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Preface

The 28th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2022) was held in Taiwan during December
5–9, 2022.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 364 submissions from all over the world, and the Program
Committee (PC) selected 98 papers for publication in the proceedings of the conference.
The two program chairs were supported by a PC consisting of 79 leading experts in
aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers). The strong conflict of interest rules imposed by IACR ensure
that papers are not handled by PC members with a close working relationship with the
authors. The two program chairs were not allowed to submit a paper, and PC members
were limited to two submissions each. Therewere approximately 331 external reviewers,
whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first-
round discussions the PC selected 224 submissions to proceed to the second round
and the authors were then invited to participate in an interactive rebuttal phase with
the reviewers to clarify questions and concerns. The second round involved extensive
discussions by the PC members.

Alongside the presentations of the accepted papers, the program of ASIACRYPT
2022 featured two invited talks by Jian Guo and Damien Stehlé. The conference also
featured a rump sessionwhich contained short presentations on the latest research results
of the field.

The four volumes of the conference proceedings contain the revised versions of the
98 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Using a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “Full Quantum Equivalence of Group
Action DLog and CDH, and More” by Hart Montgomery and Mark Zhandry, “Crypto-
graphic Primitives with Hinting Property” by Navid Alamati and Sikhar Patranabis, and
“SwiftEC: Shallue–van de Woestijne Indifferentiable Function to Elliptic Curves” by
Jorge Chavez-Saab, Francisco Rodriguez-Henriquez, and Mehdi Tibouchi. The authors
of all three papers were invited to submit extended versions of their manuscripts to the
Journal of Cryptology.

Many people have contributed to the success of ASIACRYPT 2022. We would like
to thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge and
expertise, and for the tremendous amount of work that was done with reading papers
and contributing to the discussions. We are greatly indebted to Kai-Min Chung and
Bo-Yin Yang, the General Chairs, for their efforts and overall organization. We thank
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Bart Preneel, Ron Steinfeld, Mehdi Tibouchi, Jian Guo, and Huaxiong Wang for their
valuable suggestions and help. We are extremely grateful to Shuaishuai Li for checking
all the files and for assembling the files for submission to Springer. We also thank
the team at Springer for handling the publication of these conference proceedings.

December 2022 Shweta Agrawal
Dongdai Lin
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A New Isogeny Representation
and Applications to Cryptography

Antonin Leroux1,2,3(B)

1 DGA, Paris, France
2 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau,

France
antonin.leroux@polytechnique.org

3 INRIA, Le Chesnay, France

Abstract. This paper focuses on isogeny representations, defined as
ways to evaluate isogenies and verify membership to the language of
isogenous supersingular curves (the set of triples D, E1, E2 with a cyclic
isogeny of degree D between E1 and E2). The tasks of evaluating and
verifying isogenies are fundamental for isogeny-based cryptography.

Our main contribution is the design of the suborder representation, a
new isogeny representation targetted at the case of (big) prime degree.
The core of our new method is the revelation of endomorphisms of
smooth norm inside a well-chosen suborder of the codomain’s endomor-
phism ring. This new representation appears to be opening interesting
prospects for isogeny-based cryptography under the hardness of a new
computational problem: the SubOrder to Ideal Problem (SOIP). As an
application, we introduce pSIDH, a new NIKE based on the suborder rep-
resentation. Studying new assumption appears to be particularly crucial
in the light of the recent attacks against isogeny-based cryptography.

In order to manipulate efficiently the suborder representation, we
develop several heuristic algorithmic tools to solve norm equations inside
a new family of quaternion orders. These new algorithms may be of inde-
pendent interest.

1 Introduction

Isogeny-based cryptography has been receiving an increasing amount of interest
over the last few years due to its presumed resistance to quantum computers. As
the variety of primitives achievable from isogenies is expanding, new problems are
arising. The problem of proving the knowledge of an isogeny between two elliptic
curves is one that appears more and more central in isogeny-based cryptography.
It has applications in validation of SIDH public keys [JDF11,GPST16,FP22,
UXT+22], digital signatures [YAJ+17,DFG19,BKV19,JS14], VDFs [DFMPS19,
CSRHT22], delay encryption [BDF21] and oblivious PRF [BKW20].

Intuitively, proving a statement requires an efficient way to represent and
manipulate the objects involved in that statement. In the case of isogenies, the
standard representation is obtained from the Vélu formulas [Vél71] that give

c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13792, pp. 3–35, 2022.
https://doi.org/10.1007/978-3-031-22966-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22966-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-22966-4_1


4 A. Leroux

a way to compute and evaluate an isogeny from its kernel. The best generic
algorithm to compute these formulas requires Õ(

√
D′) operations over the field

of definition of the isogeny’s kernel where D′ is the biggest factor of the degree
(see [BdFLS20]). Thus, the computation is only efficient when the degree is
smooth and the kernel points are defined over a small field extension. In full
generality, this only happens when the degree is powersmooth but there are
ways to make it work for smooth degrees as well. All the schemes we mentioned
above are subject to these computational limitations and use smooth degrees.
However, the recent trend of works studying the Deuring correspondence and
its applications to isogeny-based cryptography has provided us the means to
represent and manipulate efficiently isogenies of arbitrary degrees.

This story begins with the KLPT algorithm from Kohel, Lauter, Petit and
Tignol [KLPT14] to solve the quaternion analog of the isogeny path problem.
In [EHL+18], Eisentrager et al. heuristically showed that quaternion ideals can
be used as an efficient representation of isogenies, with the “effiency” stem-
ming from KLPT and other heuristic polynomial-time algorithms. Wesolowski
presented provable variants of these algorithms in his recent article [Wes22].

The original motivation behind the study of the Deuring correspondence in
[KLPT14,EHL+18] is cryptanalysis. The tools developped toward that end have
only recently started to be used constructively. The main building blocks of the
signature scheme from Galbraith, Petit and Silva [GPS17] and the later general-
ization of SQISign by De Feo, Kohel, Leroux, Petit and Wesolowski [DFKL+20]
are variants of the KLPT algorithm from Kohel et al. The key generation of the
encryption scheme Séta [DFFdSG+21] is also based on the same techniques.
The first complete implementation of all these algorithmic blocks was another
contribution of the authors of SQISign. Additionally, this protocol is the first
example of a scheme that is explicitly making use of isogenies of big prime
degree that are manipulated as ideals. In [DFKL+20], the authors argue that
using a secret key of prime degree provides better efficiency for the same level
of security. The motivation of our paper is to provide a new way of represent-
ing isogenies of prime degree that can open up some interesting cryptographic
applications. This appears particularly interesting in light of the recent attacks
[CD22,MM22,Rob22] that break SIDH and Séta. These attacks are targetting
smooth degree secret isogenies and we will see how these attacks fail to break
the assumption based on the new representation we introduce.

A first small contribution of this work is to introduce a new terminology of
isogeny representation, hoping that it can help formalizing some results about
isogenies by providing a common framework on the different methods of isogeny
computations.

Our main contribution is a new generic isogeny representation that we call a
suborder representation. This representation is constituted of the endomorphism
ring of the domain and several endomorphisms of the isogeny’s codomain. We
present heuristic polynomial-time algorithms to compute and verify the subor-
der representation when the degree D is prime. The case of composite D is more
complicated and does not seem to be more interesting for cryptography, so it is
treated in the full version. The suborder representation is not equivalent to the
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ideal representation under the hardness of a new computational problem: the
Suborder to Ideal Problem (SOIP), or its equivalent reformulation: the Subor-
der to Endomorphism Ring Problem (SOERP). The assumed hardness of the
SOERP implies that the knowledge of a suborder of rank 4 is not always enough
to derive the full endomorphism ring of a supersingular curve. We include in
Sect. 4.5, a discussion about the hardness of those new problems where we also
prove that the SOIP is equivalent to some instances of the Torsion to Ideal Prob-
lem (TIP), a new problem that can be seen as a generalization of the CSSI, the
key recovery problem of SIDH [JDF11]. Because we consider an instance of this
problem where the degree of the secret isogeny is prime, the recent attacks on
SIDH does not seem to apply directly.

Our new isogeny representation requires to solve norm equations inside a new
family of quaternion orders and ideals and we develop the necessary heuristic
tools for that task. This contribution may be of independent interest as solving
norm equations inside different types of order have proven to be useful in various
situations such as [DFKL+20,DFFdSG+21].

Finally, we illustrate the cryptographic interest of our new isogeny repre-
sentation by building pSIDH, a NIKE based on a generalization of SIDH to
the prime degree setting. The key recovery problem is the SOIP and the key
exchange is secure under the hardness of a decisional variant of the SOIP. The
efficiency of pSIDH is not likely to be competitive and it needs to be considered
as a first step toward more involved applications.

The rest of this paper is organized as follows: Sect. 2 is dedicated to the
background materials. In Sect. 3, we give the definition for Lisog, the language
of isogenous curves, and show that it is in NP using the ideal representation of
isogenies. In Sect. 4, we introduce our new suborder representation. We provide
some algorithms to compute and verify these representations, and analyze how
they differ from ideal representations. The algorithmic gaps left in Sect. 4 are
filled in Sect. 5 where we introduce new algorithms to solve norm equations
inside a new family of quaternion orders. Finally, in Sect. 6, we introduce a new
isogeny-based NIKE scheme based on the suborder representation.

2 Background Material

The set of prime numbers is denoted P. For a prime � ∈ P, we define �• = {�k|k ∈
N}.

We call negligible a function f : Z>0 → R>0 if it is asymptotically dominated
by O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say that
an event happens with overwhelming probability if its probability of failure is a
negligible function of the length of the input.

2.1 Notations and Simplifications

Throughout this work, p > 3 is a prime number and Bp,∞ is the unique quater-
nion algebra ramified at p and ∞. For ease of exposition, we use a simplified



6 A. Leroux

terminology and conventions that we will keep during the entire paper. We intro-
duce them below.

When talking about elliptic curves and isogenies, we always consider isomor-
phism classes of curves and isogenies respectively. This means that when needed
(in an algorithm for instance) we represent curves by their j-invariant that we
write j(E) for a curve E (implicitly deriving a full equation of a canonical rep-
resentative of the isomorphism class if needed). For an isogeny ϕ, we implicitly
adapt whatever isogeny representation we use to this convention, so we pre and
post-compose with the relevant isomorphisms to have an isogeny defined on the
canonical representatives of the domain and codomain. For an isogeny of domain
E and kernel G, we note the codomain class as E/G.

Any four dimensional lattice Λ of Bp,∞ is given by 16 coefficients in Q cor-
responding to the decomposition over a basis of Bp,∞ of a basis of Λ. This is
what we call the representation of an order or an ideal and is what is used when
a computation is required. For an order O ∈ Bp,∞, an O-ideal of Bp,∞ will
always be a left integral O-ideal of norm coprime with p unless said otherwise.
An isogeny will always be a cyclic separable isogeny.

Quaternion Notations. We list below a few notations that are used throughout
the paper. We refer the reader to the full version for more details. The left and
right orders of an ideal are written OL(·),OR(·). Two ideals are equivalent if
J = Iβ for β �= 0 and we say that I, J are equivalent. The norm of an ideal I is
denoted by n(I).

2.2 The Deuring Correspondence

The Deuring correspondence is an equivalence of categories between isogenies of
supersingular elliptic curves and the left ideals over maximal order O of Bp,∞,
inducing a bijection between conjugacy classes of supersingular j-invariants and
maximal orders (up to equivalence) [Koh96]. This bijection is explicitly con-
structed as E → End(E). Hence, given a supersingular curve E0 with endomor-
phism ring O0, the pair (E1, ϕ), where E1 is another supersingular elliptic curve
and ϕ : E0 → E1 is an isogeny, is sent to a left integral O0-ideal (obtained by
considering kernel ideals [Wat69]) with OR(I) ∼= End(E1) (Table 1).

Definition 1. Let I ⊂ End(E0) be an integral ideal, we define E0[I] = {P ∈
E0(Fp2) : α(P ) = 0 for all α ∈ I} and the isogeny corresponding to I is
ϕI : E0 → E0/E0[I]. Conversely, given an isogeny ϕ with domain E0, the cor-
responding ideal is Iϕ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(ϕ)}.

Quaternion orders admit what we call a Gorenstein decomposition. Any
quaternion order O can be expressed as Z+fO′, where f is the Brandt Invariant
and O′ is the Gorenstein closure. We will try to understand the Brandt Invariant
through the Deuring correspondence in Sect. 4.1.
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Table 1. The Deuring correspondence, a summary from [DFKL+20].

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ

deg(ϕ) n(Iϕ)

ϕ̂ Iϕ

Supersingular j-invariants over Fp2 Ideal class set of a maximal order O

3 The Language of Isogenous Curves and the Ideal
Representation

Let us fix a prime p. We will study Lisog, the language of isogenous supersingular
curves in characteristic p.

We write Sp as the set of isomorphism classes of supersingular elliptic curves
in characteristic p, and IsogD the set of cyclic D-isogenies between curves of Sp.

Definition 2. The language of isogenous supersingular curves is

Lisog = {(D,E1, E2) ∈ N × S2
p | ∃ ϕ : E1 → E2 ∈ IsogD}.

An isogeny representation is a string sϕ associated to an isogeny ϕ : E1 → E2

of degree D. This string can be used as input to two algorithms: one that can
verify that the element D,E1, E2 is in Lisog and one that can compute ϕ(P ) for
some point P ∈ E1.

We call the former a verification algorithm and the latter an evaluation algo-
rithm. We can regroup isogeny representations in families of representations
by looking at the associated verification and evaluation algorithms. Thus, to
a family XX of representations we associate two algorithms XXVerification and
XXEvaluation.

Standard Isogeny Representation. The default isogeny representation of ϕ ∈
IsogD is made of the rational maps f1, f2 ∈ Fpm(x, y) such that the image
under ϕ of any point (x, y) of the domain is (f1(x, y), f2(x, y)) and Fpm is the
field of definition of kerϕ. The degree of the polynomials used in f1, f2 are
in O(poly(D)). Since any isogeny of degree D1D2 is the composition of a D1-
isogeny and a D2-isogeny, decomposing ϕ in smaller isogenies allows us to get a
default representation of size O(poly(log(pD))) when D has smoothness bound in
O(poly(log(pD))). When not said otherwise, this default representation is used
for the computation of isogenies of smooth degree. It is also standard in the
literature to use a generator of kerϕ as a representation, we call that the kernel
representation. This representation can be used to compute the default isogeny
representation with the Vélu Formulae [Vél71]. The computational cost is also
O(poly(log(pD))) when D has smoothness bound in O(poly(log(pD))).
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3.1 Polynomial-Time Algorithms of the Deuring Correspondence

We give below a list of algorithms taken from the literature. Throughout this
paper, we are going to use the provable version of these algorithms, most of which
were introduced by Wesolowski in [Wes22]. For a concrete instantiation of any of
them, one will rather want to use the efficient heuristic version (see [DFKL+20]
for instance). The KLPT algorithms depend on some special extremal order O0

that we consider as a fixed parameter. We use the default representation of
isogenies.

– ConnectingIdeal: takes two maximal orders O1,O2 ⊂ Bp,∞ and outputs an
ideal I with OL(I) = O1 and OR(I) = O2.

– KLPT�• : takes a left O-ideal I and outputs J ∼ I of norm �e.
– KLPTPS: takes a left O-ideal I and outputs J ∼ I of powersmooth norm.
– IdealToIsogenyT : takes a left O-ideal I of norm T and computes ϕI .
– IsogenyToIdealT : takes an isogeny ϕ : E → E′ of degree T , a maximal order

O ∼= End(E) and computes Iϕ.

We reformulate below in Proposition 1 to Proposition 5, some of the results
proven in [Wes22].

Proposition 1. ConnectingIdeal terminates in O(poly(log(p) + C))) where C is
the size of the representation of O1,O2.

Proposition 2. Assuming GRH, KLPT�• terminates in expected O(poly(log
(pD) + C)) where D is the norm of the input and outputs an ideal of norm
e where e = O(poly(log(p)) and the representation of O has C bits.

Proposition 3. Assuming GRH, KLPTPS terminates in expected O(poly(log
(pD) + C) where D is the norm of the input and outputs an ideal of norm
in O(poly(p)) with smoothness bound in O(poly(log(p))) and the representation
of O has C bits.

Proposition 4. For any number T = O(poly(p)) with smoothness bound in
O(poly(log(p))), IsogenyToIdealT terminates in expected O(poly(log(p))) and the
output has size O(poly(log(p))).

Proposition 5. For any number T = O(poly(p)) with smoothness bound in
O(poly(log(p))), IdealToIsogenyT terminates in expected O(poly(log(p)+C)) and
the output has size O(poly(log(p))) and the representation of O has C bits.

3.2 Ideal Witnesses: Membership Proofs to Lisog from the Deuring
Correspondence

We define the ideal representation for the isogeny ϕ as a representation of the
associated kernel ideal Iϕ. Note that this implies the knowledge of the endomor-
phism rings of both E1 and E2. With Lemma 1 below, we prove that the ideal
representation can be compact.
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Lemma 1. Any ideal I of norm D is isomorphic to an ideal J with a represen-
tation of size O(log(pD)).

Proof. It was shown in [EHL+18] that any maximal order is isomorphic to an
order with a representation of size O(log(p)). Let us write O for the maximal
order with the small representation isomorphic to OL(I). We can write J for the
image of I under the isomorphism between OL(I) and O. Since DO ⊂ J (this
is true for any cyclic O-ideal of norm D), we see that we can choose a basis of
J inside the basis of O with coefficients of size O(log(D)). Thus, there exists a
representation of J of size O(log(p) + log(D)).

For simplicity, we assume in the rest of this work, that ideals and orders are
given with a compact representation as in Lemma 1.

We now present IdealVerification as Algorithm 1. It is a verification algorithm
that takes a triple x = (D,E1, E2) and an ideal I and decides if x ∈ Lisog. The
idea is to compute the curves whose endomorphism ring are isomorphic to the
left and right order of I. If the curves obtained in this way are isomorphic to
E1, E2, the verification passes. To do that, we will use the following procedure on
ideals connecting a special order O0 with OL(I) and OR(I): use KLPT to get an
equivalent ideal of smooth norm and compute the codomain of the corresponding
isogeny with IdealToIsogeny. Since these isogenies have smooth norm, they can
be efficiently computed.

Algorithm 1. IdealVerification(x, I)
Input: x ∈ N × S2

p and I an ideal of Bp,∞.
Output: A bit indicating if x ∈ Lisog.
1: Parse x as D, E1, E2 and take � a small prime.
2: Compute n(I) and OL(I), OR(I).
3: if n(I) �= D or I �⊂ OL(I) then
4: Return 0.
5: end if
6: Take a curve E0 defined over Fp with End(E0) ∼= O0 and compute I1 =

ConnectingIdeal(O0, OL(I)), I2 = I1 · I.
7: for i ∈ [1, 2] do
8: Compute Ji = KLPT�•(Ii) and ϕi : E0 → E′

i = IdealToIsogeny�•(E0, Ji).
9: end for

10: if (j(E′
1), j(E

′
2)) �∈ {(j(E1), j(E2)), (j(E1)

p, j(E2)
p)} then

11: Return 0.
12: end if
13: return 1.

Lemma 2. Let D be any integer in N coprime with p. If ϕ : E1 → E2 has degree
D, then IdealVerification((D,E1, E2), Iϕ) = 1.

Conversely, for (D,E1, E2) ∈ N × S2
p , if there exists an ideal I such that

IdealVerification((D,E1, E2), I) = 1 then (D,E1, E2) ∈ Lisog.
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Proof. Let us take ϕ : E1 → E2 of degree D. By definition of Iϕ, we have
n(Iϕ) = D and Iϕ ⊂ OL(Iϕ) so the first check passes. Then, the codomain of
the two ϕIi have endomorphism ring isomorphic to OR(Ii) so they might be
either both Ei or both Ep

i (since I2 = I1Iϕ, it cannot be E1, E
p
2 or Ep

1 , E2). In
both cases, the final output is 1.

If there exists an ideal I such that IdealVerification((D,E1, E2), I) = 1, then
n(I) = D and I is integral (this is from the first verification). Since I = I1 ·
I2/n(I1) ∼ J1·J2 is an integral ideal of degree D, there exists an isogeny of degree
D between E′

1, E
′
2. Since the final output is 1, the two curves E′

1, E
′
2 are equal

to either E1, E2 or Ep
1 , Ep

2 . Since ϕ : Ep
1 → Ep

2 of degree D imply the existence
of ϕp : E1 → E2 of degree D, in both cases we have that (D,E1, E2) ∈ Lisog.

Proposition 6. Under GRH, IdealVerification terminates in expected O(poly(log
(pD) + C) where C is the bit size of the representation of I.

Proposition 6 follows directly from Propositions 1, 2 and 5.

Isogeny Evaluation from Ideals. It is also possible to evaluate an isogeny from
its ideal representation. In the full version of the paper, we present an algo-
rithm IdealEvaluation solving that task. The main idea is to apply KLPT and
IdealToIsogeny to find an equivalent isogeny of powersmooth degree and making
use of it to perform the computation. Note that an algorithm very similar to
IdealEvaluation can be found in [FKMT22].

4 A New Isogeny Representation

In this section, we propose a new way to prove the existence of a D-isogeny
between two curves when D is a prime number. We call it the suborder repre-
sentation/witness. Composite degrees require more care and we will argue in the
full version that they do not appear more interesting. We will briefly explain
how to extend the suborder representation to composite degrees in the full ver-
sion as well. From now on, unless stated otherwise, D can be assumed to be
prime. The suborder representation has also another small limitation: the proof
only shows that either E1, E2 or E1, E

p
2 are D-isogenous and works only when

End(E1) �∼= End(E2). Thus, we consider the alternate language Lp−isog defined
as follows:

Lp−isog = {(D,E1, E2) ∈ P × S2
p |E1 �∼= E2, E

p
2 and (D,E1, E2) ∈ Lisog or (D,E1, E

p
2 ) ∈ Lisog}

In Sect. 4.1, we introduce the mathematical results underlying our new
method. The method to extract the new representation from the ideal repre-
sentation is the goal of Sect. 4.2. Then, in Sect. 4.3, we explain how to perform
a heuristic polynomial-time verification of this new witness.
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4.1 Brandt Invariant and Relation with Isogenies

The goal of this section is to prove Proposition 7 that links the Brandt invariant
of some orders with isogenies through the Deuring correspondence.

Proposition 7. Let D �= p be a prime number and E1, E2 be two supersingu-
lar curves over Fp2 , O1 ⊂ Bp,∞ is a maximal order isomorphic to End(E1).
The order Z + DO1 is embedded inside End(E2) if and only if either j(E2) ∈
{j(E1), j(E1)p} or (D,E1, E2) ∈ Lp−isog.

We will prove the backward direction of Proposition 7 with a simple argument
using orders and ideals, but it is worth noting that the concrete embedding can
be obtained with the map α0 
→ [d] + ϕ ◦ α0 ◦ ϕ̂ between End(E1) and End(E2)
when there exists ϕ : E1 → E2 of degree D. This is not the first appearance
of this map that was introduced by Waterhouse [Wat69, Section 3.1]. It is also
at the heart of the attacks [Pet17,KMP+20] on the SIDH key exchange and
underlies the decryption process of the Séta encryption scheme [DFFdSG+21].
In the proof of Proposition 7. The forward direction is more subtle and we use
the preliminary Lemma 3.

Lemma 3. Let Let D be prime number different from p and O ⊂ Bp,∞ be a
quaternion order such that O = Z + DO0 for another order O0 ⊂ Bp,∞. When
O is embedded in a maximal order O, either O contains O0 or there exists a
left-O integral primitive ideal I of norm D whose right order O0 contains O0.

Proof. Let us assume that O0 is not contained in O. We set I = {x ∈ O, xO0 ⊂
O}. First, it is easy to verify that I is an integral left O-ideal since it is contained
in O. Then, we are going to see that it has norm D. It suffices to show that
DO � I � O. To see that I �= O, it suffices to note that 1 �∈ I since O0 �⊂ O.
Then, with DO0 ⊂ O we have DxO0 = xDO0 ⊂ O for every x ∈ O, which
proves that DO ⊂ I. Finally, to prove that DO �= I, we take x0 ∈ O0 and
not contained in O. It is clear that Dx0 ∈ I, but Dx0 �∈ DO. Finally, from the
definition of I it is quite clear that O0 is contained in OR(I). This concludes the
proof.

Proof (Proposition 7). For the forward direction, let us take a maximal order
O2

∼= End(E2) such that Z + DO1 ⊂ O2 (which is possible since Z + DO1 is
embedded inside End(E2)). Then, we apply Lemma 3 to O0 = O1, and O = O2,
we obtain that either O2 contains O1 (in which case O2 = O1 since O1 is
maximal) and so we have End(E1) ∼= End(E2) ⇒ j(E2) ∈ {j(E1), j(E1)p}, or
there must be an O2-integral ideal of norm D whose right order contains O1.
Once again, since O1 is maximal, we have in fact equality and so we have an
ideal of norm D whose right order is O2 and left order is O1. By the Deuring
correspondence, this means that (D,E1, E2) ∈ Lp−isog.

For the backward direction, let us consider the ideal I corresponding to the D-
isogeny ϕ : E1 → E2 (w.l.o.g, we can assume that D,E1, E2 ∈ Lisog). This ideal
has norm D. Since OL(I) is maximal, the local order OL(I) ⊗ ZD is a principal
ideal domain (see [Voi18, Chapter 23]) and so the ideal I is locally principal. This
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proves that we can write I = OL(I)α + OL(I)D for some element α ∈ OL(I)
and so DOL(I) ⊂ I ⊂ OR(I). Thus, we obtain that Z + DOL(I) ⊂ OR(I), and
the proof is concluded by OL(I) ∼= End(E1) and OR(I) ∼= End(E2).

4.2 Deriving the Suborder Representation from the Ideal
Representation

Proposition 7 suggests that the embedding Z + DEnd(E1) ↪→ End(E2) can be
used to prove the existence of an isogeny of degree D between E1 and E2.
The goal of this section is to introduce an algorithm IdealToSuborder that takes
a maximal order O ∼= End(E1) and an O-ideal I of norm D and outputs a
suborder representation for ϕ made of O and the embedding Z+DO ↪→ End(E2).
By a representation of the embedding, we actually mean the embeddings of a
generating family for Z+DO (see Definition 3 below). We give the full definition
for a suborder representation as Definition 4.

Definition 3. A generating family θ1, · · · , θn for an order O is a set of elements
in O such that any element ρ ∈ O can be written as a linear combination of 1
and

∏
j∈I θj for all I ⊂ {1, · · · , n}. In that case, we write O = Order(θ1, . . . , θn).

Definition 4. Let ϕ : E1 → E2 be an isogeny of degree D. A suborder represen-
tation πϕ for ϕ is made of an order O ∼= End(E1) and of the default representa-
tions s1, . . . , sn of n endomorphisms of E2 corresponding to a generating family
of Z + DO.

Our algorithm IdealToSuborder (Algorithm 2) is built upon a SmoothGenN
sub-algorithm that we will present in Sect. 5.3. This algorithm computes a gen-
erating family θ1, . . . , θn ∈ Bp,∞ for the order Z + DO on input D,O where
each θi has norm in N . For Proposition 8 and Proposition 10, we are going to
assume several things about this SmoothGen algorithm. We summarize them in
Assumption 1.

Assumption 1. Let N ⊂ N be either �• for some prime � = O(poly(log(pD))),
or the set of divisors of T for some integer T > p7/2D6 of size O(poly(pD)) and
smoothness bound O(poly(log(pD))). On input O,D, the algorithm SmoothGenN
is deterministic, correct and terminates in O(poly(log(pD) + C)) where O is
represented by C bits. It outputs n = O(1) quaternion elements whose norms are
contained in N for all 1 ≤ i ≤ n.

Remark 1. We hide several heuristics and a conjecture under Assumption 1. We
discuss these heuristics in Sect. 5.3.

IdealToSuborder can be divided in two main parts: SmoothGen to obtain
quaternion elements θ1, . . . , θn and an IdealToIsogeny step to convert the ide-
als OR(I)θi to isogenies ϕi : E2 → E2. For all the algorithms of this section, we
are going to assume that a small constant prime � has been fixed and we write
�• for the set {�e, e ∈ N}.
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Algorithm 2. IdealToSuborder(I)
Input: I an integral ideal of maximal orders inside Bp,∞ of norm D.
Output: Endomorphisms ϕi : E2 → E2 such that ι : End(E2)

∼−→ OR(I) sends
ϕ1, . . . , ϕn to a generating family θ1, . . . , θn for Z + DOL(I).

1: Compute D = n(I) and O = OL(I), O′ = OR(I).
2: Compute θ1, . . . , θn = SmoothGen�•(O, D).
3: for i ∈ [1, n] do
4: Compute ϕi : E2 → E2 = IdealToIsogeny�•(O′θi).
5: Compute the default representation si of ϕi.
6: end for
7: Choose Oc, a maximal order isomorphic to O of small representation.
8: return π = Oc, (si)1≤i≤n.

Proposition 8. Under Assumption 1 and GRH, IdealToSuborder is correct and
terminates in O(poly(log(pD) + C)) where C is the bitsize of I and the output
has size O(poly(log(pD))).

Proof. Correctness follows from the correctness of IdealToIsogeny and Smooth-
Gen. The left and right orders of I have representation of size smaller than C,
and so termination follows from GRH, Assumption 1 and Proposition 5 (with
n = O(1)). The degree and smoothness bound of all the deg ϕi is given by
Assumption 1 and this implies that the default isogeny representation has size
O(poly(log(pD))) as we explained in the beginning of Sect. 3. An Oc with rep-
resentation of size O(log(p)) can be found and this concludes the proof.

4.3 Verification of the Suborder Representation

This section focuses on the verification of the representation computed with Ide-
alToSuborder. From Proposition 7, we know that it suffices to convince the verifier
that Z + DEnd(E1) is embedded inside End(E2) and End(E1) �∼= End(E2). The
second part is easy to verify, it suffices to compute the j-invariants and verify
that neither j(E1) = j(E2) nor j(E1) = j(E2)p. The first part of the verification
is achieved with the endomorphisms ϕ1, . . . ϕn. With Lemma 4, we show that it
suffices to check some traces and norms of endomorphisms computed from the
(ϕi)1≤i≤n. Due to the lack of space, the proof of Lemma 4 can be found in the
full version.

Lemma 4. Two orders O1 = Order(θ1, . . . , θn) and O2 = Order(ω1, . . . , ωn) of
rank 4 in a quaternion algebra are isomorphic if n(θi) = n(ωi) for all i ∈ [1, n]
and tr(

∏
j∈I θj) = tr(

∏
j∈I ωj) for all I ⊂ [1, n].

As Lemma 4 indicates, we need to compute some traces for the verification.
This will be done by an algorithm CheckTraceM (whose description we postpone
until Sect. 5.4) that will verify the validity of the traces modulo the parameter
M (see Proposition 19).

Lemma 5 below gives a bound above which equality will hold over Z if it holds
modM . In the full version of the paper, we also explore the option of choosing a
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value of M below the bound of Lemma 5, producing a tradeoff between efficiency
and soundness.

Lemma 5. Given any θ ∈ End(E1), if tr(θ) = t mod M for M > 4
√

n(θ) and
|t| ≤ M/2, then tr(θ) = t.

Proof. Over Bp,∞, the norm form is n : (x, y, z, w) 
→ x2+qy2+pz2+qpw2 where
q > 0, p > 0. Since tr : (x, y, z, w) 
→ 2x, we can easily verify that tr(θ)2 < 4n(θ).
This gives a bound of 2

√
n(θ) on the absolute value of tr(θ). The result follows.

Algorithm 3. SuborderVerificationM (x, π)
Input: M ∈ N, x ∈ P × S2

p and π a suborder representation.
Output: A bit indicating if x ∈ Lp−isog.
1: Parse x as D, E1, E2 and π = O, (si)1≤i≤n.
2: if If disc O �= p then
3: Return 0.
4: end if
5: Compute θ1, . . . , θn = SmoothGen�•(O, D).
6: Compute J = ConnectingIdeal(O0, O) and L = KLPT�•(J).
7: Compute ψ : E0 → E′

1 = IdealToIsogeny�•(L).
8: if j(E1) �= j(E′

1) or j(E1) �= j(E′
1)

p then
9: Return 0.

10: end if
11: for i ∈ [1, n] do
12: Parse si as the default representation of an isogeny of degree n(θi) ∈ �• and

compute it as ϕi : E2 → Fi.
13: if j(Fi) �= j(E2) then
14: Return 0.
15: end if
16: end for
17: return CheckTraceM (ϕ1, . . . , ϕn, θ1, . . . , θn, E2).

Proposition 9. If M > max
1≤j≤n

2
√

n(θj)n, then for x ∈ P × S2
p , there exists a

suborder representation π such that VerifSuborderlProofM (x, π) = 1 if and only
if x ∈ Lp−isog.

Proof. Assume that there exists a representation π passing the verification for
a given x = (D,E1, E2). The check in Step 2 proves that O is a maximal
order of Bp,∞. The second verification in Step 8 proves that End(E1) ∼= O.
Finally, the verification is Step 13 proves that the ϕi are endomorphisms of E2.
Then, if CheckTraceM (ϕ1, . . . , ϕn, θ1, . . . , θn, E2) = 1, the correctness of Smooth-
Gen,CheckTrace, Lemmas 4 and 5 imply that Z+DO is embedded inside End(E2)
and Proposition 7 proves that x ∈ Lp−isog.
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Now let us take (D,E1, E2) ∈ Lp−isog. By definition there exists an ideal I of
norm D and OL(I) ∼= End(E1), OR(I) ∼= End(E2). We are going to show that
if π = IdealToSuborder(I), then we have SuborderVerificationM (x, π) = 1. First,
since OL(I) is a maximal order, the verification of Step 2 passes succesfully. This
is also the case for the verification of Step 8 since OL(I) ∼= End(E1). Then, by
the correctness of IdealToSuborder showed in Proposition 8, we have that si can
be parsed as isogenies ϕi : E2 → E2 that corresponds to the OR(I)θi through
the Deuring correspondence (since SmoothGen is deterministic). Thus, it is clear
that CheckTrace will output 1 and this concludes the proof.

With Assumption 1 and Proposition 9, we see that we can take M =
#E(Fpm) for the smallest m ∈ N such that M is bigger than the bound in
Proposition 9. We refer to Proposition 19 for correctness and complexity of the
CheckTrace algorithm.

Proposition 10. Let m,M be as defined above. Under GRH and Assumption 1,
SuborderVerificationM terminates in probabilistic O(poly(log(p) + log(D))).

Proof. Since m = O(poly(log(pD))) by Proposition 9 and Assumption 1, the
result follows from Assumption 1, Propositions 1, 2, 5 and 19.

4.4 Evaluating with the Suborder Representation

In this section, we show that we can evaluate an isogeny from the suborder
representation. By Proposition 7, any suborder representation π defines a unique
isogeny that we write ϕπ. The algorithm SuborderEvaluation that we introduce
below shows how to use π to evaluate ϕπ. This algorithm is going to be one of the
major building blocks behind the NIKE scheme of Sect. 6. For this application of
our algorithm, we only need to compute the image of cyclic subgroups of the form
E1[J ] for some ideal J . Thus, SuborderEvaluation take a suborder representation
for ϕ and an ideal J as input and outputs ϕ(E1[J ]).

The SuborderEvaluation algorithm is built on a subprotocol IdealSuborder-
NormEquation that we will introduce in Sect. 5.2. This algorithm is only heuristic
and we summarize in Assumption 2, what we expect of this algorithm.

Assumption 2. Let N ⊂ N be either �• for some prime � = O(poly(log(pD))),
or the set of divisors of T for some integer T > B of size O(poly(pD)) and
smoothness bound O(poly(log(pD))) and where B = p2D6n(I)3n(J)2. The algo-
rithm IdealSuborderNormEquationN takes in input an integer D, two ideals I, J
and outputs an element β ∈ (Z + DI) ∩ J with n(β)/n(J) ∈ N , it terminates in
expected O(poly(log(pDn(I)n(J)))) with overwhelming probability.

The principle of SuborderEvaluation is different from the one of IdealEvaluation
we sketched in Sect. 3.2. Indeed, as we will argue in Sect. 4.5, solving the alter-
nate path problem (which is the key step in IdealEvaluation) appears hard from
the suborder representation. Instead, we propose to use the fact that the embed-
ding of Z+DEnd(E1) inside End(E2) is obtained by push-forwards through ϕπ.
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More precisely, this means that ker ι(β) = ϕπ(ker β) for any β ∈ Z + DEnd(E1)
where ι : Z + DEnd(E1) ↪→ End(E2). Thus, to find ϕπ(E1[J ]), we want to find
an endomorphism β ∈ Z + DEnd(E1) such that ker β ∩ E1[n(J)] = E1[J ]. By
definition of E1[J ], and Assumption 2, such a β is exactly found by IdealSubor-
derNormEquation. After that, it suffices to compute ker ι(β) ∩ E2[n(J)] and we
are done. The integer m is taken as in Proposition 10.

Algorithm 4. SuborderEvaluation(E1, E2, π,D, J)
Input: two curves E1, E2, a prime D, π a suborder representation for (D, E1, E2) ∈

Lp−isog and an ideal J of norm coprime with D and �.
Output: ⊥ or ϕπ(E1[J ]).
1: Parse π as O, s1, . . . , sn.
2: if OL(J) �∼= O then
3: Return ⊥.
4: end if
5: if SuborderVerification#E1(Fpm )((D, E1, E2), π) = 0. then
6: Return ⊥.
7: end if
8: for i ∈ [1, n] do
9: Parse si as the default representation of an isogeny of degree n(θi) ∈ �• and

compute it as ϕi : E2 → E2.
10: end for
11: Compute θ1, . . . , θn = SmoothGen�•(O, D).
12: Compute L = ConnnectingIdeal(O0, O) and I = RandomEquivalentPrimeIdeal(L)

with I = Lα.
13: Compute β = IdealSuborderNormEquation�•(D, I, α−1Jα).
14: Express αβα−1 =

∑
I⊂{1,...,n} ci,I(

∏
j∈I θj).

15: Compute P, Q, a basis of E2[n(J)].
16: Compute R, S =

∑
I⊂{1,...,n} ci,I(

∏
j∈I ϕj)(P, Q).

17: if S = 0 then
18: return 〈Q〉.
19: end if
20: Compute a = DLP(R, S).
21: return 〈P − [a]Q〉.

Proposition 11. Under GRH and Assumptions 1 and 2, SuborderEvalua-
tion is correct when the output is not ⊥ and terminates in probabilis-
tic O(poly(log(pD)) + CDLP(n(J)) operations over the n(J) torsion where
CDLP(n(J)) is the complexity of the discrete logarithms in groups of order n(J).

Proof. First, we will prove correctness. The verification at the beginning proves
that if the output is not ⊥, π is a valid suborder representation. When L =
ConnectingIdeal(O0,O) and I = RandomEquivalentPrimeIdeal(L) with I = Lα,
then if β ∈ (Z+DI)∩α−1Jα, then αβα−1 ∈ (Z+DL)∩J ⊂ (Z+DO)∩J . This
explains that we can decompose αβα−1 on the generating family θ1, . . . , θn.
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Since π gives a correct embedding of Z + DO inside End(E1) and so σ =∑
I⊂{1,...,n} ci,I

∏
j∈I ϕj is an endomorphism of E2 whose degree is a mul-

tiple of n(J). To conclude the proof of correctness, it suffices to show that
ker σ ∩ E2[n(J)] = ϕπ(E1[J ]). If αβα−1 = [d] + [D]γ for some γ ∈ End(E1),
we have that σ = [d]+ϕπ ◦γ ◦ ϕ̂π. Now let us take P0 ∈ E1[J ]. Since αβα−1 ∈ J ,
we have ([d] + [D]γ)P0 = 0 and σ(ϕπ(P0)) = [d]ϕπ(P0) + ϕπ(γ ◦ ϕ̂π ◦ ϕπ(P0)) =
ϕπ(([d] + [D]γ)P0 = 0. This proves that ϕπ(E[j]) ⊂ ker σ ∩ E2[n(J)]. And we
obtain equality since the two subgroups have the same order. Thus, we have
showed that our protocol is correct. In �•, we can always select an element
�e = O(poly(log(pDn(I)n(J)))) of norm bigger than the bound B from Assump-
tion 2 so the complexity follows from Assumptions 1 and 2, Propositions 1 and
10 and the fact that n(I) = O(poly(p)) by Proposition 14.

4.5 Deducing the Ideal Representation from the Suborder
Representation

We saw with Proposition 8 that our new suborder representation can be com-
puted from the ideal representation in polynomial time. The goal of this section
is to study the reverse problem of extracting an ideal representation from a sub-
order representation. We are going to try to argue that this problem is hard in
general and describe some cases where it is easy. We also introduce several other
problems and prove that they are equivalent.

Problem 1 (SubOrder to Ideal Problem, SOIP). Let x = (D,E1, E2) ∈ Lp−isog,
and π be a suborder representation such that SuborderVerification(x, π) =
1. Compute I, an ideal such that IdealVerification(x, I) = 1 or
IdealVerification((D,E1, E

p
2 ), I) = 1.

We will show in Proposition 12 the equivalence of Problem 1 with the prob-
lem of computing the endomorphism ring of the codomain from the suborder
representation (Problem 2).

Problem 2 (SubOrder to Endormophism Ring Problem (SOERP)). Let x =
(D,E1, E2) ∈ Lp−isog, and π be a suborder representation such that
SuborderVerification(x, π) = 1. Compute O2 ⊂ Bp,∞ with O2

∼= End(E2).

Proposition 12. Under Assumption 1 and GRH, The SOIP and SOERP are
equivalent.

Due to lack of space, the full proof is given in the full version of the paper
but we summarize the important elements below. One of the two reductions is
trivial since the right order of a solution to the SOIP is exactly a solution to
the SOERP. The other reduction is more complex, the idea is that with the
knowledge of the endomorphism ring of E2, the endomorphisms of the suborder
representation can be translated into principal ideals over the quaternions and
with that, it is possible to compute a generator of the desired ideal.
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Interestingly, we can show that the SOIP is also equivalent to another prob-
lem, the Torsion to Ideal Problem (TIP) that can be seen as a generalization of
the CSSI problem introduced by De Feo and Jao for SIDH [JDF11]. Due to lack
of space, the proof of Proposition 13 is given in the full version.

Problem 3 (T -Torsion to Ideal (T -TI)). Let T be an integer. Let x =
(D,E1, E2) ∈ Lisog where D is coprime with T and let ϕ : E1 → E2 be an element
of IsogD. Let P,Q be a basis of E1[T ]. Given End(E1) and ϕ(P ), ϕ(Q) ∈ E2[T ],
Compute I, an ideal such that IdealVerification(x, I) = 1.

Proposition 13. For every D, p, there exists a value of T , such that the SOIP
is equivalent to the T -TIP.

A Sub-exponential Quantum Attack Against the SOIP. To the best of our knowl-
edge, the attack we describe below is the most efficient against the generic SOIP.
We use a result from [KMPW21] that a one-way function f : E → F can be
inverted at f(e) by solving an instance of the hidden shift problem when there
exists a group action � : G × E → E for which there is a malleability ora-
cle: i.e., an efficient way to evaluate the function g 
→ f(g � e) on any g ∈ G.
The hidden shift problem can be solved in quantum sub-exponential time. In
our context, we consider the group action of (End(E1)/DEnd(E1))∗ on the set
of cyclic subgroups of order D. This set is in correspondence with cyclic ide-
als of norm D inside End(E1) and so we can invert the function I 
→ E/E[I]
in sub-exponential time if we have a malleability oracle. In [KMPW21], it was
shown that this malleability oracle could be obtained as soon as the image of
a big enough torsion-group through the secret isogeny was given. This is can
done with our algorithm SuborderEvaluation. As a consequence, we can evalu-
ate ϕI on any subgroup of powersmooth order and this is more than enough to
obtain a malleability oracle with the ideas of [KMPW21]. Thus, we can apply
the reduction from [KMPW21] and get a sub-exponential quantum method to
solve Problem 1.

Remark 2. The existence of a sub-exponential attack is inevitable as soon as
one non-trivial endomorphism σ : E2 → E2 is revealed. The attack stems from
the existence of a group action of Cl(Z[σ]) on the set of Z[σ]-orientations (i.e
pairs E, ι where ι : Z[σ] ↪→ End(E1), see [CK19,DFFdSG+21] for more on
orientations). With the knowledge of σ, one can apply the idea (first introduced
by Biasse, Jao and Sankar [BJS14] in the special case where Z[σ] = Z[

√−p])
that the algorithm from Childs et al. [CJS14] can be adapted to find a path
of powersmooth degree between two Z[σ]-oriented curves. When this algorithm
is applied between E2 and E1, a curve of known endomorphism ring, the path
obtained in output allows the attacker to compute the endomorphism ring of
E2. This algorithm has sub-exponential complexity in log h(Z[σ]) as it reduces
to an instance of the hidden shift problem. The attack we just outlined is similar
to the ones exposed in [Wes22,ACL+22].
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In the remaining of this section, we will describe other attacks, analyze the
cases in which they prove to be efficient and explain why they fail to solve the
generic SOIP.

Torsion Point Attacks. With the terminology torsion point attack, we desig-
nate any attack that aims at recovering an isogeny representation of a secret
isogeny ϕ : E → F from the knowledge of ϕ(P ), ϕ(Q) where P,Q is a basis
of E[T ] for some integer T . This definition covers attacks against the T -TIP
and the CSSI problem of SIDH, including the recent attacks by Castryck and
Decru [CD22], Maino and Martindale [MM22] and Robert [Rob22]. These new
attacks against SIDH can be seen as a generalization to higher dimension of the
original torsion point attack due to Petit [Pet17]. Here is how we can explain
their common generic principle: use the torsion points ϕ(P ), ϕ(Q) to compute
θ, a T -endomorphism/isogeny of abelian varieties in dimension g (for some con-
stant g) whose expression depends on ϕ. When T is big enough with respect to
deg ϕ, the computation of θ can be made solely from ϕ(P ), ϕ(Q). Then, θ can
be evaluated on the deg ϕ-torsion to recover ker ϕ. The real advantage of the
new attacks against the initial idea of Petit is that they reduce the constraint to
T > deg ϕ which mean they can be applied to SIDH. With our algorithm Subor-
derEvaluation, it is possible to get the image of any subgroup under the isogeny
ϕ of degree D from a suborder representation πϕ. Thus, it is always possible to
apply a torsion point attack to the setting of the SOIP. However, the complexity
of this attack will not always be polynomial. The main obstacle seems to be the
field of definition of the D-torsion. In general, for a random integer D, we can
expect the D-torsion to be defined over Fpk where k = O(D). This is true in
particular when D is prime. When the field of definition of the torsion point
is too big, there does not seem to be any way to express the kernel of ϕ in a
compact manner and thus the attack does not have a polynomial complexity.

On the other hand, when the degree k of the field extension is polynomial
in D, there is a quantum polynomial attack against the SOIP. Indeed, in this
case, the torsion point attacks allow us to compute the kernel of ϕ in polynomial
time and this kernel admits a representation of polynomial size. Then, the only
remaining task to solve the SOIP is to compute the ideal I corresponding to ϕ.
Since the endomorphism ring of the domain E1 is known, this can be done in
quantum polynomial time using the algorithm from Galbraith, Petit and Silva
[GPS17, Algorithm 3]. It is only quantum polynomial time because the algo-
rithm requires to solve some DLPs over the D-torsion, every other aspect of the
algorithm can be executed in classical polynomial time.

To conclude, we need that the D-torsion is not defined over a small field
extension to ensure hardness of the SOIP. Fortunately, this should happen with
overwhelming probability when D is chosen at random, and it can be verified
by computing the order of p mod D (the degree k is equal to this order up to a
factor 2).

Other Attacks. We start by analyzing the complexity of the brute-force algo-
rithm. In full generality, for a given D, the brute force will take O(min(p,D)).
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The idea is that since End(E1) is part of the suborder representation, it suffices
to enumerate through all End(E1) ideals of norm D until IdealVerification passes.
There are O(D) such ideals, but since there are only O(p) curves, we need to
test at most O(p) of them. Thus, the generic complexity of the brute force is
O(min(D, p)). Note that when D is prime, there does not seem to be an adapta-
tion of the meet-in-the-middle attack which provides a quadratic speed-up over
a brute-force search, and is considered to be the most efficient method to find
an isogeny of smooth degree between two random supersingular curves.

Another way to solve the problem in a generic manner is by computing
End(E2) (see Proposition 12). Without using the proof π as a hint, the com-
plexity is believed to be Θ̃(p1/2) for classical computers and Θ̃(p1/4) for quantum
computers (see [EHL+20]).

Even after seeing the above analysis, the hardness of the SOERP may still
come as a surprise to a reader familiar with isogeny-based cryptography. In par-
ticular, the fact that we reveal several endomorphisms of E2 might seem like
a very troublesome thing to do. This concern is legitimate: the algorithm from
[EHL+20] to compute the endomorphism ring of any supersingular curve is based
on the principle that knowing two distinct non-trivial endomorphisms is enough
to recover the full endomorphism ring in polynomial-time. The idea behind this
algorithm is that Bass orders are contained in a small number of maximal orders.
Thus, when the two non-trivial endomorphisms generate a Bass order, it suffices
to enumerate all the maximal orders containing that same Bass order to find the
solution. The authors from [EHL+20] prove their result under the conjecture
that two random cycles will form a Bass order with good probability. However,
the endomorphisms that we reveal in the suborder representation are not ran-
dom cycles. By design, the suborder they generate is not Bass and we know that
it is contained in an exponential number of maximal orders (this number is equal
to the number of D-isogenies by Lemma 3). As such, when using the endomor-
phisms of the suborder representation, the algorithm described in [EHL+20] is
essentially the brute force attack where each ideal of norm D is tested.

Readers might also be concerned with the quaternion alternate path problem.
A way to break the SOERP would be to use the embedding of Z + DEnd(E1)
inside End(E2) to compute a path from E2 to a curve E0 of known endomor-
phism ring. Following the (now standard) blueprint that underlies most of the
algorithm in this work, such an attack would be divided in two steps: first a com-
putation over the quaternions (analog to KLPT) and then a conversion through
the Deuring correspondence to obtain an isogeny connecting E2 to E0 (ana-
log to IdealToIsogeny). This supposed attack would have to work over orders of
non-trivial Brandt invariant rather than maximal orders to exploit the suborder
representation. It appears that the first part of this method can be made to
work over non-Gorenstein orders. In fact, the IdealSuborderNormEquation that
we describe in Algorithm 6 is exactly the analog of KLPT for orders of the form
Z+DO. However, the fact that the Brandt invariant is non-trivial appears like a
serious obstacle to the second part of the proposed attack. Indeed, as the number
of curves admitting an embedding of Z + DO inside their endomorphism ring is
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big, it becomes hard to tell which pair of curves are connected by any ideal of
the form (Z + DO) ∩ J (which was not the case for maximal orders because we
have almost a 1 − to − 1 correspondence between curves and maximal orders).
Thus, it seems implausible to be able to find a path between E2 and a given
curve E0 in that manner. Another way of seeing this is that since Z + DO is
a generic suborder shared by a lot of curves, we cannot compute anything that
will be specific to a given curve from the knowledge of Z + DO only.

5 Sub-algorithms over the Quaternion Algebra

In this section, we fill the blanks left in the Sect. 4. We provide pre-
cise descriptions of the algorithms IdealSuborderNormEquation,SmoothGen, and
CheckTraceM in Sects. 5.2 to 5.4 respectively. We recall that the first algorithm
is used to evaluate isogenies from the suborder representation in SuborderEvalu-
ation (Algorithm 4 of Sect. 4.4) and the last two are building blocks for Subor-
derVerification (Algorithm 3 of Sect. 4.3) for the verification of our new suborder
representation. Note that IdealSuborderNormEquation and SmoothGen are only
heuristic as for the algorithms from [KLPT14,DFKL+20]. We expand on this
matter in Remark 3.

We use the basis 1, i, j, k for Bp,∞ where i2 = −q, j2 = −p and k = ij = −ji
for some small integer q > 0 (see [KLPT14] for values of q for all p, when p = 3
mod 4 we can take q = 1). Following the classical approach in the literature (
[KLPT14,DFKL+20]), we take O0 ⊂ Bp,∞ as a special extremal order as defined
in [KLPT14], i.e., a maximal order containing a suborder with orthogonal basis
〈1, ω, j, ωj〉 where Z[ω] ⊂ Q[i] is a quadratic order of small discriminant.

5.1 Algorithms from Previous Works

In the next sections, we rely upon several algorithms existing in the literature.
The full version of [DFKL+20] is a good reference for all these algorithms. We
briefly recall their purpose.

– RandomEquivalentPrimeIdeal(I), given a left O0-ideal I, finds an equivalent left
O0-ideal of prime norm.

– IdealModConstraint(I, γ), given an ideal I of norm N , and γ ∈ O0 of norm n
coprime with N , finds (C0 : D0) ∈ P

1(Z/NZ) such that μ0 = j(C0 + ωD0)
satisfies γμ0 ∈ I.

– EichlerModConstraint(I, γ), given an ideal I of norm N , and γ ∈ O0 of norm
n coprime with N , finds (C0 : D0) ∈ P

1(Z/NZ) such that μ0 = j(C0 + ωD0)
satisfies γμ0 ∈ Z + I.

– StrongApproximationN (N,C0,D0), given a prime N and C0,D0 ∈ Z, finds
μ = λμ0 + Nμ′ ∈ O0 of norm in N , with μ0 = j(C0 + ωD0) and μ′ ∈ O0.

The following result on the size of the output of RandomEquivalentPrimeIdeal
will prove useful.
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Proposition 14. Let I be an integral ideal of maximal orders. The output J =
RandomEquivalentPrimeIdeal(I) has norm n(J) = O(poly(p)).

Remark 3. The algorithms that we have introduced above are all expected to ter-
minate in polynomial-time under various plausible heuristic assumptions intro-
duced in [KLPT14,DFKL+20]. By plausible, we mean that these assumptions
were verified experimentally. These assumptions mostly concern the probability
that some integers represented by specific quadratic forms are prime and sat-
isfy some quadratic reduosity condition (as in Remark 4 for instance, see also
[Wes22] for more details). Our new algorithms are based on the sub-algorithms
from [KLPT14] and this is why our results will be subject to the same assump-
tions. However, these assumptions are only used to justify the termination and
expected running time of the sub-algorithms, and so they do not appear directly
in our proofs, and this is also why we do not state them clearly.

Remark 4. The StrongApproximationN (N, ·) algorithm was originally introduced
for a prime number N in [KLPT14]. The probability of success depends on some
quadratic reduosity condition mod N . We can easily extend StrongApproximation
to the case of composite N (and this is the version that we use in the algorithms
below) if we allow the success probability to decrease. In general, under the
heuristic assumption that the integers we consider mod N behave like random
integers of the same size, we can see that the success probability should be 1/2k

where k is the number of distinct prime divisors of N . Below, we are going to
use the algorithm with N having at most three large prime divisors.

5.2 Solving Norm Equations Inside Non-Gorenstein Orders

In this section, we extend the range of 4-dimensional lattices Λ ⊂ Bp,∞ inside
which we know how to solve norm equations. Each of our norm equation algo-
rithm is parameterized by a set N ⊂ N that defines the possible norm of the
outputs. This set N can be either �• for some prime � or M(T ), the divisors of
T for some T ∈ N.

The first algorithms targetting that task were introduced in [KLPT14] where
Λ was either a special extremal maximal order like O0 or an ideal of left (and
right) maximal order. In [DFKL+20], new methods were introduced to work
inside Eichler orders and their ideals, thus covering lattices of the form Z + I
and (Z + I) ∩ J where I, J are cyclic integral ideals with gcd(n(I), n(J)) = 1.
We continue this trend of work by exploring the case of non-Gorenstein orders
with Gorenstein closure equal to Eichler orders and their ideals. Concretely, this
means lattices of the form Z+DI and (Z+DI)∩J where I, J are cyclic integral
ideals and gcd(n(I), n(J),D) = 1.

Our motivation is the resolution of norm equations inside Z + DO for any
maximal order O ⊂ Bp,∞. In the particular case where O is a maximal extremal
order as O0, an algorithm to find elements of given norm inside Z + DO was
introduced in [Pet17]. Unfortunately, the generic case requires a different treat-
ment. We apply the idea from De Feo et al. in [DFKL+20] that consists in
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restricting the resolution to the suborder (Z + DO) ∩ O0. Since O ∩ O0 = Z + I
where I = ConnectingIdeal(O0,O), our main tool is an algorithm EichlerSuborder-
NormEquation to solve norm equations inside Z+DI = (Z+DO)∩ (Z+I). This
algorithm is going to be the main building block of SmoothGen (whose descrip-
tion we give in Sect. 5.3). In the end of this section, we show with IdealSub-
orderNormEquation how to extend EichlerSuborderNormEquation to solve norm
equations inside (Z + DI) ∩ J where gcd(n(J), n(I)) = 1.

To clarify the explanations, we try to extract a pattern in the formulations
of the algorithms from [KLPT14,DFKL+20] and ours. We will explain how the
ideas from [KLPT14,DFKL+20] fit into a common framework before introducing
our approach. We hope that it might provide some insights on these algorithms
and help the reader understand how they work and how they were designed.

Each algorithm is parameterized by two integers N1, N2. We look for elements
of norm contained in some set N ⊂ N. In practice N is going to be either �• or
the divisors of some powersmooth integer T . The algorithms can be decomposed
as follows:

1. Find γ satisfying a set of conditions and having a norm dividing N1n
′ where

n′ ∈ N .
2. Find C,D ∈ Z such that γj(C + Dω) ∈ Λ.
3. Compute μ = StrongApproximationN (N2, C,D).
4. Output γμ.

The goal of these “conditions” on γ in the first step is to ensure that the
second step will always have a solution. As we are going to see, the only real
difference between the several algorithms are the values of N1, N2 and these
conditions on γ. The second step is always solved using linear algebra mod
N2. When N2 is composite, we will decompose it in sub-operations modulo the
different factors before using a CRT to put everything together.

In the rest of this section, we may assume for simplicity that ideals have
prime norm. When not, the algorithm EquivalentRandomPrimeIdeal can be used
to reduce the computation to the prime case. The first algorithm fitting the
framework above was introduced in [KLPT14] and targetted the case where Λ
is an O0-ideal of norm N . The condition on γ is summarized by Lemma 6 that
is a reformulation of some of the results from [KLPT14]. We have N1 = N and
N2 = N .

Lemma 6 [KLPT14]. Let I be an O0 ideal of norm N and γ ∈ O0. When
gcd(n(γ), N2) = N , there exists C,D ∈ Z such that γj(C + Dω) ∈ I with
overwhelming probability.

The goal of the authors of [DFKL+20]. was to obtain a generalization of the
algorithm of [KLPT14] when Λ is an O-ideal K for any maximal order O (and
not just the special case O0). To do that, they proposed to solve the norm
equation inside K ∩ O0 which can be written as (Z + I) ∩ J for two O0-ideals
I, J . To achieve that goal they started by implicitly introducing a method to
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solve the norm equation inside Z + I before combining that with the ideas from
[KLPT14] to get the full method.

For the case Λ = Z + I where I has norm N , the condition on γ can be
summarized with Lemma 7. In that case, N1 = 1 and N2 = N .

Lemma 7 [DFKL+20]. Let I be an O0 ideal. When gcd(γ,N) = 1, there exists
C,D ∈ Z such that γj(C + Dω) ∈ Z + I with overwhelming probability.

When Λ = (Z+ I)∩J with n(I) = N and n(J) = N ′, the solution presented
in [DFKL+20, Section 5] is simply obtained by combining Lemmas 6 and 7 with
N1 = N ′, N2 = NN ′.

Norm equations inside Z + DI. Next, we explain our method for the case Λ =
Z+DI. This time, we need γ to satisfy more conditions than a simple constraint
on its norm. We will introduce the necessary condition in Proposition 15. The
constraint proves to be slightly inconvenient, and will impact the size of the final
solution, but we managed to find a way to keep some control on the norm of γ
while ensuring that the linear algebra step always has a solution.

Proposition 15. Let I be an integral left O0-ideal of norm N and let D be a
prime number distinct from N . If γ ∈ O0 can be written as j(C2 + ωD2) + Dμ2

with μ2 ∈ O0 and γ has norm coprime with N , then there exists C1,D1 ∈ Z such
that γj(C1 + ωD1) ∈ Z + DI.

Proof. If γ has norm coprime with N , we know from [DFKL+20] that there
exists C0,D0 such that γj(C0 + ωD0) ∈ Z + I (this is Lemma 7). Then, if we
set C ′

2 = −D′
2C2(D2)−1 mod D for any D′

2, it is easy to verify that γj(C ′
2 +

ωD′
2) ∈ Z+DO0. Hence, if C1,D1 satisfies C1 = C0 mod N,D1 = D0 mod N ,

C1 = C ′
2,D1 = D′

2 mod D and gcd(N,D) = 1, we have that γj(C1 + ωD1) ∈
Z + DO0 ∩ (Z + I) = Z + DI. By the CRT, we know we can find such C1,D1.

With Proposition 15, we see that we must take N1 = 1 and N2 = ND and
that we must also apply a strong approximation mod D to compute exactly
γ. When we apply these ideas to the framework described above, we obtain
EichlerSuborderNormEquation.

We remind the reader that the heuristics in Proposition 16 are the same as
the ones from [KLPT14] (see Remark 3). This goes for Propositions 17 and 18
as well.

Proposition 16 (Heuristic). When N,D are distinct primes, Algorithm 5 ter-
minates in expected O(poly(log(DN))) and outputs an element of Z+DI of norm
in N when N contains an elements bigger than p7/2D6. The expected norm is
in O(poly(p,D,N)).

Proof As mentioned in Remark 4, because D is prime, under plausible heuris-
tics, the algorithm StrongApproximationN (D, ·) finds a solution of norm in N
with probability at least 1/2 in polynomial time when N contain a big enough
element (we will look at the required size at the end of the proof). As a result
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Algorithm 5. EichlerSuborderNormEquationN (D, I)
Input: I a left O0-ideal of norm N coprime with D.
Output: β ∈ Z + DI of norm dividing F .
1: Select a random class (C2 : D2) ∈ P

1(Z/DZ).
2: Compute μ2 = StrongApproximationN (D, C2, D2)). If the computation fails, go back

to Step 1.
3: Compute (C0 : D0) = EichlerModConstraint(μ2, I).
4: Sample a random D′

2 in Z/DZ, compute C′
2 = −D′

2C2(D2)
−1 mod D.

5: Compute C1 = CRTN,D(C0, C
′
2), D1 = CRTN,D(D0, D

′
2).

6: Compute μ1 = StrongApproximationN (ND, C1, D1). If it fails, go back to step 1.
7: return β = μ2μ1.

of Proposition 15, EichlerModConstraint always succeeds in finding a solution
(C0 : D0). Then, the second StrongApproximation has a 1/4 success probability
when N,D are prime. Assuming that a new choice of (C2 : D2) randomizes
(C1 : D1) sufficiently we can show that a solution can be found with over-
whelming probability after a constant number of repetitions. This proves the
algorithm’s termination.

For correctness, we can verify easily that j(C2+D2ω)j(C ′
2+ωD′

2) ∈ Z+DO0.
Since β − j(C2 + D2ω)j(C ′

2 + ωD′
2) ∈ DO0 this proves that β ∈ Z + DO0. By

the correctness of EichlerModConstraint and the fact that NO0 is contained in I
we can also show that β ∈ Z + I. Hence, β ∈ (Z + DO0) ∩ (Z + I) = Z + DI.

The estimates provided in [DFKL+20] allow us to predict that we can find a
solution β of norm in N if N contains elements of size ≈ 2 log�(p) + 6 log�(D) +
3 log�(N). This comes from the fact that a strong approximation mod N ′ can
find solutions of norm approximately equal to pN ′3. Other estimates provided
in [DFKL+20] prove that we will have N ≈ √

p and this yields the final bound
p7/2D6.

Norm Equations Inside (Z+DI)∩J . We set N = n(I) and N ′ = n(J). For this
final case, it suffices to combine Lemmas 6 and 7 and Proposition 15 and take
N1 = N ′, N2 = NN ′D. This yields Algorithm 6.

Proposition 17 (Heuristic). Assumption 2 holds.

Proof. Due to Lemmas 6 and 7 and Proposition 15, we know that we can find
(C0 : D0), (C3 : D3) and (C ′

2 : D′
2) with overwhelming probability and that

the result will be correct. The computation takes O(poly(log(DNN ′))) since
it consists of linear algebra mod D,N,N ′. The executions of Strong Approx-
imations terminates in probabilistic polynomial time and output a value with
constant probability. So the global computations terminates in probabilistic
O(poly(log(DNN ′))). It is correct because StrongApproximation is correct. The
computation succeeds as soon as the target set N contains elements that have
size bigger than 2 log�(p)+6 log�(D)+3 log�(N)+2 log�(N ′) and this is the value
we can take for the bound B ( the first execution of StrongApproximation gives
an element of size ∼ pD3/N ′ and the second p(DNN ′)3).
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Algorithm 6. IdealSuborderNormEquationN (D, I, J)
Input: An integer D, and I, J two left O0-ideals of norm N, N ′ with gcd(N, N ′, D) =

1.
Output: β ∈ (Z + DI) ∩ J of norm N ′N ′′ where N ′′ ∈ N .
1: Select a random class (C2 : D2) ∈ P

1(Z/DZ).
2: Compute μ2 = StrongApproximationN (D, C2, D2)). If the computation fails or if

gcd(n(μ2), N
′) = 1, go back to Step 1.

3: Compute (C0 : D0) = EichlerModConstraint(μ2, I).
4: Compute (C3 : D3) = IdealModConstraint(μ2, J).
5: Sample a random D′

2 in Z/DZ, compute C′
2 = −D′

2C2(D2)
−1 mod D.

6: Compute C1 = CRTN,D,N′(C0, C
′
2, C3), D1 = CRTN,D,N′(D0, D

′
2, D3).

7: Compute μ1 = StrongApproximationN (NDN ′, C1, D1). If it fails, go back to step 1.

8: return β = μ2μ1.

5.3 Computing a Smooth Generating Family

In this section, we describe the SmoothGen algorithm that takes in input a max-
imal order O and a prime D, outputs a generating family of Z+DO of elements
whose norms are in N . The idea behind this algorithm is quite straightforward:
apply EichlerSuborderNormEquation on I, for various ideals I connecting O0 and
orders isomorphic to O. This gives a way to sample elements in Z+DO, and we
iterate this method until we obtain a generating family from this set. Experimen-
tal results show that after taking a few elements in that manner (for instance,
no more than ten for parameters of cryptographic sizes, i.e., of a few hundred
bits), we can extract a generating family of size three. We formulate this more
precisely as Conjecture 1.

Conjecture 1. Let O1 be a maximal order in Bp,∞. Let I1, I2, I3 be random O0-
ideals of prime norms with αiOR(Ii)α−1

i = O for some αi ∈ B∗
p,∞. If θ1, θ2, θ3

are random outputs of EichlerSuborderNormEquation(D, Ii) for i = 1, 2, 3, then
Z + DO = Order(α1θ1α

−1
1 , α2θ2α

−1
2 , α3θ3α

−1
3 ) with probability 1/c where c =

O(poly(log(pD))).

Proposition 18 (Heuristic). Assuming Conjecture 1, Assumption 1 holds.

Proof. Proposition 1 proves the desired running time for ConnectingIdeal. The
same holds for RandomEquivalentPrimeIdeal and the outputs of this algo-
rithm have norms in O(poly(p)) by Proposition 14. By Conjecture 1, n = 3
and we need only to repeat a polynomial number of times the algorithm
EichlerSuborderNormEquation which terminates in polynomial time by Proposi-
tion 16 and the outputs have norm in O(poly(pD)). By the termination condition,
the output is a generating family of Z + DO.
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Algorithm 7. SmoothGenN (O,D)
Input: A maximal order O and a prime D.
Output: A generating family θ1, θ2, θ3 for Z + DO where each θj has norm in N .
1: Set L = ∅ and I0 = ConnectingIdeal(O0, O).
2: while There does not exist θ1, θ2, θ3 ∈ L s.t Z + DO = Order(θ1, θ2, θ3) do
3: I = RandomEquivalentPrimeIdeal(I0) and I = I0α.
4: Compute θ = EichlerSuborderNormEquationN (D, J).
5: L = L ∪ {αθα−1}.
6: end while
7: return θ1, θ2, θ3.

5.4 Checking Traces

In this section, we present an algorithm CheckTraceM to perform the verification
of the suborder representation.

Computing the trace of an endomorphism is a well-studied problem, as it is
the primary tool of the point counting algorithms such as SEA [Sch95]. For our
application the task is even simpler as we merely have to verify the correctness
of the alleged trace value and not compute it. With the formula tr(θ) = θ + θ̂,
it suffices to evaluate θ and θ̂ on a basis of the M -torsion, and then verify the
relation. In particular, we do not need M to be smooth since we just want to
check equality.

Algorithm 8. CheckTraceM (E,ϕ1, . . . , ϕn, θ1, . . . , θn)
Input: θ1, . . . , θn, n endomorphisms of E and n elements of Bp,∞ ω1, . . . , ωn.
Output: A bit b equal to 1 if and only if tr(θi) = tr(ωi) mod M for all i ∈ [1, n].
1: Compute P, Q a basis of E[M ] over the appropriate field extension. Set b = 1.
2: for All I ⊂ [1, n] do
3: Set θI =

∏
j∈I θj and ϕI =

∏
j∈I ϕj .

4: Verify ϕI(R) + ϕ̂I(R) = [tr(θI)]R for R ∈ {P, Q}. If not, set b = 0.
5: end for
6: return b.

Proposition 19. When M = #E(Fpm), n = O(1) and deg ϕi = O(poly(p))
and have smoothness bound in O(poly(log(p))) for all 1 ≤ i ≤ n, CheckTraceM

terminates in O(poly(m log(p))

Proof. By choice of M , P,Q are defined over Fpm and so operations over the M -
torsions have O(poly(m log(p)) complexity. By the assumption on the degree of
the ϕi, computing all the ϕI(P,Q) can be done in O(poly(log(p))) since n = O(1)
and this concludes the proof.
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6 A New NIKE Based on a Generalization of SIDH
for Big Prime Degrees

We present here pSIDH (prime-SIDH) a new NIKE scheme. It is based on a
SIDH-style isogeny diagram (see Fig. 1) but with prime degrees. For secret keys
we propose to use ideal representations and then take suborder representations
as public keys. The key exchange will be made possible with SuborderEvaluation
(Algorithm 4 of Sect. 4.4). The full description can be found in In terms of
security, the pSIDH key recovery problem is exactly the SOIP and our NIKE
is secure under the hardness of a decisional variant of the SOIP (Problem 1) in
a similar manner to SIDH with the CSSI and SSDDH problems introduced in
[JDF11].

As pSIDH is a NIKE and the best attack is quantum-subexponential (see
Sect. 4.5), pSIDH has an application profile similar to CSIDH (there is even a
group action involved). The SOIP in itself is closer to the key recovery problem
of CSIDH than it is to the one of SIDH (in the sense that they can be both
seen as isogeny problems with partial endomorphism ring information which is
not really the case for SIDH). However, despite some similarities, the protocols
relies on different assumptions. Moreover, the underlying structure in pSIDH is
not the same as in CSIDH so it might open new possibilities.

We discuss a concrete instantiation and the efficiency of pSIDH in Sect. 6.2,
where we also compare with the efficiency of CSIDH.

6.1 The Description of pSIDH

The idea of SIDH is the following: the two participants Alice and Bob generate
isogenies ϕA, ϕB of degree gcd(NA, NB) = 1. Their public keys are the curves
EA, EB , together with additional pieces of information to make possible the
computation of the two push-forward isogenies [ϕA]∗ϕB and [ϕB ]∗ϕA depicted
in Fig. 1. It is possible to show that the codomains of these push-forward isogenies
are isomorphic (thus providing a way to derive the common key from j(E)). We
have ker[ϕA]∗ϕB = ϕA(ker ϕB) and this is why Alice’s SIDH-public key is the
curve EA together with ϕA(PB), ϕA(QB) where 〈PB , QB〉 = E0[NB ] (and the
reverse for Bob’s). For efficiency, the degrees NA, NB need to be smooth.

To do the same thing for two prime degrees DA,DB , we need a new method
to compute the codomain of the push-forward isogenies. We propose to use the
ideal representations as secret keys and the suborder representations as public
keys. The computation of the common key j(E) can be done as follows. Given an
ideal I of norm DA and the suborder Z+DBO0, it is possible to find an element
θ ∈ (Z + DBO0) ∩ I of norm DAS where S is a powersmooth integer with the
algorithm IdealSuborderNormEquation (Algorithm 6 in Sect. 5.2). The embedding
ιB : Z + DBO0 ↪→ End(EB), is obtained by pushing forward the embedding of
Z + DBO0 inside End(E0) through ϕB and so we have ιB(θ) = ψA ◦ [ϕB ]∗ϕA

where ψA has degree S. Thus, using πB , the suborder representation of ϕB , we
can use SuborderEvaluation to compute ker ψ̂A and ψ̂A. The codomain of ψ̂A is
isomorphic to E and so the common secret j(E) can be derived from that.
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These ideas are summarized in Fig. 1 and the full description of the key
exchange mechanism is given as Algorithm 10. The key generation algorithm is
also described in Algorithm 9. To be able to run this algorithm in polynomial-
time, we need to be able to compute efficiently isogenies of degree ψA and to be
able to manipulate the full deg ψA torsion. This is why we take the degree of ψA

as a divisor of a powersmooth integer T . To be able to apply SuborderEvaluation,
we also need that T is coprime with the degree of the endomorphisms of the
suborder representation (so we take T coprime with �). We write M(T ) for the
set of divisors of T . The integer m is taken to be as in Proposition 10.

The public parameters of pSIDH should include a prime p and a starting
curve E0 together with a description of End(E0). For simplicity, we may assume
that End(E0) ∼= O0, where O0 is the special extremal order introduced in the
beginning of Sect. 5.

Fig. 1. SIDH/pSIDH-isogeny diagram.

Algorithm 9. KeyGeneration(D)
Input: A prime number D �= p.
Output: The pSIDH public key pk = E, π and the pSIDH secret key sk = I where π

is a suborder representation and I an ideal representation for (D, E0, E) ∈ Lp−isog.

1: Sample I as a random O0-ideal of norm D.
2: Compute π = IdealToSuborder(I) and set E as the domain of the endomorphisms

in π.
3: return pk, sk = (E, π), I.

Proposition 20. Under GRH, Assumption 1, Assumption 2, KeyExchange ter-
minates in expected poly(log(pD′D).

Proof. Since B = O(poly(log(pDD′))), we can choose a value of T with a smooth-
ness bound equal in O(poly(log(pDD′))). Thus, all operations over the T -torsion
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Algorithm 10. KeyExchange(I,D′, E′, π)
Input: I an ideal of degree D and a prime D′ �= D, p. A curve E′ and a suborder

representation π.
Output: A j-invariant or ⊥.
1: Parse π = (O0, ϕ1, . . . , ϕn).
2: Compute θ1, · · · , θn = SmoothGen�•(O0, D

′).
3: if !SuborderVerification#E′(Fpm )((D

′, E0, E
′), π) then

4: Return ⊥.
5: end if
6: Take a powersmooth integer T coprime with � with B < T < 2B where B is the

bound in Assumption 2 and T has the smallest possible smoothness bound.
7: Set J = O01.
8: Compute θ = IdealSuborderNormEquationM(T )(D

′, J, I).
9: Factorize T =

∏r
i=1 �ei

i .
10: Set G = 〈0E′〉.
11: for i ∈ [1, r] do
12: Compute Ji = O0α−1θα + O0�

ei
i .

13: G = G + SuborderEvaluation(E0, E
′, π, D′, Ji).

14: end for
15: Compute ψ : E′ → E′/G.
16: return j(E′/G).

and the final computation of ψ can be done in O(poly(log(pD′D))). The remain-
ing computations terminate in expected O(poly(log(pD′D))) due to Assumptions
1 and 2 and Propositions 1, 10, 11 and 14.

Proposition 21. Let DA,DB �= p be two distinct prime numbers. If
EA, πA, IA = KeyGen(DA) and EB , πB , IB = KeyGen(DB), then

KeyExchange(IA,DB , EB , πB) = KeyExchange(IB ,DA, EA, πA).

Proof. Let us write ϕA, ϕB the isogenies corresponding to the two ide-
als IA, IB . Let us write θA the quaternion element defined in Step 8 of
KeyExchange(IA,DB , EB , πB). Then, the quaternion element α−1

A θAαA ∈ (Z +
DBO0) ∩ IA corresponds to an endomorphism ψA,0 ◦ ϕA ∈ End(E0) for some
isogeny ψA,0 : EA → E0. Since it is contained in (Z+DBO0)∩IA, we can embed
it inside the endomorphism ring of EB by Proposition 7 and we obtain in that
manner the endomorphism ψA ◦ [ϕB ]∗ϕA where ψ̂A = [ϕB ]∗ψ̂A,0. In particular,
the codomain of ψ̂A is isomorphic to the codomain of [ϕB ]∗ϕA. We can make
the same reasoning by swapping A and B and by definition of push-forward
isogenies and Proposition 11, the two j-invariants obtained at the end of the two
executions of KeyExchange are equal.

Remark 5. The purpose of Algorithm 10 is to present a simple version of the
protocol for the key exchange. However, as it is written, our solution is not very
optimized. For instance, a lot of redundant computations are made through the
call to SuborderEvaluation. In an optimized implementation of this key exchange,
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one would want to skip all the first steps which are already executed in KeyEx-
change to focus on the important steps.

We analyze the security of pSIDH in the full version of the paper, it is very
similar to the security proof of SIDH.

6.2 About Efficiency and Concrete Instantiations

Efficiency. We have proven (at least heuristically) that all our new algorithms
can be executed in polynomial time. However, this does not prove anything
on the concrete efficiency. We did not make a full implementation but we can
obtain a good idea of the efficiency by comparison with the SQISign signature
[DFKL+20]. This comparison is relevant for two reasons: we can take the same
size of prime p (and measure relative efficiency by counting the number of oper-
ations over Fp2) and the bottlenecks should be the same. We elaborate on that
below.

Our analysis in Sect. 4.5 indicates that the only security constraint on the
prime p is that it needs to be big enough to prevent the exponential attacks
against the endomorphism ring problem (which is the SQISign key recovery
problem). Once p has been fixed, the hardness of our new SOIP depends on the
value of D. The main attack against the SOIP that we introduce in Sect. 4.5
has quantum sub-exponential complexity in D. It is unclear what should be
the size of D but we can expect it to be bigger than p. This gap between p
and D will also induce a gap between the performances of SQISign and the
performances of pSIDH. Based on empirical observations, we can predict that
the bottleneck in our algorithms is going to be the same as the bottleneck in
SQISign’s signature: executions of the IdealToIsogeny sub-algorithm. The method
introduced in [DFKL+20] and the improvement in [DFLW22] for IdealToIsogeny
both requires to perform a number of arithmetic operations over Fp2 that is linear
in the length of the isogeny to be translated. For SQISign the degree 2e where e
is linear in the security parameter. For pSIDH, the size estimates from Sect. 5.2
show that we may expect element of degree whose logarithm is in 6 log(D) (and
some linear dependency on log(p)).

On a Concrete Instantiation. We believe that finding a parameter D to reach
a NIST-1 level of security for pSIDH is a problem on its own. However, we can
easily find parameters that reaches the same security level as CSIDH-512. For
that, we can take p of at least 256-bits (one of the SQISign primes should be
good) and we can take E0 to be any starting curve of known endomorphism ring.
For instance, if p = 3 mod 4, we can take the curve of j-invariant 1728 with
endomorphism ring isomorphic to 〈1, i, 1+k

2 , i+j
2 〉 where 1, i, j, k is the canonical

basis of the quaternion algebra ramified at p and ∞.
We need D of at least 256-bits as well (so that the set of subgroups of order

D has the same size as the class number inf CSIDH-512). We remind the reader
that, for the hardness of the SOIP, the D-torsion of supersingular curves in
characteristic p needs to be defined over an extension of big degree (roughly
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equal to 2256 to have the best possible security). This condition can be checked
by computing the order of p mod D. If (D−1)/2 is prime, then the computation
of the order will have polynomial time (because D − 1 is easy to factor) and
the order of p mod D is going to be bigger than (D − 1)/2 with overwhelming
probability. Such a prime D can be found after trying roughly log D primes.
Apart from that, there is no constraint on the choice of D.

Even though we did not make an implementation, it is clear, looking at the
latest performances of SQISign [DFLW22], that an implementation of pSIDH
with the parameters we propose, is going to be a lot slower than CSIDH-512.

However, we want to stress that the asymptotic behaviour is rather on the
side of pSIDH. Indeed, as we said, the complexity of pSIDH is linear in log(D)
whereas the complexity of CSIDH is worst than linear in log(p) (and the quantum
attack is sub-exponential in log(p) for CSIDH).

Acknowledgements. We are very grateful to Steven Galbraith for a very thorough
review of the paper and numerous comments to help improve the current write-up. We
would also like to thank anonymous reviewers for their insight on our work. Finally,
we thank Luca De Feo for useful remarks regarding the best way to define an isogeny
representation.

References

[ACL+22] Arpin, S., Chen, M., Lauter, K.E., Scheidler, R., Stange, K.E.,
Tran, H.T.: Orienteering with one endomorphism. arXiv preprint
arXiv:2201.11079 (2022)

[BDF21] Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp.
302–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 11

[BdFLS20] Bernstein, D. J., De Feo, L., Leroux, A., Smith, B.: Faster compu-
tation of isogenies of large prime degree. In: Galbraith, S., editor,
ANTS-XIV - 14th Algorithmic Number Theory Symposium, pp. 39–
55, Auckland, New Zealand (2020)

[BJS14] Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for com-
puting isogenies between supersingular elliptic curves. In: Meier, W.,
Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp.
428–442. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13039-2 25

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient
isogeny based signatures through class group computations. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921,
pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34578-5 9

[BKW20] Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions
from isogenies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12492, pp. 520–550. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64834-3 18

http://arxiv.org/abs/2201.11079
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18


A New Isogeny Representation and Applications to Cryptography 33

[CD22] Castryck, W., Decru, T.: An efficient key recovery attack on SIDH
(preliminary version). Cryptology ePrint Archive (2022)

[CJS14] Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isoge-
nies in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29
(2014)
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[EHL+20] Eisenträger, K., Hallgren, S., Leonardi, C., Morrison, T., Park, J.:
Computing endomorphism rings of supersingular elliptic curves and
connections to path-finding in isogeny graphs. Open Book Ser. 4(1),
215–232 (2020)

[FKMT22] Fouotsa, T.B., Kutas, P., Merz, S.P., Ti, Y.B.: On the isogeny problem
with torsion point information. In: Hanaoka, G., Shikata, J., Watan-
abe, Y. (eds.) Public-Key Cryptography PKC 2022. Lecture Notes in
Computer Science, vol. 13177, pp. 142–161. Springer, Cham (2022)

[FP22] Fouotsa, T.B., Petit, C.: A new adaptive attack on SIDH. In: Gal-
braith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 322–344.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95312-
6 14

https://doi.org/10.1007/978-3-030-99277-4_21
https://doi.org/10.1007/978-3-030-99277-4_21
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-030-95312-6_14


34 A. Leroux

[GPS17] Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and sig-
nature schemes based on supersingular isogeny problems. In: Tak-
agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 1

[GPST16] Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of
supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 3

[JDF11] Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto
2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 2

[JS14] Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable
signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp.
160–179. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11659-4 10

[KLPT14] Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion-
isogeny path problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

[KMP+20] Kutas, P., Martindale, C., Panny, L., Petit, C., Stange, K.E. : Weak
instances of SIDH variants under improved torsion-point attacks.
Cryptology ePrint Archive, Report 2020/633 (2020). https://eprint.
iacr.org/2020/633

[KMPW21] Kutas, P., Merz, S.-P., Petit, C., Weitkämper, C.: One-way functions
and malleability oracles: hidden shift attacks on isogeny-based proto-
cols. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12696, pp. 242–271. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77870-5 9

[Koh96] Kohel, D.: Endomorphism rings of elliptic curves over finite fields.
PhD thesis, University of California at Berkeley (1996)

[MM22] Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting
curve. Cryptology ePrint Archive (2022)

[Pet17] Petit, C.: Faster algorithms for isogeny problems using torsion point
images. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 330–353. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70697-9 12

[Rob22] Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint
Archive (2022)

[Sch95] Schoof, R.: Counting points on elliptic curves over finite fields. J. de
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Abstract. In the context of quantum-resistant cryptography, crypto-
graphic group actions offer an abstraction of isogeny-based cryptogra-
phy in the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)
setting. In this work, we revisit the security of two previously proposed
natural protocols: the Group Action Hashed ElGamal key encapsula-
tion mechanism (GA-HEG KEM) and the Group Action Hashed Diffie-
Hellman non-interactive key-exchange (GA-HDH NIKE) protocol. The
latter protocol has already been considered to be used in practical proto-
cols such as Post-Quantum WireGuard (S&P ’21) and OPTLS (CCS ’20).

We prove that active security of the two protocols in the Quantum
Random Oracle Model (QROM) inherently relies on very strong variants
of the Group Action Strong CDH problem, where the adversary is given
arbitrary quantum access to a DDH oracle. That is, quantum accessi-
ble Strong CDH assumptions are not only sufficient but also necessary
to prove active security of the GA-HEG KEM and the GA-HDH NIKE
protocols.

Furthermore, we propose variants of the protocols with QROM secu-
rity from the classical Strong CDH assumption, i.e., CDH with classical
access to the DDH oracle. Our first variant uses key confirmation and
can therefore only be applied in the KEM setting. Our second but con-
siderably less efficient variant is based on the twinning technique by
Cash et al. (EUROCRYPT ’08) and in particular yields the first actively
secure isogeny-based NIKE with QROM security from the standard CDH
assumption.

Keywords: Group actions · CSIDH · Hashed ElGamal · NIKE ·
QROM · Twinning

1 Introduction

A non-interactive key exchange (NIKE) is a protocol that allows two parties
to establish a common secret key in a non-interactive way. The first and most
famous NIKE is the Diffie-Hellman key exchange [16] which forms the basis for a
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lot of other cryptographic protocols like ElGamal [19]. Most notably however, the
existence of a secure NIKE implies secure key encapsulation mechanisms (KEM)
(and hence public-key encryption) and authenticated key exchange (AKE) [21].
A NIKE can therefore be seen as one of the most basic and important primitives
in cryptography.

The emergence of quantum computing however continues to have an unprece-
dented impact on public key cryptography. When scaled to a suitable size, quan-
tum computers pose a threat to almost all classical public-key primitives, includ-
ing Diffie-Hellman and ElGamal [36]. To mitigate this threat, researchers started
building quantum resisting public-key cryptography based on certain quantum-
hard problems on codes, lattices and isogenies. Even though quantum-resistant
public-key encryption from lattices seems to offer the favorable trade-off over
codes and isogenies in terms of speed, ciphertext expansion, and security, build-
ing an efficient (even passively secure) NIKE from codes or lattices remains an
unsolved research problem.

Isogeny-Based Cryptography. A promising alternative approach to post-
quantum security is based on isogenies. An isogeny is a non-constant homomor-
phism between elliptic curves. In an algebraic context, isogenies can be used to
build a commutative group action that behaves similarly to exponentiation in
finite fields. This was first observed by Couveignes [14] and independently by Ros-
tovtsev and Stolbunov [34]. The first practical instantiation was obtained by Cas-
tryck et al. [12] which in contrast to previous work uses the group action on the set
of supersingular elliptic curves. Throughout this paper, we will use the abstract
framework of cryptographic group actions introduced by Alamati et al. [2] to
model isogeny-based constructions. (See Sect. 2.3 for formal definitions.) At a syn-
tactical level, cryptographic group actions allow for a simple Group Action Diffie-
Hellman (GA-DH) key exchange and Group Action ElGamal (GA-EG) public-
key encryption scheme. With this abstraction in mind, the famous Commutative
Supersingular Isogeny Diffie-Hellman (CSIDH) key exchange protocol of [12] can
be seen as a specific instantiation of GA-DH.

For cryptographic group actions, the analog of the traditional Computational
Diffie-Hellman assumption (over prime-order groups) is the Group Action Compu-
tational Diffie-Hellman assumption (GA-CDH) [2,12,14,34], see also Definition 5.
GA-CDH is sufficient to prove passive security of “hashed versions” of GA-DH and
GA-EG in the random oracle model. In analogy to the prime-order group setting,
for active security one requires a “strong” type of Computational Diffie-Hellman
assumption [1]. Providing the adversary additional access to a Group Action Deci-
sional Diffie-Hellman oracle GA-DDH(·, ·), i.e. an oracle which tells us whether a
pair of elements forms a Diffie-Hellman tuple, defines the Group Action Strong
Computational Diffie-Hellman assumption (GA-StCDH). The prefix strong refers
to the fact that the first input to this oracle is fixed (as opposed to the stronger and
non-falsifiable gap assumptions). This assumption is well-known in the standard
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prime-order group setting and has already been used in proving active security of
several protocols [15,28,38] in the group action setting as well.1

Quantum Random Oracle Model. The random-oracle model (ROM) [7] is
commonly used in modern cryptography to argue practical security of crypto-
graphic schemes. Adversaries with access to quantum computers will be able to
implement the hash function on those, and therefore can evaluate the hash func-
tion on arbitrary quantum superpositions. To account for this gain in capabilities,
the quantum(-accessible) random-oracle model (QROM) has been introduced [9].
The QROM has become the accepted model for proving post-quantum security
and it is generally believed that proofs in the classical ROM are not sufficient
to claim post-quantum security.

Actively Secure KEMs and NIKE Protocols. In this work we are inter-
ested in constructing actively (i.e. IND-CCA) secure KEMs and actively secure
NIKE protocols over cryptographic group actions.

Let us first look at the simpler case of KEMs. Generally speaking, we know
of two natural approaches to build efficient IND-CCA secure KEMs. The first
approach is generic and applies the Fujisaki-Okamoto (FO) transform [22,24] to
an IND-CPA secure PKE scheme (such as GA-EG) to obtain an IND-CCA secure
KEM, with provable security in the QROM. The second, non-generic approach
is to adapt the well-known (prime-order group) Hashed ElGamal encryption
framework of [1] to group actions by ”hashing the raw KEM key” to obtain the
Group Action Hashed ElGamal KEM (GA-HEG). Indeed, [38] proved the security
of GA-HEG (called CSIDH-ECIES in [38]) under the GA-StCDH assumption in
the ROM.2 GA-HEG was implicitly and explicitly used in [15,28,38] and its active
(IND-CCA) security in the QROM was left as an open problem in [38].3

For building an actively secure NIKE, one cannot apply the FO transfor-
mation and hence has to resort to adapting the (prime-order group) Hashed
Diffie-Hellman NIKE [21] to obtain the Group Action Hashed Diffie-Hellman
NIKE protocol (GA-HDH). To the best of our knowledge, the active security of
the GA-HDH NIKE has not been formally analyzed yet, not even in the ROM.
This is in particular unsatisfactory since GA-HDH has already been considered
to be used in practical protocols such as Post-Quantum WireGuard [26] and
OPTLS [35].

1 We stress that GA-StCDH over standard cryptographic group actions is well defined
(and falsifiable), even though it is an interactive assumption. Furthermore, for some
groups actions (i.e., ones implied by cryptographic pairings over prime-order groups)
the Decisional Diffie-Hellman oracle is publicly computable and hence GA-StCDH
becomes non-interactive.

2 The QROM proof of a variant called CSIDH-PSEC in [38] is severely flawed (see the
full version [18] for details).

3 There also exist IND-CCA secure PKE schemes constructed directly from CSIDH,
using additional structure of the elliptic curves. [31] proposed the SimS scheme which
is an extension of SiGamal [20] and relies on a non-standard knowledge-of-exponent
assumption to achieve IND-CCA security in the standard model. These protocols
and assumptions cannot be modeled in the abstract group action framework.
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In conclusion, while the IND-CCA security of GA-HEG in the ROM is known
to be implied by the GA-StCDH assumption, it remains an open problem to
prove its IND-CCA security in the QROM (under any assumption). Similarly,
studying the active security of the GA-HDH NIKE in the QROM also remains
an open problem.

1.1 Our Contributions

In this paper we study the active security of the Group Action Hashed Diffie-
Hellman NIKE GA-HDH and the Group Action Hashed ElGamal KEM GA-HEG
in the QROM, and derive variants thereof with improved security guarantees.
We now discuss our results in detail. For an overview of our results obtained for
KEMs we refer to Fig. 1.

GA-HEG KEM and GA-HDH NIKE. It is easy to see that in the (non-quantum)
ROM the active security of GA-HEG is implied by the GA-StCDH assumption.
The first main contribution of this paper is to notice that in the QROM one
requires a considerably stronger assumptions to prove security of GA-HEG. To
this end we define the following two stronger variants of GA-StCDH which differ
only in the access to the decision oracle (for implications see Fig. 1):

– Partial Quantum access Strong Diffie-Hellman (GA-PQ-StCDH): the first
input to the GA-DDH(·, ·) oracle is classical and the second is in quantum
superposition.

– Full Quantum access Strong Diffie-Hellman (GA-FQ-StCDH): both inputs to
the GA-DDH(·, ·) oracle are in quantum superposition.

Similar to the QROM, the answer of a quantum superposition query to the two
quantum-accessible GA-DDH oracles is also in quantum superposition.

Our first main theorem states that under the GA-FQ-StCDH assumption
(full quantum access to the DDH oracle), GA-HEG is IND-CCA secure in the
QROM. Furthermore, IND-CCA security in the QROM of GA-HEG implies the
GA-PQ-StCDH assumption (partial quantum access to the DDH oracle), hence
GA-PQ-StCDH is necessary for GA-HEG’s IND-CCA security. The situation for
the GA-HDH NIKE is similar, with the difference that “double base” strong
assumptions (called GA-DPQ-StCDH and GA-DFQ-StCDH) are required.

This leaves us in the alarming situation that active security of GA-HEG
and GA-HDH inherently require a group action CDH assumption with quantum
access to the DDH oracle. Due to the quantum access, the latter assumptions
cannot be considered as standard assumptions and require further cryptanalysis
before we can recommend using GA-HEG KEM and GA-HDH NIKE in practice.

We will now propose two modifications to get security without quantum
access to the decision oracles. The first and more efficient modification is using
“key confirmation” and only works for KEMs. The second and less efficient mod-
ification relies on the “twinning technique” and can be applied to NIKEs and
KEMs.
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Fig. 1. Overview of our assumptions and results for different variants of hashed ElGa-
mal. The assumptions (elements with rounded corners) are given in Definitions 5 and 6.
Solid arrows without indication of a theorem correspond to trivial implications. For the
assumptions the only difference is a more limited access to the decision oracle GA-DDH,
where |·〉 denotes quantum access. The dashed arrow holds for quantum security, where
the adversary is allowed to issue decapsulation queries in superposition.

GA-HEG-KCKEM: Key Confirmation. Our first method is to update GA-HEG
the KEM with a key confirmation hash, i.e., every ciphertext additionally con-
tains a hash of the “raw KEM key”. This only increases the ciphertext size by one
hash, but allows for a different IND-CCA proof technique in the QROM. To be
more precise, in the classical ROM, one can use the additional hash to extract the
secret information from a ciphertext. In the QROM, this is more involved, but
we can use the extractable oracle simulator from [17] to use similar techniques
and give a security proof only relying on the more standard GA-StCDH assump-
tion. Specifically, we rely on the fact that decapsulation queries are classical,
which allows us to partially measure the simulated random oracle and extract
its queries without noticeably disturbing its quantum state.

Unfortunately, it is not possible to use key confirmation in a NIKE setting.

GA-Twin-HEGm KEM and GA-Twin-HDHm NIKE: Twinning. We show how
to use the twinning technique [11] in the context of group actions to build an
actively secure KEM and NIKE from the standard GA-CDH assumption (no
DDH oracle access) in the QROM. Since group actions only have limited struc-
ture compared to prime-order groups, it seems unavoidable to pursue a bit-
wise approach for the twinning technique. Our main leverage is a trapdoor test
which allows us to check if several adversarial inputs form a Diffie-Hellman tuple
with the challenge elements. The failure probability of this trapdoor test can be
reduced to the generic quantum search problem, for which the quantum hard-
ness is optimally bounded by the Grover algorithm. Although this approach does
not achieve practical efficiency, it is interesting from a theoretical viewpoint. We
specify the twinning parameter m for 128-bit security to instantiate the twinned
versions of our GA-Twin-HEGm KEM and GA-Twin-HDHm NIKE. At this point
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we want to highlight that our GA-Twin-HDHm protocol is the only known NIKE
with active security from a standard assumption (without quantum accessible
DDH oracles).

Efficiency Comparison. In Table 1 in Sect. 6, we give an overview of the
schemes analyzed in this work and compare them to the FO variant GA-EG-FO
of Group Action ElGamal. The KEM variants GA-HEG and GA-Twin-HEGm

share the same minimal ciphertext size but we cannot recommend using them
since GA-HEG’s security inherently relies on the GA-FQ-StCDH assumption (with
quantum accessible DDH oracle) and GA-Twin-HEGm is computationally very
expensive. In comparison, the KEM variants GA-HEG-KC and GA-EG-FO only
add one additional hash to the ciphertext but offer security from standard
assumptions. Here GA-HEG-KC is preferable since decapsulation is about twice
as efficient as in GA-EG-FO (due to FO’s re-encryption).

As for the more important case of NIKEs, one either has to use the effi-
cient GA-HDH variant with security under the GA-DFQ-StCDH assumption (with
quantum accessible DDH oracles) or use the inefficient GA-Twin-HDHm NIKE.
We leave it as an important open problem to construct a practically efficient
actively secure NIKE under a standard hardness assumption.

QROM Proof Details. One of the standard tools to prove security in the
QROM is the O2H [37] lemma, which unfortunately leads to quite loose bounds.
Recently, there has been a lot of progress in developing new variants which
give tighter bounds, such as the measure-rewind-measure O2H (MRM-O2H) [30]
lemma. While these variants give usually tighter bounds, they can often only be
applied in more limited scenarios due to additional constraints. In our work
we show how to apply MRM to GA-HEG and GA-Twin-HEGm to obtain tighter
bounds than the by applying the original O2H lemma. For proving GA-HEG-KC
we need to extract the preimages of the key-confirmation hash. We use the
extractable random-oracle simulator of [17], which allows use to prove it from
the GA-StCDH assumption.

For GA-Twin-HEGm and GA-Twin-HDHm, the main tool to remove the need
for the GA-StCDH is the trapdoor test. While it is easy to show its indistinguisha-
bility for regular groups in the standard model, it is unclear whether or not a
quantum adversary has a significant advantage against the trapdoor test com-
pared to a classical adversary. We solve the second problem by showing that the
indistinguishability of the trapdoor test can be (tightly) reduced to the Generic
Distinguishing Problem (GDP). This allows us to use well-known results on the
hardness of quantum search to bound the advantage of such adversaries and
apply the trapdoor test as a substitute for the decision oracle of the GA-StCDH
assumption.

1.2 Further Applications

We believe our QROM analysis carries over to the following primitives and con-
structions.
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Authenticated Key Exchange. Kawashima et al. as well as de Kock et al.
[15,28] translated the Diffie-Hellman based AKE protocol of [13] to the CSIDH
setting and proved security in the ROM assuming the GA-StCDH assumption.
However, both works left it as an open question to prove security in the QROM.
Our analysis demonstrates that this proof will only work assuming (at least par-
tial) quantum access to the decision oracle. In this case, our proof techniques
carry over directly. Alternatively, we can also extend the AKE protocol by an
additional round to include key confirmation. Using the same technique as in our
result on hashed ElGamal with key confirmation will allow to prove security of
this extended AKE protocol in the QROM based on the GA-StCDH assumption
without quantum access to the decision oracle. However, the additional ben-
efit here is that key confirmation enables explicit authentication, whereas the
protocol without key confirmation only achieves implicit authentication.

Signcryption and Authenticated KEMs. The DH-AKEM which was ana-
lyzed in the context of the HPKE standard [3] can easily be translated to the
group action setting. The scheme is syntactically a signcryption KEM and will be
combined with a symmetric encryption scheme. This construction, also named
the authenticated mode of HPKE, was proposed to be used in the Message Layer
Security (MLS) secure group messaging protocol [6] and the Encrypted Server
Name Indication (ESNI) extension for TLS 1.3 [32]. So far, a post-quantum
secure instantiation was not proposed, but our results show how to prove secu-
rity of a group action based construction in the QROM under GA-FQ-StCDH
(full quantum access to the decision oracle). Alternatively, we can also extend
the scheme by key confirmation and prove security under GA-StCDH.

Post-Quantum Secure TLS. Currently, there is a great effort in replacing the
Diffie-Hellman based approach in the TLS handshake by a post-quantum secure
alternative. In order to avoid signature schemes which are rather inefficient, a
generic KEM-based approach was considered to allow for an easy instantiation
[35], however at the cost of efficiency since it requires an additional round. Instead
of signatures, it is also possible to use a NIKE directly, as considered for the case
of long-term Diffie-Hellman keys in the OPTLS protocol by Krawczyk and Wee
in [29] and in a subsequent IETF draft [33]. In this case, a security analysis of
the group-action NIKE in the QROM is crucial and our work provides the first
results in this direction, namely that a security proof for group action OPTLS
will need to rely at least on the GA-PQ-StCDH assumption (partial quantum
access to the decision oracles) and is implied by the GA-FQ-StCDH assumption
(full quantum access).

More Applications. In the group setting, Hashed ElGamal can be used to
build multi-recipient multi-message PKE (mmPKE) by using the same random-
ness for multiple messages. This reduces sender bandwidth and computation sub-
stantially and can be used in Continuous Group Key Agreement (CGKA), which
underlies modern and scalable Secure Group Messaging (SGM) such as MLS [6]
to significantly improve performance [4]. Since GA-HEG has an identical struc-
ture, reusing randomness can yield a similar construction with post-quantum
security. This is a first step towards efficient, post-quantum secure SGM.
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Fig. 2. The IND-CCA game for a key encapsulation mechanism KEM.

2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ..., n}. For
m = 1, we simply write [n]. By log(x) we denote the logarithm over the reals
with base 2. For a (finite) set S, s $← S denotes that s is sampled uniformly
and independently at random from S. y ← A(x1, x2, ...) denotes that on input
x1, x2, ... the probabilistic algorithm A returns y. AO denotes that algorithm
A has access to oracle O. An adversary is a probabilistic algorithm. We will
use code-based games, where Pr[G ⇒ 1] denotes the probability that the final
output of game G is 1. The notation �B�, where B is a boolean statement, refers
to a bit that is 1 if the statement is true and 0 otherwise. For all algorithms and
oracles, we implicitly require that they check whether (adversarial) inputs are
from the expected input space. If this is not the case, the algorithm (oracle) will
simply return a failure symbol ⊥.

2.1 Key Encapsulation Mechanisms

Syntax. Let PK, SK, C, K be sets. A key encapsulation mechanism KEM =
(Gen,Encaps,Decaps) consists of the following three algorithms

– Gen: The key generation algorithm outputs a public key pk ∈ PK and a secret
key sk ∈ SK.

– Encaps(pk): On input a public key pk, the encapsulation algorithm returns a
ciphertext ct ∈ C and a key K ∈ K, where ct is an encapsulation of K.

– Decaps(sk, ct): On input a secret key sk and a ciphertext ct, the decapsulation
algorithm returns a key K ∈ K or a special failure symbol ⊥.

We require perfect correctness, i.e. for all (pk, sk) ← Gen, (ct,K) ← Encaps(pk),
we have Decaps(sk, ct) = K.

Definition 1 (Security against Chosen Ciphertext Attacks (IND-CCA)).
Consider the IND-CCA security game in Fig. 2. For a key encapsulation mech-

anism KEM we define the advantage of A winning the game as

AdvIND-CCA
KEM (A) := |Pr[IND-CCA(A) ⇒ 1] − 1/2| .
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2.2 Non-Interactive Key Exchange

We recall syntax and the CKS security model of a Non-Interactive Key Exchange
(NIKE) scheme, as defined in [11,21].

Syntax. A non-interactive key exchange scheme NIKE consists of three algo-
rithms NIKE.Setup, NIKE.Gen and NIKE.SharedKey together with an identity
space ID and a shared key space SHK, where identities in the scheme are only
used to track which public key is associated to which user.

– NIKE.Setup: The setup algorithm outputs a set of public parameters pp.
– NIKE.Gen(pp, ID): On input pp and ID ∈ ID, the key generation algorithm

outputs a public key pk and a secret key sk.
– NIKE.SharedKey(ID1, pk1, ID2, sk2): On input ID1 ∈ ID together with a public

key pk1 and ID2 ∈ ID together with a secret key sk2, the shared key algorithm
outputs a shared key K. In case ID1 = ID2, the algorithm outputs a failure
symbol ⊥.

Correctness. We require that for any pair of identities ID1, ID2 ∈ ID and any
corresponding key pairs (pk1, sk1) and (pk2, sk2), it holds that

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1).

CKS Security Model. The security of a NIKE protocol is modeled as a game
between a challenger and an adversary A. First, the challenger runs NIKE.Setup
to generate the public parameter pp which it outputs to A. The challenger also
draws a random bit b and gives A access to the following oracles.

– RegisterHonest: A supplies an identity ID ∈ ID and the challenger runs
NIKE.Gen(pp, ID) to generate a key pair (pk, sk). It records (honest, ID, pk, sk)
and returns the public key pk to A.

– RegisterCorrupt: A supplies an identity ID ∈ ID and a public key pk and
the challenger records (corrupt, ID, pk,⊥). If A issues a query with the same
ID again later, only the most recent entry is kept. Note here that we do not
require that A knows the corresponding secret key.

– CorruptReveal: A supplies two identities ID1 and ID2 with the restriction
that one identity was registered as honest and the other one as corrupt, oth-
erwise the oracle returns ⊥. The challenger looks in its record to fetch the
secret key of the honest party and the public key of the corrupted party. If
ID1 was honest, it computes and returns NIKE.SharedKey(ID2, pk2, ID1, sk1)
and otherwise NIKE.SharedKey(ID1, pk1, ID2, sk2).

– Test: A supplies two identities ID1 and ID2 with the restriction that both
were registered as honest and ID1 �= ID2, otherwise the oracle returns ⊥.
The challenger fetches the public key of ID1 and the secret key of ID2 from
its records and computes K0 = NIKE.SharedKey(ID1, pk1, ID2, sk2). It also
chooses a random key K1

$← SHK and records it for later. It outputs Kb,
depending on the bit b chosen at the beginning. If b = 1 and A queries the
same identities again, in either order, the recorded key is output again.
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The oracles can be queried adaptively and an arbitrary number of times. We
require that no identity that was registered as corrupt can be later registered as
honest, and vice versa. Finally, the adversary outputs a bit b′.

Definition 2 (Security of NIKE). Consider the CKS security game as
described above. Then the advantage of adversary A against a non-interactive
key exchange scheme NIKE is defined as

AdvCKSNIKE(A) := |Pr[b = b′] − 1/2| .

2.3 (Restricted) Effective Group Actions

We recall the definition of (restricted) effective group actions from [2], which
provides an abstract framework to build cryptographic primitives relying on
isogeny-based assumptions such as CSIDH.

Definition 3 (Group Action). Let (G, ·) be a group with identity element
e ∈ G, and X a set. A map

� : G × X → X
is a group action if it satisfies the following properties:

1. Identity: e �x = x for all x ∈ X .
2. Compatibility: (g · h) � x = g � (h � x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we only consider group actions, where G is
commutative. Moreover we assume that the group action is regular. This means
that for any x, y ∈ X there exists precisely one g ∈ G satisfying y = g � x.

Definition 4 (Effective Group Action). Let (G,X , �) be a group action
satisfying the following properties:

1. G is finite and there exist efficient (PPT) algorithms for membership testing,
equality testing, (random) sampling, group operation and inversion.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to com-

pute g � x given g and x.

Then we call x̃ ∈ X the origin and (G,X , �, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often to strong.
Therefore we will consider the weaker notion of restricted effective group actions
which is defined in the full version [18].
Alamati et al. [2] introduced the definition of a weak unpredictable group action.
We will use a different notation for that property which is syntactically closer
to the prime-order group setting. Note that both definitions are equivalent. In
particular, we will use the following assumption.
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Definition 5 (Group Action Computational Diffie-Hellman Problem).
On input (g � x̃, h � x̃), the group action computational Diffie-Hellman prob-
lem (GA-CDH) requires to compute the set element gh � x̃. To an effective group
action EGA, we associate the advantage function of an adversary A as

AdvGA-CDH
EGA (A) := Pr[A(g � x̃, h � x̃) ⇒ gh � x̃] ,

where g, h $← G.

The most promising post-quantum secure instantiation of REGAs is provided by
CSIDH. We recall its properties in the full version [18].

2.4 QROM Preliminaries

We use different well-known results from post-quantum cryptography. Specif-
ically, our proofs use the oneway-to-hiding [37] (O2H) lemma from [5] and
its measure-rewind-measure (MRM) variant from [30] as well as the online
extractable quantum random oracle framework from [17]. We recall the
MRM O2H lemma below. Further definitions as well as some basic techniques
such as random oracle simulation can be found in the full version [18].

Lemma 1 (Measure-Rewind-Measure O2H. Lemma 3.3 in [30]). Let
G,H : X → Y be random functions, z be a random value, and S ⊆ X be a
random set such that G(x) = H(x) for every x �∈ S. The tuple (G,H,S, z) may
have arbitrary joint distribution. Furthermore, let AO be a unitary/reversible
quantum oracle algorithm which queries oracle O with query depth d. Then we
can construct an algorithm ExtG,H(z) such that the running time of Ext is about
at most three times the one of AO and

∣
∣
∣
∣
Pr
H,z

[AH(z) ⇒ 1] − Pr
G,z

[AG(z) ⇒ 1]
∣
∣
∣
∣
≤ 4d Pr

G,H,S,z
[S ∩ T �= ∅ : T ← ExtG,H(z)].

Some of our proofs rely on the hardness of the Generic Distinguishing Problem
(GDP), a decisional variant of the Generic Search Problem (GSP) [25,27,39].
Intuitively, an adversary gets oracle access to a function from some domain D into
{0, 1}, which is either the all-zero function or a function where the probability
that any given point maps to 1 is small (i.e. bounded by some λ ∈ (0, 1)), and
has to decide which is the case. While the complexity of this problem is clear in
the classical case, it is somewhat more difficult in the quantum case. We recall
and adapt the well-known bounds to the GDP problem in this section.

Lemma 2 (Generic Distinguishing Problem, decision version of
Lemma 2 in [5], Lemma 2.9 from [25]). Let F : X → {0, 1} be a random
function drawn from a distribution such that Pr[F(x) = 1] ≤ λ for all x and
K : X → {0} be the zero-function. Let A be a q-query algorithm with query depth
d with quantum-access to its oracle. Then

AdvGDP
F,q,d(A) :=

∣
∣
∣Pr[GDPA

F,0 ⇒ 1] − Pr[GDPA
F,1 ⇒ 1]

∣
∣
∣ ≤ 4

√

(d + 1)qλ, (1)
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Fig. 3. Key encapsulation mechanism GA-HEG for an effective group action EGA =
(G, X , �, x̃), where H : X × X → {0, 1}κ is a hash function.

where GDPA
F,0 := AK() and GDPA

F,1 := AF(). Moreover, if the outputs of F are
independent we have

AdvGDP
F,q,d(A) ≤ 8(q + 1)2λ. (2)

We prove Eq. (1) in the full version [18]. The bound in Eq. (2) is a reformulation
from Lemma 2.9 from [25].

3 Necessary Assumptions for Group Action KEM
and NIKE in the QROM

In this section we will first recall the two schemes we are looking at: Group
Action Hashed ElGamal and the Group Action Hashed Diffie-Hellman NIKE
scheme. We denote the schemes by GA-HEG and GA-HDH, respectively.

Group Action Hashed ElGamal. The scheme is given in Fig. 3. Note that this
is the same scheme as the CSIDH-ECIES-KEM considered in [38]. The public
parameters consist of an effective group action EGA = (G,X , �, x̃) and a hash
function H : X 2 → {0, 1}κ. Further we set PK = X , SK = G and K = {0, 1}κ.
The key generation algorithm samples a random group element g $← G as secret
key. In order to compute the public key, g is applied to the origin element x̃ using
the group action operation. The set element pk = g � x̃ is the public key. The
encapsulation algorithm also first samples a random group element r $← G and
then calculates the ciphertext ct = r � x̃. The key is derived by first computing
r � pk (the shared DH value) and subsequently hashing r � pk together with the
ciphertext ct. Decapsulation first recomputes the shared DH value g � ct = r �pk
and then applies the hash function H. Correctness of the scheme holds due to
the commutativity of the group action.

Group Action Hashed Diffie-Hellman. A schematic overview of the hashed
Diffie-Hellman NIKE scheme GA-HDH is given in Fig. 4. As in the hashed ElGa-
mal scheme, the public parameters pp include the description of EGA together
with a hash function H : {0, 1}∗ → {0, 1}κ such that PK = X , SK = G and
SHK = {0, 1}κ. We assume that ID = {0, 1}μ, which means that each identity
is represented by a bitstring of length μ and there is a natural ordering < on the
space of identities. On input an ID ∈ ID, the key generation algorithm chooses
a group element g $← G which will be the secret key skID. The public key is
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Fig. 4. Group action Non-Interactive Key Exchange scheme GA-HDH for an effective
group action EGA = (G, X , �, x̃), where H : {0, 1}∗ → {0, 1}κ is a hash function.

computed as pkID = g � x̃ ∈ X . The shared key of an identity ID1 with public
key pkID1

= x and an identity ID2 �= ID1 with secret key skID2 = g is defined as

K =

{

H(ID1, ID2, pkID1
, pkID2

, g � x) if ID1 < ID2

H(ID2, ID1, pkID2
, pkID1

, g � x) if ID2 < ID1

.

Correctness again holds because of the commutativity of the group action itself
and the ordering of IDs.

One of the goals of this work is to prove these schemes secure in the QROM
(cf. Sect. 4). However, as it turns out, we will need stronger assumptions for the
proofs than those defined in the literature. In the next section we introduce the
corresponding assumptions. Furthermore, we show that a (somewhat) stronger
assumption is indeed necessary by showing that it is implied by the security of
the schemes themselves.

3.1 Computational Group Action Diffie-Hellman with Quantum
Oracle Access

Our new assumptions are all variants of the group action strong computational
Diffie-Hellman problem (GA-StCDH). The GA-StCDH assumption is basically
the translation of the strong CDH problem to group actions (cf. also [15,28]),
where the adversary is given access to a (fixed-base) decision oracle. What we
need for our proofs is actually quantum access to the decision oracle, which
is a considerably stronger assumption that was never considered before. For
the NIKE proofs, we will also need a double-sided oracle definition, where the
adversary gets access to two decision oracles, one for each of the challenge set
elements, and its quantum variants. All variants are captured by Definition 6.

Definition 6 (Variants of GA-StCDH). On input (g � x̃, h � x̃), the
GA-XXX-StCDH requires to compute the set element gh � x̃ with access to a
decision oracle which is specified below. To an effective group action EGA and
an adversary A, we associate the advantage function

AdvGA-XXX-StCDH
EGA (A) := Pr[AO(g � x̃, h � x̃) ⇒ gh � x̃] ,
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where g, h $← G and

O :=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

GA-DDHg(·, ·), XXX = {} (classical)
GA-DDHg(·, |·〉), XXX = PQ (partially quantum)
GA-DDHg(|·〉 , |·〉), XXX = FQ (fully quantum)
{GA-DDHg(·, ·),GA-DDHh(·, ·)}, XXX = D (double-sided classical)
{GA-DDHg(·, |·〉),GA-DDHh(·, |·〉)}, XXX = DPQ (double-sided partially quantum)
{GA-DDHg(|·〉 , |·〉),GA-DDHh(|·〉 , |·〉)}, XXX = DFQ (double-sided fully quantum)

On basis-state inputs (y, z), GA-DDHg returns 1 if g � y = z and 0 otherwise.
GA-DDHh is defined equivalently. Note that superposition queries are implicitly
then defined by linearity (i.e., O(

∑

x αxx) =
∑

x αxO(x)). We emphasize that
the partially quantum variants of the oracle measure their corresponding first
input implicitly.

3.2 Necessity of the GA-(D)PQ-StCDH Assumption

We now show that partial quantum access to the decision oracle is indeed a
necessary assumption to prove IND-CCA security of GA-HEG and CKS security
of GA-HDH. We do that by showing the opposite direction, namely that the
assumption is implied by the security of the corresponding scheme. This is cap-
tured by the following two theorems.

Theorem 1. Let H : X × X → {0, 1}κ be a random oracle. For any quantum
adversary A against GA-PQ-StCDH making at most q queries to its decision
oracle, there exists a quantum adversary B against IND-CCA security of GA-HEG
making at most q decapsulation queries and q+1 quantum random oracle queries
with

AdvGA-PQ-StCDH
EGA (A) ≤ 2 · AdvIND-CCA

GA-HEG (B) + 8(q + 1)2 + 1
2κ

,

and the running time of B is about that of A.

Theorem 2. Let H : {0, 1}∗ → {0, 1}κ be a random oracle. For any quantum
adversary A against GA-DPQ-StCDH making at most q queries to its decision
oracles, there exists a quantum adversary B against the CKS security of GA-HDH
making 2 queries to the RegisterHonest oracle, at most q queries to the
RegisterCorrupt oracle and q + 1 quantum random oracle queries with

AdvGA-DPQ-StCDH
EGA (A) ≤ 2 · AdvCKSGA-HDH(B) +

8(q + 1)2 + 1
2κ

,

and the running time of B is about that of A.

We will prove Theorem 1 below. The proof of Theorem 2 is very similar and we
refer to the full version [18] for more details.

Proof (of Theorem 1). The idea of the proof is to construct a reduction
which implements the decision oracle using the decapsulation oracle by testing
whether Decaps(x1) = H(x1, x2) on a decision oracle query O(x1, x2). When-
ever O(x1, x2) returns 1, so will Decaps(x1) = H(x1, x2), except when x1 is
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Fig. 5. Games G1–G5 for the proof of Theorem 1.

Fig. 6. Distinguisher D for the Generic Distinguishing Problem to bound G4–G5.

the challenge ciphertext. Therefore, whenever x1 is the challenge ciphertext, the
reduction is going to do the same test, except that it first “shifts” x1 and x2

by some other group element ĝ. After simulating all decision oracle queries, the
reduction returns whether the challenge KEM key K does not equal H(c∗, z)
where z is the group action CDH solution obtained by A. We now proceed with
the formal proof.

Let A be a quantum adversary as described in Theorem 1. Consider the
sequence of games given in Fig. 5.

Game G1. This is the GA-PQ-StCDH game, where O = GA-DDHg. By definition,

Pr[GA
1 ⇒ 1] = AdvGA-PQ-StCDH

EGA (A).

Game G2. In this game, instead of returning whether g � x1 = x2, the decision
oracle returns whether (x1, g � x1) = (x1, x2). In order to prepare for the next
game hop, we additionally introduce a new variable a which denotes a group
element. In G2, a is always the neutral element e of G, thus applying a on any
set element does not have any effect. Since we always have x1 = x1, the check
in line 09 is the same as in line 10. Hence we have Pr[GA

1 ⇒ 1] = Pr[GA
2 ⇒ 1].

Game G3. In this game we sample a group element ĝ $← G \ {e} uniformly at
random in line 02. For all queries (x1, x2) to O, where x1 = h � x̃, we now set
a to ĝ. In this case, this will change the boolean test in line 09. However, since
the group action operation is a bijection, this change is only conceptual. The
reason for doing this, is that in the final reduction we are going to set h� x̃ to be
the challenge ciphertext c∗ which we cannot query to the decapsulation oracle.
Shifting by ĝ in the case that x1 = h� x̃ will allow us to still simulate O. We get
Pr[GA

2 ⇒ 1] = Pr[GA
3 ⇒ 1].
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Fig. 7. Adversary B against IND-CCA security for bounding G6.

