input and produces an output indistinguishable from the output the
ideal functionality would have on that input.

We combine pseudorandomness with a zero knowledge requirement by requir-
ing that in each generation a simulator can sample public parameters such that
it can simulate proofs that the VRF is consistent with a new truly random
function. Furthermore, the simulator must be able to simulate rotation proofs
that the outputs of two random functions stem from the same input. We model
post compromise security by requiring that the simulator also be able to sample
secret keys consistent with all previous queries. Since it is impossible to sample
a secret key consistent with all future queries for a truly random function, after
corruption we give the simulator the ability to control the function associated
with that epoch. Note that the major difficulty in demonstrating zero knowledge
is that the simulator must simulate queries to the ideal oracle without knowing
what inputs are asked of the truly random function.

We remark that our definition of zero knowledge is heavily inspired by the
notion of a simulatable VRF, introduced in [9]. Simulatable VRFs require that
there exists a simulator that can sample simulated public parameters such that
for any public key pk, input x in the domain, and y in the range of the VRF, it
is possible to simulate a proof π that y is the output of the function on input
x (i.e. Verify(pp, pk, x, y, π) = 1). The simulated parameters, outputs and proofs
should be indistinguishable from honestly generated ones. Our definition of zero
knowledge extends this notion by accounting for rotation proofs and corruptions.
Our soundness notion is also stronger as we require extractability.
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Fig. 4. Soundness for VRF. In the real world (not pictured), the public parameters are
generated as pp ← VRF.GenPP(1λ), and the oracles do not do anything, except for the
Ideal one which implements the necessary ideal objects according to their specification.

4.2 Rotatable VRF Construction

Our rotatable Verifiable Random Function VRF = (GenPP, KeyGen, Query,
Verify, Rotate, VerRotate) is instantiated in Fig. 6. In summary, let G be a group
of (exponential) prime order p with generator g, and let F (x) be a hash func-
tion that maps arbitrary-length bitstrings onto G. Then for a given input x,
secret key sk ∈ Z

∗
p, and public key pk = gsk, the VRF output is y = F (x)sk.

To prove this, Query simply produces a Fiat-Shamir zero-knowledge proof that
(g, F (x), pk = gsk, y = F (x)sk) is a DDH tuple.

Given secret key sk = α0 · · · · · αi and public key gα0·····αi , Rotate samples
αi+1 from Z

∗
p. It then sets sk′ = α0 · · · · · αi+1 and stores pk′ = pkαi+1 =

gα0·····αi+1 = gsk′
. Then, it outputs a “batch” Fiat-Shamir zero-knowledge proof

that (pk, y, pk′, y′) is a DDH tuple, where y and y′ are random linear combina-
tions of VRF.Eval(sk, x) and VRF.Eval(sk′, x) for x ∈ X, respectively. In Fig. 6,
the coefficients for the random linear combination are derived as au.

4.3 Rotatable VRF Soundness Proof

Soundness of extraction stems directly from soundness of the underlying Fiat-
Shamir proof that (g, F (x), pk = gsk, y = F (x)sk) is a DDH tuple. To show
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Fig. 5. Zero Knowledge experiments for the Rotatable VRF.

soundness of rotation, again we use the fact that the underlying Fiat-Shamir
proof that (pk, y, pk′, y′) is a DDH tuple is sound. The only subtlety is to show
that batching the rotation proofs in the manner we do works. That is, we need
to show that if (y, y′) are a random linear combination of {(VRF.Eval(sk, x),
VRF.Eval(sk′, x))}x∈X , then if y′ = yα, with all but negligible probability we
also have VRF.Eval(sk′, x) = VRF.Eval(sk, x)α for all x ∈ X.

Taking the contrapositive, we just need to show that if there is any (y0, y′
0) in

{(VRF.Eval(sk, x),VRF.Eval(sk′, x))}x∈X such that y′
0 �= yα

0 , then the probability
that a random linear combination (y, y′) satisfies y′ = yα must be negligible. Note
that if there exists a pair (y1, y′

1) in {(VRF.Eval(sk, x),VRF.Eval(sk′, x))}x∈X

such that (y0, y′
0) and (y1, y′

1) are linearly independent as elements of G × G,
then (y, y′) will be uniformly random and so will satisfy y′ = yα with only
negligible probability. But if there is no such pair, then (y, y′) = (yc

0, y
′c
0 ) for

some c, so y′ = yα with probability 1. A detailed formal proof of the following
theorem is deferred to the full version of this paper.
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Fig. 6. Our Rotatable VRF construction.

Theorem 1. If F and F ′ are modeled as random oracles, and if the DDH
assumption holds, then there exists a simulator Extract such that for any efficient
adversary A,

|Pr[VRF-Sound-REAL(A) → 1] − Pr[VRF-Sound-IDEAL(A) → 1]| ≤ negl(λ).

4.4 Rotatable VRF Zero Knowledge Proof

Since our construction generates zero-knowledge proofs in Prove and Rotate,
one would hope that simulating these proofs would be enough to prove zero-
knowledge of the construction. In fact, if there were no Corrupt oracle, then sim-
ply programming the random oracle F ′ would be enough to simulate these proofs
and achieve zero-knowledge. However, once an adversary has called Corrupt and
obtained some secret key ski, it can then easily distinguish previously outputted
Eval(i, x) from the true VRF output F (x)ski by simply calculating F (x)ski itself
and comparing the two.
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This intuition extends to arbitrary simulation strategies. Consider for exam-
ple an adversary who asks for F (x) and F (x′), y ← Eval(i, x), y′ ← Eval(i, x′)
in this order, for two distinct x, x′ and some i. At the time of the F queries, the
uniformly random outputs of the VRF have not yet been sampled, and so the
simulator’s output cannot depend on them. Once the adversary calls the Corrupt
oracle, the simulator can produce a value for ski only if logF (x)(y) = logF (x′)(y′),
which only happens with negligible probability. While this specific problem could
be solved by adding an additional hash at the end of the VRF computation,
i.e. defining VRF.Eval(sk, x) = H(F (x)sk) as in [16] and treating H as a pro-
grammable random oracle, similar issues arise when considering our efficient
rotation proofs, which would force the game to reveal preimages for the hash
before the corruption happens (and so before the simulator knows what alge-
braic relations should exists between the outputs of F and the group elements
revealed in rotation proofs).

To solve this problem, we need to treat G as a generic group. This allows the
simulator to hold off on sampling ski until Corrupt is called. Until this point, the
simulator will treat pki as an arbitrary group element, but it will keep track of all
algebraic relationships between unknown arbitrary group elements. Then, when
Corrupt is called, the simulator will have access to a list of all group elements h
such that the adversary expects h = gf(ski) for some function f of ski. At this
point, the simulator will choose ski uniformly at random, and can program the
generic group such that gf(ski) = h for all such f . A detailed formal proof of the
following theorem is deferred to the full version of this paper.

Theorem 2. If the group G is modeled as a generic group, and F, F ′ are modeled
as random oracles, then there exists a simulator S such that for any efficient A,

|Pr[VRF-ZK-REAL(A) → 1] − Pr[VRF-ZK-IDEAL(A) → 1]| ≤ negl(λ).

5 RZKS-Construction

5.1 Relevant Primitives

In order to construct RZKS, we rely on a number of building blocks aside from
Rotatable VRFs. Security definitions and constructions are included in the full
version of the paper, but we include the syntax and a short description here for
ease of reference.

Simulatable Commitments. A commitment is a scheme which allows a prover
to publish a commitment to any given value such that the prover may later
publish a proof that the commitment was indeed generated from the initial value.
Furthermore, the simulatability requirement states that the commitment reveals
no information about the committed value. A full definition and construction is
included in the full version of the paper.

Definition 3 (Simulatable Commitments). A Simulatable Commitment
Scheme çonsists of 3 algorithms (C.Init,C.Commit,C.Verify) defined as follows:
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� pp ← C.GenPP(1λ): On input the security parameter, GenPP outputs public
parameters pp.

� com, aux ← C.Commit(pp,m): Using the global parameters pp, the (random-
ized) commit algorithm produces commitment com to message m, and decom-
mitment information aux.

� 1/0 ← C.Verify(pp, com,m, aux): This deterministic algorithm checks whether
com is a valid commitment to message m, given the decommitment aux.

Ordered Accumulator (OA). An ordered accumulator is a scheme which
allows a prover to commit to a sequence of label/value pairs. Furthermore, an
ordered accumulator allows the prover to verifiably append label/value pairs to a
previously committed sequence to generate a new commitment. The prover can
later provide proofs that a given label/value pair is in the committed sequence
or that a given label is not included in the committed sequence. A construction
is given in the full version of the paper. Completeness and soundness are defined
analogously to RZKS in Figs. 1 and 2 respectively.

Definition 4. An Ordered Accumulator is a tuple of algorithms OA = (GenPP,
Init, Update, VerifyUpd, Query, Verify, ProveAll, VerAll) defined as follows:

� GenPP, Init, Update, VerifyUpd, Query, Verify are defined analogously to the
RZKS in Definition 1.

� π ← OA.ProveAll(pp, st, u): This algorithm outputs π which can be verified
against the commitment comu output by the u-th call to Update. It proves
the set of label value pairs included in the datastore up to epoch u.

� 1/0 ← OA.VerAll(pp, comu, P, π): This deterministic algorithm takes a digest
comu, a set P of (label, val, t) pairs, and a proof. It checks that P is the set
of all pairs that comu commits to.

Append-Only Vector Commitments (AVC). An append-only vector com-
mitment can be used to commit to a list of values, extend the list without
recomputing the commitment from scratch, prove what the value is at a specific
position in the list, and prove that two commitments have been obtained by
extending the same list.

We briefly discuss the syntax of this primitive here, and defer the security
definitions and construction to the full version of the paper.

Definition 5. An Append-only Vector Commitment is a tuple of algorithms
AVC = (GenPP, Init,Update,ProveExt,VerExt,Query,Verify) defined as follows:

� pp ← AVC.GenPP(1λ): This algorithm takes the security parameter and pro-
duces public parameter pp for the scheme. All other algorithms take these pp
as input, even when not explicitly specified.

� (com, st) ← AVC.Init(pp): This algorithm produces an initial commitment com
to an empty list D0 = {}, and an initial server/prover state st. Each server
state st will contain a list and a digest, which we will refer to as D(st) and
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com(st). Similarly, each commitment will include an integer t(com) (also
called an epoch for consistency with other primitives) representing the size of
the list it commits to. (Alternatively, these can be thought of as deterministic
functions which are part of the scheme.)

� (com′, st′, πS) ← AVC.Update(pp, st, val): This algorithm takes in the current
state of the prover st, and a value val. The algorithm outputs an updated
commitment to the datastore, an updated internal state st′, and proof π (to be
verified with VerExt) that the update has been done correctly. Intuitively, com′

is a commitment to the list D(st′) = D(st)||val of size t(com′) = t(com(st))+
1.

� π ← AVC.ProveExt(pp, st, t′, t): Given the prover’s state st and two integers,
the algorithm produces a proof that the list committed to by comt (output
at the t-th invocation of Update) extends the one committed to by comt′ .

� 0/1 ← AVC.VerExt(pp, com′, com, π): This deterministic algorithm takes in two
digests and proves that the list committed to by com extends the one com-
mitted to by com′. The proofs can be produced by either Update or ProveExt.

� (π, val) ← AVC.Query(pp, st, u, t′): This algorithm takes as input a state st and
epochs u and t′ such that u ≤ t′ ≤ t(st). It returns val = D(st)[u] and a
membership proof π to be verified against the commitment comt′ output by
Update during the t′-th update.

� 0/1 ← AVC.Verify(pp, com, u, val, π): This deterministic algorithm checks the
proof π (produced by Query) that val is the is the u-th element of the list
committed by com.

5.2 RZKS Construction

We describe our RZKS construction in Fig. 7. The RZKS commits to a set of
(label, val) pairs by storing in an ordered accumulator (tlbl, tval) pairs, where a
given tlbl is the VRF output15 for a given label, and a given tval is the commitment
to a given val. Elements are added to the OA in batches, where the i-th update
to the OA produces a digest at the i-th epoch. At each epoch, the OA digest and
VRF public key are stored in the corresponding index of the AVC. The resulting
AVC digest is returned as the RZKS digest.

Updating the RZKS produces an append-only proof, which contains the
append-only proofs for the underlying OA and AVC. To verify the presence of a
(label, val), inclusion/exclusion proofs include the VRF proof, commitment open-
ing, OA digest, a proof that the label/value pair is consistent with that digest,
and a proof that the digest is at the expected index of the vector that the AVC
digest commits to.

The AVC data structure allows the RZKS to support the ProveExt and VerExt
algorithms, in which the server proves that a recent RZKS digest commits to an
older one that the verifier currently holds (therefore, the client can forget the
old digest without losing the ability to hold the server accountable later).
15 The Rotatable VRF presented in this work outputs group elements, while the ordered

accumulator takes as input bit-strings, so we implicitly assume that these group
elements have a unique bit-string representation.
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The RZKS construction is similar to the append-only ZKS described in
SEEMless [7], but i) each leaf also contains the epoch number at which such
leaf was inserted, and ii) it uses a rotatable VRF instead of a standard one.
To perform a rotation, the prover rotates the VRF key and builds a brand new
ordered accumulator using the same commitments as the old one, but uses the
new VRF outputs as labels. The audit proof for such a rotation involves the
VRF rotation proof for all the pre-existing labels, plus an append-only proof for
any new labels that were added.

Finally, we summarize the state that the RZKS maintains (note that some
values in the state are redundant for the sake of readability). It maintains D, a
map of all the (label, val) pairs in the RZKS, and epno, the latest epoch number.
It also contains stOA and stAVC, the underlying state of the OA and AVC, respec-
tively. It stores comepno, which is the latest value stored at the epno-th position
in the AVC (recall that it contains the latest OA digest and VRF public key).
And, the RZKS state stores KVRF, a map of the VRF keypair for each VRF key-
pair generation; G, a map of the corresponding VRF generation for each epoch
number; and g, the latest VRF keypair generation number.

5.3 RZKS Protocol Security

Theorem 3. The scheme described in Fig. 7 satisfies completeness according to
definition 1.

This is easy to see by inspection.

Theorem 4. Let OA be an Ordered Accumulator, C be a Commitment scheme,
VRF be a VRF, and AVC be an Append-only Vector Commitment, all satisfying
their respective definitions of soundness w.r.t. their own idealized objects. Then
the RZKS construction of Fig. 7 satisfies soundness, w.r.t. the set of all such
idealized objects.

Proof Sketch: To prove soundness, we define an RZKS extractor that trivially
combines those for the underlying building blocks. It extracts a dictionary from
an RZKS digest by feeding the output of each extractor as input to the next, and
answers Ideal oracle queries for a primitive’s ideal object by running the appro-
priate extractor. Given this extractor, we make a hybrid argument: we first need
to add extra assertions to the ideal RZKS game enforcing that the individual
components of an RZKS proof match the output of the corresponding extractors
(indistinguishability can be proven based on the soundness of those primitives).
This prevents an adversary from submitting proofs for the same tuples that the
combined extractor outputs, but that disagree with the internal extractors. After
that, we can start removing the individual extractors and honestly implementing
the corresponding ideal objects (relying a second time on the same soundness
properties of the underlying primitives) to get to the real game. The full proof
is in the full version of the paper.

Last, we prove that the RZKS construction satisfies zero-knowledge with
leakage. The leakage function provides the simulator, for Update queries, with
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Fig. 7. Our RZKS construction. We implicitly assume that the public parameters out-
put by GenPP are input to all other algorithms, parsed into their components and input
to the VRF, OA and C, AVC algorithms as appropriate (as shown in Init). Moreover,
since the OA commitment to the empty datastore ends up as the first element of the
AVC, in this construction we define RZKS.t(com) as AVC.t(com) − 1.
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the number of elements that are being added to the data structure, as well as the
labels (but not values) of any added pair that the adversary has queried since
the last PCSUpdate (and was given absence proofs for). PCSUpdate queries only
include the number of added pairs. When the adversary calls the Query oracle,
the simulator is given the queried label, as well as the epoch it was added at (if
the label is in the RZKS) and value (if it was added no later than the queried
epoch). On LeakState queries, the simulator is given the full contents of the data
structure, and subsequent Update queries until the next PCSUpdate also reveal
all the added labels (but not the values). Finally, ProveExt queries just reveal
the queried epochs. A formal definition follows:

Leakage L.

– The shared state consists of a set of labels X, a datastore D, a counter t for
the current epoch (initialized to 0), a counter g for the current generation
(i.e. the number of PCSUpdate operations performed, also starting at 0), a
map G that matches each epoch to the respective generation, and a boolean
leaked (initially false).

– LQuery(label, u): If ∃(label, val, t′) ∈ D such that t′ ≤ u, the function returns
(label, val, t′, u). If ∃(label, val, t′) ∈ D such that G[t′] = G[u], the function
returns (label,⊥, t′, u). Otherwise, it returns (label,⊥,⊥, u) and, if G[u] = g,
adds label to X.

– LUpdate(S): Parse S = {(labeli, vali)}. If S contains any duplicate label, or any
label which appears in D, this function returns ⊥. Else, it increments t, sets
G[t] ← g, and adds the pairs from S to the datastore D at epoch t. If leaked,
it returns the labels in S. Else, it returns |S| and the set of labels from S
which are also in X.

– LPCSUpdate(S): Parse S = {(labeli, vali)}. If S contains any duplicate label, or
any label which appears in D, this function returns ⊥. Else, it increments t,
adds the pairs from S to the datastore D at epoch t, and updates X ← {},
leaked ← false, and g ← g + 1, G[t] ← g. It returns |S|.

– LLeakState(S): Set leaked ← true. return D.
– LProveExt(t0, t1): return (t0, t1).

Theorem 5. Let VRF be a rotatable VRF in some idealized model, C be a sim-
ulatable commitments scheme in some idealized model, and AVC be any Append-
only Vector Commitment. Then, our Z construction satisfies zero-knowledge
with leakage L as above in the idealized models used by the underlying proto-
cols.

Proof Sketch: The proof is structured as a hybrid argument. Starting from the
real game, one can first substitute Commitments and (Rotatable) VRF outputs
and proofs with random strings or those produced by the respective simulators,
and then notice that, at this point, the information provided by the leakage
function L is sufficient to produce these simulated values without relying on the
full input to the oracle calls. For example, when an Update oracle query happens
(for a non compromised key), the simulator receives the number of pairs that the
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adversary wants to add to the RZKS, and can itself generate enough random
strings (to use as VRF outputs) and simulated commitments to add to the
OA, and then adds the new OA commitment to the AVC. Upon corruption or
queries, the simulator learns the actual values corresponding to these queries,
and can simulate commitment openings and VRF proofs accordingly, and provide
honestly generated OA and AVC proofs. A full proof is deferred to the full version
of the paper.

5.4 Instantiation and Complexity

If we allow each building block to be instantiated as constructed in the full
version of the paper, we can define an instantiation for the entire scheme. We
then calculate the efficiency of each building block, which then gives us the
efficiency of the entire scheme.

We calculate an upper bound on the number of hash computations and group
exponentiations under the constructions of our building blocks and RZKS as
follows: we define n to be the size of the stored datastore, and s to be the size
of the update query (when relevant). Let � be the number of bits needed to
represent a group element. We assume without loss of generality that � is also
the number of bits needed to represent a group exponent. Let �′ be the number
of bits to represent a label. Note that when some algorithm ignores the proof
output from another, we skip the proof calculation. The full list of complexities
is displayed in Fig. 8.

Fig. 8. The complexity of our various constructions.
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Abstract. In the Nostradamus attack, introduced by Kelsey and Kohno
(Eurocrypt 2006), the adversary has to commit to a hash value y of an
iterated hash function H such that, when later given a message pre-
fix P , the adversary is able to find a suitable “suffix explanation” S
with H(P ‖S) = y. Kelsey and Kohno show a herding attack with 22n/3

evaluations of the compression function of H (with n bits output and
state), locating the attack between preimage attacks and collision search
in terms of complexity. Here we investigate the security of Nostradamus
attacks for quantum adversaries. We present a quantum herding algo-
rithm for the Nostradamus problem making approximately 3

√
n · 23n/7

compression function evaluations, significantly improving over the clas-
sical bound. We also prove that quantum herding attacks cannot do bet-
ter than 23n/7 evaluations for random compression functions, showing
that our algorithm is (essentially) optimal. We also discuss a slightly less
tight bound of roughly 23n/7−s for general Nostradamus attacks against
random compression functions, where s is the maximal block length of
the adversarially chosen suffix S.

Keywords: Hash function · Herding attack · Lower bound ·
Nostradamus · Quantum · Grover

1 Introduction

Hash functions serve as a versatile tool in cryptography, thus coming with sev-
eral security requirements like collision resistance, preimage resistance, or second
preimage resistance. In 2006 Kelsey and Kohno [26] introduced a new kind of
attack and security property for iterated hash functions H, based on a compres-
sion function h with state and output size n. The attack requires the adversary
to first commit to a hash value ytrgt and later, after given a message prefix P ,
to find a message suffix S such that H(P ‖S) = ytrgt. The attack is known under
the technical term chosen-target forced-prefix (CTFP) preimage attack, but is
often referred to by the more picturesque title Nostradamus attack. The latter
is via the connection to forecasting scenarios: The hash value can be seen as
a commitment to a allegedly correct prediction of some event P in the future,
which the attacker aims to attest by finding a suitable suffix S.
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1.1 Herding Attacks

The so-called herding attack of Kelsey and Kohno [26] is a Nostradamus attack
with roughly O(22n/3) evaluations of the compression function h.1 This is still
far from the birthday bound for collision resistance, but it is clearly better than
a preimage search with O(2n) evaluations. The herding attack can be divided
into two phases:

Offline phase: In the offline phase the adversary first determines the target hash
value ytrgt and builds a diamond structure, which is a hash tree of height k.
The tree connects 2k distinct leaves to the root value ytrgt via iterating h on
different message blocks. Kelsey and Kohno discuss that the overall effort to
build such a tree is O(2(n+k)/2). Blackburn et al. [9] later pointed out a flaw
in the analysis and gave a bound of O(

√
k · 2(n+k)/2).

Online phase: In the online phase the adversary is then presented the prefix P . It
searches for a linking message part mlink to one of the leaves in the diamond
structure, such that mlink and the message blocks on the tree path mpath

yield the suffix S = mlink ‖mpath. Kelsey and Kohno discuss that this step
requires O(2n−k) evaluations of h.

Choosing k = n
3 then yields an overall effort of O(√

n · 22n/3
)

of both phases
together.

We note that there are variations of the above fundamental attack, also
discussed in [26]. One is to use expandable messages [17,27] to accommodate
variable-length suffixes when the message length is included in the padding.
Such expandable messages can be used in combination with elongated diamond
structures. These elongated structures significantly increase the suffix length, by
a term 2r for parameter r, but reduce the effort to roughly 22n/3−2r/3. We do
not look into such variations here, since our attacks already work well with basic
diamond structures.

1.2 Quantum Herding Attack

By a result of Brassard et al. [13] it is known that quantum computers facilitate
the search for collisions in hash functions, reducing the effort from O(2n/2) in the
classical setting to O(2n/3) in the quantum case. The algorithm itself is based on
Grover’s quantum search algorithm [23]. The question we address in this work
here is if quantum search or collision finding helps in improving herding attacks.
Can we expect the same speed-up of a factor 2/3 in the exponent as in the
collision case?

As a very fundamental result we first argue that quantum collision search
gives an easy attack with O(2n/2) evaluations of h, without the need to construct
a diamond structure. Namely, pick an arbitrary target value ytrgt and, once
receiving the prefix P , use Grover’s search algorithm to find the linking message
block mlink ∈ {0, 1}B of B � n bits. If we assume that the hash function is
1 Unless stated otherwise, all bounds refer to expected numbers of evaluations.
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approximately regular, then there are roughly t = 2B−n such message blocks
mapping to the target value. But then Grover’s algorithm requires O(

√
2B/t) =

O(2n/2) quantum evaluations of h to find mlink. This already improves over the
classical bound (and requires no storage for the diamond structure).

The next, more elaborate attempt is to replace the collision search to create the
diamond structure in the attack of Kelsey and Kohno [26] by a quantum algorithm.
The improvement may, however, be less expedient than envisioned at first, because
the original diamond structure generation throws many values in parallel and then
“sieves” for a sufficient number of simultaneous collisions. For the quantum case
we proceed step by step. Nonetheless, we show that with this approach we indeed
achieve an improvement factor of 2/3 in the exponent compared to the classical
attack, requiring O(24n/9) compression function evaluation.

Our main result is an enhanced version of the quantum attack with a dia-
mond structure. We show that we can actually build a diamond structure more
efficiently if we wisely re-use some of the previous evaluations when searching for
collisions. Optimizing the parameters we achieve an attack with O( 3

√
k · 23n/7)

evaluations of h. The bounds for the attacks are displayed in Fig. 1.

Fig. 1. Upper and lower bounds on expected number of compression function evalu-
ations for quantum attacks (neglecting constants). The simple attack is the straight-
forward quantum attack, the basic attack uses a diamond structure formed by basic
quantum collision search, and the enhanced attack optimizes generation of diamond
structure. The parameter s denotes the maximal number of message blocks in the
adversarial suffix S, n is the hash function’s output size, and the parameter C denotes
the number of multicollisions for the lower bound.

We have implemented our attacks in IBM’s Qiskit software development
kit.2 The classical simulation of such quantum algorithms in Qiskit, however,
restricts the number of available qubits. Therefore, we were only able to run our
2 Available via https://git.rwth-aachen.de/marc.fischlin/quantum-nostradamus.

https://git.rwth-aachen.de/marc.fischlin/quantum-nostradamus
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algorithms against a toy hash function with very limited block and output length
B = n = 8, based on similar attempts in [21,33]. For this hash function our
experiments confirm that the enhanced attack is superior to the basic attack in
terms of actual run time, mainly in the offline phase, with almost equal statistics
in the online phase. Still, due to the restricted choice of n these results must be
taken with prudence. This is the more true as the simple attack with Grover’s
algorithm outperforms both algorithms for n = 8, presumably because it does
not require the additional overhead for the herding step.

Our attacks are primarily designed for iterated hash functions of the Merkle-
Damg̊ard type [15,30], such as SHA2 [16]. The quantum herding attack is in
principle also applicable to sponge-based hash functions [8], as we discuss in in
the full version. In this case, our simple quantum attack also yields a bound of
O(

2n/2
)

for n-bit outputs. For the basic and enhanced attack the capacity c of
the sponge becomes the relevant parameter for building the diamond structure
with the hash collisions on the intermediate values, yielding the overall bounds
O(

24c/9
)

resp. O(
3
√

c · 23c/7
)
. For SHA3 [20], however, we have c = 2n, such that

the latter bounds are inferior to the one of the simple attack. For extendable
output functions like SHAKE [20] the choice of the best attack depends on the
relationship of n and c.

1.3 Quantum Lower Bounds

Can we go below the bound of 23n/7 evaluations for our enhanced attack? We
argue that for herding attacks this is impossible, at least generically. For this we
use a lower bound of Liu and Zhandry [29] for the quantum query complexity of
finding C-collisions in random functions, i.e., C distinct values all mapping to the
same function value. The bound states that one needs at least Ω(2n(1− 1

2C−1
)/2)

queries to find such collisions. We argue below that a successful Nostradamus
attack essentially allows to find such C-collisions such that the bound transfers
to our scenario accordingly.

We first give a general lower bound for Nostradamus attacks for random
function h, independently of how the adversary operates. The idea is as follows.
Recall that the Nostradamus attacker first commits to the target hash value
ytrgt, and in the second phase computes the suffix S for the given value P .
We can hence repeat the second phase multiple times with different prefixes
P1, P2, . . . to generate suffixes S1, S2, . . . , such that all inputs Pi ‖Si map to the
same target hash values ytrgt. If we run the adversary sufficiently often, roughly
(C − 1)s times where s is the maximal number of blocks in the suffix S, then
at some point we derive a C-collision. It follows that the Nostradamus attack
must make at least Ω(2n(1− 1

2C −1
)/2) queries, divided by (C − 1)s. For C = 3 the

bound simplifies to approximately 23n/7−s.
We next argue that the factor (C − 1)s can be avoided for herding attacks

using a diamond structure. Specifically, we consider C = 3 and use a single solu-
tion S of the adversary together with the a specially crafted diamond structure
to form a 3-collision. Since we do not need repetitions the extra factor (C − 1)s
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disappears. We hence turn a Nostradamus attack with diamond structures into a
3-collision finder, with the same number of compression function evaluations (up
to constants). It follows from the bound of Liu and Zhandry [29] for C = 3 that
at least Ω23n/7 quantum oracle queries are necessary for a random compression
function. This shows that our attack is essentially optimal.

1.4 Related Work

Several other works have further refined the herding attack in the classical setting.
Andreeva and Mennink [3] generalized the chosen-target forced-prefix attack and
discuss the case that the part P may appear in the middle of the adversary’s final
output, S1 ‖P ‖S2. This covers for example attacks on zipper hash functions and
similar constructs [2]. Kortelainen and Kortelainen [28] show how to remove the
extra factor

√
k when building the diamond structure, using a sophisticated con-

struction. Weizman et al. [35] subsequently improve the constant in the O-notation
for generating the diamond. We do not pursue such generalizations here.

Aiming at general improvements of quantum attacks for arbitrary hash func-
tions, Chailloux et al. [14] discuss different memory-time trade-offs for finding
collisions and a preimage in a list of values. Using variations of Grover’s algo-
rithm they show collision attacks with Õ (

22n/5
)

evaluations, and multi-target
preimage attacks with Õ (

23n/7
)

evaluations. Both algorithms only use O(n)
quantum memory, and can be parallelized. Parallelization of multi-target preim-
age search, also in realistic communication models, has also been considered in
[4]. They show that, with realistic communication models, they can find a preim-
age in a list of t values with p processors with O(

√
2n/pt1/2) evaluation steps

(where the bound improves from t1/2 to t for models with free communication).
We do not aim to optimize memory usage for our algorithms, which already
store the diamond structure, but focus on the number of hash evaluations here.

Dedicated quantum attacks against specific hash function, improving over the
generic bounds, have gained more attention recently. The work of Hosoyamada and
Sasaki [24] discusses collision-finding attacks against AES-MMO and Whirlpool.
Refined collision and preimage attacks on AES-like hash functions have been pre-
sented subsequently by Dong et al. [18,19], Florez Gutierrez et al. [22], as well
as Ni et al. [31]. Hosoyamada and Sasaki [25] devised dedicated quantum colli-
sion attacks against reduced versions of SHA-256 and SHA-512. Wang et al. [34]
present preimage attacks on 4-round versions of Keccak. While neither of these
works considers the Nostradamus attack, the results and methods may be also use-
ful to devise improved Nostradamus attacks against specific hash functions. In this
work here, however, we are interested in the complexity of generic attacks.

2 Preliminaries

2.1 Hash Functions

Analogously to [26] we consider hash functions H : {0, 1}∗ → {0, 1}n based
on the Merkle-Damg̊ard construction with a compression function h : {0, 1}B ×
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{0, 1}n → {0, 1}n, where B is the size of the message blocks and n the size of the
final hash value and the intermediate hash states. We implicitly assume a (public)
initialization vector IV, and for some input m = m1m2 . . . m�, mi ∈ {0, 1}B ,
aligned to block length B, we define the iterated compression function as

h∗(m) := y�, where y0 = IV, yi = h(mi, yi−1)for i = 1, 2 . . . , �.

For non-aligned inputs m we assume that the hash function uses a form of
suffix-padding function pad which only depends on the input length, such that
m‖pad(|m|) ∈ ({0, 1}B)∗. For example, for Merkle-Damg̊ard hash functions like
SHA2 one appends 10d ‖〈|m|〉 for a sufficient number d of 0-bits, where 〈i〉 is
a fixed-length binary encoding of the integer i. We assume that the padding
extends the message by at most one block.

We assume additionally that the compression function for any fixed inter-
mediate value y ∈ {0, 1}n, given as hy(·) := h(·, y), is surjective and sufficiently
close to regular. More specifically, we assume that this function is β-balanced,
i.e., |h−1

y (hy(m))| ≥ β · 2B−n holds for all m ∈ {0, 1}B . We note that collisions
would be easier to find for the compression function if the preimage sets are
significantly skewed [5]. Indeed, Bellare and Kohno [5] also define a more fine
grained balance notion for hash functions resp. compression functions. If hy(·)
is β-balanced according to our notion, then it has a balance factor of at least
1 − 2 log2n β according to their notion. The simpler balance notion here suffices
to give precise performance guarantees when using Grover’s quantum algorithm:

Definition 1. A compression function h : {0, 1}B ×{0, 1}n → {0, 1}n for B ≥ n
of an iterated hash function H is called β-balanced (where β ∈ (0, 1]) if for any
y ∈ {0, 1}n and any z ∈ {0, 1}n the number of preimages satisfies |h−1

y (z)| ≥
β · 2B−n for the function hy(·) = h(·, y).

We observe that, by definition, β > 0. This means that a β-balanced com-
pression function satisfies |h−1

y (z)| ≥ β · 2B−n > 0 for any y, z. In other words,
any image z has a preimage under hy(·). This in particular means that the func-
tion hy(·) is surjective for any y. Let us stress that we only need the β-balance
property for the formal analysis. Our attacks may still succeed if the function
is less balanced. This also complies with our implementation results where our
example hash function is not even surjective.

We briefly discuss that, if we assume h to be random, then it is β-balanced
for β = 1

2 with overwhelming probability for B � n. For this note that for
any fixed image z, the probability that z has less than β · 2B−n of the expected
number 2B−n of preimages, is at most exp(−2B−n/8) by the Chernoff bound,
and thus double exponentially small. Hence, the probability that there exists any
z among the 2n images violating the bound is still double exponentially small.
This means that for a random h we can almost surely assume that each value
z ∈ {0, 1}n is hit by at least β · 2B−n preimages.
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2.2 Quantum Collision Finding

In the following chapter we will see that the Nostradamus attack is based on
finding collisions of the compression function h. Therefore we will introduce a
generalization of Grover’s algorithm as Grover(F, y0) and the specific quantum
model, which is required for the efficient collision finding algorithm from [13]:

Theorem 2. (Grover, [12]). Let F : X → Y be a function, N := |X| be the
cardinality of the domain, y0 ∈ Y be fixed and

t = |F−1(y0)| = |{x ∈ X|F (x) = y0}|
be the cardinality of the preimage of y0 under F . If t ≥ 1, then the algorithm
Grover(F, y0) outputs an x ∈ X with F (x) = y0 after O

(√
N/t

)
expected evalu-

ations of F .

We consider an adversary with access to a (local) quantum computer and
assume that the compression function h is quantum accessible, i.e., the adver-
sary can implement h efficiently on its quantum computer. This allows the adver-
sary to query this h-oracle with arbitrary superposition of the inputs, akin to
the quantum random oracle model [10]. This enables us to also use the algo-
rithm Grover(F, y0) in cases where the function F depends on the compression
function h.

Note that Boyer et al. [12] discuss that the above theorem even holds if
the number t of solutions is not known in advance. In our attacks against hash
functions we will later take advantage of the fact the compression function h is
β-balanced (where β is usually assumed to be constant). Hence, using Grover’s
algorithm for searching a preimage for some value z among the N = 2B many
inputs to h, of which at least t ≥ β · 2B−n solutions map to z, takes an expected
number O

(√
2B/β2B−n

)
= O(

β−1/2 · 2n/2
)

of function evaluations. For con-

stant β this equals O(
2n/2

)
. We also point out that in most of our attacks

we apply Grover’s algorithm multiple times, in sequential order, such that the
expected number of total evaluations of F is given by the sum of the expected
evaluations of the individual calls, by the linearity of expectations.

3 Classical Nostradamus Attack

In this section we review the idea of Kelsey and Kohno [26] for the Nostradamus
attack.

Attack. The Nostradamus attack lets the adversary first commit to a target hash
value ytrgt. Then it receives a prefix P where we assume for simplicity that P
is aligned to block length and that the number �P of blocks of P is known in
advance. If this was not the case the adversary could simply guess the actual
length of P and append 0’s if necessary. The task of the adversary is now to find
a suffix S such that H(P ‖S) = ytrgt.
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We have to specify how the prefix P is chosen in the attack. Kelsey and Kohno
[26] assume that the prefix is chosen randomly from a specified set. To avoid
assumptions about the distribution of P we ask the adversary to succeed for any
given value P . The latter matches the fact that known attacks indeed achieve
this. We specify this by quantifying over all possible prefixes P , demanding
the adversary to win in all cases. We also require the adversary to succeed
with probability 1 (over the internal randomness). Since we allow the adversary
to run in expected time, we can always enforce this by iterating till success,
compensating for smaller success probabilities by larger run times:

Definition 3 (Successful Nostradamus Attack). A successful Nostradamus
attack A for an iterated hash function H based on compression function h :
{0, 1}B ×{0, 1}n → {0, 1}n consists of two algorithms (Aoff,Aonl) such that, for
any �P ∈ N, any P ∈ {0, 1}�P ·B, the following experiment ExpNostr

H,A,P (λ) always
returns 1:

ExpNostr
H,A,P (λ):

2 : (st, ytrgt) ←$ Aoff(1λ, �P ) // offline

3 : S ← Aonl(st, P ) // online

4 : return [H(P ‖S) = ytrgt]

Note that we do not make any stipulations on the run time of adversary A. In
this sense there is always the trivial attack which executes an exhaustive search.
We are interested in more efficient attacks, of course. The parameter �P usually
enters the run time of the adversary, but only mildly compared to the search for
the initial state and for the suffix.

Offline Phase. The Nostradamus attack of Kelsey and Kohno [26] consists of an
offline and an online phase. In the offline phase the adversary creates a (binary)
tree structure (V,E), also referred to as a diamond structure. Each node v ∈
V ⊆ {0, 1}n in the tree represents a hash state and each (directed and labeled)
edge e = (y0,m, y1) ∈ E ⊆ V × {0, 1}B × V represents a transition from one
hash state to the next one via the message label, h(m, y0) = y1.3

The tree consists of 2k distinct leaves where k is chosen appropriately. The
algorithm of Kelsey and Kohno starts by sampling the leaf nodes, building up
the tree level by level, by trying message blocks for each node in order to find
collisions. A level of the tree is a set of nodes with identical (edge) distance to
the root node. These levels and its nodes get numbered by the distance, e.g.,
level k contains the leaf nodes yk,1, yk,2, . . . and level 0 the root node y0,1. In
general, node yi,j is the jth node of level i. See Fig. 2.

3 Note that we simply identify a node with its hash value label. Formally, to make
nodes with identical hash values distinct, we add a position in the tree to each node
(given by the level and its order within the nodes of the same level) but usually omit
mentioning the position value.
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Fig. 2. Tree structure of height 3 in offline phase of classical Nostradamus attack, where
ytrgt = h(pad(B(�P + 4)), y0,1).

The original analysis in [26] argued that roughly 2
n+k

2 compression function
evaluations are necessary to form such a tree of height k. This, however, ignored
that one node value yi,j may collide with multiple other values, such that we
would not get a full binary tree. Luckily, in [9] it is shown that we can capture
this by an extra factor

√
k. That is, in [9] it is proven that

√
k · ln 2 · 2

n−k
2

evaluations of the function h suffice per node, and Θ(
√

k · 2
n+k

2 ) in total for
building the complete diamond structure. Afterwards the hash value ytrgt =
h(pad(B · (�P + k + 1)), y0,1) can be computed and submitted, where y0,1 is the
root of the tree structure.

Fig. 3. Linking message mlink for given prefix P .

Online Phase. In the online phase the adversary uses the tree structure to con-
struct the suffix S. For this the adversary searches for a linking message block
mlink ∈ {0, 1}B such that h(mlink, h

∗(P )) hashes to a leaf in the tree (see Fig. 3).
If such a message block mlink has been found, then the suffix S is given by
S := mlink ‖mpath, where mpath denotes the (concatenation of the) message
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labels on the path from the leaf to the root of the tree. See Fig. 3. Note that
by construction P ‖S consists of �P blocks in P , one linking block mlink, and
the k blocks in mpath, such that the message is of bit length B · (�P + k + 1).
Together with the appended padding the hash function thus maps P ‖S to the
pre-selected target value ytrgt.

Since there are 2k randomly and independently sampled leaves in the tree
one can expect to find such a linking message mlink with 2n−k evaluations of
h. Moreover [9] proves that the height of the tree can be optimally chosen with
k ≈ n

3 , so that the entire attack needs O(
√

n · 2
2n
3 ) evaluations of h.

4 Quantum-Based Nostradamus Attacks

We start by giving a straightforward quantum version of the Nostradamus attack,
exploiting that one can find collisions for hash functions in about 2n/2 quantum
steps. This already beats the classical bound of roughly 22n/3 but we show after-
wards that one can go lower with more advanced strategies. The first advanced
attack follows the same structure as the classical herding attack but reduces
the work load to approximately 24n/9 by using Grover’s algorithm. The second
advanced algorithm then optimizes the step to build the diamond structure,
resulting in a total number of roughly 23n/7 compression function evaluations.

4.1 Simple Quantum Attack

We first describe a very simple quantum Nostradamus attack Asimple. The algo-
rithm receives as input the block length �P of the unknown prefix, picks a random
value y (to which P ‖S will map under h∗) and applies the final iteration for the
padding. In the online phase it simply runs Grover’s algorithm to find a linking
message block mlink:

Aoff
simple(1

λ, �P ): // offline

1 : y ←$ {0, 1}n

2 : ytrgt ← h(pad(B · (�P + 1)), y)

3 : return (y, ytrgt)

Aonl
simple(y, P ): // online

1 : p ← h∗(P )

2 : S ← Grover(hp, y) //hp(·) = h(·, p)

3 : return S

Proposition 4. Let H be a hash function with a β-balanced compression func-
tion h : {0, 1}B ×{0, 1}n → {0, 1}n. Algorithm Asimple mounts a successful Nos-
tradamus attack against h with O(

β−1/2 · 2n/2 + �P + 1
)

expected evaluations of
h for any prefix P of block length �P .

Note that for constant β (e.g., recall that β = 1
2 works with overwhelming

probability for random function h) we obtain approximately the bound O(
2n/2

)
.
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Proof. Correctness follows directly by construction and the fact that the com-
pression function h is surjective according to the balance property: For the chosen
value y there exists at least one preimage S such that

y = hp(S) = h(S, p) = h∗(P ‖S),

and ytrgt = h(pad(|P ‖S|), y) by construction. As for performance, Theorem 2

implies that the search for S needs O
(√

N/t
)

evaluations in expectation where

N = |{0, 1}B | = 2B and t = |h−1
p (y)| = |{m ∈ {0, 1}B |hp(m) = y}|.

Since the function hp is β-balanced it follows that t ≥ β ·2B−n, yielding an overall

effort of O
(
β− 1

2 · 2n/2
)

evaluations for Grover’s search. The computation of ytrgt

in the offline phase and the initial computation of p in the online phase need at
most �P + 1 additional evaluations of h. �

4.2 Basic Quantum Attack with Diamond Structure

This section shows that the construction of a diamond structure is rewarding and
leads to a more efficient quantum attack. We first describe a basic version of this
attack and optimize it in the next section. We present the algorithm by dividing
into several sub algorithms, following the structure of the classical attack: In the
offline phase we use algorithm Diamondbasic to build the diamond structure. The
algorithm itself uses a collision finder Claw as a subroutine. In the online phase
we once more use the Link algorithm to find the linking message mlink. Finally
we put all algorithms together to derive our adversary.

We first describe the claw finding algorithm Claw, which is in fact the well-
known BHT algorithm [13] adapted to our setting. The algorithm takes as input
a parameter � and two functions hy and hy′ and returns m,m′ such that hy(m) =
hy′(m′). It does so by first sampling a random list of 2� input messages mi for
hy, and uses Grover’s algorithm to find the matching value m′ for hy′ .

Claw�(hy, hy′):

1 : m1, . . . , m2� ←$ {0, 1}B such that hy(mi) �= hy(mj) for all i �= j

2 : m′ ← Grover(F, 1) // F as in Proposition 5

3 : i ← {1, . . . , 2�} such that hy(mi) = hy′(m′)

4 : return (mi, m
′)

Note that for a well-balanced compression function and for � ≤ n/3, as we need
below, the message sampling in the first step can be implemented by picking all
the mi’s randomly, at once. A hash collision among the at most 2� ≤ 2n/3 hash
values happens with sufficiently small probability, and in the rare case of a col-
lision we repeat the process. On average we do not need to make more than two
iterations for avoiding collisions. In the theorem below, and also in our imple-
mentation, we nonetheless consider the general case of a β-balanced compression
function, in which case we re-sample each mi individually if it collides with a
previous choice.
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Proposition 5. ([13]). Let H be a hash function with β-balanced compression
function h : {0, 1}B × {0, 1}n → {0, 1}n. For � ∈ N, a set m1, . . . , m2� ∈ {0, 1}B

of distinct messages, and values y, y′ ∈ {0, 1}n. Let F : {0, 1}B → {0, 1} be the
function defined by

F (m) = 1 :⇐⇒ ∃i ∈ {1, . . . , 2�} : hy(mi) = hy′(m).

Then algorithm Claw�(hy, hy′) outputs messages m,m′ ∈ {0, 1}B with hy(m) =

hy′(m′) and needs O
(
β−1 · 2� + β− 1

2 · 2
n−�
2

)
expected evaluations of h for � < n.

In particular, Clawn/3 needs O(
β−1 · 2

n
3
)

expected evaluations of h.

Note that for β ≤ 1 we always have β−1/2 = O(
β−1

)
and from now on bound

the factor β−1/2 by the inverse of β.

Fig. 4. Illustration of algorithm Claw�(hy, hy′).

Proof. Let us first discuss how we generate the 2� message blocks mi in the
first step for general compression functions. For this we iterate through i =
1, 2, 3, . . . and for each i we repeatedly pick mi ←$ {0, 1}B randomly, until hy(mi)
is different from all the previous hash values. For the i-th step there are 2n−(i−1)
hash values unoccupied, and each image has at least β · 2B−n preimages. Hence,
we pick such a good preimage with probability at least

2−B · (2n − i + 1) · β · 2B−n ≥ (2n − 2�) · β · 2−n = (1 − 2�−n) · β ≥ 1
2 · β

for � < n. On average, we thus only need to sample O(
β−1

)
times for each of

the 2� message blocks.
The proof now follows straightforwardly from Theorem 2, noting that the

input size of function F equals N = 2B , and since all 2� hash values are distinct
and each hash value has at least β · 2B−n preimages by the balance property of
h, there are at least t ≥ β · 2� · 2B−n possible solutions. �

Given the claw finding algorithm we present our basic algorithm for deriving
the diamond structure. The algorithm takes as input a parameter k determining
the height of the tree (V,E) which it outputs. The algorithm uses Clawn/3 to
determine collisions for neighbored values:
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Diamondbasic(k):

1 : (V, E) ← ∅
2 : yk,1, yk,2, . . . , yk,2k ←$ {0, 1}n pairwise different // leaf nodes

3 : for s = k, . . . , 1 do // for constructing level s − 1

4 : V ← V ∪ {ys,1, . . . , ys,2s}
5 : for i = 1, . . . , 2s−1 do

6 : (m, m′) ← Clawn/3(hys,2i−1 , hys,2i)

7 : E ← E ∪ {(ys,2i−1, m, hys,2i−1(m)), (ys,2i, m
′, hys,2i−1(m))}

8 : ys−1,i ← hys,2i−1(m) // for next iteration

9 : endfor

10 : endfor

11 : return (V, E)

Proposition 6. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. Algorithm Diamondbasic(k) outputs a diamond
structure of height k ≤ n after O(

β−1 · 2
n
3 +k

)
expected evaluations of h.

Once more, for constant β the bound simplifies to O(
2

n
3 +k

)
. We note that

the sampling of the 2k values yk,i’s in Line 2 must yield pairwise distinct strings.
Since we later choose k = n/9 a collision among the random values happens with
negligible probability only. Alternatively, we may either pick arbitrary distinct
values, e.g., by incrementing a counter value, or sample each yk,i as often till we
have a fresh value. In our implementation we use the latter. We remark that this
sampling step in either case does not account for the number of hash evaluations.

Proof. The output graph is indeed a diamond structure of height k, because on
the one hand the connecting rule is fulfilled since hys,2i−1(m) = hys,2i

(m′) for
any s, i and the edges are directed from higher to lower levels since the algorithm
starts with level k. On the other hand the graph has an underlying binary tree
structure with 2k leaf nodes. The algorithm constructs, for a fixed value s, the
next level s−1 by connecting the nodes of level s in a pairwise manner. Therefore
the next level contains 2s−1 nodes. Within the last iteration, where s = 1, a level
with 21−1 = 1 nodes is constructed, which is the root node of the resulting graph.

As for performance, we mainly need to consider the repetitions of Line 6,
the executions of algorithm Claw. Individually each search on average needs
O(

β−1 · 2
n
3
)

evaluations of h according to Proposition 5. Thus, for building the
entire structure,

k∑

s=1

2s−1
∑

i=1

O(
β−1 · 2

n
3
)

= O
(

β−1 · 2
n
3 ·

k∑

s=1

2s−1

)

= O(
β−1 · 2

n
3 · (2k − 1)

)
= O(

β−1 · 2
n
3 +k

)

expected evaluations are required in total. �
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We next describe our algorithm Link finding the linking message mlink. The
algorithm takes as input the 2k leaves of the diamond structure and the prefix
P , and finds a message block mlink that connects P to one of the leaves. This is
done via Grover’s algorithm by defining a suitable function F identifying such
links:

Link(P, yk,1, . . . , yk,2k):

1 : p ← h∗(P )

2 : mlink ← Grover(F, 1) // F as in Proposition 7

3 : let yk,i be a leaf with h(mlink, p) = yk,i

4 : return (mlink, yk,i)

Proposition 7. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. Let P ∈ {0, 1}�P , p ← h∗(P ) and (V,E) be a
diamond structure of height k with (distinct) leaves (yk,1, . . . , yk,2k). Define the
function F : {0, 1}B → {0, 1} as

F (m) = 1 :⇐⇒ ∃i ∈ {1, . . . , 2k} : h(m, p) = yk,i.

Then algorithm Link(k, yk,1, . . . , yk,2k) outputs a linking message block mlink

and the connecting leaf node yk,i with h(mlink, p) = yk,i, requiring

O
(
β− 1

2 · 2
n−k

2 + �P

)
expected evaluations of h in total.

Proof. The correctness follows directly by the construction of the function F . As
for performance, Theorem 2 implies that the search for mlink needs O

(√
N/t

)

evaluations where

N = 2B and t = |
2k
⋃

i=1

h−1
p (yk,i)| ≥ β · 2k+B−n,

since the function hp is β-balanced, and the leaves are distinct in a diamond
structure. The first step to compute p needs at most �P evaluations of h. �

At this point, Diamondbasic and Link can be composed to form our basic
quantum attack Abasic (for parameter k), using a diamond structure of height
k. We presume that Path((V,E), y) is the algorithm, which concatenates the
message labels on the edges from leaf y to the root of the tree:

Ak,off
basic(1

λ, �P ):

1 : (V, E) ←$Diamondbasic(k)

2 : let y0,1 ∈ V be the root of (V, E)

3 : ytrgt ← h(pad(B · (�P + k + 1)), y0,1)

4 : return ((V, E), ytrgt)

Ak,onl
basic((V,E), P ):

1 : leaves yk,1, . . . , yk,2k of (V, E)

2 : (mlink, y) ← Link(P, yk,1, . . . , yk,2k)

3 : mpath ← Path((V, E), y)

4 : S ← mlink ‖mpath

5 : return S
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Theorem 8. (Basic Quantum Attack with Diamond Structure). Let H be a
hash function with β-balanced compression function h : {0, 1}B × {0, 1}n →
{0, 1}n. Let k ∈ N. Then adversary Ak

basic mounts a successful Nostradamus
attack and needs

O
(

β−1 · 2
n
3 +k + β− 1

2 · 2
n−k

2 + �P + 1
)

expected evaluations of h. In particular, for k = n
9 the adversary An/9

basic in total

needs O
(
β−1 · 2

4n
9 + �P + 1

)
expected evaluations of h.

4.3 Attack with Enhanced Diamond Structure Generation

We next present an advanced attack, essentially reaching the lower bound of
Ω(23n/7) for herding attacks discussed in Sect. 5.2. The algorithm still applies
the same general strategy as in the previous section, but uses an enhanced algo-
rithm to create the diamond structure. The idea there was basically to connect
two nodes in the tree via algorithm Claw for parameter n/3, resulting in 2n/3

compression function evaluations for each connection. We now discuss how we
can speed up this process by re-using data across the various connection steps.

Fig. 5. Iteration of algorithm Diamondenhanced. Left: At the beginning of each iteration
the nodes in the lower half have 2� potential successors, roughly distributed equally over
all remaining nodes (here 16 successors, assigned evenly to the 4 nodes ys,1, . . . , ys,4).
The next node from the upper half (here ys,5) shall be connected to a node in the
lower part. Middle: Grover’s algorithm finds a match to one of the 2� successors (called
ys−1,3 here) of a node from the lower part (here ys,3) such that we can connect the
two nodes. Right: We remove all potential successor pointers from the connected node
from the lower half and add, step by step, the same number of new pointers to the
remaining nodes (here displayed as dotted arrows).

Consider a level s of the tree for which we try to connect the 2s nodes
ys,1, . . . , ys,2s in a pairwise manner. We split the 2s nodes into a lower and an upper
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half of 2s−1 nodes each. For the lower half we will compute a list Y of 2� hash evalu-
ations h(mj , ys,i), equally spread out over the 2s−1 values. Here � will be an appro-
priate parameter to be determined later. Then we use Grover’s search to connect
the first value ys,2s−1+1 of the upper half to some of these 2� values via some mes-
sage block m′. Once we have found such a connection we are going to remove the
partner node from the lower half and all of its 2�/2s−1 entries in Y . We add this
amount of new values, again equally spread out over the remaining 2s−1 − 1 val-
ues paired up, to fill the list Y up to 2� elements again. This idea is displayed in
Fig. 5. Then we are going to connect the second node from the upper half to an
entry in the updated list Y , as before. We continue till we have all 2s values and
then proceed with the next level s − 1 till we have eventually built the entire tree.

We present the enhanced algorithm for creating the diamond structure next.
The algorithm takes as input the parameter k (for the tree height) and outputs
the tree (V,E). It internally uses the parameter � (for the list size) in dependence
of the tree level s it currently considers. The algorithm uses Grover’s algorithm
as a subroutine for a function Fy,Y (m) with parameters y and Y , which checks if
hy(m) is in the list Y . Put differently, Grover’s algorithm returns such a matching
message block m.

Diamondenhanced(k):

1 : (V, E) ← ∅
2 : yk,1, yk,2, . . . , yk,2k ←$ {0, 1}n pairwise different // leaf nodes

3 : for s = k, . . . , 1 do // for constructing level s − 1

4 : � ← 	(n + 2s − 2 log2 s)/3

5 : V ← V ∪ {ys,1, . . . , ys,2s}
6 : L ← {1, . . . , 2s−1} // list of unprocessed nodes in lower half

7 : Y ← ∅ // storing precomputed values

8 : γ ← 1 // state counter where to add next elements to Y

9 : foreach y ∈ {ys,2s−1+1, . . . , ys,2s} do // process each node in upper half

10 : while |Y | < 2� do // Add elements to list of precomputed values?

11 : while γ /∈ L do γ ← (γ mod 2s−1) + 1 // choose (circularly) next node

12 : m ←$ {0, 1}B such that (∗, ∗, h(m, ys,γ)) /∈ Y // unique in Y

13 : Y ← Y ∪ {(m, γ, h(m, ys,γ)}
14 : γ ← γ + 1

15 : endwhile m ← Grover(Fy,Y , 1) // F as in Theorem 9

16 : search for (m′, i, y′) ∈ Y with y′ = hy(m) // unique due to Line 12

17 : E ← E ∪ {(ys,i, m′, y′), (y, m, y′)} // connect nodes

18 : ys−1,i ← y′ // for next iteration, noting that i ≤ 2
s−1

19 : delete any (∗, i, ∗) from Y // only values for other nodes remain in Y

20 : delete i from L // ys,i has been processed

21 : endforeach

22 : endfor

23 : return (V, E)
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Note that we need to find a message m in Line 12 for which the hash value
has not been assigned yet. Recall that � is in the order of (n+2s)/3 ≤ (n+2k)/3.
We will later set k = n/7 such that � ≤ 3n/7. Hence, assuming that the hash
value of m is uniformly distributed, the probability of having collisions is at most
22� ·2−n ≤ 2−n/7 and thus negligible. Below, for general β-balanced compression
function, we follow once more the idea to sample-till-success to find m, as also
done in the algorithm Claw.

Theorem 9. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. For a list Y and a fixed value y let the function
F : {0, 1}n → {0, 1} be defined as

F(m) = 1 :⇐⇒ ∃y′ ∈ Y : hy(m) = y′.

Then algorithm Diamondenhanced(k) outputs a diamond structure (V,E) of height
k with

O
(
β−1 · 2

n+2k+log2(k)
3

)

expected evaluations of h for k < n.

Proof. Correctness follows by construction. Starting with the random leaves the
algorithm connects one node from the lower part with one node from the upper
part in each iteration, yielding a binary tree. The exact matching of values in
the lower and upper half also implies that the search for the next γ-value always
terminates (because L has at least one value if there is some y in the upper half
left).

We next look at the performance of the algorithm. Each application of the
Grover algorithm (in Line 15) needs O

(√
N/t

)
evaluations of h, where

N = |{0, 1}B | = 2B , t ≥ β · 2� · 2B−n

by construction, since the set Y contains exactly 2� pairwise different elements
from {0, 1}n in each iteration and the function h is β-balanced. This means that
the algorithm requires β− 1

2 · 2
n−�
2 evaluations of the compression function on

the average. Note that we run Grover on level s for 2s times, yielding an overall
number of β− 1

2 · 2
n−�+2s

2 expected evaluations of h for this level.
Next we consider the number of hash evaluations for filling up the list Y

(while -loop in Line 10) when iterating through all values y in the upper half
(foreach-loop in Line 9). For this we start by looking at the search for a message
block with a fresh hash value in Line 12. As in the Claw algorithm we can
sample a message block m ←$ {0, 1}B till we found one whose hash value is
not in Y . Since we have at most 2� − 1 many values in Y at this point, where
� ≤ (n + 2s)/3 ≤ (n + 2k)/3 < n for k < n, we can conclude as in the analysis
of Proposition 5 that each search requires O(

β−1
)

attempts on the average.
For the overall analysis of the loops we first discuss a simplified version,

neglecting rounding of fractions. Since we start with Y being empty for the first
value y, we need 2� many values to fill the list in the first iteration. Then, at the
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end of the iteration, we remove at most 2�/2s−1 entries in Y for the identified
element ys,i in the lower part. This implies that in the next step we need to
make 2�/2s−1 hash evaluations to fill the list Y again up to 2� elements. In
the next step, however, we have only 2s−1 − 1 elements left, and thus remove
at most 2�/(2s−1 − 1) elements for the subsequent iteration. This continues for
2s−1 − 2, 2s−1 − 3, . . . , until all the 2s−1 iterations for values in the upper half
are completed. For the final step we need to add 2�/(2s−1 − (2s−1 − 2)) = 2�/2
elements.

We can write the total number of elements to be sampled for the resurrection
of the complete list Y thus as:

2� + 2� ·
2s−1−2∑

j=0

1
2s−1 − j

= 2� ·
2s−1
∑

j=1

1
j

= O(
2� · ln 2s

)
= O(

s · 2�
)
,

using
∑q

i=1
1
j ≤ ln q + c for the harmonic series. On average, we need O(

β−1
)

h-evaluations for each element.
Note that, so far, we have not taken into account that we may not be able

to spread out all 2� elements in Y evenly on the remaining entries in L. By
construction, however, the difference of assigned elements from Y can differ by
at most 1. We can incorporate this into our analysis by using an extra factor
2 for the number of elements which need to be added to Y in each iteration,
resulting in the same asymptotic bound. Similarly, since we round up � in the
algorithm, it can grow by an additive term 1 at most, which is also “swallowed”
by a constant in the asymptotic notation.

In total, for level s of the tree we thus need

O
(
β−1 · s · 2� + β− 1

2 · 2
n−�+2s

2

)
= O

(
β−1 · 2�+log2 s + β− 1

2 · 2
n−�+2s

2

)

evaluations on the average. By our choice of � (in dependence of s) the two terms
become equal (except for the β factor), such that together with s ≤ k the bound
simplifies to

O
(
β−1 · 2

n+2s+log2 s
3

)
= O

(
β−1 · 2

n+2s+log2 k
3

)
.

Summing over all k stages we thus get a total number of

k∑

s=1

O
(
β−1 · 2

n+2s+log2 k
3

)
= O

(

β−1 · 2
n+log2 k

3 ·
k∑

s=1

2
2s
3

)

= O
(
β−1 · 2

n+log2 k
3 · 2

2k
3

)

= O
(
β−1 · 2

n+2k+log2 k
3

)

compression function evaluations on the average. �

With this new algorithm our adversary is now a straightforward adaption
of the basic one, with the enhanced diamond structure generation replacing the
basic one:
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Ak,off
enhanced(1λ, �P ):

1 : (V, E) ←$Diamondenhanced(k)

2 : let y0,1 ∈ V be the root of (V, E)

3 : ytrgt ← h(pad(B · (�P + k + 1)), y0,1)

4 : return ((V, E), ytrgt)

Ak,onl
enhanced((V,E), P ):

1 : leaves yk,1, . . . , yk,2k of (V, E)

2 : (mlink, y) ← Link(P, yk,1, . . . , yk,2k)

3 : mpath ← Path((V, E), y)

4 : S ← mlink ‖mpath

5 : return S

Theorem 10. Let H be a hash function with β-balanced compression function
h : {0, 1}B × {0, 1}n → {0, 1}n. Let k ∈ N. Then adversary Ak

enhanced mounts a
successful Nostradamus attack and needs

O
(
β−1 · 2

n+2k+log2(k)
3 + β− 1

2 · 2
n−k

2 + �P + 1
)

evaluations of h. In particular, for k = n
7 we get a total number of

O
(
β−1 · 3

√
n · 23n/7 + �P + 1

)

evaluations of h on the average.

We note that, ignoring the factor 3
√

k and the term �P , and assuming β to be
constant, this upper bound matches our lower bound for herding attacks shown
in the next section. This means, in order to significantly improve the attack, a
different strategy than building a diamond structure must be used. Even then,
the general lower bound still applies.

5 Quantum Lower Bound for Nostradamus Attacks

In this section we show a lower bound on the number of hash queries for mount-
ing a quantum Nostradamus attack, assuming that the compression function h
behaves like a random function. Our result is based on a query lower bound for
finding C-collisions for a random function f , i.e., distinct x1, . . . , xC such that
f(x1) = f(x2) = · · · = f(xC). Liu and Zhandry [29] gave such a lower bound:

Theorem 11. ([29]). Given a random function f : X → Y any quantum algo-

rithm needs to make at least Ω

(
|Y | 1

2 ·
(
1− 1

2C −1

))
quantum queries to oracle f to

find a C-collision with constant probability.

For example, for a threefold collision C = 3 one needs at least |Y |3/7 many
queries. Liu and Zhandry [29] also give a matching upper bound (but which is
irrelevant in our setting here).
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5.1 General Lower Bound for Nostradamus Attacks

Recall that the general structure of an adversary A in the Nostradamus attack
consists of two stages, on offline stage in which the adversary outputs the tar-
get hash value ytrgt and some state information st, and then the online-stage
adversary receives the prefix P and the state, and outputs the suffix S to match
the target hash value. The idea for the lower bound is now to repeatedly run
the second-stage adversary to create multiple collisions for the same target hash
value ytrgt, but for varying prefixes Pi, hoping to collect a C-collision. The total
number of queries we make is qoff + R · qonl, where qoff is the number of hash
evaluations of A in the offline phase, R is the number of repetitions, and qonl

the number of queries of A in the online phase. If we are able to show that we
get a C-collision with this approach, then it follows that this total number of
queries must exceed the lower bound in [29], also indicating a lower bound for
A’s queries in relation to R.

Fig. 6. Finding a C-collision by repeating online phase with different values P1, . . . , PR.
In the example C = 3 and s = 1. When running Aonl with inputs P1, . . . , PR−1 in
this order, we may fill up a (C − 1)-ary tree with root ytrgt from the answers. After
R = (C − 1)s+2 + 1 = 9 repetitions we lastly get a C-collision somewhere in the tree
(gray box).

Let us explain the process for the concrete example C = 3 in Fig. 6. Assume
that we have already obtained the target hash value ytrgt from the offline
adversary Aoff. Now we run the online part Aonl several times, presenting the
adversary different prefixes P1, P2, . . . in the repetitions. Each time the adver-
sary will give us a suffix path to reach ytrgt. Some of these paths may collide
before reaching ytrgt, e.g., all the suffixes for P1, . . . , P8 in Fig. 6 have length
s = 1 and collide earlier or latest in ytrgt. The worst case for us occurs if
these paths do not yield a C-collision yet. This can only happen if they form
a full (C − 1)-ary tree with root ytrgt, with all (C − 1)s+2 intermediate values
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h∗(P1), h∗(P2), . . . , h∗(PR−1) already forming (C − 1)-collisions in one of the
(C − 1)s+1 leaves, and the adversary connecting these leaves optimally with the
suffix block and the padding to yield ytrgt. But then, if we make the R-th repe-
tition for PR, where R = (C − 1)s+2 +1, this link must connect to a node which
now forms a C-collision. In the example in Fig. 6 this happens for R = 9.

We next state the above idea formally in the following theorem. Recall that we
assume that the adversary succeeds with probability 1 in the Nostradamus attack
for any prefix P . We discuss afterwards relaxations for random prefixes and
algorithms with lower success probabilities (over the choice of the compression
function).

Theorem 12. Let H be a hash function with compression function h : {0, 1}B ×
{0, 1}n → {0, 1}n, and assume that h is a random function. Let A be a quantum
Nostradamus attacker, making at most qoff quantum queries to oracle h in the
offline phase, and at most qonl quantum queries to oracle h in the online phase.
Assume further that A outputs a suffix S of at most s blocks. Then for any
integer C ≥ 3 such that (C − 1)s+2 < 2B we have

qoff + ((C − 1)s+2 + 1) · qonl = Ω

(
2

(
1− 1

2C −1

)
n/2

)
.

Let us interpret this bound for some concrete cases. For sake of simplicity let
us assume that the number of offline and online queries are roughly equal (as
is the case in our herding attack). We can thus ignore qoff for now, and we also
simplify the bound further to:

(C − 1)s · qonl = Ω

(
2

(
1− 1

2C −1

)
n/2

)
.

If we fix C = 3, for example, then this bound becomes qonl = Ω
(
23n/7−s

)
.

It seems as if we can push the lower bound on the right hand side as close to
2n/2 as desired, by increasing C, in contradiction to our basic attack with 24n/9

evaluations and the advanced one with 23n/7 evaluations. However, recall that
the basic herding attack chooses a tree of height roughly s = k = n/9 such that
the pre-factor (C − 1)s is at least 2n/9, yielding an overall product of 25n/9 on
the left hand side. The same holds for the enhanced attack, where s = k = n/7
such that the factor becomes 2n/7 and hence lifts the value from 23n/7 to 24n/7.

A remarkable conclusion from the theorem’s bound is that, choosing short
suffixes for attacks, e.g., of constant block size s, one cannot go significantly
below the bound 2n/2. This holds unless the attack exploits knowledge of the
compression function h and does not treat it as a black-box random function. But
this square-root bound is already achieved with our simple quantum attack—
where indeed the suffix consists of the single linking message block mlink. In
other words, sophisticated attacks need to rely on long suffixes.

Proof of Theorem 12. Consider an arbitrary Nostradamus adversary A with
the above restrictions. We construct a c-collision finder C against h as follows.
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Algorithm C runs Aoff to derive (st, ytrgt). Then it runs Aonl for R = (C−1)s+2+1
times for the same state but different values P1, . . . , PR ∈ {0, 1}B . Note that the
requirement on C guarantees that there are so many distinct input blocks. These
executions create R suffixes S1, . . . , SR such that for all i the hash evaluations
yield the target value, H(Pi ‖Si) = ytrgt. Recall that the final block may contain
the padding information such that the suffix part actually consists of up to s+1
blocks. Below we simply consider this to be part of the suffix Si and think of
the hash function using no padding.

Assume now that, in the last iteration of h of the R hash evaluations, we
have C distinct inputs (mj , yj) with h(mj , yj) = ytrgt. Then we have found the
C-collision for h and can stop here. If not, there are at most C − 1 distinct pairs
(mj , yj) resulting in ytrgt. But then there must exist one value yj among those
pairs which �R/(C − 1)� of the total number of hash evaluations reach in the
second-to-last iteration. Note that �R/(C−1)� = (C−1)s+1+1 such that we can
recursively apply the argument, losing a factor (C − 1) in the remaining set of
collision with each unsuccessful iteration. After at most s + 1 iterations we have
then either found our C-collision, or have a value y which at least (C−1)+1 = C
distinct input blocks Pj1 , Pj2 , . . . reach, i.e., h(IV, Pjq

) = y for q = 1, 2, . . . , C.
Fortunately, this would then constitute our sought-after C-collision. �

We finally discuss how to attenuate the assumption about the adversary
always winning in the Nostradamus attack. As remarked earlier, if the adver-
sary’s success probability was only over its internal randomness, then we could
easily account for this by repeating the adversary. However, now the probability
space also comprises the choice of the random compression function (which is not
chosen freshly if we would rerun the attack). Hence, assume that the adversary
A has a success probability of ε (over the choice of the random function h and
its internal coin tosses, like measurements of quantum states). One may think of
ε to be some small constant, although the approach below also works with other
values for ε.

We first use the splitting lemma [32] to conclude that our once sampled
offline-stage output (st, ytrgt) is often good enough to make the online stage suc-
ceed with probability ε/2. The probability of obtaining such a good offline-stage
output is at least ε/2 itself. Condition on this being the case. Next recall that
the target value ytrgt is from now on fixed and that A succeeds with probability
ε/2 if we give it a prefix P . Hence, to collect R = (C − 1)s+2 + 1 such successful
samples as in the proof, we need on average 2R/ε attempts now. In other words,
we have an expected number of qoff + 2R

ε ((C − 1)s+2 + 1) · qonl queries in order
to succeed with probability ε/2 (with which the offline-phase output is good).

We can even go one step further and take the prefix to be a random element
from {0, 1}B (as it was assumed in the original work by Kelsey and Kohno [26]).
Let us assume it is uniform in {0, 1}B . Since we expect no collisions to occur
before reaching 2B/2 samples—and B is usually significantly larger than log R—
we can assume that all sampled values Pi are distinct. This is sufficient for the
argument in the proof.
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5.2 Improved Lower Bound for Herding Attacks

In this section we discuss that we get a better lower bound for quantum herding
attacks. For this we assume that Aoff creates a diamond tree structure of height
k and that Aonl then tries to find a linking message part mlink to connect the
prefix P to the tree. We assume here for simplicity of presentation that P is
aligned to block length and that mlink is a single block. As before, we show how
to build a 3-collision finder C for C = 3 from such a herding adversary A. Our
approach, however, is more direct and omits the large number of repetitions,
thus yielding a better bound.

Our collision finder C will run the two phases of the herding adversary, Aoff

and Aonl, but for different height parameters. For Aoff it will pretend that the
height of the tree should be k + 1, but then prune the last layer of the tree
and give Aonl the pruned tree of height k. The advantage of this approach is
that we already have a 2-collision on the k-th level via the tree for height k + 1
from Aoff. Together with the new link to level k which we receive from Aonl, we
immediately have a 3-collision (see Fig. 7).

More formally, C first lets Aoff create a diamond structure, but uses the
parameter k + 1. By this we get a tree of height k + 1 from Aoff. Then we cut
level k+1 to get a tree of height k as required. Note that here the node values yk,i

are, strictly speaking, not picked randomly. But they are the result of applying
the random function h to a uniformly chosen input (yk+1,i,mk+1,i), such that
we assume for simplicity that the herding attacks also works for such generated
values.

Fig. 7. Finding a 3-collision (gray box) using a diamond structure for height k for A,
generated by truncating a k + 1-height structure.

Algorithm C next runs Aonl for the pruned tree of height k, and an arbitrary
prefix P . This adversary eventually outputs a message part mlink that connects
the iterated prefix value h∗(P ) to a tree node yk,i at level k (see Fig. 7). Algorithm
C outputs the two children yk+1,2i−1 and yk+1,2i with their corresponding labels
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mk+1,2i−1 and mk+1,2i pointing to yk,i, together with (h∗(P ),mlink) as the 3-
collision for h.

For the analysis of the success probability of C we would have to make another
assumption about the number of preimages under h. But since on average each
image has 2B preimages, we simply neglect the probability of (h∗(P ),mlink)
being equal to (yk+1,2i−1,mk+1,2i−1) or (yk+1,2i,mk+1,2i). In this case C succeeds
whenever A wins. For the run time of C note that creating the diamond structure
for k + 1 instead of k is, asymptotically, equally expensive. Hence, except for
constants, our algorithm C obtains a 3-collision with the same number of oracle
queries to h as A. It follows that the total number of quantum queries of C—and
thus of A—to random oracle h is at least Ω(23n/7).

6 Implementation Results

In this section, we empirically evaluate the algorithms from Sects. 4.1, 4.2, and
4.3. For this purpose we have implemented the quantum algorithms in IBM’s
Qiskit.4 The open-source software development kit Qiskit makes it possible to
design quantum circuits in Python and to simulate their execution on a clas-
sical computer. Potentially, these algorithms can also be later run on quantum
computing devices.

6.1 Algorithms

The local simulation of the quantum algorithm severely restricts the number
of simultaneously accessible qubits. Hence, instead of using output-truncated
versions of SHA2 or SHA3 with large internal states, we use an iterative toy
hash function with adjustable block size B and output n as the attack target for
the algorithms.

We build this toy hash function in a similar way as the open-source project
Qibo [21], which is used to evaluate generic quantum attacks by Ramos-Calderer
et al. [33] and utilizes a ChaCha-permutation [6] as sponge function. In particu-
lar, we use this permutation f : {0, 1}B+n → {0, 1}B+n as the basis for our hash
function and truncate it (to the last n bits) to derive our compression function

h(m, y) := trunc(f(m‖y))

for the Merkle-Damg̊ard construction.
The quantum circuit corresponding to the permutation f is shown in (the

right hand side of) Fig. 8. We use parameters B = 8 and n = 8 for the compres-
sion function throughout the evaluation. We note that empirically evaluations
show that the compression function hy is not surjective for all y, such that it not
β-balanced for any β > 0. For measuring the run times we ignore such failures.
However, as we discuss in more detail later, our advanced attacks still work well,
showing that the theoretical results are on the conservative side.
4 https://qiskit.org/.

https://qiskit.org/
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n
2

n
2

|y〉
Adder mod 2

n
2

�

|x〉

repeat 2 times

B
2

B
2

n
2

n
2

|d〉

QR

QR

|c〉

QR

QR

|b〉

|a〉

repeat 10 times

Fig. 8. The description of the quantum circuit for the permutation that is based on the
ChaCha permutation. The left part presents the description of the sub algorithm Quar-
ter Round, which is denoted as QR. A quarter round consists of an adder, CNOT-gates,
and qubit shuffling. The latter is denoted by the � symbol. The right part describes
the permutation f . In the 10 repetitions of the core function, four QR executions are
applied to the input registers. We note that a line which is drawn through a gate is
not an input to that specific gate but rather routed through.

Recall that our algorithms apply Grover’s algorithm for different functions
F for finding claws in a list of values. To implement these functions F from
Proposition 5 and Theorem 9 in a quantum circuit, we hardcode the list into the
circuit, using one n-bit Toffoli gate for each of the 2� distinct bit strings hy(mi)
in the list resp. the 2k distinct leaves yk,i. More precisely, given a bit string that
either represents a hash evaluation hy(mi) or a leaf yk,i, an n-bit Toffoli gate
is constructed such that the corresponding classical logical operator exclusively
maps this bit string to 1. These Toffoli gates are chained together to form the
existential quantification in the proposition. The resulting quantum circuit is
illustrated in Fig. 9.

...
. . .

...

|m〉 hy h−1
y |m〉

|0〉 |F (m)〉

Fig. 9. Description of the quantum circuits that implements the functions F from from
Proposition 5 and Theorem 9. The string y in hy(·) = h(·, y) corresponds either to y′ or
to p, depending on the context. Each n-bit Toffoli gate represents one (unique) string
to which the input is compared to, such that the exclusive-or on the final qubit is only
set at most once. Applying h−1

y at the end restores the original content of m.

We note that implementing Grover’s algorithm for our functions F , also
allowing to recover the matching message m, as well as the other steps of the
algorithms are straightforward to implement. We thus omit their description
here for sake of brevity.
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6.2 Experiments

The evaluation was carried out with commodity hardware, namely, a 2.6 GHz 6-
core Intel Core i7 processor, an AMD Radeon Pro 5300M 4 GB graphics card, and
a 16 GB 2667 MHz MHz DDR4 RAM. The evaluation process consists of running
all three algorithms (simple, basic, and enhanced). We measure the offline and
online run times, as well as the number of sampling operations and function calls.
The latter includes the number of calls to the quantum compression function and
the number of quantum calls to the functions from Proposition 5 and Theorem 9.
The results of the evaluation are shown in Fig. 10.

Simple (Section 4.1)
k Offline [s] Online [s] Fclaw Flink Samples
— 0 147.93 — — —

Basic (Section 4.2)
k Offl. [s] Onl. [s] Fclaw Flink Sampl.
1 89.55 232.47 3 8 10
2 260.73 142.52 9 5 28
3 626.13 90.95 21 3 68
4 1363.76 62.13 45 2 138
5 2824.66 34.17 93 1 290

Enhanced (Section 4.3)
k Offl. [s] Onl. [s] Fclaw Flink Sampl.
1 62.73 235.34 2 8 18
2 190.2 145.49 6 5 50
3 429.95 90.27 14 3 84
4 927.26 63.83 30 2 138
5 1459.14 31.69 46 1 285

Fig. 10. Evaluation results for the algorithms from Sects. 4.1, 4.2, and 4.3 and our
compression function h(m, y). The parameter k denotes the height of the tree of the
diamond. Online and Offline denote the online and offline run time, respectively, in
seconds. Fclaw and Flink denote the quantum function calls to the functions F from
Proposition 5 and 7, respectively. Samples denotes the number of sampling operations
for messages and leaves for building the diamond structure during an attack. Note that
the simple attack fails in some cases for our specific hash function in which case we do
not measure its run time.

Note that for k = 1, i.e., trees consisting only of one level, the sum of calls
(i.e., Fclaw + Flink) to the functions F from Proposition 5 and 7 is minimal.
This is true for the attack with the basic and the enhanced diamond structure,
confirming the optimal choice of k = �n/9� for n = 8 according to Theorems 8
and 9. Furthermore, for k = 1 the sum of function calls for the basic and enhanced
online attacks (i.e., Flink) already is less or equal to the 16 quantum function
calls in the simple quantum attack based on Grover’s algorithm. Nevertheless,
the run time of the attacks with a diamond structure is larger compared to the
run time of the simple attack. We expect this to be related to the fact that the
quantum circuit of Grover’s algorithm for the functions of Proposition 5 and 7
is much more complex than when only applied to the compression function in
the simple attack. More precisely, with our design of the circuit in Fig. 9, Qiskit
simulates the compression function twice and an exponential number of n-bit
Toffoli gates, compared to only one simulated compression function call in the
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simple quantum attack, such that the advantage of using a diamond structure
does not pay off for the small value of n yet.

Initially, the enhanced diamond construction requires more samples than the
basic diamond construction, while it also exhibits a smaller sum of calls (i.e.,
Fclaw + Flink) to the functions F . For the construction of larger diamonds, such
as k = 4, the sample count of the enhanced attack is surpassed by the basic
diamond construction. This is due to the fact that the enhanced attacker re-
uses data across the connection steps of a single layer in the diamond, while the
basic attacker resamples all data for each quantum collision finding. Thus, our
experiments confirm that the advanced attacker requires less sampled data to
construct a large diamond.

Instead of using the optimal run time, an attacker may also deploy a trade-off
and, for a slight decrease in online run time, accept an increase in the offline run
time. In this case, the attacker creates a larger diamond for k > 1 and thereby
achieves an improvement for the online run time. Our experiments confirm this
expected behavior, with Flink dropping and Fclaw increasing.

We previously noted that h(m, y) is not even surjective and not β-balanced.
Since the simple attack from Sect. 4.1 picks a random value y ←$ {0, 1}n this
results in the attack failing for values y without preimage. In this case, Grover’s
algorithm cannot find a corresponding preimage. However, the more advanced
attacks from Sects. 4.2 and 4.3 always succeeded. The reason is that the trees
are built in forward direction, such that each value y has at least two preimages.

We note that all the observations are specific to the parameters n = B = 8.
According to our theoretical results the asymptotic complexity of the simple
quantum attack increases faster in n than it does for the diamond attacks. As a
consequence, for higher values of n a larger difference in online run time should
occur even for smaller k. Unfortunately, the simulation of higher n in Qiskit
is expensive and, in some cases, technically infeasible due to the large sizes of
quantum circuits. Thus, the empirical demonstration remains open.

7 Conclusion

Our results show that fundamental quantum algorithms for finding collisions can
be used to speed up the classical Nostradamus attack. Our algorithms have been
designed and analyzed in an “idealized” quantum model, but our implementation
of the toy example indicates that they can be run on in principle on a quantum
computer. Turning these attacks into real quantum programs may still entail a
lot of engineering aspects which can significantly influence the run time, e.g.,
[1,7,11]. It remains an interesting open question how fast our attacks can be
made on real quantum computers.

As mentioned in the related work section, other works like [4,14] have aimed
to give time-memory trade-offs, especially in order to reduce quantum memory,
and to parallelize the search for collisions and preimages. We have not inves-
tigates such trade-offs for Nostradamus attacks, especially in light of the large
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quantum memory requirements, inherited from the BHT collision search algo-
rithm [13]. Nonetheless, we expect similar techniques as in [4,14] to be applicable
here as well.
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Abstract. The significant progress in the development of quantum com-
puters has made the study of cryptanalysis based on quantum comput-
ing an active topic. To accurately estimate the resources required to
carry out quantum attacks, the involved quantum algorithms have to
be synthesized into quantum circuits with basic quantum gates. In this
work, we present several generic synthesis and optimization techniques
for circuits implementing the quantum oracles of iterative symmetric-
key ciphers that are commonly employed in quantum attacks based on
Grover and Simon’s algorithms. Firstly, a general structure for imple-
menting the round functions of block ciphers in-place is proposed. Then,
we present some novel techniques for synthesizing efficient quantum cir-
cuits of linear and non-linear cryptographic building blocks. We apply
these techniques to AES and systematically investigate the strategies for
depth-width trade-offs. Along the way, we derive a quantum circuit for
the AES S-box with provably minimal T -depth based on some new obser-
vations on its classical circuit. As a result, the T -depth and width (num-
ber of qubits) required for implementing the quantum circuits of AES
are significantly reduced. Compared with the circuit proposed in EURO-
CRYPT 2020, the T -depth is reduced from 60 to 40 without increasing
the width or 30 with a slight increase in width. These circuits are fully
implemented in Microsoft Q# and the source code is publicly available.
Compared with the circuit proposed in ASIACRYPT 2020, the width of
one of our circuits is reduced from 512 to 371, and the Toffoli-depth is
reduced from 2016 to 1558 at the same time. Actually, we can reduce the
width to 270 at the cost of increased depth. Moreover, a full spectrum of
depth-width trade-offs is provided, setting new records for the synthesis
and optimization of quantum circuits of AES.
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1 Introduction

The rapid and fruitful development of the theory and practice on building com-
puting machines that exploit quantum mechanical phenomena has made the
research on algorithms running on quantum computers a topic with potential
practical consequences. This especially attracts substantial attention from the
cryptographic community, where the security of many primitives relies on the
computational hardness of solving certain number theoretical or combinatorial
problems. Shor’s algorithm [Sho99] is probably the most influential research in
this aspect. It will compromise the security of many widely deployed public-key
cryptosystems (including RSA, DSA, and ECC) if large-scale quantum comput-
ers are ever built.

For symmetric-key ciphers, a trivial application of Grover’s algorithm [Gro96]
results in a quadratic speedup of the exhaustive search attack. If the attackers
have access to the keyed quantum oracle, it is shown that many symmetric-
key schemes can be broken with Simon’s period-finding algorithm [KLLN16a,
BLNS21]. Since the practical relevance of querying online keyed quantum oracles
is questionable, some subsequent work investigates techniques limited to classi-
cal queries and offline quantum computations [HS18a,BHN+19,CNS17]. Also,
quantum attacks derived from dedicated cryptanalytic techniques are exten-
sively studied [BNS19b,BNS19a,HS18b,KLLN16b,NS,HSa]. To concretely esti-
mate the complexities in the standard quantum circuit model [NC16], the quan-
tum circuits for these attacks have to be constructed based on some basic quan-
tum gates. Our community is especially interested in constructing efficient quan-
tum circuits for cryptographic primitives fulfilling specific input-output behav-
iors since such circuits typically work as sub-circuits of the quantum attacks. The
National Institute of Standards and Technology (NIST) used the complexity of
the quantum circuit for AES with a bound of depth called MAXDEPTH as a base-
line to categorize the post-quantum public-key schemes into different security
levels in the call for proposals to the standardization of post-quantum cryptog-
raphy [NIS16]. Note that when the quantum circuits are applied in exhaustive
key search, we can use parallelization by dividing the search space, which natu-
rally decreases the depth but increases the number of quantum gates and qubits,
and in fact, to perform exhaustive key search attacks on AES on a quantum com-
puter with Grover’s algorithm under NIST’s MAXDEPTH bound, parallelization is
required for the majority of values of MAXDEPTH. For parallelization, we have the
following observation.

Observation 1. Let C be the quantum circuit implementing the Grover oracle
and V be the search space. If we divide V into k2 equal parts and execute k2

parallel Grover searches, the number of iterations of C required in each search
will decrease by a factor of k. The number of qubits required in each search will
not change, while the number of gates used in each search will decrease by a
factor of k. Therefore, the number of qubits required in all searches will increase
by a factor of k2, and the number of gates used in all searches will increase by a
factor of k.
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Let C′ be a new quantum circuit whose depth is reduced to depth(C)/k, and the
numbers of qubits and gates are respectively increased by a factor less than k2

and a factor less than k. Then, Observation 1 implies that using C′ in a paral-
lel approach is better than applying C. This is the very reason that [JNRV20]
claims: Grover’s algorithm does not parallelize well, meaning that minimizing
depth rather than width is crucial to make the most out of the available depth.
Finally, NIST states that the MAXDEPTH restriction is motivated by the difficulty
of running extremely long serial computations. Plausible values for MAXDEPTH
range from 240 logical gates through 264 logical gates, to no more than 296 logi-
cal gates.

Related Work. To perform quantum attacks based on Grover’s and Simon’s
algorithm, one has to implement the actual device that executes the attack,
whose cost is evaluated in the quantum circuit model. Especially, in [HB20], an
economic model which can be used to determine whether a quantum key-recovery
attack is profitable was developed. A critical parameter of this model is the cost
of a concrete quantum encryption circuit. From an attacker’s perspective, it is
important to reduce the cost. From a designer’s perspective, it is important to
have an accurate understanding of the cost to evaluate the security margin and
to guide future designs. In particular, the classical and quantum implementations
of AES receive most attention from our community.

The first quantum circuit of AES [GLRS16] was proposed by Grassl et al.,
where the so-called zig-zag structure was introduced to reduce the width (the
number of qubits required) of the resulting quantum circuits. The width was
further reduced in a follow-up work [ASAM18]. In [LPS19], Langenberg et al.
presented improved quantum circuits for the S-box and key expansion of AES,
leading to significantly improved AES circuits. At ASIACRYPT 2020, by tweak-
ing the zig-zag structure, together with new quantum circuits for the AES S-box
and its inverse constructed based on improved classical circuits Zou et al. signif-
icantly improved the width of the quantum circuit of AES [ZWS+20].

While the primary goal of the above works is to reduce the width, the
cryptographic community is more concerned with the depth, since in NIST’s
ongoing post-quantum standardization effort, different security categories are
defined according to the quantum resources needed to attack AES with a depth
bound. At EUROCRYPT 2020, Jaques et al. proposed several techniques to
improve the depth, and presented the currently known sallowest quantum cir-
cuit for AES [JNRV20]. Besides, we also see works considering the implementa-
tion of quantum circuits for other primitives (e.g., SHA-2 and SHA3 [AMG+16],
LowMC [JNRV20], and ECC [BBvHL21]).

Note that this line of research is not only interested by the cryptographic
community, but also contributes to a much broader subject known as synthesis
and optimization of quantum circuits. As realistic quantum computers will likely
require some fault tolerance schemes where the amount of error correction is
proportional to the resources used, the effect of quantum circuit optimizations
becomes even more profound than its classical counterpart. In fact, the industrial
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community has already invested huge resources to develop the tool chain for
synthesis and optimization of quantum circuits [Mic,IBM].

Our Contributions. We propose an in-place quantum circuit for the (invert-
ible) round-function of a block cipher or other iterative designs. With this type
of in-place structure, the circuits implementing the round functions can be con-
nected together to form the whole design without using additional ancilla qubits.
In addition, we present a generic method for constructing such in-place circuits
with out-of-place sub-circuits. Then, a systematic comparison of this structure
with previous designs (the pipeline structure and the zig-zag structure) is made
with respect to the depth and width (the number of qubits) requirements.

We then consider how to implement the building blocks of a symmetric-key
cipher efficiently. Specifically, a SAT-based technique for synthesizing small lin-
ear components is presented, which can output the CNOT network with the
minimal gate count. For nonlinear components, a systematic method for con-
structing a circuit mapping |x〉|a〉 to |x〉|a ⊕ f(x)〉 based on a circuit mapping
|x〉|0〉 to |x〉|f(x)〉 meeting certain clearly defined conditions with only additional
CNOT gates is given. Based on this method, we present circuits for AES S-box
and it inverse with both T -depth and width improved compared to the one given
in [ZWS+20].

To further reduce the T -depth, we formulate a technique for converting an
AND-depth-t classical circuit into a T -depth-t quantum circuit. We note that
this is not a trivial conversion due to the peculiarities of a quantum circuit, and
the natural order of the classical circuit has to be rearranged to achieve this goal.
Based on this method with a new observation on the classical circuit for the AES
S-box, we obtain two circuits for the AES S-box with T -depth-4 and T -depth-
3, respectively, both of which have lower T -depth than the one presented at
EUROCRYPT 2020 [JNRV20]. Since the degree of the algebraic normal form of
the AES S-box is 7, with less than 3 stages of multiplications, one cannot generate
polynomials with degree 7, which implies that our implementation reaches the
theoretical lower bound.

By applying the method presented in this paper, we significantly improve the
efficiency of the quantum circuits for AES. Compared with the circuit proposed
in EUROCRYPT 2020, the T -depth is reduced from 60 to 40 without increasing
the width and the T -gate count, or 30 with a slight increase in width and T -gate
count. These circuits are fully implemented in Microsoft Q# and the source code
is publicly available. Compared with the circuit proposed in ASIACRYPT 2020,
the width of one of our circuits is reduced from 512 to 371, the number of Toffoli
gates is reduced from 19788 to 17888, and the Toffoli-depth is reduced from 2016
to 1558 at the same time. Actually, we can reduce the width to 270 at the cost
of increased depth. Moreover, by varying the local and global circuit structures,
a full spectrum of depth-width trade-offs are provided and illustrated in Fig. 19
(Sect. 8), setting new records for the synthesis and optimization of quantum
circuits of AES.
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2 Preliminaries on Synthesizing Quantum Circuits

The states of an n-qubit quantum system can be described by the unit vectors
in C

2n . A quantum state is typically written as |u〉, and in this paper we denote
it by |u〉n to emphasize that this state has n qubits. When n is clear from the
context, we abbreviate |0 · · · 0〉n as |0〉.

A quantum algorithm manipulates the state of an n-qubit system through
a series of unitary transformations and measurements, where a unitary trans-
formation is a linear map U over C

2n with UU† = U†U = I. Any unitary
transformation can be constructed with a finite set of single-qubit and two-
qubit unitary transformations through composition and tensor product. In the
standard quantum circuit model [NC16], we call these simple single-qubit and
two-qubit unitary transformations quantum gates. In particular, we consider how
to synthesize a quantum circuit with the commonly used universal fault-tolerant
gate set Clifford + T , which contains the Clifford gates:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

and the non-Clifford gate T =
(

1 0
0 eiπ/4

)
.

We also frequently employ the Pauli-X gate X = HS2H =
(

0 1
1 0

)
and the

Toffoli gate

ToF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this work, we are mainly concerned with the quantum circuits that can
compute a classical vectorial Boolean function when the input is in the computa-
tional basis. Since the Toffoli gate can be used to simulate a universal gate set for
classical computation, all these circuits can be constructed by using only Toffoli
gates with additional qubits (potentially set to appropriate values). For example,
the multiplication operation a ·b can be directly implemented by the Toffoli gate
|a〉|b〉|c〉 → |a〉|b〉|c ⊕ a · b〉. There is another quantum circuit for implementing
the functionality of a classical AND gate, and we call it a quantum AND gate.
This gate together with its adjoint is illustrated in Fig. 1.

Optimization Goals. The complexity of a quantum circuit can be measured in
terms of its width (number of qubits), gate count, and depth. The cryptographic
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Fig. 1. The quantum AND gate together with its adjoint

community is mainly concerned with the depth metric, and in particular the
T -depth is the most interested parameter of a quantum circuit. The reason can
be summarized as follows.

Firstly, as indicated in [JNRV20] and our introduction, favoring lower depth
at the cost of a slightly larger width in the circuit leads to costs that are smaller
in several metrics than for the circuits presented in [GLRS16,ASAM18,LPS19].
Secondly, the time for fault tolerant quantum computation is proportional to
one round of measurement per layer of T -gates, and so the runtime is domi-
nated by T -depth, rather than gate count, circuit depth, or even measurement
depth [Fow12]. This is why in the adjoint of the quantum AND gate (see Fig. 1)
we avoid using T -gates at the cost of quantum measurement.

The T -depth is defined as the minimum number of stages of parallel appli-
cations of T -gates in a circuit, where parallel T -gates are allowed when they are
acting on different qubits. Note that we can implement the Toffoli gate with
several different circuits based on the Clifford +T gates with different T -depth,
and these circuits with T -depth 1, 2, and 3 can be found in [Sel12,AMMR13].

3 The Round-in-Place Structure for Iterative Primitives

We start by reviewing the two main structures used in previous work on the
quantum circuits for AES, including the pipeline structure [JNRV20] and the
zig-zag structure [GLRS16] illustrated in Fig. 2 and Fig. 3, respectively. In the
Figures we can see that each pair of neighbouring sub-circuits (represented as
small rectangles) are not perfectly aligned horizontally, but forming a stepladder
pattern. This interconnection pattern is due to the out-of-place nature of the
circuit Ri, which implements the i-th round function of AES, mapping |ki〉|x〉|0〉
to |ki〉|x〉|O(Rs)〉, where |ki〉 is the round key, |x〉 is the input state, and |O(Ri)〉
is the output state of the round function. Here by out-of-place we mean that the
output |O(Ri)〉 of the round function is not carried in the qubits that encode
the input |x〉.

It is easy to see that, since the round transformation is implemented by the
out-of-place circuit Rs, the pipeline structure needs lots of qubits to preserve
the input states of all rounds, and the zig-zag structure is designed to reduce
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Fig. 2. The pipeline structure, where k0 is the initial key, m is the plaintext, c is the
ciphertext. For the sake of simplicity, the ancilla qubits and the key expansion process
are omitted, and |k0〉 is used as the round key in each round.

Fig. 3. The zig-zag structure, where R†
s is used to erase the redundant input states of

Rs+1.

the cost of qubits by using the reverse circuit for the last round to erase these
inputs. In [JNRV20], the pipeline structure was used for designing low-depth
circuits of AES, and in [GLRS16,ASAM18,LPS19], the zig-zag structure was
used for designing low-width circuits of AES.

3.1 The Round-in-Place Structure

For iterative designs with invertible round functions, an in-place implementation
(with some ancillae) of the round function maps |ks〉|x〉|0〉 to |ks〉|O(Rs)〉|0〉.
Such in-place implementations of the round functions can be connected naturally
to form the compositions of the round functions without the need of additional
qubits. However, directly designing an in-place circuit with low T -depth for
the round transformation involved in typical ciphers is difficult. In contrast, a
compact out-of-place circuit for a round transformation can be efficiently derived
from a compact classical circuit by implementing additions by CNOT gates and
multiplications by Toffoli gates.

A natural idea is to construct an in-place circuit based on out-of-place sub-
circuits, and this construction is depicted in Fig. 4. This structure is a general
form of the circuits used in [AMG+16], and later we will show that previous
work neglect important things in implementing UR−1 .
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We write the classical round transformation of a symmetric cipher into the
following form Round : (x, k) → (T (x, k), k). Let Round−1 : (z, k) → (T ′(z, k), k)
be the inverse of the round transformation, where T ′(T (x, k), k) = x. Suppose
we have an out-of-place circuit UR for Round and an out-of-place circuit UR−1

for Round−1. Actually, by implementing the classical Boolean operations with
Toffoli gates we can always construct such out-of-place circuits. Then the circuit
in Fig. 4 in-place implements Round with some ancilla qubits.

Fig. 4. In-place implementation of an invertible round transformation based on out-
of-place sub-circuits

Figure 4 provides an efficient way to implement an invertible round transfor-
mation in-place. We call this kind of circuit an out-of-place based (abbreviated as
OP-based) in-place circuit. Based on this circuit, we can implement an iterative
cipher with the structure shown in Fig. 5. We call this structure the OP-based
round-in-place structure, abbreviated as the round-in-place structure.

Fig. 5. The OP-based round-in-place structure

Remark 1. In Fig. 4, the functionality of UR−1 is to compute T ′, and then XOR
T ′ into the third register. Moreover, this functionality should work when the
state on the third register is |x〉, which is related with the state in the second
register. Therefore,

• If we use a UR−1 which only works for |0〉, the output will be wrong.
• If we use a UR−1 which works for any |y〉, the output will be correct. However,

since the relationship between |x〉 and |T (x, k)〉 is not sufficiently used, such
UR−1 will cost more quantum resources.

In [AMG+16], an in-place circuit of the χ function of SHA3 was presented with
a structure which is similar with our OP-based in-place circuit. However, their
implementation of χ−1 is a straightforward implementation of the classical circuit
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from Keccak tools, which is equivalent to a UR−1 that only works for |0〉, leading
to incorrect output. In [ZWS+20], the implementation is equivalent to a UR−1

that works for any |y〉, which needs more quantum resources.

Remark 2. Note that UR−1 and U†
R are different. U†

R is the circuit for the adjoint
of the unitary transformation UR. It can be obtained by placing the adjoints
of the gates in UR in the reverse order, and thus U†

R and UR cost the same
quantum resources in most times. In comparison, UR−1 is the circuit for the
reverse transformation R−1. Hence, the costs of UR and UR−1 are different in
general. However, in our context, R is for encryption, while R−1 is for decryption.
For most symmetric ciphers, the complexities of the encryption and decryption
are similar. Hence the quantum resources for implementing UR and UR−1 are
almost the same.

3.2 A Depth-Width Comparison of Different Structures

Given an iterative block cipher whose block size is n-bit, a rough estimation of
the width of the circuits with the pipeline, zig-zag, and round-in-place structures,
when they use the same out-of-place circuit UR as their main component, can
be easily obtained from Figs. 2, 3, 4 and 5. We suppose UR requires n qubits for
the input data block, n qubits for the output data block, and αn for the round
key and ancillae. Note that in Fig. 2 and Fig. 3, we omit the possible ancilla
qubits used in Rs. Then, the widths of the three structures for implementing all
r-round operations are presented in Table 1.

Table 1. The widths of different structures, where t is the minimal number such that∑t
i=1 i > r.

Pipeline Zig-zag Round-in-place

(r + α + 1)n (t + 1 + α)n ≈ (
√

2r + α)n (2 + α)n

To estimate the depths of these structures, we need to consider two different
scenarios. In the first scenario, we build circuits for the Grover oracles used in
exhaustive key search attacks. In the second scenario, we construct circuits for
the encryption oracles used in [KLLN16a].

Circuits for Grover Oracles. First, we consider the Grover oracle: |y〉|q〉 →
|y〉|q ⊕ f(y)〉, where f(y) is a Boolean function that outputs one bit 1 or 0.
When given some pairs of plaintext and ciphertext, by constructing a Grover
oracle with the key |k〉 as the input, one can use Grover’s algorithm to search
the correct key. For simplicity, we consider the case of using one pair of plaintext
and ciphertext (m, c0). In this case, the circuits of the Grover oracle based on
different structures are shown in Fig. 6. In this figure, the out-of-place sub-circuit
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EOP denotes the encryption circuit generated by the pipeline or zig-zag struc-
ture, while the in-place sub-circuit EIP denotes the encryption circuit generated
by the round-in-place structure. Besides the ciphertext |c〉, EOP outputs the
redundant state |r〉 corresponding to those O(Rs) in Fig. 2. Since the plaintext
m is fixed, |m〉 is a computational basis state, which can be viewed as ancilla
qubits in this circuit. The sub-circuit “COM” compares |c〉 with the provided
ciphertext c0, if they are equal, then flips the target qubit |q〉. Apparently, in
these two circuits, the depth of the oracle is roughly two times of the depth of
the encryption circuit (EOP or EIP ).

Fig. 6. The Grover oracle based on different structure

Circuits for Encryption Oracles. Now we consider the encryption oracle defined
in [KLLN16a]: |m〉|0〉 → |m〉|E(m)〉, where m is the plaintext, and E(m) is
the corresponding ciphertext. For this oracle, if its input is a superposition∑

m |m〉|0〉, then its output will be a superposition
∑

m |m〉|E(m)〉. Figure 7
shows how to construct quantum cryptographic oracles based on different struc-
tures. Here |c〉 = |E(m)〉 is the ciphertext. Note that, in this oracle, we do not
need to store |k〉 by qubits, since we can pre-compute all the round keys via
classical computation, and add them on the input of each round by Pauli-X
gates. For the pipeline and the zig-zag structures, since we need uncomputation
to erase the redundant state |r〉, the depth of the oracle is twice of that of the
encryption process. However, for the round-in-place structure, since we do not
generate |r〉, we do not need the uncomputation process.

By summarizing the above discussion, we have the following results. Given
a symmetric cipher with r rounds, suppose the depths (or T -depths) of UR and
UR−1 in Fig. 4 are both d. This is reasonable according to Remark 2. If we ignore
the cost of the compare process in the Grover oracle and the copy process in the
quantum cryptographic oracle, then the depths (or T -depths) and the DW-costs
(the product of depth and width) of the oracles based on these three structures
are as shown in Table 2.

From the results in Table 1 and Table 2, we have the following observations.

Observation 2. The round-in-place structure has the smallest width in any
cases. For the Grover oracle, the pipeline structure has the lowest depth. When
r ≤ 3 + α, the DW-cost of the pipeline structure is lowest, and when r > 3 + α,
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Fig. 7. The encryption oracle based on different structure

Table 2. The depths and DW-costs of the oracles based on different structures

Metric Type Pipeline Zig-zag Round-in-place

Depth Grover 2r · d 2 · ∑t
i=1(2(t − i) + 1) ≈ 4r · d 4r · d

Encrypt 2r · d ≈ 4r · d 2r · d

DW-cost Grover 2r(r + 1 + α)nd 2r(
√

2r + α)nd 4r(2 + α)nd

Encrypt 2r(r + 1 + α)nd 2r(
√

2r + α)nd 2r(2 + α)nd

the DW-cost of the round-in-place structure is lowest. For the quantum crypto-
graphic oracle, the pipeline structure and the round-in-place structure have the
same depth, and the DW-cost of the round-in-place structure is always the lowest.

4 Synthesizing Optimal CNOT Circuits with SAT

It is well known that an invertible linear transformation over F
n
2 can be imple-

mented in-place with n qubits by the CNOT gates [PMH08]. Given an invertible
transformation represented as a binary matrix, the PLU decomposition tech-
nique [GLRS16,JNRV20,ZWS+20] and the heuristic algorithm proposed at FSE
2020 [XZL+20] are typically employed to produce a compact CNOT circuit
implementing the linear transformation. However, these methods are far from
being optimal. In the following, we present a SAT-based method to generate the
most compact CNOT circuit for invertible linear transformations over F

n
2 . Due

to the difficulty of solving large scale SAT models in practice, the SAT-based
technique only works when n is small.

The idea of our algorithm is to convert the problem of finding a circuit with k
CNOT gates into the problem of solving a system of Boolean equations. Similar
ideas were used in [FS10,Sto16,MSM18], where different classical and quantum
circuit synthesis problems were considered. A brief introduction of our method is
given in the following, and a detailed description can be found in the full version
of this paper [HSb].

Given a positive integer k and a linear transformation which can be expressed
as n linear forms Li(x1, x2, . . . , xn) in xi, we generate a model with the fol-
lowing sets of variables: B = (bij)k×n, C = (cij)k×n, F = (fij)n×n, and
Ψ = {ψi,j,s}k×n×n. These variables are of different semantics. For B and C,
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bij1 = ci,j2 = 1 means the i-th gate is a CNOT gate with control wire j1 and
target wire j2. For F , fij = 1 implies that the final output of the j-th wire is Li.
For Ψ , ψi,j,k = 1 indicates that after the i-th gate, the coefficient of xk in the
Boolean expression for the j-th wire is 1. We generate the equations of these vari-
ables to encode the gates and their outputs. It can be shown that the obtained
system of equations has a solution (which can be tested with SAT solvers) if and
only if there is a CNOT-circuit with k CNOT gates. By incrementally increasing
k, we can identify the minimal k such that the corresponding equations can be
satisfied simultaneously. According to our experiments, linear transformations
with less than 9 variables can be solved in a reasonable time. Hence, we employ
this method to identify the optimal CNOT sub-circuits in our implementations
of the AES S-box presented in Sect. 5.

5 In-Place Circuits for Nonlinear Components

It is well known that for any F
n
2 → F

n
2 permutation, there is an in-place quantum

circuit implementing it using only Pauli-X, CNOT, and Toffoli gates with at
most one ancilla qubit [SPMH03]. To obtain this in-place implementation with
minimal width, one needs to solve a corresponding permutation factorization
problem, which is computationally difficult for large permutations like the AES
S-box. Moreover, the complexity in terms of the gate count and depth of the
circuits produced by this method is typically far from being satisfactory. For
example, in [GLRS16], the authors estimated that the in-place circuit of the
AES S-box with 9 qubits would cost about 9695 T gates. In contrast, with
the method provided in this section, we can construct an in-place circuit that
requires only 22 qubits and 728 T gates.

In what follows, we consider special quantum circuits (named as C0- and
C∗-circuits) implementing a vectorial Boolean function, based on which in-place
quantum circuits for nonlinear transformations with different shapes can be con-
structed.

5.1 C0- And C∗-Circuits for a Vectorial Boolean Function

Given a vectorial Boolean function f : Fa
2 → F

b
2, a C0-circuit for f is a quantum

circuit mapping |x〉a|0〉b|0〉c to |x〉a|f(x)〉b|0〉c for any x ∈ F
a
2 , and a C∗-circuit

for f is a quantum circuit mapping |x〉a|y〉b|0〉c to |x〉a|y ⊕ f(x)〉b|0〉c for any
(x, y) ∈ F

a+b
2 . Obviously, a C∗-circuit for f is always a C0-circuit for f . Moreover,

building a C0-circuit is much easier than building a C∗-circuit since a C∗-circuit
has more restrictions on its input-output behavior. For example, the circuits for
the AES S-box proposed in [GLRS16,ASAM18,LPS19] are C0-circuits, but not
C∗-circuits.

Next, we present a generic method that can convert a C0-circuit for f with
some clearly defined properties (called simplex C0-circuits) into a C∗-circuit for
f efficiently. In particular, the obtained C∗-circuit do not increase the T -depth
of the corresponding C0-circuit.
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Simplex C0-Circuits. A C0-circuit for f is simplex if it maps |x〉a|y〉b|0〉c to

|x〉a|A(y) ⊕ f(x)〉b|0〉c,

where A : Fb
2 → F

b
2 is an invertible linear function. We now consider the gate-level

structures of (simplex) C0-circuits, which gives some intuitive ideas on how to
construct efficient simplex C0-circuits and the sufficient condition for a C0-circuit
to be simplex.

Suppose we have a quantum circuit built with Pauli-X, CNOT and Toffoli
gates. Let |x1, x2, · · · , xa〉|y1, y2, · · · , yb〉|0〉c and |t1, · · · , ta〉|z1, · · · , zb〉|0〉c be
the input and output of the circuit with xi, yi and zi in F2. For j ∈ {1, 2, · · · , b},
we have

zj(x, y) =
∑
u,v

aj
u,vxuyv +

∑
u

bj
uxu +

∑
u

dj
uyu + T j(x) + Lj(y) + cj ,

where aj
u,v, bj

u, dj
u, and cj ∈ F2, u ∈ F

a
2 , v ∈ F

b
2, T j and Lj are linear functions,

and xu is the monomial
∏

ui=1 xi. If this circuit is a C0-circuit of the vectorial
function f(x) = (f1(x), · · · , fb(x)), then

zj(x, 0) =
∑

u

bj
uxu + T j(x) + cj = fj(x),

which implies that zj(x, y) = fj(x)+
∑

u,v aj
u,vxuyv +

∑
s dj

uyu +Lj(y). Thus, if
the quantum gates applied to the input qubits |x1, x2, · · · , xa〉|y1, y2, · · · , yb〉|0〉c

do not produce any nontrivial xuyv and yu terms whose degree are greater or
equal to 2, the C0-circuit must be simplex.

Now we analyze which operations may generate these xuyv and yu terms.
We denote the set of the b output wires in this circuit as W, and the set of
other a + c wires as V. Then, the algebraic expressions of the initial states on
the wires in W are y. All operations that operate on at least one wire in W can
be classified into the following 7 types of operations illustrated in Fig. 8.

Fig. 8. Operations that operate on at least one wire in W

Denote
∑

i aj
u,vxuyv +

∑
s dj

uyu +Lj(y) by hj(x, y), then zj(x, y) = hj(x, y)+
fj(x). From the above analysis, to design a C0-circuit, since there is no constraint
on hj(x, y), we do not need to care about the generation of xuyv and yu. This
means the above 7 types of operations are all permitted. The designer only needs
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to focus on efficiently constructing f(x). From the view of algebraic expression,
the qubits on the wires in W can be seen as newly defined variables. Additions
and multiplications about these variables can be used to generate f(x).

To design a simplex C0-circuit, we should guarantee that hj(x, y) = Lj(y),
which means that xuyv and yu should not appear. We have the following obser-
vation:

Observation 3. If some xuyv was generated, it is hard to eliminate this xuyv

in the following steps, unless we repeat the same Toffoli gate which generates it.

This means generating xuyv will likely increase the cost of the circuits. Hence a
natural criterion for designing a compact C∗-circuit is to avoid generating xuyv.

Under this criterion, operations (a) and (b) should obviously be avoided. For
operation (d), it can only be applied when we use the qubit on the target wire as
a dirty qubit for some CNOT gates. Note that operation (e), (f), and (d) under
this constrain can be described together as the following operation.

(h): Apply s CNOT gates, s ≥ 1, which map |u〉a|w〉b|v〉c to |u〉a|L(u, v, w)〉b|v〉c

for any u, v, w, where L is a linear function w.r.t. u, v, w.

Thus, our criterion for designing a compact C∗-circuit is: only operations (c), (h),
(g) can be applied on the output wires. Note that without applying operation (a),
yγs will not be generated either. Therefore, under this criterion, if we construct
Uf , which is a C0-circuit of f , then the output of Uf is

|x〉|h1(x, y) + f1(x), . . . , hb(x, y) + fb(x)〉|0〉,

where hk(x, y) = Lk(y) is a linear function with respect to y. Let A(y) =
(L1(y), L2(y), . . . , Lb(y)), then the output can be denoted by |x〉|A(y) ⊕ f(x)〉|0〉,
which implies this is a simplex C0-circuit.

Converting Simplex C0-circuits into C∗-Circuits. Let Uf be a C0-circuit
of f(x). We can construct a C∗-circuit of f(x) as shown in Fig. 9. Here UA−1

is an in-place sub-circuit, which implements A−1(y). |y〉 will be converted to∣∣A−1(y)
〉

after passing UA−1 , and the output of this modified circuit will be
|x〉∣∣A(A−1(y)) ⊕ f(x)

〉|0〉 = |x〉|y ⊕ f(x)〉|0〉, which means this is a C∗-circuit of
f(x).

It is easy to see that the C∗-circuit constructed by the above method has the
same width as the C0-circuit Uf . Moreover, the numbers and the depths of Toffoli
gates (or T gates) are the same for these two circuits. From this construction, we
can see that the C∗-circuit and the simplex C0-circuit are almost the same. Hence,
to efficiently construct a C∗-circuit, we should also follow the above criterion of
designing a simplex C0-circuit, and by this way we will always obtain a simplex
C0-circuit. Then, the process of designing a C∗-circuit of f(x) can be summarized
as following steps:
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Fig. 9. A C∗-circuit based on a simplex C0-circuit

1) We design Uf , a C0-circuit of f(x), in which only operations (c), (g), and (h)
can be applied on the wires in W. Then Uf will be a simplex C0-circuit.

2) We determine A. Note that, in a simplex C0-circuit, operations (c), (g) will
not generate any term containing y, which means A is determined by (h)
operations. Hence, we can obtain A by computing the composition of the
linear transformations corresponding to all (h) operations.

3) If A is identity, this is already a C∗-circuit. Otherwise, we implement A−1 by
an in-place CNOT circuit UA−1 , then construct a C∗-circuit as Fig. 9.

For most S-box implementation problems, the number of the output wires is not
bigger than 8, which means, by our SAT-based algorithm, we can make sure
UA−1 uses the minimal number of CNOT gates.

5.2 In-Place Implementations of Nonlinear Transformations
of Different Shapes with C0- And C∗-Circuits

We show how to implement nonlinear transformations with typical shapes
encountered in practice with C0- and C∗-Circuits. In most symmetric ciphers,
a nonlinear component can correspond to one of the classical invertible nonlin-
ear transformations presented in Fig. 10.

Fig. 10. Two kinds of classical invertible nonlinear transformations

Feistel-Like Transformations. First, we consider Feistel-like classical invert-
ible nonlinear transformations of the form

Ψ : (x, y) 	→ (x, y ⊕ F (x)).
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The quantum circuit of this type of nonlinear transformation can be realized by
a C∗-circuit of F , which in turn can be derived from a simplex C0-circuit of F .
We note that a C∗-circuit of F , mapping |x〉|y〉|0〉 to

|x〉|y ⊕ F (x)〉|0〉 = |Ψ(x, y)〉|0〉,

is an out-of-place implementation of F but an in-place implementation of Ψ .
Feistel-like structures are frequently seen in Feistel ciphers, NFSR-based designs,
and key-schedule algorithms of block ciphers.

For example, SubByte and the following XOR operation in the AES key
schedule can be seen as a Feistel-like transformation. Therefore to in-place
implement this transformation, we can construct a simplex C0-circuit of the
AES S-box, then extend it to a C∗-circuit. In the previous works about AES,
a lot of proposed quantum circuits of the AES S-box are simplex C0-circuits
[ASAM18,LPS19,ZWS+20], since in these circuits only operations (c),(h),(g)
are applied. Hence, by the method proposed in Sect. 5.1, we can easily extend
them to the C∗-circuits. For example, based on the simplex C0-circuit of the AES
S-box proposed in [ZWS+20], we construct a compact C∗-circuit1. In this C∗-
circuit, the in-place circuit implementing A−1 with minimum number of CNOT
gates is achieved by our SAT-based algorithm. This circuit costs 10 CNOT gates,
and in the full version of this paper [HSb], we present the matrix corresponding
to A−1 and the specific form of this circuit.

In Table 3, we compare the quantum resources used in our C∗-circuit and
those used in the C∗-circuit proposed in [ZWS+20].

Table 3. Quantum resources for implementing the S-box of AES

#ancilla Toffoli-depth #Toffoli #CNOT #Pauli-X Source

C0-S-box 6 41 52 326 4 [ZWS+20]

C∗-S-box 7 60 68 352 4 [ZWS+20]

6 41 52 336 4 This paper

Substitution-Like Transformations. Next, we consider classical invertible
substitution-like transformations of the form

Φ : (x, y) → (S(x, y), y).

It is easy to see that the description of such nonlinear transformation is the
same as that of the round transformation discussed in Sect. 3, and thus we can
implement such nonlinear transformation by the OP-based in-place circuit in
Fig. 11.

1 The C code for checking the correctness of this C∗-circuit is available at https://
github.com/hzy-cas/AES-quantum-circuit.

https://github.com/hzy-cas/AES-quantum-circuit
https://github.com/hzy-cas/AES-quantum-circuit
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Fig. 11. An OP-based in-place circuit for a substitution-like nonlinear transformation,
where S′ is a function satisfying S′(S(x, y), y) = x for any y.

We now consider how to implement the building blocks of the circuit depicted
in Fig. 11. For UT , it can be implemented as a C0-circuit of S. For UT−1 , a
circuit which mapping |S(x)〉|y〉|x〉|0〉 to |S(x)〉|y〉|x ⊕ S′(S(x), y)〉|0〉, one may
attempt to implement this part as a C∗-circuit of S′. We now show that this is
an overshoot.

For UT−1 , if we set z = S(x), then S′(z, y) = x, and UT−1 maps
|z〉|y〉|S′(z, y)〉|0〉 to |z〉|y〉|0〉|0〉. Suppose UT0 is a circuit that maps |z〉|y〉|0〉|0〉
to |z〉|y〉|S′(z, y)〉|0〉, then obviously, U†

T0
, the reverse circuit of UT0 , is equivalent

to UT−1 . Therefore, to implement a substitution-like transformation, we only
need to design a C0-circuit of S, and a C0-circuit of S′, whose reverse circuit is
used.

6 A Method for Constructing Low T -Depth Circuits

As discussed in Sect. 2, the T -depth is the most concerned parameter. In our
context, T gates only appear in the Toffoli gates, the quantum AND gates and
their adjoints, which are employed to implement the quantum correspondences
of the multiplications in the classical computation. In the following, we first show
that there always exists a quantum circuit with T -depth equal to the AND-depth
of the corresponding classical circuit. Therefore, we can first construct a classical
circuit with low AND-depth, and then convert it into a low T -depth quantum
circuit.

6.1 Classical AND-depths v.s. Quantum T -depths

The AND-depth of a classical circuit (a.k.a. the multiplicative depth) constructed
with AND, XOR, and NOT gates is the largest number of AND gates on any
path from a primary input to a primary output. For example, the AND-depth
of the classical circuit shown in Fig. 12 is 1.

The readers may think that it is trivial to build a quantum version of a given
classical circuit such that the T -depth of the quantum circuit is equal to the
AND-depth of the classical circuit by just properly replacing the classical AND
gates with Toffoli gates or quantum AND gates, all of which have T -depth 1
implementations. However, for quantum circuits, a direct copy as the “b” signal
in Fig. 12 is not allowed and a qubit cannot be used in different quantum gates
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simultaneously. Therefore, a quantum circuit obtained from a classical one by the
simple replacement strategy mentioned above maintaining the natural order of
operations may result in increased T -depth. For example, the quantum circuits
with different Toffoli-depth depicted in (2) and (3) of Fig. 12 both implement
the functionality of the classical circuit given in (1) of Fig. 12. Next, we show
that the AND-depth of a classical circuit set a lower bound for the T -depth of
its quantum counterpart, and this lower bound is achievable.

Fig. 12. Quantum implementations of a classical circuit with multiplicative depth 1

Theorem 1. Given a classical circuit with AND-depth s, the T -depth of the
quantum circuit implementing all the nodes of the classical circuit is not smaller
than s. Moreover, with sufficiently many ancillae, we can construct a quantum
circuit implementing all the nodes of the classical circuit with T -depth s.

Theorem 1 can be proved by a constructive method with some notations and
terminologies introduced below. Here we illustrate this method with the classical
circuit given by Example 1. A full proof of Theorem1 can be found in the full
version [HSb], which also provides a generic method to convert an AND-depth t
classical circuit into a T -depth t quantum circuit.

Example 1. M4 = M1 · M2, M5 = M2 · M3, M6 = M4 ⊕ M3, M7 = M5 ⊕ M1,
M8 = M7 · M2, M9 = M7 · M3, M10 = M8 ⊕ M6, M11 = M10 ⊕ M9, M12 = M7 · M6,
M13 = M11 · M3

The AND-depth of the circuit given by Example 1 is 3. Before we present the
method for building the corresponding T -depth-3 quantum circuit, we define the
AND-depth for each intermediate node (or signal) appearing in the circuit. We
call a variable an AND-variable if it represents the output of an AND gate. In
Example 1, M4, M5, M8, M9, M12, and M13 are AND-variables.

Let Mi and Mj be two AND-variables. Mj is said to be an AND-successor
of Mi if Mj = Mi · Mk for some k, or Mj = Mu · Mv for some u and v such
that Mu is generated from Mi by some XOR operations, which is denoted by
Mi → Mj . Also, we call Mi is an AND-predecessor of Mj . In our Example 1, we
have M5 → M8 and M8 → M13, forming a directed path M5 → M8 → M13. By
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generating all such paths, a directed acyclic graph is obtained with the nodes
representing the AND-variables. Then, the AND-depth of an AND-variable M ,
denoted as d∧(M) is defined as k, if M is the k-th node in the longest path
containing M . Apparently, the AND-depth of a classical circuit is equal to the
maximum AND-depth of its AND-variables. It is easy to see that, for an AND-
variable M , if M has no AND-predecessor, then d∧(M) = 1, otherwise d∧(M) =
1 + maxv∈Pre(M) d∧(v), where Pre(M) denotes the set of all predecessors of M .
In Example 1, d∧(M4) = d∧(M5) = 1, d∧(M8) = d∧(M9) = d∧(M12) = 2, and
d∧(M13) = 3.

Now, we are ready to describe our method for building the quantum cir-
cuit. Note that since we aim at reducing the T -depth, in our constructions,
we always use the quantum AND gate with T -depth 1 and its adjoint with T -
depth 0 depicted in Fig. 1 whenever possible, while in the figures illustrating the
quantum circuits, we use Toffoli gates due to the compactness of its visualiza-
tion. The circuit generated by our method has the following features, Firstly,
for AND-variables with the same AND-depth, a layer of quantum AND gates
which generate these AND-variables are applied in parallel. Secondly, before the
quantum AND layer, all necessary input are generated with a CNOT network.
In particular, when a variable is used as inputs of different AND gates of the
subsequent AND layer, we can copy it into an ancilla qubit with the application
of a CNOT gate, and clean the effect of the CNOT gate after the quantum AND
layer.

Fig. 13. An AND-depth-3 implementation for the classical circuit in Example 1

Figure 13 present a quantum circuit corresponding to Example 1. In this cir-
cuit, we have three layers of quantum AND gates, within each layer the gates are
applied in parallel. In Layer 1, we generate M4 and M5. In Layer 2, we generate
M8, M9, and M12. In Layer 3, we generate M13. The variables required by Layer
1 are M1, M2, and M3. Since M4 = M1 · M2, and M5 = M2 · M3, M2 is needed
in two different AND gates. Therefore, before Layer 1, we copy |M2〉 to another
qubit by a CNOT gate. This is an idle qubit, which will be used to store |M6〉.
We clean this qubit after Layer 1. The variables required by Layer 2 are M2, M3,
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M6, and M7. Hence, we have to generate M6 and M7. We do this by applying
4 CNOT gates before Layer 2. Similarly, M7 is required for computing M8, M9,
and M12. We copy it into two idle qubits by 2 CNOT gates before Layer 2, which
are cleaned after Layer 2. The variables required by Layer 3 are M2, and M11.
Thus, before Layer 3, we apply 4 CNOT gates to generate M11. This leads to a
quantum circuit computing all the nodes in Example 1 with T -depth 3.

6.2 A Trick for Reducing the AND-depth of Classical Circuits

According to the discussion of the previous section, low AND-depth classical
circuits imply low T -depth quantum circuits. In this section, we show how to
reduce the AND-depth of a classical circuit without changing the functionalities
of its primary outputs based on a simple observation. Let M4 = M1 · M2 and
M = M4·M3 with d∧(M1) = 2, d∧(M2) = 1, and d∧(M3) = 1. Then d∧(M4) = 3,
and d∧(M) = 4. In addition, We can deduce that M = (M1 ·M2)·M3. Obviously,
we also have M = M1 · (M2 · M3). Therefore, if we first compute M4 = M2 · M3,
and then M = M1 · M4. The AND-depth of M is reduced from 4 to 3.

We now show how this idea works for a more complicated case based on
Example 1, where M1, M2, M3 are primary inputs and M12, M13 are primary
outputs. For M13, we have

M13 = (M10 ⊕ M9)M3 = (M8 ⊕ M6 ⊕ M9)M3 = M7(M2M3) ⊕ M6M3 ⊕ M7M3.

We modify the circuit by using the following steps to generate M13: N1 = M2 ·
M3, N2 = M6 ·M3, N3 = M7 ·M3, N4 = M7 ·N1, N5 = N4⊕N2, M13 = N5⊕N3.
M13 is not an AND-variable anymore. It is easy to check that d∧(N1) = 1,
d∧(N2) = 2, d∧(N3) = 2, and d∧(N4) = 2. Therefore, the AND-depth of this
new circuit is 2. The modified circuit is given by Example 2, where M12 and M13

are the primary outputs.
Example 2. M4 = M1 · M2, M5 = M2 · M3, M6 = M4 ⊕ M3, M7 = M5 ⊕ M1,
M ′

8 = M6 · M3, M ′
9 = M7 · M3, M ′

10 = M7 · M5, M ′
11 = M ′

10 ⊕ M ′
8, M12 = M7 · M6,

M13 = M ′
11 ⊕ M ′

9.

More generally, given a classical circuit, we can try to reduce its AND-depth
as follows. Firstly, for a M ′ which is not an AND-variable, we extend the defini-
tion of d∧(M ′), by setting d∧(M ′) to be maxi{d∧(Mi)}, where Mi is an AND-
variables and there is a path from Mi to M ′ in the classical circuit.

For an AND-variable M with d∧(M) = d ≥ 3, we have M = M1M2 for
some M1 with d∧(M1) = d − 1. If d∧(M2) ≤ d − 3, we further decompose M1 to
variables with lower AND-depth. That is we write M1 as

∑
i,j M ′

iM
′
j +

∑
k M ′

k,
where d∧(M ′

i) ≤ d− 2, d∧(M ′
j) ≤ d− 2, d∧(M ′

k) ≤ d− 2, for any i, j, k. Then, we
have

M =
∑
i,j

M ′
i(M

′
jM2) +

∑
k

M ′
kM2.

For any M ′
i with d∧(M1

i ) = d − 2, if the corresponding M ′
j always satisfies

d∧(M1
j ) ≤ d − 3, then by constructing some new operations which generate

those M ′
jM2 first, we can reduce the AND-depth of M from d to d − 1.
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6.3 T -depth-4 and T -depth-3 Quantum Circuits for the AES S-box

Firstly, based on the classical circuit proposed in [BP12] with AND-depth 4 (see
the full version [HSb]), we can build a quantum circuit for the AES S-box with
T -depth 4 by employing the method given in Sect. 6.1. In comparison, the T -
depth of the quantum circuit presented by Jaques et al. [JNRV20] based on the
same classical circuit is 6, and its width is the same as ours.

Furthermore, based on the trick given in Sect. 6.2, we transform the classical
circuit proposed in [BP12] into a circuit with AND-depth 3 (shown in the full
version [HSb]), based on which a T -depth-3 quantum circuit for the AES S-box
can be constructed. Note that, the algebraic degree of the AES S-box is 7. With
two layers of multiplications, we can only obtain polynomials with degree 4.
This means that we need at least three layers of multiplications to generate the
output of the AES S-box. Therefore, if we implement the AES S-box by firstly
designing a classical reversible circuit, and then decomposing each gate into the
Clifford+T gates, the minimum T -depth is 3, which is achieved by our circuit.
A comparison of our circuits and the one presented in [JNRV20] is presented in
Table 4. In this table, the gate counts and depths are obtained by summing the
corresponding values for the forward circuit which computes the S-box output
and the uncomputation circuit. The Q# code for our T -depth-4 and T -depth-
3 quantum circuits are available at https://github.com/hzy-cas/AES-quantum-
circuit.

Table 4. Quantum resources for different AES S-box circuits

#CNOT #1qClifford #T # Measure T -depth Full depth Width Source

664 205 136 34 6 117 136 [JNRV20]

718 208 136 34 4 109 136 T -depth-4

1395 467 312 78 3 113 218 T -depth-3

Remark 3. The widths presented in Table 4 are not obtained by the Q# resource
estimator. As mentioned in the latest ePrint version of [JNRV20] and https://
github.com/microsoft/qsharp-runtime/issues/192. There was a bug in Q# that
produces conflict width and depth estimations, and this issue was solved in the
latest version of Q#. However, when Q# tries to optimize the T -depth, the
width obtained is not optimal (https://github.com/microsoft/qsharp-runtime/
pull/446). Therefore, we manually estimate the widths to obtain more accurate
figures. The specific estimation process can be found in the full version of this
paper [HSb].

7 Efficient Quantum Circuits for AES

To implement an iterative block cipher, we proceed as follows. Firstly, we choose
the pipeline structure or the round-in-place structure according to our opti-
mization objective (low depth or low width). Then, implement the linear layers

https://github.com/hzy-cas/AES-quantum-circuit
https://github.com/hzy-cas/AES-quantum-circuit
https://github.com/microsoft/qsharp-runtime/issues/192
https://github.com/microsoft/qsharp-runtime/issues/192
https://github.com/microsoft/qsharp-runtime/pull/446
https://github.com/microsoft/qsharp-runtime/pull/446
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with Xiang et al.’s method, the PLU decomposition method, or the SAT-based
technique presented in this paper. For the nonlinear components, construct C0-
circuits and then convert them to C∗ circuits. Finally, plug these sub-circuits
into the round-level structure. We will show case this procedure with AES-128,
and all the techniques can be easily extended to AES-192, AES-256, and other
iterative block ciphers.

7.1 Low-Width Quantum Circuits for AES

First of all, we choose the round-in-place structure according to observation 2
of Sect. 3. Then, we show how to implement the building blocks of AES in-
place. The ShiftRow and RotByte operations can be easily implemented by
rewiring. For the MixColumns operation, regarded as a 32 × 32 binary matrix,
we employ the in-place circuit from [XZL+20], which requires 92 CNOT gates. In
the following, we consider the implementations of the S-boxes, for which different
circuits are used in different situations.

S-boxes in the Key Schedule Data Path. Since the S-box is immediately
followed by an XOR operation in the key schedule (a Feistel-like transformation),
we only need a C∗-circuit of the S-box. In our implementation, we used the C∗-
circuit introduced in Sect. 5.2.

For the sake of simplicity, we call a C∗-circuit (or C0-circuit) of the AES S-
box a C∗ (or C0) S-box. Figure 14 illustrates the structure of the in-place circuit
for the AES key schedule. In this figure, SubByte represents the sub-circuit for
the parallel application of four C∗ S-boxes. Note that while the implementations
of the S-boxes are improved in this paper, the high-level structure is attributed
to [JNRV20].

Fig. 14. An in-place circuit for generating the first round key

S-boxes in the Encryption Data Path. In the encryption process of AES,
ByteSub can be regarded as a substitution-like transformation defined in Sect. 4,
and thus we can implement it with the OP-based in-place circuit. This means
we need to construct a C0 S-box and a C0 S-box−1. Here, we use the C0 S-box
proposed in [ZWS+20], based on which a C0 S-box−1 can be constructed as
follows.
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Suppose x ∈ F
8
2 is the input of the S-Box, then y, the output of the S-box, is

equal to LS0(x)+ c, where L is a linear function and S0(x) is the inverse of x in
F
8
2. Hence, we have x = S−1

0 L−1(y + c) = S0L
−1(y + c) = L−1(LS0)L−1(y + c).

Suppose U0 is the circuit that implements |x〉|0〉|0〉 → |x〉|LS0(x)〉|0〉. Obvi-
ously, it can be generated from a C0 S-box by deleting the last 4 Pauli-X gates.
Then, it is easy to check that the circuit in Fig. 15 is a C0-circuit of S-box−1.

Fig. 15. The circuit for implementing the S-box−1 of AES

In Fig. 15, UC is the circuit consisting of 4 Pauli-X gates, and it implements
constant addition of c. UL and UL−1 are the circuits consisting of CNOT gates,
and they implement the linear transformation L and L−1 respectively. According
to our SAT-based method, L can be implemented by 14 CNOT gates. Conse-
quently, we can implement a C0-circuit of S-Box−1 with 6 ancilla qubits, 52
Toffoli gates, 41 Toffoli depth, 368 CNOT gates, and 8 NOT gates2. In the full
version [HSb], we present the specific form of the matrix corresponding to L, and
the quantum circuit that implements L with minimal number of CNOT gates.

Based on the above circuits, we can in-place implement ByteSub in each
round by 16 OP-based in-place circuits of the S-box. We suppose these 16 in-
place circuits are implemented in parallel, then our implementation of ByteSub
has the following two phases:

Phase 1: Implement 16 C0 S-box, denoted by ByteSub1;
Phase 2: Implement 16 reverse circuits of C0 S-box−1, denoted by ByteSub−1.