Game G4. In this game we perform the boolean test by first hashing both
sides using a random oracle. In particular, we check if H(a � x1, (a � g) � x1) =
H(a�x1, a�x2) in line 08. This introduces false positives into the decision oracle,
when for any x̂1 ∈ X we have that H(x̂1, g � x̂1) has preimages of the form
(x̂1, x̂2) with x̂2 �= g � x̂1. We can bound this change by reducing to the GDP
problem, which we do in Fig. 6. In particular, for every (x̂1, x̂2) we have F(x̂1, x̂2)
returns 1 with probability λ := 1/2κ, which is the probability to find a second
preimage for H(x̂1, g � x̂1). If F is the zero function, the distinguisher D simulates
G3 and otherwise it simulates G4. Thus by Eq. (2) of Lemma 2 where we have
set λ := 1/2κ we have

∣
∣Pr[GA

3 ⇒ 1] − Pr[GA
4 ⇒ 1]

∣
∣

=
∣
∣
∣Pr[GDPD

F,0 ⇒ 1] − Pr[GDPD
F,1 ⇒ 1]

∣
∣
∣ ≤ 8(q + 1)2/2κ.

Game G5. In this game we change the boolean test again and check whether
Decaps(g, a � x1) = H(a � x1, a � x2) in line 07. By definition of decapsulation,
this change is again only conceptual. We have Pr[GA

4 ⇒ 1] = Pr[GA
5 ⇒ 1].

It remains to bound G5. We claim

Pr[GA
5 ⇒ 1] ≤ 2 · AdvIND-CCA

GA-HEG (B) + 1/2κ. (3)

The adversary B in Fig. 7 simulates G5 as follows: it runs A on its own inputs
(pk, c∗), thus defining g � x̃ := pk and h�x̃ := c∗. Note that it can simulate oracle
O as in G5 using its own Decaps oracle and random oracle H provided by the
IND-CCA challenger. If A queries O on the challenge ciphertext c∗, we make
use of the additional element ĝ, thus B never queries Decaps on the challenge
ciphertext. Finally A outputs z. If H(c∗, z) = K∗, where K∗ is the challenge
key B received at the beginning, it returns 0 (real), otherwise it returns b′ := 1
(random). Clearly, if A computes z as gh � x̃, B always wins the IND-CCA game
when it is in the real world. In the random world, it will win only with probability
1−1/2κ since the challenge key might be the same as the real key with probability
1/2κ. When z is not the correct solution and K is the real key, then B will only
win if the output of H still coincides with K, i.e. with probability 1/2κ. However,
if K is a random key, B will win again with probability 1− 1/2κ. Collecting the
conditional probabilities yields the bound claimed in Eq. (3).

It remains to analyze the running time of B and its additional oracle calls.
B runs A once and for every query to O, B makes one call to the decapsulation
oracle and random oracle. After running A it makes one additional call to the
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random oracle, which yields the claimed number of additional oracle calls, which
concludes our proof. �

Remark 2. Quantum-secure signatures and public-key encryption schemes have
been studied in [10], where the adversary gets quantum access to the signing
and decryption oracle, respectively. One can show that the Quantum IND-CCA
(IND-qCCA) security of GA-HEG is equivalent to the GA-FQ-StCDH assumption,
that is the assumption is necessary and sufficient. The proof that IND-qCCA
implies the GA-FQ-StCDH assumption is the same as the proof of Theorem 1.
Therefore, observe that since the first input of the decision oracle is not measured,
the reduction needs a quantum-accessible decapsulation oracle, which is provided
by the IND-qCCA game. The sufficiency follows by observing that the reduction in
the proof of Theorem 3 can actually simulate quantum decapsulation queries. We
leave it as an open problem whether the GA-PQ-StCDH assumption is sufficient
for IND-CCA security GA-HEG.

4 Security of Group Action Hashed ElGamal and NIKE

We now prove security of the two schemes in the quantum random oracle model.
In particular, we prove IND-CCA security of GA-HEG under the GA-FQ-StCDH
assumption and CKS security of GA-HDH under the GA-DFQ-StCDH assump-
tion, i.e., with full quantum access to the decision oracle.

Due to our results in Sect. 3.2, we cannot hope to prove security of the
(un-modified) schemes based on assumptions without quantum access. How-
ever, adding key confirmation to GA-HEG allows us to do so. We elaborate in
more detail in Sect. 4.2. Unfortunately, key confirmation cannot be applied in
the context of non-interactive schemes such as GA-HDH.

4.1 Security of GA-HEG

The following theorem states security of GA-HEG based on the GA-FQ-StCDH
assumption. For the proof we will use the MRM O2H lemma (Lemma 1).

Remark 3. Alternatively, we could use the O2H variant of [8] (also for proving
GA-Twin-HEGm) by using its extractor in the proof, yielding a bound of

√
Adv.

Since both versions are applicable, one can essentially choose between a quadratic
loss independent of the adversary’s query depth or a linear loss in the query
depth. To keep proofs and theorems simple, we only prove the bound using
MRM.

Theorem 3. For any quantum adversary A against IND-CCA security of
GA-HEG that issues at most q queries to the quantum-accessible random ora-
cle H of query depth d with query parallelism p := q/d, there exists an adversary
B against GA-FQ-StCDH such that

AdvIND-CCA
GA-HEG (A) ≤ 4dAdvGA-FQ-StCDH

EGA (B),



Group Action Key Encapsulation and NIKE in the QROM 53

Fig. 8. Games G1–G5 for the proof of Theorem 3, where H1 and H2 are internal random
oracles.

and the running time of B is about three times that of A plus at most O(q + p)
queries to the decision oracle and the time to simulate up to O(max{qD, q})
random oracle queries, where qD is the number of decapsulation queries.

Proof. Let A be a quantum adversary as described in Theorem 3. Consider the
games given in Fig. 8. We proceed by analyzing the different games.

Game G1. This is the IND-CCA game where we unfolded the definition of
GA-HEG. By definition,

∣
∣Pr[GA

1 ⇒ 1] − 1/2
∣
∣ = AdvIND-CCA

GA-HEG (A).

Game G2. Here we introduce the following conceptual change: the random oracle
H is simulated using two internal random oracles H1 and H2, where the first one
is used on valid DH tuples, and the second on invalid ones. For this change to
be meaningful (i.e., simulatable) later on, we need a quantum-accessible decision
oracle, which is provided by the GA-FQ-StCDH assumption. Clearly, the change
is only conceptual and we have Pr[GA

1 ⇒ 1] = Pr[GA
2 ⇒ 1].

Game G3. Next, we drop the input x2 in the case where the random oracle
H1 is used, that is we return H1(x1) instead of H1(x1, x2). Since relative to pk
and x1 there exists a unique x2 s.t. (x1, x2) = (x1, g � x1), due to the regularity
property of EGA, this change is again only conceptual and we have Pr[GA

2 ⇒
1] = Pr[GA

3 ⇒ 1].

Game G4. In this game we remove the usage of the secret key in the random
oracle calls of the decapsulation oracle by returning H1(c) instead of H(c, g � c).
Note that the secret key is only used to check for the DDH condition, which can
be simulated with access to GA-DDHg(|·〉 , |·〉). Due to the previous conceptual
change H1(c) = H(c, g � c) holds by definition and therefore this change is again
only conceptual, thus Pr[GA

3 ⇒ 1] = Pr[GA
4 ⇒ 1].

Game G5. In this game we reprogram the random oracle on the challenge input
(c∗, r � pk), after querying H(c∗, r � pk) in line 06. Now K0 is identically dis-
tributed as K1, therefore the key is now independent of the challenge bit b and
we have Pr[GA

5 ⇒ 1] = 1/2. Due to Lemma 1 (MRM-O2H) we have
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Fig. 9. Adversary B for the game-hop G4–G5 for the proof of Theorem 3. H1 and H2

are internal random oracles. The oracle O is the GA-DDHg oracle.

Fig. 10. Key encapsulation mechanism GA-HEG-KC for an effective group action
EGA = (G, X , �, x̃), where G : X × X → {0, 1}n and H : X × X → {0, 1}κ are hash
functions.

∣
∣Pr[GA

4 ⇒ 1] − Pr[GA
5 ⇒ 1]

∣
∣ ≤ 4dPr[GExt

6 ⇒ 1],

where GExt
6 is like GA

4 , except that instead of running A, it runs the extraction
algorithm ExtDecaps,H,H′

from the MRM-O2H lemma to obtain a set T and the
winning condition is changed to �S ∩ T �= ∅�, where S := {(c∗, r � pk)} and H′ is
the reprogrammed random oracle.

We bound the right-hand probability by the adversary B given in Fig. 9, which
runs the extraction algorithm simulating Decaps and H as in G4 and H′ (the
reprogrammed H) as in G5. Observe that B can simulate quantum decapsulation
queries, since it has quantum access to H1, which is why we can apply the MRM-
O2H lemma. Since B wins if S ∩ T �= ∅, we have

Pr[GExt
6 ⇒ 1] ≤ AdvGA-FQ-StCDH

EGA (B).

Combining all inequalities yields the claimed bound. We conclude our proof by
analyzing the running time of B. B runs the extraction algorithm Ext, whose
running time is at most three times that of A. For every run of A, it has to
simulate at most max{qD, q} calls to H1 and q calls to H2 (through H, H′),
where it calls O on every query. Then, after obtaining T , it makes at most p
queries to O, thus q + p total queries to O. Multiplying the parts of simulating
A by 3, adding up and applying O notation yields the claimed running time and
additional oracle calls, which concludes our proof. �

4.2 Security of GA-HEG via Key Confirmation

We recall the Hashed ElGamal scheme with key confirmation in Fig. 10. We
denote this scheme by GA-HEG-KC. Compared to the original scheme in Fig. 3,
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we now have a second hash function G : X × X → {0, 1}n which is used to
compute an additional ciphertext element d. The input to this hash function is
the same as for the final key. The decapsulation algorithm now first checks if d
is valid by recomputing it. If this check passes, the actual key is computed and
returned, otherwise the algorithm outputs a failure symbol ⊥.

Theorem 4 establishes security of GA-HEG-KC based on the GA-StCDH
assumption, that is without quantum access to the decision oracle. One rea-
son for the looser bound is that the classical decision oracle does not enable us
to apply the more recent O2H lemmata. The other is that we have to first apply
O2H, before applying the extractable RO simulator.

Theorem 4. Let G : X × X → {0, 1}n be a random oracle. For any quantum
adversary A against IND-CCA security of GA-HEG-KC that issues at most d
parallel queries each of size p (in total q := dp queries) to the quantum-accessible
random oracles H and G and qD decapsulation queries, there exists an adversary
B against the GA-StCDH such that

AdvIND-CCA
GA-HEG-KC(A) ≤ 2d

√

AdvGA-StCDH
EGA (B) + 8(q + 1)2

2n
+

√

32qD(qD + q)√
2n

+

√

4qD

2n
+

√

40e2(q + 2qD + 2)3

2n
,

and the running time of B is about that of A plus the running time for using
extractable random-oracle simulator for qD extraction queries and q hash queries,
which is about O(q ·qD+q2) and simulating H for q queries, additionally B makes
at most qD + p queries to its decision oracle.

Note that n depends on the desired security level. Due to the fourth root term,
n needs to be around four times the security parameter in bits. We discuss this
in more detail in Sect. 6. We will now sketch the proof of Theorem 4. The full
proof can be found in the full version [18].

Proof (Sketch). After some simple changes we first reprogram the random ora-
cle H and G on the challenge inputs using O2H. Then the main idea of the
proof is to simulate the random oracle G using the extractable random-oracle
simulator. The reduction can then simulate decapsulation queries by extract-
ing the inputs from the key-confirmation hash and verify the validity using the
decision oracle GA-DDH(g � x̃, ·, ·). Note that since the decapsulation oracle is
classical, the extracted values are also classical and we only need classical access
to GA-DDH(g � x̃, ·, ·). Once we can simulate decapsulation without the secret
key using the classical decision oracle, we can reduce the game to the GA-StCDH
problem. �
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4.3 Security of GA-HDH

The following theorem establishes security of GA-HDH based on the
GA-DFQ-StCDH assumption. As opposed to the proof of GA-HEG, we have to
use the semi-classical variant of the O2H lemma which yields a worse bound. We
explain the reason in the full version [18].

Theorem 5. For any quantum adversary A against the CKS security of
GA-HDH that issues at most d parallel queries, each of size p, to the quantum-
accessible random oracle H, there exists an adversary B against GA-DFQ-StCDH
such that

AdvCKSGA-HDH(A) ≤
√

8(d + 1)AdvGA-DFQ-StCDH
EGA (B),

and the running time of B is about three times that of A plus O(q + p) queries
to the decision oracle and the running time for simulating O(max{d · p, qR, qT })
queries to the random oracle and O(qO) rerandomizations on the set elements,
where qO, qR and qT are the number of register-honest, reveal and test queries.

We will only sketch the proof here. The full proof can be found in the full version
[18].

Proof (Sketch). As in the proof of Theorem 3, our goal is to use a variant of the
O2H lemma in order to randomize all challenge keys and bound the advantage
of the O2H extractor using the GA-DFQ-StCDH assumption. However, instead of
just a decapsulation oracle, we have to simulate the CorruptReveal oracle and
the Test oracle. Although the adversary is allowed to choose identities for honest
keys, we can compute all honest keys before the adversary can make any queries,
so we can vary the behavior of the random oracle when it interacts with honest
or corrupted keys. Note that this technique is not generally possible as the key
generation could depend on the provided ID in other schemes. This allows to only
hash (ID1, ID1, pk1, pk2) without the shared DH value between pk1 and pk2, when
at least one key is honest. Additionally, we can use a different internal random
oracle, when both keys are honest. In the final reduction on GA-DFQ-StCDH, we
embed the challenge set elements into the public keys using rerandomization. For
each public key, we randomly choose which challenge element we use such that
the adversary will issue a test query at least for one pair of identities containing
both challenge elements. We can check whether quantum random oracle queries
contain valid DH tuples using quantum access to the decision oracles. Then
we can use the O2H lemma in its semi-classical variant and bound the success
probability of its extractor with the GA-DFQ-StCDH assumption. �

5 Twinning for Group Actions

In this section, we adapt the twinning technique from [11] to the group actions
setting. Due to the limited structure that group actions offer, we need a novel
approach to develop and analyze the underlying trapdoor test. The trapdoor test
will allow us to effectively simulate a decision oracle, apart from a small error
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probability. In contrast to the original twinning approach, the analysis of the
error term is more involved and depends on an additional parameter m, which
affects the “twinning factor”. To illustrate this in an example: whereas in the
traditional prime-order group setting, twinning doubles the size of public keys,
the group action twinning technique will result in a public key of length m.

Using this technique we get two new schemes GA-Twin-HEGm and
GA-Twin-HDHm, the twinned versions of GA-HEG and GA-HDH, which will be
presented and analyzed in Sects. 5.2 and 5.3. It allows us to remove the strong
variants of GA-CDH including quantum access to decision oracles in the secu-
rity proofs. Consequently we obtain a proof based on the standard GA-CDH
assumption, albeit in exchange for larger keys and overall increased computa-
tion cost. Nevertheless, using our new twinning technique is thus far the only
known method that allows for a security proof of a NIKE scheme from standard
assumptions in the QROM. In Sect. 6 we discuss different parameter choices
for m.

5.1 A Trapdoor Test

In order to replace the GA-(FQ-)StCDH assumption, an algorithm must be able
to simulate the decision oracle GA-DDHg without knowing g explicitly. The fol-
lowing trapdoor test will be our basic tool to achieve this task.

Lemma 3 (Trapdoor Test). Let EGA = (G,X , �, x̃), �,m ∈ N such that 1 <
� < m/2. Suppose x0, x1, ..., x�−1, s�, ..., sm, h�, ..., hm are mutually independent
random variables, where x0, x1, ..., x�−1 take values in X , and for all i ∈ [�,m]
si are uniformly distributed over [0, �−1] with the additional condition that each
value in [0, �−1] is taken at least once. Further, for all i ∈ [�,m] hi are uniformly
distributed over G. Define random variables x�, ..., xm, where xi = hi � xsi

for
i ∈ [�,m]. Further, let gi ∈ G such that xi = gi � x̃ for every i ∈ [m]. In addition,
suppose that z̄0, z̄1, ..., z̄m are random variables taking values in X .

We define

F0(z̄0, . . . , z̄m) :=

{

1 if z̄i = hi � z̄si
∀i ∈ [�,m]

0 else
(4)

and

F1(z̄0, . . . , z̄m) :=

{

1 if z̄i = gi � z̄0 ∀i ∈ [m]
0 else

(5)

and the advantage of an adversary A in distinguishing F0 from F1 with oracle
access to one of the two functions and making at most q queries of depth d as

AdvTDT
EGA,q,d,�,m(A) :=

∣
∣Pr[AF0 ⇒ 1] − Pr[AF1 ⇒ 1]

∣
∣

We call Eq. (4) the Trapdoor Test. The following properties hold:

1. x�, ..., xm are uniformly distributed over X ;
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Fig. 11. Adversary B|T 〉 against the GDP problem for the function T . The function
“map” is the selected bijection from the set of possible si into Y.

2. xi and xj are independent for all i ∈ [0, � − 1], j ∈ [�,m];
3. if F1(z) = 1, then also F0(z) = 1 for any input vector z;
4. for any classical (quantum) adversary A with oracle access to Fb for b ∈

{0, 1}, the probability that A outputs 1 after at most q queries to Fb with
query depth d is upper-bounded by the advantage of a classical (quantum)
adversary B against the GDP problem for a function T : Y → {0, 1} with
Pr[T (x) = 1: x $← Y] ≤ 1

|Y| and |Y| = �!�m−2�+1 (see Remark 4). Specifically,

AdvTDT
EGA,q,d,�,m(A) ≤ AdvGDP

T,q,d(B) ≤

⎧

⎨

⎩

2q
|Y| (classical)

4
√

(d+1)q
|Y| (quantum).

Proof. Properties 1. to 3. hold by inspection. For property 4., we build an adver-
sary B on the GDP problem from a successful distinguisher A of the trapdoor
test. The proofs are identical for the classical and quantum case as the oracles
that B has to implement can all be defined as classical functions which make
classical queries to other oracles, so by making all oracles quantum, the proof
does not change.

First note that if A only queries tuples z0, . . . , zm to its function Fb for
which xi, z0, zi form a DH tuple, then both oracles always behave identically,
so we assume that it will not make such queries. Since the si take all values
in [0, � − 1], for non-DH queries, the oracles differ only if A guesses all si used
to generate the xi correctly. In that case it could choose the first � elements at
random and set the last m − � + 1 elements to gi � xsi

, where the gi are the
discrete logarithms of the i-th randomly chosen element. If the si do not cover
all values in [0, � − 1], this argument does not hold (see Remark 5).

We will construct an adversary B on the GDP problem for a function T ,
which will simulate the function F1 if T is the all-zero function and F0, i.e. the
trapdoor test, if not. Specifically, let T : Y → {0, 1} such that there is a bijective
mapping from Y into the set of all possible combinations of si.

We describe B in Fig. 11. First, B sets x0 to the origin element x̃ and chooses
m random elements x1, . . . xm and runs A on them as input. When A makes a
query to F , B first checks if A provided a valid DH tuple and if so, returns 1.
Otherwise, it computes which si were (implicitly) chosen to generate the query
and maps them to the unique element they correspond to in Y. Then it queries
this element to its own function T and returns the result.
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If T is the all-zero function, then F only returns 1 if the first check succeeds,
i.e., F is equal to F1 from Eq. (5). Otherwise, there is exactly one entry in T
for which it returns 1. Therefore, by returning the result of the query to T , B
implicitly chooses its si as the ones corresponding to said entry in T and therefore
simulates F0 from Eq. (4). So by outputting the same result as A, B wins if and
only if A wins and the claim follows. The quantum bound then follows directly
from Lemma 2. �
Remark 4 (Sampling si). Let �,m ∈ N as in Lemma 3 and k = m− �+1. Define

Y∗ = {(s�, . . . , sm) ∈ [0, � − 1]k | ∀i ∈ [0, � − 1] ∃j : sj = i}.

In principal this is the set of possible values for the (s�, . . . , sm) from the lemma.
The cardinality of Y∗ may be described by the Stirling partition number multi-
plied by �!, more precisely

|Y∗| = �! ·
{

k

�

}

=
d∑

i=0

(−1)i
(

�

i

)

(� − i)k.

One possibility to sample randomly from the entire set Y∗ is rejection sampling
from [0, �−1]k. Since this is not very practical, we suggest the following sampling
method which samples from the strictly smaller subset Y of size �!�k−�.

In order to ensure that the si take each value in [0, � − 1], we first sample
exactly these � elements and then sample the remaining k−� elements uniformly
at random from [0, � − 1].

Remark 5 (Necessity of the condition on si). The assumption that each value
in [0, �−1] is taken at least once by the si is a necessary assumption. Otherwise,
an adversary can simply guess a value α ∈ [0, � − 1] that is not taken by the
si and subsequently choose z̄α randomly while computing all other z̄i honestly.
This would lead to

1 = F0(z̄0, ..., z̄α, ..., z̄m) �= F1(z̄0, ..., z̄α, ..., z̄m) = 0

because z̄α is never used on the right side of z̄i = hi � z̄si
during the trapdoor

test in (4). Therefore, the adversary is able to distinguish both functions without
guessing all si which prevents the aforementioned reduction.

In order to use the trapdoor test in security proofs, we need to choose m and
� such that the advantage defined above becomes a small statistical factor. In
Sect. 6, we compute these values for a security level of 128 bits.

5.2 Twin Hashed ElGamal

Applying the twinning technique to Hashed ElGamal yields the Twin Hashed
ElGamal encryption scheme GA-Twin-HEGm for an integer m ∈ N, which is
formally described in Fig. 12. While twinning significantly increases the public
key size and computation for both encapsulation and decapsulation, it allows us
to prove its IND-CCA security without the use of strong variants of the GA-CDH
problem. Furthermore, the ciphertext still consists of only one element.
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Fig. 12. Twin Hashed ElGamal KEM GA-Twin-HEGm with twinning parameter m.
H : X m+1 → {0, 1}κ is a hash function.

Theorem 6. Let �,m ∈ N such that 1 < � < m/2. For any quantum adversary
A against IND-CCA security of GA-Twin-HEGm that issues at most q queries
to the quantum-accessible random oracle H with query depth d, there exists a
quantum adversary B against GA-CDH such that

AdvIND-CCA
GA-Twin-HEGm

(A) ≤ 4dAdvGA-CDH
EGA (B) + 4

√

(d + 1)q
�!�m−2�+1

,

and the running time of B is about three times that of A plus the time to simulate
O(max{q, qD}) queries to H, where qD is the number of decapsulation queries.

We will only sketch the proof here and refer to the full version [18] for the full
proof. In fact, it is similar to the one of Theorem 3, only that we use the trapdoor
test whenever the other proof uses the decision oracle.

Proof (Sketch). Let A be a quantum adversary in the IND-CCA game. Our goal
is to construct an adversary B against GA-CDH. The main question is how B
simulates decapsulation queries. Therefore, let H1 and H2 be internal random
oracles, the first is used for valid DH tuples and the second for invalid ones. Since
for every ciphertext element x1 there exists a unique vector of m set elements s.t.
these form a DH tuple with the public key set elements, the output of H1 only
depends on x1. We can check if a query consists of valid DH tuples using the
trapdoor test. After this change, B can simulate decapsulation queries by just
returning H1(x1). Next, we can apply the MRM-O2H lemma to reprogram H on
the challenge ciphertext c∗ and the corresponding DH tuples (sk[i]�c∗)i∈[m]. For
this the adversary B needs to be able to simulate H and H′ (the reprogrammed
H), which it can do using the trapdoor test. Note that since we applied the
variant which considers parallel random oracle queries, the measured inputs are
a set of size p. Due to the trapdoor test B can find the correct solution. In the
final game, since the key K∗ is now independent of the bit b, the adversary wins
the game with probability 1/2 and the claimed bound follows. �

5.3 Twin NIKE

We construct a NIKE scheme GA-Twin-HDHm from an effective group action
EGA = (G,X , �, x̃), which defines the public parameters pp together with an
integer m ∈ N and a hash function H : {0, 1}∗ → {0, 1}κ, thus defining
SHK = {0, 1}κ. As in Sect. 3, we assume that the identities can be represented
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Fig. 13. Our NIKE protocol GA-Twin-HDHm.

by bitstrings of fixed length μ. On input an ID, the key generation algorithm
chooses m group elements (g1, ..., gm) $← Gm which form the secret key skID. The
public key is computed as pkID = (g1 � x̃, ..., gm � x̃) ∈ X m. The shared key of an
identity ID1 with public key pkID1

= (x1, ..., xm) and an identity ID2 with secret
key skID2 = (g1, ..., gm) is defined as

K =

{

H(ID1, ID2, pkID1
, pkID2

, g1 � x1, ..., g1 � xm, ..., gm � x1, ..., gm � xm) if ID1 < ID2

H(ID2, ID1, pkID2
, pkID1

, g1 � x1, ..., gm � x1, ..., g1 � xm, ..., gm � xm) if ID2 < ID1

See Fig. 13 for a schematic overview of our construction.
Again, twinning significantly increases the public key size and computation of

GA-Twin-HDHm compared to GA-HDH, but allows us to use the same techniques
as in Theorem 6 to prove security without relying on strong assumptions. This
is formalized in Theorem 7.

Theorem 7. Let �,m ∈ N such that 1 < � < m/2. For any quantum adversary
A against the CKS security of GA-Twin-HDHm that issues at most q queries to
the quantum-accessible random oracle H of query depth d, there exists a quantum
adversary B against GA-CDH such that

AdvCKSGA-Twin-HDHm
(A) ≤

√

8dAdvGA-CDH
EGA (B) + 4

√

(d + 1)q
�!�m−2�+1

,

and the running time of B is about three times that of A plus the time needed
to simulate O(max{q, qR, qT }) queries to the random oracle, to perform O(qO)
rerandomizations on set elements and to run the trapdoor test O(q) times, where
qO, qR and qT are the number of register-honest, reveal and test queries.

The proof is similar to the proof of Theorem 5 with the main difference that
we use the trapdoor test whenever the other proof used the decision oracles. We
defer the complete proof to the full version [18].

Proof (Sketch). As in the KEM proof, our goal is to use a variant of the O2H
lemma in order to randomize all challenge keys and bound the advantage of the
O2H extractor using the GA-CDH assumption. However, instead of just a decap-
sulation oracle, we have to simulate the CorruptReveal and Test oracles.
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Table 1. Overview of our different protocols and comparison to FO variants. By |X | we
denote the length of a set element in bits. The columns “Gen”, “Encaps” and “Decaps”
state the number of group action evaluations that are needed in order to perform the
corresponding algorithm. For NIKE schemes this refers to the SharedKey algorithm.
Bounds are stated without statistical terms and q, d denote the number of random
oracle queries and the query-depth. The security parameter is denoted by λ. For λ = 128
bit security, we need m = 85. For FO-EG we assume the implicit rejection variants.

Scheme |pk| |ct| Gen Encaps Decaps Assumption Bound
GA-HEG (Fig. 3) |X | |X | 1 2 1 GA-FQ-StCDH dAdv

GA-HEG-KC (Fig. 10) |X | |X | + 4λ 1 2 1 GA-StCDH d
√
Adv

GA-Twin-HEGm (Fig. 12) m · |X | |X | m m + 1 m GA-CDH dAdv

GA-EG-FO [12,17] |X | |X | + 2λ 1 2 2 GA-CDH q
√
Adv

GA-EG-FO [12,30] |X | |X | + 3λ 1 2 2 GA-DDH d2Adv

GA-HDH (Fig. 4) |X | - 1 1 (SharedKey) GA-DFQ-StCDH
√

dAdv

GA-Twin-HDHm (Fig. 13) m - m m2 (SharedKey) GA-CDH
√

dAdv

Although the adversary is allowed to choose identities for honest keys, we can
compute the public keys before it makes any queries, so we can vary the behav-
ior of the random oracle when it interacts with honest or corrupted keys. Note
that this technique is not generally possible as the key generation could depend
on the provided ID in other schemes. This allows us to make similar conceptual
changes as in the KEM proof, where we only hash (ID1, ID1, pk1, pk2) without
the zi,j , when at least one key is honest. Additionally, we can use a different
internal random oracle, when both keys are honest. By using the trapdoor test,
we can remove the need for the secret keys completely. Finally, we can use the
O2H lemma in its semi-classical variant and bound the success probability of its
extractor with the GA-CDH assumption. �

6 Parameter Choices and Comparison

In order to compare the different schemes we need to elaborate on the parameter
n, which is the bit length of the output of hash function G in the hashed ElGamal
scheme with key confirmation, and the twinning parameter m. Both depend on
the desired security level which is usually stated in bits. Taking the corresponding
terms in the bounds of Theorems 4 and 6 into account, we determine the success
ratio of an adversary A. The success ratio of A is computed as its advantage εA
divided by its running time tA [23]. For λ-bit security, we then require εA/tA ≤
2−λ.
Key Confirmation. The output of the hash function G determines the length
of the second ciphertext element. In order to determine the length, we analyze
the statistical terms in Theorem 4. Note the one with the fourth root is the
most dominating one. Thus, for λ-bit security, we need to set n ≈ 4λ, where we
assume qD ≤ q � tA and ignore additive constants.

Twinning. The efficiency of the Twin ElGamal encryption scheme
GA-Twin-HEGm and the Twin NIKE scheme GA-Twin-HDHm depends on the
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twinning parameter m which directly translates to the length of the public key.
The security level is determined by the value of �!�m−2�+1, where � ∈ [1,m/2]
may be chosen arbitrarily. Note that � only appears in the proofs of Theorem 6
and Theorem 7, hence it has no direct effect on the corresponding protocols.

Again, we only analyze the statistical term in the bound. For λ-bit security,
we need

4
tA

·
√

(d + 1)q
�!�m−2�+1

≤ 2−λ.

Similar as before, we may assume that d ≤ q � tA, hence for an optimal success
ratio an adversary would choose d = q. This means that we need to choose m
large enough so that �!�m−2�+1 ≥ 22λ+4 for some � ∈ [1,m/2]. As an example,
for λ = 128, optimality is achieved by m = 85 (with � = 17).

Instantiation of the Group Action. Every set element x ∈ X is represented
by a bitstring. In CSIDH the length of this bitstring is log(p), where the size of
X is in O(

√
p). Choosing the correct parameter size for CSIDH is an actively

discussed topic in the community. Castryck et al. [12] propose a 1792-bit prime
p to achieve λ = 128 bit quantum security.

Comparison. Table 1 provides an overview of the schemes analyzed in this
paper and a comparison to the ElGamal KEMs that can be obtained by the FO
transform. The base scheme is the most efficient one, with one ciphertext element
and two group action evaluations for Encaps. It also achieves the best QROM
bound without any square root terms, but it relies on the strongest non-standard
assumption. Hashed ElGamal with key confirmation has a slightly larger cipher-
text and comes with a worse bound, however, it relies only on the GA-StCDH
assumption. Since twinning cannot be done efficiently in the group action setting,
the twinned version of hashed ElGamal is the least efficient in terms of public
key size and group action computation. Nevertheless, the ciphertext still con-
sists of only one set element and we get security based on the standard GA-CDH
assumption. At this point we want to stress again that this seems the only way to
construct an actively-secure NIKE based on a standard assumption. Otherwise,
one has to rely on the assumption with a quantum-accessible decision oracle.
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Abstract. We address three main open problems concerning the use of
radical isogenies, as presented by Castryck, Decru and Vercauteren at
Asiacrypt 2020, in the computation of long chains of isogenies of fixed,
small degree between elliptic curves over finite fields. Firstly, we present
an interpolation method for finding radical isogeny formulae in a given
degree N , which by-passes the need for factoring division polynomials
over large function fields. Using this method, we are able to push the
range for which we have formulae at our disposal from N ≤ 13 to N ≤ 37
(where in the range 18 ≤ N ≤ 37 we have restricted our attention to
prime powers). Secondly, using a combination of known techniques and
ad-hoc manipulations, we derive optimized versions of these formulae for
N ≤ 19, with some instances performing more than twice as fast as their
counterparts from 2020. Thirdly, we solve the problem of understanding
the correct choice of radical when walking along the surface between
supersingular elliptic curves over Fp with p ≡ 7 mod 8; this is non-trivial
for even N and was settled for N = 2 and N = 4 only, in the latter case
by Onuki and Moriya at PKC 2022. We give a conjectural statement
for all even N and prove it for N ≤ 14. The speed-ups obtained from
these techniques are substantial: using 16-isogenies, the computation of
long chains of 2-isogenies over 512-bit prime fields can be accelerated
by a factor 3, and the previous implementation of CSIDH using radical
isogenies can be sped up by about 12%.
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1 Introduction

One of the core operations in isogeny-based cryptography is the fast computation
of the codomain curve of a cyclic chain of horizontal Fq-isogenies of some fixed
small-to-moderate degree N ≥ 2 between elliptic curves over a finite field Fq.
Here, let us recall that an Fq-isogeny between two elliptic curves over Fq is called
horizontal if their Fq-rational endomorphism rings are isomorphic imaginary
quadratic orders. The primary use cases are CRS [10,22] and CSIDH [7], which
are proposals for post-quantum key exchange. However fast horizontal isogenies
are also key to various other recent constructions, including digital signatures [2],
oblivious transfer constructions [15], verifiable delay functions [12], and schemes
for delay encryption [11].

This paper presents a speed-up of such computations. More concretely, we
upgrade the radical isogeny approach from [6], where for any given N one pro-
duces an iterable formula for computing the elliptic curves in a cyclic chain of
N -isogenies, with each step involving the extraction of an Nth root of some
radicand ρN ∈ Fq; whence the name “radical”. Asymptotically, for fixed N and
growing q, the cost of evaluating this formula is dominated by one exponentia-
tion in Fq. This should be compared to one scalar multiplication on an elliptic
curve over Fq, which is the dominant cost of the standard approach using Vélu’s
formulae [26]. In practice however, radical isogenies are useful for small N only,
because they come with a large overhead; part of the goal of the current paper
is to reduce this overhead.

A first problem is simply finding radical isogeny formulae. Indeed, while their
existence was argued in [6, §3] by means of the Tate pairing, producing concrete
instances is a non-trivial task. The method proposed in [6, §4] relies on finding a
zero of the reduced N -division polynomial of a Vélu-type codomain curve over
a certain modular function field over Q. As N grows, not only the division poly-
nomial but also this codomain curve and the function field become increasingly
complicated, and one quickly reaches the point where this method becomes infea-
sible. Consequently, the GitHub repository accompanying [6] contains no radical
isogeny formulae beyond N = 13.

A second problem is that radical isogeny formulae are highly non-unique, with
freedom coming from the choice of curve-point model (e.g., the Tate normal form),
from the choice of the radicand ρN , and from relations in the modular function
field. Different radical isogeny formulae for the same value of N can have very dif-
ferent practical performances, and in view of the large overhead it is crucial to
try and produce the most efficient version. Here we should mention recent work
by Onuki and Moriya [17], who use Montgomery curves to find faster formulae in
degrees N = 3, 4. Chi-Dominguez and Reijnders [9] have presented projective (=
inversion-free) radical isogeny formulae in degrees 2 ≤ N ≤ 5 and N = 7, 9, but
these are constructed directly from the corresponding formulae from [6].

A third problem is that it is not always clear which Nth root of ρN needs to
be chosen in order to walk horizontally. In the CSIDH setting of supersingular
elliptic curves over a finite prime field Fp, horizontality comes for free if N is odd;
in this case ρN has exactly one Nth root in Fp. But even-degree Fp-isogenies,
of which non-trivial cyclic chains exist when p ≡ 7 mod 8 only, are a concern.

https://github.com/KULeuven-COSIC/Radical-Isogenies
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In this case ρN will admit two Nth roots in Fp, and selecting the wrong option
will lead to a change of endomorphism ring and, as a result, in a breakdown of
the iteration. This can be circumvented by an additional quadratic residuosity
check at each step, but this is an annoying extra cost. In [4, Lem. 4] it was
shown that this cost can be avoided when N = 2, because for the concrete
radical isogeny formula presented there, the correct choice always turns out to
be the principal square root, i.e. the unique square root which is again a square.
This observation was extended to N = 4, now in terms of a principal fourth root,
first as a conjecture [6, Conj. 2] and recently proved by Onuki and Moriya [17].
As mentioned in [6, §7], the correct generalization to arbitrary even N is not
immediately apparent.

Contributions

We contribute significantly to each of the above open problems, which are listed
explicitly in [6, §7]. Concretely, we address:

1. Formula generation. We develop an entirely different method for finding rad-
ical isogeny formulae in any given degree N , which avoids the need for fac-
toring division polynomials over large function fields. The method uses inter-
polation over the modular curve X1(N) and is inspired by an alternative,
Galois-theoretic proof of the existence of radical isogeny formulae along the
lines of [5]. Using this method, we managed to generate radical isogeny for-
mulae in degree as large as N = 37.

2. Formula optimization. The optimization and/or simplification of rational
expressions modulo relations is an old and complicated problem, see for exam-
ple [16]. In our case however, ad-hoc manipulations seem to yield the best
results. We now believe to have found reasonably optimized formulae up to
N = 19, with e.g. formulae for N = 11, 13 that can compete with our (opti-
mized) version of N = 7. To highlight one example, for N = 8 we present the
iteration

A ← −2A(A − 2)α2 − A(A − 2)
(A − 2)2α4 − A(A − 2)α2 − A(A − 2)α + A

with α = 8

√
−A2(A − 1)

(A − 2)4

whose counterpart from [6] spanned nearly a quarter of a page.
3. Ensuring horizontality. We believe to have found the correct generalization,

at least conjecturally, of the observations from [4, Lem. 4], [6, Conj. 2] and [17,
§5] for N = 2, 4 to arbitrary even N . The surprising new ingredient beyond
N = 4 is that the principal Nth root needs to be tweaked by the Legendre
symbol of a certain coefficient appearing in Tate’s normal form; for N = 4 this
Legendre symbol is always −1 so it goes unnoticed. With the aid of Magma
we managed to prove this generalization up to N = 14.

One illustrative example where the three contributions resonate is the case N =
16. When computing long chains of 2-isogenies, e.g. as in the set-up phase of the
delay function from [11], we can use radical 16-isogenies to take 4 horizontal steps
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“at once”, resulting in an asymptotic speed-up by a factor of 4. Experimentally,
we observed a speed-up by a factor of about 3 over a 512-bit prime field.

As for CSIDH, we have generated a new prime CRAD-513 capable of han-
dling radical 8- and 9-isogenies, and using our new and optimized formulae we
obtained a speed-up of about 12% when compared to the implementation of
CSURF-512 from [6]. Furthermore, comparing this to the pre-radical isogenies
implementation of CSIDH-512, one sees that the overall speed-up caused by
radical isogenies at the 512-bit prime level is about 35%. We expect that there
remains room for pushing this quite a bit further, for example by optimizing
formulae for N > 19.

2 Background

Throughout, we let K denote a field, unless otherwise specified. The base point
(= neutral element) of an elliptic curve E/K is denoted by OE , or just O if E
is clear from the context.

2.1 Division Polynomials

For an elliptic curve E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ K in

long Weierstrass form we set b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4. For each integer N ≥ 0 we define the
N -division polynomial as

ΨE,0 = 0, ΨE,1 = 1, ΨE,2 = 2y+a1x+a3, ΨE,N = t ·
∏

Q∈(E[N ]\E[2])/±
(x−x(Q)),

where t = N if N is odd and t = N
2 · ΨE,2 if N is even. Note that Ψ2

E,2 =
4x3+b2x

2+2b4x+b6 is a univariate polynomial in x. These division polynomials
can be computed efficiently, thanks to the following recurrence relations:

ΨE,3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8,

ΨE,4

ΨE,2
= 2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x + b4b8 − b2

6,

ΨE,2N+1 = ΨE,N+2Ψ
3
E,N − ΨE,N−1Ψ

3
E,N+1 if N ≥ 2,

ΨE,2N =
ΨE,N

ΨE,2
(ΨE,N+2Ψ

2
E,N−1 − ΨE,N−2Ψ

2
E,N+1) if N ≥ 3.

By definition, we have that ΨE,N (P ) = 0 for any non-trivial P ∈ E[N ]. If one
is interested in the points of exact order N , then one can use the reduced N -
division polynomial ψE,N defined as ΨE,N/lcmd|N,d �=N{ΨE,d}. For all primes �,
we simply have ΨE,� = ψE,�. Observe that for N > 2, the reduced N -division
polynomial of E is a univariate polynomial in x.
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Scalar multiplication by N on E can be expressed explicitly using division
polynomials [20, Ex. 3.6]:

[N ]P =
(

φE,N (P )
ΨE,N (P )2

,
ωE,N (P )
ΨE,N (P )3

)
, (1)

with φE,N = xΨ2
E,N −ΨE,N+1ΨE,N−1 and ωE,N = 1

2ΨE,N
(ΨE,2N −ΨE,N (a1φE,N +

a3Ψ
2
E,N )).

2.2 Tate’s Normal Form

We study elliptic curves E/K that are equipped with a distinguished K-rational
point P of finite order N . For N ≥ 4 such a curve-point pair (E,P ) is isomorphic
to a unique pair of the form

Eb,c : y2 + (1 − c)xy − by = x3 − bx2, P = (0, 0), (2)

for some b, c ∈ K. This distinguished model is called the Tate normal form. It
is worth mentioning that the first few scalar multiples of (0, 0) ∈ Eb,c are easy
expressions in terms of b and c, e.g.,

−(0, 0) = (0, b), 2(0, 0) = (b, bc), −2(0, 0) = (b, 0),
3(0, 0) = (c, b − c), −3(0, 0) = (c, c2).

Expressions for higher multiples can be found using (1).
Furthermore, for every N ≥ 4 one can write down a polynomial FN ∈ Z[b, c]

whose vanishing, along with the non-vanishing of the discriminant

Δ(Eb,c) = b3(16b2 − 8bc2 − 20bc + b + c(c − 1)3),

characterizes in any characteristic that the point (0, 0) ∈ Eb,c has exact order N .
This polynomial can be found as a factor of the constant term of ψEb,c,N (x) ∈
Z[b, c][x], or by analyzing N(0, 0). It is uniquely determined up to sign. The
first few instances are F4 = c, F5 = c − b, F6 = c2 − b + c, F7 = c3 − b2 + bc,
F8 = bc2 − 2b2 + 3bc − c2, see again [23, §2]. Thus, when viewing Eb,c over the
fraction field of K[b, c]/(FN ), one can think of it as a “universal” curve-point
pair from which all elliptic curves E/K equipped with a point P ∈ E of order
N are obtained through specialization at (unique) concrete values in K for b, c.

2.3 Radical Isogenies

Vélu’s formulae from [26] must be fed with the explicit coordinates of the points
in G = ker ϕ. In many applications, this kernel is a priori described in a more
implicit form. For instance, in CSIDH it typically concerns the “unique subgroup
of E(Fp) of order �” for some odd prime number �. An explicit generator of this
subgroup can be found by repeatedly sampling Q ← E(Fp) and computing
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p+1
� Q until its order is �, but this scalar multiplication comes at a major cost

which can dominate the application of Vélu’s formulae itself. Radical isogenies,
as introduced in [6], are an attempt at mitigating this.

The key observation behind radical isogenies is that if kerϕ is cyclic, say
generated by a point P ∈ E(K) of order N ≥ 2 coprime to char K, then Vélu’s
formulae for producing a defining equation of E′ = E/〈P 〉 can be augmented
with formulae yielding the coordinates of a point P ′ ∈ E′ such that

E
ϕ→ E′ = E/〈P 〉 → E′/〈P ′〉

is cyclic of degree N2. Consequently, when computing a non-backtracking chain
of N -isogenies, from the second step onwards the formulae allow to bypass the
scalar multiplication. The formulae depend on N and can be chosen to

– be radical, in that they are algebraic expressions in the coefficients of E,
the coordinates of P and a radical N

√
ρN , where the radicand ρN is itself an

algebraic expression in the coefficients of E and the coordinates of P ,
– be complete, in that changing the choice of N

√
ρN , i.e., scaling it with Nth

roots of unity, produces generators for the kernel of each N -isogeny that
cyclically extends ϕ,

– have good reduction, in the sense that they have coefficients in Z[1/N ] and
they can be applied to any elliptic curve E, over any field K with char K � N ,
equipped with a point P ∈ E(K) of order N .

In [6] the existence of such formulae is argued using properties of the Tate pairing.
The good reduction property is in fact stated as a conjecture [6, Conj. 1].

Remark 1. When working over K = Fq for some prime power q satisfying gcd(q−
1, N) = 1, one usually wants to choose the unique instance of N

√
ρN belonging to

Fq; see [6, §5.1]. This instance can be computed as ρμ
N with μ ∈ Z a multiplicative

inverse of N modulo q−1. So the cost of evaluating the formulae is asymptotically
dominated by one field exponentiation. Unfortunately, the formulae come with
a large overhead and, for fixed q, they outperform plain Vélu for small values
of N only. The main goal of this paper is to push this crossover point to larger
values of N .

Example 2 (taken from [6, §4]). Consider an elliptic curve E with a point P of
order N = 5. The Tate normal form of this curve-point pair is Eb,b = y2 + (1 −
b)xy − by = x3 − bx2, P = (0, 0) for some b �= 0, (11 ± 5

√
5)/2. Vélu’s formulae

produce the following equation for E′ = E/〈P 〉:

y2 + (1 − b)xy − by = x3 − bx2 − 5b(b2 + 2b − 1)x − b(b4 + 10b3 − 5b2 + 15b − 1).

Analyzing the roots of ψE′,5(x) shows that for α = 5
√

ρ5 with ρ5 = b the point

P ′ =
(
5α4 + (b − 3)α3 + (b + 2)α2 + (2b − 1)α − 2b,

5α4 + (b − 3)α3 + (b2 − 10b + 1)α2 + (13b − b2)α − b2 − 11b
)
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on E′ has order 5 and generates the kernel of a cyclic extension of ϕ (it is such
that ϕ̂(P ′) = P ). There are five such cyclic extensions, corresponding to the five
possible choices for α. Rewriting the curve-point pair (E′, P ′) into Tate normal
form produces the curve Eb′,b′ where b′ is given by the iterable formula

ρ′
5 = b′ = α

α4 + 3α3 + 4α2 + 2α + 1
α4 − 2α3 + 4α2 − 3α + 1

. (3)

The above example illustrates the strategy from [6] for finding radical isogeny
formulae. The cases N = 2, 3 are easy to handle [6, §4] so we assume that N ≥ 4.
One starts from the “universal” curve-point pair E = Eb,c, P = (0, 0) over

QN (b, c) := Frac
Q[b, c]
(FN )

and one computes a defining equation for E′ = E/〈P 〉 using Vélu’s formulae.
One then computes the division polynomial ψE′,N (x) and, for a suitable radicand
ρN ∈ QN (b, c), one finds the root x′

0 ∈ QN (b, c)(N
√

ρN ) that is the x-coordinate
of a point P ′ ∈ E′ such that ϕ̂(P ′) = P , using a root-finding algorithm; this
step is a severe bottleneck. If successful, then the corresponding y-coordinate
y′
0 = y(P ′) can be found by solving a quadratic equation over QN (b, c)(N

√
ρN ).

The coordinates x′
0, y

′
0 are the radical isogeny formulae we are after; one hopes,

and observes in practice, that the good reduction property comes for free. By
writing the curve-point pair (E′, P ′) back in Tate normal form (Eb′,c′ , (0, 0)) one
obtains formulae for b′, c′ that can be applied iteratively, as in the case of (3).

Concerning the radicand ρN , it was argued in [6, §3] that ρN = fN,P (−P )
works, where fN,P is the function on Eb,c with divisor N(P )−N(O) and having
leading coefficient 1 when expanded in terms of the uniformizer x/y at O, so
that ρN is a representative of the Tate pairing tN (P,−P ); see [14, Lem. 1].

3 Modular Curves and Galois Theory

This section recalls some of the theory of Galois coverings of modular curves.
We mainly refer to [18,19]. Along the way we present an alternative proof of
the existence of radical isogeny formulae [6, Thm. 5]. This closely resembles the
discussion in [5, §3].

3.1 Congruence Subgroups

Classically, as Riemann surfaces, modular curves are quotients X = XΓ = H
∗/Γ

of the extended complex upper half plane H
∗ = H ∪ P

1(Q) by a congruence
subgroup Γ ⊂ SL2(Z), i.e. a subgroup containing Γ(N) ⊂ SL2(Z), the kernel of
reduction modulo N , for some N ∈ Z>0. The minimal N for which this last
property holds is called the level of X. The modular curve X admits a natural
Zariski-open subset Y = H/Γ, and the (finite collection of) points X \ Y are
called the cusps of X. Modular curves can be seen as irreducible smooth complex
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projective curves, and they always have a “moduli interpretation”, in the sense
that they (specifically, the non-cuspidal points) parametrize complex elliptic
curves together with some additional structure on the N -torsion subgroup.

To make this latter viewpoint more precise, we will consider a different,
slightly more general, method to construct “modular” curves. These modular
curves will be more general in the sense that they may be reducible as complex
projective curves; but they will be irreducible over Q, and their geometrically
irreducible components shall be modular curves in the classical sense. Let N ≥ 1
be an integer and consider the “universal” elliptic curve

Ej : y2 = 4x3 − 27j

j − 1728
x − 27j

j − 1728

over Q(j), whose j-invariant equals the indeterminate j. Let Q(j, Ej [N ]) ⊂ Q(j)
be the field obtained by adjoining the coordinates of all N -torsion points of Ej .
Then this is a Galois extension, whose Galois automorphisms are completely
determined by their action on E[N ]. In particular, we have that the Galois
group is isomorphic to the automorphism group GL2(Z/NZ) of the N -torsion.

For each subgroup H ⊂ GL2(Z/NZ), the fixed field Q(j, Ej [N ])H is the
function field of a smooth projective curve over Q, which we will denote by XH .
This curve has a natural moduli interpretation, in the sense that away from a
finite set its geometric points parametrize elliptic curves over Q together with a
certain structure on the N -torsion. More explicitly, it parametrizes pairs (E,α)
up to H-isomorphism, where α : E[N ] → (Z/NZ)2 is an isomorphism of abelian
groups and two pairs (E1, α1) and (E2, α2) are called H-isomorphic if there exists
an isomorphism ϕ : E1 → E2 and an element h ∈ H such that α1 = h ◦ α2 ◦ ϕ;
see [19, §3] for more details. E.g. if we take for H the subgroup of GL2(Z/NZ) of
upper-diagonal matrices then XH is the classical modular curve X0(N), which
parametrizes elliptic curves together with a cyclic subgroup of order N .

The connection to modular curves in the classical sense is quite straight-
forward. If we denote by ΓH = π−1(GL2(Z/NZ)) ⊂ SL2(Z) the congruence
subgroup that is the inverse image of H under the reduction modulo N map
π : SL2(Z) → GL2(Z/NZ), then we have that XH

∼= XΓH
as complex projective

curves if and only if det(H) = (Z/NZ)×; in general XH will be geometrically
isomorphic to the disjoint union of [(Z/NZ)× : det(H)] copies of XΓH

.

3.2 The Main Suspects

Let N ≥ 3. The subgroups H ⊃ H ′ of GL2(Z/N2
Z) consisting of matrices having

respective forms(±1 mod N ∗
0 mod N ∗

)
, and

(±1 mod N ∗
0 ∗

)

correspond to the modular curves which we denote X1(N) = XH and X ′
1(N) =

XH′ respectively. The curve X1(N) is the classical modular curve parametrizing
pairs (E,P ) where E is an elliptic curve and P ∈ E is an N -torsion point. The
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curve X ′
1(N) parametrizes triples (E,P, P ′) where P ′ is a P -distinguished point,

i.e. a point P ′ ∈ E/〈P 〉 that maps to P under the dual isogeny E/〈P 〉 → E.
Alternatively, it parametrizes pairs (E,C), where C = {Q,Q + P, . . . , Q + (N −
1)P} is a coset on E modulo the order-N point P , where NQ = P .

Let us denote by K ⊂ L the respective function fields over Q of these curves:

K := Q(X1(N)) = GL2(Z/N2
Z)H , L := Q(X ′

1(N)) = GL2(Z/N2
Z)H′

.

Then K,L are the fields QN (b, c) and QN (b, c, N
√

ρN ) from Sect. 2.3. The canon-
ical inclusion K ↪→ L corresponds to the degree-N forgetful map X ′

1(N) →
X1(N) : (E,P, P ′) �→ (E,P ). As we will see in the next section, it is possible
to deduce from a purely Galois-theoretic argument that the extension L/K is
radical.

3.3 The Galois Structure

Lemma 3. Let N ∈ Z>0 and let K ⊂ L be a degree N extension of fields whose
characteristic does not divide N . Let ζN ∈ L be a primitive N th root of unity
and assume that L(ζN ) is Galois over K with Galois group

Gal(L(ζN )/K) = Gal(L(ζN )/K(ζN )) � Gal(L(ζN )/L),

where the first factor is cyclic of order N , say generated by σ, and where the
semidirect product is according to the rule

τj ◦ σi ◦ τ−1
j = σij (4)

for all i = 0, 1, . . . , N − 1 and all τj : ζN �→ ζj
N ∈ Gal(L(ζN )/L). Then there

exists an α ∈ L such that L = K(α) and αN ∈ K.

Proof. The restricted maps σi|L : L → L(ζN ) are pairwise distinct. Indeed, if
i, i′ ∈ {0, 1, . . . , N − 1} are such that σi|L = σi′ |L, then

σi−i′ ∈ Gal(L(ζN )/K(ζN )) ∩ Gal(L(ζN )/L) = {id},

which can only be true if i = i′. From [21, Lem. 0CKL] we get that these
restricted maps are linearly independent over L(ζN ). Thus there exists β ∈ L

such that α :=
∑N−1

i=0 ζi
Nσi(β) is non-zero. From

τj(α) =
∑

i

ζij
N (τj ◦ σi)(β) =

∑
i

ζij
N (σij ◦ τj)(β) =

∑
i

ζij
N σij(β) = α

it follows that α ∈ L as well. Now observe that α was constructed in such a way
that σi(α) = ζ−i

N α for i = 0, 1, . . . , N−1, which has two crucial consequences. On
the one hand, it implies that Gal(L(ζN )/L) is the exact group of automorphisms
fixing K(α), or in other words L = K(α). On the other hand, it implies that
σ(αN ) = σ(α)N = (ζNα)N = αN , so that αN is fixed by the entire Galois group,
i.e. αN ∈ K as wanted. ��
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Now let K,L as in Sect. 3.2. Below we give an alternative proof of the fact
that L/K is a radical extension. Our strategy is to apply Lemma 3, so we will
first prove that L(ζN )/K is Galois, and then find explicitly elements σ, τj ∈
Gal(L(ζN )/K) satisfying (5).

Theorem 4. The morphism X ′
1(N) → X1(N) is a simple radical extension, i.e.

the degree N extension of function fields

Q(j, Ej [N2])H ⊆ Q(j, Ej [N2])H′

can be realized by adjoining N
√

ρ for some function ρ on X1(N).

Proof. Let H ⊂ H ′ be the subgroup consisting of matrices whose determinant is
≡ 1 (mod N). Then the corresponding fixed field Q(j, Ej [N2])H is L(ζN ). One
can verify that H is a normal subgroup of H, which implies that L(ζN )/K is
Galois of degree Nϕ(N) with Galois group H/H.

In order to understand its structure, we first consider the intermediate
extension L ⊆ L(ζN ), which is just a cyclotomic extension with Galois group
{ τj : ζN �→ ζj

N | 0 ≤ j < N, gcd(j,N) = 1 } ∼= (Z/N)∗. When viewed as elements
of H/H, these maps can be identified with

τj =
(

1 0
0 j

)
mod H.

Next, we concentrate on the intermediate extension K(ζN ) ⊂ L(ζN ) which is of
degree N , and its Galois group can be identified with the cyclic group〈

σ :=
(

1 0
N 1

)〉
=
{

σi =
(

1 0
iN 1

) ∣∣∣∣ i = 0, 1, . . . , N − 1
}

,

which, as before, we consider modulo H. It is easy to see that the elements τj ◦σi

are pairwise distinct (e.g. because j is fully determined by the action of τj ◦ σi

on ζN , and then the uniqueness of i follows at once). Therefore these Nϕ(N)
elements must constitute the whole Galois group.

The structure of the Galois group is then determined by the rules σN = 1,
τ

ϕ(N)
j = 1 and

σi ◦ τj =
(

1 0
iN j

)
= τj ◦ σij−1

, (5)

which matches with (4), so this indeed allows for a successful application of
Lemma 3. ��
Remark 5. The subgroup H ⊂ GL2(Z/N2

Z) introduced in the proof of the The-
orem corresponds to a modular curve X ′

1(N) over Q with function field L(ζN ).
Since [(Z/N2

Z)× : det(H)] = ϕ(N) it consists geometrically of ϕ(N) copies of
X ′

1(N), labeled by the different primitive Nth roots of unity ζN .
The level structure induced by H yields the following moduli interpretation of

X ′
1(N): it parametrizes triples (E,C,R), where (E,C) ∈ X ′

1(N) is as in Sect. 3.2
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and R ∈ E[N ] is an N -torsion point independent of P (i.e. such that E[N ] =
〈P,R〉), where we identify two such points R1 and R2 if their Weil pairing with
P yields the same (primitive) Nth root of unity, i.e. if eN (P,R1) = eN (P,R2).
Forgetting R leads to a covering X ′

1(N) → X ′
1(N) of degree ϕ(N).

One can make sense of the Galois action of L(ζN )/K in terms of this moduli
interpretation. Given a triple P = (E, {Q,Q + P, . . . , Q + (N − 1)P}, R), the
images under σ and τj are

σ(P) = (E, {Q + R,Q + R + P, . . . , Q + R + (N − 1)P}, R),
τj(P) = (E, {jQ, jQ + P, . . . , jQ + (N − 1)P,R).

4 Radical Isogeny Formulae Through Interpolation

We now describe the method we used to compute the radical isogeny formulae.
Explicitly, starting from the universal Tate normal curve E = Eb,c over K =
QN (b, c) together with the point P = (0, 0) ∈ E of order N ≥ 4, we would like
to find an expression for the coordinates of a P -distinguished point P ′ on the
quotient curve E′ = E/〈P 〉 (whose Weierstrass model, let us assume, is given
by Vélu’s formulae). These coordinates live over some radical field extension L
of K. For simplicity, we will mostly focus on computing the x-coordinate of P ′,
as the computation of the y-coordinate is more or less analogous.

4.1 A Linear System

Let us denote by K an algebraic closure of K, and let Q ∈ E(K) be such that
NQ = P . We would like to find an expression for

β0 :=
N−1∑
i=0

x(Q + iP ),

since by Vélu’s formulae this is equivalent to finding the x-coordinate of P ′. If
we define

γd :=
∑

S∈E[N ]

eN (P, S)dx(Q + S),

then γN
d ∈ K for all d ∈ Z: indeed, let R ∈ E(K) be an N -torsion point so that

E[N ] = 〈P,R〉 and denote by eN : E[N ] × E[N ] → K the Weil pairing. Then
ζN := eN (P,R) is a primitive Nth root of unity. By Remark 5, it follows that

γd =
N−1∑
j=0

eN (P, jR)d
N−1∑
i=0

x(Q + jR + iP ) =
N−1∑
j=0

ζjd
N σj(β0),

for some generator σ ∈ Gal(L(ζN )/K) of Gal(L(ζN )/K(ζN )). Following the last
paragraph of the proof of Lemma 3 now shows that γN

d ∈ K.
Note that γd ∈ L(ζN ) depends on the choice of Q. However all of them are

related as follows:
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Lemma 6. Let Q,Q′ ∈ E[N2] be such that NQ = NQ′ = P . Then there exists
an N th root of unity ζ ∈ K such that γd(Q) = ζdγd(Q′) for all d ∈ Z. Moreover,
for all d ∈ Z we have that γd/γd

1 is an element of K that is independent of the
choice of Q.

Proof. We have that Q′ differs from Q by an N -torsion point. Note that adding
multiples of P to Q clearly does not affect the value of γd while adding a multiple
kR of R scales it by ζ−kd

N . This shows the first statement with ζ = ζ−k
N . For

the second part, note that the independence on Q already follows from the
first part. Now let σ be as above and let τj be a generator for the cyclotomic
extension L(ζN )/K(γ1). Then τj(γd) = γd, whereas σ(γd) = ζ−d

N γd. Since σ, τj

together generate Gal(L(ζN )/K) we see that γd/γd
1 is invariant under all Galois

automorphisms of L(ζN )/K and we conclude that it is an element of K. ��
Defining

βj := σj(β0) =
N−1∑
i=0

x(Q + jR + iP ),

we now have the following linear system.⎛
⎜⎜⎜⎝

1 1 1 · · · 1
1 ζN ζ2

N · · · ζN−1
N

...
...

...
. . .

...
1 ζN−1

N ζ
2(N−1)
N · · · ζ

(N−1)2

N

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

β0

β1

...
βN−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ0

γ1

...
γN−1

⎞
⎟⎟⎟⎠ .

In particular, if we set α := γ1 then we see that

β0 =
1
N

N−1∑
d=0

γd =
1
N

N−1∑
d=0

(
γd

γd
1

)
αd ∈ K(α) = L. (6)

We have now reduced the problem of finding radical isogeny formulae (at least
the determination of the x-coordinate of P ′) to finding expressions for the ele-
ments γd/γd

1 ∈ K for all d ∈ {0, . . . , N − 1}. In the next subsection we will
describe the method we used to do this. Before that we should point out one
subtlety. To ensure that (6) is well defined we must have α �= 0; in fact, to be
able to use the formula in practice, we should know exactly the value of αN ∈ K.
Though, given N , this is not so difficult to establish (or even guess) in practice;
a proof of a closed expression for αN that works for all N can be found in the
appendix (from which it also follows that α is never zero), see Theorem 14.

4.2 Finding the Formulae

Expressions for cd := γd/γd
1 will of course depend heavily on how one represents

the field K = Q(X1(N)). It turns out that the representation K = QN (b, c) as
presented in Sect. 2.3 is not always optimal. In order to minimize the complexity
of the resulting formulae, as well as the running time complexity of the algorithm
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used to find them, we will instead employ Sutherland’s optimized models of
X1(N) [24]. These models are optimal in the sense that they write K as the
fraction field, which we will denote QN (A,B), of Q[A,B]/GN (A,B) for some
modular polynomial GN (A,B) whose degree in B matches the gonality of X1(N)
over Q (at least for N ≤ 40). In particular, we can theoretically write every
element of K, specifically the cd we are after, as a polynomial in Q(A)[B], where
the degree in B is as small as one could hope for. It is also possible, and relatively
easy in fact, to find an explicit expression for b, c ∈ K in terms of Sutherland’s
functions A,B, so one can also express the universal Tate normal curve Eb,c as
a curve EA,B over QN (A,B).

The idea is now to determine the reduction cd ∈ Fp(A)[B] of the coefficients
cd modulo several primes p, and then to lift the results to Q(A)[B] using the
Chinese Remainder Theorem. To find the cd, we sample many curves EA,B over
Fp for which Q,R, and ζN of the previous section are all defined over Fp. For
each of these curves, we explicitly compute the coefficients cd as elements of Fp.
Then, as long as the number of samples is sufficiently large, we can determine an
expression for cd ∈ Fp(A)[B] by means of rational interpolation (this last step
can be achieved purely by linear algebra over Fp).

The main problem that arises is how to efficiently generate suitable samples
(A,B) ∈ X1(N)(Fp). The requirement that ζN be defined over Fp is rather
trivially met by demanding that p ≡ 1 (mod N). The condition that Q,R ∈
EA,B(Fp), however, is more intricate, and simply generating random curves turns
out to be far too inefficient for large N . Instead, we rely on an approach based
on the theory of complex multiplication.

The CM Method. The endomorphism ring of an elliptic curve E/C is iso-
morphic to either Z or an order O in an imaginary quadratic number field.
In the latter case we say that E has complex multiplication (CM) by O. The
j-invariants of such elliptic curves are algebraic integers. The Hilbert class poly-
nomial HD(X) ∈ Z[X] is the minimal polynomial over Q of the j-invariant of
an elliptic curve E/C with CM by the quadratic order of discriminant D.

Ordinary elliptic curves over a finite field always have CM. An elliptic curve
E/Fq with CM by the imaginary quadratic order O of discriminant D exists if
and only if there exist t, u ∈ Z such that u2D = t2 − 4q. In this case HD splits
completely over Fq and its roots are precisely the j-invariants of elliptic curves
with CM by O. The trace of Frobenius of such curves is ±t, so they will have
q + 1 ± t points. One can use this to find curves over Fq with a desired number
of points; this is known as the CM Method.

Sampling Curves with Torsion. We now describe how to use the CM method
to construct curves EA,B with full N2-torsion over Fp; this will certainly ensure
that the desired points Q,R be defined over Fp. We thus want to find curves with
number of points divisible by N4. One approach is to strengthen the requirement
that p ≡ 1 (mod N) to p ≡ 1 (mod N4) and construct curves of trace 2 using
the CM method, i.e. with CM by an order of discriminant D dividing 22 − 4p.
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The structure of the Fp-rational N∞-torsion also be controlled by D; if we choose
D a divisor of (22 − 4p)/N4 then E[N2](Fp) ∼= (Z/N2

Z)2, see e.g. [8, Thm. 7].

Algorithm. We summarize the above discussion in the following pseudo algo-
rithm generating radical isogeny formulae for N ≥ 4. The SageMath code we
used can be found in the GitHub repository accompanying this paper.

(i) Find all prime numbers p ≡ 1 (mod N4) up to a certain bound.
(ii) For each prime number p, determine the roots ji of the Hilbert class poly-

nomials HD modulo p for every D | 4(p − 1)/N4.
(iii) For each root ji, determine the (A,B) ∈ X1(N)(Fp) for which j(EA,B) = ji.
(iv) For each pair (A,B), if EA,B has trace +2, determine cd ∈ Fp for all

d ∈ {0, . . . , N − 1}.
(v) For each d, find a formula for cd ∈ Fp(A)[B] by rational interpolation.
(vi) Lift the formulae to Q(A)[B] by the Chinese Remainder Theorem.

4.3 Iterative Formulae

The above describes how to find an expression for the x-coordinate of P ′ as an
element of L = K(α). An analogous method can be used to find an expression
for the y-coordinate. By transforming the pair (E′, P ′) to Tate normal form one
can then also determine explicit formulae for Sutherland’s parameters A′, B′ ∈ L
corresponding to the point (E′, P ′) ∈ X1(N)(L). In this way, we obtain radical
isogeny formulae that can be applied iteratively. We list formulae for prime
powers 16 < N ≤ 37 in our GitHub repository.

5 Optimizing the Formulae

When optimizing radical isogeny formulae, one needs to take into account all of
the following choices.

– The radicand ρN is not unique: it can be scaled with Nth powers in QN (b, c),
and it can be raised to exponents that are coprime with N . Switching from
one radicand to another results in different radical isogeny formulae with
different performances.

– It is not self-evident that the optimized representations of X1(N) by Suther-
land from [24] will result in optimized radical isogeny formulae.

– Elements in QN (b, c, α) can be expressed in several ways since we work modulo
the two relations FN (b, c) = 0 and αN = ρN (b, c).

– It is a priori not clear what formulae we are trying to optimize; e.g. for
E′ = E/〈P 〉 we can try to find optimal expressions for a P -distinguished
point P ′ on E′, or we can try to write E′ in Tate normal form immediately.

We will focus on finding efficient enough formulae in this setting, where it
seems nigh impossible to prove that they are indeed the most optimal (especially
for N ≥ 10 as we will see further up ahead). Hence we do not claim they are

https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
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optimal, but they should not be far off and at the very least in certain cases a
big improvement compared to the work in [6].

For N ∈ {4, 5, . . . , 10} ∪ {12}, the Tate normal form can be parametrized by
a single parameter, say A. This means that the codomain curve of a radical N -
isogeny can be put into a (new) Tate normal form with a single parameter, say
A′, where we translated the P -distinguished point P ′ to (0, 0). In practice, this
new parameter seems a good candidate to try to optimize, as can be seen from
the case of N = 4, 5 from [6]. The raw equation for A′ can be easily obtained by
any algebraic software package for these small N .

To find an efficient representation of A′, consider the curve X ′
1(N) defined

by αN − ρN , FN = 0. Then A′ can be seen as a function on this curve and
we can compute its divisor. For N < 10, an algebraic software package has
no issues checking which linear combinations of places in its support constitute
principal divisors, and we can use this to peel off (easy) factors from A′. For
every N ∈ {4, . . . , 9}, there are clear contenders for which factorization is most
efficient. We list them all, skipping the case N = 5 which can be found in (3).
Note that for N ≥ 6, our “factorization” merely amounts to writing A′ as the
quotient of two easyish expressions in A and α.

N = 4. In this case we have b = A, c = 0 and for α4 = A we have that

A′ = α
4α2 + 1

(2α + 1)4
. (7)

N = 6. In this case we have b = A(A−1), c = A−1 and for α6 = −A2(A−1)
we have that

A′ =
(−3A + 2)α4 + 3A2α2 + 2Aα − 3A3 + 4A2

α4 + 2Aα2 + 3Aα + A2
. (8)

N = 7. In this case we have b = A2(A − 1), c = A(A − 1) and for α7 =
A4(A − 1) we have that

A′ =
α6 + Aα5 + 2A3α2 − A3α + A4

−α6 + Aα4 + A3α2 − 2A3α + A4
.

N = 8. In this case we have that b = A(A−1)
(A−2)2 , c = −A(A−1)

A−2 and for α8 =
−A2(A−1)

(A−2)4 we have that

A′ =
−2A(A − 2)α2 − A(A − 2)

(A − 2)2α4 − A(A − 2)α2 − A(A − 2)α + A
.

N = 9. In this case we have that b = A2(A − 1)(A2 − A + 1), c = A2(A − 1)
and for α9 = A4(A − 1)(A2 − A + 1)3 we have that

A′ =
A(A2 − A + 1)(α5 + A(A2 − A + 1)α2 + A2(A2 − A + 1)2)

α7 − A(A2 − A + 1)(A − 1)α4 − A3(A2 − A + 1)2α + (A(A2 − A + 1))3
.
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For N ≥ 10, Magma struggles to efficiently verify whether a given divisor is
principal, and those that do get found are less clean than the above factors, so
we will optimize these two cases with the more general method for larger N .1

If we compute E′ as E/〈P 〉 by means of Vélu’s formulae, then E′ is in (long)
Weierstrass form and we still need to compute an isomorphism to put E′ back
in Tate normal form E′

t for certain b′, c′ ∈ QN (b, c, α). By [20, Prop. 1.3(d)], the
isomorphism ι : E′

t → E′ is determined by a 4-tuple (u, r, s, t), where P ′ = (r, t)
is the P -distinguished point and u is a unit. This u, when seen as a polynomial
of degree N − 1 in QN (b, c)[α], seems to always be efficient to write down and
evaluate. Furthermore, the expressions uc′ and ub′/c′ also enjoy this feature.
In particular, a factor that arises in the coefficient of αi has a high chance of
also being there in the coefficient of αj for j > i, which makes this efficient to
evaluate in a Horner scheme with rising powers of α. We provide the concrete
expressions for N = 10 and refer the reader to our GitHub repository for larger
N . Remark that for N = 10 we still work with a one-parameter family of curves
and the expression uA′ is just as efficient as uc′ or ub′/c′. The operation counts
for all formulae N ∈ {4, 5, . . . , 17} ∪ {19} can be found in Table 1.

N = 10. In this case we have

b =
A3(A − 1)(2A − 1)

(A2 − 3A + 1)2
, c =

−A(A − 1)(2A − 1)
(A2 − 3A + 1)

, α10 =
A9(A − 1)(2A − 1)2

(A2 − 3A + 1)5
,

and then A′ = vA′/u with

u = 1 + 3α +
4A − 1

A
α2 +

2c

b
α3 − c(A − 4)

bA
α4 +

(A − 1)(4A − 1)
bA

α5+

(A + 1)(A − 1)
bA2

α6 +
4c(A − 1)

b2A
α7 +

c(A − 1)(4A − 1)
b2A2

α8 − c2(A − 1)
b3A

α9,

vA′ =A + 2α +
A + 1

A
α2 +

3c

b
α3 +

c(A + 1)
bA

α4 +
(A − 1)(A + 1)

bA
α5+

(A + 1)(4A − 1)
bA2

α6 +
c(A − 1)

b2A
α7 +

c(A + 1)(A − 1)
b2A2

α8 +
c2(A − 1)

b3A
α9.

6 Ensuring Horizontality

If both E and P are defined over a finite field Fq with gcd(q −1, N) = 1 then, as
discussed in [6, §5.1], the isogeny ϕ : E → E′ = E/〈P 〉 is necessarily horizontal.
The radicand ρN ∈ Fq admits a unique Nth root α ∈ Fq, and for this choice
of α the resulting point P ′ ∈ E′ is again defined over Fq, so the argument
repeats. Thus, if N and q−1 are coprime, then walking horizontally using radical
isogenies is natural and easy. As explained in Remark 1, for any fixed N the cost
of an iteration is dominated by this Nth root extraction, which amounts to one
1 We remark that for the smaller N it can be extremely fast to let a computer alge-

bra software package verify that a given divisor is not principal, but to prove it is
principal is harder in the majority of cases.

https://github.com/KULeuven-COSIC/Horizontal_Radical_Isogenies
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Table 1. The computational cost of radical N -isogenies for N ∈ {2, 3, . . . , 17} ∪ {19}
compared to previous work [6, Tbl. 3]. The letters E,M,A and I denote exponenti-
ation, (full) multiplication (including squaring), addition and inversion respectively.
The letter m denotes multiplication with a small constant. The last column expresses
the cost of an N -isogeny relative to a 2-isogeny, based on the evaluation of a chain of
100 000 horizontal N -isogenies over Fp, where p is the CRAD-513 prime from Sect. 7.
Remark that the cost of E is approximately (1.5 log p)M with the square-and-multiply
algorithm. In particular, the last column would converge to 1 for larger values of p
since the cost of a radical isogeny will be dominated by E.

Previous work [6] This work Cost relative to 2-isogeny

2-isogeny - E + M + 3m + 2A 1

3-isogeny E + 6M + 3A E + 2M + 3m + 3A 1.023

4-isogeny E + 4M + 3A + I E + 3M + m + 3A + I 1.008

5-isogeny E + 7M + 6A + I E + 6M + m + 6A + I 1.034

6-isogeny - E + 9M + 6m + 9A + I 1.090

7-isogeny E + 24M + 20A + I E + 12M + 2m + 9A + I 1.043

8-isogeny - E + 11M + m + 9A + 2I 1.151

9-isogeny E + 69M + 58A + I E + 17M + 9A + I 1.062

10-isogeny - E + 57M + 5m + 31A + 3I 1.196

11-isogeny E + 599M + 610A + I E + 50M + 21m + 71A + 2I 1.293

12-isogeny - E + 90M + 8m + 35A + 3I 1.296

13-isogeny E + 783M + 776A + I E + 89M + 33m + 120A + 2I 1.448

14-isogeny - E + 159M + 16m + 131A + 4I 1.613

15-isogeny - E + 149M + 32m + 125A + 2I 1.599

16-isogeny - E + 120M + 4m + 40A + 3I 1.388

17-isogeny - E + 217M + 55m + 332A + 3I 1.921

19-isogeny - E + 329M + 125m + 437A + 3I 2.532

exponentiation in Fq. But if gcd(q − 1, N) > 1 then maintaining horizontality is
more subtle.

In the remainder of this section we focus on the CSIDH case of supersingu-
lar elliptic curves over a finite prime field Fp, where this issue arises (only) if
p ≡ 7 mod 8 and one navigates with cyclic isogenies of even degree N , see [13,
Thm. 2.7]. In this case gcd(p − 1, N) = 2 because N | #E(Fp) = p + 1. Let us
recall that if p ≡ 7 mod 8 then supersingular elliptic curves over Fp come in two
kinds: curves on the surface of their 2-isogeny volcano, and curves on the floor.
The surface is characterized by the existence of three Fp-rational points of order
2; more precisely, the group of Fp-rational points is isomorphic to Z2 ×Z(p+1)/2.
The points of order 2 can be classified as follows (see Fig. 1):

– a point P→, whose halves are Fp-rational,
– a point P←, whose halves are not Fp-rational, but their x-coordinates are,
– a point P↓, the x-coordinates of whose halves are not Fp-rational.
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Each of these points spans the kernel of a 2-isogeny. The point P↓ takes us
to the floor, while the other two isogenies are horizontal. It can be checked that
the dual of an isogeny in the P→-direction is in the P←-direction, and vice versa.
Therefore, non-backtracking chains of horizontal 2-isogenies necessarily happen
on the surface and consistently walk in either of these two directions.

Fig. 1. Component of the 2-isogeny graph over Fp when p ≡ 7 mod 8. The top layer
belongs to the surface; the bottom layer belongs to the floor; and

√−p is identified with
the Frobenius endomorphism.

6.1 Horizontal vs. Non-horizontal N-isogenies

Fix N ≥ 2 even and assume that p ≡ −1 mod lcm(2N, 8), so that every curve E
on the surface satisfies

E(Fp)[N ] ∼= Z2 × ZN . (9)

Then E(Fp) has 2 or 3 cyclic subgroups of order N , depending on whether
t = ord2(N) > 1 or t = 1 (see Lemma 7 below). Every corresponding isogeny
ϕ : E → E/〈P 〉 can be decomposed as ϕ = θ ◦ ψ, where ψ is the N/2-isogeny
with kernel 〈2P 〉 and θ is the 2-isogeny with kernel 〈ψ(P )〉. The isogeny ψ is
necessarily horizontal: indeed, if it would involve a vertical step, then composing
with θ would necessarily involve backtracking, rendering ϕ non-cyclic. However,
θ may take us to the floor.

Lemma 7. Write r = ord2(p + 1) ≥ ord2(2N) = t + 1.

(i) If t = 1 then there are 3 options for 〈P 〉, corresponding to θ being in the
P→-direction, the P←-direction or the P↓-direction.

(ii) If t ≥ 2 then there are 2 options for 〈P 〉, corresponding to θ being in the
P→-direction or the P↓-direction.

(iii) If r ≥ t + 2 (automatic if t = 1) then the group corresponding to θ being in
the P→-direction can be characterized as follows: it is the unique group all
of whose elements admit halves in E(Fp).
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Proof. (i) Under the isomorphism (9), the cyclic subgroups of order N are
generated by (0, 1), (1, 1) or (1, 2). Note that the group 〈2P 〉 does not
depend on this choice, hence neither does ψ. Necessarily, the three groups
must then correspond to the three stated options for θ.

(ii) If t ≥ 2 then only the groups generated by (0, 1) or (1, 1) remain. Also note
that we can further decompose ψ = θ′ ◦ ψ′, where θ′ is a 2-isogeny with
kernel 〈ψ′(2P )〉. Since ψ′(2P ) is halvable over Fp, this isogeny is necessarily
in the P→-direction. But then θ cannot be in the P←-direction, otherwise
ϕ would be non-cyclic.

(iii) If r ≥ t + 2 then E(Fp)[2N ] ∼= Z2 × Z2N from which we see that the group
generated by (0, 1) under the isomorphism (9) is uniquely characterized by
its elements being halvable over Fp. But then ψ(P ) is also halvable over
Fp, from which the claim follows. �

The central question of Sect. 6 is: how do we avoid that ker θ = 〈P↓〉, within
the framework of radical isogenies?

6.2 Square vs Non-square Radicands

As explained in [6, §5.3], there is a simple algebraic criterion for determining
whether quotienting out an order-N point P ∈ E keeps us on the surface or takes
us to the floor. Namely, we stay on the surface if and only if ρN = fN,P (−P ) is
a non-zero square in Fp. In this case ρN admits two different Nth roots α ∈ Fp,
which are each other’s negatives. The challenge is to select the sign in such a
way that the next radicand ρ′

N is again a square. Indeed, for this choice of Nth
root the argument repeats and one keeps walking horizontally. Of course, one
fallback is to make an arbitrary choice for α, at the cost of an exponentiation in
Fq as before. One then computes the resulting ρ′

N and checks if it is a square. If
it is not, then one switches to −α.

It was observed in [4, Lem. 4] that for N = 2 the extra quadratic residuosity
check can be avoided, because the correct choice of α admits an explicit descrip-
tion in terms of the “principal” square root of ρ2, by which we mean the unique
square root which is itself a square.

Remark 8. More generally, for any non-zero square ρ ∈ Fp we will refer to the
unique Nth root of ρ that is a square as the principal Nth root. Note that when
computing the Nth root through exponentiation, i.e., as ρ(p+1)/2N , then it is
automatically principal.

Then, in more detail, the observation from [4, Lem. 4] was as follows: the radical
isogeny iteration

E : y2 = x3 + Ax2 + Bx → E′ : y2 = x3 + (A + 6α)x2 + 4α(A + 2α)x,

with α =
√

B, repeatedly quotients out (0, 0). If (0, 0) ∈ E is the point P→, then
(0, 0) ∈ E′ is the point P ′

→ if and only if α is the principal square root. This
changes if (0, 0) ∈ E is the point P←, in which case (0, 0) ∈ E′ is the point P ′

←
if and only if α is the non-principal square root.
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This convenient fact was adapted to N = 4, first as a conjecture [6, Conj. 2]
but recently this got proved by Onuki and Moriya [17, §5]. We will recall the
precise statement of this adaptation in Sect. 6.4, where it will arise as an easy
consequence to our generalization to arbitrary even N . But let us first highlight
two takeaways that are already apparent from the case N = 2:

(i) When considering radical isogeny formulae for even N , then substituting
−α for α produces formulae that are equally legitimate, e.g., because −1
is an Nth root of unity. Consequently, one cannot hope for a general rule
saying that the P→-direction always corresponds to the principal Nth root.

(ii) Even worse, imagine that the rule does apply to some concrete choice of
formulae, and now scale the radicand ρN with gN for some arbitrary mod-
ular unit g ∈ QN (b, c), i.e. a function whose zeroes and poles are supported
on the cuspidal part of X1(N); see [23]. The radical isogeny formulae trans-
form into a version in which each occurrence of N

√
ρN gets replaced by

N
√

ρN /g. For these new formulae, the correct Nth root will depend on the
Legendre symbol of the evaluation of g at the point (E,P ) ∈ X1(N) under
consideration.

6.3 Conjectural Shape of ρ′
N Modulo Squares (proved for N ≤ 14)

We ran into the following property of ρ′
N , which unfortunately we could not

prove beyond N = 14, but which implies a generalization of the aforementioned
observations for N = 2, 4 to arbitrary even N . Concretely, for every even N ≥ 4
we can consider

φE,2(x) = x4 + b(1 − c)x2 − 2b2x + b3, (10)

whose roots are the x-coordinates of the four halves of P = (0, 0) on E = Eb,c.
Over QN (b, c)(αN/2) this polynomial splits in two quadratic factors, with one
quadratic factor corresponding to a pair of points

N

2
Q,

N

2
Q +

N

2
P,

mapping to N
2 P ′ under ϕ. The discriminant of said quadratic factor is a modular

unit of X ′
1(N) that we denote by Δ.

Example 9. Over Q4(b, c)(α2) the polynomial (10) splits as (x2 −α2x−α6)(x2 +
α2x + α6). The roots of the first factor are the x-coordinates of two preimages
of 2P ′. The discriminant of that factor is Δ = α4(1 + 4α2).

Our conjecture is as follows:

Conjecture 10. If the radicand ρN = fN,P (−P ) was chosen, then one has

ρ′
N ≡ σαbΔ (11)

modulo multiplication with a non-zero square in QN (b, c)(α), for some σ ∈ {±1}.
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Here, we note:

– The sign σ should be viewed against our first takeaway message (i) above:
substituting −α for α produces equally valid radical isogeny formulae but
flips the sign.

– The congruence sign absorbs squares, so the conjecture is insensitive to replac-
ing ρ′

N with any other representative of tN (P ′,−P ′), or even tN (P ′, λP ′) for
whatever odd λ. However, as discussed in our second takeaway (ii) above, in
the case of ρN the precise representative does matter. Interestingly, scaling
with bN would make the statement somewhat cleaner, as it would remove the
mysterious factor b. This suggests that the radicand from Theorem 14 in the
appendix is in fact a more natural choice than fN,P (−P ).

It is exactly the presence of this factor b that made it difficult to guess how to
go beyond the case N = 4; in the case N = 4 we have b = −α4 so that modulo
squares this factor just appeared as a sign.

Theorem 11. Conjecture 10 is true for N ≤ 14.

Proof (sketch). From (7) and Example 9 we see that ρ′
4 ≡ αΔ modulo squares,

which matches with Conjecture 10 with σ = −1 because −b = α4 is a square.
So the case N = 4 is immediate.

The case N = 6 is more illustrative. Take A′, α, b as in (8) and let

Δ = 4(1 − A)α3 + 3A3 − 7A2 + 4A

be the discriminant of the relevant quadratic factor of (10). One verifies, aided by
the Magma command IsPrincipal, that for ρ′

6 = f6,P ′(−P ′) = −A′2(A′−1) the
function −bρ′

6/αΔ is a square in the function field of X ′
1(6) : α6 +A2(A−1) = 0.

So this again matches with Conjecture 10 (now with a minus sign).
In a similar way we have managed to deal with all even N up to 14, with

further help coming from the observation that ρ′
N = fN,−P ′(−P ′) ≡ f2,N2 P ′(P ′)

modulo squares, see [3, Thm. IX.9(2)]. The right-hand side is a simpler function
and therefore easier to handle by Magma. ��

As mentioned, beyond N = 14 we were no longer able to verify Conjec-
ture 10, although for N = 16 we gathered evidence by experimentally verifying
Proposition 12 below for various concrete horizontal supersingular isogeny walks
over finite prime fields.

6.4 Horizontal Isogenies and Principal Nth Roots

Proposition 12. Let N ≥ 4 be even and consider radical isogeny formulae
for computing chains of N -isogenies in terms of the radicand ρN = fN,P (−P ).
Assume that Conjecture 10 applies to these formulae and let σ = ±1 be the sign
involved in its statement.

Let p ≡ −1 mod lcm(2N, 8) and consider a supersingular elliptic curve E/Fp

on the surface, along with a point P ∈ E(Fp)[N ] such that the resulting isogeny
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ϕ : E → E′ = E/〈P 〉 is horizontal; let θ be the corresponding degree-2 com-
ponent as in Sect. 6.1 and let b, c ∈ Fp be the corresponding Tate normal form
coefficients. Let P ′ ∈ E′ be the point produced by our radical isogeny formulae,
where α = N

√
ρN (b, c) was computed as

σ · s · b(p−1)/2ρN (b, c)(p+1)/2N .

Here the sign s is determined as follows:

(i) if θ walks in the P→-direction and r > t + 1 then s = 1,
(ii) if θ walks in the P→-direction and r = t + 1 then s = −1,
(iii) if θ walks in the P←-direction (only possible if t = 1) then s = −1.

Then the isogeny E′ → E′/〈P ′〉 is horizontal.

Proof. Recall that the goal is to choose the instance of α that renders ρ′
N a

square. Assuming Conjecture 10, this happens if and only if σαbΔ is a square.
In case (i) the point P is fully halvable over Fp thanks to Lemma 7(iii), so

that Δ always evaluates to a square, regardless of the choice of α. So in order
for ρ′

N to be a square, it is necessary and sufficient to choose α such that σαb is
a square: the claim follows.

If we are in cases (ii) or (iii) then none of the halves of P belong to E(Fp).
Even stronger: none of these halves can have an Fp-rational x-coordinate, because
otherwise such a half H would satisfy πp(H) = −H and therefore P = πp(P ) =
−P ; a contradiction. This means that Δ is a non-square, regardless of the choice
of α, and we can conclude as before. ��
Example 13. For N = 4 we recover [6, Conj. 2], proved in [17]. Indeed, recall
that σ = −1 and that b is always non-square in view of ρ4 = −b = α4. Thus
we have to compute α = sρ

(p+1)/8
4 with s = −1 if p ≡ 7 mod 16 and s = 1 if

p ≡ 15 mod 16.

We conclude by noting that b(p−1)/2ρ(p+1)/2N = b−1(bNρN )(p+1)/2N , effec-
tively showing that the cost of root computation remains a single exponentiation.

7 Implementation

In this section we focus on N -isogenies between supersingular elliptic curves over
prime fields Fp such that computing the required radical can be done determin-
istically by a single exponentiation. All tests were done in Magma v2.32-2 on an
Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz with 128 GB memory.

7.1 Isogeny Chains

The main application of these radical isogeny formulae is that they can be used
to efficiently compute a cyclic Nk-isogeny for small N and large k. This is similar
to the work in [6], but we can now use larger N , have more efficient formulae
for smaller N and are not restricted to odd N .
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Remark that the radical 5-isogeny formulae from [6] were already optimized.
Table 1 however shows a modest to strong speed up for radical N -isogenies for
N = 7, 9, 11, 13. Over the field Fp with p the 513-bit CRAD-513 prime from
Sect. 7.2, they provide a speed-up of respectively 4%, 13%, 55% and 57% com-
pared to the work of [6].

The best known method to compute a chain of 17- or 19-isogenies so far was
by sampling 17- or 19-torsion points and then applying Vélu-style formulae to
compute the codomain. The cost of this is dominated by the computation of an
appropriate torsion point. With the new radical formulae from Sect. 5, we only
need to initialize the chain by computing such a torsion point once, and then
can iteratively apply the radical isogeny formulae. Working over a prime field of
roughly 512 bits, this results in an asymptotic speed-up of chaining 17-isogenies
by a factor of 14, and a factor of 10 for chaining 19-isogenies. There is somewhat
of a jump in complexity when going to optimized equations from X1(19) to
X1(23) due to a jump in gonality. In particular, we do not expect radical 23-
isogenies to be much of a speed-up over prime fields of characteristic roughly
512 bits,2 so we did not try to optimize these. Nonetheless, for asymptotically
large p the computational cost of a radical isogeny is expected to be dominated
by a full exponentiation over Fp.

For composite N , one can make a similar argument with regards to speed-up
but the comparison is more subtle. For instance, the cost of computing a 15-
isogeny is dominated by one exponentiation and 149 full multiplications accord-
ing to Table 1. Alternatively, a 15-isogeny can also be computed by means of
the concatenation of a 3- and 5-isogeny, the cost of which is dominated by two
exponentiations and 8 full multiplications. Assuming we work over a prime field
of cryptographic size - say at least 128 bits - the 15-isogeny will be the fastest
method. However, assuming we have rational 9-torsion available, we have access
to highly efficient radical 9-isogeny formulae, so asymptotically a 3-isogeny can
be seen as half the cost of a 9-isogeny.

In general, composite N seem to yield more efficient formulae compared to
prime N as can be seen in Table 1. This stems from the fact that optimized
equations for X1(N) typically have lower degree when N is composite, but also
from the radical isogeny formulae themselves which appear to have parameterless
integer coefficients (including zero) noticeably more often for composite N . These
zero coefficients are even more frequently present in the radical isogeny formulae
for prime-power N . In Table 2 one can see a comparison for computing low-degree
prime-power chains of isogenies for three levels of prime bitsizes.

As can be seen, computing a chain of prime-power degree isogenies can be
done more efficiently than a chain of prime degree isogenies for at least these
values. The effect is more prominent for larger prime fields, since the expo-
nentiation in those cases is more dominating in the overall cost of the radical
isogeny formulae. We did not optimize the formulae for N = 25, since an opti-
mal parametrization of X1(25) is already more complex than X1(19), and from

2 Especially in the CSIDH setting from Sect. 7.2 where the initializing overhead is less
negligible.
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Table 2. Comparison in speed with regards to computing a chain of radical �-isogenies
over a prime field Fp for � ∈ {2, 3} by means of different prime powers. The bit levels
correspond to the size of p.

512 bits 1024 bits 1536 bits

260,000-isogeny 23.38 s 97.42 s 264.59 s

430,000-isogeny 11.93 s 49.51 s 133.12 s

820,000-isogeny 8.77 s 34.58 s 91.33 s

1615,000-isogeny 7.92 s 29.23 s 75.01 s

360,000-isogeny 23.39 s 98.08 s 266.31 s

930,000-isogeny 12.77 s 49.88 s 134.61 s

Table 1 it is clear that computing chains of 5-isogenies would most likely be just
as fast or faster (at least on the 512-bit level). Assuming the arithmetic for a
radical �k+1-isogeny is always more complex than the arithmetic for a radical
�k-isogeny, the asymptotic speed-up that can be gained from going to the next
prime power is always bounded by (k + 1)/k. For this reason, we expect that
optimized radical 27- and 32-isogenies would be less efficient than radical 9- and
16-isogenies for all bitsizes in Table 2, though from a certain threshold onwards
they would be the most efficient option again.

7.2 Impact on CSIDH

An application where chains of isogenies can be used is CSIDH [7]. We proceed
just as in [6, §6], with the following differences:

– We make use of radical 17- and 19-isogenies.
– The optimzed formulae allow us to sample higher exponents of N -isogenies

for N = 7, 9, 11, 13.
– We no longer use radical 4-isogenies, instead switching to radical 8-isogenies.

This last point may seem counterintuitive considering that chains of 16-
isogenies are faster on the 512-bit prime level, as illustrated in Table 2. In CSIDH
however, p is chosen such that p+1 is divisible by as many small primes as pos-
sible. If we want to make use of radical 16-isogenies, we would need to have
that 32 | p + 1 (instead of 16 | p + 1 for radical 8-isogenies). This means that p
would need to be roughly one bit larger, making all the other arithmetic more
expensive. The trade-off in practice seems to be not worth it, considering the
relative small gain from switching from chains of radical 8-isogenies to chains of
radical 16-isogenies. The gap in efficiency between radical 4-isogenies and radical
8-isogenies does make a noticeable difference so we will use those. Nonetheless,
we still need an extra factor of 2 that divides p + 1 compared to the suggested
prime in [6], so we choose CRAD-513 as the prime

p = 24 · 3 · (3 · 5 · . . . 367)︸ ︷︷ ︸
72 consecutive primes

·379 · 409 − 1.
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The following sampling interval for the private key was determined heuristically,
but can be considered (near) optimal:

[−303; 303] × [−198; 198] × [−103; 103] × [−101; 101] × [−91; 91]

× [−68; 68] × [−51; 51] × [−41; 41] × [−6; 6]13 × [−5; 5]13

× [−4; 4]11 × [−3; 3]10 × [−2; 2]10 × [−1; 1]10.

Using these parameters, the class group action of the maximal private key can be
computed 12% more efficiently than in the case of [6]. For an average private key,
this speed-up will be roughly halved but from a constant-time implementation
angle, the maximal private key is a more apt benchmark. This implementation
in Magma is meant as a comparison to the work of [6], and can not be translated
directly to other (constant-time) implementations such as CTIDH [1].

Appendix: An Explicit Radicand

The goal of the appendix is to prove the following result.

Theorem 14. Let N ∈ Z>2. Let K = QN (b, c) as in Sect. 2.3. Let E/K be the
elliptic curve given by y2 +(1−c)xy−by = x3 −bx2. Let P = (0, 0) ∈ E. Denote
by Ψj the j-th division polynomial on E. Set k = �N/2�. Then

⎛
⎝ ∑

S∈E[N ]

eN (P, S)x(Q + S)

⎞
⎠

N

= N2N ·
⎧⎨
⎩

Ψ2
k

Ψ2
k−1

(P ) if N is odd;
Ψk+1
Ψk−1

(P ) if N is even.

Pairings and Division Polynomials

Let K be a field and let E/K be an elliptic curve. Suppose P ∈ E(K) is of order
N , such that charK � N . Let Q ∈ E(K) satisfying NQ = P . Let f ∈ K(E), g ∈
K(E) with respective divisors

div f = N(P ) − N(O), div g =
∑

S∈E[N ]

((Q + S) − (S)) .

Assume that g is such that gN = f ◦ [N ]. Denote by eN : E[N ] × E[N ] → μN

the Weil pairing and by tN : E(K)[N ] × E(K)/NE(K) → K×/(K×)N the
Tate pairing. For P ∈ E, denote by τP : E → E the translation-by-P map. Let
ω ∈ ΩE be an invariant differential and denote by resP(−) : ΩE → K the residue
at P as defined in [25].

Lemma 15. For every Q ∈ E(K) we have

tN (P,Q) =
“Leading coefficient of f at Q”
“Leading coefficient of f at O”

∈ K×/(K×)N .
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Remark 16. Note that the leading coefficient of f (meaning the leading coef-
ficient of the expansion of f with respect to a uniformizer) is everywhere well
defined up to Nth powers, since the order of vanishing of f is at every point divis-
ible by N (hence a different choice of uniformizer scales the leading coefficient
by an Nth power). Also, the quotient in Lemma 15 is invariant under scaling f
by an element of K, hence well-defines an element of K×/(K×)N given only the
divisor of f .

Proof. If P = O or Q = O then both sides are equal to 1, so assume P �= O �= Q.
We distinguish two cases.

Case P = Q. Let h ∈ K(E) be any function such that ordP (h) = −1 and
ordO(h) = 1. Then tN (P, P ) = f(div(h) + (P ) − (O)). By Weil reciprocity

∏
R

(−1)ordR(f) ordR(h) f
ordR(h)

gordR(f)
(R) = (−1)−2N f−1

hN

f1

h−N
(P )

∏
R �=P,O

fordR(h)(R).

equals 1. Hence

tN (P, P ) =
∏

R �=P,O
fordR(h)(R) =

hNf(P )
hNf(O)

∈ K×/(K×)N .

Case P �= Q. Let h ∈ K(E) be any function such that ordP (h) = 0, ordQ(h) =
−1, ordO(h) = 1. Then tN (P,Q) = f(div(h) + (Q) − (O)). By Weil reciprocity

1 =
∏
R

(−1)ordR(f) ordR(h) f
ordR(h)

gordR(f)
(R) = (−1)−N f

h−N
(O)

∏
R �=O fordR(h)(R)

hN (P )

Hence tN (P,Q) can be rewritten as

f(Q)
∏

R �=O
fordR(h)(R) = (−1)N hN (P )

(hNf)(O)
f(Q) =

f(Q)
(hNf)(O)

∈ K×/(K×)N .

��
Lemma 17. Let R ∈ E[N ] such that P,R generate E[N ]. We have

tN (P, P ) =

⎛
⎝N−1∑

i,j=0

eN (P,R)ix(Q + iR + jP )

⎞
⎠

N

in K×/(K×)N .

Proof. We rely on the residue theorem [25, Thm. 3], whose use was suggested to
us by Alexander Lemmens. This theorem implies that

∑
P∈E resP(xg−1ω) = 0,

therefore

−resO(xg−1ω) =
∑

S∈E[N ]

resQ+S(xg−1ω)

=
∑

S∈E[N ]

x(Q + S)
g

g ◦ τS
(Q)resQ(g−1ω)

= resQ(g−1ω)
∑

S∈E[N ]

eN (P, S)x(Q + S).
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It follows that (the last equivalence is due to Lemma 15)

⎛
⎝ ∑

S∈E[N ]

eN (P, S)x(Q + S)

⎞
⎠

N

= (−1)N xN (gN ◦ τQ)
gN

(O)

= (−1)N xN

xN ◦ [N ]
(xN ◦ [N ])(f ◦ [N ] ◦ τQ)

f ◦ [N ]
(O)

= (−1)NN2N xN (f ◦ τP )
f

(O)

which equals tN (P, P ) in K×/(K×)N . ��
Now let K = Q(b, c), where b and c are both transcendental over Q, though
possibly algebraically dependent. Let E/K be the elliptic curve given by y2 +
(1 − c)xy − by = x3 − bx2 and set P := (0, 0) ∈ E.

For Q ∈ E(K), we denote by hP,Q ∈ K(E)× any function with divisor
(P ) + (Q) − (P + Q) − (O). For j ∈ Z, we define

Lj :=

((
x

y

)ordO(hP,jP )−ordP (hP,jP )

· hP,jP ◦ τP

hP,jP

)
(O).

In other words, Lj is the leading coefficient at O of the Laurent expansion of
the function (hP,jP ◦ τP )/hP,jP with respect to the uniformizer x/y. Note that,
whereas hP,Q is only well-defined up to scalar multiplication, we have that Lj is
a well-defined element of K×.

Lemma 18. We have

Lj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b if jP = −2P or jP = −P ;
1 if jP = O;
−b if jP = P ;

b · yjP

xjP · x(j+1)P
else.

Proof. Using (note that hP,Q as given by the formula below indeed has the
desired divisor)

hP,Q =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x if Q = −P ;
1 if Q = O;

y

x − x2P
if Q = P ;

y − (yQ/xQ)x
x − xP+Q

else,

this is a straightforward check for Q ∈ {−2P,−P,O, P}. If Q �∈ {−2P,−P,O, P}
then in particular xP+Q �= 0. Let u = x/y. Then x ◦ τP = bu + O(u2) and
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y ◦ τP = O(u2), while x = u−2 + O(u−1) and y = u−3 + O(u−2). Thus the
leading term at O of (hP,Q ◦ τP )/hP,Q becomes

−yQ/xQ · b

−xP+Q
= b · yQ

xQ · xQ+P

as claimed. ��
In what follows, N > 2 will always denote an integer and k = �N/2�. We

will assume that b, c are such that P has order at least k + 1. Let f ∈ K(E) be
any function with divisor N(P ) − N(O) + ((k − N)P ) − (kP ).

Lemma 19. We have(
xN · f ◦ τP

f

)
(O) =

�(N−1)/2�∏
j=−�N/2�

Lj .

Proof. This follows by noting that((
x

y

)2N

· xN

)
(O) = 1.

and that f =
∏�(N−1)/2�

j=−�N/2� hP,jP has the desired divisor. ��
Define

ρN :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ψ2
k

Ψ2
k−1

(P ) if N is odd;

Ψk+1

Ψk−1
(P ) if N is even,

and π(N) :=
�(N−1)/2�∏
j=−�N/2�

Lj .

Lemma 20. For all N ∈ Z>2, we have π(N) = (−1)NρN .

Proof. We use induction on N . One easily verifies the claim for N = 3, 4, 5.
Suppose N = 2k ≥ 6 is even. Then

π(N)/π(N−1) = b· y−kP

x−kP · x(−k+1)P
, and π(N+1)/π(N) = b· ykP

xkP · x(k+1)P
,

whereas −ρN/ρN−1 = −(Ψk+1Ψk−1/Ψ2
k )(P ) = −ρN+1/ρN . But the middle term

−(Ψk+1Ψk−1/Ψ2
k )(P ) can be rewritten as xkP = x−kP (from the multiplication-

by-k formula using division polynomials; e.g. [20, Ex. 3.7]), so we can conclude
using Lemma 21. ��
Lemma 21. For all k ∈ Z \ {−1,−2}, we have x2

kP x(k+1)P = b · ykP .

Proof. Using the coordinate-wise addition formula for Weierstrass elliptic curves
(e.g. [20, III.2.3]), we find x2

kP x(k+1)P = y2
kP +(1−c)xkP ykP +bx2

kP −x3
kP = bykP .

Proof of Theorem 14. In the proof of Lemma 17, we already saw that the left
hand side equals (−1)NN2N

(
xN · f◦τP

f

)
(O). The desired result now follows by

combining Lemmas 19 and 20. �
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26. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des
Sciences, Série I(273), 238–241 (1971)

https://doi.org/10.1007/978-3-030-97121-2_17
https://doi.org/10.1007/978-3-030-97121-2_17
https://doi.org/10.1007/978-1-4612-1974-3_3
https://doi.org/10.1007/978-1-4612-1974-3_3
https://homepages.warwick.ac.uk/staff/S.Siksek/teaching/modcurves/lecturenotes.pdf
https://homepages.warwick.ac.uk/staff/S.Siksek/teaching/modcurves/lecturenotes.pdf
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://arxiv.org/abs/1503.08127v2,


Homomorphic Encryption



Threshold Linearly Homomorphic
Encryption on Z/2kZ

Guilhem Castagnos1(B), Fabien Laguillaumie2, and Ida Tucker3,4
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Abstract. A threshold public key encryption protocol is a public key
system where the private key is distributed among n different servers.
It offers high security since no single server is entrusted to perform the
decryption in its entirety. It is the core component of many multiparty
computation protocols which involves mutually distrusting parties with
common goals. It is even more useful when it is homomorphic, which
means that public operations on ciphertexts translate to operations on
the underlying plaintexts. In particular, Cramer, Damg̊ard and Nielsen
at Eurocrypt 2001 provided a new approach to multiparty computation
from linearly homomorphic threshold encryption schemes. On the other
hand, there has been recent interest in developing multiparty computa-
tions modulo 2k for a certain integer k, that closely match data manip-
ulated by a CPU. Multiparty computation would therefore benefit from
an encryption scheme with such a message space that would support a
distributed decryption.

In this work, we provide the first threshold linearly homomorphic
encryption whose message space is Z/2kZ for any k. It is inspired by
Castagnos and Laguillaumie’s encryption scheme from RSA 2015, but
works with a class group of discriminant whose factorisation is unknown.

Its natural structure à la Elgamal makes it possible to distribute the
decryption among servers using linear integer secret sharing, allowing
any access structure for the decryption policy. Furthermore its efficiency
and its flexibility on the choice of the message space make it a good
candidate for applications to multiparty computation.

Keywords: Class groups of quadratic fields · Linearly homomorphic
encryption · Threshold cryptography

1 Introduction

Encryption protocols are the core of any communication architecture. They pro-
vide confidentiality, defined in terms of semantic security or indistinguishability
of encryptions by Goldwasser and Micali [37]. On top of this security property,
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many applications require an “algebraic” property of the encryption scheme,
in the sense that an operation on the ciphertexts translates into an operation
on the underlying plaintexts. An encryption protocol possessing this property
is said to be homomorphic. While fully homomorphic encryption schemes allow
any operation to be evaluated on ciphertexts, protocols that only allow linear
transformations are also very useful and significantly more efficient.

The first linearly homomorphic encryption appears in Goldwasser and
Micali’s seminal work [37]. Then a line of factoring based schemes was devel-
oped, culminating with Paillier’s scheme [49] which was then generalized by
Damg̊ard and Jurik [26], allowing to encrypt larger messages.

An alternative was proposed by Castagnos and Laguillaumie using class
groups of quadratic fields in [17]. This allows to work with the additive group
Z/qZ as a message space where q is an odd prime, whereas Paillier and Damg̊ard
and Jurik’ schemes work modulo Ns where N is an RSA integer. The case of
message space Z/qsZ for an odd prime q, and more generally that of Z/NZ with
N =

∏
qsi
i for odd primes qi, were sketched in the conclusion of [17]. This was

further analyzed in [28] which gives a detailed construction and implementation.
As a consequence, the Castagnos-Laguillaumie scheme allows to construct mes-
sage spaces of any odd order N (with known factorization). There is a restriction
however: many cryptographic applications and proofs require that this order N
be relatively prime to the order of the underlying class group. This can only
be ensured with high probability if each prime qi dividing N is large enough to
make 1/qi negligible. Hence only relatively large values of odd integers N are
possible in practice. The case of message spaces defined modulo 2k were left open
in these works.

Another elegant work, by Benhamouda, Herranz, Joye, Libert [3] (refining a
scheme by Joye and Libert [41]), generalizes the Goldwasser-Micali cryptosystem
using 2k–th power residue symbols, and produces efficient protocols in terms of
bandwidth and speed (for both encryption and decryption). It is proven secure
under the quadratic residuosity assumption for RSA moduli N = pq, where
the primes p and q have a special form. The message space of their scheme
is the additive group Z/2kZ, which is a very interesting feature, especially for
the purpose of multi-party computation. Indeed, it has been used by Catalano,
Di Raimondo, Fiore and Giacomelli [19] to design a new 2–party protocol for
secure computation over the ring Z/2kZ. Their work follows a new line of secure
computation modulo 2k, initiated by Cramer, Damg̊ard, Escudero, Scholl, and
Xing in [23] who introduced a new information theoretic MAC that allows to
authenticate messages in the ring Z/2kZ to achieve security against malicious
adversaries. This choice is driven by the fact that modern CPU computations
are performed in such a ring, and it allows protocol designers to directly apply
optimizations that are often expensive to emulate modulo p or N .

On the other hand, several multi-party computation protocols, starting with
the pioneering work of Cramer, Damg̊ard and Nielsen [24], rely on threshold lin-
early homomorphic encryption. A (t, n)–threshold public key encryption (TPKE)
scheme allows n parties to share the decryption key so that if t of them collabo-
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rate, they can decrypt ciphertexts, whereas t − 1 users learn nothing about the
underlying plaintext. Katz and Yung proposed a threshold variant of Goldwasser-
Micali in [42], but this does not extend to a message space of order 2k. Further-
more, it is an open problem to devise an efficient threshold variant of Ben-
hamouda, Herranz, Joye, Libert’s scheme. In a nutshell, This scheme uses an
RSA integer N = pq where p ≡ 1 (mod 2k). A ciphertext for m ∈ Z/2kZ is
c = ymx2k ∈ Z/NZ for a random x, and a public y, which is a fixed non quadratic
residue, with Jacobi Symbol 1. Decryption is done modulo p, by removing the
2k–th power using an exponentiation to the power (p−1)/2k and then finding m
thanks to an easy discrete logarithm computation using Pohlig-Hellman’s algo-
rithm in the subgroup of (Z/pZ)× of order 2k. As a result, lots of operations
are done modulo the secret prime p, which prevents an efficient adaptation in a
multiparty setting.

A solution would be to design an Elgamal version of this scheme, that fits
the CL framework [17] of a DDH group with an easy DL subgroup. In this
framework, one works with a cyclic group G isomorphic to H×F where H and F
are subgroups of G of respective unknown order s and known order q, with q and
s co-prime. The group H consists of q–th powers, and in F discrete logarithms
are easy to compute. This makes it possible to encode messages m ∈ Z/qZ in
fm where f is a generator of F . Then fm is hidden by a random q–th power.

To make Benhamouda et al’s scheme fit the CL framework, the idea would
be to use two primes p, q ≡ 1 (mod 2k) and encode the message in the exponent
of an element f ∈ (Z/NZ)× of order 2k both modulo p and q. A ciphertext for
m could then be of the form (gr, fmpkr), with pk = gsk. During decryption, after
recovering fm, the discrete logarithm computation could then be done modulo
the public N , and only one exponentiation would have to be distributed among
the parties. However, this simple solution has some drawbacks due to the fact
that this element f must be public and seems hard to generate without knowing
the factorization. As a consequence, such a variant would rely on ad hoc security
assumptions that include this element f . Moreover, it would be less efficient
than the scheme that we propose in this work, at least in terms of bandwidth.
Devising a variant without a trusted dealer would also be very complicated. So
this question remains open:

Is it possible to design an efficient threshold linearly homomorphic encryption
with message space Z/2kZ ?

Our Contributions. In this work, we first propose a new linearly homomor-
phic encryption (LHE) scheme with message space of order 2k that solves the
aforementioned issues (Sect. 4). This LHE has an Elgamal structure as it follows
the CL framework, with an element f of order 2k that is used to encrypt the
messages in the exponent. We emphasize that this element can be generated
from public parameters. Thanks to its Elgamal shape, it can be converted into
the first threshold linearly homomorphic encryption with message space Z/2kZ.

The part of the decryption which involves the secret key uses an exponen-
tiation to that secret key in a group of unknown order. We use linear integer
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secret sharing schemes (LISS), introduced in [27], to share the secret key over
the integers. This allows to set up a scheme allowing any access structure for the
decryption policy and in particular a threshold decryption (Sect. 5).

Furthermore, we suggest how to add robustness and a distributed setup to
our scheme. We also sketch several application domains: multiparty computation,
homomorphic secret sharing and lossy trapdoor functions (Sect. 6).

The security of our schemes relies on a hard subgroup membership (HSM)
assumption, which is a natural adaptation of the assumption used in the CL
framework. One could also design a variant based on the DDH assumption.

The setup of our schemes is flexible and allows to encrypt messages modulo
2k for any integer k, and in particular natural choices such as k = 1, 32, 64, 128 or
even larger values. We show that our schemes are efficient by reporting timings
from an implementation in SageMath.

Technical Overview and Challenges. Our construction uses class groups
of imaginary quadratic fields like the encryption schemes modulo an odd prime
q of [17,55]. One of the challenges is to stay within the CL framework, while
working modulo a power of 2. As we will see, plugging q = 2k does not work.

In the original framework, a class group with a cyclic subgroup of order q
is generated. This is done by considering two class groups, Cl(ΔK) with dis-
criminant ΔK = −pq and Cl(Δ) with discriminant −pq3. In this case, there
is a surjection from Cl(Δ) to Cl(ΔK), and the kernel of which is precisely the
required subgroup of order q.

However, as usual in number theory, moving from an odd prime q to 2 or
2k is not an easy task. Firstly, setting q = 2k in the construction above does
not always give a cyclic subgroup of order 2k. Further difficulties arise from the
fact that in class groups, knowing the factorization of the discriminant allows to
compute square roots, and decide if elements are squares. And as we will see,
this allows to completely break a scheme which uses an Elgamal in the exponent
with a subgroup of order 2k.

We solve this issue by constructing a discriminant from an RSA integer N
of unknown factorization. But other technical reasons make the choice of this
discriminant tricky, and lead to arithmetic conditions on the primes composing
N (which have no negative impact in practice). We thus have to delve into the
genus theory associated to class groups of quadratic fields, introduced by Gauss,
to select discriminants that make it possible to securely work with the group of
squares of cardinality 2ks where s is odd (Sect. 3). Indeed, we need to carefully
handle the fact that some genera can leak information on discrete logarithms.
Controlling the 2-Sylow subgroup of Cl(ΔK) and expliciting the shape of the
kernel of the surjection from Cl(Δ) to Cl(ΔK) when the conductor is equal to
2k allows to find a element f of the group of squares of order 2k which does not
depend on the factorization of N .

Relying on the factorization assumption implies slightly larger elements (com-
pared to the original CL scheme), but the timings that we provide in Table 2 of
Sect. 4.3 from a non-optimized implementation of our protocol with SageMath,
show that the scheme is actually very efficient.
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2 Background

2.1 Threshold Public Key Encryption

In a threshold PKE (TPKE) scheme, the decryption key is divided into a number
of key shares which are distributed to multiple decryption servers, according to
a certain access structure. To decrypt a message, each server creates its own
decryption share, and these shares can be publicly combined to result in a full
decryption.

Definition 1. A monotone access structure on {1, . . . , n} is a non-empty col-
lection A ⊆ {1, . . . , n} such that ∅ /∈ A, and such that for all A ∈ A, and all sets
B such that A ⊆ B ⊆ {1, . . . , n} it holds that B ∈ A.

For a positive integer t < n, the threshold-t access structure Tt,n is the col-
lection of sets A ⊆ [n] for which |A| > t. The sets in A are called qualified,
whereas the sets outside A which should not be able to obtain any information
about the secret are called forbidden.

Definition 2 (Threshold PKE). Let P = {P1, . . . , Pn} be a set of par-
ties and let A be an access structure. A threshold PKE scheme for a mes-
sage space M and access structure A is a tuple of PPT algorithms TPKE =
(Setup,Encrypt,PartDec,FinalDec) with the following syntax.

Setup(1λ,A) → (pp, ek, sk) Takes as input a security parameter 1λ and an access
structure A. It outputs public parameters pp, an encryption key ek, and a
vector of n secret-key shares sk = (sk1, . . . , skn).
Party Pi is given the share ski that allows deriving decryption shares for any
ciphertext.

Encrypt(ek,m) → c On input the encryption key ek and a plaintext m ∈ M,
outputs a ciphertext ct.

PartDec(pp, ski, ct) → μi∪⊥ Takes as input the public parameters pp, a secret-key
share ski, and a ciphertext ct. It outputs a partial decryption share μi.

FinalDec(pp, {μi}i∈S) → m ∪ ⊥ Given pp and a subset S ⊂ {1, . . . , n} with
decryption shares {μi}i∈S, this algorithm outputs either a plaintext m or ⊥.

We require a TPKE scheme to satisfy the following correctness, and security
requirements.

Definition 3 (Decryption correctness). We say that a TPKE scheme for an
access structure A satisfies decryption correctness if for all λ, and all qualified
sets S, the following holds. For (pp, ek, sk) ← Setup(1λ,A), ct ← Encrypt(ek,m),
μi ← PartDec(pp, ski, ct) for i ∈ S, Pr[FinalDec(pp, {μi}i∈S) = m] = 1−negl(λ).

Definition 4 (following [34]) is a classical extension of semantic security for
an encryption scheme to the threshold case. The attacker actively (but non-
adaptively) corrupts a set S of servers outside A, gets their secret keys, and
can ask for partial decryptions of ciphertexts for which he already knows the
corresponding plaintext. The idea is that partial decryptions give no information
about the private keys of non-corrupted users.
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Definition 4 (T-ind-cpa-security). We say a TPKE scheme for an access
structure A is adaptive chosen plaintext (T-ind-cpa) secure if for any large enough
λ ∈ N, and any PPT adversary A the experiments ExptA,TPKE,0 and ExptA,TPKE,1

of Fig. 1 are computationally indistinguishable.

Fig. 1. Experiment ExptA,TPKE,b

Linearly Homomorphic Threshold Encryption. This primitive is particularly use-
ful for applications to multi-party computation.

Definition 5. Consider a TPKE with message space (M,+). A linearly homo-
morphic TPKE scheme additionally has the following evaluation algorithms:

EvalAdd(pp, c1, c2) → c∗ Takes as input pp and two ciphertexts c1 and c2, and
outputs a new ciphertext c∗ which decrypts to m1+m2 where each ci, i ∈ {1, 2}
decrypts to mi.

EvalScal(pp, c, α) → c∗ Takes as input pp, a ciphertexts c which decrypts to m,
and a scalar α, and outputs a new ciphertext c∗ which decrypts to α · m.

Informally, evaluations should be correct, meaning that decryption should lead to
the correct plaintext message m1 + m2 (resp. αm).

2.2 Linear Integer Secret Sharing

In the threshold setting for groups of unknown orders, key generation schemes
share the secret decryption key using the linear integer secret sharing (LISS)
primitive of Damg̊ard and Thorbek [27], which is similar to linear secret sharing
schemes except that it works over Z.

They show that any integer span program (ISP) as defined in [25] can be
used to build a secure LISS scheme. Roughly speaking, an ISP is specified by a
matrix with integer entries, and these entries are used as coefficients in the linear
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combinations that produce the shares from secret and randomness. They also
show that any LISS scheme can be used to build a distributed exponentiation
protocol, which is what we will use in our threshold decryption.

Goal. Let P = {1, . . . , n} denote the n shareholders and D the dealer. Let A be
a monotone access structure on P . The dealer D wants to share a secret s in a
publicly known interval [−2l, 2l] with the shareholders, such that any set A ∈ A

can reconstruct s, but any set A /∈ A gets no (or negligible) information on s.

Distributing the Secret. To this end, D uses a distribution matrix M ∈ Zd×e

and a distribution vector ρ = (s, ρ2, . . . , ρe)�, where s is the secret, and the ρi’s
are integers sampled uniformly at random in [−2l0+λ, 2l0+λ] for 2 ≤ i ≤ e, where
l0 is a constant that is part of the description of the scheme.

The dealer D computes a vector s ∈ Zd of share units as:

s = (s1, . . . , sd)� = M · ρ.

Let ψ : {1, . . . , d} �→ P be a surjective function. Shareholder ψ(i) is given the
i-th share unit, and is said to own the i-th row in M. For a set of shareholders
A ⊂ P , MA ∈ Zda×e denotes the restriction of M to the rows jointly owned by
A, while dA denotes the number of these rows.

Likewise, sA ∈ ZdA denotes the restriction of s ∈ Zd to the coordinates jointly
owned by the parties in A. Shareholder j’s share consists of sψ−1(j) ∈ Zdj , so
that it receives dj = |ψ−1(j)| out of the d =

∑n
j=1 dj share units. The expansion

rate μ = d/n is the average number of share units per player.
To construct LISS schemes, Damg̊ard and Thorbek [27] used integer span

programs [25], which were originally used to construct black-box secret sharing
which does not extend shares in the ring of integers.

Definition 6 (Integer Span Program (ISP) [25]). The tuple M = (M, ψ, ε)
is called an integer span program (ISP), if M ∈ Zd×e and the d rows of M
are labeled by a surjective function ψ : {1, . . . , d} �→ {1, . . . , n}. Finally, ε =
(1, 0, . . . , 0)� ∈ Ze is called the target vector. The size of M is the number of
rows d of M.

Definition 7. Let A be a monotone access structure and let M = (M, ψ, ε)
be an ISP. Then M is an ISP for A if for all A ⊂ {1, . . . , n} the following
conditions hold:

– If A ∈ A, there is a reconstruction vector λ ∈ ZdA such that λ� · M = ε�.
– If A /∈ A, there exists κ = (κ1, . . . , κe)� ∈ Ze such that MA · κ = 0 ∈ Zd,

and κ� · ε = 1. The vector κ is called a sweeping vector for A.
We also define κmax = maxA/∈A(‖κ‖∞).