Note that in the key schedule process of each round, we need to apply 4 C∗

S-boxes. Obviously, by applying 2 of them in Phase 1, and another 2 of them in
Phase 2, we can reduce the DW-cost of the whole circuit. Under this strategy,
our implementation of the i-th round of AES can be illustrated by Fig. 16.

In this figure, ki−1 denotes the round key in the (i − 1)-th round, and ci−1

denotes the output state of the (i − 1)-th round. The last step of each round
is AddRoundKey, which can be implemented by applying 128 CNOT gates in
parallel, and denoted by a CNOT gate in Fig. 16. For the final round, we do not
need the sub-circuit Mixcol. Round 0, which performs a bitwise XOR of k0 to
the plaintext, can be implemented by applying 128 CNOT gates in parallel.

2 The C code for checking the correctness of this C0-circuits of S-box −1 is available
at https://github.com/hzy-cas/AES-quantum-circuit.

https://github.com/hzy-cas/AES-quantum-circuit
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Fig. 16. The in-place implementation of the i-th round of AES-128

Note that the ancilla qubits used in these S-box circuits are ignored in this
figure. From Table 3, we know that the number of ancilla qubits used in our
out-of-place (C0 or C∗) S-box circuit is 6, and the Toffoli-depth of this circuit
is 41. We implement 18 out-of-place S-box circuits simultaneously in a phase,
and the third register uses 8 × 16 = 128 qubits to store the outputs of the 16
out-of-place S-box circuits in ByteSub1, hence the width of this one round circuit
is 18 × 6 + 3 × 128 = 492, and the Toffoli-depth is 41 × 2 = 82.

Apparently, for this one round circuit, we can make a tradeoff between width
and depth by reducing the number of S-box circuits applied in parallel. In Fig. 16,
the Toffoli-depth for sequentially implementing one C∗ S-box in KeyExpan1 and
one C∗ S-box in KeyExpan2 is the same as the Toffoli-depth of an OP-based
in-place S-box circuit. Hence, we see two sequential C∗ S-box as a whole circuit,
and in the following call such circuit and the OP-based in-place S-box circuit,
double-depth S-box circuits. In this case, the process of Phase 1 and Phase 2
in Fig. 16 implements 18 double-depth S-box circuits in parallel. Now suppose
we implement p double-depth S-box circuits in parallel, where p|18.

• If p = 9, the Toffoli-depth is 82×2 = 164. In the 9 double-depth S-box circuits
applied in the same layer, one of them is in KeyExpan and eight of them are
in ByteSub, hence the width is 128 × 2 + 6 + (8 + 6) × 8 = 374.

• If 18/p ≥ 3, the Toffoli-depth is 82 × 18/p = 1476/p. the widest part of such
one round circuit is a phase in which all p double-depth S-box circuits are in
ByteSub, and the width is 2 × 128 + (8 + 6)p = 256 + 14p.

Table 5 present the numbers of different quantum gates used in each compo-
nent and one round. Obviously, these numbers are irrelevant to p.

Table 5. Quantum resources for implementing different components of AES

KeyExpan MixCol AddRoundKey ByteSub1 ByteSub−1 One round

#Toffoli 208 0 0 832 832 1872

#CNOT 1440 368 128 5216 6096 13248

# Pauli-X 48 0 0 64 128 240
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Implement the Grover Oracle. If we want to construct a Grover oracle to
search k0, since the plaintext m is fixed and Round 0 is adding k0 on m, we
can apply Pauli-X gates on some specific ones of the wires carrying |k0〉 to
obtain |k0 ⊕ m〉, then when |k0〉 is needed later, apply Pauli-X gates on these
wires again to convert |k0 ⊕ m〉 back to |k0〉. Therefore, we can use the circuit
in Fig. 17 to implement Round 0 and Round 1 together.

Compare to Fig. 16, in this circuit, we do not need to implement ByteSub−1,
hence we can save 16×52 = 832 Toffoli gates. Note that, the a qubits in the third
register, which will be used in the following rounds, is idle in these two rounds.
Hence if p ≥ 9, we have a > 96, then the 16 S-box circuits in ByteSub1 can
be implemented in parallel (need 96 ancilla qubits), Similarly, KeyExpan, which
contains 4 S-box circuits, can be implemented in parallel. However, ByteSub1 and
KeyExpan can not be implemented simultaneously. Therefore, if p ≥ 9, the width
and Toffoli-depth of these two rounds are 384 and 82 respectively. Moreover,
these two rounds use 256+64+48 = 368 Pauli-X gates, 5126+1440+368+128 =
7152 CNOT gates and 208 + 832 = 1040 Toffoli gates.

Fig. 17. The implementation of the round 0 and round 1 of AES

Then, by combining the circuits in Fig. 17 and Fig. 16, we can implement
encryption circuit of the AES Grover oracle. In Table 6, we present the quantum
resources needed for this circuit with p = 18 and p = 9, and compare our results
with the results presented in [ZWS+20].

Table 6. Quantum resources for implementing AES-128

Width Toffoli-Depth #Toffoli #CNOT #Pauli-X source

512 2016 19788 128517 4528 [ZWS+20]

492 820 17888 126016 2528 p = 18

374 1558 17888 126016 2528 p = 9

7.2 Low-Depth Quantum Circuits for AES

To reduce the depth, we should use the pipeline structure. First, we consider the
nonlinear components. Since the round transformation is implemented out-of-
place in the pipeline structure, for implementing ByteSub, we only need a low
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T -depth C0 S-box. For the AES key schedule, since it is the Feistel-like non-linear
transformation, as shown in Sect. 7.1, it can be implemented in-place with the
circuit in Fig. 14. It is easy to see that compared to other out-of-place imple-
mentations of the AES key schedule, the depth of such in-place implementation
is also lower, since no extra operations are needed. As a consequence, we also
in-place implement the AES key schedule in our shallower circuit of AES based
on a C∗ S-box.

In Sect. 6.3, we presented two circuits of the AES S-box, which have T -depth
4 and T -depth 3 respectively. In these two circuits, the output wires are only be
used as target wires. Therefore, these circuits are both C∗-circuits, and can be
used in ByteSub and the key schedule.

For MixColoumns, we use the in-place circuit in Sect. 7.1, which has the opti-
mal width, and the lowest CNOT-count until now. The Q# resource estimator
shows that the depth of this in-place circuit is 30. In our resource estimation
model, the CNOT-depth metric is less important than other metrics. For these
reasons, we use this in-place circuit to implement MixColoumns.

Fig. 18. The out-of-place implementation of the i-th round of AES-128

Figure 18 presents our implementation of the i-th round. In KeyExpan and
ByteSub1, 20 S-box circuits are applied in parallel. The round 0 is implemented
by applying 128 CNOT gates in parallel, which maps |k0〉|m〉 to |k0〉|c0〉. Note
that, we don’t use the circuit in Fig. 17 to implement the round 0 and round 1
together. The reason is in Fig. 17, KeyExpan and ByteSub1 cannot be applied in
parallel, hence the T -depth and full depth will be higher.

We implemented our AES circuits by Q# based on the code proposed in
[JNRV20], and our code of Mixcolumn and the S-box (https://github.com/hzy-
cas/AES-quantum-circuit). Table 7 shows the quantum resources of our circuits
based on different S-box implementations. Same as in [JNRV20], the results
presented here are the quantum resources required for implementing the forward
circuit, which outputs the ciphertext, and the reverse circuit, which is used for
uncomputation. As in Table 4, except the width3, other values are obtain from
Q# resource estimator. We can see that, similarly as the results of the S-box
circuits, the T -depths and the full depths of our circuits are all lower than those
in [JNRV20].

3 In the full version [HSb], we show how to obtain these values of widths.

https://github.com/hzy-cas/AES-quantum-circuit
https://github.com/hzy-cas/AES-quantum-circuit
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Table 7. Quantum resources for implementing AES and AES†

#CNOT #1qClifford #T #M T -depth Full depth width source

291150 83116 54400 13600 120 2827 3936 [JNRV20]

298720 83295 54400 13600 80 2198 3936 with T -depth-4 S-box

570785 189026 124800 31200 60 2312 5576 with T -depth-3 S-box

8 General Width and T -depth Trade-offs

By combing different S-box circuits with different structures, and adjusting the
number of S-box circuits applied in parallel, we can have a spectrum of trade-offs
between width and T -depth.

Since we consider the T -depth, the Toffoli gates in the out-of-place S-box
circuits used in Sect. 7.1 should be decomposed into Clifford+T gates. Note that,
we cannot replace these Toffoli gates with quantum AND gates, since the output
wires of the multiplication operations are not initialized to |0〉. Here, we use the
T -depth-1 Toffoli gate proposed in [Sel12], where 4 ancilla qubits are required.
In these S-box circuits, we apply at most two Toffoli gates in parallel, hence
we need 8 extra ancilla qubits. In all, we have a Clifford+T implementation of
the S-box (or the S-box−1) with 8 + 6 = 14 ancilla qubits and T -depth 41. We
name these S-box circuits as Circuit 0. Moreover, to use the T -depth-4 (or the
T -depth-3) S-box circuit in the round-in-place structure, we need to construct
a C0-circuit of the S-box−1. Obviously, we can construct such circuit with T -
depth-4 (or T -depth-3), since the nonlinear parts in the classical circuits of the
S-box and S-box−1 are the same. We name these T -depth-4 circuits as Circuit
1, and these T -depth-3 circuits as Circuit 2.

We obtain the trade-off curve shown in Fig. 19 by applying Circuit 0, Cir-
cuit 1, and Circuit 2 in different structures. In this figure, Strategy 1, 2, 3,
respectively correspond to the use of Circuit 0, Circuit 1, Circuit 3 in the round-
in-place structure. Strategy 4, 5, 6 respectively correspond to the use of Circuit
0, Circuit 1, Circuit 3 in the pipeline structure. Different points on a curve are
obtained by applying different number of S-box circuits in parallel. We also list
the results of previous works [ZWS+20,JNRV20,GLRS16,LPS19] in this figure.
For [ZWS+20], since the T -depth is not presented, here we decompose the Tof-
foli gate by the same Clifford+T gates as in Circuit 0, hence slightly increase
the width. For the point corresponding to [JNRV20], the width is fixed as we
mentioned. The detailed process for estimating these T -depths and widths is
presented in the full version of this paper [HSb].
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Fig. 19. The width and T-depth for implementing the Grover oracle of AES-128

9 Conclusion and Discussion

We propose the round-in-place structure for the quantum circuits of iterative
ciphers, and manage to find a generic way to efficiently realize this structure
in practice. We give guidelines in how to synthesize quantum circuits with spe-
cific optimization objectives based on a detailed analysis of the pipeline, zig-zag,
and round-in-place structures. Moreover, new techniques for implementing the
quantum circuits for linear and non-linear building blocks are presented. In par-
ticular, based on a new observation on the classical circuit of the AES S-box,
we obtain a quantum circuit for the AES S-box with T -depth 3, reaching its
theoretical minimum. Based on these techniques and results, we produce sig-
nificantly improved quantum circuits for AES with respect to both depth and
width. Finally, we conjecture that without optimizing across the natural hier-
archical boundaries formed by the round functions of AES, the T -depth of the
quantum circuit cannot be further improved.
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Abstract. In this work, we focus on collision attacks against instances
of SHA-3 hash family in both classical and quantum settings. Since the 5-
round collision attacks on SHA3-256 and other variants proposed by Guo
et al. at JoC 2020, no other essential progress has been published. With
a thorough investigation, we identify that the challenges of extending
such collision attacks on SHA-3 to more rounds lie in the inefficiency of
differential trail search. To overcome this obstacle, we develop a SAT-
based automatic search toolkit. The tool is used in multiple intermediate
steps of the collision attacks and exhibits surprisingly high efficiency in
differential trail search and other optimization problems encountered in
the process. As a result, we present the first 6-round classical collision
attack on SHAKE128 with time complexity 2123.5, which also forms a quan-
tum collision attack with quantum time 267.25/

√
S, and the first 6-round

quantum collision attack on SHA3-224 and SHA3-256 with quantum time
297.75/

√
S and 2104.25/

√
S, where S represents the hardware resources of the

quantum computer. The fact that classical collision attacks do not apply
to 6-round SHA3-224 and SHA3-256 shows the higher coverage of quan-
tum collision attacks, which is consistent with that on SHA-2 observed
by Hosoyamada and Sasaki at CRYPTO 2021.

Keywords: SHA-3 · SAT-based automatic search tool · Collision
attacks · Quantum cryptanalysis

1 Introduction

The Keccak hash function [BDPVA13], designed by Bertoni et al. in 2008,
was standardized as the Secure Hash Algorithm-3 (SHA-3) [Dwo15] in 2015
by the National Institute of Standards and Technology (NIST) of the U.S.
The SHA-3 family has four instances with fixed digest lengths, namely, SHA3-
224, SHA3-256, SHA3-384 and SHA3-512, and two eXtendable-Output Functions
(XOFs) SHAKE128 and SHAKE256. Being one of the most important crypto-
graphic hash functions, SHA-3 (Keccak) has received intensive security analy-
sis. The most relevant security criteria for cryptographic hash functions include
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c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13793, pp. 645–674, 2022.
https://doi.org/10.1007/978-3-031-22969-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22969-5_22&domain=pdf
http://orcid.org/0000-0001-8847-6748
http://orcid.org/0000-0002-0556-6404
http://orcid.org/0000-0001-9298-7313
http://orcid.org/0000-0002-2051-8806
https://ia.cr/2022/184
https://doi.org/10.1007/978-3-031-22969-5_22


646 J. Guo et al.

preimage resistance and collision resistance. Preimage attacks of SHA-3 were
investigated in [NRM11,MPS13,GLS16,LSLW17,LS19,Raj19,LHY21,HLY21].
The best-known practical attacks reach 3 rounds of SHAKE128 and SHA3-224
[GLS16,LS19]1 while the best-known theoretical ones can reach 4 rounds of all
its instances [MPS13,Raj19,HLY21]. With marginal time complexity gains over
bruteforce, theoretical preimage attacks cover up to 7/8/9 rounds for Keccak-
224/256/512, respectively [CKMS14,Ber10,MPS13].

More relevant to this research are the collision attacks on SHA-3 (Keccak)
with reduced number of rounds. In [DDS12,DDS14], Dinur et al. presented
practical collision attacks on 4 rounds of Keccak-224 and Keccak-256. The
actual collisions were found by combining a 3-round differential trail and a 1-
round connector (which connects the differential trail to valid initial values).
The same authors also presented practical collision attacks on 3-round Kec-
cak-384/Keccak-512, and theoretical collision attacks on 5/4-round Keccak-
256/Keccak-384 using internal differentials [DDS13]. Following the framework
proposed by Dinur et al. in [DDS12], Qiao et al. introduced 2-round connectors
by prepending a fully linearized round to the 1-round connectors and obtained
actual collisions for 5-round SHAKE128 [QSLG17]. Further, these connectors were
improved in [SLG17,GLL+20] to consume fewer degrees of freedom by using par-
tial linearization. Consequently, 3-round connectors became possible and prac-
tical collision attacks on 5-round SHA3-224 and SHA3-256 were obtained.

Collision Attack in Quantum Settings. In the previous works, collision
attacks of SHA-3 were studied only in classical settings. Recently, quantum colli-
sion attacks are attracting more attention and showing unexpected efficiencies.

The generic security margin of collision attacks in quantum settings has been
investigated with the recent progress in post-quantum security of cryptographic
schemes and primitives. Several quantum collision algorithms [BHT98,CNPS17]
were introduced to provide security bounds for generic hash functions. However,
the quantum collision attack against concrete hash functions was not published
until 2020 [HS20]. In this work, Hosoyamada and Sasaki demonstrated that
differential trails of low probability that couldn’t be utilized in classical colli-
sion attacks were exploited to mount quantum collision attacks of more rounds.
Later, the authors extended their quantum collision search algorithms to other
hash functions and proposed the first quantum collision attacks on SHA-2 at
CRYPTO 2021 [HS21]. Additionally, results of quantum rebound attacks on AES
hashing modes [DSS+20] and quantum multi-collision distinguishers [BGLP] on
dedicated hash functions were also presented.

Challenges. There are two major challenges in mounting quantum collision
attacks on SHA-3. The first is to search for differential trails that are more
suitable for quantum collision attacks, i.e., trails that cover as many rounds as
possible with the bound on the probability relaxed to 2−n. As a consequence,
the search space expands drastically which calls for more advanced and efficient

1 The preimage attack on 3-round Keccak-256 in [LHY21] has a time complexity 265,
but no concrete preimage is given.
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searching techniques. The second challenge lies in connecting the differential trail
with the initial state. When differential trails with lower probability are used,
more conditions are imposed on the internal state which should be satisfied by the
connector. Thus, to avoid being the bottle neck of the whole attack, connectors
must be constructed in more efficient way than before.

SAT-Based Cryptanalysis. Great attention from the cryptography commu-
nity has been paid on automatic tools for linear and differential trail search.
Normally, mathematical problems such as Boolean Satisfiability Problem (SAT),
Mixed Integer Linear Programming (MILP), Satisfiability Modulo Theories
(SMT), and other related methods are employed to construct such automatic
tools. Since the performance of automatic search is determined by the power of
the corresponding mathematical solvers, the efficiency is not particularly satis-
factory when cryptographic ciphers with large state sizes are analyzed. Practi-
cally, most of the previous related works focus on lightweight ciphers where the
automatic tools showed incredible strength.

The SAT problem decides whether a set of constraints could be satisfied by
giving valid assignments to variables. In the research line of SAT-based crypt-
analysis, Mouha and Preneel searched differential trails of ARX ciphers with
SAT method in [MP13]. Based on SAT, Sun et al. [SWW18] put forward an
automatic search method for ciphers with Sboxes to obtain differential trails of
more accurate as well as high probability. In [SWW21], Sun et al. proposed a new
encoding method to convert the Matsui’s bounding conditions into Boolean for-
mulas, which could reduce clauses and speed up the SAT solving phase. Besides,
Morawiecki and Srebrny presented preimage attack on 3-round Keccak hash
functions by developing a SAT toolkit [MS13].

Our Contributions. Inspired by Hosoyamada and Sasaki’s findings from
[HS20,HS21] that collision attacks in quantum settings can take advantage of
differential trails of low probability, we develop an automatic trail search toolkit
based on SAT and propose advanced collision attacks on SHA-3 in both classical
and quantum settings. The results of our work and the comparison with previous
works are listed in Table 1. Main contributions are summarized in the following.

1. The SAT-based automatic trail search toolkit To facilitate differential
trail search of the underlying permutation Keccak-f of SHA-3, an SAT-
based automatic search toolkit is developed. The toolkit is not only simple
to implement but also provides more flexibility and better efficiency in gener-
ating various differential trails compared to dedicated trail search strategies
in [DVA12,MDA17,LQT19]. It’s interesting to note that for cryptographic
primitives of large state size like Keccak-f , automatic tools such as the
MILP-based ones are unlikely to provide advantage in trail search. That’s
why specialized search techniques were proposed for SHA-3. Surprisingly, the
SAT-based automatic toolkit fills the vacancy and shows excellent perfor-
mance in trail search of the large-state Keccak-f .
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Table 1. Summary of collision attacks against the SHA-3 family

Target Type Rounds Time complexity Reference

SHA3-224 Classical 5 Practical [GLL+20]
Quantum 6 297.75/

√
S Sect. 4.4

SHA3-256 Classical 5 Practical [GLL+20]
Quantum 6 2104.25/

√
S Sect. 4.3

SHA3-384 Classical 4 2147 [DDS13]
SHA3-512 Classical 3 Practical
SHAKE128 Classical 5 Practical [GLL+20]

Classical 6 2123.5 Sect. 4.2
Quantum 6 267.25/

√
S

SHAKE256 - - - -

2. Advanced collision attack algorithms for SHA-3 Augmented with the
SAT-based automatic tool, the collision attack methods used in [DDS12,
DDS14,QSLG17,SLG17,GLL+20] are improved in multiple ways. Collision
attacks proposed in those works primarily consist of two phases, i.e., a phase
of differential trail search that ensures collision on the digest bits, also referred
to as the colliding trail search phase in our work, and a second phase of con-
structing “connectors” that generates message pairs satisfying the constraints
imposed by the padding rule and initial value of SHA-3 and the input dif-
ference of the colliding trail at the same time. Both phases are considerably
improved utilizing our automatic tool.

– Colliding trail search algorithms that generate colliding trails of any
rounds, any digest length, and high probability are presented. In other
words, search space of colliding trails is covered efficiently which has been
impossible in previous works.

– Improved connector construction algorithms are proposed. Differential
trails of the connectors (which are called connecting differential trails in
the rest of the paper) can not only be directly generated but also produce
sufficient degrees of freedom which has been the bottleneck in extending
the collision attacks to more rounds.

3. The first 6-round collision attacks on SHA-3 With the novel automatic
tool and the improved algorithms, we finally extend the 5-round collision
attacks on SHA-3 instances to 6-round. In detail, 6-round classical colli-
sion attacks on SHAKE128 with complexity 2123.5, 6-round quantum collision
attacks on SHA3-224 and SHA3-256 with complexity 297.75/

√
S and 2104.25/

√
S

respectively, are mounted. To the best of our knowledge, this is the first time
that quantum collision attacks are mounted on SHA-3 and one more round is
covered compared with previous results in classical setting.

Organization. The rest of the paper is organized as follows. In Sect. 2, an
overview of the SAT-aided collision attacks on SHA-3 instances is provided. In
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Sect. 3, specifications of SHA-3 hash functions and implementations of the SAT-
based automatic search toolkit are presented. Section 4 exhibits the first 6-round
collision attacks on SHA-3 in both classical and quantum settings. Section 5 con-
cludes the paper. Details of differential trails and message pairs are given in the
supplementary material.

2 Overview of SAT-Based Collision Attacks Against
SHA-3

In this section, limitations of previous collision attacks are discussed. Subse-
quently, the SAT-based automatic trail search toolkit that can be conveniently
applied to all kinds of cryptanalytic scenarios are introduced. Basic ideas used
to extend previous collision attacks by one round in both classical and quantum
settings are also presented.

2.1 Limitations of Previous Collision Attacks

As depicted in Fig. 1, the collision attacks on SHA-3 and Keccak instances take
a 3-stage analytic framework, i.e.,

– at stage 1, prepare nr2 -round colliding trails of high probability that ensure
d-bit digest collision. ΔSI and ΔSO stand for the input and output difference
of colliding trails.

– at stage 2, construct nr1-round connectors that promise a subspace of message
pairs which meet both the message difference ΔM imposed by the sponge
construction2 and the input difference ΔSI of the colliding trails.

– at the last stage, exhaustively enumerate the messages pairs generated with
the connectors until one message pair that collides in digest bits is found.

A continuous series of investigations [DDS12,DDS14,QSLG17,SLG17,
GLL+20] have been conducted on collision attacks against SHA-3. Both the
colliding trail search phase and the connector construction phase have been
intensively inspected. At first glance, it seems that there is no room for fur-
ther improvements. Actually, no essential progress has ever been published since
the last work [SLG17] presented five years ago. The lack of new results can be
explained from two aspects, i.e., the constrained and low-efficiency colliding trail
search algorithms, and the quick consumption of degrees of freedom from the
connectors by (full) linearization.

2.1.1 Difficulty in Generating Colliding Trails of More Rounds
Due to the huge state size of Keccak-f , trail search of any kind, be it the gen-
eral truncated differential trail or the colliding trail, is a difficult task. In previous
collision attacks, the strategy to search colliding trails is quite simple, i.e.,
2 In this attack model, collision messages of 1-block are generated. The constraints

imposed by the sponge construction include (1) the c-bit capacity, i.e., c continuous
“0” bits, and (2) 2-bit padding “11” which is concatenated with a “01” or “1111”
string at the tail of the message block.
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Fig. 1. Overview of (nr1+nr2)-round collision attack on SHA-3

1. General 3-round differential trails obtained from dedicated search algo-
rithms, e.g., [DVA12,MDA17,LQT19], are extended forward by one round
and exhaustively searched for possible d-bit collision.

2. When sufficient 3-round trails with digest collision are collected, extend them
backward by one round to determine satisfactory output differences for con-
nectors, which at the same time are the input differences ΔSI of the nr2 -round
colliding trails.

There are two problems regarding to this colliding trail search strategy. On
one hand, the exhaustive colliding trail search, especially the backward extension,
drain computing resources significantly. In practice, sophisticated implementa-
tion techniques and even GPU resources [SLG17] are introduced to speed up
the colliding trail search. However, without dramatical increase in computing
power, it’s unlikely that the search efficiency can be improved further. On the
other hand, the colliding trails are limited by the results of general truncated
differential trail search. For example, the 5-round practical collision attack on
SHA3-256 [GLL+20] is not possible until new results on general 3-round trails
[LQT19] are published. Particularly, even with ultimate computing power, bet-
ter colliding trails won’t be possible unless results of general trail search are
updated. Then it comes to the common trail search problem again which is a
challenging task.

2.1.2 Quick Consumption of Degrees of Freedom in Connector Con-
struction
The connector construction is comprised of two parts. In the first part, as
depicted in Fig. 1, connecting trails whose input difference (i.e., ΔM) and out-
put difference (i.e., ΔSI) are partially or fully fixed are constructed. In the
second part, data structures that output a subspace of message pairs following
the connecting trail are generated. Essentially, as long as the connecting trail
is determined, systems of equations (i.e., the data structures) on messages are
listed in which the degree of freedom (DF for short) are quickly consumed3. As

3 The practical algorithms are much more complex. We just describe in this abstract
way to express basic ideas.
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conditions of both ΔM and ΔSI are strict, the sophisticated Target Difference
Algorithms (TDA for short) are devised to determine the exact connecting trails.
When we try to extend the connector by one more round, ΔM and ΔSI are so
heavy that connecting trails are hard to generate. Even if the TDA generates
connecting trails, data structures become impossible to construct as almost all
DF is consumed to meet conditions of the heavy connecting trail. Therefore,
developing new connecting trail search methods to generate lighter connecting
trails would be a feasible way to save DF and possibly allow to extend collision
attacks for more rounds.

Summary. Limitations of collision attacks lie in inefficiency of differential trail
search, more specifically, the lack of effective search techniques for trails of special
requirements.

2.2 SAT-based Automatic Trail Search Toolkit

Automatic search has long been introduced to evaluate robustness of symmetric
primitives. However, it’s not the case of Keccak-f permutation. Indeed, the ini-
tial attempts with MILP method failed to generate good trails due to the large
Keccak-f state. Researchers have to develop dedicated techniques to investi-
gate the propagation properties of Keccak-f . On the other hand, automatic
search based on other mathematical problems, such as SAT and SMT, is not
properly studied. In this work, SAT-based automatic search shows productivity
in generating trails involved in collision attacks on SHA-3.

2.2.1 SAT-based Colliding Trail Search
With the SAT-based toolkit, differential trails that (1) satisfy the d-bit digest
collision, (2) cover more rounds, (3) follow any specific differential pattern, and
(4) meet any probability constraint can be effectively generated. The search
space is expanded to the extent that efficiency of automatic search tool outper-
forms dedicated search strategy. Moreover, as the new method does not rely on
truncated differential trails, colliding trail search will not be limited by progress
of such general trails any more. Cryptanalysts are also free from devising and
implementing sophisticated trail search algorithms. We emphasize that colliding
trails of low probability, e.g., with complexity near or even beyond the birthday
bound, are easily generated. Such trails are utilized to mount collision attacks
in quantum settings.

2.2.2 SAT-based Connecting Trail Search
Similar to the case of colliding trail search, the SAT-based connecting trail search
is effortlessly implemented. Good connecting trails that (1) follow the fixed input
and output differences of the connectors and (2) provide adequate DF for mes-
sages are generated. The idea of finding connecting trails with SAT gives insights
to the constrained-input constrained-output (CICO) problem [BPVA+11] of
sponge constructions. As the input and output differences of connecting trails are
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partially or fully fixed, this is generally a difficult problem. Except for the sophis-
ticated approach used in [DDS12,DDS14,QSLG17,SLG17,GLL+20], there is no
other progress on constructing connecting trails. The SAT-based connecting trail
search method presents the first general solution for the problem of bypassing
the constraints imposed by the sponge construction in collision attacks on SHA-3.

2.3 Improved (Quantum) Collision Attacks on SHA-3

With the SAT-based automatic tool, collision attacks on SHA-3 instances that
cover one more round are mounted in both quantum and classical settings.

2.3.1 6-Round Collision Attacks on SHAKE128
With the SAT-based tool, 4-round colliding trails of 256-bit digest collision are
generated. Although one round is extended compared to trails used in previous
works, the 4-round colliding trails are of low probability. To mount valid col-
lision attacks, one round of the colliding trails is merged into the connectors,
i.e., the 6-round collision attacks consist of a 3-round connecting trail and a 3-
round colliding trail. Due to the low probability, the 3-round connectors can only
be partially constructed, i.e., only a fraction of the third round conditions are
treated while the other constraints are left for the brute force stage. Ultimately,
a theoretical 6-round collision attack on SHAKE128 are mounted with complexity
2123.5 which is slightly better than the generic attack.

2.3.2 6-Round Quantum Collision Attacks on SHA3-224 and SHA3-256
The identical 4-round colliding trail is used to mount 6-round collision attacks
on SHA3-224 and SHA3-256. Constrained by the great amount of DF consumed,
it becomes impossible to construct even partial 3-round connectors for these
instances. Therefore, for SHA3-224 and SHA3-256, only 2-round connectors are fea-
sible. 6-round collision attacks on SHA3-224 and SHA3-256 cannot be mounted in
classical setting as complexity of the 4-round colliding trail exceeds the birthday
bound. Fortunately, colliding trails of low complexity can be employed to mount
quantum collision attacks. In a nutshell, 6-round quantum collision attacks on
SHA3-224 and SHA3-256 with complexity 297.75/

√
S and 2104.25/

√
S are presented.

3 SHA-3 and SAT-based Automatic Search Toolkit

In this section, we describe notations used in the collision attacks and specifica-
tions of the SHA-3 family hash functions. Afterwards, the SAT-based automatic
search toolkit developed for Keccak-f permutation is presented.

3.1 Notations

Most of the notations to be used in this paper are listed below.
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c Capacity of a sponge function
r Rate of a sponge function
d Length of the digest in bits
p Number of fixed bits in the initial state due to padding
nr Number of rounds
Keccak-f The underlying permutation of SHA-3 hahs functions
θ, ρ, π, χ, ι The five operations of the round function of Keccak-f . A subscript i

denotes the operation at the i-th round, e.g., χi denotes the χ layer at
the i-th round where i = 0, 1, 2, · · ·

λ Composition of θ, ρ, π and its inverse denoted by λ−1

RCi Round constant of the i-th round, where i = 0, 1, 2, · · ·
Ri(·) Keccak-f permutation reduced to the first i rounds
S(·) 5-bit Sbox operating on each row of Keccak-f state
δin, δout 5-bit input and output differences of an Sbox
DDT Differential distribution table, and DDT(δin, δout) = |{x : S(x) + S(x +

δin) = δout}| , where | · | denotes the size of a set
αi Input difference of the i-th round, where i = 0, 1, 2, · · ·
βi Input difference of χ in the i-th round, where i = 0, 1, 2, · · ·
wi Propagation weight (weight for short) of the i-th round
w(βi) Weight of βi, where βi is the input difference of χ
wrev(αi) Minimal reverse weight of αi

DF Degree of freedom of the solution space of connectors
M Padded message of M . Note that M is of one block in our attacks
M1||M2 Concatenation of strings M1 and M2

xi Bit value vector before λ of each round, where i = 0, 1, 2, · · ·
yi Bit value vector before χ of each round, where i = 0, 1, 2, · · ·
Eyi System of equations on yi of each round, where i = 0, 1, 2, · · ·

3.2 Description of SHA-3 Family

The SHA-3 family [Dwo15] consists of a subset of Keccak [BDPVA13] hash
functions that are built upon the sponge construction [BDPVA07,GJMG11] with
an internal permutation called Keccak-f .

3.2.1 Specification of KECCAK-f Permutation
The underlying permutation Keccak-f takes a large state size of 1600 bits and
there are 24 iterative rounds in total. Each round of Keccak-f is comprised of
five operations, namely, the four linear operations denoted by θ, ρ, π and ι, and
one solely nonlinear operation denoted by χ. The 1600-bit state is organized as
a 3-dimensional array of bits, i.e., 5 × 5 × 64, denoted with A[5][5][64]. Each of
the state bits indexed by the coordinate (i, j, k) in the state array is denoted
by A[i][j][k] where 0 ≤ i, j < 5, and 0 ≤ k < 64. The 5 step mappings of the
Keccak-f round are specified with the following transformations.

θ: A[i][j][k] ← A[i][j][k] ⊕ ∑4
j′=0 A[i − 1][j′][k] ⊕ ∑4

j′=0 A[i + 1][j′][k − 1].



654 J. Guo et al.

ρ: A[i][j] ← A[i][j] ≪ T (i, j),where T (i, j)s are constants.
π: A[j][2i + 3j] ← A[i][j].
χ: A[i][j][k] ← A[i][j][k] ⊕ (A[i + 1][j][k] ⊕ 1) · A[i + 2][j][k].
ι: A[0][0] ← A[0][0] ⊕ RCir ,where RCir is the ir-th round constant.

The multiplication used in χ operation is in GF(2). As ι won’t affect differences,
we ignore it in the rest of the paper unless otherwise stated.

3.2.2 Instances of SHA-3 Family
According to the bit length of digest, SHA-3 contains 6 instances, i.e., the four
variants SHA3-224/256/384/512 that have a fixed hash length (where the num-
bers 224/256/384/512 stand for the hash size) and the two variants SHAKE128
and SHAKE256 of extendable outputs. A multirate padding rule 10∗1 is defined for
all SHA-3 instances. For the four standardized instances SHA3-224/256/384/512,
a 2-bit string “01” is concatenated to the message before padded while the capac-
ity is specified as c = 2 × d. In regards to the two extendable variants, a 4-bit
string “1111” is concatenated to the messages, and the capacity is 256 and 512
bits for SHAKE128 and SHAKE256 respectively. The digest size d of SHAKE128
and SHAKE256 can vary, and therefore the collision resistance level is given by
min(d/2, 128) and min(d/2, 256) correspondingly.

3.3 SAT Implementation

In the following, the SAT solver, the descriptions of the Keccak-f permutation
and its differential propagation, and the objective functions are illustrated.

CryptoMiniSAT. We choose CryptoMiniSAT as the underlying solver to
implement our automatic toolkit. Since proposed in [SNC09], the conflict-driven
clause-learning(CLDL) SAT solver has been improved greatly [SNC10,Soo14,
Soo16,SBH+19,SDG+20,SSK+20]. Enhanced with a sequence of advanced
search strategies such as Gauss-Jordan elimination and target phases [QUE19],
CryptoMiniSAT shows outstanding performances among other SAT solvers.
Except for high performance, CryptoMiniSAT also provides a neat interface
for XOR expressions. In fact, most well-performed SAT solvers only understand
constraints in conjunctive normal form (CNF for short) and users must consider
the complicated problem of describing cryptographic primitives with CNFs. By
contrast, CryptoMiniSAT allows attackers concentrate on attacks while provid-
ing high performance and simple implementation.

To implement SAT-based automatic trail search method, two kinds of con-
straints are fed into CryptoMiniSAT, namely, conditions imposed by (1) differen-
tial propagation over round functions (or in other words the description of round
functions), and (2) objective functions such as the number of active Sboxes and
the propagation probability.
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Round Function. As depicted in the following model,

αr
θ−→ cr

π◦ρ−−→ βr
χ−→ αr+1

two state differences, i.e., αr (the input difference of the r-th round) and βr (the
input difference of the χ operation of the r-th round) are introduced to the SAT
implementation for a single r-th round. The 1600-bit difference αr is represented
by 1600 variables, i.e., variable of each bit (whose coordinate is αr[i][j][k] where
0 ≤ i, j < 5 and 0 ≤ k < 64) is indexed with (320 × j + 64 × i + k)αr

. This
way we establish the mapping relationship between the 1600 variables and the
corresponding state difference.

Recall that ρ and π are simply bit permutations. Differential propagations
over the two linear operations are described through mapping the indexes of
variables. For example, assuming that an active bit cr[i][j][k] is transformed
to βr[i′][j′][k′] through π ◦ ρ, then the index mapping of the two variables is
(320×j+64×i+k)cr

π◦ρ−−→ (320×(2×i+3×j)+64×j+(k−T (i, j))%64)βr
. These

operations are described with plain index transformation and no additional SAT
computation is required.

By definition, θ operation updates each bit through XORing itself to two
columns. Accordingly, θ is described with XOR clauses that could be directly
understood by CryptoMiniSAT. That is, the XOR sums of 320 columns (denoted
by α[i][k]) are described with 320 variables each of which is indexed by 64×i+k.
As a result, the mapping of variable indexes induced by θ operation is captured
with (320×j+64×i+k)cr = (320×j+64×i+k)αr

⊕(64×(i−1)+k)ColumnSum⊕
(64 × (i + 1) + (k − 1))ColumnSum. Here, the subscript ColumnSum indicates
the variables of column sums.

Practically, the three linear operations (i.e., θ, ρ and π) are treated as a
whole. The total index mapping of variables is described with (320× (2× i+3×
j) + 64 × j + (k − T (i, j))%64)βr

= (320 × j + 64 × i + k)αr
⊕ (64 × (i − 1) +

k)ColumnSum ⊕ (64 × (i + 1) + (k − 1))ColumnSum.
In regard to the only nonlinear operation χ which is generally considered

as 5-bit Sbox, both the difference distribution table (DDT for short) and the
operation itself are interpreted with truth tables. Specifically,

– The DDT is described with listing a truth table of 11 variables, including 10
variables that represent input and output difference and 1 variable marking
compatibility of DDT entries. When fed into Logical Friday (refer to http://
sontrack.com), 46 CNFs are generated to describe the DDT. Differential prop-
agation over χ, i.e., relationship between the input difference βr and output
difference αr+1, is then depicted with simply writing CNFs of each Sbox.

– Similarly, variables that correspond to the input and output values of χ are
connected with CNFs generated from χ truth table. Empirically, 11 variables
are needed to construct truth tables and 29 CNFs are produced.

In summary, 1600× 2+ 320 = 3520 variables are used to describe one round
of Keccak-f permutation in the SAT-based implementation. The relationship
among variables are specified with methods illustrated above. Identical round

http://sontrack.com
http://sontrack.com
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description that is of different variable sets is implemented for each round. Mul-
tiple rounds are described by connecting each round, i.e., (1) the input variables
of each round are the output variables of its previous round and (2) the output
variables of each round are the input variables of its next round.

Objective Function. In the context of 6-round collision attacks on SHA-3, the
number of active Sboxes and the propagation weight (weight for short)4 are
the two mainly considered objectives. To describe the objectives, constraints on
integers (i.e., number of active Sboxes and weights) are transformed to CNFs.
The sequential encoding method [Sin05] is employed to describe addition over
integers, e.g.,

∑n−1
i=0 xi ≤ w where w ≥ 1. In this process, (n × (w + 1) − w)

auxiliary variables are introduced. More specifically,

– Constraint on the Number of Active Sbox. To describe the number of active
Sboxes of each χ, 320 variables are introduced to indicate whether an Sbox is
active or not. The sum of all the variables needs to satisfy a threshold weight
(say w), e.g.,

∑319
i=0 xi ≤ w. Accordingly, (320 × (w + 1) − w) extra variables

are introduced to transform the constraint on the number of active Sboxes to
CNFs.

– Constraint on the Propagation Weight. The DDT entries take 4 possible
values (i.e., 2, 4, 8, and 32), and the corresponding propagation weights
belong to {0, 2, 3, 4}. As shown in Eq. 1, four auxiliary variables denoted by
(p0, p1, p2, p3) are introduced to represent the weight of each Sbox, meaning
that (320×4×(w+1)−w) extra variables are added to describe constraints on
the weight of a whole state. Likewise, the weight constraint which is obtained
through summing up all the variables is then transformed to CNFs.

(p0, p1, p2, p3) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 1, 1, 1), DDT(δin, δout) = 2;
(0, 1, 1, 1), DDT(δin, δout) = 4;
(0, 0, 1, 1), DDT(δin, δout) = 8;
(0, 0, 0, 0), DDT(δin, δout) = 32.

(1)

3.4 SAT-based Automatic Search Toolkit

In this section, we explain how to implement various trail search algorithms
based on the SAT implementation. Let’s first review some definitions and con-
cepts introduced in [DVA12,BPVA+11]. The 6-round attack model presented in
Sect. 4.1.3 is placed here in advance to better explain definitions.

Probabilistic Property of χ. As the algebraic degree of χ is 2, its DDT shows
some interesting properties. For a given input difference, all its compatible
output differences share equal propagation probability. Correspondingly, for
a given βi, all its compatible αi+1 take the same probability or weight. For a

4 The propagation weight is defined as the opposite of the binary logarithm of the
propagation probability. For example, if the propagation probability of a differential
trail is 2−32, the corresponding weight is 32.
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Fig. 2. The 6-round collision attack model

given output difference, as the degree of χ−1 is 3, there exist one or several
compatible input differences that hold a better probability than the other
input differences. Likewise, for a given αi, there exist some compatible βi−1

that have the best differential probability, which is also called the minimum
reverse weight (and generally denoted by wrev(αi)).

Trail core. As depicted in Fig. 2, a general 4-round differential trail consists
of input and output differences of all four rounds, i.e., (α2, α3, α4, α5, α6).
Recall that as λ is a linear transformation, αi propagates to βi determin-
istically. The 4-round differential trail is also denoted by (β2, β3, β4, β5).
Comparatively, the 4-round trail core is composed of three differences, i.e.,
(β3, β4, β5), taking advantage of the property that the minimal reverse weight
of α3 can be directly computed to evaluate the family of 4-round trails that
have (β3, β4, β5) as their tail.

In the Fig. 2 model, (β3, β4, β5) represents the colliding trail

3.4.1 SAT-based Colliding Trail Search
To set up the colliding trail search model, description of differential trail
(α3,β3,α4,β4,α5,β5,αd

6) needs to be added into the SAT model. Differential prop-
agation over the round functions is implemented in the way introduced in last
section. At this stage, only constraints that are exclusively imposed by the col-
liding trails are introduced. Aligned with the requirements for constructing col-
liding trails in [GLL+20], the SAT-based search method is implemented from
two aspects, i.e., the digest collision and the connector construction.

From the perspective of collision search, we don’t have to check α6 for d-
bit collision (denoted by αd

6). Rather, extra constraints on β5 that ensure αd
6

collision are considered. Take colliding trail search of SHAKE128 as an example,
to guarantee the first 4 lanes of α6 to be 0, the input difference to the first 64
Sboxes of β5 must belong to the set {00000, 00001, 00101, 10101, 00011,
01011, 00111, 10111, 01111, 11111}. The candidate input differences listed
above form a space which is represented by CNFs. Through adding the corre-
sponding CNFs on variables of β5 to the system, constraints on digest collision
is implemented.

On the other hand, to maximally facilitate the connector, the minimum
reverse weight of α3 (denoted by wrev(α3)) and propagation weight w(β3) +
w(β4) + w(βd

5 ) of the colliding trail are taken into consideration. Altogether,
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the objective function of wrev(α3) + w(β3) + w(β4) + w(βd
5 ) is described with

CNFs and added to the system. In some situations, the constraints on weight
are replaced by the constraints on the number of active Sboxes, i.e., AS(α3) +
AS(α4) + AS(β4) + AS(βd

5 ) which results in (320 × 3 × (w + 1) − w) + (64 ×
(w + 1) − w) auxiliary variables included to the SAT system.

With this implementation, 3-round colliding trails are not only generated
more efficiently but also of better probability. In contrast, the best 3-round
colliding trail used in previous collision attack on SHA3-256 is of probability
2−43. It’s worth noticing that 4-round colliding trails which could be utilized to
mount collision attacks of 6 rounds is generated for the first time. Table 2 gives
comparison of search efficiency. It demonstrates that the new SAT-based trail
search is superior to earlier strategies in both efficiency and effectiveness.

Table 2. Comparison of the SAT-based tools with other dedicated approaches

Type Permutation Rounds Weight Time Reference

Colliding trail Keccak-f [1600] 3 43 Several weeks1 [GLL+20]
3 32 2 s2 Sect. 3.4.1
4 141 5mins2 Sect. 3.4.1

General trail Keccak-f [1600] 4 134 - [MDA17]
133 47.76 h Sect. 3.4.3

Keccak-f [800] 4 104 - [MDA17]
95 28.42 h Sect. 3.4.3

a There are two stages, i.e., the forward extension executed with one CPU core
and the backward extension deployed with three NVIDIA GeForce GTX970
GPUs.
b The SAT-based implementation is deployed with one 3.6GHz Intel Core i9.

3.4.2 SAT-based Connecting Trail Search
In accordance with the considerations for constructing connecting trails that
promise valid connectors, the trail search of (α0,β0,α1,β1,α2,β2) is specified with
two phases.

Phase 1. In the first phase, (β1, β2) are to be determined for given α3. First,
description of the differential trail (β1,α2,β2,α3) are added to the SAT system.
Afterward, constraints on propagation weight of β1 and β2 are established, i.e.,
CNFs of a minimal w(β1) + w(β2) are listed. By now, 6400 + 320 variables are
used to describe the connecting trail where 6400 variables are introduced for the
2-round propagation and 320 variables correspond to conditions of the summed
weight. And we also restrict weight of each round, namely, w(β1) ≤ w1 and
w(β2) ≤ w2 which results in an extra (1280 × (w1 + 1) − w1) + (1280 × (w2 +
1)−w2) variables. The objective function of weight is described with the method
illustrated in the last section. Overall, this model needs 6400 + 320 + (1280 ×
(w1 + 1) − w1) + (1280 × (w2 + 1) − w2) variables.



Exploring SAT for Cryptanalysis 659

Phase 2. The input difference of χ0 of the first round is determined in this
phase with the SAT-based implementation. Given the output difference α1, vari-
ables that represent a pair of messages (x1

0,x2
0) and the input difference β0 are

introduced to describe the half round propagation. Precisely, constraints on bit
positions of capacity and padding are depicted by fixing the corresponding vari-
ables to be 0 or some settled value. Constraints on w(β0), the weight of β0, are
also covered to make sure that the degree of freedom will be maximally produced
for connectors. Simply put, CNFs for objective function of a minimal w(β0) are
added to the SAT model. With the SAT-based implementation, connecting trails
that yield much greater DF are generated.

3.4.3 SAT-based Truncated Trail Search
Except for the special trail search scenarios, SAT-based solution also performs
well in general truncated differential trail search. As can be seen from the exper-
imental results, SAT-based implementation handles 3-round Keccak-f permu-
tation quickly. It turns out that 3-round trail cores generated with the SAT-based
automatic trail search method are consistent with results from previous works
[DVA12,MDA17,LQT19].

We take 4-round differential trail search as an example to explain the SAT-
based trail search implementation. The 4-round trail is modelled with

β2
χ−→ α3

λ−→ β3
χ−→ α4

λ−→ β4
χ−→ α5

λ−→ β5
χ−→ α6.

First, CNF description of the differential trail (α3,β3,α4,β4,α5,β5) is added to the
SAT system. As 6 differences are involved, 10560 = 1600× 6+ 3× 320 variables
are required to describe the difference propagation. Similar to the colliding trail
search implementation, constraint on the sum of weight w = wrev(α3) + w(β3)
+ w(β4) + w(β5) where w ≤ 133 is also added to the SAT system. Another
685947 = (1280 × 4 × (133 + 1) − 133) auxiliary variables are included in the
process of transforming the objective function to CNFs. In total, there are 696507
variables in this SAT-based 4-round differential trail search implementation.

With respect to search efficiency, although it displays unexpectedly well per-
formance in 3-round trail search, it cannot traverse the search space of 4-round
trails efficiently. A tight lower bound on propagation weight for 4-round dif-
ferential trails is unfortunately not settled in this paper. However, two better
4-round trails of weight 133 which is the lowest known weight so far are gener-
ated. Table 8 in supplementary material B shows the two trails (refer to the full
version [GLST22]).
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The SAT-based differential trail search implementation is further extended to
other Keccak permutations [BPVA+11] such as Keccak-f [800]. Analogous to
Keccak-f (which is also denoted by Keccak-f [1600]), similar round functions
are iterated for multiple rounds in Keccak-f [800] only that its state size is of
800 bits. Table 9 in supplementary material B shows a good trail that improves
the lower bound of 4-round trails for Keccak-f [800]. Table 2 gives an overview
of the advantage of the automatic search compared to previous works.

Summary. By picking up different compositions of constraints on the num-
ber of active Sboxes and weight or even considering a single state not in the
whole, we obtain variant SAT models with different efficiency. The SAT-based
automatic search toolkit helps us understand the differential propagation prop-
erty of Keccak-f in a distinct viewpoint. It also demonstrates that automatic
solvers perform efficiently on cryptographic primitives with large state size.

4 Collision Attacks Against SHA-3 Instances in Classical
and Quantum Settings

In this section, a classical 6-round collision attack on SHAKE128, and two 6-round
quantum collision attacks on SHA3-224/SHA3-256 are mounted.

4.1 Basic Attack Strategy

Aided by the SAT-based automatic search toolkit, we propose advanced collision
attacks on SHA-3 instances based on the analytic framework described in Sect. 2.
The enhanced collision attack is comprised of three phases, i.e.,

– Phase 1, generate nr2 -round colliding trails of d-bit digest with the SAT-based
tool.

– Phase 2, generate nr1 -round connecting trails that link the conditions of
sponge construction and the input difference of the colliding trail with the
SAT-based tool.

– Phase 3, construct connectors that generate a subspace of messages which
follow the nr1 -round connecting trails.

The brute force phase where collision messages are generated will not be included
as only theoretical collision attacks are presented in this work.

4.1.1 Generating Colliding Trails
Based on the SAT implementation techniques elaborated in Sect. 3, we add the
implementation of colliding trail search algorithms to the toolkit. Except that the
d-bit collision must be satisfied, the propagation weight of the 4-round colliding
trail core must also be small enough to promise a possible 6-round collision attack.
Eventually, several 4-round colliding trail cores are generated. We select the best
one to mount collision attacks. Without considering the connector, weight of the
4-round colliding trail is 141 (i.e., 89+24+20+8 = 141). The propagation weight
of the 4-round trail core is shown in Fig. 3 while the exact differences are listed in
Trail No.1 (shown in Table 5) of supplementary material B.
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Fig. 3. The 4-round colliding trail model. The 4-round trail is purposely placed at the
last 4 rounds of a 6-round differential trail to be consistent with the collision attack
model. In the last round, only d-bit collision is concerned and denoted by αd

6.

4.1.2 Generating Connecting Trails
As shown in Fig. 3, even the minimal weight (i.e., ≥ 141) of 4-round colliding
trails exceeds the birthday bound (e.g., 128 for SHAKE128 and SHA3-256). It’s
impractical to randomly select a 4-round colliding trail and generate the corre-
sponding 2-round connecting trail. We develop a two-step approach to determine
the connecting trails. The input difference of the 4-round colliding trail core is
generated in combination with the differences of connecting trails. Let’s explain
the idea with the 6-round collision attack model shown in Fig. 4.

– In the first step, the input difference (i.e., β2) of the 4-round colliding trail
core (β3, β4, β5) is determined together with the input difference (i.e., β1) of
the second round of the connecting trails. Practically, the 2-round differential
trails (β1, β2) that are not only compatible with α3, but also of minimal weight
are generated with the SAT-based tool.

– In the second step, the lightest β0 (in terms of weight) that are compatible
with α1 and meet the restrictions on α0 imposed by the sponge construction
are generated with the SAT-based tool.

To demonstrate the strength of the SAT-based method, we compare exper-
imental results on SHA3-256 with previous work. In previous results, when the
first round of the connector is processed, the DF remained is estimated to be
around 124 (for more illustration refer to Sect. 5.2 of [GLL+20]). In comparison,
the new connecting trails provide a DF up to 330 ∼ 430 which is surprisingly
superior. This accords with the number of active Sboxes of β0. Almost all of the
320 Sboxes of β0 are active (e.g., the number of nonactive Sboxes is around 10)
with the previous target difference algorithm, while with our SAT-based strategy
there are around 40 ∼ 50 nonactive Sboxes in β0. Without the extra gain of DF,
it’s impossible to extend the attack by one round.

Remark 1. The three undetermined differences β0, β1, and β2 cannot be gener-
ated all at once. On one hand, even if (β0, β1, β2) are determined in one step, the
distribution of weights (i.e., w(β0), w(β1), and w(β2)) is random. In our experi-
ments, such (β0, β1, β2) cannot sustain a good connector in general. On the other
hand, the SAT-based toolkit cannot support searching such trails efficiently.

4.1.3 Constructing Connectors
The connecting trails, combined with the colliding trails, constitute the full 6-
round differential trail with which the connectors that generate a subspace of
messages that follow the connecting trails can be constructed. Considering that
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weight of the 4-round colliding trail exceeds the birthday bound, to mount a valid
attack, we transfer the first round of the colliding trail to the connector. In detail,
the 6-round collision attack on SHAKE128 consists of a 3-round connector and a
3-round colliding trail (refer to Fig. 4). As for SHA3-224 and SHA3-256, 6-round
quantum collision attacks that consist of a 2-round connector and a 4-round
colliding trail are mounted (refer to Fig. 4). We highlight that the connecting
trails cannot provide enough DF to satisfy all the constraints in connectors even
for theoretical attacks. Therefore, merely a fraction of constraints of the last
round of 2/3-round connectors are picked up to be processed.

Fig. 4. The 6-round collision attack model

2-Round Connectors. We improve the algebraic-aided method adopted by
previous works [DDS12,DDS14,QSLG17,SLG17,GLL+20] to construct connec-
tors that generate message pairs following partially the output difference of the
connectors.

Principally, the systems of linear equations on messages are listed and solved.
The linear equations correspond to the conditions of sponge functions and dif-
ferences of the connecting trail. The 2-round connector model exhibited in Fig. 5
illustrates how the system of linear equations is established.

1. First, linear equations of the (c + p)-bit conditions imposed by the sponge
construction are listed, where c and p correspond to the capacity and padding
bits respectively. Take the case of SHA3-256 as an example, the capacity is
c = 256× 2 = 512 bits, and the padding rule is 10∗1. To provide as many DF
as possible, we set the padding as fixed “11” string. Also the 2-bit string “01”
is concatenated to the tail of the message block. In total, a 4-bit fixed string
(i.e., “0111”) is considered as the p-bit condition.
Linear equations on the (c+ p)-bit conditions are directly listed on the input
messages x0. As y0 and x0 are linked with the linear transformation λ, the
linear equations on x0 are easily transferred to equations on y0. In the case
of 2-round connectors, the systems of linear equations on y0 are listed and
denoted by Ey0 .
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Fig. 5. The 2-round and 3-round connectors (Color figure online)

2. Next, linear equations on y0 that meet conditions imposed by first round dif-
ferential (β0, α1) are added to Ey0 . Message pairs constructed from the solu-
tions of the current Ey0 system must follow the (β0, α1) differential. Details
on how the equations can be listed are illustrated with Property 1 of the
supplementary material A.

3. To list equations of conditions imposed by the second round differential
(β1, α2), the first round must be bypassed. Linearization and partial lineariza-
tion techniques on χ operation proposed in [QSLG17,SLG17] are borrowed
directly to ensure that the y1 bits can be expressed by the linear combinations
of involved y0 bits. Consequently, Ey1 , the system of linear equations on y1
for (β1, α2), is transferred to a group of linear equations on y0.
To this end, extra equations on y0 that allows the involved y1 bits linear
with respect to the χ operation must be added to Ey0 . Practically, as there
is a whole round between y1 and y0, the x1 bits that are involved to the
corresponding y1 bits according to λ operation are linearized. The principal
property exploited to linearize x1 bits is briefly summarized in Property 2 of
the supplementary material A.
The DF left after the last two steps cannot sustain solving all the β1 active
Sboxes. A greedy algorithm that sorts the active Sboxes of β1 by the number
of unlinearized x1 bits is utilized to choose the β1 Sboxes to be treated5.
To sum up, linear equations on y0 that linearize the involved x1 bits of par-
tially chosen β1 Sboxes are added to Ey0 in this step.

4. At last, the system of equations on y1 (i.e., Ey1) of the partially treated β1

Sboxes is transferred to linear equations on y0 with the linearization equations
generated in the last step, and added to the system Ey0 .

The Algorithm 1 shown in supplementary material A provides a concise descrip-
tion on construction of the 2-round connector. When a consistent system of
linear equations on y0 (i.e., Ey0) is successfully generated, the alleged 2-round
connector is constructed. The solution space of Ey0 is composed of a subspace
of messages, i.e., y0. A pair of messages (y1

0 , y
2
0) generated through XOR-ing y1

0

5 The other β1 Sboxes that are not treated are indicated with red block in Fig. 5.
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with β0, while y1
0 is a random solution of Ey0 , follows (1) the input difference α0

and (2) a fraction of the output difference α2 of the 2-round connector.

3-round Connector. In constructing 3-round connector, χ0 of the first round
is fully linearized, making the first round a linear layer. As a result, the 3-round
connector can be viewed as a 2-round connector. We adopt the model shown in
Fig. 5 to explain how the system of linear equations of the 3-round connector is
constructed.

1. First, list linear equations on y0 for (1) the (c + p)-bit conditions and (2)
the constraints imposed by the first round (β0, α1) differential. The system
of linear equations is denoted by Ey0 .

2. Next, fully linearize the χ0 layer of the first round and transfer the equations
on y0 to equations on y1. Namely, additional equations on y0 that corresponds
to linearizing each active and non-active Sbox of (β0, α1) differential are added
to the current Ey0 . Expressions of the linearized χ0 are utilized to convert the
system of linear equations on y0 (i.e., Ey0) to the system of linear equations
on y1 (i.e., Ey1).

3. List linear equations on y1 for constraints imposed by the second round
(β1,α2) differential. Add those equations to the present system of equations
Ey1 .

4. With the same greedy algorithm utilized in 2-round connector construction,
select a fraction of conditions of β2 to solve and linearize the related x2 bits.
Add the equations on y1 that linearize the involved x2 bits of the partially
treated (β2,α3) differential to the current Ey1 system.

5. List equations on y2 for conditions imposed by the partially solved (β2,α3)
differential of the last round of the 3-round connector. Convert the system
of linear equations on y2 to equations on y1 based on the linearization of
involved x2 bit in the last step. Add the y1 equations generated at this step
to the whole Ey1 system.

When all equations are listed and organized in the system of equations on y1
(i.e., Ey1), the 3-round connector is successfully constructed. A subspace of
message pairs generated from the solution space of Ey1 satisfy that (1) the
input conditions imposed by sponge constructions are met and (2) the output
difference of the 3-round connector is partially met as expected. The Algorithm
2 in supplementary material A illustrates construction of the 3-round connector.

4.2 Collision Attack Against 6-Round SHAKE128

Following the basic attack strategy, a collision attack on 6-round SHAKE128 is
mounted. The model in Fig. 6 gives basic details of the attack.
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Fig. 6. The 6-round collision attack model for SHAKE128

As discussed in Sect. 4.1.2, the minimal weight of the best 4-round colliding
trail core exceeds the birthday bound. To make the collision attack feasible,
the first round of the 4-round colliding trail is transferred to the connector.
Hence, the 6-round collision attack consists of a 3-round connector and a 3-
round colliding trail. Propagation weight of each round is identified in Fig. 6.
The 4-round colliding trail core is specified in Table 5 of supplementary material
B, more specifically, the (β3, β4, β5) differences of Trail No.1. The probability of
the 3-round colliding trail is 2−52 (where 2−52 = 2−24 · 2−20 · 2−8). The two-step
SAT-based connecting trail search method described in Sect. 4.1.2 is applied
to first determine (β1,β2) differences and fix β0 difference subsequently. The
connecting trail is listed in Table 7, i.e., Trail No.3 in supplementary material
B.

Now that the whole 6-round differential trail is determined, the 3-round con-
nector can be constructed with the method illustrated in Sect. 4.1.3. The third
round of the 3-round connector is partially solved, e.g., in our experiment, 36 out
of the 116 constraints of (β2,α3) are solved. The DF of the 3-round connector is
276. Alternatively, the 3-round connector generates a subspace of 227 messages
that satisfy the 36 conditions of the input difference α3 of the colliding trail. A
pair of solution messages are given in Table 10 of supplementary material B.

The unsolved conditions of (β2,α3) are treated together with the colliding
trail through exhaustive search. In the brute force phase, message pairs generated
from connectors are verified for whether satisfying α3 or not. If not, simply
abandon the current pair and try another one. Otherwise, further check the
256-bit digests of the pair until a collision is encountered.

Remark 2. Apart from the current work that exemplifies the collision resistance
of a typical 128-bit security level, inner collisions [GJMG11] could also be ana-
lyzed with the same idea. As indicated in [GLL+20] (an inner collision of a
160-bit Keccak Challenge), the inner collision attack that constructs collision on
capacity bits yields collisions of any digest length.

Complexity. The overall complexity includes complexity of both the connector
construction phase and the exhaustive search phase.

6 Indeed, the size of solution space is not always 227 (or DF=27). This is an average
number calculated from our experiments repeated on 214.3 connectors.
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– In the exhaustive search phase, the time complexity is 2132 6-round SHAKE128
computations (where 2132 = 2116−36 · 252). However, taking advantage of the
early-abort technique, the search process is sped up by iteratively filtering out
half of the message pairs at each step. The cost of computing each additional
bit constraint on β2 equals to 11

1600 · 16 = 2−9.8 6-round SHAKE128 computation
as 11 bits of α2 states are involved. When checking all the 2132 message pairs
with one bit constraint, only half of the pairs satisfy the restriction while
the other half are discarded, i.e., the so-called early-abort. For the remaining
message pairs, another bit constraint will be checked and filter out half of
those message pairs. This iterative process continues on the surviving message
pairs until all the bit constraints on β2 are checked. 1/2 of the messages stop
by first bit constraint, 1/4 by the second bit constraint, 1/8 by the third bit etc.
Hence the time complexity would be 2132 · 2−9.8 · (1 · 1/2+2 · 1/4+3 · 1/8+ · · · )
= 2123.2 6-round SHAKE128 computations.

– In the connector construction phase, the time complexity corresponds to the
time used to construct 2105 (i.e.,2132/227 = 2105) connectors. Let’s first dis-
cuss the equivalent conversion of implementation efficiency between connec-
tor construction and 6-round SHAKE128. The computation cost of 6-round
SHAKE128 is 6 · ((4 · 320 + 2 · 1600)

︸ ︷︷ ︸
θ

+3 · 1600︸ ︷︷ ︸
χ

+ 64︸︷︷︸
ι

) = 56064 bitwise oper-

ations. Further, solving systems of linear equations dominates the time of
connector construction7. The time complexity of Gauss-Jordan elimination
for system of boolean equations is O(m2n) bitwise operations [HJ12], where
m is the number of equations and n is the number of variables. In the
worst case, there are 1600 non-redundant equations in the final system, i.e.,
m = 1600. The complexity would be no greater than 16003 = 4.096×109 bit-
wise operations. Consequently, time cost of constructing a connector equals
to 4.096 × 109/56064 = 216.2 6-round SHAKE128. The time complexity in con-
nector construction is equivalent to 2105 · 216.2 = 2121.2 6-round SHAKE128
computations.

In total, time complexity of the classical collision attack is 2123.2+2121.2 =2123.5

6-round SHAKE128 computations. Complexity of quantum collision attack8 is
267.25/

√
S.

Table 3 gives an overview of the time complexity tradeoff between brute force
search phase and connector construction phase according to the number of con-
straints on β2 solved. The more the constraints are solved, the smaller the DF
of connectors is, the better the brute force complexity is and the worse the
connector complexity is.

7 Refer to Remark 3 for more discussion on the cost of connectors.
8 Complexity analysis of quantum collision attack will be illustrated in Sect. 4.3.
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Table 3. Summary of complexity corresponding to the number of constraints solved

#constraints DF Data Connector Brute force Total
of connector complexity complexity complexity complexity

35 28 133 121.2 124.2 124.4
36 27 132 121.2 123.2 123.5
37 23 131 124.2 122.2 124.5
38 22 130 124.2 121.2 124.3
39 20 129 125.2 120.2 125.2
40 15 128 129.2 119.2 129.2
41 13 127 130.2 118.2 130.2
42 10 126 132.2 117.2 132.2
43 7 125 134.2 116.2 134.2
44 4 124 136.2 115.2 136.2
45 1 123 138.2 114.2 138.2

Remark 3. Experiments on 214.3 connectors show that solving systems of equa-
tions dominates the time of connector construction. In particular,

– when fully linearizing the first round, due to the large DF, almost all Sboxes
are successfully linearized in the first try and very occasionally it needs extra
tries;

– when partially linearizing the second round where no more than 40 constraints
are treated, about 1/3 tests succeed with the first or a second try for each Sbox
while around 2/3 tests collapse and we should start the partial linearizing
process again. But as this process consumes 0.01s on average (compared with
0.8s used to construct the whole connector) it won’t affect the complexity
analysis.

Overall, neglected time is consumed in listing equations which is consistent with
the observations from [GLL+20].

Remark 4. Experimental results outlined in Table 4 conforms to the theoretical
complexity analysis of the connector construction phase. The average execution
time of each connector construction (denoted by Tc) is 0.8 s. In our C++ imple-
mentation, around 220 6-round SHAKE128 are computed in each second. The time
of connector construction equals to 2105 ·219.67 = 2124.67 SHAKE128 computations
which validates the attack.

4.3 Quantum Collision Attack Against 6-Round SHA3-256

The colliding trail used in 6-round collision attacks on SHAKE128 is also used
in attacks on SHA3-256 and SHA3-224. As shown in Fig. 7, the 6-round colli-
sion attack on SHA3-256 consists of a 2-round connector and a 4-round colliding
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Table 4. Summary of the results of collision attacks on 6-Round SHA-3 instances

Target Type Trail core Tc DF Complexity Solution

SHAKE128 Classical No. 3 0.8s 27 2123.5 Table 10
Quantum 267.25/

√
S

SHA3-256 Quantum No. 1 3s 5 2104.25/
√
S Table 11

SHA3-224 Quantum No. 2 3s 22 297.75/
√
S Table 12

Fig. 7. The 6-round collision attack model for SHA3-256

trail. Note that, the (β1, β2) used in the attack on SHAKE128 is also applied
here. The entire 6-round differential trail is given in Table 5, i.e., Trail No.1 in
supplementary material B. The 2-round connector solves 226 out of the total
264 conditions imposed by (β1,α2). The solution space of the 2-round connector
ensures a subspace of message pairs that follow partial α2 difference as expected.
In our experiment, the 2-round connector is constructed in 3 s on average. The
DF of the connector is 5. Or to put it differently, the size of the solution space
is 25. Example of a pair of messages that follow the connector is given in Table
11 of supplementary material B.