In other words, the rows owned by a qualified set must include the target
vector in their span, while for a forbidden set, there must exist a sweeping vector
which is orthogonal to all rows of the set, but has inner product 1 with the target
vector. We also say that M computes A.
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Damg̊ard and Thorbek [27] showed that from an ISP M = (M, ψ, ε) which
computes the access structure A, a statistically private LISS scheme for A can
be obtained with M as the share generating matrix and l0 = l + �log2(κmax(e −
1))� + 1, where l is the length of the secret.

Then LISS can be obtained from Cramer-Fehr [25] or Benaloh-Leichter [2].
Although this later case was designed to work over finite groups, Damg̊ard and
Thorbek generalized it to share integers using access structures consisting of any
monotone Boolean formula. Thanks to results of Valiant [56], LISS schemes can
therefore be constructed for any threshold access structure. From a monotone
Boolean function f , Damg̊ard and Thorbek’s technique from Benaloh-Leichter
results allows binary share distribution matrices in {0, 1}d×e such that d, e =
O(size(f)) and which have at most depth(f) + 1 non-zero entries, so that each
share unit has magnitude O(2l0+λdepth(f)). Valiant’s results, improved by [38]
gives a monotone formula of size O(n1+

√
2) and depth O(log n) for the majority

function (from which any threshold-t function can be built). This reduces the
average share size to O(n

√
2(l0 + λ + log log(n))) bits.

Lemma 1 ([53, Lemma 3.1]). Let l0 = l+�log2(κmax(e−1))�+1. Consider a
secret to be shared, s ∈ [−2l, 2l], and ρ randomly sampled from [−2l0+λ, 2l0+λ]e

conditionally on 〈ρ, ε〉 = s, then the LISS scheme derived from M is private.
For any arbitrary s, s′ ∈ [−2l, 2l] and any forbidden set of shareholders A ∈ [n],
the two distributions {sA = MA · ρ | ρ ← U([−2l0+λ, 2l0+λ]e) s.t. 〈ρ, ε〉 = s},
and {s′

A = MA · ρ | ρ ← U([−2l0+λ, 2l0+λ]e) s.t. 〈ρ, ε〉 = s′} are 2−λ close.

2.3 Class Groups

Class Groups. Given a non square integer Δ < 0, Δ ≡ 0, 1 (mod 4), called
discriminant, the imaginary quadratic order of discriminant Δ, denoted OΔ is
the ring Z[(Δ +

√
Δ)/2]. The associated class group Cl(Δ) is defined as the

quotient of the group of invertible fractional ideals of OΔ by the subgroup of
principal ideals. Precise definitions of these objects can be found in e.g., [11].

In a nutshell, the class group Cl(Δ) is a finite Abelian group, with an effi-
ciently computable group law and a compact representation of elements. Ele-
ments are classes of ideals, with a unique reduced representative. The order of
Cl(Δ), the class number, denoted h(Δ) is close to

√|Δ|.
Historically, with the works of Lagrange and Gauss, the class group Cl(Δ)

was defined using the language of positive definite binary quadratic forms of
discriminant Δ. Let a, b, c ∈ Z such that a > 0 and Δ = b2 − 4ac, we will
denote for short f := (a, b, c) the positive definite binary quadratic form over
the integers, f(X,Y ) = aX2 + bXY + cY 2. Such a form is said to be primitive
if a, b and c are relatively prime. In the following, we will just call “forms” the
primitive positive definite binary quadratic forms over the integers. Two forms
f and g are said to equivalent if g(X,Y ) = f(AX + BY,CX + DY ) for integers
A,B,C,D such that AD − BC = 1.

The class group Cl(Δ) is isomorphic to the set of forms modulo this equiv-
alence relation. In fact, it is more natural to work with forms for algorithmic
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purposes: the class of the form (a, b, c) corresponds to the class of the OΔ–ideal
aZ+ −b+

√
Δ

2 Z. Moreover, the definition of the unique representative of the class
is more natural when working with forms: it is the reduced form (a, b, c), which
satisfies −a < b � a, a � c and if a = c then b � 0. A reduced form satis-
fies a �

√|Δ|/3. As a result, elements of Cl(Δ) can be represented by (a, b)
using log2(|Δ|) bits. Dobson et al. recently proposed in [32] an elegant method
to reduce this representation to 3/4 log2(|Δ|) bits.

Computations in Cl(Δ) can be performed with a reduction algorithm for
forms, devised by Lagrange (which corresponds to lattice reduction in dimension
2), and Gauss’ composition of forms (which corresponds to product of ideals).
More recently, efficient algorithms have been proposed for practical implemen-
tation by Shanks (cf. [40]). The neutral element of Cl(Δ) is the class of the
(reduced) principal form: (1, b, (b − Δ)/4) where b = Δ mod 2.

Class Group-Based Cryptography. Class group cryptography dates back to
the late 80s with the first key exchange in the class group of ideals of maximal
orders of imaginary quadratic fields, and related protocols that can be found
in Buchmann and Williams’ work [12] or McCurley’s [46]. After several years, a
family of class group based cryptosystems, NICE, was designed using class groups
of non-maximal orders [51]. The area remained dormant for another decade
until a serious cryptanalysis of this whole family of NICE cryptosystems was
proposed [16]. Since then, there has actually been a high regain of interest in class
groups to design new advanced cryptosystems, especially for secure multi-party
computation. Built upon Castagnos and Laguillaumie’s linearly homomorphic
encryption scheme (CL) [17], projective hash functions relying on class groups
allowed to design efficient inner product functional encryption [18], 2-party and
fully-threshold ECDSA signatures [14,15,29,58].

The main advantage of class-group cryptography is that it is well-suited
when multi-party protocols require a one-time transparent (or public-coin) setup
with minimal interaction among parties. For instance, [54] presented a scalable
distributed randomness generator with enhanced security and transparent setup
that relies on a variant of the CL encryption scheme. The verifiable random
functions from [57] take advantage of an exponentiation in a group of unknown
order without trusted setup, as well as accumulators in [45], and succinct non-
interactive arguments of knowledge in [13,44].

Another advantage is that the underlying algorithmic problems are harder
that equivalent problems in (Z/NZ)× or (Z/pZ)×. Indeed, the current best
known algorithms to solve the discrete logarithm problem in the class group of
ideals of order of imaginary quadratic fields, or to compute the class number have
a sub-exponential complexity of complexity L|Δ|(1/2, o(1)) (cf. [4]). This means
that elements in the class group are asymptotically smaller, and this actually
matters in practice for a given security parameter. For example, a 112-bit (resp.
256-bit) security determinant will be of size 1348 bits (resp. 5971 bits), while an
RSA modulus will be of size 2048 bits (resp. 15360 bits).

Genus Theory, Squares and Square Roots. We now give a quick introduc-
tion on genus theory and properties of squares of the class group. A comprehen-
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sive exposition of the subject with a historical perspective can be found in [22].
The theory of quadratic forms was originally motivated by the representation
problem: given m ∈ Z and a quadratic form f , are there integers (x, y) ∈ Z2

such that f(x, y) = m? A first remark is that all the forms in an equivalent
class represent the same numbers. Genus theory aims at characterizing primes
represented by quadratic forms of a fixed discriminant Δ. A genus consists of
classes of forms that represent the same classes of numbers in (Z/ΔZ)×. Genera
are related to squares of the class group: Gauss proved that the genus of the
principal form, the principal genus, corresponds to the subgroup of squares in
the class group Cl(Δ). Moreover, genera can be identified by values of some
characters.

Before going into more details, let us make a parallel with the well-known
properties of squares in (Z/NZ)× where N = pq is an RSA integer. Given
x ∈ (Z/NZ)×, there are 4 possible values for the Legendre symbols ((x/p), (x/q))
which gives a partition in 4 sets of (Z/NZ)×. One could speak of 4 “genera”.
The value (1, 1) corresponds to squares of (Z/NZ) which is the “genus” of 1.
Given the factorization of N , one can thus identify the “genus” of an element x.
But without it, one can only compute the Jacobi symbol of x. Given an element
x of Jacobi symbol 1, the quadratic residuosity problem asks to decide if x is
in the principal genus with symbol (1, 1) or in the genus with symbol (−1,−1)
without knowing the factorization of N .

For a class group Cl(Δ), the situation is similar: there are 2μ−1 genera,
where μ is related to the number of odd primes factor of the discriminant. One
can define μ “assigned characters”, whose joint values determine the genus (the
product of all characters is always one, so we indeed have 2μ−1 genera). The
characters are for the majority Legendre symbols with respect to the odd prime
factors of the discriminant. Let us describe in more details the setting that we
will use to define our cryptosystem, where Δ = −8N and N = pq is an RSA
integer. In this case, where Δ = 0 mod 4 and 2N = 2 mod 4 (see [22, Prop.
3.11, Th. 3.15]), it holds that μ = 3, and there are 4 genera. If f is a quadratic
form, the first two assigned characters are respectively

χp(f) :=
(

a

p

)

and χq(f) :=
(

a

q

)

where a is any integer represented by f , respectively prime to p, prime to q. The
third one, is

χ8(f) := (−1)(a
2−1)/8 or χ−8 := χ−4 · χ8(f) := (−1)(a−1)/2 · (−1)(a

2−1)/8,

depending if N ≡ 3 mod 4 or N ≡ 1 mod 4, where a is any odd integer
represented by f . The genus of the class of a form f is thus identified by
(χp(f), χq(f), χ8(f)) or (χp(f), χq(f), χ−8(f)) depending on N modulo 4. The
subgroup of squares of Cl(Δ) is the subgroup of forms of genus with symbol
(1, 1, 1), the three other genera have symbols (−1,−1, 1), (−1, 1,−1), (1,−1,−1).
Given the complete factorization of Δ (thus of N), one can identify in polyno-
mial time the genus of an element of the class group (see also [43, Theorem 6.3]).
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Without it, only χ8 or χ−8 and the Jacobi symbol relative to N , i.e., the product
χp · χq can be computed.

The situation of elements of order � 2 of the class group is similar. In the
general case, there are also 2μ−1 such elements and there are classes of forms
(a, 0, c), (a, a, c) and (a, b, a) [22, Lemma 3.10, Prop. 3.11]). As a result, find-
ing these elements is equivalent to factoring the discriminant. For example, the
discriminant of the form (a, 0, c) is −4ac.

Computing square roots can also be done efficiently given the factorization of
the discriminant [43, Theorem 6.10]. The algorithm, due to Gauss, uses reduction
of ternary forms, and the factorization of Δ is needed to extract square roots
modulo Δ.

Two Classgroups. Starting with the NICE family of cryptosystems, the idea of
using the relationship between two class groups has enabled many developments.
Let us first consider ΔK a fundamental negative discriminant: this means that
either ΔK ≡ 1 (mod 4) and ΔK is square-free or ΔK = 4m where m is square-
free and m ≡ 2, 3 (mod 4). This discriminant defines the maximal order OΔK

of
the quadratic field Q(

√
ΔK). Now let us consider a non fundamental discriminant

Δ� := ΔK	2 where 	 is called a conductor. Then, there exists a surjective map
ϕ� : Cl(Δ�) → Cl(ΔK), moreover, for ΔK < −4, the kernel of this surjection is
isomorphic to

(OΔK
/	OΔK

)×
/ (Z/	Z)×

.

This isomorphism is used in [22, Theorem 7.24] to establish that for ΔK < −4,

h(OΔ�
) = h(OΔK

) · 	 ·
∏

p|�

(

1 −
(

ΔK

p

)
1
p

)

. (1)

3 A Class Group with a Cyclic Subgroup of Order 2k

In this section, we show how to generate a class group Cl(Δ) that contains a
cyclic subgroup of order 2k, inspired by the CL cryptosystem of [17], that builds
a subgroup of order a prime q by using Eq. 1 with a conductor 	 = q, and a
fundamental discriminant ΔK divisible by q. Unfortunately, the situation is not
as simple as setting 	 = 2k: as usual, working with 2 instead of an odd prime
induces a lot of technicalities.

3.1 Choice for ΔK

Let us begin with the generation of the fundamental discriminant ΔK . Firstly,
as we shall see in Subsect. 3.4, we cannot reach any security in our applications if
computing square roots in the class group is easy. As mentioned in Subsect. 2.3
this means ΔK must be hard to factor. As a consequence we will construct a
discriminant ΔK from an RSA integer, N = pq, which is a first difference with
the CL encryption.
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Secondly, we will need to work with a subgroup of Cl(Δ) of odd order. This
subgroup will be isomorphic to the subgroup of squares of Cl(ΔK). The subgroup
of squares has cardinality ŝ := h(Δ)/2μ−1 where 2μ−1 is the number of elements
of order � 2. If we ensure that the 2–Sylow of Cl(Δ) is restricted to the elements
of order � 2, then the subgroup of squares will correspond to the odd-part and
ŝ will be odd as required. This is done by ensuring that elements of order 2 are
not squares, thereby imposing conditions on the prime factors of ΔK .

Several choices are possible to construct ΔK from N . In order for the con-
ditions on the prime p and q to be the less restrictive possible, we choose to
work with a fundamental discriminant ΔK := −8N . The next lemma gives the
conditions that ensures that the 2–Sylow is restricted to elements of order 2.

Lemma 2. Consider two distinct odd primes p and q of same bit-size, with
values modulo 8 and Legendre symbols chosen according to Table 1. Let N =
pq, and consider the fundamental discriminant Δk = −8N . Then the 2–Sylow
subgroup of Cl(ΔK) is isomorphic to Z/2Z × Z/2Z.

Table 1. Choices of (p, q) such that the 2–Sylow of Cl(−8pq) is isomorphic to Z/2Z×
Z/2Z. The star ∗ means that there is no restriction on the values (p/q) and (p/q).

p mod 8 q mod 8 (p/q) (q/p)

1 3 −1 −1

1 5 −1 −1

3 1 −1 −1

3 5 ∗
3 7 −1 1

5 1 −1 −1

5 3 ∗
5 5 ∗
5 7 −1 −1

7 3 1 −1

7 5 −1 −1

Proof. If N = pq, and Δk = −8N , as seen in Subsect. 2.3, μ = 3, so there are
23−1−1 = 3 elements of order 2 in Cl(ΔK). Looking at forms of the type (a, 0, c)
of discriminant −4ac = −8N , we find the following ones:

f2 := (2, 0, N); fp := (p, 0, 2q); fq := (q, 0, 2p).

By hypothesis, N > 2, 2q > p and 2p > q so these three distinct forms are
reduced, and their classes gives the 3 elements of order 2 of Cl(Δk).
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We now compute the genus of f2, fp and fq. For this, we need the value of
χp, χq and χ8 or χ−8 depending of the value of N mod 4. Let us see in details

the case of f2. We have χp(f2) =
(

a
p

)
where a is an integer represented by f2

prime to p. One can choose a = 2 = f2(1, 0). As a result

χp(f2) =
(

2
p

)

= (−1)
p2−1

8 ,

which gives 1 if p ≡ 1, 7 (mod 8), and −1 if p ≡ 3, 5 (mod 8).
Likewise, χq(f2) = (2/q), whose value is determined by q (mod 8).
If N ≡ 3 (mod 4), to compute χ8(f2) we need an odd integer represented by

f2. We can choose f2(0, 1) = N . We then have

χ8(f2) = (−1)
N2−1

8 ,

and again this value depends only on N mod 8. If N ≡ 1 (mod 4), we can also
take N to evaluate χ−8(f2), which also depends only on N mod 8.

For fp, we use fp(0, 1) = 2q to evaluate χp(fp) =
(

2
p

)
·
(

q
p

)
. We also have

χq(fp) =
(

p
q

)
using fp(1, 0) = p, and the value of χ8 and χ−8 are also determined

using p. The genus of fp can thus be determined by the values of p mod 8

and the Legendre symbols
(

p
q

)
and

(
q
p

)
. Note that by the law of quadratic

reciprocity, these Legendre symbols are equal if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)
and

(
p
q

)
= −

(
q
p

)
if p ≡ q ≡ 3 (mod 4). The determination of the genus of fq

is similar to the one of fp by exchanging the roles of q and p.
Now in order to have a 2–Sylow subgroup isomorphic to Z/2Z×Z/2Z, fp, fq

and f2 must all not be squares, which means that their genus must not have
symbols (1, 1, 1). As shown above, this only depends on the values of p, q (mod 8)
and of the relative Legendre symbols of p and q. By inspection of these values,
we fill the Table 1 which gives all possibilities ensuring that fp, fq and f2 are all
not squares. ��

3.2 Choice for Δ

We now want to construct a non fundamental discriminant such that Cl(Δ)
contains a cyclic subgroup of order 2k by using Eq. 1. We will therefore consider
as conductor 	 a power of 2. As ΔK = −8N , we get

(
ΔK

2

)
= 0, and denoting,

Δ = 	2ΔK , the class number h(Δ) = 	h(ΔK), i.e, the kernel of the surjection
ϕ� has order 	.

If we set 	 = 2k, we thus get a subgroup of Cl(Δ) of order 2k, and one can
prove that this subgroup is cyclic, in our case where ΔK = −8N . Unfortunately,
a similar computation to that of the proof of the next theorem shows that gen-
erators of this subgroup are not squares: the character χ−4 is equal to −1. This
would break all our security assumptions, as the value of this character would
leak the parity of discrete logarithms.
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We thus set 	 = 2k+1, and as a consequence, the kernel of ϕ� has order 2k+1,
and we can work in its cyclic subgroup of squares, of order 2k. Note that other
choices of ΔK depending on N lead to similar constructions.

Theorem 1. Let ΔK = −8N with N = pq as in Lemma 2. Let Δ = 22k+2 ·ΔK ,
then the class of f := (22k, 2k+1, 1 + 8N) is a square of order 2k in Cl(Δ).

Proof. Let 	 = 2k+1 be the conductor. The strategy of the proof is as follows:
we use the fact that ker ϕ� is isomorphic to

G� := (OΔK
/	OΔK

)×
/ (Z/	Z)×

.

We will exhibit a system of representatives of this quotient group, and an element
of order 2k. As the isomorphism to kerϕ� is explicit, we will apply it to this
element to get f of the same order 2k in Cl(Δ). Then a computation of the
assigned characters will show that f is a square.

The first step is to establish a system of representatives of the group G�.
As ΔK = 4m, with m := −2N , OΔK

= Z + Z
√

m ≡ Z[X]/(X2 − m) and
OΔK

/	OΔK
≡ Z/	Z[X]/(X2 − m). First observe that when 	 = 2, we have

m ≡ 0 mod 	 and the invertible elements of OΔK
/2OΔK

are therefore 1 and
1 + X. For k � 0, we will then have

(OΔK
/	OΔK

)× =
{
a + bX, (a, b) ∈ (Z/	Z)× × Z/	Z

}

To get the group G�, we identify a + bX with ac + bcX for c ∈ (Z/	Z)×. We
then have the system of representatives:

{1 + bX, b ∈ Z/	Z} .

Now we show that 1 + 2X is of order 2k in this group (one could prove that
1+X is of order 2k+1 and this group is cyclic, but considering 1+2X is sufficient
for our applications). For this we first prove that for k � 2,

(1 + 2X)2
k−1

= 1 + 2kX + 2kX2 ∈ Z/2k+1Z[X]. (2)

This can been shown by induction: the equality is clear for k = 2. Now suppose,
that there exists a polynomial Q, s.t. (1 + 2X)2

k−2
= 1 + 2k−1X + 2k−1X2 +

2kQ(X). Squaring both sides, we indeed get that (1+2X)2
k−1

= 1+2kX +2kX2

modulo 2k+1, which proves Eq. 2.
As a result we get that for k � 2, (1 + 2X)2

k−1 ≡ 1 + 2km + 2kX which is
equivalent to 1+(1+2k)−12kX = 1+2kX �= 1 in the group G�. But (1+2kX)2 =
1 which proves that 1+2X is of order 2k for k � 2. It is straightforward to verify
that 1 + 2X is also of order 2k for k = 0, 1.

The next step is to map 1 + 2X in ker ϕ� using the explicit isomorphism.
This isomorphism consists in taking a representative α of the class of 1 + 2X in
OΔK

, to compute a basis of the ideal αOΔK
and then to move it to Cl(Δ) by

considering the class of the ideal αOΔK
∩ OΔ. The element 1 + 2X corresponds
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to the quadratic integer α := 1 + 2
√

m = 1 +
√

ΔK . Following [10, Prop. 2.9],
one writes α = x+y

√
ΔK

2 with x = y = 2. Then applying the Extended Euclidean
algorithm on y = 2 and (x + yΔK)/2 = 1 + ΔK one gets κ = 1 − 4N , λ = −1,
μ = 1 s.t. κy + λ(x + yΔK)/2 = μ. The ideal αOΔK

then corresponds to the
form (a, b, c) where a = N(α)/μ = 1−Δ = 1+8N ; and b ≡ −κx−λ(x+y)ΔK/2
(mod 2a). One gets b ≡ −2 − 8N ≡ 8N (mod 2a), and c = 2N .

We then move this form to Cl(Δ) following [39, Algorithm 2] as a is odd
so prime to the conductor 2k+1. We get the form (1 + 8N, 2k+4N, 22k+3N).
We then reduce this form, first by normalizing the b coefficient modulo 2a :
2k+4N − 2k+1a = −2k+1, and computing the new value of c, we get 22k. As a
result, this normalization gives the form (1+8N,−2k+1, 22k) which is equivalent
to the form f = (22k, 2k+1, 1+8N). Note that this form is reduced if 22k < 1+8N
which will be the case in our applications.

The final step of the proof is to prove that f is a square. In Cl(Δ), the
assigned characters are χ8, χ−4, χp, χq. Using f(1, 0) = 22k which is a square,
one gets that χp(f) = χq(f) = 1. Using the odd integer f(0, 1) = 1 + 8N ,
χ−4(f) = (−1)4N = 1 and χ8(f) = 1 as 1 + 8N ≡ 1 (mod 8). ��

3.3 The Gen2k Algorithm

We depict our group generator in Algorithm 1. We first select a fundamental dis-
criminant ΔK := −8N as in Lemma 2. This ensures that the 2–Sylow subgroup
of Cl(ΔK) has order 4 and h(ΔK) = 4ŝ where ŝ is odd, and ŝ is the cardinality
of the subgroup of squares of Cl(ΔK).

Algorithm 1: Gen2k

Input: 1λ

Result: pp
—
sample two random distinct η(λ)-bit primes p, q according to Table 1
N := pq
ΔK := −8N
Δ := 22k+2 · ΔK

f := (22k, 2k+1, 1 + 8N) ∈ Cl(Δ)
sample r a random square of Cl(Δ)

h := r2
k ∈ Cl(Δ)

compute s̃ an upper bound h(ΔK)
return pp := (f, h, s̃)

We then consider the class group Cl(Δ) of the non maximal order of dis-
criminant Δ := 22k+2 · ΔK as in Lemma 1. This setting ensures that the class
of the form f := (22k, 2k+1, 1 + 8N) generates a subgroup F of order 2k of the
group of squares of Cl(Δ).
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For the discriminant Δ, the parameter μ equals 4 and there are h(Δ)/2μ−1 =
2k+1 ·h(ΔK)/8 = 2k · ŝ squares in Cl(Δ) (cf. [22, Prop. 3.11]). We then consider
h a random 2k–power of a square of Cl(Δ). By construction, the order of h,
denoted s, is odd as it divides ŝ. We denote H the subgroup generated by h.
Denoting G the cycling subgroup of the squares of Cl(Δ) of order 2ks, we have
the isomorphism G � F ×H and F (resp. H) is the subgroup of 2k–roots of unity
of G (resp. the 2k–th powers of G). Finally, we denote s̃ a known upper bound
for s: the order s is unknown in our generator, but s̃ can be computed from an
upper bound on the class number of Cl(ΔK): h(ΔK) < 1

π log |ΔK |√|ΔK |, or
obtain a slightly better bound using the analytic class number formula (cf. [46]).

Size of p and q. The bitsize η(λ) of the primes p and q is chosen such that the
best algorithms for factoring N := pq take 2λ time. This ensures that computing
s via the class number of Cl(ΔK) takes more that 2λ time as known algorithms
for computing class numbers have worse complexities. In practice, for 112 bits
(resp. 128 bits) of security, we take N of 2048 bits (resp. 3072 bits).

3.4 Assumptions

The semantic security of our linearly homomorphic encryption (and its threshold
variant) relies on the following hard subgroup membership assumption, which is
a natural extension of the HSM assumption underlying CL encryption [18]. In
a nutshell, in the group G, we assume that it is hard to distinguish elements of
the subgroup H, the 2k–th powers, from random elements. As we shall see, in
our particular context, this assumption implies the factorization assumption.

Definition 8 (HSM2k assumption). Let A be an adversary for the HSM2k prob-
lem, its advantage is defined as:

Adv
HSM

2k

A (λ) :=
∣
∣
∣2 · Pr[b = b∗ : pp := (f, h, s̃) $←− Gen2k(1λ), x ←↩ DH,

u
$←− U((Z/2kZ)×), b $←− {0, 1}, z0 := hxfu, z1 := hx, b∗ ← A(pp, zb)] − 1

∣
∣
∣

where DH is a distribution over the integers such that the distribution {hx, x ←↩
DH} is at distance less than 2−λ from the uniform distribution in H. The HSM2k

assumption holds if for any probabilistic polynomial-time adversary A, its advan-
tage is negligible.

Relations with Factoring and Computing the Class Number. Let ΔK =
−8N , as defined in Algorithm 1. The class number n := h(ΔK) is an integer
multiple of s, the unknown order of h. So computing n allows to break the HSM2k

assumption by checking if zn
b = 1 or not.

The knowledge of n also allows to find the elements of order 2 of Cl(ΔK),
and, as shown in the background section, these elements gives the factorisation
of ΔK and thus of N . So computing n allows to factor N .

Conversely, there is no known method of computing h(ΔK) given the factori-
sation of N , and best algorithms for computing h(ΔK) have worse complexities
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than algorithms to factor N . However, the factorization of N allows to break
HSM2k . As already mentioned in Subsect. 2.3, computing square roots and decid-
ing if an element is a square in Cl(Δ) is feasible in polynomial-time if the factori-
sation of the discriminant is available. The HSM2k problem asks to distinguish
between an element of the form z0 = hxfu for a random odd integer u and an
element of the form z1 = hx, for a random x. As h is a 2k-th power of a square,
it is a square, and at least one of its square roots is a square itself, even if k = 1.
This is not the case for hxfu. By construction, f is a square whose square roots
are not squares: if there exists a square a such that f = a2 then a would be a
square of order 2k+1, and we get a contradiction with the fact that the group of
squares of Cl(Δ) has order 2k · ŝ where ŝ is odd. So to distinguish the two cases,
one has to compute a square root of the challenge element, and by inspection,
compute the genera of the forms, check whether there exists a square root that
is a square (and in this case the attacker outputs b� = 1) or not (and in this case
the attacker outputs b� = 0). These relations between algorithmic assumptions
are summarize in Fig. 2.

It can be shown that the factorization allows in fact to compute a partial
discrete logarithm of any y = gx in the class group, i.e., the value x mod 2k

(and gives therefore a trapdoor to decrypt a ciphertext).

Fig. 2. Relations between the algorithmic assumptions underlying our protocols

4 Linearly Homomorphic Encryption Scheme on Z/2kZ

4.1 Description of the New Encryption Scheme

Let DH (resp. DG) be a distribution over the integers, such that {x mod s :
x

$←− DH} (resp. {x mod 2ks : x
$←− DG}) is δ-close to the uniform distribution

in {1, . . . , s} (resp. {1, . . . , 2ks}), where δ ≤ 2−λ.
The distribution DG is only used in the security proof and the distribution

DH can be instantiated by sampling x uniformly in {1, . . . s̃ · 2λ+2} using the
upper bound s̃ on s (cf. [17, Appendix C]).

Our linearly homomorphic encryption scheme on Z/2kZ is described in Fig. 3,
where the key generation algorithm takes as input the public parameters pp :=
(f, h, s̃) that come from the Gen2k algorithm. There is no condition on the value
of k, typical values are 32, 64 or 128.
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Fig. 3. Linearly homomorphic encryption scheme with message space Z/2kZ

Correctness and Decryption. The correctness of the protocol comes from the
fact c2 · c−sk

1 = fm · pkr · (hr)−sk = fm · (hsk)r · (hr)−sk = fm. To recover
m from fm, one has to compute a discrete logarithm. In this case, this discrete
logarithm computation is trivial since f generates a subgroup of order 2k. Pohlig-
Hellman algorithm makes it possible to recover m by extracting m bit by bit.
The algorithm to retrieve the discrete logarithm is described in Fig. 4. It consists
mainly of O(k2) squaring in the class group.

4.2 Security of the Encryption Scheme

Semantic Security

Theorem 2. The scheme described in Fig. 3 is semantically secure under chosen
plaintext attacks (ind − cpa) if the HSM2k assumption holds.

Proof. The proof proceeds as a sequence of games, starting with the real ind−cpa
experiment and ending in a game where the ciphertext statistically hides the
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Fig. 4. Pohlig-Hellman algorithm to compute logf (M)

random bit b chosen by the challenger. We denote Si the event ‘adversary A
outputs b = b∗ in Game i’.

In Game 1, instead of sampling sk from DH , it is sampled from DG. The
rest of the experiment is unchanged, so the only difference from A’s view is the
distribution of pk := hsk. The distribution DH is chosen such that {hx : x

$←−
DH} is δ-close to the uniform distribution in H. Furthermore, since s divides
2ks, sampling x in the previous expression also yields a distribution δ-close to
the uniform distribution in H, so |Pr[S1] − Pr[S0]| ≤ 2δ.

In Game 2, the challenge ciphertext is computed as c1 := hr and c2 := fmbcsk1 ,
where r

$←− DH . As pkr = csk1 this game is identical to the previous one, i.e,

Pr[S1] = Pr[S2].

In Game 3, the challenger additionally samples u
$←− (Z/2kZ)� uniformly at

random. It sets c1 := hrfu, and c2 := fmbcsk1 . Now if A could distinguish game
2 from game 3, one could use A to solve the HSM2k problem, by setting c1 to
be the HSM2k challenge. Hence, denoting εHSM

2k
the maximum advantage of any

polynomial time adversary for the HSM2k problem, A’s success probability in
Game 2 and Game 3 can not differ by more than εHSM

2k
. This implies that

|Pr[S3] − Pr[S2]| ≤ εHSM
2k

.

We now demonstrate that in game 3, the challenge bit b is perfectly hidden
from A’s view. Since G � H×F , the element c1 = hrfu information theoretically
fixes the value of (u mod 2k) and of (r mod s) from A’s view. Furthermore A
receives c2 = fmb+u·skpkr. Given c1 and pk, the value of pkr is information
theoretically fixed, hence an unbounded adversary could infer (mb+u·sk mod 2k).

Since sk is sampled from DG, the distribution followed by (sk mod 2ks) is
at negligible distance δ ≤ 2−λ of the uniform modulo 2ks. Furthermore, since
s and 2k are co-prime, (sk mod 2k) is δ-close to the uniform modulo 2k and is
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independent of (sk mod s). So even if pk = hsk fixes the value of (sk mod s), that
of (sk mod 2k) remains δ-close to U(Z/2kZ) from A’s view. Finally since u is
invertible modulo 2k, (u · sk mod 2k) is also δ-close to U(Z/2kZ), and perfectly
masks mb. Therefore |Pr[S2] − 1/2| ≤ δ. Combining the probability equations,
we conclude the proof with the following inequality:

Advind-cpaA (λ) ≤ εHSM
2k

+ 3δ.

��
We note that a DDH assumption can also be used in the group G similarly

to [17], which would lead to slightly different encryption scheme (using g = hf
instead of h).

Circuit Privacy for Linear Functions. The ciphertexts of our encryp-
tion protocol guarantees circuit privacy, in the sense that ciphertexts obtained
through the homomorphic evaluation process are indistinguishable from fresh
encryptions of the resulting message. This property is very useful in multi-party
computation (see [19,20] for instance). More precisely, the definition is as follows.

Definition 9 (Circuit privacy for linear functions). We say that a linearly
homomorphic encryption LHE is private if there exists a probabilistic polynomial-
time simulator Sim such that for any λ ∈ N, for any (pk, sk) ← KeyGen(λ, pp),
any pair of messages m1, m2 in the message space, and two ciphertexts c1
and c2 of m1 and m2 respectively, and any scalar α, the statistical distances
between LHE.EvalAdd(pp, pk, c1, c2) and Sim(1λ, pp, pk,m1 + m2) and between
LHE.EvalScal(pp, pk, c1, α) and Sim(1λ, pp, pk, αm1) are negligible.

Theorem 3. The scheme of Fig. 3 is circuit private for linear functions.

Proof. For both pair of distributions, the simulator just encrypts the message it
has as input (m1+m2 or αm1). The randomization applied during homomorphic
evaluations (LHE.EvalAdd and LHE.EvalScal) ensures that the distributions are
statistically close. ��

4.3 Experiments

We have implemented our encryption protocol using Sagemath with calls to the
PARI native C Library [50] for the operations in class groups. All benchmarks
were done on a standard laptop (Intel Core i5-6267U @ 2.90 GHz). Our exper-
iments have been run for security levels of λ = 112 and 128 bits. The RSA
modulus N has therefore respective sizes of 2048 bits and 3072 bits. The bit size
of the ciphertexts is 2× 3

4 (5+2k+ 	N ) where 	N is the bit size of N . The crucial
part of KeyGen, Encrypt and Decrypt are exponentiations in class groups where
the exponent is upper bounded by s̃ ≈ √

N .
These timings show that even a straightforward implementation is practical,

and an optimized C implementation of our system would drastically improve the
running times.
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Table 2. Bit size and running time of our homomorphic encryption in seconds.

k λ (bits) Ciphertext (bits) Setup KeyGen Encrypt Decrypt

32 112 3176 0.037 0.101 0.096 0.101

128 4712 0.231 0.212 0.214 0.222

64 112 3272 0.086 0.098 0.098 0.118

128 4808 0.201 0.217 0.219 0.243

128 112 3464 0.076 0.103 0.105 0.178

128 5000 0.398 0.230 0.230 0.309

5 Threshold Encryption on Z/2kZ with Trusted Setup

5.1 A TPKE Scheme from Class Groups

In this subsection we adapt the PKE scheme from the previous section to the
threshold setting. The threshold decryption relies on the LISS construction from
Damg̊ard and Thorbek [27] based on [2]. Let n be the number of servers, from the
threshold access structure A, the dealer generates a share-generating matrix M ∈
{0, 1}e, where e ∈ O(n1+

√
2) which computes the Boolean formula associated to

A as well as a surjective function ψ : {1, . . . , d} �→ P as defined in Subsect. 2.2.
Our new threshold encryption protocol with message space of order 2k is

described in Fig. 5. We omit the EvalAdd and EvalScal algorithm that are exactly
the same as the ones for our linearly homomorphic encryption scheme (Algo-
rithms 5 and 6 of Fig. 3).

Theorem 4. The scheme described in Fig. 5 achieves T-ind-cpa-security under
the ind − cpa security of the non-threshold scheme of Fig. 3.

Proof. This theorem is a direct corollary of the privacy of the LISS and the
ind-cpa of the non-threshold encryption scheme.

From an attacker against the T-ind-cpa-security A, we construct an attacker
against the ind-cpa security of the basic scheme, which receives public parameters
pp and a public key pk = hx for an unknown x.

After A chooses an access structure A, he is fed with pp and pk as ek. He
chooses a set S outside A, and waits for the corresponding secret keys. They are
simulated after the computation of a sharing of 0, i.e., the distribution vector is
ρ = (0, ρ1, . . . , ρd)T and the shares are s = (s1, . . . , sd)� = M ·ρ, where M is the
matrix corresponding to the access structure A. A receives the shares belonging
to the servers in S.

Now, A can query partial decryptions: he queries the oracle on plaintext m
and server i. The message m is encrypted as ct = Encrypt(pp, ek,m) = (ct1, ct2).
We must simulate the contributions that this honest party i computes, namely
di := (csj

1 )j∈ψ−1(i), from pkr = ctx1 . This is done as in [27] for the distribution
of an exponentiation. Let κS be the sweeping vector of Definition 7 for S. Now,
let R be a row in the distribution matrix M belonging to the honest server Pi
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Fig. 5. TPKE scheme with message space 2k
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and let sj be one component of the server’s share we computed from this row.
Had we used ρ′ = ρ+xκS instead of ρ, then the share component coming from
R would have been s′

j = (ρ + xκS )R = sj + xκS R instead. The observation is

now that because we know ctx1 and s, we can compute ct
s′

j

1 even though we do
not know x. Concretely, we simulate the contribution from P by

ct
sj

1 (ctx1)κS R = ct
sj+xκS R
1 = ct

s′
j

1 .

After this partial decryption phase, A outputs his messages m0 and m1 which
are forwarded to the ind-cpa challenger which answers with a challenge ciphertext
c� of one of this two messages mb� , which is given to A. After another series
of queries for partial decryptions, answered in the same way, A outputs a bit b,
which is set as the output of the ind-cpa adversary.

To see that the simulation is correct, we see that the simulated shares are
statistically indistinguishable from the real shares by the privacy of the LISS
scheme. Second, honest parties always output the correct value ctx1 , by correct-
ness of the LISS scheme. Finally, given ct1, ctx1 , the simulated contributions from
honest parties are statistically indistinguishable, since the vector we use for the
simulated sharing is ρ′ = ρ + xκS which is statistically close to a uniformly
chosen sharing vector for x. The advantage of the ind-cpa attacker will therefore
be that of the T-ind-cpa attacker. ��

In terms of efficiency, the only difference between the thresold scheme and
the encryption scheme of Sect. 4 is in the decryption algorithms (encryption
is exactly the same). Therefore, the additional costs come from the LISS, and
translate in an additional number of exponentiations in the class group. Exact
numbers depend on the considered access structure. For a concrete example,
taking the access structure construction for a 2-out-of-3 policy (cf. [53, Example
3.4 p. 26]), the shares have roughly the same bitsize as the secret key and we get
2 exponentiations (in total) for PartDec and a negligible extra cost in FinalDec
consisting of multiplication and inversion since the reconstruction vector has
components in {−1, 0, 1}. As a result, PartDec takes twice the classical decryption
time (or the same with parallelisation).

5.2 Extensions

Some extensions and improvements (in terms of security or functionality) are
possible for our threshold encryption scheme: we suggest few of them.

– Robustness: It informally captures that no malicious adversary can prevent
a honest majority from decrypting a valid ciphertext. It can be achieved in
our context by using Σ-protocols proving equality of discrete logarithms in
groups of unknown orders to prove the validity of decryption shares.

– Removing the trusted dealer: It is one of the most interesting feature that
can be achieved, especially compared to a potential Elgamal version of Ben-
hamouda et al.’s scheme. It first requires to generate in a distributed manner
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an RSA modulus satisfying the needed congruences. Many efficient techniques
can be employed, such as [21], secure against any subset of maliciously collud-
ing parties. The class group can then be computed publicly and the factor-
ization ignored. To share the secret key without trusted dealer, it is possible
to use verifiable linear integer secret sharing [53] and techniques from [35] to
distribute key generation for discrete-log based cryptosystems.
In addition, zero-knowledge arguments for several relations (well-formdness
of a key or equality of discrete logarithms) in group of unknown orders will
be needed and can be found in the literature [5,15,29,58].

– CCA security: Using techniques of [30] for their chosen ciphertext secure
threshold cryptosystems from the Decision Composite Residuosity (DCR)
assumption, it should be possible to make our threshold encryption scheme
CCA secure (even though we would be loosing the crucial homomorphic
encryption), as well as adaptively secure (i.e., secure against an adversary who
dynamically corrupts servers throughout the protocol), and non-interactive
(i.e., decryption servers do not interact amongst themselves but rather con-
tribute, each, a single message). Note that several building blocks need to be
adapted: for example, a Trapdoor Σ-protocol showing that an element is a
2k-th power. As shown at the end of Subsect. 3.4, the factorization of the
discriminant could be the trapdoor of such a protocol.

6 Applications

We here discuss future work, and provide intuition for some of the many appli-
cations we see to our scheme.

6.1 Secure Multi-party Computation

The goal here is to devise an MPC protocol (for dishonest majority) that works
over Z/2kZ, and provides better (bandwidth) efficiency than current solutions.

The topic of malicious MPC for Z/2kZ has drawn significant attention since
2018, when Cramer et al. revelled their SPDZ2k protocol [23] which aims at
solving this issue.

Computations modulo 2k, closely match what happens in a CPU, thereby
allowing protocol designers to take advantage of tricks already known there.
Typical examples being comparison operations and bitwise operations which
seem to be easier modulo 2k (and harder to emulate modulo p).

The solution from [23] follows a blueprint that is by now standard for many
fast (maliciously) secure MPC protocols. The protocol phase is divided in two
stages. An offline (slow) phase where some precomputation is done without know-
ing the actual inputs of the computation; and a very fast, information theoretic,
phase which requires knowing the inputs and takes advantage of the data com-
puted offline.

The offline stage consists, mainly, in creating sharings of many triplets of the
form [a], [b], [ab], where a and b are random in Z/2kZ. These triplets are used to
speed up the online phase.
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The computations on the input data executed in the online phase require per-
forming additions and multiplications. To add two shared secrets [x], [y], players
simply add their shares non interactively. Multiplication is less straightforward.
In order to compute [xy] quickly, given a (yet unused) triplet [a], [b], [ab], players
proceed as follows. First jointly open [x]−[a] = c and [y]−[b] = d. Then, without
further interaction, each player can compute: [xy] = cd + [a]d + [b]c + [ab]. Since
the online phase is very fast (essentially the same for all protocols following this
blueprint) the question is how to improve efficiency of the offline stage?

In SPDZ2k they use oblivious transfer, which is fast but expensive in terms
of bandwidth consumption. One way of reducing bandwidth would be to rely
on homomorphic encryption (and indeed the original SPDZ protocol uses some-
what homomorphic encryption for degree two polynomials to compute triplets).
The issue is how to do this in the Z/2kZ setting, since we don’t know many
homomorphic encryption schemes that cope well with this setting.

To our knowledge, two solutions exist to this problem, and both have issues.
The first is a protocol due to Orsini et al. [48], which presents significant effi-
ciency gains with respect to [23], but remains very complex. The second, much
simpler, is due to Catalano et al. [19]. Their protocol relies on the Joye-Libert
encryption scheme, but has lower bandwidth gain and only works in the two
party case. Indeed, though the Joye-Libert protocol allows for a message space
of order 2k, it is unclear how to enhance it with threshold decryption. Hence
each player in the [19] protocol has their own public and secret key pair, and
computing multiplications is performed via a protocol à la Gilboa [36] which
entails a number of zero-knowledge proofs – hence the small gain in bandwidth
consumption.

How Does Our Scheme Help? Our encryption scheme both allows for a message
space of order 2k, and for threshold decryption. Given both these properties,
one can easily generate triplets as follows. Each player Pi chooses a random ai,
a random bi, encrypts them Encryptpk(ai), Encryptpk(bi) and broadcasts these
values. Every player homomorphically adds the shares it sent and received to
obtain encryptions Encryptpk(a), Encryptpk(b), where a =

∑
i ai, and b =

∑
i bi.

Then, using a trick from Catalano et al. [20], every player can multiply the
underlying plaintexts to obtain Encryptpk(ab). Finally each player Pi uses the
partial decryption algorithm with its secret key ski to obtain an additive share
ci of ab.

6.2 Homomorphic Secret Sharing (HSS)

Homomorphic secret sharing is a form of secret sharing that allows parties to
non-interactively perform computations on shared private inputs. HSS can be
viewed as a distributed variant of homomorphic encryption: in HSS multiple
parties are given a share of the inputs, and, without further interaction, they
each perform (non interactively) homomorphic evaluations over these inputs to
obtain a share of the desired output. HSS can be used instead of fully/somewhat
homomorphic encryption in many scenarios, including low-communication MPC
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(e.g. [9]), private querying to remote databases (e.g. [7]), methods of succinctly
generating correlated randomness (e.g. [6]), and more. Using our TPKE scheme,
combined with recent techniques introduced by Orlandi et al. [47], one should
be able to devise the first HSS protocol that efficiently performs computations
modulo 2k, without requiring a correctness/efficiency trade-off, and without the
need to restrict the size of the shared inputs.

Details. Based on the breakthrough work by Boyle et al. [8], Fazio et al. [33]
provided a blueprint to build an HSS scheme for an expressive class of programs1.
Precisely, from the [8] protocol, which was based on (circular secure) Elgamal
encryption, [33] abstract the key ingredients required of an encryption scheme
to build an HSS.

1. The encryption scheme must be both message and key (linearly) homomor-
phic over a finite quotient.

2. Given an encryption of a small integer w, and substractive secret sharings 〈x〉
and 〈skx〉 (where sk is the decryption key), there must be a non-interactive
method for parties to compute multiplicative shares of the group element gxw,
which lives in the ciphertext space of the encryption scheme.

3. A non-interactive technique to convert the multiplicative sharing of gxw into
an additive sharing of xw which lives in the plaintext space of the encryption
scheme.

Our TPKE scheme naturally satisfies item 1, as it is linearly homomorphic,
and threshold decryption can provide us the aforementioned key homomorphic
property.

Regarding item 2, we leverage the Elgamal-like structure of our TPKE. Con-
sider a ciphertext (hr, fwpkr) encrypting w, where pk = hmsk. For each memory
value x in the RMS program, the value of x and of skx are each held as an
additive secret sharing across parties (let us denote Pi’s shares 〈x〉i and 〈skx〉i).
Pi’s computes its’ multiplicative share of fwx as gi := (hr)−〈skx〉i(fwpk)〈x〉i .

Item 3 has for long been the tricky part of the protocol. An ingenious dis-
tributed discrete logarithm (DDLog) protocol was first suggested by [8]. In their
protocol, to obtain substractive shares of z := xw, parties P0 and P1, respec-
tively owning shares g0, g1 such that g0 = g1g

xw, agree upon some distinguished
element g̃ that is not too far away from g0, g1 in terms of multiplications by g. If
they find such a g̃, then party i can compute the distance of gi from g̃ by brute
force: by multiplying g̃ by g repeatedly, and seeing how many multiplications it
takes to get to gi. If g̃ isn’t too far away, this should not be too inefficient. The
primary challenge is agreeing upon a common point g̃. [8] had the parties first fix
a set of random, distinguished points in the group; party i then finds the closest
point in this set to gi. As long as both parties find the same point, this will
lead to a correct share conversion. To make this process efficient, the distance d

1 Restricted Multiplication Straight-line Programs. This class captures polynomial-
size branching programs, which includes arbitrary logspace computations and NC1
circuits.
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between successive points can’t be too large, as running time will be O(d). But
this induces an inherent ≈ 1/d probability of failure, in case a point lies between
the original two shares and parties fail to agree. Furthermore, Dinur et al. [31]
showed that if one could do better than 1/d error probability in O(

√
d) steps,

the algorithm could be used to improve the cost of finding discrete logarithms
in an interval, a well-studied problem which is believed to be hard.

In recent work, Orlandi et al. [47] overcame this barrier by leveraging the
easy discrete logarithm subgroup present in the Paillier framework. As we also
have such a setup, we benefit from their technique, and parties can both agree
on a distinguished point and efficiently find the distance of a multiplicative share
from that point, without requiring a correctness/efficiency trade-off. The high
level idea (applied to our group elements), is that both g0 and g1 can be seen
as elements of the coset Xg0 := {g0, g0f, . . . , g0f

2k−1}. If both parties agree on
a point h̃ in this set, then there exists z such that h̃ = g0f

z, and so P0 can
efficiently compute logF (h̃ · g−1

0 ) = z. Furthermore, since g0 = g1f
xw, P1 can

efficiently compute logF (h̃ · g−1
1 ) = z + xw. And it holds that z + xw − z = xw

as desired.
Now to agree on the point h̃ the parties compute the smallest element from

Xg0 . This may be done using the surjection ϕ2k from Cl(Δ) to the class group
of the maximal order Cl(ΔK). Finally, we note that in prior work, the size
of the shared inputs had to be bounded, either for efficiency, as in [8], or for
correctness of computations in [47]. The upper bound in Orlandi et al’s protocol
ensures that no wrap around occurs modulo N . On the other hand, using our
TPKE scheme with message space 2k, we can set the order of the message space
to be the modulus desired for practical computations, and potentially avoid such
constraints.

6.3 Lossy Trapdoor Functions (LTDFs)

Lossy trapdoor functions, introduced by Peikert and Waters [52], are families of
functions where injective functions are computationally indistinguishable from
lossy functions, which lose many bits of information about their input. Among
many interesting applications, LTDFs are known to imply chosen-ciphertext-
secure PKE [52] or deterministic encryption [1] for instance.

Huge efficiency gains were obtained by Joye and Libert [41] over previous
constructions from linearly homomorphic scheme, by leveraging the 2k order of
their message space in order to batch evaluation and process k-bit blocks of the
input at once.

Applying both techniques to our linearly homomorphic PKE of Fig. 3 would
yield an efficient LTDF which supports evaluation over k-bit blocks at once. This
allows for compact outputs of the functions. We note however that, due to the
Elgamal-like structure of our underlying PKE, trapdoors and function descrip-
tions would be larger than in the Joye-Libert LTDF: for inputs of size n, our
trapdoors would require an extra n/k integers, while our function descriptions
would require an extra n/k elements in H.
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Abstract. A comparison of two encrypted numbers is an important
operation needed in many machine learning applications, for example,
decision tree or neural network inference/training. An efficient instan-
tiation of this operation in the context of fully homomorphic encryp-
tion (FHE) can be challenging, especially when a relatively high preci-
sion is sought. The conventional FHE way of evaluating the comparison
operation, which is based on the sign function evaluation using FHEW/
TFHE bootstrapping (often referred in literature as programmable boot-
strapping), can only support very small precision (practically limited to
4–5 bits or so). For higher precision, the runtime complexity scales lin-
early with the ciphertext (plaintext) modulus (i.e., exponentially with the
modulus bit size). We propose sign function evaluation algorithms that
scale logarithmically with the ciphertext (plaintext) modulus, enabling
the support of large-precision comparison in practice. Our sign evaluation
algorithms are based on an iterative use of homomorphic floor function
algorithms, which are also derived in our work. Further, we generalize our
procedures for floor function evaluation to arbitrary function evaluation,
which can be used to support both small plaintext moduli (directly) and
larger plaintext moduli (by using a homomorphic digit decomposition
algorithm, also suggested in our work). We implement all these algo-
rithms using the PALISADE lattice cryptography library, introducing
several implementation-specific optimizations along the way, and discuss
our experimental results.

1 Introduction

The ability to compare two encrypted numbers is required in many real-world
applications, and often these applications need to combine comparisons with
arithmetic operations, such as additions or multiplications (e.g., neural network
or decision tree inference/training [3,28]). The main non-interactive method for
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performing these computations in a privacy-preserving manner is fully homo-
morphic encryption (FHE), a powerful cryptographic primitive that enables per-
forming computations over encrypted data without having access to the secret
key.

The FHE schemes are generally broken down into three classes: the FHEW/
TFHE schemes for evaluating boolean circuits, which are best suited for
comparisons and decision diagram computations [16,19,29]; Brakerski-Gentry-
Vaikuntanathan (BGV) and Brakerski/Fan-Vercauten (BFV) schemes for evalu-
ating modular arithmetic over finite fields, which are also often applied for small-
integer computations [9,10,20]; and Cheon-Kim-Kim-Song (CKKS) scheme for
approximate computations over real and complex numbers [14].

One of the open challenges is that although the CKKS scheme can efficiently
support additions, multiplications, and more generally, polynomial function eval-
uation, with relatively high precision, the current FHE capabilities of evaluating
the encrypted comparison is limited. One method to resolve this problem is to
use scheme switching between CKKS and FHEW/TFHE, first introduced in
the CHIMERA paper by Boura et al. [8], and later improved in the PEGASUS
paper by Lu et al. [3]. However, after switching to FHEW/TFHE the compari-
son capability for these “high-precision” numbers is very limited. For instance,
we show in Sect. 7 that a single FHEW/TFHE bootstrapping, a typical way to
perform an encrypted comparison in FHE, can efficiently support at most 4 bits
of precision for encrypted comparison using typical parameters as in [29], which
is also close to the precision used in [3]. Any further precision improvement for
this method makes the encrypted comparison highly inefficient. Therefore, there
is a significant interest in developing methods for large-precision comparison of
encrypted numbers that would scale significantly better (both asymptotically
and practically) with input precision.

The comparison of two encrypted numbers is equivalent to computing the
difference of these numbers followed by the evaluation of the sign function. As
evaluating the difference is trivial for any additively homomorphic encryption
scheme, the difficulty lies in the sign function computation. In the rest of the
paper, we will focus on the sign function, assuming that all our results for the
sign function readily apply to encrypted comparison.

The sign function evaluation is closely related to the main idea of FHEW/
TFHE bootstrapping, where we need to find the most significant bit (MSB)
of an encrypted number. Hence, one could directly apply the FHEW/TFHE
bootstrapping to find the sign. However, this approach only works for a very
limited precision (up to 4 bits, as pointed out above) for the parameters cur-
rently used for efficient Boolean circuit evaluation [1,29]. The complexity of
the FHEW/TFHE bootstrapping procedures scales linearly with the ciphertext
modulus Q, i.e., exponentially with the bit-size of Q. This implies that already
for 10 bits of precision, one would need to increase the runtime by a factor of
26 = 64, as compared to the current results for Boolean arithmetic. Clearly, this
approach is not viable for practical applications that require 10 or even more
bits of precision.
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A major goal of our work is to develop a sign function evaluation proce-
dure that scales logarithmically with Q. We also use the central idea of our sign
evaluation algorithm to derive efficient general functional bootstrapping proce-
dures, which support the evaluation of arbitrary functions. Note that functional
bootsrapping is often also called programmable bootstrapping [18].

Our Contributions. More concretely, the contributions of our work can be sum-
marized as follows:

– We propose a novel procedure for large-precision homomorphic sign eval-
uation using FHEW/ TFHE bootstrapping: a large-precision ciphertext is
broken down into digits, and then the homomorphic floor function is exe-
cuted sequentially to clear each digit, starting from the least significant one.
After each digit is cleared, the ciphertext is scaled down to work with a
smaller ciphertext modulus Q, until at the last iteration the current modu-
lus becomes small enough to evaluate the fast FHEW/TFHE bootstrapping
procedure (with the same parameters as used for Boolean arithmetic).

– We develop two algorithms for the homomorphic floor function. The first
algorithm requires two invocations of FHEW/TFHE bootstrapping and has
a specific constraint for the input noise. The second algorithm requires three
invocations of FHEW/TFHE bootstrapping, but has no constraint on the
input noise.

– We use the central idea of the homomorphic floor function algorithms to
develop a general functional bootstrapping procedure, which supports arbi-
trary functions for small plaintext spaces (up to 4 bits in practical settings).
Our general functional bootstrapping procedure has asymptotically smaller
noise than other recent works.

– We derive a homomorphic digit decomposition algorithm based on the sign-
evaluation algorithm to extend the general functional bootstrapping proce-
dure to larger plaintext spaces.

– We implement all these capabilities using the PALISADE lattice cryptogra-
phy library, introducing several implementation–specific optimizations. Our
comparison of the two algorithms for floor function evaluation implies that
the method based on two invocations of bootstrapping is always more efficient
in practice. We also demonstrate an application of our method in the context
of a CKKS-based computation.

Techniques. We describe a method to compute the sign of an encrypted value
using bootstrapping techniques. The input is the encryption of a numerical value
m ∈ Z, usually a signed integer, or a fractional number in fixed-point, binary,
two’s complement representation. We assume the input is presented as an LWE
ciphertext, i.e., a vector of elements in ZQ. The message m is an integer modulo
Q/α. We assume that α = 2l and Q = 2h are powers of 2, so that the message
m can also be interpreted as a (h− l)-bit integer. The problem is to compute an
encryption of the most significant bit of m, i.e., �m/2h−l−1�. If m ∈ Z2h−l is the
standard (two’s complement) representation of a signed integer, this bit is the
sign of m, i.e., it equals 1 if and only if m represents a negative number.
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We treat FHEW/TFHE bootstrapping as a black box, implying that any of
the bootstrapping functions described in [16,19,29] can be used interchangeably.
For conciseness, we refer to this function as FHEW bootstrapping in the rest of
the paper.

FHEW supports functional/programmable bootstrapping for negacyclic
functions, i.e., functions f : ZQ → Z satisfying f(x + Q/2) = −f(x). If we add
α/2 to the LWE ciphertext, yielding a modified message m′ = αm + e + α/2,
where e is the noise, and define a sign function γ : ZQ → {−1,+1}, mapping
γ(x) = +1 for x ∈ {0, . . . , Q/2 − 1} and γ(x) = −1 for x ∈ {−Q/2, . . . ,−1},
we can directly apply the FHEW bootstrapping procedure for the evaluation
function γ (it is easy to observe that γ is already negacyclic). The problem is
that the complexity of the FHEW bootstrapping procedure (in particular, the
size of the FHEW accumulators) is linear in the ciphertext modulus Q. So, while
conceptually the sign computation can be performed directly using the FHEW
procedure, the resulting algorithm would be terribly inefficient, both in theory
(exponential in the bit size of the input) and in practice.

To circumvent this problem, we “break down” the ciphertext modulo Q into
multiple digits, each working internally with a much smaller modulus q, which
enables the use of efficient FHEW bootstrapping. For each digit, we evaluate a
homomorphic floor function that can be used to clear the least significant digit
from the ciphertext. As soon as the current least significant digit is cleared,
the ciphertext is scaled down using modulus switching from Q to αQ/q. This
iterative procedure is repeated until Q becomes less than or equal to q. At that
point, efficient FHEW bootstrapping for γ(x) can be used directly to evaluate
the sign function. Conceptually, this algorithm corresponds to the “schoolbook”
long division algorithm. The main challenge in this long division algorithm is
associated with evaluating the floor function, which is not negacyclic and hence
cannot be directly evaluated using FHEW bootstrapping.

The idea of our first floor function algorithm is to first evaluate the sign func-
tion γ(x) to clear the MSB of each digit (first bootstrapping) and then subtract
the remaining bits in the digit using the second invocation of FHEW boot-
strapping. Both of these evaluation functions are negacyclic, enabling us to use
FHEW bootstrapping. If we had a perfect (noiseless) bootstrapping procedure,
this would take care of clearing all the bits of the digit. But FHEW bootstrap-
ping (just like any lattice-based bootstrapping procedure) is noisy. In order to
accommodate for the bootstrapping noise, this method requires the introduction
of a constraint on the noise of the input ciphertext: β ≤ α/4, where |e| < β.
This floor function algorithm can clear up to q/α bits.

We also propose an alternative floor function, which does not have the input
noise constraint, but requires an extra invocation of FHEW bootstrapping. The
first invocation of FHEW bootstrapping is used to clear the second-most signif-
icant bit in the digit. Intuitively, this first invocation has the effect of enforcing
the β ≤ α/4 constraint of the first floor computation algorithm. So, we can
proceed with another invocation of FHEW bootstrapping that clears the MSB,
and, finally, the remaining bits in the digit are cleared using the third invocation



134 Z. Liu et al.

of FHEW bootstrapping. In other words, the main difference between the two
floor function algorithms is in the first bootstrapping operation, which clears the
second-most significant bit. In practice, the alternative floor function evaluation
algorithm gains one extra bit of precision compared to the first algorithm, but
has a cost of an additional invocation of FHEW bootstrapping.

Then, we generalize the algorithms for homomorphic floor function to arbi-
trary function evaluation for small plaintext moduli, i.e., restricting the cipher-
text modulus to q that supports efficient FHEW bootstrapping. Consider the
generalization of our first floor function algorithm as an example. We first extend
the ciphertext from modulus q to 2q. This introduces, as a byproduct, a random
MSB modulo 2q. Then we evaluate the γ(x) function modulo 2q to clear this
MSB. Finally, we invoke the desired function for the remaining bits unaffected
by noise. Compared to the homomorphic floor function, we loose just one bit of
precision.

Finally, we derive a homomorphic digit decomposition algorithm that can be
combined with the general functional bootstrapping for small-precision cipher-
texts to achieve the evaluation of arbitrary functions over large-precision cipher-
texts, i.e., evaluate large lookup tables. The digit decomposition algorithm is
closely related to the homomorphic sign evaluation algorithm: it basically per-
forms the same sequence of applications of the homomorphic floor function evalu-
ation, while keeping track of the (encrypted) digits produced by each invocation.

Note that most of the homomorphic encryption schemes support the efficient
extraction of LWE ciphertexts. So the methods described here can be applied
to those schemes by first extracting an LWE representation of the input, and
then applying the main algorithm. For details on the algorithms for efficient
extraction of LWE ciphertexts, we refer the reader to [12,28].

1.1 Related Works

Related Concurrent Works. Two concurrent and independent works [18,26] pro-
pose algorithms for homomorphic evaluation of arbitrary functions for small
plaintext moduli. Table 1 summarizes the results of the comparison between
our main algorithm for arbitrary function evaluation with their algorithms. An
expanded comparison with concrete parameters is presented in Sect. 8.

Table 1. Comparison of noise growth and complexity of our method for arbitrary func-
tion evaluation with other recent works; here, β is the FHEW functional bootstrapping
noise (see details in Sect. 6.5), N is the ring dimension used for functional bootstrap-
ping, p is the plaintext modulus, Q′ is the underlying RLWE ciphertext modulus, q is
the output LWE ciphertext modulus, and d′

g ≥ 2 is the number of digits for gadget
decomposition specific to functional bootstrapping in [26].

Noise growth # of bootstrappings

[18] β · O(Np) 2

[26] β · O(
√

Nd′
gQ′1/d′

g ) d′
g + 1

Our work β 2
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The main idea of both works is to use the fact that −1 · (−m) = m and
extract the MSB as part of their procedures by invoking FHEW/TFHE boot-
strapping. Both approaches hence require one multiplication operation, which
increases the noise requirements. This also implies that the main homomorphic
encryption scheme should support both additions and multiplications. Our app-
roach does not require any multiplications, and can be applied to any additively
homomorphic encryption scheme, similar to the Boolean circuit construction in
the original FHEW paper [19].

The approach in [18] executes two bootstrapping operations (one to extract
the MSB and another to evaluate the desired function), and then multiplies the
results using a multiplication operation similar to the one in Brakerski’s and
BFV schemes [9,20]. As a result, the noise increases by O(Np), which implies
that the cost of the bootstrapping operations in this method is higher than in
ours. Our analysis in Sect. 8 predicts that the runtime complexity will be at least
two times higher for practical parameters.

The method in [26] applies the same blueprint, but instead of performing
a BFV-like multiplication, initially uses a multiplication by a GSW ciphertext,
and then further optimizes it to replace it with a cheaper multiplication by an
LWE′ ciphertext (i.e., a vector of LWE ciphertexts, see details in [29]). This
approach requires at least d′

g + 1 bootstrapping operations, where d′
g is a design

parameter. Note that the value of d′
g also affects the noise growth. If the noise

cost is minimized (a larger d′
g is chosen), then the number of bootstrapping

invocations increases. It is clear that the method in [26] is always at least 1.5x
slower than ours as d′

g ≥ 2, and it also substantially increases the noise unless
d′

g is much larger than 2.
Both methods [18,26] can be extended to support large-precision sign evalua-

tion (though this was not done in these works), but will have the same drawbacks
(compared to our approach) as for arbitrary function evaluation: asymptotically
higher noise growth (both methods) and (for [26]) increased number of boot-
strapping operations.

A recent paper [32] independently developed an arbitrary function evalua-
tion method similar to ours. This work was published after our results became
available and hence we do not examine it here.

Other Approaches for Evaluating Sign Function. Although we focus on the
approaches to evaluating the comparison/sign functions based on FHEW/TFHE
bootstrapping, other methods have also been considered in literature.

We note that all of the methods described below have their own merits
and method selection is application-dependent. For instance, the FHEW/TFHE-
based method is preferred when only a small number of comparisons are needed
or a small number of levels are available for the comparisons. The CKKS-based
method may work better when a large number of comparisons are needed in
parallel and a sufficient multiplicative depth or CKKS bootstrapping are avail-
able (see Sect. 8.2 for details). The desired precision of comparison is also an
important factor. A comprehensive comparison of these methods is outside the
scope of this paper and is suggested as a topic for future work.
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One approach is based on evaluating special interpolation polynomials over
finite fields using the BGV or BFV scheme (see [24] for an extensive review of
these techniques). This approach does not typically require bootstrapping but
involves a complicated encoding of interpolation polynomials into the native
polynomial space of BGV and BFV. Although high efficiency can be achieved
(this method may even have a smaller complexity than the techniques considered
in our work), this approach is somewhat special-purpose and becomes challeng-
ing when the comparison operations need to be combined with multiplications
and additions. The main advantage of our approach is the ability to combine
comparisons with regular arithmetic operations, resulting in a more general func-
tionality.

Another approach is based on minimax or other polynomial approximations
using the CKKS scheme (see [15,27] for recent results). This approach can be
very efficient for relatively small precision, and takes full advantage of CKKS
packing. However, the input numbers typically have to be within a specific known
range, and the runtime complexity may sharply increase with precision or min-
imum difference allowed between two numbers. In contrast, the computational
complexity of our approach is guaranteed to scale linearly with the number of
precision bits, and does not depend on how close two numbers are to each other,
i.e., how close the value of the sign function input is to zero. We provide a
high-level comparison between the CKKS method and our approach in Sect. 8.2.

A leveled bit-wise version of TFHE (without bootstrapping) was also pre-
viously considered. For example, Chillotti et al. showed that two (log p)-bit
numbers can be compared by evaluating a deterministic automaton made of
5 log p CMux gates [17]. Though this comparison complexity is much smaller
than for the approach considered in our paper, it has the drawback of requiring
the input to be encrypted in a bit-wise fashion. So, their approach will quickly
become inefficient in scenarios where comparisons need to be combined with
additions and multiplications, as these operations are very expensive in bit-wise
representation. Note that our main motivation for developing the general com-
parison capability based on FHEW/TFHE bootstrapping was to support mixed
computations involving additions, multiplications, or, more generally, polyno-
mial evaluation, as well as comparisons.

Another potentially promising approach is based on a limited form of func-
tional bootstrapping supported by BFV/BGV. Chen at al. show how BFV boot-
strapping can be used to compute the sign function [13]. It is not clear whether
the BFV/BGV approach can be extended to arbitrary functions (look-up tables),
but it is certainly an interesting research problem.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2 we provide the neces-
sary background on FHEW bootstrapping. Section 3 describes our algorithms
for homomorphic sign and floor evaluation. Section 4 shows how our homo-
morphic floor algorithms can be generalized to arbitrary function evaluation.
Section 5 introduces homomorphic digit decomposition algorithms based on
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our sign evaluation algorithms. Section 6 discusses how parameters should be
selected, and introduces some optimizations. Section 7 describes our implemen-
tation and presents experimental results, and Sect. 8 compares our algorithms
with other concurrent works. Section 9 discusses an application of large-precision
comparison. Section 10 concludes the paper.

2 Background

All logarithms are expressed in base 2 if not indicated otherwise. Vectors are
indicated in bold, e.g., a. We choose the ring dimension N as a power of two for
efficiency reasons.

2.1 FHEW Functional/Programmable Bootstrapping

In this section we recall the definition of LWE ciphertexts [30], and the prop-
erties of the FHEW [19] “functional” bootstrapping procedure needed by our
algorithms.

The LWE cryptosystem [30] is parametrized by a plaintext modulus p, cipher-
text modulus q, and secret dimension n. The LWE encryption of a message
m ∈ Zp under (secret) key s ∈ Z

n is a vector (a, b) ∈ Z
n+1
q such that

b = 〈a, s〉 + (q/p) · m + e (mod q)

where e is a small error term, |e| < q/(2p). The message m is recovered by first
computing the approximate LWE decryption function

Decs(a, b) = b − 〈a, s〉 (mod q) = (q/p) · m + e

and then rounding the result to the closest multiple of (q/p).
The ciphertext modulus of LWE ciphertexts can be changed (at the cost of a

small additional noise proportional to the secret key size) simply by scaling and
rounding its entries, as described in the following lemma.

Lemma 1 (Modulus Switching). Let (a, b) ∈ Z
n+1
q be an LWE encryption

of a message m ∈ Zp under secret key s ∈ Z
n with ciphertext modulus q and

noise bound |Decs(a, b) − (q/p)m| < β. Then, for any modulus q′, the rounded
ciphertext (a′, b′) = 
(q′/q) · (a, b)� is an encryption of the same message m
under s with ciphertext modulus q′ and noise bound |Decs(a′, b′) − (q′/p)m| <
(q′/q)β + β′′, where β′′ = 1

2 (‖s‖1 + 1).

In practice, when the input ciphertext is sufficiently random, or when modulus
switching is performed by randomized rounding, it is possible to replace the
additive term β′′ with a smaller probabilistic bound O(‖s‖2). For uniformly
random ternary keys s ∈ {0, 1,−1}n, this is β′′ ≈ O(

√
n).

A key feature of FHEW is that it allows to perform certain homomorphic
computations (described by an “extraction” function) on ciphertexts during
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bootstrapping at no additional cost. We will use (a slight generalization of)
the FHEW [19] bootstrapping procedure, and its optimized variants for binary
[16] and ternary secrets [29], as implemented in PALISADE. The bootstrapping
algorithm is parametrized by

– a dimension n and (input ciphertext) modulus q, where q is a power of 2,
– a secret key s ∈ Z

n, which must be a short vector. Here we assume s ∈
{0, 1,−1}n,

– a large ciphertext modulus Q′ used internally to the bootstrapping procedure,
and which is not required to be a power of 2,

– an output ciphertext modulus Q, which we set to a power of 2 possibly dif-
ferent from q, and

– an extraction function f : Zq → Z which must satisfy the negacyclic constraint

f(x + q/2) = −f(x). (1)

The bootstrapping procedure also uses a bootstrapping key, which is computed
from s, but can be made public. Since this bootstrapping key is only used inter-
nally by the bootstrapping procedure, we omit it from the notation.

We remark that, since s is a small vector (e.g., with ternary entries {0, 1,−1}),
it can be used as a key both modulo q, and modulo Q′ or Q. On input an LWE
ciphertext (a, b) ∈ Z

n+1
q , the FHEW bootstrapping procedure first computes an

LWE ciphertext (c′, d′) ∈ Z
n+1
Q′ such that

Decs(c′, d′) = f ′(Decs(a, b)) + e′ (mod Q′),

where the noise bound |e′| ≤ β′ depends only on the computation performed
during bootstrapping (and not the input ciphertext), and

f ′(x) =
⌈

Q′

Q
· f(x)

⌋

is a scaled version of f still satisfying the negacyclic condition (1). Then, modulus
switching is applied to (c′, d′) to obtain a ciphertext (c, d) =

⌈
Q
Q′ (c′, d′)

⌋
∈ Z

n+1
Q

modulo Q such that

Decs(c, d) = f(Decs(a, b)) + e (mod Q)

where |e| < β = (Q/Q′)β + β′′ is the noise bound from Lemma 1.
For the sake of comparison, we recall that in the original FHEW bootstrap-

ping procedure:

– the input LWE ciphertext (a, b) uses plaintext modulus p = 4, so that mes-
sages m ∈ {0, 1, 2, 3} are encoded as multiples of α = q/4, i.e., Decs(a, b) =
(q/4) · m + e for some error |e| < q/8;

– the output modulus Q = q is the same as the input modulus, so that boot-
strapping operations can be composed into arbitrary circuits;
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– the extraction function f maps the interval [−q/8, 3q/8) ⊂ Zq to q/8 and
(necessarily, to satisfy (1)) the interval [3q/8, 7q/8) to −q/8. Moreover, the
output ciphertext is modified to (c, d+ q/8), so that the final output is either
an encryption of q/8+q/8 = q/4 = 1 ·α (i.e., an encoding 1) when m ∈ {0, 1},
or an encryption of −q/8+q/8 = 0·α (i.e., an encoding of 0) when m ∈ {2, 3}.
This allows to evaluate the NAND of two input bits m0,m1 ∈ {0, 1} as
f(m0 + m1 mod 4).

In this paper, we make extensive use of the FHEW bootstrapping procedure,
but for a larger output modulus Q, where q ≤ Q < Q′, and a number of different
(but still negacyclic) extraction functions f .

We write
Boot[f ](a, b)

for the result of invoking this bootstrapping procedure for a given function f .
We will make blackbox use of Boot, so that the internal workings of the boot-
strapping procedure are not important for the rest of the paper, and Boot can
be implemented either using the original FHEW bootstrapping procedure [19] or
the optimized versions proposed in [16,29]. The properties of the Boot function
described in this section and needed in the rest of the paper are summarized in
the following theorem.

Theorem 1. For any LWE ciphertext (a, b) ∈ Z
n+1
q and function f : Zq → ZQ

such that f(x+q/2) = −f(x) (mod Q), the bootstrapping procedure Boot[f ](a, b)
outputs a ciphertext (c, d) ∈ Z

n+1
Q such that

Decs(c, d) = f(Dec(a, b)) + e (mod Q)

for some |e| < β, where β is a noise bound that depends only on the operations
performed by Boot, but not on the input ciphertext (a, b).

For simplicity of presentation, we round β up to a power of 2.

3 Large-Precision Homomorphic Sign Evaluation

In this section we describe our main algorithms to homomorphically compute
the sign of an encrypted value.

Let (c, d) ∈ Z
n+1
Q be an LWE ciphertext with (large) ciphertext modulus Q

and plaintext modulus Q/α. Specifically, assume Dec(c, d) = αm + e, for some
plaintext message m ∈ ZQ/α and noise bound |e| < β ≤ α/2. (Later we may set
β to a bound strictly smaller than α/2.) We assume that Q and α are powers of
2, so that the message m and the decryption Dec(c, d) can both be interpreted
as signed integers, in two’s complement notation, and the sign of m is given by
the MSB of m’s binary representation. The goal is to homomorphically compute
this sign bit.

By adding β to the ciphertext, the error e + β becomes a positive value in
the range (0, 2β) ⊆ (0, α). Hence the sign bit is also the same as the MSB of

m′ = Dec(c, d + β) = αm + (e + β).
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At this point, since we only care about the MSB of m′, it does not matter which
bits of m′ are considered “message” bits and which are “noise” bits, and one
may think of m′ simply as an arbitrary integer modulo Q.

We compute the MSB of m′ following the approach outlined in the introduc-
tion, using FHEW’s functional bootstrapping algorithm Boot with a relatively
small modulus q to clear the least significant bits of m′ in small chunks, until
only the MSB is left. We present two algorithms: the first algorithm requiring
only two invocations of Boot per chunk, but under the assumption that |e| is
smaller than α/4 and the second algorithm that works for ciphertexts with an
arbitrary error e, but requires three invocations of Boot for each chunk. Although
the approach based on two invocations of Boot is more efficient in practice for the
large-precision sign evaluation, the approach with three invocations is more gen-
eral and is of independent interest for evaluating the homomorphic floor function
on arbitrary ciphertexts, e.g., noisy ciphertexts in the CKKS scheme.

In both algorithms, we instantiate the bootstrapping procedure as follows:

– We fix the modulus q to an appropriate value that can be efficiently supported
by FHEW.

– We set the output modulus to Q by picking an internal modulus Q′ larger
than Q. (Usually, Q′ is not a power of two, in order to support NTT.) We
recall that the complexity of FHEW is linear in log Q′, and exponential only
in log q. Hence one can use a relatively large Q′.

– We use Boot with one of three possible extraction functions f0, f1, f2 shown in
Fig. 1. It can be easily checked that all three functions satisfy the negacyclic
requirement (1).

Fig. 1. Negacyclic functions used by our homomorphic sign computation algorithms.
The value of f1(x) = q/2 − x for x ≥ q/2 is not relevant for our algorithms, and added
here only to satisfy the negacylic constraint.

3.1 Homomorphic Floor Function Using Two Invocations of Boot

The core of the algorithm is a procedure HomFloor that on input a ciphertext
(c, d) ∈ Z

n+1
Q encrypting a message m ∈ ZQ/α with noise bounded by

|Dec(c, d) − α · m| < β ≤ α/4

outputs another ciphertext (c′, d′) ∈ Z
n+1
Q encrypting the floored message

r(m) =
⌊

α

q
· m

⌋
· q

α
(2)



Large-Precision Homomorphic Sign Evaluation Using Bootstrapping 141

subject to the same noise bound β, i.e., such that |Dec(c′, d′) − α · r(m)| < β.
Notice that this has precisely the same effect as zeroing the log2(q/α) = log2 q −
log2 α least significant bits of m. In particular, the MSB of m is the same as the
MSB of r(m).

The main algorithm HomSign uses the HomFloor subroutine to clear the least
significant bits of the message until only the sign bit is left, as we describe next.
Notice that after the application of HomFloor, the resulting ciphertext

Dec(c′, d′) = α · r(m) + e = q · m̃ + e (mod Q)

can be interpreted as an encryption of the message

m̃ =
α

q
· r(m) =

⌊
α

q
· m

⌋
∈ ZQ/q

with noise |e| < β much smaller than q. Since r(m) is a multiple of q/α, the MSB
of m̃ is the same as the MSB of r(m) and m. So, we can switch to a smaller
modulus (α/q) · Q using Lemma 1 to obtain an encryption of m̃ with a scaling
factor α, and repeat. After 
(log Q − log q)/ log(q/α)� iterations, the modulus Q
will be at most q, and the sign of the message can be computed directly using
Boot.

The pseudocode of HomFloor and HomSign is given in Algorithm 1. In the rest
of this subsection we analyze the correctness of the algorithm. We first analyze
the correctness of HomFloor.

Algorithm 1. Algorithm for Homomorphic Sign Computation
1: procedure HomFloor(Q, (c, d))
2: d ← d + β
3: (a, b) ← (c, d) mod q
4: (c, d) ← (c, d) − Boot[f0](a, b) (mod Q)
5: d ← d + β − q

4

6: (a, b) ← (c, d) mod q
7: (c, d) ← (c, d) − Boot[f1](a, b) (mod Q)
8: return (c, d)
9: end procedure

10: procedure HomSign(Q, (c, d))
11: while Q > q do
12: (c, d) ← HomFloor(Q, (c, d))

13: (c, d) ←
⌈

α
q

· (c, d)
⌋

14: Q ← αQ/q
15: end while
16: d ← d + β
17: (a, b) ← (q/Q) · (c, d)
18: (c, d) ← (−Boot[f0](a, b)) (mod Q)
19: return (c, d)
20: end procedure
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Lemma 2. For any Q, q,m and β ≤ α/4, the procedure HomFloor in Algo-
rithm 1, on input a ciphertext (c, d) ∈ Z

n+1
Q such that |Dec(c, d) − α · m| < β

outputs a ciphertext (c′, d′) ∈ Z
n+1
Q such that |Dec(c′, d′) − α · r(m)| < β, where

r(x) is the rounding function defined in (2).

Proof. Let μ = Dec(c, d) ∈ ZQ be the value encrypted by the input ciphertext
(c, d). By assumption, μ = αm+ e for some |e| < β. We trace the value of μ and
e through the execution of the algorithm. Adding β on line 2 makes the error
positive e ∈ (0, 2β). Line 3 computes an LWE ciphertext (a, b) that decrypts to
μ′ = Dec(a, b) = μ (mod q) ∈ Zq, that is, the (log2 q) least significant bits of
μ. Let m̃ = �μ/q� = �(α/q)m� be the remaining (most significant) bits, so that
μ = m̃ · q + μ′.

Next, in order to analyze lines 4 and 5, we consider two cases, depending
on the most significant bit of μ′. If the most significant bit of μ′ is zero, then
Dec(Boot[f0](a, b)) = −q/4+eβ , where |eβ | < β. Subtracting Boot[f0](a, b) from
(c, d) in line 4, and adjusting d in line 5, modifies μ by an additive term

−(−q/4 + eβ) + β − q/4 ∈ (0, 2β).

On the other hand, if the most significant bit of μ′ is 1, then Dec(Boot[f0](a, b)) =
+q/4 + eβ , and lines 4 and 5 modify μ by the additive term

−(q/4 + eβ) + β − q/4 = −q/2 + (0, 2β).

In either case, this clears the (log2 q)th least significant bit of μ (corresponding
to the most significant bit of μ′) while increasing the error by at most 2β. Since
the initial error is in (0, 2β), the final error is in (0, 4β) ⊆ (0, α), and does not
overflow into the most significant bits.

This shows that, even when accounting for the bootstrapping error, the value
of μ = Dec(c, d) at line 6 has its (log2 q)th least significant bit set to 0. In
formulas, μ = q · m̃ + x for some x = (μ mod q) ∈ [0, q/2). The ciphertext (a, b)
computed in line 6 encrypts this value x modulo q. Since f1(x) = x is the identity
function for all x ∈ [0, q/2), Boot[f1] in line 7 returns an encryption of x + eβ .
Subtracting this ciphertext from (c, d) on line 7, gives an encryption of

(q · m̃ + x) − (x + eβ) = q · m̃x − eβ = α · r(m) − eβ

and hence
|α · r(m) − eβ − α · r(m)| < β,

as claimed in the lemma. ��
The correctness of the main function HomSign easily follows, by repeatedly

applying Lemma 2.

Theorem 2. Let β > 2 be an upper bound on both the bootstrapping noise (from
Theorem 1) and the size of the secret key1 ‖s‖1 ≤ β. Let α ≥ 4β be a power of
1 The weaker bound β ≥ O(‖s‖2) = O(

√
n) suffices when using randomized modulus

switching, or heuristically when assuming the input ciphertext is random. We use
this weaker estimate for concrete parameters later in the paper.
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2. The procedure HomSign in Algorithm 1, on input an LWE ciphertext (c, d) ∈
Z

n+1
Q encrypting a message m ∈ ZQ/α with error bounded by |Dec(c, d)−α ·m| <

β, computes an LWE encryption of the most significant bit of m, making at most
2
⌊

log Q
log(q/α)

⌋
+ 1 calls to Boot.

Proof. We need to show that the loop at lines 11–14 preserves the invariant that
(c, d) encrypts a message with the correct MSB, and noise bounded by β. By
Lemma 2, at each iteration, at line 12, HomFloor computes an encryption of a
value of the form m̃q + e with |e| < β, where m̃ has the correct MSB. Then,
lines 13–14 switch the ciphertext modulus from Q to (α/q)Q. By Lemma 1, the
error of the resulting ciphertext is at most

(α/q)β + (β + 1)/2 ≤ β/4 + β/2 + 1/2 < β,

taking into account the constraint β > 2. This proves the loop invariant. Upon
exiting the loop, in line 15, the modulus has been reduced below Q ≤ q, and
the most significant bit of the message can be directly computed using Boot,
using the fact that the sign function (f0) is negacyclic. The multiplication by
q/Q at line 17 is there only to ensure that Boot is always called with the same
ciphertext modulus q. Alternatively, one may use a potentially smaller modulus
Q ≤ q in the last call, which could be slightly faster. ��

The final output of HomSign satisfies Dec(c, d) = q/4 ± β when the initial
input encrypts a nonnegative number, and Dec(c, d) = −q/4±β when it encrypts
a negative number. Sign computation algorithms with different output encodings
are easily obtained by simply changing the function f0 used in line 18. Likewise,
the ciphertext modulus of the final output of HomSign can be set arbitrarily by
simply changing the output modulus of the last invocation of Boot at line 18.

Remark 1. Since the running time of HomSign is proportional to log Q /
log(q/α), it is always best to set α to the smallest possible value α = 4β. So, given
values for Q (from the input specification) and q, β from Theorem 1 (typically
based on security and efficiency considerations), the running time of HomSign

is essentially that of 2
⌊

log Q
log q−log β−2

⌋
+ 1 invocations of Boot or, equivalently,⌊

log Q
log q−log β−2

⌋
invocations of HomFloor + 1 invocation of Boot.

3.2 Homomorphic Floor Function for Arbitrary Ciphertexts Using
Three Invocations of Boot

We also propose an alternative floor function evaluation algorithm that works
for arbitrary ciphertexts. This algorithm requires three invocations of Boot but
makes no assumption on the size of the input error. Although this approach
is typically less efficient than HomFloor when used as a subroutine in HomSign
(as shown later in Sect. 6.1), it has some advantages when applied directly to an
arbitrary ciphertext. For instance, when the message and noise are not separable,
as in the CKKS scheme, the use of this procedure avoids calling a prior modulus
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switching operation, which may accidentally change the sign of encrypted values
close to zero. When used as a subroutine for HomSign, the alternative floor
function procedure allows us to replace α = 4β with α = 2β, hence gaining one
extra bit of precision in each floor function iteration at the expense of one extra
invocation of Boot.

Algorithm 2. Alternative Algorithm for Homomorphic Sign Computation
1: procedure HomFloorAlt(Q, (c, d))
2: (a, b) ← (c, d) mod q
3: (c, d) ← (c, d) − Boot[f2](a, b) (mod Q)
4: d ← d + β − q

4

5: (a, b) ← (c, d) mod q
6: (c, d) ← (c, d) − Boot[f0](a, b) (mod Q)
7: d ← d + β − q

4

8: (a, b) ← (c, d) mod q
9: (c, d) ← (c, d) − Boot[f1](a, b) (mod Q)

10: return (c, d)
11: end procedure

Lemma 3. Let β be the bootstrapping noise from Theorem 1, and assume
q ≥ 16β. The procedure HomFloorAlt in Algorithm 2, on input a ciphertext
(c, d) ∈ Z

n+1
Q with Dec(c, d) = m ∈ ZQ, outputs a ciphertext (c′, d′) ∈ Z

n+1
Q

with Dec(c, d) = m̃q + e ∈ ZQ for m̃ = �m/q� and some |e| < β.

Proof. The ciphertext (a, b) computed in line 2 decrypts to m′ = Dec(a, b) =
m mod q, the log2 q least significant digits of m. Let x be the two most signif-
icant bits of m′. Function f2 only works on these two bits, mapping 00 �→ 11,
10 �→ 01, and 01, 11 �→ 00. When f2(m′) is subtracted from (c, d) in line 3,
the corresponding bits of m are mapped either to 11 (when x = 11) or to 01
(otherwise). In particular, the second bit is always one. Subtracting q/4 from d
on line 4 makes this bit always zero. Adding β in line 4 also ensures that the
bootstrapping error added by Boot is positive, in the range (0, 2β). At this point
(line 5) we have a ciphertext such that Dec(c, d) = m̃ ·q+b ·(q/2)+x+e for some
(unknown) bit b̃ ∈ {0, 1}, positive integer x ∈ [0, q/4) and positive bootstrapping
error e ∈ (0, 2β). Similarly, we have Dec(a, b) = b̃(q/2)+x+e. Assuming q ≥ 8β,
adding e to b̃(q/2) does not change the bit b̃. So, f0(b̃(q/2)+x+e) = −q/4 when
b̃ = 0 and +q/4 when b = 1. Similarly to Lemma 2, subtracting Boot[f0](a, b)
from (c, d) in line 6 and adjusting the value of d in line 7 has the effect of clearing
the bit b̃, while adding a positive bootstrapping error e ∈ (0, 2β).

This shows that, at line 8, we have Dec(c, d) = m̃q + x + e + e′ where
Dec(a, b) = x + e + e′ ∈ (0, q/4 + 4β). Assuming q ≥ 16β, we have x + e + e′ <
q/4 + 4β ≤ q/2. So, f1(x + e + e′) = x + e + e′, and subtracting Boot[f1](a, b)
from (c, d) in line 9, gives a ciphertext such that Dec(c, d) = m̃q ± β. ��
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The HomFloorAlt algorithm can be used to homomorphically compute the
sign of a ciphertext using essentially the same process as HomSign. We only need
to choose an approximate value of α, and replace the call to HomFloor(Q, (c, d))
with the call to HomFloorAlt(Q, (c, d+α/2)) to ensure that the noise is positive,
so it does not alter the most significant bit of the message.

By Lemma 3, the ciphertext computed by HomFloorAlt has noise at most
β. So, by Lemma 1, switching the modulus to (α/q)Q increases the error to
(α/q)β + β′′, where β′′ is the modulus switching noise. For correctness, we need
this error to be bounded by α/2. This condition holds when

β

q
+

β′′

α
≤ 1

2
.

Setting q = 16β, this is equivalent to α ≥ (16/7)β′′.
In summary, the HomSign algorithm based on the HomFloorAlt procedure

proposed in this section makes a total of

1 + 3
⌊

log Q

log q + log2 7 − 4 − log β′′

⌋
≈ 3

log Q

log q − log β′′

calls to Boot.

4 From Floor Function to Arbitrary Function Evaluation

As discussed, the FHEW functional bootstrapping requires the evaluated func-
tions to be negacyclic. However, this greatly restricts the power of functional
bootstrapping. In this section, we show how to extend our main idea of HomFloor
to functional bootstrapping of arbitrary functions.

Let us first formally define the problem. Given a ciphertext (c, d) with mod-
ulus q encrypting a digit m ∈ Zq/α, and an arbitrary function f : Zq/α → ZQ/α,
we want to obtain a ciphertext (c′, d′) ∈ Z

n+1
Q such that 
Dec(c′, d′)/α� = f(m).

At a high level, we proceed as follows: first, we use modulus switching to
raise the ciphertext modulus from q to 2q. This process (randomly) maps an
encrypted value m ∈ Zq/α to either m ∈ Z2q/α or m + q/α ∈ Z2q/α. The main
purpose of this step is to double the size of the message space by introducing an
extra (most significant) bit.

Next, similar to HomFloor, we first use an extraction function f ′
0(x) (similar

to f0 in Fig. 1) to remove the MSB of the (modulus-raised) encrypted plaintext
m ∈ Z2q/α, i.e., for plaintext m ∈ Z2q/α we homomorphically evaluate f ′

0 to
obtain an encrypted value m′ = m (mod q/α) ∈ Z2q/α. This is the same as the
original message m, but as an element of a larger message space.

Then, we create a new function f ′
1 : Z2q → ZQ by setting

– f ′
1(x) = α · f(
x/α�) to the function we want to compute for x < q, and

– f ′
1(x) = −α · f(
(2q − x)/α�) for x ≥ q to satisfy the negacyclic requirement.
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We evaluate this function via functional bootstrapping to obtain a ciphertext
(c′, d′) such that 
Dec(c′, d′)/α� = f(m′).

The resulting procedure for arbitrary function evaluation is listed in Algo-
rithm 3.

Algorithm 3. Algorithm for Arbitrary Function Evaluation
Auxiliary math functions f0 : Z2q → Z2q

f ′
0(x) =

(
q

⌊
x

q

⌋
− q

2

)
mod 2q

1: procedure EvalFunc(f : Zq/α → ZQ/α, q, Q, α, (c, d))
2: Let

f ′
1(x) =

{
αf(�x/α�) if x < q
−αf(�(2q − x)/α�) otherwise

mod Q

3: d ← d + β
4: (c, d) ← (c, d) (mod 2q)
5: (c, d) ← (c, d) − Boot[f ′

0](c, d) (mod 2q)
6: d ← d + β − q

2

7: (c, d) ← Boot[f ′
1](c, d) (mod Q)

8: return (c, d)
9: end procedure

Note that if the function f(x) is periodic (i.e., f(x) = f(x+q/2 (mod q)) for
all x ∈ Zq), the extension to Z2q is not needed and we can replace all instances
of q with q/2 in Algorithm 3. This gains one extra bit of precision for periodic
functions, as compared to arbitrary functions.

For Algorithm 3, we can formulate the following theorem.

Theorem 3. For any Q, q,m and β ≤ α/4, the procedure EvalFunc in Algo-
rithm 3, on input a ciphertext (c, d) ∈ Z

n+1
q such that |Dec(c, d) − α · m| < β

and an arbitrary function f : Zq/α → ZQ/α, outputs a ciphertext (c′, d′) ∈ Z
n+1
Q

such that |Dec(c′, d′) − α · f(m)| < β.

Proof. We prove the theorem by tracing the value encrypted by the input cipher-
texts (c, d). By assumption, Dec(c, d) = αm + e for some |e| < β. Adding
β on line 3 makes the error positive e ∈ (0, 2β). Line 4 raises the cipher-
text’s modulus to 2q and thus we (randomly) obtain one of the following:
μ = Dec(c, d) = αm+ e ∈ Z2q or μ = Dec(c, d) = αm+ e+ q ∈ Z2q. Then, line 5
executes Boot[f ′

0], and line 6 shifts the result by subtracting q/2. Based on a sim-
ilar argument as in the proof of Lemma 2, these two lines together clear the MSB
of μ (i.e., now Dec(c, d) = αm + e ∈ Z2q) while increasing the error by at most
β, and hence the updated encrypted value is μ = Dec(c, d) ∈ [0, q). Finally, line
7 executes Boot[f ′

1] and we obtain Dec(c, d) = αf(m)+e ∈ ZQ with |e| < β, and
therefore, the resulted (c, d) encrypts a plaintext m′ = 
Dec(c, d)/α� = f(m)
where m is the input plaintext as we required. ��
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An alternative arbitrary function evaluation can be trivially derived based
on HomFloorAlt using the same steps as described here. As the efficiency of this
alternative algorithm is worse, we do not discuss it in the paper.

Note that our general bootstrapping algorithm works efficiently in practice
only for small plaintext moduli p because the FHEW bootstrapping becomes
prohibitively expensive as the plaintext modulus is increased (more than doubles
for each extra bit of precision). However, we can extend it to larger plaintext
moduli using the procedure for homomorphic digit decomposition described in
the next section.

5 Homomorphic Digit Decomposition

The high-level idea of homomorphic digit decomposition is to decompose an
LWE ciphertext with a large plaintext (ciphertext) modulus into a vector of
LWE ciphertexts with small plaintext (ciphertext) moduli, corresponding to the
digit sizes. In this section we extend our sign evaluation algorithm in Sect. 3 to
achieve homomorphic digit decomposition.

As pointed out in Sect. 4, one useful application of such digit decomposition is
the evaluation of functions over large-precision ciphertexts using lookup tables,
i.e., the evaluation of arbitrary functions for large plaintext moduli. Two meth-
ods for evaluating a Look-Up Table (LUT) using (a vector of) LWE ciphertexts
for each digit are presented in [22]. The first (more general) approach uses tree
evaluation while the second (more special-purpose) approach is based on chain-
ing. These methods allow breaking down a large LUT into small LUTs, each of
which corresponds to a decomposed digit of the original ciphertext encrypting
a large number. These small LUTs can be completely different from each other.
In summary, the evaluation of an arbitrary function over a large plaintext space
gets expressed as LUT evaluations over encrypted digits.

The LWE ciphertexts for each digit can be “extracted” from a large-precision
LWE ciphertext using the homomorphic digit decomposition algorithm presented
in this section, and then the general bootstrapping procedure from Sect. 4 can
be used to evaluate for each digit arbitrary functions/lookup tables over small
plaintext moduli. In other words, the digit decomposition procedure presented
in this section and small-LUT evaluation procedure presented in Sect. 4 are two
core subroutines in arbitrary function evaluation for larger plaintext spaces.

5.1 Digit Decomposition into Fixed-Size Digits

We first assume for simplicity that all output ciphertexts have the same modulus
q and log(Q/α) divides log(q/α). Let us formally define the problem. Given an
input LWE (c, d) ∈ Z

n+1
Q encrypting a message m ∈ ZQ/α, our goal is to obtain

a vector of ciphertexts ((ci, di) ∈ Z
n+1
q )i∈[k], where k = log(Q/α)

log(q/α) , such that each

ciphertext (ci, di) encrypts a digit mi ∈ Zq/α and m =
∑k

i=1 mi · (q/α)i−1.
Let α = 4β and the input ciphertext (c, d) ∈ Z

n+1
Q have noise < β. Then

we can perform digit decomposition using Algorithm 4. The high-level idea is
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to extract each least significant digit, remove it using HomFloor, and then use
the modulus switching procedure to reduce the modulus from Q to αQ/q, hence
moving to the next least significant digit.

Theorem 4. Let β > 2 be an upper bound on both the bootstrapping noise (from
Theorem 1) and the size of the secret key2 ‖s‖1 ≤ β. Let α ≥ 4β be a power
of 2. The procedure DigitDecomp in Algorithm 4, on input an LWE ciphertext
(c, d) ∈ Z

n+1
Q encrypting a message m ∈ ZQ/α with error bounded by |Dec(c, d)−

α · m| < β, outputs ciphertexts ((ci, di))i∈[k] such that m =
∑k

i=1 mi · (q/α)i,
where mi = 
Dec(ci, di)/α�, k = log(Q/α)

log(q/α) , and |Dec(ci, di) − α · mi| < β.

Proof. By the correctness of HomFloor shown in Lemma 2, we directly see that
m =

∑k
i=0 mi · (q/α)i, where mi = 
Dec(ci, di)/α�. The first ciphertext (c1, d1)

in the vector has the same noise as the input ciphertext, i.e., at most β. Then,
for (ci, di), where i ∈ [2, k], we have the same noise as for input ciphertexts of
HomFloor, again at most β, which follows from the proof of Theorem 2. ��

Alternatively, we can formulate a digit decomposition algorithm based on
HomFloorAlt by trivially replacing HomFloor with HomFloorAlt and changing α
from 4β to 2β.

Algorithm 4. Algorithm for Homomorphic Digit Decomposition based on
HomFloor
1: procedure DigitDecomp(Q, q, (c, d))
2: k ← 1
3: while Q > q do
4: (ck, dk) ← (c, d) (mod q)
5: (c, d) ← HomFloor(Q, q, (c, d))

6: (c, d) ←
⌈

α
q

· (c, d)
⌋

7: Q ← αQ/q
8: k ← k + 1
9: end while

10: (ck, dk) ← (c, d)
11: return {(ci, di)}i∈[k]

12: end procedure

5.2 Digit Decomposition into Varying-Size Digits

In some scenarios, it is desired to decompose a large-message LWE ciphertext
into a vector of LWE ciphertexts with different digit sizes, where each digit size
is a power of two. Our algorithm can also be extended to this more general case.
2 The weaker bound β ≥ O(‖s‖2) = O(

√
n) suffices when using randomized modulus

switching, or heuristically when assuming the input ciphertext is random.
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Let us first formally define the problem. Given an input LWE ciphertext
(c, d) ∈ Z

n+1
Q , encrypting a message m ∈ ZQ/α, our goal is to output a vec-

tor of ciphertexts ((ci, di) ∈ Z
n+1
qi )i∈[k], where k denotes the vector size and

(
∏k

i=1
qi
α ) = Q

α , such that each ciphertext encrypts a digit mi ∈ Zqi/α and
m = m1 +

∑k
i=2 mi · (

∏i−1
j=1

qj
α ).

This can be achieved by making small modifications in Algorithm 4. Instead
of evaluating DigitDecomp with modulus q in every iteration, we use qi in the
ith iteration, and replace

⌈
α
q · (c, d)

⌋
with

⌈
α
qi

· (c, d)
⌋
.

Note that the computational complexity of varying-size digit decomposition
depends on the value of each qi as different values of N and potentially other
parameters may be needed for a given value of qi.

6 Parameter Selection and Optimizations

The proposed algorithms work with the following parameters:

– q, small (power-of-two) (LWE) modulus;
– n, lattice parameter for the LWE scheme;
– Q′, RLWE/RGSW modulus (used for NTTs);
– Q, input (power-of-two) modulus;
– Qks, LWE/RLWE modulus used for key switching;
– N , ring dimension for RLWE/RGSW;
– Bg, gadget base for digit decomposition in each accumulator update, which

breaks integers modQ into dg digits;
– Bks, gadget base for key switching, which breaks integers modQ into dks dig-

its;

6.1 Selecting the Floor Function Evaluation Method

There are two options for evaluating the floor function: HomFloor and
HomFloorAlt. Given a ciphertext modulus q, noise bound β, and small plain-
text modulus p, HomFloor can support p ≤ q/α where α ≥ 4β with two boot-
strapping operations while HomFloorAlt can support the plaintext modulus of
2p with three bootstrapping operations. Hence HomFloorAlt is about 1.5x slower
but can process 1 extra bit. If we denote as P the desired (large) plaintext
space for sign evaluation (i.e., P = Q/α, where Q is the (large) modulus of the
input ciphertext), then evaluating HomSign using HomFloor requires 1+2

⌊
log P
log p

⌋
bootstrapping operations and evaluating HomSign using HomFloorAlt requires
1 + 3

⌊
log P

log p+1

⌋
bootstrapping operations.

It is easy to see that for p = 2, using HomFloorAlt is faster by a factor of
about 4/3. For p = 22 = 4, the number of bootstrapping operations is roughly
the same, and for higher values of p using HomFloor is faster. In practice, the
value of p is at least 23 = 8 (or actually 24 = 16 for the optimized setting
described in Sect. 6.3), and, therefore, HomFloor is always the preferred floor
function evaluation algorithm in practice.
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6.2 Module-LWE Vs RLWE

As an alternative to RLWE in the bootstrapping procedure described in The-
orem 1, we consider a module-LWE accumulator instead of the RLWE one. In
this case, we can replace one ring element of dimension N with w ring elements,
each with dimension N/w for some w ∈ Z

+. Therefore, we use w NTT oper-
ations for the ring dimension N/w to replace one NTT operation for the ring
dimension N . This can give a speed-up of roughly log N/(log N − log w). How-
ever, since q = 2N , we would lose one bit as w is doubled, i.e., log w bits in
total. If we have 1 + 2

⌊
log P
log p

⌋
bootstrapping operations for RLWE, then we will

have log N
log N−log w

(
1 + 2

⌊
log P

log p−log w

⌋)
as a complexity for Module-LWE in terms

of equivalent bootstrapping operations.
For the practical values of N (at least 1024) and p (8 or 16), it can be easily

shown that RLWE is always faster than Module-LWE for any w > 1. Therefore,
RLWE is always preferred in practice.

6.3 Optimizations

Throughout the paper, so far, we have used the worst-case error bound of 4β.
This was done primarily for simplicity so we could work with a power-of-two
β. In the actual implementation, we can use an average-case error estimate. We
consider this as an implementation-level optimization.

If each ciphertext has an error bound β, adding two ciphertexts with errors
sampled independently from each other will result in an error bound of 2

√
2β,

which can be easily shown using subgaussian analysis/Central Limit Theorem
arguments, and was confirmed experimentally.

Such optimization can end up in an even tighter noise bound in practice
(essentially going from 2

√
2β to 2β). Our experimental results (based on 1,000

runs) suggest that a single ciphertext after bootstrapping has a standard devi-
ation σ ≈ 11.5. If we set the probability of error to less than 2−32, then the
estimated β is 73, which rounds up to 128. When two independent ciphertexts
are added together, we get a noise with standard deviation σ ≈ 16.3, and for the
same probability the estimated bound β is 103, which also rounds up to 128.

Therefore, in practice, we can remove the second addition of β in HomFloor
(at line 5 of Algorithm 1). The same optimization can be applied to HomFloorAlt,
DigitDecomp, and EvalFunc.

6.4 Setting the Parameters

For HomSign and DigitDecomp, the main input parameter is Q. Typically log Q
should be set to log P + log(β̃ + β) + 1 , where log P is precision in bits of
the input plaintext, β̃ is the error in the input ciphertext, and β is the FHEW
bootstrapping error bound defined in Theorem 1. It is recommended to perform
modulus switching to obtain the smallest acceptable value of Q before running
the procedures.



Large-Precision Homomorphic Sign Evaluation Using Bootstrapping 151

After Q is fixed, one needs to find a prime number Q′ > Q to support the
NTT operations during bootstrapping. Based on the desired security level, we
can fix the ring dimension N using the HE standard [4] or LWE estimator [5]. For
example, for a ring of dimension N = 2048, for 128-bit security against classical
computer attacks, we can set log Q′ to at most 54 bits; for 256-bit security, we
can support at most 29 bits. With N fixed, we choose q = 2N for maximum
performance.

Together with Q′, we need to choose Bg, which is the gadget base to decom-
pose Q′. For best performance, we generally set Bg to the smallest power-of-
two >

√
Q′, i.e., dg = 2. Bg is the main parameter that determines the noise

growth. Roughly speaking, we need Q·Bg

Q′ � 1. For best runtime performance,
Bg = 
√Q′�, we need Q√

Q′ � 1. If we have Bg = 
Q′1/3� (dg = 3), we get a
slowdown of 3/4, but then we can support larger Q as the requirement is then

Q
Q′2/3 � 1. According to our experiments, roughly Q·Bg

Q′ ≈ 2−11 should be suffi-
cient to achieve the noise standard deviation of ≈ 11.5 after one bootstrapping
(which is enough to maintain a failure probability < 2−32 with error bound 128,
because adding two bootstrapped ciphertexts would result in a noise standard
deviation ≈ 16.3).

The last remaining parameter is p, which is the small plaintext modulus
for each digit in HomSign and Decomp, i.e., the internal plaintext modulus in
HomFloor. We have p = q/(4β) as the worst-case bound in our algorithms.
However, the optimizations in Sect. 6.3 allow us to use p = q/(2β) in the imple-
mentation.

6.5 Noise Estimates

Bootstrapping results in a ciphertext with an error from a Gaussian distribu-

tion of standard deviation σ =
√

q2

Q2
ks

(Q2
ks

Q′2 σ2
ACC + σ2

MS1
+ σ2

KS) + σ2
MS2

, where

σ2
MS1

= |sN |2+1
3 , σ2

MS2
= |sn|2+1

3 , σ2
ACC = 4dgnN

B2
g

6 σ2
BK , and σ2

KS = σBKNdks

for a uniform ternary secret keys sN with dimension N and sn with dimension
n, as estimated in [29]. Note that here we use a heuristic (average-case) estimate
for σ2

MS .
To guarantee that we can have a failure probability < 2−32 as proposed

in [16,19,29], we set β ≈ 6.37σ, and we then round β to the smallest power-
of-two greater than 6.37σ. However, sometimes

√
2 · 6.37σ is also smaller than

the rounded β. Therefore, we can use the same β even if we have a
√

2 loss in
Algorithms 1 and 4.

6.6 Computational Complexity

For our experiments, we used the TFHE/GINX bootstrapping method with
ternary secret keys [29]. Each bootstrapping takes roughly 2n(dg + 1) NTT
operations (we employed the ternary CMUX optimization recently proposed by
Bonte et al. [6]) and each NTT operation is O(N log N).
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7 Implementation and Performance Evaluation

7.1 Parameters Used for Our Implementation

In our implementation, we limited Q to at most 229, which supports up to 21
bits of precision. This precision is sufficient for most applications. One common
use of FHEW-based comparisons is in applications that use the CKKS scheme
for all polynomial computations, and then switch to FHEW for comparison-
based computations [28]. The precision typically achieved in these applications
is not higher than 20 bits (as it is limited primarily by the precision of CKKS
bootstrapping [7]).

Once Q is fixed, we need to find Q′ such that Q/Q
′ dg−1

dg � 1, as explained
in Sect. 6.4. We set log Q′ to 54, which is the largest modulus size that supports
128-bit security for N = 2048 [4].

Next, we need to choose Bg. For Q′ < 254, there are three main practical
options: Bg = 227 (two digits in RGSW gadget decomposition, i.e., dg = 2),
Bg = 218 (dg = 3), and Bg = 214 (dg = 4). For Q ≤ 216, we can use Bg = 227

(fastest bootstrapping). For 216 < Q ≤ 225, we use Bg = 218. For 225 < Q ≤ 229,
we use Bg = 214.

Note that we can dynamically change from Bg = 214 to Bg = 218 and then
to Bg = 227 as the value of Q gets progressively reduced via HomFloor iterations
in HomSign and DigitDecomp, resulting in a speed-up of later bootstrapping
operations. When using this dynamic mode, a bootstrapping key for each value
of Bg should be generated and loaded in computer memory. Hence, there is
a tradeoff between runtime and storage. One can either use the smallest Bg

for all bootstrapping operations and the smallest storage for the bootstrapping
key or use multiple values of Bg, improving the runtime of later bootstrapping
operations at the expense of increased storage requirements.

We use n = 1305, σBK = 3.19, Qks = 235, and Bks = 32, where σBK is
the standard deviation of the noise to encrypt the bootstrapping keys. All other
parameters are set to the same values as in [29].

For the parameters above, the estimated standard deviation σ of a boot-
strapped ciphertext is about 11.5 (based on 1,000 bootstrapping runs). For a sum
of two bootstrapped ciphertexts, the standard deviation σsum is about 16.3. We
can use this value of σsum to select the value of plaintext modulus p. The failure
probability is given by 1 − erf( q/p

2
√
2σsum

). To guarantee the probability of success
for HomSign to be at least 1 − 232, similar to [16,19,29], we set p = 16 = 24. For
this value of p, the error upper bound β is 128. This implies we can achieve 4
bits of precision in the HomFloor function, i.e., we can work with digits of up to
4 bits per iteration when dealing with large-precision LWE ciphertexts.

Remark 2. Although we restricted Q to 229 and log Q′ to 54 bits, higher values
of both Q and Q′ can be supported. For Q′ larger than 64 bits, the machine
word size for many modern computing environments, a Residue Number System
(RNS) variant of RLWE and the corresponding RNS digit decomposition can be
instantiated using the lattice gadget techniques presented in [21].
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7.2 Software Implementation

We implemented HomSign, DigitDecomp, and EvalFunc in PALISADE v1.11.6 [1].
The evaluation environment was a commodity desktop computer system with
an Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz and 64 GB of RAM, running
Ubuntu 18.04 LTS. The C++ compiler was g++ 10.1.0. We compiled PAL-
ISADE with the following CMake flag: WITH NATIVEOPT=ON (machine-
specific optimizations were applied by the compiler).

7.3 Experimental Results

For Q bounded to 229 and the parameter values discussed in Sect. 7.1, the run-
time of HomSign and DigitDecomp can be described in terms of bootstrapping
times for dg = 2, dg = 3, and dg = 4. For Q ≤ 216 we use dg = 2, for
216 < Q ≤ 225 we use dg = 3, and for 225 < Q ≤ 229 we use dg = 4.

The single-threaded runtimes for dg = 2, dg = 3, and dg = 4 in our evaluation
environment were 442, 600, and 785 ms, respectively. The runtimes for HomSign,
DigitDecomp, and EvalFunc are listed in Table 2. When log P = 4, only one
bootstrapping invocation is needed. Then for each next 4 bits (each digit), two
more bootstrapping invocations are needed, as explained in Sect. 6.1. Note that
although for Q = 225 and Q = 226, the number of bootstrapping operations is
the same (four calls to HomFloor, each with two bootstrapping invocations, plus
one extra bootstrapping), the runtimes are different because for Q = 225 we have
three bootstrapping operations at dg = 2 and six bootstrapping operations at
dg = 2, while for Q = 226 we have three bootstrapping operations at dg = 2, four
bootstrapping operations at dg = 3, and two more bootstrapping operations at
dg = 4. Moreover, note that for Q = 228 and Q = 229, there is a relatively large
runtime gap. This is because we need one more call to HomFloor for Q = 229

and therefore two additional bootstrapping invocations. In general, the runtime
is roughly linear in log Q. For arbitrary function evaluation, we can process one
bit less compared to the HomFloor function in HomSign.

For EvalFunc, we used the function y = x3, but any other function over mod-
ulus P could be used instead, and we verified this experimentally. As explained,
EvalFunc with P = 23 can be used as a subroutine to support arbitrary function
(LUT) evaluation for larger plaintext moduli; this LUT evaluation is achieved
using a combination of either tree or chain method introduced in [22] together
with the digit decomposition method proposed in Sect. 5. One can also increase
P for a single “digit” by increasing the ring dimension (each extra bit of P
requires doubling the ring dimension, i.e., roughly doubling the runtime). We
chose specifically log P = 3 for EvalFunc to illustrate the runtime for arbitrary
functions as this setting corresponds to the ring dimension N = 2048, which was
used for all proposed capabilities in our implementation for simplicity.

It is possible to use a smaller ring dimension N = 1024 and log Q′ ≤ 27 for
Q = 212 (but not for higher Q) at the cost of reducing log P by one bit, i.e., use
the same bootstrapping parameters as for Boolean circuit evaluation in [29], but
we have chosen to run all experiments at N = 2048 for simplicity/uniformity
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Table 2. Single-threaded timing results of HomSign, DigitDecomp, and EvalFunc
for (log P )-bit encrypted numbers at N = 2048, q = 2N = 4096. Recall that in
HomSign/DigitDecomp, as we proceed, log P becomes smaller and Bg is dynamically
increased to improve the runtime performance, as suggested in Sect. 7.1.

Function Q log P [bits] runtime [ms] Initial Bg

HomSign/DigitDecomp 212 4 442 227

HomSign/DigitDecomp 216 8 1,322 227

HomSign/DigitDecomp 220 12 2,515 218

HomSign/DigitDecomp 224 16 3,709 218

HomSign/DigitDecomp 225 17 4,589 218

HomSign/DigitDecomp 226 18 5,216 214

HomSign/DigitDecomp 228 20 5,222 214

HomSign/DigitDecomp 229 21 6,096 214

EvalFunc 212 3 884 227

and best precision. Similarly, we can reduce n and Qks if Q < 229 is desired,
hence reducing the runtime by a factor proportional to n. But we did not include
this optimization to provide a general functionality up to 21 bits of precision and
illustrate the linear dependence of runtime on log Q and log P .

For comparison, the TFHE/GINX bootstrapping runtime for N = 1024 using
the same parameters as in [29] with the CMake flag NATIVE SIZE=32 for the
clang++ 9.0.0 compiler was 74 ms (we observed that clang++ 9.0.0 is faster
than g++ 10.1.0 when 32-bit integers are used for modular arithmetic in PAL-
ISADE). This implies that the bootstrapping operations in our implementation
are 6.0x (for dg = 2), 8.1x (for dg = 3), and 10.6x (for dg = 4) slower than
the bootstrapping time for a single Boolean gate evaluation [29] when using our
computing environment. This slowdown is primarily caused by increased values
of n from 502 to 1305 and N from 1024 to 2048 (both parameters proportion-
ally increase the runtime). If a smaller precision (below 21 bits) is desired, this
slowdown can be reduced by using smaller values of n (also, a smaller value of
N can be used if the precision of 4 bits is sufficient for a given application).

8 Comparison with Other Recent Works

8.1 Comparison with Algorithms Based on FHEW/TFHE
Bootstrapping

There is a recent work proposing algorithms for homomorphic digit decomposi-
tion and arbitrary function evaluation [18]. The high-level idea of their approach
is to use the fact that −1 ·(−m) = m and extract the most significant bit as part
of their procedures. They run two bootstrapping operations (one to extract the
MSB and another to evaluate the desired function) and then multiply the results
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using a homomorphic multiplication, similar to the multiplication in Brakerski’s
and Brakerski/Fan-Vercauteren (BFV) schemes [9,20]. The work [18] does not
provide any implementation; hence we focus here on the theoretical comparison
of approaches.

The most significant difference is the extra noise added in [18] due to the
BFV-like homomorphic multiplication. This adds a multiplicative factor O(N ·p)
to the prior noise, and hence increases Q′ by the same factor. In our method, no
additional noise beyond the sum of the noises due to bootstrapping operations
is needed. The other difference is that each iteration of their HomFloor-like oper-
ation in digit decomposition supports one bit less precision than our method.
This bit is lost for the same reason that one extra bit is needed in our arbitrary
function evaluation, where we have to extend from Zq to Z2q.

We can estimate the concrete noise increase in [18] by using the heuristic
BFV multiplication noise estimate, 4Np, from [23,25]. For the parameters used
in our implementation (also accounting for a smaller p, by one bit), the extra
factor is 4 · 211 · 24 = 217. This implies that log Q′ has to be increased by 17 bits.
According to [4] and our noise estimates, this will require increasing the ring
dimension N from 2048 to 4096 to achieve the same security level and roughly
the same precision (i.e., same log P ). The reduced precision per iteration of their
HomFloor-like function may further increase the computational complexity. In
summary, our estimates suggest that the method proposed in [18] will be at least
two times slower for digit decomposition for the parameters used in our imple-
mentation. We expect a similar improvement for arbitrary function evaluation
(except that our algorithm supports the same largest plaintext modulus as their
algorithm, i.e., there is no 1-bit advantage as in the case of HomFloor).

Another potential drawback of the approach in [18] is the need for a BFV-like
relinearization key and related extra implementation complexity. In this sense,
our approach is simpler as it requires only regular FHEW/TFHE keys.

There is another recent work proposing an algorithm for arbitrary function
evaluation [26]. The high-level idea is similar to [18], i.e., use the fact that
−1 · (−m) = m. The difference is that [26] performs multiplication using a GSW
ciphertext (which encrypts the sign bit). They also propose a method to use an
LWE′ ciphertext (a vector of LWE ciphertexts, see details in [29]) for multipli-
cation instead of using a GSW ciphertext, as only plaintext multiplications are
needed in their algorithm, instead of ciphertext multiplications. This makes the
extraction of the sign bit two times faster than the GSW-based method. Their
algorithm requires d′

g + 1 ≥ 3 bootstrappings to perform an arbitrary function
evaluation whereas our method requires only 2 bootstrappings and is indepen-
dent of d′

g. Here, d′
g refers to the number of digits for gadget decomposition

specific to their LWE′ multiplication. Their algorithm also increases the noise
by a multiplicative factor of O(

√
Nd′

gQ
′1/d′

g ), which is the cost of GSW-like
multiplication, as compared to our approach.

Both methods [18,26] can be extended to support large-precision sign evalua-
tion (though this was not done in these works), but will have the same drawbacks
as for arbitrary function evaluation: asymptotically higher noise growth (both
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methods) and increased number of bootstrapping operations (applies to [26]
only). Another advantage of our method is that no multiplication support is
needed for the homomorphic encryption scheme that invokes the FHEW boot-
strapping, i.e., an additively homomorphic LWE scheme can be used. In meth-
ods [18,26], a homomorphic encryption scheme supporting both additions and
multiplications is needed.

8.2 Comparison with CKKS Sign Evaluation

We compare our sign-evaluation method with the state-of-the-art CKKS sign-
evaluation method [27] (i.e., CKKS-based comparison between two numbers)
and summarize the advantages of our approach below.

– As shown in Table VII of [27], with 20 bits of accuracy, their approach takes ∼
30 seconds (for 64K slots), while ours takes about 6 s (for 1 slot). Therefore, if
the number of comparisons needed is small (e.g., 5 comparisons), our method
is faster.

– Our method is easily parallelizable while the CKKS method supports limited
parallelization (only over RNS residues). Therefore, on a server-grade multi-
core machine, our performance can be better even for a larger number of
comparisons.

– When combined with CKKS for other applications (as shown in Sect. 9), our
method does not require the ring dimension to be very large (215 is already
enough), while the CKKS method requires the ring dimension to be 217 or
higher, which may not be desired for the original application and therefore
can greatly impact the performance, e.g., memory requirements and runtime.

– Higher precision for the CKKS method (e.g., 50 bits) can be harder to support
as log Q can easily exceed 3000 (and the ring dimension will increase accord-
ingly). The scaling factor will also need to be adjusted accordingly, increas-
ing the underlying machine word size from 64-bit to 128-bit, which further
reduces the performance (as high as 8x slower, judging by the PALISADE
CKKS implementation). On the other hand, our method simply needs to use
the RNS variant of RLWE as mentioned in Remark 2 of our paper (there is
only an increase in the ring dimension). Hence, the decrease in runtime for
higher precision is much smaller for our method.

– Our method is much simpler to implement/use (no special composite poly-
nomials are needed).

– When multiple invocations of CKKS sign evaluation are needed, CKKS boot-
strapping should be called in between, which significantly increases the run-
time of the CKKS-based approach. Our method does not have any additional
requirements for multiple invocations of the sign function as it inherently
includes FHEW/TFHE bootstrapping.

9 Application

In this section, we consider an application of our large-precision comparison
method where CKKS and FHEW/TFHE are used together. We combine CKKS
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and FHEW/TFHE using the scheme switching methods described in [28] based
on the ideas proposed in [8].

The large-precision comparison is used to evaluate the Heaviside activation
function arising in some machine learning applications [2,11,31], which is defined
as

H(x) =
{

1 if x > 0,
0 otherwise.

In the case of artificial neural network networks, e.g., in a deep learning model
for functions with jump discontinuities, the input x is often computed as an inner
product of (encrypted) inputs and (encrypted) weights, which can be performed
using CKKS (along with other linear/polynomial computations needed for the
model). In our example, we evaluate an inner product with CKKS and then
evaluate the Heaviside function by negating the CKKS ciphertext containing
256 valid slots and switching it to 256 FHEW/TFHE ciphertexts. We perform
our large-precision sign evaluation on these 256 ciphertexts using Algorithm 1.
Lastly, we switch the comparison results back to a CKKS ciphertext.