The unsolved conditions (i.e., 38 left) of (β1,α2) are treated together with
the colliding trail whose weight is 116 + 24 + 20 + 8 = 168. In classical settings,
the time complexity of the brute force phase is 238 ·2168 = 2206 6-round SHA3-256
computations with which a valid collision attack cannot be conducted. However,
such differential trails of low probability can be exploited in quantum settings.

Quantum Collision Attack. As stated in [HS21], no existing quantum col-
lision attack on a random function could outperform classical attack based on
parallel rho method [VOW94] in terms of time-space tradeoff. We follow their
way and consider a quantum collision attack valid if its time complexity is less
than 2n/2/S, where n denotes the digest length, and S is the hardware size required
for the attack (or in other words, S is the maximum size of quantum comput-
ers and classical computers). Note that instead of designing concrete quantum
circuits matching the theoretical bound of time-space tradeoff, the authors of
[HS21] assume such quantum circuits exist already and concentrate on complex-
ity evaluation of the quantum attacks. We adopt the same strategy in [HS21] to
mount the 6-round quantum collision attack on SHA3-256.

Suppose there exists a quantum circuit C1 for the connector construction of
depth Tc and width Sc. That is, the quantum circuit constructs a connector in
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time Tc with Sc qubits. Similarly, suppose there exists another quantum circuit
C2 of depth Ts and width Ss for the one-block SHA-3 variants, i.e., the quantum
implementation of the 6-round targets (in this case SHA3-256). The idea that
converts the classical attacks to the quantum collision attacks is described as
follows.

1. Prepare message pairs (M,M ′) with the quantum circuit C1.
2. For each (M,M ′) pair, compute the digests with quantum circuit C2, and

check whether they are identical.
3. Repeat the above two steps until a collision is found.

Complexity. Considering the solution space of the 2-round connector (which is
25), 2201 connectors are needed in theory. There are simply two kinds of opera-
tions in the quantum implementation of connectors, namely, listing the system
of boolean equations and solving it with Gaussian-Jordan elimination, both of
which are linear operations. Compared with Ts of the nonlinear SHA-3 variants
(or more specific the χ operation), the depth Tc of C1 where only linear opera-
tions are involved is negligible [AMG+16]. Hence, time complexity of quantum
collision attack is dominated by the time complexity of the exhaustive search
phase.

Suppose we have a quantum computer of size S, taking parallelization into
account, the time complexity of Grover search [Gro96] in the exhaustive search
phase is

TA · (π/4) ·
√

SA/(p · S),

where p is the probability of finding a collision in the classical setting, and TA

(resp. SA) is the depth (resp. width) of the quantum collision attack. The depth
(resp. width) of the quantum circuits of the SHA-3 variants (i.e., C2) are defined
as the unit depth (resp. width), meaning that Ts = 1 and Ss = 1. Specifically,
as the state size and the digest size are 2 × 1600 + 256 = 3456 bits, we regard
at least 3456 qubits are required in circuit C2. The overall depth and width are
evaluated with the following analysis.

– Depth (TA). As Tc is negligible, TA = Ts = 1.
– Width (SA). In the quantum circuits of connectors (i.e., C1), the quantum

states include (1) the auxiliary m qubits (as there are 264 conditions, m =
264 ) that mark whether a condition will be treated or not in the partial
linearizing step and (2) the k×1601 qubits that store the k boolean equations
(k ≤ 1600) of the system of linear equations. The overall SA = Sc + Ss =
(m + k × 1601 + 3456)/3456 ≤ (264 + 1600 × 1601 + 3456)/3456 = 7429.

Therefore, the total time complexity of the quantum collision attack on 6-round
SHA3-256 is

1 · (π/4) ·
√

(742 × 2
206

)/S = 2
104.25/

√
S.

9 More auxiliary qubits may be required for intermediate variables (e.g., in greedy
algorithm and Gaussian-Jordan elimination) in C1. Those variables are of the state
size multiplied by a constant. As the worst case of Gaussian-Jordan elimination is
considered and C2 also contains intermediate variables, this evaluation is reasonable.
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Comparing to the generic attack cost under the time-space metric which is 2128/S,
our quantum collision attack is valid as long as S ≤ 247.5.

Remark 5. In the quantum search, we should prepare 2206 messages which brings
to the concern that whether it’s possible to construct so many connectors. This
concern could be answered through introducing multi-blocks. The first block
(which is identical for the two messages) provides distinct capacity bits at each
time which are used to construct different connectors of the same connecting
trails. We can try as many as 2512 first blocks which are sufficient for the attack.

4.4 Quantum Collision Attack Against 6-Round SHA3-224

As shown in Fig. 8, the 6-round trail of SHA3-224 (which is listed in Table 6
of supplementary material B) is comprised of the same colliding trail used in
attacks on SHAKE128 and SHA3-256 and a 2-round connecting trail searched with
the SAT-based tool. In our experiment, the 2-round connectors are averagely
constructed in 3 s. The size of the solution space is 222. Example of a pair of
messages that follow the connector is given in Table 12 of supplementary material
B. The 2-round connector solves 240 out of the 268 conditions imposed by the
(β1,α2) differential. Therefore, the classical complexity of the brute-force phase
is 228+113+24+20+8 = 2193 6-round SHA3-224 computations. Similar to the attack
on SHA3-256, we mount 6-round quantum collision attack on SHA3-224. Likewise,
we adopt the strategy utilized in [HS21]. Suppose we have a quantum computer
of size S, the complexity of our attack is

1 · (π/4) ·
√

(((268 + 1600 × 1601 + 3424)/3424) × 2
193

)/S = 2
97.75/

√
S.

under the time-space metric 2112/S, and the quantum collision attack is faster
than the generic attack when S ≤ 228.5.

Fig. 8. The 6-round collision attack model for SHA3-224

5 Conclusion

We investigate the previous collision attacks on SHA-3, identify the limitations
of ideas, methods, and techniques employed in those attacks, and summarize
directions that can be improved to mount collision attacks on SHA-3 that cover
more rounds. Briefly, if the colliding trails that cover more rounds and connecting
trails that promise more degree of freedom in constructing connectors are gener-
ated, the collision attacks are most likely to be improved. The major challenge
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lies in the fact that differential trails of Keccak-f permutation are difficult to
search as the large state size results in a search space that is too enormous to
be covered effectively. Luckily, we observe that the automatic search tool, i.e.,
the SAT solver performs extraordinarily well in modeling the differential prop-
agation of Keccak-f . In this work, a powerful SAT-based automatic search
toolkit is proposed to overcome the clarified challenges. We demonstrate that
the SAT-based trail search methods are applicable to all kind of analytic sce-
narios where trails are involved. With the SAT-based toolkit, advanced collision
attacks on SHA-3 instances are presented. Totally, a 6-round collision attack on
SHAKE128 of complexity 2123.5, a 6-round quantum collision attack on SHA3-256
of complexity 2104.25/

√
S, and a 6-round quantum collision attack on SHA3-224 of

complexity 297.75/
√

S are proposed. It’s not only that the 6-round classical and
quantum collision attacks are introduced for the first time but also shows that
quantum collision attack is able to cover more rounds or targets than classical
collision attacks.
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Abstract. In 2020, Bernard and Roux-Langlois introduced the Twisted-
PHS algorithm to solve Approx-Svp for ideal lattices on any number
field, based on the PHS algorithm by Pellet-Mary, Hanrot and Stehlé.
They performed experiments for prime conductors cyclotomic fields of
degrees at most 70, one of the main bottlenecks being the computation
of a log-S-unit lattice which requires subexponential time.

Our main contribution is to extend these experiments to cyclotomic
fields of degree up to 210 for most conductors m. Building upon new
results from Bernard and Kučera on the Stickelberger ideal, we use
explicit generators to construct full-rank log-S-unit sublattices fulfill-
ing the role of approximating the full Twisted-PHS lattice. In our
best approximate regime, our results show that the Twisted-PHS algo-
rithm outperforms, over our experimental range, the CDW algorithm
by Cramer, Ducas and Wesolowski, and sometimes beats its asymptotic
volumetric lower bound.

Additionally, we use these explicit Stickelberger generators to remove
almost all quantum steps in the CDW algorithm, under the mild restric-
tion that the plus part of the class number verifies h+

m ≤ O(
√

m).

Keywords: Ideal lattices · Approx-SVP · Stickelberger ideal · S-unit
attacks · Twisted-PHS algorithm

1 Introduction

The ongoing NIST Post-Quantum Cryptography competition illustrates the
importance of the Learning With Errors (Lwe) problem as an intermediate
building block for a wide variety of cryptographic schemes. Most of these cryp-
tographic schemes rely on a structured version of the Lwe problem allowing
for much more satisfactory performance, compared to schemes based on the
unstructured Lwe problem. The first structured variant of Lwe, later known
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as the Ring-Lwe problem, is shown to be at least as hard as the Approximate
Shortest Vector Problem on ideal lattices (Approx-id-Svp) using quantum worst-
case to average-case reductions [SSTX09,LPR10]. One important matter is to
determine whether using this structured version of Lwe could lower the hardness
hypothesis of the scheme. Notably, an efficient solver for Approx-id-SVP would
render the worst-case to average-case reduction to Ring-Lwe meaningless as a
security argument. Note however that even in this case, this would not directly
imply an efficient solver for the Ring-Lwe problem.

In the case of arbitrary lattices, Approx-Svp is a well-studied hard problem.
It consists in finding relatively short vectors of a given lattice, within an approx-
imation factor of the shortest vector. The best theoretical trade-off between run-
time and approximation factor is known as Schnorr’s hierarchy [Sch87]: one can
reach, for any α ∈ (0, 1), an approximation factor 2 ˜O(nα) in time 2 ˜O(n1−α). The
closest known practical algorithm to this trade-off is the BKZ algorithm [SE94],
a generalization of the well-known LLL algorithm [LLL82]. In the particular
case of ideal lattices, i.e., lattices that correspond to ideals of the ring of inte-
gers OK of a number field K, one could hope that the best reduction algorithms
would remain those associated with arbitrary lattices. However, this simplifying
assumption seems questionable, since the underlying number-theoretic struc-
ture is precisely what makes Ring-Lwe a more efficient building block. Thus,
going beyond the BKZ algorithm and estimating the hardness of Approx-id-
Svp using algebraic ideas has gathered more attention, starting by works from
[EHKS14,CGS14,BS16,CDPR16]. Earlier works aimed at the more restricted
case of Approx-id-Svp for principal ideals. A strategy for this case is devised
as a two parts algorithm. The first part requires solving the Principal Ideal
Problem (Pip), i.e., finding any generator of the ideal; the second part aims at
finding the shortest one, by solving a Closest Vector Problem (Cvp) in the so-
called log-unit lattice. This shortest generator is expected to solve Approx-Svp
for a sufficiently small approximation factor. Ultimately, for the particular case
of cyclotomic fields of prime power conductors, [CDPR16] proved that Approx-
id-Svp on principal ideals is solvable in quantum polynomial time, but only
reaching an approximation factor 2 ˜O(

√
n).

Subsequent works in a more general case can be divided in two different paths.
The first one [CDW17,CDW21] aimed at extending the results from [CDPR16]
to arbitrary ideal lattices over any cyclotomic fields, while still reaching in quan-
tum polynomial time an approximation factor 2 ˜O(

√
n). One of their contributions

is to reduce the arbitrary ideal case to the principal ideal case by solving the
Close Principal Multiple Problem (Cpmp): given an ideal b, one computes an
ideal c of small algebraic norm s.t. bc is a principal ideal. In order to ensure
that c has a small norm, a new key technical ingredient, specific to cyclotomic
fields, was the use of the Stickelberger lattice, which has good geometric prop-
erties. Then, the results from [CDPR16] are applied to bc to obtain a candidate
short element of b, using the fact that c has a small norm. The concrete conse-
quences of this method were experimented in [DPW19], under different regimes
which mainly differ upon which Cvp solver is used. The first regime (called
“Naive”) uses Babai’s Nearest Plane algorithm, whereas the second regime uses
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a heuristic Cvp algorithm relatively to ad hoc pseudo-norms. From these experi-
ments, the asymptotic performance of those decoding algorithms was estimated,
which led to simulated approximation factors reached by the CDW algorithm.
Finally, given experimentally verified constants, a volumetric lower bound was
derived for the approximation factors that could be reached in the best sce-
nario. According to this lower bound, the CDW algorithm is expected to beat
the BKZ300 algorithm for cyclotomic fields of degrees at least larger than 7000.
Since NIST submissions based on structured lattices rely on cyclotomic fields of
degree at most 1024, this could be perceived as somewhat reassuring.

The second path is explored in [PHS19,BR20]. Those works, applying to
arbitrary number fields, replace the two reductions steps from [CDW21] with a
single Cvp instance, so as to find a principal multiple ideal which is not only of
small algebraic norm, but is also generated by a small element. A key ingredient
achieving this is to use a generalization of the units of OK , called S-units; this
formalism was an underlying feature of [PHS19] and was later made explicit in
[BR20]. The PHS algorithm splits into a preprocessing phase and a query phase.
The preprocessing phase consists in preparing the decoding of a particular lattice
depending only on the number field K, via the computation of a hint following
Laarhoven’s Cvp with preprocessing algorithm [Laa16], which takes exponential
time. Then, any Approx-id-Svp instance in K can be interpreted as an Approx-
Cvp instance in this lattice, efficiently solved thanks to the hint. Up to the pre-
processing, the query phase yields new time/quality trade-offs: as in [CDW21]
for cyclotomic fields, it reaches approximation factor 2 ˜O(

√
n) in quantum poly-

nomial time; however, the PHS algorithm also allows for better trade-offs than
Schnorr’s hierarchy, from polynomial to 2 ˜O(

√
n) approximation factors. On the

downside, the computation of the lattice itself takes classically subexponential
time, which is a serious obstacle for studying their geometry and obtaining con-
crete asymptotic estimations as was done in [DPW19] for the CDW algorithm.

Then, [BR20] introduced Twisted-PHS, a “Twisted” version of the PHS algo-
rithm whose main difference lies in a fundamental modification of the underlying
lattice, thanks to a natural normalization coming from the Product Formula. The
problem of finding a short vector is expected to be better encoded within this new
lattice, ultimately leading to smaller outputs. Even though the proven trade-offs
between runtime and approximation factor remain the same for the Twisted-PHS
algorithm as for the PHS algorithm, very significant improvements have been
experimentally illustrated in [BR20, Fig. 5.3], showing much better approxima-
tion factors compared to the PHS algorithm for number fields of degree up to
60, where Laarhoven’s Cvp algorithm is replaced in practice by Babai’s Near-
est Plane algorithm [Bab86]. These were to our knowledge the first experimental
evidence of the geometric peculiarity of normalized log-S-unit lattices and of the
practical potential of this type of attack. In this practical version, experiments
are solely limited by the classical complexity of computing the lattice.

Unfortunately, the attained dimensions, up to 60, are not sufficient to assess
the practical limits of the Twisted-PHS algorithm: its heuristic analysis [BR20]
could give only a loose upper bound, or miss unexpected performance in practical
dimensions due to its asymptotic nature, even in the cryptographical range.
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Fig. 1. Average of approximation factors achieved by our implementation of Twisted-
PHS, using log-S-unit sublattices in cyclotomic fields over random simulated instances,
compared to those achieved by CDW [DPW19], assuming the Gaussian Heuristic
throughout all instances.

Our Contributions. We develop theoretical and practical improvements
regarding algorithms for solving Approx-id-Svp, in both lines of work following
the CDW algorithm and the Twisted-PHS algorithm. Even though the hardness
of the Approx-id-Svp does not concretely impact the security of cryptographic
schemes, it is important to get a better understanding of both approaches, which
are the only ones successfully exploiting the structure of a lattice.

Our core ingredient is the introduction of a full-rank family of independent S-
units, whose algebraic properties are proven in Sect. 3. In Sect. 4, we use this
family to remove most quantum steps of the CDW algorithm, leaving only one
step during a preprocessing phase done once for any given field, and one step for
each query.

In Sect. 5, this family allows us to achieve experiments on algorithms in the
(Twisted-)PHS family, for most cyclotomic fields of dimension up to 210. By
comparison, previous experiments [DPW19,BR20] only considered cyclotomic
fields of conductors m = p > 2 prime and m = 2e > 2. Our work comes with
an improved implementation of the initial Twisted-PHS algorithm, allowing us
to extend the experiments conducted in [BR20] up to dimension 80 and for all
cyclotomic fields. It also includes different regimes of approximation for this
algorithm, using sublattices of the log-S-unit lattice obtained thanks to our new
construction beyond dimension 80 up to 210. These regimes yield concrete upper
bounds for the approximation factors that could be reached by the full Twisted-
PHS algorithm up to dimension 210, as illustrated in Fig. 1:

1. The depicted approximation factors were estimated using the Gaussian
Heuristic, matching the exact ones obtained by [BR20] without this hypoth-
esis.
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2. Our best approximate regime yields approximation factors that are compa-
rable (sometimes even smaller) to the asymptotical volumetric lower bound
regime of the CDW algorithm.

In [DPW19], it was already noted that the PHS approach should outperform the
lower bound, but at the cost of computing Laarhoven’s hint in exponential time.
Our work show that for medium dimensions, where asymptotical results should
start to be meaningful, the Twisted-PHS algorithm is at least comparable to the
CDW lower bound, though without this exponential hint precomputation.

As suggested in [BR20], and illustrated in small dimensions, the Twisted-
PHS algorithm performance may be explained by the peculiar geometric nature
of the log-S-unit lattice. In our work, this is confirmed by the computations
of several geometrical parameters on the basis obtained by our implementa-
tion, across all considered cyclotomic fields, sublattices and factor bases. This
specificity, observed in a wide variety of regimes and even in medium dimen-
sions, suggest a deeper explanation, a possibility recently explored by Bernstein
and Lange [BL21]. We provide a full implementation of all our experiments
at https://github.com/ob3rnard/Tw-Sti.

Technical Overview. In [BR20], the log-S-unit lattice needed for the prepro-
cessing phase was built using generic number theory tools. Our main idea is to
shortcut this generic computation by considering a maximal family F of inde-
pendent S-units, where S verifies some conditions (detailed in Sect. 3), leading
to sublattices of the log-S-unit lattice. The family F is composed of three parts:

1. Circular units, also known as cyclotomic units, e.g. in [Was97, §8];
2. Generators coming from the explicit proof of Stickelberger’s theorem proof;
3. Real S-units coming from the maximal real subfield K+

m of Km, where Km

is the cyclotomic field of conductor m.

The first two parts are classically easy to compute. In particular, the effectiveness
of the second part comes from two recent results of [BK21]: the knowledge of
an explicit short Z-basis of the Stickelberger ideal for any conductor [BK21,
Th. 3.6], and the effective computations of generators corresponding to these
short relations using Jacobi sums [BK21, §5]. On the contrary, the last part still
relies on generic number theory tools which are classically costly, but are now
performed in a number field of half degree, which propels us to degree 210.

As an important theoretical contribution, we prove in Theorem3.11 that F is
indeed a full-rank family of multiplicatively independent S-units, by computing
explicitly its (finite) index in the full S-unit group. This can be seen as a gener-
alization of the strategy of [CDW17, Def. 2] to obtain a full-rank lattice of class
relations, restricted to the relative class group. In particular, our result proves the
experimentally conjectured value [DPW19, Rem. 3] of the index of their family.

Finally, the index of F contains a large power of 2 that can be removed using
classical 2-saturation techniques of Sect. 3.5, leading to a family Fsat. We then
use the explicit knowledge of these special S-units in two different situations.

https://github.com/ob3rnard/Tw-Sti
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Theoretical Improvements of the CDW Algorithm. In Sect. 4, we remove almost
all quantum steps of the CDW algorithm while still guaranteeing its approxima-
tion factor [CDW21, Th. 5.1], at the small price of restricting to cyclotomic fields
s.t. h+

m ≤ O(
√

m) ([BLNR21, Hyp. B.1]), where h+ denotes the plus part of the
class number (defined in Sect. 2.2), whereas [CDW21, Ass. 2] uses h+

m ≤ poly(m).
For that purpose, we state an equivalent rewriting of [CDW21, Alg. 7], mak-

ing explicit some hidden steps useful for subsequent modifications. Then, the
explicit Stickelberger generators and real S-units are used to remove the last
call to the quantum Pip solver. Finally, considering the module of all real class
group relations allows us to remove the quantum random walk mapping any
ideal of Km into the relative class group. This last part uses our Theorem 3.11
and needs [BLNR21, Hyp. B.1] to obtain the same bound on the approximation
factor.

Only two quantum steps remain: the first is performed once to compute real
S-units in K+

m, of degree only half, the second is solving the Cldl for each query.

Experimenting the Twisted-PHS Algorithm in Medium Dimensions. We apply
Twisted-PHS [BR20] on our full-rank sublattices of the log-S-unit lattice, yield-
ing approximated regimes of the Twisted-PHS algorithm. Up to degree 210, for
most conductors, the newly implemented algorithm is used to compute the sub-
lattices associated with F and Fsat, for varying subsets S according to the number
of Galois orbits of totally split primes used. In particular, we explicitly compute
the Stickelberger generators and real generators of F and effectively perform
the 2-saturation of F to get Fsat. Up to degree 80, the whole log-S-unit lattice
is also computed, corresponding to a fundamental system Fsu of S-units. This
last computation of Fsu remains unfeasible at higher dimensions. We evaluate
the geometry of all these lattices with standard indicators described in Sect. 2.5:
the root-Hermite factor δ0, the orthogonality defect δ and the logarithm of the
Gram-Schmidt norms. We consistently observe the same phenomena already
pointed out in [BR20, §5.1 and 5.2], that indicate close to orthogonal lattices.

Next, since computing Cldl solutions for random ideals quickly becomes
intractable, we simulate this step by sampling random outputs similarly to what
was done in [DPW19, Hyp. 8]. Given those targets and the preprocessed lat-
tices associated with F, Fsat and Fsu, we evaluate the approximation factors
reached by these different regimes, by assuming the Gaussian Heuristic. These
two assumptions, i.e., using simulated targets and the Gaussian Heuristic, are
validated by the fact that up to degree 80, where it is feasible to compute the
full S-unit group generated by Fsu, our approximation factors match the exact
approximation factors obtained in [BR20, Fig. 1.1], where those heuristics were
not used. Finally, we compare our results to the approximation factors obtained
by the CDW algorithm [CDW21] in the “Naive” regime of [DPW19], under
the same working assumptions as above. We observe that in our best approx-
imate regime, using Fsat, our estimated approximation factors are close, and
sometimes smaller, than the theoretical lower bound derived in [DPW19]. This
suggests that the crossover with BKZ300 could be lower than expected for the
Twisted-PHS algorithm.
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Relations to Other Works Related to S-units. Some recent mathemati-
cal results regarding the Stickelberger lattice were established in [BK21]. The
authors described, for any conductor, an easily computable short basis for this
lattice, and how to explicitly compute the associated principal ideal genera-
tors through Jacobi sums. In our work, this result is brought into fruition to
solve Approx-id-Svp. The completion of this short basis into a full-rank lattice
of class relations, the effective computation of the explicit generators and the
2-saturation of these elements, yielded the different approximated regimes of
Twisted-PHS and allowed us to remove many quantum steps from the CDW
algorithm.

In a talk on August 2021 at SIAM Conference,1 Bernstein announced a joint
work with Eisenträger, Rubin, Silverberg and van Vredendaal, by illustrating the
construction of small S-units using Jacobi sums that lead to an “S-unit attack”
in the power-of-2 conductor case up to degree 64, assuming h+

2e = 1. The talk
also announced a paper that has yet to appear. In this light, we are not able to
compare our use of explicit Stickelberger generators to their work. However, this
talk does neither mention a short basis of the Stickelberger lattice, which is at
the heart of our work, nor lift all obstructions to apply it to any conductor.

In December 2021, a “filtered-S-unit software” was released by Bernstein,
treating the prime p ≤ 43 conductor case, on a webpage2 describing the “sim-
plest S-unit attack” using a technique described in [BL21]. This work is not
related to our construction. Finally, the authors of [BL21] argued that “spherical
models” should not be applied to log-S-unit lattices, which may have particular
geometric properties. This phenomenon was experimentally observed already in
[BR20], and is confirmed by all of our experiments in medium dimensions.

2 Preliminaries

Notations. For any i, j ∈ Z with i ≤ j, the set of all integers between i and j
is denoted by �i, j�. For any x ∈ Q, let

{
x
}

denote its fractional part, i.e., such
that 0 ≤ {

x
}

< 1 and x − {
x
} ∈ Z. A vector is represented by a bold letter v,

and for any p ∈ N
∗ ∪{∞}, its �p-norm is written ‖v‖p. The n-dimensional vector

with all 1’s is denoted by 1n. All matrices are given using row vectors.

2.1 Cyclotomic Fields

We denote the cyclotomic field of conductor m, m �≡ 2 mod 4, by Km = Q[ζm],
where ζm is a primitive m-th root of unity. It has degree n = ϕ(m), its maximal
order is OKm

= Z
[
ζm

]
([Was97, Th. 2.6]), and its discriminant is given precisely

by ΔKm
=

(−1
)ϕ(m)/2 mϕ(m)

∏

p|m pϕ(m)/(p−1) ([Was97, Pr. 2.7]), which is of order nn.

In this paper, we consider any conductor m > 1 of the general prime fac-
torization m = pe1

1 pe2
2 · · · pet

t , m �≡ 2 mod 4, and let qi = pei
i for all i ∈ �1, t�.

1 The slides are available at https://cr.yp.to/talks.html#2021.08.20.
2 This is hosted by https://s-unit.attacks.cr.yp.to/filtered.html.

https://cr.yp.to/talks.html#2021.08.20
https://s-unit.attacks.cr.yp.to/filtered.html
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In particular, m has exactly t distinct prime divisors. Let Gm denote the Galois
group of Km, which can be made explicit by ([Was97, Th. 2.5]):

Gm =
{
σs : ζm 
−→ ζs

m; 0 < s < m, (s,m) = 1
} � (

Z/mZ
)×

.

In particular, we denote by σs ∈ Gm the automorphism sending any m-th root of
unity to its s-th power. For convenience, the automorphism induced by complex
conjugation is written τ = σ−1. The algebraic norm of α ∈ Km is defined
by N (α) =

∏
σ∈Gm

σ(α), hence the absolute norm element in the integral group
ring Z[Gm] is Nm =

∑
σ∈Gm

σ.

Maximal Real Subfield. The maximal real subfield of Km, written K+
m, is the

fixed subfield of Km under complex conjugation, i.e., K+
m := K

〈τ〉
m = Q

(
ζm +

ζ−1
m

)
. Its maximal order is OK+

m
= Z

[
ζm + ζ−1

m

]
(see e.g. [Was97, Pr. 2.16]).

By Galois theory, since
〈
τ
〉

is a normal subgroup of Gm, the maximal real
subfield of Km is a Galois extension of Q with Galois group G+

m := Gal
(
K+

m/Q
)

isomorphic to Gm

/〈
τ
〉
. We identify G+

m with the following system of represen-
tatives modulo τ restricted to K+

m: G+
m =

{
σs|K+

m
; 0 < s < m

2 , (s,m) = 1
}
.

Technically, each σs|K+
m

∈ G+
m extends in Gm to either σs or τσs = σ−s. For

simplicity, we always choose to lift σs|K+
m

∈ G+
m to σs ∈ Gm and drop the restric-

tion to K+
m which should be clear from the context. This slight abuse of notation

appears to be very practical. For example, the corestriction CorKm/K+
m

(
σs|K+

m

)
,

defined as the sum of all elements of Gm that restricts to σs|K+
m

, namely σs+τσs,
is written using the much simpler expression (1 + τ) · σs.

2.2 Real and Relative Class Groups

Fractional ideals of Km form a multiplicative group Im containing the normal
subgroup Pm :=

{〈α〉; α ∈ Km

}
of principal ideals. The quotient group Im

/Pm

is called the class group of Km and denoted by Clm. It is finite and its cardinal hm

is the class number of Km. For any b ∈ Im, the class of b in Clm is written
[
b
]
.

The integral group ring Z[Gm] acts naturally on Im; more precisely, for any
element α =

∑
σ∈Gm

aσσ ∈ Z[Gm], and any b ∈ Im, bα :=
∏

σ∈Gm
σ
(
b
)aσ .

The class group and class number of the maximal real subfield K+
m are denoted

respectively by Cl+m and h+
m. The relative norm map NKm/K+

m
induces a homo-

morphism from Clm to Cl+m, whose kernel is the so-called relative class group,
written Cl−m and of cardinal the relative class number h−

m. Hence, by construc-
tion, for any b s.t.

[
b
] ∈ Cl−m, b1+τ ∩ K+

m is principal. One important specificity
of cyclotomic fields is that the real class group Cl+m embeds into Clm via the
natural inclusion map, which to each ideal class

[
b
] ∈ Cl+m associates the ideal

class
[
b·OKm

] ∈ Clm [Was97, Th. 4.14]. Concretely, it implies that hm = h+
m ·h−

m

is the product of the plus part and the relative part of the class number.

Plus Part and Relative Part of the Class Number. Generally, not much is known
about the class number of a number field, and the analytic class number formula
[Neu99, Cor. 5.11(ii)] allows obtaining a rough upper bound hm ≤ Õ

(√|ΔKm
|).
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In the case of cyclotomic fields though, the structure of the relative class
group is better understood. Using analytic means, the relative class number has
the following explicit expression [Was97, Th. 4.17]: h−

m = Qw · ∏χodd

(
− 1

2B1,χ

)
,

where w = 2m if m is odd and w = m if m is even, Q = 1 if m is a prime power
and Q = 2 otherwise, and B1,χ is defined by 1

f

∑f
a=1 a·χ(a) for any odd primitive

character χ modulo m of conductor f dividing m. Computing this value is in
practice very efficient, using adequate representations of Dirichlet characters.

The hard part of cyclotomic class numbers computations is to obtain the plus
part h+

m, and relatively few of them are known. We use the values from [Was97,
Tab. §4], [Mil14, Th. 1.1 and 1.2] and [BFHP21, Tab. 1], consistently assuming the
Generalized Riemann Hypothesis (GRH). We also provide 58 additional values
of h+

m in [BLNR21, Tab. 2.1] for completeness.
The fact that the plus part of the class number seems much smaller than the

relative part is striking. Weber’s conjecture claims that h+
2e = 1 for any e > 1,

and Buhler, Pomerance and Robertson [BPR04] argue, based on Cohen-Lenstra
heuristics, that for all but finitely many pairs (p, e), where p is a prime and e is a
positive integer, h+

pe+1 = h+
pe . For prime power conductors, this conjecture claims

that the plus part is asymptotically constant. These conjectures are backed up
by Schoof’s extensive calculations [Sch03] in the prime conductor case, and by
the above explicit values. In particular, under GRH, Miller proved Weber’s con-
jecture up to m = 512, and we note that according to Schoof’s table, h+

m ≤ √
m

holds for more than 96.6% of all prime conductors m = p < 10000.

Prime Ideal Classes Generators. When picking a set of prime ideals in the algo-
rithms of this paper, an important feature is that they generate the class group.
In general, even assuming GRH, only a large bound on the norm of genera-
tors is known, indeed Bach proved [Bac90, Th. 4] that N (Lmax) ≤ 12 ln2|ΔKm

|,
where Lmax is the biggest ideal inside a generating set of Clm of minimum norm.
In practice though, this bound seems very pessimistic [BDF08, §6].

On the other hand, as prime ideals belong to Cl−m only with probabil-
ity roughly 1/h+

m, searching for generators of the subgroup Cl−m mechanically
increases the provable upper bound on generators. More precisely, writing
as L−

max the biggest ideal of a generating set of Cl−m, Wesolowski proved [Wes18,
Rem. 2] that N (L−

max) ≤ (
2.71h+

m · ln|ΔKm
| + 4.13

)2
.

Finally, we use the notation hm,(L1,...,Lk) to denote the cardinal of the sub-
group of Clm generated by the k classes

[
Li

]
, i.e., the determinant of the kernel

of fL1,...,Lk
:
(
e1, . . . , ek

) ∈ Z
k 
−→ ∏

1≤i≤k

[
Li

]ei ∈ Clm.

2.3 Logarithmic S-embeddings

We introduce log-S-unit lattices and discuss proper normalization by the Prod-
uct Formula that was at the heart of the practical improvements of [BR20]
compared to [PHS19].

Places of the cyclotomic field Km are usually split into two parts: the set S∞
of infinite places can be identified with the (complex) embeddings of Km into C,
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up to conjugation; the set S0 of finite places is specified by the infinite set of
prime ideals of Km, each prime ideal p inducing an embedding of Km into its p-
adic completion Km,p. Hence, any place v ∈ S∞∪S0 induces an absolute value |·|v
on Km, and Ostrowski’s theorem for number fields [Nar04, Th. 3.3] shows that all
possible absolute values on Km are obtained in this way. Concretely, for α ∈ Km:
∀σ ∈ S∞, |α|σ =

∣
∣σ(α)

∣
∣ and ∀p ∈ S0, |α|p = p−vp(α), where vp(·) is the valuation

of α at p and 〈p〉 = p∩ Z. A remarkable fact is that all these absolute values are
tied by the Product Formula [Nar04, Th. 3.5]:

∀α ∈ Km,
∏

v∈S∞∪S0

|α|[Km,v :Qv]
v = 1. (2.1)

The S∞-part of this product is
∣
∣N (α)

∣
∣, as for σ ∈ S∞, Km,σ = C and Qσ = R, so

that [Km,σ : Qσ ] = 2. Similarly, for p ∈ S0, we have |α|[Km,p:Qp]
p = N (p)−vp(α).

S-unit Group Structure. Fix a finite set S of places; in this paper we shall con-
sider that S always contains S∞. The so-called S-unit group of Km, denoted
by O×

Km,S , is the multiplicative subgroup of Km generated by all elements whose
valuations are non zero only at the finite places of S. Formally:

O×
Km,S =

{
α ∈ Km; 〈α〉 =

∏

p∈S∩S0

pvp(α)
}

.

Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12, Cor. 1]).
The S-unit group is the direct product of the group of roots of unity μ

(O×
Km

)

and a free abelian group with |S| − 1 generators. There exists a fundamental
system of S-units ε1, . . . , ε|S|−1 such that any ε ∈ O×

Km,S is uniquely written

as: ε = μ · ∏|S|−1
i=1 εki

i , where μ ∈ 〈±ζm

〉
is a root of unity and ki ∈ Z.

Log-S-unit Lattice. A fundamental ingredient of the proof of this theorem is to
build an embedding of O×

Km,S into the real space of dimension |S|, whose kernel
is μ

(O×
Km

)
and whose image is a lattice of dimension

(|S|−1
)
. This embedding is

called the logarithmic S-embedding, and its image is called the log-S-unit lattice.
Several equivalent definitions of this logarithmic S-embedding are accept-

able for the proof. However, for cryptanalytic purposes, experimental evidence
[BR20] suggests that it is crucial to use a properly normalized embedding for
the decodability of the log-S-unit lattice. Thus, we define [Nar04, §3, p.98]:

LogS α =
(
[Km,v : Qv] · ln|α|v

)
v∈S =

({
2 ln|σ(α)|}

σ∈S∞
,
{−vp(α) ln N (p)

}
p∈S∩S0

)
.

By definition of O×
Km,S , R⊗LogS O×

Km,S is included in the hyperplane orthogonal
to 1|S|. Showing that its dimension is at least |S| − 1 is more involved.

A basis of the log-S-unit lattice is given by the images LogS εi of the funda-
mental system of S-units of Theorem 2.1, as in [BR20, Eq. (2.7)]. Actually, we
shall use later that for any maximal set of independent S-units, their images
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under any logarithmic S-embedding form a full rank sublattice of the corre-
sponding log-S-unit lattice. Its volume is given by [BR20, Pr. 2.2 and Eq. (2.8)].

As mentioned in [PHS19,BDPW20,BR20], a convenient trick in the con-
text of the cryptanalysis of id-Svp is to consider an expanded version of the
logarithmic S-embedding, halving and repeating twice S∞-coordinates, namely:
LogS α =

(
{ln|σ(α)|, ln|σ(α)|}σ∈S∞

, {[Km,p : Qp] · ln|α|p}p∈S∩S0

)
.

In particular, this reduces the volume of the log-S-unit lattice, as shown
by [BR20, Pr. 2.3]. In practice though, we did not observe any fundamental
difference between the approximation factors obtained using LogS or LogS .

2.4 Hard Problems in Number Theory

One of the most difficult classical steps of the Approx-id-Svp algorithms
proposed in [CDW17,PHS19,BR20,CDW21] is to find a solution to the Cldl
defined as:

Problem 2.2 (Class Group Discrete Logarithm (ClDL)). Given a basis
of prime ideals

{
L1, . . . ,Lk

}
, and a challenge ideal b , find α ∈ Km and inte-

gers e1, . . . , ek such that 〈α〉 = b · ∏i L
ei
i , if this decomposition exists.

In this definition, we also ask for an explicit element α of the field, contrary to
the definition of, e.g., [CDW17, Pr. 2]. Nevertheless, we note that in both quan-
tum and classical worlds, the standard way to solve this problem boils down to
computing S-units, for S containing b and the Li’s, so that this explicit element
is a byproduct of the resolution. Furthermore, put in this form it encompasses
the well-known Principal Ideal Problem (Pip), using an empty set of ideals.

The Shortest Generator Problem (Sgp) asks, from a generator α of a principal
ideal, for the shortest generator α′ such that 〈α〉 = 〈α′〉. Similarly, we define:

Problem 2.3 (Shortest Class Group Discrete Logarithm (S-ClDL)).
Given a solution 〈α〉 = b · ∏

i L
ei
i to the Cldl problem, find w1, . . . , wk ∈ Z≥0

and α′ ∈ Km such that 〈α′〉 = b · ∏i L
wi
i and α′ is the smallest possible one.

The condition for the wi’s to be positive is crucial. Note that all recent
algorithms for Approx-id-Svp that are not bound to principal ideals eventually
output an approximate solution of the S-Cldl [CDW21,PHS19,BR20]. If the set
of prime ideals is sufficiently large compared to b, then S-Cldl is exactly id-Svp.

We also mention the Close Principal Multiple (Cpm) problem which, given
an ideal b, asks to find c such that bc is principal and N (c) is small. This specific
problem is used in [CDW21], and the authors prove that under GRH and using
a factor base containing all prime ideals of norm up to m4+o(1), there exists a
solution c with N (c) ≤ exp

(
Õ(m1+o(1))

)
[CDW21, §1.3.4].

Complexities. As shown in [BS16], class groups, unit groups, class group discrete
logarithms and principal ideal generator computations can be reduced to S-unit
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groups computations for appropriate sets of places S. Denote by TS(Km) the run-
ning time of the computation of the S-unit group in Km. Under GRH, in a quan-
tum setting, TS(Km) = poly

(
ln|ΔKm

|, ∣∣S∣
∣,maxp∈S ln N (p)

)
by [EHKS14,BS16].

In a classical setting, TS(Km) = poly
(∣∣S∣

∣,maxp∈S ln N (p)
) · exp Õ

(
ln2/3(|ΔK |)

is mainly subexponential in the degree of the cyclotomic field Km [BF14,PHS19].
The exponent can be lowered to 1/2 when m is a prime power [BEF+17].

2.5 Lattices

Let L be a Euclidean lattice of full rank n. The first minimum λ1(L) of L is
defined as the �2-norm of the smallest vector v ∈ L∗, and the �2-distance from t
to L, for any t in the span L⊗R of L, is defined by dist2(L, t) = minv∈L‖t − v‖2.

The Approximate Shortest Vector Problem (Approx-Svp) is, given a lattice L
and an approximation factor af, to find v ∈ L such that ‖v‖2 ≤ af ·λ1(L).
Similarly, the Approximate Closest Vector Problem (Approx-Cvp) asks, given a
lattice L, an approximation factor af and a target t in the span L ⊗ R of L, for
a vector v ∈ L such that ‖t − v‖2 ≤ af ·dist2(L, t). A practical Approx-Cvp
oracle is given by Babai’s Nearest Plane algorithm [Bab86].

Bounding Approximation Factors. An ideal lattice of Km is the full-rank image
under the Minkowski embedding in R

ϕ(m) of a fractional ideal b of Km. Unlike
generic lattices, a lower bound of the first minimum is implied by the arithmetic-
geometric mean inequality, using that for any b ∈ b, N (b) divides |N (b)|. Thus:

√
n · N (b)1/n ≤ λ1(b) ≤ √

n · N (b)1/n
√

|ΔKm
|1/n

, (2.2)

where n = ϕ(m) = deg Km and the right inequality is Minkowski’s inequality.
Actually, applying the Gaussian Heuristic to ideal lattices would give that on
average, λ1(b) ≈ √

n
2πe · Vol1/n(b), where Vol(b) = N (b)

√|ΔKm
|. This hypoth-

esis is commonly used for the analysis of cryptosystems based on structured lat-
tices, and we note that the exact approximation factors reached by the Twisted-
PHS algorithm in [BR20] match this heuristic.

For any x ∈ b, let af(x) = ‖x‖2/λ1(b) denote the approximation factor
reached by x for the Svp in the ideal lattice b. In general, λ1(b) is not known,
but Eq. (2.2) imply the bounds af inf(x) ≤ af(x) ≈ afgh(x) ≤ afsup(x), where:

af inf(x) :=
‖x‖2√

n · Vol1/n(b)
, afsup(x) :=

‖x‖2√
n · N (b)1/n

,

afgh(x) :=
√

2πe · af inf(x).
(2.3)

Quality of a Lattice Basis. Several indicators have been used in the literature to
attempt to measure the quality of a lattice basis B = (b1, . . . ,bn) relatively to
the Svp or the Cvp. We will focus on the following three standard quantities:

1. the root-Hermite Factor δ0(B), defined by δn
0 (B) = ‖b1‖2/Vol1/n B, is com-

monly used to compare lattice reduction algorithms like LLL [LLL82] or BKZ
[CN11]. On average, LLL reaches δ0 ≈ 1.022 [GN08] whereas BKZ with block-
size b ≥ 50 heuristically yields δ0 ≈ (

b
2πe (πb)1/b

)1/(2b−2) [Che13].
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2. the (normalized) orthogonality defect δ(B), given by δn(B) =
∏

i

( ‖bi‖2

Vol1/n B

)

[MG02, Def. 7.5] involves all vectors of the basis. By Minkowski’s second the-
orem, its smallest possible value is upper bounded by

√
1 + n

4 .
3. the logarithms of the norms of Gram-Schmidt Orthogonalization (GSO) vec-

tors b�
i give also valuable information. For example, a rapid decrease in the

sequence ln‖b�
i ‖2 at i ≥ 2 indicates that bi is rather not orthogonal to the

previously generated subspace
〈
b1, . . . ,bi−1

〉
.

3 An Explicit Full-Rank Family of Independent S-units

In this section, we exhibit a full rank family of independent S-units, where the
finite places S correspond to a collection of full Galois orbits of split prime ideals.
As mentioned in introduction, this family is composed of three parts:

1. Circular units are recalled in Sect. 3.1 using the material from [Kuč92,
Th. 6.1];

2. Stickelberger generators are in Sect. 3.2, sticking to the exposition of [BK21];
3. Real S+-units (apart from real units), where S+ is the set S ∩ K+

m of places
of S restricted to K+

m, are in Sect. 3.3.

Considering real S+-units and proving in Sect. 3.4 the multiplicative index of
our family in the full S-unit group constitute our main theoretical contribu-
tions. Finally, the saturation process used to mitigate this index is described
in Sect. 3.5.

Remark 3.1 Recall that m has prime factorization m = q1q2 · · · qt �≡ 2 mod 4,
where qi = pei

i > 2 for i ∈ �1, t�. In this section, we will use subsets M+
m and M ′

m

of �1,m� that are useful to describe resp. a fundamental family of circular units
and a short Z-basis of the Stickelberger ideal of Km. Their precise definitions
from resp. [Kuč92, p.293] and [BK21, Eq. (11)] can be found in [BLNR21, §A.1].

3.1 Circular Units

Circular units are sometimes called cyclotomic units in the literature, as in
[Was97, §8]. We prefer to use the historical terminology from algebraic number
theory, e.g. Sinnott [Sin78, §4] and Kučera [Kuč92, §2], in order to avoid any
confusion with the whole unit group O×

Km
of the m-th cyclotomic field.

Definition 3.2 (Circular units [Was97, §8.1]). Let Vm be the multiplicative
subgroup of K×

m generated by
{
1 − ζa

m; 1 ≤ a ≤ m
}
. The group of circular units

is the intersection Cm := Vm ∩ O×
Km

.

Note that Vm contains the torsion of Km, since −ζm =
(
1 − ζm

)/(
1 − ζ−1

m

)
.

The circular units form a subgroup of O×
Km

of finite index, more precisely:
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Proposition 3.3 ([Sin78, Th. p.107]). The index of Cm in O×
Km

is finite:

[O×
Km

: Cm

]
= 2b · h+

m, with b =

{
0 if t = 1,

2t−2 + 1 − t otherwise,

where t is the number of distinct prime divisors of m.

Hence, circular units provide a very large subgroup of O×
Km

: indeed, the real
part of the class number is expected to be small (Sect. 2.2), and the other fac-
tor generically grows linearly in m (see [HW38, Th. 430 and 431] for a precise
statement).

An explicit system of fundamental circular units for any m has been given
in [GK89] and independently in [Kuč92, Th. 6.1]. More precisely, for 0 < a < m,
define the following special circular units, where mi = m/pei

i [Kuč92, p.176]:

va =

⎧
⎨

⎩

1 − ζa
m if ∀i ∈ �1, t�,mi � a,

1 − ζa
m

1 − ζmi
m

otherwise, for the unique mi | a.
(3.1)

Theorem 3.4 ([Kuč92, Th. 6.1]). Recall the definition of M+
m � �1,m� can be

found in [BLNR21, §A.1]. The set
{
va; a ∈ M+

m

}
is a system of fundamental

circular units of Km: for any circular unit η ∈ Cm, there exist a uniquely deter-
mined map k : M+

m → Z, and a root of unity μ ∈ 〈±ζm

〉
s.t. η = μ·∏a∈M+

m
v

k(a)
a .

A crucial point for the cryptanalysis of id-Svp in [CDW21] is that the
logarithmic embedding of these elements is short. Namely, explicitly writing
the constants that appear in the proof of [CDW21, Lem. 3.5], we have, for
any 0 < a < m, that ‖LogS∞

(1 − ζa
m)‖2 ≤ 1.32 · √

m.

3.2 Stickelberger Generators

In this section, we use [BK21, Th. 3.1] to describe a short basis of the so-called
Stickelberger ideal, viewed as a Z-module. These Stickelberger short relations
correspond to principal ideals whose generators are surprisingly easy to compute
using Jacobi sums as in [BK21, §6]. Following Sinnott [Sin80], for all a ∈ Z, let:

θm(a) =
∑

s∈(Z/mZ)×

{
−as

m

}
· σ−1

s ∈ Q
[
Gm

]
, (3.2)

and let Nm be the absolute norm element Nm =
∑

σ∈Gm
σ.

Definition 3.5 (Stickelberger ideal [Sin80, p.189]). Let S ′
m be the Z-module

of Q
[
Gm

]
generated by

{
θm(a); 0 < a < m

} ∪ {
1
2Nm

}
. The Stickelberger ideal

of Km is the intersection Sm = S ′
m ∩ Z

[
Gm

]
.

As in [CDW21], we shall refer to the Stickelberger lattice when Sm is viewed as
a Z-module. Note that in some references, like in [Was97, §6.2], the Stickelberger
ideal is defined as the smaller ideal Z

[
Gm

]∩θm(−1)Z
[
Gm

]
, which coincides with

Def. 3.5 if and only if m is a prime power [Kuč86, Pr. 4.3].
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Theorem 3.6 (Stickelberger’s theorem [Sin80, Th. 3.1]). The Stickelberger
ideal Sm of Km annihilates the class group of Km. Hence, for any ideal b of Km

and any α =
∑

σ∈Gm
aσσ ∈ Sm, the ideal bα =

∏
σ∈Gm

σ(b)aσ is principal.

An outstanding point is that the proof of this important result is completely
explicit, i.e., for any α ∈ Sm, and any fractional ideal b of Km, an explicit γ ∈ Km

s.t. 〈γ〉 = bα is constructed. It appears that when α is a short element of Sm,
this explicit generator is very efficiently computable.

A Short Basis of the Stickelberger Lattice. An element of the integral
group ring Z

[
Gm

]
is called short if it is of the form

∑
σ∈Gm

aσσ ∈ Z
[
Gm

]
,

where aσ ∈ {0, 1} for all σ ∈ Gm. Short elements of Sm have been identified in
[Sch08, Th. 9.3(i) and Ex. 9.3] in the prime conductor case, and the proof has
been adapted to any conductor in [CDW21, Lem. 4.4] to prove the shortness of
the following generating set of Sm:

W =
{
wa; a ∈ �2,m�

}
, with wa = θm(1) + θm(a − 1) − θm(a). (3.3)

Note that using θm(a) + θm(−a) = Nm when m � a, we obtain wa = wm−a+1

whenever 1 < a < m, and that wm = Nm using also θm(m) = 0. Hence, W is
the set

{
wa; 2 ≤ a ≤ ⌈

m
2

⌉} ∪ {
Nm

}
.

We emphasize that only knowing a generating set of short elements as in
[CDW21] is not necessarily sufficient. Though it would be possible to build a basis
from this generating set to solve the Cvp like in [CDW21, Cor. 2.2], without any
geometric loss using e.g. [MG02, Lem. 7.1], we observed that the slight euclidean
norm growth of the obtained basis vectors translates into a dramatic increase of
the size of the (possibly rational) coefficients of the corresponding generators, in
a way that significantly hinders subsequent computations. In particular, in order
to climb dimensions as far as possible and best approach log-S-unit lattices using
the saturation process described in Sect. 3.5, it is crucial to constrain both the
number of elements we use and their size, i.e., to use a basis of the Stickelberger
lattice containing only short elements. In [BK21], a very large family of short
elements [BK21, Pr. 3.1] encompassing W \ {Nm} is made explicit:

Proposition 3.7 ([BK21, Pr. 3.1]). Let a, b ∈ Z satisfying m � a, m � b and m �

(a+b). Then α = θm(a)+θm(b)−θm(a+b) is a short element of Sm. Moreover,
(1 + τ) · α = Nm, so exactly one half of the coefficients of α are zeros.

Then, from this family, a short basis is computationally easy to extract:

Theorem 3.8 ([BK21, Th. 3.6]). Recall M ′
m � �1,m� is defined in [BLNR21,

§A.1]. There exists an efficiently computable map αm(·) from �1,m� to the family
of short elements of Sm described in Pr. 3.7, s.t.

{
αm(c); c ∈ M ′

m

} ∪ {
Nm

}
is

a Z-basis of the Stickelberger lattice Sm of Km having only short elements.

The explicit definition of αm(·) is given in [BK21, §3.2], and included for
completeness in [BLNR21, §A.2]. We stress that when m is a prime, this basis
coincides with the one given by [Sch08, Th. 9.3(i)] and with the set W in Eq.
(3.3).
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Effective Stickelberger Generators Using Jacobi Sums. As previously
mentioned, the proof of Theorem3.6 is explicit, i.e., for any α ∈ Sm and any
fractional ideal b of Km, it builds an explicit γ ∈ Km s.t. 〈γ〉 = bα [Was97,
§6.2], [Sin80, §3.1]. Moreover, when α is a short basis element from Theorem 3.8,
it turns out that γ has a simple expression using Jacobi sums [BK21, §5].

We briefly treat the split case here. Let � ∈ Z be a prime s.t. � ≡ 1 mod m,
and let L be any fixed (split) prime ideal of Km above �. Let a, b be such as in
Proposition 3.7, then for α = θm(a) + θm(b) − θm(a + b), we have that Lα is a
principal ideal generated by the following Jacobi sum [BK21, Pr. 5.1]:

JL(a, b) = −
∑

u∈OKm /L

χa
L(u)χb

L(1 − u) ∈ Km, (3.4)

where χL(u) ∈ 〈
ζm

〉
verifies χL(u) ≡ u(	−1)/m mod L, for any u ∈ (OKm

/L
)×,

and χL(0) = 0. When α = αm(c) for c ∈ M ′
m, we shall write γ−

L,c for the
generator of Lαm(c). Using a discrete logarithm table for elements of (OKm

/L)×,
the computation, for a fixed prime L, of all Jacobi sums corresponding to the
short basis

{
αm(c); c ∈ M ′

m

}
is very fast.

3.3 Real S+-units

A consequence of Theorem 3.8, since
∣
∣M ′

m

∣
∣ = ϕ(m)

2 , is that the Stickelberger
lattice only has rank ϕ(m)

2 + 1 in Z
[
Gm

]
; in particular, it is not full rank, hence

cannot be directly used as a lattice of class relations. In previous works, obtain-
ing a full rank lattice in Z[Gm] from Sm was done by projecting into (1 − τ)Sm

[CDW21, §4.3], or by the adjunction of (1+ τ)Z[Gm] [CDW17, Def. 2]. Both can
be used as a lattice of class relations for the relative class group Cl−m. In particu-
lar, the so-called augmented Stickelberger lattice Sm + (1 + τ)Z[Gm] annihilates
the relative class group and has full rank in Z[Gm], as shown in [CDW17, Lem. 2].

We generalize this result by considering the module of all real class group
relations between relative norm ideals of ideals from the entire class group Clm.
In Sect. 3.4, we shall prove that the Stickelberger lattice augmented with these
real class group relations yields a lattice of class relations for the whole class
group. Note that, as opposed to other modules like (1 − τ)Sm or Sm + (1 +
τ)Z

[
Gm

]
, real class group relations actually depend on the underlying prime

ideals.
On one hand, this affects negatively the shortness of the obtained relation

vectors: putting those in Hermite Normal Form, we shall see later that each
relation, viewed as a vector of integer valuations, has �2-norm at most h+

m. On
the other hand, removing the constraint to belong to the relative class group
brings a significant practical and theoretical gap: first, it allows choosing prime
ideals of smallest possible norms, which as shown in [BR20, §3.3] or [CDW21,
Th. 4.8] lowers in practice the obtained approximation factor; second, whereas
prime ideals of norm at most Bach’s bound are sufficient to generate the entire
class group, prime generators for the relative class group are only proven to be
of norm bounded by the larger bound (2.71 · h+

m · ln ΔKm
+ 4.13)2 from [Wes18].
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Lifting Real Class Group Relations. Let �1, . . . , �d be distinct prime integers
satisfying �i ≡ 1 mod m, so that �i splits in Km, for all i in �1, d�. For each i, fix
a prime ideal Li | �i in Km of norm �i, and let li = NKm/K+

m

(
Li

)
= L1+τ

i ∩ K+
m

be the relative norm ideal of Li. Since Li is a split prime ideal of Km dividing �i,
the ideal li is a split prime ideal of K+

m of norm �i, and by Kummer-Dedekind’s
theorem we have li · OKm

= L1+τ
i . This justifies the slight abuse of notation of

writing lσi = L
(1+τ)σ
i ∩ K+

m, for any σ ∈ Gm.
We are interested in the real class group relations between all prime ideals

in the G+
m-orbits of the li, i.e., between the following prime ideals of K+

m:
{
lσs
i ; i ∈ �1, d�, 0 < s < m

2 , (s,m) = 1
}
. (3.5)

The important point is, any class relation in K+
m between ideals from Eq. (3.5)

translates to a class relation in Km using repeatedly lσi · OKm
= L

(1+τ)σ
i . More

precisely, let
(
r1, . . . , rd

) ∈ Z
[
G+

m

]d represent a real class relation in K+
m between

ideals
{
lσs
i

}
of Eq. (3.5), i.e., there exists γ+

r ∈ K+
m s.t. γ+

r · OK+
m

=
∏d

i=1 l
ri
i .

Then, this relation lifts naturally to a class relation
(
(1 + τ) · r1, . . . , (1 + τ) · rd

)

in Km between prime ideals in the Gm-orbits
{
Lσ

i ; i ∈ �1, d�, σ ∈ Gm

}
as:

γ+
r · OKm

=
d∏

i=1

L
(1+τ)ri

i . (3.6)

Let C+
l1,...,ld

denote the lattice of class relations between elements of all G+
m-

orbits of {li; i ∈ �1, d�}. Concretely, it is the kernel of the following map:

fl1,...,ld :
(
ri,s

)
1≤i≤d,

0<s<m/2,(s,m)=1

∈ Z
d· ϕ(m)

2 
−→
∏

i,s

[
lσs
i

]ri,s ∈ Cl+m . (3.7)

Using the canonical isomorphism of Z-modules Z
d· ϕ(m)

2 �Z Z[G+
m]d, the lattice

of class relations C+
l1,...,ld

may be viewed as a Z-submodule of Z[G+
m]d. Lifting all

these relations back to Km as in Eq. (3.6), we therefore obtain the submodule (1+
τ) · C+

l1,...,ld
⊆ (1 + τ)Z[Gm]d, that we shall call the lattice of real class relations

between the Gm-orbits of {Li; i ∈ �1, d�}.

Remark 3.9. When h+
m = 1, C+

l1,...,ld
is isomorphic to d copies of the integral

group ring Z[G+
m] and the lattice of real class relations is simply (1 + τ)Z[Gm]d.

Euclidean Norm of Real Class Relations. We now identify a real class
group relation from C+

l1,...,ld
to a vector in Z

d· ϕ(m)
2 . In other words, we con-

sider only the valuations of these relations on the G+
m-orbits of the prime ide-

als l1, . . . , ld. Furthermore, C+
l1,...,ld

is put in Hermite Normal Form, conveniently
for the proof of the following proposition, provided in the full version of this
paper [BLNR21], but better bounds might easily be obtained using e.g. the LLL
algorithm.

Proposition 3.10. Suppose the lattice C+
l1,...,ld

of real class relations is in HNF.
Then, for all w ∈ C+

l1,...,ld
⊆ Z[G+

m]d, we have ‖w‖2 ≤ ‖w‖1 ≤ h+
m.
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This means that (1+τ)·C+
l1,...,ld

can be used in the CDW algorithm instead of
(1+ τ)Z[Gm]d, as we will see in Sect. 4, while still reaching the same asymptotic
approximation factor under the same assumption on the Galois-module structure
of Clm [CDW21, Ass. 1], as long as h+

m ≤ O
(√

m
)
. This slightly more restrictive

hypothesis (see the discussion in Sect. 2.2) will be more than compensated by the
fact that it removes the need for the li’s to be principal, which has a significant
impact in practice on the algebraic norm of the chosen ideals, and thus on the
final approximation factor reached in [CDW21, Alg. 6].

Explicit Real Generators. For each relation r =
(
r1, . . . , rd

) ∈ C+
l1,...,ld

, we
compute an explicit γ+

r ∈ K+
m � Km that verifies Eq. (3.6). Together with the

unit group O×
K+

m
of K+

m, they form a fundamental system of S+-units, where the
finite places of S+ are the G+

m-orbits of the relative norm ideals li.
In the next section, we shall see that adding the explicit Stickelberger gen-

erators of Sect. 3.2 to these real generators yields a maximal set of indepen-
dent S-units in the degree ϕ(m) cyclotomic field Km, at the much smaller cost
of computing a fundamental system of real S+-units in K+

m of degree only ϕ(m)
2 .

In practice, though this remains the main bottleneck of our experimental
setting, it allows us to push effectively our experiments up to degree ϕ(m) = 210,
whereas the full S-unit group computations of [BR20] were bound to ϕ(m) = 70.

3.4 A S-unit Subgroup of Finite Index

As in Sect. 3.3, let �1, . . . , �d be prime integers satisfying �i ≡ 1 mod m; for
each i, fix a (split) prime ideal Li | �i in Km and let li = Li ∩ K+

m. Let S be
a set of places containing, apart from the infinite places of Km, all Gm-orbits
of the Li’s. Combining the results of Sect. 3.1, Sect. 3.2 and Sect. 3.3, we get the
following family of S-units:

F =
{
va; a ∈ M+

m

} ∪ {
γ−
Li,b

; i ∈ �1, d�, b ∈ M ′
m

} ∪ {
γ+

r ; r ∈ C+
l1,...,ld

}
(3.8)

where the first set is the set of circular units given by Theorem 3.4, the second
is the set of explicit Stickelberger generators stated at the end of Sect. 3.2 and
the last one is the set of real generators as in Eq. (3.6).

This family has
(
ϕ(m)/2−1

)
+d·ϕ(m) elements, which matches precisely the

multiplicative rank of the full S-unit group modulo torsion O×
Km,S

/
μ
(O×

Km

)
.3 In

this section, we prove that these S-units are indeed independent and we compute
the index of the subgroup of O×

Km,S generated by those elements.

Theorem 3.11. Let hm,(L1,...,Ld) (resp. h+
m,(l1,...,ld)

) be the cardinal of the sub-
group of Clm (resp. Cl+m) generated by the Gm-orbits of L1, . . . ,Ld (resp. the G+

m-
orbits of l1, . . . , ld). The family F given in Eq. (3.8) is a maximal set of indepen-
dent S-units. The subgroup generated by F in O×

Km,S
/
μ
(O×

Km

)
has index:(

hm · h+
m,(l1,...,ld)

hm,(L1,...,Ld)

)
· 2b · (

h−
m

)d−1 ·
(
2

ϕ(m)
2 −1 · 2a

)d

,

3 Note that for our purpose, the torsion units play no role and can thus be put aside.
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where a = b = 0 if m is a prime power, and a = 2t−2 − 1, b = 2t−2 + 1 − t
when m has t distinct prime divisors.

When the Gm-orbits of the Li’s generate Clm, the first term in this index
equals h+

m. As we shall see in Sect. 3.5, the powers of 2 can be killed by saturation
techniques, so the problem comes from the (h−

m)d−1 part, which has generically
huge prime factors. Intuitively, this is because the Stickelberger relations miss
all class group relations that exist between two (or more) distinct Gm-orbits.

First, we show that the lattice obtained by adding one copy of the Stickel-
berger ideal per Gm-orbit, to the lattice (1 + τ) · C+

l1,...,ld
of real class relations,

yields a full-rank submodule of Z[Gm]d. Hence, we have obtained a full-rank
lattice of class relations for the union of all Gm-orbits above �1, . . . , �d.

We begin by restricting our attention to the case d = 1. We need the following
lemma, which extends and proves an observation already made in [DPW19,
Rem. 3] in the prime conductor case (see [BLNR21, §3.4] for the full proofs):

Lemma 3.12. The index of Sm + (1 + τ) · Z[G+
m] in Z[Gm] is finite:

[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

= 2ϕ(m)/2−1 · 2a · h−
m,

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

When h+
m = 1, the lattice of real class relations is always (1+ τ) ·Z[G+

m], and
Lemma 3.12 gives the whole story. In the general case h+

m �= 1, we deduce:

Lemma 3.13. Let � be a prime integer that splits in Km, let L | � in Km and
let l = L1+τ ∩K+

m. Let h+
m,(l) be the cardinal of the subgroup of Cl+m generated by

the G+
m-orbit of l in K+

m. The Z-module generated by Sm and the lattice (1+τ)·C+
l

of real class relations of the Gm-orbit of L, has finite index in Z[Gm]:
[
Z[Gm] : Sm + (1 + τ) · C+

l

]
= 2ϕ(m)/2−1 · 2a · h−

m · h+
m,(l),

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

Finally, for the case where there are d ≥ 1 orbits, a reasoning very similar to
the proofs of Lemma 3.12 and 3.13 leads to:

Proposition 3.14. Let h+
m,(l1,...,ld)

be the cardinal of the subgroup of Cl+m gen-
erated by all G+

m-orbits of l1, . . . , ld. Then, the Z-module generated by the lat-
tice (1+τ)·C+

l1,...,ld
⊆ (1+τ)·Z[G+

m]d of real class relations between the Gm-orbits
of the Li’s, and the diagonal block matrix of d copies of

(Sm \ NmZ
)
, verifies:

[
Z[Gm]d : Sd

m + (1 + τ) · C+
l1,...,ld

]
=

(
2ϕ(m)/2−1 · 2a · h−

m

)d · h+
m,(l1,...,ld)

.

Proof of Theorem 3.11. The independence comes from Proposition 3.14 and the
trivial fact that circular units are independent from Stickelberger and real gen-
erators. The index of the subgroup generated by F in O×

Km,S
/
μ
(O×

Km

)
is given

by:
[O×

Km
: Cm

] ·
[
Z[Gm]d : Sd

m + (1 + τ) · C+
l1,...,ld

]

∣
∣det

(
ker fS

)∣∣ ,
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where ker fS is the lattice of all class group relations between finite places of S.
The first term is given by Proposition 3.3 and the numerator of the second
term by Proposition 3.14. By definition of O×

Km,S , the denominator is precisely
hm,(L1,...,Ld). Rearranging terms adequately yields the result. ��

3.5 Saturation

Saturation is a standard tool of computational algebraic number theory that has
been used in various contexts like unit and class group computations, and can be
traced back at least to [PZ89, §5.7]. This procedure is described in more detail
in [BLNR21, §3.5], and we refer to e.g. [BFHP21, §4.3] for a formal exposition.

Intuitively, the e-saturation procedure applied to F consists in detecting e-th
powers in the subgroup generated by F, including their e-th roots in the set
and rebuilding a basis of multiplicatively independent elements. At the end, the
index of the new basis is no longer divisible by e. Remark that the output size
does not depend on e, but only on the number and size of the elements of F.

As the index given by Theorem3.11 is divisible by a large power of 2, it is
therefore natural to 2-saturate F in order to mitigate its exponential growth,
obtaining the 2-saturated family Fsat. Note however that the relative class num-
ber h−

m in the index of Theorem 3.11 hides huge prime factors that at first glance
render this strategy hopeless in general to obtain the full S-unit group from F.

4 Removing Quantum Steps from the CDW Algorithm

The full material for this section is given in [BLNR21, §B], we summarize the
main points here. The CDW algorithm for solving Approx-Svp was introduced in
[CDW17] for cyclotomic fields of prime power conductors, using short relations
of the Stickelberger lattice as a keystone. [CDW21] extended it to all conductors.

In this section, we show how to use the results of Sect. 3.2, Sect. 3.3
and Sect. 3.4 to remove most quantum steps of [CDW21]. More precisely, we
first propose an equivalent rewriting of [CDW21, Alg. 7] that enlightens some
hidden steps that reveal useful for subsequent modifications. Then, we plug in
the explicit generators of Sect. 3.2 ([BK21]) and Eq. (3.6) for relative class group
orbits, to remove the last call to the quantum Pip solver. Finally, by considering
the module of all real class group relations, using Proposition 3.14 and Theo-
rem 3.11, we remove the need of a random walk mapping any ideal of Km into
Cl−m, at the (small) additional price of restricting to cyclotomic fields such that
h+

m ≤ O(
√

m).

An Equivalent Rewriting of CDW [BLNR21, §B.2]. Omitting details, the CDW
algorithm works as follows, for any challenge ideal a of Km [CDW21, Alg. 7]:

1. Random walk to Cl−m: find b such that
[
ab

] ∈ Cl−m.
2. Solve the Cldl of ab on Gm-orbits of the prime ideals L1, . . . ,Ld of Cl−m. This

gives a vector4 ε = (ε1, . . . , εd) ∈ Z[Gm]d such that ab · ∏
i L

εi
i is principal.