In our experiment, the input precision was about 21 bits (by setting log Q =
29 and other parameters as in Sect. 7) and the observed output precision was
larger than 30 bits, which are both much higher than the results from [28] (input
precision of 5–6 bits and output precision not higher than 13 bits). Similar to [28],
the runtime for our experiment with 256 slots was dominated by large-precision
comparisons, and the contribution of CKKS-FHEW and FHEW-CKKS scheme
switching was not higher than 10%. Hence, the runtime can be estimated by
multiplying the runtimes from Table 2 by the number of slots (and dividing
them by the number of threads if multi-threading is available).

More generally, one can use large-precision comparison to perform an
encrypted branch evaluation by checking the values against a threshold (i.e.,
if the input is above some threshold T, evaluate circuit B; otherwise, evaluate
circuit C). This may require high precision as the behavior of B and C can be
greatly different.

10 Concluding Remarks

Our experimental results for homomorphic sign evaluation suggest that increas-
ing the precision from 4 bits to 21 incurs a slow-down of only about 14x. If
FHEW/TFHE bootstrapping would be used directly, a slow-down of more than
100,000x would be observed. This implies that our large-precision homomorphic
sign evaluation implementation can be used for applications that work with 20-
bit-precision numbers (and can be extended to a larger precision, as discussed
in Remark 2 in Sect. 7.1). For instance, it can be plugged into the decision tree
inference implementation [28] to increase the precision of comparison.

It was also shown that our method for arbitrary function evaluation, which
we call general functional bootstrapping (often referred to as programmable
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bootstrapping in literature), has a lower complexity than two other recently
proposed methods [18,26]. Both of these methods require one multiplication
operation while our method can be built on top of an additively homomorphic
encryption scheme, similar to the original FHEW construction for Boolean gate
evaluation [19].
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Abstract. Homomorphic encryption (HE) has opened an entirely new
world up in the privacy-preserving use of sensitive data by conducting
computations on encrypted data. Amongst many HE schemes target-
ing computation in various contexts, Cheon–Kim–Kim–Song (CKKS)
scheme [8] is distinguished since it allows computations for encrypted
real number data, which have greater impact in real-world applications.

CKKS scheme is a levelled homomorphic encryption scheme, consum-
ing one level for each homomorphic multiplication. When the level runs
out, a special computational circuit called bootstrapping is required in
order to conduct further multiplications. The algorithm proposed by
Cheon et al. [7] has been regarded as a standard way to do bootstrapping
in the CKKS scheme, and it consists of the following four steps: Mod-
Raise, CoeffToSlot, EvalMod and SlotToCoeff. However, the steps consume
a number of levels themselves, and thus optimizing this extra consump-
tion has been a major focus of the series of recent research.

Among the total levels consumed in the bootstrapping steps, about a
half of them is spent in CoeffToSlot and SlotToCoeff steps to scale up the
real number components of DFTmatrices and round them to the nearest
integers. Each scale-up factor is very large so that it takes up one level to
rescale it down. Scale-up factors can be taken smaller to save levels, but
the error of rounding would be transmitted to EvalMod and eventually
corrupt the accuracy of bootstrapping.

EvalMod aims to get rid of the superfluous qI term from a plaintext
pt+qI resulting from ModRaise, where q is the bottom modulus and I is
a polynomial with small integer coefficients. EvalRound is referred to as
its opposite, obtaining qI. We introduce a novel bootstrapping algorithm
consisting of ModRaise, CoeffToSlot, EvalRound and SlotToCoeff, which
yields taking smaller scale-up factors without the damage of rounding
errors.
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1 Introduction

Homomorphic encryption (HE) refers to a class of encryption schemes which
enables computation over encrypted data. The Cheon–Kim–Kim–Song (CKKS)
[8] scheme is recognized as one of the most efficient fully homomorphic encryp-
tion (FHE) scheme that supports computation on real/complex data. Unlike
other FHE schemes that are designed for integer [2–4,14] or binary [10,11,13]
messages, the CKKS scheme is designed for real/complex messages, as it sup-
ports efficient scaling down operation. Since real numbers are the usual data type
for many applications including deep learning, there have been various studies
and applications using the CKKS scheme.

In the CKKS scheme, each multiplication consumes certain amount of cipher-
text modulus due to rescaling process. As computation including homomorphic
multiplications progresses, the total ciphertext modulus in turn decreases, and
eventually becomes too small to afford further multiplications. A homomorphic
re-encryption of a ciphertext, so called bootstrapping, is required to recover
the ciphertext modulus. In this way the levelled CKKS scheme becomes a fully
homomorphic encryption (FHE) scheme [15].

The first step towards the conventional bootstrapping algorithm as presented
in [7] is called ModRaise, which increases the ciphertext modulus from the bot-
tom to the top modulus. Once the modulus has been raised, an integer polyno-
mial multiple of the base modulus is added to the encrypted plaintext, and an
appropriate modular reduction modulo the base modulus should be performed
in order to recover the original data. Since it has no simple representation for the
modular reduction by the basic algebraic manipulations (addition, multiplica-
tion or rotation), the modular reduction must be approximated by a polynomial
evaluation with large degree, which is called EvalMod.

The step of CoeffToSlot and SlotToCoeff comes before and after the polyno-
mial evaluation. After ModRaise, the multiples of the base modulus are added
on the coefficients of the encrypted plaintext (the ‘coefficient side’). However,
the homomorphic polynomial evaluation should be performed to the slots of the
encrypted message (the ‘slot side’). Therefore, to map the value of coefficient
side to slot side and vice versa, homomorphic evaluation of DFT/iDFTmatrix
multiplication named CoeffToSlot and SlotToCoeff should be performed. As
DFT/iDFTmatrices are complex matrices rather than integer ones, we should
scale-up them and perform integer matrix multiplication. After multiplying such
scaled-up matrices, we should scale-down to get the result which approximates
the result of the complex matrix multiplication. Note that the scaling-down con-
sumes modulus bits of the ciphertext.

These linear transformations (CoeffToSlot and SlotToCoeff), together with a
polynomial approximation of the modular reduction function (EvalMod), con-
sume a large ciphertext modulus and require a relatively high amount of run-
ning time. In particular, in most practical CKKS-FHE parameters, the remaining
ciphertext modulus after bootstrapping is far less than the total ciphertext mod-
ulus available [1]. Hence, only a limited amount of homomorphic multiplication
can be performed after bootstrapping, which degrades the overall performance
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of the scheme, especially for deeper circuits. Furthermore, the amount of cipher-
text modulus consumed in the bootstrapping process is a major factor keeping
us from forming an FHE parameter with small ciphertext dimension under a
fixed security level, for the total amount of ciphertext modulus needed to keep
the security level is bounded once the ciphertext dimension has been fixed.

How much is the ciphertext modulus consumed during the homomorphic
evaluation of the linear transformations in CoeffToSlot and SlotToCoeff steps?
Since the evaluation of a linear transformation, or equivalently the product of
a plaintext dense square matrix M and an encrypted vector v of dimension n,
can be computed homomorphically by

M · v =
n−1∑

i=0

diagi(M) � roti(v) (matrix − vectormultiplication) (1)

where diagi(M) is the i-th diagonal of the matrix M , roti(v) is the rotation of v
by index i and � denotes the Hadamard multiplication, i.e. componentwise vec-
tor multiplication. This means that only one multiplicative depth is needed for
each CoeffToSlot or SlotToCoeff step. However, this näıve method also requires n
multiplications and n rotations, and it becomes quickly computationally infea-
sible as n grows exponentially in practical parameters.

As a remedy, in [17], the authors focused on the rich mathematical structure
of the linear transformations in CoeffToSlot and SlotToCoeff, and proposed to
decompose the linear transformations into the products of several sparse block
diagonal matrices. In this way one can reduce the number of multiplications and
rotations needed for the homomorphic evaluation of the linear transformations
at the cost of using certain amount of multiplicative depths (cf. Subsect. 2.4 and
[17]). In practice, the depth consumption is equal to the number of decomposed
matrices and usually taken to be 3 or 4, and it still requires a large amount of
ciphertext modulus.

In this paper, we propose a new bootstrapping algorithm, replacing EvalMod
by a new step called EvalRound, which addresses this modulus consuming prob-
lem on the evaluation of linear transformations and reduce the amount of cipher-
text modulus consumed during bootstrapping.

1.1 Our Contribution

In this work, we propose a novel bootstrap circuit, that yields a reduction of
modulus consumed, compared to the conventional circuit [7]. The reduction of
modulus amounts to lessening levels. Table 1 shows the reduction of modulus
consumption on one of the practical parameters. Here N denotes the ciphertext
dimension, log(QP ) denotes the bit lengths of the largest RLWE modulus, and
Δ̃ denotes the scaling factor of the CoeffToSlot matrix. The proposed method
enables us to maintain the bootstrapping precision while using 32 bit smaller
scaling factor in CoeffToSlot. The proposed method obtains better bootstrap-
ping precision, while reducing the modulus consumption by 84 bits, which is
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equivalent to preserving approximately two multiplicative depths. The details of
this example is in Example 5.

Table 1. Comparison between conventional and proposed bootstrapping

N log(QP ) ˜Δ Bootstrap bit precision Modulus consumption

Conventional 217 2900 260 –12.53 1160

Proposed 229 –14.80 1076 = 1160 – 84

We also constructed an improved parameter set based on the parameter set
II proposed in [1], namely II’. New parameter set II’ saves 1 depth while losing at
most 1 bit of precision. Table 2 describes the comparison between set II and set
II’. Here depth denotes the multiplicative level after bootstrapping, Δ denotes the
size of the encoding scaling factor, and q0 denotes the size of the base modulus.
The detail of this example is in Example 6.

Table 2. Comparison between the set II in [1] and the proposed set II’.

Set N log(QP ) depth Δ q0 Bootstrap precision ˜Δ

II 216 1547 5 245 260 –31.5 258

II’ 1543 6 –30.5 234

It should be emphasized that only a negligible effort is needed to upgrade
the conventional circuit to the proposed one. One may directly add one naive
subtraction to the existing circuit to compute EvalRound(x) = x − EvalMod(x),
where EvalMod is the existing procedure of homomorphic modular reduction and
EvalRound is the proposed homomorphic modular rounding.

1.2 Our Proposal

Our main proposal is the use of EvalRound rather than EvalMod, which is defined
as EvalRound : x �→ x−EvalMod(x). Below is the bird-eye view of the algorithm.

pt
ModRaise−−−−−→ pt + qI

CoeffToSlot#−−−−−−−−→ (pt + qI + e)∗

EvalRound−−−−−−→ (qI)∗ SlotToCoeff−−−−−−−→ qI
Subtract−−−−−→ pt.

In comparison, the conventional bootstrap algorithm, which is first presented
on [7], would be viewed as below.

pt
ModRaise−−−−−→ pt + qI

CoeffToSlot−−−−−−→ (pt + qI)∗ EvalMod−−−−−→ (pt)∗ SlotToCoeff−−−−−−−→ pt.
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The conventional circuit consists of ModRaise, CoeffToSlot, EvalMod and Slot-
ToCoeff. CoeffToSlot is a sequence of DFTmatrix multiplications. As the matrix
elements are scaled up to integers with full scale factor Δ (e.g. 260 or 250), each
matrix multiplication consumes modulus bits. When d number of matrices are
multiplied, CoeffToSlot consumes Δd modulus. The multiplication results mod-
raised plaintext on slot-side, which is often denoted as pt+ qI. EvalMod refers to
the modular reduction pt + qI ≡ pt(mod q), so that EvalMod(pt + qI) = pt. The
following step, SlotToCoeff, computes the desired result of plaintext on coefficent-
side.

The proposed circuit performs CoeffToSlot# instead of CoeffToSlot, which
utilizes small scale factor Δ̃ � Δ, which reduces modulus consumption to Δ̃d.
In exchange for the modulus reduction, a non-negligible error e is appended to
pt + qI.

The following step of the proposed algorithm is EvalRound, which refers to the
rounding operation, so that EvalRound(pt+qI) = qI under assumption ‖pt‖ � q.
As EvalRound is piecewise constant, EvalRound(pt + qI + e) = EvalRound(pt +
qI) = qI when ‖pt + e‖ remains to be much smaller than q. In other words, the
error from the small scale factor is annihilated by EvalRound, allowing the use of
the small scale factor while keeping the accuracy. This is the reason why we use
EvalRound instead of EvalMod, which propagates error as EvalMod(pt+qI +e) =
pt + e and corrupts the overall accuracy.

The output ciphertext of EvalRound then goes into SlotToCoeff, resulting
a ciphertext encrypting qI in the coefficient side. So the extra Subtract step
is needed for subtracting it from the ciphertext originally resulting from the
ModRaise step, encrypting pt + qI, to get the final ciphertext encrypting pt.

To sum up, our proposed circuit consists of ModRaise, CoeffToSlot, Eval-
Round, SlotToCoeff and Subtract. Since the subtraction is ignorable compared to
the overall cost, our proposal is equivalent to the conventional circuit in com-
putational cost, while taking the reduced scale factor Δ̃ on CoeffToSlot# that
saves modulus and levels.

1.3 Related Works

Bootstrapping of the CKKS scheme was first introduced in [7]. The notions of
evaluating DFT/iDFTmatrix homomorphically and evaluating modular reduc-
tion via polynomial approximation of trigonometric function were proposed here.
In order to improve the time complexity of the linear transformations, FFT-
like decomposition was adopted in [5] and [17]. Since then, numerous studies
[5,17–19,21,23] have been conducted to improve the approximation of a modu-
lar reduction function. Recently, the use of sine series to reduce the error caused
by approximating a trigonometric function was presented in [20] and the method
of directly approximating a modular reduction function while minimizing error
variance was presented in [22]. Independently, using double hoisting technique
to reduce the computation time of homomorphic linear transformation was pro-
posed in [1].
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2 Preliminaries

2.1 Encoding and Decoding

In this subsection and what follows, we review the basic CKKS scheme( [8]); it
will provide us a bird’s-eye view of the entire scheme, and it also serves us to
fix notations used in our discussions hereafter. For a power-of-two N , denote by
R = Z[x]/(xN + 1), the ring of integers of the 2N -th cyclotomic field, which is
a fundamental ring for the CKKS scheme and the RLWE problem the CKKS
scheme is based on. For a positive q, let Rq = R/qR = Zq[x]/(xN + 1). Here N
is determined at the parameter selection step of the CKKS scheme. A CKKS
ciphertext can encrypt a complex vector of a power-of-two length which is maxi-
mally N/2. This vector is called a (complex) message, and its encryption is called
a ciphertext. Here for the ease of description, we assume every message has an
exact length of N/2.

Let ζ be a primitive 2N -th root of unity contained in C, e.g., ζ =
exp(π

√−1/N), where
√−1 is a complex imaginary unit. For integers i, write

ζi := ζ5
i

. The map

DFTN : R[x]/(xN + 1) → C
N/2, m(x) �→ (m(ζ0),m(ζ1), · · · ,m(ζN/2−1)) (2)

is known to be an isomorphism by [5], with inverse iDFTN . When the dimension
N is understood, we also omit the subscript N so we write DFT = DFTN and
iDFT = iDFTN . With these algebraic maps, we can encode a complex message
z ∈ C

N/2 to a plaintext pt ∈ R and in reverse decode from pt to z.

– Encode(z;Δ). For an N/2-dimensional vector z of complex numbers and a
scale factor Δ, the encoding process first transforms z to a polynomial in
R[x]/(xN + 1) and quantize it into an element of R. It returns

pt = Encode(z;Δ) = 
Δ · iDFT(z)� , (3)

where 
·� is the coefficient-wise rounding to the nearest integers.
– Decode(pt;Δ). For a plaintext pt and its scale factor Δ, the decoding process

returns
z = Decode(pt;Δ) = DFT(pt/Δ). (4)

Here the polynomial pt/Δ is computed in R[x]/(xN + 1).

2.2 Basic Operations of the CKKS Scheme

Let χkey be the distribution that outputs polynomials in R with coefficients in
{−1, 0, 1} with a fixed Hamming weight (the number of nonzero coefficients). By
χerr and χenc denote discrete Gaussian distribution with mean 0 and with some
fixed standard deviation.

– SetUp. Params ← SetUp(1λ). Take a security level λ as an input and return
the public parameters Params such as the ciphertext dimension N and the
chain of moduli Q0 < Q1 < · · · < QL with maximal level L.
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– Key Generation. (sk, pk) ← KeyGen(Params). Take Params and output a
pair of a secret key sk = (1, s) ∈ R×R and an encryption key pk = (pk0, pk1) ∈
RQL

× RQL
. More precisely,

• Sample s ← χkey, and set sk = (1, s) ∈ R × R. For convenience, denote
by h the Hamming weight of the polynomial s. This is fixed once Params
has been set.

• Sample pk1 ← RQL
and e ← χerr. Output pk = (pk0 := [−pk1 · s +

e]QL
, pk1).

– Switching Key Generation. swksk′→sk ← KSGensk(sk′). Given two secret
keys sk = (1, s) and sk′ = (1, s′), sample a ← RPQL

with auxiliary modulus
P and e ← χerr and output swksk′→sk := (swk0, swk1) with swk1 = a and
swk0 = −a · s + e + P · s′ (mod PQL).

• Set the relinearization key as rlk := KSGensk(s2).
• Set the rotation keys for j-step rotation as rkj := KSGensk(s(x5j

)) for
1 ≤ j < N/2.

– Encryption. ct ← Encpk(pt). Given a plaintext pt given by a polynomial
m(x) ∈ R, sample v ← χenc and e0, e1 ← χerr, output the ciphertext ct =
v · pk + (m(x) + e0, e1) (mod QL).

– Decryption. pt ← Decsk(ct). Given a ciphertext ct = (ct0, ct1), output the
plaintext pt = [〈ct, sk〉]Q0 = [ct0 +ct1 ·s]Q0 , where Q0 is the modulus for level
zero.

– Addition and Subtraction. ctadd, ctsub ← Add(ct, ct′), Sub(ct, ct′), respec-
tively. Given two ciphertexts ct and ct′ in R2

Q�
, output the ciphertext

ctadd = [ct+ct′]Q�
and ctsub = [ct−ct′]Q�

. The resulting ciphertext ctadd and
ctsub are encrypting message vectors z + z′ and z − z′, respectively, where z
(resp. z′) is the message for ct (resp. ct′).

– Multiplication. ctmult ← Mult(ct, ct′). Given two ciphertexts ct = (c0, c1)
and ct′ = (c′

0, c
′
1) in R2

Q�
, output the ciphertext ctmult := (c0c′

0, c1c
′
0 +

c0c
′
1, c1c

′
1). This seemingly unconventional ciphertext can be decrypted by

taking the inner product with (1, s, s2), where sk = (1, s) is the secret key.
One can get rid of the additional component c1c

′
1 which is multiplied by the

component s2 of the secret key by applying the key switching algorithm with
the relinearization key rlk.

– Rotation. ctrot, j ← Rotj(ct). Given a ciphertext ct = (c0, c1) ∈ R2
Q�

, output
ctrot, j := (c0(x5j

), c1(x5j

)). The resulting ciphertext ctrot, j can be decrypted
with the secret key (1, s(x5j

)) where (1, s) is the secret key for the original
ciphertext ct. This discrepancy can also be resolved by key switching algo-
rithm and one can transform ctrot, j to another ciphertext with secret key
(1, s).

– Key Switching. ct ← KSswk(ct′). Given a ciphertext ct′ which decrypts to a
message with a secret key sk′ and given a switching key swk = swksk′→sk for
another secret key sk, output another ciphertext ct which decrypts to the same
message as ct′ but with secret key sk. This process is used for eliminating the
s2 term after the multiplication process and also for transforming the result
of the rotation process.
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– Rescaling. ctrs ← RS(�, ct). For a given ciphertext ct ∈ R2
Q�

, output ctrs =⌊
q−1
� ct

⌉
(mod Q�−1), where Q� = q� · Q�−1. Rescaling process is used for

reducing the error by throwing off the LSB of the ciphertext, and at the same
time it makes the ciphertext to keep its scaling factor Δ in the similar scale
as computation progresses.

2.3 Full CKKS Homomorphic Encryption Scheme
and Bootstrapping

For a homomorphic encryption scheme to be used in practice, it must support
the computation of complicated circuits. It is only possible if it can conduct
homomorphic operations with sufficient efficiency, and if it can compute arbi-
trarily deep circuits. A major problem for homomorphic encryption schemes is
that certain amount of noise must have been accumulated when homomorphic
operations proceed. As a result, after certain number of homomorphic opera-
tions has been done, HE ciphertexts are ”deteriorated” so that it is impossible
to conduct further homomorphic multiplications on the ciphertexts. In practice,
this phenomenon of deterioration reveals itself as the modulus of the cipher-
texts being decreased. For example, in the CKKS scheme, any multiplication
requires a rescaling operation to keep the noise under control, and each rescaling
consumes certain amount of ciphertext modulus.

The notion of fully homomorphic encryption, or in short FHE, indi-
cates homomorphic encryption schemes for which the deterioration problem is
resolved, and thus FHE allows their users to do multiplication on their cipher-
texts indefinitely. Craig Gentry, in [15], proposed an algorithm for a FHE scheme.
His method to renew the deteriorated ciphertexts is called recryption, and it
is conducted by evaluating the decryption circuits homomorphically. He called
HE schemes equipped with such a recryption algorithm bootstrappable, and we
use the terminology bootstrapping to indicate an algorithm to transform such
deteriorated ciphertexts to refreshed ciphertexts so one can continue to apply
homomorphic operations to them. After [15], an enormous amount of contribu-
tions was made to improve Gentry’s original idea and to apply bootstrapping to
existing HE schemes: [2–4,6,8–14,16].

Bootstrapping in the CKKS Scheme. As decryption circuit of the CKKS
scheme involves modular reduction, the bootstrapping in the CKKS scheme is
reduced to the problem of performing modular reduction: see [7]. A typical way
to achieve bootstrapping in the CKKS homomorphic encryption scheme consists
of two steps: we first raise the modulus of the ciphertext to the maximal one,
and take a modular reduction modulo the modulus the ciphertext begins with.
Suppose that a CKKS ciphertext ct is given with modulus q, encrypting a plain-
text pt ∈ Rq. Mathematically, raising the modulus of ct is equivalent to just
treating the same ciphertext ct having a bigger modulus Q. In the perspective
of its encrypted plaintext, however, ct with modulus Q now decrypts to pt + qI,
where I ∈ R is a polynomial with sufficiently small size of coefficients. In order
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to retain the original plaintext, one needs to do modular reduction modulo q
at the plaintext side of ct, and this needs to be done in “homomorphic” way,
because the decryption is needed to see the plaintext ct has encrypted, and it is
not accessible unless the secret key is known.

One problem is the inconsistency at which such two operations take places:
the “raising modulus” or ModRaise operation takes place at the plaintext side (or
coefficient side) so it transforms ct from encrypting pt to a ciphertext encrypting
pt+qI, and the “evaluating modular reduction” or EvalMod step takes places at
the message side (or slot side), because it consists of homomorphic operations
like addition/subtraction, multiplication and rotation. So one needs to move
coefficients of the plaintext to slot side and vice versa, and these can be achieved
using two additional steps CoeffToSlot and SlotToCoeff.

Let ct be a ciphertext encrypting a plaintext pt that is so deteriorated that
one cannot proceed further multiplication on ct, i.e. ct has ground level, of level
0 with ground modulus q0. The ciphertext ct is an input of the bootstrapping
process.

– ModRaise. Raise the ciphertext modulus from q0 to the maximal modulus
QL, which is determined at SetUp step. We can see that the resulting cipher-
text now encrypts pt + q0I where I ∈ R is a polynomial with small integer
coefficients.

– CoeffToSlot. Apply iDFThomomorphically to transfer the additional q0I part
of the plaintext to the slot side. Being linear map, one can do this with cost
of couples of homomorphic multiplications and rotations.

– EvalMod. In this step, conduct the modular reduction [·]q0 at the
encrypted message of the ciphertext. Since only algebraic operations (addi-
tion/subtraction, multiplication and rotation) are provided in the CKKS
scheme, one can do this by approximating the modular reduction function
with some polynomial function. After the first feasible algorithmic break-
through [7], this has been a major topic in homomorphic encryption to
improve the quality of such approximation: see [1,5,17,18,21–23].

– SlotToCoeff. Final step of bootstrapping is to restore message by transferring
the message of EvalMod’d ciphertext to its original space, the coefficient side.
Naturally this is the inverse process of CoeffToSlot, and thus this can be done
with applying DFThomomorphically.

2.4 On Decomposition of DFT/iDFT Matrices

In CoeffToSlot and SlotToCoeff steps of the bootstrapping algorithm, one com-
putes linear transformations homomorphically on the input ciphertexts, and the
linear transformations are represented by the iDFTand DFTmatrices, respec-
tively. Although mathematically they are just matrix-vector multiplications,
their homomorphic computations involve homomorphic rotations of various
indices and become infeasible while the ciphertext dimension grows exponen-
tially.
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In [17], the authors made some clever use of the rich structures of DFTand
iDFTto decompose DFTand iDFTinto the products of several sparse block diag-
onal matrices; it turns out that the homomorphic evaluation of these sequences
of matrix-vector multiplications reduces their homomorphic constant multipli-
cation complexity from O(n) to O(r logr n) and their homomorphic rotation
complexity from O(

√
n) to O(

√
r logr n) (see §5 in [17]), where n is the number

of slots encrypted in the ciphertext and r is the radix of the decomposition. Of
course, it does not come for free; the multiplicative depth taken in the CoeffToSlot
and SlotToCoeff steps gets larger from 1 to O(logr n).

In a nutshell, our new bootstrapping algorithm actually reduces this addi-
tional multiplicative depth by degrading CoeffToSlot, in such a way that the
precision of the final output of the bootstrapping is on par with the original
method (Table 1).

3 Error Analysis of CoeffToSlot

CoeffToSlot is basically a procedure to take a matrix multiplication on the mes-
sage. To do so in integer arithmetic, the real numbers of the matrix is multiplied
by a large number Δ, so called scaling factor, and rounded to integers. This
section is devoted to a thorough analysis on the error of the rounding.

There are three types of errors in CoeffToSlot, the rounding error, the key
switching error, and the rescaling error. One of the very common technique in
CoeffToSlot is lazy rescaling, which delays all the rescalings and rescale once only
at the end of CoeffToSlot. This technique enables us to remove the effect of the
key switching error. In this sense, we only have to consider the remaining two
types of errors. Hence, in this section, we analyze the CoeffToSlot error in the
plaintext side, instead of in the ciphertext side.

3.1 Rounding Error in Matrix Multiplication

In this section, we estimate the rounding error which occurs when we homomor-
phically compute matrix multiplication. Encoding a message m into a plaintext
pt involves rounding. To focus on the rounding error, we can think of a plaintext
without rounding ptraw.

pt = 
iDFT(z) · Δ� , ptraw = iDFT(z) · Δ,

Let the rounding error e = ptraw − pt. Note that each entry of the error [e]i
belongs to [− 1

2 , 1
2 ) and distributed uniformly through the range.

When homomorphically computing a matrix multiplication z �→ Az, we com-
pute

Az = V1 � z1 + V2 � z2 + · · · + Vk � zk

where Vi are the diagonals of the matrix A (k < N if A is sparse), and zi are the
rotated copies of z, to match Vi. This computation corresponds to the plaintext
computation

ptAz = ptV1
∗ ptz1

+ · · · + ptVk
∗ ptzk
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where ptVi
are encoded with same scale factor ΔA, so that the scale factor of

ptAz becomes ΔAΔz.
Here each Vi is being rounded during the encoding of ptVi

. Using the notations
above, we can split the rounding error of matrix multiplication into parts as
below. To focus on only the rounding error that occurs when multiplying A, we
ignore the rounding error of z which has been occurred before the multiplication.
The rounding error eAz can be described as

eAz = ptraw
Az − ptAz =

k∑

i=1

ptraw
Vi

∗ ptzi
−

k∑

i=1

ptVi
∗ ptzi

=
k∑

i=1

(ptraw
Vi

− ptVi
) ∗ ptzi

=
k∑

i=1

eVi
∗ ptzi

.

To take a deeper look into each entry of the sum, we introduce Lemma 1 and
Lemma 2 as stated below.

Lemma 1 (convolution of pt and its error). Let X0, · · · ,XN−1 be indepen-
dent and identically distributed (i.i.d.) random variables following the uniform
distribution U

(− 1
2 , 1

2

)
on range

(− 1
2 , 1

2

)
and X ∈ R [x] /

(
xN + 1

)
be a random

polynomial with its i-th coefficient being Xi, for all i. Suppose pt ∈ R[x]/(xN + 1)
is given. Then Y = pt ∗ X ∈ R[x]/xN + 1 satisfies

E

(
‖Y ‖2

)
=

N

12
‖pt‖2 .

Proof. The negative-wrapped convolution is defined as

Yi =
i∑

j=0

ptjXi−j −
N−1∑

j=i+1

ptjXi−j+N

or shortly

Yi =
N−1∑

j=0

sgni−jptjX[i−j]N .

where sgnx =

{
1, if x ≥ 0
−1, otherwise

Using the additivity of expectation, we have the following.

E

(
‖Y ‖2

)
= E

⎛
⎝

N−1∑
i=0

Y
2
i

⎞
⎠ = E

⎛
⎝

N−1∑
i=0

⎛
⎝

N−1∑
j=0

sgni−j · ptjX[i−j]N

⎞
⎠ 2

⎞
⎠

= E

⎛
⎝

N−1∑
i=0

⎛
⎝

N−1∑
j=0

pt2j X2
[i−j]N

+

N−1∑
j=0

∑
k �=j

sgni−j · sgni−k · ptjptkX[i−j]N
X[i−k]N

⎞
⎠

⎞
⎠

=

N−1∑
i=0

N−1∑
j=0

pt2j · E

(
X

2
[i−j]N

)
+

N−1∑
i=0

N−1∑
j=0

∑
k �=j

sgni−j · sgni−k · ptjptk · E

(
X[i−j]N

)
E

(
X[i−k]N

)
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Since Xj ,Xk are independent and ptj are fixed,

=
N−1∑

i=0

N−1∑

j=0

pt2jE(X2
[i−j]N

) =
N−1∑

i=0

||pt||22 · 1
12

=
N

12
· ||pt||22

The above result with single plaintext can be generalized to the following
with multiple plaintexts.

Lemma 2 (Sum of convolutions of pt1, · · · , ptk and error). Suppose
pt1, · · · , ptk ∈ R [x] /

(
xN + 1

)
are given with ‖pt1‖ = · · · = ‖ptk‖. Let Xij

be i.i.d. following U
(− 1

2 , 1
2

)
, Xi = [Xi,0, · · · ,Xi,N−1] ∈ R [x] /

(
xN + 1

)
and

Yi = Xi ∗ pti for i = 1, · · · , k and j = 0, · · · , N − 1. Then we have

E

(
‖Y1 + · · · + Yk‖2

)
=

kN

12
‖pt1‖2 .

Proof. Note that

‖Y1 + · · · + Yk‖2 =
N−1∑

j=0

(
k∑

i=1

Yij

)2

=
N−1∑

j=0

⎛

⎝
k∑

i=1

Y 2
ij +

k∑

i=1

∑

l �=i

YijYlj

⎞

⎠

=
k∑

i=1

‖Yi‖2 +
N−1∑

j=0

k∑

i=1

∑

l �=i

YijYlj .

For the single entry of YijYlj , the following holds.

E (YijYlj) = E

((
N−1∑

m=0

sgnj−m · ptimXi[j−m]N

) (
N−1∑

o=0

sgnj−o · ptloXl[j−o]N

))

= E

(
N−1∑

m=0

N−1∑

o=0

sgnj−msgnj−o · ptimptloXi[j−m]N Xl[j−o]N

)

=
N−1∑

m=0

N−1∑

o=0

sgnj−msgnj−o · ptimptloE
(
Xi[j−m]N Xl[j−o]N

)
= 0.

Therefore,

E

(
‖Y1 + · · · + Yk‖2

)
= E

⎛

⎝
k∑

i=1

‖Yi‖2 +
N−1∑

j=0

k∑

i=1

∑

l �=i

YijYlj

⎞

⎠

=
k∑

i=1

E

(
‖Yi‖2

)
+

N−1∑

j=0

k∑

i=1

∑

l �=i

E (YijYlj)

=
k∑

i=1

E

(
‖Yi‖2

)
=

k∑

i=1

N

12
‖pti‖2 =

kN

12
‖pt1‖2 .
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Example 1. We verify Lemma 2 by experiment in cases of N = 215 and 216. k and
[pti]i=1,··· ,k is set to 16 and the ith rotated plaintexts of the plaintext pt, which

is the encoding of z ∈ C
N/2 given by zi = cos(i)√

2
+ sin(i)√−2

. The empirical mean
of 100 trials and the expectation are quite similar and their relative differences
are less than 10−3, as stated in the following table. Figure 1 depicts the trials
and show that the deviations of the empirical observation to the estimation of
Lemma 2 are less than 2.5% and 1.5%, when N = 215 and 216, respectively.

N E

(
‖Y1 + · · · + Yk‖2

)
E
empirical

(
‖Y1 + · · · + Yk‖2

) ∣∣∣∣∣
E

(
‖Y1+···+Yk‖2

)
−E

empirical
(
‖Y1+···+Yk‖2

)

E

(∥∥∥Y1+···+Y 2
k

∥∥∥
)

∣∣∣∣∣
215 2.7692 × 1034 2.7718 × 1034 9.2777 × 10−4

216 5.5384 × 1034 5.5430 × 1034 8.1469 × 10−4

Fig. 1. 100 trials of ‖Y1 + · · · + Yk‖2 in Example 1 that are fairly close to the expec-
tation kN

12
‖pt1‖2 stated in Lemma 2. The deviation of the trials to the expectation

decreases as N increases.

In this section, to estimate the magnitude of error, we eagerly utilize this
approximation on ‖Y1 + · · · + Yk‖ as below.

‖Y1 + · · · + Yk‖ =
√

‖Y1 + · · · + Yk‖2 ≈
√

E

(
‖Y1 + · · · + Yk‖2

)
=

√
kn

12
‖pt‖ .

Recall that the following equality on the matrix multiplication error holds :

eAz =
k∑

i=1

eVi
∗ ptzi

.

Applying Lemma 2 on eAz, we prove the following Theorem 1.

Theorem 1. Let A ∈ C
N
2 × N

2 be a matrix with diagonals V1, · · · , Vk, so that
Az = V1 � z1 + V2 � z2 + · · · + Vk � zk where each zi is a rotation of z ∈ C

N/2.
Assume that A and z are encoded into plaintexts by scale factor ΔA and Δz

respectively. Then
∥∥∥Az − Ãz

∥∥∥ ≈
√

kN

12
1

ΔA
‖z‖
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Proof. Let ptzbe the plaintext encoding z and ptV1
, · · · , ptVk

be the plaintext
encoding V1, · · · , Vk, respectively.

Recall that the rounding error of matrix multiplication eAz = ptraw
Az −ptAz =∑k

i=1 eVi
∗ptzi

. Since we can assume that each entry of eVi
follows U(− 1

2 , 1
2 ) and∥∥ptz1

∥∥ = · · · =
∥∥ptzk

∥∥, we can apply Lemma 2 on
∑k

i=1 eVi
∗ ptzi

.
∥∥∥∥∥

k∑

i=1

eVi
∗ ptzi

∥∥∥∥∥ ≈
√

kN

12
‖ptz‖

Note that the following holds for any z ∈ C
N/2 and pt = Encode(z;Δz).

‖z‖ ≈
∥∥∥∥

DFT (pt)
Δz

∥∥∥∥ =
1

Δz
‖DFT (pt)‖ =

1
Δz

√
N

2
‖pt‖

Therefore,

∥∥∥Az − Ãz
∥∥∥ =

1
ΔAz

√
N

2

∥∥∥pt
Az−Ãz

∥∥∥ =
1

ΔAΔz

√
N

2
‖ptraw

Az − ptAz‖

≈ 1
ΔAΔz

√
N

2

√
kN

12
‖ptz‖ =

1
ΔA

√
kN

12

(
1

Δz

√
N

2
‖ptz‖

)
≈ 1

ΔA

√
kN

12
‖z‖

For convenience, we denote 1
ΔA

√
kN
12 as pA so that the following holds :

∥∥∥Az − Ãz
∥∥∥ ≈ pA ‖z‖ .

Theorem 1, which is the error analysis of single matrix multiplication, can
be applied to the case of homomorphically multiplying the two matrices A and
B successively, i.e. z �→ Az �→ BAz. The first type of rounding error will occur
during the multiplication of z by A. Let Ãz be the actual result of such com-
putation, which contains the rounding error. The second type of rounding error

occurs during the multiplication of Ãz by B. Let ˜
BÃz be the result of such

computation, which contains the rounding error with respect to the matrix mul-
tiplication by B. The total error generalized to a series of matrix multiplications
in a straightforward manner as follows.

Theorem 2 (Rounding error in serial matrix multiplication). Let
A1, · · · , Ad ∈ C

N/2×N/2 and let z ∈ C
N/2. Let pi be the multiplier in Theo-

rem 1, i.e. pi = 1
ΔAi

√
ki·N
12 . Then we have

∥∥∥∥Ad · · · A1z − ˜(Ad · · · Ã1z)
∥∥∥∥ �

(
d∑

i=1

pi ‖Ai‖−1

)
·

d∏

i=1

‖Ai‖ · ‖z‖
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Proof. We use an induction on d. The base case with d = 1 is just Theorem 1.
Now suppose the theorem holds up to d−1. Write B := Ad · · · A2. Then we have

∥∥∥∥∥Ad · · · A1z − ˜
(
Ad · · · Ã1z

)∥∥∥∥∥ ≤
∥∥∥BA1z − BÃ1z

∥∥∥ +

∥∥∥∥∥BÃ1z − ˜
(
Ad · · · Ã1z

)∥∥∥∥∥ ,

by the triangular inequality. Then
∥∥∥BA1z − BÃ1z

∥∥∥ � ‖B‖ · p1 · ‖z‖

by Theorem 1 and
∥∥∥∥∥BÃ1z − ˜

(
Ad · · · Ã1z

)∥∥∥∥∥ �
(

d∑

i=2

pi ‖Ai‖−1

)
d∏

i=2

‖Ai‖ ·
∥∥∥Ã1z

∥∥∥

by the induction hypothesis. Since p1 � 1, we get
∥∥∥Ã1z

∥∥∥ ≤ ‖A1z‖ +
∥∥∥A1z − Ã1z

∥∥∥ ≤ ‖A1‖ ‖z‖ + p1 ‖z‖ ≈ ‖A1‖ ‖z‖, and hence

∥∥∥∥∥Ad · · · A1z − ˜
(
Ad · · · Ã1z

)∥∥∥∥∥ �
(

d∑

i=1

pi ‖Ai‖−1

)
·

d∏

i=1

‖Ai‖ · ‖z‖ ,

as expected.

Example 2. We empirically verify Theorem 2 in cases of N = 215, 216. Again,
z ∈ C

N/2 is given by zi = cos(i)√
2

+ sin(i)√−2
. To demonstrate the case of CoeffToSlot,

we use A the decomposed iDFTmatrices. [17] introduces the decomposition, so

that the iDFTmatrix 1
N UNR

0

T
is decomposed into A1 · A2 · · · Alog N−1 and a

permutation matrix, where each of Ais have at most 3 diagonals and has norm
of ‖Ai‖ = 1√

2
. z and A are encoded with the scale factor of Δz = ΔA =

250 during the homomorphic computation. The following table shows that the
observed error of the matrix multiplication is close to and less than the estimate
of Theorem 2.

N ‖Ad · · · A1z − (Ad · · · (A1z)
∼)∼‖

(

∑d
i=1 pi ‖Ai‖−1

)

· ∏d
i=1 ‖Ai‖ · ‖z‖

215 7.5697 × 10−10 9.2196 × 10−9

216 2.1414 × 10−9 2.7939 × 10−8

3.2 CoeffToSlot

As explained in preliminaries, the linear transform of DFTmatrix maps pt
Δ to z,

so it holds that z = [U0 : U0

√−1](pt/Δ), where
√−1 is a complex imaginary
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Fig. 2. The diagram illustrates the details of CoeffToSlot procedure. ˜Δ is the scale
factor to round the real numbers of each matrix Ai(i = 1, · · · , d) into integers. Because

of the rounding errors, the homomorphically calculated message ˜pt
Δ

+ q
Δ

I does not equal
pt
Δ

+ q
Δ

I, but approximates it. The error of the approximation is estimated in theorem

3 as O
(

1

Δ̃
N1+ 1

2d
q
Δ

)

.

unit and U0 is the DFTmatrix of size N/2 × N/2. Refer to Sect. 5.1 of [7] for
the details. CoeffToSlot is the inversion of the encoding. It calculates the two
parts of the plaintext from the message by taking a matrix multiplication and
conjugated sums as follows (Fig. 2).

z1 =
1
N

U
T

0 z =
1
2

(
pt1st

Δ
+

pt2nd

Δ

√−1
)

z1st
CTS = z1 + z1 =

pt1st

Δ

z2nd
CTS =

1√−1
(z1 − z1) =

pt2nd

Δ

In the process of bootstrapping, CoeffToSlot is applied on the ModRaise’d
plaintext, which is known to have form of pt+ qI. The result of CoeffToSlot

becomes two plaintexts encoding z1st
cts =

(
pt
Δ + q

ΔI
)1st and z2nd

cts =
(

pt
Δ + q

ΔI
)2nd.

On the computation of CoeffToSlot, 1
N U0

T
is a full matrix of size N/2×N/2

which is a huge burden to compute naively. In [17], the authors utilized its FFT
decomposition
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1
N

U
NRT

0 =
1
N

VlogN−1 · · · V2V1,

where each Vi is the matrix of butterfly action having matrix norm ‖Vi‖ =
√

2
and has up to three diagonal vectors. Each matrix multiplication requires a
spending of modulus to scale and round its real numbers into integers. It is
customary to group logN-1number of matrix multiplications into fewer number,
let us say d(e.g3or4).

1
N

U
NRT

0 = Ad · · · A2A1

Let Δ̃ be the scale factor to round the real numbers of each matrix Ai into
integers. Figure 3 illustrates CoeffToSlot that consists of d number of matrix
multiplications and two conjugated sums. The following theorem estimates the
size of error in CoeffToSlot.

Theorem 3 (Error of CoeffToSlot). Let ˜pt
Δ + q

ΔI be the approximation of pt
Δ +

q
ΔI calculated by the CoeffToSlot in figure (2). Then the error e = ˜

(
pt
Δ + q

ΔI
) −(

pt
Δ + q

ΔI
)

satisfies1

‖e‖ � C1

Δ̃
N1+ 1

2d
q

Δ
,

where C1 =
d

√
(h+1)3� log N−1

d �
12 · 2

1
2d .

Proof. The random integer coefficient polynomial I in pt+qI is known to follow
the Irwin-Hall distribution, and each coefficient of pt + qI follows a normal
distribution N

(
0, h+1

12 q2
)

very accurately when the hamming weight h is large

enough (e.g. 64 or 128). Then we have ‖pt + qI‖ �
√

(h+1)N
12 q and

‖zmr‖ =

√
N

2
1
Δ

‖pt + qI‖ �
√

h + 1
24

N
q

Δ
,

where zmr is the message being encoded into pt + qI after the step of Mod-
Raise.

The iDFTmatrix 1
N U

NRT

0 splits into Vlog N−1 · · · V2V1, where each Vi has
matrix norm of

√
2 and consists of upto 3 diagonal vectors. Merging the matrices

into d number of matrices and scaling by 1
N , we can assume that

‖Ad‖ = · · · = ‖A1‖ =

(√
2
log N−1

N

) 1
d

= 2− 1
2d N− 1

2d ,

1 Provided that ˜Δ is sufficiently small, we can assume that the rescale error is negligi-
ble. Since we are focusing on the case when ˜Δ is as small as possible, such assumption
is valid.
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and each Ai consists of up to k diagonal vectors, where

k = 3� logN−1
d �.

Utilizing the error analysis in Theorem 2 for the matrix multiplication
Ad · · · A2A1 on zmr, we obtain the estimation on z1 = Ad · · · A2A1z =
1
2

((
pt
Δ + q

ΔI
)1st +

(
pt
Δ + q

ΔI
)2nd √−1

)
.

‖z̃1 − z1‖ � ‖zmr‖
√

kN

12
1

Δ̃
‖A1‖ · · · ‖Ad‖

(
1

‖A1‖ + · · · +
1

‖Ad‖
)

�
√

h + 1
24

N
q

Δ

√
kN

12
1

Δ̃

(
2− 1

2d N− 1
2d

)d−1

d

=
d

√
(h + 1) 3� logN−1

d �
24

2
1
2d

1

Δ̃
N1+ 1

2d
q

Δ

‖e‖ =

∥∥∥∥∥
˜

(
pt

Δ
+

q

Δ
I

)
−

(
pt

Δ
+

q

Δ
I

)∥∥∥∥∥

=

√√√√√
∥∥∥∥∥∥

˜(
pt

Δ
+

q

Δ
I

)1st

−
(

pt

Δ
+

q

Δ
I

)1st

∥∥∥∥∥∥

2

+

∥∥∥∥∥∥
˜(

pt

Δ
+

q

Δ
I

)2nd

−
(

pt

Δ
+

q

Δ
I

)2nd

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
˜

((
pt

Δ
+

q

Δ
I

)1st

+

(
pt

Δ
+

q

Δ
I

)2nd √−1

)
−

((
pt

Δ
+

q

Δ
I

)1st

+

(
pt

Δ
+

q

Δ
I

)2nd √−1

)∥∥∥∥∥∥
= ‖2 (z̃1 − z1)‖ = 2 ‖z̃1 − z1‖

� d

√
(h + 1) 3

⌈
logN−1

d

⌉

12
2

1
2d

1

Δ̃
N

1+ 1
2d

q

Δ
= C1

1

Δ̃
N

1+ 1
2d

q

Δ
.

Example 3. We provide a proof-of-concept implementation of Theorem 3, at
https://github.com/CryptoLabInc/EvalRound. We developed our own source
code in C++, which implements the binary version of CKKS bootstrapping.
Table 3 describes the parameters used in this example. N denotes the ciphertext
dimension, log(QP ) denotes the bit lengths of the largest RLWE modulus, h
denotes the hamming weight, λ denotes the security bits, Δ denotes the encod-
ing scale factor, q denotes the base modulus, and d denotes the decomposition
number for CoeffToSlot matrix.

Table 3. Parameters for Example 3

Parameter N log(QP ) h λ Δ q d

P1 29 2900 128 – 250 260 4

P2 213 2900 128 – 250 260 4

P3 217 2900 128 128 250 260 4

https://github.com/CryptoLabInc/EvalRound
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C1 could be computed directly from the statement of Theorem 3, and so are
the estimate of ‖zmr‖ and the bound of ‖e‖. We checked that ‖zmr‖ is close to
‖zmr‖est and ‖e‖ is bounded to ‖e‖bound, as shown in Table 4.

Table 4. Implementation result for Example 3

Parameter C1 ‖zmr‖ ‖zmr‖est ‖e‖ ‖e‖bound

P1 12.3858 1.2543 × 106 1.1723 × 106 1.93821 × 10−9 1.25792 × 10−8

P2 28.6846 1.9509 × 107 1.87575 × 107 1.50875 × 10−7 9.59557 × 10−7

P3 37.1574 3.1176 × 108 3.0012 × 108 1.6208 × 10−6 1.9321 × 10−5

4 EvalRound instead of EvalMod

Let [·] q
Δ

: R → R be the modular reduction by integer multiple of q
Δ . EvalMod

subsequent to CoeffToSlot is a homomorphic evaluation of [·] q
Δ

, which removes
the ambiguity q

ΔI from pt
Δ + q

ΔI. Let Mod q
Δ

: R
N → R

N be an element-wise
evaluation of [·] q

Δ
. We first take a look at Mod q

Δ
, focusing on its role during

EvalMod.
We pointed out in the previous section that the homomorphically calculated

message ˜pt
Δ + q

ΔI does not equal pt
Δ + q

ΔI mainly because of the rounding error.
Let e be the error of the approximation, then we get

˜pt

Δ
+

q

Δ
I =

pt

Δ
+

q

Δ
I + e and

Mod q
Δ

(
˜pt

Δ
+

q

Δ
I

)
=

pt

Δ
+ e.

Note that the rounding error is added to the output of EvalMod and deteri-
orates the overall accuracy of bootstrapping. Thus the scale factor Δ̃ should be
taken as large as Δ to keep the rounding error small, in spite of its consumption
of d number of levels. Let Round q

Δ
: R

N → R
N denote the counterpart of Mod q

Δ
,

so that

Round q
Δ

(x) := x − Mod q
Δ

(x).

A standard assumption is ‖z‖∞ ≤ 1, from which
∥∥ pt

Δ

∥∥
∞ ≤ 1 is derived, and

q
Δ is much larger than pt

Δ (e.g. 210). When the magnitude of e is also negligible
compared to q

Δ , the sum pt
Δ +e does not change the qI component in pt

Δ +e+ q
ΔI.

In other words,
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Round q
Δ

(
˜pt

Δ
+

q

Δ
I

)
=

q

Δ
I = Round q

Δ

(pt

Δ
+

q

Δ
I
)

but

Mod q
Δ

(
˜pt

Δ
+

q

Δ
I

)
=

pt

Δ
+ e �= pt

Δ
= Mod q

Δ

(pt

Δ
+

q

Δ
I
)

.

Let EvalRound(ct) := ct − EvalMod(ct). The equality of Round q
Δ

allows us to
ignore the rounding error, and the scale factor Δ̃ can be taken much smaller than
the canonical choice Δ while maintaining the same accuracy. Figure 3 shows the
details of our proposed bootstrapping utilizing EvalRound. Our main aim is to
take smaller scale factor Δ̃ while maintaining the same accuracy as the conven-
tional bootstrapping using EvalMod, and reduce the consumption of modulus
bit from Δl+2d to Δl+dΔ̃d, where d is the number of matrix multiplications in
DFTand iDFTand l is the number of levels consumed in EvalMod/EvalRound.

Fig. 3. The proposed bootstrapping utilizing EvalRound : d is the number of matrix
multiplications in DFTand iDFT. l is the number of levels consumed in EvalRound,
which equals that of EvalMod. The overall modulus bit spent is ˜ΔdΔl+d. Our main
aim is to reduce ˜Δ, while maintaining the accuracy.
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From the identity Round q
Δ

(x) = x − Mod q
Δ

(x), EvalRound can be readily
implemented just using one of the successful implementations [5,18,21–23]
of EvalMod. Referencing one of them, let EvalMod : ct �→ ctem be a homo-
morphic approximation of Mod q

Δ
. Consider the map of end-to-end evaluation

of EvalMod, EvalModz : z �→ zem, or EvalModz = ψ−1 ◦ EvalMod ◦ ψ where
ψ : z �→ ct = Encrypt ◦ Encode. Then EvalModz approximates Mod q

Δ
with an

error bound BEvalMod (e.g. 2−20 or 2−30) for each x ∈ C
N close to lattice points{

0,± q
Δ ,± 2q

Δ , · · · } within distance ε (e.g. 1 ), so that

dist

(
x,

{
0,± q

Δ
,±2q

Δ
, · · ·

})
≤ ε

=⇒
∥∥∥Mod q

Δ
(x) − EvalModz(x)

∥∥∥
∞

< BEvalMod, (5)

where dist denotes the maximum distance among its elements.

For x = ˜pt
Δ + q

ΔI= pt
Δ + e + q

ΔI, its distance to the lattice points is pt
Δ + e,

and we have
∥∥∥

pt

Δ
+ e

∥∥∥
∞

≤ ε =⇒
∥∥∥

q

Δ
I − EvalRoundz (x)

∥∥∥
∞

< BEvalMod. (6)

From a standard assumption ‖z‖∞ ≤ 1 and theorem 3, we have the following
L2 estimates.

∥∥∥
pt

Δ

∥∥∥ ≤ 1

‖e‖ ≤ C1N
1+ 1

2d q

Δ̃Δ
(7)

For any x, it holds that 1√
N

‖x‖ ≤ ‖x‖∞ ≤ ‖x‖. The equivalent condition for
‖x‖∞ = ‖x‖ is that x is a discrete delta function, which is extremely concentrated
at one point. When x is not that extreme, we observed in practice that there
exists a constant C2 of moderate size (< 10) that satisfies

∥∥∥
pt

Δ

∥∥∥
∞

≤ C2√
N

∥∥∥
pt

Δ

∥∥∥ and

‖e‖∞ ≤ C2√
N

‖e‖ . (8)

Example 4. Let the parameters be determined as in Example 3. We checked that
the approximations in inequality 8 are valid, as shown in Table 5. ‖ pt

Δ‖bound
∞ and

‖e‖bound
∞ denote the estimates of the actual values under the choice of C2 = 5.

Now we analyze the proposed bootstrapping in Fig. 3 and show the proper
range of Δ̃ that enables the bootstrapping to maintain the same accuracy as
EvalMod.
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Table 5. Checking the inequality 8

Parameter ‖ pt
Δ

‖∞ ‖ pt
Δ

‖bound
∞ ‖e‖∞ ‖e‖bound

∞
P1 8.5345 × 10−2 1.2273 × 10−1 4.46107 × 10−10 2.7796 × 10−9

P2 2.4474 × 10−2 3.1755 × 10−2 3.5204 × 10−9 2.7234 × 10−8

P3 7.0179 × 10−3 7.9874 × 10−3 2.8059 × 10−8 2.6684 × 10−7

Theorem 4 (Proper range of Δ̃). In the bootstrapping proposed in Fig. 3,
we have

∥∥∥∥
pt

Δ
− p̃t

Δ

∥∥∥∥
∞

< BEvalMod

if Δ̃ ≥ Δ̃min = 1
ε
√

N
C2

−1

C1N1+ 1
2d q

Δ . Here C1 and C2 are the constants in theorem

3 and the inequality (8), respectively.

Proof. If Δ̃ ≥ Δ̃min, the inequalities (8) and (7) lead to
∥∥∥

pt

Δ
+ e

∥∥∥
∞

≤ C2√
N

(∥∥∥
pt

Δ

∥∥∥ + ‖e‖
)

≤ C2√
N

(
1 +

C1N
1+ 1

2d q

Δ̃Δ

)

≤ C2√
N

(
1 +

(
ε
√

N

C2
− 1

))

= ε.

From (6), we have ∥∥∥∥
q

Δ
I − q̃

Δ
I

∥∥∥∥
∞

< BEvalMod.

Since p̃t
Δ = pt

Δ + q
ΔI − q̃

ΔI2, we have the desired result,
∥∥∥∥

pt

Δ
− p̃t

Δ

∥∥∥∥
∞

=
∥∥∥∥

q

Δ
I − q̃

Δ
I

∥∥∥∥
∞

< BEvalMod.

Example 5. We validate our main argument, Theorem 4 on the two parame-
ter sets in Example 3. A standard EvalMod is employed. The minimax polyno-
mial approximation of degree 31 is sought for q

2πΔ sin
(

2πΔx
q

)
on

[−3 q
Δ , 3 q

Δ

]
.

Repeatedly applying half-angle identity, the domain is extended to
[−24 q

Δ , 24 q
Δ

]
.

EvalMod is then the composition of the arcsine polynomial of degree three and
the polynomial approximation on the extended domain. The following Table 6
reports the constants in Theorem 4.
2 Here we assumed that SlotToCoeff error is negligible.
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Table 6. Constants in Theorem 4

Parameter C2 ε BEvalMod
˜Δmin

P1 5 1 1.8696 × 10−8 222

P2 5 1 1.5208 × 10−6 225

P3 5 1 4.3320 × 10−5 229

Table 7. Results of the conventional and proposed bootstrappings

Parameter Δ̃ = Δ̃min Δ̃ = Δ̃can

Conventional Proposed Conventional Proposed∥∥∥∥ pt
Δ

− p̃t
Δ

∥∥∥∥∞
P1 1.0778 × 10−1 8.0376 × 10−9 6.6876 × 10−9 6.7038 × 10−9

P2 9.9619 × 10−2 4.9083 × 10−7 1.2809 × 10−7 1.2781 × 10−7

P3 6.6230 × 10−2 2.8095 × 10−5 1.0923 × 10−5 1.0927 × 10−5

A conventional bootstrapping takes Δ̃ = Δ̃can = 260 and utilizes EvalMod.
Our proposed bootstrapping allows for taking any Δ̃ ≥ Δ̃min.

As stated in Theorem 4, the proposed bootstrapping satisfies
∥∥∥ pt

Δ − p̃t
Δ

∥∥∥
∞

<

BEvalMod in all the cases, while the conventional one does not in the case of
Δ̃ = Δ̃min. Let z̃ be the final output of the proposed bootstrapping in Fig. 3.
‖z − z̃‖∞ represents the precision of bootstrapping. The following Table 8 re-
interprets the result in Table 7 in terms of bootstrapping precision.

Table 8. Precision of bootstrapping obtained from conventional and proposed methods

Parameter ˜Δ = ˜Δmin
˜Δ = ˜Δcan

Conventional Proposed Conventional Proposed

‖z − z̃‖∞ P1 1.11 –25.51 –25.45 –25.45

P2 2.81 –19.24 –19.52 –19.52

P3 4.25 –12.72 –13.30 –13.30

Finally, we compute the amount of preserved modulus in Parameter II, as in
Table 1. In CoeffToSlot, we use Δ̃ = 229 instead of 260, preserving (60 − 29) · 4 =
124 bits of modulus. Meanwhile, since the input of SlotToCoeff becomes larger
from the size of pt to the size of pt + qI, we should increase the SlotToCoeff
scaling factor by q

Δ = 210, losing a total of 10 · 4 = 40 bits of modulus. In sum,
we save 124−40 = 84 bits of ciphertext modulus. Since Δ = 250, it is equivalent
to preserving approximately two multiplicative depths.

In the state of the art implementations, we multiply a constant c > 1 before
bootstrapping and divide by c after bootstrapping. This technique increases the
bootstrapping precision by log2(c) bits. In particular, we use as large c and
possible. Let c−bootstrapping be a bootstrapping circuit with such constant c.
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Corollary 1. Let BTSc = (×c−1) ◦ BTS ◦ (×c) be a c-bootstrapping circuit with
EvalMod input bound ε and EvalMod error bound BEvalMod, so that

∥∥ c·pt
Δ

∥∥
∞ ≤ ε.

This bootstrapping satisfies
∥∥∥∥

pt

Δ
− p̃t

Δ

∥∥∥∥
∞

<
1
c
BEvalMod.

where p̃t is defined to be a final output of BTSc. Let BTS# be an EvalRound
version of BTS. We define BTS#

c/2 := (×2/c) ◦ BTS# ◦ (×c/2). For BTS#
c/2, we

have ∥∥∥∥
pt

Δ
− p̃t

Δ

∥∥∥∥
∞

<
2
c
BEvalMod.

if Δ̃ ≥ Δ̃min = 2C2

ε
√

N
· C1N1+ 1

2d q
Δ . Here C1 and C2 are the constants in theorem 3

and the inequality (8), respectively.

Proof. If Δ̃ ≥ Δ̃min, the inequalities (8) and (7) lead to

∥∥∥
c

2
· pt

Δ
+ e

∥∥∥
∞

≤ ε

2
+

C2√
N

‖e‖

≤ ε

2
+

C2√
N

· C1N
1+ 1

2d q

Δ̃Δ

≤ ε

2
+

ε

2
= ε

= ε.

From (6), we have
∥∥∥∥

q

Δ
I − q̃

Δ
I

∥∥∥∥
∞

< BEvalMod.

Since c
2 · p̃t

Δ = c
2 · pt

Δ + q
ΔI − q̃

ΔI, we have the desired result,
∥∥∥∥

pt

Δ
− p̃t

Δ

∥∥∥∥
∞

=
2
c

∥∥∥∥
q

Δ
I − q̃

Δ
I

∥∥∥∥
∞

<
2
c
BEvalMod.

Example 6 (Parameter Construction based on a set in [1]). Table 9 describes
the overview of the parameter set II proposed in [1]. Here N denotes the cipher-
text dimension, log(QP ) denotes the bit length of the largest RLWE modulus,
h denotes the hamming weight, depth denotes the number of available multi-
plication after bootstrapping, Δ denotes the scaling factor for encoding, and q0
denotes the size of the base modulus.

Using Corollary 1, Δ̃min is computed as 234. Based on Set II, by applying
EvalRound technique, we can construct a parameter with depth = 6, while losing
at most 1 bit of precision. Table 10 describes the new parameter, namely Set
II’. Here L denotes the maximum ciphertext level. log(qi) and log(pj) denote
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Table 9. Overview of Set II in [1].

Set N log(QP ) h depth Δ q0 Bootstrap Precision

II 216 1547 192 5 245 260 –31.5

the bit lengths of individual RNS primes and temporary primes for Modulus
switching, respectively. Base, Mult, StC, EvalRound, CtS denote the base prime,
the multiplication primes, the SlotToCoeff primes, the EvalRound primes, and the
CoeffToSlot primes, respectively. The left operand of the dot product denotes the
number of primes, and the right operand denotes the bit lengths of primes.

Table 10. Proposed parameter Set II’

II’

h N Δ log(QP ) L

192 216 245 1543 23

log(qi) log(pj)

Base + Mult StC EvalRound CtS

60 + 6 · 45 3 · 57 11 · 60 3 · 46 4 · 61

5 Conclusion

In this article, we proposed a method called EvalRound, which is a modification
of the EvalMod step in the CKKS bootstrapping. One can reduce the amount
of ciphertext modulus consumed in the bootstrapping by modifying the original
algorithm with EvalRound. The modulus spent in CoeffToSlot are for the scale
factors, each of which has been chosen large enough to take up one level to
rescale it down. Smaller scale factors lead to non-negligible rounding errors that
are transmitted to EvalMod and eventually corrupt the overall accuracy of the
bootstrapping. We introduce a scrutinized analysis that estimates the size of the
rounding error with respect to the new scale factors.

Although the rounding error at this step is stuck to the input of the next step
EvalMod, it does not pass through EvalRound if it is of a similar size to ε = Δ/q.
Thus, when using EvalRound, we can use smaller scale factors for CoeffToSlot
compared to the conventional method. In particular, we observed that we can
preserve almost half of the modulus consumption in CoeffToSlot. The utilization
of the error analysis of CoeffToSlot, reduced scale factors, and EvalRound yielded
a saving of approximately two multiplicative levels, in one of practical settings.
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9. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 20

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 14

https://doi.org/10.1007/978-3-030-77870-5_21
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-319-70694-8_14


EvalRound Algorithm in CKKS Bootstrapping 187

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2019). https://doi.org/
10.1007/s00145-019-09319-x

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

13. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://ia.cr/2012/144

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009,
p. 169–178. Association for Computing Machinery, New York (2009). https://doi.
org/10.1145/1536414.1536440

16. Gentry, C., Sahai, A., Waters, B.: Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

17. Han, K., Hhan, M., Cheon, J.H.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. IEEE Access
7, 57361–57370 (2019). https://doi.org/10.1109/ACCESS.2019.2913850

18. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 16

19. Jutla, C.S., Manohar, N.: Modular lagrange interpolation of the mod function for
bootstrapping of approximate he. Cryptology ePrint Archive, Report 2020/1355
(2020). https://ia.cr/2020/1355

20. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-
strapping of approximate he. In: Dunkelman, O., Dziembowski, S. (eds.) Advances
in Cryptology - EUROCRYPT 2022, vol. 13275, pp. 491–520 (2022). Springer,
Heidelberg. https://doi.org/10.1007/978-3-031-06944-4 17

21. Lee, J.-W., Lee, E., Lee, Y., Kim, Y.-S., No, J.-S.: High-precision bootstrap-
ping of RNS-CKKS homomorphic encryption using optimal minimax polynomial
approximation and inverse sine function. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 618–647. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 22

22. Lee, J.W., Lee, Y., Kim, Y.S., Kim, Y., No, J.S., Kang, H.: High-precision boot-
strapping for approximate homomorphic encryption by error variance minimiza-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EURO-
CRYPT 2022, vol. 13275, pp. 551–580 (2022). Springer, Heidelberg. https://doi.
org/10.1007/978-3-031-06944-4 19

23. Lee, Y., Lee, J.W., Kim, Y.S., No, J.S.: Near-optimal polynomial for modulus
reduction using l2-norm for approximate homomorphic encryption. IEEE Access
(2020). https://doi.org/10.1109/ACCESS.2020.3014369.

https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://ia.cr/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1007/978-3-030-40186-3_16
https://ia.cr/2020/1355
https://doi.org/10.1007/978-3-031-06944-4_17
https://doi.org/10.1007/978-3-030-77870-5_22
https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1007/978-3-031-06944-4_19
https://doi.org/10.1109/ACCESS.2020.3014369.


FINAL: Faster FHE Instantiated
with NTRU and LWE

Charlotte Bonte1(B) , Ilia Iliashenko2 , Jeongeun Park2 ,
Hilder V. L. Pereira2 , and Nigel P. Smart2,3

1 Intel Corporation, Emerging Security Lab, Mountain View, USA
charlotte.bonte@intel.com

2 imec-COSIC, KU Leuven, Leuven, Belgium
{ilia,Jeongeun.Park,HilderVitor.LimaPereira}@esat.kuleuven.be

3 Zama Inc., Franklin, USA
nigel.smart@kuleuven.be

Abstract. The NTRU problem is a promising candidate to build effi-
cient Fully Homomorphic Encryption (FHE). However, all the existing
proposals (e.g. LTV, YASHE) need so-called ‘overstretched’ parameters
of NTRU to enable homomorphic operations. It was shown by Albrecht et
al. (CRYPTO 2016) that these parameters are vulnerable against sub-
field lattice attacks.

Based on a recent, more detailed analysis of the overstretched NTRU
assumption by Ducas and van Woerden (ASIACRYPT 2021), we con-
struct two FHE schemes whose NTRU parameters lie outside the
overstretched range. The first scheme is based solely on NTRU and
demonstrates competitive performance against the state-of-the-art FHE
schemes including TFHE. Our second scheme, which is based on both
the NTRU and LWE assumptions, outperforms TFHE with a 28% faster
bootstrapping and 45% smaller bootstrapping and key-switching keys.

Keywords: NTRU · FHE · LWE · Bootstrapping

1 Introduction

In the last ten years fully homomorphic encryption based on lattice problems has
been a vibrant field of research, with schemes being proposed, sometimes broken
and sometimes improved. The initial work of Gentry [18] was truly ground-
breaking in that it established not only (what we now call) a compact somewhat
homomorphic encryption (SHE) scheme based on lattices, but it also presented a
method to bootstrap the compact SHE scheme into a fully homomorphic encryp-
tion (FHE) scheme. Gentry’s original scheme was based on properties of lattices
of ideals of algebraic number fields, which are now considered insecure, but in the
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intervening years numerous authors have presented FHE schemes based on LWE
[6], Ring-LWE [7], NTRU [27] and the approximate integer GCD problem [31].

NTRU-based schemes seem the most efficient as their ciphertexts can be
represented by a single polynomial in comparison to a pair of polynomials in
RLWE-based schemes. Hence, these schemes have the potential of halving both
the memory requirements and the running time.

In particular, an early FHE scheme based on the NTRU problem, called
YASHE [4], was very efficient when compared to similar schemes. However, it
was subsequently shown to be insecure due to the parameters being chosen in the
so-called ‘overstretched’ NTRU regime [1]. More specifically, YASHE required
the integer modulus q to be exponentially large in n, the degree of the polynomial
used as the modulus of the polynomial ring. Howerver, it was discovered [1] that
as we “stretch” the parameters by increasing q for a fixed n, the NTRU problem
becomes easier, because it becomes possible to exploit a dense sublattice of the
NTRU lattice to mount an attack. Therefore, constructing FHE schemes based
on the NTRU problem is challenging.

In the initial version of the attack, the subfields of the NTRU field were
exploited in order to reduce the dimension of the lattice in which one searches
for the secret key. Latter analysis [24] showed that the attack is enabled simply
by the existence of a dense sublattice within the NTRU lattice. Thus, this attack
stems from the structure of the NTRU lattice and, therefore, cannot be addressed
by switching to another polynomial ring. However, it was still difficult to estimate
the impact of these sublattice attacks on the security of NTRU and, therefore,
it was hard to obtain correct estimates of the security level of NTRU-based
schemes. For example, the recent leveled homomorphic encryption scheme for
automata [16], which is based in the matrix NTRU problem, used q polynomial
in n. Nevertheless, it was quickly shown [26] that this scheme is vulnerable to
sublattice attacks.

However, we now have a much better understanding about how the security
of the NTRU problem degrades as we increase q. In particular, the recent work of
Ducas and van Woerden [13] allows us to estimate the concrete cost of breaking
the NTRU problem for any given q. Thus, we now have much more solid ground
to try to construct NTRU-based FHE schemes.

Ducas and van Woerden showed that to avoid the aforementioned sublattice
attacks one should set q ∈ O(n2.484). This already seems to rule out NTRU-
based schemes which follow the blueprint BGV [5] or FV [14]. Therefore, as a
starting point, we take the bootstrapping of [3], which is the basis of the FHEW
scheme [12] and its extension, TFHE [10].

These schemes have a base homomorphic encryption scheme, in both cases
based on LWE, and an accumulator, which is a variant of the GSW scheme [19],
instantiate with the RLWE problem. We use the base scheme to evaluate binary
gates and the accumulator to refresh the LWE ciphertexts of the base scheme.

The advantage of GSW-like schemes is that noise growth is quasi addi-
tive when evaluating long chains of multiplications, thus, the final noise in the
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refreshed ciphertext can be as small as Õ(n), which fits the above bound of
Ducas and van Woerden.

In this paper, we investigate the construction of FHE schemes based on the
NTRU. We show that it is possible to adapt the framework of FHEW [12] to the
NTRU setting, by using a matrix version of the NTRU problem to construct the
base scheme and the standard NTRU problem to construct a GSW-like scheme.
The resulting scheme has a fast bootstrapping algorithm with running times
similar to those of the most efficient scheme of this type – TFHE [10]. As the
encryption parameters of our scheme can be selected outside of the overstretched
regime of NTRU, this allows us to construct competitive FHE based solely on
the NTRU assumption. In other words, our result is a positive answer to the
open problem of whether it is possible to construct FHE based on NTRU.

In addition, we show that by combining an LWE-based scheme and our
NTRU-based GSW-like scheme, called NGS in this paper, we obtain a bootstrap-
ping algorithm that is faster than TFHE’s and requires much less key material,
which improves the state-of-the-art in FHE constructions.

Concurrently to our own work Kluczniak [25] presented a version of NTRU
called NTRU-ν-um which also claims to provide a secure fully homomorphic
version of NTRU with small modulus. The scheme is presented to be instantiated
over a ring defined by XN + 1 and XN − 1. In [22] Joye shows that the variant
defined over XN − 1 is not secure.

1.1 Our Techniques and Results

Homomorphic Scheme Based on the Matrix NTRU Problem. The boot-
strapping framework of [12] assumes that the input encryption of the bootstrap-
ping is an LWE ciphertext which means the main step of the decryption is a
simple inner product between the ciphertext and the secret key. However, if
we want to replace the underlying LWE-based base scheme with one based on
NTRU then complications arise. The NTRU decryption involves a polynomial
multiplication, which is much more complicated than the inner product.

One way of simplifying the decryption function is by assuming that each
NTRU ciphertext encrypts an integer m0 instead of a polynomial of degree N−1.
Let Rq be a polynomial ring. We can encrypt m0 as c = g/f +Δ ·m0 ∈ Rq where
g is a random element of Rq, f is the secret key and Δ � q/4. Note that we
don’t add any additional noise other than g in a ciphertext unlike other NTRU
based schemes [4,27] in order to keep noise growth small as discussed in Sect. 3.
To decrypt, we compute the inner product of the coefficient vector of c, denoted
by φ(c), and the first column of the anti-circulant matrix of f which we will
denote as Φ(f). Given that the secret key of the NTRU scheme will be defined
as f = 1 + 4 · f ′, one can notice that in Rq c · f = g + 4 · f ′ · ε + Δ · m0, for some
small ε, which implies that

φ(c) · Φ(f) = φ(g) + 4 · ε · φ(f ′) + Δ · (m0, 0, . . . , 0).

Hence, φ(c) · col0(Φ(f)) = g0 + 4 · ε · f ′
0 + Δ · m0, which is enough to recover m0.
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Similarly to [12], one can use NTRU defined over power-of-two cyclotomic
rings. However, these rings provide little flexibility in terms of choosing param-
eters to achieve a certain security level. For example, even if the ring dimension
N = 600 already satisfies the desired security level, one has to choose N = 210

as this is the smallest power of 2 larger than 600. This problem can be solved
by using cyclotomic rings of other orders instead of power-of-two, but in this
case, the matrix Φ(f) loses its anti-circulant property, which, as we will see in
Sect. 5, helps to significantly speed up the bootstrapping and reduce encryption
parameters.

Driven by the above limitations, we resort to the matrix NTRU prob-
lem (MNTRU) instead of its ring-based version. Our MNTRU base scheme is
described as follows. We replace the polynomial ratio g/f by the matrix prod-
uct G · F−1, where both G and F are unstructured random matrices. Hence, a
ciphertext of some plaintext matrix M has the form C = G·F−1+Δ·M ∈ Z

n×n
q

or C = (G + Δ · M) · F−1 ∈ Z
n×n
q . A single integer m ∈ {0, 1} is encrypted by

a ciphertext of the form

c := (g + Δ · m) · F−1 ∈ Z
n
q

where g is a random vector from Z
n
q and m := (m, 0, . . . , 0) ∈ Z

n. This guar-
antees that the decryption can be done by the inner product of c and the first
column of the secret matrix F. Therefore, it is simple enough for the boot-
strapping algorithm to handle it efficiently. Furthermore, it is easy to adapt the
homomorphic NAND gate from [12] to our scheme.

Notice that we are dividing both the noise term (g) and the message (Δ·m) by
F, because this reduces the impact of the noise growth due to the multiplication
by F during the decryption, as explained in Sect. 3.

GSW-like Scheme Based on the NTRU Problem. The bootstrapping
framework of FHEW [12] uses a GSW-like scheme based on the RLWE problem
to evaluate the decryption function of the base scheme efficiently and with low
noise growth. Thus, to follow this blueprint, we propose an NTRU-based GSW-
like scheme, which we call NGS. As the GSW-like scheme of [30], NGS can
encrypt a polynomial m ∈ R := Z[X]/〈XN + 1〉 in two ciphertext formats:

– Scalar : it is a standard NTRU ciphertext encrypting m as g/f + Δm ∈ RQ.
– Vector : we encrypt m as c = g/f + g · m ∈ R�

Q, where g is a gadget vector
and � ≈ log(Q).

As in TFHE [10], we define an external product between these two ciphertexts
types, which outputs another scalar ciphertext. Notice that we need only � ring
elements per vector ciphertext. Thus, our external product is computed with �
products in RQ, while the ciphertexts of the GSW scheme used in TFHE are
composed by 4 · �′ ring elements. Therefore, they need 4 · �′ multiplications per
external product. Thus, NGS external product can achieve better running times
and memory usage for similar parameters.
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Here, we focus on using the NGS scheme as an accumulator to homomor-
phically evaluate the decrytpion function of a base scheme and compare the
performance with TFHE bootstrapping. But it is worth to notice that several
other applications that use the GSW scheme could take advantage of the faster
homomorphic operations of NGS. For example, by simply replacing GSW by
NGS, one could speed up the transciphering for TFHE [20], or the homomor-
phic evaluation of maximum and minimum functions from [11], or the tree-based
private information retrieval from [29].

Fast Bootstrapping with Non-overstretched Parameters. Given our
NGS-based external product, we show that MNTRU ciphertexts can be homo-
morphically decrypted, or bootstrapped, using the NGS scheme with a similar
running time as in TFHE. Hence we are able to construct FHE based solely on
the NTRU assumption, with similar performance as TFHE.

Given a ciphertext c ∈ Z
n
q of the base scheme, we use the NGS based external

product to multiply it with the vector f0 := col0(F) ∈ Z
n, i.e., the first column

of the MNTRU secret key. This generates a scalar ciphertext which is then
transformed back to an MNTRU ciphertext.

In TFHE’s bootstrapping, the LWE secret s is binary, since this allows one
to compute an encryption of Xaisi using the fact that Xai·si = 1+(Xai − 1) · si

when si ∈ {0, 1}. This operation is called a CMux gate. Since NTRU has ternary
secret keys, adapting the CMux would require two consecutive external products,
as it was noticed in [28]. Thus, we propose a ternary CMux gate, which can be
executed with a single external product. We notice that this ternary CMux is of
independent interest, as it can also be applied to other bootstrapping procedures,
e.g., if one instantiates TFHE with ternary secrets. Bootstrapping TFHE with
ternary keys was also considered in the paper [23].

We also prove that the final noise accumulated by the bootstrapping is Õ(n),
which allows us to choose q as a very low degree polynomial in n, e.g., q = Õ(n),
thus, below the ‘fatigue’ point that characterizes the overstretched regime of
NTRU. Namely, it was shown [13,24] that the dense sublattice attacks against
NTRU start to be more efficient than the classic key-recovering attacks when
q = n2.484+o(1).

Faster Bootstrapping by Combining LWE and NTRU. Comparing the
external product of TFHE with ours, we see that we need less multiplications
in RQ, thus, less fast Fourier transforms (FFT), which is the most expensive
building block in the entire bootstrapping. Hence, we would expect our boot-
strapping to be faster than theirs by a constant factor. However, the total number
of external products is n, the dimension of the base scheme, which is defined by
the hardness of the MNTRU problem. Thus, we have to choose n larger than in
TFHE and we end up with a bootstrapping that requires essentially the same
number of FFTs as in TFHE.

To obtain a smaller value of n, we propose to replace our MNTRU-based
scheme by an LWE-based and use the NGS scheme to bootstrap it. Thus, the



FINAL: Faster FHE Instantiated with NTRU and LWE 193

decryption function of an LWE-based scheme is evaluated by the NGS scheme,
which returns an NGS scalar ciphertext. We show that it is possible to adapt
existing key-switching procedures to transform this NTRU ciphertext back to
an LWE ciphertext, thus completing the bootstrapping.

Therewith, we need essentially the same number of external products as in
TFHE, but each external product requires less FFTs, thus leading to a smaller
total number of FFTs in our bootstrapping. In addition, our scheme requires
much less key material.

Practical Results and C++ Implementation: We implemented our boot-
strapping algorithms and compared them with that of TFHE. As a result, the
bootstrapping of MNTRU ciphertexts is about 40% slower than TFHE’s boot-
strapping and it requires 9% more key material. However, when the LWE prob-
lem is used to construct the base scheme, our running time is about 28% faster
than TFHE. As a concrete example, running on a single core of a 3.1 GHz pro-
cessor, TFHE takes 66 ms while ours takes 48 ms. Furthermore, our LWE/NGS
scheme almost halves the total size of bootstrapping and key-switching keys: from
71 MB in TFHE to 39.3 MB. It is important to notice that one bootstrapping
allows us to evaluate any binary gate homomorphically, thus, the homomorphic
evaluation of any circuit consists of essentially running one bootstrapping for
each gate, therefore, the speedup we obtained in the bootstrapping procedure
translates directly as the same speedup for any binary circuit.

Our code is publicly available. More details can be found in Sect. 7.

2 Preliminaries

2.1 Vectors, Polynomials, and Norms

We use lower-case bold letters for vectors and upper-case bold letters for matri-
ces. A zero vector is denoted by 0. We denote the i + 1-th column (resp. row) of
a matrix A by coli(A) (resp. rowi(A)). The inner product of two vectors a and
b is denoted by a · b. For any vector u, ‖u‖ denotes the infinity norm. Let [B]
denote a set {1, . . . , B} for an integer B.

Throughout the paper, N is always a power of two and R := Z[X]/〈XN +1〉
is the (2N)-th cyclotomic ring. Any element f of R can be always seen as the
unique polynomial of degree smaller than N belonging to the coset f +〈XN +1〉.
Hence, writing f =

∑N−1
i=0 fi · Xi is unambiguous and we can then define the

coefficient vector of f as φ(f) := (f0, . . . , fN−1) ∈ Z
N . Therefore, we can define

the infinity norm of f as ‖f‖ := ‖φ(f)‖. We also define the anti-circulant matrix
of f as Φ(f) ∈ Z

N×N such that rowi(Φ(f)) = φ(f ·Xi) for 0 ≤ i ≤ N −1. Notice
that ∀(k, f, g) ∈ Z × R × R, φ(k · f · g) = k · φ(f) · Φ(g). For any Q ∈ Z, let
RQ := R/QR = ZQ[X]/〈XN + 1〉.

Finally, we define M := {±b · Xk : b ∈ {0, 1} and k ∈ N}, which will be used
as the plaintext space of the vector ciphertexts defined in Sect. 4.
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2.2 Distributions

Discrete Gaussian Distribution. We first describe the discrete Gaussian
distribution where our secret elements are sampled from. Typically, a discrete
Gaussian distribution is defined as a distribution over Z, where every element in
Z is sampled with probability proportional to its probability mass function value
under a Gaussian distribution over R. We first define the Gaussian function as
ρσ,c(x) = exp(− |x−c|2

2·σ2 ) for σ, c ∈ R > 0. Hence, ρσ,c(Z) =
∑∞

i=−∞ ρσ,c(i).
The discrete Gaussian distribution with standard deviation σ and mean c is a
distribution on Z with the probability of x ∈ Z given by ρσ,c(x)/ρσ,c(Z). If c = 0,
we denote this distribution by χσ.

Subgaussian Distribution. For the analysis of encryption parameters, we
need subgaussian random variables over R.

Definition 1. A random variable V over R is α-subgaussian if its moment gen-
erating function satisfies

E[exp(t · V )] ≤ 1
2

exp(α2 · t2)

for all t ∈ R.

From the definition, we can prove that the variance of V , denoted by Var(V ) is
bounded by α2, i.e. Var(V ) ≤ α2. Informally, the tails of V are dominated by a
Gaussian function with standard deviation α. The following lemma is adapted
from [17] to our definition.

Lemma 1. If x is a discrete random vector over R
n such that each component

xi of x is αi-subgaussian, then the vector x is a β-subgaussian vector where
β = maxi∈[n] αi.

Subgaussian random variables have an important property called
Pythagorean additivity. Given two random variables, α-subgaussian X and β-
subgaussian Y , and a, b ∈ Z, the random variable a·X+b·Y is

√
a2 · α2 + b2 · β2-

subgaussian. It implies that

Var(a · X) + Var(b · Y ) ≤ a2 · Var(X) + b2 · Var(Y ) ≤ a2 · α2 + b2 · β2.

For a ∈ R (resp. x ∈ Z
n), we denote by Var(a) (resp. Var(x)) the maximum

variance of each coefficient (resp. component) of a (resp. x). The variance of the
product of two polynomials a, b ∈ R is Var(a · b) = n · Var(a) · Var(b). Similarly,
we denote by Var(X) the maximum variance of each column of a matrix X.

2.3 Decompositions

For fixed integers q and B, we set � := 
logB q� and define gq,B :=
(B0, . . . , B�−1). When q and B are clear from the context, we write g. Then,
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for any k ∈ Zq, we represent k by an integer in [−q/2, q/2) and define its signed
decomposition in base B as g−1(k) = (k0, . . . , k�−1) for each integer |ki| ≤ B/2
for i ∈ [�]. It is easy to see that g−1(k) · g = k. For any f ∈ RQ, we define
g−1(f) :=

∑N−1
i=0 g−1(fi)Xi. It is clear that

g−1(f) · g =
N−1∑

i=0

g−1(fi) · g · Xi =
N−1∑

i=0

fi · Xi = f.

The digit decomposition g−1 can be deterministic or randomized [17,21].

2.4 NTRU Problems

It is usual to instantiate the NTRU problem with ternary secrets. In our con-
structions, we generate the secrets from a distribution on {−1, 0, 1} such that
zero occurs with probability 1/2, and 1 and −1 occur with probability 1/4. This
approximates a discrete Gaussian with standard deviation σ = 1/

√
2.

Following [13], we can define the anti-circulant and the matrix versions of
the NTRU problem. Each version has a computational and a decisional variant.

Definition 2 (NTRU). Let N > 0, Q > 1 be integers and R := Z[X]/〈XN +1〉.
Let σ > 0 be a real number, g, f ← χN

σ and f be invertible in RQ.
The (computational) (N,Q, σ)-NTRU problem is to recover f and g given

h := g · f−1 mod Q. The (N,Q, σ)-decisional-NTRU problem is to distinguish
between h and a uniformly random polynomial sampled from RQ.

Definition 3 (Matrix NTRU). Let n > 0, q > 1 be integers and σ > 0 is
a real number. Let G,F ← χn×n

σ and F be invertible modulo q.
The (computational) (n, q, σ)-matrix-NTRU problem is to recover F and G

given H := G · F−1 mod q. The (n, q, σ)-decisional-matrix-NTRU problem is to
distinguish between H and a uniformly random matrix from Z

n×n
q .

3 Matrix-NTRU Base Encryption Scheme

Our base encryption scheme is based on the matrix NTRU (MNTRU) problem.
It encrypts a bit m ∈ {0, 1} as if it were an element of Z4; i.e. we multiply m by
Δ := �q/4�.

As such we can evaluate a NAND gate by adding two ciphertexts encrypting a
bit and considering the result modulo 4. The result is m = 2 if NAND(m0,m1) =
0 and m ∈ {0, 1} if NAND(m0,m1) = 1. We can transform this ciphertext with
the result modulo 4 back to an encryption of NAND(m0,m1) with a simple
affine transformation, as shown below. This ensures that after one homomorphic
NAND gate, we obtain a message defined in Z2, i.e. multiplied by �q/2�. Since
the message is only one bit, we can define its ciphertext as a vector in Z

n
q as

shown in Introduction.
A standard MNTRU ciphertext would have the form g · F−1 + Δ · m, i.e.,

with only the noise term being divided by secret key F, however, this would



196 C. Bonte et al.

introduce a new noise term in the decrypting, when we multiply the ciphertext
by col0(F). In more detail, the key switching procedure presented in Sect. 4.5,
which transforms a ciphertext from NGS to MNTRU, would output a ciphertext
of the form c′ = g · F−1 + e + Δ · m, where ‖e‖ = Ω(n). Then, the decryption
would produce e ·col0(F), whose norm would be Ω(n2). Thus, to avoid such large
noise, we define a MNTRU ciphertext with the form (g + Δ · m) · F−1.

Hence, the MNTRU scheme is defined by the following four algorithms. Note
that the decryption procedure below is valid for the ciphertexts produced by a
NAND gate.

– MNTRU.ParamGen(1λ): Receives the security parameter and outputs (n, q, σ).
– MNTRU.KeyGen: Sample F ← χn×n

σ until F−1 exists in Z
n×n
q . Define sk := F.

Create a public evaluation key as evk := (g + �5 · q/8� · (1,0)) · F−1 ∈ Z
n
q ,

where g ← χn
σ. Output (evk, sk).

– MNTRU.Enc(m, sk): Given m ∈ {0, 1}, sample g ← χn
σ. Let Δ := �q/4� and

output
c = (g + Δ · (m,0)) · F−1 ∈ Z

n
q .

We call it a fresh MNTRU ciphertext.
– MNTRU.Dec(c, sk): Given the secret key sk = F and a ciphertext c ∈ Z

n
q ,

which is of the form (g + �q/2� · (m,0)) ·F−1 ∈ Z
n
q , this algorithm computes

r = c · col0(F) mod q and outputs
⌊

2 · r

q

⌉

mod 2.

– MNTRU.Nand(c0, c1, evk) : Given the evaluation key evk and two ciphertexts
of the form (gi + �q/4� · (mi,0)) · F−1 ∈ Z

n
q , where mi ∈ {0, 1} output

cNAND := evk − c0 − c1.

This homomorphic NAND gate is basically the same as the one presented in [12].
Thus, its output is cNAND =

(
g − g0 − g1 + (e ± q/8) · (1,0) + q

2 · (m,0)
)

· F−1

where |e| ≤ 3
2 and m = NAND(m0,m1) = 1 − m0 · m1. One can see this through

the following computation.
Let f := col0(F), g0 be the first element of g, g0,0 be the first element of g0

and g1,0 be the first element of g1 then

cNAND · f − (1 − m0 · m1)
q

2
= (evk − c0 − c1) · f − (1 − m0 · m1)

q

2

= g0 − g0,0 − g1,0 +
⌊

5q

8

⌉

−
⌊q

4

⌉
m0 −

⌊q

4

⌉
m1

− q

2
+

q

2
m0 · m1

= g0 − g0,0 − g1,0 +
q

8
+ ε − q

4
(m0 + m1 − 2m0 · m1)

+ ε0 · m0 + ε1 · m1

= g0 − g0,0 − g1,0 +
q

8
+ ε − q

4
(m0 − m1)2

+ ε0 · m0 + ε1 · m1,
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where ε, ε0, ε1 are round-off errors whose absolute value is less or equal to 1/2.
If we set e = ε + ε0 · m0 + ε1 · m1, we have |e| ≤ 3

2 .
We now show that decrypting the output of a NAND gate gives the correct

answer, as long as the sum of three input noises g − g0 − g1 is not too large.
For simplicity, we consider the ternary noise for the following lemma since we
instantiate our scheme with ternary secrets as we mentioned above. Therefore,
the noise of evaluation key always satisfies that ‖g‖ = 1. The noise contained in
a fresh ciphertext or an evaluation key is called fresh.

Lemma 2 (Correctness of decryption). For 0 ≤ i ≤ 1, let ci := (gi +
�q/4� · (mi,0)) · F−1 ∈ Z

n
q be an encryption of mi ∈ {0, 1}. Consider that

evk is generated with a ternary g and let c := MNTRU.Nand(c0, c1, evk). If
‖g0 + g1‖ < (q − 20)/8, then MNTRU.Dec(c, sk) outputs NAND(m0,m1).

Proof. From the above analysis, we know that

c =
(
g − g0 − g1 + e(1,0) ± q/8 · (1,0) + (q/2) · (m,0)

)
· F−1 ∈ Z

n
q

where m := NAND(m0,m1).
Let f := col0(F). To decrypt c, we compute r := c · f mod q. Notice that for

some u ∈ Z, we have

r = g − g0 − g1 + e ± q/8 + (q/2) · m − u · q,

where g, g0 and g1 are the first components of g,g0 and g1, respectively. Thus,
the second step of the decryption operation gives us

⌊
2 · r

q

⌉

=
⌊

2 · (g − g0 − g1)
q

+
2 · e

q
± 1

4

⌉

+ m − 2 · u

which is equal to m modulo 2 as long as |2 · (g − g0 − g1)/q + 3/q ± 1/4| < 1/2.
Thus, the inequality simply implies that

‖g − g0 − g1‖ <

(
1
2

− 1
4

− 3
q

)

· q

2
=

q − 12
8

.

Since the noise of evaluation key is always fresh and sampled from ternary ele-
ments, ‖g‖ = 1. It implies that if ‖g0 + g1‖ < (q − 12)/8 − 1 = (q − 20)/8, then
the result holds.

��

4 NGS: NTRU-based GSW-like Scheme

In this section, we present a (ring-based) NTRU-based scheme that has two
encryption functions. The first one encrypts a plaintext m which is a ternary
polynomial as an element of RQ, whilst the second one encrypts it as a vector
over RQ using “gadget vectors”. To simplify the noise analysis, we assume that
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all the messages encrypted by the vector ciphertexts belong to the following
set of monomials: M = {±b · Xk : b ∈ {0, 1} and k ∈ N}. We notice that this
assumption holds for our bootstrapping procedures.

Our scheme has quasi-additive noise-growth as the GSW scheme [19]. In fact,
it is inspired by the simplified variant of GSW proposed in [12]. We call this
scheme NGS, which stands for NTRU-GSW-like encryption Scheme. In Sect. 5,
the NGS scheme is used as the accumulator to homomorphically evaluate the
decryption of another, much simpler scheme based on the matrix NTRU problem.
Following the idea of [10] to speed up the bootstrapping, we define an external
product that multiplies scalar NTRU ciphertexts, i.e. elements of RQ, and vector
NTRU ciphertexts, i.e. vectors over RQ. This is the framework used to obtain a
fast bootstrapping in FHEW [12] and TFHE [10].

Usually NTRU schemes are defined as asymmetric ciphers by publishing a
public key h := g/f mod Q. Since such public keys are not involved in bootstrap-
ping, we present a symmetric version of this scheme. Notice that any encryption
of zero could be used as a public key. Moreover, since the NGS ciphertexts are
never decrypted in the bootstrapping pipeline, we omit the decryption proce-
dure.

4.1 Basic Procedures

The NTRU-based encryption scheme is defined as follows.

– NGS.ParamGen(1λ): Receives the security parameter and outputs the tuple
(N,Q, ς,B, �), where B is a base used to decompose the ciphertexts and
� := 
logB(Q)�.

– NGS.KeyGen: Sample f ′ ← χN
ς and set f := 1 + 4 · f ′ until f−1 exists in RQ.

Output sk := f .
– NGS.EncS(sk,m): Given a ternary polynomial m, sample g ← χN

ς , define
Δ := �Q/4�, and output c = g/f +Δ ·m ∈ RQ. We call c a scalar encryption
of m.

– NGS.EncVec(sk,m): Given m ∈ M, sample gi ← χN
ς for 0 ≤ i ≤ � − 1. Define

g := (g0, . . . , g�−1) and g = (B0, B1, . . . , B�−1). Output c = g/f+g·m ∈ R�
Q.

We call c a vector encryption of m.

4.2 External Product

Having defined two types of encryptions, scalar and vector ciphertexts, we can
define the “external product” between them as proposed in TFHE [10]. The
external product is cheaper than the NGS homomorphic multiplication (i.e. the
convolution of two vector ciphertexts).

Suppose we have a scalar encryption c := g/f + Δ · u ∈ RQ of a ternary
polynomial u and a vector encryption c := g/f +g ·v ∈ R�

Q of a message v ∈ M.
Then, the external product of c and c is defined as follows

c � c := g−1(c) · c ∈ RQ.
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Since g−1(c) · g = c, it is clear that cmult = c � c is equal to

cmult := (g−1(c) · g)/f + (g−1(c) · g · v) = (g−1(c) · g + g · v)
︸ ︷︷ ︸

gmult

/f + Δ · u · v.

Hence, cmult is a valid scalar encryption of the product u · v as long as the noise
term gmult is small enough. We formalize this notion in the next section. Notice
that it is important that ‖u · v‖ < 4, otherwise, multiplying it by Δ introduces
a round-off error and produces an ill-formed ciphertext. Since we are assuming
that v ∈ M, we have ‖u · v‖ ≤ ‖u‖ < 2.

4.3 Noise Analysis

Instead of performing a worst-case analysis of the noise growth, which boils
down to bounding every element by its infinity norm, we provide a more realistic
average-case noise analysis. To do so, we can instantiate g−1 with a randomized
gadget decomposition algorithm [17,21], or we can use a deterministic decompo-
sition and heuristically assume that all the coefficients of the errors of MNTRU
and NGS samples are independent and concentrated; thus, they are subgaussian
random variables. The first approach is used in FHEW [12], while the latter is
present in TFHE [8,10]. Both methods return a subgaussian random variable.
Therefore, our analysis assumes that for all a ∈ RQ, g−1

q,Bksk
(a) is a γ-subgaussian

for some γ = O(B).

Definition 4 (Noise of a scalar ciphertext). Let c = g/f + Δ · m ∈ RQ.
We define the noise of c as err(c) := c · f − Δ · m ∈ RQ and interpret it as a
polynomial over Z[X] with coefficients in [−Q/2, Q/2].

We also define the noise of a vector ciphertext below for our noise analysis.

Definition 5 (Noise of a vector ciphertext). Let c = g/f + g · m ∈ R�
Q.

We define the noise of c as err(c) := c · f − g · m · f ∈ RQ and interpret it as a
vector of polynomials over Z[X] with coefficients in [−Q/2, Q/2].

We first bound the noise of ciphertexts of a special form, namely fresh ones
that encrypt monomials. This includes the important special case of m ∈ {0, 1}.

Lemma 3 (Bound on the noise of a (fresh) scalar ciphertext). Let
c = g/f + Δ · m ∈ RQ be a ciphertext of m. If m is a monomial of the form
±b · Xk for some b ∈ {0, 1}, then

Var(err(c)) ≤ Var(g) + 4 · ς2.

If m is a ternary polynomial with degree at most N − 1, then

Var(err(c)) ≤ Var(g) + 4 · N · ς2.

Moreover, if c is a fresh ciphertext, then Var(err(c)) ≤ 5 · ς2 for a monomial m
and the variance is bounded by (4 · N + 1) · ς2 for a ternary polynomial m.
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Proof. Let Δ = Q/4+ ε for some ε ∈ R such that |ε| ≤ 1/2. Since in RQ it holds
that

c · f = g + (1 + 4 · f ′) · (Q/4 + ε) · m = g + 4 · f ′ · ε · m + Δ · m,

we have err(c) := c · f − Δ · m = g + 4 · f ′ · ε · m. Notice that, if m ∈
{0,±1,±X, . . . ,±XN−1}, we have Var(f ′ · m) ≤ Var(f ′), thus

Var(err(c)) ≤ Var(g) + (4 · ε)2 · Var(f ′) ≤ Var(g) + 4 · ς2.

If m is a ternary polynomial of degree at most N − 1,

Var(err(c)) ≤ Var(g) + (4 · ε)2 · ‖m‖22 · Var(f ′) ≤ Var(g) + 4 · N · ς2.

If c is a fresh ciphertext, then Var(g) = ς2 and the rest of the lemma follows. ��
We now analyze how the external product increases the noise.

Lemma 4 (Noise growth of external product). Let c := g/f +Δ ·u ∈ RQ

and c := g/f + g · v ∈ R�
Q. Define cmult := c � c as above. Then

Var(err(cmult)) ≤ N · � · γ2 · Var(g) + ‖v‖22 · Var(g) + 4 · ς2.

If v ∈ M := {±b · Xk : b ∈ {0, 1} and k ∈ N}, then

Var(err(cmult)) ≤ N · � · γ2 · Var(err(c)) + Var(err(c))

Proof. From the analysis in Sect. 4.2, we know that cmult = gmult/f + Δ · m,
where gmult := g−1(c) · g + g · v and m := v · u. Thus, by Lemma 3, we have
Var(err(cmult)) ≤ Var(gmult) + 4 · ς2. Since

Var(gmult) ≤ Var(〈g−1(c),g〉) + Var(g · v) ≤ N · � · γ2 · Var(g) + ‖v‖22 · Var(g),

the result follows. If v ∈ M, then ‖v‖22 ≤ 1, and the value Var(gmult) + 4 · ς2 is
bounded by N ·�·γ2·Var(g)+Var(g)+4·ς2, which is N ·�·γ2·Var(err(c))+Var(err(c))
by Definition 5 and Lemma 3. ��
Our goal now is to analyze the noise growth caused by a sequence of k such
external products, i.e., c′ = c �k

i=1 ci = (. . . ((c � c1) � c2) . . . � ck). Since in
our bootstrapping the messages encrypted by vector ciphertexts are of the form
±b · Xm for some bit b, we simplify the analysis by supposing that the messages
encrypted by c1, . . . , ck belong to M. This allows us to ignore the term ‖v‖22 in
Lemma 4 as it is bounded by 1.

Lemma 5 (Noise of a sequence of external products). For 1 ≤ i ≤ k,
let ci := gi/f + g · mi ∈ R�

Q with mi ∈ M. Let c0 = g0/f + Δ · m0 ∈ RQ with a
ternary polynomial m0. If c′ := c �k

i=1 ci, then

Var(err(c′)) ≤ N · � · γ2 ·
k∑

i=1

Var(gi) + Var(g0) + 4 · ς2.
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Proof. Let ci := ci−1 � ci = gi/f + Δ · m′
i for 1 ≤ i ≤ k. It is clear that c′ = ck.

Using the fact that v1, . . . , vk ∈ M, we apply Lemma 4 k times and obtain

Var(err(ck)) ≤ N · � · γ2 · Var(err(ck)) + Var(err(ck−1))

≤ N · � · γ2 · Var(err(ck)) + N · � · γ2 · Var(err(ck−1)) + Var(err(ck−2))

...

≤ N · � · γ2 ·
k∑

i=1

Var(err(ci)) + Var(err(c0))

= N · � · γ2 ·
k∑

i=1

Var(gi) + Var(g0) + 4 · ς2.

��
Corollary 1. Using the notation of Lemma 5, if all the ciphertexts are fresh,
then

Var(err(c′)) ≤ (4 + (k + 1) · N · � · γ2) · ς2.

4.4 Modulus-switching

In this section, we show that the modulus-switching technique for (R)LWE-
based schemes can be adapted to NTRU-based schemes. Given a ciphertext
c = g/f + Δ · μ ∈ RQ for some message μ which is a ternary polynomial,
we can multiply c by q/Q and round it to obtain a ciphertext defined modulo
q. Since �y� = y + ε, the modulus switching essentially scales the ciphertext
and adds a small rounding error, which is then multiplied by the secret key f
during decryption. As in the analysis of [12], we define the following randomized
rounding function.

Definition 6. Let Q, q ∈ Z and 1 < q < Q. The randomized rounding function
[·]Q:q : ZQ → Zq is defined as [z]Q:q := �q · z/Q� + B where B ∈ {0, 1} is a
Bernoulli random variable with Pr[B = 1] = (q · z/Q) − �q · z/Q� ∈ [0, 1].

Notice that the the rounding error ε := [z]Q:q − (q · z/Q) is 1-subgaussian.
We extend the definition to polynomials, vectors, and matrices by applying the
rounding entry-wise. Thus, the modulus switching is defined as

ModSwitch(c) =
N−1∑

i=0

[ci]Q:q · Xi ∈ Rq.

Lemma 6. Let c = g/f + �Q/4� · μ ∈ RQ. Then, ModSwitch(c) is a scalar
encryption of μ in Rq. Moreover,

Var(err(ModSwitch(c))) ≤ (q/Q)2 · Var(err(c)) + 1 + 16 · N · ς2.
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Proof. Just notice that ModSwitch(c) = (q · g/Q)/f + ε + Δ · μ ∈ Rq, where
Δ = �q/4� and ε is a polynomial with infinite norm bounded by 1, therefore,
err(ModSwitch(c)) = q · err(c)/Q + ε · f = q · err(c)/Q + ε · (1 + 4f ′). Then the
variance of the noise is as follows:

Var(err(ModSwitch(c))) = Var(q · err(c)/Q + ε + 4 · ε · f ′)
= Var(q · err(c)/Q) + Var(ε) + 16 · Var(ε · f ′)

≤ (q/Q)2 · Var(err(c)) + Var(ε) + 16 · N · Var(ε) · Var(f ′)

≤ (q/Q)2 · Var(err(c)) + 1 + 16 · N · Var(f ′).

The last inequality holds since ε is 1-subgaussian.

4.5 Key-switching from NGS to the Base Scheme

As we will see in Sect. 5, our bootstrapping procedure starts with a ciphertext
(g + Δ · (m,0)) · F−1 ∈ Z

n
q of the base scheme. After modulus-switching, it

produces an NTRU encryption c = g/f + ε+Δ ·μ ∈ Rq, where μ is a polynomial
whose constant term is equal to m ∈ {0, 1} and Δ := �q/4�. To finish the
bootstrapping, we want to obtain again a base scheme ciphertext of the form
c′ = (g′ + Δ · (m,0)) · F−1 ∈ Z

n
q . To achieve this, we define the following key-

switching operation.

– Key-switching key generation: The input of this procedure is composed by
the secret keys f ∈ R and F ∈ Z

n×n, and the parameters σksk, q, and Bksk.
Let L =

⌈
logBksk

(q)
⌉
. Define P ∈ Z

(N ·L)×N as the gadget matrix IN ⊗gq,Bksk
,

i.e. each “diagonal element” of P is equal to gq,Bksk
∈ Z

L. Also, let E ∈ Z
N×n

be the matrix whose entries are zeros except for E0,0 = 1.
Then, sample G ← χ

(N ·L)×n
σksk and output

ksk := (G + P · Φ(f) · E) · F−1 ∈ Z
(N ·L)×n
q ,

where Φ(f) is the anti-circulant matrix of f .
– Key-Switching algorithm: Given an output of modulus-switching, c = g/f +

ε + Δ · μ ∈ Rq, and a key-switching key ksk, let

KeySwitch(c, ksk) := y · ksk ∈ Z
n
q

where y := (g−1
q,Bksk

(c0), . . . ,g−1
q,Bksk

(cN−1)) ∈ Z
N ·L.

Lemma 7 (Correctness of key-switching). Let c = g/f + ε + Δ · μ ∈ Rq be
a scalar encryption of a ternary polynomial μ, with Δ = �q/4�, and ksk a key-
switching key from f = 1 + 4 · f ′ to F ∈ Z

n×n. Then, KeySwitch(c, ksk) outputs
a base scheme ciphertext c′ = (g + Δ · (μ0,0)) · F−1 ∈ Z

n×n
q , where μ0 is the

constant term of μ. Moreover, its time complexity is O(N · n · log q) operations
on Zq.
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Proof. Let |ε′| ≤ 1/2 such that Δ = q/4 + ε′. Since

y · P = φ(c) = φ(g) · Φ(f)−1 + φ(ε) + Δ · φ(μ),

it is clear that

y · P · Φ(f) = φ(g) + φ(ε) · Φ(f) + ε′ · φ(μ) · 4 · Φ(f ′) + Δ · φ(μ) ∈ Z
N
q .

Therefore, by defining g′ := φ(ε) ·Φ(f)+ε′ ·φ(μ) ·4 ·Φ(f ′), the following equality
holds modulo q:

c′ =
(
y · G +

(
φ(g) + g′ + Δ · φ(μ)

)
· E

)
· F−1.

And because v · E = (v0,0) ∈ Z
n for any v ∈ Z

N , we finally obtain

c′ = (y · G + (g0,0) + (g′
0,0) + Δ · (μ0,0)) · F−1 ∈ Z

n
q .

If we set g = y · G + (g0,0) + (g′
0,0), the result holds. Moreover, since the

procedure consists in multiplying y ∈ Z
N ·L by each of the n columns of ksk, it

is clear that it costs O(N · n · log q) operations on Zq. ��

Noise Analysis on the Matrix Key Switching Procedure. We first see
that the noise of c which is an output of modulus-switching equals to g + ε + 4 ·
ε · f ′ + 4 · f ′ · ε′ · μ by Definition 4. Then the variance of the noise is following by
Lemma 3:

Var(err(c)) ≤ Var(g) + Var(ε) + 16 · N · Var(ε) · Var(f ′) + 4 · ‖μ‖22 · Var(f ′)
≤ Var(g) + 1 + 16 · N · Var(f ′) + 4 · N · Var(f ′)

= Var(g) + 1 + 20 · N · ς2

The noise contained in c′ is y ·G+(g0,0)+ (g′
0,0). In fact, G is the noise of the

key switching key ksk, and g0 + g′
0 is very close to the noise originally contained

in c, before key-switching. Notice that

Var(g′
0) ≤ Var(φ(ε) · Φ(f)) + (4ε′)2 · Var(φ(μ) · Φ(f ′))

≤ Var(ε) + 16 · N · Var(ε) · Var(Φ(f ′)) + 4 · ‖φ(μ)‖22 · Var(Φ(f ′))
≤ 1 + 16 · N · Var(Φ(f ′)) + 4 · N · Var(Φ(f ′))

≤ 1 + 20 · N · ς2.

Thus, assuming the outputs of decomposition g−1(·) is γ-subgaussian, the vari-
ance of err(c′) is following:

Var(err(c′)) = Var(y · G) + Var(g0,0)) + Var((g′
0,0))

≤ N · L · Var(g−1(φ(c))) · Var(G) + Var(φ(g)) + 1 + 20 · N · ς2

≤ N · L · γ2 · Var(err(ksk)) + Var(g) + 1 + 20 · N · ς2

= N · L · γ2 · Var(err(ksk)) + Var(err(c)).
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5 Bootstrapping

As explained in the introduction, to cope with the ternary secrets inherent in
NTRU we utilize a ternary CMux gate. Our ternary CMux gate is defined as follows:
For a given fi ∈ {−1, 0, 1}, we define two keys bski,0 and bski,1:

⎧
⎪⎨

⎪⎩

fi = −1 =⇒ bski,0 := NGS.EncVec(0) ∧ bski,1 := NGS.EncVec(1)
fi = 0 =⇒ bski,0 := NGS.EncVec(0) ∧ bski,1 := NGS.EncVec(0)
fi = 1 =⇒ bski,0 := NGS.EncVec(1) ∧ bski,1 := NGS.EncVec(0)

(1)

Then, our CMux gate is defined as

CMuxi(ci) := 1 + (Xci − 1) · bski,0 + (X−ci − 1) · bski,1,

where 1 is a trivial, noiseless, encryption of one, i.e. simply g. It is easy to see
that CMuxi(ci) = NGS.EncVec(Xci·fi). In particular, the message encrypted by
CMuxi(ci) belongs to M as required by our external product from Sect. 4.2.

Algorithm 1: Bootstrapping key generation.
Input: F ∈ Z

n×n
q – the secret key of the base scheme.

Output: bsk – the bootstrapping key.
1 (f0, . . . fn−1) ← col0(F)
2 for i ← 0 to n − 1 do
3 Compute bski,0 and bski,1 accordingly to Equation 1.

4 Return bsk := {(bski,0, bski,1) : 0 ≤ i ≤ n − 1}.

Algorithm 2: Bootstrapping algorithm.
Input:
ct ∈ Z

n
q – a base scheme ciphertext encrypting m ∈ {0, 1}

{bski,j}0≤i≤n−1,0≤j≤1 – bootstrapping keys, where each bski,j ∈ R�
Q,N

ksk – a key-switching key from the NGS secret key f ∈ R to the base scheme
secret key F ∈ Z

n×n.
Output: ct′ ∈ Z

n
q – a base-scheme ciphertext encrypting the same m.

1 (c0, . . . , cn−1) ←
⌊

2·N·ct
q

⌉

2 ACC ← ⌊
Q
8

⌉ · XN/2 · ∑N−1
i=0 Xi

3 for i ← 0 to n − 1 do
4 cMux ← CMuxi(ci)
5 ACC ← ACC � cMux

6 ACC ← ACC +
⌊

Q
8

⌉ · ∑N−1
i=0 Xi

7 ACC ← ModSwitch(ACC)
8 ct′ ← KeySwitch(ACC, ksk)
9 Return ct′.
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Recall that our base-scheme ciphertext c = (g+Δ · (m,0)) ·F−1 ∈ Z
n
q can be

decrypted by multiplying it by the first column of F, Thus, our bootstrapping
keys are generated using Eq. 1 for each entry fi from the first column of F, see
Algorithm 1.

By using the CMux gate n times and multiplying all the resulting ciphertexts,
we obtain an encryption of Xc·col0(F) = Xg+(N/2)·m. We can then multiply this
by the (plaintext) “test vector” T (X) := XN/2 · ∑N−1

i=0 Xi (mod XN + 1) to
produce a scalar encryption of m. Note, we actually put the test vector in the left
most position of the product so that each multiplication is an external product
instead of a regular “vector-vector” homomorphic multiplication, i.e. we compute
�Q/8� · T (X) · �n−1

i=0 CMuxi(ci), which produces NGS.EncS(2 · m − 1), but with
Δ = �Q/8�. Then we add NGS.EncS(1) to obtain NGS.EncS(2 · m). The factor
two is multiplied by �Q/8� and so we obtain NGS.EncS(m) with Δ = �Q/4�,
as desired. Finally, we use the key-switching procedure defined in Sect. 4 to
transform this NTRU ciphertext into a matrix NTRU ciphertext of the base
scheme. Our bootstrapping is shown in detail in Algorithm 2.

5.1 Bootstrapping Noise

Firstly, we analyze the noise growth of our CMux gate. Let cMux := CMuxi(ci) for
any 0 ≤ i ≤ n − 1. Then, the following holds:

Var(err(cMux)) ≤ ‖Xci − 1‖22 · Var(err(bski,0)) + ‖X−ci − 1‖22 · Var(err(bski,1))
≤ 4 · Var(err(bsk)),

where bski,0 and bski,1 are the corresponding bootstrapping keys, which are
NGS ciphertexts with noise variance Var(err(bsk)).

Now we consider the whole bootstrapping algorithm. In the first line, we scale
down the input ciphertext to modulus 2 · N . We denote the resulting vector by
ct2·N . Then we have

∣
∣
∣ct · col0(F) − q

2 · N
· ct2·N · col0(F)

∣
∣
∣ ≤ q

4 · N
· |ct · col0(F)|, (2)

where col0(F) is the first column of the secret key of ct.
From the line 3 to 5 of Algorithm 2, the output ACC is obtained by utilizing n

external products with cMux whose noise variance is Var(err(cMux)). The variance
of the final err(ACC) based on Lemma 5 is the following:

Var(err(ACC)) ≤ n · N · � · γ2 · Var(err(cMux)) + 4 · ‖msg(ACC)‖22 · ς2,

where msg(ACC) is XN/2 · ∑N−1
i=0 Xi. After line 6, the accumulator ACC contains

a message as a ternary polynomial (say M(X)) whose constant term is m. The
error term will be changed into

Var(err(ACC)) ≤ n · N · � · γ2 · Var(err(cMux)) + 4 · ‖M(X)‖22 · ς2

≤ n · N · � · γ2 · Var(err(cMux)) + 4 · N · ς2
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After this step, modulus switching is performed, which results in the noise, by
Lemma 6, being

Var(err(ACC)) ≤ (q/Q)2 ·n ·N ·� ·γ2 ·Var(err(cMux))+(q/Q)2 ·4 ·N · ς +1+16 ·N · ς
After the external product with a key switching key ksk in line 8, the noise in
the resulting ct′ has a variance

Var(err(ct′)) ≤ N · L · γ2 · Var(err(ksk)) + Var(err(ACC))

≤ N · L · γ2 · Var(err(ksk)) + (q/Q)2 · n · N · � · γ2 · Var(err(cMux))
+ (q/Q)2 · 4 · N · ς2 + 1 + 16 · N · ς2

where L is the dimension of the key switching key.
After the for loop from line 3 to 5, the message of the resulting ACC,

msg(ACC), is
⌊

Q
8

⌉
·Xct2·N ·col0(F) ·XN/2 ·∑N−1

i=0 Xi. If we have |ct ·col0(F)| < q/4,
then the ciphertext ct is encrypting the value zero. This follows from the fact
that then −N/2 < |ct2·N · col0(F)| ≤ N/2 and thus the constant term of the
msg(ACC) is −�Q/8�, i.e. the constant term of msg(ACC) in line 6 is zero. If,
however, |ct · col0(F)| < 3 · q/4 then the ciphertext ct is encrypting the value
one. In this case N/2 < |ct2·N · col0(F)| ≤ 3N/2, hence the msg(ACC) is �Q/8�.
Therefore, the constant term of msg(ACC) in line 6 is �Q/4�.

We now have the following heuristic for the output noise in average case.

Heuristic. Given ct encrypting a bit m, Algorithm 2 outputs an MNTRU
ciphertext ct′ encrypting the same bit. In addition, under the central limit
heuristic, the noise contained in the output behaves as a Gaussian distribution,
hence, with overwhelming probability, it satisfies the following bound

‖err(ct′)‖ ≤ 6 ·
(

N · L · γ2 · Eksk + 4 · (q/Q)2 · n · N · � · γ2 · Ebsk

+(q/Q)2 · 4 · N · ς2 + 1 + 16 · N · ς2

)1/2

(3)

where Eksk = O(Var(err(ksk))) and Ebsk = O(Var(err(bsk))).
The following theorem states that our scheme requires a modulus q that is

asymptotically less than the fatigue point as stated in [13].

Theorem 1. If the output of Algorithm 2 satisfies (3) except with negligible
probability and q = Õ(n), the output of Algorithm 2 can be correctly decrypted
except with negligible probability.

Proof. Since N ∈ Θ(n), q/Q, Ebsk, Eksk ∈ O(1), and �, L ∈ O(log Q) = O(log N)
and (3) is satisfied, the final noise after bootstrapping is Õ(n) except with neg-
ligible probability. For correctness, Lemma 2 imposes that the sum of two input
fresh/refreshed ciphertexts noises should be smaller than (q − 20)/8. Thus the
bound of each refreshed noise needs to be less than (q − 20)/16, which implies
we need ‖err(ct′)‖ < (q − 20)/16 = q/16 − 5/4 to recover the correct message.
Therefore, it is sufficient to choose q ∈ Õ(n).

We will discuss the concrete value q based on the above heuristic and theorem
in Sect. 6.
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5.2 Bootstrapping an LWE-based Scheme

As mentioned our external product costs only � multiplications on RQ versus
4 · �′ in TFHE. In general, our base scheme constructed on top of the matrix
NTRU problem requires a larger dimension n than in an LWE-based scheme
to achieve the same security level. Since the bootstrapping procedure uses n
external products, we can obtain a faster FHE scheme by replacing our base
scheme by the LWE-based one used in FHEW and TFHE, and using NGS to
bootstrap it. This minimizes the number of external products and also makes
each one of them cheaper.

Hence, we propose to use our NGS scheme as the accumulator to refresh
LWE ciphertexts as opposed to MNTRU ciphertexts. The decryption function is
essentially the same, i.e. the inner product between the ciphertext and the secret
key. Since the LWE secret key can be binary, we can use binary homomorphic
CMux gates instead of the ternary ones. However, at the end of the main loop
of the refreshing procedure, we obtain an NTRU ciphertext of the form c =
g/f+ε+Δ·m ∈ RQ, where ε is the rounding error after modulus switching. Then
we need to transform it again into an LWE ciphertext. So, we adapt our key-
switching from Sect. 4 to also switch the underlying hard problem from NTRU
to LWE.

NTRU to LWE Key-Switching: The goal of the following algorithm is to
switch the form of a ciphertext from an NGS ciphertext to an LWE ciphertext
encrypting the same message. Let (A,b) be an LWE sample with a secret key
s. Let c = g/f + ε+Δ ·m be a scalar NGS ciphertext with a secret key f , where
ε is the rounding error after modulus swtiching. Define the key-switching key as
the following vector of LWE samples:

kskNTRU→LWE := (A,b := A · s + e + P · f0)
with A ∈ Z

(N ·L)×n
q , e ← χN ·L

σe
, f0 := col0(Φ(f)) ∈ Z

N , and P = IN ⊗ gq,Bksk
.

Then, given a ciphertext c = g/f +ε+Δ ·m ∈ Rq, the key-switching from NTRU
to LWE is defined as follows:

– KeySwitchNTRU→LWE(c, kskNTRU→LWE) :
1. Parse kskNTRU→LWE as (A,b)
2. a ← KeySwitch(c,A)
3. b ← KeySwitch(c,b)
4. Output c′ := (a, b)

That is, we decompose the coefficient vector of c and multiply by both compo-
nents of kskNTRU→LWE. Thus, we define y := g−1(φ(c)) ∈ Z

N ·L and compute

c′ := (a, b) = (y · A, y · b) ∈ Z
n+1
q .

Then, we can see that

b = a·s+y ·e+φ(c)·f0 = a·s+y ·e+g0+ε·((1,0)+4·φ(f ′))+4·ε′ ·φ(m)·φ(f ′)+Δ·m0

where ε ∈ (−1/2, 1/2] and m0 is the constant term of m. In other words, (a, b)
is a valid LWE ciphertext of m0.
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Noise Analysis. We see that the noise of the resulting LWE encryption equals
to y · e + g0 + ε + ε · 4 · φ(f ′) + 4 · ε′ · φ(m) · φ(f ′) as defined in [10], with the
variance of the noise satisfying:

Var(err(c′)) = Var(y · e) + Var(g0) + Var(ε0) + 16 · Var(ε · φ(f ′)) + 4 · Var(φ(m) · φ(f ′))

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 16 · N · Var(ε) · Var(f ′) + 4 · ‖m‖22 · ς2

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 16 · N · ς2 + 4 · ‖m‖22 · ς2

≤ N · L · Var(y) · Var(e) + Var(g) + 1 + 20 · N · ς2

≤ N · L · γ2 · σ2
e + Var(err(c))

6 Security Analysis and Parameter Selection

The CPA-security of our NGS scheme follows directly from the decisional NTRU
problem via a standard hybrid argument. Firstly, notice that G/F+M is a secure
encryption as the MNTRU assumption states that G/F is uniform mod q, then,
using the circular security assumption, it is safe to encrypt M/F instead of M,
i.e., a message that depends on the secret key F, under the matrix NTRU prob-
lem. From this, we obtain the format (G + M)/F used in our base scheme.
Finally, the security of the bootstrapping follows from the (weak) circular secu-
rity assumption that the NGS scheme can be used to encrypt the key of the
base scheme, which in turn, encrypts the key of the NGS scheme. All these cir-
cular security assumptions are standard and are used extensively, e.g., [16,30].
In particular, it is not known how to construct FHE without the weak circular
security used here.