4 In the CDW algorithm, the explicit generator given by the Cldl solver is discarded.
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3. Solve the Cpmp by projecting each εi in π(Sm) = (1 − τ)Sm, find a close
vector vi = yi · π(Sm) and lift vi to get some ηi s.t. π(ηi) = vi, ‖ε − η‖1 is
small with positive coordinates, and ab · ∏

i L
εi−ηi

i is principal.
4. Apply the Pip algorithm of [BS16] to get a generator of this principal ideal.
5. Reduce the obtained generator by circular units like in [CDPR16].

This eventually outputs h ∈ a of length ‖h‖2 ≤ exp
(
Õ(

√
m)

) · N (a)1/ϕ(m).
We focus on the lift procedure of Step 3. In [CDW21], v ∈ π(Sm) is lifted

to η ∈ Sm with non-negative coordinates by setting (ησ , ητσ) = (vσ , 0) if vσ ≥ 0
and (0,−vσ) otherwise, for all σ ∈ G+

m. This works because [c]−1 = [cτ ] for
any c ∈ Cl−m, but hides which exact product of relative norm ideals is involved.
We propose a totally equivalent lift procedure: from v = y · π(Sm), consider the
preimage η̃ = y · Sm. Define η by removing min

{
η̃σ , η̃τσ

}
to each η̃σ coordinate.

Now, it is obvious that η is a combination y of relations in Sm, and of relative
norm relations given by the min part. Details are in [BLNR21, Alg. B.6].

Using Explicit Stickelberger Generators [BLNR21, §B.3]. Each element wa of the
generating set W of Sm corresponds to a generator JL(1, a − 1) (see Sect. 3.2).
Similarly, each relative norm ideal writes 〈γ+

s 〉 = L(1+τ)σs (see Sect. 3.3). Hence,
from an (explicit) Cldl solution 〈α〉 = ab · Lε, and given a Cpmp solution,
explicitly written as above as η = y · W + u · (1 + τ) · Z[G+

m], we have that a
generator of ab ·Lε−η is directly given by α

/(∏
a JL(1, a−1)ya

∏
s(γ

+
s )us

)
. This

allows us to remove the quantum Pip in dimension n in step 4 (for each query).
In exchange, we need to compute (only once) all real generators for relative norm
relations, which can be done in dimension ϕ(m)/2 by [BS16, Alg. 2].

Avoiding the Random Walk [BLNR21, §B.4]. Finally, note that several quantum
steps are performed (for each query) in the random walk that maps ideals to Cl−m.
Using the results of Sect. 3.3, we replace the module (1+τ)·Z[Gm]d by the module
of all real class group relations. Asymptotically, we prove in [BLNR21, Pr. B.7]
that this does not change the bound on the approximation factor obtained in
[CDW21, Th. 5.1], under the same assumption on the Galois-module structure
of Clm [CDW21, Ass. 1], as long as we restrict to fields Km with h+

m ≤ O(
√

m).
This additional tiny assumption is largely compensated by the fact that only
two quantum steps remain: one is performed only once in dimension ϕ(m)/2 to
compute real class group relations and generators, and the second is solving the
Cldl for each query (see [BLNR21, Tab. B.1]).

5 Computing Log-S-unit Sublattices in Higher Dimension

Our main goal is to simulate the Twisted-PHS algorithm for high degree cyclo-
tomic fields. To this end, we compute full-rank sublattices of the full log-S-unit
lattice using the knowledge of the maximal set F of independent S-units defined
by Eq. (3.8) and its 2-saturated counterpart Fsat from Sect. 3.5. These sets are
lifted from a complete set of real S+-units (see Sect. 3.3), hence are obtained
at the classically subexponential cost of working in the half degree maximal
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real subfield. We note that by Theorem3.11, the index of these families grows
rapidly as the number of orbits increases, hence these approximated modes give
an upper bound on the approximation factors that can be expected when using
Twisted-PHS.

The Twisted-PHS algorithm is briefly recalled in Sect. 5.1, and our experi-
mental setting is detailed in Sect. 5.2. Then, we analyse in Sect. 5.3 the geometric
characteristics of our log-S-unit sublattices and the obtained approximation fac-
tors in Sect. 5.4.

5.1 The Twisted-PHS Algorithm

The Twisted-PHS algorithm [BR20] was introduced as an improvement of the
PHS algorithm [PHS19]. Both aim at solving Approx-id-Svp in any num-
ber field and have the same theoretically proven bounds for running time
and reached approximation factors. However, the explicit S-units formalism in
[BR20] leads to a proper normalization of the used log-S-embedding, weighting
coordinates according to finite places norms. This turned out to give experi-
mentally significant improvements on the lattices’ decodability and on reached
approximation factors.

Both algorithms are split in a preprocessing phase, performed only once for
a fixed number field, and a query phase, for each challenge ideal. More precisely:

1. The preprocessing phase consists in choosing a set of finite places S gen-
erating the class group, computing the corresponding log-S-unit lattice for
an appropriate log-S-embedding, and preparing the lattice for subsequent
Approx-Cvp requests using the Laarhoven’s algorithm from [Laa16];

2. For each challenge ideal b, the query phase consists in first solving the Cldl
relatively to S, obtaining 〈α〉 = b ·∏L∈S LvL . Then, this element is projected
onto the span of the above log-S-unit lattice, and a close vector of this lattice
gives a S-unit s s.t. α/s is hopefully small. Here, guaranteeing that α/s ∈ b
is achieved by applying a drift parameterized by some β on the target.

In the Twisted-PHS case, since the obtained lattice, after proper normaliza-
tion, appears to have exceptionally good geometric characteristics, it was pro-
posed to replace Laarhoven’s algorithm by a lazy BKZ reduction in the prepro-
cessing phase and Babai’s Nearest Plane algorithm in the query phase [BR20,
Alg. 4.2 and 4.3]. We will consider only this practical version in our experiments.

In details, for a number field K, the log-S-unit lattice used in the Twisted-
PHS algorithm is defined as ϕtw(O×

K,S), where ϕtw is the log-S-embedding given
by fH ◦ LogS [BR20, Eq. (4.1)], for an isometry fH from the span H of LogS
to R

k, where k equals the multiplicative rank of O×
K,S modulo torsion.

Among the consequences of the proper normalization induced by LogS , the
authors showed how to optimally choose a set of finite places that generate the
class group [BR20, Alg. 4.1]. Namely, taking ideals of increasing prime norms in
the set S, they noticed that the density of the associated (twisted) log-S-unit
lattice ϕtw(O×

K,S) increases up to an optimal value before decreasing.
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Finally, a tricky aspect of the resolution resides in guaranteeing that the
output solution is indeed an element of the challenge ideal, i.e., that vL(α/s) ≥ 0
for all L ∈ S∩S0. In [BR20], this is done by applying a drift vector in the span of
the log-S-unit lattice, parameterized by some β whose optimal value is searched
using a dichotomic strategy in the query phase. Concretely [BR20, Eq. (4.7)]:

t = fH

({
ln|α|σ − kβ + ln N (b) − ∑

L∈S ln N (L)

[K : Q]

}

σ
,
{

ln|α|[KL:Q�]
L +β−ln N (L)

}

L∈S

)
.

5.2 Experimental Settings

Computing the full group of S-units in a classical way is rapidly intractable,
even in the case of cyclotomic fields; therefore, experiments performed in [BR20]
on Twisted-PHS were bound to ϕ(m) ≤ 70. We apply the Twisted-PHS algo-
rithm using our full-rank sublattices of the whole log-S-unit lattice induced by
the independent family F of Eq. (3.8), its 2-saturated counterpart Fsat (Sect. 3.5)
and, when feasible, a fundamental system Fsu for the full S-unit group. Approxi-
mated modes with F or Fsat give a glimpse on how Twisted-PHS scales in higher
dimensions, where asymptotic phenomena like the growth of hm start to express.

Source Code and Hardware Description. All experiments have been implemented
using SageMath v9.0 [Sag20], except for the full S-unit groups computations for
which we used Magma [BCP97], which appears much faster for this particular
task and also offers an indispensable product (“Raw”) representation. Moreover,
fplll [FpL16] was used to perform all lattice reduction algorithms. The entire
source code is provided on https://github.com/ob3rnard/Tw-Sti.

Most of the computations were performed in less than two weeks on a server
with 72 Intel R© Xeon R© E5-2695v4 @2.1 GHz with 768 GB of RAM, using 2 TB of
storage for the precomputations. Real class group computations were performed
on a single Intel R© CoreTM i7-8650U @3.2 GHz CPU using 10 GB of RAM.

Table 1. List of ignored conductors (†: failure to compute Cl+m within a day).

m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

136 64 2 408 128 2 205 160 2 356 176 † 520 192 4 265 208 †
212 104 5 268 132 † 328 160 † 376 184 † 840 192 † 424 208 †
145 112 2 284 140 † 440 160 5 191 190 11 303 200 † 636 208 †
183 120 4 292 144 † 163 162 4 221 192 † 404 200 †
248 120 4 504 144 4 332 164 † 388 192 † 309 204 †
272 128 2 316 156 † 344 168 † 476 192 † 412 204 †

https://github.com/ob3rnard/Tw-Sti
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Targeted Cyclotomic Fields. We consider cyclotomic fields of any conductor m
s.t. 20 < ϕ(m) ≤ 210 with known real class number h+

m = 1, including those
from [BLNR21, Tab. 2.1]. The restriction to h+

m = 1 is only due to technical
interface obstructions, i.e., we are not aware of how to access the non-trivial
real class group relations internally computed by SageMath. Additionally, for
some of the conductors, we were not able to obtain the real class group within
a day. Thus, we are left with 210 distinct cyclotomics fields, and Table 1 lists all
ignored conductors.

Finite Places Choice. The optimal set of places computed by [BR20, Alg. 4.1]
yields a number dmax of split Gm-orbits of smallest norms maximizing the density
of the corresponding full log-S-unit lattice. However, the index of our log-S-unit
sublattices, given by Theorem3.11, grows too quickly, roughly in (h−

m)d−1, so
that their density always decreases as soon as d > 1. This remark motivates us
to compute all log-S-unit sublattices for d = 1 to dmax first split Gm-orbits.

Full Rank log-S-unit Sublattices. The first maximal set of independent S-units
that we consider is F from Eq. (3.8). The 2-saturation process of Sect. 3.5 mit-
igates the huge index of F, yielding family Fsat. A fundamental system Fsu of
the full S-unit group O×

Km,S (modulo torsion) is also used whenever it is com-
putable in reasonable time, i.e., up to ϕ(m) < 80. As noted in Sect. 2.3, their
images under any log-S-embedding ϕ form full-rank sublattices resp. Lurs, Lsat,
Lsu, generated by resp. ϕ(F), ϕ(Fsat), ϕ(Fsu), of the corresponding full log-S-unit
lattice ϕ(O×

Km,S).
We consider several choices of the log-S-embedding ϕ. Namely, we tried to

evaluate the advantage of using the expanded LogS (exp) over LogS , labelled tw
(as twisted by [C : R] = 2). We also considered versions with (iso) or without
(noiso) the isometry fH of [BR20, Eq. (4.2)]. This yields four choices for ϕ,
e.g. tag noiso/tw is ϕ = LogS and iso/exp gives the original ϕtw = fH ◦ LogS .

Compact Product Representation. In order to avoid the exponential growth of
algebraic integers viewed in Z[x]

/〈
Φm(x)

〉
, we use a compact product represen-

tation, so that any element α in F (resp. Fsat or Fsu) is written on a set g1, . . . , gN

of N small elements as α =
∏N

i=1 gei
i . Hence, besides the gi’s, each α is stored as

a vector e ∈ Z
N , and for any choice of ϕ, we have ϕ(α) =

∑N
i=1 ei · ϕ(gi). This

allows us to compute ϕ without the coefficient explosion encountered in [BR20,
§5], which unlocks the full log-S-unit lattices computations beyond degree 60.
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Table 2. Geometric characteristics of Lurs, Lsat and Lsu for Q(ζ152) and Q(ζ211) with
log-S-embedding ϕtw (of type iso/exp). For all bases, the root-Hermite factor verifies
|δ0 − 1| < 10−3.

m d set k Vol1/k δ max1≤i≤k‖bi‖2

raw LLL bkz40 raw LLL bkz40

152 1 urs 107 8.691 2.016 1.570 1.551 45.007 38.466 38.202

sat 107 6.928 4.398 1.787 1.822 752.306 23.280 21.720

su 107 6.928 28.396 1.805 1.828 3163.723 21.953 21.446

2 urs 179 9.683 2.157 1.623 1.590 48.754 41.313 41.404

sat 179 7.384 7.670 1.885 1.896 6273.562 23.280 22.772

su 179 6.816 65.355 2.226 2.322 3427.134 23.221 24.741

211 1 urs 314 14.325 2.672 2.291 2.257 96.068 97.930 96.569

sat 314 11.386 9.998 2.581 2.562 9742.552 59.387 59.578

5 urs 1154 18.232 3.118 2.542 2.497 118.124 119.160 115.888

sat 1154 13.341 19.443 2.918 2.901 32067.612 71.428 72.752

7 urs 1574 18.976 3.161 2.557 2.512 120.838 121.129 119.020

sat 1574 13.771 26.841 2.927 2.910 530646.708 71.428 72.752

Lattice Reductions. For each of the constructed log-S-unit sublattices, i.e.
for each number of orbits d ∈ �1, dmax�, for each family of independent S-
units F, Fsat and (when feasible) Fsu, and for each choice of log-S-embedding,
we compare several levels of reduction: no reduction (“raw”), LLL-reduction and
BKZ40-reduction.

5.3 Geometry of the Lattices

For all described choices of log-S-unit sublattices, we first evaluate several geo-
metrical parameters (see Sect. 2.5): reduced volume V 1/k, root-Hermite factor δ0,
orthogonality defect δ. We only give here a few examples giving a glimpse of what
happens in general, and additional data can be found in [BLNR21, §C.1].

Table 2 contains data for cyclotomic fields Q(ζ152) and Q(ζ211) of degrees
resp. 72 and 210. All values correspond to the iso/exp log-S-embedding, i.e., ϕ =
ϕtw. Indeed, as illustrated by [BLNR21, Tab. C.2], we experimentally note that
using (no)iso/exp seems geometrically slightly better than using (no)iso/tw.
Notice how small is the normalized orthogonality defect after only LLL reduc-
tion, unambiguously below the tight Minkowski bound

√
1 + k

4 .
We then look at the logarithm of the Gram-Schmidt norms, for every

described choice of log-S-unit sublattices. Figure 2 plots the Gram-Schmidt log
norms before and after BKZ reduction of the lattices Lsat, using the original
iso/exp log-S-embedding ϕtw. As in [BR20, Fig. B.1–10], for each field the two
curves are almost superposed, which is consistent with the observations on the
orthogonality defect. We also checked the impact of the log-S-embedding choice



702 O. Bernard et al.

Fig. 2. Lsat lattices for Q(ζ152) and Q(ζ211): Gram-Schmidt log norms before and after
reduction by BKZ40.

among all four options on the Gram-Schmidt logarithm norms of the unreduced
basis ϕ(Fsat). As expected, the isometry fH has no influence on the Gram-
Schmidt norms. On the other hand, using LogS or LogS seems to alter only the
first norms, and in a very small way. This can be seen in [BLNR21, Tab. C.4].
Again, increasing the number of orbits does not influence these behaviours.

We stress that these very peculiar geometric characteristics – shape of the
logarithm of the norms of the Gram-Schmidt basis, ease of reduction, very small
orthogonality defect (after LLL) – already observed in [BR20, §5.1-2], are consis-
tently viewed across all conductors, degrees, log-S-unit sublattices and number of
orbits. To give a concrete idea of e.g. the striking ease of reduction of these log-S-
unit sublattices, we report that for m = 211, BKZ40 terminates in around 7 min
(resp. 30 min) on the log-S-unit sublattice of dimension k = 1154 (resp. 1574)
corresponding to d = 5 (resp. dmax = 7), which is unusually fast.

This very broad phenomenon suggests that the explanation is possibly deep,
an observation that has been recently developed by Bernstein and Lange [BL21].
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5.4 Evaluation of the Approximation Factor

In [BR20], evaluating in practice the approximation factors reached by Twisted-
PHS is done by choosing random split ideals of prime norm, solving the Cldl
for these challenges and comparing the length of the obtained algebraic integer
with the length of the exact shortest element. As the degrees of the fields grow,
solving the Cldl and exact id-Svp becomes rapidly intractable. Hence, we resort
to simulating random outputs of the Cldl, similarly to [DPW19, Hyp. 8], and
estimate the obtained approximation factors with inequalities from Eq. (2.3).

Simulation of Cldl Solutions. To simulate targets that heuristically correspond
to explicit generators α output by the Cldl, we assume that for each ideal Li ∈ S,
the vector

(
vLσ

i
(α)

)
σ∈Gm

of Z
ϕ(m)

2 is uniform modulo the lattice of class relations,
and that after projection along the 1-axis,

(
ln|σ(α)|)

σ
is uniform modulo the

log-unit lattice. These hypotheses have already been used in [DPW19, Hyp. 8] or
[BR20, H. 4.8], and are backed up by theoretical results in [BDPW20, Th. 3.3].

Drawing random elements modulo a lattice of rank k is done by following a
Gaussian distribution of sufficiently large deviation. Concretely, we first choose
a random split prime p in �297, 2103�. Then, for each L ∈ S ∩S0, we pick random
valuations vL(α) modulo the lattice of class relations of rank

∣
∣S∩S0

∣
∣ and random

elements (uσ)σ∈G+
m

∈ R
ϕ(m)/2 in the span of the log-unit lattice of rank ϕ(m)

2 − 1.
Finally, we simulate (ln|σ(α)|)σ by adding ln p+

∑

L∈S vL lnN (L)

ϕ(m) to each coor-
dinate uσ , so that their sum is ln |N (α)|

2 . For each field, we thereby generate 100
random targets on which to test Twisted-PHS on all lattice versions.

Reconstruction of a Solution. For each simulated Cldl generator α, given as a
random vector ({ln|σ(α)|}σ∈G+

m
, {vL(α)}L∈S∩S0

), it is easy to compute ϕ(α) for
any log-S-embedding ϕ and to derive a target as in [BR20, Eq. (4.7)], including a
drift parameterized by some β. Then, considering e.g. Lsat = ϕ(Fsat), given by the
BKZ40-reduced basis Ubkz ·ϕ(Fsat), we find a close vector v = (y ·Ubkz)·ϕ(Fsat) to
this target using Babai’s Nearest Plane algorithm, and from y, Ubkz and Fsat we
easily recover, in compact representation, s ∈ O×

Km,S s.t. v = ϕ(s) and also α/s.
The purpose of the drift parameter β is to guarantee vL(α/s) ≥ 0 on all finite

places. As mentioned in [BR20], the length of α/s is extremely sensitive to the
value of β, so that they searched for an optimal value by dichotomy. However,
this positiveness property actually does not seem to be monotonic in β, and in
practice, using the same β on each finite place coordinate is too coarse when
the dimension grows, resulting in unnecessarily large approximation factors. We
instead obtained best results using random drifts in �∞-norm balls of radius 1
centered on the 1 axis. A first sampling of O(ϕ(m)) random points β ·1+B∞(1)
for a wide range of random β’s allows us to select a β0 around which we found the
best ‖α/s‖2 with all vL(α/s) being positive. Then we sample O(ϕ(m)) uniform
random points in the neighbourhood of β0, namely in [0.9β0, 1.1β0] · 1 + B∞(1),
and output the overall optimal ‖α/s‖2 having all vL(α/s) ≥ 0.

Estimator of the Approximation Factor. Since we do not have access to the
shortest element of a challenge ideal, we cannot compute an exact approximation
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Fig. 3. Approximation factors, with Gaussian Heuristic, reached by Tw-PHS for cyclo-
tomic fields of degree up to 210, on lattices Lurs, Lsat and Lsu.

Fig. 4. Approximation factors, with Gaussian Heuristic, reached by Tw-PHS for cyclo-
tomic fields of degree up to 100, on lattices Lsat and Lsu.

factor as in [BR20]. Instead, we estimate the retrieved approximation factor using
the inequalities implied by Eq. (2.3). We focus on the Gaussian Heuristic, which
gives consistent results with the exact approximation factors found in [BR20],
in small dimensions. For each cyclotomic field, the plotted points are the means,
over the 100 simulated random targets, of the minimal approximation factors
obtained using options iso/noiso and exp/tw. For each family F, Fsat and Fsu, we
chose to keep only the factor base that gives the best result. This systematically
translated into using d = 1 Gm-orbit for F and Fsat, whereas we had to use
d = dmax for Fsu, as predicted by the Twisted-PHS algorithm.

Figure 3 shows the approximation factor afgh obtained for all lattices Lurs,
Lsat and Lsu (when feasible) after BKZ40 reduction. Figure 4 is a zoom of Fig. 3
that focuses on Lsat and Lsu on small dimensions. First, we remark that using F
from Eq. (3.8), the retrieved approximation factors are increasing rapidly. Using
the 2-saturated family Fsat yields much better results, and looking closely at
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Fig. 4 shows that using a basis Fsu of the full S-unit group, when feasible, even
improves the picture if dmax > 1, in which case Lsu is denser than Lsat. For Lsu,
we stress that we obtain estimated approximation factors very similar to the
exact ones observed in [BR20].

More generally, we observe a very strong correlation between the density of
our lattices and the obtained approximation factors – the denser, the better.
As an important related remark, the variance seen for afgh in Fig. 3 for distinct
fields of same degree follows the variations of the norm of the first split prime,
thus of the reduced volume of the considered log-S-unit sublattice. We expect
this variance to be smoothed through conductors for the full log-S-unit lattice.

Furthermore, considering m = 211, the F family gives Vol1/314 Lurs ≈ 14.325
and an estimated afgh ≈ 13170, for Fsat we get Vol1/314 Lsat ≈ 11.386 and a much
smaller estimated afgh ≈ 16.4, whereas the optimal number of orbits predicted by
the Twisted-PHS factor base choice algorithm [BR20, Alg. 4.1] is dmax = 7, which
yields a full log-S-unit lattice of reduced volume only Vol1/1574 Lsu ≈ 9.635.

Comparison to the CDW Algorithm. Using the same experimental setting, we
compute the approximation factors obtained using the CDW algorithm as imple-
mented in [DPW19] (“Naive version”) with additional BKZ40 lattice reductions,
as well as the experimentally derived volumetric lower bound from [DPW19,
Eq. (5) and Tab. 1]. Those values are also represented in Figs. 3 and 4.

We note that our experimental results using the Fsat family are comparable
to this volumetric lower bound. Moreover, for some fields, e.g. in dimensions
96, 160, 168, 200, this lower bound is defeated by the (approximated version of
the) Twisted-PHS algorithm. Note that this does not invalidate the lower bound
itself, which is stated for the two-phase CDW algorithm, but indicates the power
of combining both steps in only one lattice as in the Twisted-PHS algorithm.
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Abstract. The NTRU problem can be viewed as an instance of finding
a short non-zero vector in a lattice, under the promise that it contains an
exceptionally short vector. Further, the lattice under scope has the struc-
ture of a rank-2 module over the ring of integers of a number field. Let
us refer to this problem as the module unique Shortest Vector Problem,
or mod-uSVP for short. We exhibit two reductions that together provide
evidence the NTRU problem is not just a particular case of mod-uSVP,
but representative of it from a computational perspective.

First, we reduce worst-case mod-uSVP to worst-case NTRU. For this,
we rely on an oracle for id-SVP, the problem of finding short non-zero vec-
tors in ideal lattices. Using the worst-case id-SVP to worst-case NTRU
reduction from Pellet-Mary and Stehlé [ASIACRYPT’21], this shows that
worst-case NTRU is equivalent to worst-case mod-uSVP.

Second, we give a random self-reduction for mod-uSVP. We put for-
ward a distribution DuSVP over mod-uSVP instances such that solving
mod-uSVP with a non-negligible probability for samples from DuSVP

allows to solve mod-uSVP in the worst-case. With the first result, this
gives a reduction from worst-case mod-uSVP to an average-case version
of NTRU where the NTRU instance distribution is inherited from DuSVP.
This worst-case to average-case reduction requires an oracle for id-SVP.

1 Introduction

Let K be a number field, OK its ring of integers and ‖ · ‖ the �2-norm in the
complex embedding vector space. A notable example is K = Q[x]/(xd+1) with d
a power of 2: in this case, we have OK = Z[X]/Φ(X) and ‖a‖ = (d

∑
i |ai|2)1/2

for all a =
∑

0≤i<d aix
i ∈ K. In the (search) NTRU problem, one is given h ∈

Rq := OK/qOK with the promise that there exists a pair (f, g) ∈ O2
K such

that gh = f mod qOK and ‖f‖, ‖g‖ are significantly smaller than
√

q (by a factor
γ called the gap of the NTRU instance, see Definition 2.15 for a formal definition).
The goal is to find a short multiple of the pair (f, g). An efficient algorithm for
the NTRU problem for appropriate parameters would lead to a cryptanalysis
of the seminal NTRU encryption scheme [HPS98], a variant of which appears
among the finalists of the NIST post-quantum cryptography standardization
process [CDH+20].
c© International Association for Cryptologic Research 2022
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It was noticed very early that the NTRU problem can be interpreted in
terms of Euclidean lattices [HPS98,CS97]. Indeed, the set Lh := {(a, b)T ∈ K2 :
bh = a mod qOK} forms a (2d)-dimensional lattice, when viewing OK as a d-
dimensional lattice via the embedding map (or, more elementarily for the running
example, using the polynomial expressions). The lattice is described by h, from
which a basis can be computed. This lattice has two peculiar properties. First,
it contains an unusually short non-zero vector (f, g). Indeed, for most h’s, we
have det Lh = ΔK · qd, where ΔK refers to the field discriminant; our running
example satisfies ΔK = dd. As a result, one would expect the shortest non-zero
vectors to have �2-norm around q1/2, up to limited factors depending on ΔK

and d; but (f, g)T is much shorter, by assumption. However, this is not quite
an instance of the unique Shortest Vector Problem (uSVP), as Lh does not
contain just one exceptionally short non-zero vector (up to sign), but d linearly
independent short vectors: in our running example, the (xi · f, xi · g)T ’s for
i ∈ [d] are linearly independent and belong to Lh and; in the general case,
a short Z-basis of OK can be used in place of the xi’s. This leads us to the
second peculiarity of the Lh lattice: as it is invariant under multiplication by
elements of OK , it is a rank-2 OK-module. We hence have a rank-2 OK-module
with the promise that it contains an unusually short non-zero vector, i.e., an
unusually dense rank-1 submodule. We call mod-uSVP the problem of finding
a short non-zero vector in rank-2 module containing an unusually short vector.
In this introduction, we call gap of the mod-uSVP instance the ratio between
the root determinant of the lattice (which predicts what would be expected for
the euclidean norm of the shortest vector) and the actual euclidean norm of a
shortest non-zero vector (see Definition 2.12 for a formal definition).

Search NTRU and mod-uSVP actually come with two flavors. The most
natural one, described above, asks to recover a short vector of the corresponding
rank-2 module. This is the variant we implicitly consider in this introduction
when we discuss NTRU and mod-uSVP. As mentioned above, the NTRU and
mod-uSVP lattices not only contain an unexpectedly short vector, but also an
unexpectedly dense rank-1 sublattice. The second variant, which we refer to as
NTRUmod or mod-uSVPmod, asks to recover a basis of this dense submodule.

As seen above, the NTRU problem can be viewed as a special case of a lat-
tice problem. It is however unclear if its instances are representative instances
of some standard lattice problem, or, more precisely, if they are computation-
ally equivalent to general instances of such a problem. In [Pei16, Section 4.4.4],
Peikert sketched a reduction from a decision version of the NTRU problem to
the Ring Learning With Errors (RLWE) problem [SSTX09,LPR10]; this reduc-
tion can be adapted to the search NTRU problem we consider here. Note that
under some parameter constraints, RLWE is computationally equivalent to the
Shortest Independent Vectors Problem for rank-2 modules [LS15,AD17] (mod-
SIVP), which consists in finding 2d linearly independent vectors whose longest
one is not much longer than optimal. Oppositely, in a recent work, Pellet-Mary
and Stehlé [PS21] exhibited a reduction from the Shortest Vector Problem for
lattices corresponding to ideals of OK (id-SVP) to NTRU. Enhanced by the id-
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SVP self-reducibility from [dBDPW20], this leads to a reduction from worst-case
id-SVP to an average-case version of the NTRU problem.

Overall, we see that NTRU sits between id-SVP and mod-SIVP. Interest-
ingly, id-SVP admits algorithms that outperform generic lattice reduction algo-
rithms [LLL82,Sch87] for some parameter ranges [CDW21,PHS19]. As such a
phenomenon is unknown in the case for mod-SIVP, there is potentially quite
some room between id-SVP and mod-SIVP. With this state of affairs, it is unclear
which of these problems captures the true hardness of NTRU, or if NTRU lies
somewhere strictly in between.

Contributions. We give evidence that the NTRU problem is not just a particu-
lar case of mod-uSVP, but actually representative of it. More precisely, we show
that worst-case NTRU is computationally equivalent to worst-case mod-uSVP,
and that worst-case and an appropriately defined average-case mod-uSVP are
also computationally equivalent, provided we have an oracle for id-SVP in both
cases (and up to reduction losses). Together, these results imply that worst-
case mod-uSVP reduces to average-case NTRU, provided we have an oracle for
id-SVP. Combining this result with the reduction from worst-case id-SVP to
worst-case NTRU from [PS21], this also implies that worst-case NTRU is com-
putationally equivalent to worst-case mod-uSVP, without an id-SVP oracle.

Our first result is a collection of four reductions from the four variants of mod-
uSVP (average case vs worst-case and vector vs module) to the corresponding
four variants of NTRU, relying on an approximate id-SVP oracle. We give below
a simplified version of one of these reductions, in the special case of power-of-
two cyclotomic fields. More details and the other reductions can be found in
Theorem 4.1.

Theorem 1.1 (Simplified version of Theorem 4.1). Let K be a power-
of-two cyclotomic field of degree d. Let γSVP, γ+, γNTRU > 1. For all q ≥
2d · poly(γ+) and γ− ≥ poly(d) · γNTRU · √

γHSVP, (worst-case) mod-uSVPmod

with gap in [γ−, γ+] reduces in polynomial time to (worst-case) NTRUmod with
modulus q and gap ≥ γNTRU and (worst-case) id-SVP with approximation fac-
tor γSVP.

More concretely, when starting from a mod-uSVP instance for which the
shortest non-zero vectors are ≈ γ times smaller than the root determinant, the
reduction produces an NTRU instance satisfying

√
q/(‖f‖+ ‖g‖) ≈ γO(1), up to

factors depending on field invariants. This transformation can be used to derive
a reduction from average-case mod-uSVP to average-case NTRU (where the
NTRU distribution is induced by the mod-uSVP distribution) and a reduction
from worst-case mod-uSVP to worst-case NTRU (and similarly for the variants
searching a dense rank-1 submodule). To achieve this transformation, an id-SVP
oracle is required to find non-zero vectors in ideals within a factor γO(1) from
optimal. Note that for cyclotomic fields, the algorithm from [CDW21] allows to
implement the oracle in quantum polynomial time when γ ≈ 2

√
d. Note also

that [PS21] showed a reduction from worst-case id-SVP to worst-case NTRU,
which is compatible with the reduction from worst-case mod-uSVP to worst-case
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NTRU (relying on an id-SVP oracle). Combining both, we then obtain a reduc-
tion from worst-case mod-uSVP to worst-case search NTRU which does not rely
on an id-SVP oracle. A drawback of the reduction is that it results in an NTRU
modulus q of the order of ≈ 2d, even for small gap parameters γ. The modu-
lus can be decreased by allowing the reduction to be more costly. Using lattice
reduction algorithms [Sch87], one can reach q ≈ γO(1) · βO(d/β) if allowing for a
reduction that runs in time polynomial in d, 2β , log ΔK and ζK(2) (where ζK

refers to the Dedekind zeta function). The quantities log ΔK and ζK(2) depend
on the number field, and may not be polynomially bounded in the field degree d.
In our running example, we have log ΔK = O(d) and ζK(2) = O(1) (see [SS13]).

Second, we exhibit a random self-reducibility property for mod-uSVPmod.
More explicitly, we give a reduction from worst-case mod-uSVPmod for rank-2
modules to an average-case version of itself, whose instances can be sampled from
efficiently. The reduction preserves the gap parameter γ, up to factors depending
on field invariants, and runs in time polynomial in log ΔK .

Theorem 1.2 (Simplified version of Theorem 6.1, under ERH). Let K
be a power-of-two cyclotomic field of degree d. For any gap poly(d) < γ ≤ 2O(d),
there exists an efficiently samplable distribution DuSVP

γ over uSVP instances with
gap ≥ γ such that worst-case mod-uSVPmod with gap ≥ γ′ = γ·poly(d) reduces in
polynomial time to average-case mod-uSVPmod for instance distribution DuSVP

γ .

Combined with the first reduction, the above allows to map a worst-case
instance of mod-uSVPmod to an average-case instance of NTRUmod, where the
NTRUmod instance distribution is inherited from the average-case mod-uSVP
distribution. This reduction relies on an id-SVP oracle. Since mod-uSVPmod

and mod-uSVP are computationally equivalent (up to polynomial losses) when
we have an id-SVP oracle, this also provides a reduction from worst-case uSVP
to average-case NTRU. Contrary to the reduction from worst-case uSVP to
worst-case NTRU, we cannot use the result of [PS21] to get rid of the id-SVP
oracle. This is because the average-case distribution of NTRU instances that is
produced by our reduction may not be compatible with the one used in [PS21].

We summarize the known reductions between variants of mod-uSVP and
NTRU in Fig. 1. Note that the reductions may not be composable due to incom-
patible parameter restrictions or instance distributions.

Technical Overview. The NTRU problem is a restriction of mod-uSVP mod-
ules with a basis of a specific shape. In general, a rank-2 module M is represented
by a pseudo-basis, i.e., two vectors (b1,b2) in K2 and two ideals I1, I2 of OK

such that M = b1I1 + b2I2. When the two ideals I1 and I2 are both equal
to OK , the pseudo-basis is a basis, and the module is said to be free (note that
a free module is a module that has at least one basis, but not all of its pseudo-
bases will satisfy I1 = I2 = OK). In the NTRU problem, the instance is a basis
(b1,b2) of a free module contained in O2

K , with b1 = (1, h)T for some h ∈ OK

and b2 = (0, q)T for some integer q which is a parameter of the NTRU problem.
Hence, the only degree of freedom in this basis comes from the choice of h. The
NTRU problem then asks to solve mod-uSVP in this very specific module.
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Fig. 1. Known reductions between NTRU and mod-uSVP variants. Dashed arrows
require an id-SVP oracle. Blue arrows are proven in [PS21] and red arrows are proven
in this article. The black arrows are folklore. (Color figure online)

In the reduction from mod-uSVP to NTRU, we start with an arbitrary
pseudo-basis of an arbitrary module M , and transform it into an NTRU basis.
We then call the NTRU solver on this NTRU instance and lift the solution back
to the original mod-uSVP module. In order to meaningfully lift a short vector
(or a dense rank-1 submodule) back, we require our transformation to preserve
the geometry of the rank-2 module M as much as possible. Our transformation
proceeds in four main steps.

First of all, we transform the input module M ⊂ K2 into an integral module
whose volume is bounded from below and above by quantities depending only
on the parameters of the reduction (NTRU modules are in O2

K and have vol-
ume qd). This is done by scaling M to the desired volume, and then rounding it
to an integral module with a very close geometry. This rounding is performed by
sampling two quasi-orthogonal vectors in the dual of M , and multiplying M on
the left by the matrix whose rows are these two vectors. Multiplication on the
left corresponds to a distortion of the ambient space, but since the two vectors
are quasi orthogonal, this does not change the geometry too much. Also, as the
row vectors of the sampled matrix belong to the dual of M , the resulting module
is integral.

Our second step aims at obtaining the triangular shape of the NTRU basis.
To do so, we compute the Hermite Normal Form of the pseudo-basis. With
some probability, the two coefficients on the first row of the pseudo-basis will
be coprime, leading to an HNF basis with a 1 as a top-left coefficient, exactly
what we need for an NTRU instance. This is where ζK(2) comes into play, as it
closely relates to the probability that two random elements of OK are coprime.

At this point, our pseudo-basis still has coefficient ideals. We remove them
with an id-SVP solver: we compute short x1 and x2 in the ideals I1 and I2,
respectively, and then replace the pseudo-basis ((b1,b2), (I1, I2)) by the basis
(x1b1, x2b2). This step has the effect of slightly sparsifying the module, i.e., it
leads to a rank-2 submodule whose determinant is not much larger. If our gap
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is sufficiently large compared to the approximation factor of the id-SVP solver,
our sparsified module will still contain an unexpectedly short non-zero vector.

We now have a basis of a free module with vectors of the form (1, h′)T and
(0, b)T , with h′ and b in OK . Our last step consists in replacing b by the NTRU
parameter q. This is done by multiplying the second coordinates of both our
basis vectors by q/b. If q/b ≈ 1 (which we can ensure thanks to the id-SVP
solver), then this does not change the geometry of the module too much.

To conclude, the transformation we have described allows us to transform
any module of rank-2 with an unexpectedly short vector into an NTRU module
with roughly the same geometry. The transformation is reversible, hence, we can
lift any short vector or dense module found in the NTRU module back to the
original rank-2 module. Since this transformation is a Karp reduction, it can
be used to reduce average-case variants of mod-uSVP to average-case variants
of NTRU where the NTRU distribution is inherited from the one on the uSVP
instances.

For the random self-reducibility of mod-uSVPmod, we start with an arbitrary
rank-2 module M and want to randomize it so that the distribution of the output
module M ′ does not depend on M . Once again, we design the transformation so
that it preserves the geometry of the module, to be able to meaningfully lift any
dense rank-1 submodule of M ′ back to a dense rank-1 submodule of M . For this
reduction, we assume that all our worst-case modules live in K2

R
= (K⊗QR)2 and

have fixed volume (which we can always achieve by scaling the module). We also
assume that the �2-norm of their shortest non-zero vectors is exactly 1/γ < 1.
This restriction to modules with a known gap can be waived, by guessing the
gap and sparsifying the module (see Sect. 6).

Let us explain the main ideas behind the randomization in the simpler case
of K = Q. We have a lattice M ⊂ R

2 with volume 1 and shortest non-zero
vector s with ‖s‖ = 1/γ. Up to rotation of the ambient space, we can assume
that s = (1/γ, 0)T . Let us take t ∈ R

2 such that (s, t) forms a basis of M . Since
the volume of M is 1, we know that t = (t0, γ)T for some t0 ∈ R. Up to the
rotation of the ambient space, the quantity t0 is the only degree of freedom.
Note also that the lattice only depends on t0 mod 1/γ. Let πs(t) denote the
quantity t0, i.e., the norm of the orthogonal projection of t onto span(s). This
discussion shows that the lattice M is uniquely determined by the span of its
shortest non-zero vector and the quantity γ · πs(t) mod 1. Hence, to “hide” the
lattice M , it suffices to “hide” these two quantities. Note that we use the vectors s
and t for our reasoning, but we usually do not have access to them: we randomize
our module by performing only operations that can be done on any of the bases
of M (for K2

R
instead of R

2, we expect that finding the analogue of (s, t) is
difficult).

In order to hide the span of s, one can apply a uniform orthonormal transfor-
mation to the ambient space. To hide the quantity γ ·πs(t) mod 1, we “blur” the
ambient space, by applying to it a transformation that is close to orthogonal, but
not fully so. By appropriately choosing the transformation, one can obliviously
transform the quantity γ · πs(t) into x · γ · πs(t) + y, where x and y are some
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random variables. Recall that this quantity only matters modulo 1. Hence, if the
standard deviation of y is sufficiently large compared to 1, then y mod 1 will be
uniformly distributed and will hide the original value of πs(t). The existence of
a gap ensures that a close-to-orthogonal transformation suffices for this purpose.

This intuition over R
2 explains one component of our randomization proce-

dure, which we call the geometric randomization (see Sect. 5.2). Another impor-
tant part of our randomization, which we call the coefficient randomization
(Sect. 5.1), focuses on the coefficient ideals of the pseudo-basis (which are just Z
for lattices). The transformation described above will have the effect of random-
izing the vectors b1 and b2 of a pseudo-basis of our module M , but will have no
impact on the coefficients ideals I1 and I2.

In order to hide those ideals, the first step is to multiply the module M by some
uniformly distributed ideal I, using [dBDPW20]. Our new coefficient ideals I · I1
and I · I2 will then be uniformly distributed too. This is however not sufficient
to fully hide the ideals, since the quotient (I · I1)/(I · I2) is constant. In order to
hide this last quantity, or decouple the ideals, we sparsify the module with respect
to some prime ideal p: concretely, we take a uniformly random rank-2 submod-
ule of M among those of index p.1 This process generalizes lattice sparsification as
introduced in [Kho06]. Lattice sparsification is a classic tool to remove one (or sev-
eral) annoying vectors in a lattice. Here, the purpose is different: it has the effect of
obliviously multiplying I1 by p while leaving I2 unchanged (with probability close
to 1). By [dBDPW20], the uniform distribution over bounded-norm prime ideals
is close to the uniform distribution over norm-1 ideals (after renormalization of
their norm), in the sense that little remains to be done to obtain the latter dis-
tribution. As a result, this sparsification enables us to (almost) randomize both I1
and I2, independently of one another. The gap to perfect randomization is handled
by carefully studying the distribution resulting from the geometric and coefficient
randomization (Sect. 5.3).

Summing up, our randomization consists in two main steps: a distortion of
the ambient space, which randomizes the vectors (b1,b2) and a sparsification,
which hides the coefficient ideals I1 and I2 (together with the multiplication of
the module by a random ideal I). Interestingly, we note that these two operations
are similar (though adapted to rank-2 modules) to the ones that were used
in [dBDPW20] to randomize ideal lattices.

The transformation described above allows us to transform an arbitrary mod-
ule M of K2

R
into a random module M ′ of K2

R
whose distribution is independent

of the input module. One last subtlety to handle in order to have a full worst-case
to average-case reduction is to compute a canonical representation of the mod-
ule M ′. Indeed, the pseudo-basis of the properly distributed module M ′ that we
have at the end of the randomization procedure might leak information about
the input module M . Unfortunately, one cannot compute HNF bases in K2

R
(the

HNF gives a canonical representation of rational lattices). In order to obtain a

1 For two rank-2 modules M ′ ⊆ M with pseudo-bases ((b′
1, I

′
1), (b

′
2, I

′
2)) and

((b1, I1), (b2, I2)) respectively, we say that M ′ has index p in M if detK(b′
1,b

′
2)·I ′

1I
′
2 =

p · detK(b1,b2) · I1I2.



716 J. Felderhoff et al.

canonical representation of M ′, we then round it to a close module in O2
K for

which we will be able to compute an HNF pseudo-basis. The rounding procedure
is the same as the one described in the reduction from uSVP to NTRU, and the
distribution of the output pseudo-basis only depends on the input module and
not on the specific pseudo-basis that is provided to represent it.

Discussion. A question arising from our reduction concerns the possibility to
sample an NTRU instance from the distribution obtained at the end of the reduc-
tion, together with a short secret vector of the corresponding NTRU module.
The difficulty stems from the fact that the output NTRU distribution we obtain
after the reduction is not easy to describe, except as “the distribution obtained
by running the reduction”. The same difficulty also appeared in [PS21], where
it was tackled by running the reduction to sample from the average-case NTRU
distribution (and keeping in mind some quantities generated during the reduc-
tion in order to create a short vector of the output NTRU module). In our case,
we face two additional difficulties when trying to apply the same strategy. First,
we note that even sampling from the NTRU distribution, without asking for a
short vector of the corresponding module, does not seem straightfoward. Since
our mod-uSVP to NTRU reduction requires an id-SVP solver and takes subex-
ponential time if one wants to reach small NTRU modulus q, it does not provide
an efficient sampling algorithm for our final NTRU distribution. Secondly, our
reduction allows us to lift a short vector from the NTRU module back to the
uSVP module, but it is not so clear whether the converse is also possible (i.e.,
starting with a known vector of the uSVP module and obtaining a short vector
of the final NTRU module). This is because of the sparsification step: when we
sparsify a lattice, we can lift a vector from the sparser lattice back to the denser
lattice (this is actually the same vector), but the converse seems more difficult.

Another question we leave open is about the compatibility of our reduc-
tion with those from [PS21]. Our worst-case mod-uSVPmod to average-case
NTRUmod reduction produces a new distribution over NTRU instances. It is
unclear whether this distribution can be used in the search to decision reduc-
tion from [PS21]. It is also unclear how it compares to the one produced by the
worst-case id-SVP to average-case NTRU reduction from [PS21].

It should be noted that the regime where NTRU is provably secure
(see [SS13]) is completely distinct from the regime required by our reductions.
Indeed, the regime of [SS13] requires that f and g are slightly larger than

√
q,

whereas our reduction requires f and g to be significantly smaller than
√

q. In
other words, we are in a regime where NTRU is a uSVP instance (and we are
trying to show that in this regime, it is representative of all uSVP instances),
whereas [SS13] works in a regime where an NTRU instance is statistically close
to uniform; in particular, in that regime, the underlying lattice is not a uSVP
instance. The regime of the overstretch-NTRU attacks (including [KF17]) is also
distinct from ours, but in the opposite direction. In these attacks, it is assumed
that ‖f‖ and ‖g‖ are poly(d) and q grows; whereas in our case, we have ‖f‖ and
‖g‖ of the form

√
q/poly(d). Said differently, in those attacks, the short vector is

short in absolute terms, whereas in our case it is short relative to what it would
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be for a random lattice of the same volume. We leave as an open problem to
check whether these two regimes can be made to intersect.

2 Preliminaries

We use standard Landau notations, with underlying constants that are absolute
(e.g., they do not depend on the specific choice of number field). We consider
column vectors (unless they are explicitly transposed). Vectors and matrices are
respectively denoted in bold lowercase and uppercase fonts. For a vector x ∈ C

k,
we let ‖x‖ denote its Hermitian norm.

We let D(c, s) refer to the normal distribution over R of center c and standard
deviation s > 0. For X a set that is finite or has finite Lebesgue measure, we
let U(X) denote the uniform distribution over X. For two distributions D1,D2

with compatible supports, we let SD(D1,D2) =
∫ |D1(t) − D2(t)|dt/2 refer

to their statistical distance. For D1,D2 with Supp(D1) ⊆ Supp(D2), we let
RD(D1 ‖ D2) =

∫
D1(t)2/D2(t) dt refer to their Rényi divergence of order 2.

The probability preservation property states that for any event E, the inequality
D2(E) ≥ D1(E)2/RD(D1 ‖ D2) holds.

For a lattice L, we let DL,s,c denote the Gaussian distribution of support L,
standard deviation parameter s and center parameter c ∈ spanL. We will use
the following lemma, to sample discrete (tail-cut) Gaussian distributions. This
lemma is adapted from [GPV08, Theorem 4.1]. A proof of this precise formula-
tion can be found in [PS21, Lemma 2.2].

Lemma 2.1. There exists a polynomial time algorithm that takes as input
a basis B = (b1, . . . ,bn) of an n-dimensional lattice L, a parameter s ≥√

n · maxi ‖bi‖ and a center c ∈ spanL and outputs a sample from a distri-
bution D̂B,s,c such that

• SD(DL,s,c, D̂B,s,c) ≤ 2−Ω(n);
• for all v ← D̂B,s,c, it holds that ‖v − c‖ ≤ √

n · s.

Some results are obtained under the Extended Riemann Hypothesis (ERH).

2.1 Number Fields

Let K be a number field of degree d ≥ 2 and ring of integers OK . Let KR =
K ⊗Q R. We identify any element of K with its canonical embedding vector
σ : x �→ (σ1(x), · · · , σd(x))T ∈ C

d. This leads to an identification of KR with
{y ∈ C

d : ∀i ∈ [r1], yi ∈ R and ∀i ∈ [r2], yr1+r2+i = yr1+i}, where r1 and r2
respectively denote the number of real and pairs of complex embeddings. Note
that the set KR is a real vector subspace of dimension d embedded (via σ) in C

d

and that σ(OK) is a full rank lattice in KR. The (absolute) discriminant ΔK is
defined as ΔK = |det(σ(OK))2|. We have d = O(log ΔK), for ΔK growing to
infinity.
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For x ∈ KR, we define x ∈ KR as the element obtained by componentwise
complex conjugation of the canonical embedding vector of x. We extend this
notation to vectors and matrices over KR, and let x† denote xT for any x ∈
Kn

R
. We define K and OK as the subsets of KR obtained by applying complex

conjugation to elements of K and OK , respectively. For x,y ∈ Kn
R
, we define

〈x,y〉KR
= x† · y ∈ KR and ‖x‖ = ‖σ(〈x,x〉KR

)‖1/2. The (absolute value of the)
algebraic norm of x ∈ KR is defined as N (x) =

∏
i |σi(x)|. The algebraic norm

of x ∈ Kn
R

is defined as N (x) = N (〈x,x〉KR
)1/2.

We define K+
R

as the subset of KR corresponding to having all yi’s being
positive real numbers. For x ∈ K+

R
, we define x1/2 as the element of K+

R
obtained

by taking the square-roots of the embeddings.
We let O×

K = {x ∈ OK : N (x) = 1} denote the set of units of OK

and LogO×
K = {(log |σi(x)|)i : x ∈ O×

K} ⊂ R
d denote the log-unit lattice. Note

that spanR(LogO×
K) = E := {y ∈ R

d :
∑

yi = 0 ∧ ∀i ∈ [r2], yr1+r2+i = yr1+i},
by Dirichlet’s unit theorem. For ζ ∈ E, we define exp(ζ) as the element of K+

R

whose i-th embedding is exp(ζi), for all i.
In this work, we assume that we know a LLL-reduced [LLL82] Z-basis (ri)i≤d

of OK . We define δK = maxi ‖ri‖∞. We have 1 ≤ δK ≤ Δ
O(1)
K : the left inequality

follows from the fact that ‖r‖∞ ≥ 1 for all r ∈ OK \ {0}, whereas the right
inequality derives from Minkowski’s second theorem and the LLL-reducedness
of the ri’s. In the case of cyclotomic number fields, taking the power basis gives
δK = 1. For x =

∑
i xiri ∈ KR, we define �x� =

∑
i�xi�ri. We will use the

notation {x} = x− �x�. We have ‖{x}‖∞ ≤ d · δK , and hence ‖{x}‖ ≤ d3/2 · δK .
We will consider the following distributions over KR. Note that for r ∈ K+

R
,

the distribution of r · x for x ∼ DKR
(c, s) is DKR

(r · c, (σi(r) · si)i).

Definition 2.2. Let s ∈ R
r1+r2
>0 . We define the normal distribution DKR

(c, s) of
center c ∈ KR and standard deviation vector s as the distribution obtained by
independently sampling real numbers (y)i∈[d] with

{
yj ∼ D(0, sj) for j ∈ [r1]
yr1+j , yr1+r2+j ∼ D(0, sr1+j) for j ∈ [r2]

and then returning c + y where y ∈ KR is such that σj(y) = yj for j ∈ [r1]
and σr1+j(y) = yr1+j + iyr1+j for j ∈ [r2].

We define χKR
as the distribution of (〈x,x〉KR

)1/2 for x ∈ K2
R

sampled accord-
ing to DKR

(0, 1)2.

For a matrix B ∈ Kn×n
R

, we define det(B) = N (detKR
(B)). We say that B

is orthogonal if B† · B = I, which implies that det(B) = 1. We let On(KR)
denote the set of orthogonal matrices. If a matrix B ∈ Kn×n

R
has KR-linearly

independent columns (i.e., no non-trivial linear combination is zero), then it
admits a QR-factorization B = QR with Q ∈ On(KR) and R ∈ Kn×n

R
upper

triangular with diagonal elements in K+
R

(see, e.g., [LPSW19, Section 2.3]).
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2.2 Ideals

A fractional ideal (resp. oriented replete ideal) is a subset of K of the form x · I
for some x ∈ K× (resp. x ∈ K×

R
) and I ⊆ OK an integral ideal. Unless specified

otherwise, by default, an ideal will refer to an oriented replete ideal. For I ideal
of K, we define the ideal I = {x : x ∈ I} of K. Using the canonical embedding,
any non-zero ideal is identified to a d-dimensional lattice, called ideal lattice.
The algebraic norm of an integral ideal I is N (I) := |OK/I| if it is non-zero
and zero otherwise. This is extended to oriented replete ideals xI with x ∈ K×

R

and I an integral ideal by setting N (xI) = N (x) · N (I).
For I1 and I2 integral, the product ideal I1I2 is the ideal spanned by all x1 ·x2

with x1 ∈ I1 and x2 ∈ I2. An integral ideal I is said prime if it cannot be written
as I = I1 · I2 with I1, I2 integral and both distinct from OK . For any B ≥ 0, we
let πK(B) denote the number of prime ideals with algebraic norm ≤ B. Under
the ERH, there exists an absolute constant c such that for any B ≥ (log ΔK)c, we
have πK(B) ∈ (B/ log B) · [0.9, 1.1] (see [BS96, Theorem 8.7.4]). If x1I1 and x2I2
are two ideals with I1 and I2 integral, we define their product as (x1I1) ·(x2I2) =
(x1x2)(I1I2). The inverse of an ideal I is I−1 = {x ∈ K×

R
: xI ⊆ OK}.

We will use algorithms from [dBDPW20] to sample among different classes
of ideals.

Lemma 2.3 (Adapted from [dBDPW20, Lemma 2.2], ERH). There exists
an algorithm A and an absolute constant c such that for any B ≥ (log ΔK)c,
algorithm A on input B runs in time poly(log B, d) and returns a prime ideal
uniformly among prime ideals of norm ≤ B.

We will also rely on Algorithm 2.1, which is adapted from [dBDPW20, Theo-
rem 3.3], to sample (essentially) uniformly in the set I1 of norm-1 ideals, in time
polynomial in log B. Note that [dBDPW20] considers norm-1 ideals xI with I
integral and all σi(x)’s being positive integers. This discrepancy is handled by
introducing u at Step 3. The standard deviation in Step 2 and tailcut may seem
arbitrary at first sight: these choices simplify the analysis of the module random-
ization (in Sect. 5.3). A proof of the following lemma is given in the full version
of this work.

Algorithm 2.1. Ideal-SampleB

1: Sample p uniformly among prime ideals of norms ≤ B, using Lemma 2.3;
2: Sample ζ ∈ E from the centered normal law with standard deviation d−3/2, condi-

tioned on ‖ζ‖ ≤ 1/d;
3: Sample u uniform in {x ∈ KR, ∀i ∈ [d] : ‖σi(x)‖ = 1};
4: Return u · exp(ζ) · p/N 1/d(p).

Lemma 2.4 (Adapted from [dBDPW20, Theorem 3.3], ERH). There
exists an absolute constant c such that for any B ≥ (ddΔk)c, Ideal-SampleB

runs in time polynomial in log B and its output distribution is within 2−Ω(d)

statistical distance from U(I1).
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2.3 Modules

A module is a subset of some Km
R

of the form M =
∑

i≤k biIi where the Ii’s
are non-zero ideals and the bi’s are KR-linearly independent. This is writ-
ten compactly as M = B · I (where B is the matrix whose columns are the
bi and I = (I1, . . . , Ik)). The tuple ((I1,b1), . . . , (Ik,bk)) is called a pseudo-
basis of M and is written compactly as (B, I). The integer k is the rank
of M . We define N (M) = det(B) · ∏

i≤k N (Ii). Note that for d = m = 1,
this matches the norm of an ideal. Using the canonical embedding, any rank-
k module is identified to a (kd)-dimensional lattice, called module lattice. In
particular, we define det(M) as the determinant of the module lattice. Note
that det(M) = N (M) · Δ

k/2
K . The module successive minima λi(M) for i ∈ [kd]

are defined similarly. We will also be interested in the module norm-minimum
λN
1 (M) = inf{N (N) : N rank-1 submodule of M}. A rank-1 submodule of M

is said densest if it reaches λN
1 (M).

The dual of a module M is defined as M∨ = {b∨ ∈ spanKR
(M) : ∀b ∈

M, 〈b∨,b〉KR
∈ OK}: note that M∨ is an OK-module, σ(M∨) is the dual lattice

of σ(M) and (B · I)∨ = (B−† · J), where Ji = (Ii)−1 for all i ≤ k.
For any full-rank module M ⊆ Km, there exists a pseudo-basis (B, I) such

that B ∈ Km×m is lower-triangular with ones on the diagonal. It is called a
Hermite Normal Form of M and can be computed in polynomial time from
any finite set of pairs {(Ii,bi)}i such that M =

∑
i biIi and the bi’s are not

necessarily independent [BP91,Coh96,BFH17].

Definition 2.5. Let M be a module. A submodule N ⊆ M is said to be primitive
if it satisfies any of the three equivalent conditions:

• the module N is maximal for the inclusion in the set of submodules of M of
rank at most rank(N);

• there is a module N ′ with M = N +N ′ and rank(M) = rank(N)+ rank(N ′);
• we have N = M ∩ spanK(N).

In particular, any densest rank-1 submodule of M is primitive.

A proof that the three conditions are equivalent is provided in the full version
of this work. The last statement follows from Condition 1.

The latter lemma allows us to conclude that the module norm-minimum is
reached (see the full version of this work for a proof).

Lemma 2.6. For any module M , there exists a rank-1 submodule N of M such
that N (N) = λN

1 (M).

The following result provides a lower bound on the probability that a rank-1
module v · OK is primitive in a rank-k module M , when v ∈ M is sampled
from a sufficiently wide Gaussian distribution. Taking M = Ok

K , this provides
in particular a lower bound on the probability that k elements sampled inde-
pendently of a Gaussian distribution in OK are relatively coprime. This result
generalizes [SS13, Lemma 4.4], which proved the result for k = 2 and M = O2

K
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(with a proof inspired from [Sit10]). The proof for the general case with rank-k
modules is very similar to the special case M = O2

K , hence we leave it to the full
version. In this work, we will only use Lemma 2.7 for modules of rank-2, however,
for the sake of re-usability, we state and prove it for modules of arbitrary ranks.

Lemma 2.7. There exists an absolute polynomial P such that the following
holds. For any δ ≥ 0, degree-d number field K, integer k ≥ 2, rank-k mod-
ule M ⊂ Kk

R
, if c ∈ spanKR

(M) and ς > 0 are such that ‖c‖ ≤ δ · ς and
ς ≥ λkd(M) · P (Δ1/d

K , k, d, δ, λkd(M)/λ1(M)), then it holds that

Pr
v←DM,ς,c

(
v · OK is primitive in M

) ≥ 1
4ζK(k)

,

where ζK(·) is the Dedekind zeta function of K and the λi’s refer to the minima
of the lattice σ(M).

2.4 Rank-2 Modules with a Gap

In this work, we are interested in rank-2 modules that contain an unexpectedly
dense rank-1 submodule, i.e., in modules M with λN

1 (M) significantly smaller
than

√N (M). We define the gap of M by

γ(M) =

(
N (M)

1
2

λN
1 (M)

) 1
d

.

The following lemma shows that if the gap is sufficiently large, then the densest
rank-1 submodule is unique. A proof may be found in the full version of this
work.

Lemma 2.8. Let M be a rank-2 module with gap γ > 0 and N a densest rank-1
submodule of M . If N ′ is a rank-1 submodule of M with N (N ′) < γd

√N (M),
then N ′ ⊆ N .

In particular, for γ > 1, the densest rank-1 submodule is unique and any
vector b ∈ M with ‖b‖ < γ · N (M)1/(2d) belongs to it.

In the following, when a rank-2 module M has a gap larger than 1, we will
implicitly use Lemma 2.8 when referring to the densest rank-1 submodule of M .
Most rank-2 modules we will consider will have gap larger than 1.

This can be used to show that we can use the QR-factorization to precisely
describe rank-2 modules (see the full version for a proof).

Lemma 2.9. Let M be a rank-2 module with gap γ > 0. Then M can be written
as

N 1
2d (M)
γ

· Q ·
([

1
0

]

· J1 +
[
r
1

]

· γ2 · J2

)

,

where Q ∈ O2(KR), r ∈ KR, J1 and J2 are norm-1 ideals. We call this a QR-
standard-form for M .
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We note that there are multiple QR-standard forms for any module M , as
units of C can be transferred from the ideal coefficients to the matrix Q. In
the following section, we will be interested in modules with specific distributions
expressed in terms of QR-standard forms. It will then be convenient to define
a module by a (well-distributed) QR-standard form. Note that the modules we
define this way have norm 1.

Definition 2.10. For any Q ∈ O2(KR), γ > 0, r ∈ KR and norm-1 ideals J1, J2,
we define

QRSF-2-Mod(Q, γ, J1, J2, r) =
1
γ

· Q ·
([

1
0

]

· J1 +
[
r
1

]

· γ2 · J2

)

.

We will use the following result on the first and last minimum of the dual
of a rank-2 module with a gap. The proof is provided in the full version of this
paper.

Lemma 2.11. Let M be a rank-2 module in K2
R

with gap γ(M) ≥ 1. Then

λ2d(M∨) ≤ 2
√

d · γ(M) · N (M)− 1
2d

λ1(M∨)−1 ≤ 2d · γ(M) · N (M)1/(2d) · δK · Δ
1
2d

K .

2.5 Algorithmic Problems

In this section, we define different variants of the unique-SVP problem for rank-
2 modules, as well as variants of the NTRU problem. The definitions of the
different NTRU problems differ slightly from the ones defined in [PS21]: this is
to emphasize the resemblance between uSVP and NTRU. The difference between
the NTRU definitions in this work and the ones in [PS21] are sufficiently minor
that they can be reduced to one another without difficulty, and we hence opted
to keep the same names.

Definition 2.12 (γ-uSVP instance). Let γ > 0. A γ-uSVP instance consists
in a pseudo-basis (B, I) of a rank-2 module M ⊂ K2 such that M contains a
non-zero vector s with ‖s‖ ≤ γ−1 · N (M)1/(2d).

Note that any module M associated to a γ-uSVP instance contains the rank-
1 submodule sOK whose norm is ≤ √N (M)/γd. By Lemma 2.8, this implies
that if γ > 1, then the module M has a unique densest rank-1 submodule.

Definition 2.13 ((D, γ, γ′)-uSVPvec and (γ, γ′)-wc-uSVPvec). Let γ ≥ γ′ > 0
and D a distribution over γ-uSVP instances. The (D, γ, γ′) average-case unique
SVP problem for rank-2 modules ((D, γ, γ′)-uSVPvec for short) asks, given as
input a pseudo-basis of some rank-2 module M sampled from D, to compute
a vector s ∈ M \ {0} such that ‖s‖ ≤ N (M)1/(2d)/γ′. The advantage of an
algorithm A against the (D, γ, γ′)-uSVPvec problem is defined as

Adv(A) = Pr
(B,I)←D

(

A((B, I)) = s with
∣
∣
∣
∣
s ∈ M \ {0}
‖s‖ ≤ N (M)1/(2d)/γ′

)

,
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where the probability is also taken over the internal randomness of A.
The worst-case variant ((γ, γ′)-wc-uSVPvec) asks to solve this problem for

any γ-uSVP instance (B, I).

Definition 2.14 ((D, γ)-uSVPmod and γ-wc-uSVPmod). Let γ > 0 and D a
distribution over γ-uSVP instances. The (D, γ) unique SVP problem for rank-2
modules ((D, γ)-uSVPmod for short) asks, given as input a γ-uSVP module M
sampled from D, to recover a densest rank-1 submodule N ⊂ M . The advantage
of an algorithm A against the (D, γ)-uSVPmod problem is defined as

Adv(A) = Pr
(B,I)←D

(

A((B, I)) = N with
∣
∣
∣
∣
N ⊂ M with rk(N) = 1
N (N) = λN

1 (M)

)

,

where the probability is also taken over the internal randomness of A.
The worst-case variant (γ-wc-uSVPmod) asks to solve this problem for any

γ-uSVP instance (B, I).

We can now define the NTRU problems, as special cases of the uSVP variants
above.

Definition 2.15 (NTRU instance). Let q ≥ 2 be an integer, and γ > 0 a
real number. A (γ, q)-NTRU instance is a γ-uSVP instance whose pseudo-basis
is required to be of the form ((b1,OK), (b2,OK)) with b1 = (1, h)T for some
h ∈ OK and b2 = (0, q)T .

Comparison with [PS21]. In [PS21], an NTRU instance consists in the single
element h ∈ Rq, whereas we consider it as a basis of a rank-2 module in this
work. Both formalisms are equivalent, since one can reconstruct the basis of the
rank-2 module from h (and also q, which is a parameter of the problem). A second
difference comes from the fact that [PS21] requires the short vector s = (s1, s2)T

to satisfy ‖s1‖, ‖s2‖ ≤ √
q/γ, whereas we require that ‖s‖ ≤ √

q/γ. This means
that a (γ, q)-NTRU instance for us is a (γ, q)-NTRU instance for [PS21], but the
converse does not hold: a (γ, q)-NTRU instance for [PS21] is only guaranteed to
be a (

√
2 · γ, q)-NTRU instance for us.

Definition 2.16 (NTRU problems). Let q ≥ 2, γ ≥ γ′ > 0 and D
a distribution over (γ, q)-NTRU instances. The (D, γ, γ′, q)-NTRUvec prob-
lem, (γ, γ′, q)-wc-NTRUvec problem, (D, γ, q)-NTRUmod problem and (γ, q)-
wc-NTRUmod problem are the restrictions of the uSVP problems to (γ, q)-NTRU
instances.

From the definitions of the NTRU and uSVP problems, one can see that the
average case NTRUvec and NTRUmod problems reduce to the worst-case uSVPvec

and uSVPmod problems. In the next sections, we will show that the converse also
holds, provided we have an oracle solving ideal-SVP.

Finally, we also recall the definition of the Hermite shortest vector problem
in ideal lattices (id-HSVP).
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Definition 2.17 (γ-id-HSVP). Let γ ≥ √
d·Δ1/(2d)

K . Given as input a fractional
ideal I ⊂ K, the γ-id-HSVP problem asks to find an element x ∈ I \ {0} such
that ‖x‖ ≤ γ · N (I)1/d.

By Minkowski’s theorem, this problem is well-defined for any γ ≥ √
d · Δ

1/(2d)
K .

3 New Tools on Module Lattices

In this section, we present new tools to manipulate module lattices. For the sake
of re-usability, we describe them for modules of arbitrary ranks, but we will use
them only in rank 2 in the reductions of the present work. The missing proofs
of this section are available in the full version of this paper.

3.1 Module Sparsification

An essential ingredient in the module randomization of Sect. 5 is sparsification.
In this subsection, we extend to modules the definition and some properties of
sparsification over lattices [Kho06].

Definition 3.1. Let M a module, p a prime ideal, b∨ ∈ (M∨/pM∨) \ {0} and
b∨ a lift of b∨ in M∨. The sparsification of M by (b∨, p) is the submodule

M ′ =
{
m ∈ M, 〈b∨,m〉KR

∈ p
}

.

The submodule M ′ does not depend on the choice of the vector b∨ lifting b∨.

Note that M ⊆ M ′ ⊆ pM , implying that M ′ has the same rank as M . As
showed by the following two lemmas, sparsification increases the module norm
by a factor N (p) and an arbitrary rank-1 submodule of M is not contained in M ′

(except with probability ≤ 1/N (p)).

Lemma 3.2. Let M a module, p a prime ideal and b∨ ∈ (M∨/pM∨) \ {0}.
Let M ′ be the sparsification of M by (b∨, p). Then N (M ′) = N (p) · N (M).

Lemma 3.3. Let M a rank-k module, p a prime ideal and bI a primitive rank-
1 submodule of M . Let b∨ be uniformly distributed in (M∨/pM∨) \ {0} and
M ′ be the sparsification of M by (b∨, p). Then bpI ⊆ M ′ and, except with
probability 1/N (p) − 1/N (p)k, we have bI �⊂ M ′.

The following lemma states that a module sparsification can be efficiently
computed. The algorithm generalizes the one for lattice sparsification, detailed,
e.g., in [BSW16].

Lemma 3.4. There exists a polynomial-time algorithm taking as inputs an arbi-
trary pseudo-basis of M ⊂ Kk

R
, a prime ideal p and b∨ ∈ (M∨/pM∨) \ {0} and

computing a pseudo-basis of the sparsification of M by (b∨, p).
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3.2 Module Rounding

In this section, we describe the DualRound algorithm that rounds a rank-k mod-
ule contained in Kk

R
into a module contained in Ok

K (with a close geometry), in a
way that does not depend on how the module in Kk

R
was represented. We do that

by sampling almost orthogonal vectors in the dual lattice, in a similar fashion to
what was done in [dBDPW20] in the context of ideal lattices. We believe that
this technique of rounding via the dual might have other applications, especially
in situations where one would like to have the analogue of an HNF basis for
lattices with real coefficients.

DualRound is parameterized by a standard deviation parameter ς > 0,
a BKZ block-size β ∈ {2, . . . , kd} and an error bound ε > 0. It starts by
computing a short Z-basis of C∨, by using a provable variant of the BKZ
algorithm [Sch87,HPS11,GN08,ALNS20]. This offers different runtime-quality
trade-offs. It then uses the discrete Gaussian sampler from Lemma 2.1 with
orthogonal center parameters ti.

Algorithm 3.1. Algorithm DualRoundς,β,ε

Input: A pseudo-basis (B, I) of a rank-k module M ⊂ Kk
R .

1: Compute a Z-basis of M∨;
2: Run BKZ with block-size β on it to obtain a new Z-basis C∨ of M∨;
3: Set R = ε−1

√
kdς;

4: For i ∈ [k], set ti = R · ei, where ei is the i-th canonical unit vector of Kk
R ;

5: For i ∈ [k], sample yi ← D̂C∨,ς,ti
;

6: Return Y = (y1| . . . |yk)†.

Lemma 3.5. Let (B, I) be a pseudo-basis of a rank-k module M ⊂ Kk
R
. Let

β ∈ {2, · · · , kd}, ε > 0, and ς be such that ς ≥ (kd)kd/β+3/2 ·λkd(M∨). Algorithm
DualRound runs in time polynomial in 2β , log(ς/ε) and the bitsize of its input.
Further, on input (B, I), DualRoundς,β,ε outputs a matrix Y ∈ Mk(KR) such
that

• (Y · B) · I is contained in Ok
K ;

• Y = R · Ik + E for R = ε−1
√

kdς > 0 and ‖eij‖ ≤ εR for all i, j ∈ [k].

Moreover, if (B′, I′) is another pseudo-basis of M and if Y′ is the output of
DualRound given this pseudo-basis as input, then

SD(Y,Y′) ≤ 2−Ω(kd).

Note that Lemma 3.5 does not necessarily ensure that the matrix Y is invert-
ible, hence the module Y · B · I might not be of rank k. However, by choosing ε
sufficiently small and using the second condition on Y, one can make sure that Y
is indeed invertible. This is the purpose of Lemma3.6.

Lemma 3.6. Let Y ∈ Kk×k
R

be such that Y = R · Ik + E for some R > 0 and
‖eij‖ ≤ ε · R for all i, j ∈ [k]. Assume that ε ≤ 1/(2k). Then Y is invertible and
we have Y−1 = R−1 · Ik + E′, with ‖e′

ij‖ ≤ (k + 1) · ε · R−1 for all i, j ∈ [k].
Further, it holds that det(Y) ∈ [(1 + (k + 1)(k + 2)ε)−d/2, (1 + 3ε)d/2] · Rkd.
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4 From uSVP to NTRU

In this section, we prove the following result

Theorem 4.1. Let K be a number field of degree d with ζK(2) = 2o(d) and let
γ+ > 0 (recall that ζK(·) denotes the Dedekind zeta function of K). There exists
q0 = poly(Δ1/d

K , d, δK , γ+) ∈ R≥0 and an algorithm uSVP-to-NTRU such that the
following holds. For any q ≥ q0, γNTRU ≥ γ′

NTRU > 1, γHSVP ≥ √
dΔ

1/(2d)
K , let

γuSVP = γNTRU · √
γHSVP · 16

√
2 · d3/2 · δK

γ′
uSVP =

γ′
NTRU

γ
3/2
HSVP · 4 · d9/2 · δ2K

.

For any distribution DuSVP over γuSVP-uSVP instances with gap ≤ γ+, let
DNTRU be the distribution uSVP-to-NTRU (DuSVP, q, γHSVP). We have four reduc-
tions

• from (DuSVP, γuSVP)-uSVPmod to (DNTRU, γNTRU, q)-NTRUmod;
• from γuSVP-wc-uSVPmod restricted to modules with gap ≤ γ+ to (γNTRU, q)-

wc-NTRUmod;
• from (DuSVP, γuSVP, γ′

uSVP)-uSVPvec to (DNTRU, γNTRU, γ′
NTRU, q)-NTRUvec;

• from (γuSVP, γ′
uSVP)-wc-uSVPvec restricted to modules with gap ≤ γ+ to

(γNTRU, γ′
NTRU, q)-wc-NTRUvec.

Given access to an oracle solving γHSVP-id-HSVP, the four reductions run
in time polynomial in their input size, in exp( d log(d)

log(2q/q0)
) and in ζK(2).

The outline of the reduction is given in Fig. 2. Note that the quantity ζK(2)
may be exponential in d for some number fields (which may impact on the
run-time of the reduction, or even on the applicability of the reduction since
we require ζK(2) = 2o(d)). In the case of power-of-two cyclotomic fields, it was
proven in [SS13, Lemma 4.2] that ζK(2) = O(1). The missing proofs of this
section are available in the full version of this work.

4.1 Pre-conditioning the uSVP Instance

In this section, we use algorithm DualRound to pre-process the input module and
control its volume. In order to have the Hermite Normal Form of our integral
module look like an NTRU instance, we slightly modify the geometry of our input
module to make it have what we call the coprime property (see Definition 4.2).
Hence, we describe an algorithm, called PreCond (available in the full version of
this paper), which combines all this and transform any uSVP instance (with a
lower bounded gap) into a new uSVP instance with roughly the same geometry
and with all the properties we will require in Sect. 4.2.
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Definition 4.2 (Coprime property). We say that a rank-2 module M ⊆ O2
K

has the coprime property if it holds that

{x ∈ OK | ∃ y ∈ OK , (x, y)T ∈ M} = OK .

In other words, the module M has the coprime property if the ideal spanned by
the first coordinate of all the vectors of M is equal to OK .

We note that having the coprime property is not very constraining. In fact, any
module can be applied a small distorsion in order to ensure the coprime property.
This is formalized in Lemma 4.3 below.

Lemma 4.3. Let (B, I) be a pseudo-basis of a rank-2 module M ⊂ K2 with gap
γ(M) ≥ 1. There exists some V0 > 0 with V

1/(2d)
0 = poly(Δ1/d

K , d, δK , γ(M))
and an algorithm PreCond such that the following holds. Let β ∈ {2, · · · , 2d}
and V > 0 be such that V 1/(2d) ≥ (2d)2d/β · V

1/(2d)
0 . Then, on input (B, I), V

and β, algorithm PreCond outputs a matrix Y ∈ GL2(K) such that

• if (B, I) is a γuSVP-uSVP instance, then (YB, I) is a γ′
uSVP-uSVP instance

for γ′
uSVP = γuSVP/(2

√
2);

• the rank-2 module M ′ := YB · I is contained in O2
K ;

• N (M ′) ∈ [1/2d, 2d] · V ;
• M ′ has the coprime property;
• Y = R · I2 + E for some R = V 1/(2d) · N (M)−1/(2d) > 0 and ‖eij‖ ≤ R/5 for

all 1 ≤ i, j ≤ 2.

Assume that ζK(2) ≤ 2o(d). Then Algorithm PreCond runs in expected time
polynomial in its input bitsize, in 2β and in ζK(2).

4.2 Transforming a uSVP Instance into an NTRU Instance

As the NTRU modules are free, the second step of our reduction finds a free mod-
ule containing our uSVP instance and transforms it into an NTRU instance. For
this purpose, we use the BalanceIdeal algorithm (available in the full version of
this work) that takes as input any fractional ideal I and uses a γHSVP-id-HSVP
oracle to output a balanced element x such that 〈x〉 contains I but is not much
larger than it.

Lemma 4.4. There exists an algorithm BalanceIdeal that takes as input a
fractional ideal I ⊂ K and a parameter γHSVP ≥ √

d · Δ
1/(2d)
K , and outputs an

element x ∈ K such that I ⊆ 〈x〉 and |σi(x)| ∈ [1 − 1/d, 1 + 1/d] · σ−1 for all
i ≤ d, where σ = γHSVP · d2 · δK · N (I)−1/d.

Moreover, given access to a γHSVP-id-HSVP oracle, it runs in polynomial
time and makes one call to the γHSVP-id-HSVP oracle.

We can now describe our algorithm transforming a uSVP instance into an
NTRU instance: Algorithm 4.1. The operations done by this algorithm are sum-
marised in Fig. 2 and proven in Lemma4.6.



728 J. Felderhoff et al.

Algorithm 4.1. Algorithm Conditioned-to-NTRU
Input: A pseudo-basis B1 · I of a rank-2 module in O2

K and some parameters q and
γHSVP

Output: A basis B4 of a free rank-2 module and some auxiliary information aux

1: Compute the HNF pseudo-basis B2 · J of the rank-2 module spanned by B1 · I
Let a = B2[1, 0] # B2 =

(
1 0
a 1

)

2: Sample b ← BalanceIdeal(J2, γHSVP)
3: Compute h = 
a · q/b�
4: Return B4 =

(
1 0
h q

)
and aux = (a, b, J1, J2)

Lemma 4.5. Let γHSVP ≥ √
dΔ

1/(2d)
K , q ∈ Z>0 and (B, I) be a pseudo-basis of

a rank-2 module M ⊆ O2
K . Assume that we have access to a γHSVP-id-HSVP

oracle. On input γHSVP, q and (B, I), algorithm Conditioned-to-NTRU runs in
polynomial time in the bitsize of its input and makes one call to the γHSVP-
id-HSVP oracle.

Lemma 4.6. Let γHSVP ≥ √
d · Δ

1/(2d)
K , γNTRU > 1 and q ∈ Z>0 be some

parameters. Define

V = γd
HSVP · qd · dd

and γuSVP = γNTRU · √
γHSVP · 8 · d3/2 · δK .

Let (B, I) be any γuSVP-uSVP instance in O2
K , with the coprime property

and with norm in [1/22d · V, 22d · V ]. Then on input (B, I), γHSVP, q, the algo-
rithm Conditioned-to-NTRU outputs (B4, aux) such that B4 is a (γNTRU, q)-
NTRU instance.

The aux information output by algorithm Conditioned-to-NTRU will be used
to lift any short vector/dense submodule from the NTRU instance back to the
uSVP instance. The proofs of Lemmas 4.5 and 4.6 are available in the full version
of this work.

4.3 Lifting Back Short Vectors and Dense Submodules

In this section, we prove that using the auxiliary information aux produced
by Algorithm Conditioned-to-NTRU, one can lift a short vector or a densest
submodule from the output NTRU instance back to the input uSVP instance.
The proofs of Lemmas 4.7 and 4.8 are available in the full version of this work.

Lemma 4.7. There exists an algorithm LiftMod such that the following holds.
Let q, γHSVP and (B, I) be as in Lemma 4.6. Let M1 denote the rank-2 module
generated by (B, I), [C, (a, b, J1, J2)] ← Conditioned-to-NTRU((B, I), q, γHSVP)
and let M4 denote the rank-2 free module generated by C.

Let (v, J) be a pseudo-basis of the densest rank-1 submodule of M4. Then,
on input a, b, (C,O2

K) and (v, J), algorithm LiftMod outputs w ∈ K such that
spanK(w) ∩ M1 is the densest rank-1 submodule of M1.
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Fig. 2. Outline of algorithm Conditioned-to-NTRU.

Moreover, algorithm LiftMod runs in polynomial time.

Lemma 4.8. There exists an algorithm LiftVec such that the following holds.
Let q, γHSVP and (B, I) be as in Lemma 4.6. Let M1 denote the rank-2 module
generated by (B, I), [C, aux] ← Conditioned-to-NTRU((B, I), q, γHSVP) and let
M4 denote the rank-2 free module generated by C.

Let s ∈ M4. Then, on input aux, γHSVP, (C,O2
K) and s, algorithm LiftVec

outputs a vector t ∈ M such that ‖t‖ ≤ ‖s‖ · 68 · γ2
HSVP · d4 · δ2K .

If given access to a γHSVP-id-HSVP oracle, algorithm LiftVec runs in poly-
nomial time and makes 1 call to the oracle.

Combining all the results of this section, one can prove Theorem 4.1.

5 Randomization of Rank-2 Modules with Gaps

A rank-2 module with a gap can, by Lemma 2.9 and the fact that densest
submodules are primitive, be written as M = u · J1 + v · J2 where u · J1 is
a densest rank-1 submodule of M . Informally, the goal of this section is to
randomize u,v, J1, J2 without changing the gap too much. The missing proofs
of this section are available in the full version of this work.

We first describe the average-case distribution we are considering. Note that
the gap parameter γ′ is itself a random variable.
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Definition 5.1. Let γ > 0 and B > 2. We define the distribution Dmodule
B,γ over

rank-2 and norm-1 modules by:

Dmodule
B,γ = QRSF-2-Mod(Q, γ′, I1, I2, r),

where

• the matrix Q is uniform in O2(KR);
• the gap parameter γ′ is set as γ′ = γ · N (c/a)1/(2d)/B1/(2d) with (a, c) ∈ K2

R

distributed as χKR
× D(0, 1) conditioned on the event that for all i ∈ [d] we

have |σi(a · c)| ≥ 1/d;
• the ideals I1, I2 are uniform in I1 (the set of norm-1 ideals);
• the element r is uniform in KR mod γ′−2 · I1I

−1
2 .

We now state the main theorem of this section, which can be viewed as a
worst-case to average-case reduction for rank-2 modules with a gap.

Theorem 5.2 (ERH). For all B ≥ (ddΔk)Ω(1) and γ ≥ B1/(2d) there exists a
procedure RandomizeB that runs in time polynomial in log B and the bitsize of
its input, and such that on input a pseudo-basis (B, I) of a rank-2 and norm-1
module M of gap γ outputs a pair ((B′, I′), aux) such that

• the pseudo-basis (B′, I′) spans a rank-2 and norm-1 module M ′;
• any event that holds for Dmodule

B,γ with probability ε ≥ 2−o(d) also holds for M ′

with probability Ω(ε4) over the internal randomness of RandomizeB.

Further, there exists a deterministic algorithm Recover that runs in time
polynomial in the bitsize of its input such that for M ′ as above, if U ′ is a dens-
est rank-1 submodule of M ′, then Recover(U ′, aux) returns the densest rank-1
submodule of M , with probability 1−2−Ω(d) over the randomness of RandomizeB.

We note that the theorem does not state that the output distribution of
RandomizeB is Dmodule

B,γ , but only that they are close in the sense that any event
that holds with sufficient probability for Dmodule

B,γ also holds for the output dis-
tribution of RandomizeB with a polynomially related probability.

RandomizeB is described in Algorithm 5.6. It consists of two main steps: a
coefficient randomization (described in Sect. 5.1), whose purpose is to random-
ize the ideal coefficients; and a geometric randomization (described in Sect. 5.2),
whose purpose is to randomize the pseudo-basis matrix. Section 5.3 compares
the distribution that would ideally be returned by the composition of the coef-
ficient and geometric randomizations, with the distribution of the pseudo-basis
in Definition 5.1. Finally, we complete the proof of Theorem5.2 in Sect. 5.4.

5.1 Coefficient Randomization

In the coefficient randomization step, our aim is to randomize the ideal coeffi-
cients of a good pseudo-basis (i.e., whose first pair corresponds to the densest
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rank-1 submodule), given an arbitrary pseudo-basis of a rank-2 module. One
may multiply the whole pseudo-basis by a random ideal, but this only random-
izes the pair of ideal coefficients. More precisely, this leaves the ratio of the ideal
coefficients unchanged. To decouple the ideal coefficients, we use module sparsi-
fication, as described in Sect. 3. This first step towards coefficient randomization
is formally described in Algorithm 5.1. Steps 1 and 3 are respectively performed
using Lemmas 2.3 and 3.4.

Algorithm 5.1. Partial Coefficient Randomization: Partial-CRB

Input: A pseudo-basis of a rank-2 module M .
1: Sample p uniformly among prime ideals of norms ≤ B;
2: Sample b∨ uniformly in (M∨/pM∨) \ {0};
3: Return a pseudo-basis of the sparsification of M by (b∨, p) along with p.

Theorem 5.3 (ERH). Let B ≥ (log ΔK)Ω(1). The runtime of Partial-CRB

is polynomial in log B and the bitsize of its input. Let (B, I) be a pseudo-basis of
a rank-2 module M , and let (J1,u), (J2,v) be an arbitrary pseudo-basis of M .
Let M ′ be the rank-2 module spanned by the pseudo-basis output by Partial-CRB

when given (B, I) as input, let b∨ be the element of (M∨/pM∨) \ {0} sampled
in Partial-CRB and let b∨ be a lift of b∨ in M∨.
Then, with probability 1 − (1/B)Ω(1), we have 〈b∨,u〉KR

/∈ pJ−1
1 . In that case,

there exists x ∈ J1J
−1
2 such that

M ′ = u · pJ1 + (v + xu) · J2.

Assume further that γ(M) ≥ B1/(2d) and that u · J1 is the densest rank-1
submodule of M . Then, still when 〈b∨,u〉KR

/∈ pJ−1
1 , we have that γ(M ′) =

γ(M)/N (p)1/(2d) > 1 and u · pJ1 is the densest rank-1 submodule of M ′.

The result follows from Lemmas 5.4 and 5.5, whose proofs are postponed to
the full version of this work.

Lemma 5.4. Borrowing the notations of Theorem5.3, we have

u · pJ1 ⊂ M ′ and u · J1 �⊂ M ′,

with probability 1 − (1/B)Ω(1) over the choices of p and b∨.

Lemma 5.5. Borrowing the notations of Theorem5.3 and assuming that u·J1 �⊂
M ′, there exists x ∈ J1J

−1
2 such that (v + xu) · J2 ⊂ M ′.

We now describe the coefficient randomization. Ideally, we would have access
to a pseudo-basis ((J1,u), (J2,v)) of the module M under scope, for which
the densest rank-1 submodule is u · J1. We would multiply J1 by a random
ideal and J2 by another random ideal. Unfortunately, given only access to an
arbitrary pseudo-basis ((I1,b1), (I2,b2)) of M , this seems difficult to achieve
obliviously. Instead, we use algorithm Ideal-Sample (Algorithm 2.1) to obtain
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a uniform norm-1 ideal I, and multiply M by it. This will obliviously multiply J1

and J2 by I. As this distribution is invariant by ideal multiplication, the ideal
J2I/N (J2)1/d will be uniform among norm-1 ideals. It remains to obliviously
randomize the first ideal independently of the second one. For this purpose, we
use Partial-CR (Algorithm 5.1), which has the effect of obliviously multiply-
ing the first ideal with a random prime ideal p while leaving the second one
unchanged (with overwhelming probability). Note that multiplying by a ran-
dom prime ideal is the main component of the ideal randomization algorithm
Ideal-Sample. In a sense, this “almost” randomizes J1.

Algorithm 5.2 describes the process on the input basis ((I1,b1), (I2,b2)). The
corresponding randomization performed on the hidden pseudo-basis ((J1,u),
(J2,v)) is described in Algorithm 5.3. Note that there is no need for Algorithm 5.3
to be efficient as its sole purpose is to describe the behavior of Algorithm 5.2 on
the hidden pseudo-basis.

In Theorem 5.6, we show that the resulting distributions on the output mod-
ules are statistically close, and describe the evolution of the densest rank-1 sub-
module.

Algorithm 5.2. Real Coefficient Randomization: Real-CRB,B′

Input: A pseudo-basis ((I1,b1), (I2,b2)) of a module M ⊂ K2
R.

1: Let ((I ′
1,b

′
1), (I

′
2,b

′
2)), p be the output of Partial-CRB on input ((I1,b1), (I2,b2));

2: Sample q using Ideal-SampleB′ ;
3: Let b′′

i = b′
i/N (p)1/(2d) for i ∈ [2];

4: Return ((qI ′
1,b

′′
1 ), (qI ′

2,b
′′
2 )), p, q.

Algorithm 5.3. Ideal Coefficient Randomization: Ideal-CRB

Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Let M = QRSF-2-Mod(Q, γ, J1, J2, r);
2: Let u = 1/γ · Q · (1, 0)T and v = γ · Q · (r, 1)T ;
3: Sample p uniformly among prime ideals of norms ≤ B;
4: Sample b∨ in M∨, uniform in M∨/pM∨ conditioned on 〈b∨,u〉KR

�∈ pJ−1
1 ;

5: Find x ∈ J1J2
−1 such that 〈b∨,v + x · u〉KR

∈ pJ−1
2 ;

6: Sample J uniformly among norm-1 ideals;
7: Return (Q, γ/N (p)1/(2d), J1J2

−1Jp/N 1/d(p), J, r + x).

Theorem 5.6 (ERH). Assume that B′ ≥ (ddΔK)Ω(1) and B ≥ (log ΔK)Ω(1).
The runtime of Real-CRB,B′ is polynomial in log(BB′) and the bitsize of its
input.

Let M = 1
γ · Q ·

([
1
0

]

· J1 +
[
r
1

]

· γ2 · J2

)

⊂ K2
R

a module with norm 1, in

QR-standard form. Then the distribution of the module output by Real-CRB,B′ on
input an arbitrary pseudo-basis of M is within statistical distance (1/B)Ω(1)+2−d

of QRSF-2-Mod(Ideal-CRB(Q, γ, J1, J2, r)).
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Assume further that γ ≥ B1/(2d) and let U denote the densest rank-1 sub-
module of M . Let (M ′, p, q) be the output of Real-CRB,B′ on input M . Then,
with probability 1 − (1/B)Ω(1), we have that γ(M ′) = γ(M)/N (p)1/(2d) > 1 and
the densest rank-1 submodule of M ′ is

N (p)
1
2d · U · q p

N 1/d(p)
.

5.2 Geometric Randomization

In the geometric module randomization, we will use a distribution Ddistort over
K2×2

R
whose purpose is to distort the geometric relationship between the dens-

est rank-1 submodule and the complementing rank-1 submodule of the rank-2
module under scope. We define Ddistort as DKR

(0, 1)2×2 conditioned on the event
that ‖det(σi(D))‖ > 1/d holds for all i ∈ [d].

The following lemmas describe useful properties of the distribution Ddistort.

Lemma 5.7. The following properties hold.

• The distribution Ddistort can be sampled from in time polynomial in d.
• The distribution Ddistort is invariant by multiplication on the left and the right

by matrices in O2(KR).

Lemma 5.8. Let D be the distribution over K2×2
R

of

Q ·
(

a b
0 c

)

where Q ← U(O2(KR)), a ← χKR
and b, c ← DKR

(0, 1), conditioned on the event
that for all i ∈ [d] we have |σi(a · c)| ≥ 1/d. Then D = Ddistort.

Let ((J1,u), (J2,v)) be a pseudo-basis of a rank-2 module M . Assume that u·
J1 is the densest rank-1 submodule, but that we have access to this pseudo-basis
only indirectly, via an arbitrary pseudo-basis of M . Write

(u|v) = Q ·
(

1 r
0 1

)

,

for some r ∈ KR. The purpose of the geometric randomization is to map r to
some r′ that is uniform modulo J1J

−1
2 , while at the same time not distorting

the module M too much, so that the randomized M still has a gap and its rank-
1 densest submodule is related to u · J1. For this purpose, we multiply M on
the left by a matrix sampled from Ddistort. For the analysis, it is convenient to
take it Gaussian, and to avoid a potentially large distortion, we avoid matrix
samples with small determinant. This corresponds to algorithm Real-GR (Algo-
rithm5.4). The effect on the hidden pseudo-basis ((J1,u), (J2,v)) is described
in algorithm Ideal-GR (Algorithm 5.5). In Theorem 5.9, we show that the result-
ing module distributions are identical, and describe the evolution of the densest
rank-1 sublattice.
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Algorithm 5.4. Real Geometric Randomization: Real-GR
Input: A pseudo-basis ((I1,b1), (I2,b2)) of a norm-1 module M ⊂ K2

R.
1: Sample D ← Ddistort (using Lemma 5.7);
2: (b′

1|b′
2) ← det(D)−1/(2d) · D · (b1|b2);

3: Return ((I1,b
′
1), (I2,b

′
2)),D.

Algorithm 5.5. Ideal Geometric Randomization: Ideal-GR
Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Sample a ← χKR

and c ← D(0, 1) conditioned on the event that for all i ∈ [d] we
have |σi(a · c)| ≥ 1/d;

2: Sample b ← D(0, 1);
3: Sample Q′ ← U(O2(KR));
4: Set J ′

1 = a/N 1/d(a) · J1 and J ′
2 = c/N 1/d(c) · J2;

5: Set γ′ = γ · N (c/a)1/(2d);
6: Set r′ = (b + ar)/c;
7: Return (Q′, γ′, J ′

1, J
′
2, r

′).

Theorem 5.9. Algorithm Real-GR runs in polynomial time. Let M = 1
γ · Q ·

([
1
0

]

· J1 +
[
r
1

]

· γ2 · J2

)

⊂ K2
R

a module with norm 1, in QR-standard-form.

Let M ′ be the module spanned by the output of Real-GR on input an arbitrary
pseudo-basis of M . Then the distribution of M ′ is identical to the distribution
QRSF-2-Mod(Ideal-GR(Q, γ, J1, J2, r)).

Further, if γ > d and U is the densest rank-1 submodule of M , then, with
probability 1 − 2−Ω(d), we have γ(M ′) > 1 and the densest rank-1 submodule
of M ′ is det(D)−1/(2d) · D · U , where D is the Gaussian matrix sampled during
the execution of Real-GR.

5.3 On the Ideal-GR ◦ Ideal-CR Distribution

We define a few probability distributions over the inputs of QRSF-2-Mod, which we
will use to show that the operations performed on the available arbitrary pseudo-
basis randomize the rank-2 module, so that the input module is “forgotten” in
the output module distribution while at the same time controlling the evolution
of the densest rank-1 submodule.

Definition 5.10. Let B ≥ 2 and γ > 0. We consider the following random
variables, which are assumed independent (unless stated otherwise).

• Q uniform in O2(KR);
• b ∈ KR distributed as DKR

(0, 1);
• (a, c) ∈ K2

R
distributed as χKR

× DKR
(0, 1) conditioned on the event that for

all i ∈ [d] we have |σi(a · c)| ≥ 1/d; we define γ′ = γ · N (c/a)1/(2d)/B1/(2d);
• p uniform among prime ideals of norms ≤ B;
• I1, I2, J uniform in I1 (the set of norm-1 ideals);
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• ζ ∈ E sampled from the centered normal law of standard deviation d−3/2,
conditioned on ‖ζ‖ ≤ 1/d;

• u uniform in {x ∈ KR,∀i ∈ [d] : ‖σi(x)‖ = 1};
• r′ uniform in KR mod γ′−2 · I1I

−1
2 .

Let J1, J2 ∈ I1 and r ∈ KR arbitrary. Let x be as in Step 5 of Ideal-CRB,
when given (Q, γ, J1, J2, r) as input and with the variable p of Ideal-CRB being
the random variable above. In order to simplify the notations, we define the
random variable:

I(J1, J2) = N 1
d

( c

a

)
· au

c exp(ζ)
· J1J2

−1J
p

N 1/d(p)
∈ I1.

Let r′′(J1, J2) be uniformly distributed in KR mod γ′−2 · I(J1, J2) · J−1.
We define the following distributions of the form (Q̃, γ̃, Ĩ1, Ĩ2, r̃), where the

random variables r̃ is defined modulo γ̃−2 · Ĩ1 · Ĩ2
−1

:

Drand
B,γ :

(
Q, γ

N (
c
a

) 1
2d

N (p)
1
2d

,
a

N 1/d(a)
J1J2

−1J
p

N 1/d(p)
,

c

N 1/d(c)
· J,

b + a(r + x)

c

)
,

D
(1)
B,γ :

(
Q, γ

N (
c
a

) 1
2d

N (p)
1
2d

, N 1
d

( c

a

)
· au

c
· J1J2

−1J
p

N 1/d(p)
, J, u

b + a(r + x)

c

)
,

D
(2)
B,γ :

(
Q, γ · N (

c
a

) 1
2d

N (p)
1
2d

, I(J1, J2), J, u
b + a(r + x)

c exp(ζ)

)
,

D
(3)
B,γ :

(
Q, γ′, I(J1, J2), J,

B
1
d

N 1/d(p)
· u

b + a(r + x)

c exp(ζ)

)
,

D
(4)
B,γ : (Q, γ′, I(J1, J2), J, r′′(J1, J2)),

Dtarget
B,γ : (Q, γ′, I1, I2, r′).

Note that Drand
B,γ is the distribution obtained by composing Ideal-CRB (Algo-

rithm5.3) and Ideal-GR (Algorithm 5.5), on an input of the form (Q0, γ, J1, J2, r)
with (γ, J1, J2, r) as above and Q0 ∈ O2(KR) arbitrary. These algorithms signif-
icantly randomize the QR-standard form, but it still depends on (J1, J2, r). On
the other hand, the distribution Dtarget

B,γ is independent of (J1, J2, r). Our goal
is to show that these two distributions are similar, in the sense that any event
that holds with some probability ε ≥ 2−o(d) for one holds with probability εO(1)

for the other one.
For this purpose, we consider the intermediate (hybrid) distributions of Defi-

nition 5.10. To help the reader, we use two colours in the definition of the succes-
sive distributions. The entries of the tuples that are in red are those that change
compared to the previous distribution. The variables with blue background are
those that depend on (J1, J2, r). The relations between the distributions of Def-
inition 5.10 are pictorially summarized in Fig. 3. The lemmas formally stating
these relations and their proofs are provided in the full version of this paper.
Some of the relations require B ≥ (ddΔK)Ω(1) or γ ≥ d1/4 · Δ

1/(2d)
K .
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Drand
B,γ = D

(1)
B,γ

RD2=O(1)−−−−−−−→ D
(2)
B,γ

RD2=O(1)−−−−−−−→ D
(3)
B,γ

SD=2−Ω(d)←−−−−−−→ D
(4)
B,γ

SD=2−Ω(d)←−−−−−−→ Dtarget
B,γ

Fig. 3. The relations between the distributions of Definition 5.10, proved in the full ver-

sion of this paper. Here D
RD2=O(1)−−−−−−−→ D′ means RD(D′ ‖ D) = O(1) and D

SD=2−Ω(d)−−−−−−−−→
D′ means SD(D, D′) = 2−Ω(d).

5.4 Full Module Randomization

The full randomization algorithm RandomizeB (Algorithm 5.6) is the composi-
tion of algorithms Real-CR and Real-GR.

Algorithm 5.6. (Real) Full Randomization: RandomizeB

Input: A pseudo-basis (B, I) of a norm-1 module M ⊂ K2
R.

1: Apply Real-CRB,(ddΔK)Ω(1) to (B, I) and let ((B◦, I◦), p, q) be the output;

2: Apply Real-GR to (B◦, I◦) and let ((B′, I′),D) be the output;
3: Return ((B′, I′), aux) with aux = (p, q,D).

Let ((B′, I′), aux) be an output of RandomizeB , and U ′ be a rank-1 submodule
of the module spanned by (B′, I′). We define:

Recover(U ′, aux = (p, q,D)) = (N (p) · det(D))
1
2d · D−1 · U ′ · q−1p−1.

With these choices of algorithms RandomizeB and Recover, we can finally
prove Theorem 5.2. For this purpose, we show that the module distribution that
is output from the randomization algorithm (on an arbitrary input) and the
distribution Dmodule

B,γ from Definition 5.1 are close in the mixed “SD plus RD”
sense of Fig. 3. The full proof is available in the full version of this work.

6 Random Self-reducibility of Module uSVP

The main result of this section is the following worst-case to average-case reduc-
tion for uSVPmod.

Theorem 6.1 (ERH). There exist γ0 = (dΔ
1/d
K )O(1) and a family of distribu-

tions (DuSVP
γ )γ≥γ0 such that the following properties hold for any γ ≥ γ0:

• if γ ≤ (2dΔ
1/d
K )O(1), then DuSVP

γ can be sampled from in time polynomial
in log ΔK ;

• with probability 1−2−Ω(d), a sample from DuSVP
γ is a pseudo-basis of a rank-

2 module M ⊆ O2
K with gap γ(M) ≥ γ · √

dΔK
1/(2d); in particular, these

are γ-uSVP instances;
• there exists a Karp reduction from γ′-wc-uSVPmod to (DuSVP

γ , γ)-uSVPmod,

with γ′ = γ · (d · Δ
1/d
K )O(1); the reduction runs in time polynomial in log ΔK

and the input bitsize.
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Note that the restriction on γ for the first condition is very mild, as in this
parameter range, uSVPmod can be solved in polynomial time using the LLL
algorithm [LLL82]. We now proceed in two steps. We first define and study the
distribution DuSVP, and then prove Theorem6.1.

6.1 A Distribution over uSVP Instances

Let γ > 1. The distribution DuSVP
γ is defined as follows:

• sample a module from Dmodule
B,γ′ along with a pseudo-basis (B, I), with B =

(ddΔK)O(1) and γ′ = 2γ ·√dΔK
1/(2d) ·√dB1/d (see Definition 5.1) and using

Ideal-Sample to sample from I1;
• call DualRoundς,β,ε(B, I) with ς = (2dΔ

1/d
K )O(1), β = 2 and ε = 1/(2d)3/2,

and let Y denote the output;
• return HNF(Y · B, I).

The first two statements of Theorem 6.1 are implied by the following lemmas,
whose proofs can be found in the full version of this work.

Lemma 6.2. A sample M from Dmodule
B,γ′ has gap γ(M) ≥ γ′/(

√
dB1/d), with

probability 1 − 2−Ω(d).

Using the latter result and Lemma 2.11, we obtain that the assumptions of
Lemma 3.5 are satisfied. This implies that the above sampling algorithm runs in
time polynomial in log ΔK . By Lemmas 3.5 and 3.6, the output is a pseudo-basis
of a rank-2 module in O2

K .

Lemma 6.3. Let γ > 2. Let (B, I) be a pseudo-basis of a rank-2 module M with
gap γ. Let Y denote the output of DualRoundς,β,ε(B, I) with ς = γ · (2d)2d+3,
β = 2 and ε = 1/(2d)3/2. Then the module spanned by (Y · B, I) has gap ≥ γ/2.

The definition of DuSVP
γ and Lemmas 6.2 and 6.3 implies that the modules

whose pseudo-basis are sampled from DuSVP
γ have gap ≥ γ · √

dΔK
1/(2d), and

hence are γ-uSVP instances with overwhelming probability.

6.2 Reducing Worst-Case Instances to DuSVP Instances

We first introduce intermediate problems, that will allow us to split the reduction
into several steps.

Definition 6.4. Let γ > 1. A γ-uSVPN instance consists in a pseudo-basis
(B, I) of a rank-2 module M ⊂ K2 such that γ(M) ≥ γ.

Let D a distribution over γ-uSVPN instances. The (D, γ)-uSVPN
mod prob-

lem asks, given as input a sample (B, I) from D, to recover a densest rank-1
submodule of the module spanned by (B, I).

The worst-case variant γ-wc-uSVPN
mod asks to solve this problem for any γ-

uSVPN instance.
The γ≈-wc-uSVPN

mod variant is the restriction of γ-wc-uSVPN
mod to the γ-

uSVPN instances whose spanned modules M satisfy γ(M) ∈ [γ, γ · (1 + 1/d)].
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Note that worst-case wc-uSVPmod reduces to wc-uSVPN
mod as the existence

of a short non-zero vector implies the one of a dense rank-1 module. Similarly,
uSVPN

mod reduces to uSVPmod with a loss of a (
√

dΔ
1/d
K ) factor in the parameters,

thanks to Minkoswki’s theorem. To prove the third statement of Theorem 6.1, it
hence suffices to reduce wc-uSVPN

mod to uSVPN
mod for distribution DuSVP

γ . The
result follows from Lemmas 6.5 and 6.7.

The first lemma states that to solve γ-wc-uSVPN
mod (in which the gap is only

bounded from below), then it suffices to solve γ≈-wc-uSVPN
mod (in which the gap

is almost known). It relies on sparsification.

Lemma 6.5 (ERH). Let γ, γ′ > 1 satisfying γ′ ≥ 2 log(ΔK)O(1/d) ·γ. Then γ′-
wc-uSVPN

mod reduces to γ≈-wc-uSVPN
mod. The reduction runs in time polynomial

in (log ΔK)O(1) and its input bitsize and succeeds with probability Ω(1/(d2 +
log ΔK)).

Using the Rényi divergence, it is possible to relate the success probability of
an algorithm towards solving uSVPN

mod for samples from DuSVP
γ with the same

probability for DuSVP
γ′ , when γ and γ′ are sufficiently close.

Lemma 6.6. Let γ, γ′, γ′′ > 1 with γ′ ∈ γ · [1, 1+1/d] and γ′′ = γ/(dΔ
1/d
K )O(1).

Then any algorithm that solves (DuSVP
γ , γ′′)-uSVPN

mod with probability ε also
solves (DuSVP

γ′ , γ′′)-uSVPN
mod with probability Ω(ε2).

Equipped with the latter result, we are now able to state the worst-case to
average case component of the reduction.

Lemma 6.7 (ERH). Let γ, γ′, γ′′ > 1 with γ′ = γ · (dΔ
1/d
K )O(1) and γ′′ =

γ/(dΔ
1/d
K )O(1). Then there is a reduction from γ≈-wc-uSVPN

mod to (DuSVP
γ′ , γ′′)-

uSVPN
mod. The reduction runs in time polynomial in log ΔK and the input bitsize,

and if the (DuSVP
γ′ , γ′′)-uSVPN

mod oracle succeeds with probability ε ≥ 2−o(d), then
the reduction succeeds with probability εO(1).
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[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 25

[KF17] Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched
NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 1

[Kho06] Khot, S.: Hardness of approximating the shortest vector problem in high
	p norms. J. Comput. Syst. Sci. (2006)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. (1982)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

https://doi.org/10.1007/978-3-030-56880-1_10
https://www.ntru.org/
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-030-56880-1_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1


740 J. Felderhoff et al.

[LPSW19] Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for
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[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Code Cryptogr. (2015)

[Pei16] Peikert. C.: A decade of lattice cryptography. Found. Trends Theor. Com-
put. Sci. (2016)

[PHS19] Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices
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Abstract. Blum, Kalai and Wasserman (JACM 2003) gave the first
sub-exponential algorithm to solve the Learning Parity with Noise (LPN)
problem. In particular, consider the LPN problem with constant noise

and dimension n. The BKW solves it with space complexity 2
(1+ε)n
log(n) and

time/sample complexity 2
(1+ε)n
log(n) · 2Ω(n

1
1+ε ) for small constant ε → 0+.

We propose a variant of the BKW by tweaking Wagner’s generalized
birthday problem (Crypto 2002) and adapting the technique to a c-ary
tree structure. In summary, our algorithm achieves the following:
1. (Time-space tradeoff). We obtain the same time-space tradeoffs

for LPN and LWE as those given by Esser et al. (Crypto 2018), but
without resorting to any heuristics. For any 2 ≤ c ∈ N, our algorithm

solves the LPN problem with time complexity 2
log(c)(1+ε)n

log(n) ·2Ω(n
1

1+ε )

and space complexity 2
log(c)(1+ε)n
(c−1) log(n) for ε → 0+, where one can use

Grover’s quantum algorithm or Dinur et al.’s dissection technique
(Crypto 2012) to further accelerate/optimize the time complexity.

2. (Time/sample optimization). A further adjusted variant of our
algorithm solves the LPN problem with sample, time and space

complexities all kept at 2
(1+ε)n
log(n) , saving factor 2Ω(n

1
1+ε ) for ε → 0+

in time/sample compared to the original BKW, and the variant of
Devadas et al. (TCC 2017).

3. (Sample reduction). Our algorithm provides an alternative to
Lyubashevsky’s BKW variant (RANDOM 2005) for LPN with a
restricted amount of samples. In particular, given Q = n1+ε (resp.,
Q = 2nε

) samples for any constant ε > 0, our algorithm saves a

factor of 2Ω(n)/ log(n)1−κ

(resp., 2Ω(nκ)) for constant κ → 1− in run-
ning time while consuming roughly the same space, compared with
Lyubashevsky’s algorithm.

In particular, the time/sample optimization benefits from a careful anal-
ysis of the error distribution among the correlated candidates, which
was not studied by previous rigorous approaches such as the analysis of
Minder and Sinclair (J.Cryptology 2012) or Devadas et al. (TCC 2017).
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1 Introduction

1.1 The LPN Problem and the BKW Algorithm

The LPN problem with dimension n ∈ N and noise rate 0 < μ < 1/2 asks

to recover the s $←− F
n
2 given an oracle that for each query responds with (ai,

〈ai, s〉 + ei) for uniformly random ai
$←− F

n
2 and Bernoulli distributed error ei,

i.e., Pr[ei = 1] = μ. Equivalently, LPN can be rephrased in the matrix-vector
format, i.e., to recover s given (A,A ·s+e), where A is a random Q×n Boolean
matrix, e ← BQ

μ , ‘·’ and ‘+’ denotes matrix vector multiplication and bitwise
addition over F2. It is worth mentioning that a candidate solution can be verified
with high confidence in polynomial time and space for any non-trivial noise rate
μ ≤ 1/2 − 1/poly(n). A straightforward algorithm exhaustively searches for s
(or any n-bit substring of e whose corresponding submatrix of A is invertible),
which takes exponential time but consumes only polynomial-size space and thus
can be applied in extreme space-constrained situations.

Blum, Kalai and Wassermann [6] gave the first sub-exponential algorithm
(the BKW algorithm) that solves the LPN problem via an iterative block-wise
Gaussian elimination method. Consider the LPNn,μ problem with dimension n,
and noise rate μ = 1−γ

2 . For block size b, and number of iterations a such that
ab = n, the algorithm does the following (see Sect. 2.3 for more formal details):

1. Runs for a iterations and reduces the dimension by b bits in each iteration
(by XORing LPN sample pairs whose corresponding block sum to zero). This
results in samples in the form of (u1, 〈u1, s〉 + ẽj) = (u1, s1 + ẽj), where s1 is
the first bit of s, and ẽj is the sum of noise from 2a original LPN samples.

2. Repeats step 1 on fresh new LPN samples for m ≈ (1/γ)2
a+1

times, obtaining
at least one candidate (u1, s1 + ẽj) each time.

3. Majority votes on the m samples obtained in step 2 and produces a candidate
for s1. Repeats the process for other bits of s (on previously used samples).

The BKW solves the LPN problem in time T , using space of size M and up to
Q samples, and succeeds with the probability P as below

T ≈ 2b · (1/γ)2
a+1

, M ≈ 2b, Q ≈ 2b · (1/γ)2
a+1

, P = 1 − negl(n) ,

where throughout the paper “≈” denotes the approximate relation that omits a
multiplicative poly(n) factor. For any constant 0 < γ < 1, we set a = log(n)

1+ε and

b = (1+ε)n
log(n) such that T ≈ 2

(1+ε)n
log(n) · 2Ω(n

1
1+ε ) and M ≈ 2

(1+ε)n
log(n) , where constant

ε → 0+. Quite naturally, one may raise the following questions:

1. (Time-space tradeoff). Is it possible to achieve meaningful time-space
tradeoffs for BKW to deal with bounded space in practice?

2. (Time/sample optimization). Is it possible to optimize the time/sample
without sacrificing space, in particular, to eliminate the (1/γ)2

a+1
factor?
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3. (Sample reduction). Is it possible to push the sample complexity to a much
lower order of magnitude than the time/space complexities?

Below we first survey related works and progress made in tackling the above
problems followed by a summary of our contributions.

1.2 Time-Space Tradeoff for BKW

The huge space consumption of BKW has become an obstacle for a realistic secu-
rity evaluation of LPN/LWE-based crypto-systems. As discussed in [18], while
performing 260 or more steps is considered doable with a reasonable budget,
an algorithm consuming a space of size 260 is definitely out of reach in practice.
Likewise, in the lattice setting the enumeration method (e.g., the Kannan’s algo-
rithm [26] that takes time 2O(n log(n)) and space poly(n)) often beats the lattice
sieving [16,29–31] with time and space 2O(n) in practice, and there is a renewed
interest in the time-space trade-offs, e.g., lattice tuple sieving [4,22,23].

Esser et al. [18] discussed time-space tradeoff for BKW, but their algorithm
already needs exponential time for space requirement below 2n/ log(n). Later,
they [17] introduced another variant of the BKW with better support for time-
space trade-offs, called the c-sum BKW, where 2 ≤ c ∈ N. Initially, it starts
with a list of independent and uniformly random vectors L0 = (a0,1, · · · ,a0,N ),
omitting the noisy parity bits for succinctness. It iteratively takes sums of c
samples from the previous list Li and stores those (that zero out the (i + 1)-th
b-bit block) into the next Li+1, until at last it reaches a given target (typically
of Hamming weight 1). The rest of the steps (repeating the above process m
times, majority voting, etc.) are similar to the original BKW [6]. Note that c is
the parameter to tune the tradeoff between space and time. In particular,

(
N
c

)

increases exponentially with c, so with larger c one may use a smaller space at
the cost of increasing time.

Nevertheless, the intermediate samples during each iteration of the c-sum
BKW are somehow correlated, e.g., a1+a2, a2+a3 and a1+a3 are correlated in
that they jointly sum to 0 regardless of the values of a1,a2,a3. Note that the
original BKW [6] resolves the independence issue by using 2b reference vectors
(whose i-th block take all values over Fb

2) in each i-th iteration, and XORing the
rest vectors with one of the reference vector (zeroing out the i-th block), which
produces independent vectors for the next iteration. In the generalized c-sum
setting [17], it is not clear how the independence can be guaranteed to obtain a
rigorous analysis of the running time, space consumption and success rate. Esser
et al. [17] resorted to the independence heuristic that simply assumes indepen-
dence among those vectors, and they also provided some empirical evidences that
the results (for certain parameter choices) behave close to the analysis under the
idealized heuristics. We remark that similar independence heuristics were already
used in the optimized analysis of concrete LPN instances (e.g., [7,8,20]).

Under the independence heuristics, Esser et al. [17] obtained various variants
of the c-sum BKW, such as the naive c-sum BKW, dissection c-sum BKW,
tailored dissection c-sum BKW, and quantum c-sum BKW, as shown in Table 1.
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The naive c-sum BKW is the most generic one that admits time-space tradeoffs
for arbitrary 2 ≤ c ∈ N, the dissection c-sum BKW is the time-optimized version
of the naive c-sum BKW for c ∈ {(i2 + 3i + 4)/2 : 0 ≤ i ∈ N}, the tailored
dissection c-BKW is a fine-grained version of the dissection c-sum BKW (by
adjusting the value of β, see also a visual illustration in [33, Figure 4]) that
relies on additional heuristics, and the quantum c-sum BKW is the quantumly
accelerated version of the naive c-sum BKW via the Grover algorithm [9,15,19].
They also applied the c-sum BKW to the LWE problem [36] and got similar
results (see Table 5). We refer to Sect. 2.4 for more details about the c-sum BKW
algorithm. Looking ahead, we provide unconditional algorithms with essentially
the same complexities (see Sect. 3.2 through Sect. 3.7).

Table 1. The time and space complexities of the c-sum BKW [17] (and our c-sum+

BKW) for solving the LPNn,μ problem, where Nc = 2
log(c)
c−1 · n

log(n) ·(1+ε)
and constant

ε > 0.

c-sum (c-sum+) BKW Space Time for

Classic Original BKW [6] N2 N2 c = 2

Naive Nc Nc−1
c c ≥ 2

Dissection Nc Nc−√
2c

c c = 4, 7, 11, · · ·
Tailored Dissection Nβ

c Nc−β
√
2c

c c = 4, 7, 11, · · · β ∈ [1,
√

c√
c−1

]

Quantum Naive + Grover Nc N
c/2
c c ≥ 2

Table 2. A comparison of our time-space tradeoff and the heuristic state of the art [11,

13] for solving the LPNn,μ problem, where Nc = 2
log(c)
c−1 · n

log(n) ·(1+ε)
and constant ε > 0.

Time-space tradeoff for

Our dissection version T = Nc−√
2c

c M = Nc c = 4, 7, 11, · · ·
Dinur [13] T log(n)/2+1 · M log(n)/2 = N

log(n)
2

√
T < M < T

T 2 · M3 log(n)/2−2 = N
log(n)
2 M <

√
T

Delaplace et al. [11] T = N
( 1
2+ 1

c
) log(c)

2 M = N
2
c
log(c)

2 c ≥ 2

We give the same end results as [17] while removing its underlying heuris-
tics (see Table 1). We mention that [11,13] further advanced the heuristic-based
state-of-the-art with the aid of parallel collision search (PCS). PCS used the
similar independence heuristics such as HA(y) = yT · A behaves like a random
oracle or pseudorandom function, where A is the public matrix of the LPN prob-
lem. Note that the assumption doesn’t hold in general even for secret A, e.g., for
y1 = y2 +y3 we have HA(y1) = HA(y2)+HA(y3). As depicted in Table 2, it is
quite challenging to do a comprehensive comparison with [11,13]. For instance,
when

√
T < M < T , Dinur [13] achieves roughly T · M ≈ N2

2 , e.g., T ≈ N
4/3
2
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and M ≈ N
2/3
2 . In contrast, our dissection version (see Theorem 6) achieves the

same T ≈ N
4/3
2 and M ≈ N

2/3
2 by setting c = 4. Further, for M <

√
T our result

seems better than [13] (i.e., our T 2 ·M3 log(n)/2−2 < N
log(n)
2 ), but the comparison

is unfair as the explicit result analyzed/stated in [13] only considers c = 4 (gener-
alizing to other c may yield different results). Delaplace et al. [11] is less superior
to ours for c < 11, and it outperforms ours when M < 20.35n/ log(n) (c ≥ 11 in
our case). Therefore, as far as time-space tradeoff is concerned, we mainly focus
on [17], and leave it as future work on how to remove all the heuristics of [11,13].

1.3 Time/Sample Optimization and Sample Reduction for BKW

As discussed in Sect. 1.1, the BKW [6] repeats step 1 for (1/γ)2
a+1

= 2Ω(n
1

1+ε )

times and thus increases the time and sample complexities by the same factor. In
fact, step 1 may have already produced sufficiently many samples (s1 + ẽj), and
intuitively one just needs a majority vote to decode out s1. However, those noise,
say ẽj and ẽj′ , are both the XOR sums of noise from the LPN samples, and they
might not be (even pairwise) independent. Levieil and Fouque [32] used the LF1
technique to replace the majority voting and recover multiple secret bits (instead
of a single one) at the same time. However, the BKW variant of [32] employs
the LF2 technique when mixing up the vectors and heuristically assumes that
the mixed up vectors behave as if they were independent, which is what we want
to avoid in this paper. Devadas et al. [12] proposed a (non-heuristic) single-list
pair-wise iterative collision search method to optimize the BKW, where they
showed that the distribution of solutions is close to a Poisson distribution and
applied the Chen-Stein method [3] of the second moment analysis to bound the
difference. As a result, their variant solves the LPN problem (with overwhelming
probability) in time T , using space of size M and sample complexity Q as below

T ≈ 2b · (1/γ)2
a

, M ≈ 2b · (1/γ)2
a

, Q ≈ 2b ,

where their sample complexity gets rid of the (1/γ)2
a+1

factor as desired,
time complexity is only mitigated (factor (1/γ)2

a+1
squared to (1/γ)2

a

), and
space complexity even deteriorates by factor (1/γ)2

a

compared to the original
BKW [6].

Lyubashevsky [34] studied how to solve the LPN problem with fewer samples.
In particular, he used Q = n1+ε (for constant ε > 0) LPN samples as a basis to
generate as many samples as needed, and feed them to the original BKW [6].
Concretely, let (A, tT = (sTA + xT)) be the initial LPN samples, where A is
the n × Q matrix, and vectors with ‘T’ denote row vectors. A “re-randomized
LPN” oracle take as input (A, tT) and responds with (Ari, tTri = sTAri+
xTri) as the i-th re-randomized LPN sample, where every ri is drawn from the
set of length-Q-weight-w strings uniformly at random. For an appropriate value
of w, (A, Ari, xTri) is statistically close to (A, Un, xTri) by the leftover hash
lemma [25] with mildly strong noise xTri. In the end, Lyubashevsky’s variant of
BKW solves the LPN problem (with overwhelming probability) in time T , using
space of size M and sample complexity Q as below
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T ≈ 2b · (4/γ)2
a+2·n/(ε log(n)), M ≈ 2b, Q = n1+ε .

For constant 0 < γ < 1, we set a = κ · log log(n) and b = n
κ log log(n) for constant

0 < κ < 1 and thus T = 2
n

κ log log(n) · 2Ω(n)/ log(n)1−κ

, which is optimized when
κ → 1−. Let us mention that Lyubashevsky’s technique [34] also implies that
LPN with Q = 2nε

(constant 0 < ε < 1) samples can be solved in time and space
complexity 2O(n/ log(n)). We refer to Sect. 4.2 for more details.

1.4 Our Contributions

In this paper, we consider a problem that can be seen as a variant of Wagner’s
generalized birthday problem [38]. We recall the generalized birthday problem
that, given k = 2a independent lists of i.i.d. uniformly random vectors, challenges
to find out k vectors, one from each list, summing to a specified target, where the
k vectors constitute a solution to the problem. The problem we consider further
generalizes and differs to the generalized birthday problem in the following ways.

– (Generalization). We consider the case of k = ca for 2 ≤ c ∈ N and a ∈ N
+.

– (Pairwise-independence). Each list consists of pairwise independent
(instead of i.i.d. random) vectors, and all the lists are mutually independent.

– (Bias analysis). Our analysis framework extends to the case where each
random vector is labelled with a true/false flag (to fully represent the LPN
problem). We show that as long as the initial bias (the difference between
the number of true and false samples) is bounded, the resulting bias among
the solutions will be bounded (with reasonable blowup) as well, a feature not
studied by the previous algorithms for the generalized birthday problem.1

As visualized in Fig. 1(b), our algorithm, referred to as the c-sum+ BKW,
breaks down the above problem on ca lists into (ca−1+· · ·+c0) subproblems on c
lists, called the c-sum+ problems. Further, we show that as long as the pairwise-
independence (for vectors within each list) and mutual independence (among the
lists) are satisfied for the ca lists at the input level, the conditions will be satisfied
by the lists at every other level (e.g., L1,1, L1,2, L1,3 in Fig. 1(b)). We give analysis
of the time, space and success probability without resorting to heuristics, thank
to the pairwise-independence condition. Under our unified framework, the three
tweaks, i.e., generalization, bias analysis and pairwise-independence, lead to the
following advantages respectively.

1. (Time-space tradeoff). Our algorithm admits various time-space tradeoffs
for solving LPN (shown in Table 1) and LWE (see Table 5), same as those
achieved by the c-sum BKW [17], but without relying on any heuristiscs.

1 The original generalized birthday problem omits LPN’s noise labels. Even if many
solutions are found, the correlations among the accumulated noise do not support
majority voting. Therefore, non-heuristic analysis typically repeats the process on

fresh new samples for 2n1−ε

times and thus incurs the same overhead on time/sample.
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Fig. 1. An illustration of the c-sum BKW [17] and our c-sum+ BKW.

2. (Time/sample optimization). We carefully analyze and bound the error
distribution of the correlated solutions in step 1 (e.g., L2,1 in Fig. 1(b)), and
therefore avoid the “repeat-m-times loop” in step 2. This saves a factor of

N2 = (1/γ)2
a+1

= 2Ω(n
1

1+ε ) for small constant ε → 0+ in time and sample
complexities compared to the original BKW [6]. Our algorithm also enjoys a
sub-exponential

√
N2 advantage in time and space complexities compared to

the optimized BKW of Devadas et al. [12]. See Table 3 for more details.
3. (Sample reduction). By using pairwise independent samples for the initial

lists, we provide an alternative to Lyubashevsky’s BKW variant [34] with
improved time complexity. In particular, given Q = n1+ε (resp., Q = 2nε

)
samples for constant ε > 0, our algorithm saves a factor of 2Ω(n)/ log(n)1−κ

(resp., 2Ω(nκ)) for constant κ → 1− in running time compared with the coun-
terpart in [34]. We refer to Table 4 and Sect. 4.2 for details.

Table 3. The space, time and sample complexities of different variants of the BKW
for solving the LPNn,μ problem with μ = (1 − γ)/2, under condition N1 ≈ N2, where

ab = n, N1 = 2b and N2 = (1/γ)2
a+1

disregarding poly(n) factors.

Algorithm Space Time Sample Condition

The original BKW [6] N1 N1 · N2 N1 · N2 N1 ≈ N2

Devadas et al.’s [12] N1 · √
N2 N1 · √

N2 N1 N1 ≈ N2

Ours N1 N1 N1 N1 ≈ N2

It might seem counter-intuitive that our results listed in Table 3 and Table 4
only depend on N1 but still needs to satisfy N1 ≈ N2 (or similar ones in Table 4)
for optimized time complexity. As we will see, the condition N1 ≥ N2 (or alike)
is translated from the condition that sufficient amount of samples are needed
to ensure the correctness of majority voting (see Theorem 9), and we thus let
N1 ≈ N2 for optimized complexity and fair comparison.
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Table 4. The space, time and sample complexities of different variants of the BKW
for solving the LPNn,μ problem with μ = (1 − γ)/2, where ab = n, N1 = 2b, N2 =

(4/γ)2
a+2·n/(ε log(n)) and N ′

2 = (4/γ)2
a+2·n1−ε

and constant ε > 0.

Sample Algorithm Space Time Condition

n1+ε Lyubashevsky’s [34] N1 N1 · N2 N1 ≈ N2

Ours N1 N1 (N1)
log log(n) ≈ N2

2nε

Lyubashevsky’s [34] N1 N1 · N ′
2 N1 ≈ N ′

2

Ours N1 N1 (N1)
log(n) ≈ N ′

2

Related Work. Minder and Sinclair [35] used second-moment analysis, and
gave rigorous time/space bounds of Wagner’s generalized problem. While it looks
promising that the analysis of Minder and Sinclair [35] can be adapted to our
further generalized case of c ≥ 2 and pairwise-independent vectors (within each
list), their approach does not support bias analysis. Recall that the original
generalized birthday problem omits the noise labels, e1, · · · , eN , from the LPN.
Therefore, even many k-sum solutions are found, the correlations among the
accumulated noise may not support majority voting. Note that even the pairwise
independence condition does not hold for the noise, e.g., e1, e2, e1 + e2 are
pairwise independent only for uniformly random (not for biased) e1 and e2. This
is why previous non-heuristic algorithms have to repeat the process on fresh new
samples for N2 = 2n1−ε

times and thus incurs the same overhead on time/sample.
Recently, Devadas et al. [12] partially mitigated the issue by bounding the voting
difference using the Chen-Stein method [3], but their bound is not as good as
ours. As shown in Table 3, our result removes this penalty factor m = N2 almost
for free (without significantly increasing the time/sample complexity).

2 Preliminary

2.1 Notation

We use log(·) to denote the binary logarithm. For a ≤ b ∈ N, [a, b] def= {a, a +
1, · · · , b} and [a] := [1, a]. |S| is the cardinality of the set S. For any set S and
0 ≤ s ≤ |S|, (S

s

)
denotes the set of all size-s subsets of S. A list L = (l1, · · · , lN )

is an element from set SN with length |L| = N . We denote the empty list by ∅.
For x ∈ F

n
2 and b < n we denote the last b coordinates of x by lowb(x).

ui denotes the i-th unit vector, and 0b denotes the zero vector of dimension b.
We use ‘ :=’ to denote deterministic value assignment. US denotes the uniform
distribution over set S. Bμ denotes the Bernoulli distribution with parameter
μ, i.e., for x ← Bμ we have Pr[x = 1] = μ and Pr[x = 0] = 1 − μ. We use

s $←− S (resp., s ← S) to denote sampling s from set S uniformly at random
(resp., according to distribution S). For L = (l1, · · · , lN ) with every li uniformly
distributed over F

b
2, we say that L consists of pairwise independent elements if

for every 1 ≤ i < j ≤ N the corresponding (li, lj) is uniform over F
2b
2 .
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Lemma 1 (Piling-up Lemma). For 0 < μ < 1/2 and random variables e1,
e2, · · · , e� that are i.i.d. to Bμ we have Pr[

⊕�
i=1 ei = 1] = 1

2 (1 − (1 − 2μ)�).

Lemma 2 (Chebyshev’s Inequality). Let X be any random variable (taking
real number values) with expectation μ and standard deviation σ (i.e., V ar[X] =
σ2 = E[(X − μ)2]). Then, for any δ > 0 we have Pr

[
|X − μ| ≥ δσ

]
≤ 1

δ2 .

Lemma 3. For pairwise independent real-valued r.v.s X1, · · · ,Xm it holds that

V ar
[ m∑

i=1

Xi

]
=

m∑

i=1

V ar
[
Xi

]
.

We defer the proof of Lemma 3 to the full version of the paper [33].

2.2 The Learning Parity with Noise Problem

The LPN problem comes with two versions, the decisional LPN and the search
LPN, which are polynomially equivalent [2,5,27]. Therefore, we only state the
search version for simplicity.

Definition 1 (Learning Parity with Noise). For n ∈ N, s ∈ F
n
2 and 0 <

μ < 1/2, denote by Sample an oracle that, when queried, picks a $←− F
n
2 , e ← Bμ

and outputs a sample of the form (a, l = 〈a, s〉+e). The LPNn,μ problem refers to
recovering the random secret2 s given access to Sample. We call n the dimension,
s the secret, μ the error rate, l the label of a and e the noise.

2.3 The Original BKW

The BKW algorithm [6] works in iterations, and during each i-th iteration, it
uses 2b reference vectors (whose i-th block take all values over F

b
2). The rest

vectors are added with the corresponding reference vector to zero out the i-th
block, which yields new labels with doubled noise (the sum of a reference vector
and another) and losing 2b vectors in each iteration. The procedure repeats for
b iterations (i.e., zeros out ab bits) until reaching a unit vector, say u1, and let
the corresponding label be a candidate for 〈u1, s〉 = s1. One further repeats the
above on new samples and does a majority vote to recover s1 with overwhelming
probability. The procedure to recover other bits of s is likewise.

Theorem 1 (The BKW algorithm [6]). For dimension n, block size b and
number of blocks a such that ab ≥ n, there is an algorithm that succeeds (with
an overwhelming probability) in solving the LPNn,μ problem in time T ≈ 2b ·
(1/γ)2

a+1
and using space of size M ≈ 2b, where the noise rate μ = 1/2 − γ/2.

Concretely, for constant 0 < ε < 1, we set a = log(n)
1+ε and b = (1+ε)n

log(n) such that T

and M are both on the order of 2
(1+ε)n
log(n) +O(1)n

1
1+ε ≈ 2

(1+ε+o(1))n
log(n) .

2 The distribution of the secret is typically uniform over F
n
2 , but it has no effect on

the complexity of the BKW-style algorithms and thus is irrelevant in our context.
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2.4 The c-sum Problem and c-sum BKW

Given a list of N (typically uniformly random) vectors, the c-sum problem chal-
lenges to find out c of them whose (XOR) sum equals a specified target (typically
0b). Esser et al. [17] considered the variant that aims to find sufficiently many
(at least N) such solutions. Notice that N is both the number of vectors in
the input list and the amount of solutions produced as output. As we will later
see, this (together with the independence heuristics) enables the c-sum BKW
algorithm [17] to work from one iteration to another without losing samples.

Definition 2 (The c-sum Problem (c-SP) [17]). Let b, c,N ∈ N with c ≥ 2.

Let L
def= (a1, · · · ,aN ) be a list where ai

$←− F
b
2 independently for all i and let

t ∈ F
b
2 be a target. A single-solution of the c-sum problem is a size-c set L ∈ (

[N ]
c

)

such that
⊕

j∈L aj = t. A complete-solution is a set of at least N distinct single-
solutions.

Esser et al. [17] proposed a variant of the BKW, referred to as the c-sum
BKW, that admits time-space tradeoffs. This is achieved by generalizing the
original BKW [6], which zeroes out one block per iteration by taking the sum of
two vectors (i.e., 2-sum), to one that generates new samples that are the sum of
c samples from previous iterations for arbitrary 2 ≤ c ∈ N. It turns out that the
c-sum BKW algorithm significantly reduces the space needed, as

(
N
c

)
blows up

exponentially with respect to c, at the cost of increased running time.

Algorithm 1: The c-sum BKW
Input: access to the oracle LPNn,μ

Output: s ∈ F
n
2

1 a := log(n)
(1+εa) log(c)

, b := n
a
, m := 8(1−μ)n

(1−2μ)2ca , N := 2
b+c log(c)+1

c−1 ;

2 for i ← 1, · · · , m do
3 Get N fresh LPN samples and save them in L;
4 for j ← 1, · · · , a − 1 do

5 L ← c-sum(L, j, 0b);

6 L ← c-sum(L, a,u1);
7 if L = ∅ then
8 Return ⊥;

9 Pick (u1, bi) uniformly from L;

10 s1 ← majorityvote(b1, · · · , bm);
11 Determine s2, · · · , sn the same way;
12 Return s = s1 . . . sn;

We recall the c-sum BKW in Algorithm 1. For a block size b and j ∈ [a], let
the coordinates [n − jb + 1, n − (j − 1)b] denote the j-th stripe. The important
component of the c-sum BKW algorithm is the c-sum algorithm (see line 5 and
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6) that generates some refresh samples whose j-th stripe for j ∈ [a − 1] (resp.
the a-th stripe) is zeros (resp. the first unit vector). If the above steps generate
some label-u1 samples, we pick one of these (u1, bi) sample uniformly at random
(see line 9). Determining the first bit s1 with overwhelming probability needs
sufficiently many independent label-u1 samples via the for-loop (see line 2). The
process of recovering other bits si is likewise (by reusing the LPN samples).