Concrete Security: Research on the security of the NTRU problem revealed a
significant improvement of the performance of lattice reduction attacks on NTRU
lattices with large moduli q, which are now known as the overstretched NTRU
regime. Several works [1,9,24] showed the susceptibility of the overstretched
regimes to attacks. The work of Kirchner and Fouque shows however that the
attack is possible due to the choice of parameters and not due to the structure
of the fields underlying the NTRU problem. The observation that the choice
of parameters causes the attack, started a quest to determine the value of the
ciphertext modulus q for which the overstretched regime of NTRU begins and
hence the security issue occurs. This turning point is called the fatigue point.
Kirchner and Fouque make a first attempt to estimate the fatigue point and
their efforts result in an asymptotic upper bound, but it is only the recent work
of Ducas and van Woerden [13] that achieves at finding a concrete value for the
fatigue point for ternary NTRU.

To determine the fatigue point Ducas and van Woerden identified two events
that distinguish the standard regime from the overstretched regime:

– Secret Key Recovery (SKR): The event in which a vector as short as a secret
key vector is inserted in the basis of the lattice.
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– Dense Sublattice Discovery (DSD): The event in which a vector of the dense
sublattice generated by the secret key is inserted in the basis of the lattice.
This vector is strictly longer than the secret key, but nevertheless this event
leads to a successful attack as either the SKR event follows quickly after
the DSD event, the DSD events cascade and generate the dense sublattice
from which the secret key can be recovered or the discovered dense sublattice
vector is in itself sufficient to decrypt fresh ciphertexts.

Based on an exploration of the occurrence of one of these events, Ducas
and van Woerden present an analysis that discovers the fatigue point, which is
determined by the value for q for which the DSD attack starts to be more efficient
than the SKR attack. To get then an idea of how secure the NTRU problem with
this q value still is, they also determine the precise cost of the attacks in the
overstretched regime. Their analysis uses the BKZ lattice reduction algorithm
and does not focus on a single position but predicts the most relevant positions in
which the vector of the SKR or DSD event can occur and takes all these positions
into account. This refined analysis leads to the following asymptotic result; the
fatigue point of NTRU with ternary secrets happens at q = n2.484+o(1). As well
as the determination of this asymptotic result, they perform an average case
analysis based on the volume of the relevant lattices and sublattices to arrive at
a concrete prediction of the fatigue point instead of a worst-case bound. This
concrete prediction puts the fatigue point at q ≈ 0.004 · n2.484+o(1) for n > 100.
This average case analysis differentiates the circulant version of NTRU from
its matrix version, as there are minor deviations in the volumes of the relevant
sublattices. Our work uses the anti-circulant and matrix versions of NTRU as
defined in Sect. 2.4. We argue that the change from the circulant to the anti-
circulant version of NTRU does not reduce the security of our NTRU instance,
since by using XN + 1 instead of XN − 1, we avoid any weaknesses caused by
evaluation at one, which the circulant variant could suffer from. In addition, it
does not invalidate the analysis made by Ducas and van Woerden, as that is
based on the expected volume of the dense sublattice, which remains the same
when XN − 1 is replaced by XN + 1.

Parameter Selection: Using the analysis by Ducas and van Woerden [13]
and the scripts that they provided to estimate the concrete hardness of NTRU1,
given the dimension, the modulus q, the variance σ2, and taking into account the
distribution of the secret key, we are able to find the block size β needed by BKZ
to break the (matrix) NTRU problem. To convert β to the security level, we used
the same (classical) cost model used by TFHE, namely, the number of operations
of BKZ-β in dimension d was estimated as T (d, β) := 20.292·β+16.4+log2(8·d),
where d = 2 · n for the NTRU in dimension n. Thus, a security level of λ bits
means that T (d, β) ≥ 2λ.

Hence, to choose the parameters of the NGS scheme, we fixed N = 1024 and
ternary secrets, then found the maximum value of log Q that gives us λ = 128.

1 https://github.com/WvanWoerden/NTRUFatigue.

https://github.com/WvanWoerden/NTRUFatigue
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For the scheme based on the matrix NTRU problem, we fixed n = 800 and also
used ternary secrets. We chose the parameters for the LWE problem using the
LWE estimator [2]. The decomposition bases used in the external product and
in the key-switching were then chosen to guarantee correctness. We remark that
instead of using a single basis B for all external products, we used B1 for the
first n1 products and B2 for the last n2 (thus, n = n1 + n2), as this allowed
us to reduce the total number of polynomial products computed during the
bootstrapping.

The average-case noise bounds determined in the previous section then allows
us to compute concrete parameters for our scheme. All the parameters are shown
in Table 1.

Table 1. The parameters used in both bootstrappings, depending on whether the
underlying problem of the base scheme is the matrix NTRU or the LWE. The columns
N and Q refer to the NGS scheme. For each basis Bi we have a different dimension
�i :=

⌈
logBi

(Q)
⌉

for ni bootstrapping keys.

Base scheme n q N Q (B1, n1) (B2, n2) Bksk �1 �2

MNTRU 800 131071 ≈ 217 210 912829 ≈ 219.8 (8, 750) (16, 50) 3 7 5

LWE 610 92683 ≈ 216.5 210 912829 ≈ 219.8 (8, 140) (16, 470) 3 7 5

7 Practical Results

Among the three schemes that use the framework of fast bootstrapping with
a base scheme and an accumulator [11,12,30], the most efficient one is TFHE.
Therefore, we compare our practical results only with TFHE. Similar to the gate
bootstrapping in TFHE, we are able to compute a binary gate through a boot-
strapping. Therefore we use the bootstrapping as benchmark, as any speedup on
the bootstrapping translates directly to the same speedup on any binary circuit.
Like for TFHE, the encryption parameters of our schemes stay fixed for any
binary circuit. We implemented a proof-of-concept of our bootstrapping proce-
dures in C++. For a fair comparison, we chose the TFHE library as it is written
in C++ and is up-to-date. Our code is publicly available2.

We compiled TFHE with the same FFT library we used in our implementa-
tion, namely, FFTW [15]. Moreover, we also compiled our code with the same
optimization flags already used by the ‘optimal’ mode of TFHE. Both TFHE and
our implementation use a deterministic decomposition for the external product
and also a deterministic rounding for the modulus switching, relying thus on
the heuristic assumption that the noise terms obtained during the homomorphic
evaluations follow independent subgaussian distributions. All the experiments

2 https://github.com/KULeuven-COSIC/FINAL.

https://github.com/KULeuven-COSIC/FINAL
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were conducted on a single core of a machine with 8 GB of RAM and a 3.1 GHz
Dual-Core Intel Core i5.

As the fast Fourier transforms (FFT) and element-wise Hadamard vector
products dominate the running time of bootstrapping, we used the following
formulas to compute ACC�CMux(ci) in the bootstrapping algorithm (Algorithm 2)

((Xci − 1) · ACC) � (bski,0 − bski,1 · X−ci) + ACC (MNTRU),
((Xci − 1) · ACC) � bski + ACC (LWE).

The LWE formula is actually used in the TFHE library. Notice that no polyno-
mial multiplication is needed to compute (Xci − 1) · ACC; it can be done by one
negacyclic shift of the coefficients of ACC and N subtractions in ZQ. Assuming
that the bootstrapping keys are FFT transformed in advance, the external prod-
uct requires �i +1 FFTs and �i Hadamard vector products where �j is the length
of bski, bski,0 or bski,1. In addition, MNTRU requires extra �j Hadamard vector
products to compute (bski,0 − bski,1 · X−ci).

In TFHE, the bootstrapping key is composed of n′ := 630 GSW ciphertexts,
where n′ is the dimension of the LWE problem used in their base scheme. More-
over, for the GSW ciphertext, they used the ring Rq′ := Zq′ [X]/〈XN ′

+1〉, where
q′ := 232 and N ′ = 1024, but they could set a larger decomposition base than
the ones we could use, and they can also ignore the least significant bits during
the decomposition, since in the RLWE problem, these bits are noisy, thus, they
obtain �′ := 3. However, each GSW ciphertext is composed of 4 · �′ elements of
Rq′ , on the other hand our NGS ciphertexts only have � ring elements. Thus,
the size of the bootstrapping key in TFHE is 4 · n′ · �′ · N ′ · log(q′) = 31 MB.

Since each external product costs 4 · �′ products in Rq′ for TFHE, their total
cost is 4 · n′ · �′ = 7560 ring multiplications. However, the slowest operations
of the bootstrapping are forward and backward FFTs. Since the FFTs of the
bootstrapping key are precomputed, the ‘for’ loop of the bootstrapping has to
decompose only the RLWE sample that is accumulating the result, obtaining
thus 2 · �′ ring elements. Then, it computes the FFT of these elements, performs
the external product to obtain a new RLWE sample in the FFT domain and
finally apply two inverse FFTs. Hence, TFHE needs 2 · n′ · (�′ + 2) = 6300 FFTs
per bootstrapping.

In our case, the bootstrapping key is composed by 2·n NGS ciphertexts when
the base scheme is based on the MNTRU problem and n when the LWE is used.
Our � is a little bigger than the �′ = 3 used in TFHE, but we do not have the
factor four in the dimension of the NGS ciphertexts.

The size of each ciphertext, the number of ring multiplications, and the
amount of FFTs we have to perform when the LWE problem is used in the
base scheme ends up being smaller than what is needed by TFHE. In particu-
lar, considering the parameters presented in Table 1, the number of FFTs per
bootstrapping is n1 · (�1 + 1) + n2 · (�2 + 1), where �i :=

⌈
logBi

(Q)
⌉
. A detailed

comparison is presented in Table 2. Since every integer in our implementation is
represented by the int type, we assume every coordinate or coefficient of our
keys occupies 32 bits of memory.
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We ran our bootstrapping procedures one thousand times and estimated the
standard deviation of the noise of refreshed ciphertexts as σLWE = 29.46 and
σNTRU = 29.85, which gives us the following decryption failure probabilities:
pLWE = 1 − erf(92683/(16 · σLWE · √2)) < 2−52 and pNTRU = 1 − erf(131071/(16 ·
σNTRU · √

2)) < 2−60.
The number of FFTs and multiplications shown in Table 2 are computed

using the parameters of each scheme as described in the abovementioned expla-
nation. For the running times, we measured the average time of the NAND gate
plus bootstrapping over 1000 runs.

Table 2. Practical results of TFHE and of our bootstrapping procedures considering
the two base schemes. The last collum shows the average bootstrapping running time
over 1000 executions.

Key switching key Bootstrapping key Mult. on RQ FFTs Run. time

TFHE [11] 40 MB 31 MB 7560 6300 66 ms

MNTRU 34.4 MB 43 MB 11000 6300 92 ms

LWE 26.3 MB 13 MB 3330 3940 48 ms

As shown in Table 2, our bootstrapping algorithm for LWE ciphertexts is
28% faster than TFHE. Furthermore, our method nearly halves the total size
of key-switching and bootstrapping keys. Namely, TFHE needs 71 MB of key
material whereas our approach generates less than 39.3 MB.

Our bootstrapping algorithm for MNTRU ciphertexts is less efficient than
TFHE. The first reason is that MNTRU requires a bigger dimension n than LWE
to achieve the same security level given that the ciphertext modulus is fixed. In
our experiments (see Table 1), n = 800 for MNTRU whereas n′ = 630 in TFHE.
The second reason is that the secret key of the MNTRU scheme is ternary. To
handle ternary coefficients of the secret key, the CMux operation performs more
multiplications in the FFT domain, namely 2 · (�1 · n1 + �2 · n2).

However, the efficiency downgrade of our bootstrapping method for MNTRU
ciphertexts is not critical in practice. The bootstrapping takes less than 0.1 s on
an average commodity laptop with only 9% increase of the key material size.
Hence, if one needs an FHE scheme based solely on NTRU, our scheme is a
practical candidate for that.

8 Conclusion and Future Work

We showed that it is possible to construct an efficient FHE scheme based on the
NTRU assumption and to instantiate it by setting parameters that are below the
“fatigue point” where the sublattice attacks start to apply. This shows that with
the current knowledge on the security of NTRU, it seems possible to construct
competitive FHE based solely on the NTRU assumption, which motivates further
research on NTRU-based FHE schemes. Moreover, we showed that by combining
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the LWE and the NTRU problems, we can construct an FHE scheme that runs
faster and requires less key material than TFHE, which currently has the fastest
bootstrapping procedure.

We notice that it would be possible to use better parameters for our scheme,
and thus, increase the difference between our running time and TFHE’s if we
sampled the NTRU secrets f and g with different variances. Namely, the final
noise introduced by the bootstrapping depends more on the norm of g than on
the norm of f , thus, we could increase the variance of f without having too much
impact on the final noise. Intuitively, the NTRU problem should only become
harder as the variance of one of its secret increases, thus, this would allow us to
increase q. Finally, having a larger value of q for (almost) the same final noise
means that we can choose larger decomposition bases, hence, reduce the number
of FFTs and Hadamard vector products per external product. However, since
there is no formal analysis of the concrete hardness of NTRU with different
variances of the secrets, we prefer to leave this as an interesting future work.

As another possible line of work, one could consider the circuit bootstrapping
from TFHE, which takes an LWE ciphertext c ∈ Z

n′+1
q encrypting a message m

and outputs a GSW ciphertext C ∈ R2�′×�′
q encrypting m with noise indepen-

dent of the noise of c. In other words, the circuit bootstrapping refreshes c and
transforms it into a GSW ciphertext. This is done by executing �′ bootstrap-
pings and 2�′ key switchings, and requires two key-switching keys. However, in
our case we would produce an NGS ciphertext c ∈ R�

q, so just � key switchings
are needed instead of 2�′, and also only one key-switching key instead of two.
Thus, both the running time and the memory usage can be reduced if we are
able to use � < 2�′ in our scheme.
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Abstract. We propose Flashproofs, a new type of efficient special hon-
est verifier zero-knowledge arguments with a transparent setup in the
discrete logarithm (DL) setting. First, we put forth gas-efficient range

arguments that achieve O(N
2
3 ) communication cost, and involve O(N

2
3 )

group exponentiations for verification and a slightly sub-linear number
of group exponentiations for proving with respect to the range [0, 2N −1],
where N is the bit length of the range. For typical confidential transac-
tions on blockchain platforms supporting smart contracts, verifying our
range arguments consumes only 237K and 318K gas for 32-bit and 64-
bit ranges, which are comparable to 220K gas incurred by verifying the
most efficient zkSNARK with a trusted setup (EUROCRYPT ’ 16) at
present. Besides, the aggregation of multiple arguments can yield fur-
ther efficiency improvement. Second, we present polynomial evaluation
arguments based on the techniques of Bayer & Groth (EUROCRYPT
’ 13). We provide two zero-knowledge arguments, which are optimised
for lower-degree (D ∈ [3, 29]) and higher-degree (D > 29) polynomi-
als, where D is the polynomial degree. Our arguments yield a non-trivial
improvement in the overall efficiency. Notably, the number of group expo-
nentiations for proving drops from 8 log D to 3(log D+

√
log D). The com-

munication cost and the number of group exponentiations for verification
decrease from 7 log D to (log D+3

√
log D). To the best of our knowledge,

our arguments instantiate the most communication-efficient arguments
of membership and non-membership in the DL setting among those not
requiring trusted setups. More importantly, our techniques enable a sig-
nificantly asymptotic improvement in the efficiency of communication
and verification (group exponentiations) from O(log D) to O(

√
log D)

when multiple arguments satisfying different polynomials with the same
degree and inputs are aggregated.
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1 Introduction

Zero-knowledge proofs play a critical role in modern secure applications and sys-
tems, e.g., confidential transactions, signature schemes, federated learning and
multi-party computation. A zero-knowledge proof allows a prover to convince
a verifier of the truth of a statement without revealing any secret information.
More formally, given an NP-language L, a prover aims to convince a verifier of
knowing a witness ω for a statement u ∈ L with high probability by a zero-
knowledge proof that satisfies three properties:

– Completeness. A prover can convince a verifier of u ∈ L, if u ∈ L.
– Soundness. A prover cannot convince a verifier of u ∈ L, if u /∈ L.
– Zero-knowledge. The proof should reveal nothing except the truth that u ∈ L.

There are varieties of zero-knowledge proofs [2,5–7,13,14,17,28,37,41,46] for
general NP-complete languages, e.g., arithmetic circuits satisfiability. However,
generic constructions used by these proofs tend to be sub-optimal and may not
achieve the best efficiency as in specialised constructions for particular languages.
This paper focuses on the zero-knowledge proofs for two particular languages in
the discrete logarithm (DL) setting: range arguments and polynomial evaluation
arguments. An argument is a computationally sound proof that no probabilistic
polynomial-time provers are able to deceive a verifier into falsely accepting it.

Range proofs are designed to prove a committed value is within a specific
range. Several zero-knowledge range proofs have been applied to confidential
transactions (CT) [26] on blockchain platforms. Blockchain has enabled a sig-
nificant revolution towards decentralised peer-to-peer transactions. By default,
blockchain does not ensure privacy but rather its transparency and immutabil-
ity properties. However, with growing privacy concerns, confidential transactions
have received increasing attention as they protect privacy by hiding transaction
information. A plenty of confidential transaction protocols, e.g., AZTEC [45],
TornadoCash [40], have been developed on blockchain platforms, e.g., Ethereum.
As one of the most emerging blockchain technologies, smart contracts are play-
ing an increasingly important role in promoting confidential transactions. They
are publicly verifiable computer programs running on blockchain platforms to
automate the execution of agreements without the intervention of intermediaries
when some pre-determined conditions are met. To prevent inconsistent transac-
tions, zero-knowledge range proofs are used to demonstrate sufficient funds in
accounts for non-negative transfer values. However, many existing proposals for
CT zero-knowledge proofs suffer from three drawbacks:

– Trusted Setup: Prior zero-knowledge proofs (e.g., zkSNARK [28]) require a
“trusted setup”, where a group of trusted parties use some secret information
to generate public parameters and destroy the secret information without
revealing it. However, introducing a trusted setup will compromise the secu-
rity and notion of decentralisation, which leaves a backdoor for misbehaving
provers to exploit and create false proofs.
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– Imbalanced Overhead: Recent zero-knowledge proofs have replaced trusted
setups with transparent setups. However, achieving transparent setups may
give rise to imbalanced overhead with either expensive computation costs
or large communication costs, which would undermine the scalability of
blockchain applications, where scalability refers to the capability of handling
transactions in a short period. For example, Bulletproofs [13] achieve a log-
arithmic proof size but require a linear number of group exponentiations for
both proving and verification. The zkSTARK [5] has poly-logarithmic verifi-
cation efficiency but entails a large proof size about 45 KB [31].

– Trade-off With Soundness. There is a new class of range proofs (e.g. CKLR21
[20]) based on bounded integer commitments in the DL setting, which can
attain efficient computational and communication costs. However, one has
to make a trade-off between the range size and the soundness error for a
given group, which undermines the applicability of these range proofs. Note
that using RSA or class groups [20] could address this trade-off limitation by
removing bounds on the size of integers, which, however, would either require
a trusted setup or a different security assumption with considerably large
groups1.

On the other hand, polynomial evaluation proofs are designed to prove a
public polynomial relation y = P (x;D) between two committed values x and y,
where D is the polynomial degree. Notably, polynomial evaluation proofs are a
basic building block for constructing the zero-knowledge proofs of membership
and non-membership. For example, a polynomial function y = P (x;D) = 0 can
be built for membership proofs to prove that a committed value x belongs to
a public set X, where the roots are the elements of X. For non-membership
proofs, y �= 0 needs to be proved. A prover can commit to a value z = y−1 and
demonstrate z · y = 1 with a multiplication proof. Proofs of membership and
non-membership have extensive applications, e.g., anonymous credentials, group
signatures, whitelist, and blacklist. Bayer & Groth [3] (BG13) presented polyno-
mial evaluation arguments that achieve O(log D) efficiency in verification (group
exponentiations) and communication based on the DL assumption. Nevertheless,
the computational and communication costs for higher-degree polynomials are
still high.

1.1 Contributions

In this paper, we propose Flashproofs, efficient special honest verifier zero-
knowledge arguments of range and polynomial evaluation with a transparent
setup. Flashproofs are 3-round public coin interactive protocols between a prover
and a verifier. The prover sends an initial message to the verifier in the first
round. The verifier replies with a uniformly random challenge, and then the
prover responds to the challenge in the third round. Finally, the verifier decides

1 According to the recent study [22], class groups of 3392-bit order can barely achieve
128-bit security as 256-bit elliptic curve groups.
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whether to accept or reject based on the conversation. Flashproofs have per-
fect completeness, computational witness-extended emulation and perfect spe-
cial honest verifier zero-knowledge under the typical DL assumption that applies
to elliptic curve groups. We follow the transparent approach [13] without resort-
ing to a trusted setup with elliptic curve groups. Besides, our arguments can be
made non-interactive via Fiat-Shamir heuristic [25], where provers can generate
random challenges by computing the hashes of the initial messages instead of
verifiers, with a collision-resistant hash function modelled as a random oracle.

Range Arguments. We put forth a new type of gas-efficient zero-knowledge
range arguments to prove that a committed value lies in the range [0, 2N − 1],
where N indicates the bit length. Our range arguments involve O(N

2
3 ) group

exponentiations for verification and achieve O(N
2
3 ) communication cost. Besides,

as illustrated in Fig. 1, our arguments with optimisation use a sub-linear number
of group exponentiations for proving (Please refer to Sect. 3.2 for optimisation).
They are highly suitable for confidential transactions on blockchain platforms. In
a nutshell, our work achieves sub-linearly overall efficiency without resorting to
a trusted setup while maintaining a negligible soundness error. Especially, our
arguments greatly reduce the verification gas costs to a practically affordable
level on smart contract platforms.

Fig. 1. Proving computational costs of our range arguments with optimisation.

Techniques. Our range arguments are based upon the bit-decomposition app-
roach to proving that a committed value can be represented in binary form. We
devise a new strategy to achieve superior computational efficiency compared to
conventional works. The intuition is to fold the sequence of the bits of a com-
mitted value as a matrix. Then we prove each element in the matrix is either 0
or a certain power of 2 by using a quadratic-term cancellation technique. Finally,
we flatten the two-dimension matrix to a one-dimension vector in a column-wise
manner and prove that the committed value is the sum of the vector values. We
introduce an optimisation technique to refine the efficiency in both computation
and communication. Besides, the aggregation of multiple arguments is supported
for further efficiency improvement.

Comparisons with State-of-the-art Range Proofs. Verifying our range arguments
consumes about 237K and 318K gas for general 32-bit and 64-bit ranges. The
gas costs are comparable to 220K gas incurred by verifying the most efficient
zkSNARK (Groth16) [28], which requires three elliptic curve pairing operations
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Table 1. Efficiency comparison of range arguments for the range [0, 2N − 1], where N
is the bit length of the range, G indicates a cyclic group of prime order p and Zp is
the ring of integers modulo p. We essentially compare the involved group exponentia-
tions as they dominate the computational cost. The number of group exponentiations
required by Bulletproofs proving and unoptimised verification is estimated based on
their original Java implementation [9]. Please refer to the original paper for accurate

data. Besides, we take the nearest integer �N 1
3 � as the cubic root of N and N

2
3 can thus

be obtained by computing N · �N− 1
3 �. F (N

1
3 ) is a function that yields constant values

based on N
1
3 , where F (2) = 3, F (3) = 6, F (4) = 8, F (5) = 11, F (6) = 13 , F (7) =

20, F (8) = 27, F (9) = 32, F (10) = 37. Please refer to Sect. 3.2 for the details of

F (N
1
3 ).

Type Bulletproof This work (Sect. 3.2) This work

with optimisation (Sect. 3.2)

Prover

No. of Exp (G)

14N + 4 log N + 12
1

2
(N

4
3 +3N

2
3 +5N

1
3 +N+6) (N

2
3 + 1) · F (N

1
3 ) + 2N

1
3 + 2

Verifier

No. of Exp (G)

4N + 2 log N + 11
3

2
(N

2
3 + N

1
3 + 2) N

2
3 + N

1
3 + F (N

1
3 ) + 2

Proof Size

No. of

Elements

2 log N + 4 (G)

5 (Zp)

N
2
3 + 2 (G)

1

2
(N

2
3 + 3N

1
3 + 4) (Zp)

N
2
3 + 2 (G)

N
1
3 + F (N

1
3 ) + 1 (Zp)

Table 2. Detailed efficiency comparison of Bulletproof with our optimised work, where
N is the bit length of the range. Note that our range arguments are more succinct in
proof size when N ≤ 22.

N 8 10 12 14 16 18 20 22 32 52 64

Prover Bulletproof 136 252 252 252 252 480 480 480 480 932 932

No. of Exp (G) This work 21 24 27 30 33 36 39 42 80 122 146

Verifier Bulletproof 49 83 83 83 83 149 149 149 149 279 279

No. of Exp (G) This work 11 12 13 14 15 16 17 18 22 27 30

Proof Size Bulletproof 482 546 546 546 546 610 610 610 610 674 674

(Byte) This work 385 417 449 481 513 545 577 609 738 898 994

for any arithmetic circuits with the aid of a trusted setup. For the aggregation of
16 of our range arguments, it is estimated that the allocated gas costs per argu-
ment would be reduced by 20% to about 188K and 254K. Thus, with respect to
proving ranges, our arguments can be a suitable alternative to the zkSNARKs for
confidential transactions on blockchain platforms. Bulletproofs [13] are generic-
purpose arguments in the DL setting for any arithmetic circuits with a trans-
parent setup, which can instantiate range arguments. Bulletproof2 is designed to
pursue O(log N) communication efficiency at the expense of using O(N) number
of group exponentiations in computation for the range [0, 2N − 1]. Table 1 and 2
show efficiency comparisons with Bulletproof. Our arguments achieve 6.4× and
9.3× improvement in proving and verification efficiency for N = 64, respectively,
while incurring only 50% additional communication cost. Accordingly, the gas
cost incurred by Bulletproof’ verification reaches 3703K for a 64-bit range, which

2 We will call the range instance of Bulletproofs by “Bulletproof” in the following.
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is 11.7× of ours (Please see Table 6 for more details on gas costs). For smaller 52-
bit ranges3, the advantage of our arguments in computational efficiency is even
greater, whereas the discrepancy in communication efficiency is smaller. More-
over, our range arguments are more sensitive to N , resulting in finer-grained
performance and more flexible usage in different scenarios. Another range proof
in the DL setting is CKLR21 [20]. It applies Legendre’s three squares theo-
rem [36] to achieve constant efficiency in computation and communication by
leveraging a bounded integer commitment scheme. However, it suffers an inher-
ent trade-off between the range size and the soundness error (sometimes called
“knowledge error”) for a certain group. Soundness errors indicate the probability
of a malicious prover cheating a verifier into accepting false proofs. Confidential
transactions typically have stringent security requirements, demanding highly
negligible soundness errors. As for the mainstream 256-bit elliptic curve groups
in confidential transactions, CKLR21 achieves a soundness error 2−80 for 32-bit
ranges at the risk of a re-run with a 65% probability. The errors would rise to 2−70

on smart contract platforms due to the 256-bit word limit4. Besides, for 64-bit
and larger ranges, the errors would surge to no less than 2−48. Thus, current CT
platforms must increase the number of sequential iterations or use larger groups
to obtain negligible soundness errors. Moving to larger groups is undesirable as it
may require a major change to their infrastructure. Moreover, both ways would
increase the computational and communication costs. Our arguments tend to
be more efficient for verification and communication at a comparable level of
soundness errors. For example, iterating CKLR21 three times helps achieve a
negligible soundness error 2−240 for a 32-bit range but increases the proof size
to about 827 bytes. Accordingly, the computational cost also grows. By com-
parison, our arguments have 738 bytes with a soundness error 2−256. Please see
Table 6 for a detailed efficiency comparison.

Polynomial Evaluation Arguments. Based on the techniques of BG13 [3],
we present two zero-knowledge arguments, which are optimised for the polyno-
mials y = P (x;D) of lower-degree (D ∈ [3, 29])5 and higher-degree (D > 29),
respectively. Two arguments are distinguished based on the proof size, with the
higher-degree one outperforming the lower-degree one when the degree D exceeds
29. Our arguments essentially leverage the quadratic-term cancellation technique
to greatly reduce the number of group exponentiations and elements for superior
efficiency in computation and communication. To the best of our knowledge, our
arguments instantiate the most communication-efficient zero-knowledge argu-
ments of membership and non-membership in the DL setting among those not
requiring trusted setups. Furthermore, we propose an aggregation optimisation,
where multiple arguments satisfying different polynomials with the same degree
and inputs can be aggregated such that the efficiency in verification (group expo-
nentiations per argument) and communication is asymptotically increased from
O(log D) to O(

√
log D). In addition, our range arguments can adapt the poly-

3 A 52-bit range can cover all the values from 1 satoshi up to 21 million bitcoins.
4 The size of one field element in CKLR21 is larger than 256 bits for 32-bit ranges.
5 We skip the protocol for D ∈ {1, 2}, which is simpler than the lower-degree one.
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Table 3. Efficiency comparison of polynomial evaluation arguments with a transparent
setup in the DL setting, where N is the polynomial degree. Note that log N should be
rounded up if N is not a power of 2.

Type Bulletproofs BG13 This Work
(Sect. 4.2)
Lower-Deg N ∈ [3, 29]

This Work
(Sect. 4.3)
Higher-Deg N > 29

Prover
No. of Exp (G)

15N+2 log N−10 8 log N − 4 4 log N + 2 3 log N + 3
√

log N + 2

Verifier
No. of Exp (G)

5N +2 log N +10 7 log N − 1 2 log N + 7 log N + 3
√

log N + 6

Proof Size
No. of Elements

2 log N + 8 (G)
5 (Zp)

4 log N − 2 (G)
3 log N (Zp)

log N + 3 (G)
log N + 3 (Zp)

2
√

log N + 3 (G)
log N +

√
log N +

4 (Zp)

nomial evaluation arguments for scenarios where y is even secretly committed
without losing the sub-linear computational efficiency. For example, with the
aid of the Maclaurin series [44], the polynomial evaluation arguments can satisfy
complex mathematical relations between two committed values, e.g., trigono-
metric and exponential functions. The range arguments help confine the input x
to a specific range to ensure y is in the safe range [−p−1

2 , p−1
2 ] without overflow,

where p is the group order.

Comparisons with State-of-the-art Polynomial Evaluation Proofs. Table 3 shows
an efficiency comparison of polynomial evaluation arguments in the DL set-
ting with a transparent setup. As compared to BG13, it is observed that our
arguments achieve a significant improvement in the efficiency of computation
and communication without a trusted setup. More concretely, for polynomials
of degree D = 216 − 1, our arguments incur 1122 bytes over a 256-bit elliptic
curve group, yielding a 3.1× reduction in proof size. The allocated communi-
cation cost per argument would decrease by 72.4% to about 310 bytes for the
aggregation of 16 distinct arguments. In addition, the efficiency in proving and
verification is raised by a factor of 2 and 3.3, respectively. An alternative type of
communication-efficient arguments with a transparent setup in the DL setting
is the generic-purpose Bulletproofs, which require 2 log N + 13 elements for any
arithmetic circuits, where N is the number of multiplication gates. On the one
hand, our arguments outperform Bulletproofs in the efficiency of computation
and communication regarding the polynomial evaluation. On the other hand,
our arguments only need three rounds, while Bulletproofs require log N rounds.

1.2 Outline of Our Paper

Our paper is organised as follows. First, we introduce the cryptographic prelimi-
naries in Sect. 2. We elaborate on the core techniques of the range arguments and
polynomial evaluation arguments as well as some optimisations in Sects. 3 and
4. A comprehensive evaluation of performance is given in Sect. 5. We provide the
full protocols of our arguments and the security proofs in Sect. 6. We describe
the related work in Sect. 7.
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2 Preliminaries

We follow the definitions in [13,29] to formalise homomorphic commitment
schemes and zero-knowledge arguments of knowledge.

Let λ and negl(λ) be the security parameter and the negligible function. PPT
means probabilistic polynomial time. Denote a cyclic group of prime order p by
G, and the ring of integers modulo p by Zp. Let Z

∗
p be Zp\{0}. Let g, h

$←−
G, (gi)n−1

i=0
$←− G

n be uniformly random generators from G. Let x
$←− Z

∗
p be

uniformly random element from Z
∗
p. Denote the vector spaces of dimension n

over G and Zp by G
n and Z

n
p , respectively.

2.1 Homomorphic Commitment Schemes

Homomorphic commitment schemes are a crucial building block for zero-
knowledge proofs. A homomorphic commitment allows to commit to a value
with a negligible chance of altering it before opening the commitment. A homo-
morphic commitment scheme is, hiding if a commitment does not reveal the
value and, binding if a commitment can only be opened to one value.

A homomorphic commitment scheme is a pair of PPT algorithms (G, Cm),
where the setup algorithm G(λ) generates a commitment key ck and the com-
mitment algorithm Cm defines a function Cmck : Mck × Rck → Cck for a message
space Mck, a randomness space Rck and a commitment space Cck. For a message
m ∈ Mck, a uniformly randomness r ∈ Rck can be picked to produce a commit-
ment c = Cmck(m; r). The commitments are homomorphic for all well-formed
commitment keys ck and m0,m1 ∈ Mck, r0, r1 ∈ Rck:

Cmck(m0; r0) · Cmck(m1; r1) = Cmck(m0 + m1; r0 + r1)

Cmck(m0; r0)m1 = Cmck(m0 · m1; r0 · m1)

Definition 1 (Hiding). A commitment scheme (G, Cm) is hiding if a commit-
ment does not reveal the value for all PPT adversaries A:

Pr

[
c = Cmck(mb), b ∈ {0, 1},

b′ ← A(c), b = b′

∣∣∣∣ ck ← G(λ),
(m0,m1 ∈ Mck) ← A(ck)

]
≈ 1

2

The scheme is perfectly hiding if the probability is equal to 1
2 .

Definition 2 (Binding). A commitment scheme (G, Cm) is binding if a com-
mitment can only be opened to one value for all PPT adversaries A:

Pr

[
Cmck(m0; r0) = Cmck(m1; r1),

m0 �= m1

∣∣∣∣ ck ← G(λ),
(m0, m1 ∈ Mck, r0, r1 ∈ Rck) ← A(ck)

]
≤ negl(λ)

The scheme is perfectly binding if the probability is equal to 0.
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We define the Pedersen commitment and Pedersen vector commitment as
below, both of which are perfect hiding and computationally binding:

Definition 3 (Pedersen Commitment). Given Mck = Zp,Rck = Z
∗
p, Cck = G

of order p and g, h
$←− G:

Cm(m; r) = gmhr (mod p)

Definition 4 (Pedersen Vector Commitment). Given Mck = Z
n
p ,Rck = Z

∗
p,

Cck = G of order p and (g0, ..., gn−1)
$←− G

n, h
$←− G:

Cm(m0, ...,mn−1; r) = hr
n−1∏
i=0

gmi
i (mod p)

2.2 Zero-Knowledge Arguments of Knowledge

Based upon the discrete logarithm assumption, Flashproofs are public-coin
honest-verifier zero-knowledge arguments of knowledge. A zero-knowledge argu-
ment is comprised of three interactive probabilistic polynomial-time algorithms
(G, P, V), where the setup algorithm G(λ) returns a common reference string σ.
P and V are the prover and verifier algorithms, which produce the public tran-
script, tr ← 〈P(v),V(t)〉 on inputs v and t. Denote a polynomial-time decidable
tertiary relation by R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗. A CRS-dependent language
can be defined as Lσ = {u | ∃ω : (σ, u, ω) ∈ R}, where ω is a witness for a
statement u in the relation (σ, u, ω) ∈ R.

Definition 5 (Argument of Knowledge). The triple (G, P, V) is called an
argument of knowledge for the relation R if it satisfies the perfect completeness
and computational witness-extended emulation.

Definition 6 (Perfect Completeness). An argument of knowledge (G, P,
V) has perfect completeness if for all PPT adversaries A:

Pr
[
(σ, u, ω) /∈ R or 〈P(σ, u, ω),V(σ, u)〉 = 1

∣∣ σ ← G(λ), (u, ω) ← A(σ)
]

= 1

Definition 7 (Computational Witness-Extended Emulation). An argu-
ment of knowledge (G, P, V) has witness-extended emulation if for all determin-
istic polynomial time P∗, there exists an expected polynomial time emulator E
such that for all PPT adversaries A:

Pr

⎡
⎢⎣A(tr) = 1

∣∣∣∣∣
σ ← G(λ)

(u, s) ← A(σ),

tr ← O

⎤
⎥⎦ ≈ Pr

⎡
⎢⎣

A(tr) = 1

∧ tr is accepting

→ (σ, u, w) ∈ R

∣∣∣∣∣

σ ← G(λ),

(u, s) ← A(σ),

(tr, ω) ← EO(σ, u)

⎤
⎥⎦

where the oracle is defined as O = 〈P∗(σ, u, s),V(σ, u)〉.
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Soundness can be defined based on the witness-extended emulation. Infor-
mally, whenever P∗ makes a convincing argument in state s, there exists a knowl-
edge emulator E that can extract a witness for (σ, u, ω) ∈ R by rewinding the
interaction to any specific points and running again with the same state for the
prover, but fresh randomness for the verifier.

Definition 8 (Public Coin). An argument of knowledge (G, P, V) is called
public coin if the verifier chooses her messages uniformly at random and inde-
pendently of the messages sent by the prover.

Definition 9 (Perfect Special Honest Verifier Zero-Knowledge,
SHVZK). A public coin argument of knowledge (G, P, V) is called perfect spe-
cial honest verifier zero-knowledge argument of knowledge for R if there exists
a PPT simulator S such that for all interactive PPT adversaries A:

Pr

⎡
⎢⎣ (σ, u, ω) ∈ R

∧ A(tr) = 1

∣∣∣∣∣
σ ← G(λ),

(u, ω, e) ← A(σ),

tr ← 〈P(v), V(t)〉

⎤
⎥⎦ = Pr

⎡
⎢⎣ (σ, u, ω) ∈ R

∧ A(tr) = 1

∣∣∣∣∣
σ ← G(λ),

(u, ω, e) ← A(σ),

tr ← S(u, e)

⎤
⎥⎦

where e is a public coin challenge, v = (σ, u, ω) and t = (σ, u, e).
An argument is zero-knowledge if no extra information except the witness can

be inferred from the statement. A general approach to proving that an argument
has special honest verifier zero-knowledge is to construct a simulator that knows
the challenge and can simulate the whole transcript of the argument without
knowing the witness.

3 Range Arguments

3.1 Overview of Bit-Decomposition Approach

Bit-decomposition is a folklore approach for constructing range proofs. The chal-
lenge consists in seeking an efficient method to prove that a committed value
can be represented in binary form. Bulletproof employs a variant of the bit-
decomposition approach by using an inner product argument [10] (Please refer
to their original paper [13] for more details). The intuition is that a prover pre-
pares one vector commitment, which commits to the bit vector b of the target
value y and to the vector a = b−1N. The prover constructs an equation in Eqn.
(1) to prove the three constraints: (I) 〈b,2N〉 = y, (II) 〈b − 1N − a, r〉 = 0 and
(III) 〈b,a ◦ r〉 = 0.

z2 · 〈b,2N〉 + z · 〈b − 1N − a, r〉 + 〈b,a ◦ r〉 = z2 · y (1)

where z ∈ Z
∗
p is a random value and r ∈ Z

∗N
p is a vector of random values pro-

vided by the verifier. 1N = (1, 1, ..., 1) is a vector of 1 and 2N = (20, 21, ..., 2N−1)
is a vector of powers of 2. 〈·, ·〉 and ◦ denote the inner product and the Hadamard
product, respectively.

Then the prover takes advantage of the inner product argument to recursively
compress the equation in O(log N) rounds. The compression technique helps
achieve O(log N) communication efficiency but exposes two limitations:
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– The process is computationally expensive, demanding O(N) group exponen-
tiations for proving and verification.

– To a degree, the recursion impedes a parallel acceleration of proof generation.

3.2 Our Techniques

We devise a new variant of the bit-decomposition approach that only needs
three rounds. Our technique is highly lightweight in computation and does not
require pairing operations. Compared to Bulletproof, our arguments involve far
fewer group exponentiations in both proving and verification and also allow
for a speedup of proof generation by parallelisation. In this section, we mainly
concentrate on the core techniques of our arguments, whereas the full protocol
is given in Sect. 6.1. Our techniques work as follows:

1. Given a commitment cy = gyhry , we express the committed value y =∑N−1
i=0 2ibi as a sequence of terms (w0, w1, ..., wN−1) for the range [0, 2N − 1],

where bi ∈ {0, 1} and wi = 2ibi, i ∈ {0, 1, ..., N − 1}. Then we fold the
sequence and arrange all the terms (wi)N−1

i=0 in an L × K matrix in Eqn. (2),
where L and K indicate the number of rows and columns, respectively. If N
is a prime integer, additional zeros of size γ ∈ Z

+ can be padded onto the
high-order bits to make N + γ = K · L.

2. We prove each coefficient wlK+k is 0 or 2lK+k.
3. We flatten the two-dimension matrix to a one-dimension vector and prove that

y is the sum of K values, such that y =
∑K−1

k=0 sk, where sk =
∑L−1

l=0 wlK+k

is the sum of L coefficients (wlK+k)L−1
l=0 in the k-th column.

⎛
⎜⎜⎜⎜⎝

20b0 . . . 2K−1bK−1

2KbK . . . 2K+K−1bK+K−1

.

.

.
. . .

.

.

.

2(L−1)Kb(L−1)K . . . 2(L−1)K+K−1b(L−1)K+K−1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

w0 . . . wK−1

wK . . . wK+K−1

.

.

.
. . .

.

.

.

w(L−1)K . . . w(L−1)K+K−1

⎞
⎟⎟⎟⎟⎠

(2)

where the i-th term wi in the l-th row and the k-th column is also denoted by
wlK+k, k ∈ {0, ...,K − 1} and l ∈ {0, ..., L − 1}.

Next, we describe the intuition in more details. Instead of proving each bit
bi ∈ {0, 1} as Bulletproof, we turn to prove wlK+k ∈ {0, 2lK+k} for each (i =
lK + k). In the third round of the protocol, the prover computes and sends a
value vl =

∑K−1
k=0 wlK+kek+rl to the verifier for each l after acquiring a challenge

vector (e0, ..., eK−1)ᵀ from the verifier. vl is a randomised inner product of the
l-th row and the challenge vector, where rl ∈ Z

∗
p is used to prevent vl from

leaking any information about the coefficients. The essence of our technique is
an effective use of vl for verifying wlK+k ∈ {0, 2lK+k}. Unlike Bulletproof, which
requires the prover to satisfy the constraint (II) in Eqn. (1), we design a new
technique to relieve the prover of this burden, which greatly reduces proving
computational costs. The technique allows the verifier to compute a value fl by
subtracting vl from

∑K−1
k=0 2lK+kek for each l:



230 N. Wang and S. C.-K. Chau

fl =
K−1∑
k=0

2lK+kek − vl =
K−1∑
k=0

(2lK+k − wlK+k)ek − rl

For the case where N is a prime number, it suffices for the verifier to use 0
rather than 2lK+kek for the padded bits. Then computing fl · vl for each l will
generate a series of cross-terms in the challenges:

fl · vl
?
=

K−1∑
k=0

wlK+k(2lK+k − wlK+k)e2k

︸ ︷︷ ︸
= 0, if wlK+k∈{0,2lK+k}

+

k=K−2,j=K−1∑
k=0,j=1

tl,k,jek,j +

K−1∑
k=0

ql,kek + ql,K

(3)

where tl,k,j = wlK+k(2lK+j −wlK+j)+wlK+j(2lK+k −wlK+k) and ek,j = ek · ej

for k, j ∈ {0, ...,K−1}∧k �= j. ql,k = 2rl(2lK+k−1−wlK+k) for k ∈ {0, ...,K−1}
and ql,K = −r2

l . The number of terms ek,j is K(K−1)
2 .

The verifier needs to ensure that the quadratic terms (e2
k)K−1

k=0 are all can-
celled out by only using the commitments to the coefficients of the remaining
terms in Eqn. (3) for verification. Before obtaining the challenges, the prover
must provide these commitments in the first round. Thus, by the binding prop-
erty of Pedersen commitment and the Schwartz-Zippel lemma, it is with an
overwhelming probability that the coefficient of the k-th quadratic term satisfies
the constraint below:

wlK+k(2lK+k − wlK+k) = 0 =⇒ wlK+k ∈ {0, 2lK+k}

The prover also needs to provide the commitments (csk
)K
k=0 in the first round

so that the verifier can check the validity of (sk)K
k=0 based upon the equation

below:
L−1∑
l=0

vl
?=

K−1∑
k=0

skek + sK , sK =
L−1∑
l=0

rl (4)

Finally, the verifier can be convinced that y lies in the range [0, 2N −1] by check-
ing the equation y

?=
∑K−1

k=0 sk. As we use elliptic curve groups to instantiate
the argument, where the group and field elements have roughly the same size,
then the total number of elements would be:

|Π| = L + 2K +
K(K − 1)

2
+ 4 = �N

K
� +

K2

2
+

3K

2
+ 4

The number of group exponentiations for verification is |Π| − 1. We calculate
the derivative Δ|Π| = K − N

K2 + 3
2 , such that when K ≈ �N 1

3 �, both |Π| and
verification complexity achieve the minimum. Table 4a provides a set of (L,K)
values for different ranges.
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Table 4. Comparison of range arguments

(a) Values of (L, K)

N 8-bit 16-bit 32-bit 64-bit

L 4 8 11 16

K 2 2 3 4

(b) Comparison of range arguments for 64-bit

Type Prover No. of Exp (G) Verifier No. of Exp (G) Proof Size (Byte)

Original Work 197 33 1090

Optimised Work 146 30 994

Saving 51 (25.9%) 3 (9.1%) 96 (8.8%)

Optimisation. We propose an optimisation technique to improve the overall
efficiency. We change the way that the challenge vectors are generated at the
expense of amplifying the soundness error from (p−K)!

p! to 1
p , which is still suf-

ficiently negligible with a large p. The high-level idea is to allow the verifier to
randomly produce a challenge e, such that the other challenges in the vector
will be produced by taking different powers of e. This change opens the possi-
bility of merging the terms of the same orders to reduce the number of group
exponentiations in both proving and verification. We exemplify a concrete case
with K = 4 and consider the 4 challenges (ek)3k=0 = (e−1, e, e4, e5) for a sim-
pler interpretation. To check whether the witness y is correctly represented in
binary form, the verifier needs to ensure that none of the terms (e−2, e2, e8, e10)
will appear on the right-hand side of Eqn. (3). Computing fl · vl will generate a
polynomial with only 8 terms instead of the original 0.5 · 16 + 0.5 · 4 + 1 = 11:

P (e) = w9e
9 + w6e

6 + w5e
5 + w4e

4 + w3e
3 + w1e + w−1e

−1 + w0

where w∗ indicates the coefficients of the corresponding terms.
The coefficients of the combined terms e·e−1, e·e4 and e−1 ·e5 are respectively

merged into w0, w5 and w4. As shown in Table 4b, this optimisation saves 51 and
3 group exponentiations for proving and verification, respectively, and 3 group
elements for communication when K = 4. Notably, the optimisation increases
the proving efficiency by 25.9%. Note that a particular choice of K challenges
can yield F (K) number of terms for computing fl · vl. We provide a possible
combination of the challenge exponents for F (K) as below and let the readers
discover more possible combinations.

K=2: {−1, 1}, K=3: {−1, 1, 4}, K=4: {−1, 1, 4, 5}, K=5: {−1, 1,−4, 4, 5}
K=6: {−1, 1,−4, 4,−5, 5}, K=7: {−1, 1,−4, 4,−5, 5, 16}
K=8: {−1, 1,−4, 4,−5, 5,−16, 16}, K=9: {−1, 1,−4, 4,−5, 5,−16, 16, 17}
K=10: {−1, 1,−4, 4,−5, 5,−16, 16,−17, 17}

3.3 Aggregate Range Arguments

Multiple arguments for the same range created by one prover can be aggregated
for further efficiency gains. Given M witnesses (ym)M−1

m=0 , the prover creates two
unique sets (v(m)

l )L−1
l=0 and (s(m)

k )K
k=0 for each m ∈ {0, ...,M − 1}. The prover

utilises M · L generators, where the (m, l)-th generator is in charge of com-
puting f

(m)
l · v

(m)
l . Hence, the M coefficients of each term on the right-hand

side of Eq. (3) can be compacted in one commitment. Then we can apply the
batch verification technique [4] to reduce the number of group exponentiations
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by simultaneously checking the equations in Eq. (4) for these arguments. The
technique is based on the principle that checking a = 0 ∧ b = 0 is equivalent to
checking a+ρb = 0 with high probability, where ρ ∈ Z

∗
p is a random value. Thus,

the verifier can produce a new random challenge z ∈ Z
∗
p and use the equation

below to validate s
(m)
k in batches:

M−1∑
m=0

(
L−1∑
l=0

v
(m)
l )zm ?=

K−1∑
k=0

(
M−1∑
m=0

s
(m)
k zm)ek +

M−1∑
m=0

s
(m)
K zm

Finally, the verifier can check ym
?=

∑K−1
k=0 s

(m)
k for each m. The total num-

ber of elements is |Πtotal| = M · (�N

K
� + K + 1) +

K2 + K

2
+ 3. When

K ≈ �(MN)
1
3 �∧ N

K
≥ 1, the complexity of both communication and verification

achieves the minimum. Then for aggregating M optimised range arguments, we

can use the formula
F (K) + 2

M
+ �N

K
� + K + 1 to calculate the number of ele-

ments for communication cost or the allocated number of group exponentiations
for verification per argument.

4 Polynomial Evaluation Arguments

Built upon the techniques of Bayer & Groth (BG13) [3], our polynomial evalua-
tion arguments aim to prove that two committed values x and y satisfy a public
polynomial relation y = P (x;D), where D is the degree. They achieve non-trivial
efficiency gains in computation and communication thanks to the quadratic-term
cancellation technique. We give two protocols, which respectively excel in han-
dling the polynomials of lower-degree D ∈ [3, 29] and higher-degree D > 29.
We essentially focus on the core techniques of our arguments, whereas the full
protocols are given in Sects. 6.2 and 6.3.

4.1 Overview of BG13

We begin with an overview of BG13 (Please refer to their original paper [3] for
more details). Consider a polynomial function P (x;D) =

∑D
d=0 adx

d, where we
assume D = 2J+1 − 1 for J ∈ {1, 2, ...} without loss of generality by padding
with zero-coefficients. First, the polynomial P (x;D) can be re-written as below
by substituting the d-th term xd with x

∑J
j=0 2jb

(j)
d =

∏J
j=0 x2jb

(j)
d , where d =∑J

j=0 2jb
(j)
d , b

(j)
d ∈ {0, 1} and J + 1 = �log D�:

P (x;D) =
D∑

d=0

adx
d =

D∑
d=0

adx
∑J

j=0 2jb
(j)
d =

D∑
d=0

ad

J∏
j=0

x2jb
(j)
d

Then BG13 defines a new polynomial Q(e;J + 1) by substituting x2j

with a
masking value zj = x2j

e + mj for each j, such that the coefficient of the leading
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term eJ+1 is equal to P (x;D), where mj is a random value, e is the verifier’s
random challenge and wj is the coefficient of the term ej .

Q(e;J + 1) =
D∑

d=0

(ad

J∏
j=0

e1−b
(j)
d z

b
(j)
d

j ) = P (x;D)eJ+1 +
J∑

j=0

wje
j (5)

The prover must provide the commitment to P (x;D) and the commitments
to the coefficients (wj)J

j=0 before acquiring the challenge e to prove that the
polynomial Q(e;J + 1) is well formed. In a nutshell, there are three constraints
to satisfy:

1. P (x;D) is the coefficient of the leading term eJ+1.
2. The linearity between x2j

and zj = x2j

e + mj for j ∈ {0, ..., J}.
3. The quadratic relations between x2j

hidden in zj and x2j+1
hidden in zj+1

for j ∈ {0, ..., J − 1}.

BG13 creates three sets of group elements (cx2j )J
j=1, (cmj

)J
j=0, (c(x2j

mj)
)J−1
j=0 and

two sets of field elements (rj)J
j=0, (ξj)J−1

j=0 . Then it utilises two equations to fulfil
the constraints 2 and 3 for each j:

zj
?= x2j

e + mj =⇒ Cm(zj ; rj)
?= ce

x2j · cmj

0 ?= x2j+1
e − x2j

zj + x2j

mj =⇒ Cm(0; ξj)
?= ce

x2j+1 · c
−zj

x2j · c(x2j
mj)

4.2 Techniques of Lower-Degree (LD) Protocol

In this protocol, we aim for optimisations to fulfil the constraint 2 and 3 for better
computational and communication efficiency. Our technique is a new equation in
Eq. (6) that effectively leverages the field elements (zj)J

j=0 rather than the group
elements as in BG13 to achieve the verification, which significantly improves the
computational efficiency by reducing the number of group exponentiations. The
two equations for simultaneously satisfying the constraint 2 and 3 are:

z0
?= xe + m0, z2

j − zj+1e
?= (2x2j

mj − mj+1)e + m2
j , j ∈ {0, ..., J − 1}

(6)

In Eqn. (6), first, we must ensure the linearity between the input x and z0. Then
computing z2

j − zj+1e for j ∈ {0, ..., J − 1} will cancel out quadratic terms e2

and leave the first-order term (2x2j

mj −mj+1)e and the constant term m2
j . Our

techniques only require the prover to provide the vector commitments to the
coefficients of these two terms before acquiring the challenge e. This not only
ensures the quadratic relations between x2j

and x2j+1
but also justifies the lin-

earity between x2j

and zj = x2j

e + mj for j ∈ {1, ..., J − 1}. Otherwise, the
quadratic terms e2 must have appeared on the right-hand side with overwhelm-
ing probability. Compared with the techniques of BG13, ours entail far fewer
computationally expensive group operations. With respect to the communica-
tion cost, the reduction by 5 log D elements is essentially attributed to the use
of vector commitments. Moreover, our new equation in Eq. (6) also contributes
to decreasing the proof size.
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4.3 Techniques of Higher-Degree (HD) Protocol

On top of the lower-degree protocol, we aim for a further optimisation to
fulfil the constraint 1. We attempt to trade log D group elements in Eq.
(5) for 3

√
log D group and field elements by applying the technique of the

polynomial commitment [10]. Intuitively, we can factor out common polyno-
mial factors from the polynomial

∑J
j=0 wje

j . First, we rewrite
∑J

j=0 wje
j as∑L−1

l=0 elK
∑K−1

k=0 wlK+kek without loss of generality by padding with zero coeffi-
cients, where J +1 = L·K and l ∈ {0, .., L−1}, k ∈ {0, ...,K−1}. L polynomials
(
∑K−1

k=0 wlK+kek)L−1
l=0 can be factored out to build a matrix in a way that each

row contains the coefficients of the factored polynomials, and each column is a
vector of the coefficients of the same-order of e:⎛

⎜⎜⎜⎝
w0 + θ0 w1 . . . wK−1

wK + θ1 wK+1 . . . w2K−1

...
...

. . .
...

w(L−1)K + θL−1 w(L−1)K+1 . . . wLK−1

⎞
⎟⎟⎟⎠

The prover commits to all the columns as (cwk
)K−1
k=0 using vector commitments

and creates a field value fl =
∑K−1

k=0 wlK+kek + θl for each l, which is a ran-
domised inner product of the l-th row and the challenge vector (1, e, ..., eK−1)ᵀ,
where θl ∈ Z

∗
p is a random value to prevent leaking information about the coef-

ficients (wlK+k)K−1
k=0 .

cw0 =
L−1∏
l=0

gwlK+θl

l · hrw0 (cwk
=

L−1∏
l=0

g
wlK+k

l · hrwk )K−1
k=1

where (gl)L−1
l=0

$←− G
L, h

$←− G are distinct generators and (rwk

$←− Z
∗
p)

K−1
k=0 are

random values.
The verifier computes

∏L−1
l=0 gfl

l · hs ?=
∏K−1

k=0 cek

wk
to check the correctness of

(fl)L−1
l=0 , where s =

∑K−1
k=0 rwk

ek, and constructs a new equation in Eqn. (7) to
replace Eqn. (5) for the constraint 1:

Q(e;J + 1) −
L−1∑
l=0

fle
lK ?= P (x;D)eJ+1 −

L−1∑
l=0

θle
lK (7)

The prover is required to provide the commitments to (θl)L−1
l=0 before obtaining

the challenge e. In addition to the proof size reduction, this technique greatly
reduces the number of group exponentiations, which improves the efficiency in
both communication and verification.

4.4 Aggregate Polynomial Evaluation Arguments

The aggregation of multiple arguments is supported for a significant efficiency
improvement. Recall that our techniques enable a non-trivial reduction in the
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communication cost to log D+3
√

log D+7 elements for higher-degree polynomi-
als, where J+1 field elements (zj = x2j

e+mj)J
j=0 dominate the whole argument.

Thus, multiple arguments satisfying different polynomials with the same degree
and inputs can split the communication cost of these field elements. Given M

polynomials
(
P (x;D)(m)

)M−1

m=0
of the same degree D, the prover utilises M · L

generators to create K commitments (cwk
)K−1
k=0 by compacting the coefficients

of all M arguments. Then the prover provides two unique sets of (f (m)
l )L−1

l=0 and
(θ(m)

l )L−1
l=0 for each m ∈ {0, ...,M − 1}. Similar to the aggregate range argu-

ment, the verifier uses the equation below to check the constraint 1 for multiple
arguments in batches, where z ∈ Z

∗
p is a new random challenge provided by the

verifier:
M−1∑
m=0

(
Q(e; J+1)(m)−

L−1∑
l=0

f
(m)
l elK)

zm ?
=

M−1∑
m=0

P (x; D)(m)zmeJ+1−
L−1∑
l=0

(

M−1∑
m=0

θ
(m)
l zm)elK

For aggregating M arguments, we can use the formula
log D +

√
log D + 7

M
+

2
√

log D to calculate the number of elements for communication cost or the
allocated number of group exponentiations for verification per argument. For
a certain degree D, the efficiency in verification (group exponentiations) and
communication asymptotically approaches O(

√
log D) when M increases.

4.5 Limitation and Extension

Limitation. Overall, our techniques aim to reduce the number of group expo-
nentiations and elements for superior efficiency in computation and communica-
tion. Based on the techniques of BG13, unfortunately, our protocols still inherit
its limitation of using a linear number of field multiplications in verification for
evaluating the worse-case polynomials with few zero terms. The field multipli-
cations would dominate the computational costs over the group exponentiations
when the degrees are fairly large, even the latter ones are far more computa-
tionally expensive. However, the computational costs of high-order polynomials
with quite a few zero terms are less subject to this limitation. Hence, the more
zero terms, the less subject to this limitation.

Extension. Our arguments can be extended to satisfy multi-variate polynomial
relations, e.g., the inner-product of two vectors. The efficiency in communication
and computation would be linear in the number of variates.

5 Empirical Experiments

In our experiments, we measured verification gas costs of the range proofs on
Ethereum, one of the most popular blockchain platforms supporting smart con-
tracts. We employed the 254-bit elliptic curve BN-128 [18]6 that ensures 127-bit
6 Gas costs would be significantly reduced if precompiled contracts for non-pairing

curves, e.g., secp256k1, are supported in future on smart contract platforms.
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security as Ethereum provides gas-efficient precompiled contracts for BN-128
curve operations. We adopted keccak256 (Ethereum-SHA-3) as the hash func-
tion modelling the random oracle. Our empirical evaluation was conducted with
the processor Intel Core i7-8700 CPU @3.2GHz.

For range arguments, we conducted a full-scale performance comparison with
several state-of-the-art range proofs with respect to the computational costs and
gas costs on Ethereum. For polynomial evaluation arguments, we essentially
compare the computational efficiency between ours and BG13. We skipped the
measurement of Bulletproofs as its running time of both proving and verification
is considerably greater than those two.

Computational Cost. We measured running time in milliseconds as an evalu-
ation metric of the computational costs. We used the well-known Bouncy Castle
Crypto APIs [12] to implement the BN-128 elliptic curve since they were ini-
tially used in the Java implementation7 of Bulletproofs [9], which facilitates a
fair comparison. All the experiments were executed on the Java Virtual Machine
15 in a single thread, with results averaged over 50 instances. Note that the
Java implementation was aimed at performance comparison. Rust programming
language is more suited to commercial usage for high efficiency.

Fig. 2. Computational cost of our range arguments.

Figure 2a describes the running time of proving and verification in millisec-
onds of our optimised range arguments. The verification running time is O(N

2
3 )

sub-linear in the range size. The proving running time is slightly sub-linear when
N ≤ 64, which corresponds to the holistic sub-linearity in Fig. 1. Table 5 shows a
detailed running time comparison with other state-of-the-art proofs. Our range
arguments outperform Bulletproof in both proving and verification. Moreover,
at a comparable level of soundness errors, our range arguments do not perform
as efficiently as CKLR21 in proving but present higher efficiency in verification.
Figure 2b illustrates the allocated number of group exponentiations per argu-
ment for verifying aggregate range arguments with the increased aggregation
size. The costs are reduced asymptotically as the aggregation size grows. About

7 The Java code [9] was implemented by the first author of Bulletproofs paper.
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Table 5. Running time of range proofs in milliseconds, where CKLR21 was respectively
run 3 and 5 iterations for 32-bit and 64-bit ranges to achieve a soundness error 2−240,
which is practically close to 2−254 of ours. For CKLR21, we considered the additional
54% of the proving computational costs caused by re-runs (mentioned in their paper).

Type 8-bit 16-bit 32-bit 64-bit

Prove This work 21.8 36.4 64.4 111.5

CKLR21 - - 55.1 73.9

Bulletproof 132.2 251.4 482 950.4

Verify This work 13.4 18.7 27.1 35.5

CKLR21 - - 37.9 50.8

Bulletproof 61.3 104.2 187.2 355.9

Fig. 3. Computational costs of polynomial evaluation arguments.

35% of the group exponentiations per argument are saved when 16 arguments
of the 64-bit range are aggregated.

Figure 3 shows a running time comparison between our polynomial evalua-
tion arguments and BG13 for monomials of different degrees8. The computa-
tional costs grow logarithmically with the increased degrees. The higher-degree
and lower-degree arguments significantly outperform BG13 in proving and verifi-
cation. Besides, the running time discrepancy between higher-degree and lower-
degree arguments diminishes with the increased degrees. It is foreseeable that
the higher-degree ones would be more competitive for the degrees over 29.

Gas Cost. We used the Solidity programming language [32] and the Truffle
development framework [39] to measure the gas costs of verifying range proofs
on Ethereum. We set 500,000 to the optimize-runs9 parameter of the Solidity
compiler with version 0.8.0. We ran the solidity-based code [1] to measure the
gas costs of Bulletproof. We also measured the gas costs of verifying a zkSNARK
(Groth16) [28] and a zkSNARK (BCTV14) [7] by running the solidity code from
[30] and [23]. Note that the code of two zkSNARKs may not be used for verifying

8 Note that the arguments may not be sound when y = xk is greater than the group
order p. We use these monomials only for measuring the computational costs.

9 The number of runs specifies how often each opcode will be executed across the
contract’s lifetime [38]. The larger the value, the more gas efficient code is generated.
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Table 6. Gas costs of verification on Ethereum in ascending order. SONIC* indicates
that the gas costs are estimated based on the data in SONIC [35]. We used the latest
standard prices of gas and ether for reference at the time of writing, which were 15
GWei and $1745 USD, respectively, taken from [24] and [19] at UTC 11:15 am 12
September 2022. Note that the prices are subject to market fluctuations, but the gas
costs tend to be stable and more meaningful.

Type Transparent setup Gas Cost Ether USD Proof size (Byte)

zkSNARK (Groth16) ✗ 220,100 0.0033 $5.8 192

This work (32-bit) ✓ 236,584 0.00355 $6.2 738

This work (64-bit) ✓ 317,474 0.00476 $8.3 994

zkSNARK (SONIC, Helped)* ✗ 492,000 0.00738 $12.9 385

zkSNARK (SONIC, Unhelped)* ✗ 655,000 0.00983 $17.2 1155

zkSNARK (BCTV14) ✗ 773,124 0.0116 $20.2 288

Bulletproofs (32-bit) ✓ 2,046,252 0.03069 $53.6 610

Bulletproofs (64-bit) ✓ 3,703,549 0.05555 $96.9 674

range proofs. But we feel it is meaningful to provide the results for reference
as the zkSNARKs benefit from trusted setups to achieve constant verification
efficiency for any arithmetic circuits.

Table 6 shows a comprehensive comparison of verification gas costs on
Ethereum in ascending order. Benefitting from a trusted setup, the zkSNARK
(Groth16) ranks first. Our range arguments incur a comparable amount of gas
costs to Groth16 and the least gas costs among those not requiring trusted
setups. Notably, there is hardly any discrepancy in gas costs between Groth16
and our 32-bit range argument. We also roughly estimated the gas costs of
SONIC, a typical zkSNARK with an updatable structured reference string setup.
The helped and unhelped arguments consume approximately 492K and 655K,
where helped means their proofs use an additional “helper” batch verification
technique to improve the verification efficiency. The zkSNARK (BCTV14) con-
sumes a constant 773K gas with the second smallest proof size. However com-
munication efficient, Bulletproof is the most gas-consuming proof, which incurs
2046K and 3703K gas for 32-bit and 64-bit ranges. Moreover, from Table 2b,
the aggregation of 16 of our range arguments saves an average of 8.2 (49.2K
gas) and 10.6 (63.6K gas) group exponentiations per argument for 32-bit and
64-bit ranges, respectively, where one group exponentiation costs 6K gas [16] for
BN-128 elliptic curve on Ethereum. Thus, it is estimated that the allocated gas
costs per argument can be reduced to about 187,384 gas (0.00281 ETH, $4.9)
and 253,874 gas (0.00381 ETH, $6.7).
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Fig. 4. Allocated communication costs of aggregate range arguments.

Communication Cost. We measured proof sizes as communication costs over
a 256-bit field, the standard word size on Ethereum. We used the compressed
form of elliptic curve points, where one point can be stored as a 256-bit value plus
one extra bit indicating one of the two possible y coordinates. In Table 6, Bul-
letproof is the most communication-efficient among those not requiring trusted
setups for general 32-bit and 64-bit ranges. Our range arguments pursue superior
computational efficiency through minor trade-offs in communication efficiency
but still offer a slight advantage over CKLR21 at a comparable level of sound-
ness errors. Figure 4 shows a comparison of the communication costs of 64-bit
aggregate range arguments10 between Bulletproof and ours. Despite being less
efficient than Bulletproof, our range arguments still achieve satisfactory per-
formance, whose allocated communication cost per argument is asymptotically
reduced to 656 bytes for the aggregation of 16 arguments. For instance, regard-
ing 50 million UTXOs from 22 million transactions with 52-bit bitcoins, the
aggregate Bulletproof and ours would take up about 17GB [13] and 42GB. The
communication cost is still a factor of 3.8× reduction in size, compared to the
160GB data11 of less succinct proofs in the current systems. Please see Table 3
for the communication cost comparison of polynomial evaluation arguments.

6 Protocols & Security Proofs

6.1 Range Argument

We describe the full protocol of our range arguments. Given a witness y ∈ Zp,

a random ry
$←− Z

∗
p, a commitment cy = gyhry ∈ G and the generators g, h

$←−
G, (gl)L−1

l=0
$←− G

L, the protocol aims to prove y ∈ [0, 2N − 1]:

Prover :

y =

N−1∑
i=0

2ibi, bi ∈ {0, 1}, N + γ = L · K, L, K ≥ 2, for some γ ∈ Z
0+ (8)

10 We did not find the aggregate proofs of CKLR21 in the DL setting [20].
11 The data refers to the 50 million UTXOs mentioned in Bulletproofs [13].
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N−1∑
i=0

2ibi →

⎛
⎜⎜⎜⎜⎝

w0 . . . wK−1

wK . . . wK+K−1

.

.

.
. . .

.

.

.

w(L−1)K . . . w(L−1)K+K−1

⎞
⎟⎟⎟⎟⎠ , (9)

where wlK+k = 2lK+kblK+k for l ∈ {0, ..., L − 1}, k ∈ {0, ..., K − 1}
(rl

$←− Z
∗
p)

L−1
l=0 , (rsk

$←− Z
∗
p)

K
k=1, (rqk

$←− Z
∗
p)

K
k=0, (rtk,j

$←− Z
∗
p)

k=K−2,j=K−1
k=0,j=1

(10)

Prover =⇒ Verifier :

(csk = g
∑L−1

l=0 wlK+khrsk )K−1
k=0 , csK = g

∑L−1
l=0 rlhrsK , where rs0 = ry −

K−1∑
k=1

rsk
(11)

(ctk,j =

L−1∏
l=0

g
tl,k,j

l · h
rtk,j )k=K−2,j=K−1

k=0,j=1 , for k �= j (12)

where tl,k,j = wlK+k(2
lK+j − wlK+j) + wlK+j(2

lK+k − wlK+k)

(
cqk =

L−1∏
l=0

g
ql,k

l · hrqk
)K

k=0
(13)

where
(
ql,k = 2rl(2

lK+k−1 − wlK+k)
)K−1

k=0
, ql,K = −r2l

Prover ⇐= Verifier : (ek
$←− Z

∗
p)

K−1
k=0

Prover =⇒ Verifier :

(
vl =

K−1∑
k=0

wlK+kek + rl

)L−1

l=0
(14)

u =

k=K−2,j=K−1∑
k=0,j=1

rtk,j ek,j +

K−1∑
k=0

rql,kek + rql,K , ε =

K−1∑
k=0

rskek + rsK (15)

where ek,j = ekej , for k �= j

Verifier :

L−1∏
l=0

g
flvl
l · hu ?

=

k=K−2,j=K−1∏
k=0,j=1

c
ek,j
tk,j

·
K−1∏
k=0

c
ek
qk

· cqK , where fl =

K−1∑
k=0

2lK+kek − vl(16)

g
∑L−1

l=0 vl · hε ?
=

K−1∏
k=0

c
ek
sk

· csK
(17)

cy
?
=

K−1∏
k=0

csk
(18)

Theorem 1. Our range arguments have perfect completeness, computational
witness-extended emulation and perfect special honest verifier zero-knowledge
(SHVZK).

Proof. Perfect completeness follows by a careful inspection of the protocol. Then
we describe a perfect SHVZK simulation. Given a challenge vector (ek)K−1

k=0 ,
a simulator randomly chooses group elements (ctk,j

)k=K−2,j=K−1
k=0,j=1 , (csk

)K−1
k=1 ,

(cqk
)K
k=1 and field elements (vl)L−1

l=0 , u, ε. By the perfect hiding property, the
commitments in a real argument are uniformly random as in the simulation.
The field elements in a real argument are also uniformly random due to the
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random choices of (rl)L−1
l=0 , rqK

and rsK
. Hence, in both real argument and sim-

ulation, the random elements uniquely determine the values cqK
in Eqn. (16),

cs0 in Eqn. (18) and csK
in (17). This means we have identical distributions of

real and simulated arguments with the given challenge vector.
Finally, we prove witness-extended emulation. An emulator E runs the argu-

ment with uniformly random challenges and rewinds the prover until it acquires
T = K2+K+2

2 accepting transcripts. We expect E to rewind T
δ · δ = T times,

where δ is the probability of a prover making a convincing argument. Thus,
E runs in expected polynomial time. Then we can obtain the openings of the
commitments (ctk,j

)k=K−2,j=K−1
k=0,j=1 and (cqk

)K
k=0 by computing:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tl,0,1 rt0,1

.

.

.
.
.
.

tl,K−2,K−1 rtK−2,K−1

ql,0 rq0

.

..
.
..

ql,K−1 rqK−1

ql,K rqK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

e
(1)
0,1 . . . e

(1)
K−2,K−1 e

(1)
0 . . . e

(1)
K−1 1

..

.
. . .

..

.
..
.

. . .
..
.

..

.

e
(T )
0,1 . . . e

(T )
K−2,K−1 e

(T )
0 . . . e

(T )
K−1 1

⎞
⎟⎟⎟⎠

−1

·

⎛
⎜⎜⎝

f
(1)
l v

(1)
l u(1)

..

.
..
.

f
(T )
l v

(T )
l u(T )

⎞
⎟⎟⎠

We can also extract the openings of the commitments (csk
)K
k=0 by computing:

⎛
⎜⎜⎜⎝

∑L−1
l=0 wlK rs0

...
...∑L−1

l=0 wlK+K−1 rsK−1∑L−1
l=0 rl rsK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

e
(1)
0 . . . e

(1)
K−1 1

...
. . .

...
...

e
(K+1)
0 . . . e

(K+1)
K−1 1

⎞
⎟⎟⎠

−1

·

⎛
⎜⎜⎝

∑L−1
l=0 v

(1)
l ε(1)

...
...∑L−1

l=0 v
(K+1)
l ε(K+1)

⎞
⎟⎟⎠

Both two left multiplying matrices on the right-hand side consist of uniformly
random challenges. They are invertible for being full-rank matrices, where all
the rows and columns are linearly independent. Finally, the witness y can be
obtained by summing up the openings of (csk

)K−1
k=0 .

6.2 Polynomial Evaluation Arguments for Lower Degree

We describe the full protocol of our lower-degree polynomial evaluation argu-
ments. Given two witnesses x, y ∈ Zp, two randoms rx, ry

$←− Z
∗
p, two commit-

ments cx = gxhrx , cy = gyhry ∈ G and the generators g, h
$←− G, (gj)J−1

j=0
$←− G

J ,
the protocol aims to prove y = P (x;D) =

∑D
d=0 adx

d, D = 2J+1 − 1, J ∈
{1, 2, ...}:

Prover :

y =
D∑

d=0

adxd =
D∑

d=0

ad

J∏
j=0

x2jb
(j)
d , d =

J∑
j=0

2jb
(j)
d , b

(j)
d ∈ {0, 1}, J + 1 = 
logD� (19)

(mj
$←− Z

∗
p)

J
j=0, (rwj

$←− Z
∗
p)

J
j=0, rm, rv0 , rv1 , ê

$←− Z
∗
p, (ẑj = x2j

ê + mj)
J
j=0

(20)
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Q(ê; J + 1) =
D∑

d=0

(ad

J∏
j=0

ê1−b
(j)
d · ẑ

b
(j)
d

j ) = yêJ+1 +
J∑

j=0

wj êj (21)

Prover =⇒ Verifier :

cm = gm0 · hrm (22)

cv0 =

J−1∏
j=0

g
m2

j

j · hrv0 , cv1 =

J−1∏
j=0

g
2mjx2j −mj+1
j · hrv1 (23)

(cwj = gwj · h
rwj )Jj=0 (24)

Prover ⇐= Verifier : e
$←− Z

∗
p

Prover =⇒ Verifier :(
zj = x2j

e + mj

)J

j=0
(25)

t = rxe + rm, u = rv1e + rv0 , s = ryeJ+1 +

J∑
j=0

rwj ej (26)

Verifier :

gz0 · ht ?
= ce

x · cm (27)
J−1∏
j=0

g
z2

j −zj+1e

j · hu ?
= ce

v1
· cv0 (28)

gQ(e;J+1) · hs ?
= ceJ+1

y ·
J∏

j=0

cej

wj
(29)

Theorem 2. Our polynomial evaluation arguments of lower-degree have per-
fect completeness, computational witness-extended emulation and perfect special
honest verifier zero-knowledge (SHVZK).

Proof. Perfect completeness follows by carefully inspecting the protocol. Next,
we depict a perfect SHVZK simulation. Given a challenge e, a simulator ran-
domly picks up group elements cv1 , (cwj

)J
j=1 and field elements (zj)J

j=0, t, u, s.
By the perfect hiding property and the random choices of (mj)J

j=0, rm, rv0 , rw0 ,
the group and field elements are identically distributed in both real and simu-
lated arguments. Therefore, in both real argument and simulation, the random
elements uniquely determine the values cm, cv0 and cw0 in Eqn. (27), (28), (29).

Finally, we prove witness-extended emulation. An emulator E runs the argu-
ment in expected polynomial time and rewinds the prover until it acquires J +2
accepting transcripts. With the first two transcripts, E is able to extract the

witness x = z
(1)
0 −z

(0)
0

e1−e0
and the random rx = t1−t0

e1−e0
. We can also get the openings

of cv1 and cv0 by computing:

(
2mjx

2j − mj+1 rv1

m2
j rv0

)
=

(
e0 1
e1 1

)−1

·
(

z2
j − zj+1e0 u0

z2
j − zj+1e1 u1

)
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Similarly, for Eqn. (29), we obtain the openings of cy and (cwj
)J−1
j=0 by computing:

⎛
⎜⎜⎜⎜⎜⎝

y ry

wJ rwJ

...
...

w1 rw1

w0 rw0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎝

eJ+1
0 eJ

0 . . . e0 1
...

...
. . .

...
...

eJ+1
J+1 eJ

J+1 . . . eJ+1 1

⎞
⎟⎠

−1

·

⎛
⎜⎝

Q(e;J + 1)0 s0

...
...

Q(e;J + 1)J+1 sJ+1

⎞
⎟⎠

where the left multiplying matrix is invertible for being a Vandermonde matrix.
Thanks to the binding property of Pedersen commitment, we can conclude that
P (x;D), as the coefficient of the leading term of Q(e;J + 1), is the opening of
cy.

6.3 Polynomial Evaluation Arguments for Higher Degree

We describe the full protocol of our higher-degree polynomial evaluation argu-
ments, where the witnesses are the same as those of lower-degree ones except
using different generators g, h

$←− G, (gj)J−1
j=0

$←− G
J , (gl)L−1

l=0
$←− G

L:

Prover :

(mj
$←− Z

∗
p)

J
j=0, (rwk

$←− Z
∗
p)

K−1
k=0 , (θl, rθl

$←− Z
∗
p)

L−1
l=0 , rm, rv0 , rv1 , ê

$←− Z
∗
p

(30)
J∑

j=0

wj ê
j

=

L−1∑
l=0

ê
lK

K−1∑
k=0

wlK+k ê
k
, J + 1 = �log D� = L · K, L, K ≥ 2 (31)

L−1∑
l=0

θl +

L−1∑
l=0

K−1∑
k=0

wlK+k ê
k

=

⎛
⎜⎜⎜⎜⎝

w0 + θ0 w1 . . . wK−1

wK + θ1 wK+1 . . . w2K−1

.

.

.
.
.
.

. . .
.
.
.

w(L−1)K + θL−1 w(L−1)K+1 . . . wLK−1

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

1

ê

.

.

.

êK−1

⎞
⎟⎟⎟⎟⎠

(32)

Prover =⇒ Verifier :

cm = g
m0 · h

rm (33)

cv0 =

J−1∏
j=0

g
m2

j
j · h

rv0 , cv1 =

J−1∏
j=0

g
2mjx2j −mj+1
j · h

rv1 (34)

cw0 =

L−1∏
l=0

g
wlK+θl
l · h

rw0 , (cwk
=

L−1∏
l=0

g
wlK+k
l · h

rwk )
K−1
k=1 (35)

(cθl
= g

−θl · h
rθl )

L−1
l=0 (36)

Prover ⇐= Verifier : e
$←− Z

∗
p

Prover =⇒ Verifier :

(
zj = x

2j
e + mj

)J

j=0, (fl =

K−1∑
k=0

wlK+ke
k

+ θl)
L−1
l=0 (37)

t = rxe + rm, u = rv1e + rv0 , s =

K−1∑
k=0

rwk
e

k
, q = rye

J+1
+

L−1∑
l=0

rθl
e

lK (38)

Verifier :

g
z0 · h

t ?
= c

e
x · cm (39)
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J−1∏
j=0

g
z2

j −zj+1e

j · h
u ?

= c
e
v1

· cv0 (40)

L−1∏
l=0

g
fl
l · h

s ?
=

K−1∏
k=0

c
ek

wk
(41)

g
ζ · h

q ?
= c

eJ+1
y ·

L−1∏
l=0

c
elK

θl
, where ζ = Q(e; J + 1) −

L−1∑
l=0

fle
lK (42)

Theorem 3. Our polynomial evaluation arguments of higher-degree have per-
fect completeness, computational witness-extended emulation and perfect special
honest verifier zero-knowledge (SHVZK).

Proof. Perfect completeness follows by a careful inspection of the protocol. Then,
we provide a perfect SHVZK simulation. Given a challenge e, a simulator ran-
domly picks up group elements cv1 , (cwk

)K−1
k=1 , (cθl

)L−1
l=1 and field elements (zj)J

j=0,
(fl)L−1

l=0 , t, u, s, q. By the perfect hiding property and the random choices of
(mj)J

j=0, rm, rv0 , rw0 , (θl)L−1
l=0 , the group and field elements are identically dis-

tributed in both real and simulated arguments. Therefore, in both real argument
and simulation, the random elements uniquely determine the values cm, cv0 , cw0

and cθ0 in Eqn. (39), (40), (41) and (42).
Finally, we prove witness-extended emulation. We essentially describe the

soundness of Eqn. (41) and (42) in this section. Please refer to Theorem 2 for the
soundness of Eqn. (39) and (40). An emulator E runs the argument and rewinds
the prover until it acquires K accepting transcripts. We have the openings of
(cwk

)K−1
k=0 by computing:⎛

⎜⎜⎜⎝
wlK+K−1 rwK−1

...
...

wlK+1 rw1

wlK + θl rw0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

eK−1
0 . . . e0 1
...

. . .
...

...
eK−1
K−1 . . . eK−1 1

⎞
⎟⎠

−1

·

⎛
⎜⎜⎝

f
(0)
l s0

...
...

f
(K−1)
l sK−1

⎞
⎟⎟⎠

E rewinds the prover to acquire L + 1 accepting transcripts for the openings of
cy and (cθl

)L−1
l=0 :⎛
⎜⎜⎜⎝

y ry

−θL−1 rθL−1

...
...

−θ0 rθ0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

eJ+1
0 e

(L−1)K
0 . . . 1

...
...

. . .
...

eJ+1
L e

(L−1)K
L . . . 1

⎞
⎟⎟⎠

−1

·

⎛
⎜⎝

ζ0 q0

...
...

ζL qL

⎞
⎟⎠

7 Related Work

Range Proofs. In 2003, Lipmaa [33] used Lagrange’s four-square theorem [43]
to create a constant 1700-byte range proof with an arbitrary range. Groth [27]
improved the proof by using Legendre’s three-square theorem. Deng et al. [21]
also designed a constant-size range proof based on the RSA assumption by adapt-
ing Bulletproof for Lagrange’s four-square theorem. However, these proofs rely
on the RSA assumption, which requires a trusted setup to generate the RSA
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modulus. In 2008, Camenisch et al. [15] proposed a range proof based on the sig-
nature approach that depends on the q-Strong Diffie-Hellman assumption. Their
method has O(N) communication cost and requires a trusted setup to make the
proof non-interactive, where N is the bit length of the range. AZTEC protocol
[45] also provided a signature-based range proof, which uses a trusted-setup pro-
tocol to build a huge signature database that contains every acceptable integer in
the range. However, the security relies on trusting the parties that would destroy
the private keys for generating the signatures. Bootle & Groth [11] presented
a range argument under the DL assumption based on the bit-decomposition.
Nonetheless, their approach achieves O(N) complexity in communication and
computation with a trusted setup. Besides, one could use the asymptotically
efficient STARKS [5] to avoid a trusted setup. Nevertheless, the proof size is
quite large at 45KB [31]. Supersonic [14] achieves efficient logarithmic efficiency
in verification and communication based on class groups with a transparent
setup. Nevertheless, class groups demand large groups to meet current security
requirements, which are less commonly applied in practical systems.

Polynomial Evaluation Proofs. Table 1 lists a series of state-of-the-art
generic-purpose zero-knowledge proofs with transparent setups. Most of them
build on general NP-complete languages, which can be used for polynomial eval-
uation. Based on the hardness of the RSA assumption, Supersonic [14] is one of
the most efficient proofs, which has O(log N) efficiency in verification time and
proof size. However, for a polynomial of degree D = 220, it still needs 10.1KB
and 60 group exponentiations for verification, whereas our argument only needs
1.25KB and 40 group exponentiations. Bootle and Groth [11] also proposed a
polynomial evaluation argument based on BG13. However, it relies on common
reference strings as a trusted setup to achieve efficient O( log N

log log N ) complexity
for proving and verification.

Membership Proofs. In this section, we provide a brief related work on mem-
bership proofs. Most membership proofs require trusted setups, exposing vul-
nerabilities that malicious provers can exploit. Proposed by Camenisch et al.
[15] in 2008, the most classical membership argument is based on a bilinear-
group signature scheme. Based on the q-Strong Diffie-Hellman assumption, the
argument has O(1) communication cost but requires O(N) group elements as
signatures of all elements in the given set for a preliminary procedure. There-
fore, the argument needs a trusted setup to accomplish this procedure for non-
interactivity. Furthermore, the authors also proposed an alternative approach
using an RSA-based accumulator for short signatures. However, this approach
does not remove the trusted setup, either. Recently, Benarroch et al. [8] pre-
sented an accumulator-based membership proof based on class groups without a
trusted setup. For 128-bit security, the proof uses a 6000-bit discriminant class
group to achieve a constant 6.4KB proof size. However, our membership argu-
ment requires a tremendous set of 2169 ≈ 7.5E50 elements for this proof size,
which tends to be more communication-efficient for general scenarios (Table 7).
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Table 7. An efficiency comparison [37] of generic-purpose zero-knowledge proofs with
transparent setups for NP statements, where N is the statement size.

Type Ligero [2] Bulletproofs [13] STARKs [5] Aurora [6] Fractal [17] Supersonic [14] Spartan [37]

Prover
Running time

O(N log N) O(N) O(N log2 N) O(N log N) O(N log N) O(N log N) O(N log N)

Verifier
Running time

O(N) O(N) O(N log2 N) O(N) O(log2 N) O(log N) O(log2 N)

Proof Size O(
√

N) O(log N) O(log2 N) O(log2 N) O(log2 N) O(log N) O(log2 N)

8 Conclusion

In this paper, we proposed Flashproofs, a new type of efficient special honest
verifier zero-knowledge arguments of knowledge with a transparent setup in the
DL setting. First, we put forth new gas-efficient range arguments that achieve
O(N

2
3 ) communication cost, and involve O(N

2
3 ) group exponentiations for ver-

ification and a slightly sub-linear number of group exponentiations for proving
with respect to the range [0, 2N −1]. Our range arguments achieve a comparable
amount of gas costs to the most efficient zkSNARK on blockchain platforms
without resorting to a trusted setup. Second, we presented polynomial evalu-
ation arguments based on the techniques of Bayer & Groth. We provided two
zero-knowledge protocols that excel in handling lower-degree (D ∈ [3, 29]) and
higher-degree (D > 29) polynomials, respectively. Our arguments make a sig-
nificant improvement in the efficiency of computation and communication. To
the best of our knowledge, our arguments instantiate the most communication-
efficient zero-knowledge arguments of membership and non-membership in the
DL setting among those not requiring trusted setups. In future work, we will
incorporate Flashproofs in more real-world blockchain-based applications, e.g.,
energy sharing and sharing economy [34,42].
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Abstract. We propose a univariate sumcheck argument Count of essen-
tially optimal communication efficiency of one group element. While the
previously most efficient univariate sumcheck argument of Aurora is based
on polynomial commitments, Count is based on inner-product commit-
ments. We use Count to construct a new pairing-based updatable and uni-
versal zk-SNARKVampirewith the shortest known argument length (four
group and two finite field elements) for NP. In addition, Vampire uses the
aggregated polynomial commitment scheme of Boneh et al.

Keywords: Aggregatable polynomial commitment · Inner-product
commitment · Sumcheck · Updatable and universal zk-SNARK

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs,
[14,15,21,25]) are zero-knowledge argument systems for NP with succinct argu-
ment length and efficient verification. In many applications, one can describe the
desired NP language instance as an instance R of the rank-1 constraint system
(R1CS) [14], and the task of the verifier is to check that R is satisfied on the
partially-public input. Zk-SNARKs are immensely popular due to applications
in, say, verifiable computation and blockchain.

Non-interactive zero-knowledge arguments, and thus also zk-SNARKs, are
impossible in the plain model. To overcome this, one gives all parties access to
a trusted common reference string (CRS). The most efficient zk-SNARKs have
a relation-specific structured CRS (SRS). That is, they assume that there exists
a trusted third party who, given the description of R as an input, generates an
SRS srsR. The most efficient zk-SNARK by Groth [16] for R1CS with a relation-
specific SRS has an argument that consists of only three group elements.

A significant practical downside of such “non-universal” SNARKs is that one
has to construct a new SRS for every instance of the constraint system. This
observation has spurred an enormous effort to design universal zk-SNARKs, i.e.,
zk-SNARKs with an SRS that only depends on an upper bound on R’s size.
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In addition, it is crucial to decrease the amount of trust in the SRS creator.
A popular approach is to design updatable and universal zk-SNARKs [17,24],
where the universal SRS is updated sequentially by several parties such that
the soundness holds if at least one of the updaters is honest. For brevity, by
“updatable” we will sometimes mean “updatable and universal”.

Plonk [13] and Marlin [10] are the first efficient universal zk-SNARKs. Mar-
lin and many subsequent updatable and universal zk-SNARKs [9,26] work for
sparse R1CS instances, where the underlying matrices contain a linear (instead of
quadratic) number of non-zero elements. Chiesa et al. [10] define an information-
theoretic model, algebraic holographic proof (AHP). An AHP is an interactive
protocol, where at each step, the prover sends polynomial oracles, and the ver-
ifier sends to the prover random field elements. Polynomial oracles are usually
implemented using polynomial commitments [19]. In the end, the verifier queries
the polynomial oracles and performs low-degree tests. Then, [10] proposes a new
AHP for sparse R1CS, and then compiles it to a zk-SNARK named Marlin.

Marlin relies crucially on a univariate sumcheck. A sumcheck argument aims
to prove that the given polynomial sums to the given value over the given domain.
The first sumcheck arguments [23] were for multivariate polynomials but small
domains. Ben-Sasson et al. [5] proposed a univariate sumcheck argument for large
domains and used it to construct a new zk-SNARK Aurora. Suppose the domain
is a multiplicative subgroup of the given finite field. In that case, Aurora’s sum-
check argument requires the prover to forward two different polynomial oracles
and use a low-degree test on one of the polynomials.

Lunar [9] improves on Marlin. It defines PHPs (Polynomial Holographic
IOPs), a generalization of AHPs. Lunar notes that instead of opening all the
polynomial commitments, the verifier can often perform verification equations
on commitments themselves, thus obtaining better efficiency. It also defines a
simpler version of R1CS called R1CSLite, with one of the three characterizing
matrices of R being the identity matrix. Moreover, it provides a more fine-grained
analysis of the zero-knowledge property and several additional optimizations.

Basilisk [26] gains additional efficiency by using a different technique to
obtain zero-knowledge and constructing a “free” low-degree test. In addition, [26]
constructs even more efficient zk-SNARKs for somewhat more limited constraint
systems. Both Lunar and Basilisk introduce new theoretical frameworks; e.g.,
Basilisk introduces checkable subspace sampling (CSS) arguments as a separate
primitive. For simplicity (of reading), we opted not to use such frameworks in
the context of the current paper.

In parallel to our work, Zhang et al. [28] proposed Vector Oracle Proofs
(VOProofs), a new information-theoretic model based on vector operations. They
use it to construct efficient zk-SNARKs for several well-known constraint systems
such as R1CS (VOR1CS) and Plonk’s constraint system (VOPlonk).

In Table 1, we overview the argument lengths of the most efficient updatable
and universal zk-SNARKs. Here, |X| denotes the representation length of an
element from X in bits, given the BLS12-381 curve, with |G1| = 384, |G2| = 768,
and |F| = 256. Thus, even the most efficient updatable and universal zk-SNARK
has an approximately two times longer argument than Groth16 [16].
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Table 1. Comparison of some known updatable and universal zk-SNARKs.

Scheme Argument length Arithmetization

Elements Bits

Updatable and universal zk-SNARKs

Sonic [24] 20|G1| + 16|F| 11776 [8] constraints

Marlin [10] 13|G1| + 8|F| 7040 R1CS, sparse matrices

Basilisk [26] 10|G1| + 3|F| 4608 R1CSLite, sparse matrices

Plonk [13] 7|G1| + 7|F| 4480 Plonk constraints

LunarLite [9] 10|G1| + 2|F| 4352 R1CSLite, sparse matrices

Basilisk [26] 8|G1| + 4|F| 4096 Plonk constraints

VOR1CS* [28] 9|G1| + 2|F| 3968 R1CS, sparse matrices

VOPlonk* [28] 7|G1| + 2|F| 3200 Plonk constraints

Basilisk (full version, [27]) 6|G1| + 2|F| 2816 Weighted R1CS with bounded fan-out

Vampire (this work) 4|G1| + 2|F| 2048 R1CSLite, sparse matrices

Non-universal zk-SNARKs (relation-specific SRS)

Groth16 [16] 2|G1| + 1|G2| 1536 R1CS

Moreover, Groth16 works for QAP [14] (i.e., full R1CS), while the most effi-
cient variant of Basilisk works for instances of R1CS where the relation-defining
matrices are limited to have a small constant number of elements per row (this
corresponds to arithmetic circuits of bounded fan-out). Thus, there is still a
non-trivial difference between the communication efficiency of relation-specific
zk-SNARKs and updatable and universal zk-SNARKs.

Our Contributions. The current paper has three related contributions:

1. The combined use of polynomial commitments and inner-product commit-
ments in the sumcheck and updatable and universal zk-SNARK design. The
use of polynomial commitment schemes in zk-SNARKs has dramatically
increased their popularity, and we hope the same will happen with inner-
product commitments. In particular, ILV inner-product commitments [18]
use a SRS made of non-consequent monomial powers.1

2. A new updatable (and universal) univariate sumcheck argument Count that
uses inner-product commitments to achieve optimal computation complexity
of a single group element. Since sumchecks are used in many different zk-
SNARKs (and elsewhere), we believe Count will have wider interest.

3. A new updatable and universal zk-SNARK Vampire for sparse R1CSLite with
the smallest argument length among all known updatable and universal zk-
SNARKs for NP-complete languages. (See Table 1.) Vampire uses Count and
thus inner-product commitments.

1 Inner-product commitments and arguments are commonly used in the zk-SNARK
design. However, the way we use them is markedly different from the prior work.
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1.1 Our Techniques

Non-Consequent Monomial SRSs. Groth et al. [17] proved that the SRS of
an updatable zk-SNARK cannot contain non-monomial polynomials. Moreover,
the SRS’s correctness must be verifiable. For example, if the SRS contains2

[1, σ, σ3, σ4]1 ∈ G
4
1 for a trapdoor σ, it must also contain [σ, σ2]2 ∈ G

2
2, so that

one can verify the consistency of the SRS elements by using pairing operations.
We observe that [σ2]1 does not have to belong to the SRS, and thus, an updatable
SRS may contain gaps. Similarly, the SRS can contain multivariate monomials.
However, most of the known updatable and universal zk-SNARKs ( [17,24] being
exceptions) use SRSs that consist of consequent univariate monomials only, i.e.,
are of the shape ([(σi)m1

i=0]1, [(σ
i)m

i=0]2) for some mi.
One reason why efficient updatable and universal zk-SNARKs use a con-

sequent monomial SRS is their reliance on polynomial commitment schemes
like KZG [19] that have such SRSs. While many other polynomial commitment
schemes are known, up to our knowledge, no efficient one uses non-consequent
monomial SRSs.3 In particular, AHP [10] and PHP [9] model polynomial com-
mitments as polynomial oracles and allow the parties to perform operations
(e.g., queries to committed oracles and low-degree tests) related to such oracles.
Low-degree tests model consequent monomial SRSs: a committed polynomial is
a degree-≤ m polynomial iff it is in the span of Xi for i ≤ m.

One can use non-consequent monomial SRSs to efficiently construct proto-
cols like broadcast encryption and inner-product commitments [18,20]. We use
non-consequent monomial SRSs in the context of sumchecks and updatable and
universal zk-SNARKs. We will not define an information-theoretic model, but
we mention two possible approaches that both have their limitations. First, the
pairing-based setting can be modeled as linear interactive proofs (LIPs, [6])
or non-interactive LIPs [16]. However, either model has to be tweaked to our
setting: namely, we allow the generation of updatable SRS for multi-round pro-
tocols, with the restrictions natural in such a setting (e.g., one can efficiently
“span test” that a committed element is in the span of the SRS). Such a model
is tailor-fit to pairings and might not be suitable in other algebraic settings.
Second, one can generalize PHPs by adding an abstract model of inner-product
commitment schemes and allowing for span tests. Such a model is independent of
the algebraic setting but restricts one to a limited number of cryptographic tools
(polynomial and inner-product commitment schemes), with a need to redefine
the model when more tools are found to be helpful.

We have chosen to remain agnostic on this issue by defining new arguments
without an intermediate information-theoretic model.

2 We rely on the pairing-based setting and use the by now standard additive bracket
notation, see Sect. 2 for more details.

3 A monomial SRS is a SRS of the form [(σi)i∈I1 ]1, [(σi)i∈I2 ]2, where I1, I2 are subsets
of [1, m]. A SRS is consequent if both I1 and I2 are intervals and non-consequent
otherwise. The definition generalizes naturally to the multivariate case.
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New Univariate Sumcheck Argument Count. Let F be a finite field and let H ⊂
F be a fixed multiplicative subgroup. In a univariate sumcheck argument (for
multiplicative subgroups), the prover convinces the verifier that the committed
polynomial f(X) ∈ F[X] sums to the given value vM ∈ F over H.

Let nh := |H| and ZH(X) :=
∏

χ∈H
(X − χ). Aurora’s sumcheck [5] relies on

the fact that
∑

χ∈H
f(χ) = nhf(0), when f ∈ F≤nh−1[X] is a polynomial with

deg f ≤ nh − 1. Then, for f ∈ F[X] of arbitrarily large degree,
∑

χ∈H
f(χ) = vf

iff there exist polynomials R,Q ∈ F[X], such that (1) deg R ≤ nh − 2, and (2)
f(X) = vf/nh + XR(X) + Q(X)ZH(X). In a cryptographic implementation of
Aurora’s sumcheck argument in say Marlin [10], the prover uses KZG [19] to
commit to R and Q; this means the communication of two group elements. In
addition, the prover uses a low-degree test to convince the verifier that (1) holds.

Based on the ILV inner-product commitment [18], we construct a new sum-
check argument Count for f ∈ F≤d[X]. ILV’s non-consequent monomial SRS
contains ([(σi)2N

i=0:i�=N+1]1, [(σ
i)N

i=0]2), where σ is a trapdoor and N is a large
integer. In ILV, the prover P commits to μ ∈ Z

N
p as [μ(σ)]1 ← ∑N

j=1 μj [σj ]1.
When the verifier outputs ν ∈ Z

N
p , P returns the inner product v ← μ�ν

together with a short evaluation proof (a single group element [op]1) that v is
correctly computed. ILV’s security relies on [σN+1]1 not belonging to the SRS.

We present an alternative extension of the equality
∑

χ∈H
f(χ) = nhf(0) to

the case when d = deg f is arbitrarily large. Namely, we prove that if f(X) =
∑d

i=0 fiX
i ∈ F≤d[X], then

∑
χ∈H

f(χ) = nh · (
∑�d/nh�

i=0 fnhi). (See Lemma 1.)
Alternatively,

∑
χ∈H

f(χ) = vf iff f�s = vf , where f = (fi) and s is a Boolean
vector that has ones in positions nh · i for i ≤ �d/nh�.

In Count, the prover first ILV-commits to f and then ILV-opens the com-
mitment to f�s. Thus, the prover has to output one ILV commitment (one
group element) instead of two polynomial commitments (two group elements)
in Aurora’s sumcheck. Moreover, there is no need for a low-degree test, mak-
ing Count even more efficient. In addition, in the application to Vampire, s has
a small constant number of non-zero elements. Thus, differently from Aurora’s
sumcheck, the prover’s computation is linear in both field operations and group
operations. Importantly, the prover does not have to use FFT or polynomial
division. An explicit cost of using ILV is that the SRS becomes larger: if the
SRS, without Count, contains [(σi)d

i=0]1 (where d is some constant, fixed by the
rest of the zk-SNARK), it now has to contain also [(σi)2d

i=d+2]1 and [(σi)d
i=0]2.

(Although, in our construction, we will add significantly less elements to G2.)
Since sumchecks have ubiquitous applications, Count is of independent inter-

est because of both excellent communication and linear-time prover. Linear-time
sumchecks are important per se. In particular, univariate sumcheck is used in
both updatable and universal zk-SNARKs and transparent zk-SNARKs. As an
important application, we will design a new updatable and universal zk-SNARK.
We leave it an open question to apply Count in transparent zk-SNARKs.

New zk-SNARK. We use Count to design a new pairing-based updatable and
universal zk-SNARK Vampire for the sparse R1CSLite constraint system [9].



254 H. Lipmaa et al.

Vampire’s argument length is four elements of G1 and two elements of F, which
is less than in any known updatable and universal zk-SNARK. While Basilisk [26]
(as improved in the full version, [27]) has just 37.5% larger communication than
Vampire, it works for a version of R1CSLite with additional restrictions on the
underlying matrices; the version of Basilisk for the arithmetization handled by
Vampire is less communication-efficient than LunarLite or VOR1CS*.

Let us now give a very brief glimpse to the structure of Vampire. (The real
description, with a very long intuition behind Vampire’s construction, is given in
Sect. 4.) Following Lunar and Basilisk, we use the R1CSLite constraint system,
where an instance consists of two matrices L and R (the left and right inputs
to all constraints) over F instead of three in the case of R1CS. Let m be the
number of constraints. Following Marlin, Lunar, and Basilisk, we use the setting
of sparse matrices, where L and R have together at most |K| = Θ(m) non-zero
entries. Here, K is a multiplicative subgroup of F.

Let z be the interpolating polynomial of (x,w, rz), where rz is a short ran-
dom vector needed for zero-knowledge. The prover starts by committing to z̃,
where z̃ is a polynomial related to z. Using z̃ helps one efficiently check that the
prover used the correct public input. The verifier replies with a random field ele-
ment α. We reformulate the check that (x,w) (where w is encoded in z̃) satisfies
the R1CSLite instance as a univariate sumcheck argument that

∑
y∈H

ψα(y) = 0,
for a well-chosen polynomial ψα. We then run Count, letting the prover send an
ILV-opening [ψipc(σ)]1 of ψα to the verifier. The verifier replies with another ran-
dom field element β. The prover’s final message consists of two field elements and
two group elements. These elements are needed to batch-open three polynomial
commitments at different locations, two of which are related to β. It involves a
complicated but by now standard step of proving the correctness of the arithme-
tization of a sparse matrix. This step involves using a univariate sumcheck the
second time. However, since here the summed polynomial is of a small degree,
we do not need to use Count. We refer to Sect. 4 for more details.

Vampire is based on the ideas of Marlin (e.g., we use a similar arithmetization
of sparse matrices), but it uses optimizations of both Lunar [9] and Basilisk [26].
These optimizations (together with an apparently novel combination of the full
witness to a single commitment) result in the argument length of 7 elements
of G1 and 2 finite field elements, which is already comparable to prior shortest
updatable and universal zk-SNARKs for any NP-complete constraint system.

Count helps to remove one more group element from the argument of Vampire.
This step is not trivial: the sumcheck argument requires that the sumchecked
polynomial f is committed to, which is not the case in Vampire. We solve this
issue using a batching technique similar to Lunar and Basilisk, asking the prover
to open two polynomial commitments. The second committed polynomial is a
linear combination of other polynomial commitments with coefficients known to
the prover and the verifier after opening the first polynomial.

Our second innovation is the use of polynomial commitment aggregation
at different points [7,13]. Intuitively, we commit to a single polynomial z̃ that
encodes both the left and right inputs of all constraints; this allows us to save one



Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 255

more group element. When combining the result with the batching technique of
the previous paragraph, we need to open three polynomials at different points.
In particular, we aggregate the commitment of the second sumcheck, further
reducing the proof size by one group element. For batching, we use a technique
of [7,13]. However, differently from [7,13], our batching is not randomized since
the two opening points are different.

In Theorem 1, we prove that Vampire is knowledge-sound in the Alge-
braic Group Model (AGM, [12]). The proof structure is standard, involving two
branches depending on whether the verifier’s equations hold as polynomials (we
get a reduction to the well-known Power Discrete Logarithm assumption if not).
However, the proof of the former case is quite complicated, partially since one
has to consider several different polynomials sent by the prover, which depend
on different verifier’s challenge values.

We prove that Vampire is perfectly zero-knowledge by constructing a sim-
ulator that uses the trapdoor to make the sumcheck argument acceptable for
any, even an all-zero witness. For a simulated argument to be indistinguishable
from the real one, we add random terms (rz) to polynomial z̃(X) which, in
the case of real argument, encodes the witness, and, in the case of a simulated
argument, encodes a (mostly) zero vector. This assures that even an unbounded
adversary who knows the instance and witness cannot tell apart commitments
to z̃(X) in real and simulated arguments. In the full version [22], we prove that
Vampire is also Sub-ZK (i.e., zero-knowledge even if the SRS generation is com-
promised, [1,2,4,11]) under the BDH-KE knowledge assumption [1].

On Efficiency. We study how much the argument length can be reduced in
updatable and universal SNARKs while only allowing minimal relaxations in
other efficiency parameters. We achieve the shortest argument by far. The SRS
size of our zk-SNARK is a constant factor larger than in the previous work,
which we believe is a reasonable compromise as the SRS needs to be transferred
only once. Importantly, the verifier has only to execute O(|x|) field operations
as opposed to O(|x|) group operations in Groth’s zk-SNARK [16].

However, differently from the prior work, prover’s computation time in
Vampire depends on the largest supported R1CSLite size. We discuss this issue
further and give a thorough efficiency comparison in the full version [22].

Demaking Vampire. It is possible to “demake” Vampire by removing some of
the aggressive length-optimization to obtain a larger argument size but better
(say) the SRS size. We leave it as an open question about which optimization
should be removed first or whether this is needed at all.

2 Preliminaries

Let F = Zp be a finite field of prime order p, and let F≤d[X] ⊂ F[X] be the
set of degree ≤ d polynomials. Define the set of (d, dgap)-punctured univariate
polynomials over F as

PolyPunc
F
(d, dgap,X) := {f(X) =

∑dgap+d
i=0 fiX

i ∈ F≤dgap+d[X] : fdgap = 0} .
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Let x ◦ y be the elementwise product of vectors x and y, ∀i.(x ◦ y)i = xiyi.
Let In ∈ F

n×n be the n-dimensional identity matrix. Denote matrix and vector
elements by using square brackets as in A[i, j] and a[i].

Interpolation. Let ω be the nh-th primitive root of unity in F and let H = {ωj :
0 ≤ j < nh} be a multiplicative subgroup of F. Then,

– For any T ⊂ F, the vanishing polynomial ZT (X) :=
∏

i∈T (X−i) is the degree-
|T | monic polynomial, such that ZT (i) = 0 for all i ∈ T . ZH(Y ) = Y nh − 1
can be computed in Θ(log nh) field operations.

– For i ∈ [1, nh], 	Hi (Y ) is the ith Lagrange polynomial, i.e., the unique degree
nh − 1 polynomial, such that 	Hi (ωi−1) = 1 and 	Hi (ωj−1) = 0 for i 
= j. It is
well known that

	Hi (Y ) = ZH(Y )
(Z′

H
(ωi−1)·(Y −ωi−1)) = ZH(Y )ωi−1

(nh(Y −ωi−1)) .

Here, Z′
H
(X) = dZH(X)/dX.

– LH

X(Y ) := ZH(Y )X/ (nh(Y − X)) ∈ F(X,Y ) (a lifted Lagrange rational func-
tion), with Lωi−1(Y ) = 	Hi (Y ) for i ∈ [1, nh].

For f ∈ F[X], let f̂H(X) :=
∑nh

i=1 f(ωi−1)	Hi (X) be its low-degree extension. To
simplify notation, we often omit the accent ·̂ and the superscript H.

R1CSLite. R1CSLite [9,26] is a variant of the Rank 1 Constraint System [10,14].
An R1CSLite instance I = (F,m,m0,L,R) consists of a field F, instance size m,
input size m0, and matrices L,R ∈ F

m×m. An R1CSLite instance is sparse if L
and R have O(m) non-zero elements.

I = (F,m,m0,L,R) defines the following relation R = RI :

R :=

⎧
⎨

⎩

(x,w) : x = (z1, . . . , zm0)
� ∧ w = ( z a

zb
) ∧ za,zb ∈ F

m−m0−1 ∧
zl =

(
1
x
z a

)
∧ zr =

(
1m0+1

zb

) ∧ zl = L(zl ◦ zr) ∧ zr = R(zl ◦ zr)

⎫
⎬

⎭
.

Equivalently, Wz∗ = 0, where

W =
(
Im 0 −L
0 Im −R

) ∈ F
2m×3m , z∗ =

(
z l
z r

z=z l◦z r

)
. (1)

Basic Cryptography. We denote the security parameter by λ. For any algorithm
A, r ←$ RNDλ(A) samples random coins of sufficient length for A for fixed λ.
By y ← A(x; r), we denote that A outputs y on input x and random coins r.
PPT means probabilistic polynomial time.
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Pairings. A bilinear group generator Pgen(1λ) returns p = (p, G1, G2, GT , ê, [1]1,
[1]2), where p is a prime, G1, G2, and GT are three additive cyclic groups of order
p, ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear pairing,
and [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2). In this
paper, F = Zp has always two large multiplicative subgroups H and K. Thus,
we assume implicitly that |H|, |K| | (p − 1). We require the bilinear pairing to
be Type-3, that is, not to have an efficient isomorphism between G1 and G2. In
practice, one uses a fixed pairing-friendly curve like BLS-381; then, |K|, |H| | 232.

We use the by now standard additive bracket notation, by writing [a]ι to
denote a[1]ι for ι ∈ {1, 2, T}. We denote ê([x]1, [y]2) by [x]1 • [y]2. Thus, [x]1 •
[y]2 = [xy]T . We freely use the bracket notation together with matrix notation;
for example, if A · B = C then [A]1 • [B]2 = [C]T .

Polynomial Commitment Schemes. In a polynomial commitment scheme [19],
the prover commits to a polynomial f ∈ F≤d[X] and later opens it to f(β)
for β ∈ F chosen by the verifier. The (non-randomized) KZG [19] polynomial
commitment scheme consists of the following algorithms:

Setup: Given 1λ, return p ← Pgen(1λ).
Commitment key generation: Given a system parameter p and an upper-

bound d on the polynomial degree, compute the trapdoor tk = σ ←$ Z
∗
p and

the commitment key ck ← (p, [(σi)d
i=0]1, [1, σ]2). Return (ck, tk).

Commitment: Given a commitment key ck and a polynomial f ∈ F≤d[X],
return the commitment [f(σ)]1 ← ∑d

j=0 fj [σj ]1.
Opening: Given a commitment key ck, a commitment [f(σ)]1, an evaluation

point β ∈ F, and a polynomial f ∈ F≤d[X], set v ← f(β) and fpc(X) ←
(f(X) − v)/(X − β). The evaluation proof is [fpc(σ)]1 ← ∑d−1

j=0(fpc)j [σj ]1.
Return (v, [fpc(σ)]1).

Verification: Given a commitment key ck, a commitment [f(σ)]1, an evaluation
point β, a purported evaluation v = f(β), and an evaluation proof [fpc(σ)]1,
check [f(σ) − v]1 • [1]2 = [fpc(σ)]1 • [σ − β]2.

KZG’s security is based on the fact that (X − β) | (f(X) − v) ⇔ f(β) = v.

Inner-Product Commitment Schemes. In an inner-product commitment
scheme [18,20], the prover commits to a vector μ ∈ F

N and later opens it to the
inner product μ�ν for ν ∈ F

N chosen by the verifier. The (non-randomized)
ILV [18] inner-product commitment scheme consists of the following algorithms:

Setup: Given 1λ, return p ← Pgen(1λ).
Commitment key generation: Given a system parameter p and a vector

dimension N , compute the trapdoor tk = σ ←$ Z
∗
p and the commitment key

ck ← ([(σi)2N
i=0:i�=N+1]1, [(σ

i)N
i=0]2). Return (ck, tk).

Commitment: Given a commitment key ck and a vector μ ∈ F
N , compute

the coefficients of μ(X) ← ∑N
j=1 μjX

j ∈ F≤N [X]; [μ(σ)]1 =
∑N

j=1 μj [σj ]1.
Return the commitment [μ(σ)]1.
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Opening: Given a commitment key ck, a commitment [μ(σ)]1, the vector μ,
and a vector ν, let v ← μ�ν. Set ν∗(X) ← ∑N

j=1 νjX
N+1−j ∈ F≤N [X],

and μipc(X) ← μ(X)ν∗(X) − vXN+1 ∈ PolyPunc
F
(N − 1, N + 1,X). The

evaluation proof is [μipc(σ)]1 ← ∑2N
i=1,i �=N+1 μipc[σi]1. Return (v, [μipc(σ)]1).

Verification: Given a commitment key ck, a commitment [μ(σ)]1, a vector ν, a
purported inner product v = μ�ν, and an evaluation proof [μipc(σ)]1, check
[μipc(σ)]1 • [1]2 = [μ(σ)]1 • ∑N

j=1 νj [σN+1−j ]2 − v[σN ]1 • [σ]2.

ILV’s security follows since the coefficient of XN+1 in μipc(X) is μ�ν−v = 0 iff v
is correctly computed. In this paper, the vector ν is public and known in advance.
Then, the verifier only has to compute two pairings and no exponentiations.

Succinct Zero-Knowledge Arguments. The following definition is based on [9].
Groth et al. [17] introduced the notion of (preprocessing) zk-SNARKs with spe-
cializable universal structured reference string (SRS). This notion formalizes the
idea that the key generation for R ∈ UR, where UR is a universal relation, can be
seen as the sequential combination of two steps. First, a probabilistic algorithm
generating an SRS for UR and second, a deterministic algorithm specializing
this universal SRS into one for a specific R.

We consider relation families (Pgen, {URp,N}p∈range(Pgen),N∈N) parametrized
by p ∈ Pgen(1λ) and a size bound N ∈ poly(λ).4 A succinct zero-knowledge
argument Π = (Pgen,KGen,Derive,P,V) with specializable universal SRS for a
relation family (Pgen, {URp,N}p∈{0,1}∗,N∈N) consists of the following algorithms.

Setup: Given 1λ, return p ← Pgen(1λ).
Universal SRS Generation: a probabilistic algorithm KGen(p, N) → (srs, td)

that takes as input public parameters p and an upper bound N on the rela-
tion size, and outputs srs = (ek, vk) together with a trapdoor. We assume
implicitly that elements like ek and vk contain p.

SRS Specialization: a deterministic algorithm Derive(srs,R) → (ekR, vkR)
that takes as input a universal SRS srs and a relation R ∈ URp,N , and
outputs a specialized SRS srsR := (ekR, vkR).

Prover/Verifier: a pair of interactive algorithms 〈P(ekR,x,w),V(vkR,x)〉 →
b, where P takes a proving key ekR for a relation R, a statement x, and a
witness w, s.t. (x,w) ∈ R, and V takes a verification key for a relation R and
a statement x, and either accepts (b = 1) or rejects (b = 0) the argument.

Π must satisfy the following four requirements.
Completeness. For all p ∈ range(Pgen), N ∈ N, R ∈ URp,N , and (x,w) ∈ R,

Pr
[

〈P(ekR,x,w),V(vkR,x)〉 = 1
(srs, td) ← KGen(p, N);

(ekR, vkR) ← Derive(srs,R)

]

= 1 .

Succinctness. Π is succinct if the running time of V is poly(λ + |x| + log |w|)
and the communication size is poly(λ + log |w|).
4 Count and Vampire have several size bounds. The definitions generalize naturally.
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Knowledge-Soundness. Π is knowledge-sound, if for every non-uniform PPT
adversary A = (A1,A2), there exists a non-uniform PPT extractor ExtA5, s.t.

Pr

⎡
⎢⎢⎣

〈A2 (st; r) ,V(vkR,x)〉 = 1
∧ ¬R(x,w)

∣∣∣∣∣∣∣∣

p ← Pgen(1λ); (srs, td) ← KGen(p, N);
r ←$ RNDλ(A); (R,x, st) ← A1(srs; r);

w ← ExtA(srs; r);
(ekR, vkR) ← Derive(srs, R)

⎤
⎥⎥⎦ = negl(λ) .

Zero-Knowledge. Π is (statistical) zero-knowledge if there exists a PPT simulator
Sim, s.t. for all unbound A = (A1,A2), all p ∈ range(Pgen), all N ∈ poly(λ),

Pr

⎡
⎣ 〈P (ekR,x,w) , A2(st)〉 = 1 ∧

R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td) ← KGen(p, N);
(R,x,w, st) ← A1(srs);

(ekR, vkR) ← Derive(srs, R)

⎤
⎦ ≈s

Pr

⎡
⎣ 〈Sim (srs, td, R,x) , A2(st)〉 = 1 ∧

R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td) ← KGen(p, N);
(R,x,w, st) ← A1(srs);

(ekR, vkR) ← Derive(srs, R)

⎤
⎦ .

Here, ≈s denotes the statistical distance as a function of λ. Π is perfect zero-
knowledge if the above probabilities are equal.

Π is subversion zero-knowledge (Sub-ZK, [4]), if it is zero-knowledge even
in the case the SRS is maliciously generated. For perfect zero-knowledge argu-
ments, Sub-ZK follows from the usual zero-knowledge (with trusted SRS), SRS
verifiability (there exists a PPT algorithm that checks that the SRS belongs
to range(KGen)), and a SNARK-specific knowledge assumption, [1,2]. We will
provide the formal definition in the full version [22].

Π is updatable [17], if the SRS can be sequentially updated by many updaters,
such that knowledge-soundness holds if either the original SRS creator or one
of the updaters is honest. Groth et al. [17] showed that an updatable SRS can-
not contain non-monomial polynomial evaluations. Moreover, an updatable SRS
must be verifiable in the same sense as in the case of Sub-ZK.

Since Vampire is public-coin and has a constant number of rounds, we can
apply the Fiat-Shamir heuristic to obtain a zk-SNARK.

Sumcheck Arguments. In a sumcheck argument [23] over F, the prover con-
vinces the verifier that for H ⊆ F, f ∈ F[X1, . . . , Xc], and vf ∈ F, it holds that∑

(x1,...,xc)∈Hc f(x1, . . . , xc) = vf . Multivariate sumcheck has many applications,
with usually relatively small |H| but large c. In the context of efficient updatable
zk-SNARKs, one is often interested in univariate sumcheck, where c = 1 but |H|
is large. Univariate sumcheck arguments are most efficient when H is either an
affine subspace or a multiplicative subgroup [5].

The univariate sumcheck relation for multiplicative subgroups is the set of all
pairs Rsum := {((F, d, H, vf ) , f)}, where F is a finite field, d is a positive integer,
H is a multiplicative subgroup of F, vf ∈ F, f ∈ F≤d[X], and

∑
χ∈H

f(χ) = vf .

5 Note that although the protocol is interactive, extraction is done non-interactively.
This is sometimes called straight-line extractability.
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Aurora’s Sumcheck. As a part of the zk-SNARK Aurora, Ben-Sasson et al. [5]
proposed an efficient univariate sumcheck (“Aurora’s sumcheck”) for multiplica-
tive subgroups. Since the new univariate sumcheck relies on similar techniques,
we next recall Aurora’s sumcheck.

As before, let H = 〈ω〉 = {ωi : i ∈ [0, nh − 1]} be a cyclic multiplicative
subgroup of order nh = |H|. Fact 1 underlies Aurora’s sumcheck.

Fact 1. Let f ∈ F[X] with deg f ≤ nh − 1. Then
∑

χ∈H
f(χ) = nhf(0).

In the case of a large-degree f , Ben-Sasson et al. [5] used Fact 2 to construct
Aurora’s sumcheck argument for proving that

∑
χ∈H

f(χ) = vf .

Fact 2 (Core Lemma of Aurora’s Sumcheck). Let f ∈ F[X] with d =
deg f ≥ nh. Then,

∑
χ∈H

f(χ) = vf iff there exist R ∈ F≤nh−2[X] and Q ∈
F≤d−nh

[X], such that f(X) = vf/nh + R(X)X + Q(X)ZH(X).