Independence Heuristic [17]. However, the output samples of the c-sum algo-
rithm are somehow correlated and may not feed into the next c-sum algorithm,
which requires independent samples for its input (see Definition 2). For instance,
the output of a 2-sum algorithm a1+a2, a2+a3 and a1+a3 are correlated in the
sense that they sum to 0 regardless of the values of a1,a2,a3. Esser et al. [17]
introduced the independence heuristic that assumes independence among those
vectors. Similar independence heuristics were already used in the optimized anal-
ysis of concrete LPN instances [7,8,20].

3 The C-Sum+ BKW and Time-Space Tradeoffs

In this section, we introduce the k-Generalized Birthday Problem [38], and
breaks it down into many instances of c-sum+ problems, where k = ca. By giv-
ing solutions, optimizations, and speedups to the c-sum+ problems, we get many
variants of BKW algorithm (referred to as the c-sum+ BKW), which achieve the
same complexities (up to polynomial factors) as the counterparts of c-sum BKW
by Esser et al. [17] without relying on heuristics.

We consider the k-Generalized Birthday Problem: there are k = ca lists L0,1,

. . ., L0,ca , where each L0,i
def= (ai,1, · · · ,ai,N ) has N vectors, and satisfies

1. (Intra-list pairwise independence). Within each list L0,i, each ai,j is
uniformly random, and every pair of distinct vectors is pairwise independent,
i.e., for all j �= k (ai,j ,ai,k) is uniformly random.

2. (Inter-list independence). L0,1, · · · , L0,ca , each seen as a random variable,
are all mutually independent.

A solution of the problem is to find k vectors, one from each list, that sum to a
specified target t, i.e., (j1, · · · , jk) ∈ [N ]k such that

⊕k
i=1 ai,ji

= t. The goal of
the problem is to find as many (N or more) solutions as possible.

Further, in the extended k-Generalized Birthday Problem, we associate lists
E0,1, . . ., E0,ca with L0,1, . . ., L0,ca respectively, where E0,i

def= (ei,1, · · · , ei,N ) ∈
F

N
2 is the list of noise labels, and define the noise label of a solution as

⊕k
i=1 ei,ji

accordingly. In addition to finding out N or more solutions, the extended prob-
lem also requires the noise labels of the solutions are biased (i.e., more 0-labels
than 1-labels) as long as the noise of each L0,1, . . ., L0,ca is sufficiently biased.
Since this subsection serves to remove the heuristics of (and gives results fully
comparable to) [17], we defer the extended problem and contributions of opti-
mized time/sample optimization to Sect. 4.
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3.1 The c-sum+ Problem

Before presenting our c-sum+ BKW, we first define the c-sum+ problem below.
Unlike the c-sum problem (see Definition 2) that produces c-sums from a single
list, the c-sum+ problem takes as input c lists and asks to find c vectors, one
from each list, that sum to a given target. Furthermore, we require that the c
lists are mutually independent, each consisting of pairwise independent vectors.

Definition 3 (The c-sum+ Problem (c-SP+)). Let b, c,N ∈ N with c ≥ 2. Let
L1, · · · , Lc, Li

def= (ai,1, · · · ,ai,N ) ∈ F
b·N
2 , satisfy the Intra-list pairwise indepen-

dence and Inter-list independence conditions (as defined in the k-Generalized
Birthday Problem).

Further, let t ∈ F
b
2 be a target. A solution of the c-sum+ problem is a size-c

list K
def= (k1, · · · , kc) ∈ [N ]c such that

⊕c
i=1 ai,ki

= t.

In fact, we will need the c-sum+ problem to give at least N solutions (instead
of a single one) in order to form another list for the subsequent iterations in
our BKW algorithm. As stated in the lemma below, the pairwise independence
already ensures the existence of sufficiently many (i.e., N) solutions albeit with
less strong error probability, i.e., 2/N instead of 2−Ω(N) assumed under the
independence heuristic [17]. As we will see, 2/N = negl(n) for a super-polynomial
N already suffices.

Lemma 4. For N = 2
b+1
c−1 , the c-SP+ problem (as per Definition 3) has at least

N and at most 3N solutions with the probability more than 1 − 2/N .

Proof. For every K = (k1, · · · , kc) ∈ [N ]c define a 0/1-valued variable XK that
takes value XK = 1 iff

⊕c
i=1 ai,ki

= t. Thus, X =
∑

K XK is the number
of solutions to the c-sum+ problem, where every K ∈ [N ]c has expectation
E[XK ] = 2−b and all the XK are pairwise independent. Therefore,

Pr
[
|X − 2N | > N

]
≤ Pr

[
|X − E[X]| > N

]
≤ V ar[X]

N2
=

∑
S V ar[XS ]

N2
≤=

2

N
,

where the first inequality is due to N c−1 = 2b+1 and E[X] = N c · 2−b = 2N ,
and the second inequality is based on Chebyshev’s inequality, the first equality
is due to Lemma 3, and the last inequality is due to V ar[Xi] = E[X2

i ]−E[Xi]2 ≤
E[X2

i ] = E[Xi]. �

3.2 The c-sum+ BKW

We introduced the c-sum+ problem in Definition 3, and we show in Lemma 4
that it has at least N solutions (except with the probability 2/N). We defer
the concrete algorithms (and optimizations) for finding out the N solutions to a
later stage. Instead, we assume a solver for c-sum+ with time Tc,N,b and space
Mc,N,b, and then show how our c-sum+ BKW algorithm breaks down the LPN
problem into many instances of the c-sum+ problem.
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Abstractly speaking, our c-sum+ BKW algorithm employs a c-ary tree of
depth a (see Fig. 2 for an illustration of a = 2, c = 3), where each node
represents a list of vectors, and each parent-node list consists of vectors each
of which is the sum of c vectors from its c child nodes respectively (one
from each child node). Further, we assume that for every parent node list{⊕c

i=1 ai,ki

∣
∣
∣(k1, · · · , kc) ∈ [N ]c

}
the choices (k1, · · · , kc) of the c-sums are inde-

pendent of the values of its child lists L1, . . ., Lc, where Li = (ai,1, · · · ,ai,N ).
While this independence assumption may seem contradictory to the c-sum+

problem that seeks solutions satisfying
⊕c

i=1 ai,ki
= t, we stress that this is due

to the simplification of the problem. That is, our c-sum+ BKW algorithm, just
like the original BKW [6], zeros out the coordinates in iterations: at the j-the
iteration, it finds the linear combinations of the j-th stripes that sum to zero,
and produces the same combinations of the (j + 1)-th stripes as the resulting
list for the next iteration, i.e.,

{ ⊕c
i=1 aj+1

i,ki

∣
∣
∣(k1, · · · , kc) ∈ [N ]c,

⊕c
i=1 aj

i,ki
= t

}
,

where the choice (k1, · · · , kc) is independent of the set of (j+1)-th stripe vectors
{aj+1

i,k |i ∈ [c], k ∈ [N ]} to be combined.
Under the above simplified model, we have the following lemma that states

that the leaf-level lists satisfy the intra-list pairwise independence and inter-list
independence conditions (see Definition 3), then the conditions will preserved
and propagated to all the non-leaf list nodes, all the way down to the root.

Fig. 2. An illustration of the c-sum+ BKW for c = 3, where t = t1 + t2 + t3

Lemma 5 (Pairwise independence preserving). If the leaf-level lists L0,1,
. . . , L0,ca are all mutually independent, and each L0,i consists of pairwise inde-
pendent vectors. Then, for every 1 ≤ j ≤ a it holds that Lj,1, . . . , Lj,ca−j are
mutually independent, and every Lj,i (for 1 ≤ i ≤ ca−j) consists of pairwise
independent vectors.

Proof. The proof follows by induction, namely, if the condition holds for level
j, then it is also true for level j + 1. The mutual independence follows from
the tree structure, i.e., if Lj,1, . . . , Lj,ca−j are all mutually independent, then
so are the next-level parents Lj+1,1, . . . , Lj+1,ca−j−1 since each parent only
depends on its own children nodes. Moreover, if at level j, Lj,1, . . . , Lj,ca−j are
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all mutually independent and every list Lj,i (for 1 ≤ i ≤ ca−j) consists of pairwise
independent vectors, then at level j + 1 we need to show that every list Lj+1,i′

(for i′ ∈ [ca−j−1]) consists of pairwise independent vectors as well. Consider any
two vectors from Lj+1,i′ that are distinct c-sums of its child lists, say

⊕c
�=1 a�,k�

and
⊕c

�=1 a�,k′
�
. Then, there exists at least one � ∈ [c] such that k� �= k′

� and
(a�,k�

,a�,k′
�
) ∼ UF2b

2
(as they are from the same list at level j which has pairwise

independent vectors) and they are independent from other summand vectors in
the c-sum (since the lists at level j are all mutually independent). It follows
that (

⊕c
�=1 a�,k�

,
⊕c

�=1 a�,k′
�
) is jointly uniform over F

2b
2 and thus are pairwise

independent. �
We can now reduce the problem of solving LPN to (many instances of)

the c-sum+ problem without relying on any heuristics (thanks to the pair-
wise independence preserving property by Lemma 5). The algorithm is formally
described in Algorithm 2. For a block size b and j ∈ [a], let the coordinates
[n − jb + 1, n − (j − 1)b] denote the j-th stripe. Our algorithm proceeds level by
level. At the 0-th level, the algorithm gets fresh LPN sample to initialize every
list L0,k for k ∈ [ca] with |L0,k| = N = 2

b+1
c−1 (see line 1). Then, at each j-th

level (1 ≤ j ≤ a − 1) our algorithm invokes c-sum+ that takes as input the lists
Lj−1,c(k−1)+1, · · · Lj−1,ck at the (j −1)-th level, and produces as output list Lj,k

at the j-th level (see lines 4−6). The execution on the a-th (root) level is slightly
different, i.e., we only need to solve a single instance of the c-sum+ with target
u1 (instead of zero), and produces a single solution (instead of N solutions). In
other words, the code at line 10 is somewhat unnecessary in that it first produces
N solutions (stored in La,1) but only (randomly) picks one of them, which is
another problem we are going to tackle in the next section. Finally, we repeat
the above many times on fresh LPN samples, and majority vote to decode out
first secret bit. The recovery of other secret bits is likewise (reusing the samples).
The c-sum+ algorithm is an important building block of the c-sum+ BKW. We
state below their relations in terms of correctness and complexity.

Theorem 2 (The c-sum+BKW). The LPNn,μ problem with μ = 1/2 − γ/2
can be solved in time T and space M with the probability P as below

T ≈ Tc,N,b · ca · (
1

γ
)2·ca

, M ≈ Mc,N,b · ca, P ≥ 1 − 1

N
· ca · (

1

γ
)2·ca · poly(n) − n

2n
,

where Tc,N,b and Mc,N,b are respectively the time and space complexities of the
c-sum+ algorithm that aims for N distinct solutions to the c-sum+ problem with
block (target) size b, ab ≥ n, and N = 2

b+1
c−1 for 2 ≤ c ∈ N.

Notice: for now we omit the sample complexity since Q ≈ T under the scenario
of unlimited samples, as opposed to the setting considered in Sect. 4.2.

Proof. The c-sum+ algorithm is used to instantiate the c-sum+ subroutine in
Algorithm 2. As discussed in Lemma 4, the c-sum+ problem (implicitly defined
in the j-th stripe of samples and the target vector 0b or ui for i ∈ [b] and
j ∈ [a]) has at least N distinct solutions with the probability at least 1 − 2/N .
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Algorithm 2: The c-sum+ BKW
Input: access to the oracle LPNn,μ

Output: s ∈ F
n
2

1 a := log(n)
(1+εa) log(c)

, b := n
a
, m := 8(1−μ)n

(1−2μ)2ca , N := 2
b+1
c−1 ;

2 for i ← 1, · · · , m do
3 Save fresh LPN samples in L0,1, . . ., L0,ca , each of size N ;
4 for j ← 1, · · · , a − 1 do
5 for k ← 1, · · · , ca−j do

6 Lj,k ← c-sum+(Lj−1,c(k−1)+1, · · · , Lj−1,ck, j, 0b);

7 La,1 ← c-sum+(La−1,1, · · · , La−1,c, a,u1);
8 if La,1 = ∅ then
9 Return ⊥;

10 Pick (u1, bi) uniformly from La,1;

11 s1 ← majorityvote(b1, · · · , bm);
12 Determine s2, · · · , sn the same way;
13 Return s = s1 . . . sn;

Therefore, the corresponding BKW algorithm aborts with the probability at
most 1

N · ca · ( 1
γ )2·ca · poly(n) via the union bound.

We now analyze the probability of the event that a single bit of the secret
(e.g., s1) can be recovered correctly. Let the labels b1, · · · , bm (generated in line
10) have the corresponding noise e1, · · · , em, i.e., bi = s1 ⊕ ei for i ∈ [m]. The
c-sum+ subroutines are invoked m·ca

c−1 times, and each final resulting vector (that
are a sum of ca initial vectors) bears a noise of rate 1

2 − 1
2γca

via the Piling-up
Lemma (see Lemma 1). Moreover, e1, · · · , em are all independent. Then, a single
secret bit can be recovered with error rate 1

2n (by a Chernoff Bound). Therefore,
the probability of recovering secret key is P ≥ 1−1/N ·ca ·(1/γ)2·ca ·poly(n)− n

2n .
Since it runs the c-sum+ subroutine ca · ( 1

γ )2·ca · poly(n) times, we have M ≈
Mc,N,b · ca and T ≈ Tc,N,b · ca · ( 1

γ )2·ca

. �
Next, we show different variants of the c-sum+ BKW via instantiating the

corresponding c-sum+ algorithm.

3.3 Naive c-sum+ BKW Algorithm

Our naive c-sum+ algorithm is showed in [33, Algorithm 3]. Similar to the naive
approach [17], it first enumerates all possible p =

⊕c−1
j=1 aj,ij

∈ F
b
2 for all aj,ij

∈
Lj and j ∈ [c−1], and checks whether p⊕ t appears in the sorted list Lc or not,
where the target vector t ∈ F

b
2. We obtain Theorem 3 by combining Lemma6

with Theorem 2.

Lemma 6. The naive c-sum+ algorithm solves the c-sum+ problem with target
length b and list size N ≥ 2

b+1
c−1 (2 ≤ c ∈ N) in time N c−1 · poly(b, c) and space

N · poly(b, c), and it returns N distinct solutions with the probability 1 − 2/N .
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Proof. Sorting out the list Lc is a one-time effort that takes time Õ(N), and
enumerating all possible combinations of the c−1 lists takes time N c−1·poly(b, c)·
log(N) = N c−1 · poly(b, c) where O(b log(N)) accounts for the time complexity
of the binary search for p ⊕ t in the sorted Lc. The algorithm consumes space
of size N · poly(b, c) since it only stores up to N solutions. �
Theorem 3 (Naive c-sum+ BKW). The LPNn,μ problem with μ = 1/2−γ/2
can be solved in time T ≈ N c−1 · ca · ( 1

γ )2·ca

and space M ≈ N · ca with the

probability P ≥ 1 − 1
N · ca · ( 1

γ )2·ca · poly(n) − n
2n , where ab ≥ n, and N = 2

b+1
c−1 .

Concretely, for noise rate μ = 1/4, we set a = log(n)
log(c)(1+ε) and b = log(c)(1+ε)n

log(n) to

get log(M) = log(c)
c−1 · n(1+ε)

log(n) , log(T ) = log(c) · n(1+ε+o(1))
log(n) and P ≥ 1 − negl(n).

3.4 Quantum c-sum+ BKW Algorithm

Following the steps in [17], we adopt the Grover’s algorithm [19] (see Theorem 4)
to quantumly speed up the crucial (and time-consuming) first step in the naive
c-sum+ (see [33, Algorithm 4]). To this end, we define

ft : [N ]c−1 → {0, 1}, ft : (i1, · · · , ic−1) �→
{

1, ∃ac,ic
∈ Lc :

∑c
j=1 aj,ij

= t
0 otherwise

.

Once given (i1, · · · , ic−1) ∈ f−1(1) we can recover all ic such that (i1, · · · , ic) con-
stitutes a solution to c-sum+ in time Õ(log(|L|)) from a sorted list Lc. Lemma 7
follows from Theorem 4 and Lemma 4.

Theorem 4 (Grover Algorithm [9,15,19]). Let f : D → {0, 1} be a func-
tion with non-empty support. Then, Grover outputs with overwhelming proba-
bility a uniformly random preimage of 1, making q queries to f , where q =

Õ
(√

|D|
|f−1(1)|

)
.

Lemma 7. The quantum c-sum+ algorithm solves the c-sum+ problem with tar-
get length b and list size N ≥ 2

b+1
c−1 (2 ≤ c ∈ N) in time N

c
2 · poly(b, c) and space

N · poly(b, c), and it returns N distinct solutions with the probability 1 − 2/N .

Combining Lemma 7 and Theorem 2, we obtain Theorem 5.

Theorem 5 (Quantum c-sum+ BKW). The LPNn,μ problem with μ = 1/2−
γ/2 can be quantumly solved in time T ≈ N

c
2 · ca · ( 1

γ )2·ca

and space M ≈ Nca

with the probability P ≥ 1− 1
N ca( 1

γ )2ca

poly(n)− n
2n , where ab ≥ n, and N = 2

b+1
c−1 .

Again, with noise rate μ = 1/4 we set a = log(n)
log(c)(1+ε) and b = log(c)(1+ε)n

log(n) to

get log(M) = log(c)
c−1 · n(1+ε)

log(n) , log(T ) = c·log(c)
2(c−1) · n(1+ε+o(1))

log(n) , P ≥ 1−negl(n), where
factor c

2(c−1) represents the quantum speedup over the classic algorithm.
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3.5 Dissection c-sum+ BKW Algorithm

Esser et al. [17] borrowed the dissection technique from [14,37] to optimize the
running time of their c-sum algorithm, referred to as dissection c-sum. The dis-
section c-sum perfectly fits into our c-sum+ problem even better with only minor
adaptions. Below we briefly introduce the dissection c-sum, and analyze its run-
ning time and space consumption in solving the c-sum+ problem. We defer the
redundancy to the appendix and reproduced the (slightly adapted) proofs for
completeness.

Following [17] we introduce the join operation (see Definition 4) to facilitate
the description of the dissection c-sum algorithm. We slightly abuse the notation
in Fig. 3 by extending the operation to multiple lists, e.g., 	
τ3 operates on L8,
L9, L10, L11 with target τ3. This operation can be implemented in a space
friendly way without storing the intermediate lists. We simply adapt the naive
(i + 1)-sum+ algorithm on lists Lci−1+1, · · · , Lci

whose target vector τi may not
be of full length b, in which case the algorithm returns all the combinations
whose lowest |τi|-bit sum is τi.

Fig. 3. An illustration of the dissection 11-sum on input lists L11, · · · , L1 that recur-
sively invokes dissection 7- and 4-sum (in dashed boxes), where ��τ is the join operator
(as per Definition 4) and implemented by Naive c-sum+ (as per [33, Algorithm 4]),
the blank box stores the intermediate results of ��τj operation, combine results from
previous invocations on-the-fly, and returns the found match through the red dotted
arrows. (Color figure online)

Definition 4 (Join Operator [17]). Let d ∈ N and L1, · · · , Lk ∈ (Fd
2)

∗ be lists.
The joins of two and multiple lists are respectively defined as

L1 	
 L2
def= (a1 ⊕ a2 : a1 ∈ L1,a2 ∈ L2),

L1 	
 L2 	
 · · · 	
 Lk
def=

((
(L1 	
 L2) 	
 L3

) · · · 	
 Lk

)
.

For t ∈ F
d′
2 with d′ ≤ d, the join of L1 and L2 on target t is defined as

L1 	
t L2
def= (a1 ⊕ a2 : a1 ∈ L1,a2 ∈ L2 ∧ low|t|(a1 ⊕ a2) = t) .
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Definition 5 (The Magic Sequence [14]). Let c−1
def= 1 and define the magic

sequence via the recurrence ∀i ∈ N
+ ∪ {0} : ci

def= ci−1 + i + 1, which leads to the
general formula for the magic sequence: magic

def=
{

ci
def=

(
1
2 · (i2 +3i+4)

)}

i∈N+
.

The parameter c of the dissection c-sum can no longer be an arbitrary integer
but belongs to the “magic sequence” (Definition 5), i.e., ci

def= (i2 + 3i + 4)/2.
Fix a certain i (and ci), we recall the list size ∀j ∈ [cj ] : |Lj | = N = 2

b+1
ci−1 . For

convenience, let λ
def= b+1

ci−1 so that block size b = (ci − 1)λ − 1. The algorithm
employs the meet-in-the-middle strategy with (intermediate) targets of smaller
sizes τj ∈ F

jλ
2 (for j ∈ [i]), and τ0 ∈ F

λ
2 in its iterations.

We now give a high-level recursive description about the Dissection ci-sum
algorithm that aims to find out N solutions to the ci-sum+ problem for a target
t ∈ F

b
2, which recursively invokes the dissection cj-sum algorithm (j < i) to get

all the combinations whose lowest jλ-bit sum is τj . The base case (i = 0, c0 = 2),
i.e., the Dissection 2-sum degenerates into the naive 2-sum+ algorithm with a
minor exception that the target τ0 may be not of full length b. We illustrate the
general case with a concrete example (i = 3, c3 = 11) in Fig. 3. Taking as input
lists L1, · · · , Lci

and a target t, the algorithm divides the lists into two groups
L1, · · · , Lci−1 and Lci−1+1, · · · , Lci

, where ci = ci−1 + i + 1 due to the magic
sequence. For each intermediate target τi ∈ F

i·λ
2 , do the following:

1. Invoke the (adapted) naive (i + 1)-sum+ algorithm on lists Lci−1+1, · · · , Lci

with the target vector τi to get all the combinations whose lowest (i · λ)-bit
sum is τi. Store all the solutions in list L(ci,ci−1+1).

2. Invoke the dissection c(i−1)-sum algorithm on lists L1, · · · , Lci−1 with target
low(i−1)·λ(τi)⊕ low(i−1)·λ(t). The results are passed to the parent call on-the-
fly (see the red dotted line in Fig. 3), and combined with those in L(ci,ci−1+1),
producing only those summing to t as output.

3. Repeat the above for all possible values of τi ∈ F
i·λ
2 .

On space consumption. We stress that the above provides only an oversimpli-
fied description, and the actual algorithm (see [33, Algorithm 6 & 7]) is slightly
more complicated to keep the space consumption within O(iN). First, for each
0 ≤ j ≤ i we use L(cj ,cj−1+1) to store the results of the naive (j+1)-sum+ on
lists Lcj−1+1, . . ., Lcj

(see the 	
τj
operation and the blank boxes in Fig. 3).

Second, every single result from L(2,1) is passed to L(4,3), and so on, all the
way to L(ci,ci−1+1) on-the-fly to form the final output (or be discarded if it fails
the checking). In other words, no additional space will be allocated for merging
L(2,1) with L(4,3), and then L(7,5), etc., to avoid a blowup in space consumption.
Finally, one can observe that the intermediate target size τj (0 ≤ j ≤ i) are
chosen such that the expected size of L(cj ,cj−1+1) is N . That is, (j + 1)-sum+

on (j + 1) lists, each of size N = 2λ, yields N j+1 combinations, each having a
chance of 2−|τj | to hit target τj . Thus, we have N j+1/2|τj | = N (more formally
in the full version [33]), and the overall space consumption is O(iN).
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The dissection ci-sum+ [33, Algorithm 6] invokes the interative procedure cj-
Dissect [33, Algorithm 7] for j ≤ i to solve the ci-sum+ problem for ci ∈ magic.
We already show in Lemma 4 that for any 2 ≤ c ∈ N the problem has at least
N solutions (except with the probability 2/N). Esser et al. [17] showed that the
dissection ci-sum+ does an exhaustive search over all solutions.

Compared with the naive c-sum+ algorithm that also exhausts all solutions,
dissection ci-sum+ enjoys optimized time complexity as stated in [33, Lemma
17]. Esser et al. [17] analyzed the ci-Dissect [33, Algorithm 7] subroutine (essen-
tially the 	
τj

operation in Fig. 3) in terms of expected time and space, and we
further give their upper bounds in [33, Lemma 14 & 16] to reach a more formal
statement in [33, Lemma 17]. Combining [33, Lemma 17] and Theorem 2, we
obtain Theorem 6.

Theorem 6 (Dissection c-sum+ BKW Algorithm). For any ci ∈ magic,
the LPNn,μ problem with μ = 1/2−γ/2 can be solved in time T ≈ N ci−1 ·ca

i ·( 1
γ )2·ca

i

and space M ≈ N · ca
i with the probability P ≥ 1 − 1

N · ca
i · ( 1

γ )2·ca
i · poly(n) − n

2n ,

where ab ≥ n, and N = 2
b+1

ci−1 .

Concretely, for μ = 1/4, we can set a = log(n)
log(ci)(1+ε) and b = log(ci)(1+ε)n

log(n) so

that log(M) = log(ci)
ci−1 · n(1+ε)

log(n) , log(T ) = (1 − i
ci−1 ) · log(ci) · n(1+ε+o(1))

log(n) , P ≥
1 − negl(n), where the optimization over the naive c-sum+ BKW is highlighted.

3.6 Tailored Dissection c-sum+ BKW

The dissection c-sum+ trades time for space of smaller size Mi ≈ 2
(

log(ci)
ci−1

)
n(1+ε)
log(n)

where ci = (i2 + 3i + 4)/2. In practice, it may turn out that the size of actual
usable space M ∈(Mi, Mi−1), leaving an unused space of size (Mi−1 − M).
To address this issue, Esser et al. [17] introduced the tailored dissection ci-sum
technique to enable more fine-grained time-space tradeoffs. That is, still use
N = 2

b+1
ci−1 , but increase the list size 2λ from N to Nβ ≈ M (β > 1) to fully utilize

the available space. However, the optimized running time of their algorithm needs
not only the independence heuristic but also relies on the tailoring heuristic [17]
(see [33, Appendix B], which postulates that one needs only to go through the
first 2y (for y = b−ci−1·λ+1) constraints τi ∈ F

i·λ
2 (in the outmost for-loop of [33,

Algorithm 7]) to recover at least Nβ distinct solutions (with high probability).
In a similar vein, we present an unconditional version called tailored dissection
ci-sum+ that aims for the first Nβ (instead of all) distinct solutions and halts as
soon as 2λ = Nβ solutions are found (see line 9 of [33, Algorithm 7]). Instead of
relying on any heuristics, we prove in [33, Lemma 18] unconditionally that the
outmost for-loop needs only 2y iterations for y = b − ci−1λ + 1. Combining [33,
Lemma 19] and Theorem 2, we obtain Theorem 7.
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Theorem 7 (Tailored Dissection c-sum+ BKW). For any ci ∈ magic, the
LPNn,μ problem with μ = 1/2 − γ/2 can be solved in time T ≈ N ci−1+(1−β)·i ·
ca
i · ( 1

γ )2·ca
i and space M ≈ Nβ · ca

i with the probability P ≥ 1 − 1
Nβ · ca

i · ( 1
γ )2·ca

i ·
poly(n) − n

2n , where ab ≥ n, N = 2
b+1

ci−1 and β ∈ [1, ci−1
ci−1

].

Concretely, for μ = 1/4 we can set a = log(n)
log(ci)(1+ε) and b = log(ci)(1+ε)n

log(n)

so that log(M) = β·log(ci)
ci−1 · n(1+ε)

log(n) , log(T ) = (1 − β·i
ci−1 ) · log(ci) · n(1+ε+o(1))

log(n)

and P = 1 − negl(n) where the difference to the dissection c-sum+ BKW was
highlighted.

3.7 Time-Space Trade-Offs for Solving LWE

Regev [36] introduced the Learning With Errors (LWE) problem, generalizing
LPN over arbitrarily large moduli in presence of Gaussian-like noise.

Definition 6 (Learning With Errors). Let Dσ be a discrete Gaussian dis-
tribution with mean zero and variance σ2. For n ∈ N, prime p ∈ N, s ∈ F

n
p ,

denote by Sample an oracle that, when queried, samples a $←− F
n
p , e ← Dσ and

outputs a sample of the form (a, l) := (a, 〈a, s〉+e). The LWEn,σ,p problem refers
to recovering the random secret s given access to Sample.

Albrecht et al. [1] adapted the BKW algorithm to solve the LWE problem,
with subsequent improvement by [10,21,24]. Similarly, the BKW reduces the
dimension of LWE by summing up samples and cancelling out the corresponding
blocks in iterations. The number of samples needed for the majority vote is

m = e
4π2σ22a

p2 after a BKW steps [28]. Herold et al. [24] showed that setting
a = (1 − εa) log(n) + 2 log(p) − 2 log(σ) for constant εa > 0 yields m = e4π2n1−εa

and results in time, space and sample complexities Õ
(
pb ·e4π2n1−εa )

= pb·(1+ε) =

2
n·log(p)·(1+ε)

log(n)+2 log(p)−2 log(σ) .
Following the steps of Esser et al. [17], we also generalize the c-sum+ prob-

lem to arbitrary moduli p and employed (slightly tweaked versions of) the
aforementioned algorithms to solve the c-sum+ problem with arbitrary mod-
uli p whose elementary operations (e.g., addition, sorting and binary search)
are now over Fp. Compared with [24], we adjust a by a factor of log(c) and set
a = (1−εa) log(n)+2 log(p)−2 log(σ)

log(c) for constant εa > 0. We summarize the results in
Table 5, which are essentially the same as that of the c-sum BKW for LWE [17]
but without using heuristics.
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Table 5. The time and space complexities of the c-sum (c-sum+) BKW algorithms

for solving the LWEn,σ,p problem, where Nc = 2
log(c)
c−1 · n·log(p)·(1+ε)

log(n)+2 log(p)−2 log(σ) , n is the
dimension, and constant ε > 0.

c-sum (c-sum+) BKW Space Time for

Classic Original BKW [6] N2 N2 c = 2

Naive Nc Nc−1
c c ≥ 2

Dissection Nc Nc−√
2c

c c ∈ magic

Tailored Dissection Nβ
c Nc−β

√
2c

c c ∈ magic, β ∈ [1,
√

c√
c−1

]

Quantum Naive + Grover Nc N
c/2
c c ≥ 2

4 The c-sum# BKW with Time/Sample Optimizations

In this section, we consider the extended k-Generalized Birthday Problem (see
Sect. 3), and give the full-fledged variant, called c-sum# BKW, to optimize the
time, space and sample complexities of the original BKW algorithm [6]. More-
over, it further pushes the sample complexity to 2nε

or even n1+ε, which also
optimize the complexities over Lyubashevsky’s BKW variant [34].

4.1 Time, Space, and Sample Optimizations

As shown in Table 6, we compare the results of the original BKW [6], Devadas
et al.’s optimized version [12] and our c-sum# BKW (for c = 2 as in Theorem 8).

Table 6. The space, time and sample complexities of different variants of the BKW
algorithms for solving the LPNn,μ problem with μ = (1− γ)/2, γ ≥ 2−nσ

and constant

0 < σ < 1 under condition N1 ≈ N2, where ab = n, N1 = 2b and N2 = (1/γ)2
a+1

disregarding poly(n) factors for convenience.

Algorithm Space Time Sample Condition

The original BKW [6] N1 N1 · N2 N1 · N2 N1 ≈ N2

Devadas et al.’s [12] N1 · √
N2 N1 · √

N2 N1 N1 ≈ N2

Our 2-sum# BKW N1 N1 N1 N1 ≈ N2

We know that the last step of the BKW involves balancing the two factors
N1 = 2b and N2 = (1/γ)2

a+1
to roughly the same magnitude given ab = n. As

specified in 2-sum# BKW (see Theorem 8 for c = 2), it requires essentially the
same condition, i.e., b = 2a+1 log(1/γ)+O(log(n)). Asymptotically, for constant
0 < γ < 1, we typically set a = log(n)

1+ε and b = (1+ε)n
log(n) , and thus our algorithm

speeds up the running time of the original BKW [6] by a factor of 2n
1

1+ε while
using roughly the same amount of space, where constant ε is arbitrarily close
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to 0 for optimized time complexity. Recently, Devadas et al. [12] optimized the
running time of the original BKW from N1 ·N2 to N1 ·√N2 at the cost of increas-
ing the space complexity from N1 to N1 · √N2. Thus, the 2-sum# BKW enjoys
a sub-exponential factor advantage both in time/space complexities compared
to [12].

Algorithm 3: The c-sum# BKW
Input: access to the oracle LPNn,μ

Output: s ∈ F
n
2

1 b := n
a
, N := 2

b
c−1 ;

2 Save fresh LPN samples in L0,1, . . ., L0,ca , each of size N ;
3 for j ← 1, · · · , a − 1 do
4 for k ← 1, · · · , ca−j do

5 Lj,k ← c-sum+(Lj−1,c(k−1)+1, · · · , Lj−1,ck, j, 0b);

6 La,1 ← c-sum+(La−1,1, · · · , La−1,c, a,u1);
7 s1 ← majorityvote(b1, · · · b|La,1|);
8 Determine s2, · · · , sn the same way over the same LPN samples;
9 Return s = s1 . . . sn;

Majority voting on correlated samples. The c-sum BKW [17] and our c-
sum+ BKW (Algorithm 2) pick a single sample from La,1 and repeat the process
for m ≈ (1/γ)2

a+1
times on fresh LPN samples (see line 2–10 in Algorithm 2).

We argue that this step can be removed with a careful adaption, and therefore

reduces the time/sample complexities by factor 2Ω(n
1

1+ε ). This is the motivation
of introducing the extended k-generalized birthday problem (see Sect. 3). Hope-
fully, we recover the single bit of secret via a majority voting on the elements
in La,1 (line 7 in Algorithm 3). This is non-trivial since the noise bits in La,1

are linear combinations of individual noises of the LPN samples, and thus they
are not even pairwise independent3. We observe that in order to majority-vote
for the correct result it suffices that the resulting noise remains biased-to-zero.
For every sample list Lj,k we define the corresponding noise-indicator list Ej,k,
whose every i-th element (−1)ei corresponds to the i-th element of Lj,k, i.e.,
(ai,ai · s ⊕ ei). bias(Ej,k) =

∑|Ej,k|
i=1 (−1)ei refers to the difference between the

numbers of 0’s and 1’s in the noise of Lj,k. Therefore, the majority voting is
successful if and only if the final bias(Ea,1) > 0.

The c-sum# BKW. We now describe how to adapt the c-sum+ BKW (Algo-
rithm refalg:cspssumspsbkwspsplus) to avoid the outmost repeat-m-times loop.
The c-sum+ BKW is sample-preserving, i.e., it invokes subroutines such as the
naive c-sum+ [33, Algorithm 4] that halt as soon as N solutions are found. In
3 Unlike uniformly random vectors, the linear combinations of i.i.d. biased bits are not

pairwise independent, e.g., e1 + e2 and e2 for e1, e2 ← Bμ with 0 < μ < 0.5.
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contrast, we let the c-sum# BKW be exhaustive, i.e., the underlying c-sum+

solver (e.g., [33, Algorithm 9]) must output all solutions. We start with the
initial leaf-level lists E0,1, · · · , E0,ca with |E0,k| = N and sufficiently large
bias(E0,k) for every k ∈ [ca]. Then, as shown in Lemma 9, for every j ∈ [a]
and k ∈ [ca−j ] the |Ej,k| will be bounded within N(1±o(1)) and bias(Ej,k) stays
positive. To achieve this, we set N = 2b/(c−1) (instead of N = 2(b+1)/(c−1)). Con-
sider the c-sum+ problem instance whose input noise-indicator lists are Ej−1,1,
· · · , Ej−1,c and output noise-indicator list Ej,1, whose elements are chosen from

JEj,1
def= Ej−1,1 	
 · · · 	
 Ej−1,c (all possible c-sums). In particular, each element

from list JEj,1 is included into Ej,1 iff the corresponding c-sum+ hits the target,
which occurs with the probability 2−b. Further, whether an element in JEj,1

hits the specified target or not is a pairwise independent event (see Lemma5).
With |Ej−1,k| ≈ N for every k ∈ [c], we have that |Ej,1| has expected value
roughly N c/2b = N and thus remains around N by Chebyshev’s inequality. We
also lower bound the corresponding bias(Ej,1) for every j ∈ [a]. We state the
results in Lemma 9, and prior to that we introduce Lemma8 as an analogue of
the piling-up lemma that characterizes how the bias is amplified through the
c-sum+ operations.

Lemma 8. For JEj+1
def= Ej,k+1 	
 Ej,k+2 · · · 	
 Ej,k+c, we have bias(JEj+1) =∏c

i=1 bias(Ej,k+i).

Proof. It follows from the definitions of bias and 	
 by rearranging the terms:

bias(JEj+1) =
∑

l1∈[n1],··· ,lc∈[nc]

(−1)e1
l1 × · · · × (−1)ec

lc

=
( ∑

l1∈[n1]

(−1)e1
l1

)
× · · · ×

( ∑

lc∈[nc]

(−1)ec
lc

)
=

c∏

i=1

bias(Ej,k+i) ,

where we use shorthand ni
def= |Ej,k+i| for 1 ≤ i ≤ c for notational convenience.

�
Lemma 9. For N = 2

b
c−1 , any 2 ≤ c ∈ N, 0 < ε < 1 and 0 < δ < 1 such

that δca√
Nε ≥ 2ac2a, if the level-0 lists E0,1, . . ., E0,ca satisfy |E0,k| = N ,

bias(E0,k) ≥ δN for 1 ≤ k ≤ ca. Then, at every level j ∈ [a], for every k-th list
Ej,k (1 ≤ k ≤ ca−j) we have

Pr
[
bias(Ej,k) ≤ (

δcj

N − 2j
√

Nc2j

ε

)] ≤ c4j · ε ,

Pr
[∣
∣|Ej,k| − N

∣
∣ ≥ 2j

√
Nc2j

ε

]
≤ c4j · ε .

Proof. The base case j = 0 holds by assumption, i.e., bias(E0,k) ≥ δN and
|E0,k| = N for every 1 ≤ k ≤ ca. We prove the rest by induction, i.e., if it holds
for level j, then it also true for level j + 1. It suffices to consider the first list
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Ej+1,1 on level j+1 whose elements are selected from the set of all c-sum+ of the
c lists, i.e., JEj+1,1=Ej,1 	
 · · · 	
 Ej,c. with the probability at least 1 − c4j+1ε,
we have (by the definition of 	
) N c(1− 2jc2j+1√

Nε
) ≤ N c(1− 2jc2j√

Nε
)c < |JEj+1,1| <

N c(1 + 2jc2j√
Nε

)c ≤ N c(1 + 2j+1c2j+1√
Nε

), where by [33, Lemma 21] (1 + d)c ≤ 1 + 2cd

and (1 − d)c ≥ 1 − cd for 0 < cd < 1, c ≥ 2. Every element from list JEj+1,1 has
a chance of 2−b to be selected into Ej+1,1 in a pair-wise independent manner
among the elements of JEj+1,1 (see Lemma 5). Thus, the above implies (recall

N c−1 = 2b) Pr
[∣
∣E

[|Ej+1,1|
] − N

∣
∣ < 2j+1√

Nc2j+1

ε

]
≥ 1 − c4j+1ε. Similar to the

proof of Lemma 4 (except for a different value of N), we have

Pr
[∣
∣|Ej+1,1| − N

∣
∣ ≥ 2j+1

√
Nc2j+2

ε

]

≤Pr
[∣∣
∣|Ej+1,1| − E

[|Ej+1,1|
]∣∣
∣ ≥ 2j+1

√
Nc2j+1(c − 1)

ε

]

+ Pr
[∣∣
∣E

[|Ej+1,1|
] − N

∣
∣
∣ ≥ 2j+1

√
Nc2j+1

ε

]

≤V ar
[|Ej+1,1|

]

N/ε2
+ c4j+1 · ε ≤ E

[|Ej+1,k|]

N/ε2
+ c4j+1 · ε ≤ c4j+3 · ε .

(1)

By Lemma 8 the following holds with the probability at least 1 − c4j+1ε

bias(JEj+1,1) > δcj+1
N c

(
1 − 2jc2j

δcj
√

Nε

)c ≥ δcj+1
N c

(
1 − 2jc2j+1

δcj
√

Nε

)
,

where the Bernoulli’s inequality (1 − d)c ≥ 1 − cd is applicable since c ≥ 2 and
d = 2jc2j

δcj √
Nε

< 2ac2a

δca √
Nε

≤ 1. We recall bias(Ej+1,1)
def=

∑|JEj+1,1|
l=1 vl ·(−1)el , where

random variable vl is 1 if the corresponding c-sum+ hits the specified target
(so that the corresponding (−1)el is included in Ej+1,1) or is 0 otherwise. By
Lemma 5 all the vl’s are pairwise independent, each with expectation 2−b, and
therefore E[bias(Ej+1,1)] = 2−b · bias(JEj+1,1). We have Pr

[
E

[
bias(Ej+1,1)

]
>

δcj+1
N − 2j

√
Nc2j+1

ε

]
≥ 1 − c4j+1ε, and thus

Pr
[
bias(Ej+1,1) ≤ δcj+1

N − 2j+1
√

Nc2j+2

ε

]

≤ Pr
[
bias(Ej+1,1) − E

[
bias(Ej+1,1)

] ≤ 2j
√

Nc2j+1(2c − 1)
ε

]

+ Pr
[
E

[
bias(Ej+1,1)

]
< δcj+1

N − 2j
√

Nc2j+1

ε

]

≤V ar
[
bias(Ej+1,1)

]

N/ε2
+ c4j+1 · ε ≤ E

[|Ej+1,k|]

N/ε2
+ c4j+1 · ε ≤ c4j+3 · ε ,

(2)

where the analysis is essential the same as that for bounding |Ej+1,1| except
that V ar

[
bias(Ej+1,1)

]
=

∑|JEj+1,1|
l=1 V ar

[
vl · (−1)el

] ≤ ∑|JEj+1,1|
l=1 E

[
vl

]
=

E

[ ∑|JEj+1,1|
l=1 vl

]
. �
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Now we state the fully optimized algorithm in Theorem8, and compare the
case c = 2 (no time-space tradeoff) with the original BKW [6] and the one by
Devadas et al. [12] in Table 6.

Theorem 8 (The c-sum# BKW). The LPNn,μ problem with μ = 1/2 − γ/2
can be solved in time T and space M with the probability P as below

T ≈ Tc,N,b · ca, M ≈ Mc,N,b · ca, P ≥ 1 − 2c5a · n · ε,

where Tc,N,b and Mc,N,b are respectively the time and space complexities of
the c-sum+ algorithm that aims for all distinct solutions to the c-sum+ prob-
lem with block (target) size b, ab ≥ n, b > n0.6, γ > 2−b/3, b

/(
2(c − 1)

) ≥
ca log(1/γ) + 3a log(c) + 2 log(1/ε) + negl(n) and N = 2

b
c−1 for 2 ≤ c ∈ N.

Notice: for now we omit the sample complexity since Q ≈ M under the sce-
nario of unlimited samples.

Proof. Set the δ in Lemma 9 to γ − 2− b
2
√

log(1/ε), and we have by Chernoff
bound

Pr
[
bias(E0

0,k) ≤ N ·δ
]

≤ Pr
[
bias(E0

0,k)/N −γ ≤ (δ−γ)
]

≤ 2−2−b log(1/ε)N = ε ,

where N = 2
b

c−1 . The condition δca√
Nε ≥ 2ac2a in Lemma 9 is now

b

2(c − 1)
≥ ca log(1/δ) + a + 2a log(c) + log(1/ε)

= ca log(1/γ) + a + 2a log(c) + log(1/ε) + ca log
(
1 +

2−b/2O(
√

log(1/ε)

γ

)

≥ ca log(1/γ) + a + 2a log(c) + log(1/ε) + ca2−b/6 · O
(√

(1/ε)
)

.

By Lemma 9 the size of every list Ej,k is at most N + N0.5 · c3a/ε = O(N) with
the probability at least 1 − c4a · ε, and thus all lists have size O(N) with the
probability at least 1 − c5a · n · ε. As for the correctness, the bias of the final list
Ea,1 is positive with the probability at least 1 − c4a · ε in order to successfully
recover a single bit of the secret. Overall, it recovers the whole secret correctly
with the probability more than 1 − c4a · n · ε by the union bound. �

4.2 Sample Reduction for BKW

Lyubashevsky [34] introduced the “sample amplification” technique to further
push the sample complexity to Q = n1+ε. Let (A, tT = (sTA + xT)) be all the
LPN samples one can have, where A is the n × Q matrix, and vectors with ‘T’
denote row vectors. A “sample amplification” oracle takes as input (A, tT) and
responds with (Ari, tTri = sTAri+ xTri) as the i-th re-randomized LPN sample,

and generates as many LPN sample as needed, where every ri
$←− RQ,w is drawn

from the set of length-Q-weight-w strings uniformly at random. Finally, invoke
the original BKW [6] on the generated samples. In order to make the approach
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work provably, (A, Ari, xTri) should be statistically close to (A, Un, xTri) by
the leftover hash lemma [25], which requires min-entropy H∞(ri) = log

(
Q
w

)
> n.

Therefore, Lyubashevsky [34] chose w = 2n
ε log(n) for Q = n1+ε.

Our c-sum# BKW supports sample amplification in a different and slightly
more efficient way. The c-sum# BKW (Algorithm 3) initializes the lists L0,1, . . .,
L0,ca , with independent fresh LPN samples. However, the pairwise independence
preserving lemma (Lemma 5) only requires each L0,k (for k ∈ [2a]) has pairwise
independent vectors. Our sample amplification simply divides A into n× Q

2a sub-
matrices A1, · · · , A2a accordingly, and loads each L0,k with distinct w-linear
combinations of the (Ak, sTAk + xT

k ), i.e.,

∀k ∈ [2a] : L0,k :=
(
(Akr1, sTAkr1 + xT

kr1), · · · , (AkrN , sTAkrN + xT
krN )

)

where r1, · · · , rN are distinct vectors of weight w, and N = 2b ≤ (
Q/2a

w

)
. So

far we essentially override the LPN sample oracle of the c-sum# BKW (line 2
of Algorithm 3), which takes time and space 2a+b. The rest of the steps are the
same as those in Algorithm 3.

Lemma 10. For k = o(m) we have log
(
m
k

)
= (1 + o(1))k log

(
m
k

)
.

Lemma 11 ([34]). If a bucket contains m balls, ( 12 + p)m of which are colored
white, and the rest colored black, and we select k balls at random without replace-
ment, then the probability that we selected an even number of black balls is at

least 1
2 + 1

2

(
2mp−k+1
m−k+1

)k

.

Theorem 9 (The 2-sum# BKW with fewer samples). The LPNn,μ prob-
lem with μ = 1/2 − γ/2 and given up to Q samples can be solved in time T ,
space M with the probability P as below

T ≈ 2a+b , M ≈ 2a+b , P ≥ 1 − 26a · n · ε − 2a · 2−Ω(Qγ2

2a ),

where a, b, w ∈ N and 0 < ε < 1 satisfy ab = n, Qγ ≥ 2a+2w, and log
(
Q/2a

w

) ≥
b ≥ 2a+1w log(4/γ) + 6a + 2 log(1/ε).

Proof. Let Q′ def= Q/2a, and define E0,k
def=

(
(−1)x

T
kr1 , · · · , (−1)x

T
krN

)
. We have

by the Chernoff bound that Pr[|xT
k | > (1/2 − γ/4)Q′] ≤ 2−Ω(Q′γ2). Then, by

Lemma 11 with the probability at least 1 − 2−Ω(Q′γ2) and for γ ≥ 4w/Q′

bias(E0,k) ≥ N ·
(2Q′(γ/4) − w + 1

Q′ − w + 1

)w

≥ N ·
(γ

2
− w

Q′
)w

≥ N(
γ

4
)w .

The condition δca√
Nε ≥ 2ac2a in Lemma 9 becomes b ≥ 2a+1w log(4/γ) + 6a +

2 log(1/ε), where we set δ = (γ/4)w. The probability argument (and the rest of
the proof) is similar Theorem 8 by adding the extra term 2a · 2−Ω(Q′γ2). �
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Table 7. The space, time and sample complexities of different variants of the BKW
algorithms for solving the LPNn,μ problem with μ = (1 − γ)/2 and sample complexity

Q = n1+ε, where ab = n, N1 = 2b, N2 = (4/γ)2
a+2·n/(ε log(n)) and constant ε > 0

disregarding poly(n) factors for convenience.

Algorithm Space Time Sample Condition

Lyubashevsky’s [34] N1 N1 · N2 n1+ε N1 ≈ N2

Ours N1 N1 n1+ε (N1)
log log(n) ≈ N2

As shown in Table 7, we compare [34] with our algorithm for solving LPNn,μ

problem with Q = n1+ε, μ = 1/2 − γ/2 and γ ≥ 2− log(n)σ

. Lyubashevsky’s
technique [34] requires log

(
Q
w

)
> n to satisfy the entropy condition of the leftover

hash lemma, and thus picks w = 2n/(ε log(n)), a = κ · log log(n) and b =
n

κ log log(n) for positive constants σ, κ satisfying 0 < κ + σ < 1. Concretely,
consider the extreme case γ = 2− log(n)σ

whose running time (omitting poly(n)
factors) Tn1+ε

Lyu05 ≈ 2b · (1/γ)2
a·n/ log(n) ≤ 2

n
κ log log(n) · 2

n

log(n)1−σ−κ .
In contrast, our algorithm uses all the w-linear combinations and do not

require them to look jointly independent, and therefore only need log
(
Q′

w

) ≥ b.
As a result, for same values a = κ · log log(n) and b = n

κ log log(n) , we let w =
2n/(εκ log(n) log log(n)) for positive constants κ and σ satisfying κ+σ < 1. One
can verify that the three inequalities (for Qγ, log

(
Q/2a

w

)
, and b) in Theorem 9

are all satisfied with running time and success probability (where ε = 2− log2 n):

Tn1+ε

c-sum+bkw ≈ 2b = 2
n

κ log log(n)

Pn1+ε

c-sum+bkw ≥ 1 − 26a · n · ε − 2a · 2−Ω(Qγ2

2a ) = 1 − negl(n) .

That is, for the same parameter choices our algorithm saves a sub-exponential
multiplicative factor 2

n

log(n)1−σ−κ over [34] in running time, where constant 1 −
σ − κ arbitrarily close to 0 for optimized time complexity. We refer to Table 7
below for a comparison in the general case, which enjoys (for constant 0 < γ < 1)
a sub-exponential factor (4/γ)2

a+2·n/(ε log(n))
/
poly(n) = 2Ω(n)/ log(n)1−κ

speedup
in running time without consuming (substantially) more space. Note that our
N1 could be even smaller in magnitude than N2 by using a smaller w and thus
produces less stronger noise for majority voting.

Table 8. The space, time and sample complexities of different variants of the BKW
algorithms for solving the LPNn,μ problem with μ = (1 − γ)/2 and sample complexity

Q = 2nε

, where ab = n, N1 = 2b, N2 = (4/γ)2
a+2·n1−ε

and constant ε > 0 disregarding
poly(n) factors.

Algorithm Space Time Sample Condition

Lyubashevsky’s [34] N1 N1 · N2 2nε

N1 ≈ N2

Ours N1 N1 2nε

(N1)
log(n) ≈ N2
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Another interesting setting is LPNn,μ with μ = 1/2 − γ/2, γ ≥ 2−nσ

, and
Q = 2nε

for constant 0 < ε < 1, for which we can keep the time complexity
within 2O(n/ log(n)) as depicted in Table 8. Lyubashevsky’s technique [34] picks
w = 2n1−ε (to satisfy log

(
Q
w

)
> n), a = κ · log(n) and b = n

κ log(n) for positive
constants σ, κ and ε satisfying σ + κ < ε. Concretely, consider the extreme case
γ = 2−nσ

whose running time T 2nε

Lyu05 ≈ 2b · (1/γ)2
a·n1−ε ≤ 2

n
κ log(n) · 2n1−(ε−σ−κ)

.
In contrast, our algorithm uses the same a = κ·log(n) and b = n

κ log(n) but set
w = 2n1−ε/(κ log(n)), where positive constants κ, σ and ε satisfying σ + κ < ε.
This meets all the three conditions (for Qγ, log

(
Q/2a

w

)
, and b) in Theorem 9. The

resulting running time and success probability (where ε = 2− log2 n):

T 2nε

c-sum+bkw ≈ 2b = 2
n

κ log(n) P 2nε

c-sum+bkw = 1 − negl(n) .

That is, for the same parameter choices our algorithm enjoys a sub-exponential
factor 2n1−(ε−σ−κ)

advantage over [34] in running time, where constant (ε − σ −
κ) is arbitrarily close to 0 for optimized time complexity. We refer to Table 8
below for a comparison in the general case, where for constant 0 < γ < 1 our
algorithm saves a sub-exponential factor (4/γ)2

a+2·n1−ε/
poly(n) = 2O(n1−(ε−κ))

for arbitrarily small constant (ε−κ) with roughly the same space. Note that our
N1 could be even smaller in magnitude than N2, thanks to the smaller w in use.
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Abstract. Elliptic Curve Hidden Number Problem (EC-HNP) was first
introduced by Boneh, Halevi and Howgrave-Graham at Asiacrypt 2001.
To rigorously assess the bit security of the Diffie–Hellman key exchange
with elliptic curves (ECDH), the Diffie–Hellman variant of EC-HNP,
regarded as an elliptic curve analogy of the Hidden Number Problem
(HNP), was presented at PKC 2017. This variant can also be used for
practical cryptanalysis of ECDH key exchange in the situation of side-
channel attacks.

In this paper, we revisit the Coppersmith method for solving the
involved modular multivariate polynomials in the Diffie–Hellman vari-
ant of EC-HNP and demonstrate that, for any given positive integer d, a
given sufficiently large prime p, and a fixed elliptic curve over the prime
field Fp, if there is an oracle that outputs about 1

d+1
of the most (least)

significant bits of the x-coordinate of the ECDH key, then one can give
a heuristic algorithm to compute all the bits within polynomial time in
log2 p. When d > 1, the heuristic result 1

d+1
significantly outperforms

both the rigorous bound 5
6

and heuristic bound 1
2
. Due to the heuristics

involved in the Coppersmith method, we do not get the ECDH bit secu-
rity on a fixed curve. However, we experimentally verify the effectiveness
of the heuristics on NIST curves for small dimension lattices.

Keywords: Hidden number problem · Elliptic curve hidden number
problem · Modular inversion hidden number problem · Lattice ·
Coppersmith method

c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13793, pp. 771–799, 2022.
https://doi.org/10.1007/978-3-031-22969-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22969-5_26&domain=pdf
http://orcid.org/0000-0002-1179-7487
http://orcid.org/0000-0001-6821-920X
http://orcid.org/0000-0002-7669-8922
http://orcid.org/0000-0002-9920-5342
https://doi.org/10.1007/978-3-031-22969-5_26


772 J. Xu et al.

1 Introduction

1.1 Background

At CRYPTO 1996, Boneh and Venkatesan [6] first proposed the hidden number
problem (HNP) to prove that computing the most significant bits of the Diffie-
Hellman (DH) key is as hard as computing the entire key in the DH key exchange
for a prime field. It is called the bit security of the DH key exchange. There
are a lot of follow-up works, such as [1,7] and [12, Chapter 21.7.1]. HNP has
been proven to be an extremely useful tool in many cryptographic areas. One
example is its vast use for analysis of DSA and ECDSA in side-channel attacks,
such as [15,27]. At USENIX Security 2021, Merget et al. presented the first
practical HNP-based attack on the DH key exchange [23]. Albrecht and Heninger
presented a new result for solving HNP [2] at Eurocrypt 2021.

The ECDH key exchange is an analog of the DH key exchange, which adopts
the group of points on an elliptic curve to enhance performance and security.
Roughly speaking, for a given elliptic curve E over some finite field and a given
point Q ∈ E , two participants with private keys a, b compute [a]Q, [b]Q sepa-
rately, then send the computed value to each other, and finally, the two par-
ticipants generate the shared key [ab]Q. Naturally, one may want to assess the
difficulty of computing partial bits of ECDH key exchange. At ANTS 1998,
Boneh [3, Section 5] proposed the open problem: Does a similar result to the
bit security of Diffie-Hellman key exchange [6] hold in the group of points of
an elliptic curve? The issue has been raised for 20 years, but few results have
been presented because of the complexity associated with the addition formula
of points of an elliptic curve. The reason is also presented in the introduction of
papers such as [5,16,28,32].

EC-HNP. In [4, Section 5], Boneh, Halevi and Howgrave-Graham presented
the elliptic curve hidden number problem (EC-HNP) to study the bit security of
ECDH. The authors stated that EC-HNP can be heuristically solved using the
idea from Method II for Modular Inversion Hidden Number Problem (MIHNP).
Furthermore, they mentioned that the heuristic approach can be converted into
a rigorous one in some cases, which corresponds to the following bit security
result. Computing (1 − ε) of the most significant bits of the x-coordinate of the
ECDH key is as hard as computing the ECDH key itself for a given curve over
a prime field, where ε ≈ 0.02. The detailed proofs were not presented.

Shani [28] demonstrated at PKC 2017 that solving EC-HNP x, which can be
viewed as the Diffie-Hellman variant of EC-HNP, is sufficient to demonstrate the
bit security of ECDH. The involved strategy is similar to the idea of HNP [6].

Definition 1 (EC-HNPx [28]). Fix a prime p, a given elliptic curve E over
Fp, a given point R ∈ E and a positive number δ. Let P ∈ E be a hidden point.
Let OP,R be an oracle that on input m outputs the δ most significant bits of the
x-coordinate of P + [m]R. That is, OP,R(m) = MSBδ(xP+[m]R). The goal is to
recover the hidden point P , given query access to the oracle.
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Suppose there is an oracle that outputs some partial information of [uv]Q on
input [u]Q and [v]Q. For given points Q, [a]Q and [b]Q in the ECDH key exchange,
an attacker first selects an integer m, computes [m]Q, and then obtains [a + m]Q
from [a]Q + [m]Q = [a + m]Q. Querying the oracle on input [a + m]Q and [b]Q,
the attacker can get partial information of [(a + m)b]Q = [ab]Q + [m][b]Q = P +
[m]R where P := [ab]Q and R := [b]Q. By repeating this process for several m’s,
the attacker will be able to recover the ECDH key P = [ab]Q if the EC-HNPx is
solved.

In [23, Section 8], Merget et al. mentioned that this may result in a small
timing side-channel information that leaks the MSB of the x-coordinate of the
shared point in ECDH. The EC-HNP is related to the HNP and could potentially
be applied here. We contend that the aforementioned attack scenario falls within
the scope of EC-HNPx. This attack scenario specifically considers whether the
server reuses the same ECDH value R = [b]Q across sessions, where b is the
server’s static key in TLS-ECDH or a reusable ephemeral key in TLS-ECDHE.
A client generates secret a and transmits the value [a]Q. Hence, the ECDH key
between the server and the client is P = [ab]Q. An attacker first chooses some
integer m and computes [a+m]Q. Then, session’s ECDH secret is [(a+m)b]Q =
P +[m]R. (The above process is very similar to [23, Figure 1]). As a result, if the
MSBs of the x-coordinate of P +[m]R are leaked by the small timing side-channel
attack for several m, the attacker can obtain the ECDH key P by solving EC-
HNPx. EC-HNPx, like HNP, can play an important role in side-channel attacks.

Hardcore Bits. Shani rigorously solved EC-HNPx and then obtained the fol-
lowing bit security result by combining the underlying idea from Method I for
MIHNP [4,21]. For a given curve over a prime field, computing about 5

6 of the
most (least) significant bits of the x-coordinate of the ECDH key is as hard
as computing the entire ECDH key. Besides, Shani also analyzed the case of
extension fields and generalized the result of Jao, Jetchev and Venkatesan [16].

Papers such as [6,28] demonstrated that DH and ECDH have hardcore bits,
which are bits that are difficult to compute as the full shared key.

Heuristic Algorithm. In [32], Xu et al. used the Coppersmith method to solve
EC-HNPx, which was inspired by Method II of MIHNP [4,33]. For a fixed curve
over a prime field, if there is an oracle that outputs about 1

2 of the most (least)
significant bits of the x-coordinate of the ECDH key, then there is a heuristic
algorithm to compute all the bits in polynomial time.

The Coppersmith method is used to calculate small solutions of polynomi-
als. In 1996, Coppersmith proposed rigorous methods for finding the small roots
of a modular univariate polynomial and an integer bivariate polynomial [8,9].
In 2006, Jochemsz and May [18] presented heuristic strategies for finding the
small roots of modular (and integer) multivariate polynomials. The Coppersmith
method is widely used in the security analysis of cryptosystems, the computa-
tional complexity analysis of mathematical problems, and the security proof of
cryptosystems; see the survey [22] and recent papers, such as [10,24,30,34].

Since the Coppersmith method for modular multivariate polynomials is
heuristic, the result in [32] cannot prove that ECDH has hardcore bits. It is
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important to note that EC-HNPx is directly related to the actual cryptanalysis
of ECDH key exchange for a fixed curve in the work of side-channel attacks [23].
The problem of solving EC-HNPx is essentially the problem of finding the desired
small root of modular multivariate polynomials. The advantage of the Copper-
smith method is that it utilizes algebraic structures of polynomials to improve
the ability to find small roots. A natural motivation is that one wants to know
the best result if the Coppersmith method is used to deal with EC-HNPx.

Related Works. At CRYPTO 2001, Boneh and Shparlinksi [5] showed that if
there is an efficient algorithm to predict the least significant bit (LSB) of the ECDH
secrets on a non-negligible fraction of a family of curves isomorphic to a curve E0,
then the ECDH key for the curve E0 can be computed in polynomial time. It does
not imply that computing a single LSB of the ECDH key is as hard as comput-
ing the entire ECDH key for the same curve E0. At CRYPTO 2008, Jetchev and
Venkatesan [17] utilized isogenies to enlarge the applicability of the method in [5]
based on the generalized Riemann hypothesis. However, neither [5] nor [17] pro-
vides the hardness of bits for ECDH for a fixed curve. In [5, Section 7], Boneh and
Shparlinksi mentioned that they hope their methods will eventually show that a
single LSB of ECDH is the hardcore bit for a fixed curve.

1.2 Our Contribution

In this paper, we revisit the Coppersmith method to solve modular multivariate
polynomials derived from EC-HNPx and obtain a new bound.

Result 1. Let d be any given positive integer. Given a sufficiently large prime
p = 2ω(d(2+c)d), and a positive n = d3+c for any constant c > 0. For 2n + 1
given calls to the oracle in EC-HNPx, under Assumption 1 (see Page 8), one
can recover the hidden point for EC-HNPx when the number δ of known MSBs
(LSBs) satisfies

δ

log2 p
>

1
d + 1

+ ε, (1)

where ε > 0 and ε = o( 1
d+1 ). The total time complexity is polynomial in log2 p

for any constant d.

Corresponding to the ECDH case, we have the following result.

Result 2. Define d, p as in Result 1. Under Assumption 1, one can compute all
the bits in polynomial time for a given elliptic curve E over the prime field Fp

if there is an oracle that outputs about 1
d+1 of the most (least) significant bits of

the x-coordinate of the ECDH key.

The bound (1) tends to δ/log2 p > 0 as d grows large. It means that the ratio
of known MSBs or LSBs number can be infinitesimal. When d becomes large,
the modulus p = 2ω(d(2+c)d), the involved lattice dimension w = O(nd+1), and
the running time of the algorithm become enormous, with the time complexities
of the LLL algorithm and the Gröbner basis computation increasing as dO(d)

and dO(n), respectively.



Improving Bounds on Elliptic Curve Hidden Number Problem 775

The heuristic bound (1) for d > 1 is better than the rigorous bound δ/log2 p >
5
6 [28] and the heuristic result δ/log2 p > 1

2 [32]. Due to the heuristics of the
Coppersmith method, the results in this paper and [32] are not rigorous. It should
be noted that the 1

2 bound on δ/log2 p in [32] is asymptotic. That is, the 1
2 bound

can only be reached when the involved lattice dimension and modulus p tend to
infinity (see the analysis of Sect. 1.3). In this work, the smallest dimensions of
our lattice to achieve the 1

2 bound is 2879 for a sufficiently large p = 2ω(d(2+c)d),
where d = 2. The LLL algorithm terminates within O(w4+γb1+γ) bit operations
for any γ > 0 [25], where w is the involved dimension and b is the maximal
bit size in the input basis matrix. For our case, w = 2879, w4 ≈ 246 and b is
bounded by 3d log2 p. Therefore, the LLL algorithm needs a considerable time to
get the desired vector. Thus, we do not experimentally show that the 1

2 barrier
is broken.

1.3 Technical Overview

As mentioned before, we revisit the Coppersmith method to find the desired
root (e0, ẽ1, · · · , ẽn) in n given polynomials

Fj(x0, yj) := Aj + Bjx0 + Cjx
2
0 + Djyj + Ejx0yj + x2

0yj

derived from EC-HNPx, satisfying Fj(e0, ẽj) = 0 mod p for 1 ≤ j ≤ n, where
the value X is the upper bound of |e0|, |ẽ1|, · · · , |ẽn|, i.e., |e0| < X, |ẽ1| <
X, · · · , |ẽn| < X. Since X = p/2δ for EC-HNPx, where p is the modulus and δ is
the number of known MSBs (LSBs), we can see that for a fixed p, X and δ are
inversely related. To make δ as small as possible, X must be as large as possible.

For any given positive integer d, we construct w multivariate polynomials
G1(x0, y1, · · · , yn), · · · , Gw(x0, y1, · · · , yn) satisfying

Gj(e0, ẽ1, · · · , ẽn) = 0 mod pd for all 1 ≤ j ≤ w.

Let L be a Coppersmith lattice, which is spanned by the coefficient vectors of
Gj(x0X, y1X, · · · , ynX) for all 1 ≤ j ≤ w, where w and det(L) are the dimension
and determinant of the lattice L, respectively. The basis matrix of L can be
arranged into a triangular matrix.

After the lattice basis reduction, we expect to get n+1 multivariate polynomi-
als Q1(x0, y1, · · · , yn), · · · , Qn+1(x0, y1, · · · , yn) such that Qj(e0, ẽ1, · · · , ẽn) = 0
over the integers for all 1 ≤ j ≤ n. Under Assumption 1, we can efficiently recover
the desired root (e0, ẽ1, · · · , ẽn).