Assume that d = deg f = poly(λ) while p = 2Θ(λ). In Aurora’s sumcheck
argument, the prover sends to the verifier polynomial commitments to f , R,
and Q. The verifier accepts if (1) R has a low degree ≤ nh − 2 and (2)
f(X) = vf/nh + R(X)X + Q(X)ZH(X).

On top of two polynomial commitments (two group elements), one has to
implement a low-degree test to check that deg R ≤ nh−2. As the low-degree test,
Aurora uses an interactive oracle proof for testing proximity to the Reed-Solomon
code, resulting in additional costs. The full version of Basilisk [27] implementes
a low-degree test in a partially costless way (without added argument size or
verifier’s computation); however, one may need to add a large number of elements
to the SRS for their low-degree test to succeed.

Assumptions. Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1, d2)-PDL (Power Discrete
Logarithm [21]) secure if for any non-uniform PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A

(
p, [(xi)d1

i=0]1, [(x
i)d2

i=0]2
)

= x p ← Pgen(1λ);x ←$ F
∗
]

= negl(λ) .

Algebraic Group Model (AGM). AGM is an idealized model [12] for security
proofs. In the AGM, adversaries are restricted to be algebraic in the following
sense: if A inputs some group elements and outputs a group element, it provides
an algebraic representation of the latter in terms of the former. More precisely,
if A has received group elements [x1]1, [x2]2 so far and outputs [y1]1, [y2]2, then
there exists an extractor ExtA which on the same input and random coins outputs
integer vectors γ1, γ2 such that [y1]1 =

∑
i γ1,i[x1,i]1 and [y2]2 =

∑
j γ2,j [x2,j ]2.

3 Count: New Univariate Sumcheck Argument

In this section, we propose Count, a new sumcheck argument with improved
online efficiency (including the argument size) but a larger SRS size than
Aurora’s univariate sumcheck. We first prove the following generalization of Fact
1, an alternative to Fact 2 in the case f has degree larger than nh − 1.
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Lemma 1. Let f(X) =
∑d

i=0 fiX
i for d ≥ 0. Then,

∑
χ∈H

f(χ) = nh ·
∑�d/nh�

i=0 fnhi .

Proof. Write f(X) = R(X) + Q(X)ZH(X) for deg R ≤ nh − 1. Based on Fact
1,

∑
χ∈H

f(χ) =
∑

χ∈H
R(χ) = nhR(0). Since Xnh ≡ 1 (mod ZH(X)), f(X) =

∑d
i=0 fiX

i ≡ ∑nh−1
j=0 (

∑d
i=0:nh|(i−j) fi)Xj (mod ZH(X)). Since f(X) ≡ R(X)

(mod ZH(X)), R(0) =
∑�d/nh�

i=0 fnhi. Thus,
∑

χ∈H
f(χ) = nh · ∑�d/nh�

i=0 fnhi. ��
Count is based on the following result.

Lemma 2 (Core Lemma of Count). Let H be an order-nh > 1 multi-
plicative subgroup of F

∗. Let dgap, d > 0 with dgap ≥ nh · �d/nh�, and f ∈
PolyPunc

F
(d, dgap,X). Define

S(X) :=
∑�d/nh�

i=0 Xdgap−nhi ∈ F≤dgap [X] .

Then,
∑

χ∈H
f(χ) = vf and deg f ≤ d iff there exists fipc ∈

PolyPunc
F
(d, dgap,X), s.t.

f(X)S(X) − fipc(X) = vf

nh
· Xdgap . (2)

Here, dgap is a parameter fixed by the master protocol (in our case, Vampire)
that uses Count as a subroutine.

Proof Clearly, we need dgap ≥ nh · �d/nh� for S to be a polynomial.
(⇒) Define fipc(X) := f(X)S(X) − vf/nh · Xdgap . We must only show that

fipc ∈ PolyPunc
F
(d, dgap,X). Since deg f ≤ d and deg S = dgap, we have deg fipc ≤

dgap + d. Since f(X)S(X) = (
∑d

i=0 fiX
i)(

∑�d/nh�
i=0 Xdgap−nhi), the coefficient of

Xdgap in f(X)S(X) is
∑�d/nh�

i=0 fnhi. By Lemma 1,
∑�d/nh�

i=0 fnhi = vf/nh. Thus,
the coefficient of Xdgap in fipc is 0 and fipc ∈ PolyPunc

F
(d, dgap,X).

(⇐) Suppose Eq. (2) holds for fipc ∈ PolyPunc
F
(d, dgap,X). Since deg S = dgap

and deg fipc ≤ dgap + d, we have deg f ≤ d. As in (⇒), the coefficient of Xdgap in
f(X)S(X) is

∑�d/nh�
i=0 fnhi, which is equal to (

∑
χ∈H

f(χ))/nh due to Lemma 1.
Since fipc is missing the monomial Xdgap , we get that vf =

∑
χ∈H

f(χ). ��
It is important that fipc has degree ≤ dgap + d. Thus, one cannot add elements
[σi]1 for i > dgap + d to the SRS of a master argument that uses Count.

Description of Count. Next, we describe Count as a zk-SNARK for the sum-
check relation; if needed, it is straightforward to modify it to the language of
polynomial oracles. In Count, the common input is ([f(σ)]1, vf ). The prover sends
to the verifier a polynomial commitment to [fipc(σ)]1, and the verifier accepts
that

∑
χ∈H

f(χ) = vf iff a naturally modified version of Eq. (2) holds on com-
mitted polynomials. See Fig. 1 for the full argument. Here, Derive does only
preprocessing and does not do any specialization.

Since we only use Count as a sub-argument of Vampire, we do not formally
have to prove that it is knowledge-sound or zero-knowledge. Nevertheless, for
the sake of completeness, we provide proof sketches.
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Fig. 1. The new univariate sumcheck zk-SNARK Count for
∑

χ∈H
f(χ) = vf .

Lemma 3. The sumcheck zk-SNARK Count in Eq. (2) is complete and per-
fectly zero-knowledge. Additionally, the probability that any algebraic A can break
knowledge-soundness is bounded by Advpdld1,d2,Pgen,B(λ), where B is some PPT
adversary, d1 = dgap + d, and d2 = dgap.

Proof. Completeness follows from Lemma 2.
We sketch a knowledge-soundness proof in the AGM [12]. Since A is alge-

braic, f(X), fipc(X) are in the span of Xi for i ∈ S1(X), i.e., f, fipc ∈
PolyPunc

F
(d, dgap,X). If Eq. (2) holds, then by Lemma 2, the prover is hon-

est. Otherwise, we have a non-zero polynomial V(X) := f(X)S(X) − fipc(X) −
vf/nh · Xdgap (its coefficients are known since the adversary is algebraic), such
that (since the verifier accepts) σ is a root of V. We construct a (d1, d2)-PDL
adversary B that gets (p, [(σi)d1

i=0]1, [(σ
i)d2

i=0]2) as an input. B constructs srs from
the challenge input, and runs A and its extractor ExtA to obtain V(X). When-
ever V(X) 
= 0, B can find the root σ and break the PDL assumption.

We construct a simulator that on input (srs, td = σ, ([f(σ)]1, vf )) out-
puts an argument indistinguishable from the real argument. The simulator
just computes [fipc(σ)]1, such that the verification equation holds. That is,
[fipc(σ)]1 ← S(σ)[f(σ)]1 − vf/nh · σdgap [1]1. Zero-knowledge follows since in the
real argument, [fipc(σ)]1 is computed the same way. ��

SRS Verifiability. As noted in Sect. 2, for both Sub-ZK and updatability, it
is required that the SRS is verifiable, i.e., that there exists a PPT algorithm
that checks that the SRS belongs to the span of KGen. One can verify Count’s
SRS by checking that [σ]1 • [1]2 = [1]1 • [σ]2, [σi]1 • [1]2 = [σi−1]1 • [σ]2 for
i ∈ [1, dgap +d]\{dgap, dgap +1}, [σdgap+1]1 • [1]2 = [σ]1 • [σdgap ]2, [σdgap−1]1 • [σ]2 =
[1]1 • [σdgap ]2, and [σnhi]1 • [σdgap−nhi]2 = [1]1 • [σdgap ]2 for i ∈ [1, �d/nh�]. Since, in
addition, Count’s SRS consists of monomial evaluations only, Count is updatable.
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Efficiency. In Count, the prover outputs a single group element instead of two
in Aurora’s univariate sumcheck argument. The latter also requires one to imple-
ment a low-degree test, while there is no need for a low-degree test in Count.

Another important aspect of Count is the prover’s computation. In Aurora’s
univariate sumcheck, the prover computes polynomials R and Q, such that
f(X) = vf/nh + XR(X) + Q(X)ZH(X); this can be done in quasilinear number
of field operations. On the other hand, since in Vampire, S only has a small
number of non-zero coefficients, the prover of Count only executes a linear num-
ber of field operations. Both univariate sumchecks however require the prover to
use a linear number of G1 operations. Linear-time multivariate sumchecks are
well-known, and important in applications.

We emphasize that dgap needs to satisfy dgap ≥ nh · �d/nh�, but it can be
bigger. In Vampire, dgap = d.

As a drawback, Count’s SRS contains more elements than in Aurora’s sum-
check. This is a consequence of using the ILV inner-product commitment scheme.

4 Vampire: New Updatable and Universal Zk-SNARK

In this section, we will use Count to construct an efficient updatable and universal
zk-SNARK Vampire for the sparse R1CSLite constraint system. At a very high
level, we use the general approach of Marlin [10], taking into account optimiza-
tions of Lunar [9] and Basilisk [26]. On top of already aggressive optimization,
we use three novel techniques.

First, Marlin uses Aurora’s univariate sumcheck twice. We replace it with
Count in one of the instantiations. (In another one, the sumcheck is for a low-
degree polynomial; thus, we just use Fact 1.) Second, we use a variant of the
aggregated polynomial commitment scheme of Boneh et al. [7] to batch the open-
ings of three different polynomials at different points. While Boneh et al. [7] pro-
posed only a randomized batch-opening protocol, we observe that in our case, it
can be deterministic. Third, we use a single commitment to commit to left and
right inputs of each constraint. All the techniques together remove four group ele-
ments from the communication. In the end, Vampire is the most communication-
efficient updatable and universal zk-SNARK for any NP-complete constraint
system. (See Table 1 and the full version [22] for an efficiency comparison.)

4.1 Formulating R1CSLite as Sumcheck

Let F = Zp. As in [9,10,26], let H = 〈ω〉 and K be two multiplicative subgroups
of F. We use H to index the rows (and columns) and K to index the non-
zero elements of specific matrices. From now on, we assume that the R1CSLite
instance I = (F, H, K,m,m0,L,R) includes descriptions of H and K.

We want to demonstrate the satisfiability of I. Recall from Eq. (1) that for
this we need to show that W · z∗ = 0, where W = (I2m‖ − M), M =

(
L
R

)
, and

z∗ = (z�
l ‖z�

r ‖(zl ◦ zr)�)�, where zl and zr are the vectors of all left and right
inputs of all R1CSLite constraints.
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Zero-Knowledge. To obtain zero-knowledge, we use a technique motivated
by [27]. Let |H| = nh := 2m + b, for a randomizing parameter b ∈ N (to be fixed
to b = 4 in Theorem 2) that helps us to achieve zero knowledge. We add new
random elements to z∗ and zero elements to W; the latter are needed not to
disturb the knowledge-soundness proof. More precisely, for rz ←$ F

b, let

zl :=
(

1
x
z a

)
∈ F

m ,zr :=
(
1m0+1

zb

) ∈ F
m , and z :=

(
z l
z r
rz

)
.

Let Ib :=
(

Im 0 0
0 Im 0
0 0 0

)
and Mb :=

(
L 0
R 0
0 0

)
be nh × nh matrices. Let z′ :=

( z r
0nh−m

)
.

Our goal is to show
Wb · ( z

z◦z ′ ) = 0 , (3)

where Wb :=
(
Ib‖ − Mb

)
. Clearly, Eq. (3) is equivalent to W · z∗ = 0.

Next, Eq. (3) holds iff Ibz − Mb(z ◦ z′) = 0, i.e.,

∀x ∈ H.P [x] :=
∑

y∈H

(
Ib[x, y] − Mb[x, y]z′[y]

)
z[y] = 0 .

Language of Polynomials. Next, we replace vectors with their low-degree
encodings, with say z(Y ) :=

∑
χ∈H

z[χ]LH

χ(Y ) ∈ F≤nh−1[Y ]. Let Λb
H
(X,Y ) and

M b be polynomials, fixed later, that interpolate the matrices Ib and Mb. That
is, Λb

H
(x, y) = Ib[x, y] and M b(x, y) = Mb[x, y] for x, y ∈ H. Thus, Ib[x, y]z[y] =

Λb
H
(x, y)z(y) for any x, y ∈ H. Moreover, since z(yωm) = z[yωm] = z′[y] for

y ∈ {ω0, . . . , ωm−1}, we get Mb[x, y]z′[y]z[y] = M b(x, y)z(yωm)z(y). On the
other hand, for x ∈ H and y ∈ {ωm, . . . , ωnh−1}, the value of z[yωm] does not
matter since we multiply it by M b(x, y) = 0.

Thus, Eq. (3) is equivalent to ∀x ∈ H.P (x) = 0, where

P (X) :=
∑

y∈H
ψ(X, y), (4)

ψ(X,Y ) :=
(
Λb
H
(X,Y ) − M b(X,Y )z(Y ωm)

)
z(Y ) . (5)

To simplify it further, Λb
H
(X,Y ) and M b(X,Y ) have to satisfy additional con-

ditions that we define in the rest of this subsection.

Interpolating Ib. Following Lunar [9], we interpolate I with the function

ΛH(X,Y ) := ZH(X)Y −ZH(Y )X
nh(X−Y ) . (6)

ΛH satisfies the following properties: (1) ΛH(x, y) is PPT computable, (2) ΛH is
a polynomial (this follows since ZH(X)Y − ZH(Y )X = X − Y + XY (Xnh−1 −
Y nh−1) = (X − Y )(1 + XY (

∑nh−2
i=0 Xnh−2−iY i)) divides by X − Y ), (3) ΛH

is symmetric, ΛH(X,Y ) = ΛH(Y,X), (4) ΛH(x, y) interpolates I over H
2, i.e.,

∀x, y ∈ H.ΛH(x, y) = I[x, y] (this follows since ZH(x)y − ZH(y)x = 0 for all
x 
= y ∈ H and 1+XY (

∑nh−2
i=0 Xnh−2−iY i) = 1+(nh −1)xnh = 1+nh −1 = nh

when X = Y = x ∈ H), (5) ΛH(x, y) = LH

x (y) for any x ∈ H, y ∈ F. Thus,
{ΛH(x, Y )}x∈H is a basis of F≤|H|−1[Y ].
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It is natural to define the interpolating polynomial of Ib as

Λb
H
(X,Y ) := ΛH(X,Y ) − ∑b

i=1 	Hnh−b+i(X)	Hnh−b+i(Y ) .

Clearly, if b is small, then Λb
H
(X,Y ) is efficiently computable. Moreover,

Λb
H
(X,Y ) is symmetric since ΛH(X,Y ) is symmetric.

Interpolating Mb. We use the sparse matrix encoding of Mb from Marlin [10]
that keeps track of the matrix’s non-zero entries. Let NZ := {(i, j) ∈ H × H :
Mb[i, j] 
= 0} be the set of indices where Mb is non-zero. Let K be the minimum-
size multiplicative subgroup of F such that nk := |K| ≥ |NZ|.6 We encode Mb by
using polynomials row and col to keep track of the indices of its non-zero entries
while using a polynomial val for the values of these entries. That is, ∀κ ∈ K,
row(κ) ∈ H is the row index of the κth element (by using the natural ordering
of H

2) of NZ, col(κ) ∈ H is the column index of the κth element of NZ, and
val(κ) = Mb[row(κ), col(κ)] ∈ F is the corresponding matrix entry. Let

row(Z) :=
∑

κ∈K
row(κ)LK

κ (Z) ∈ F≤nk−1[Z]

be the low-degree extension of the vector (row(κ))κ∈K. Let col(Z) and val(Z)
be the low-degree extensions of (col(κ))κ∈K and (val(κ))κ∈K. Let zcv(Z),
rcv(Z), zrow(Z), zcol(Z), rc(Z), and zrc(Z) be the low-degree encodings
of Zcol(Z)val(Z), row(Z)col(Z)val(Z), Zrow(Z), Zcol(Z), row(Z)col(Z), and
Zrow(Z)col(Z). For example,

rcv(Z) :=
∑

κ∈K
row(κ)col(κ)val(κ)LK

κ (Z) ∈ F≤nk−1[Z] .

We define M b ∈ F[X,Y ] that interpolates Mb, as the low-degree extension of

∀x, y ∈ H.M b(x, y) := Mb[x, y] =
∑

κ∈K
val(κ)ΛH(row(κ), x)ΛH(col(κ), y) .

Next, ΛH(row(κ), x) = (ZH(row(κ))x − ZH(x)row(κ))/(nh(row(κ) − x)). Since
ZH(row(κ)) = 0, ΛH(row(κ), x) = ZH(x)row(κ)/(nh(x − row(κ))). Similarly,
ΛH(col(κ), y) = ZH(y)col(κ)/(nh(y − col(κ))). Thus,

∀x, y ∈ H.M b(x, y) =
∑

κ∈K
val(κ) · ZH(x)row(κ)

nh(x−row(κ)) · ZH(y)col(κ)
nh(y−col(κ))

=ZH(x)ZH(y)
n2

h

∑
κ∈K

rcv(κ)
(x−row(κ))(y−col(κ))

(∗)
= ZH(x)ZH(y)

n2
h

∑
κ∈K

rcv(κ)
xy−xcol(κ)−yrow(κ)+rc(κ) ,

where (*) follows from ∀κ ∈ K.rc(κ) = col(κ)row(κ). Thus, we define

M b(X,Y ) := ZH(X)ZH(Y )
n2

h

∑
κ∈K

rcv(κ)
XY −Xcol(κ)−Y row(κ)+rc(κ) . (7)

Since degX M b(X,Y ) ≤ |H| − 1, ∀y ∈ H.M b(X, y) =
∑

χ∈H
M b(χ, y)ΛH(χ,X).

Clearly, M b interpolates Mb.
6

H and K can be arbitrary subsets of F, but the most efficient algorithms are known
when they are multiplicative subgroups. One can assume K = H by adding all-zero
rows and columns to the matrix, but we generally do not need that K = H. Keeping
|K| and |H| flexible allows us to achieve different trade-offs.
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Getting to Sumcheck. Next, we show that, under mild conditions on inter-
polating matrices that the above encodings satisfy, ∀x ∈ H.P (x) = 0 (and thus
also Eq. (3)) is equivalent to

∑
y∈H

ψ(X, y) = 0.

Lemma 4. Assume degX ΛH(X,Y ),degX M b(X,Y ) ≤ |H| − 1. Then, ∀x ∈
H.P (x) = 0 iff

∑
y∈H

ψ(X, y) = 0.

Proof. (⇒) Assume ∀x ∈ H.P (x) = 0. Recall from Eq. (5) that ψ(X, y) =
(Λb

H
(X, y) − M b(X, y)z(yωm))z(y). Since degX ΛH(X,Y ),degX M b(X,Y ) ≤

|H| − 1, then also degX ψ(X, y) ≤ |H| − 1. Thus,

∑
y∈H

ψ(X, y) =
∑

y∈H

∑
x∈H

ψ(x, y)Lx(X) 4=
∑

x∈H
P (x)Lx(X)

(∗)
= 0 ,

where (*) follows from ∀x ∈ H.P (x) = 0.
(⇐) Let

∑
y∈H

ψ(X, y) = 0. By Eq. (4), ∀x ∈ H.P (x) =
∑

y∈H
ψ(x, y) = 0. ��

To enable efficient verification that the public input was correctly computed,
the prover transmits [z̃(σ)]1, for the polynomial z̃(Y ) defined as follows. Let

Zinp(Y ) :=
∏m0+1

i=1 (Y − ωi−1)(Y − ωm+i−1) ∈ F≤2(m0+1)[Y ] ,

inp(Y ) :=	H1 (Y ) +
∑m0

i=1 xi	
H

i+1(Y ) +
∑m0+1

i=1 	Hm+i(Y ) ∈ F≤nh−1[Y ] ,

z̃(Y ) :=
∑m−m0−1

i=1 za[i]

Hm0+1+i(Y )

Zinp(Y ) +
∑m−m0−1

i=1 zb[i]

Hm+m0+1+i(Y )

Zinp(Y ) +
∑b

i=1 rz[i]

H2m+i(Y )

Zinp(Y ) .

(8)

Since 	Hi (Y ) =
∏

j �=i(Y − ωj−1)/(ωi−1 − ωj−1), z̃(Y ) ∈ F≤nh−2m0−3[Y ]. Thus,
Zinp(Y )z̃(Y ) =

∑m−m0−1
i=1 za[i]	Hm0+1+i(Y ) +

∑m−m0−1
i=1 zb[i]	Hm+m0+1+i(Y ) +

∑b
i=1 rz[i]	H2m+i(Y ) interpolates (0�

m0+1‖z�
a ‖0�

m0+1‖z�
b ‖r�

z )�. Moreover,

z(Y ) = Zinp(Y )z̃(Y ) + inp(Y ) ∈ F≤nh−1[Y ] . (9)

Thus, the existence of a polynomial z̃(Y ), such that Eq. (9) holds, guarantees
that z(Y ) interpolates (1‖x�‖z�

a ‖1�
m0+1‖z�

b ‖r�
z )� for some za, zb, and rz.

4.2 From Sumcheck to Vampire

According to the preceding discussion, one can handle R1CSLite by proving
that

∑
y∈H

ψ(X, y) = 0. In the current subsection, we construct an argument
for the latter. We replace X with a random α chosen by the verifier, obtaining
the polynomial ψα(Y ) := ψ(α, Y ). We use Count to show that

∑
y∈H

ψα(y) = 0.
For this, as in Sect. 3, the prover computes the polynomial ψipc and the verifier
checks ϕ(Y ) := ψα(Y )S(Y ) − ψipc(Y ) is a zero polynomial. The latter can be
done by KZG-opening all involved polynomials (e.g., z̃(Y ); see Eq. (5)), but
this is inefficient. Instead, the prover KZG-opens z̃(Y ) at Y = βωm and Φ(Y ),
M b(α, Y ) at Y = β, where (1) Φ is a polynomial defined so that Φ(β) = ϕ(β) = 0,
and (2) one can verify efficiently the correctness, given vz ← z̃(βωm) and vM ←
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M b(α, β). This requires us to open a polynomial related to the ILV-opening of
ψα(Y ). We aggregate two KZG-openings by using the technique of Boneh et
al. [7]. Finally, we use a univariate sumcheck to check the correctness of vM ; this
step is complicated, but it follows closely [9,10]. Importantly, we also show that
one of the two commitments from the second sumcheck can be considered an
aggregated KZG-opening and thus batched with other KZG-openings.

To simplify some formulas, we assume always nh > 3. This is w.l.o.g., since
nh = 2m + b, m ≥ 1, and b ≥ 2.

Details. Let α ←$ F\H be sampled by the verifier. (We explain later why α /∈ H.)
To test that

∑
y∈H

ψ(X, y) = 0, define

ψα(Y ) := ψ(α, Y ) ∈ F≤d[Y ] .

From Eqs. (5) and (9), we get ψα(Y ) =
(
Λb
H
(α, Y ) − M b(α, Y )z(Y ωm)

) ·
(Zinp(Y )z̃(Y ) + inp(Y )) . Clearly, one can set

d := deg ψα = 3(nh − 1) . (10)

We use Count to prove that
∑

y∈H
ψα(y) = 0. As in Lemma 2, we define

S(Y ) :=
∑�d/nh�

i=0 Y dgap−nhi ∈ F≤dgap [Y ] ,

ψipc(Y ) := ψα(Y )S(Y ) ∈ PolyPunc
F
(d, dgap, Y ) . (11)

Here, dgap ∈ N is some integer, such that S(Y ) and ψipc(Y ) are polynomials, i.e.,
dgap ≥ nh · �d/nh� = nh · �3(nh − 1)/nh� = 2nh. (This holds for nh ≥ 3.) Taking
into account later considerations, we set

dgap :=3(nh − 1) . (12)

Thus, S(Y ) = Y dgap + Y dgap−nh + Y dgap−2nh = Y 3nh−3 + Y 2nh−3 + Y nh−3.
According to Lemma 2, we need to check that the coefficient of Y dgap in

ψα(Y )S(Y ) is 0. We do it by checking that

(i) ψipc(Y ) ∈ PolyPunc
F
(d, dgap, Y ), and

(ii) ψipc(Y ) is the correct ILV-opening polynomial, i.e.,

ϕ(Y ) :=ψα(Y )S(Y ) − ψipc(Y )

=
(
Λb

H(α, Y ) − Mb(α, Y )z(Y ωm)
)
(Zinp(Y )z̃(Y ) + inp(Y )) · S(Y ) − ψipc(Y )

is a zero polynomial.

The prover sends to the verifier KZG-commitments to z̃(Y ) and ψipc(Y ). Check-
ing i is free in the pairing-based setting. To check ii, we verify that ϕ(β) = 0,
where β ∈ Cβ ⊂ F\H is sampled by the verifier. (We will define and motivate Cβ

later.) More precisely, we verify that ϕ(β) = 0, where M b(α, β) is substituted by
a value vM computed by the prover. (The latter means that the verifier does not
have to compute M b(α, β) itself.) We first describe how to check that ϕ(β) = 0,
assuming vM is correct. After that, we use another sumcheck instantiation to
prove that vM is correctly computed.
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First: checking ϕ(β) = 0. A straightforward check that ϕ(β) = 0 requires, on
top of sending vM , the prover to KZG-open z̃(Y ) both at Y = β and Y = βωm

and ψipc(Y ) at Y = β. (The verifier can efficiently evaluate other polynomials
like Λb

H
(X,Y ), Zinp(Y ), and S(Y ) at (X,Y ) = (α, β) itself.)

To improve on efficiency, we implicitly KZG-commit to Φ, where

Φ(Y ) :=(Ψ(Y )S(Y ) − ψipc(Y ))/S(Y ) = Ψ(Y ) − ψα(Y ) ∈ F≤d[Y ] , and

Ψ(Y ) :=
(
Λb

H(α, β) − vM · z(βωm)
)

(Zinp(β)z̃(Y ) + inp(β)) ∈ F≤nh−2m0−3[Y ] .
(13)

Ψ is obtained from ψα by replacing M b(α, β) with vM and all but one occurrences
of Y with β. Φ is a low-degree polynomial satisfying Φ(β) = ϕ(β) = 0.

We open KZG-commitments to z̃(Y ) at Y = βωm (in order to compute
z(βωm)) and Φ(Y ) at Y = β. For this, the prover sends

vz ← z̃(βωm) ∈ F .

Since Φ(β) = 0, Φ(β) is not transferred. We can open and verify the KZG-
commitment to Φ (see Eq. (13)) since we have KZG-commitments to z̃ and ψipc

(the need for the latter becomes apparent soon), KZG is homomorphic, and
the verifier knows all other information present in Φ like inp(β) and vM . More
precisely, the prover batch-opens the two KZG-commitments by computing the
KZG-opening polynomials

z̃pc(Y ) := z̃(Y )−z̃(βωm)
Y −βωm ∈ F≤nh−2m0−4[Y ] ,

Φpc(Y ) :=Φ(Y )−Φ(β)
Y −β = Ψ(Y )−ψα(Y )

Y −β ∈ F≤d−1[Y ] .

Since the prover batches these openings together with one more opening, we will
explain the batching process later.

Second (correctness of vM ). We modify a technique from [9,10] by
using batching. Recall that M b satisfies Eq. (7). Moreover, degX M b(X,Y ),
degY M b(X,Y ) ≤ nh − 1. Thus, M b(α, β) =

∑
κ∈K

T (κ) ∈ F, where

num(Z) :=ZH(α)ZH(β)/n2
h · rcv(Z) ∈ F≤nk−1[Z] ,

den(Z) :=αβ − α · col(Z) − β · row(Z) + rc(Z) ∈ F≤nk−1[Z] ,

T (Z) := num(Z)
den(Z) ∈ F(Z) .

(14)

Here, we need den(κ) = (α−row(κ))(β−col(κ)) 
= 0 for any κ ∈ K. This explains
why we chose α, β /∈ H.

We use a sumcheck to check that vM = M b(α, β). Since this sumcheck is over
a low-degree polynomial, we do not need to use Count’s full power. Let

T̂ (Z) :=
∑

κ∈K
T (κ)LK

κ (Z) ∈ F≤nk−1[Z] .

Clearly, num(Z) − T̂ (Z)den(Z) ≡ 0 (mod ZK(Z)). Since
∑

κ∈K
T̂ (κ) = vM , by

Fact 1, T̂ (Z) = ZR(Z) + vM/nk for

R(X) ← (T̂ (Z) − vM/nk)/Z ∈ F≤nk−2[Z] . .
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Thus, num(Z)− (ZR(Z)+ vM/nk)den(Z) ≡ 0 (mod ZK(Z)). Since this equality
has to hold only when Z ∈ K, we modify it as follows. Let

Q(Z) ← (num(Z) − R(Z) · zden(Z) − vM/nk · den(Z))/ZK(Z) ∈ F≤nk−3[Z]

be such that

num(Z) − R(Z) · zden(Z) − vM/nk · den(Z) = Q(Z)ZK(Z) , where (15)
zden(Z) := αβZ − αzcol(Z) − βzrow(Z) + zrc(Z) ∈ F≤nk−1[Z] . (16)

Thus, zden(κ) = κden(κ) for κ ∈ K. This rewriting minimizes the degree of
polynomials (e.g., zcol(Z) ∈ F≤nk−1[Z] while Zcol(Z) ∈ F≤nk

[Z]).
Marlin and Lunar [9,10] now transferred polynomial commitment to Q(Z).

We improve on it, by interpreting Eq. (15) as saying that the polynomial
num(Z) − R(Z) · zden(Z) − vM/nk · den(Z) opens to 0 at all points Z ∈ K.
Thus, Q(Z) is an aggregated polynomial opening of the left-hand side of Eq.
(15) at all points of K. Importantly, we can aggregate this opening with the
openings z̃pc(Z) and Φpc(Z) from before. Hence, we can save an additional one
group element. (We will explain batching in a few paragraphs.)

Thus, the prover only commits to R. When we add to srsR elements like
[rcv(σ), col(σ)]2, the verifier can compute the G2 elements in the last equation
since he knows α and β. Thus, polynomials like [rcv(σ)]2 need to be in srsR,
while monomials, needed for the V to be able to compute srsR, need to be in srs.
This explains the definition of srsR in Fig. 2.

One needs to check that deg R ≤ nk−2. To perform this test without increas-
ing the argument size, we use a second trapdoor τ ←$ F

∗. We add [(σiτ)nk−2
i=0 ]2 to

the SRS and use [R(σ)τ,Q(σ)τ ]1 instead of [R(σ), Q(σ)]1. This modifies the veri-
fication equations. The idea is that if the SRS contains [(σi)i∈S , (σiτ)i∈S′ ]1, then
a verification [a]1•[1]2 = [b]1•[τ ]2 guarantees in the AGM that a ∈ span(σiτ)i∈S′ .

Batching. The prover batches the openings of z̃(Y ) at Y = βωm, Φ(Y ) at
Y = β, and the left-hand side of Eq. (15) at all Y ∈ K as [Bpc(σ, τ)]1 ←
[z̃pc(σ)+Φpc(σ)+Q(σ)τ ]1. Notably, since the polynomial openings are at different
locations (β, βωm, and all points of K, correspondingly), one does not have to
randomize this check. (See Sect. 5.1 for formal proof.) The latter is a general
fact, not mentioned in [7,13] and is thus an independent contribution.

Following [7,13], the verifier must check that [z̃(σ)− vz]1 • [(σ −β)ZK(σ)]2 +
[Φ(σ)]1 • [(σ − βωm)ZK(σ)]2 + [num(σ) − R(σ)zden(σ) − vM/nk · den(σ)]1 • [(σ −
β)(σ−βωm)]2 = [Bpc(σ)]1•[(σ−β)(σ−βωm)ZK(σ)]2, where [Φ(σ)]1 = [Ψ(σ)]1−
[ψα(σ)]1. Since the verifier does not know [ψα(σ)]1 but knows [ψipc(σ)]1 =
[ψα(σ)S(σ)]1, we multiply each term of the verification equation by S(σ). We
also modify the last addend on the left-hand side to allow the prover and the
verifier to compute it given the terms given in the SRS. Finally, we use the
trapdoor τ because we need to do a low-degree test.

As part of [Bpc(σ)]1, the prover has to compute [Φpc(σ)]1 ← [(Φ(σ) −
ψα(σ))/(σ − β)]1, where Φpc ∈ F≤d−1[Y ] and σ is a trapdoor. For Count to
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Fig. 2. Vampire’s parameter and SRS generation, where I = (F, H, K, m, m0,L,R).

be secure, the SRS cannot contain [σdgap ]1. Hence, we need to assume d ≤ dgap.
This motivates the choice of dgap = 3(nh − 1) in Eq. (10). The batch opening
reduces the communication by two group elements.

4.3 Description of Vampire

In Figs. 2 and 3, we describe interactive Vampire, the new succinct interactive
zero-knowledge argument with a specializable universal SRS. For the sake of
completeness, Figs. 2 and 3 define all used polynomials. Since this argument is
public-coin and has a constant number of rounds, we can apply the Fiat-Shamir
heuristic (we omit the details) to obtain the zk-SNARK Vampire.

We sample the challenge β from the set

Cβ =
{

β ∈ F
β /∈ (H ∪ K ∪ {0, σ, σ/ωm})∧

S(β) 
= 0 ∧ S(βωm) 
= 0 ∧ βωm /∈ K

}

.

We need β /∈ {σ, σ/ωm} to get perfect zero-knowledge (see the proof of Theorem
2). One can efficiently verify that β /∈ {σ, σ/ωm}, given [σ]1 from the SRS. In
addition, in the knowledge-soundness proof we need that S(Y ), ZK(Y ), Y − β,
and Y − βωm are coprime. Hence, we need that (1) S(β) 
= 0, S(βωm) 
= 0,
ZK(β) 
= 0, ZK(βωm) = 0 (the latter two conditions hold iff β /∈ K and βωm /∈ K)
for coprimeness with Y − β and Y − βωm, and (2) β 
= 0 (otherwise β = βωm,
and thus Y − β and Y − βωm cannot be coprime). As mentioned previously,
α, β /∈ H since otherwise den(κ) = 0 for any κ ∈ K. Note that if nh and dgap are
much smaller than |F| (which is typically the case), then β ←$ F is contained in
Cβ with an overwhelming probability. Thus, in practice, β can be sampled from
F, resulting in only a negligible security risk.

Since S1(X,Xτ ) and S2(X) consist of monomials and one can verify the
correctness of its SRS efficiently, Vampire is updatable. We will prove the latter
in the full version [22]. See the full version [22] for a thorough efficiency analysis.
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Fig. 3. Vampire’s online phase: I = (F, H, K, m, m0,L,R) and w = ( z a
z b

) ∈ F
2(m−m0−1).
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5 Security Proofs

We first provide additional preliminaries, needed to prove Vampire’s security.

Fact 3 (Schwartz-Zippel Lemma). Let f(X1, . . . , Xc) 
= 0 be a total degree-d
polynomial over a field F and let S ⊆ F

c. Then, Pr[x ←$ S : f(x) = 0] ≤ d/|S|.
Fact 4 (Bauer et al. [3]). Let V(X1, . . . , Xc) ∈ F[X1, . . . , Xc] be a non-zero
polynomial of total degree d. Define P(Z) ∈ (F[S1, . . . , Sc, R1, . . . , Rc])[Z] as
P(Z) := V(S1Z + R1, . . . , ScZ + Rc). Then the coefficient of the leading term in
P(Z) is a polynomial in F[S1, . . . , Sc] of degree d.

The following lemma (based on [7,13,19]) allows to batch-open several poly-
nomials in distinct points. The prior work [7,13] had a more general version
where the points do not have to be distinct; the cost of it is a randomized ver-
ification that involves a value γ ←$ F sampled by the verifier. On the other
hand, [7,13] did not involve the polynomial S(Y ) and worked only with univari-
ate polynomials.

Lemma 5 (Aggregation lemma). Let fi ∈ F[Y,Xτ ], Ti ⊂ F be mutually
disjoint sets, and let T := ∪iTi. Let S(Y ) ∈ F[Y ] be such that ∀s ∈ T.S(s) 
= 0.
Fix vs ∈ F for all s ∈ T . Let v̂i ∈ F[Y ] be a polynomial, such that v̂i(s) = vs for
all s ∈ Ti. Let bi ∈ {0, 1}. If there exists a polynomial Bpc ∈ F[Y,Xτ ], such that

∑
i(fi(Y,Xτ ) − v̂i(Y ))ZT\Ti

(Y )S(Y )bi = Bpc(Y,Xτ )ZT (Y )S(Y ) , (17)

then ∀i.∀s ∈ Ti.fi(s,Xτ ) = vs.

Proof. Since Ti are disjoint and the roots of S(Y ) are not in T , Eq. (17) implies
that ∀i. (ZTi

(Y ) | (fi(Y,Xτ ) − v̂i(Y ))). The lemma follows. ��
In our use, v̂i(Y ) is either constant or the unique monic polynomial (e.g.,
Lagrange’s polynomial) of degree |Ti| − 1, such that v̂i(s) = vs for all s ∈ Ti.

Remark 1. When Ti ∩Tj 
= ∅, ∀i. (ZTi
(Y ) | (fi(Y,Xτ ) − v̂i(Y ))) does not follow.

However, if we introduce another variable Z to Eq. (17), changing Eq. (17)
to

∑
i(fi(Y,Xτ )− v̂i(Y ))ZT\Ti

(Y )S(Y )biZi−1 = Bpc(Z, Y,Xτ )ZT (Y )S(Y ), then
the claim will again follow. This is essentially how the randomized batching in [7]
works (Z is substituted by a random β).

5.1 Knowledge-Soundness Proof

We start by proving two lemmas about coprimeness of some of the polynomials
used in Vampire. We need them later in the knowledge soundness proof.

Lemma 6. Recall that ZK(Y ) =
∏

κ∈K
(Y − κ) and S(Y ) = Y dgap + Y dgap−nh +

Y dgap−2nh . If char(F) 
= 3, nh ≥ 3, and 3 � nk, then gcd(S(Y ),ZK(Y )) = 1.
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Proof. Clearly, gcd(S(Y ),ZK(Y )) = 1 iff K does not contain roots of S(Y ). Since
S(Y ) = Y 3nh−3 +Y 2nh−3 +Y nh−3 = Y nh−3(Y 2nh +Y nh +1), roots of S(Y ) are
0 (when nh > 3), which is not in K, and roots of S∗(Y ) := Y 2nh + Y nh + 1.

Consider the polynomial P (X) = X2 + X + 1 where Y nh from S∗(Y ) is
substituted by X. Let a be a root of P (X). Since a2 = −a − 1, we have a3 =
−a2 − a = a + 1 − a = 1. Thus, the order of a divides three. The order cannot
be one since then a1 = a = 1, but P (1) = 1 + 1 + 1 
= 0 when char(F) 
= 3.
Thus, the order of a is three. If a ∈ K, then by Lagrange’s theorem, 3 | nk,
violating the assumption 3 � nk. Thus, a /∈ K. Finally, suppose that b is a root
of Y 2nh + Y nh + 1. If b ∈ K, then bnh ∈ K and P (bnh) = 0. We already showed
that P (X) does not have roots in K and thus, S(Y ) does not have roots in K. ��
Lemma 7. If char(F) 
= 3, nh ≥ 3, 3 � nk, and β ∈ Cβ, then S(Y ), ZK(Y ),
Y − β, and Y − βωm are pair-wise coprime.

Proof. Let us look at all the pairs one-by-one.

1. We proved in Lemma 6 that S(Y ) and ZK(Y ) are coprime assuming char(F) 
=
3, nh ≥ 3, and 3 � nk.

2. Suppose that β = βωm. Then, β(ωm − 1) = 0 and thus either β = 0 or
ωm = 1. However, 0 /∈ Cβ . Moreover, ωm 
= 1 since m < nh. Thus, Y −β and
Y − βωm are coprime.

3. ZK(Y ) is coprime with Y − β and Y − βωm since β and βωm are not roots
of ZK(Y ) by the definition of Cβ .

4. For the same reason, S(Y ) is coprime with Y − β and Y − βωm. ��
Theorem 1. Assume that char(F) 
= 3, nh ≥ 3 and 3 � nk. Then, Vampire is
knowledge-sound in the AGM under the PDL assumption. More precisely, an
algebraic A breaks the knowledge-soundness of Vampire with probability at most

Advpdld1,d2,Pgen,B(λ) · |F|2
|F|2−q + 16nh+4m0−12

|Cβ | + nh−1
|F|−nh

, (18)

where B is some PPT adversary, d1 = max(dgap + d, nk − 1), d2 = nk + dgap +2,
and q ≤ 2 + nk + dgap + dmax such that dmax = max(dgap + d, nk − 1).

Proof. Let A = (A1,A2) be an arbitrary algebraic adversary in the knowledge
soundness game and ExtA its extractor. In each round, A sends some elements
of either G1 or F. For the elements of G1, ExtA outputs coefficients of a poly-
nomial where its monomials belong to S1(X,Xτ ). We denote polynomials that
the adversary sends as z̃(Y,Xτ ), ψipc(Y,Xτ ), R(Y,Xτ ), and Bpc(Y,Xτ ), where
each of the polynomials is in the span of S1(Y,Xτ ). We denote the field elements
vz, vM ∈ F, sent by the prover, as in the honest protocol description.

In Fig. 4, we depict the knowledge extractor Ext. Ext runs ExtA7 to obtain
coefficients of z̃(Y,Xτ ). Ext then evaluates z̃(Y, 0) · Zinp(Y ) at points of Y ∈ H,
corresponding to za and zb in the honest argument. Ext then returns those
vectors. In the rest of this proof, we show that the value outputted by Ext is a
valid witness for x with an overwhelming probability.
7 Even though A is interactive, since we extract only from the first round message of

A, the knowledge soundness extractor is still non-interactive.
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Fig. 4. The knowledge-soundness extractor Ext for Vampire zk-SNARK where A is an
algebraic adversary and ExtA its extractor.

We have one verification check that guarantees V(σ, τ) = 0, where

V(Y, Xτ ) := (z̃(Y, Xτ )− vz) · (Y − β)ZK(Y )S(Y )+
(
Ψ(Y, Xτ )S(Y )− ψipc(Y, Xτ )

) · (Y − βωm)ZK(Y )+
((

num(Y )− vM
nk

den(Y )
)

Xτ − R(Y, Xτ )zden(Y )
)
· (Y − β)(Y − βωm)S(Y )−

Bpc(Y, Xτ ) · (Y − β)(Y − βωm)ZK(Y )S(Y ) ,

where Ψ(Y,Xτ ) =
(
Λb
H
(α, β) − vM · z(βωm)

)
(Zinp(β)z̃(Y,Xτ ) + inp(β)) for

z(βωm) = Zinp(βωm)vz + inp(βωm). (V(σ, τ) = 0 follows from (��) in Fig. 3
when one allows polynomials like z̃(Y,Xτ ) to be maliciously chosen.)

Clearly, Pr[A wins] ≤ Pr[A wins | V(Y,Xτ ) = 0]+Pr[A wins | V(Y,Xτ ) 
= 0].
Below, we will analyze both conditional probabilities.

Lemma 8. Assume char(F) 
= 3, nh ≥ 3, and 3 � nk. For an algebraic A,
Pr[A wins | V(Y,Xτ ) = 0] ≤ (16nh + 4m0 − 12)/|Cβ | + (nh − 1)/(|F| − nh).

Proof. Assume V(Y,Xτ ) = 0. Recall that by Lemma 7, S(Y ), ZK(Y ), Y − β,
and Y − βωm are pair-wise coprime. Hence, we can use Lemma 5 with f1(Y ) =
z̃(Y,Xτ )S(Y ), f2(Y ) = Ψ(Y,Xτ )S(Y )−ψipc(Y,Xτ ), f3(Y ) = (num(Y )−vM/nk ·
den(Y ))Xτ − R(Y,Xτ )zden(Y ), T1 = {βωm}, T2 = {β}, T3 = K, vβωm = vz,
vβ = 0, and vy = 0 for y ∈ K. It follows from V = 0 and Lemma 5 that

z̃(βωm,Xτ ) = vz , (19)
Ψ(β,Xτ )S(β) − ψipc(β,Xτ ) = 0 , (20)

∀y ∈ K.
(
num(y) − vM

nk
den(y)

)
Xτ − R(y,Xτ )zden(y) = 0 . (21)

We analyze each of the three equations separately.
Equation (19). Denote z̃(Y,Xτ ) = z̃′(Y )Xτ + z̃′′(Y ). It follows from Eq. (19)

that z̃′(βωm)Xτ + z̃′′(βωm) = vz. Thus, z̃′′(βωm) = vz and z̃′(βωm) = 0.
Equation (21). Write R(Y,Xτ ) = R′(Y )Xτ + R′′(Y ) and Q(Y,Xτ ) =

Q′(Y )Xτ +Q′′(Y ). In particular, deg R′(Y ) ≤ nk−2 since the only Xτ -dependent
monomials in S1(Y ) are (Y iXτ )nk−2

i=0 . Thus, from Eq. (21),

∀y ∈ K.
(
num(y) − vM

nk
den(y) − R′(Y )zden(y)

)
Xτ − R′′(y)zden(y) = 0.
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Hence, ∀y ∈ K.num(y) − vM/nk · den(y) − yR′(y)den(y) = 0, that is, ∀y ∈
K.T (y) := num(y)/den(y) = vM/nk + yR′(y). Since T̂ (Z) :=

∑
y∈K

T (y)LK

y (Z)
has degree ≤ nk − 1, we get that T̂ (Z) = ZR′(Z) + vM/nk. By Fact 1,

M b(α, β) =
∑

y∈K
T (y) =

∑
y∈K

T̂ (y) = vM . (22)

Equation (20). Denote ψipc(Y,Xτ ) = ψ′
ipc(Y )Xτ + ψ′′

ipc(Y ). Observe that
ψ′′
ipc(Y ) ∈ PolyPunc

F
(d, dgap, Y ). We express Ψ(Y,Xτ ) as

Ψ(Y,Xτ ) =
(
Λb
H
(α, β) − vM · z(βωm)

) · (Zinp(β)z̃(Y,Xτ ) + inp(β))

=
(
Λb
H
(α, β) − vM · z(βωm)

) · (Zinp(β)(z̃′(Y )Xτ + z̃′′(Y )) + inp(β))
=Ψ ′(Y )Xτ + Ψ ′′(Y ) ,

where Ψ ′(Y ) :=
(
Λb
H
(α, β) − vM · z(βωm)

)
Zinp(β)z̃′(Y ) and Ψ ′′(Y ) =(

Λb
H
(α, β) − vM · z(βωm)

) · (Zinp(β)z̃′′(Y ) + inp(β)).
Thus, Eq. (20) implies (Ψ ′(β)S(β) − ψ′

ipc(β))Xτ + Ψ ′′(β)S(β) − ψ′′
ipc(β) = 0.

Hence, Ψ ′′(β)S(β) = ψ′′
ipc(β).

Denote ψ(Y ) :=
(
Λb
H
(α, Y ) − M b(α, Y ) · z(Y ωm)

) · (Zinp(Y )z̃′′(Y ) + inp(Y )).
Let V3(Y ) := ψ(Y )S(Y )−ψ′′

ipc(Y ). By Eq. (22), ψ(β) = Ψ ′′(β) and thus V3(β) =
0. Since ψ(Y ) and ψipc(Y ) were fixed before the adversary received β, we can
apply the Schwartz-Zippel lemma to V3. Recall that (1) deg z̃′′ ≤ dgap + d, (2)
deg inp ≤ nh − 1, (3) degZinp ≤ 2(m0 + 1), (4) deg z ≤ dgap + d + 2(m0 + 1),
(5) degY ΛH(α, Y ) ≤ nh − 1, degY M b(α, Y ) ≤ nh − 1, (6) deg ψ′′

ipc ≤ dgap +
d, (7) deg ψ ≤ (nh − 1) + 2 (dgap + d + 2(m0 + 1)) = 13nh + 4m0 − 9. Thus,
deg V3 ≤ max(deg ψ + dgap,deg ψ′′

ipc) ≤ max(16nh + 4m0 − 12, 6(nh − 1)) =
16nh + 4m0 − 12. If V3(Y ) 
= 0, then the verifier’s acceptance implies that
V3(β) = 0, which according to Schwartz-Zippel lemma can only happen with
probability (16nh + 4m0 − 12)/|Cβ |.

Let us consider the case V3(Y ) = 0. Since ψ(Y )S(Y ) = ψ′′
ipc(Y ), deg ψ′′

ipc ≤
dgap+d and deg S = dgap, then deg ψ(Y ) ≤ d. Since Y dgap /∈ S1(Y,Xτ ), the coeffi-
cient of Y dgap in ψ(Y )S(Y ) = ψ′′

ipc(Y ) =
∑dgap+d

i=0 (ψ′′
ipc)iY

i is 0. But this coefficient
is ψ0 + ψnh

+ ψ2nh
= 0. Thus, from Lemma 1, it follows that

∑
y∈H

ψ(y) = 0.
Let us express ψ(Y ) as ψ(X,Y ), where X corresponds to α. We estab-

lished that
∑

y∈H
ψ(α, y) = 0. For any y ∈ H, deg ψ(X, y) = nh − 1. If∑

y∈H
ψ(X, y) 
= 0, then by the Schwartz-Zippel lemma,

∑
y∈H

ψ(α, y) = 0 with
probability at most (nh − 1)/(|F| − nh). Assume that

∑
y∈H

ψ(X, y) = 0. By
Lemma 4, ∀x ∈ H.P (x) = 0, where P (x) is as in Eq. (4). In the beginning
of Sect. 4, we established that this equation is equivalent to R1CSLite. Since
z(Y ) = Zinp(Y )z̃′′(Y )+inp(Y ) = z̃′′(Y )

∏m0+1
i=1 (Y −ωi−1)(Y −ωm+i−1)+	H1 (Y )+

∑m0
i=1 xi	

H

i+1(Y )+
∑m0+1

i=1 	Hm+i(Y ), then z(ωi−1) for i ∈ {1, . . . , m0+1} correctly
encodes (1,x1, . . . ,xm0). The extractor extracts z(ωi−1) for i ∈ {m0+2, . . . , m}∪
{m + m0 + 2, . . . , 2m} which indeed corresponds to the R1CSLite witness. ��
Lemma 9. Let d1 := max(dgap + d, nk − 1), d2 := nk + dgap + 2, and q ≤
2 + nk + dgap + dmax for dmax := max(dgap + d, nk − 1). For an algebraic A and
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V(Y,Xτ ) as above, there exists a PPT B, such that Pr[A wins | V(Y,Xτ ) 
= 0] ≤
Advpdld1,d2,Pgen,B(λ) · |F|2/(|F|2 − q).

Proof. The proof is standard and similar to [12]’s proof for Groth16 SNARK. We
sketch the main idea. We construct an adversary B that breaks the (d1, d2)-PDL
assumption if A wins in the knowledge soundness game and V(Y ) 
= 0.

B gets as an input (p; [(xi)d1
i=0]1, [(x

i)d2
i=0]2). B samples s1, s2, r1, r2 and defines

σ = s1x + r1 and τ = s2x + r2. Although B does not know σ or τ (they depend
on the challenge x), B is able to homomorphically compute elements of the form
[σi]ι and [σiτ ]ι (e.g., [σ]1 = s1[x]1+r1[1]1). The degrees d1 and d2 are sufficiently
high so that B can compute srs where σ and τ are the trapdoors. Next, B runs A
and ExtA on this srs to obtain the argument and related argument polynomials.
B now knows coefficients of verification polynomial V(Y,Xτ ).

When A wins, V(σ, τ) = 0. Let P(X) := V(S1X + R1, S2X + R2) ∈
(F[S1, S2, R1, R2])[X]. From Fact 4, if V(Y,Xτ ) 
= 0 has degree q, the coefficient
of the maximal degree of P(X) is some C(S1, S2) ∈ F[S1, S2] of degree q. Thus,
the coefficient of the leading term of P ′(X) := V(s1X + r1, s2X + r2) ∈ F[X]
is C(s1, s2). Since s1 and s2 are information-theoretically hidden from A (they
are masked by r1 and r2), by the Schwartz-Zippel lemma, C(s1, s2) = 0 at most
with probability q/|F|2. Thus, with an overwhelming probability, C(s1, s2) 
= 0
and P ′(X) 
= 0. Thus, B can find the roots of P ′(X). One of the roots must be
σ since P ′(σ) = V(s1σ + r1, s2σ + r2) = V(σ, τ) = 0. Finally, B outputs σ.

The total degree q of V is ≤ 2 + dgap + nk + dmax, where dmax := max(dgap +
d, nk − 2). Thus, Pr[A wins | V(Y ) 
= 0](1 − q/|F|2) ≤ Advpdld1,d2,Pgen,B(λ). Hence,
Pr[A wins | V(Y ) 
= 0] ≤ Advpdld1,d2,Pgen,B(λ) · |F|2/(|F|2 − q). ��
It follows from these lemmas that Eq. (18) holds. This proves the claim. ��

5.2 Zero-Knowledge Proof

Theorem 2. Let b = 4. Then, Vampire is perfectly zero-knowledge.

We prove zero-knowledge (and subversion zero-knowledge) in the full version.
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Abstract. The goal of this paper is to improve the efficiency and appli-
cability of straightline extraction techniques in the random oracle model.
Straightline extraction in the random oracle model refers to the existence
of an extractor, which given the random oracle queries made by a prover
P ∗(x) on some theorem x, is able to produce a witness w for x with
roughly the same probability that P ∗ produces a verifying proof. This
notion applies to both zero-knowledge protocols and verifiable computa-
tion where the goal is compressing a proof.

Pass (CRYPTO ’03) first showed how to achieve this property for
NP using a cut-and-choose technique which incurred a λ2-bit overhead
in communication where λ is a security parameter. Fischlin (CRYPTO
’05) presented a more efficient technique based on “proofs of work” that
sheds this λ2 cost, but only applies to a limited class of Sigma Protocols
with a “quasi-unique response” property, which for example, does not
necessarily include the standard OR composition for Sigma protocols.

With Schnorr/EdDSA signature aggregation as a motivating appli-
cation, we develop new techniques to improve the computation cost of
straight-line extractable proofs. Our improvements to the state of the art
range from 70×–200× for the best compression parameters. This is due
to a uniquely suited polynomial evaluation algorithm, and the insight
that a proof-of-work that relies on multicollisions and the birthday para-
dox is faster to solve than inverting a fixed target.

Our collision based proof-of-work more generally improves the
Prover’s random oracle query complexity when applied in the NIZK set-
ting as well. In addition to reducing the query complexity of Fischlin’s
Prover, for a special class of Sigma protocols we can for the first time
closely match a new lower bound we present.

Finally we extend Fischlin’s technique so that it applies to a more gen-
eral class of strongly-sound Sigma protocols, which includes the OR com-
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position. We achieve this by carefully randomizing Fischlin’s technique—
we show that its current deterministic nature prevents its application to
certain multi-witness languages.

1 Introduction

A Sigma protocol is a three move public coin proof for a language L that
allows for efficient sampling of transcripts without a witness (honest-verifier
zero-knowledge), and has the property that any pair of accepting conversations
that share the same first message will yield a witness for the statement (two-
special soundness). Sigma protocols are a useful abstraction in multiple regards,
as many algebraic languages admit highly efficient sigma protocols [Sch91], com-
pilers for more complex languages have been constructed [CDS94], and analysis
of whether a protocol does indeed meet the definition of a Sigma protocol is
usually straightforward.

In the many settings where a non-interactive zero-knowledge proof (NIZK)
suits the network constraints, a Sigma protocol can be efficiently compiled to a
NIZK in the Random Oracle model [FS87,Pas03,Fis05]. The Fiat-Shamir com-
piler [FS87] is the most efficient with essentially no overhead in computation or
communication, however the extractor induced for the proof-of-knowledge prop-
erty requires rewinding a malicious prover in order to extract a witness. This
extraction technique known as “forking” the adversary is due to Pointcheval
and Stern [PS96] and incurs a substantial penalty in the tightness of the secu-
rity reduction.

Moreover while a rewinding extractor is conducive to proving sequential
composition, when arbitrary concurrent composition is desired, an online or
straight-line extractor vastly simplifies matters. Straightline extraction refers to
the notion of soundness by which the witness for a theorem can be extracted
from a prover without rewinding. Early work in this area [SG02,CF01] estab-
lished its benefits for composition and tight security, and that protocols which
support straightline extraction require some setup such as a common random
string or a random oracle. The later choice is particularly useful in more practical
protocols.

Signature Aggregation. A recent application of straight-line extraction tech-
niques is in the aggregation of Schnorr/EdDSA signatures [CGKN21]. Signature
schemes based on the discrete logarithm problem alone have not traditionally
been known to support aggregation methods, unlike say pairing based construc-
tions [BLS01]. Chalkias et al. [CGKN21] construct a Sigma protocol by which
one can prove knowledge of a collection of Schnorr signatures rather than trans-
mit them naively. The Sigma protocol is compressing, as its transcript is only half
the size of a naive concatenation of the signatures. Compiling this Sigma proto-
col to a non-interactive proof (i.e. an aggregate signature) via the Fiat-Shamir
transformation is efficient but problematic as it incurs a quadratic security loss
due to the forking lemma—doubling the size of the underlying elliptic curve
(to retain the same security level as the original signature) entirely erases the
compression due to aggregation. Using a straight-line extractable compiler to
produce a non-interactive proof yields a tight reduction, and therefore has the
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scope to retain the compression of the Sigma protocol while maintaining the
same security level as the signature itself.

1.1 Existing Approaches to Straight Line Extraction

Pass [Pas03] showed that the random oracle model could be used to achieve
efficient and easily implementable protocols that were straightline extractable,
deniable, and concurrently secure. The main idea in Pass is to apply a cut and
choose technique to a Sigma protocol wherein a Prover commits to the tran-
scripts of 2� invocations of the protocol with the same first message but different
challenges. These commitments are implemented using a Merkle tree consisting
of random oracle evaluations. The Merkle tree root is itself used as a random
oracle query, and the result determines the index of the transcript that is to
be decommitted to the verifier. Intuitively a prover that succeeds in this proto-
col must have committed to at least two accepting transcripts with probability
greater than 2−�; these two transcripts can then be used by the extractor (with-
out rewinding) to extract a witness due to the two-special soundness property of
the original Sigma protocol. This basic unit is repeated r = λ/� times to amplify
the soundness to a λ-bit security level. This technique applies to any two-special
sound Sigma protocol, and thus shows the universal straightline extractability
for any language in NP via Blum’s Hamiltonicity protocol. Unruh [Unr15] shows
how to adapt this technique to construct a non-interactive zero-knowledge proof
of knowledge that is secure against polynomial-time quantum adversaries1.

The drawbacks of this approach are two-fold: first, the Prover must compute
r · 2� protocol transcripts and hash them, and second, there is large overhead
in opening the leaves of the Merkle tree in each repetition of the basic unit.
Concretely revealing a single leaf costs �λ bits, and r leaves have to be revealed,
bringing the total overhead to r�λ = λ2 bits for the openings alone.

To partially address this inefficiency, Fischlin [Fis05] suggested a different
method for achieving straightline extraction that relies on the Prover using a
proof of work to find a suitable protocol transcript. Intuitively, the Prover must
compute a protocol transcript that, for example, hashes to zero for a suitably
chosen hash function. This is equivalent to ‘inverting’ the hash function at a fixed
target, i.e. finding a pre-image x so that H(x) = 0. The proof of work intuitively
forces the Prover compute several valid protocol transcripts (all starting with
the same first message), and thus allows an extractor to find a witness simply
by reading the different queries to the random oracle. This method avoids the
overhead of having to commit to many protocol instances and opening only one.
The main advantage of this approach is an asymptotically smaller transcript
because it entirely sheds the λ2 bits required for the Merkle tree openings, which
in many situations could be the dominant asymptotic term2.
1 The Unruh transformation removes the Merkle tree alltogether and thus incurs a

large overhead penalty; however the aim in that work is security against quantum
adversaries (which, e.g., cannot be rewound).

2 If a single Sigma protocol transcript is of size S, then a proof by [Pas03] is of size S ·
λ

log λ
+λ2. Assuming S ∈ O(λ), the λ2 Merkle opening cost dominates asymptotically.
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Inadequacies in the State of the Art. While the method of Fischlin achieves a
lower communication complexity, it also has two drawbacks.

– Prover Computation Overhead. The prover must hash roughly the same
number of transcripts in expectation as Pass in order to find a proof. Fischlin
provides some justification as to why the Prover of any NIZKPoK with a
straight-line extractor that does not program the random oracle must incur a
cost of ω(log λ) queries made to the random oracle [Fis05, Proposition 2] how-
ever the gap between optimal performance and the performance of Fischlin’s
scheme (if there is one) remains unexplored. This aspect is particularly evident
in the signature aggregation application, as the construction that Chalkias
et al. obtained upon applying Fischlin’s transformation suffered from a high
computation cost for the prover/aggregator.

– Limited Applicability Due To Quasi-unique Responses. For technical
reasons in their proof, Fischlin’s method only applies to a subset of three-
move protocols which satisfy a “quasi unique responses” property. Roughly
this means that no efficient prover can output a theorem x and a, e, z, z′

such that (a, e, z) and (a, e, z′) are both accepting transcripts for x. This
excludes Sigma protocols such as logical compositions and proof of knowledge
of Pedersen commitment openings. While it is folklore that this property is
not necessary for the extractor to succeed, to our knowledge it is unknown at
present if this property is strictly necessary for zero-knowledge.

1.2 This Work

We advance the study of straight-line extraction in the random oracle model on
the fronts of computation cost, as well as the applicability of Fischlin’s transform.
We make orthogonal but compatible improvements in both dimensions.

Computation Cost of Straight-Line Extraction. Our motivating application in
which to improve computation cost is signature aggregation, and so we first
develop our new techniques in this context and subsequently examine impli-
cations that are of more general interest. Roughly, the prover/aggregator in
Chalkias et al.’s construction evaluates a polynomial f that encodes the signa-
tures, in order to find points xi, f(xi) such that H(xi, f(xi)) = 0. The compu-
tation cost can be broken into two components: the cost Cqry per evaluation of
f , and the prover query complexity, i.e. number TAgg of evaluations of f that
must be hashed before a solution is found—we improve both components in this
work.

– Better Cqry via Improved Polynomial Evaluation. We make use of an
O(n1.5) polynomial evaluation algorithm that performs over an order of mag-
nitude better than the O(n2) naive method for practically relevant parame-
ters. After diligently searching the literature for this simple technique, we are
unaware of any previous application of this observation—perhaps because it
was already folklore. Nonetheless, we are the first to discover its unique suit-
ability to straight-line extraction especially for the parameters and elliptic
curve groups relevant to signature aggregation.



Improved Straight-Line Extraction in the Random Oracle Model 283

Theorem 1. (Informal) For Zq such that q − 1 has a few small factors, there
is an algorithm to evaluate a degree n polynomial at n points using 2n1.5 multi-
plications in Zq.

Polynomial evaluation algorithms with significantly better asymptotic costs are
known [vzGG13,BCKL21], however they are either concretely inferior in the
relevant parameter ranges, or outright incompatible with commonly used signing
curve groups.

– Collision Predicates Improve Prover Query Complexity. We replace
the inversion based proof-of-work predicate with a collision based one. In
particular the prover must now find xi, f(xi) values such that H(x1, f(x1)) =
· · · = H(xr, f(xr)), which is significantly faster (up to 2×) than finding inver-
sions at the same security level.

Theorem 2. (Informal) Let r be an integer, and H1 and H2 be random ora-
cles with output lengths �1 and �2 bits respectively. Let inv and col be predi-
cates such that invH1(x1, · · · , xr) = 1 iff H1(x1) = · · · = H1(xr) = 0�1 , and
colH2(x1, · · · , xr) = 1 iff H2(x1) = · · · = H2(xr). If r, �1, �2 are constrained so
that Pr[invH1(1, · · · , r)] = Pr[colH2(1, · · · , r)], then finding a satisfying assign-
ment for colH2 is faster than finding one for invH1 .

We find that the principle of collision finding having superior combinatorics
as compared to inversions more generally improves prover query complexity—
Fischlin’s NIZKPoK construction is sped up by 10 − 15% by directly applying
this insight. For a special class of Sigma protocols, the prover query complexity
improvement due to the collision predicate idea is up to 2×.

– Lower Bound on Query Complexity. We tighten Fischlin’s asymptotic
lower bound on prover query complexity to obtain a concrete one under cer-
tain conditions.

Lemma 1. (Informal) If a NIZKPoK scheme for a hard relation with a straight-
line extractor (in the non-programmable ROM) induces a verifier to make V
queries to the RO for a λ-bit security level, then the prover must on average
make at least POPT[V, λ] = (V ! · 2λ)

1
V queries in generating a proof.

This bound is not met by any existing constructions for non-trivial parameters.
However the special class of Sigma protocols mentioned above with the collision
predicate idea achieves the optimal query complexity for a range of non-trivial
parameters—this also serves to inspire confidence in the tightness of the bound.

Lemma 2. (Informal) There is a NIZPoK for the DLog relation with a straight-
line extractor (in the non-programmable ROM) where the prover makes roughly
POPT[V, λ] queries on average for V up to 5, and λ = 128 onwards.

We tighten the parameters and benchmark our improved aggregation con-
struction, the result of which report in Table 1. We obtain up to a 200× improve-
ment in prover computation over Chalkias et al. [CGKN21] for practically rel-
evant parameters, at the same compression rate. This makes provably secure
parameters for signature aggregation accessible in many real-world settings.
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Applicability of Fischlin’s Transform. We revisit (and eliminate) the role of
quasi-unique responses in Fischlin’s transform. To our knowledge, it is folklore
that the extractor does not strictly need this property, and it is unclear as to
whether it is really necessary for zero-knowledge. In fact, Fischlin even suggested
informally [Fis05, pg. 13] that their construction works for Sigma protocols for
languages with multiple witnesses (such as logical combinations [CDS94]) where
achieving quasi-unique responses appears to be simply a matter of adjusting syn-
tax. We find this intuition to be false; in particular we show by means of an attack
that witness indistinguishability is not preserved upon applying Fischlin’s trans-
formation to a natural Sigma protocol (i.e. logical OR composition [CDS94]) in
a context that appears to be conducive to quasi-unique responses. Intuitively
this stems from the deterministic nature of Fischlin’s Prover which leads to a
subtle trace of the witness in compiled proofs.

Theorem 3. (Informal) Fischlin’s transformation does not preserve Witness
Indistinguishability when applied to the Sigma protocol to prove knowledge of
one of two Discrete Logarithms.

Through a new proof, we show how a simple randomization of Fischlin’s
method allows it to be safely applied to any strong special sound Sigma proto-
col, where strong special soundness—which we introduce—is a simpler property
of a Sigma protocol and does not require context-specific reasoning (i.e. depen-
dence on setup parameters) like quasi-unique responses. Requiring strong special
soundness rather than quasi-unique responses strictly increases the applicability
of Fischlin’s transform.

Theorem 4. (Informal) Any Strong Special Sound Sigma protocol can be com-
piled to a straight-line extractable NIZKPoK in the ROM, with the same com-
putation and bandwidth efficiency as applying Fischlin’s transformation.

Our attack on WI appears to uncover an interesting aspect of the role of ran-
domness in straight-line extractable zero-knowledge proofs. Pass’ transformation
is randomized (due to its use of a commitment scheme), and naively derandom-
izing it would result in a similar attack. An interesting and natural question for
future work would be to identify the class of languages for which “well-behaved”
transforms that make black-box use of an underlying zero-knowledge protocol
and compile them into a straightline extractable one in the random oracle model
must be randomized.

We therefore demonstrate conclusively that one can do better than generic
cut-and-choose (i.e. Pass [Pas03]) for straight-line extractable NIZKs for many
algebraic languages in the random oracle model. Such languages include logical
combinations [CDS94], openings to Pedersen commitments, among many others
that are used in non-trivial cryptographic systems such as the anonymous survey
protocol [HMPs14].
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2 Our Techniques

We first recall Fischlin’s transformation in order to build intuition for our tech-
niques. The base unit of the transformation is the following: for the instance x,
the Prover computes a first message a of the Sigma protocol, and finds second
and third messages e, z such that Vx(a, e, z) = 1 and H(a, e, z) = 0 for some
�-bit hash function3 H, where � ∈ O(log λ). This is done by starting with e = 0
(and the corresponding response z) and computing H(a, e, z), iteratively step-
ping through e, z candidates which verify until the first e, z pair is found such
that H(a, e, z) evaluates to the all-zero string 0. An adversarial prover is able
to produce (a, e, z) such that H(a, e, z) = 0 without querying more than one
transcript to H only if it gets lucky with its first query, which happens with
probability 2−�. This base unit is therefore repeated r = λ/� times to achieve
λ bits of soundness; specifically, to bind these instances together and prevent
independent grinding, all of the a messages for the repeated instances are incor-
porated into the input to the hash function. For example, for 2 repetitions,
the Prover must produce a1, a2, e1, e2, z2, z2 such that H(a1, a2, e1, z1) = 0 and
H(a1, a2, e2, z2) = 0 and of course Vx(a1, e1, z1) = 1 and Vx(a2, e2, z2) = 1.

Prover Query Complexity. We refer to the (expected) number of queries
that the prover makes to the random oracle as the prover query complexity. For
instance, the Prover query complexity of Fischlin’s construction as described
above is r · 2� = r · 2λ

r , which implies a tradeoff between r (which governs proof
size and verification cost) and the query complexity. We develop the study of
prover query complexity in this work, as part of our study on the computation
cost of straight-line extraction.

Fischlin presents a variant of their transformation where the verifier accepts
‘near’ inversions. This is is not relevant for our work, as discussed in the full
version.

2.1 Schnorr/EdDSA Signature Aggregation and Computation Cost

Our motivating practical application is that of aggregating Schnorr/EdDSA
signatures with tight security. Chalkias et al. construct a compressing Sigma
protocol to prove knowledge of n Schnorr signatures, to which they apply Fis-
chlin’s transformation to obtain a non-interactive proof. As mentioned earlier,
their scheme is roughly to have the prover encode the n signatures as the
coefficients of a degree n − 1 polynomial f , and output a proof consisting of
(x1, f(x1)), · · · , (xr, f(xr)) such that each H(xi, f(xi)) = 0. They find produc-
ing such a proof to be computationally intensive, for instance over a minute
to aggregate even hundreds of signatures at a 53% compression ratio4 which
induces a prohibitively high latency for many applications.

3 The instance x is also included in the hash, but omitted for clarity.
4 The r parameter governs a tradeoff between query complexity and compression

ratio—a lower ratio is better compression, and 50% is the lowest possible [CGKN21].
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Faster Polynomial Evaluation with Curve25519. If we denote the prover
query complexity as TAgg, the prover must evaluate f at TAgg points. The first
aspect of the prover’s computation cost that we improve is the cost of produc-
ing TAgg evaluations of f . The naive method to evaluate a degree n polynomial
costs n multiplications in Zq, meaning that the prover performs nTAgg multipli-
cations. The Fast Fourier Transform (FFT) is a well-known method to speed up
polynomial evaluation to O(TAgg log n), and is used in straight-line extractable
proofs for general statements [AHIV17,BCR+19]. Unfortunately the most com-
mon variant of Schnorr in practice—EdDSA—uses Curve25519, whose corre-
sponding base field does not have a sufficiently large multiplicative subgroup to
support the FFT.

We instead make use of a method (Theorem 5) by which we can derive a
randomly chosen polynomial h of degree k < n, such that it agrees with f on
k points. Deriving h costs n multiplications, and evaluating h at each point
costs k multiplications, which means that we can obtain k evaluations of f at
roughly n + k2 cost rather than the naive nk—a substantial improvement when
k ≈ √

n. A prerequisite to use this method is that Zq must have a multiplicative
subgroup of size k, however unlike the FFT this method is randomized and can
be invoked multiple times using the same subgroup, with negligible probability
of producing redundant evaluations. Curve25519 has multiplicative subgroups of
size up to 132, which provides nearly optimal values of k ≈ √

n for the parameters
relevant to signature aggregation (n up to 212 or so).

The intuition for the method is as follows: we decompose f into k different
degree n/k polynomials fi such that f(x) =

∑

i∈[k]

xi · fi(xk). We then sample

α ← Zq, and derive h(x) =
∑

i∈[k] x
i · fi(αk). Observe that for any primitive kth

root of unity ω ∈ Zq and for any j ∈ [k], it holds that fi((αωj)k) = fi(αk) for
every fi. Consequently, h agrees with f on the points {α · ωj}j∈[k].

Better Prover Query Complexity via Collisions. We change the underly-
ing proof of work predicate to that of finding collisions rather than inversions
of the hash function. In particular, the prover outputs a proof consisting of
(x1, f(x1)), · · · , (xr, f(xr)) such that H(x1, f(x1)) = · · · = H(xr, f(xr)). For
the same r and soundness level (note that � has to be adjusted), analytical
estimates on multicollision running times [vM39,Pre93] place the query com-
plexity TAgg induced by this collision predicate at up to 2× better than that of
inversions.

Combining these improvements (along with a tighter analysis that makes the
proof of work easier by 2–8×) yields an improvement of a factor of 70×–200×
for the most aggressive compression settings reported in prior work (see Table 1).

Collisions Improve Fischlin’s NIZK. We generalize this principle and apply
it to Fischlin’s transform for NIZKPoKs as well, by using a collision pair base
unit as a drop-in replacement for inversion base units. In particular, a collision
pair base unit instructs the prover to find pairs of accepting Sigma protocol
transcripts (a, e, z) and (a′, e′, z′) such that H((a, a′), e, z) = H((a, a′), e′, z′). A
forgery requires a collision within the first two queries to the random oracle,
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which happens with probability 2−� for an �-bit hash function. This serves as a
drop-in replacement for a pair of inversion base units that achieve a combined �
bits of soundness. Analyzing the query complexity is difficult as this is a chosen
prefix collision [SLdW07], and so we test the new proof-of-work problem empiri-
cally and observe an 11%−15% improvement for common practical parameters.

A Query Complexity Lower Bound. We tighten Fischlin’s asymptotic lower
bound on hash queries for a NIZK with a non-programming extractor [Fis05,
Proposition 2] to derive Lemma 3 and subsequently Corollary 1, which charac-
terizes the optimal prover query complexity POPT[V ] for a given verifier query
complexity V . Intuitively if the prover makes P queries of which V are checked
by the verifier,

(
P
V

)
must be at least 2λ to achieve a 2−λ soundness error. We

note that this bound applies to schemes with perfect completeness, and while
Lemma 3 is sufficiently general to derive a strict bound for probabilistic schemes,
POPT serves as a useful reference point, and will be the quantity that we refer to
as ‘optimal’ prover query complexity.

We show via Claim 6 that the expected query complexity of Fischlin’s con-
struction is never better than

√
2POPT in any non-trivial parameter regime.

We note that Pass’ transform (and equivalently Unruh’s transform5 [Unr15])
has a (strict) query complexity that is twice that of the expected prover com-
plexity of Fischlin in any non-trivial parameter regime, and so we do not consider
Pass/Unruh going forward.

Achieving POPT. For a special class of r-simulatable Sigma protocols (i.e. r
transcripts are simulatable at once) we show that a NIZKPoK with prover
query complexity POPT can be achieved for a range of non-trivial parame-
ters. We construct this NIZK by applying a multicollision predicate akin to
our signature aggregation construction, where the prover must produce tran-
scripts (a, e1, z1), · · · , (a, er, zr) such that H(a, e1, z1) = · · · = H(a, er, zr). We
make use of classic results on multicollision complexities [vM39,Pre93] to analyze
the expected prover query complexities. Note that this transform is limited in
applicability—we show how Schnorr’s proof of knowledge of discrete logarithm
can be made r-simulatable, but leave it as an interesting problem for future work
to expand the scope of this transform.

Wider Application of Our Techniques. Our techniques for improving the
computation cost of Signature Aggregation can be applied directly to the thresh-
old cryptography context for the same signature schemes. For example, the most
expensive component of Distributed Key Generation (DKG) for the canonical
(t, n) threshold Schnorr scheme [Lin22, Protocol 6.1] is the NIZKPoK to prove
knowledge of a polynomial that is committed in the curve group. The instantia-
tion for this NIZKPoK suggested by Lindell [Lin22] is the batch PoK of Discrete
Log [GLSY04] compiled to a NIZK using Fischlin’s transform—i.e. exactly the

5 For the purpose of prover query complexity, Unruh’s transform can be seen as Pass’
transform without the Merkle trees to reduce the number of repetitions of the base
Sigma protocol.
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same as EdDSA signature aggregation (with an extra blinding factor). Conse-
quently, DKG for (t, n) EdDSA can benefit from roughly the same speedup that
we report for signature aggregation. We briefly discuss other applications related
to threshold cryptography with Curve25519 and secp256k1 in the full version.

Is Better (e.g. Sublinear) Aggregation Possible? Unfortunately, any
aggregation technique that is blackbox in the Schnorr hash function (such as
ours) is inherently limited to a 50% aggregation rate [CGKN21, Theorem 9].
The only known aggregation methods that are non-blackbox in the hash func-
tion involve expressing the hash function as an arithmetic circuit and invoking
a generic SNARK, which is much too slow for standard hash functions like
SHA2—on the order of 10s–100s of milliseconds per signature being aggregated,
as opposed to our technique which can process each signature in a fraction of a
millisecond.

2.2 Extending the Applicability of Fischlin’s Transform

A technicality in Fischlin’s transformation arises when it is possible for the
Prover to iterate through verifying transcripts without having to change the
challenge message e. Consider a Sigma protocol that permits an adversary with-
out a witness to sample (a, e), z1, z2, · · · zn such that each (a, e, zi) is a valid
transcript. Applying Fischlin’s transformation will not produce a sound NIZK
because an adversary can simply step through H(a, e, z1), · · · , H(a, e, zn) to
find a pre-image of 0 whereas an extractor may not be able to extract a witness
from this sequence of queries because they do not satisfy the requirements for
2-special soundness.

Although it is folklore that many Sigma protocols allow for extraction even
given accepting transcripts (a, e, z1), (a, e, z2) (examples include the famous logi-
cal OR composition [CDS94], opening of a Pedersen commitment, etc. for which
this is simply a matter of adjusting syntax), Fischlin’s transform only applies to
protocols that support a quasi-unique response property, given below.

Definition 1. [Fis05, Definition 1] A Sigma protocol has quasi-unique responses
if for every PPT algorithm A, for system parameter k and (x, a, e, z1, z2) ←
A(k), we have as a function of k that the following probability is negligible:

Pr [Vx(a, e, z1) = Vx(a, e, z2) = 1 ∧ z1 �= z2]

Here the system parameter k can be an arbitrarily structured object sampled
according to some distribution, for e.g. an RSA modulus or h ∈ G such that
DLogg(h) is unknown, as required in Okamoto’s identification protocols [Oka93].

Interestingly, Fischlin’s proof also uses this property to argue zero-knowledge.
It is less obvious as to why quasi-unique responses is relevant for this purpose.
In the absence of an explicit attack on the zero-knowledge property when quasi-
unique responses does not hold, one may even conclude that it is simply an
artefact leveraged to prove the simulation secure.
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We show this intuition to be false. In particular, we construct an explicit
attack on Witness Indistinguishability when Fischlin’s transformation is applied
to a common Sigma protocol for a language with two witnesses. This attack is
the result of combining two facts:

– Fischlin’s Transformation is Deterministic. Once the Sigma protocol
first messages have been sampled, the prover’s algorithm is deterministic.

– Some Sigma Protocols Reveal the Prover’s Randomness. In particu-
lar Schnorr’s proof of knowledge of discrete logarithm reveals a linear combi-
nation of the witness and the prover’s randomness—knowledge of the witness
therefore allows an attacker to reconstruct the prover’s randomness.

It is therefore possible for an attacker to retrieve the prover’s random tape
when given a Fischlin-compiled Schnorr proof, and replay the prover’s steps
and reconstruct the proof string. To demonstrate why this is problematic, we
examine the effect of this retrieve-and-replay strategy given a Fischlin-compiled
proof of knowledge of one-out-of-two discrete logarithms [CDS94]. In particular
if a prover uses one of x0, x1 to prove knowledge of x0 ·G∨x1 ·G, an attacker with
knowledge of say x0 can execute the retrieve-and-replay strategy to test if x0

was indeed used in producing the proof string. We show that if the attacker uses
x0 to execute this strategy on a proof that was actually produced using x1, there
is a non-negligible chance that the proof string that the attacker reconstructs
will be different from the given one (as opposed to a proof string produced using
x0, which always matches the reconstruction). Intuitively, this is because the
proof string serves as a record of how many Sigma protocol transcripts had to
be hashed before a solution to the proof of work was found—recomputing the
proof using a different witness might result in finding a solution by hashing fewer
transcripts.

We note that our attack runs entirely in the random oracle model and does
not exploit concrete instantiations of the hash function, unlike previous work
that studies the concrete instantiability of Fischlin’s transform [ABGR13].

Randomization Fixes the Problem. We formalize a notion of strong special
soundness to capture the folklore notion that accepting transcripts of the form
(a, e, z1),(a, e, z2) yield a witness. This is a subtle change in the definition of
special soundness; luckily many natural Sigma protocols (including those with
multiple witnesses for which Fischlin’s transformation is shown not to work as
above) satisfy this property, including every regular special sound Sigma protocol
that supports quasi-unique responses.

We then show how to randomize Fischlin’s transformation to erase all traces
of the witness from the compiled proof strings, and prove that zero-knowledge is
guaranteed unconditionally for any strong special sound Sigma protocol. Intu-
itively this is achieved by having the prover step randomly through the challenge
space to find a solution to the proof of work, and this form of randomization is
directly compatible with a collision-based proof of work.
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3 Preliminaries

A Sigma protocol is a three move public coin protocol between a prover
PΣ(x,w) and a verifier VΣ(x). We further use (state, a) ← PΣ,a(x,w) to denote
the internal state and first message output by PΣ respectively. Subsequently
z ← PΣ,z(state, e) denotes the response of PΣ upon being given the previously
produced internal state, and the verifier’s challenge respectively. We omit the
formal definitions of Sigma protocols and straight-line extraction due to space
constraints, and defer them to the full version.

4 Signature Aggregation with a Tight Reduction

We first explore aggregating EdDSA signatures as a motivating practical applica-
tion. In particular, we are focused on obtaining a tight reduction for the unforge-
ability of the aggregate signature to that of the underlying signatures, which at
its core is a problem of straight-line extraction. We briefly recap the work of
Chalkias et al. [CGKN21] who recently constructed an aggregation scheme for
Schnorr (of which EdDSA is a widely used instantiation) that achieves factor 2
compression in the random oracle model.

Sigma Protocol and Non-interactive Compilation. Their first step is to
construct an n-special sound Sigma protocol to prove knowledge of n Schnorr
signatures. For signatures instantiated over a field of order q, the transcript of
the Sigma protocol is of size (n + 1)|q| bits, as opposed to naive transmission of
n signatures which would require 2n|q| bits.

They subsequently apply Fischlin’s transformation to their Sigma protocol in
order to construct a non-interactive proof of knowledge that enjoys a tight reduc-
tion (yielding provably secure parameters, unlike Fiat-Shamir) while achieving
a compression rate that can be arbitrarily close to 2. However the proximity to
factor 2 compression comes at the expense of prover computation.

Concretely as per [CGKN21, Figure 2] aggregating EdDSA6 signatures with
Fischlin’s transformation incurs an amortized cost of 4.2ms per signature when
compressing by a factor of 1.33, and 39.7ms for factor 1.81 compression. This is
multiple orders of magnitude slower than the Fiat-Shamir compiled proof (which
incurs a fraction of a microsecond per signature on the same hardware) and
processing even hundreds of signatures at once becomes prohibitively expensive.

Faster Straight-Line Extraction. In this section we will develop the tools to
substantially speed up the aggregation of EdDSA signatures with straight-line
extraction in the random oracle model. Our improved aggregation algorithm is
up to 200× faster for practically relevant parameters, and potentially within the
performance envelope of real-world applications.

6 We use EdDSA to refer to Ed25519 [BDL+12] in particular, which is believed to
instantiate a 128-bit security level.
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4.1 Recap of [CGKN21] Construction

Schnorr Compression Sigma Protocol [CGKN21]. Recall that a Schnorr signa-
ture on a message m ∈ {0, 1}∗ under a public key pk ∈ G consists of a nonce
R ∈ G and a scalar s ∈ Zq such that z · G = HSch(pk, R,m) · pk + R. Informally
the Sigma protocol is the combination of two ideas:

1. Once m, pk, R are determined there is a unique s ∈ Zq that ‘completes’ the
signature, and this is the discrete logarithm of the publicly computable group
element S = HSch(pk, R,m) · pk + R. Proving knowledge of the discrete loga-
rithm of S is therefore equivalent to proving knowledge of the missing com-
ponent of the signature.

2. There is an n-special sound Sigma protocol to simultaneously prove knowledge
of the discrete logarithms of n public group elements at the same bandwidth
cost of a single PoK of DLog [GLSY04].

Upon fixing n messages mi and signatures (Ri, si)i∈[n] under respective public
keys pki, the prover is given a challenge e ∈ Zq, to which it computes the response
z =

∑
i∈[n] si · ei. The verifier is given the statement (pki, Ri,mi)i∈[n], challenge

e, and the putative Prover’s response z, and validates them by verifying that
z · G =

∑
i∈[n] e

i · (HSch(pki, Ri,mi) · pk + Ri).

Applying Fischlin’s Transformation. Chalkias et al. directly apply Fischlin’s
transformation to the above Sigma protocol to obtain a non-interactive proof.
In particular, a ‘base unit’ of the proof is a challenge-response pair (ej , zj) such
that H(, ej , zj) = 0 where H is an �-bit random oracle, and this unit is repeated
r times in order to achieve a λ-bit soundness level. These parameters are set so
that a successful prover must query the random oracle with at least n accepting
transcripts except with probability 2−λ.

Breaking Down the Cost. We can express the prover’s computation cost in pro-
ducing a proof as TAgg · Cqry, where TAgg is the prover query complexity, i.e. the
number of (e, z) values the prover queries to the random oracle, and Cqry is the
cost of generating each (e, z) value. We discuss below how to improve on both
of these dimensions.

4.2 Reducing Cqry via Improved Polynomial Evaluation

The efficiency of polynomial evaluation algorithms is usually tied to the degree
of the polynomial being evaluated. In our case, the degree of the polynomial
corresponds to the number of signatures being aggregated. As the signature
batch size can be small in practice (e.g. number of transactions in a block, which
is around 2000 for Bitcoin [Blo]) asymptotically efficient polynomial evaluation
algorithms [vzGG13,BCKL21] may not be relevant to our setting (Fig. 1).
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Theorem 5. Given a prime q, degree n polynomial f ∈ Zq[X], and primitive
kth root of unity ω ∈ Zq, Algorithm PolyEval outputs a list of k distinct points
that lie on f at a cost of k2+n+2 log k multiplications and k(k−1)+n additions
in Zq.

Fig. 1. Improved polynomial evaluation

We defer the proof of this theorem to the full version.
While this is a significant improvement over the naive polynomial evaluation

algorithm (which requires nk Zq multiplications), in our application we need to
evaluate f over a large set of points, and PolyEval only produces a batch of k
evaluations. A simple extension to produce a batch of say m · k evaluations is
to invoke PolyEval m times independently. However it is possible that there may
be some redundancy across the multiple evaluations, i.e. independent instances
may evaluate f at the same point. We show in the full version that for the
parameters relevant to our setting, the probability of there being any redundancy
is negligible.

Efficiency. As per Theorem 5, PolyEval achieves the best improvement when
k ≈ √

n. In this case, evaluating a degree n polynomial at
√

n points costs
roughly 2n multiplications, which is a factor

√
n/2 improvement over the naive

method. This improvement is subject to the availability of appropriate k in the
field in question. The setting that we consider in this paper involves the EdDSA
signature scheme, which uses Curve25519 [Ber06], which in turn is of order q
such that q − 1 is divisible by 4, 3, and 11. Given that we are interested in
n < 212 or so, we are able to find a nearly optimal k for any value of n in our
range. We plot the improvement achieved by PolyEval in Fig. 2.
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Fig. 2. This graph plots the computation cost of evaluating a polynomial of degree n
up to 212 at n points in Zq, where q is the order of the elliptic curve Curve25519 used
for EdDSA. The cost is derived analytically.

Comparison with ECFFT. The very recent work of Ben-Sasson et
al. [BCKL21] introduces a method to enable an FFT-like recursive evaluation
of a polynomial in any arbitrary Zq, by using isogenies of elliptic curves. Their
algorithm achieves impressive asymptotic as well as concrete performance in
the preprocessing model, and can be applied to our setting. In particular, their
O(n log2(n)) complexity is asymptotically superior to our O(n1.5) PolyEval algo-
rithm. However for our parameter range, we find our PolyEval algorithm to per-
form better, as we show in Fig. 3.

4.3 Improving Prover Query Complexity TAgg

First we note that tightening the parameters of [CGKN21] via a better analysis
yields an improvement of 2 to 8× in the hardness setting for the proof-of-work
problem. Intuitively this is because of Chalkias et al.’s direct application of
Fischlin’s transform by repeating a base unit sufficiently many times for the
desired soundness level, whereas one can prove better parameters by directly
analyzing the final construction, i.e. the event that a malicious prover finds r
inversions within n queries.



294 Y. Kondi and A. Shelat

0

10

20

30

40

50

60

70

4 16 64 256 1024 4096 16384

F
ac

to
r
im

pr
ov

em
en

to
ve

r
na

iv
e

Degree of polynomial

This work (PolyEval)
ECFFT

Fig. 3. This graph plots the factor improvement over the naive method, in evaluating
a polynomial of degree n up to 214 at n points in Zq, where q is the order of the
BN-254 elliptic curve. The improvement factor for ECFFT is taken from a public Rust
implementation [wbo]. We did not re-implement PolyEval for this curve, however our
Rust implementation for Ed25519 is faithful to our analytical estimate, and so we
derived the improvement factor for PolyEval analytically.

Our Idea. We change the underlying ‘proof of work problem’ solved by the
prover from finding r inversions to finding an r-collision. In particular the prover
now searches for (ej , zj)j∈[r] such that H(, e1, z1) = · · · = H(, er, zr), where H
is a random oracle with output bit length � ≥ (λ + r log2(n) − log(r!))/(r − 1).
This yields a ≈ 1.5 to 2× improvement in TAgg corresponding to the ratio of the
costs of finding an r-collision to that of finding r inversions at the same security
level (even with the improved analysis).

We give the full protocol and justify its parameterization below. However we
defer a more precise analytical justification of why finding an r-collision is faster
than finding an equivalent number of inversions at the same security level to
Sect. 5.3.

Caveat: Memory Complexity. We note that keeping track of collisions con-
sumes more memory—O(TAgg)—than the inversion construction which only
needs O(λ). In practice, however, this is quite a small amount (up to 30MB
for benchmarked parameters).
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Further Applications. The superior combinatorial characteristics of the col-
lision problem over the inversion problem has interesting implications for the
computation complexity of straight-line extraction even in the zero-knowledge
setting. In Sects. 5.1 and 5.3, we show how to improve the prover’s query com-
plexity when compiling any standard Sigma protocol to a NIZKPoK by 10–15%,
and for some special Sigma protocols by up to a factor of 2. The latter is par-
ticularly significant as it matches a new lower bound that we prove.

4.4 Putting It Together – Improved EdDSA Aggregation

We combine our improvements to TAgg and Cqry to obtain an EdDSA signa-
ture aggregation algorithm πAggr with substantially improved prover computa-
tion complexity, which we give below in Fig. 4. We further justify its perfor-
mance improvements with our benchmarks in Table 1. We postpone the security
theorem to the full version.

Fig. 4. Collision based aggregation of n signatures
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Table 1. Comparing the computation cost for aggregation and aggregate-verification
of n Ed25519 signatures with SHA-256 hash function used for H1 on the same parame-
ters from [CGKN21]. The benchmarks were run using the publically available code
for [CGKN21], and a new Rust implementation of our method and the Criterion
rust framework; times show a 95% confidence interval over at least 30 runs on one
Intel i7-10710U core running at 3.9 Ghz with 32 GB of memory. Intervals are omitted
when less than 1ms. While the aggregation methods can easily be parallelized, each
of these benchmarks only use 1-core to properly compare against the implementation
from [CGKN21]. The best compression ratios are achieved on the first row at roughly
53%; the last row in the table achieves the worst ratio around 75%. Both construc-
tions have nearly the same bit size, with [CGKN21] slightly better due to smaller sized
polynomial evaluation points—the difference is around 1.5% at the better compression
rates.

n r Chalkias et al. Our work Improvement

AggVer(ms) AggSign AggVer(ms) AggSign

512 16 137 167 ± 13.0 s 134 2.2 ± 0.07 s 76x

1024 32 485 85.5 ± 4.8 s 452 ± 6 350 ± 10 ms 244x

256 16 78 40.6 ± 2.8 s 72 901 ± 36 ms 45x

512 32 258 20.1 ± 1.4 s 255 136 ± 3 ms 147x

128 16 43 9.9 ± 0.74 s 42 363 ± 8 ms 27x

256 32 147 5.5 ± 0.31 s 143 54 ± 1 ms 101x

32 8 5.7 84.2 ± 11.6 s 5.6 7.8 ± 0.5s 11x

64 16 21 2.9 ± 0.25 s 23 78 ± 1 ms 37x

128 32 80 1.4 ± 0.08 s 84.5 20 ms 70x

5 Applying the Collision Predicate to NIZKPoK

We apply the principle of replacing hash inversions in Fischlin’s transformation
with hash collisions to the original NIZKPoK transform, and observe improved
prover query complexity in this setting as well. We begin by considering the hash
collision predicate as a drop-in replacement to any Sigma protocol for which
Fischlin’s transformation can be applied, and observe an 11–15% improvement
in the prover’s query complexity.

To our knowledge this is the best query complexity achieved for NIZKs so
far, however a natural question is to ask to what extent such techniques can
be extended. To this end, we show a lower bound on the query complexity of
any NIZK that has a straight-line non-programming extractor in Sect. 5.2. We
find that Fischlin’s construction (which is the most query efficient straight-line
extractable scheme) never meets this lower bound for any non-trivial parameters.

We show in Sect. 5.3 that it is indeed feasible to meet this lower bound for
some non-trivial parameters, by means of a new transformation based on our
collision predicate. Unfortunately this transformation only applies to a special
class of Sigma protocols that have an r-simulatability property. We show in the
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full version how to construct such a Sigma protocol by extending Schnorr’s proof
of knowledge of discrete logarithm.

5.1 Unconditionally Improving Fischlin’s Query Complexity

Recall that the prover in Fischlin’s transformation is required to invert a fixed
target of the random oracle. In particular, a proof consists of a base unit where
the prover is required to find a Sigma protocol transcript (a, e, z) such that
H(, a, e, z) = 0�, and this unit is repeated r times to achieve λ = r · � bits
of security. We can replace this inversion based unit by a collision based one as
follows: the prover is required to find a pair of independent transcripts (a1, e1, z1)
and (a2, e2, z2) such that H(, a1, e1, z1) = H(, a2, e2, z2). Note that just as in
the case of Fischlin, includes a1, a2 to prevent trivial attacks. Additionally, the
output length of the hash function is 2�, i.e. doubled as compared to the inversion
predicate.

Security. Upon fixing , a prover is successful in finding an accepting pair
(a1, e1, z1) and (a2, e2, z2) in their first attempt with probability no more than
2−2�. Repeating this base unit r/2 times achieves security 2� · r/2 = λ bits.

Efficiency. A base unit of the collision based construction is equivalent to two
base units of the inversion construction; in both cases two Sigma protocol tran-
scripts are transmitted, and they achieve 2� bits of security. With regards to
computation cost, both constructions have the same cost per query made to the
random oracle (i.e. computing a fresh Sigma protocol response), and therefore
the difference comes down to the number of queries made per proof, i.e. the
prover query complexity.

What Query Complexity Does This Induce? Consider Z1,Z2 to be domains from
which (e1, z1) and (e2, z2) are drawn respectively, and observe that Z1,Z2 are
entirely disjoint when a1 �= a2. If we consider (, a1, e1, z1) and (, a2, e2, z2) to
be the ‘left’ and ‘right’ halves of the collision respectively, this means that any
given (, ai, ei, zi) can be a candidate pre-image for either the left or right half, but
not both. This is because any given ei, zi can be a verifying transcript with at
most one of a1 or a2. This task therefore becomes that of finding a chosen prefix
collision [SLdW07]. The combinatorics of chosen prefix collisions are considerably
more complex to analyze than regular collisions, making the derivation of the
exact query complexity of the above construction difficult. We instead measure
the query complexity induced by this predicate empirically, and report on the
results in Table 2.

As our experiments show, this chosen prefix collision predicate works for the
exact same Sigma protocols as Fischlin’s transformation, and improves on its
query complexity. A natural question for future work is if we can obtain further
improvements by considering multicollisions rather than pairs of collisions.
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Table 2. Comparing the computation cost of Fischlin’s approach to our chosen prefix,
pairwise collision approach. The reported value is the expected number of queries for
finding either one preimage, or 2 collisions taken over 500–2000 experiments. Parame-
ters for r and � are set for the same 128 bit security.

r � Fischlin Pairwise collisions

Expected queries � Exp queries Improvement

8 216 64,877 232 58,190 1.11

10 213 8,233 226 7,293 1.13

12 211 2,038 222 1,824 1.12

14 29 509 218 448 1.13

16 28 267 216 232 1.15

5.2 Lower Bound on Prover Query Complexity

Fischlin [Fis05] proved via a meta reduction that any NIZKPoK scheme (with
a non-programming extractor) for a language with a hard instance generator,
must have a super-logarithmic number of queries V in λ made by the verifier
to the random oracle. Fischlin’s proof demonstrated asymptotic bounds due to
its reliance on the hardness of the underlying language; in this work we are
concerned with tight parameters for concrete security as guaranteed in the ran-
dom oracle model, independently of the hardness of the underlying language. We
therefore initiate a study of concrete query complexity, in particular we express
this as the optimal prover query complexity P upon fixing V .

Caveat. We make a simplifying assumption, namely that the language L has a
hard instance generator I such that the probability that any PPT algorithm is
able to find a witness w for theorem x ← I(λ) is bounded by ελ 
 2−λ.

This assumption frequently does not hold as in practice one can instantiate
the NIZKPoK with a concrete soundness level comparable to the hardness of
instances generated by I, however making this simplification allows us to focus
on the random oracle query complexity of the NIZKPoK (which is given by
parameters independent of the language) without having to account for concrete
hardness of the language (which is very specific to each language and seldom
leveraged by the extractor of a NIZKPoK scheme).

We begin with the following lemma, which is a tightening of [Fis05, Propo-
sition 2]:

Lemma 3. If (P,V) is a straight-line extractable NIZKPoK scheme for a ελ-
hard language L in the random oracle model with the following characteristics
for security parameter λ:

– Perfect zero-knowledge simulator Sim
– �-bit output random oracle H
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– P queries made by P to H in generating a proof
– Probability pC > 0 of producing an accepting proof
– V queries made by deterministic V to H in verifying a proof, is a strict subset

of the queries made by P
– Non-programming extractor Ext with error ≤ 2−λ for an adversary that makes

≤ V queries to the random oracle

Then it must hold that: (
P
V

)

≥ pC

2−λ + ελ

We can use the above lemma to derive the optimal prover query complexity
for proofs that are non-trivially secure, i.e. when V 
 (

P
V

)
. We define POPT[λ, V ]

to be the smallest prover query complexity for a given verifier query complexity
V at a λ-bit security level.

Corollary 1. If (P,V) is a perfectly complete straight-line extractable NIZKPoK
scheme for ελ-hard language L in the random oracle model with all the charac-
teristics required by Lemma 3 with the additional constraints that V < λ and
2−λ � ελ, then its prover query complexity is at least:

POPT[λ, V ] ≈ (
V ! · 2λ

) 1
V

We defer both proofs to the full version.
In subsequent text we drop the argument [λ, V ] when it is obvious. Note that

POPT only characterizes the optimal prover query complexity for perfectly com-
plete schemes. Since Lemma 3 accounts for schemes with arbitrary completeness
errors, it is possible to amend Corollary 1 accordingly if desired. However we will
see that POPT serves as a useful benchmark for our study. Interestingly Fischlin’s
scheme, which has the lowest prover query complexity in the literature, performs
worse than POPT for all V > 1.

Claim 6. Let r parameterize the number of repetitions of a Sigma protocol used
to instantiate Fischlin’s NIZK [Fis05] at a λ-bit security level. Then the average
prover query complexity of the resulting scheme TFis is a factor of r/(r!)1/r worse
than the corresponding POPT. Therefore TFis > POPT for every r > 1.

Proof. The average prover query complexity TFis is given by the complexity
of finding r inversions of the all-zero string of r independent λ/r-bit random
oracles. This task requires r · 2λ/r tries in expectation. Since V = r, the optimal
prover complexity is given by POPT = (r! ·2λ)1/r. The ratio of the average prover
complexity to the optimal is therefore:

TFis

POPT
=

r · 2λ/r

(r! · 2λ)1/r
=

r

(r!)1/r

�
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The ratio TFis/POPT = 1 only when r = 1, which is of no use as the average
complexity of computing a proof honestly matches the average complexity of
forging a proof when r = 1. This ratio is

√
2 ≈ 1.41 when r = 2, and continues

to increase as r grows, ultimately converging7 at e ≈ 2.71. Given this it is natural
to ask, is it possible to meet POPT for any non-trivial parameters?

5.3 Special Case: r + 1-Special Sound Sigma Protocols

Given a Sigma protocol that is r+1-special sound and r simulatable (i.e. given r
challenges, a simulator can produce r accepting transcripts) we are able to apply
a multicollision predicate and reduce the prover’s query complexity as compared
with Fischlin’s inversion predicate even further—to the point where we can meet
POPT for a non-trivial parameter range.

Note that we present a randomized construction here—this aspect is orthog-
onal to query complexity. The purpose is to avoid dependence on ‘quasi-unique
responses’, which we will discuss in detail in Sect. 6.

We begin by refining the standard definition of Sigma protocols [Dam02]
to incorporate a weaker notion of soundness and simulatability. This notion
essentially requires (1) r+1-special soundness, which guarantees the success of an
extractor upon being given r+1 accepting conversations that begin with the same
first message, and (2) r-simulatability, which requires that for any statement, r
accepting conversations (with the same first message) can be simulated for any
r given challenges. We defer a formal definition and instantiation to the full
version. We describe our NIZK transformation in Fig. 5.

Theorem 7. If Σ is a strongly r+1-special sound Sigma protocol and �(r−1) =
λ, the protocol πNIZK is a straight-line extractable NIZKPoK in the random oracle
model, with an extractor that does not program the random oracle and achieves
extraction error Q/2λ for an adversary making Q queries to the random oracle.

Proof. (Sketch) We defer the full proof to the full version. Completeness follows
from the pigeonhole principle, as any function that maps a domain of size r · 2�

to a range of size 2� will produce at least one r-collision. Zero-knowledge comes
from the fact that the challenges e are distributed uniformly in {0, 1}t·r, and the
rest of the transcripts a,z can be simulated by invoking SimΣ(x, r,e). Proof-
of-knowledge follows from the fact that in order for an adversary to compute a
proof by querying fewer than r + 1 accepting Sigma protocol transcripts to H,
the first r accepting transcripts it queries to H must all evaluate to the same
�-bit string. This happens with probability (2−�)r−1 = 2−λ. �

Query Complexity. We make use of the analysis of multicollision running
times by von Mises [vM39] and revisited by Preneel [Pre93, Appendix B].

7 limr→∞ r/(r!)1/r = e.
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Fig. 5. Collision based NIZK

Corollary 2. [vM39,Pre93][Theorem B.2 and pg. 283] If T balls are randomly
distributed over n urns, the number T required to have at least one urn with r
balls with probability 1 − exp(−αr) is given by the following equation:

T · exp
(

− T

r · n

)

=
(
αr · n(r−1) · r!

)1/r

In order to obtain the time TCol required to find an r-collision in expectation,
one must solve for T when the parameter αr = 1. Substituting n = 2λ/(r−1) for
our context, we get that:

TCol · exp
(

− TCol

r · 2λ/(r−1)

)

=
(
2λ · r!

)1/r
= POPT

This equation is non-trivial to analyze relative to that of Fischlin, and so for
ease of understanding we plot the ratio T/POPT for both πNIZK and Fischlin’s
construction in Fig. 6. This plot shows that for some reasonable parameteriza-
tions around r ∼ 5, our construction achieves roughly 2x factor improvement in
Prover complexity.
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Fig. 6. Ratio of prover query complexities TCol and TFis to the optimal POPT (y-axis)
for different r parameters (x-axis), where TCol[r] and TFis[r] are the number of oracle
queries required to compute a proof in expectation upon fixing parameter r. Note that
TCol/POPT depends on the security parameter, whereas TFis/POPT is essentially invariant
of it. Consequently we plot TCol/POPT for a range of security parameters, where “λ-bit
Col” denotes a λ-bit security level.

Finally, we note that Fig. 6 only plots the ratio of Fischlin/Collision/optimal
but does not convey the actual prover query complexities at those parameter
choices.

6 Expanding the Applicability of Fischlin’s Transform

As mentioned in Sect. 1, Fischlin’s transformation applies to only a limited class
of Sigma protocols that satisfy a quasi-unique responses constraint. Fischlin
relied on this property to prove both zero-knowledge as well as proof of knowl-
edge. While it is folklore that this property is not strictly necessary for the
extractor, its necessity for zero-knowledge has remained thus far unclear.

We begin by showing in Sect. 6.1 a concrete attack on Witness Indistinguisha-
bility when Fischlin’s transformation is applied to the Sigma protocol used to
prove knowledge of one of two discrete logarithms [CDS94]. We then formal-
ize a strong special soundness property for Sigma protocols that suffices for
extraction, which includes languages that do not by default support the quasi-
unique responses property, such as the logical OR Sigma protocol mentioned
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above. Finally we show how appropriately randomizing Fischlin’s construction
can achieve ZK unconditionally, for any strong special sound Sigma protocol.

6.1 Testing Witness Use in Fischlin’s Transformation

Our distinguisher will not rely on the ability to query multiple accepting tran-
scripts for the same challenge. For reference, we first recall the underlying Sigma
protocol (due to Cramer et al. [CDS94]) in Fig. 7.

Fig. 7. Proving knowledge of one of two discrete logarithms [CDS94]

An adversary attacking Witness Indistinguishability conventionally possesses
two witnesses to the theorem and is given a proof π, and must determine which
witness was used to produce it. We construct a more powerful type of attack,
which makes use of a single witness and determines whether π was created using
this witness or the opposite one. This fact will be useful when examining the
protocol contexts in which our attack applies.

As we briefly discussed in Sect. 2.2, the attack strategy is to exploit the
deterministic nature of Fischlin’s prover by retrieving the Sigma protocol ran-
domness and retracing the prover’s steps. Concretely with Schnorr-style proofs,
the messages z and c and the witness determine the randomness. The attacker
can therefore retrieve this randomness, and simply replay the honest prover’s
algorithm and see if the resulting proof string is the same as the given one. The
main subtle step in this attack’s analysis is to argue that when this retrieve-
and-retrace procedure is applied using a different witness from the one used to
produce the proof string originally, there is a noticeable probability of producing
a different proof string.
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While the regular Witness Indistinguishability definition allows the adversary
to supply both witnesses, in order to stay within the constraints of quasi-unique
responses we formulate a stronger version of the WI experiment for our specific
setting. In our definition the challenger samples both witnesses and gives the
adversary only one of them (the other witness represents the trapdoor for the
system parameter k). We define our experiment as follows:
ExptDL-WI

A,P (1λ) :

1. The adversary A submits a bit b ∈ {0, 1} to the challenger
2. The challenger samples w0, w1 ← Zq and sets X0 = gw0 ,X1 = gw1

3. The challenger tosses a coin β ← {0, 1}, and computes π ← P((X0,X1), wβ)
4. The challenger sends X0,X1, wb, π to A
5. A outputs a bit

The advantage AdvDL-WI[A,P] of an adversary A is defined as:

|Pr [A(b, wb,X1−b, π) = 1 | β = 0] − Pr [A(b, wb,X1−b, π) = 1 | β = 1]|

Clearly any Witness Indistinguishable scheme will guarantee that the above
advantage is negligible. We now give our concrete attack and analysis.

Lemma 4. Let P be the prover’s algorithm obtained by applying Fischlin’s trans-
formation [Fis05] to the Sigma protocol to prove knowledge of one of two dis-
crete logarithms [CDS94]. Then there is an efficient adversary A such that
AdvDL-WI[A,P] is non-negligible.

Equipped with this non-negligibly successful adversary A, in the full version we
will show how a natural protocol scenario that appears to enable quasi-unique
responses in fact structurally resembles the ExptDL-WI

A,P experiment. This allows us
to deploy our ExptDL-WI

A,P adversary A to break the security of the larger protocol.

Proof. For simplicity, we consider only a single base unit, i.e. assume that there
is only one repetition in the transformed Sigma protocol.

Consider an attacker, that on input a proof π = ((a0, a1), e, (e0, e1, z0, z1))
obtained by applying Fischlin’s transformation to Σ∨

DL using �-bit output hash
function H, and witness wb, does the following:

1. Compute rb = zb − wb · eb and set stateb = wb, rb, (a1−b, e1−b, z1−b)
2. Starting with e = 0, increment e until H((a0, a1), e, (e0, e1, z0, z1)) = 0� is

found, where (e0, e1, z0, z1) = Pz
Σ∨

DL
(stateb, e)

3. Set πb = (a0, a1), e′, (e′
0, e

′
1, z

′
0, z

′
1)

4. If πb = π output b, otherwise output 1 − b.

Denote the witness used by the challenger to produce the proof as wβ . When
β = b the attacker outputs the correct bit with certainty since the honest prover’s
steps are perfectly reconstructed to produce πb = π. The interesting case to
analyze is when β = 1−b. There are two possible outcomes triggered in this case,
i.e., πb = π and πb �= π. The latter outcome is induced by the attacker finding
an accepting transcript (a, e′, z′) with e′ < e that resulted in H(a, e′, z′) = 0�
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(note that e′ > e is impossible as we know that H(a, e, z) = 0�, and so the prover
never increments past e). The implication in this event is that π was certainly not
produced using wb; this is because had the honest prover started with witness
wb and state stateb, it would have terminated with output π′ = (a, e′, z′) rather
than the given π.

It remains to show that this distinguishing event (call it diffProof) occurs
with non-negligible probability. Note that since the attack is always successful
when β = b, the value Pr[diffProof] characterizes the distinguishing advantage of
this attack. This is because AdvDL-WI[A,P] can be simplified as follows, given
that b is fixed:

|Pr [A(wb,X1−b, π) = b | β = b] − Pr [A(wb,X1−b, π) = b | β = 1 − b]|
= |1 − (1 − Pr[diffProof])| = Pr[diffProof]

Let Qb,i be the query made by the attacker that corresponds to responding to
the ith challenge using witness wb; in particular

Qb,i = (a0, a1), i,Pz
Σ∨

DL
(stateb, i)

and thus πb = Qb,i for the smallest i such that H(Qb,i) = 0�. Define Q1−b,i the
same way using state1−b = w1−b, r1−b, (ab, eb, zb), except that the query is made
by the challenger rather than the attacker in this experiment (since β = 1 − b).

Claim 8. ∀e′ �= e, it holds that Q0,e′ �= Q1,e′ .

Proof. Consider any e′ �= e. Let e′
0 = e′ ⊕ e1 and e′

1 = e′ ⊕ e0. Clearly e′
0 �= e0

and e′
1 �= e1 as e′ �= e = e0 ⊕ e1. By the structure of Pz

Σ∨
DL

(stateb, e
′), the queries

Qb,e′ are correspondingly constructed as follows:

Q0,e′ = (· · · e′
0, e1, · · · ) and Q1,e′ = (· · · e0, e′

1, · · · )
Clearly Q0,e′ �= Q1,e′ as e0 �= e′

0 and e1 �= e′
1. �

Corollary 3. ∀e′ �= e, the values H(Q0,e′) and H(Q1,e′) are independently dis-
tributed.

Recall that the event diffProof is precisely the event that the attacker finds
an accepting proof πb = (a, e′, z′) such that e′ < e. Rather than characterizing
diffProof in its entirety, we analyze a simpler special case. In particular, the event
H(Qβ,0) �= 0� (implying e > 0 in π) and H(Q1−β,0) = 0� (implying e′ = 0 and
hence πb �= π) induces diffProof. Then applying Corollary 3 we can therefore
lower bound Pr[diffProof] as follows:

Pr[diffProof] ≥ Pr[H(Qβ,0) �= 0� ∧ H(Q1−β,0) = 0�]

= Pr[H(Qβ,0) �= 0�] · Pr[H(Q1−β,0) = 0�]

=
2� − 1

2�
· 1
2�

=
2� − 1
22�

As we know that � ∈ O(log λ) is necessary for completeness, the denominator
of the above value 22� ∈ poly(λ). We therefore conclude that Pr[diffProof] is non-
negligible in λ, and this completes the analysis.
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6.2 Strong Special Soundness

Before describing how to patch the above attack, we present an easily verifiable
property of Sigma protocols for which our transformation applies. Rather than
attempting to quantify the ability of an adversary to induce a bad event, we
take a constructive approach in our definition; i.e., it is easier to evaluate precise
deterministic conditions (such as special soundness) rather than reason about
probabilistic/computational system parameters (as in quasi-unique responses).

Our definition is a mild strengthening of the two-special soundness notion for
Sigma protocols [Dam02], and so we call it strong two-special soundness—also
in homage to the similar concept of strong unforgeability for signature schemes.
Informally stated, a strongly two-special sound sigma protocol has an extractor
which when given two distinct accepting transcripts (a, e, z) and (a, e′, z′) that
share the same first message, outputs a witness for the statement with certainty
(note that e = e′ is allowed). The standard two-special soundness notion enforces
that e �= e′ for the extractor’s success. We give the formal definition in the full
version.

Many natural sigma protocols (including logical compositions [CDS94],
Okamoto’s identification protocol [Oka93], etc.) satisfy this definition (but may
not satisfy quasi-unique responses). There are two notable natural examples
that may not meet this definition: (1) Blum’s protocol to prove knowledge of a
Hamiltonian cycle [Blu86] allows the prover to open any cycle in the graph and
it is unclear as to how an extractor for strong special soundness can deal with
such a situation, and (2) the Sigma protocol that underlies EdDSA [BDL+12],
which is Schnorr’s scheme implemented over an elliptic curve group of compos-
ite order. The lax verification equation in the original specification means that
the verifier accepts multiple discrete logarithms for the same curve point. How-
ever we stress that this is due to lax realization of the abstraction required for
Schnorr’s sigma protocol, and is easily fixed in works that succeeded the origi-
nal spec [CGN20,BCJZ21]. Note that both cases will not support quasi-unique
responses either, if they are not strong special sound.

Note that any standard Sigma protocol that is not strongly two-special sound
can not have quasi-unique responses. In particular by definition the only way to
retain standard special soundness while violating strong two-special soundness is
by presenting accepting transcripts (a, e, z1), (a, e, z2) that do not yield a witness
for the theorem when given to the extractor. Any notion of efficient adversaries
being unable to find such transcripts in the case of quasi-unique responses is cap-
tured by amending the theorem for the strong two-special sound Sigma protocol
to include a disjunctive clause for knowledge of the system parameter trapdoor.

With our definition in place, we study how to compile such Sigma protocols
to NIZKPoKs using Fischlin’s technique.

6.3 Randomization Extends Fischlin’s Technique

The issue in Fischlin’s transformation is that the prover’s algorithm is deter-
ministic and consequently re-traceable. Indeed, if one were to instantiate the
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transformation of Pass [Pas03] by simply constructing a hash tree of accepting
protocol transcripts instead of a Merkle tree of commitments to such transcripts,
the same issue as described above would present itself more directly: given a proof
and candidate witness for the statement, one could simply extract the prover’s
randomness and test if recomputing the proof once again yields the given one.
This issue is implicitly avoided by Pass (at constant factor overhead) by con-
structing the Merkle tree with commitments to protocol transcripts. However it
is unclear how to make such an approach work with Fischlin’s transform; using
randomized commitments appears to be at odds with obtaining soundness.

We show that an alternate method of randomization can be used to extend
Fischlin’s technique to any strong special sound Sigma protocol. The idea is
to randomize the NIZK prover’s algorithm so that the prover randomly steps
through the challenge space until an accepting transcript that hashes to the
all-zero string is found. Intuitively, proofs produced with this modified transfor-
mation do not leak any information about how many queries the prover had to
make in order to find an accepting transcript. This makes it impossible for a
distinguisher to retrace the steps of a prover even given all witnesses as it does
not have access to the random sequence in which the prover queried the random
oracle. We give a formal description of the modified transformation in the full
version, along with a proof of security.
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Abstract. We show that the soundness proof for the De Feo–Jao–Plût
identification scheme (the basis for supersingular isogeny Diffie–Hellman
(SIDH) signatures) contains an invalid assumption, and we provide a
counterexample for this assumption—thus showing the proof of sound-
ness is invalid. As this proof was repeated in a number of works by various
authors, multiple pieces of literature are affected by this result. Due to
the importance of being able to prove knowledge of an SIDH key (for
example, to prevent adaptive attacks), soundness is a vital property.

Surprisingly, the problem of proving knowledge of a specific isogeny
turns out to be considerably more difficult than was perhaps anticipated.
The main results of this paper are a sigma protocol to prove knowledge
of a walk of specified length in a supersingular isogeny graph, and a
second one to additionally prove that the isogeny maps some torsion
points to some other torsion points (as seen in SIDH public keys). Our
scheme also avoids the SIDH identification scheme soundness issue raised
by Ghantous, Pintore and Veroni. In particular, our protocol provides a
non-interactive way of verifying correctness of SIDH public keys, and
related statements, as protection against adaptive attacks.

Post-scriptum: Some months after this work was completed and made
public, the SIDH assumption was broken in a series of papers by several
authors. Hence, in the standard SIDH setting, some of the statements
studied here now have trivial polynomial time non-interactive proofs.
Nevertheless our first sigma protocol is unaffected by the attacks, and
our second protocol may still be useful in present and future variants of
SIDH that escape the attacks.

Keywords: Post-quantum cryptography · Isogenies ·
Zero-knowledge · Proofs of knowledge

1 Introduction

While Supersingular Isogeny Diffie-Hellman (SIDH) [9,20] is a fast and efficient
post-quantum key exchange candidate, it has been hampered by the existence of
practical adaptive attacks on the scheme—the first of these given by Galbraith,
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Petit, Shani, and Ti [13] (the GPST attack), followed by other variations [12,29].
These attacks mean it is not safe to re-use a static key across multiple SIDH
exchanges without other forms of protection. As such, various countermeasures
have been proposed—though each with its unique drawbacks.

The first of these is to require one participant to use a one-time ephemeral
key in the exchange, accompanied by a Fujisaki–Okamoto-type transform [19]
revealing the corresponding secret to the other party. This allows the recipient to
verify the public key is well-formed, ensuring an adaptive attack was not used.
This is what was done in SIKE [1], and converts the scheme to a secure key
encapsulation mechanism (KEM). But it is of limited use in cases where both
parties wish to use a long-term key.

The second countermeasure is to use many SIDH exchanges in parallel, com-
bining all the resulting secrets into a single value, as proposed by Azarderakhsh,
Jao, and Leonardi [2]. This scheme is known as k-SIDH, where k is the number of
keys used by each party in the exchange. The authors suggest k = 92 is required
for a secure key exchange. Dobson, Galbraith, LeGrow, Ti, and Zobernig [10]
demonstrate how the GPST adaptive attack can be ported to k = 2 and above.
Note that the number of SIDH instances grows as k2, so this scheme is very ineffi-
cient. Urbanik and Jao’s [31] proposal attempted to improve the efficiency of this
protocol by making use of the special automorphisms on curves with j-invariant
0 or 1728, but it was shown by Basso, Kutas, Merz, Petit, and Weitkämper [3]
that Urbanik and Jao’s proposal is vulnerable to a more efficient adaptive attack
and actually scales worse in efficiency than k-SIDH itself (although the public
keys are approximately 4/5 of the size, it requires around twice as many SIDH
instances for the same security).

Finally, adaptive attacks can also be prevented by providing a non-interactive
proof that a public key is well-formed or honestly generated. Generic NIZK tech-
niques would make this possible, but in a very inefficient manner. Urbanik and
Jao [31] claim a method for doing so using a similar idea to their k-SIDH improve-
ment mentioned above. Their scheme is based on the SIDH-based identification
scheme by De Feo, Jao, and Plût [9], which is a fairly simple proof with single
bit challenges.

We briefly recall the De Feo, Jao, and Plût proof here, for full details see
Sect. 4.1. Let φ : E0 → E1 be the isogeny of degree �e1

1 we wish to prove
knowledge of. Let P0, Q0 be a basis of the torsion subgroup E0[�e2

2 ], and let
(P1, Q1) = (φ(P0), φ(Q0)). The prover chooses a pair of integers (a, b), and sends
to the verifier E2 = E0/〈[a]P0 +[b]Q0〉 and E3 = E1/〈[a]P1 +[b]Q1〉. The verifier
sends a single bit challenge chall. When chall = 0 the prover responds with (a, b),
and when chall = 1 the prover responds with an isogeny φ′ : E2 → E3 of degree
�e1
1 . The protocol is repeated until the verifier is satisfied.

We show a counterexample to the soundness of the original De Feo–Jao–
Plût scheme. Because this scheme (and proof) has since been used to build an
undeniable signature by Jao and Soukharev [21], a signature scheme by Yoo,
Azarderakhsh, Jalali, Jao, and Soukharev [33], and also by Galbraith, Petit,
and Silva [14], all of these subsequent papers suffer from the same issue. Our
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counterexample does not immediately apply to Urbanik and Jao’s scheme, but
we show other problems with that scheme in Sect. 4.4.

Ghantous, Pintore, and Veroni [17] have demonstrated that the soundness
property for the De Feo–Jao–Plût scheme (and those based on it) fails for a
different reason—namely the existence of multiple isogenies of the same degree
between some curves. The protocols we propose in this paper are not vulnerable
to the same issue, as we briefly discuss in Remark 2.

We stress that the flaw in the De Feo–Jao–Plût soundness argument does
not mean, per se, that previous isogeny signature schemes [14,33] are inse-
cure. Forgery for these schemes still requires an attacker to compute an isogeny
between two given elliptic curves, which, in full generality, is believed to be a
hard problem. However, a recent series of pre-prints [6,23,26] has shown that the
isogeny problem underlying SIDH itself can be solved in (classical) polynomial
time. As a consequence, SIDH, SIKE, the derived signature schemes, and several
other protocols are all subject to very efficient key recovery attacks.

Nevertheless, the variation on the SIDH problem we study in Sect. 5 (specifi-
cally in Fig. 3 of Sect. 5.3), by virtue of not revealing any torsion point information
to the attacker, is still widely believed to be secure. In particular, our sigma proto-
col can be converted into a secure signature scheme using the Fiat-Shamir trans-
form. Additionally, the problem of computing a secret isogeny from some torsion
point information is still believed to be secure in some settings other than stan-
dard SIDH/SIKE; for example when the order of the known torsion is much smaller
than the degree of the isogeny, when the degree of the secret isogeny is unknown
[25], or when the action on the torsion basis is masked [11]. Thus the protocol we
introduce in Sect. 6 may still be adapted to prove non-trivial statements.

1.1 Our Contributions

We present three new sigma protocols for SIDH. They all prove, for a pair
(E0, E1) of publicly known supersingular curves, knowledge of an isogeny φ :
E0 → E1 of the correct degree (the private key or witness). But they have some
key differences we summarize next.

First, in Sect. 5.1, we propose a modification to the De Feo–Jao–Plût scheme
that ensures that there is an extractor for the witness φ : E0 → E1. The first
key idea in this protocol is the provision of bases (P2, Q2) for E2[�e2

2 ] and (P3,
Q3) for E3[�e2

2 ]. This allows the verifier to check that (P3, Q3) = (φ′(P2), φ′(Q2))
in the chall = 1 case, and in the chall = 0 case, to check that the isogenies from
E2 to E0 and E3 to E1 are “parallel”. The second key idea is, in the 2-special
soundness proof, to view the transcript as an SIDH square where E2 is treated
as the “base curve” (instead of E0), and where E0 and E3 play the roles of
the participants’ two public-key curves in SIDH. It then follows that there is a
witness φ as required.

This protocol is simple, and sound, but there is a minor problem with zero-
knowledge: In the chall = 0 case, contrary to the De Feo–Jao–Plût scheme, the
data (E2, P2, Q2, E3, P3, Q3) appears to be difficult to simulate without knowl-
edge of the secret witness. We solve this issue in Sect. 5.3 by moving from binary
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to ternary challenges, thus making the protocol 3-special sound: The chall = 0
case is split into two different challenges, so that only one of (E2, P2, Q2) or
(E3, P3, Q3) needs to be revealed at a time. Plugging a statistically hiding com-
mitment scheme in, we obtain a zero-knowledge Proof of Knowledge for what
we call the weak SIDH relation, i.e. the existence of φ : E0 → E1 of degree �e1

1 .
Ternary challenges and commitment schemes have been used in this context by
Boneh, Kogan and Woo [5] for a variant of SIDH with three coprime subgroups.

Finally, in Sect. 6, we give a new sigma protocol that convinces a verifier
not only that there is an isogeny φ : E0 → E1 of the correct degree, but also
that the torsion points provided in an SIDH public key are the correct images
of the public parameter points under φ. We call this stronger relation the SIDH
relation. Boneh, Kogan and Woo [5] also give a solution to this problem in the
non-standard case of SIDH with three coprime subgroups. Our scheme works
with any base elliptic curve, rather than being restricted to the two curves with
j-invariant 0 or 1728 as in [31].

The SIDH relation was recently proven to be decidable in polynomial time [6,
23,26], when parameters are set like in standard SIDH/SIKE. Thus our last
protocol has arguably lost most of its usefulness. Nevertheless, more general
variants of the SIDH relation are still believed to be secure [11,25]. Adapting
our sigma protocol and making it non-interactive using the Fiat-Shamir heuristic
gives a secure method for proving well-formedness of public keys, which is needed
if one wants to prevent adaptive attacks.

The scheme in Sect. 6 builds on the protocols of Sect. 5. However, it requires
assurance that the ephemeral isogenies used in the commitments by the prover
are “independent enough”. To achieve this, we “double” the protocol, by essen-
tially running two sessions of the protocol from Sect. 5.3 for each challenge bit.
The prover shows that the two instances are consistent with each other by pro-
viding images of a random torsion basis in both squares, which the verifier can
check are correct. The verifier also checks that the two instances are independent.
This allows us to construct an extractor that outputs a correct witness.

Because both of our two protocols are 3-special sound, the probability of
successful cheating is 2/3—indeed a forger who does not know the witness can
simultaneously construct valid responses to any two challenges. This would have
implications on tightness if they were used for signature schemes. We do not
recommend our protocols as bases for signatures.

Commitments in the original De Feo–Jao–Plût scheme were just j-invariants
of curves, but our new proofs require committing to various points on curves as
well. This makes the proofs considerably larger. As with the original De Feo–
Jao–Plût scheme, it is non-trivial in the chall = 1 case to simulate valid protocol
transcripts without knowing the witness and so we only achieve computational
zero-knowledge.

We explain in Sect. 7 that our scheme gives an asymptotically more efficient
non-interactive key exchange (NIKE) than the k-SIDH proposal by Azarder-
akhsh, Jao and Leonardi [2]. But we stress that NIKE is not the only application
of our work.
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1.2 Plan of the Paper

Section 2 recalls the SIDH protocol and gives some useful lemmas that are used
in our soundness proofs. Section 3 presents some isogeny-based hardness assump-
tions and reductions, including the new decisional assumptions we need for our
zero-knowledge proofs. We then recall the De Feo–Jao–Plût identification scheme
in Sect. 4.1 and outline the issue with its proof of soundness in Sect. 4.2. In Sect. 5
we present our protocols for the weak SIDH relation: A sound but potentially
insecure protocol first, then a zero-knowledge modification afterwards. Section 6
presents a protocol to prove correctness of the points in the SIDH public key.
In Sect. 7, we conclude with some standard discussion on how a NIZK scheme
which is a Proof of Knowledge (PoK) of an SIDH secret key can be constructed
from our last scheme—the first such scheme that is sound and proves correctness
of the points in the public key (a protection mechanism against adaptive attacks
[10,13]). Section 8 describes some open problems and future directions.

2 Preliminaries

Notation. As a convention, we will use Kφ to denote a point which generates
the kernel of a cyclic isogeny φ. Let [t] denote the set {1, . . . , t}. All isogenies in
this paper are assumed to be separable. The notation ψ̂ denotes the dual isogeny
of ψ.

2.1 SIDH

We now provide a brief refresher on the Supersingular Isogeny Diffie-Hellman
(SIDH) key exchange protocol [9,20] by De Feo, Jao, and Plût.

As public parameters, we have a prime p = �e1
1 · �e2

2 · f ± 1, where �1, �2 are
small primes, f is an integer cofactor, and �e1

1 ≈ �e2
2 . We work over the finite field

Fp2 . Additionally we fix a base supersingular elliptic curve E and bases {P1, Q1},
{P2, Q2} for both the �e1

1 and �e2
2 -torsion subgroups of E(Fp2) respectively (such

that E[�ei
i ] = 〈Pi, Qi〉). Typically �1 = 2 and �2 = 3.

It is well known that knowledge of an isogeny (up to isomorphism) and
knowledge of its kernel are equivalent, and we can convert between them at
will, via Vélu’s formulae [32]. In SIDH, the secret keys of Alice and Bob are
isogenies φA : E(Fp2) → EA(Fp2), φB : E(Fp2) → EB(Fp2) of degree �e1

1 and �e2
2 ,

respectively. These isogenies are generated by randomly choosing secret integers
ai, bi ∈ Z/�ei

i Z (not both divisible by �i) and computing the isogeny with kernel
generated by Ki = [ai]Pi + [bi]Qi. We thus unambiguously refer to the isogeny,
its kernel, and such integers a, b, as “the secret key.”
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Fig. 1. Commutative diagram of SIDH, where ker(φBA) = φB(ker(φA)) and
ker(φAB) = φA(ker(φB)).

Figure 1 depicts the commutative diagram making up the key exchange. In
order to make the diagram commute, Alice and Bob are required to not only
give their image curves EA and EB in their respective public keys, but also
the images of the basis points of the other participant’s kernel on E. That is,
Alice provides EA, P ′

2 = φA(P2), Q′
2 = φA(Q2) as her public key. This allows

Bob to “transport” his secret isogeny to EA and compute φAB whose kernel is
〈[a2]P ′

2+[b2]Q′
2〉. Both Alice and Bob will arrive along these transported isogenies

at isomorphic image curves EAB , EBA (using Vélu’s formulae, they will actually
arrive at exactly the same curve [22]). Two elliptic curves are isomorphic over
Fp if and only if their j-invariants are equal, j(EAB) = j(EBA), hence this
j-invariant may be used as the shared secret of the SIDH key exchange.

Some cryptographic hardness assumptions related to isogenies and SIDH are
discussed in Sect. 3.

2.2 Isogeny Squares

We collect here some basic definitions and lemmas that we will use repeatedly
throughout the paper. In the statements below, all elliptic curves are defined
over a field of characteristic p.

Definition 1 (Independent points, isogenies). Let E be an elliptic curve,
let � �= p be a prime and e an integer, let (P,Q) be a basis of E[�e]. Let R =
[a]P + [b]Q and S = [c]P + [d]Q. The following conditions are equivalent:

(a) (R,S) form a basis of E[�e].
(b) � does not divide ad − bc, i.e., the matrix

(
a b
c d

)
is invertible modulo �e.

(c) The value of the �e-th Weil pairing ζ = e(R,S) has order �e, i.e., ζ�e−1 �= 1.

When R,S satisfy any of these, we say they are independent of one another.
Similarly, we say that two cyclic groups of order �e are independent whenever
any of their generators are. Finally, we say that two isogenies of degree �e are
independent if their kernels are.

Proof. (a) ⇒ (b): Both P,Q and R,S are bases of the same torsion subgroup
E[�e]. Hence, A =

(
a b
c d

)
is a change-of-basis from P,Q to R,S and there must
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be an inverse change-of-basis A−1 from R,S to P,Q. Then A is necessarily
invertible, and therefore, so too is its determinant ad − bc modulo �e.

(b) ⇒ (c): We have that

ζ = e(R,S) = e([a]P + [b]Q, [c]P + [d]Q).

Then since e is bilinear, ζ = e(P,Q)ad−bc. Now e(P,Q) has order �e because e
is surjective onto the group of �e-th roots of unity (c.f. [27, Corollary III.8.1.1]),
and since � � ad − bc, then ζ must also have order �e.

(c) ⇒ (a): Recall that E[�e] 	 Z/�e
Z × Z/�e

Z [27, Corollary III.6.4b]. Thus,
in order for R,S to form a basis, we must show 〈R〉 ∩ 〈S〉 = {OE}.

Suppose [w]R = [z]S �= OE for some integers w, z. By assumption, it must
be that �e

� w and �e
� z. Now consider e([w]R− [z]S, S) = 1, since e(OE , T ) = 1

for any T . By the bilinearity of the pairing, this gives

e([w]R − [z]S, S) = e(R,S)we(S, S)−z = 1.

Then, because e(S, S) = 1, we arrive at the conclusion e(R,S)w = 1, which is
a contradiction since e(R,S) has order �e and �e

� w. Thus, there can exist no
such integers w, z, and therefore 〈R〉 ∩ 〈S〉 = {OE}. ��
Lemma 1. Let φ : E → E/〈R〉 be an isogeny of kernel 〈R〉 and degree �e, let S
be a point of order �e independent to R. Then φ(S) has order �e and generates
ker(φ̂).

Proof. Because R and S are independent (Definition 1), the subgroups generated
by R and S intersect trivially. Thus, since φ has kernel 〈R〉, no non-trivial point
in 〈S〉 is in the kernel of φ. Furthermore, we know that φ̂ ◦ φ = [�e] has kernel
E[�e], and that S ∈ E[�e]. Thus φ̂(φ(S)) = O, implying φ(S) is in the kernel of
φ̂. The same holds for all elements S′ = [λ]S ∈ 〈S〉, and since φ(S′) �= O for all
non-trivial S′, φ(S) has order �e and generates ker(φ̂). ��

The following lemma is the main tool we are going to use, repeatedly, to
design all proofs of knowledge.

Lemma 2. Let �1, �2 be distinct primes different from p, let e1, e2 be integers.
Let φA : E → EA be an isogeny of degree �e1

1 . Let φB : E → EB and φAB :
EA → EAB be isogenies of degree �e2

2 such that ker(φAB) = φA(ker(φB)). Then
there exists an isogeny φBA : EB → EAB of degree �e1

1 .

Proof. Let KA be a generator of ker(φA). Then because the degrees of φA, φB

are coprime, φB(KA) also has order �e1
1 and generates the kernel of some isogeny

χ : EB → EB/〈φB(KA)〉.
Observe that EAB is defined as the codomain of φAB ◦ φA. We thus have that
EAB

∼= E/〈KA,K ′〉 for a point K ′ of order �e2
2 such that 〈φA(K ′)〉 = ker(φAB).

Because ker(φAB) = φA(ker(φB)), we conclude 〈K ′〉 = ker(φB). Therefore,
EB/〈φB(KA)〉 ∼= EAB as required. ��
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2.3 Sigma Protocols

A sigma protocol ΠΣ for a relation R = {(X,W )} is a public-coin three-move
interactive proof system consisting of two parties: A verifier V and a prover
P . Recall that public-coin informally means that there are no secret sources of
randomness—the verifier’s coin tosses are accessible to the prover. In practice
this means the challenge sent by the verifier to the prover is uniformly random.
For our purposes, a witness W can be thought of as a secret key, while the
statement X is the corresponding public key. Thus, proving (X,W ) ∈ R is
equivalent to saying that X is a valid public key for which a corresponding
secret key exists. We use the security parameter κ to parametrize the length of
the secret keys involved.

Definition 2 (Sigma protocol). A sigma protocol ΠΣ for a family of rela-
tions {R}κ parametrized by security parameter κ consists of PPT algorithms
((P1, P2), (V1, V2)) where V2 is deterministic and we assume P1, P2 share states.
The protocol proceeds as follows:

1. Round 1: The prover, on input (X,W ) ∈ R, returns a commitment com ←
P1(X,W ) which is sent to the verifier.

2. Round 2: The verifier, on receipt of com, runs chall ← V1(1κ) to obtain a
random challenge, and sends this to the prover.

3. Round 3: The prover then runs resp ← P2(X,W, chall) and returns resp to the
verifier.

4. Verification: The verifier runs V2(X, com, chall, resp) and outputs either �
(accept) or ⊥ (reject).

A transcript (com, chall, resp) is said to be valid if V2(X, com, chall, resp) out-
puts �. Let 〈P, V 〉 denote the transcript for an interaction between prover P
and verifier V . The main requirements of a sigma protocol are:

Correctness: If the prover P knows (X,W ) ∈ R and behaves honestly, then
the verifier V accepts.

n-special Soundness: There exists a polynomial-time extraction algorithm
that, given a statement X and n valid transcripts

(com, chall1, resp1), . . . , (com, challn, respn)

where challi �= challj for all 1 ≤ i < j ≤ n, outputs a witness W such that
(X,W ) ∈ R with probability at least 1 − ε for soundness error ε.

A sound sigma protocol for R is also called a Proof of Knowledge (PoK)
for R.

Special Honest Verifier Zero-knowledge (SHVZK): If there exists a
polynomial-time simulator that, given a statement X and a challenge chall, out-
puts a valid transcript (com, chall, resp) that is indistinguishable from a real
transcript.
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Definition 3. A sigma protocol (P, V ) is computationally special honest verifier
zero-knowledge if there exists a probabilistic polynomial time simulator Sim such
that for all probabilistic polynomial time stateful adversaries A

Pr

⎡

⎣A(com, chall, resp) = 1

∣
∣
∣
∣
∣
∣

(X,W, chall) ← A(1κ);
com ← P1(X,W );
resp ← P2(X,W, chall)

⎤

⎦

≈ Pr
[
A(com, chall, resp) = 1

∣
∣
∣
∣

(X,W, chall) ← A(1κ);
(com, resp) ← Sim(X, chall)

]
. (1)

Although SHVZK is not a particularly strong flavour of zero-knowledge, there
exist efficient transformations to full zero-knowledge that incur only a small
overhead in communication and computation [7,8,16]. In particular, it is well
known that SHVZK is sufficient to obtain full non-interactive zero-knowledge in
the random oracle model [4].

An earlier version of our paper proposed schemes with binary challenges
whose security required a certain computational assumption. It turned out that
with respect to Definition 3 this assumption did not hold. To resolve this we
have modified the schemes to use ternary challenges.

3 SIDH Problems and Assumptions

In this section, we recall some standard isogeny-based hardness assumptions of
relevance to this work. We then introduce a new decisional assumption which
will be useful for the proof of zero-knowledge in Sect. 6. The first two are com-
putational isogeny-finding problems.

Definition 4 (General isogeny problem). Given j-invariants j, j′ ∈ Fp2 ,
find an isogeny φ : E → E′ if one exists, where j(E) = j and j(E′) = j′.

This is the foundational hardness assumption of isogeny-based cryptography,
that it is hard to find an isogeny between two given curves. Note the decisional
version, determining whether an isogeny exists, is easy—an isogeny exists if and
only if #E(Fp2) = #E′(Fp2).

Definition 5 (Computational Supersingular Isogeny (CSSI) problem).
For fixed SIDH prime p, base curve E0, and �e2

2 -torsion basis P0, Q0 ∈ E0, let
φ : E0 → E1 be an isogeny of degree �e1

1 . Given an SIDH public key (E1, P1 =
φ(P0), Q1 = φ(Q0)), find an isogeny φ′ : E0 → E1 of degree �e1

1 such that P1,
Q1 = φ′(P0), φ′(Q0).

This is problem 5.2 of [9] and essentially states that it is hard to find the secret
key corresponding to a given public key. This problem is also called the SIDH
isogeny problem by [15, Definition 2]. The recent attacks [6,23,26] show that this
problem, as stated, can be solved in polynomial time. Some generalizations [11,
25] may still be hard, though.
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At the heart of the GPST adaptive attack is the problem that, given a public
key (E1, P1, Q1), we cannot validate that P1, Q1 are indeed the correct images
of basis points P0, Q0 under the secret isogeny φ. The best we know how to do
is to check they are indeed a basis of the correct order, and use the Weil pairing
check

e�
e2
2

(P1, Q1) = e�
e2
2

(P0, Q0)deg φ.

Unfortunately this holds for many different choices of basis points. Indeed,
if (P1, Q1) are the correct images, then any pair ([a]P1 + [b]Q1, [c]P1 + [d]Q1)
such that ad − bc = 1 mod �e2

2 also passes the check. So this is not enough to
uniquely determine φ, and, in particular, is insufficient to protect against the
GPST adaptive attack.

The following decisional problem follows Definition 3 of [15] and is also very
similar to the key validation problem of Urbanik and Jao [30, Problem 3.4] (the
key validation problem asks whether a φ of degree dividing �e1

1 exists). However,
the previous definitions did not take the Weil pairing check into account, which
would serve as a distinguisher.

Definition 6 (Decisional SIDH isogeny (DSIDH) problem). The deci-
sional SIDH problem is to distinguish between the following two distributions:

– D0 = {(E0, P0, Q0, E1, P1, Q1)} such that E0 is a supersingular elliptic curve
defined over Fp2 , P0, Q0 a basis such that E0[�e2

2 ] = 〈P0, Q0〉, φ : E0 → E1 is
an isogeny of degree �e1

1 , and P1 = φ(P0) and Q1 = φ(Q0).
– D1 = {(E0, P0, Q0, E1, P1, Q1)} such that E0 is a supersingular elliptic curve

defined over Fp2 , P0, Q0 a basis such that E0[�e2
2 ] = 〈P0, Q0〉, E1 is any

supersingular elliptic curve over Fp2 with the same cardinality as E0, and
P1, Q1 is a basis of E1[�e2

2 ] satisfying the Weil pairing check e�
e2
2

(P1, Q1) =

e�
e2
2

(P0, Q0)�
e1
1 .

As shown by Galbraith and Vercauteren [15], Thormarker [28], and Urbanik
and Jao [30], being able to solve this decisional problem is as hard as solving
the computational (CSSI) problem, so, assuming CSSI is hard, key validation is
fundamentally difficult. This is done by testing �1-isogeny neighboring curves of
E1 and learning the correct path one bit at a time.

Definition 7 (Decisional Supersingular Product (DSSP) problem).
Given an isogeny φ : E0 → E1 of degree �e1

1 , the decisional supersingular product
problem is to distinguish between the following two distributions:

– D0 = {(E2, E3, φ
′)} such that there exists a cyclic subgroup G ⊆ E0[�e2

2 ] of
order �e2

2 and E2
∼= E0/G and E3

∼= E1/φ(G), and φ′ : E2 → E3 is a degree
�e1
1 isogeny.

– D1 = {(E2, E3, φ
′)} such that E2 is a random supersingular curve with the

same cardinality as E0, and E3 is the codomain of a random isogeny φ′ :
E2 → E3 of degree �e1

1 .
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This is problem 5.5 of [9] and intuitively states that it is hard to determine
whether there exist valid “vertical sides” to an SIDH square given the corners
and the bottom horizontal side. It is not known to be affected by the recent
attacks on SIDH.

3.1 Double Variant

In Sect. 6, we propose a scheme which uses two independent SIDH squares in
each round of the sigma protocol. For the zero-knowledge proof in that section,
we require a “double” variant of the DSSP problem.

The Double-DSSP problem differs from the “single” version by the intro-
duction of two bases U ′

i , V
′
i of the �e1

1 -torsion subgroups on E2,i, for i ∈ {0, 1}.
As we shall see in Sect. 6, these extra points will be used to verify that the two
independent SIDH squares in the “double” protocol both use consistent isogenies
φ′

i.

Definition 8 (Double-DSSP Problem). Given an isogeny φ : E0 → E1

of degree �e1
1 , let D0 and D1 denote the two distributions in the DSSP problem.

The double decisional supersingular product problem is to distinguish between the
following two distributions:

– D′
0 = {(insti, U ′

i , V
′
i )i∈{0,1}} where insti = (E2,i, E3,i, φ

′
i) ← D0, and addi-

tionally, if ψi : E0 → E2,i are the respective isogenies of degree �e2
2 , then ψ0

and ψ1 are independent and U ′
i , V

′
i = ψi(U), ψi(V ) where {U, V } is a random

(secret) basis of E0[�e1
1 ].

– D′
1 = {(insti, U ′

i , V
′
i )i∈{0,1}} where insti = (E2,i, E3,i, φ

′
i) ← D1, and U ′

i , V
′
i is

a random basis of the �e1
1 torsion subgroup on E2,i such that e�

e1
1

(U ′
0, V

′
0) =

e�
e1
1

(U ′
1, V

′
1) and for any generator Ki of ker(φ′

i)

e�
e1
1

(U ′
0,K0)e�

e1
1

(K1, V
′
1) = e�

e1
1

(K0, V
′
0)e�

e1
1

(U ′
1,K1).

The extra points in Double-DSSP make its hardness more dubious than that
of DSSP. Indeed, one strategy to distinguish D′

0 from D′
1 would be to compute

the isogeny ψ1 ◦ ψ̂0 : E2,0 → E2,1 of degree �2e2
2 from the knowledge of its action

on (U ′
0, V

′
0). One could imagine using the recent attacks on SIDH for this task,

however in a standard SIDH setting they do not apply, because �2e2
2 � �e1

1 .
There exist parameter regimes, though, where DSSP is still thought to be hard,
whereas Double-DSSP is clearly not. At any rate, since Double-DSSP is meant
to be used in contexts where a variant of CSSI is hard, it is reasonable to assume
the extra points do not affect security.

4 Previous SIDH Identification Scheme and Soundness
Issue

4.1 De Feo–Jao–Plût Scheme

Let p be a large prime of the form �e1
1 ·�e2

2 ·f ±1, where �1, �2 are small primes. We
start with a supersingular elliptic curve E0 defined over Fp2 with #E0(Fp2) =
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(�e1
1 �e2

2 f)2. The private key is a uniformly random point Kφ ∈ E0(Fp2) of exact
order �e1

1 . Define E1 = E0/〈Kφ〉 and denote the corresponding �e1
1 -isogeny by

φ : E0 → E1.
Let P0, Q0 be a basis of the torsion subgroup E0[�e2

2 ] = 〈P0, Q0〉. The fixed
public parameters are pp = (p,E0, P0, Q0). The public key is (E1, φ(P0), φ(Q0)).
The private key is the kernel generator Kφ (equivalently, the isogeny φ). The
interaction goes as follows:

1. The prover chooses a random primitive �e2
2 -torsion point Kψ as Kψ = [a]P0 +

[b]Q0 for some integers 0 ≤ a, b < �e2
2 not both divisible by �2. Note that

φ(Kψ) = [a]φ(P0) + [b]φ(Q0). The prover defines the curves E2 = E0/〈Kψ〉
and E3 = E1/〈φ(Kψ)〉 = E0/〈Kψ,Kφ〉, and uses Vélu’s formulae to compute
the following diagram.

E0 E1

E2 E3

φ

ψ′ψ

φ′

The prover sends commitment com = (E2, E3) to the verifier.
2. The verifier challenges the prover with a uniformly random bit chall ← {0, 1}.
3. If chall = 0, the prover reveals resp = (a, b) from which Kψ and φ(Kψ) = Kψ′

can be reconstructed. If chall = 1, the prover reveals resp = (ψ(Kφ) = Kφ′).

In both cases, the verifier accepts the proof if the points revealed have the
correct order and generate kernels of isogenies between the correct curves. We
iterate this process t times to reduce the cheating probability (where t is chosen
based on the security parameter κ). Note that in an honest execution of the
proof, we have

ψ̂′ ◦ φ′ ◦ ψ = [�e2
2 ]φ.

Note that in this basic scheme (and all protocols known in the literature)
honest transcripts involve responses like Kψ and φ(Kψ). Hence it is natural to
allow the proof to reveal φ(P0), φ(Q0) where {P0, Q0} is a basis for E0[�e2

2 ].

4.2 Issue with Soundness Proofs for the de Feo–Jao–Plût Scheme

A core component of the security proof of the De Feo–Jao–Plût identification
scheme is the soundness proof. A proof of soundness was given by multiple
previous works [9,14,33]. A sketch of it is as follows:

Suppose A is an adversary that takes as input the public key and succeeds in
the identification protocol (all t iterations) with noticeable probability ε. Given
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a challenge instance (E0, E1, R0, S0, φ(R0), φ(S0)) for the CSSI problem, we run
A on the tuple (E1, φ(R0), φ(S0)) as the public key. In the first round, A outputs
commitments (Ei,2, Ei,3) for 1 ≤ i ≤ t. We then send a challenge b ∈ {0, 1}t to
A and, with probability ε, A outputs a response that satisfies the verification
algorithm. Now, we use the standard replay technique: Rewind A to the point
where it had output its commitments and then respond with a different chal-
lenge b′ ∈ {0, 1}t. With probability ε, A outputs a valid response. This gives
exactly the 2-special soundness requirement of two valid transcripts with the
same commitment but different challenges.

Now, choose some index i such that bi �= b′
i. We now restrict our focus to

the components (E2, E3) for that index, and the two responses. It means A sent
E2, E3 and can answer both challenges b = 0 and b = 1 successfully. Hence A
has provided the maps ψ, φ′, ψ′ in the following diagram.

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′

The argument proceeds as follows: We have an explicit description of an
isogeny φ̃ = ψ̂′ ◦ φ′ ◦ ψ from E0 to E1. The degree of φ̃ is �e1

1 �2e2
2 . One can

determine ker(φ̃)∩E0[�e1
1 ] by iteratively testing points in E0[�

j
1] for j = 1, 2, . . . .

Hence, one determines the kernel of φ, as desired.
However, the important issue with this argument which has so far gone unno-

ticed, is that it assumes ker(φ) = ker(φ̃)∩E0[�e1
1 ]. This assumption has no basis,

and we will provide a simple counterexample to this argument in the following
section. While we always recover an isogeny, it may not be φ at all—it is entirely
possible the isogeny we recover does not even have codomain E1 so this proof of
2-special soundness is not valid.

4.3 Counterexample to Soundness

Fix a supersingular curve E0 as above. Generate a random �e2
2 -torsion point

Kψ ∈ E0(Fp2) as Kψ = [a]P0 + [b]Q0 for some integers 0 ≤ a, b < �e2
2 not

both divisible by �2. Let ψ : E0 → E2 have kernel generated by Kψ. Then
choose a random isogeny φ′ : E2 → E3 of degree �e1

1 with kernel generated by
Kφ′ . Then choose a random isogeny ψ′ : E3 → E1 of degree �e2

2 . Choose points
P ′
0, Q

′
0 ∈ E1(Fp2) such that ker(ψ̂′) = 〈[a]P ′

0 + [b]Q′
0〉. Then publish

(E0, E1, P0, Q0, P
′
0, Q

′
0)
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as a public key. In other words, we have

E0
ψ−→ E2

φ′
−→ E3

ψ′
−→ E1

Now there is no reason to believe that there exists an isogeny from E0 to E1 of
degree �e1

1 , yet we can respond to both challenge bits 0 and 1 in a single round
of the identification scheme. Pulling back the kernel of φ′ via ψ to E0 will result
in the kernel of an isogeny which, in general, will not have codomain E1 (but
instead a random other curve). This is because ψ′ is entirely unrelated to ψ in
this case (they are not “parallel”), so we have no SIDH square.

The key observation is that a verifier could be fooled into accepting this
public key by a prover who always uses the same curves (E2, E3) instead of
randomly chosen ones. When chall = 0 the prover responds with the pair (a, b)
corresponding to the kernel of ψ and ψ̂′, and when chall = 1 the prover responds
with Kφ′ . The verifier will agree that all responses are correct and will accept
the proof.

It is true that the verifier could test whether the commitments (E2, E3) are
being re-used, but this has never been stated as a requirement in any of the
protocol descriptions. To tweak the verification protocol we need to know how
“random” the pairs (E2, E3) (or, more realistically, the pairs (a, b)) need to be.
One may think that the original scheme seems to be secure despite the issue with
the proof, as long as the commitment (E2, E3) is not reused every time. However,
in experiments with small primes, it is entirely possible to construct instances1

where even with multiple different commitments, a secret isogeny of the correct
degree between E0 and E1 does not exist. We expect that this extrapolates to
large primes too, although one could potentially argue that finding enough such
instances is computationally infeasible.

It is also true that repeating (E2, E3) means the protocol is no longer zero-
knowledge. We emphasize that soundness and zero-knowledge are independent
security properties, which are proved separately (and affect different parties: One
gives an assurance to the verifier and the other to the prover). The counterex-
ample we have provided is a counterexample to the soundness proof. The fact
that the counterexample is not consistent with the proof that the protocol is
zero-knowledge is irrelevant.

Finally, one could consider basing security of the protocol on the general
isogeny problem (Definition 4) because, even in our counterexample, an isogeny
E0 → E1 exists and can be extracted—it just doesn’t have degree �e1

1 . We find it
interesting that none of the previous authors chose to do it that way. However,
some applications may require using the identification/signature protocols to
prove that an SIDH public key is well-formed, implying the secret isogeny has
the correct degree. For such applications we need soundness to be rigorously
proved.

The issue in the security proofs in the literature is not only that it is implicitly
assumed that there is an isogeny of degree �e1

1 between E0 and E1. The key issue

1 Thank you to Lorenz Panny for demonstrating this.
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is that it is implicitly assumed that the pullback under ψ of ker(φ′) is the kernel
of this isogeny. Our counterexample calls these assumptions into question, and
shows that the proofs are incorrect as written.

To make this very clear, consider the soundness proof from De Feo, Jao, and
Plût [9]. The following diagram is written within the proof. It implicitly assumes
that the horizontal isogeny φ′ has kernel given by ψ(S), so that the image curve
is E/〈S,R〉.

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ

φ′

ψ′

This implicit assumption seems to have been repeated in all subsequent
works, such as [33] and [14].

4.4 Soundness of UJ20

Urbanik and Jao [31] give a variant of SIDH that exploits automorphisms and
gets essentially three SIDH keys out of single protocol messages. Section 5 of
their paper claims an isogeny-based zero-knowledge identification protocol that
validates all elements of an SIDH key.

The statement being proved is (E,PB , QB , EA, P ′
B , Q′

B) and the witness is
an isogeny φ : E → EA = E/A with P ′

B = φ(PB), Q′
B = φ(QB). (Here the

symbol A is overloaded to signify “Alice” and also Alice’s subgroup that is the
kernel of the isogeny.) Here the base curve E has a non-trivial automorphism η
of order 6.

The proof works by sending E/B such that there are three SIDH keys that
can be computed by Alice and Bob: E1 = E/〈A,B〉, E2 = E/〈η(A), B〉, E3 =
E/〈η2(A), B〉. More precisely, the prover picks B = 〈[a]PB +[b]QB〉 and commits
to the three related squares. The verifier makes a challenge chall ∈ {0, 1, 2, 3}.
When chall = 0 the prover reveals (a, b), and the verifier can check all three
isogenies E → EB , EA → Ei for i ∈ {1, 2, 3}. When chall ≥ 1 the prover reveals
the kernel of an isogeny EB → Echall.

There is no formal proof of soundness given in [31].
First, it is easy to see that if P ′

B and Q′
B are the correct image points, then

replacing them with [z]P ′
B and [z]Q′

B for any invertible z modulo the order of
P ′

B is also accepted by the verifier. So it is clear that the protocol is at most
giving an assurance of a weaker statement than claimed.

However, the protocol fails more drastically due to a similar issue to the
problem discussed in Sect. 5.2. Briefly, because (a, b) is chosen by the prover, the
prover can “hide” their cheating. For example, suppose a dishonest prover sets
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P ′
B = φ(PB), Q′

B = φ(QB) + T where T is a point of order �2 (a divisor of the
order of PB and QB). Then as long as b is chosen to be a multiple of �2 we have

[a]P ′
B + [b]Q′

B = [a]φ(PB) + [b]φ(QB)

and so the cheating is not detected by the verifier.

5 Steps Towards an SIDH Proof – The Weak SIDH
Relation

The purpose of this section is to present a protocol to prove in zero-knowledge a
natural but weaker statement than the knowledge of an SIDH secret key. In the
next section we will augment this protocol to prove the full SIDH statement.

5.1 A Sound but Insecure Protocol

We start with a simple protocol which follows the blueprint of De Feo–Jao–Plût,
but fixes its soundness issue. Unfortunately, the fix breaks zero-knowledge, and
we will need to change the protocol again to achieve our goal.

Let public parameters pp = (p, �1, �2, e1, e2, E0) be such that #E0(Fp2) =
(�e1

1 �e2
2 f)2. As before, suppose a user has a secret isogeny φ : E0 → E1 of degree

�e1
1 with kernel ker(φ) = 〈Kφ〉. In this section we are only interested in proving

knowledge of φ, thus we will not consider the public torsion basis (P0, Q0) and
its image (P1, Q1) by φ.

Our simple (but insecure) protocol is presented in Fig. 2. It includes some
basic functions:

– IsogenyFromKernel is a function taking a point S ∈ E and outputting a (nor-
malised) isogeny with kernel 〈S〉 and codomain curve E/〈S〉.

– RandomBasisi is a function taking a curve and outputting a uniformly random
pair of points U, V which generate the �ei

i -torsion subgroup on the given curve,
for i = 1, 2.

– DualKernel is a function taking an isogeny ψ and outputting a generator K
̂ψ

of the kernel of the dual isogeny ψ̂.

Intuitively, the sigma protocol follows Sect. 4.1, with a single bit challenge—if
the challenge is 0, we reveal the vertical isogenies ψ,ψ′, while if the challenge is 1,
we reveal the horizontal φ′. The difference is the introduction of additional points
on E3 to the commitment, which force ψ,ψ′ to be, in some sense, “compatible”
or “parallel”. This restriction lets us prove 2-special soundness by extracting the
secret φ from two accepting transcripts.

Theorem 1. The sigma protocol in Fig. 2 for relation

RweakSIDH = {(E1, φ) | φ : E0 → E1,deg φ = �e1
1 }

is correct and 2-special sound. Repeated with κ iterations, it is thus a Proof of
Knowledge for RweakSIDH with knowledge error 2−κ.

Proof. We prove the properties of Theorem 1 separately below.



326 L. De Feo et al.

Correctness: Following the protocol honestly will result in an accepting tran-
script. This is clear for the chall = 1 case. For the chall = 0 case, observe that

φ′(K
̂ψ) = φ′([c]P2 + [d]Q2) = [c]P3 + [d]Q3 = K

̂ψ′ ,

thus K
̂ψ′ generates the kernel of ψ̂′.

Fig. 2. One iteration of the simple but insecure sigma protocol for SIDH. The public
parameters are pp = (p, �1, �2, e1, e2, E0). The public key is E1, and the corresponding
secret isogeny is φ.

2-special Soundness: Without loss of generality, suppose we obtain two transcripts
(com, 0, resp), (com, 1, resp′). Then recover (c, d) ← resp and Kφ′ ← resp′, and
let φ′ be an isogeny whose kernel is generated by Kφ′ . Applying Lemma 2, with
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(φA, φB , φAB) = (φ′, ψ̂, ψ̂′), we obtain an isogeny χ : E0 → E1 of degree �e1
1 . The

conditions of the lemma on the kernels of ψ̂ and ψ̂′ are satisfied because φ′(K
̂ψ) =

K
̂ψ′ , as above. This shows the protocol is 2-special sound, and that it is a Proof

of Knowledge of an isogeny corresponding to the given public key curve. ��

5.2 Why This Protocol Does Not Prove Correctness of the Points
(P1, Q1)

We briefly explain why the protocol in this section does not convince a verifier
that (P1, Q1) = (φ(P0), φ(Q0)). The first observation is that Fig. 2 does not
actually use P1 or Q1 anywhere, so of course, nothing is proved. But one could
tweak the protocol in the chall = 0 case to use the isogenies ψ̂ : E2 → E0 and
ψ̂′ : E3 → E1 to test the points. For example, using the duals of these isogenies,
one could compute integers (a, b) such that ker(ψ) = 〈[a]P0 + [b]Q0〉 and then
test whether or not ker(ψ′) = 〈[a]P1 + [b]Q1〉.

The problem for the verifier is that this is not enough to deduce that
(P1, Q1) = (φ(P0), φ(Q0)). For example, a dishonest prover who wants to per-
form an attack might set (P1, Q1) = (φ(P0), φ(Q0) + T ) where T is a point of
order �2. If the prover always uses integers b that are multiples of �2 (and remem-
ber, the prover does choose (a, b)) then this cheating will not be detected by the
verifier. Hence, the protocol needs to be changed so that the verifier can tell that
the kernels of the isogenies ψ̂ are sufficiently independent across the executions
of the protocol. This is the fundamental problem that we solve in Sect. 6.

5.3 Making the Proof Zero-Knowledge

There is an obvious reason why the protocol is not zero-knowledge: We already
noted that it is not sufficient to prove that P1 = φ(P0) and Q1 = φ(Q0), even
if we try some minor tweaks. However, a honest prover leaks a random pair
(Kψ, φ(Kψ)) every time it is challenged with chall = 0. Thus, after less than
three iterations on average, it leaks the action of φ on the full E0[�e2

2 ], and in
particular it leaks P1 and Q1. This fact was already observed by De Feo, Jao and
Plût, who instead sketched a proof of how their protocol is zero-knowledge with
respect to the stronger SIDH relation, which includes (P1, Q1) in the language
(see definition in Sect. 6).

But there is a second reason why our protocol fails to be zero-knowledge, even
with respect to the SIDH relation. When challenged with chall = 0 a simulator can
perfectly simulate the isogenies ψ and ψ′, however it will not be able to compute
the associated φ′, and thus the correct points (P3, Q3). On the other hand, the
adversary of Definition 3 knows φ, and after seeing ψ and ψ′ it can easily compute
φ′ and then P3 and Q3, thus unmasking the simulator. We stress this is not an
issue limited to SHVZK: All other definitions of computational zero-knowledge
we are aware of have the protocol fall, in one way or another, into the same trap.

We solve both issues at once by moving to ternary challenges {−1, 0, 1},
splitting the chall = 0 case into two separate flows: chall = −1 corresponding
to revealing ψ, and chall = 0 corresponding to revealing ψ′. However, now the
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information on E2, E3 and the respective torsion bases may not be fully revealed
when chall ∈ {−1, 0}: To hide it but still commit to it, we introduce a binding
and hiding commitment scheme that we denote by C(x; y). We need statistical
hiding, so that C(com; r), where r is a sufficiently long random string, can in
principle be a commitment to any of the possible values for com. We also need
it to be (computationally) hard for a malicious prover to open C(com; r) to a
different value (com′; r′). As an example, we can take C(x; y) = H(x‖y) where
H is a cryptographic hash function and y is considerably longer than the output
length of H (e.g., H hashes to n bits and y is 2n bits, chosen uniformly at

Fig. 3. Sigma protocol to prove the weak SIDH relation RweakSIDH.
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random at the time of the commitment). The resulting scheme is presented in
Fig. 3.

Theorem 2. For a fixed security parameter κ, a proof consisting of κ iterations
of the sigma protocol in Fig. 3 is a computationally SHVZK Proof of Knowl-
edge for RweakSIDH with knowledge error (2/3)κ, assuming the DSSP problem is
hard and the commitment scheme C() is computationally binding and statistically
hiding.

Proof. Because the protocol only adds a few commitments to the protocol in
Fig. 2, correctness follows immediately from Theorem 1.

Soundness: We prove 3-special soundness by reducing to the 2-special sound-
ness of the simplified protocol. From three transcripts (com,−1, resp−1),
(com, 0, resp0) and (com, 1, resp1), we recover com0 = (E2, P2, Q2, E3, P3, Q3),
Kφ′ and (c, d), like in the simplified protocol. Because C is binding, these val-
ues are (computationally) uniquely determined by com, so they must be con-
sistent across the three transcripts. Joining together the verifications of cases
chall = −1, 0, we see that the verifier does the exact same computations as in
the simplified protocol. Hence, Theorem 1 shows that there exists an isogeny
χ : E0 → E1 of degree �e1

1 , and thus the protocol is sound.
A cheating prover has 1/3 chance of being caught, as they may prepare

commitments in a way that lets them answer any two out of the three challenges.
We conclude that the protocol has knowledge error (2/3)κ.

Zero-Knowledge: We only need to prove that a single execution of the proto-
col is SHVZK, then SHVZK of κ repetition follows by the hybrid technique of
Goldreich, Micali, and Wigderson [18]. We define the simulator Sim as follows.

Case chall = −1: Sim follows the honest protocol by choosing a random generator
Kψ ∈ E0[�e2

2 ], then picking P2, Q2 ← RandomBasis2(E2) and computing c, d such
that ker(ψ̂) = 〈[c]P2 + [d]Q2〉. It finally commits to CL = C(E2, P2, Q2; rL) and
C = C(c, d; r), while taking a uniformly random value for CR. The responses are
the openings to CL and C, it is clear that this transcript is valid.

Observe that the commitments CL and C are identical to the honest com-
mitments, thus the only way for an adversary A to distinguish Sim from a real
transcript is to distinguish CR from a commitment to (E3, P3, Q3), but this is
impossible since we assumed that C() is statistically hiding.

Case chall = 0: This is nearly identical to the previous case. Sim chooses a ran-
dom kernel generator Kψ′ ∈ E1[�e2

2 ], picks a random basis (P3, Q3) of E3[�e2
2 ],

and computes c, d such that ker(ψ̂) = 〈[c]P3 +[d]Q3〉. It then computes the com-
mitments CR and C like in the honest protocol, and takes a random value for
CL.

We only need to observe that in the honest protocol both Kψ′ and (P3, Q3)
are uniformly random, thus CR and C are distributed identically to the honest
protocol. We conclude again using the fact that C() is statistically hiding.
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Case chall = 1: Sim chooses a random supersingular elliptic curve2 E2. It then
chooses uniformly a random kernel generator Kφ′ ∈ E2 of order �e1

1 and com-
putes the isogeny φ′ : E2 → E3. Next, Sim generates a basis P2, Q2 ←
RandomBasis2(E2) and computes P3, Q3 ← φ′(P2), φ′

i(Q2). Finally, it commits
to CL = C(E2, P2, Q2; rL) and CR = C(E3, P3, Q3; rR), while taking a uniformly
random value for C. The responses are the openings to CL and CR, it is clear
that this transcript is valid.

Like before, because C() is statistically hiding the adversary cannot use C
to gain an advantage in distinguishing Sim. But now the curves E2 and E3 and
the isogeny φ′ are not distributed identically to the honest protocol, but rather
like in distribution D1 of the DSSP problem (Definition 7). It is then clear that
an adversary that has a non-negligible advantage in distinguishing Sim from the
real protocol can be used as a distinguisher for DSSP. ��
Remark 1. There are certainly improvements that can be made to increase effi-
ciency and compress the size of signatures, but these are standard and we will
not explore them here. For example, in practice the information (E2, P2, Q2)
would be replaced with a triplet of x-coordinates, as in SIKE [1].

6 Correctness of the Points in an SIDH Public Key

Section 5 gave a simple protocol, which can be shown to be a Proof of Knowledge
of a degree �e1

1 isogeny from E0 to E1. However, an SIDH public key (E1, P1, Q1)
also consists of the two torsion points, and these points are the cause of issues
such as the adaptive attack [13], as discussed in Sect. 3. In this section, we show
that the choice of points P1, Q1 by a malicious prover is severely restricted if they
must keep them consistent with “random enough” values of a, b (i.e., random
choices of ψ)—preventing adaptive attacks entirely.

Fix E0 and a basis {P0, Q0} for E0[�e2
2 ]. We define the strong3 SIDH relation

to be

RSIDH =
{

((E1, P1, Q1), φ)
∣
∣
∣
∣
φ : E0 → E1, deg φ = �e1

1 ,
P1 = φ(P0), Q1 = φ(Q0)

}
.

Figure 4 presents our protocol for proving this strong relation. We also pro-
vide a visual representation in Fig. 5, in the hope that it may help understand
its algebraic structure.

This protocol is reminiscent of the one in Sect. 5 in that it “flips the SIDH
square upside down”: We view E2 as the “starting curve” in SIDH, and use the
fact that the verifier can check ψ̂ : E2 → E0 and φ′ : E2 → E3. The verifier also

2 One way to do so is to take a random �2-isogeny walk from E0. To ensure a distri-
bution close to uniform, we take a walk of length � log(p) ≈ 2e2. However a walk of
length e2 is sufficient to get a variant of DSSP that is also believed to be hard.

3 The word “strong” here indicates that we confirm not only the correctness of the
degree of the isogeny, but the correct images of points.
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checks that ker(ψ̂′) = φ′(ker(ψ̂)), and from this the curve E1 is well-defined and
the existence of an isogeny φ : E0 → E1 with ker(φ) = ψ̂(ker(φ′)) follows.

But this is not enough, since there might be multiple isogenies from E0 to
E1. The key idea we introduce here is to require pairs of points R1,0, R1,1 =
φ(R0,0), φ(R0,1) that are “independent” (in the sense that they generate the full
torsion). Hence the action of φ on the whole �e2

2 torsion is determined. This is
why we “double” the protocol. So in each round of our new sigma protocol,
we commit to two SIDH squares rather than just one, and require that the
kernel generators of ψ in these two squares are independent from each other. We
add this independence as an extra check during verification. We also require an
assurance that both squares use consistent isogenies φ′. For this purpose we use
a uniformly random �e1

1 -torsion basis (U, V ) on E0 and compute the image of
this basis on both curves E2,i—if both φ′

i are the images of φ under the vertical
isogenies ψi, then both should be representable in terms of (ψi(U), ψi(V )) using
the same coefficients. These extra checks achieve a 3-special sound protocol for
the strong SIDH relation above.

We stress that the points (U, V ) are not made public in the commitment.
In the protocol the function RandomBasis1 is called many times on the same
curve E0 during t rounds of the protocol and it is important that the outputs
are independent and not known to the verifier in the chall = 1 case.

Theorem 3. For a fixed security parameter κ, a proof consisting of κ iterations
of the sigma protocol in Fig. 4 is a computationally SHVZK Proof of Knowledge
for RSIDH with knowledge error (2/3)κ, assuming the Double-DSSP problem is
hard and the commitment scheme C() is computationally binding and statistically
hiding.

Proof. We prove correctness, soundness, and zero-knowledge individually.

Correctness: The point R0,i will always be an invertible scalar multiple of the
point Kψ used by the prover in the commitment round (in the i-th SIDH square)
of the protocol because both Kψ and R0,i are generators of the kernel of ψ in
the i-th SIDH square. Hence, because the honest prover will use commitments
such that ψ0 and ψ1 are independent, then ai, bi necessarily exist such that
a0b1 −a1b0 is invertible in line 8 of commitment. Also note that because Kφ′,i =
[e]U ′

i + [f ]V ′
i = [e]ψi(U) + [f ]ψi(V ) for both i ∈ {0, 1}, and U, V have order

coprime to the degree of ψi, the checks involving U ′
i , V

′
i , e, and f will also succeed.

Correctness of the rest of the protocol can also be verified in a straightforward
way.

Zero-Knowledge: We start from the simulator described in Theorem 2, and
extend it to simulate the parts of the transcript that are specific to Fig. 4:
Namely, the bases U ′

i , V
′
i and the coefficients c′

i, d
′
i, ai, bi.

Case chall = −1: For i = 0, 1, Sim constructs Kψi
∈ E0[�e2

2 ], P2,i, Q2,i and ci, di

like in Theorem 2, while ensuring that ψ0 and ψ1 are independent.



332 L. De Feo et al.

Additionally, Sim samples U, V ← RandomBasis1(E0) and computes U ′
i =

ψi(U) and V ′
i = ψi(V ). Then it takes c′

i, d
′
i such that c′

idi − d′
ici is invertible

Fig. 4. Sigma protocol to prove the strong SIDH relation RSIDH.
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Fig. 5. Visual representation of the protocol for the strong SIDH relation. Black arrows
represent isogenies computed by the prover; only the continuous arrows are revealed
to the verifier. Dashed circles represent torsion subgroups, the radial arrows within
represent torsion generators. The torsion generators have the same order as the degree
of the continuous arrows, and are mapped consistently by the dashed arrows. Left:
consistency checks performed by the verifier in the cases chall = −1, 0: the blue and
the red arrows represent isogenies recomputed by the verifier from the opening of the
torsion bases and of (ai, bi, ci, di). For readability, a set of red arrows (associated to
(a0, b0)) in the top square, and a set of blue arrows (associated to (c1, d1)) in the bottom
square are omitted. The verifier must also check that the bases (U ′

0, V
′
0 ) and (U ′

1, V
′
1 )

(see right) are mapped consistently. Right: consistency checks in the case chall = 1:
the verifier recomputes φ′

i from the opening of the torsion bases and of (e, f). The
verifier must also check that the bases (P2,i, Q2,i) and (P3,i, Q3,i) (see left) are mapped
consistently. (Color figure online)

and computes R0,i, ai, bi like in the honest protocol. Finally it computes all
commitments like in the honest protocol, except for Ci

R which are taken at
random.

It is clear that the distribution of U ′
i , V

′
i , c′

i, d
′
i, ai, bi is identical to the honest

protocol, thus this simulation is indistiguishable following the same argument as
in Theorem 2.

Case chall = 0: This case is similar to the previous one, however Sim needs to
compute both ψi and ψ′

i in order to simulate U ′
i , V

′
i . Because the image points

P1 = φ(P0) and Q1 = φ(Q0) are part of the SIDH relation, Sim can choose
a′, b′ ∈ Z/�e2

2 Z and compute Kψi
= [a′]P0 + [b′]Q0 and Kψ′

i
= [a′]P1 + [b′]Q1.

It then proceeds like in Theorem 2, but also computes U, V, U ′
i , V

′
i as above

using the knowledge of φi. After taking c′
i, d

′
i with the usual condition, it
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computes R1,i and then ai, bi. Finally, it computes all commitments honestly,
except for Ci

L. Again, the simulation is perfect except for Ci
L, and is thus indis-

tinguishable thanks to the hiding property of C().

Case chall = 1: The simulator twice chooses a random supersingular elliptic curve
E2,i for i ∈ {0, 1}.

The simulator then chooses uniformly a random point Kφ′
0

∈ E2,0 of order
�e1
1 and computes the isogeny φ′

0 : E2,0 → E3,0 with kernel Kφ′
0
. Sim chooses a

random basis {U ′
0, V

′
0} for E2,0[�e1

1 ], and writes Kφ′
0

= [e]U ′
0 + [f ]V ′

0 for integers
e, f .

Next, Sim will randomly generate a basis {U ′
1, V

′
1} of the �e1

1 -torsion subgroup
on E2,1, such that e�

e1
1

(U ′
1, V

′
1) = e�

e1
1

(U ′
0, V

′
0). It sets Kφ′

1
= [e]U ′

1 + [f ]V ′
1 and

lets φ′
1 : E2,1 → E3,1 be an isogeny with kernel generated by Kφ′

1
.

Next, the simulator generates basis P2,i, Q2,i ← RandomBasis2(E2,i), and
computes P3,i, Q3,i ← φ′

i(P2,i), φ′
i(Q2,i). Finally, Sim chooses random values for

the commitments Ci,Ci
m, which will never be opened when chall = 1.

Like in Theorem 2, this is not a perfect simulation of the honest protocol.
However, thanks to the hiding property of C(), the adversary is reduced to solving
precisely an instance of the Double-DSSP problem (Definition 8).4

3-special Soundness: Suppose we obtain three accepting transcripts (com,−1,
resp−1), (com, 0, resp0), and (com, 1, resp1). The secret isogeny corresponding to
the public key X = (E1, P1, Q1) can be recovered as follows, hence we can extract
a valid witness W for the statement X such that (X,W ) ∈ RSIDH.

Consider just one of the isogeny squares (e.g., i = 0). We have (c, d) which
defines a point K

̂ψ = [c]P2,0 + [d]Q2,0 and hence an isogeny ψ̂ : E2,0 → E0. We
also have Kφ′ ∈ E2,0 which defines an isogeny φ′ : E2,0 → E3,0 whose kernel
is generated by Kφ′ . Applying Lemma 2, with (φA, φB , φAB) = (φ′, ψ̂, ψ̂′), we
obtain an isogeny φ0 : E0 → E1 of degree �e1

1 . The conditions of the lemma on
the kernels of ψ̂ and ψ̂′ are satisfied because φ′(K

̂ψ) = K
̂ψ′ , as above. Hence we

have extracted an isogeny as required.
Repeating the argument for i = 1 provides another isogeny φ1 : E0 → E1

of degree �e1
1 . The next step is to prove that these isogenies are equivalent (i.e.,

have the same kernel). This is where the points U ′
0, V

′
0 , U ′

1, V
′
1 are needed. We

have

ker(φ0) = ψ̂0(ker(φ′
0))

= 〈ψ̂0([e]U ′
0 + [f ]V ′

0)〉
= 〈ψ̂1([e]U ′

1 + [f ]V ′
1)〉

= ψ̂1(ker(φ′
1)) = ker(φ1).

4 Note that the second pairing condition in Definition 8 is equivalent to the existence
of K0, K1 such that K0 = [e]U ′

0 + [f ]V ′
0 and K1 = [e]U ′

1 + [f ]V ′
1 .
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Therefore, we recover the same5 isogeny φ0 = φ1 = φ from both squares.
It remains to prove that the isogeny φ we have extracted does map (P0, Q0)

to (P1, Q1) and so is a correct witness.
Recall we are provided with points Rj,i and integers ai, bi such that R0,i =

[ai]P0 + [bi]Q0. Define

B =
(

a0 b0
a1 b1

)
.

Since B is invertible, 〈R0,0, R0,1〉 is another basis for 〈P0, Q0〉 = E0[�e2
2 ]. Recall

that R0,i = ψ̂i([c′
i]P2,i + [d′

i]Q2,i), R1,i = ψ̂′
i([c

′
i]P3,i + [d′

i]Q3,i), and P3i , Q3,i =
φ′(P2,i), φ′(Q2,i). It follows from φ ◦ ψ̂i = ψ̂′

i ◦ φ′ that φ(R0,i) = R1,i. Hence we
have

(
R0,0

R0,1

)
= B

(
P0

Q0

)

(
R1,0

R1,1

)
=

(
φ(R0,0)
φ(R0,1)

)
= B

(
φ(P0)
φ(Q0)

)

(
R1,0

R1,1

)
= B

(
P1

Q1

)
,

therefore

B

(
φ(P0)
φ(Q0)

)
= B

(
P1

Q1

)
,

and since B is invertible, we must have that P1 = φ(P0) and Q1 = φ(Q0), as
required. ��

Note that the protocol in Fig. 4 runs the previous protocol (in Fig. 3) twice,
hence the transcripts produced by this Proof of Knowledge for RSIDH will be (at
least) twice the size. We expect that improvements to the efficiency and size of
the scheme are possible with more analysis, but leave this for future work.

Remark 2. Ghantous, Pintore, and Veroni [17] discuss issues with extraction of a
witness in two different scenarios. Their first scenario (“single collision”) involves
two distinct isogenies φ′ : E2 → E3 in the SIDH square of the identification
scheme. Neither of our new identification schemes are impacted by such collisions
because the provision of points P3, Q3 ∈ E3 uniquely determines the isogeny
φ′, as shown by Martindale and Panny [24]. Their second scenario (“double
collision”) involves two distinct (non-equivalent) isogenies φ, φ̃ : E0 → E1, both
of degree �e1

1 and a point R ∈ E0 such that

E1/〈φ(R)〉 ∼= E1/〈φ̃(R)〉.
5 They could differ by an automorphism, but this does not matter. Fix one of them

and call it φ.
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Our second protocol, for the relation RSIDH, ensures that the witness extracted
is a valid witness for the public key used (including the torsion points). Hence,
this second collision scenario does not have any impact on the soundness of our
protocol either.

7 Non-interactive Proof of Knowledge

We conclude with some brief remarks about the use of the new protocols pro-
posed above.

It is standard to construct a non-interactive Proof of Knowledge from an
interactive protocol using the Fiat-Shamir transformation (secure in the random
oracle model). This works by making the challenge chall for the t rounds of the ID
scheme a random-oracle output from input the commitment com and a message
M . That is, for message M ,

V O
1 (com) = O(com ‖ M).

In some situations one should include the instance (E0, P0, Q0, E1, P1, Q1) in
the hash too. Thus the prover does not need to interact with a verifier and
can compute a non-interactive transcript. Because the sigma protocol described
in Sect. 6 not only proves knowledge of the secret isogeny between two curves,
but also correctness of the torsion points in the public key, we obtain a non-
interactive Proof of Knowledge of the secret key corresponding to a given SIDH
public key, which proves that the SIDH public key is well-formed. This provides
protection against adaptive attacks.

Such a NIZK of an SIDH secret key can, among other applications, be used
to achieve a secure non-interactive key exchange scheme based on SIDH.

Currently the only other method known to get a NIKE from SIDH is the k-
SIDH proposal by Azarderakhsh, Jao and Leonardi [2]. This requires both parties
to publish k SIDH keys and to compute O(k2) shared SIDH keys, and so requires
k2 isogeny computations to construct the shared key. It is known [3,10] that one
can attack the scheme in Õ(16k) oracle queries and time. For a given security
parameter λ it is therefore natural to suppose k grows linearly in λ, in which case
the complexity of the protocol grows quadratically in λ. In contrast, the soundess
of our NIZK protocol means the number of rounds grows linearly in λ, and the
key exchange protocol itself is a single SIDH exchange. So asymptotically the
cost of our scheme will be less than k-SIDH.

8 Conclusions

We have shown a counterexample to the soundness of the De Feo–Jao–Plût sigma
protocol. We have described a new sigma protocol that addresses this issue, and
also allows to prove that an SIDH key is correctly generated. Our protocol also
solves the soundness issue raised by Ghantous, Pintore and Veroni.
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The problem of proving correctness of an isogeny turns out to be considerably
more difficult than was anticipated (at least, by us!), and there are several open
problems for future work. First it would be good to have a protocol with 2-special
soundness for the SIDH relation. The 3-special soundness and ternary challenges
seem to be necessary for the weak SIDH relation, preventing leakage of torsion
point information, and thus protecting against the recent attacks on SIDH.

However, in cases where the torsion point information is public, our protocols
use ternary challenges only to bypass the difficulty in simulating the torsion
bases (P2, Q2) and (P3, Q3). A protocol with statistical zero-knowledge instead
of computational zero-knowledge would therefore help with this issue. Second,
the protocol seems extremely complex and it would be wonderful to have a
simpler and more elegant one.

We have not considered ways to make the protocol more compact. There
are some trivial modifications that would reduce the communication (such as
replacing pairs (ci, di) with projective points (ci : di)) and there is scope for
more sophisticated compression of the protocol messages. However, we feel that
progress at the conceptual level to reduce the communication cost is more rele-
vant than applying standard implementation tricks.
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Abstract. At CRYPTO 1994, Cramer, Damg̊ard and Schoenmakers
proposed a general method to construct proofs of knowledge (PoKs),
especially for k-out-of-n partial knowledge, of which relations can be
expressed in disjunctive normal form (DNF). Since then, proofs of k-out-
of-n partial knowledge have attracted much attention and some efficient
constructions have been proposed. However, many practical scenarios
require efficient PoK protocols for partial knowledge in other forms.

In this paper, we mainly focus on PoK protocols for k-conjunctive
normal form (k-CNF) relations, which have n statements and can be
expressed as follows: (i) k statements constitute a clause via “OR” oper-
ations, and (ii) the relation consists of multiple clauses via “AND” oper-
ations. We propose an alternative Sigma protocol (called DAG-Σ proto-
col) for k-CNF relations (in the discrete logarithm setting), by converting
these relations to directed acyclic graphs (DAGs). Our DAG-Σ protocol
achieves less communication cost and smaller computational overhead
compared with Cramer et al.’s general method.

Keywords: Sigma protocol · Proof of partial knowledge · Conjunctive
normal form · Directed acyclic graph · Disjunctive normal form

1 Introduction

Proofs of partial knowledge demonstrate the possession of certain subsets of
witnesses for a given collection of statements. In 1994, Cramer, Damg̊ard and
Schoenmakers [14] showed a general method with access structures to construct
proofs of partial knowledge for compound statements, from “atomic” Sigma
protocols for the individual statements.
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During the last decades, most works of proofs of partial knowledge [1,2,5,20]
focus on k-out-of-n partial knowledge (i.e., proving knowledge of witnesses for
k out of n statements). The relations of k-out-of-n partial knowledge can be
expressed in the following disjunctive normal form (DNF) on n statements:
every k different statements are combined with operation “AND” (we call such
a combination of k statements a “Type-∧ clause”), and Ck

n different Type-∧
clauses are combined with operation “OR”. An informal expression when k = 2
and n = 3 is (y1 ∧ y2)∨ (y1 ∧ y3)∨ (y2 ∧ y3), where y1, y2, y3 are 3 statements,
and (y1 ∧ y2), (y1 ∧ y3), (y2 ∧ y3) are 3 Type-∧ clauses. We call this kind
of relations complete k-DNF relations, since each of them contains Ck

n Type-∧
clauses for some specific k and n.

However, many practical scenarios require proofs of partial knowledge in
other forms, such as a variant of the aforementioned DNF relations, which are
very similar to complete k-DNF relations but the number of Type-∧ clauses is
smaller than Ck

n (e.g., when k = 2 and n = 3, (y1 ∧ y2) ∨ (y1 ∧ y3)). We call this
kind of relations incomplete k-DNF relations.

Relations expressed in conjunctive normal form (CNF) are another impor-
tant collection of relations in practice. For instance, many access control policies
are naturally set in CNF and they have been discussed in some attribute-based
encryption schemes [8,25,27,33]. Another class of examples is the collection of
instances of the k-SAT problem [24], e.g., a start-up company wants to show the
investors a business plan (building at least a shopping mall in every k neighbour-
ing blocks) in a zero-knowledge manner, avoiding the business roadmap being
leaked. Some other applications about relations in CNF are also mentioned in
[2], e.g., proof of possession of white money, where given a transaction graph,
a user proves that the money are transferred among some white organizations
while preserving the organizations’ pseudonymity.

In this paper, we mainly focus on k-CNF relations1: k different statements are
combined with operation “OR” (similarly, we call such a combination a “Type-
∨” clause), and many Type-∨ clauses are combined with operation “AND”. An
example expression when k = 2 and n = 3 is (y1 ∨y2)∧ (y1 ∨y3), where (y1 ∨y2)
and (y1 ∨ y3) are 2 Type-∨ clauses.

Note that given some witnesses and statements, in order to determine
whether they belongs to a k-CNF relation, one has to check every Type-∨ clause.
But if for a k-DNF relation, once a Type-∧ clause is satisfied, the other Type-∧
clauses do not need to be checked anymore. It seems that the above difference
results in the failure of applying most approaches of Sigma protocols for complete
k-DNF relations to k-CNF relations.

To the best of our knowledge, only Cramer et al. [14] shows constructions of
Sigma protocols for k-CNF relations. However, it may lead to super-polynomial
communication cost. Acyclicity program, proposed by Abe et al. [2], also works
for k-CNF relations, but it is designed for non-interactive zero-knowledge proofs

1 In this paper, when we refer to k-CNF relations, we usually mean incomplete k-
CNF relations (i.e., the number of Type-∨ clauses num is smaller than Ck

n), since
complete k-CNF relations (i.e., num = Ck

n) can be trivially converted to complete
(n − k + 1)-DNF relations.
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(NIZK), not Sigma protocols. More importantly, it seems impossible to transfer
their scheme [2] into a standard Sigma protocol, so acyclicity program [2] does
not have the strengths of Sigma protocols. For example, Sigma protocols often
enjoy low soundness error by design, have high efficiency relative to their generic
counterparts, and are more flexible. Using the Fiat-Shamir transform [15], Sigma
protocols can be transferred to NIZK, so they are widely adopted in both non-
interactive algorithms [4,7,31] and interactive protocols [10,18]. Some protocols
[10,18] even enjoy round complexity improvement benefit from delayed-input
Sigma protocols, which can be transferred from ordinary Sigma protocols using
the method in [11]. But the acyclicity program does not enjoy these advantages.

Therefore, a question is raised naturally: Is it possible to construct a more
efficient Sigma protocol for k-CNF relations?

Our Contributions. This paper gives an affirmative answer to the above ques-
tion in the discrete-logarithm (DL) setting. More concretely, we systematically
study proofs of partial knowledge for k-CNF relations, showing constructions of
Sigma protocols for these relations and extensions.

We firstly formally define partial knowledge for k-CNF relations. Then, we
propose a construction of a Sigma protocol for k-CNF relations and we call it
DAG-Σ protocol. More specifically, we first put forth an efficient deterministic
algorithm kCNFtoDAG to convert a k-CNF relation to a directed acyclic graph
(DAG). Then, we construct the DAG-Σ protocol by composing a collection of
Schnorr’s Sigma protocols [32] according to the DAG. With this approach, we
succeed in reducing the size of the transcripts and improving the efficiency.

As an extension, we apply our DAG-Σ protocols to construct Sigma protocols
for incomplete k-DNF relations. We prove theoretically that a Sigma protocol
for incomplete k-DNF relations can be obtained from two Sigma protocols: one
for k-CNF relations and the other one for complete k-DNF relations. Then we
construct a Sigma protocol for incomplete k-DNF relations in the DL setting,
by restricting the choices of statements.

A comparison of communication costs of some existing protocols for three
kinds of relations (k-CNF, incomplete k-DNF and complete k-DNF) is shown in
Table 1. To compare these schemes, we consider them in the DL setting where
given a group G of order p, the secret (or witness) of each statement is the
corresponding discrete logarithm. For the Sigma protocols (i.e., except [2]), we
consider the size of the data transmitted during the communication between the
prover and the verifier. For the others (i.e., [2]), we consider the proof size.

For k-CNF relations, the communication cost of our protocol (in Sect. 5.2)
is O(n − k)|G| + O(|V |)|Z∗

p|. Note that V in Table 1 denotes the vertices of the
DAG in our DAG-Σ protocol. A discussion on upper bound of |V | shows that
the size of our solution is smaller (actually is much smaller in most cases) than
that of [14], which implies that our solution enjoys a better performance when
compared with [14]. Although the communication cost of [2] is linear in n, it is a
non-interactive protocol, so it lacks some general extensions for standard Sigma
protocols as discussed before.

For incomplete k-DNF relations, only a few protocols work for them. As
shown in Table 1, the communication costs of our protocol (in Sect. 6) and [1]
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Table 1. Comparison of some existing protocols (in the DL setting)�

Schemes Σ protocol? k-CNF Incomplete k-DNF Complete k-DNF

Cramer et al. [14] Yes O(k · num)(|G| + |Z∗
p|) O(k · num)(|G| + |Z∗

p|) O(n)(|G| + |Z∗
p|)

Groth et al. [20]�� Yes \ \ O(log n)(|G| + |Z∗
p|)

Abe et al. [1] Yes \ O(n)|G| + O(num)|Z∗
p| O(n)|G| + O(Ck

n)|Z∗
p|

Abe et al. [2] No O(n)(|G| + |Z∗
p|) \ \

Attema et al. [5] Yes \ \ O(log(2n − k))|G| + 4 × |Z∗
p|

Goel et al. [17] Yes \ \ O(k · n)���

Ours (Sect. 5.2) Yes O(n − k)|G| + O(|V |)|Z∗
p| \ O(k)|G| + O(|V |)|Z∗

p|†
Ours (Sect. 6)‡ Yes \ O(n)|G| + O(|V |)|Z∗

p| \
� The results here are obtained by trivially applying the corresponding protocols. There are n
statements and num clauses in the expression of the k-CNF or (in)complete k-DNF relations,
where each clause contains k different statements. V denotes the vertices of the DAG in our
DAG-Σ protocol (|V | ≤ k · num).
�� The solution in [20] only works for k = 1.
��� [17] presents a discussion on this kind of relation and the result is directly obtained from
the discussion. It involves a special commitment scheme, so we do not have |G| and |Z∗

p| here.
† The result is obtained from Remark 1.
‡ Our solution in Sect. 6 only works for special language.

are both less than [14]. In the case of |V | < num, our protocol (in Sect. 6) has
less communication cost than that of [1].

Compared with those protocols for complete k-DNF relations with general
k ( [5,14]), [5] does not consider k-CNF relations, and the protocol in [14] for
k-CNF relations has more communication cost than ours.

Finally, we provide an implementation of our DAG-Σ protocol based on ellip-
tic curve groups with key size of 512 bits. It shows that our DAG-Σ protocol
saves more than 95% communication costs and more than 90% running time,
compared with [14], when proving the relations in our experiments.

Discussion: Non-discrete-Logarithm Setting. In this paper, we mainly focus on
the DL setting (exactly running Schnorr’s Sigma protocol [32] for each state-
ment). Our solution can be extended to non-discrete-logarithm setting. We
describe the DAG-Σ protocol by using many algorithm interfaces of a mod-
ified Schnorr’s Sigma protocol. If similar modification can also be applied to
other non-discrete-logarithm-based Sigma protocols [9,23,29], then using the
framework of our DAG-Σ protocol and embedding other non-discrete-logarithm
Sigma protocols, the new protocol can work in non-discrete-logarithm setting.

Technical Overview. Recall that a Sigma protocol is an interactive protocol
run by a prover P and a verifier V, and during the execution, a commitment a,
a challenge c and a response z are sent in turn by P and V, where c is randomly
picked by V. In the literature, a composite Sigma protocol for compound NP
relations is constructed by composing “atomic” Sigma protocols for the individ-
ual relations securely. Our DAG-Σ protocol follows this general idea. Generally,
to run the composite Sigma protocol, P firstly runs each of the “atomic” Sigma
protocols to generate the individual commitment aatm, and then sends a to V,
where a derives from all the aatm’s as per the rule of the composite protocol.
After receiving a randomly sampled c from V, P prepares the challenges catm’s,
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based on what she sees (including c), for all the “atomic” Sigma protocols to
generate the responses zatm’s for all statements. Finally, P packs the responses
zatm’s and some catm’s as z (e.g., [1,14]) and sends z to V. Correctness usually
requires that having c and z, V can compute a result a′ that equals a.

Our starting point is the most trivial solution, i.e., a contains all commitments
aatm’s, and z contains all challenges catm’s and all responses zatm’s. Then, we
show step by step how to reduce the size of the communication, i.e., reducing
the numbers of aatm’s in a, and the number of catm’s and zatm’s in z.

Step I: Reduce the Number of aatm’s and catm’s. Inspired by the ring signature
[4], in a Type-∨ clause with k statements, we take the hash value of the com-
mitment for the (j + 1)th statement as the challenge for the jth (1 ≤ j < k)
statement, i.e., cj = Hash(aj+1), where cj denotes one of catm’s and aj+1 denotes
one of aatm’s. Further, all Type-∨ clauses share the challenge c picked by V, and
for each Type-∨ clause, the kth statement takes c as the challenge. In this way, V
can also compute all the challenges by himself when verification. Hence, only one
challenge (i.e., c) needs to be transmitted, reducing the number of catm’s in z.
Moreover, we informally require that the underlying “atomic” Sigma protocols
can have the verifier compute aatm from the corresponding catm and zatm. Then
for each clause, considering the property that “cj = Hash(aj+1) (1 ≤ j < k)”,
the commitment aatm of the first statement essentially can be computed by c
and corresponding zatm’s. Thus, we just put the aatm’s of the first statement of
all “Type-∨” clauses in a to reduce the number of aatm’s. To guarantee the cor-
rectness, we employ a variant of Schnorr’s Sigma protocol and following we take
the proof of 1-out-of-k partial knowledge (i.e., there is only one Type-∨ clause)
for example to highlight the main idea.

An example relation in the DL setting is in Fig. 1, where x = (x1, . . . , xk)
and y = (y1, . . . , yk) denote the witnesses and statements respectively, and the
witness xμ for statement yμ is known by the prover. In Fig. 1, the prover in
the first step of the Sigma protocol (i.e., P1) randomly picks (z1, . . . , zk−1, r) to
compute (a1, . . . , ak), and then sends only a1 as the commitment a to the verifier.
Note that except the last statement, we take the hash value of commitment aj+1

(1 ≤ j < k) as the challenge for the jth statement, i.e., cj = H(aj+1), where
H : G → Z

∗
p is a collision-resistance hash function. After receiving the challenge

c from the verifier, the prover in the third step of the Sigma protocol (i.e.,
P2) re-computes the commitments by randomly picking z′

k, . . . , z′
μ+1 until the

μth statement yμ, of which P2 knows the discrete logarithm xμ. For the μth

statement, when given aμ and xμ, we can re-compute z′
μ for yμ by the property

of Chameleon Σ-protocol [12] (Schnorr’s Sigma protocol is also a Chameleon Σ-
protocol and more details are in Sect. 5.1) , such that the value of z′

μ guarantees
aμ = a′

μ. Then when 1 ≤ i < μ, we just set z′
i = zi. By induction on 1 ≤ i < μ

(i.e., H(ai+1) = H(a′
i+1) and zi = z′

i imply ai = a′
i, and the latter further implies

H(ai) = H(a′
i)), we have a = a1 = a′

1. Hence, the verifier will accept the proof.
The detailed algorithm can be found in Sect. 5.1.

If applying the above method directly to each Type-∨ clause of a k-CNF
relation, then the size of the response z (resp., the commitment a) would be O(k ·
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Fig. 1. An example of the proof of 1-out-of-k partial knowledge

num) (resp., O(num)), where num is the number of Type-∨ clauses. Hence, the
complexity is theoretically equal to that of [14] as shown in Table 1. Therefore,
we further consider to reduce the number of aatm’s and zatm’s.

Step II: Reduce the Number of aatm’s and zatm’s. Given a k-CNF relation, there
may be many duplicate statements in different Type-∨ clauses. If these duplicate
statements can share the commitments aatm’s and responses zatm’s, then we can
reduce the numbers. To this end, we convert the relation to a DAG, requiring
that (i) every Type-∨ clause is converted to a directed path with k vertices and
each vertex represents a statement; (ii) the maximum length of paths is k, and
the number of paths with length k equals the number of the Type-∨ clauses num.
We merge the vertices in the graph while the above requirements are preserved.
For the details of the rules of merging, please refer to the transfer algorithm
kCNFtoDAG in Sect. 4. Our composite Sigma protocol is run over the DAG. As
a result, the size of the commitment a is O(n − k), and the size of the response
z is O(|V |), where V is the vertex set of the DAG. Through a theoretic analysis,
we will show that |V | ≤ (k · num), even |V | � (k · num) in most cases.

To illustrate the idea more clearly, we take the k-CNF relation in Eq. (1) for
example and the relation is informally denoted as

(y1 ∨ y2) ∧ (y2 ∨ y3) ∧ (y3 ∨ y4) ∧ (y1 ∨ y4). (1)

Figure 2 is the DAG output by kCNFtoDAG when inputting the relation in
Eq. (1), which has 4 directed paths, just equal to the number of the Type-∨
clauses in Eq. (1). Node i, i′ (i ∈ [1, 4]) represents the corresponding statement
yi. For each Type-∨ clause, we have a corresponding directed path with length
k (e.g., for (y1 ∨ y2), we have path 2 → 1). There are 4 different statements
and each has 2 duplicates in Eq. (1). Note that in Fig. 2, there is only one node
representing y1 (similar for y4), because we merge some nodes by the algorithm
kCNFtoDAG. We also note that not all nodes corresponding to the duplicate
statements can be merged, e.g., node 3 and node 3′ for y3.

Based on the DAG output by kCNFtoDAG, we compose the “atomic” Sigma
protocols for individual relations. Informally, we run a “atomic” Sigma protocol
over each node in the DAG. In a nutshell, for each node, we generate a commit-
ment for the corresponding statement of the node, and then generate a response
after receiving the challenge.

Note that the DAG affects the generation of the challenges for statements.
In Fig. 1, we note that the challenges are generated sequentially and only one
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Fig. 2. An example of our scheme

commitment influences the computation of a challenge (i.e., informally, cj =
H(aj+1)). However, in Fig. 2, there may be multiple arrows pointing to a node
v (e.g., node 1). For convenience, we call the nodes that these arrows point
from the predecessor nodes of node v. So here we have the challenge for the
corresponding statement of node v being influenced by multiple commitments,
which are generated for the statements of the predecessor nodes of v. More
exactly, to compute the challenge, the hash function will take these commitments
as the input (e.g., c1 = H(a2||a4)). For those nodes that no arrows point to, we
directly take c as the challenge for their corresponding statements (e.g., c4 = c).
With this approach, we preserve the effect of Step I for reducing the number of
aatm’s and catm’s.

Related Works. A general composition technique of Sigma protocol was pro-
posed by Cramer, Damg̊ard and Schoenmakers [14]. The idea is to secret-share
the challenge according to the access structure and then use the shares as chal-
lenges in the corresponding Sigma protocols for each of the “atomic” statements.
Another composition technique, to sequentially generate the challenge as we do
in Step I, is introduced in [4] and recently revisited in [2,16]. Some more discus-
sion on constructing proofs for k-CNF relations using the techniques of [14] and
[2] can be found in the full version of this paper.

Composition is also a hot topic in NIZKs in the common reference string
model. Numbers of works [3,19,21,28,30] are proposed to implement disjunctive
relations for the Groth-Sahai proofs [22] and Quasi-Adaptive NIZKs [26].

Composite Sigma protocol for 1-out-of-n partial knowledge (or complete k-
DNF relations) have been studied for a long time, since Cramer et al. [14] achieves
linear communication complexity. Later, Groth and Kohlweiss [20] show how to
achieve logarithmic (in n) communication when k = 1, while Attema, Cramer
and Fehr [5] achieve logarithmic communication for general k and n in the DL
setting. Recently, Aarushi Goel et al. [17] propose stacking Sigmas to compose
Sigma protocols for disjunctions. The resulting Sigma protocol has communi-
cation complexity proportional to the communication required by the largest
clause.

Roadmap. The rest of paper is organised as follows. We review preliminaries in
Sect. 2. The definition of k-CNF relations is introduced in Sect. 3 and a transfer
algorithm kCNFtoDAG is presented in Sect. 4. We formally present the DAG-Σ
protocol in Sect. 5 and an extension on incomplete k-DNF relations in Sect. 6.
Finally, we show the experimental results in Sect. 7.
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2 Preliminary

Notations. Throughout this paper, let λ denote the security parameter. For
any k ∈ N, let [k] := {1, 2, · · · , k}. For a finite set S, we denote by a ← S the
process of uniformly sampling a from S. For a distribution X, we denote by
a ← X the process of sampling a from X. For any probabilistic polynomial-time
(PPT) algorithm Alg, we write Alg(x; r) for the process of Alg on input x and
with inner randomness r, and use y ← Alg(x) to denote the process of running
Alg on input x and with uniformly sampled inner randomness r, and assigning
y the result. We also use the symbol “←” to assign the value of a variable or
the result of a formula on the right-hand side to the variable on the left-hand
side. We write vectors in Z

n
q or G

n in boldface, e.g., x = (x1, . . . , xn) ∈ Z
n
q . In

addition, let (a||b) denote the concatenation of a and b.

Sigma Protocol. Let R be a polynomial-time-decidable binary relation. The
corresponding language L consists of statement y such that there exists a wit-
ness x satisfying (x, y) ∈ R. We specify L as an NP language. A Sigma protocol
Σ = (P,V) for polynomial-time-decidable relation R is a three-move proto-
col and consists of two efficient interactive protocol algorithms (P,V), where
P = (P1,P2) is the prover and V = (V1,V2) is the verifier, associated with a
challenge space CL. Specifically, for any (x, y) ∈ R, the commitment a, the chal-
lenge c and the response z are sent in turn by the prover and verifier, where
c is randomly picked over CL by the verifier. It enjoys completeness if for any
(x, y) ∈ R and any transcript (a, c, z) output by the protocol, the verifier (i.e., V2)
outputs 1. It also has the security requirements of knowledge soundness, special
honest verifier zero knowledge (special HVZK) and witness indistinguishability.
In this paper, we relax the requirement of knowledge soundness to computational
knowledge soundness. Due to page limitations, formal definitions of these secu-
rity requirements will be given in the full version of this paper. Without loss of
generality, when there are multiple Sigma protocols, for Σ = (P,V), we use Σ.P
and Σ.V to specify the prover and verifier of Σ, respectively.

Graphs. A directed graph is a tuple G = (V,E) where V is a set of elements
called vertices (or nodes) and E is a set of vertices pairs, E ⊆ V × V , called
directed edges or arrows. Given an edge e = (u, v), it is pointed from vertex u to
vertex v, and u is called the head of e and v is called the tail of e. A cycle in G
is a finite sequence of edges (e1, . . . , el) satisfying that the tail of edge ei is the
head of edge ei+1 for ∀i ∈ [l] ( we set el+1 = e1). A graph with no cycles is called
acyclic. Given an acyclic graph G, we define a vertex sequence (v1, . . . , vl) as a
path, where there is an edge e = (vi, vi+1) for every pair of neighboring vertices
(vi, vi+1) for i ∈ [l − 1]. The number of edges pointed to vertex v is called the
in-degree of vertex v and we denote it as in-deg(v). Similarly, the number of
edges pointed from vertex v is called the out-degree of vertex v and we denote
it as out-deg(v). Given a vertex v, we call it a source if in-deg(v) = 0 and call
it a sink if out-deg(v) = 0. In addition, we define some operations for a directed
acyclic graph G: (1) sink(G) outputs a vertex set Ssink that contains all sinks;
(2) similarly, source(G) outputs a vertex set Ssource that contains all sources;
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(3) for any vertex v, pred(v) outputs a vertex set Spred
v where the elements are

the head of the edges that are pointed to vertex v.

3 Definition of k-CNF Relations

In this section, we formally define partial knowledge for k-CNF relations. Let y
denote a statement, and Sk denote the universal set of which the elements are k-
size subsets of [n], i.e., Sk := {{i1, . . . , ik}| 1 ≤ i1 < . . . < ik ≤ n, {i1, . . . , ik} ⊂
[n]}. Besides, (xl, yl) ∈ Rl (l ∈ [n]) denotes a valid witness-statement pair
belonging to a relation Rl. Then, we define the following partial knowledge
for compound statements.

Definition 1. (Partial knowledge for k-CNF). Given n different statements
(yl)l∈[n], n sub-relations (Rl)l∈[n], and S′

k � Sk, the prover proves that for all
{i1, . . . , ik} ∈ S′

k, she knows the witnesses for at least one of yi1 , · · · , yik
.

The relation can be presented in CNF as follows,

Rk-CNF,S′
k

= {(x,y) : ∧{i1,...,ik}∈S′
k
(∨j∈[k](xij

, yij
) ∈ Rij

)}, (2)

where x, y are two n-dimension vectors, and Rij
∈ {Rl | l ∈ [n]} is a sub-

relation. We call (∨j∈[k](xij
, yij

) ∈ Rij
) a “Type-∨” clause, where {i1, . . . , ik} ∈

Sk. Let num denote the number of Type-∨ clauses in Rk-CNF,S′
k
, i.e., num = |S′

k|.
Note that num ≤ Ck

n, and we only consider polynomial-time relation, so it
is required that the membership of (x,y) to Rk-CNF,S′

k
can be determined in

polynomial time in |y|. We denote the (polynomial-time) relation defined in Eq.
(2) as a k-CNF relation.

We stress that not all the Rk-CNF,S′
k

defined in Eq. (2) can be decided in
polynomial time. For example, when k is about n

3 and num is close to Ck
n,

generally the complexity of determining whether (x,y) ∈ Rk-CNF,S′
k

is O(k ·
num) = O(n

3 · C
n
3

n ), so it is super-polynomial.
In this paper, we focus on k-CNF relations that can be determined in poly-

nomial time, e.g., (i) |S′
k| is polynomial in |y|, and (ii) k is a constant. Specif-

ically, when |S′
k| is polynomial in |y|, the time for determining Rk-CNF,S′

k
is

linear in |S′
k|, so it is also polynomial. On the other hand, when k is a constant,

O(k · num) = O(num), where num is polynomial in n in the worst case.

Remark 1. When num = Ck
n, a proof for a k-CNF relation can be transferred into

a proof of (n − k + 1)-out-of-n partial knowledge. Then there exists some trivial
and efficient solutions, e.g., [5]. Thus, without loss of generality, when we refer
to k-CNF relations, we usually mean “incomplete” k-CNF relations (i.e., num <
Ck

n). It also can be inferred that a proof of k-out-of-n partial knowledge can be
transferred into a proof for a (n − k + 1)-CNF relation with Cn−k+1

n clauses.

Throughout this paper, we mainly focus on the discrete logarithm (DL) set-
ting. In other words, the prover aims to convince the verifier that she knows the
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discrete logarithms of some statements (i.e., the group elements). Formally, let
G be a cyclic group of order p, and g be a generator of G. Following Definition
1 and the DL setting, we define the relation Rdl

k-CNF,S′
k

as follows:

Rdl
k-CNF,S′

k
= {(x,y) : ∧{i1,...,ik}∈S′

k
(∨j∈[k]yij

= gxij )}, (3)

where x ∈ (Z∗
p ∪ {⊥})n\{(⊥)n}, y ∈ G

n, S′
k is defined as in Definition 1, and

for all {i1, . . . , ik} ∈ S′
k, 1 ≤ i1 < . . . < ik ≤ n. Furthermore, for any x ∈

(Z∗
p ∪ {⊥})n\{(⊥)n}, let Sw

x := {i ∈ [n] | yi = gxi}. In other words, Sw
x contains

the indices that prover knows the corresponding witnesses.

4 Converting k-CNF Relations into DAGs

Before constructing our Sigma protocol for k-CNF relations, we firstly introduce
a deterministic transfer algorithm kCNFtoDAG, which can convert a k-CNF rela-
tion Rk-CNF,S′

k
(in Eq. (2)) to a directed acyclic graph (DAG). In Sect. 5, we will

show a Sigma protocol (DAG-Σ) based on the DAG output by the algorithm
kCNFtoDAG.

We require that the DAG output by kCNFtoDAG should have the following
properties:

– Property-(i): Each node in some path corresponds to a statement in the
corresponding Type-∨ clause.

– Property-(ii): The number of paths from the nodes in Ssource to the nodes
in Ssink equals the number of Type-∨ clauses in the expression of Rk-CNF,S′

k
,

and the lengths of these paths are k.

Furthermore, we require that the number of vertices in the DAG should be as
few as possible. That’s because in Sect. 5, we will show that the communication
complexity of our DAG-Σ protocol depends on the number of the vertices of the
DAG output by kCNFtoDAG.

Now, we turn to the details of algorithm kCNFtoDAG.
For simplicity, we require that the statements in each Type-∨ clause are

sorted from the smallest index to the largest, e.g., R1 in Eq. (4) (for simplicity,
we use Σ to denote (x, y) ∈ R).

R1 = {(x,y) : (Σ1 ∨ Σ2 ∨ Σ3) ∧ (Σ1 ∨ Σ2 ∨ Σ4)
∧ (Σ2 ∨ Σ3 ∨ Σ5) ∧ (Σ3 ∨ Σ4 ∨ Σ5)}

(4)

A simple idea to implement kCNFtoDAG is to build a separate directed path
for each Type-∨ clause. However, it would result in (k ·num) nodes in the graph,
where num is the number of Type-∨ clauses. As shown in Fig. 3, we draw a DAG
for R1 in Eq. (4), using the simple idea. It is clear that the DAG has the above
two properties, and there are totally 3 × 4 = 12 nodes in the graph.

To reduce the number of nodes, we consider the following method first. We
scan the relation and let every statement have at most three states, i.e., begin-
ning, middle, ending. The beginning state shows that the statement is the last
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statement of some Type-∨ clause so the corresponding node is the head of some
path. The middle state indicates that the statement is placed in the middle of
some Type-∨ clause. The ending state is that the statement is the first state-
ment of some Type-∨ clause (note that in Sect. 5, the prover will compute a
commitment for each node, and only the commitments for the nodes indicating
statements with ending state will be sent to the verifier). Then for every Type-∨
clause, we have a path in G from a node indicating the beginning state of some
statement to a node indicating the ending state of some statement.

Thus, we merge the nodes with the same state in Fig. 3, then obtain another
DAG in Fig. 4. We use al, bl, el (l ∈ [1, 5]) to denote the beginning, middle,
ending state of the lth statement respectively. When describing the DAG here,
for convenience, we also use these notations (i.e., al, bl and el) to represent the
head nodes, middle nodes and tail nodes respectively. In addition, we may use
superscripts to indicate different duplicate nodes (e.g., nodes b13 and b23 in Fig. 6
represent the different duplicates). When talking about the paths in the DAG,
we sometimes write the path with nodes and arrows (e.g., for the path (a3, b2, e1)
in Fig. 4, we write it as a3 → b2 → e1). In Fig. 4, the number of vertices is 9,
which is smaller than that in Fig. 3.

Fig. 3. A simple idea Fig. 4. An example for CNF

However, the above approach cannot handle all cases. A counter example is

R2 = {(x,y) : (Σ1 ∨ Σ2 ∨ Σ3) ∧ (Σ1 ∨ Σ2 ∨ Σ4) ∧ (Σ1 ∨ Σ3 ∨ Σ4)
∧ (Σ2 ∨ Σ3 ∨ Σ5) ∧ (Σ3 ∨ Σ4 ∨ Σ5)}

(5)

and we try to draw a DAG as shown in Fig. 5, using the above approach.
Compared with relation R1 in Eq. (4), one more Type-∨ clause is added in

Eq. (5) (i.e., (Σ1 ∨ Σ3 ∨ Σ4)), and we use the dashed arrows in Fig. 5 to show
the difference compared with Fig. 4. Note that there is a “crossing edge” (i.e.,
in node b3) in Fig. 5. It implies two more directed paths (i.e., a4 → b3 → e2 and
a5 → b3 → e1) are introduced in Fig. 5, while (Σ2 ∨ Σ3 ∨ Σ4) and (Σ1 ∨ Σ3 ∨ Σ5)
are not in Eq. (5). Hence, the obtaining DAG does not have the above two
properties. Essentially, a “wrong” crossing edge may introduce nonexistent Type-
∨ clauses. Thus, to output a correct DAG, a duplicate node for b3 is needed in
this case, as shown in Fig. 6.
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Fig. 5. A counter exam Fig. 6. A fixed graph

Next, we present the formal description of algorithm kCNFtoDAG, which is
constructed with the above approach. We also take relation R2 in Eq. (5) as an
example, to show how kCNFtoDAG works step by step.
Algorithm Description. Inputting a k-CNF relation Rk-CNF,S′

k
(in Eq. (2)), the

deterministic transfer algorithm kCNFtoDAG runs in the following steps and
finally outputs a DAG G = (V,E):

1. Preparing nodes. For each Type-∨ clause in Rk-CNF,S′
k
, draw a separate

directed path (v1, . . . , vk) with length k and each node represents a statement.
For each path, we require that the indices of their corresponding statements
are from the largest to the smallest. In other words, given a function f : V →
[n], mapping the nodes to the indices of the corresponding statements, we
have f(v1) > . . . > f(vk).
As shown in Fig. 7, for every Type-∨ clause of the expression of R2 in Eq.
(5), we draw a path. There are 5 paths and 15 nodes in total. The numbers
in the bottom of Fig. 7 (i.e., 5, . . . , 1) indicate the statements that the above
nodes map to, e.g., node a3 represents statement y3. It is clear that given any
path (v1, v2, v3) in Fig. 7, the indices of the corresponding statements are in
descending order, e.g., for the path which is denoted as a3 → b22 → e31, we
have f(v1) = 3 > f(v2) = 2 > f(v3) = 1.

Fig. 7. Graph after step 1 Fig. 8. Graph after step 2
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2. Merging prefixes. For any node vl (l ∈ [k]) in some path (v1, . . . , vk), we
define the prefix of vl as (v1, . . . , vl−1). For any vl and v′

l, if their prefixes
(v1, . . . , vl−1) and (v′

1, . . . , v
′
l−1) correspond to the same statements, then for

all i ∈ [l − 1], we merge vi and v′
i into one node. Here, we merge the nodes in

descending order of the indices of the statements, i.e., from the largest index
to the least index.
For example, in Fig. 7, node b4 (in path a1

5 → b4 → e3) and node b13 (in
path a2

5 → b13 → e2) have the same prefix (i.e., node a1
5 and node a2

5). Thus,
we merge them into one node (i.e., the blue node a5 in Fig. 8). Similarly,
we merge node a1

4 and node a2
4 into another blue node a4 in Fig. 8. Finally,

we obtain Fig. 8 after merging prefixes and there are totally 5 paths and 13
nodes.

3. Merging suffixes. For any node vl (l ∈ [k]) in some path (v1, . . . , vk), we
define the suffix of vl as (v1+1, . . . , vk). Note that a node may have multiple
suffixes after merging prefixes. For any vl and v′

l, we will merge them into
one node, if they satisfy the following conditions: i) they correspond to the
same statement; ii) the numbers of suffixes of vl and v′

l are the same (if the
suffix is empty, the number of suffixes is 0); iii) when the numbers of suffixes
are greater than 0, for each suffix of vl, there is suffix of v′

l such that the
corresponding statements of the suffixes are the same. Here, we merge the
nodes in ascending order of the indices of the statements, i.e., from the least
index to the largest index. Finally, output the graph G.
In Fig. 8, the suffix of the node e11 in path a4 → b23 → e11, the suffix of node
e21 in path a4 → b12 → e21 and the suffix of node e31 in path a3 → b22 → e31, are
all empty. Thus, we merge them into one node, as the blue node e1 in Fig. 9.
After that, node b12 (in path a4 → b12 → e1) and node b22 (in path a3 → b22 →
e1) share the same suffixes (i.e., node e1). Thus, we merge node b12 and node
b22 into one node (i.e., the blue node b2 in Fig. 10). Finally, we can see that
the graphs in Fig. 10 and Fig. 6 are identical. There are 5 paths and 10 nodes
in total in Fig. 10, and the number of the nodes in Fig. 10 are much smaller
than that in Fig. 7.

Fig. 9. Merging nodes to e1 Fig. 10. Graph after step 3

That’s the description of the deterministic transfer algorithm kCNFtoDAG.
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Now we turn to discuss the properties that kCNFtoDAG has. Formally, we
have the following two theorems. Due to space limitations, the proofs of these
two theorems are provided in the full version of this paper.

Theorem 1. Given a k-CNF relation, the DAG output by algorithm
kCNFtoDAG has the aforementioned Property-(i) and Property-(ii).

Theorem 2. Given a k-CNF relation Rk-CNF,S′
k

for n statements, the number
of vertices |V | in the DAG, output by the above transfer algorithm kCNFtoDAG,
satisfies that |V | ≤ Min(Vbound, (k · num)), where num is the number of the
clauses in the expression of Rk-CNF,S′

k
, and

Vbound = 2d + 2(n − 2d + 1) + (n − 2d + 2)C
� d
2 �+1

n

⎧
⎨

⎩

d = k (2 ≤ k <
n + 1

2
)

d = n − k + 1 (
n + 1

2
≤ k ≤ n − 1)

(6)

In addition, if we just prepare as many nodes as the theoretical result (i.e.,
Vbound), then we can further reduce the running time and memory space when
invoking kCNFtoDAG. An improved algorithm can be found in the full version
of this paper.

5 DAG-Σ Protocol for k-CNF

In this section, we construct a Sigma protocol for k-CNF relations. Specifically,
we first show a Sigma protocol for k-CNF relations based on a Sigma protocol
for 1-out-of-k relations in Sect. 5.1. Further, we convert the k-CNF relations to
directed acyclic graphs (DAGs), and then show a DAG-based Sigma protocol
(DAG-Σ protocol) in Sect. 5.2.

5.1 Warm-Up

Here we describe a Sigma protocol for k-CNF relations. Part of the ideas will be
adopted in our later DAG-Σ protocol.

Framework. Let R1-OR be a 1-out-of-k relation in the DL setting, i.e.,

R1-OR = {(x,y) : y1 = gx1 ∨ . . . ∨ yk = gxk}, (7)

where x ∈ (Z∗
p ∪ {⊥})k\{(⊥)k} and y ∈ G

k. We will firstly construct a Sigma
protocol ΣR1-OR for R1-OR. Then, with ΣR1-OR as an ingredient, we construct a

composite Sigma protocol Σ
Rdl

k-CNF,S′
k

plain for Rdl
k-CNF,S′

k
(Eq. (3)) in this way:

1. For each Type-∨ clause in Rdl
k-CNF,S′

k
, the prover P1 calls ΣR1-OR .P1 to gen-

erate a commitment; then she sends all the commitments to the verifier.
2. The verifier V1 picks a random number from Z

∗
p as a challenge and sends it

to the prover.
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3. The prover P2 calls ΣR1-OR .P2 to generate responses and then sends them to
the verifier.

Finally, the verifier V2 outputs 1 if and only if ΣR1-OR .V2 accepts all the
transcripts (for all the Type-∨ clauses in Rdl

k-CNF,S′
k
).

Completeness, computational knowledge soundness and special HVZK prop-
erty of this composite Sigma protocol are trivially based on that of ΣR1-OR . So
we omit the analysis here, and turn to the construction of ΣR1-OR .

Sigma Protocol ΣR1-OR . Before describing the protocol ΣR1-OR , we firstly
recall Schnorr’s Sigma protocol [32] ΣR

Sch = (P,V) for relation R = {(x, y) :
y = gx} in Fig. 11, where the description of the HVZK simulator Sim is also
presented. Observe that the witness x is not needed for ΣR

Sch.P1, so we write
ΣR

Sch.P1(⊥, y) directly in Fig. 11. Note that Schnorr’s Sigma protocol ΣR
Sch is a

Chameleon Σ-protocol [12] (the definition will be recalled in the full version of
this paper). Generally, in a Chameleon Σ-protocol, the prover can compute the
commitment a by using the simulator (taking a statement y and an arbitrary
challenge c′ as input). Once the challenge c has been received, the prover can
compute the response z by using the witness x and the randomness which is used
by the simulator to compute a. Thus, a Chameleon Σ-protocol for R has two
modes: standard mode when P runs P1 and P2, and a Chameleon mode when P
runs the simulator. It is required that for all (x, y) ∈ R, the transcript output in
the standard mode and that output in the Chameleon mode are indistinguish-
able. As pointed out in [12], ΣR

Sch is a Chameleon Σ-protocol, so we provide
another proving algorithm P ′ = (P ′

1,P ′
2) for ΣR

Sch in Fig. 11.
In fact, Schnorr’s Sigma protocol is a perfect Chameleon Σ-protocol, so for

all (x, y) ∈ R, the transcripts generated by (P,V) and that generated by (P ′,V)
are distributed identically.

Fig. 11. Schnorr’s Sigma protocol ΣR
Sch

Now, we turn to the construction of Sigma protocol ΣR1-OR .
Let ΣR

Sch be Schnorr’s Sigma protocol as shown in Fig. 11, and ϕ : {0, 1}∗ →
Z

∗
p be a collision-resistant hash function. The Sigma protocol ΣR1-OR = (P,V)

for R1-OR is as follows (and the detailed algorithms are shown in Fig. 12).
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1. P → V. The prover P1 computes the commitment as follows. First, P1 calls
ΣR

Sch.P1(⊥, yk) to generate a random commitment ak for the kth statement yk.
Then for l = k − 1 to 1, P1 invokes the HVZK simulator ΣR

Sch.Sim, feeding it
with ϕ(al+1) as the challenge, to generate al for the lth statement yl. Finally,
P1 sends a = a1 to the verifier V.

2. V → P. Receiving a, V1 samples c ← Z
∗
p and sends it to P.

3. P → V. Receiving c, P2 proceeds to compute the response. We denote the
largest component in Sw

x as μ, i.e., the witness xμ for yμ is known by the
prover. For every l > μ, P2 invokes the HVZK simulator ΣR

Sch.Sim to generate
another commitment a′

l for each statement yl. Then, for l = μ, P2 calls
ΣR

Sch.P ′
2(aμ, ϕ(a′

μ+1), ϕ(aμ+1), xμ, yμ) (or ΣR
Sch.P2(ak, c, xk, yk) if μ = k) to

generate a valid response. For every l < μ, we just set the responses equal to
those responses output by the HVZK simulator in the first step. Finally, P2

sends z = {zl}l∈[k] to the verifier.

The verification is as follows. The verifier V2 invokes the codes in ΣR
Sch.V2 to

compute the commitments for every statement. Then he compares the computed
commitment of the first statement with the commitment a sent by P1. If they
are equal, V2 outputs 1.

Completeness. Now we analyze the completeness of ΣR1-OR . For any (x,y) ∈
R1-OR, denote the largest component in Sw

x as μ. If μ = k, we have a′′
k =

gzk/yc
k = gr+xkc/yc

k = gr = ak = a′
k. If μ < k, we have a′′

k = gzkyc
k = a′

k and
then by mathematical induction we have a′′

μ+1 = a′
μ+1. Further, we have

a′′
μ = gzμ/y

ϕ(a′′
μ+1)

μ = gzμ/y
ϕ(a′

μ+1)
μ

= gẑμ+(ϕ(a′
μ+1)−ϕ(aμ+1))xμ/y

ϕ(a′
μ+1)

μ = gẑμ/yϕ(aμ+1)
μ = aμ = a′

μ.

Therefore, when l < μ, we can prove the following recursively: a′′
l =

gzl/y
ϕ(a′′

l+1)

l = gzl/y
ϕ(a′

l+1)

l = gẑl/y
ϕ(al+1)
l = al = a′

l. It implies that a′′
1 = a′

1 =
a1 = a, so V2 outputs 1.

The completeness implies some special features of ΣR1-OR :

1. For every statement, the commitment computed by P2 equals that computed
by V2, i.e., a′

l = a′′
l (l ∈ [k]).

2. For the statement of which the prover knows the witness, the corresponding
commitments in different steps are the same, i.e., aμ = a′

μ = a′′
μ.

3. If al+1 �= a′′
l+1 (l ∈ [k − 1]) and the prover does not know the witness of yl,

then it holds that al �= a′′
l with overwhelming probability.

Due to page limitations, the analysis of computational knowledge soundness,
special HVZK and witness indistinguishability of ΣR1-OR will be given in the full
version of this paper.

With this Sigma protocol ΣR1-OR as a building block, we can obtain a compos-

ite Sigma protocol Σ
Rdl

k-CNF,S′
k

plain for Rdl
k-CNF,S′

k
(Eq. (3)) following the framework
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Fig. 12. Algorithms of ΣR1-OR (μ is the largest component in Sw
x , i.e., the prover knows

xμ for yμ.)

as mentioned before. We note that the communication complexity of the com-
posite Sigma protocol for Rdl

k-CNF,S′
k

is O(k · num), which theoretically equals
the complexity of [14].

5.2 Description of DAG-Σ Protocols

Here, we construct a more efficient Sigma protocol for Rdl
k-CNF,S′

k
in Eq. (3).

Informally, we construct this protocol following the main idea of ΣR1-OR , except
that (i) we firstly convert the relation to a directed acyclic graph (DAG), and
generate a commitment for each node v of the DAG (instead of generating al

for each statement yl in ΣR1-OR), and (ii) the value of commitment for node
v depends on all the commitments for the nodes in Spred

v (while the value of
commitment al depends on a single statement al+1 for statement yl+1). Further-
more, the communication complexity of the DAG-based protocol depends on the
number of vertices of the DAG.
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Building Blocks. Let ΣR
Sch be Schnorr’s Sigma protocol as shown in Fig. 11, and

ϕ : {0, 1}∗ → Z
∗
p be a collision-resistant hash function. Let kCNFtoDAG be

the deterministic transfer algorithm presented in Sect. 4, which takes a k-CNF
relation Rk-CNF,S′

k
(i.e., relation of the form like Eq. (2)) as input and outputs a

directed acyclic graph G = (V,E). As in the description of kCNFtoDAG, we can
have a function f : V → [n] such that if there is an edge from v1 to v2 in the
graph, then f(v1) > f(v2).

Overview. We firstly run the transfer algorithm kCNFtoDAG to convert the rela-
tion Rdl

k-CNF,S′
k

to a DAG G = (V,E). Note that a node in G represents only one
statement, while a statement may correspond to multiple nodes, since there are
multiple Type-∨ clauses in the expression of Rdl

k-CNF,S′
k
. Recall that in the Sigma

protocol ΣR1-OR in Fig. 12, for each statement yl, a corresponding commitment
al is generated. Here, with similar approach, for each node of G, we compute
a commitment for the corresponding statement. For a node v, the commitment
computed with the algorithm P1 of the DAG-Σ protocol is denoted as av if
v ∈ Ssource, or bv if (v �∈ Ssource) ∧ (v �∈ Ssink), or ev if v ∈ Ssink. In other words,
it is denoted according to the in-degree and out-degree of node v. Note that the
in-degree and out-degree cannot both be zero when k ≥ 2 (it is a trivial problem
when k = 1). In addition, the values of these commitments will not be changed
once they are assigned.

On the other hand, recall that in ΣR1-OR (as shown in Fig. 12), commitment al

is computed based on ϕ(al+1), i.e., the underlying hash function ϕ takes only one
commitment as input. In our DAG-Σ protocol, when computing the commitment
for the statement corresponding to node v (hereinafter, we sometimes directly
write it as the commitment for node v for simplicity), the hash function ϕ would
take all the commitments for the nodes in Spred

v as input. Specifically, for the
algorithm P1 of the DAG-Σ protocol, we provide an algorithm msg(G, v) to
“splice” the commitments computed by P1, denoting the output of msg(G, v)
as mv, such that ϕ will directly take mv as input. We assume that msg always
“splice” the commitments from the smallest index to the largest one. So for any
fixed node v in G, msg(G, v) is also a fixed value. The detailed description of
msg will be given in Fig. 14.

Analogously, in the description of the DAG-Σ protocol (which will be shown
in Fig. 13 and Fig. 14), the commitments computed by P2 (resp., V2) are denoted
as a′

v, b′
v or e′

v (resp., a′′
v , b′′

v or e′′
v). Respectively, we also provide msg′ and msg′′,

and the detailed descriptions will be given in Fig. 14.
Note that in ΣR1-OR (as shown in Fig. 12), the corresponding commitments

computed in ΣR1-OR .P1 and in ΣR1-OR .P2 are equal (i.e., al = a′
l in Fig. 12),

only when the prover knows the witness xl or al+1 = a′
l+1. Comparatively, in our

DAG-Σ protocol, the commitments (for a node v) computed in P1 and in P2 are
equal, only when the prover knows the witness (of the statement corresponding
to v) or msg(G, v) = msg′(G, v).

In addition, as described in Σ
Rdl

k-CNF,S′
k

plain in Sect. 5.1, Σ
Rdl

k-CNF,S′
k

plain .P1 sends all

the a1’s of different Type-∨ clauses to Σ
Rdl

k-CNF,S′
k

plain .V1, and then Σ
Rdl

k-CNF,S′
k

plain .V2
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computes all the corresponding (a′′
1)’s and compare them with a1’s for verifica-

tion. Comparatively, in our DAG-Σ protocol, P1 sends all the {ev}v∈Ssink to V1,
and then V2 computes all the {e′′

v}v∈Ssink and compares them with {ev}v∈Ssink for
verification.

Next, we turn to the detailed description of our DAG-Σ protocol.

Description. Our DAG-based Sigma protocol Σ
Rdl

k-CNF,S′
k

DAG for relation Rdl
k-CNF,S′

k

is as follows. The detailed algorithms are shown in Fig. 13 and Fig. 14.

1. P → V. The prover P1 first calls kCNFtoDAG(Rdl
k-CNF,S′

k
) to get a directed

acyclic graph G = (V,E), and then generates the commitment a as follows:
for every node v in G,
(a) if v is a source (i.e., in-deg(v) = 0), then P1 calls ΣR

Sch.P1 to generates a
commitment for this node, i.e., av = grv , where rv ← Z

∗
p.

(b) if v is neither a source nor a sink (i.e., in-deg(v) �= 0 and out-deg(v) �= 0),
P1 invokes the HVZK simulator ΣR

Sch.Sim to generate the commitment bv

for node v (i.e., bv ← ΣR
Sch.Sim(yf(v), ϕ(mv))), where mv ← msg(G, v).

(c) if v is a sink (i.e., out-deg(v) = 0), P1 computes a commitment for node
v similar to step (b), and the only difference is that we denote the com-
mitment as ev here.

Finally, P1 sends a = {ev}v∈Ssink to the verifier V.
2. V → P. Receiving a, V1 samples c ← Z

∗
p and sends it to P.

3. P → V. Receiving c, P2 proceeds to compute the response. In a nutshell, for
every v ∈ V : if the prover knows xf(v) of the corresponding statement yf(v),
she calls ΣR

Sch.P2 to compute a response if v ∈ Ssource, or calls ΣR
Sch.P ′

2 if
(v �∈ Ssource) ∧ (mv �= m′

v); otherwise (i.e., the prover does not know any
witness of the corresponding statement), she calls ΣR

Sch.Sim to generate a
response and re-generate the commitment once v ∈ Ssource or mv �= m′

v. In
the above cases, if (v �∈ Ssource) ∧ (mv = m′

v), then we just set the response
equal to that output by the simulator in P1. Note that if for some v ∈ Ssink,
the prover does not know xf(v), and mv �= m′

v, then the protocol aborts,
because we can find a Type-∨ clause such that the prover does not know
any witness of the statements in it, which implies that (x,y) �∈ Rdl

k-CNF,S′
k
.

Finally, P2 sends z = {zv}v∈V to V.

The verification is as follows. V2 invokes the codes in ΣR
Sch.V2 to compute the

commitments for every node in G according to the edges in G. If the commit-
ments of the nodes in Ssink are equal to the corresponding commitments sent by
P1, then V2 accepts, otherwise he rejects.

We provide some more explanations about the algorithms here.
Given a node v, msg(G, v) will always succeed in returning the same value,

because (i) G is a directed acyclic graph, there are no inter-dependent nodes, i.e.,
no endless loops exist; (ii) its predecessor nodes can have correct assignments,
which can be achieved by adopting recursion or a special node sequence (for the
code “For v ∈ V ” in P1 and we omit the details here). In addition, the “For
loops” in the msg are executed following a deterministic sequence of nodes, e.g.,
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Fig. 13. Generation algorithms of Σ
Rdl

k-CNF,S′
k

DAG (Assume that the “For loops” are exe-
cuted following a deterministic sequence of nodes).

from the smallest index to the largest. Similar explanations are also applied to
P2 and V2 with msg′ and msg′′ respectively.

For all v ∈ V , av (or bv or ev) and ẑv are generated by P1, a′
v (or b′

v or e′
v)

and zv are generated by P2, and a′′
v (or b′′

v or e′′
v) is generated by V2. P knows

some witness of yf(v) if and only if f(v) ∈ Sw
x . Moreover, algorithm P2 has the

following properties.

(I): For any v ∈ V , if f(v) ∈ Sw
x , then a′

v = av or b′
v = bv or e′

v = ev. In
other words, if a′

v �= av or b′
v �= bv or e′

v �= ev, then f(v) /∈ Sw
x .

(II): For any v ∈ V \ Ssource, if f(v) /∈ Sw
x , and for all v′ ∈ Spred

v , a′
v′ = av′ or

b′
v′ = bv′ (i.e., mv = m′

v), then b′
v = bv or e′

v = ev.



360 G. Zeng et al.

Fig. 14. Verification algorithm of Σ
Rdl

k-CNF,S′
k

DAG and other auxiliary algorithms (Assume
that the “For loops” are executed following a deterministic sequence of nodes).

(III): Implied by (I) and (II), if a′
v �= av or b′

v �= bv or e′
v �= ev for some

v ∈ V \ Ssource, then there must be some v′ ∈ Spred
v such that a′

v′ �= av′ or
b′
v′ �= bv′ (which further implies f(v′) /∈ Sw

x according to Property (I)).
(IV): Implied by (III) and by induction on path, if a′

ṽ �= aṽ or b′
ṽ �= bṽ or

e′
ṽ �= eṽ for some ṽ ∈ V , then there must be some path such that for any

vertex v in the path from a source to ṽ, f(v) /∈ Sw
x .

(V): As a special case of (IV), if e′
ṽ �= eṽ for some ṽ ∈ Ssink, there must be

some path such that for any vertex v in this path, f(v) /∈ Sw
x , which also

implies that there is a Type-∨ clause ∨j∈[k]yij
such that P does not know

any witness of (yij
)j∈[k], i.e., (x,y) /∈ Rdl

k-CNF,S′
k
.

Note that when the event mentioned in Property (V) occurs, P2 will return
⊥, as shown in Fig. 13.

Completeness. For any (x,y) ∈ Rdl
k-CNF,S′

k
, let (a, c, z) denote the transcript

generated by the protocol. Now we consider the computation of V2(y, a, c, z).
Note that for all v ∈ Ssource, a′′

v = gzv/yc
f(v) = a′

v. By induction on path, we have
the following claim, the formal proof of which can be found in the full version
of this paper.

Claim. For all v ∈ V \Ssink, a′′
v = a′

v or b′′
v = b′

v.

According to above claim, for any v ∈ V , m′′
v = m′

v. For each v ∈ Ssink

satisfying f(v) ∈ Sw
x , we have:
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(1) If mv �= m′
v, then

e′′
v = gzv/y

ϕ(m′′
v )

f(v) = gzv/y
ϕ(m′

v)

f(v)

= gẑv+(ϕ(m′
v)−ϕ(mv))xf(v)/y

ϕ(m′
v)

f(v) = gẑv/y
ϕ(mv)
f(v) = ev.

(2) If mv = m′
v, then according to the procedures of P2, we have zv = ẑv, so

e′′
v = gzv/y

ϕ(m′′
v )

f(v) = gzv/y
ϕ(m′

v)

f(v) = gẑv/y
ϕ(mv)
f(v) = ev.

For each v ∈ Ssink satisfying f(v) �∈ Sw
x , we have:

(1) If mv �= m′
v, then according to Property (IV), there is some path such that

for any vertex ṽ in the path from a source to v′, f(ṽ) /∈ Sw
x (we denote

these k − 1 vertices as Spa). Note that v ∈ Ssink and f(v) �∈ Sw
x , so Spa ∪ {v}

constitute a path such that for any vertex ṽ in the path, f(ṽ) /∈ Sw
x . Accord-

ing to Property (V), (x,y) �∈ Rdl
k-CNF,S′

k
, contradicting the assumption that

(x,y) ∈ Rdl
k-CNF,S′

k
. So we don’t need to consider this case in completeness

analysis.
(2) If mv = m′

v then according to the procedures of P2, we have e′
v = ev and

zv = ẑv. Since m′′
v = m′

v, we derive e′′
v = gzv/y

ϕ(m′′
v )

f(v) = gẑv/y
ϕ(mv)
f(v) = ev.

Other Properties. For computational knowledge soundness and special HVZK
property, we have the following theorem. Due to space limitations, we provide
the proof in the full version of this paper.

Theorem 3. If ϕ is a collision-resistant hash function, Σ
Rdl

k-CNF,S′
k

DAG provides
computational knowledge soundness and is special HVZK.

Communication Complexity. It is clear that there are |Ssink| group elements and
(|V | + 1) elements in Z

∗
p in the communication of the 3-move Sigma protocol

Σ
Rdl

k-CNF,S′
k

DAG . If we apply Fiat-Shamir transform [15], the total proof would be |V |
elements in Z

∗
p.

According to Theorem 2, |V | ≤ Min(Vbound, (k · num)), which implies that
|V | ≤ k ·num. Note that the communication complexity of [14] is O(k ·num), so

we can draw such a conclusion that the communication complexity of Σ
Rdl

k-CNF,S′
k

DAG

is better than that of [14]. A further analysis of Vbound (which can be found in the
full version of this paper) will show that generally Vbound � k · num. It implies

that generally Σ
Rdl

k-CNF,S′
k

DAG protocol based on kCNFtoDAG has a remarkable per-
formance improvement on proving k-CNF relations, when compared with [14].

6 Extension: Incomplete k-DNF Relations

In Sect. 5.2, we have shown a Sigma protocol for k-CNF relations. However,
in some scenarios, the required relations of partial knowledge are formalized
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in disjunctive normal form (DNF) [5,13], i.e., each clause combines the state-
ments using “AND” operation, and then the formula of the relation combines the
clauses using “OR” operation. If every clause has k statement, we call it k-DNF
relations and then we further classify them into complete ones and incomplete
ones. In this section, we show a construction of Sigma protocols for incomplete
k-DNF relations, partially based on DAG-Σ protocol in Sect. 5.