In the Coppersmith method, for a sufficiently large modulus p, the condition
for finding the target root (e0, ẽ1, · · · , ẽn) can be briefly written as

(det(L))
1
w < pd. (2)

As shown in [28,32], the strategy of solving MIHNP can help to solve EC-HNPx.
Inspired by the approach for MIHNP [34], we expect to add enough helpful
vectors into the lattice of [32].
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In [32], a lattice L′ with triangular basis matrix was constructed. For any
given positive integer d, take n = d3. Then we can write dim(L′) = (2d +
1)

(

n
d

)

(1+o(1)), and det(L′) = Xαpβ , where α = 2d(2d+1)
(

n
d

)

(1+o(1)) and β =
2d

(

n
d

)

(1+o(1)). For a sufficiently large p = 2ω(2n), the Coppersmith condition (2)

states: |det(L′)|
1

dim(L′) < pd, which reduces to X < p
1
2− 1

2d −ε, where ε > 0 and
ε = o( 1d ). Plugging X = p/2δ into the above relation, we get δ/ log2 p > 1

2+ 1
2d+ε,

which becomes δ/ log2 p > 1
2 when d tends to infinity. It means that, in order

to achieve 1/2 bound, the involved lattice dimension dim(L′) and the size of
modulus p tend to infinity.

In this paper, we first consider
(

n
d+1

)

of helpful polynomials. To be specific, we
randomly choose d+1 different integers from the set {1, · · · , n}. Without loss of
generality, let d + 1 integers be j1, · · · , jd+1, where 1 ≤ j1 < · · · < jd+1 ≤ n. For
any fixed tuple (j1, · · · , jd+1), we choose a linear combination (with the leading
term yj1 · · · yjd+1) of the following polynomials:

d+1
∑

u=1

1
∑

v=0

Ku,v · xv
0Fj1 · · · Fju−1yju

Fju+1 · · · Fjd+1 for some Ku,v ∈ Z. (3)

We then consider the algebraic structure of linear combinations (3) and design
a lattice. We construct more compact linear combinations compared to (3) so
that all monomials related to x2d

0 and x2d+1
0 are removed. That is, the monomials

xi0
0 yi1

1 · · · yin
n for all (i0, i1, · · · , in) ∈ I3 are deleted from new linear combinations,

where I3 := ({(i0, i1, · · · , in) | 2d ≤ i0 ≤ 2d + 1, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 +
· · ·+ in ≤ d}. Then we get a lattice with triangular basis matrix. In this case, we
can deduce that the upper bound X < p1− 1

d+1−ε, where ε > 0 and ε = o( 1
d+1 ).

Based on X = p/2δ, we obtain δ/ log2 p > 1
d+1 + ε, which becomes δ/ log2 p > 0

when d tends to infinity.
The polynomial construction for the lattice in this work looks similar to that

in [32]. However, this does not mean that our lattice construction is ordinary.
When it comes to the Coppersmith method, small differences in parameter selec-
tion can lead to significant differences in efficiency. While dealing with multivari-
ate Coppersmith method, the core point and technical difficulty is constructing
as many helpful polynomials as possible. The rest is a conventional technique.

1.4 Organization

The rest of this paper is organized as follows. In Sect. 2, we review some results
on lattice, the Coppersmith method, elliptic curves, the transformation from
EC-HNPx to a class of modular polynomials, and orders of monomials. The
existing method is revisited in Sect. 3. In Sect. 4, we use algebraic structure
of polynomials to design a lattice. In Sect. 5, we prove that the involved basis
matrix is triangular. In Sect. 6, we compare our result with the existing work.
We present our experimental results in Sect. 7.
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2 Preliminaries

Throughout the paper, p is a prime where p > 3.

2.1 Lattice

A lattice L is a discrete subgroup of R
m. An alternative equivalent definition of

an integer lattice can be given using a basis. Let b1, · · · ,bw be linear indepen-
dent row vectors in R

m, a lattice L spanned by them is

L =
{ w

∑

i=1

kibi

∣

∣ ki ∈ Z

}

.

The set {b1, · · · ,bw} is called a basis of L and the matrix B = [b1
T , · · · ,bw

T ]T

is the corresponding basis matrix. The dimension and determinant of L are
respectively

dim(L) = w,det(L) =
√

det(BBT ).

When m = w, lattice is called full rank. In this paper, the involved lattices are
full-rank integer lattices.

The well-known LLL lattice reduction algorithm [20] can produce a reduced
basis that has the following property.

Lemma 1 (LLL). Let L be a w-dimensional integer lattice. Within polynomial
time, the LLL algorithm outputs reduced basis vectors v1, . . . ,vw that satisfy

‖vi‖ ≤ 2
w(w−1)

4(w+1−i) (det(L))
1

w+1−i , 1 ≤ i ≤ w.

2.2 The Coppersmith Method

We briefly review how to use the Coppersmith method to solve multivariate
modular polynomials.

Problem Definition. Let f1(x0, x1, · · · , xn), · · · , fm(x0, x1, · · · , xn) be orig-
inal polynomials, which are irreducible multivariate polynomials defined over
Z, with a common root (x̃0, x̃1, · · · , x̃n) modulo a known integer p such that
|x̃0| < X0, · · · , |x̃n| < Xn. The goal is to recover the desired root (x̃0, · · · , x̃n)
in polynomial time. To ensure recovery of the desired root, the size of values
X0, · · · ,Xn must be bound.

Polynomials Collection. One chooses polynomials,

g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn)
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such that (x̃0, x̃1, · · · , x̃n) is a common root modulo a power of p. Generally,
multiples of lifting polynomials are selected, where a lifting polynomial is defined
as the product of some powers of original polynomials and variables. For example,

gj(x0, x1, · · · , xn) := pd−(βj
1+···+βj

m)x
αj

0
0 x

αj
1

1 · · · xαj
n

n f
βj
1

1 · · · fβj
m

m ,

where j ∈ {1, · · · , w}, d ∈ Z
+, and αj

0, α
j
1, · · · , αj

n, βj
1, · · · , βj

m ∈ Z
+∪{0} satisfy-

ing 0 ≤ βj
1+· · ·+βj

m ≤ d. It is not hard to see that gj(x̃0, x̃1, · · · , x̃n) ≡ 0 mod pd

for every j ∈ {1, · · · , w}. For the Coppersmith method, the most complex step
is the selection of polynomials g1, · · · , gw when dealing with multiple original
polynomials. The difference between this paper’s polynomial selection and the
above strategy is that linear combinations of lifting polynomials are considered.

Lattice Construction. Let the vector bj (1 ≤ j ≤ w) be the coefficient vector
of the polynomial gj(x0X0, x1X1, . . . , xnXn) with variables x0, x1, . . . , xn. Then

one constructs the lattice L =
{

∑w
j=1 kjbj

∣

∣ kj ∈ Z

}

.

Reduced Basis. One runs the LLL algorithm and obtains the w reduced basis
vectors v1, . . . ,vw, where vj is the coefficient vector of the polynomial hj(x0X0,
x1X1, . . . , xnXn) for j ∈ {1, · · · , w}. Note that the LLL algorithm performs lin-
ear operations. Hence, vj is a linear combination of the vectors b1, · · · ,bw.
That is, hj(x0, x1, . . . , xn) is a linear combination of g1(x0, x1, . . . , xn), · · · ,
gw(x0, x1, . . . , xn). Then, hj(x̃0, x̃1, · · · , x̃n) = 0 (mod pd) for every j ∈
[1, · · · , w]. In order to get hj(x̃0, x̃1, · · · , x̃n) = 0 over Z for some j ∈ {1, · · · , w},
we need the following lemma in this process.

Lemma 2 ([14]). Let h(x0, x1, . . . , xn) be an integer polynomial that consists
of at most w monomials. Let d be a positive integer and the integers Xi be
the upper bound of |x̃i| for i = 0, 1, · · · , n. Let ‖h(x0X0, x1X1, . . . , xnXn)‖ be
the Euclidean length of the coefficient vector of h(x0X0, x1X1, . . . , xnXn) with
variables x0, x1, . . . , xn. Suppose that

1. h(x̃0, x̃1, · · · , x̃n) = 0 (mod pd),
2. ‖h(x0X0, x1X1, . . . , xnXn)‖ < pd

√
w

,

then h(x̃0, x̃1, · · · , x̃n) = 0 holds over Z.

To make hj(x̃0, x̃1, · · · , x̃n) = 0 for all 1 ≤ j ≤ n + 1 hold, from Lemma 1
and Lemma 2, we need the Euclidean lengths of the n + 1 reduced basis vectors
v1, . . . ,vn+1 satisfy the condition

2
w(w−1)
4(w−n) ·

(

det(L)
)

1
w−n <

pd

√
w

, w = dim(L). (4)

Based on Condition (4), one can determine the size of bounds X0, · · · ,Xn.
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Desired Root Recovery. We have no assurance that the n+1 obtained poly-
nomials h1, · · · , hn+1 are algebraically independent. Under Assumption 1, the
corresponding equations can be solved using elimination techniques such as the
Gröbner basis computation, and then the desired root (x̃0, x̃1, · · · , x̃n) is recov-
ered. In this paper, we use computer experiments to show that our heuristic
approach works.

Assumption 1 ([19]). Let h1, · · · , hn+1 ∈ Z[x0, x1, · · · , xn] be the polynomi-
als that are found by the Coppersmith method. Then the ideal generated by the
polynomial equations h1(x0, x1, · · · , xn) = 0, · · · , hn+1(x0, x1, · · · , xn) = 0 has
dimension zero.

The involved Assumption 1 is called the zero-dimensional ideal assumption,
which is a relaxation of algebraically independent assumption, first appeared
in [19]. We consider a zero-dimensional ideal, namely, an ideal I such that the
number of common zeros of the polynomials in I is finite in the algebraic closure
of the field of coefficients [11]. It seems very difficult to verify whether there are
finite number of common zeros or not.

Helpful Polynomials. An important strategy of choosing the above polynomi-
als g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn) is to choose as many helpful poly-
nomials as possible.

Definition 2 ([22,29]). Define d and L as above. A vector in the triangular
basis matrix, which is the coefficient vector of g(x0X,x1X, · · · , xnX), is called
a helpful vector if the absolute value of its diagonal component1 is greater than 0
and less than pd. That is, g(x0, x1, · · · , xn) is called a helpful polynomial2. Else,
g(x0, x1, · · · , xn) is called a non-helpful polynomial.

Next, we show why helpful polynomials can work. We obtain the simplified
condition (det(L))

1
w < pd by ignoring low-order terms in Condition (4). For a

triangular basis matrix, the left side of the simplified condition is regarded as
the geometric mean of all diagonals of the basis matrix. A helpful polynomial
contributes to the determinant with a factor greater than 0 and less than pd.
The more helpful polynomials in the lattice, the easier the condition for solving
modular equations is to be satisfied. It implies that the Coppersmith method
becomes more and more effective, and the above bounds Xi become larger and
larger. Therefore, one should choose as many helpful polynomials as possible.

1 The diagonal component of the coefficient vector of g(x0X, x1X, · · · , xnX) corre-
sponds to the leading term of g(x0, x1, · · · , xn). Specifically, the diagonal component
is equal to the leading coefficient of g(x0X, x1X, · · · , xnX).

2 There is a one-to-one correspondence between helpful polynomials and helpful vec-
tors. The coefficient vector of g(x0X, x1X, · · · , xnX) is a helpful vector if and only
if g(x0, x1, · · · , xn) is a helpful polynomial.
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2.3 Elliptic Curves

For a prime field Fp, consider an elliptic curve E over Fp, given in a Weierstrass
form E : y2 = x3 + ax + b over Fp with a, b ∈ Fp and 4a3 + 27b2 	= 0. Let
P = (xP , yP ) ∈ F

2
p be a point on the curve E , where xP (resp. yP ) is called the

x-coordinate (resp. y-coordinate) of point P . The set of points on E , together
with the point at infinity O, forms an additive abelian group. Hasse’s theorem
shows that the number of points #E on the curve E(Fp) satisfies the relation:
|#E − p − 1| ≤ 2

√
p. The additive inverse of point P is −P = (xP ,−yP ). For

an integer m, [m]P denotes successive m-time addition of the point P , and
[−m]P = m[−P ]. Given two points P = (xP , yP ) and Q = (xQ, yQ) on E , where
P 	= ±Q, consider the addition P + Q = (xP+Q, yP+Q). Let sP+Q = yP −yQ

xP −xQ
.

The x-coordinate and y-coordinate of P + Q are respectively

xP+Q = s2P+Q − xP − xQ, yP+Q = sP+Q(xP − xP+Q) − yP . (5)

2.4 From EC-HNPx to Modular Polynomials

We present the transformation in [28] from the problem of recovering xP in EC-
HNPx (see Definition 1), the x-coordinate of the hidden point P = (xP , yP ), to
the problem of finding small solutions of modular polynomials. In brief, our tar-
get is to find the desired small root (e0, ẽi) of the following modular polynomial

Fi(x0, yi) := Ai + Bix0 + Cix
2
0 + Diyi + Eix0yi + x2

0yi = 0 (mod p), 1 ≤ i ≤ n.
(6)

Here coefficients Ai, Bi, Ci,Di, Ei are known, and unknown integers e0, ẽ1,
· · · , ẽn are all bounded by the value X := p/2δ. The specific analysis is as
follows.

Eliminating yP . For a given point R in an elliptic curve E over Fp, we produce
Q = [m]R = (xQ, yQ) and −Q = [−m]R = (xQ,−yQ), where m is a positive
integer. According to y2

P = x3
P + axP + b, y2

Q = x3
Q + axQ + b and (5), we obtain

xP+Q + xP−Q = (s2P+Q − xP − xQ) + (s2P−Q − xP − xQ)

=
(

yP −yQ

xP −xQ

)2

+
(

yP +yQ

xP −xQ

)2

− 2xP − 2xQ

= 2
(

y2
P +y2

Q

(xP −xQ)2 − xP − xQ

)

= 2
(

xQx2
P +(a+x2

Q)xP +axQ+2b

(xP −xQ)2

)

.

(7)

Constructing Modular Polynomials. Query the oracle OP,R in EC-HNPx

on 2n + 1 different inputs 0 and ±mi for i = 1, · · · , n. Then we obtain OP,R(0)
and OP,R(±mi). We write hi = OP,R(mi) = MSBδ(xP+Qi

) = xP+Qi
− ei and

h′
i = OP,R(−mi) = MSBδ(xP−Qi

) = xP−Qi
− e′

i, where |ei| < p/2δ+1 and
|e′

i| < p/2δ+1 for all 1 ≤ i ≤ n. Let h̃i = hi + h′
i and ẽi = ei + e′

i, we have
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h̃i + ẽi = xP+Qi
+ xP−Qi

, where |ẽi| < p/2δ for i = 1, · · · , n. According to (7),
we get

h̃i + ẽi = 2
(

xQi
x2

P +(a+x2
Qi

)xP +axQi
+2b

(xP −xQi
)2

)

, 1 ≤ i ≤ n. (8)

Moreover, we write h0 = OP,R(0) = MSBδ(xP ) = xP − e0, where |e0| < p/2δ+1.

Hence, h̃i + ẽi = 2(
xQi

(h0+e0)
2+(a+x2

Qi
)(h0+e0)+axQi

+2b

(h0+e0−xQi
)2 ). After multiplying by

(h0 + e0 − xQi
)2, we get Ai + Bie0 + Cie

2
0 + Diẽi + Eie0ẽi + e20ẽi = 0 mod p,

1 ≤ i ≤ n, where known coefficients Ai, Bi, Ci,Di, Ei satisfy (in the field Fp)

Ai =
(

h̃i(h0 − xQi
)2 − 2h2

0xQi
− 2(a + x2

Qi
)h0 − 2axQi

− 4b
)

,

Bi = 2(h̃i(h0 − xQi
) − 2h0xQi

− a − x2
Qi

), Ci = (h̃i − 2xQi
),

Di = (h0 − xQi
)2, Ei = 2(h0 − xQi

).
(9)

Therefore, (e0, ẽi) is a small root of the polynomial

Fi(x0, yi) = Ai + Bix0 + Cix
2
0 + Diyi + Eix0yi + x2

0yi = 0 (mod p),

where 1 ≤ i ≤ n and e0, ẽ1, · · · , ẽn are all bounded by X := p/2δ. Once the
desired vector (e0, ẽ1, · · · , ẽn) is obtained, xP can be recovered based on xP =
e0 + h0. After xP is recovered, yP will be extracted due to y2

P = x3
P + axP +

b mod p.

2.5 Order of Monomials

We first recall reverse lexicographic order and graded lexicographic reverse order
respectively. For more details, please refer to [31, Section 21.2]. Let i0, i1, · · · ,
in, i′0, i′1, · · · , i′n be nonnegative integers.

Reverse Lexicographic Order: (i′1, · · · , i′n) ≺revlex (i1, · · · , in) ⇔ the right-
most nonzero entry in (i′1 − i1, · · · , i′n − in) is negative.

Graded Reverse Lexicographic Order: (i′1, · · · , i′n) ≺grevlex (i1, · · · , in) ⇔
n
∑

m=1
i′m <

n
∑

m=1
im or

(
n
∑

m=1
i′m =

n
∑

m=1
im and (i′1, · · · , i′n) ≺revlex (i1, · · · , in)

)

.

In this paper, we utilize the following order of monomials, which is also used
in [34].

x
i′
0
0 y

i′
1
1 · · · yi′

n
n ≺ xi0

0 yi1
1 · · · yin

n ⇔
(i′1, · · · , i′n) ≺grevlex (i1, · · · , in) or

(

(i′1, · · · , i′n) = (i1, · · · , in) and i′0 < i0
)

.
(10)

It is noteworthy that i0 and i′0 are treated differently than i1, · · · , in and
i′1, · · · , i′n respectively. According to (10), we can determine the leading term
of a multivariate polynomial. For example, for Fj = Aj +Bjx0 +Cjx

2
0 +Djyj +

Ejx0yj + x2
0yj for 1 ≤ j ≤ n in (6), we have

1 ≺ x0 ≺ x2
0 ≺ yj ≺ x0yj ≺ x2

0yj . (11)

Hence, the leading monomial of Fj is x2
0yj . Further, the leading coefficient of Fj

is 1, and the leading term of Fj is x2
0yj .
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3 Existing Lattice

In this section, we review the lattice in [32] for solving (6). Here we provide a
different description of the lattice, closer to the lattice we introduce later. First,
we recall the index set

I[XHS20](n, d) = {(i0, i1, · · · , in) | 0 ≤ i0 ≤ 2d,
0 ≤ i1, · · · , in ≤ 1, 0 ≤ l ≤ d},

(12)

where integers n, d satisfying 1 ≤ d ≤ n, and l := i1+· · ·+in satisfying 0 ≤ l ≤ d.

3.1 Lattice L[XHS20](n, d)

For any fixed tuple (i0, i1, · · · , in) ∈ I[XHS20](n, d), we construct polynomial
fi0,i1,...,in

(x0, y1, · · · , yn) as follows.

Case a: When l = 0 and 0 ≤ i0 ≤ 2d, define

fi0,i1,··· ,in
(x0, y1, · · · , yn) := xi0

0 .

Case b: When l = 1 and 0 ≤ i0 ≤ 1, define

fi0,i1,··· ,in
(x0, y1, · · · , yn) := xi0

0 yi1
1 · · · yin

n .

Case c: When 1 ≤ l ≤ d and 2l ≤ i0 ≤ 2d, define

fi0,i1,··· ,in
(x0, y1, · · · , yn) := xi0−2l

0 F i1
1 · · · F in

n .

Case d: When 2 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1, define

fi0,i1,··· ,in
(x0, y1, · · · , yn) :=

l
∑

u=1

1
∑

v=0

wi0+1,u+lv · xv
0Fj1 · · · Fju−1yju

Fju+1 · · · Fjl
,

(13)
where Fi(x0, yi) = Ai + Bix0 + Cix

2
0 + Diyi + Eix0yi + x2

0yi = 0 (mod p)
for 1 ≤ i ≤ n defined in (6), integers j1, · · · , jl are defined in Lemma 3, and
wi0+1,u+lv is element of the (i0 + 1)-th row and the (u + lv)-th column of the
matrix Wj1,··· ,jl

, which is also defined in Lemma 3.

Lemma 3 ([32]). Let i1, · · · , in be integers satisfying 0 ≤ i1, · · · , in ≤ 1. Denote
l = i1 + · · · + in, where 2 ≤ l ≤ n. Let j1, · · · , jl be integers satisfying 1 ≤ j1 <
· · · < jl ≤ n and yj1 · · · yjl

= yi1
1 · · · yin

n . Let a 2l × 2l integer matrix Mj1,··· ,jl
be

the following coefficient matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
u �=1

(x2
0 + Ejux0 + Dju)

...∏
u �=l

(x2
0 + Ejux0 + Dju)

x0

∏
u �=1

(x2
0 + Ejux0 + Dju)

. . .

x0

∏
u �=l

(x2
0 + Ejux0 + Dju)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Mj1,··· ,jl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...

xl−1
0

xl
0

...

x2l−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

mod pl−1, (14)
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where integers Dju
and Eju

are the coefficients in the polynomial Fju
= Aju

+
Bju

x0 + Cju
x2
0 + Dju

yju
+ Eju

x0yju
+ x2

0yju
for 1 ≤ u ≤ l. Then the matrix

Mj1,··· ,jl
is invertible over Zpl−1 . Denote Wj1,··· ,jl

as its inverse matrix. Hence,

Wj1,··· ,jl
· Mj1,··· ,jl

= I2l mod pl−1, (15)

where I2l is the 2l × 2l identity matrix.

Lemma 4 ([32]). Based on the order (10), the monomial xi0
0 yi1

1 · · · yin
n is the

leading term of the polynomial fi0,i1,··· ,in
(x0, y1, · · · , yn) for (i0, i1, · · · , in) ∈

I[XHS20](n, d). Let

Fi0,i1,··· ,in
(x0, y1, · · · , yn) :=

{

pd+1−lfi0,i1,··· ,in
for 1 ≤ l ≤ d, 0 ≤ i0 ≤ 2l − 1,

pd−lfi0,i1,··· ,in
for 0 ≤ l ≤ d, 2l ≤ i0 ≤ 2d.

(16)
Let L[XHS20](n, d) be the lattice which is spanned by the coefficient vectors of
polynomials

Fi0,i1,··· ,in
(x0X, y1X, · · · , ynX) for all (i0, i1, · · · , in) ∈ I[XHS20](n, d),

where the value X is the upper bound of |e0|, |ẽ1|, · · · , |ẽn|. The diagonal elements
in triangular basis matrix of lattice L[XHS20](n, d) are as follows:

{

pd+1−lXi0+l for 1 ≤ l ≤ d, 0 ≤ i0 ≤ 2l − 1,
pd−lXi0+l for 0 ≤ l ≤ d, 2l ≤ i0 ≤ 2d.

According to Lemma 4, the dimension and determinant of L[XHS20](n, d) are
respectively

dim(L[XHS20](n, d)) = (2d + 1)
d∑

l=0

(
n
l

)
and det(L[XHS20](n, d)) = Xαpβ ,

where

α = d(2d + 1)
d∑

l=0

(
n
l

)
+ (2d + 1)

d∑
l=0

l
(

n
l

)
, β = d(2d + 1)

d∑
l=0

(
n
l

) − (2d − 1)
d∑

l=0

l
(

n
l

)
.

For a sufficiently large modulus p, one can use the simplified Coppersmith
condition (2), which does not affect the asymptotic bound. Based on (2), we

get the condition
(

det(L[XHS20](n, d))
)

1
w < pd, where w = dim(L[XHS20](n, d)),

which is equivalent to
X < p

dw−β
α . (17)

We omit the tedious calculation and give the following results directly. For any
1 ≤ d ≤ n, dw−β

α < 1
2 . For any given positive integer d, take n = d3. Then we have

w = (2d+1)
(

n
d

)

(1+o(1)), α = 2d(2d+1)
(

n
d

)

(1+o(1)) and β = 2d
(

n
d

)

(1+o(1)). For
a sufficiently large p = 2ω(2n), the condition (17) becomes X < p

1
2− 1

2d −ε, where
ε > 0 and ε = o( 1d ). Plugging X = p/2δ for EC-HNPx into the above inequality,
we have δ/ log2 p > 1

2 + 1
2d + ε. When d tends to infinity, this condition reduces

to
δ

log2 p
>

1
2
. (18)
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4 New Lattice

In this section, we design a new lattice by mining the algebraic structure.

4.1 Lattice L(n, d, t)

Let I(n, d, t) be an index set which is equal to I(n, d, t) = I1 ∪ I2, where

I1 := {(i0, i1, · · · , in) | 0 ≤ i0 ≤ 2d − 1, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ l ≤ d},
I2 := {(i0, i1, · · · , in) | 0 ≤ i0 ≤ t, 0 ≤ i1, · · · , in ≤ 1, l = d + 1}.

Here, 1 ≤ d < n, 0 ≤ t ≤ 2d − 1 and l = i1 + · · · + in satisfying 0 ≤ l ≤ d + 1.

Remark 1. According to (12), we get that the index set I[XHS20](n, d) equals

{(i0, i1, · · · , in) | 0 ≤ i0 ≤ 2d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ l ≤ d}.

It is obvious that I1 is a subset of I[XHS20](n, d), whereas I2 is not.

Based on Fi0,i1,··· ,in
(x0, y1, · · · , yn) in Lemma 4, we construct the polynomial

Gi0,i1,··· ,in
(x0, y1, · · · , yn) as follows.

Case A: For any given (i0, i1, · · · , in) ∈ I1, we define

Gi0,i1,··· ,in
(x0, y1, · · · , yn) = Fi0,i1,··· ,in

(x0, y1, · · · , yn).

Since Fi0,i1,··· ,in
(e0, ẽ1, · · · , ẽn) = 0 mod pd, we have Gi0,i1,··· ,in

(e0, ẽ1, · · · , ẽn) =
0 mod pd.

Case B: For any given (i0, i1, · · · , in) ∈ I2, we define

Gi0,i1,··· ,in
(x0, y1, · · · , yn) =

(

Hi0,i1,··· ,in
+ Ji0,i1,··· ,in

+ Ki0,i1,··· ,in

)

mod pd,

which is considered to be the corresponding polynomial over Z. Without loss of
generality, we let j1, · · · , jd+1 be integers satisfying 1 ≤ j1 ≤ · · · ≤ jd+1 ≤ n and
yj1yj2 · · · yjd+1 = yi1

1 yi2
2 · · · yin

n , and

Hi0,i1,··· ,in
=

d+1
∑

u=1

1
∑

v=0
wi0+1,u+v(d+1) · xv

0Fj1 · · · Fju−1yju
Fju+1 · · · Fjd+1 ,

Ji0,i1,··· ,in
=

d+1
∑

u=1

1
∑

v=0
wi0+1,u+v(d+1) · xv

0Fj1 · · · Fju−1Cju
Fju+1 · · · Fjd+1 ,

Ki0,i1,··· ,in
=

d+1
∑

u=1
wi0+1,u+(d+1) · Fj1 · · · Fju−1(Bju

− Cju
Eju

)Fju+1 · · · Fjd+1 ,

where the integers Bju
, Cju

and Eju
are the coefficients in the polynomial Fju

=
Aju

+ Bju
x0 + Cju

x2
0 + Dju

yju
+ Eju

x0yju
+ x2

0yju
for 1 ≤ u ≤ d + 1, and the

integer wi0+1,m(1 ≤ m ≤ 2d + 2) is the m-th component of the (i0 + 1)-th row
vector in the inverse matrix Wj1,··· ,jd+1 , which is defined in Lemma 3.

For Case B, the desired vector (e0, ẽ1, · · · , ẽn) is common root of Hi0,i1,··· ,in
,

Ji0,i1,··· ,in
and Ki0,i1,··· ,in

modulo pd. Hence, Gi0,i1,··· ,in
(e0, ẽ1, · · · , ẽn) =

0 mod pd.
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Lemma 5. Define Gi0,i1,··· ,in
(x0, y1, · · · , yn) and I(n, d, t) as above. Let L(n,

d, t) be a lattice spanned by the coefficient vectors of Gi0,i1,··· ,in
(x0X, y1X, · · · ,

ynX) for all (i0, i1, · · · , in) ∈ I(n, d, t), where the value X is the upper bound
of |e0|, |ẽ1|, · · · , |ẽn|. Then the basis matrix is triangular if the coefficient vectors
of Gi0,i1,··· ,in

(x0X, y1X, · · · , ynX) are arranged based on the order of the corre-
sponding xi0

0 yi1
1 · · · yin

n from low to high. The diagonal elements in the triangular
basis matrix of L(n, d, t) are as follows:

⎧

⎨

⎩

pd+1−lXi0+l for 0 ≤ l ≤ d, 0 ≤ i0 ≤ 2l − 1,
pd−lXi0+l for 0 ≤ l < d, 2l ≤ i0 ≤ 2d − 1,
Xi0+d+1 for l = d + 1, 0 ≤ i0 ≤ t.

(19)

The dimension of L(n, d, t) is equal to the number of I(n, d, t). Namely,

dim(L(n, d, t)) = (t + 1)
(

n

d + 1

)

+ 2d

d
∑

l=0

(

n

l

)

. (20)

The determinant of L(n, d, t) is equal to

det(L(n, d, t)) =: Xαpβ , (21)

where

α = (2d+t+2)(t+1)
2

(

n
d+1

)

+ d
d
∑

l=0

(2d − 1 + 2l)
(

n
l

)

,

β = 2d2
d
∑

l=0

(

n
l

)

− (2d − 2)
d
∑

l=0

l
(

n
l

)

.

4.2 Improved Bound

According to the steps in the Coppersmith method in Sect. 2.2, the Coppersmith
condition (4) must be satisfied for the polynomials hi(x0, y1, . . . , yn) for all 1 ≤
i ≤ n + 1, corresponding to the first n + 1 LLL reduced basis vectors, to contain
the desired root (e0, ẽ1, . . . , ẽn) over integers. That is,

2
w(w−1)
4(w−n) det(L(n, d, t))

1
w−n <

pd

√
w

, (22)

where w = dim(L(n, d, t)). Once we get the above n + 1 polynomials hi’s,
under Assumption 1, we can compute the wanted root (e0, ẽ1, . . . , ẽn) using
the Gröbner basis.

Plugging (20) and (21) into (22), we obtain

X <
(

2− w(w−1)
4α · w− w−n

2α

)

· pS(n,d,t), (23)

where

S(n, d, t) := d(w−n)−β
α =

d(t+1)( n
d+1)+(2d−2)

d∑

l=0
l(n

l)−dn

(2d+t+2)(t+1)
2 ( n

d+1)+d
d∑

l=0
(2d−1+2l)(n

l)
.
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For a given sufficiently large p = 2ω(d(2+c)d) for any positive integer d and
any constant c > 0, the condition (23) can be simplified as

X < pS(n,d,t).

By taking integers t = 0 and n = d3+c, the condition becomes

X < p1− 1
d+1−ε. (24)

Here, ε = o( 1
d+1 ) =

d2(2d−1)
d∑

l=0
(n

l)+2
d∑

l=0
l(n

l)+d(d+1)n

(d+1)2( n
d+1)+d(d+1)(2d−1)

d∑

l=0
(n

l)+2d(d+1)
d∑

l=0
l(n

l)
> 0.

The running time of the LLL algorithm depends on the dimension and the
maximal bit size of the input triangular basis matrix. For t = 0 and n = d3+c, the
dimension of L(n, d, t) is equal to

(

n
d+1

)

+ 2d
∑d

l=0

(

n
l

)

= O(nd+1) = O(d(3+c)d),
and the bit size of the entries in the triangular basis matrix is bounded by
3d log2 p from (19). Based on [25], the time complexity of the LLL algorithm is

poly
(

3d log2 p,O(d(3+c)d)) = O((log2 p)O(1)
dO(d)) (25)

which is polynomial in log2 p for any constant d.
The running time of the Gröbner basis computation relies on the degrees and

number of variables of input polynomials as well as the size of input polynomials.
Based on [13], the time complexity of the Gröbner basis computation for a
zero-dimensional system is polynomial in max{S,DN} < Nh(eD)N , where N
is the number of variables, and S is the size of the input polynomials in dense
representation, h is the maximal size of the coefficients of the input polynomials,
D is arithmetic mean value of the degrees of input polynomials and e is Euler
constant. For our lattice L(n, d, t), when t = 0 and n = d3+c, the number of
variables is n + 1, the degree of input polynomials hi’s (1 ≤ i ≤ n + 1) is 3d − 1
according to (38), and the maximal size h is less than d log2 p based on Lemma 2.
That is, N = n + 1, D = N(3d − 1)/N = 3d − 1, and h < d log2 p. Hence, the
time complexity of the Gröbner basis computation is bounded by

poly(Nh(eD)N ) = O((log2 p)O(1)
dO(n)) (26)

which is polynomial in log2 p for any constant d. From (25) and (26), the overall
complexity is polynomial in log2 p for any constant d.

Finally, if any vector (x0, ỹ1, · · · , ỹn) ∈ Z
n+1 such that Fj(x0, ỹj) = 0 mod p

for all 1 ≤ j ≤ n in (6), where the upper bound of |x0|, |ỹ1|, · · · , |ỹn| satisfies
(24), then (x0, ỹ1, · · · , ỹn) is also a common root over Z of the input polynomials
h1, · · · , hn+1 of Gröbner basis computation. The following result shows that the
number of these roots is not only limited, but also only one with an overwhelming
probability.

Lemma 6. For a given sufficiently large prime p = 2ω(d(2+c)d) for any positive
integer d and any constant c > 0, given n = d3+c polynomials Fj(x0, yj) satis-
fying Fj(e0, ẽj) = 0 mod p for 1 ≤ j ≤ n in (6), the probability that there is an
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integer vector (e′
0, ẽ

′
1, · · · , ẽ′

n) 	= (e0, ẽ1, · · · , ẽn), such that Fi(e′
0, ẽ

′
i) = 0 (mod p)

for all 1 ≤ i ≤ n, where the upper bound of |e′
0|, |ẽ′

1|, · · · , |ẽ′
n| satisfies (24), does

not exceed O( 1p ).

According to the above analysis, we get the following result.

Theorem 1. For a given sufficiently large prime p = 2ω(d(2+c)d) for any posi-
tive integer d and any constant c > 0, given n = d3+c polynomials Fj(x0, yj)
satisfying Fj(e0, ẽj) = 0 mod p for 1 ≤ j ≤ n in (6), under Assumption 1, one
can compute the desired root (e0, ẽ1, · · · , ẽn), if the bound X of |e0|, |ẽ1|, · · · , |ẽn|
satisfies

X < p1− 1
d+1−ε,

where ε = o( 1
d+1 ) > 0. The overall time complexity is polynomial in log2 p for

any constant d.

Since X = p/2δ for the case of EC-HNPx, we get a new bound for EC-HNPx

from Theorem 1.

Theorem 2. Define d, n, p, ε as in Theorem1. For 2n + 1 given calls to the
oracle OP,R(m) in EC-HNPx, under Assumption 1, one can recover the hidden
point P when the number δ of known MSBs satisfies

δ

log2 p
>

1
d + 1

+ ε.

For the least significant bits (LSBs) case, the problem of solving the corre-
sponding EC-HNPx can be converted into finding the desired root (e0, ẽ1, · · · , ẽn)
of the involved polynomials based on [28, Section 6.1]. Note that the forms of
these polynomials as well as the size of the desired root are the same as those in
(6). Therefore, we obtain the same bound as in the MSBs case.

For the case of ECDH, we get the following result from Theorem2.

Theorem 3. Define d, p as in Theorem1. For a given elliptic curve E over the
prime field Fp, if there is an oracle that outputs about 1

d+1 of the most (least)
significant bits of the x-coordinate of the ECDH key, under Assumption 1, one
can compute all the bits in polynomial time.

5 Proof of Triangular Basis Matrix

First, we present the following relation, which can be utilized to construct tri-
angular basis matrix.

Lemma 7. Define the matrices Mj1,··· ,jd+1 and Wj1,··· ,jd+1 as in Lemma 3,
where 1 ≤ j1 < · · · < jd+1 ≤ n. Let wi0+1,m be the entry of the (i0 + 1)-th
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row and the m-th column of Wj1,··· ,jd+1 , where 0 ≤ i0 ≤ 2d+1, 1 ≤ m ≤ 2d+2.
Then we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d+1
∑

u=1
wi0+1,d+1+u = 0 mod pd, for 0 ≤ i0 ≤ 2d,

d+1
∑

u=1

(

wi0+1,u + wi0+1,d+1+u

∑

m �=u

Ejm

)

= 0 mod pd, for 0 ≤ i0 ≤ 2d − 1,

(27)
where Ejm

is the coefficient of the polynomial Fjm
= Ajm

+ Bjm
x0 + Cjm

x2
0 +

Djm
yjm

+ Ejm
x0yjm

+ x2
0yjm

for 1 ≤ m ≤ d + 1.

Proof. According to (14), we get that the (2d + 2) × (2d + 2) matrix Mj1,··· ,jd+1

is the following coefficient matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
u �=1

(x2
0 + Ejux0 + Dju)

...∏
u �=d+1

(x2
0 + Ejux0 + Dju)

x0

∏
u �=1

(x2
0 + Ejux0 + Dju)

. . .

x0

∏
u �=d+1

(x2
0 + Ejux0 + Dju)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Mj1,··· ,jd+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...

xd
0

xd+1
0

...

x2d+1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

mod pd. (28)

For the sake of discussion, let ˜Fjm
=

∏

u�=m(x2
0+Eju

x0+Dju
) for all 1 ≤ m ≤

d + 1. The last column of Mj1,··· ,jd+1 corresponds to the vector whose elements
are respectively the coefficients of x2d+1

0 in the following polynomials

˜Fj1 , · · · , ˜Fjd+1 , x0 · ˜Fj1 , · · · , x0 · ˜Fjd+1 .

Note that the coefficient of x2d+1
0 in the polynomial ˜Fjm

is 0 for all 1 ≤ m ≤ d+1,
and the coefficient of x2d+1

0 in the polynomial x0
˜Fjm

is 1 for all 1 ≤ m ≤ d + 1.
That is, the last column of Mj1,··· ,jd+1 is (0, · · · , 0, 1, · · · , 1)T , where the number
of components 1 is d + 1. Since (wi0+1,1, · · · , wi0+1,2d+2) is the (i0 + 1)-th row
of the inverse matrix Wj1,··· ,jd+1 modulo pd, for 0 ≤ i0 ≤ 2d, we get that

(wi0+1,1, · · · , wi0+1,2d+2) · (0, · · · , 0, 1, · · · , 1)T = 0 mod pd,

i.e.
d+1
∑

u=1
wi0+1,d+1+u = 0 mod pd.

The penultimate column of Mj1,··· ,jd+1 corresponds to the vector whose ele-
ments are respectively the coefficients of x2d

0 in the following polynomials

˜Fj1 , · · · , ˜Fjd+1 , x0 · ˜Fj1 , · · · , x0 · ˜Fjd+1 .

Note that the coefficient of x2d
0 in ˜Fjm

is 1 for all 1 ≤ m ≤ d + 1, and
the coefficient of x2d

0 in x0
˜Fjm

is Ej1 + · · · + Ejm−1 + Ejm+1 + · · · + Ejd+1
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for 1 ≤ m ≤ d + 1. It implies that the penultimate column of Mj1,··· ,jd+1 is
(1, · · · , 1,

∑

m �=1 Ejm
, · · · ,

∑

m �=d+1 Ejm
)T , where the number of components 1

is d + 1. Based on (wi0+1,1, · · · , wi0+1,2d+2) is the (i0 + 1)-th row of Wj1,··· ,jd+1

modulo pd, for 0 ≤ i0 ≤ 2d − 1, we obtain that

(wi0+1,1, · · · , wi0+1,2d+2) · (1, · · · , 1,
∑

m �=1

Ejm
, · · · ,

∑

m �=d+1

Ejm
)T = 0 mod pd.

That is,
∑d+1

u=1

(

wi0+1,u + wi0+1,d+1+u

∑

m �=u Ejm

)

= 0 mod pd.

The above lemma is now used to show the form of Gi0,i1,··· ,in
(x0, y1, · · · , yn)

for (i0, i1, · · · , in) ∈ I2.

Lemma 8. Define Gi0,i1,··· ,in
(x0, y1, · · · , yn) and I1, I2 as in Sect. 4. If the tuple

(i0, i1, · · · , in) ∈ I2, then we have

Gi0,i1,··· ,in
= xi0

0 yi1
1 · · · yin

n +
∑

(i′
0,i′

1,··· ,i′
n)∈I1

ai′
0,i′

1,··· ,i′
n
x

i′
0
0 y

i′
1
1 · · · yi′

n
n ,

where ai′
0,i′

1,··· ,i′
n

∈ Z.

Proof. First, we present that the leading term of Gi0,i1,··· ,in
(x0, y1, · · · , yn) is

xi0
0 yi1

1 · · · yin
n for (i0, i1, · · · , in) ∈ I2. In this case,

Gi0,i1,··· ,in
= Hi0,i1,··· ,in

+ Ji0,i1,··· ,in
+ Ki0,i1,··· ,in

in the sense of modulo pd. Here,

Hi0,i1,··· ,in
=

d+1
∑

u=1

1
∑

v=0
wi0+1,u+v(d+1) · xv

0Fj1 · · · Fju−1yju
Fju+1 · · · Fjd+1 ,

Ji0,i1,··· ,in
=

d+1
∑

u=1

1
∑

v=0
wi0+1,u+v(d+1) · xv

0Fj1 · · · Fju−1Cju
Fju+1 · · · Fjd+1 ,

Ki0,i1,··· ,in
=

d+1
∑

u=1
wi0+1,u · Fj1 · · · Fju−1(Bju

− Cju
Eju

)Fju+1 · · · Fjd+1 ,

where integers 1 ≤ j1 < · · · < jd+1 ≤ n satisfy yj1 · · · yjd+1 = yi1
1 · · · yin

n .
In order to show the case of Hi0,i1,··· ,in

(x0, y1, · · · , yn), we first consider the
following equations:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

yj1 · Fj2 · · · Fjd+1

. . .

Fj1 · · · Fjdyjd+1

x0 · yj1Fj2 · · · Fjd+1

. . .

x0 · Fj1 · · · Fjdyjd+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,0

...
Hd+1,0

H1,1

...
Hd+1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Mj1,··· ,jd+1

⎛
⎜⎜⎜⎝

yj1 · yj2 · · · yjd+1

x0 · yj1yj2 · · · yjd+1

...

x2d+1
0 · yj1yj2 · · · yjd+1

⎞
⎟⎟⎟⎠ mod pd.

(29)
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Here, the matrix Mj1,··· ,jd+1 is defined in (28), and the polynomial Hu,v (1 ≤ u ≤
d + 1, 0 ≤ v ≤ 1) is composed of the terms in xv

0Fj1 · · · Fju−1yju
Fju+1 · · · Fjd+1

except the terms of monomials

yj1 · · · yjd+1 , x0yj1 · · · yjd+1 , · · · , x2d+1
0 yj1 · · · yjd+1 .

It implies that the leading monomial in Hu,v is x
i′
0
0 yk1 · · · ykm

, where 0 ≤ i′0 ≤
2d + 1 and {k1, · · · , km} � {j1, · · · , jd+1}. Hence, m < d + 1. According to the
order (10), we get

x
i′
0
0 yk1 · · · ykm

≺ yj1 · · · yjd+1 ≺ x0yj1 · · · yjd+1 ≺ · · · ≺ x2d+1
0 yj1 · · · yjd+1 . (30)

Note that Wj1,··· ,jd+1 is the inverse matrix of Mj1,··· ,jd+1 modulo pd. Multiplying
the two sides of Eq. (29) by Wj1,··· ,jd+1 to the left, we get

Wj1,··· ,jd+1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yj1 · Fj2 · · · Fjd+1

. . .

Fj1 · · · Fjd
yjd+1

x0 · yj1Fj2 · · · Fjd+1

. . .

x0 · Fj1 · · · Fjd
yjd+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Wj1,··· ,jd+1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H1,0

.

.

.
Hd+1,0
H1,1

.

.

.
Hd+1,1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

yj1 · yj2 · · · yjd+1
x0 · yj1yj2 · · · yjd+1

.

.

.

x2d+1
0 · yj1yj2 · · · yjd+1

⎞

⎟
⎟
⎟
⎟
⎠

(31)
(in the sense of modulo pd). Since (wi0+1,1, · · · , wi0+1,2d+2 is the (i0 + 1)-th row
of Wj1,··· ,jd+1 , where 0 ≤ i0 ≤ t, from (31), we have

Hi0,i1,··· ,in
=

d+1
∑

u=1

1
∑

v=0
wi0+1,u+(d+1)v · xv

0Fj1 · · · Fju−1yju
Fju+1 · · · Fjd+1

= xi0
0 yj1yj2 · · · yjd+1 +

d+1
∑

u=1

1
∑

v=0
wi0+1,u+(d+1)vHu,v mod pd.

(32)

Based on xi0
0 yj1yj2 · · · yjd+1 = xi0

0 yi1
1 · · · yin

n and (30), we obtain that xi0
0 yi1

1 · · · yin
n

is the leading term of Hi0,i1,··· ,in
. Moreover, all monomials except xi0

0 yi1
1 · · · yin

n

in Hi0,i1,··· ,in
belong to the set

{x
i′
0
0 y

i′
1
1 · · · yi′

n
n | 0 ≤ i′0 ≤ 2d + 1, 0 ≤ i′1, · · · , i′n ≤ 1, 0 ≤ i′1 + · · · + i′n ≤ d}. (33)

For the case of Ji0,i1,··· ,in
, let xr0

0 ys1 · · · ysm
be the leading monomial of

Ji0,i1,··· ,in
, where 0 ≤ r0 ≤ 2d + 1 and {s1, · · · , sm} � {j1, · · · , jd+1}. Thus,

m < d+1. Based on the order (10), we get xr0
0 ys1 · · · ysm

≺ xi0
0 yj1 · · · yjd+1 . That

is, xr0
0 ys1 · · · ysm

≺ xi0
0 yi1

1 · · · yin
n .

Similarly, we can also prove that the order of the leading monomial of
Ki0,i1,··· ,in

is less than the order of xi0
0 yi1

1 · · · yin
n .

To sum up, we get that xi0
0 yi1

1 · · · yin
n is the leading term of Gi0,i1,··· ,in

(x0,
y1, · · · , yn). In addition, all monomials except the leading monomial xi0

0 yi1
1 · · · yin

n

in Gi0,i1,··· ,in
lie in the set (33).

Then, we prove that Gi0,i1,··· ,in
(x0, y1, · · · , yn) does not contain any term

related to x2d+1
0 and x2d

0 . It means that all monomials except xi0
0 yi1

1 · · · yin
n in



Improving Bounds on Elliptic Curve Hidden Number Problem 791

Gi0,i1,··· ,in
lie in {x

i′
0
0 y

i′
1
1 · · · yi′

n
n | (i′1, · · · , i′n) ∈ I1}. That is, we can rewrite

Gi0,i1,··· ,in
as

xi0
0 yi1

1 · · · yin
n +

∑

(i′
0,i′

1,··· ,i′
n)∈I1

ai′
0,i′

1,··· ,i′
n
x

i′
0
0 y

i′
1
1 · · · yi′

n
n ,

where ai′
0,i′

1,··· ,i′
n

∈ Z, and I1 = {(i′0, i
′
1, · · · , i′n) | 0 ≤ i′0 ≤ 2d−1, 0 ≤ i′1, · · · , i′n ≤

1, 0 ≤ i′1 + · · · + i′n ≤ d}.
For the convenience of subsequent analysis, we rewrite Fju

= Aju
+ Bju

x0 +
Cju

x2
0 + Dju

yju
+ Eju

x0yju
+ x2

0yju
as

x2
0(yju

+ Cju
) + x0(Eju

yju
+ Bju

) + (Dju
yju

+ Aju
), 1 ≤ u ≤ d + 1.

We rewrite Gi0,i1,··· ,in
for (i0, i1, · · · , in) ∈ I2 as

Gi0,i1,··· ,in
= T1 + T2 + T3

in the sense of modulo pd, where

T1 :=
d+1
∑

u=1
wi0+1,u+(d+1) · x0Fj1 · · · Fju−1(yju

+ Cju
)Fju+1 · · · Fjd+1

T2 :=
d+1
∑

u=1
wi0+1,u · Fj1 · · · Fju−1(yju

+ Cju
)Fju+1 · · · Fjd+1

T3 :=
d+1
∑

u=1
wi0+1,u+(d+1) · Fj1 · · · Fju−1(Bju

− Cju
Eju

)Fju+1 · · · Fjd+1 .

Since deg(x0) = 2 in Fju
for 1 ≤ u ≤ d + 1, we have that deg(x0) ≤ 2d + 1 for

T1, and deg(x0) ≤ 2d for T2 and T3.
We can deduce that the x2d+1

0 -related term in Gi0,i1,··· ,in
only appears in T1.

Specifically, the x2d+1
0 -related term is

d+1
∑

u=1

wi0+1,u+(d+1) · x2d+1
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1)

in sense of modulo pd. According to (27), we have
d+1
∑

u=1
wi0+1,u+d+1 = 0 mod pd,

where 0 ≤ i0 ≤ 2d − 1. Therefore, Gi0,i1,··· ,in
does not have any term related to

x2d+1
0 .

We can deduce that the x2d
0 -related term in Gi0,i1,··· ,in

appears in T1, T2 and
T3.

For the case of T1 =
∑d+1

u=1 wi0+1,u+(d+1) · x0Fj1 · · · Fju−1(yju
+

Cju
)Fju+1 · · · Fjd+1 , based on Fju

= x2
0(yju

+ Cju
) + x0(Eju

(yju
+ Cju

) + (Bju
−

Cju
Eju

)) + (Aju
+ Dju

yju
) for 1 ≤ u ≤ d + 1, the x2d

0 -related term of T1 is

d+1∑
u=1

wi0+1,u+(d+1)(
∑

m�=u

Ejm) · x2d
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1)

+
d+1∑
u=1

(
∑

m�=u

wi0+1,m+(d+1)) · x2d
0 (Bju − CjuEju)

∏
m�=u

(yjm + Cjm).

(34)
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For the case of T2 =
∑d+1

u=1 wi0+1,u · Fj1 · · · Fju−1(yju + Cju)Fju+1 · · · Fjd+1 , the x2d
0 -

related term of T2 is

d+1∑
u=1

wi0+1,u · x2d
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1). (35)

For the case of T3 =
∑d+1

u=1 wi0+1,u+(d+1) · Fj1 · · · Fju−1(Bju −CjuEju)Fju+1 · · · Fjd+1 ,

the x2d
0 -related term of T3 is

d+1∑
u=1

wi0+1,u+(d+1) · x2d
0 (Bju − CjuEju)

∏
m�=u

(yjm + Cjm). (36)

According to (34), (35) and (36), we get that the x2d
0 -related term in Gi0,i1,··· ,in is

equal to

d+1∑
u=1

(
d+1∑
u=1

wi0+1,d+1+u) · x2d
0 (Bju − CjuEju)

∏
m�=u

(yjm + Cjm)

+
d+1∑
u=1

(wi0+1,u + wi0+1,d+1+u

∑
m�=u

Ejm) · x2d
0 (yj1 + Cj1) · · · (yjd+1 + Cjd+1)

(37)

in sense of modulo pd. According to (27), we have that
∑d+1

u=1 wi0+1,d+1+u =
0 (mod pd) and

∑d+1
u=1

(

wi0+1,u + wi0+1,d+1+u

∑

m �=u Ejm

)

= 0 (mod pd) for
0 ≤ i0 ≤ 2d − 1. Hence, Gi0,i1,··· ,in

does not have any term related to x2d
0 , where

(i0, i1, · · · , in) ∈ I2.

Finally, we show that the involved basis matrix of L(n, d, t) is triangular.
That is, we provide proof for Lemma5.

Proof. First, we present that the leading term of Gi0,i1,··· ,in
(x0, y1, · · · , yn) is

xi0
0 yi1

1 · · · yin
n for (i0, i1, · · · , in) ∈ I(n, d, t). We respectively consider Case A

and Case B.
For Case A, the corresponding (i0, i1, · · · , in) ∈ I1. We define

Gi0,i1,··· ,in
(x0, y1, · · · , yn) = Fi0,i1,··· ,in

(x0, y1, · · · , yn)

From Lemma 4, and I1 ⊂ I[XHS20](n, d), we obtain that the leading term of
Gi0,i1,··· ,in

(x0, y1, · · · , yn) is as follows:
{

pd+1−lxi0
0 yi1

1 · · · yin
n for 1 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1,

pd−lxi0
0 yi1

1 · · · yin
n for 0 ≤ l < d and 2l ≤ i0 ≤ 2d − 1.

For Case B, the corresponding (i0, i1, · · · , in) ∈ I2. From Lemma 8, we
get that the leading term of Gi0,i1,··· ,in

(x0, y1, · · · , yn) is xi0
0 yi1

1 · · · yin
n , where

l = i1 + · · · + in = d + 1 and 0 ≤ i0 ≤ t.
To sum up, the leading term of Gi0,i1,··· ,in

(x0, y1, · · · , yn) is equal to
⎧

⎨

⎩

pd+1−lxi0
0 yi1

1 · · · yin
n for 1 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1,

pd−lxi0
0 yi1

1 · · · yin
n for 0 ≤ l < d and 2l ≤ i0 ≤ 2d − 1,

xi0
0 yi1

1 · · · yin
n for l = d + 1 and 0 ≤ i0 ≤ t.

(38)
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Next, we prove that the basis matrix of L(n, d, t) can be arranged
into a triangular matrix. Since the basis matrix of L(n, d, t) is made up
of the coefficient vectors of polynomials Gi0,i1,··· ,in

(x0X, y1X, · · · , ynX) for
all (i0, i1, · · · , in) ∈ I(n, d, t), and there is a one-to-one correspondence
between the polynomial Gi0,i1,··· ,in

(x0, y1, · · · , yn) and the corresponding poly-
nomial Gi0,i1,··· ,in

(x0X, y1X, · · · , ynX), our goal translates to show that
Gi0,i1,··· ,in

(x0, y1, · · · , yn) for all (i0, i1, · · · , in) ∈ I(n, d, t) form a triangular
matrix.

For the level l = 0, the corresponding polynomial Gi0,i1,··· ,in
(x0, y1, · · · , yn)

is equal to pdxi0
0 for i0 = 0, 1, · · · , 2d − 1. From the order (10), we have

pd ≺ pdx0 ≺ · · · ≺ pdx2d−1
0 . It implies that all Gi0,i1,··· ,in

(x0, y1, · · · , yn)
for l = 0 generate a triangular matrix. The remaining proof is inductive.
For any fixed tuple (i0, i1, · · · , in) ∈ I(n, d, t), suppose that all polynomials
Gi′

0,i′
1,··· ,i′

n
(x0, y1, · · · , yn), satisfying x

i′
0
0 y

i′
1
1 · · · yi′

n
n ≺ xi0

0 yi1
1 · · · yin

n , have produced
a triangular matrix as stated in Lemma 5. Then we prove that all polynomi-
als added after the polynomial Gi0,i1,··· ,in

(x0, y1, · · · , yn) still form a triangular
matrix. Based on the above analysis, xi0

0 yi1
1 · · · yin

n is the leading monomial of
the polynomial Gi0,i1,··· ,in

(x0, y1, · · · , yn). Let xk0
0 yk1

1 · · · ykn
n be any given mono-

mial of Gi0,i1,··· ,in
(x0, y1, · · · , yn) other than the leading monomial xi0

0 yi1
1 · · · yin

n .
Obviously, we have xk0

0 yk1
1 · · · ykn

n ≺ xi0
0 yi1

1 · · · yin
n . Since xk0

0 yk1
1 · · · ykn

n is the lead-
ing monomial of polynomial Gk0,k1,··· ,kn

(x0, y1, · · · , yn), we get that all monomi-
als except xi0

0 yi1
1 · · · yin

n already appeared in the diagonals of a triangular matrix.
Thus, all polynomials after Gi0,i1,··· ,in

(x0, y1, · · · , yn) is added still produce a tri-
angular matrix. To summarize, the basis matrix of L(n, d, t) is triangular accord-
ing to the order of xi0

0 yi1
1 · · · yin

n for all (i0, i1, · · · , in) ∈ I(n, d, t) from low to
high.

The diagonal elements in the triangular basis matrix of L(n, d, t) are all from
the leading coefficients of Gi0,i1,··· ,in

(x0X, y1X, · · · , ynX) for (i0, i1, · · · , in) ∈
I(n, d, t). Based on (38), the diagonal elements of triangular basis matrix are as
follows:

⎧

⎨

⎩

pd+1−lXi0+l for 1 ≤ l ≤ d and 0 ≤ i0 ≤ 2l − 1,
pd−lXi0+l for 0 ≤ l < d and 2l ≤ i0 ≤ 2d − 1,
Xi0+d+1 for l = d + 1 and 0 ≤ i0 ≤ t.

6 Comparison with the Existing Work

Figure 1 compares the theoretical upper bound X for the lattice in Sect. 4.1 and
that in [32]. We can see that our lattice is significantly better than that in [32].
In Fig. 1, we take the smallest lattice dimension among different n, d, t for the
fixed upper bound. For example, to cross the bound 0.45, the minimum lattice
is 940 (n = 13, d = 2, t = 1) whereas the minimum dimension in [32] is 239.06

(n = 40, d = 13).
In Table 1, we present a theoretical comparison of the smallest lattice dimen-

sion on the fixed percentage δ/ log2 p for a sufficiently large p = 2ω(d(2+c)d). The
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symbol “−′′ means that even with a huge lattice dimension, the corresponding
δ/ log2 p ≤ 0.50 can not be obtained.

From the second row of Table 1, we can see that in order to reach the 0.60
bound of δ/ log2 p, the smallest dimension of [32] is 394995 (n = 16, d = 7), and
the smallest dimensions of our lattice is 326 (n = 24, d = 1, t = 0). Therefore,
our lattice is practical, while the lattice in [32] is not practical.

Based on the fourth row of Table 1, the smallest lattice dimension is 2879
(n = 23, d = 2, t = 0) to obtain the 0.50 bound of δ/ log2 p. The LLL algorithm
terminates within O(w4+γb1+γ) bit operations for any γ > 0 [25], where w is
the lattice dimension, and b is the maximal bit-size in the input basis matrix.
For w = 2879, w4 ≈ 246. The bit-size b for our lattice is bounded by 3d log2 p
(see (19) in Lemma 5). Hence, for a sufficiently large p, it takes a considerable
amount of time for the LLL algorithm to output the desired short vector.

Fig. 1. Comparison of the theoretical upper bound of the root for different dimensions.

Table 1. Comparison of the smallest dimensions for known bit percentages.

δ/log2 p Our [32]

Lattice in Sect. 4.1 Lattice

(n, d, t) Dimension (n, d) Dimension

0.65 (15,1,0) 137 (10,4) 3474

0.60 (24,1,0) 326 (16,7) 394995

0.55 (13,2,1) 940 (40,13) 239.06

0.50 (23,2,0) 2879 – –

0.45 (37,2,0) 10586 – –

0.40 (71,2,0) 67383 – –
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7 Experiments

We have implemented our experiments in SAGE 9.3 using Linux Ubuntu with
IntelR© CoreTMi7-7920HQ CPU 3.67 GHz. We have used the L2 algorithm [26]
for lattice reduction. We tested the algorithm up to lattice dimension 298. In our
experiments, the zero-dimensional ideal assumption, i.e. Assumption 1 is always
valid. Our experimental results are shown in Table 2. We run 100 experiments
for each parameter.

Table 2. Experimental results of Sect. 4.1 on NIST curves. From Equation (23), the
required bounds is X < pS(n,d,t) for the lattice L(n, d, t). Thus the number of known
bits should be lower bounded by (1−S(n, d, t)) log2 p. The column of Theo. represents
this value. The column of Exp. gives corresponding experimental values.

Curve n d t Dim. Theo. Exp. Given Known MSBs Known LSBs

Suc. LLL (sec.) GB (sec.) Suc. LLL (sec.) GB (sec.)

NIST-192 143 132 69% 94% 0.51 0.04 96% 0.53 0.04

NIST-224 167 154 69% 99% 0.51 0.04 95% 0.64 0.05

NIST-256 6 1 1 44 191 176 69% 100% 0.57 0.05 100% 0.65 0.05

NIST-384 286 263 68% 100% 0.74 0.07 100% 0.99 0.07

NIST-521 388 357 69% 100% 1.06 0.08 100% 1.23 0.11

NIST-192 137 125 65% 100% 2.26 0.11 100% 2.41 0.11

NIST-224 160 145 65% 100% 2.44 0.15 100% 2.92 0.12

NIST-256 10 1 0 67 182 165 64% 100% 2.79 0.13 100% 3.13 0.13

NIST-384 272 245 64% 100% 4.06 0.17 100% 4.97 0.19

NIST-521 371 330 63% 100% 6.49 0.23 100% 6.60 0.23

NIST-192 135 129 67% 100% 10.64 0.17 100% 10.08 0.18

NIST-224 157 150 67% 100% 13.86 0.18 100% 13.54 0.21

NIST-256 5 2 1 84 180 172 67% 100% 18.78 0.21 100% 18.92 0.23

NIST-384 269 256 67% 100% 32.69 0.28 100% 31.92 0.36

NIST-521 365 347 67% 100% 38.43 0.34 100% 38.67 0.37

NIST-192 129 120 63% 100% 14.44 0.40 100% 11.90 0.33

NIST-224 150 139 62% 100% 17.17 0.49 100% 14.12 0.39

NIST-256 13 1 0 106 172 159 62% 100% 18.17 0.56 100% 17.09 0.43

NIST-384 257 235 61% 100% 26.69 0.76 100% 27.20 0.58

NIST-521 349 320 61% 100% 41.83 0.92 100% 42.51 0.78

NIST-192 135 130 68% 100% 19.12 0.34 100% 22.64 0.36

NIST-224 158 152 68% 100% 25.70 0.42 100% 26.76 0.41

NIST-256 6 2 0 108 180 174 68% 100% 29.42 0.48 100% 31.77 0.45

NIST-384 270 263 68% 100% 49.65 0.65 100% 52.67 0.59

NIST-521 366 360 69% 100% 78.84 0.82 100% 80.13 0.73

NIST-192 123 116 60% 99% 47.61 1.27 98% 48.77 1.00

NIST-224 144 135 60% 100% 54.27 1.39 100% 55.35 1.12

NIST-256 16 1 0 154 164 155 61% 100% 66.70 1.45 100% 67.10 1.21

NIST-384 246 230 60% 100% 119.05 2.13 100% 118.08 1.79

NIST-521 334 310 60% 100% 164.07 2.73 100% 166.56 2.03

NIST-192 130 126 66% 99% 111.52 1.27 99% 114.83 0.98

NIST-224 152 148 66% 100% 133.61 1.29 100% 138.78 1.17

NIST-256 7 2 0 151 174 168 66% 100% 145.50 1.52 100% 147.39 1.25

NIST-384 260 253 66% 100% 264.65 1.97 100% 262.15 1.65

NIST-521 353 340 65% 100% 357.88 2.53 100% 363.22 2.07

(continued)
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Table 2. (continued)

Curve n d t Dim. Theo. Exp. Given Known MSBs Known LSBs

Suc. LLL (sec.) GB (sec.) Suc. LLL (sec.) GB (sec.)

NIST-192 135 128 67% 100% 59.41 0.27 100% 64.74 0.22

NIST-224 158 150 67% 100% 64.67 0.29 100% 67.65 0.24

NIST-256 5 3 0 161 180 170 66% 100% 73.62 0.33 100% 71.92 0.27

NIST-384 270 255 66% 100% 120.58 0.43 100% 124.39 0.37

NIST-521 367 345 66% 100% 175.77 0.51 100% 176.14 0.46

NIST-192 134 125 65% 100% 82.25 0.21 100% 84.92 0.20

NIST-224 156 145 65% 100% 88.77 0.27 100% 89.34 0.23

NIST-256 5 3 1 166 178 166 65% 100% 100.87 0.29 100% 104.57 0.25

NIST-384 267 250 65% 100% 144.94 0.41 100% 140.31 0.34

NIST-521 361 339 65% 100% 211.27 0.51 100% 214.37 0.41

NIST-192 132 124 65% 100% 94.37 0.21 99% 98.16 0.20

NIST-224 154 144 64% 95% 106.45 0.22 95% 107.29 0.22

NIST-256 5 3 2 171 176 165 64% 100% 106.31 0.25 100% 103.60 0.24

NIST-384 264 247 64% 100% 175.18 0.34 100% 170.94 0.34

NIST-521 358 335 64% 100% 260.96 0.42 100% 263.96 0.42

NIST-192 118 114 59% 97% 320.58 4.30 95% 313.52 4.19

NIST-224 137 132 59% 94% 444.92 4.78 94% 452.65 4.79

NIST-256 21 1 0 254 157 152 59% 100% 524.03 5.21 100% 544.92 5.22

NIST-384 235 225 59% 100% 864.33 7.11 100% 880.24 6.82

NIST-521 318 301 58% 100% 1272.32 9.37 100% 1280.23 9.50

We always get more than w
2 polynomials that satisfy the desired root over Z

after lattice reduction, where w is the dimension of the lattice. Intermediate coef-
ficient swell is a well-known difficulty for computing Gröbner bases over integers.
To overcome this problem, we compute Gröbner basis over small prime fields
GF(q) such that the product of these primes is larger than the size of unknown
values. Then we use the Chinese Remainder Theorem to find the desired root.
Using this method, we can find the root after lattice reduction in a few seconds
for all parameters. If X is the upper bound of root, we need to consider primes
up to N such that

∏

prime q≤N q > X. Since
∏

prime q≤N q = eθ(N), we need
eθ(N) > X, where θ(N) =

∑

prime q≤N log q is the first Chebyshev function.
Since θ(N) asymptotically approaches to N for large values of N , considering
first loge X many prime fields will be sufficient for large N for our attack.

After Gröbner basis computation, we get polynomials of the form x0−e0, y1−
ẽ1, y2− ẽ2, . . . , yn − ẽn in GF(q). Let T =

∏

q≤N q. Hence using Chinese Remain-
der Theorem we get êi ≡ ei mod T for i ∈ [0, n]. Thus ei = êi or ei = êi − T .
Hence we can easily collect secrets. We always collect the root for our theoret-
ical values. In fact, experimentally we are able to cross these bounds. In these
situations also, success rate is close to 100% in all cases.

One can see from Table 2 that it is possible to find the hidden point P
by querying the oracle 2n + 1 = 2 · 21 + 1 = 43 times for the case of NIST-
521 and (n, d, t) = (21, 1, 0). Theoretically, knowing 318 MSBs/LSBs of the x-
coordinate of P + [m]R in each query should be sufficient for our attack, where



Improving Bounds on Elliptic Curve Hidden Number Problem 797

the x-coordinate has 521 bits in total. In practice, we are getting better results.
Experimentally, knowledge of 301 bits is sufficient to find the hidden point.

Xu et al. [32] used a dimension 294 lattice to recover the hidden point when
the number of exposed bits is 333 (see the last row of [32, Table 1], where 333 ≈
0.64 · 521). Here using a 254-dimension lattice, we can recover the hidden point
when the number of exposed bits is 301.
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