6.1 Problem Definition

First, please refer to Sect. 3 for the notations of Sk and Rl (l ∈ [n]). Then, we
define the following partial knowledge for compound statements.

Definition 2. (Complete k-out-of-n partial knowledge for DNF). Given
n different statements {yl}l∈[n] and n sub-relations {Rl}l∈[n], the prover proves
that she knows k witnesses among the n statements. In other words, she knows
some (yi1 , · · · , yik

) are true, where {i1, · · · , ik} ∈ Sk.

The relation can be presented in DNF as follows,

Rcom
k-DNF,Sk

= {(x,y) : ∨{i1,...,ik}∈Sk
(∧j∈[k](xij

, yij
) ∈ Rij

)}, (8)

where x,y are two n-dimension vectors, and Rij
∈ {Rl}l∈[n] is a sub-relation.

For simplicity, we denote the relation in disjunctive normal form where every
clause has k statements as complete k-DNF relation. Furthermore, we stress
that |Sk| = Ck

n.
Then similarly, we define the incomplete k-out-of-n partial knowledge relation

in DNF as follows.

Definition 3. (Incomplete k-out-of-n partial knowledge for DNF).
Given n different statements {yl}l∈[n], n sub-relations {Rl}l∈[n], and a subset
S′′

k � Sk, the prover proves that she knows some (yi1 , · · · , yik
) are true, where

{i1, · · · , ik} ∈ S′′
k .

Similarly, the relation can be presented in DNF as follows,

Rincom
k-DNF,S′′

k
= {(x,y) : ∨{i1,...,ik}∈S′′

k
(∧j∈[k](xij

, yij
) ∈ Rij

)}, (9)

where x,y are two n-dimension vectors, and Rij
∈ {Rl}l∈[n] is a sub-relation.

Note that |S′′
k | < Ck

n. We denote the relation in Eq. (9) as incomplete k-
DNF relation and we also focus on the incomplete k-DNF relations that can
be decided in polynomial time.

6.2 A Transfer for Special Cases

Following Rcom
k-DNF,Sk

(Eq. (8)) and Rincom
k-DNF,S′′

k
(Eq. (9)), we further consider the

following relations,

Rnot
k-CNF,Sk\S′′

k
= {(x,y) : ∧{i1,...,ik}∈Sk\S′′

k
(∨j∈[k](xij

, yij
) �∈ Rij

)}, (10)

Rtsf = Rcom
k-DNF,Sk

∩ Rnot
k-CNF,Sk\S′′

k
, (11)
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where x and y are two n-dimension vectors, S′′
k � Sk, and we assume that

1 ≤ i1 < . . . < ik ≤ n without loss of generality. Obviously, we have that
Rtsf ⊂ Rnot

k-CNF,Sk\S′′
k
.

Now we show Rtsf ⊂ Rincom
k-DNF,S′′

k
. Specifically, for any pair (x,y) belonging

to Rtsf , (x,y) ∈ Rcom
k-DNF,Sk

and (x,y) ∈ Rnot
k-CNF,Sk\S′′

k
. In other words, at least

one clause labeled in Sk with respect to Rcom
k-DNF,Sk

, e.g., (∧j∈[k](xij
, yij

) ∈ Rij
),

is true, while the clauses labeled in Sk\S′′
k with respect to Rnot

k-CNF,Sk\S′′
k
, e.g.,

(∨j∈[k](xij
, yij

) �∈ Rij
), are all true. It means that the clauses labeled in Sk\S′′

k

with respect to Rcom
k-DNF,Sk

are all false. In all, at least one clause labeled in S′′
k

with respect to Rcom
k-DNF,Sk

is true, which implies that (x,y) ∈ Rincom
k-DNF,S′′

k
.

We claim that a Sigma protocol ΣRtsf
for relation Rtsf can be transferred to

a Sigma protocol for relation Rincom
k-DNF,S′′

k
. Given a witness-statement pair (x,y) ∈

Rincom
k-DNF,S′′

k
, we know that one of the clauses with respect to Rincom

k-DNF,S′′
k

is true.
The prover chooses one among the true clauses, and then she only preserves the
witnesses for the statements in this clause and set the others empty. Therefore,
we get an x′. It is clear that (x′,y) ∈ Rincom

k-DNF,S′′
k

and (x′,y) ∈ Rtsf . Thus, if

ΣRtsf
with the input (x′,y) outputs a proof and the verifier accepts the proof

together with input y, then the accepting proof indicates that the prover knows
the partial knowledge of y as per the relation Rtsf , which implies that the prover
knows the partial knowledge of y as per the relation Rincom

k-DNF,S′′
k
.

The Sigma protocol ΣRtsf
can be obtained from ΣRcom

k-DNF,Sk and Σ
Rnot

k-CNF,Sk\S′′
k

using “AND”-proof construction [6]. Therefore, we have the following theorem.

Theorem 4. The proof for an incomplete k-DNF relation Rincom
k-DNF,S′′

k
can be

obtained from a proof for a complete k-DNF relation Rcom
k-DNF,Sk

and a proof for
a k-CNF relation Rnot

k-CNF,Sk\S′′
k
.

In other words, a Sigma protocol Σ
Rincom

k-DNF,S′′
k can be obtained from ΣRcom

k-DNF,Sk

and Σ
Rnot

k-CNF,Sk\S′′
k . Since there are some efficient constructions for ΣRcom

k-DNF,Sk ,

e.g., [14], what remains is to construct Σ
Rnot

k-CNF,Sk\S′′
k efficiently. However, it

seems difficult to prove a “NOT” statement (e.g., (xij
, yij

) �∈ Rij
) generally.

Here, we discuss this problem in the discrete logarithm setting for some spe-
cial cases. More specifically, in the following, we show a construction of a Sigma
protocol for Rincom

k-DNF,S′′
k

under the conditions (defined by Eq. ( 12)–( 13)) in the
discrete logarithm setting.

We firstly introduce the definition of ρ-type pairs as follows.

Definition 4 (ρ-type pair). Let G be a cyclic group of prime order p generated
by g ∈ G. Let h ∈ G be some arbitrary non-identity element and logg h is
unknown. Then we call (x, y = gxhρ) ∈ Zp × G a ρ-type pair, where ρ ∈ Zp.

We stress that for any distinct ρ1, ρ2, when x1, x2 ← Zp, y1 = gx1hρ1 and
y2 = gx2hρ2 are distributed identically.
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Then, we consider the following two conditions for relations: 1) every state-
ment is obtained from a 0-type or 1-type pair, as shown in Eq. (12); 2) further
there are only k 0-type pairs among all witness-statement pairs, as shown in Eq.
(12)–(13).

Rcon1 = {(x,y) : ∧l∈[n](yl = gxl ∨ yl/h = gxl)}, (12)

Rcon2 = {(x,y) : (
n∏

l=1

yl)/hn−k = g
∑n

l=1 xl}. (13)

In the discrete logarithm setting, Rincom
k-DNF,S′′

k
, Rcom

k-DNF,Sk
and Rnot

k-CNF,Sk\S′′
k

can be written as

Rincom,dl
k-DNF,S′′

k
= {(x,y) : ∨{i1,...,ik}∈S′′

k
(∧j∈[k] yij

= gxij )}, (14)

Rcom,dl
k-DNF,Sk

= {(x,y) : ∨{i1,...,ik}∈Sk
(∧j∈[k] yij

= gxij )}, (15)

Rnot,dl
k-CNF,Sk\S′′

k
= {(x,y) : ∧{i1,...,ik}∈Sk\S′′

k
(∨j∈[k]yij

= gxij )}. (16)

Under the conditions defined by Eq. (12)–(13), Rincom,dl
k-DNF,S′′

k
further becomes

Rincom
k = Rincom,dl

k-DNF,S′′
k

∩ Rcon1 ∩ Rcon2. (17)

Note that Rincom,dl
k-DNF,S′′

k
indicates that at least one clause labeled in S′′

k is true, and
Rincom

k means that only one clause labeled in S′′
k is true.

Now we turn to Rnot,dl
k-CNF,Sk\S′′

k
in Eq. (16) under the conditions defined by Eq.

(12)–(13). Firstly, because of Eq. (12), a “NOT” statement, i.e., yij
= gxij here,

can be transferred into yij
/h = gxij . Secondly, Eq. (12)–(13) guarantee that

once (x,y) ∈ Rincom
k , for every {i1, . . . , ik} ∈ Sk\S′′

k , there is at least one of the
indices of the (n−k) 1-type pairs falling in {i1, . . . , ik}. Therefore, Rnot,dl

k-CNF,Sk\S′′
k

in Eq. (16) under the conditions defined by Eq. (12)–(13) becomes

Rnot,ρ-type
k-CNF,Sk\S′′

k
= {(x,y) : ∧{i1,...,ik}∈Sk\S′′

k
(∨j∈[k] yij

/h = gxij )}. (18)

Considering relation

Rtsf
k = Rcom,dl

k-DNF,Sk
∩ Rnot,ρ-type

k-CNF,Sk\S′′
k

∩ Rcon1 ∩ Rcon2, (19)

it is easy to see that Rtsf
k = Rincom

k . We note that Rcom,dl
k-DNF,Sk

in Eq. (15) indicates
that at least one clause labeled in Sk is true, while Rtsf

k in Eq. (19) implies that
only one clause labeled in Sk is true and it is not labeled in Sk\S′′

k .
Hence, in order to construct a Sigma protocol for Rincom

k in Eq. (17), we need

to construct a Sigma protocol for Rtsf
k , which can be obtained from ΣRcom,dl

k-DNF,Sk ,

Σ
Rnot,ρ-type

k-CNF,Sk\S′′
k , ΣRcon1 and ΣRcon2 using “AND” operation [6]. Moreover, ΣRcon1

and ΣRcon2 can be obtained from Schnorr’s Sigma protocol and “AND/OR”
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proof construction. As for ΣRcom,dl
k-DNF,Sk , there are existing constructions, e.g.

[5,14]. As for Σ
Rnot,ρ-type

k-CNF,Sk\S′′
k , note that for each sub-relation with respect to

Rnot,ρ-type
k-CNF,Sk\S′′

k
, Schnorr’s Sigma protocol can be applied; then Σ

Rnot,ρ-type
k-CNF,Sk\S′′

k can
be obtained from the Sigma protocol in Sect. 5.2.

Thus, we obtain an efficient Sigma protocol for Rincom
k in Eq. (17), i.e.,

the incomplete k-DNF relation Rincom
k-DNF,S′′

k
under the conditions defined by

Eq. (12)–(13).

Remark 2. Note that besides ρ-type pairs, the statements can be other kinds of
elements, e.g., DDH and OneNDH in [13]. Roughly, we only require that they
are indistinguishable and the conditions will be modified accordingly.

7 Experiments

In this section, we show the performance of our DAG-Σ protocol Σ
Rdl

k-CNF,S′
k

DAG and
to have a more straight view, we compare it with that of [14]. Note that we
implement [14] in its simplest way as mentioned in the introduction section.

We implement our experiments in Golang language (version 16.6) based on
elliptic curve groups with key size of 512 bits. The experiments are conducted
on a docker, over Pengcheng Cloud Brain2, running Ubuntu 16.04 on two Intel�

XeonTM Gold 6248 CPUs@2.50 GHz and using 64 GB memory in total. We are
interested in the space overhead in communications as well as the timing over-
head in running the Sigma protocols. To this end, we present microbenchmarks
to evaluate the overhead costs. There are two factors k and n, that will affect
the performance greatly. For simplicity, we have n vary from 10 to 50 and we
choose 4 ≤ k ≤ n/3 in most cases (if n/3 < 4, we just set k = 4, e.g., in Fig. 15,
there is only one data when n = 10). Since we find no k-CNF relations in use
in the real world, we construct some different relations in the DL setting for our
experiments. Given n and k, the number of clauses in a k-CNF relation expres-
sion num also has an influence on the performance, but the range of num is
large. Similar to the theoretical analysis, here we set num = Ck

n − χ, where χ
is a random number in [50, 200], which is nearly the worst case and can reflect
the worst performance (i.e., the most space and running time that the tested
Sigma protocols need). In the full version of this paper, we draw some 3D figures
to show the complete and thorough influence of k and n over the performance.
Here, we pick some experimental data and draw some 2D figures, e.g., stacked
bar charts and line charts, for better comparison. Following are the experimental
analysis.

Communication Costs. The communication costs are measured by the bit
length of all the messages between the prover and the verifier when running the
Sigma protocols. A theoretical comparison is displayed in Table 1 in Sect. 1. Here,

2 https://cloudbrain.pcl.ac.cn/.

https://cloudbrain.pcl.ac.cn/
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Fig. 15. Figures for the experiments (CDS is the solution [14] proposed by Cramer,
Damg̊ard and Schoenmakers. The number of clauses in one relation is Ck

n − χ, where
χ is a random number in [50, 200].)

we make a quantitative comparison. In Table 2, we show that the communication
size when k = 4. It is clear that our scheme saves more than 97% space overhead
compared with [14].

For more cases, we draw a stacked bar chart as shown in Fig. 15a, where k
varies from 4 to 9. It is clear that our solution has a remarkable decrease on the
communication costs compared with [14]. In addition, the figure shows that the
effect on decrease would be better as n and k get larger.
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Table 2. Communication cost when k = 4 (×104 bits) (ratio = 1 − bits of our scheme
bits of [14]

×
100%)

n [14] Our scheme Ratio

10 65.54 1.72 97.37% ↓
15 538.62 4.07 99.24% ↓
20 1964.03 7.45 99.62% ↓
25 5160.96 11.90 99.77% ↓
30 11204.6 17.48 99.84% ↓
40 37412.9 31.92 99.91% ↓
50 94310.4 50.92 99.94% ↓

Running Time. We evaluate the running time of P1, P2 and V2 in Fig. 15. Note
that when testing our solution, we also record the running time of kCNFtoDAG
for special interest. In fact, the directed acyclic graphs can be pre-computed.
Thus, when recording the running time of P1 or V2 in our scheme, we have two
versions: one includes the running time of kCNFtoDAG and the other one does
not. Here we implement kCNFtoDAG using the improved algorithm as mentioned
in Sect. 4.

We planned to evaluate both schemes with the same range of n and k. How-
ever, the running time of [14] grows so fast that the program was killed when
n and k are set relatively large numbers. Therefore, in the experiment of [14],
we set n from 10 to 33 and k from 4 to 7. In the experiment of our scheme,
n varies from 10 to 50 and k varies from 4 to 10. More detailed experimental
results can be found in the full version of this paper. Here, we just pick some
data for analysis.

The running time of kCNFtoDAG is presented in Fig. 15b. It can be expected
that as k and n get larger, the running time increases very quickly, since the
number of vertices grows fast. If we compare it with the running time of P1

and V2 of our scheme (as shown in Fig. 15c and Fig. 15e), kCNFtoDAG performs
reasonably well.

For the running time of P1, P2 and V2, we draw a table (Table 3) to present
the running time when k = 4. The table tells that our scheme saves more than
90% running time, compared with [14]. More cases (i.e., n varies from 10 to 30
and the range of k is [4, 8]) are shown in Fig. 15 (Fig. 15c - Fig. 15e). They also
indicates that the running time of P1, P2 and V2 of our scheme outperforms [14].
Note that counting in the running time of kCNFtoDAG or not does not affect
the performance a lot, since it only occupies a limited percentage of the total
running time and the time of commitment generation in P1 and verification in
V2 of our scheme dominate the whole performance. In addition, Table 3, Fig. 15c
and Fig. 15e show that the running time of P1 and V2 have similar performance.
It is because in both [14] and our scheme, P1 and V2 have similar computation
for the commitments.
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Table 3. Running time when k = 4 (s) (Here, we count in the running time of
kCNFtoDAG when running P1 and V2 in our scheme. ratio = 1 − time of our scheme

time of [14]
×

100%).

n P1 P2 V2

[14] Ours Ratio [14] Ours Ratio [14] Ours Ratio

10 8.91 0.72 91.87% ↓ 0.0049 1.40×10−4 97.11% ↓ 10.04 0.85 91.56% ↓
15 57.47 1.92 96.66% ↓ 0.033 8.63×10−4 97.27% ↓ 65.08 2.13 96.72% ↓
20 182.23 3.91 97.85% ↓ 0.11 2.20×10−3 97.95% ↓ 187.41 4.13 97.80% ↓
25 456.37 6.54 98.57% ↓ 0.33 5.97×10−3 98.20% ↓ 477.74 6.66 98.61% ↓
30 1046.45 10.09 99.04% ↓ 0.63 5.21×10−2 91.78% ↓ 1058.25 10.08 99.05% ↓

In all, according to the experiment results, when compared with [14], our
scheme achieves a remarkable performance improvement on proving k-CNF rela-
tions, no matter from the view of communication costs or running time.
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30. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 247–276. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

31. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

32. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

33. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 3

https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-21031-0_3
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/3-540-44750-4_35
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-26948-7_3


Zero-Knowledge Protocols for the Subset
Sum Problem from MPC-in-the-Head

with Rejection

Thibauld Feneuil1,2(B), Jules Maire3, Matthieu Rivain1,
and Damien Vergnaud3,4

1 CryptoExperts, Paris, France
thibauld.feneuil@cryptoexperts.com
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Abstract. We propose (honest verifier) zero-knowledge arguments for
the modular subset sum problem. Previous combinatorial approaches,
notably one due to Shamir, yield arguments with cubic communication
complexity (in the security parameter). More recent methods, based on
the MPC-in-the-head technique, also produce arguments with cubic com-
munication complexity.

We improve this approach by using a secret-sharing over small integers
(rather than modulo q) to reduce the size of the arguments and remove
the prime modulus restriction. Since this sharing may reveal information
on the secret subset, we introduce the idea of rejection to the MPC-in-
the-head paradigm. Special care has to be taken to balance completeness
and soundness and preserve zero-knowledge of our arguments. We com-
bine this idea with two techniques to prove that the secret vector (which
selects the subset) is well made of binary coordinates.

Our new protocols achieve an asymptotic improvement by producing
arguments of quadratic size. This improvement is also practical: for a
256-bit modulus q, the best variant of our protocols yields 13 KB argu-
ments while previous proposals gave 1180 KB arguments, for the best
general protocol, and 122 KB, for the best protocol restricted to prime
modulus. Our techniques can also be applied to vectorial variants of the
subset sum problem and in particular the inhomogeneous short integer
solution (ISIS) problem for which they provide an efficient alternative
to state-of-the-art protocols when the underlying ring is not small and
NTT-friendly. We also show the application of our protocol to build effi-
cient zero-knowledge arguments of plaintext and/or key knowledge in the
context of fully-homomorphic encryption. When applied to the TFHE
scheme, the obtained arguments are more than 20 times smaller than
those obtained with previous protocols. Eventually, we use our technique
to construct an efficient digital signature scheme based on a pseudo-
random function due to Boneh, Halevi, and Howgrave-Graham.
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1 Introduction

The (modular) subset sum problem is to find, given integers w1, . . . , wn, t and q,
a subset of the wi’s that sum to t modulo q, i.e. to find bits x1, . . . , xn ∈ {0, 1}
such that

n∑

i=1

xiwi = t mod q. (1)

It was shown to be NP-complete (in its natural decision variant) in 1972 by
Karp [Kar72] and was considered in cryptography as an interesting alternative
to hardness assumptions based on number theory. Due to its simplicity, it was
notably used in the 1980s, following [MH78], for the construction of several
public-key encryption schemes.

Most of these proposals (if not all) were swiftly broken using lattice-based
techniques (see [Odl90]), but the problem itself remains intractable for appro-
priate parameters and is even believed to be so for quantum computers. For
instance, when the so-called density d = n/ log2(q) of the subset sum instance
is close to 1 (i.e. q � 2n), the fastest known (classical and quantum) algorithms
have complexity 2O(n) (see [BBSS20] and references therein) and one can reach
an alleged security level of λ bits with n = Θ(λ). Many cryptographic construc-
tions were proposed whose security relies on the hardness of the subset sum
problem: pseudo-random generators [IN96], bit commitments [IN96], public-key
encryption [LPS10], . . .

The concept of zero-knowledge proofs and arguments introduced in [GMR89]
has become a fundamental tool in cryptography. It enables a prover to convince
a verifier that some mathematical statement is true without revealing any addi-
tional information. Zero-knowledge proofs or arguments of knowledge, in which
a prover demonstrates that they knows a “witness” of the validity of the state-
ment, have found numerous applications in cryptography (notably for privacy-
preserving constructions or to enforce honest behaviour of parties in complex
protocols). The main goal of the present paper is to present new efficient zero-
knowledge arguments of knowledge for the subset sum problem.

1.1 Prior Work

Given integers w1, . . . , wn, t and q, an elegant zero-knowledge proof system due
to Shamir [Sha86] (see also [BGKW90]) allows a prover to convince a verifier
that they knows x1, . . . , xn ∈ {0, 1} such that the relation (1) holds. The proof
system is combinatorial in nature and it requires Θ(λ) rounds of communication
to achieve soundness error 2−λ where each round requires Θ(n2) bits of commu-
nication. For an alleged security level of λ bits, the overall communication com-
plexity of Shamir’s proof system is thus of Θ(λ3). In [LNSW13], Ling, Nguyen,
Stehlé, and Wang proposed a proof of knowledge of a solution for the infinity
norm inhomogeneous small integer solution (ISIS) problem which is a vectorial
variant of the subset sum problem. It is based on Stern’s zero-knowledge proof of
knowledge for the syndrome decoding problem [Ste94] and is also combinatorial.
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It thus requires a large number of rounds of communication and when specialized
to the subset sum problem it also yields proofs with Θ(λ3)-bit communication
complexity for an alleged security level of λ bits.

A secure multi-party computation (MPC) protocol allows a set of mutually
distrusting parties to jointly evaluate a function f over their inputs while keep-
ing those inputs private. An elegant approach to constructing zero-knowledge
protocols has gained particular attention over the last years: the MPC-in-the-
head paradigm of Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS09] in which a
prover secretly shares their secret input, simulates the execution of an MPC pro-
tocol on these shares (in “their head”), commits to this execution and partially
reveals it to the verifier on some challenge subset of parties. The verifier can
then check that the partial execution is consistent and accepts or rejects accord-
ingly. This approach was at first stood in the realm of theoretical cryptography
(with a focus on the asymptotic performance for any problem in NP), but it was
subsequently demonstrated to be also of practical relevance [GMO16,KKW18].
In [BD10], Bendlin and Damg̊ard were the first to use the MPC-in-the-head
paradigm in lattice-based cryptography. They proposed a zero-knowledge proof
of knowledge of the plaintext contained in a given ciphertext from Regev’s
cryptosystem [Reg05] (and a variant they proposed). More recently, Baum and
Nof [BN20] proposed an efficient zero-knowledge argument of knowledge of the
short integer solution (SIS) problem (incorporating the sacrificing principle in
the MPC-in-the-head paradigm). Beullens also recently proposed such arguments
obtained from sigma protocols with helper [Beu20]. When applied to the subset
sum problem itself, all (variants of) these protocols yield proofs with Θ(λ3)-bit
communication complexity for an alleged security level of λ bits.

There exist numerous other protocols for (vectorial variants of) the sub-
set sum problem from lattice-based cryptography. Until recently, they all intro-
duce some slack in the proof, i.e. there is a difference between the language
used for completeness and the language that the soundness guarantees (see, e.g.
[BDLN16] for a generic argument of knowledge of a pre-image for homomorphic
one-way functions over integer vectors). In particular, the witness that can be
extracted from a proof is larger than the one that an honest prover uses (and
in the subset sum problem, the extractor will not output a binary vector). This
slack forces to use larger parameters for the underlying cryptosystem and induces
some loss in efficiency. Conversely, we shall only consider exact arguments for
the subset-sum problem in the present paper. Finally, new exact arguments were
proposed recently [BLS19,ENS20,LNS21] but they require to use a modulus q of
a special form (namely a prime number as in [BN20,Beu20] but with additional
arithmetic constraints to make it “NTT-friendly”).

1.2 Contributions

In the MPC-in-the-head paradigm, the prover wants to convince a verifier that
they know a (secret) pre-image x of y = f(x) for some one-way function f
where the function f is represented as an arithmetic circuit. For the subset sum
problem, the function f is defined via (1) and it is thus natural to consider
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the simple inner-product arithmetic circuit defined over Zq. The prover’s secret
input is the binary vector x = (x1, . . . , xn) ∈ {0, 1}n and they have to perform
some secret-sharing of x in Zq in such a way that the shares of any unauthorized
set of parties should reveal no information about the secret. This approach has
the major disadvantage that sharing a single bit requires several elements of Zq

each of size Θ(λ) bits.
We adapt this paradigm using a secret sharing scheme done directly over the

integers. This approach was already used in cryptography (e.g. for multi-party
computation modulo a shared secret modulus [CGH00]). To additively share a
secret t in a given interval [−T, T ] for T ∈ N, among n ≥ 2 parties, a dealer
may pick uniformly at random t1, . . . , tn ∈ [−T2ρ, T2ρ] under the constraint that
t = t1+ · · ·+ tn (over the integers), for some parameter ρ. However, given (n−1)
shares, t2, . . . , tn for instance, the value t1 = t − (t2 + · · · tn) is not randomly
distributed in [−T2ρ, T2ρ] and this may reveal information on the secret t. It
is thus necessary to sample the shares in an interval sufficiently large in such a
way that their distributions for distinct secrets are statistically indistinguishable.
For a security level λ, this requires ρ = Ω(λ) and thus the additive sharing of
bits involves shares of size Ω(λ). To overcome this limitation and use additive
secret sharing over small integers, we will rely on rejection. The computation
being actually simulated by the prover, they can abort the protocol whenever
the sharing leaks information on the secret vector x = (x1, . . . , xn) ∈ {0, 1}n.
In some cases, the prover cannot respond to the challenge from the verifier and
must abort the protocol. A similar idea was used for lattice-based signatures by
Lyubashevsky [Lyu09] but using different methods.

Our technique also allows overcoming the second disadvantage of the previ-
ous tentatives to use the MPC-in-the-head paradigm for lattice-based problems.
Indeed, using our additive secret sharing over the integers, we can prove the
knowledge of some integer vector x = (x1, . . . , xn) satisfying relation (1) (for
any q) and further prove that xi ∈ {0, 1} for i ∈ {1, . . . , n}. This is achieved by
simulating a (single) non-linear operation modulo some arbitrary prime number
q′ (independent from q and much smaller than q). We also introduce another
technique to prove that the solution x = (x1, . . . , xn) indeed lies in {0, 1}n using
some masking and a cut-and-choose strategy. Both methods yield zero-knowledge
proofs with Θ(λ2)-bit communication complexity for an alleged security level of
λ bits. This improvement is not only of theoretical interest since for q � 2256,
our protocol can produce proof of size 13KB where Shamir’s protocol [Sha86]
(updated with modern tips) produces proof of size 1186KB and [LNSW13] pro-
duces proofs of size 2350 KB.

Our protocols are particularly efficient for the subset sum problem where the
modulus q is large. However, we show that our method has applications in other
contexts in cryptography. We show that it can be used for the (binary) ISIS prob-
lem in lattice-based cryptography and that the resulting protocols are competi-
tive with state-of-the-art protocols for this problem. We also present applications
of our techniques to the context of fully-homomorphic encryption (FHE). Specif-
ically, adaptations of our protocols provide efficient zero-knowledge arguments
of plaintext and/or key knowledge for the so-called Torus Fully Homomorphic
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Encryption (TFHE) scheme from [CGGI20]. Eventually, we use our technique
to construct an efficient digital signature scheme based on a pseudo-random
function due to Boneh, Halevi, and Howgrave-Graham [BHH01].

2 Preliminaries

2.1 Zero-Knowledge Proofs

A zero-knowledge (ZK) protocol for some polynomial-time decidable binary rela-
tion R (i.e., a relation that defines a language in NP) is defined by two proba-
bilistic polynomial time (PPT) interactive algorithms, a prover P and a verifier
V: both V and P are given a common input x and P is given in addition a wit-
ness w such that (x,w) ∈ R. Then, P and V exchange a sequence of messages
alternatively until V outputs a bit b (with b = 1 indicating that V accepts P’s
claim and b = 0 indicating that V rejects the claim). The entire sequence of
messages exchanged by P and V, along with the answer b, is called a transcript.

A zero-knowledge argument for R with soundness error ε, completeness error
α and (t, ζ)-zero-knowledge satisfies the following properties:

1. Completeness: if (x,w) ∈ R, and P knows a witness w for x, they will
succeed in convincing V (except with probability α), i.e.,

Pr[〈P(x,w),V(x)〉 = 1] ≥ 1 − α.

2. Soundness: if there exists a PPT algorithm P̃ such that

ε̃ := Pr [〈P̃(x),V(x)〉 = 1] > ε,

then there exists a PPT algorithm E (called the extractor) which, given
rewindable black-box access to P̃ outputs a witness w′ for x in time in time
poly(λ, (ε̃ − ε)−1) with probability at least 1/2.

3. Zero-knowledge: for every PPT algorithm Ṽ, there exists a PPT algorithm
S (called the simulator) which, given the input statement x and rewind-
able black-box access to Ṽ, outputs a simulated transcript which is (t, ζ)-
indistinguishable from View(P(x,w), Ṽ(x)) (see the full version [FMRV22]
for a formal definition).

Remark 1. The soundness property ensures that a PPT algorithm P̃ without
knowledge of the witness cannot convince V with probability greater than ε
assuming that the underlying problem is hard. Otherwise, the existence of E
implies that P̃ can be used to compute a valid witness w′ for x. If the zero-
knowledge property holds only for the genuine verifier V, then the protocol is
deemed honest-verifier zero-knowledge.

2.2 MPC-in-the-Head and Batch Product Verification

The MPC-in-the-Head (MPCitH) paradigm [IKOS09] constructs ZK proofs from
MPC protocols. Efficient instances of this paradigm have been published for the
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first time these last years starting with a protocol called ZKBoo [GMO16] and
has found numerous applications (e.g. [GMO16,KKW18,BN20]).

We consider a prover P and a verifier V engaging a two-party interactive
protocol for some public circuit C over a finite field F and some value t ∈ F such
that P wants to convince V that they knows an x ∈ F satisfying C(x) = t.

In the MPCitH paradigm, the prover P usually decomposes their secret x into
N shares �x�1, ..., �x�N using some additive secret sharing over F. Then, P sim-
ulates an N -party MPC protocol for evaluating C. At the end of the MPC pro-
tocol, using a commitment scheme (see definition in the full version [FMRV22]),
P commits to the N views of the parties resulting from the MPC protocol simu-
lation. V then challenges P to open a subset of the views. P answers by opening
these views and V checks that these views are consistent with the MPC process
as well as valid openings of the commitments. In the basic setting where N − 1
out of N parties are opened, the resulting zero-knowledge protocol achieves a
soundness error of 1/N .

Batch Product Verification. Using the MPCitH approach the linear oper-
ations over F (i.e. addition in F and multiplication by constants in F) can be
handled easily and are almost free in terms of computation and communication.
The most cumbersome part of the MPCitH method is to handle non-linear oper-
ations and in particular multiplications in F. The authors of [BN20] propose an
MPC protocol to verify the correctness of a product in F by “sacrificing” another
one. This construction enables to check that a triple of sharings (�x�, �y�, �z�)
is such that x · y = z, by using a second random triple (�a�, �b�, �c�) satisfying
a · b = c. The second triple can be used a single time (to preserve the zero-
knowledge property), hence the “sacrifice”.

Recently [KZ22] has adapted and optimized this method to build an effi-
cient MPC protocol which check simultaneously many products by sacrificing a
dot-product (see the full version [FMRV22]).

Additive Sharing. In most recent MPCitH schemes, in order to decrease
the communication costs, when the prover splits their secret x into N shares
�x�1, ..., �x�N , the first N − 1 shares are generated using a pseudo-random
generator and only the N -th share �x�N is computed in such a way that
x = �x�1 + · · · + �x�N in F. In this paper, since our sharings will not be defined
over some additive group, we will generate the N shares �x�1, ..., �x�N from N
seeds using a pseudo-random generator and we will introduce an auxiliary value
Δx (not distributed over the same set) such that x = �x�1 + · · · + �x�N + Δx
over the integers.

3 General Idea

We consider an instance (w, t) ∈ Z
n
q × Zq of the subset sum problem (SSP) and

denote x one solution. We have x ∈ {0, 1}n and
∑n

j=1 xj · wj = t mod q.
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We want to use the MPCitH paradigm to build a zero-knowledge protocol
that proves the knowledge of a solution for the instance (w, t). To proceed, we
need to build an MPC protocol with honest-but-curious parties taking as inputs
shares of the secret x, and possibly shares of other data, and which computation
can only succeed if x is a valid solution of the SSP instance. As a first ingredient,
we need a method to share the secret x between the different parties.

3.1 The Naive Approach

The SSP instance is defined on Zq, so a natural sharing of x would be defined as:
{

�x�i
$←− (Zq)

n for all i ∈ [N ],
Δx ← x − ∑N

i=1�x�i mod q
.

In the MPCitH paradigm, the communication cost of a sharing is the cost to
send the auxiliary values, i.e. the vector Δx. Here, the natural sharing of x costs

n · log2(q) bits.

If we take n = 256 and q = 2256, the cost is about 216 bits = 8 KB. To achieve a
soundness error of 2−128 with N = 256, we need to repeat the protocol at least
16 times, so the communication cost of the protocol would be already more than
128 KB for the sole sharing of x (some communication being further required
for the MPCitH protocol). Asymptotically, the parameters for the subset sum
problem are chosen such that n = Θ(λ) and log2 q = Θ(λ), the communication
cost of this sharing is thus about Θ(λ2) bytes per protocol repetition. Since we
need to repeat the protocol about Θ(λ) times to achieve a 2−λ soundness error
the global communication cost is then of at least Θ(λ3) (for the sharing only).

We present hereafter an alternative strategy for the sharing of x, which
achieves better practical and asymptotic communication costs.

3.2 Sharing on the Integers and Opening with Abort

We propose another way to share the secret x to achieve lower communication.
We know that x is a binary vector (i.e. x ∈ {0, 1}n), so instead of the natural
sharing, we suggest to use a sharing defined on the integers, that is

{
�x�i

$←− {0, . . . , A − 1}n for all i ∈ [N ],
Δx ← x − ∑N

i=1�x�i.

However, this sharing leaks information about the secret x. The distribution
Δxj is not the same depending on whether xj = 0 or xj = 1 as illustrated on
Fig. 1. To solve this issue, the prover must abort the protocol in some cases.

To see how this leakage can be effectively exploited to (partly) recover x, let
us recall that at the end of the protocol, the verifier shall ask the prover to open
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Fig. 1. Probability mass function of Δxj when xj = 0 and when xj = 1 (on the left)
and of Δxj with abort (on the right), for N = 3 and A = 9.

the views of all parties except one. Let us denote i∗ the index of the unopened
party. It means the verifier will have access to

{�x�i}i�=i∗ and Δx.

For the sake of simplicity, let us first consider the case n = 1, i.e. x ∈ {0, 1} and
�x� is the sharing of a single integer. With the opened values, the verifier can
compute

x − �x�i∗ as Δx +
∑

i�=i∗
�x�i.

Now let us denote Y = x−�x�i∗ the underlying random variable over the uniform
random sampling of �x�i∗ . We have

Pr(Y = −A + 1) =

{
1
A if x = 0
0 if x = 1

and Pr(Y = 1) =

{
0 ifx = 0
1
A ifx = 1

while
Pr(Y = y) =

1
A

for every y ∈ {−A + 2, . . . , 0}.

So by observing x−�x�i∗ = −A+1 one learns (x, �x�i∗) = (0,−A+1). Similarly,
by observing x − �x�i∗ = 1 one learns (x, �x�i∗) = (1, 0). To avoid this flaw, the
prover must abort the protocol before revealing {�x�i}i�=i∗ and Δx whenever one
of these two cases occurs. This notably implies that Δx must not be revealed
before receiving the challenge i∗, but it should still be committed beforehand in
order to ensure the soundness of the protocol. Doing so, we modify the distribu-
tion of the revealed auxiliary value which does not leak any information about
x anymore as illustrated in Fig. 1, and the probability to abort does not leak
information about x since it is 1/A in the both cases (x = 0 and x = 1).

Let us now come back to the general case of n ≥ 1. The prover applies the
above abortion strategy for all the coordinates of x, namely
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– if there exists j ∈ [n] such that xj = 0 and �xj�i∗ = A − 1, the prover aborts;
– if there exists j ∈ [n] such that xj = 1 and �xj�i∗ = 0, the prover aborts;
– otherwise the prover proceeds.

The probability to abort, which we call rejection rate, is

1 −
(

1 − 1
A

)n

≤ n

A
.

We note that the rejection rate can be tightly approximated by the n/A upper
bound when A is sufficiently large. In order to achieve a small (constant) rejection
rate, we should hence choose A greater than n. Asymptotically, we then have
A = Θ(n) = Θ(λ), which represents an exponential improvement compared to
q = 2Θ(λ).

Let us now analyze the computation cost of our strategy for sharing x. In the
absence of rejection, Δxj belongs to {−N · (A− 1)+1, . . . , 0}, therefore sending
the auxiliary value Δx would cost n · log2(N · (A − 1)) bits. However, the prover
can save communication by sending x−�x�i∗ instead, which is strictly equivalent
in terms of revealed information by the relation x − �x�i∗ = Δx +

∑
i�=i∗�x�i.

Since each coordinate of x− �x�i∗ is uniformly distributed over {−A+2, . . . , 0},
sending it only costs

n · log2(A − 1) bits.

With x − �x�i∗ , the verifier can recover Δx by computing Δx = (x − �x�i∗) −∑
i�=i∗�x�i. The cost of this sharing has the advantage of being independent

of the modulus q on which the SSP instance is defined. The value of A will
be chosen according to the desired trade-off between communication cost and
rejection rate. If n = 256 and A = 216, we have a cost of 0.5KB for a rejection
rate of 0.0038, which is much better than the 8 KB of the naive approach.

Let us remark that adding an abort event does not impact the soundness of
the protocol. A malicious prover can abort as many times she wants claiming
that it would leak information, but an abortion does not help to convince the
verifier. The soundness theorem will state that someone who does not know the
secret can only answer with a probability smaller than the constant value called
soundness error, and adding an abort event cannot increase this probability.
The prover could sample a random party i′ and give to i′ a wrong share and she
may indeed decide to abort if the verifier challenge is not i′, but this does not
change the fact that the probability for the prover to convince the verifier is the
probability that the prover guesses the verifier challenge a priori.

Now that we have defined the sharing of x, we need to demonstrate two
properties of the shared SSP instance through multi-party computation. The
first one is the SSP relation which in the shared setting translates to

n∑

j=1

�xj� · wj = �t� mod q

for a sharing �t� of t. The linearity of this relation makes it easy to deal with:
the share �t�i can simply be computed as �t�i :=

∑n
j=1�xj�i · wj mod q and
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committed to the verifier by each party. The verifier can then check that the
open parties have correctly computed their shares �t�i and that the relation∑N

i=1�t�i = �t� mod q well holds. The second property which must be demon-
strated through multi-party computation is that the solution x corresponding to
the sharing �x� is a binary vector. This is not a priori guaranteed to the verifier
since the shares of the coordinate of x are defined over {0, . . . , A − 1} and the
correctness of the linear relation does not imply that x is indeed binary. We
present two different solutions to this issue in the following.

3.3 Binarity Proof from Batch Product Verification

Our first solution relies on standard MPC-in-the-Head techniques to prove the
relation

x ◦ (x − 1) = 0

where ◦ denotes the coordinate-wise product, 0 and 1 are to be interpreted as
the all-0 and all-1 vectors. To this aim, we can use the MPC-in-the-Head batch
product verification suggested in [LN17,BN20] and recently improved in [KZ22]
(see Sect. 2.2). However, we can do better than a straight application of those
techniques.

The relation x◦(x−1) = 0 is defined in Zq and the above techniques imply to
send at least one field element per product, that is n elements from Zq. To save
communication and since the sharing �x� is defined on the integers, we can work
on a smaller field. We previously explained that the verifier receives {�x�i}i�=i∗

and Δx from the prover, so they can check that, for all j ∈ [n],

−A + 2 ≤ xj − �xj�i∗ ≤ 0.

They further trusts �xj�i∗ ∈ {0, . . . , A−1} (which is verified for the open parties).
Thus the verifier can deduce that, for all j ∈ [n],

− A + 2 ≤ xj ≤ A − 1. (2)

Let q′ be a prime such that q′ ≥ A. If the prover convinces the verifier that
xj(xj − 1) = 0 mod q′, then the latter deduces that xj ∈ {0, 1} because

q′|xj(xj − 1) ⇒ (q′|xj) or (q′|xj − 1)
⇒ (xj = 0) or (xj = 1) by (2)

The prover hence just needs to prove x ◦ (x − 1) = 0 mod q′ for some prime
q′ such that q′ ≥ A. To this purpose, we apply the batch product verification
of [KZ22] as follows (see also the full version [FMRV22]).

The prover first samples a ∈ (Zq′)n with its sharing

�a�i
$←− (Zq′)n for i ∈ [N ].
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The value a is hence defined as a uniform random element of (Zq′)n and no
auxiliary value Δa is necessary. The prover then computes c = 〈a, x〉 and its
sharing as {

�c�i
$←− Zq′ for all i ∈ [N ],

Δc
$←− c − ∑N

i=1�c�i mod q′ .

The prover gives the shares of x, a and c as inputs to the parties and runs the
following MPC protocol:

1. the parties get a random challenge ε ∈ (Zq′)n from the verifier;
2. the parties locally set �α� = ε ◦ (1 − �x�) + �a�;
3. the parties open �α� to get α;
4. the parties locally set �v� = 〈α, �x�〉 − �c�;
5. the parties open �v� to get v;
6. the parties accept iff v = 0.

Besides the input shares and commitments, the prover-to-verifier communi-
cation cost of the corresponding MPCitH zero-knowledge protocol only results
from the size of �α�i∗ (the broadcasted vector of the unopened party i∗), which
is of

n · log2(q
′) bits.

We stress that the prover does not need to send �v�i∗ because the verifier knows
that v must be zero and will deduce �v�i∗ = −Δv − ∑

i�=i∗�v�i

As described in Sect. 2.2, the batch product MPC verification produces false
positives with probability 1/q′. Thus the soundness error of the obtained zero-
knowledge protocol is

1 −
(
1 − 1

N

)(
1 − 1

q′
)

<
1
N

+
1
q′ .

On the other hand, the protocol has a rejection rate of 1 − (1 − 1
A )n and a

prover-to-verifier communication cost (in bits) of

2 · (2λ) + n · log2(A − 1)︸ ︷︷ ︸
x−�x�i∗

+n · log2(q
′)︸ ︷︷ ︸

Δα

+ log2(q
′)︸ ︷︷ ︸

Δc

+λ log2 N + 2λ.

3.4 Binarity Proof from Masking and Cut-and-Choose Strategy

Our second solution to prove that �x� encodes a binary vector relies on a masking
of x and a cut-and-choose strategy. The idea is to generate a random vector r
from {0, 1}n and to apply the sharing described in Sect. 3.2 to r. In addition,
the prover computes (and commits) x̃ := x ⊕ r ∈ {0, 1}n where ⊕ represents
the XOR operation. Instead of giving the shares �x� of x as inputs of the MPC
protocol, the idea is now to send the shares �r� of r. Then using x̃, the parties
can locally deduce a sharing of x as

�x� = (1 − x̃) ◦ �r� + x̃ ◦ (1 − �r�)
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which is a linear relation in �r�, and the verifier can further deduce the auxiliary
value Δx from Δr as

Δx = (1 − x̃) ◦ Δr + x̃ ◦ (1 − Δr).

By replacing �x� with �r� the parties’ input is made independent of the secret.
The interest of doing so is to enable a cut-and-choose strategy to prove that �r�
encodes a binary vector, which in turns implies that x = x̃ ⊕ r is a binary
vector. More precisely, at the beginning of the zero-knowledge protocol, the
prover produces M binary vectors r[�] and their corresponding shares �r[�]� (in
practice these vectors and their sharings are pseudo-randomly derived from some
seeds). Then the prover commits those sharings �r[�]� as well as the corresponding
masked vectors x̃[�] := x ⊕ r[�]. Then the verifier asks to open all the sharings
r[�] except one and checks that they correspond to binary vectors. The verifier
will hence trust that the unopened sharing encodes also a binary vector with a
soundness error of 1/M . We stress that all the values x̃[�] for which r[�] is opened
must remain hidden (otherwise x could be readily recovered). The obtained zero-
knowledge protocol has a soundness error of

max
{

1
M

,
1
N

}
,

a rejection rate of 1 − (1 − 1
A )n and a prover-to-verifier communication cost (in

bits) of

2 · (2λ) + λ log2 M︸ ︷︷ ︸
Cost of C&C

+n · log2(A − 1)︸ ︷︷ ︸
r−�r�i∗

+ n︸︷︷︸
x̃

+λ log2 N + 2λ.

3.5 Asymptotic Analysis

We analyze hereafter the asymptotic complexity of the two variants of our pro-
tocol. We show that for a security parameter λ both variants have an asymptotic
communication cost of Θ(λ2) and an asymptotic computation time of Θ(λ4).

For the binarity proof based on masking and cut-and-choose, we assume
M = N (which is optimal for the communication cost given the soundness
error). For the other parameters, let us recall that

– for a security parameter λ, one must take n ≈ log2 q = Θ(λ),
– the prime q′ can be chosen as the smallest prime greater than A, which implies

q′ ≈ A.

For both variants, the asymptotic communication cost for one repetition of
the protocol is then of

Θ(λ log2 A + λ log2 N).

Since each repetition has a soundness error of Θ(1/N), the protocol must be
repeated τ = Θ(λ/log2 N) times to reach a global soundness error of 2−λ. The
probability that any of these τ repetitions aborts is given by

1 −
(

1 − 1
A

)n·τ
≈ n · τ

A
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where the approximation is tight when A is sufficiently large. Thus for a small
constant rejection probability, one must take A = Θ(n · τ) = Θ(λ2/ log2 N). We
have a communication cost for the τ iterations in

Θ

(
λ2 log2 A

log2 N
+ λ2

)
= Θ

(
λ2

log2 N
log2

( λ2

log2 N

)
+ λ2

)

and we hence obtain a minimal asymptotic communication cost of Θ(λ2) by
taking N = Θ(λ).

The asymptotic computation time for one repetition of the protocol is of
Θ(Nn(log2 q)(log2 A)), where the term (log2 q)(log2 A) arises from the complex-
ity of the multiplication between an element of Zq and a value smaller than A.
We hence get a computation time of Θ(λ3 log2 λ) per repetition which makes
Θ(λ4) for τ repetitions.

4 Protocols and Security Proofs

In this section, we formally describe our two protocols and state their security.
We further introduce a method to decrease the rejection rate.

4.1 Protocol with Batch Product Verification

Protocol description. In Sect. 3.3, we proposed an MPC protocol that proves that
the sharing �x� encodes a binary vector. We then add the checking of the linear
relation as described in Sect. 3.2 and we transform the multi-party computation
into a zero-knowledge protocol which proves the knowledge of a solution of an
SSP instance. We give the formal description of our protocol in Protocol 1. The
protocol makes use of a pseudo-random generator PRG, a tree-based pseudo-
random generator TreePRG (see definition in [KKW18]), two collision-resistant
hash functions Hashi for i ∈ {1, 2} and a commitment scheme (Com,Verif) as
defined in the full version [FMRV22]. In this description, the procedure Check
returns 0 if the evaluated condition is false (i.e. the equality does not hold) and
the execution continues otherwise.

Security Proofs. The following theorems state the completeness, zero-knowledge
and soundness of Protocol 1. The proofs of Theorems 1, 2 and 3 are provided in
appendix of the full version [FMRV22].

Theorem 1 (Completeness). A prover P who knows a solution x to the
subset sum instance (w, t) ∈ Z

n
q × Zq and who follows the steps of Protocol 1

convinces the verifier V with probability
(

1 − 1
A

)n

.
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Prover P Verifier V
x ∈ {0, 1}n

w ∈ Z
n
q , t = 〈w, x〉 w, t

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ {1, . . . , N}:
�a�i, �x�i, �c�i ← PRG(seedi) � a ∈ Z

n
q′ , c ∈ Zq′ , �x�i ∈ {0, . . . , A − 1}n

comi = Com(seedi; ρi)
Δx = x − ∑

i�x�i

Δc = 〈a, x〉 − ∑
i�c�i

h = Hash1(Δx, Δc, com1, . . . , comN )
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z

n
q′

ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- �t� = 〈w, �x�〉 � t ∈ Zq

- �α� = ε ◦ (1 − �x�) + �a� � α ∈ Z
n
q′ (computation in Zq′)

The parties open �α� to get α.
The parties locally set

�v� = 〈α, �x�〉 − �c� � v ∈ Zq′ (computation in Zq′)

h′ = Hash2(�t�, �α�, �v�)
h′−−−−−−−−−−−−−−−−−−→

i∗ $←− {1, . . . , N}
i∗←−−−−−−−−−−−−−−−−−−

If there exists j ∈ [n] such that:
- either �xj�i∗ = 0 with xj = 1
- or �xj�i∗ = A − 1 with xj = 0,

then abort.
y = x − �x�i∗

(seedi, ρi)i�=i∗ , comi∗ ,
y, Δc, �α�i∗

−−−−−−−−−−−−−−−−−−→
For all i �= i∗,

�a�i, �x�i, �c�i ← PRG(seedi)
Δx = y − ∑

i�=i∗�x�i

Δα = ε · (1 − Δx)
For all i �= i∗,

Rerun the party i as the prover
and compute the commitment comi.

Δt = 〈w, Δx〉
Δv = 〈α, Δx〉 − Δc
�t�i∗ = t − Δt − ∑

i�=i∗�t�i

�v�i∗ = −Δv − ∑
i�=i∗�v�i

Check h = Hash1(Δx, Δc, com1, . . . , comN )
Check h′ = Hash2(�t�, �α�, �v�)
Return 1

Protocol 1: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-
head with rejection, using batch product verification to prove binarity.

Theorem 2 (Zero-Knowledge). Let the PRG used in Protocol 1 be (t, εPRG)-
secure and the commitment scheme Com be (t, εCom)-hiding. There exists an
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efficient simulator S which outputs a transcript which is (t, εPRG + εCom)-
indistingui-shable from a real transcript of Protocol 1.

Theorem 3 (Soundness). Suppose that there is an efficient prover P̃ that,
on input (w, t), convinces the honest verifier V on input H, y to accept with
probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

1
q′ +

1
N

− 1
q′ · 1

N
.

Then, there exists an efficient probabilistic extraction algorithm E that, given
rewindable black-box access to P̃, produces either a witness x such that t = 〈w, x〉
and x ∈ {0, 1}n, or a commitment collision, by making an average number of
calls to P̃ which is upper bounded by

4
ε̃ − ε

·
(

1 + ε̃ · 2 · ln(2)
ε̃ − ε

)
.

Proof Size. To achieve a targeted soundness error 2−λ, we can perform τ parallel
executions of the protocol such that ετ ≤ 2−λ. Such parallel repetition does
not preserve (general) zero-knowledge and the resulting scheme achieves honest
verifier zero knowledge. And instead of sending τ values for h and h′, the prover
can merge them together to send a single h and a single h′. Moreover, instead
to sending the N − 1 seeds and commitment randomness of (seedi, ρi)i�=i∗ for
each execution, we can instead send the sibling path from (seedi∗ , ρi∗) to the
tree root, it costs at most λ · log2(N) bits (we need to reveal log2(N) nodes of
the tree) by execution. The communication cost (in bits) of the protocol with τ
repetitions is

Size = 4λ + τ · [n · (log2(A − 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ]

while the soundness error and rejection rate scale as
(

1
q′ +

1
N

− 1
q′ · 1

N

)τ

and 1 −
(

1 − 1
A

)τ ·n

respectively. Let us stress that the obtained size is independent of the modulus
q (and of the size of the integers {wj}, t).

4.2 Protocol with Cut-and-Choose Strategy

Protocol description. As described in Sect. 3.4, we can also use a cut-and-choose
strategy to prove that the vector �x� is binary. It is possible since we can rem-
place the input �x� of the multi-party computation by a sharing �r� indepen-
dent of the secret, where r is a mask uniformly sampled in {0, 1}n. To achieve
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a targeted soundness error 2−λ, we can perform τ parallel executions of the
protocol such that ετ ≤ 2−λ. Like [KKW18], instead of performing τ indepen-
dent cut-and-choose phases each resulting in trusting one sharing �r� among
M , we can perform a global cut-and-choose phase resulting in τ trusted shar-
ings �r� among a larger M (see [KKW18] for more details). We give the formal
description of this zero-knowledge protocol in Protocol 2. The protocol makes
use of a pseudo-random generator PRG, a tree-based pseudo-random genera-
tor TreePRG (see definition in [KKW18]), four collision-resistant hash functions
Hashi for i ∈ {1, 2, 3, 4} and a commitment scheme (Com,Verif) as defined in the
full version [FMRV22]. In this description, the procedure Check returns 0 if the
evaluated condition is false (i.e. the equality does not hold) and the execution
continues otherwise.

Security Proofs. The following theorems state the completeness, zero-knowledge
and soundness of Protocol 2. The proofs of Theorems 4, 5 and 6 are provided in
appendix of the full version [FMRV22].

Theorem 4 (Completeness). A prover P who knows a solution x to the
subset sum instance (w, t) ∈ Z

n
q × Zq and who follows the steps of Protocol 2

convinces the verifier V with probability
(

1 − 1
A

)τ ·n
.

Theorem 5 (Honest-Verifier Zero-Knowledge). Let the PRG used in Pro-
tocol 2 be (t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding.
There exists an efficient simulator S which, given random challenges J and L
outputs a transcript which is (t, τ · εPRG + τ · εCom)-indistinguishable from a real
transcript of Protocol 2.

Theorem 6 (Soundness). Suppose that there is an efficient prover P̃ that,
on input (w, t), convinces the honest verifier V on input H, y to accept with
probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

max
M−τ≤k≤M

{ (
k

M−τ

)
(

M
M−τ

) · Nk−M+τ

}
.

Then, there exists an efficient probabilistic extraction algorithm E that, given
rewindable black-box access to P̃, produces either a witness x such that t = 〈w, x〉
and x ∈ {0, 1}n, or a commitment collision, by making an average number of
calls to P̃ which is upper bounded by

4
ε̃ − ε

·
(

1 + ε̃ · 8 · M

ε̃ − ε

)
.
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Prover P Verifier V
x ∈ {0, 1}n

w ∈ Z
n
q , t = 〈w, x〉 w, t

mseed[0]
$←− {0, 1}λ

(mseed[e])e∈[M ] ← TreePRG(mseed[0])
For each e ∈ {1, . . . , M}:

r[e] ← PRG(mseed[e]) � r[e] ∈ {0, 1}n

(seed
[e]
i , ρ

[e]
i )i∈[N ] ← TreePRG(mseed[e])

For each i ∈ {1, . . . , N}:

�r[e]�i ← PRG(seed
[e]
i ) � �r[e]�i ∈ {0, . . . , A − 1}n

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Δr[e] = r[e] − ∑
i�r

[e]�i

he = Hash1(Δr[e], com
[e]
1 , . . . , com

[e]
n )

h = Hash2(h1, . . . , hM )
h−−−−−−−−−−−−−−−−−−→

J
$←− {J ⊂ [M ] ; |J | = τ}

J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

x̃[e] = x ⊕ r[e] � ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
The parties locally set

�x[e]� = (1 − x̃[e]) ◦ �r[e]�

+x̃[e] ◦ (1 − �r[e]�)

and they set �t[e]� = 〈w, �x[e]�〉.
h′

e = Hash3(x̃
[e], �t[e]�)

h′ = Hash4((h
′
e)e∈J)

h′, (mseed[e])e∈[M]\J−−−−−−−−−−−−−−−−−−→
L = {�e}e∈J

$←− {1, . . . , N}τ

L←−−−−−−−−−−−−−−−−−−
If there exists (e, j) ∈ J × [n] such that:

- either �r
[e]
j ��e = 0 with r

[e]
j = 1

- or �r
[e]
j ��e = A − 1 with r

[e]
j = 0,

then abort.

y = r[e] − �r[e]��e ⎛
⎜⎝

(seed
[e]
i , ρ

[e]
i )i�=�e

y, x̃[e], com
[e]
�e

⎞
⎟⎠

e∈J−−−−−−−−−−−−−−−−−−→
For each e �∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i �= �e

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Rerun the party i

as the prover to get �t[e]�i

Δr[e] = y − ∑
i�=�e

�r[e]�

he = Hash1(Δr[e], com
[e]
1 , . . . , com

[e]
n )

From Δr[e], deduce Δt[e].

�t[e]� = t − Δt[e] − ∑
i�=�e

�t[e]�i

h′
e = Hash3(x̃

[e], �t[e]�)
Check h = Hash2(h1, . . . , hM )
Check h′ = Hash4((h

′
e)e∈J)

Return 1

Protocol 2: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-
head with rejection, using cut-and-choose strategy to prove binarity.
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Proof Size. Let us recall that the couples (seedi, ρi) are sampled using a tree
PRG, sending (seed[e]i , ρ

[e]
i )i�=�e costs at most λ · log2(N) bits by iteration. The

communication cost (in bits) of the protocol is then

Size = 4λ + λ · τ · log2
M

τ
+ τ · [n · log2(A − 1) + n + λ log2 N + 2λ] .

Here again, the obtained size is independent of the modulus q (and of the size
of the integers {wj}, t).

4.3 Decreasing the Rejection Rate

The two above protocols have a rejection rate around τn/A which implies that
we must take A = Θ(τn) to obtain a constant (small) rejection rate. In practice,
this results in a significant increase in the communication cost. Let us for instance
consider Protocol 1 with (τ,N,A) = (16, 280, 213). For this setting, the proof size
is about 15.6 KB for a rejection rate of 0.394. If we increased A to get a rejection
rate below 0.003, we should take A = 221 and the proof size would be 23.6 KB.

A better strategy consists in allowing the prover to abort a few of the τ
iterations. Let us assume that the verifier accepts the proof if the prover can
answer to τ − η challenges among the τ iterations. This slightly increases the
soundness error, but it can also significantly decrease the global rejection rate. If
we denote prej the probability that an iteration aborts, then the global rejection
rate of this strategy is given by

1 −
η∑

i=0

(
τ

i

)
· (1 − prej)τ−i · pi

rej. (3)

At the same time, the soundness error for Protocol 1 becomes

η∑

i=0

(
τ

i

)
· (1 − ε)i · ετ−i

where ε = 1
N + 1

q′ − 1
q′ · 1

N is the soundness error of a single iteration. Using this
strategy with τ = 20 and η = 3, the proof size is of 16.7 KB for a rejection rate
of 0.003 (instead of 23.6 KB with the naive strategy).

The same strategy also applies to Protocol 2. The rejection rate is also given
by Eq. (3) while the soundness error becomes

max
M−τ≤k≤M

{(
k

M−τ

)
(

M
M−τ

) ·
η∑

i=0

[(
k − M + τ

i

) (
1 − 1

N

)i (
1
N

)k−M+τ−i
]}

.

In any case, the prover always answers to at most τ − η challenges of the
verifier (even if the prover aborts less than η among the τ iterations) so that the
communication cost is roughly that of τ − η iterations. Additionally, for each
unanswered challenge, the prover must further send two hash digests to enable
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the verifier to recompute and check h and h′. Thus the new proof size (in bits)
for Protocol 1 is

Sizeη = 4λ + η · 4λ

+ (τ − η) · [n · (log2(A − 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] ,

while the new proof size (in bits) for Protocol 2 is

Sizeη = 4λ + η · 4λ + λ·τ · log2
M

τ
+ (τ − η) · [n · log2(A − 1) + n + λ log2 N + 2λ] .

We note that in practice, given a target security level and a target rejection
probability, one needs to use a slightly increased τ (or N) to compensate for the
loss in terms of soundness. While this shall slightly increase the proof size, the
above approach (with η > 0) still provides better trade-offs than the original
approach (η = 0).

5 Instantiations and Performances

5.1 Subset Sum Instances

We recall in this section known techniques to solve the modular subset sum
problem (SSP) defined by (1). It is well-known that the hardness of an SSP
instance depends greatly on its density defined as d = n/ log2 q. If the SSP
instance is too sparse (e.g. d < 1/n) or too dense (e.g. d > n/ log2 n) then the
problem can be solved in polynomial time (see e.g. [CJL+92] and references
therein). We shall therefore only consider SSP instances with density d � 1 (i.e.
q � 2n) which are arguably the hardest ones [IN96].

In this case, simple algorithms exist based on brute force enumeration at
O(2n) time and constant space, or time-space tradeoff [HS74] with O(2n/2)
time and space complexities. The first non-trivial algorithm was published by
Schroeppel and Shamir [SS81] with time complexity O(2n/2) and space com-
plexity O(2n/4). Later, faster algorithms were proposed with similar time and
space complexities, e.g. Õ(20.337n) by Howgrave-Graham and Joux [HJ10] and
Õ(20.283n) by Bonnetain, Bricout, Schrottenloher and Shen [BBSS20]. The latter
algorithms neglect the cost to access an exponential memory but even with this
optimistic assumption, for n = 256, all known algorithms require at least a time
complexity lower-bounded by 2128 operations or memory of size at least 272 bits.
There also exists a vast literature on quantum algorithms for solving the SSP
(see [BBSS20] and references therein). The best (heuristic) quantum complex-
ity from [BBSS20] has time complexity Õ(20.216n) and thus requires about 264

quantum operations and quantum memory for n = 256. In the following, we,
therefore, consider the efficiency of our protocols for n = 256.
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5.2 Zero Knowledge Protocols

Let us consider the subset sum problem with n = 256. We propose in Table 1
several sets of parameters for our two protocols which target a security of 128
bits. We provide two kinds of instantiations to give the reader an idea of the
obtained performance while changing the number of parties. The first ones cor-
respond to instantiations with fast computation. The second ones correspond
to instantiations that achieve smaller communication costs but slower computa-
tion. For each setting, we suggest two parameter sets: one achieving a rejection
rate around 0.4 and the other one achieving a rejection rate between 0.001 and
0.004.

Table 1. Comparison of state-of-the-art zero-knowledge protocols for proving the
knowledge of an SSP instance (with n = 256 and q ≈ 2256).

Protocol Parameters Proof size Rej. rate Soundness err.

τ η N A M

Shamir [Sha86] 219 – – – – 1186 KB – 128 bits

[LNSW13] 219 – – – – 2350 KB – 128 bits

Beullens [Beu20] 14 – 1024 – 4040 122 KB – 128 bits

Protocol 1 (batching) 26 0 32 214 – 25.7 KB 0.334 130 bits

Protocol 1 (batching) 31 3 32 214 – 27.9 KB 0.001 128 bits

Protocol 2 (C&C) 27 0 32 214 462 17.4 KB 0.344 128 bits

Protocol 2 (C&C) 33 3 32 214 470 19.6 KB 0.002 128 bits

Protocol 1 (batching) 17 0 256 213 – 16.6 KB 0.412 135 bits

Protocol 1 (batching) 21 3 256 213 – 17.7 KB 0.004 133 bits

Protocol 2 (C&C) 19 0 256 213 954 13.0 KB 0.448 128 bits

Protocol 2 (C&C) 24 3 256 214 952 15.4 KB 0.001 128 bits

We provide in Table 1 the performance of the other zero-knowledge protocols
proving the knowledge of an SSP solution. The only other protocol designed for
the subset sum problem is Shamir’s one [Sha86]. We can also compare these
protocols with [LNSW13] which is an adaptation of Stern’s protocol to the ISIS
(inhomogeneous short integer solution) problem. The remaining articles in the
literature about proofs for the ISIS problem are restricted to the case where the
modulus q is prime. We add Beullens’ protocol [Beu20] for ISIS with prime q to
the comparison.

We provide in the full version [FMRV22] the performances of the obtained
signatures when applying the Fiat-Shamir transform [FS87] to our protocols.

5.3 Comparison with Generic Techniques

In this section, we compare our scheme with efficient generic techniques to prove
the knowledge of an SSP solution. Among those techniques, we consider SNARKs
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(e.g. [Gro16]), “compressed” proof systems such as Bulletproofs [BBB+18] and
STARKs (e.g. [BBHR18]). For the sake of accuracy, we split the notation for the
security level of the subset sum instance, denoted κ, and of the zero-knowledge
argument, denoted λ. Adapting the analysis of Sect. 3.5 to this setting, we get a
communication cost of Θ(λ2 + λ · κ) for our protocols.

The asymptotic size of [Gro16] arguments is roughly1 Ω(λ3) which is asymp-
totically larger than ours, but for κ = λ = 128, these arguments will be shorter
than ours (within the range of 700–800 bytes). Using Bulletproofs [BBB+18], one
can obtain an asymptotic communication cost of Ω(log(κ)(λ+κ)), and about 600
bytes for κ = λ = 128. Although SNARKs and “compressed” proof systems give
shorter arguments than ours for κ = λ = 128, they both require stronger and
non post-quantum computational assumptions. In particular, [Gro16] requires a
trusted setup and a non-falsifiable assumption, while Bulletproofs rely on the
algebraic group model in their non-interactive version [GOP+21]. In compari-
son, the security of our arguments only relies on weak post-quantum assumptions
(PRG, collision-resistant hash functions).

Regarding STARKs [BBHR18], their security assumptions are similar to ours.
When applying STARKs to the subset sum problem, one gets arguments of size
Ω(λ2 · log2 κ), which is larger than ours.2

6 Further Applications

As illustrated on the subset sum problem, our technique of sharing over the
integers with rejection is –more generally– instrumental to a context of a secret
vector s ∈ Z

n
q with small coefficients. Since the communication cost of our pro-

tocols is independent of the size q of the ring Zq, the gain in communication is
higher when the modulus q is high. But it does not need to have a modulus as
high as in the subset sum problem to be interesting. In the three subsections,
we present the performance of our schemes with the sharing over the integers on
three other applications with moderate-size modulus:

– to prove the knowledge of a solution of an ISIS problem instance,
– to prove the knowledge of a secret key and plaintext(s) matching a (set of)

FHE ciphertext(s),
– to construct an efficient digital signature based on Boneh-Halevi-Howgrave-

Graham pseudo-random function.

Another advantage of the sharing on the integers is that we can perform any
operation on it with any modulus. We used this property in one of our protocols
to check multiplication triples in a smaller field. This property can be also useful
when we want to prove that the same secret vector verifies many relations using
distinct modulus.
1 This is due to sub-exponential attacks on the discrete logarithm in the target group

which also impacts the size of elements of the second group of the bilinear structure.
2 The λ2 factor is obtained by λ for the hash digest size times λ for the number of

evaluation points in the FRI protocol (which scales with the soundness error). The
log2 κ factor comes from the size κ of the program verifying the SSP instance.
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6.1 Short Integer Solution Problem

Given a matrix A ∈ Z
m×n and a vector u ∈ Zm, the inhomogenous short integer

solution (ISIS) problem consists in finding a vector s ∈ Z
n with small coefficients

such that
As = u mod q.

The Ling-Nguyen-Stehlé-Wang protocol [LNSW13], which is an adaptation of
Stern’s protocol, has been for a long time the only zero-knowledge exact protocol
which proves the knowledge of a solution of an ISIS instance. Other protocols
existed but they were only relaxed proofs, i.e. they prove the knowledge of an s′

and c satisfying As′ = cu mod q. These protocols can be useful in some contexts,
but they are not suited to prove the exact statement.

Recently, new exact proofs [BLS19,ENS20,LNS21,BN20,Beu20] have been
published. However, all these new protocols require an assumption on the modu-
lus q to work: some of them only require that q is a prime number when the others
require that q is an NTT-friendly prime number. In the state of the art, the only
protocol which works for any q (even when q is not a prime) is [LNSW13].

We can adapt our protocols of Sect. 4 to the case of the ISIS problem. The
linear constraint “As = u” is free in communication as it was the case for
“t = 〈w, x〉” for the subset sum problem (see Sect. 3.2). The hard part is to
prove that the secret s satisfies ‖s‖∞ ≤ β for some bound β. To proceed, we
decompose s as k := �log2(2β + 1)� vectors (s0, . . . , sk−1) of {0, 1}n such that

s =
k−2∑

i=0

2isi + (2β − 2k−1 + 1)sk−1 − β. (4)

If all vectors si belong to {0, 1}, the above relation gives that ‖s‖∞ ≤ β. So we
just need to give the sharing {�si�}i∈{0,...,k−1} to the MPC protocol instead of
�s�. The latter can then check that {�si�}i∈{0,...,k−1} are binary vectors and that
A�s� corresponds to u modulo q where �s� is recovered by linearity of Eq. (4).
The proof sizes of the resulting protocols are given by the formulae as before,
we just need to consider that the length of the secret is n · k (instead of n).

We compare our protocols with the state of the art in Table 2 on the two
following ISIS problems:

1. ‖s‖∞ ≤ 1, m = 1024, n = 2048, q ≈ 232

2. Binary s, m = 512, n = 4096, q ≈ 261

For both instances, we have k · n = 4096. For our protocols, we choose the
following parameters:

– Protocol 1 (batch product verification):

A = 216, N = 128, q′ ≈ A, τ = 23, η = 3.
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– Protocol 2 (cut-and-choose strategy):

A = 216, N = 256, q′ ≈ A, M = 952, τ = 24, η = 3.

We can remark that our protocols have the same communication cost for
both instances. It comes from the fact that their proof size is independent of the
modulus q. Even when q is prime (and larger than 232), our Protocol 2 (with the
cut-and-choose phase) has smaller communication cost than Beullens’ protocol
and this while taking less aggressive parameters towards size against speed (the
parameters used in [Beu20] are (τ,M,N) = (14, 4040, 210)). We also observe
that our protocols achieve proof sizes which are more than 10 times smaller
than those of [LNSW13], the only previous protocol supporting any modulus q.

Table 2. Comparison with the existing exact protocols which prove the knowledge of
the solution of a ISIS instance.

Protocol Year Any q Instance 1 Instance 2

Proof size Rej. rate Proof size Rej. rate

[LNSW13] 2013 ✓ 3600 KB – 8988 KB –

[BN20] 2020 q prime – – 4077 KB –

[Beu20] 2020 q prime 233 KB – 444 KB –

Our Protocol 1 2022 ✓ 291 KB 0.04 291 KB 0.04

Our Protocol 2 2022 ✓ 184 KB 0.05 184 KB 0.05

[BLS19] 2019 q prime + NTT 384 KB 0.92

[ENS20] 2020 q prime + NTT 47 KB 0.95

[LNS21] 2021 q prime + NTT 33.3 KB 0.85

Aurora [BCR+19] 2019 q prime + NTT 71 KB –

Ligero [AHIV17] 2017 q prime + NTT 157 KB –

6.2 Fully Homomorphic Encryption

Our zero-knowledge protocols also find application to fully homomorphic encryp-
tion (FHE). We can indeed adapt our protocols to prove the knowledge of a secret
key matching a (set of) FHE-encrypted plaintext(s). We elaborate on this appli-
cation hereafter for the particular case of TFHE (Torus FHE) [CGGI20] which
is currently one of the FHE schemes with the best performances in practice.

For some q ∈ N, let Tq = q−1
Z/Z be the discretized torus with q elements,

i.e. the submodule of the real torus with representative {i/q ; i ∈ Zq} [Joy21].
In practice, q is often chosen to be 232 or 264 in order to match the word-size
and arithmetic operations of common CPUs. For this reason, we shall consider
that q is a power of 2 in the following (although the described application can
be easily generalized to any q). TFHE relies on so called TLWE (Torus Learning
With Error) encryption. Let p | q and δ = q/p. The plaintext space is defined as
Zp while the key space is defined as {0, 1}n ⊂ Z

n. Let s = (s1, . . . , sn) ∈ {0, 1}n
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be a secret key. The TLWE encryption of a plaintext μ ∈ Zp under the secret
key s and with error e ∈ Z is defined as

c = (a1, . . . , an, b) ∈ T
n+1
q where

{
μ∗ = δμ+e mod q

q ∈ Tq

b =
∑n

j=1 sj · aj + μ∗

The ai’s are random elements of Tq which are sampled at encryption time or
which arise from the homomorphic operations between other ciphertexts. The
value e ∈ Z is the error which must satisfies |e| < δ/2 to ensure the correctness
of the decryption.

Proving the knowledge of a key s and plaintext μ for which c = (a1, . . . , an, b)
is a correct TLWE encryption of μ under s can be achieved by proving the
knowledge of a binary vector

x = (s1, . . . , sn) | (μ1, . . . , μ�p) | (e1, . . . , e�e)

where �p = log2 p and �e is such that e ∈ {−2�e−1, . . . , 2�e−1 − 1}, and which
satisfies

n∑

i=1

āisi +
�p∑

i=1

(2i−1δ)μi +
�e∑

i=1

(2i−1)ei = b̄ + 2�e−1 (mod q)

where āi ∈ Z (resp. b̄ ∈ Z) is the integer such that ai = āi/q ∈ Tq (resp.
b = b̄/q ∈ Tq) and where the error is e := −2�e−1+

∑�e
i=1(2

i−1)ei. The application
of our protocols to this context is immediate. We note that the secret binary
vector is of size n′ = n + �p + �e when the underlying plaintext must remain
secret while it is of size n′ = n + �e if the plaintext is public. In the latter case,
the value of the sum is t = b̄ + 2�e−1 − μ. We can also use our protocols to
prove the knowledge of a secret key and a set of plaintexts matching a set of
ciphertexts. For m ciphertexts, we obtain m linear relations with a binary vector
of size n′ = n + m · (�p + �e) (or n′ = n + m · �e in the public plaintext setting).

Remark 2. Proving the knowledge of a single key-plaintext pair matching a given
ciphertext might not be relevant on its own. Indeed, for the typical parameters
given above, the obtained SSP instance might not be hard (i.e. finding a solution
is not hard while finding the original key-plaintext pair is still hard). However,
such proof is still useful whenever proving additional properties involving the
underlying secret key and/or plaintext. In such contexts, finding a solution to
the SSP instance which does not match the original key-plaintext pair is useless.

According to [Joy21], typical parameters for a TLWE encryption are q = 232

or q = 264 and n = 630. Depending on the exact message space and error
space, we have n′ ∈ (n, n + log2 q]. Table 3 gives the obtained communication
cost for proving the knowledge of the key (and plaintexts) corresponding to
1, 64 and 1024 TLWE ciphertexts using our protocols (assuming q = 264 and
�e + �p = 64). For the sake of comparison, we also give the communication
obtained with Shamir’s protocol [Sha86]. We note that the latter and the LNSW
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protocol [LNSW13] are the only previous protocols which can work with such val-
ues of q and the LNSW protocol is always heavier than Shamir’s in this context.
We observe that our protocols always gain more than a factor 10 (for Protocol
1) and 20 (for Protocol 2) for the obtained communication cost compared to
Shamir’s protocol.

Table 3. Comparison of ZK protocols for TFHE decryption.

Protocol Parameters Proof size Rej. rate Soundness err.

τ η N A M

1 ciphertext

Shamir [Sha86] 219 – – – – 845 KB – 128 bits

Protocol 1 (batching) 19 2 256 215 – 46.1 KB 0.007 128 bits

Protocol 2 (C&C) 24 3 256 215 952 34.0 KB 0.002 128 bits

64 ciphertexts

Shamir [Sha86] 219 – – – – 8.48 MB – 128 bits

Protocol 1 (batching) 19 2 256 218 – 356 KB 0.005 129 bits

Protocol 2 (C&C) 24 3 256 218 952 236 KB 0.001 128 bits

1024 ciphertexts

Shamir [Sha86] 219 – – – – 77.9 MB – 128 bits

Protocol 1 (batching) 19 2 256 222 – 5.90 MB 0.003 129 bits

Protocol 2 (C&C) 24 3 256 221 952 3.65 MB 0.006 128 bits

6.3 Digital Signatures from Boneh-Halevi-Howgrave-Graham PRF

As another application, we present a short and efficient candidate post-quantum
signature scheme based on an elegant pseudo-random function (PRF) proposed
by Boneh, Halevi, and Howgrave-Graham in 2001 [BHH01].

Let p be a public m-bit prime number that defines the PRF message space as
Zp. A secret key for the PRF is an element x ∈ Zp picked uniformly at random.
We denote MSBδ(t) the δm most significant bits of an m-bit element t ∈ Zp.3

The value of the PRF on the message m ∈ Zp for the secret-key x ∈ Zp is
Fx(m) = MSBδ((x + m)−1 mod p).

Our signature scheme follows the blueprint of most signatures based on the
MPCitH paradigm since the proposal of Picnic [CDG+17]: the public key is
made of the outputs of Boneh et al.’s PRF on t public messages in {1, . . . , t},
i.e. the δm-bit elements y1, . . . , yt such that

yi := MSBδ((x + i)−1 mod p) for i ∈ {1, . . . , t}
3 We assume hereafter that δm ∈ Z. Otherwise, one should take the nearest integer

�δm instead.
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and the signature consists of a non-interactive proof of knowledge of x, z1, . . . , zt

(parametrized by the signed message using the Fiat-Shamir heuristic) such that

(x + 1)(2(1−δ)my1 + z1) ≡ · · · ≡ (x + t)(2(1−δ)myt + zt) ≡ 1 mod p (5)

and z1, . . . , zt ∈ {0, . . . , 2(1−δ)m − 1} (6)

where z1, . . . , zt are the (1 − δ)m least significant bits of (x + 1)−1 mod p, . . . ,
(x+t)−1 mod p. Note that the condition (6) on the size of the zi’s is fundamental
since otherwise, it is easy for an attacker to find a witness.

In our applications, the values of t and δ are chosen to prevent all known
classical attacks and target a 128-bit security level.

Let’s fix t, the number of outputs of the PRF. Then, to ensure that the
equations (5) and (6) have a unique witness, we add the constraint δ ≥ 1/t so
that the t PRF outputs define (heuristically) the secret x uniquely. To avoid
brute-force attacks from a single output of the PRF, the hidden most significant
bits of one output should be at least 128 bits, thus log p ≥ 128

1−δ . Otherwise, an
attacker could reconstruct a possible key for the PRF and then evaluate the
other outputs with this candidate to test it.

It is possible to apply generically the MPCitH paradigm to prove (5) and
(6), but proving (6) seems inefficient (e.g. by using a binary decomposition and
proving consistency). Instead, we can use our secret sharing over the integers for
proving the knowledge of small zi’s by sharing them as a sum of “small” integers
which directly proves that the zi’s are indeed small.

Proving Eq. (5). Instead of proving the t products of (5) separately, the prover
can batch them into a linear combination where coefficients γ1, ..., γt are provided
by the verifier, i.e. the prover proves the equation

t∑

i=1

γi ·
(
(x + i)(2(1−δ)myi + zi) − 1

)
= 0 mod p,

or equivalently,

x ·
(

t∑

i=1

γizi

)
= −

t∑

i=1

γi

(
x · 2(1−δ)myi + i · 2(1−δ)myi + i · zi − 1

)
mod p. (7)

If one of the products is not equal to 1 in (5), then (7) is satisfied only with
a probability of 1

p . And to prove (7), one can use the protocol of [BN20] with
a single multiplication on Zp (for the left-hand side of (7), the right-hand side
being a linear combination of the witness). The resulting MPC protocol produces
false positives with probability 1/p + (1 − 1/p) · 1/p := 2/p + 1/p2, and thus the
obtained zero-knowledge argument has a soundness error of

ε =
1
N

+
(

1 − 1
N

) (
2
p

+
1
p2

)
.
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Proving Eq. (6). It remains to prove that zi is in {0, . . . , B−1} with B = 2(1−δ)m

in (6) for i ∈ {1, . . . , t}. To share zi, we use our secret sharing over the integers of
Sect. 3.2. Since the zi are not binary but in a larger range, we need to adapt the
rejection rules. Following exactly the same reasoning as in Sect. 3.2, we get that
the prover must abort if there exists an index j ∈ [t] for which zj − �zj�i∗ ≥ 1
or zj − �zj�i∗ ≤ −A + B − 1. The resulting rejection rate is given by

prej = 1 −
(

1 − B − 1
A

)t·τ
≈ t · τ · B − 1

A
.

Even without proving anything on the range of zj , the verifier knows that

∀j ∈ [t],−A + B ≤ zj ≤ A − 1

thanks to (2) (generalized). In practice, we settle this range, implying that there
is a slack between the underlying hard problem and the proven statement. A
malicious prover can use bigger values for zi, and this is equivalent to ignoring
some bits of yi. A malicious prover can ignore up to log2

A
B ≈ log2

t·τ
prej

bits for
each PRF output, and thus it reduces the security of t · log2

t·τ
prej

bits. A way to fix
this security loss without increasing the size of p (and of the key) is to reveal a
few more PRF outputs to guarantee that the key is still heuristically unique. In
theory, this decreases the security but for state-of-the-art algorithms, this stays
beyond the capacity of the best-known algorithms for small t. In fact, we need
to reveal t̃ ≥ t outputs of the PRF such that

t̃ · δ · m − t̃ · log
(

t̃ · τ

prej

)
> m.

In other words, since δ ≥ 1
t , we adapt this constraint as

δ ≥ 1
t̃

+
1
m

log2

(
t̃ · τ

prej

)
.

This leads to a scheme (formally described in the full version [FMRV22])
with the communication cost (in bits):

4λ + τ · (log2 p + t̃ · log2 A + log2 p + log2 p + λ · log2 N + 2λ),

with soundness error (if interactive)

ε =
1
N

+
(

1 − 1
N

)(
2
p

+
1
p2

)
,

and with forgery security (if non-interactive)

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
p′i(1 − p′)τ−i

+ Nτ2

}
,
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with p′ := 2/p + 1/p2.
We propose in Table 4 some parameters which target 128-bit security (based

on the hardness of the so-called modular inverse hidden number problem) accord-
ing to the current cryptanalysis state-of-the-art for Boneh et al.’s PRF. We
can remark that the achieved signature sizes are competitive with Rainier
scheme [DKR+21] (which can produce signatures that are around 5 KB in
size too) and outperform all the other signatures based on MPC-in-the-Head
paradigm (Picnic4 [KZ22], PorcRoast [Bd20], SDitH [FJR22], . . . ).

Table 4. Parameter sets and achieved performances of the signature based on Boneh
et al.’s PRF, for a 128-bit security.

Parameters Size prej

p ≈ 2m t̃ δ B A N τ

≈2229 3 88/229 2141 2141+12 256 16 4 916 B 0.012

≈2186 4 58/186 2128 2128+12 256 16 4 860 B 0.016

≈2175 5 47/175 2128 2128+12 256 16 5 074 B 0.019

Regarding the cryptanalysis, the security of Boneh et al.’s PRF has been
extensively analyzed since 20 years [BHH01,LSSW12,BVZ12,XSH+19] and
relies strongly on δ and the number of known PRF outputs. In [XSH+19], Xu,
Sarkar, Hu, Wang, and Pan presented a heuristic attack based on Coppersmith’s
method that breaks Boneh et al.’s PRF (for a sufficiently large modulus p) if
the number of outputs of the PRF is large enough (depending on δ). However,
this polynomial-time attack is not practical and hides galactic constant factors.
For instance, for δ = 1/3, this attack requires 45 outputs of the PRF and uses a
lattice of dimension 209899 in Coppersmith’s method.

The best known lattice-based attacks with a small number of PRF outputs
are described in [BHH01,BVZ12] and require larger δ’s than the ones we use. In
order to mount them, an adversary has thus to perform an exhaustive search on
the missing bits on several outputs. A precise security analysis is given in the
full version of the paper [FMRV22]. For all parameters provided in Table 4 an
exhaustive search on (at least) 128 bits has to be performed by the adversary in
order to run the attacks from [BHH01,BVZ12].

To the best of our knowledge, the quantum security of Boneh et al.’s PRF has
not been analyzed yet. Our signature protocol is thus a post-quantum candidate
and requires further analysis of its security by quantum algorithm specialists.
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Abstract. We propose three interactive zero-knowledge arguments for
arithmetic circuit of size N in the common random string model, which
can be converted to be non-interactive by Fiat-Shamir heuristics in
the random oracle model. First argument features O(

√
log N) commu-

nication and round complexities and O(N) computational complexity
for the verifier. Second argument features O(log N) communication and
O(

√
N) computational complexity for the verifier. Third argument fea-

tures O(log N) communication and O(
√

N log N) computational com-
plexity for the verifier. Contrary to first and second arguments, the third
argument is free of reliance on pairing-friendly elliptic curves. The sound-
ness of three arguments is proven under the standard discrete logarithm
and/or the double pairing assumption, which is at least as reliable as the
decisional Diffie-Hellman assumption.

1 Introduction

A zero-knowledge (ZK) argument is a protocol between two parties, the prover
and the verifier, such that the prover can convince the verifier that a particular
statement is true without revealing anything else about the statement itself. ZK
arguments have been used in numerous applications such as verifiable outsourced
computation, anonymous credentials, and cryptocurrencies.

Our goal is to build an efficient ZK argument for arithmetic circuit (AC)
in the common random string model that is sound under well-established stan-
dard assumptions, such as the discrete logarithm (DL) assumption: Compared
to q-type strong assumptions such as q-DLOG [27,38], the standard assump-
tions will provide strong security guarantees as well as a good efficiency with
smaller group size due to Cheon’s attack on q-type assumptions [20]. To this
end, we propose three inner-product (IP) arguments with the same properties
(standard assumption, common random string model), where an IP argument is
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a proof system that convinces the verifier of an inner-product relation between
committed integer vectors. Then, we can apply well-established reductions from
IP argument to ZK argument for AC [13,17,18,46].

The first sublinear ZK argument for AC solely based on the hardness of the
DL problem is due to Groth [29] and improved by Seo [44]. These works fea-
ture constant round complexity as well. Groth [31] gives a ZK argument with a
cubic root communication complexity using pairing-based two-tiered homomor-
phic commitment scheme whose binding property is based on the double pairing
(DPair) assumption [1]. The first logarithmic ZK argument for AC solely from
the DL assumption is due to Bootle, Cerulli, Chaidos, Groth, and Petit [13] and
improved by Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell [17], which is
called Bulletproofs. Hoffmann, Klooß, and Rupp [34] revisited and improved Bul-
letproofs by showing that it can cover systems of quadratic equations, of which
rank-1 constraint systems is a special case. These logarithmic ZK argument sys-
tems [13,17,34] have linear verifiers. Other DL-based ZK argument systems with
different asymptotic performance, in particular sublinear verifier, have been pro-
posed. e.g., Hyrax [46] and Spartan [45]. Recently, Bünz, Maller, Mishra, Tyagi,
and Vesely [19] achieved a logarithmic ZK argument with a sublinear verifier
under the DPair assumption.

Focusing on specific languages, there are more researches achieving logarith-
mic communication complexity [3,33] prior to Bulletproofs. Logarithmic com-
munication complexity in these works is attained with relatively large round
complexity, compared to [29,44].

Relying on the non-standard but reliable assumptions, there exists a ZK argu-
ment system with better asymptotic performance due to Bünz, Fisch, and Szepie-
niec [18] that achieve logarithmic communications and logarithmic verifier simul-
taneously, but it relies on a rather stronger assumption such as the strong RSA
assumption and the adaptive root assumption. A lot of important research for
succinct non-interactive argument (SNARG) [6,9–11,21,27,28,30,32,33,37,38,
40,47] have been proposed on the top of bilinear groups, where an argument con-
sists of a constant number of group elements. However, the soundness of these
works relies on non-falsifiable knowledge extractor assumptions and/or the struc-
tured reference string (SRS) that requires a trusted setup, which is not required
in the aforementioned DL-based protocols. There is another important line of
works [5,7,22,48] for SNARG without using pairings, but based on interactive
oracle proofs [8]. These works are strong candidates for post-quantum ZK argu-
ments and simultaneously minimizing communication cost and verifier computa-
tion. However, their communication cost is proportional to log2 N for the circuit
size N , which is larger than that of the DL based approach [13,17].

Our Results. We propose three IP arguments between two integer vectors of
length N in the common random string model. We refer to [13,17,18,46] or
Sect. 6 for a constant round reduction from ZK arguments for AC of size N with
fan-in 2 gates to IP arguments. We summarize our results as follows.

1. We propose the first IP argument with sublogarithmic communication. We
prove its soundness under the DL assumption and the DPair assumption.
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Table 1. Comparison for transparent ZK arguments N : circuit size, d: circuit depth,
w: input size, (G1,G2,Gt): bilinear groups, (Gp,Gq): elliptic curve groups of order p
and q, GU : group of unknown order, H: hash function, m, p, h, τi, u: operation of field,
pairing, hash, Gi, GU , UOGroup: unknown-order group (strong RSA & adaptive root
assumptions), CR hash: collision-resistant hashes, DL†: DL assumption over pairing-
friendly elliptic curves All arguments in the table are public coin (Definition 1), so
that they achieve non-interactivity in the random oracle model using the Fiat-Shamir
heuristic [25].

Scheme Communication P’s comp. V’s comp. Assump.

Groth [29] and Seo [44] O(
√

N)G1 O(N)τ1 O(N)τ1 DL

Groth [31] O( 3
√

N)G1 O(N)τ1 O( 3
√

N)τ1 DPair

BP [13,17] and HKR [34] O(log N)G1 O(N)τ1 O(N)τ1 DL

Hyrax [46] O(
√

w + d log N)G1 O(N log N)τ1 O(
√

w + d log N)τ1 DL

Spartan DL [45] O(
√

N)G1 O(N)τ1 O(
√

N)τ1 DL

BMMTV [19] O(log N)Gt O(N)τ1 O(
√

N)τ2 DPair

Supersonic [18] O(log N)GU O(N log N)u O(log N)u UOGroup

Spartan CL [45] O(log2 N)GU O(N log N)u O(log2 N)u UOGroup

Ligero [2] O(
√

N)H O(N log N)h O(N)h CR hash

STARK [5] O(log2 N)H O(N log2 N)h O(log2 N)h CR hash

Aurora [7] O(log2 N)H O(N log N)h O(N)h CR hash

Fractal [22] O(log2 N)H O(N log N)h O(log2 N)h CR hash

Virgo [48] O(d log N)H O(N log N)h O(d log N)h CR hash

BCGGHJ [14] O(
√

N)H O(N)m O(N)m CR hash

BCL [15] polylog(N)H O(N)m polylog(N)m CR hash

Our IP arguments + Sect. 6

Protocol2 (Sect. 3.2) O(
√

log N)Gt O(N2
√
log N )τ1 O(N)τ1 DL†&DPair

Protocol3 (Sect. 4.3) O(log N)Gt O(N)τ1 O(
√

N)τ2 DL†

Protocol4 (Sect. 5.3) O(log N)Gq O(N)τp O(
√

N log N)τq DL

2. We present the first IP argument with O(log N) communication and O(
√

N)
verifier computation such that its soundness is based on the DL assumption.

3. We introduce a novel method to achieve the IP argument with a similar per-
formance to the second argument, especially without the reliance of pairings.

We provide a comparison for transparent ZK arguments in Table 11. Note that
there are more efficient arguments in the DL setting [9,21,24,27,36,38] if we rely
on a trusted setup or non-standard, non-falsifiable assumptions.

1 We often use a terminology ‘transparent’ in the meaning of ‘without trusted setup’.
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Fig. 1. Overview of Our Approach toward Sublogarithmic Proofs or Sublinear Verifier

Each arrow links between the underlying and the advanced protocols. The
big-O notation under each protocol indicates communication complexity, except
for Protocol3 and Protocol4 that indicate verifier’s computational complexity.
The oval nodes indicate known results; BP: Bulletproofs [13,17], MEA: multi-
exponentiation argument [19], CG: Commitment to group elements [1]. The rect-
angle nodes indicate the proposed protocols; New CG: Commitment to Elliptic
Curve Points, 1stGBP & 2stGBP: generalizations of Bulletproofs, aAggMEA &
AggMEC: aggregations of multi-exponentiations & multi-elliptic curve opera-
tions. Protocol1: an intermediate protocol. Protocol2: Sublogarithmic IP argu-
ment, Protocol3 & Protocol4: Sublinear Verifier IP arguments. N is the dimension
of witness vectors. n is a positive integer parameter for 1stGBP, where n = 1
implies the original Bulletproofs.

Our starting point is Bünz et al.’s Bulletproofs IP argument (BP-IP) [17]
that features O(log N) communication and O(N) computation in the common
random string model and is sound under the DL assumption. For shorter proofs
or faster verification, we first generalize BP-IP in two different ways. A pictorial
overview of our approach is given in Fig. 1.

Sublogarithmic Communications. BP-IP consists of log N recursive steps such
that the prover sends two group elements per each round. The goal of each
recursive step is to halve the length of witness. Our first generalization of BP-
IP reduces the length of witness one 2n-th per each recursive round if N is
a power of 2n for any positive integer n. If need be, one can easily pad the
inputs to ensure that the requirement for the format of N holds, like in BP-IP.
Then, the recursive steps are finished in log2n N rounds and the prover sends
2n(2n − 1) group elements in each round, so that the overall communication
cost is O((log2n N) × n2), which becomes minimal when n = 1. That is, this
generalization has no advantage over BP-IP in terms of communications.

Nevertheless, we observe that the commit-and-prove approach can reduce
transmission overhead; the prover can commit to 2n(2n − 1) group elements
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instead of sending them all, and then proves that the openings satisfy what the
verifier should have checked with the openings. To this end, we use a pairing-
based commitment scheme to group elements (e.g., AFGHO [1]). This process of
committing and proving can be achieved using a multi-exponentiation argument
(e.g., [19]). Unfortunately, this näıve commit-and-prove approach ends up with
asymptotically the same proof size as BP-IP since we must prove several multi-
exponentiation arguments for every round. We call this protocol Protocol1.

To further reduce the communication cost, we aggregate multiple multi-
exponentiation arguments. Although there are well-known aggregating tech-
niques for multiple arguments with homomorphic commitment scheme (e.g.,
aggregating range proofs [17], linear combinations of protocols [34]), these aggre-
gating techniques are not well applicable to the case including ours such that
bases and exponents are distinct for multiple arguments. We try to reduce mul-
tiple relations to a single relation by multiplying all relations and then employ
a recursive proof technique like BP-IP. However, we find that this strategy does
not work well. The detailed explanation about the difficulty we faced is given
in Sect. 3.2. Instead, we devise a novel aggregating technique using newly pro-
posed augmented aggregated multi-exponentiation argument aAggMEA and prod-
uct argument ProdMEA. The final protocol, called Protocol2, using aAggMEA and
ProdMEA achieves sublogarithmic communication overhead.

Sublinear Verifier. The soundness of BP-IP is based on the discrete logarithm
relation assumption (DLR), which is equivalent to the DL assumption, such
that no adversary can find non-trivial relation among uniformly chosen group
elements. We observe that the uniform condition in sampling group elements
is not necessary in the soundness proof of BP-IP, but the hardness of find-
ing non-trivial relation among the CRS is sufficient. From this observation, we
first generalize the DLR assumption by removing the uniform condition and
then propose and prove that a new assumption with non-uniform distribution
holds. More precisely, we combine this generalization with the AFGHO commit-
ments; Let e : G1 × G2 → Gt be a bilinear map, where G1 and G2 are source
groups and Gt is the target group. g1, . . . , g√

N ∈ G1 and H1, . . . , H√
N ∈ G2

are uniformly chosen. We prove that no adversary can find a non-trivial vector
(a11, . . . , a√

N
√

N ) ∈ Z
N
p satisfying

∏√
N

i,j=1 e(gi,Hj)aij if the DL assumptions in
the source groups hold. That is, e(gi,Hj)’s are not uniformly distributed but
hard to find non-trivial relation among them. Therefore, if we set e(gi,Hj)’s as
the CRS of BP-IP, then the actual CRS becomes gi’s and Hj ’s of 2

√
N size while

keeping the soundness proof under the DL assumption in the source group.
Nevertheless, a näıve approach using the above idea will keep linear verifier

computation in N since we still keep the same verification process as that of
BP-IP. We introduce a trick to track verifier’s computation with O(

√
N) com-

putation. For example, in the first recursive step of BP-IP, the verifier should
update the public parameter g1, . . . , gN to gx

1gx−1

N/2+1, . . . , g
x
N/2g

x−1

N for a chal-
lenge integer x, which requires O(N) computation. In our setting, the public
parameter e(g1,H1), . . . , e(g√

N ,H√
N ) can be halved to e(gx

1gx−1√
N/2+1

,Hi), . . . ,
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e(gx√
N/2

gx−1√
N

,Hi) for all i = 1, . . . ,
√

N . Therefore, the verifier can track this

computation by computing only gx
i gx−1√

N/2+i
for i = 1, . . . ,

√
N , which require

O(
√

N) exponentiations in G1. Note that this trick does not increase the prover’s
overhead, so that we sacrifice neither the other complexities nor assumptions to
achieve sublinear verifier. The resulting protocol with sublinear verifier is called
Protocol3.

Sublinear Verifier without Pairings. The core of the above second generaliza-
tion of BP-IP is to employ two-tiered homomorphic commitment scheme: Ped-
ersen commitment scheme to integers in the 1st layer + pairing-based AFGHO
commitment scheme to group elements in the 2nd layer. We propose another
IP argument with sublinear verifier, particularly not relying on pairing-friendly
elliptic curves. To circumvent the use of AGFHO scheme, we propose a new two-
tiered commitment scheme built on a usual elliptic curve with a mild condition.
Although the proposed two-tiered commitment scheme is not homomorphic, we
emphasize that it has a similar-but-weakened property, friendly to proving homo-
morphic operations of the underlying mathematical structure, particularly the
group law of elliptic curve over finite fields. Second, we show that this weakened
property is sufficient to construct an IP argument protocol with sublinear veri-
fier. After replacing pairing-based two-tiered homomorphic commitment scheme
with the new commitment scheme, the prover performs the verifier computation,
proves the integrity of the computation, and sends the verifier the computation
along with a proof. In order to raise efficiency of this approach, we also bring in
the aggregation technique used for the protocol with sublogarithmic communi-
cations. The resulting protocol without pairings is called Protocol4.

Related Works and Organization. Additional related works that were not
mentioned before are provided in the full version [35]. After providing necessary
definitions in the next section, we present our first generalization of BP-IP and
then reduce its communication overhead by using the aggregation technique in
Sect. 3. We present another generalization that achieves sublinear CRS size and
verifier computation in Sect. 4 (with Pairings) and Sect. 5 (without Pairings). In
Sect. 6, we extend our IP arguments to ZK arguments for AC.

2 Definitions

Argument System for Relation R. Let K be the common reference string
(CRS) generator that takes the security parameter as input and outputs the CRS
σ. In this paper, the CRS consists of randomly generated group elements, so that
indeed we are in the common random string model, where an argument consists
of two interactive PPT algorithms (P,V) such that P and V are called the
prover and the verifier, respectively. The transcript produced by an interaction
between P and V on inputs x and y is denoted by tr ← 〈P(x),V(y)〉. Since we
are in the common random string model, for the sake of simplicity, we omit the
process of running K and assume the CRS is given as common input to both P
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and V. At the end of transcript, the verifier V outputs b, which is denoted by
〈P(x),V(y)〉 = b, where b = 1 if V accepts and b = 0 if V rejects.

Let R be a polynomial time verifiable ternary relation consisting of tuples of
the CRS σ, a statement x, and a witness w. We define a CRS-dependent language
Lσ as the set of statements x that have a witness w such that (σ, x, w) ∈ R.
That is, Lσ = { x | ∃ w satisfying (σ, x, w) ∈ R }. For a ternary relation R, we
use the format {(common input; witness) : R} to denote the relation R using
specific common input and witness.

Argument of Knowledge. Informally, the argument of knowledge means the
argument system satisfying the completeness and the soundness with extractabil-
ity. Due to space constraints, we provide definitions in the full version [35].

Transparent and Non-interactive Argument in the Random Oracle
Model. A protocol in the common random string model can be converted into
a protocol without a trusted setup in the random oracle model [4]; if K outputs
random group elements of an elliptic curve group G of prime order, then the
CRS can be replaced with hash values of a small random seed, where the hash
function mapping from {0, 1}∗ to G is modeled as a random oracle as in [12].

Any public coin interactive argument protocol defined in Definition 1 can be
converted into a non-interactive one by applying the Fiat-Shamir heuristic [25]
in the random oracle model; all V’s challenges can be replaced with hash values
of the transcript up to that point.

Definition 1. An argument (P,V) is called public coin if all V’s challenges are
chosen uniformly at random and independently of P’s messages.

All interactive arguments proposed in this paper can be converted to transparent
non-interactive arguments in the random oracle model.

Assumptions. Let G be a group generator such that G takes 1λ as input and
outputs (p,G, g), where λ is the security parameter, G is the description of a
group of order p, and g is a generator of G, which is used to sample an element
of G with uniform distribution. Let negl(λ) be a negligible function in λ.

Definition 2 (Discrete Logarithm (DL) Assumption). We say that the
group generator G satisfies the discrete logarithm assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr
[
ga = h

∣
∣
∣ (p,G, g) ← G(1λ), h

$←G; a ← A(p, g, h,G)
]

< negl(λ).

Definition 3 (Discrete Logarithm Relation (DLR) Assumption). We
say that the group generator G satisfies the discrete logarithm relation assumption
if for all non-uniform polynomial-time adversaries A, the following inequality
holds.

Pr
[
a 	= 0 ∧ ga = 1G

∣
∣
∣ (p,G, g) ← G(1λ), g $← G

n;a ← A(p,G, g, g)
]

< negl(λ),



410 S. Kim et al.

where 1G is the identity of G.

Although the equivalence between DLR and DL assumptions is well-known, to
be self-contained, we provide the complete reductions in the full version [35].

Let Gb be an asymmetric bilinear group generator such that Gb takes 1λ as
input and outputs (p, g,H,G1,G2,Gt, e), where G1,G2,Gt are the descriptions
of distinct cyclic groups of order p of length λ, g and H are generators of G1,G2,
respectively, and e is a non-degenerate bilinear map from G1 × G2 to Gt.

Definition 4 (Double Pairing Assumption). We say that the asymmetric
bilinear group generator Gb satisfies the double pairing assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr

⎡
⎢⎣ e(g′, G) = e(g′′, Ga)

∧ (g′, g′′) �= (1G1 , 1G1)

∣∣∣∣∣∣∣

(p, g, H,G1,G2,Gt, e) ← Gb(1
λ),

G
$←G2, a

$←Zp;
(g′, g′′) ← A((G, Ga), (p, g, H,G1,G2,Gt, e))

⎤
⎥⎦ < negl(λ)

Abe et al. [1] proved that the double pairing assumption is as reliable as the
decisional Diffie-Hellman assumption in G2.

Groups, Vectors, and Operations. We introduce some notations for succinct
description of protocols. [m] denotes a set of continuous integers from 1 to m,
{1, . . . , m}. For elements in groups G1 and G2 obtained by Gb, we separately use
lower case letters for G1 and upper case letters for G2. A vector is denoted by a
bold letter, e,g., g = (g1, ..., gm) ∈ G

m
1 and a = (a1, ..., am) ∈ Z

m
p . For a vector

a ∈ Z
m
p , its separation to the left half vector a1 ∈ Z

m/2
p and the right half vector

a−1 ∈ Z
m/2
p is denoted by a = a1‖a−1. Equivalently, the notation ‖ is used

when sticking two vectors a1 and a−1 to a and can be sequentially used when
sticking several vectors.2 We use several vector operations denoted as follows.

Component-wise Operations. The component-wise multiplication between sev-
eral vectors is denoted by ◦ e.g., for gk = (gk,1, . . . , gk,n) ∈ G

n
i , i ∈ {1, 2, t}, and

k ∈ [m], ◦k∈[m]gk = (
∏

k∈[m] gk,1 . . . ,
∏

k∈[m] gk,n). If k = 2, we simply denote it
by g1 ◦ g2.

Bilinear Functions & Scalar-Vector Operations.

1. The standard inner-product in Z
n
p is denoted by 〈 , 〉 and it satisfies the

following bilinearity. 〈∑k∈[m] ak,
∑

j∈[n] bj〉 =
∑

k∈[m]

∑
j∈[n]〈ak, bj〉 ∈ Zp.

2. For g = (g1, . . . , gn) ∈ G
n
i , i ∈ {1, 2, t} and a = (a1, . . . , an) ∈ Z

n
p , the

multi-exponentiation is denoted by ga :=
∏

k∈[n] g
ak

k ∈ Gi and it satisfies the

following bilinearity. (◦k∈[m]gk)
∑

j∈[�] zj =
∏

k∈[m]

∏
j∈[�] g

zj

k ∈ Gi.

2 Note that we use the indices (1, −1) instead of (1, 2) since it harmonizes well with
the usage of the challenges in Bulletproofs and our generalization of Bulletproofs.
e.g., let a = a1‖a−1 be a witness and x be a challenge, and then a is updated to∑

i=±1 aix
i, a witness for the next recursive round.
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3. For g = (g1, . . . , gn) ∈ G
n
1 ,H = (H1, . . . , Hn) ∈ G

n
2 , the inner-pairing prod-

uct is denoted by E(g,H) :=
∏

k∈[n] e(gk,Hk) ∈ Gt and it satisfies the fol-
lowing bilinearity. E(◦k∈[m]gk, ◦j∈[�]Hj) =

∏
k∈[m]

∏
j∈[�] E(gk,Hj) ∈ Gt.

4. For c ∈ Zp and a ∈ Z
m
p , the scalar multiplication is denoted by c · a :=

(c · a1, . . . , c · an) ∈ Z
m
p .

5. For c ∈ Zp and g ∈ G
m
i , i ∈ {1, 2, t} the scalar exponentiation is denoted by

gc := (gc
1, . . . , g

c
m) ∈ G

m
i .

6. For c ∈ Z
m
p and g ∈ Gi, i ∈ {1, 2, t} the vector exponentiation is denoted by

gc := (gc1 , . . . , gcm) ∈ G
m
i .

3 Sublogarithmic Proofs via Generalization of BP-IP

In this section, we present our first generalization of BP-IP for the following IP
relation RIP and then reduce its communication cost using the newly proposed
aggregation technique.

RIP =
{

(g,h ∈ G
N , u, P ∈ G;a, b) : P = gahbu〈a,b〉 ∈ G

}
(1)

where G is an arbitrary cyclic group of order p satisfying the DL assumption,
and g,h, and u are uniformly selected common inputs.

The BP-IP consists of log N recursive steps that halves the size of witness
and the parameters. In each recursive round of BP-IP, each vector in the CRS
and a witness are split into two equal-length subvectors. We generalize BP-IP by
splitting a vector of length N into 2n subvectors of length N/2n in each round,
where n = 1 implies the original BP-IP. Similar to BP-IP, we assume N is a
power of 2n for the sake of simplicity. Let N̂ = N

2n and the prover begins with
parsing the witness a, b and the parameter g,h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Let In = {±1,±3, . . . ,±(2n−1)} be a 2n-size index set. In each recursive round
of BP-IP, the prover computes and sends two group elements L and R. In our
generalization, instead of L and R, P calculates vi,j = g

aj

i hbi
j u〈ajbi〉 ∈ G for

all distinct i, j ∈ In, and then sends {vi,j} i,j∈In
i�=j

to V. Note that if n = 1, then

v1,−1 and v−1,1 are equal to L and R in BP-IP, respectively. V chooses x
$←Z

∗
p

and returns it to P. Finally, both P and V compute

ĝ = ◦i∈In
gx−i

i ∈ G
N̂ , ĥ = ◦i∈In

hxi

i ∈ G
N̂ , and P̂ = P ·

∏

i,j∈In
i�=j

vxj−i

i,j ∈ G

and P additionally computes a witness for the next round argument

â =
∑

i∈In

aix
i ∈ Z

N̂
p and b̂ =

∑

i∈In

bix
−i ∈ Z

N̂
p .
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We can verify that this process is a reduction to a one 2n-th length IP argument
by checking (ĝ, ĥ, u, P̂ ; â, b̂) satisfies the relation RIP. The concrete descriptions
of BP-IP and the above generalized BP-IP and their proofs for the perfect com-
pleteness and the soundness are relegated to the full version [35].

Efficiency Analysis. The prover repeats the (N > 1) case log2n N times and
then runs the (N = 1) case. For each (N > 1) case, P sends vi,j ’s of size
2n(2n − 1) and two integers in the (N = 1) case, so that the communication
overhead sent by P is 2n(2n − 1) log2n N group elements and 2 integers. The
verifier updates ĝ, ĥ and P̂ that cost O(N + n2 log2n N) group exponentiation.
For sufficiently small n <

√
N , it becomes O(N). The prover should compute vi,j

for all i, j for each round, so that the prover’s computation overhead is O(Nn2).
The overall complexities are minimized when n has the smallest positive integer
(that is, n = 1), which is identical to the BP-IP protocol.

3.1 Proof Size Reduction Using Multi-exponentiation Argument

We improve our generalization of BP-IP by using the pairing-based homomorphic
commitment scheme to group elements [1]. We first slightly extend our target
relation by adding the commitment key of [1] into the common random string
in our argument as follows.
{

(g,h ∈ G
N
1 , u ∈ G1,F 1, . . . ,Fm ∈ G

2n(2n−1)
2 ,H ∈ G

m
2 , P ∈ G1;a, b)

: P = gahbu〈a,b〉 ∈ G1

}

(2)

where g,h,u,F k, and H are the common random string. Here, F k and H are
not necessary to define the relation P = gahbu〈a,b〉. However, our IP protocols
will use them to run a subprotocol for multi-exponentiation arguments given in
the following subsections.

The generalized BP-IP with n > 1 carries larger communication overhead
than that of BP-IP. In order to reduce the communication cost in each round,
we can use a commitment to group elements. That is, the prover sends a com-
mitment to group elements vi,j ’s instead of sending all vi,j ’s. This approach
will reduce communication cost in each round. Then, however, the verifier can-
not directly compute the update P̂ of P ,

∏
i,j∈In

i�=j
vxj−i

i,j , by himself, and thus
the prover sends it along with its proof of validity, which is exactly a multi-
exponentiation argument proving the following relation.
{

(F ∈ G
N
2 ,z ∈ Z

N
p , P ∈ Gt, q ∈ G1;v ∈ G

N
1 ) : P = E(v,F ) ∧ q = vz

}
, (3)

where F is the common random string such that their discrete logarithm relation
is unknown to both P and V and z is an arbitrary public vector.

We will omit the detailed description for the multi-exponentiation argument
for the relation in (3), but provide an intuitive idea for it. In fact, BP-IP argument
can be naturally extended to this proof system due to the resemblance between
the standard IP and the inner-pairing product. More precisely, the additive
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homomorphic binding commitment to an integer vector (e.g., ga) is changed with
the multiplicative homomorphic commitment to a group element vector (e.g.,
E(v,F )) and the standard IP between two integer vectors (e.g., 〈a, b〉) can be
substituted with multi-exponentiation (e.g., vz ).3 This type of extension is well
formalized by Bünz, Maller, Mishra, Tyagi, and Vesely [19] in terms of two-
tiered homomorphic commitment scheme [31]. The multi-exponentiation argu-
ment in [19] costs the same complexities as those of BP-IP; O(log N) communi-
cation overhead and O(N) computational costs for the prover and the verifier.

For our purpose, we can use the commitment scheme to group elements [31]
and the multi-exponentiation argument in [19] so that we can construct a proto-
col with shorter communications, denoted by Protocol1. We provide full descrip-
tion of our generalized BP-IP with Multi-Exponentiation Argument, denoted by
Protocol1 in Fig. 2. In the protocol, we add the state information for the prover
and the verifier, denoted by stP and stV , respectively. Both stP and stV are ini-
tialized as empty lists and used to stack the inputs of the multi-exponentiation
argument for each recursive round. At the final stage, the prover and the verifier
can run several multi-exponentiation argument protocols in parallel.

Efficiency Analysis. Although this approach reduces communication over-
heads, compared to the generalized BP-IP, it is not quite beneficial for our
purpose. More precisely, the communication overhead O(n2 log2n N) of the gen-
eralized BP-IP is reduced to O((log n) · (log2n N)) since the communication
overhead per round O(n2) is reduced to its logarithm O(log n) by the multi-
exponentiation argument. Although the communication overhead is reduced to
O((log n)·(log2n N)) compared with the generalized BP-IP (n > 1), the resulting
complexity is equal to O(log N), which is asymptotically the same as the com-
munication overhead of BP-IP. Therefore, this protocol is no better than BP-IP,
at least in terms of communication complexity. Nevertheless, this protocol is a
good basis for our sublogarithmic protocol presented in the next subsection.

3.2 Sublogarithmic Protocol from Aggregated Multi-exponentiation
Arguments

We build a protocol, denoted by Protocol2, for sublogarithmic transparent IP
arguments on the basis of Protocol1 described in the previous subsection. To this
end, we develop an aggregation technique to prove multiple multi-exponentiation
arguments at once, which proves the following aggregated relation.

RAggMEA =

⎧
⎪⎪⎨

⎪⎪⎩

(
F k ∈ G

2n(2n−1)
2 ,zk ∈ Z

2n(2n−1)
p , Pk ∈ Gt, qk ∈ G1

;vk ∈ G
2n(2n−1)
1 for k ∈ [m]

)

:
∧

k∈[m]

(
Pk = E(vk,F k) ∧ qk = vzk

k

)

⎫
⎪⎪⎬

⎪⎪⎭

3 The BP-IP is about two witness vectors a and b and it can be easily modified with
one witness vector a and a public b. e.g., [46]. Our multi-exponentiation argument
corresponds to this variant.
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Fig. 2. Protocol1

Failed Näıve approach: linear combination. One may try to employ a ran-
dom linear combination technique, which is widely used to aggregate multiple
relations using homomorphic commitment schemes. For example, it is called lin-
ear combination of protocols in [34]. To this end, one may also try to use one
F instead of distinct F k’s for every pairing equation and employ homomorphic
property of pairings and multi-exponentiations to apply a random linear com-
bination technique. Unfortunately, however, the relation RAggMEA consists of
two distinct types of equations Pk and qk containing distinct zk’s, so that such
a random linear combination technique is not directly applicable to RAggMEA

even with one F .

Why we use distinct F k’s? Our basic strategy for aggregation is to merge
multiple equations into a single equation by product. Later, we will present a
reduction for it (Theorem 2). To this end, it is necessary to use distinct F k’s
for each equation since it prevents the prover from changing opening vectors
between committed vectors in the product.
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A difficulty when we use several Fk’s. As we mentioned, we use different
F k’s for each commitment Pk. In this case, it is not easy to efficiently prove that
the equation that Pk = E(vk,F k) holds. The CRS contains all F k’s, and thus,
in order to prove Pk = E(vk,F k), we have to prove that only one F k is used
and the others are not used in the equation. Proving unusedness of the other
F j for j 	= k with high performance is rather challenging. Let us consider the
following simplified aggregation relation to clarify this difficulty.

R2agg =
{
(F k, Pk;vk,j for k ∈ [2]) : ∧k∈[2]Pk = E(vk,F k)

}

In order to merge two equations into a single equation by product, we might
construct a reduction as follows; The verifier chooses a challenge y, both the
players set F̃ 1 = F 1, F̃ 2 = F y

2, and P̃ = P1P
y
2 , and then run a product argument

convincing that the knowledge of ṽk satisfying

P̃ = E(ṽ1, F̃ 1)E(ṽ2, F̃ 2). (4)

Here, one may expect that an equality Eq. (4) guarantees two equalities in R2agg

by a random challenge y. Unfortunately, this is not true since fake P ′
k passing

the protocol can be created by E(vk1,F 1)E(vk2,F 2) for k = 1, 2. That is, this
reduction failed to show the unusedness of F 2 in P1 and F 1 in P2.

Our Solution: Augmented Aggregate Multi-exponentiation Argu-
ment. Although the above approach is failed to prove the unusedness of F 2

in P1 and F 1 in P2, it can be still used to prove that Pk’s are of the form
E(v1,F 1)E(v2,F 2) for some witness v1 and v2. Therefore, instead of devis-
ing a protocol for the unusedness, we keep using the above approach of reduc-
ing to a product equation but change the target relation; we add redundant
relations so that the final relation contains our target relation, multiple multi-
exponentiations. That is, by adding some redundant values, we can further gen-
eralize the relation RAggMEA and obtained the following relation RaAggMEA for
augmented aggregation of multi-exponentiations.

⎧⎪⎪⎨
⎪⎪⎩

(
F k ∈ G

2n(2n−1)
2 , zk ∈ Z

2n(2n−1)
p , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1

; vk,j ∈ G
2n(2n−1) for k, j ∈ [m]

)

:
∧

k∈[m]

(
Pk =

∏
j∈[m] E(vk,j ,F j) ∧ qk = v

zk
k,k ∧ (v

z j

k,j = 1G1 for j �= k)
)

⎫⎪⎪⎬
⎪⎪⎭

(5)

Here, Pk is a commitment to vk,j ’s and qk is a multi-exponentiation of the
committed value vk,k and a public vector z. In particular, Pk is defined by
using all F k’s to avoid the difficulty of proving unusedness. Although there are
redundant vk,j ’s in Pk (j 	= k), the above relation is sufficient to guarantee qk

is a multi-exponentiation of a committed value vk,k. In addition, Hk’s are not
necessary in the above relation, but we will use Hk’s in the product argument,
where we reduce from the augmented aggregation multi-exponentiation protocol.

The full description of Protocol2 using aAggMEA is given in Fig. 3.
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Fig. 3. Protocol2: Sublogarithmic IP Argument

Theorem 1. The IP argument in Fig. 3 has perfect completeness and computa-
tional witness-extended-emulation under the discrete logarithm relation assump-
tion in G1 and the double pairing assumption.

Due to space constraints, the proof is provided in the full version [35].
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Efficiency Analysis A main difference between Protocol1 and Protocol2 is the
aggregating process for log2n N multi-exponentiation arguments; Our proposal
for aAggMEA in the next subsection has logarithmic communication overhead
in the size of witness. For each round of Protocol2, 2n(2n − 1) group elements
are committed and thus total log2n N × 2n(2n − 1) group elements are commit-
ted. Therefore, the overall communication overhead is O(log2n N) for the main
recursive rounds and O(log(log2n N × 2n(2n − 1))) = O(log n + log(log2n N))
for aAggMEA. That is, O(log n + log2n N). If n satisfies O(log2n N) = O(log n),
then the communication complexity becomes O(log n + log2n N) = O(

√
log N).

As for the computational overhead, compared to generalized BP-IP, only a
run of aAggMEA protocol is imposed. Our proposal for the aAggMEA protocol is
an extended variant of BP-IP, so that its computational complexity is still linear
in the length of witness vector that is O(n2 log2n N). Therefore, for sufficiently
small n <

√
N , this does not affect on the overall complexity, so that the total

prover’s computational overhead is O(Nn2) and the verifier’s computational
overhead is O(N + n2 log2n N) that are equal to those of general BP-IP.4

3.3 Aggregating Multi-exponentiation Argument

In this section, we propose an augmented aggregation of multi-exponentiation
arguments aAggMEA for the relation in Eq. (5). Vectors in Eq. (5) are of dimen-
sion 2n(2n − 1). For the sake of simplicity, we set the dimension of vectors N
in this section and, by introducing dummy components, we can without loss of
generality assume that N is a power of 2. The proposed protocol consists of two
parts.

First, the aAggMEA is reduced to a proof system, denoted by ProdMEA, for
the following relation RPMEA for a product of multi-exponentiation.

RPMEA =
{

(F k ∈ G
N
2 ,zk ∈ Z

N
p ,Hk ∈ G2, P ∈ Gt;vk ∈ G

N
1 for k ∈ [m])

: P =
∏

k∈[m] E(vk,F k)e(vzk

k ,Hk)

}

The reduction is provided in Fig. 4 and its security property is given in the
following theorem.

Theorem 2. The aAggMEA protocol in Fig. 4 has perfect completeness and
computational witness-extended-emulation if the ProdMEA protocol used in Fig. 4
has perfect completeness and computational witness-extended-emulation and the
double pairing assumption holds.

Due to space constraints, the proof is relegated to the full version [35].
Second part of aAggMEA is to run ProdMEA. The idea for the construc-

tion of ProdMEA is to use the resemblance between RPMEA and RIP ; RIP

is the relation about the inner-product between integer vectors, that is, a sum

4 Note that when the communication complexity is evaluated, we set n = 2
√
log N that

is much smaller than
√

N = 2
1
2 log N , and thus our estimation for computational cost

makes sense.
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Fig. 4. Reduction from aAggMEA to ProdMEA

of component-wise products. RPMEA is the relation about a product of expo-
nentiation between a vector of group element (v1, . . . ,vm) and an integer vec-
tor (z1, . . . ,zm). In particular, P is a product of

∏
k∈[m] E(vk,F k) a com-

mitment to (v1, . . . ,vm), and
∏

k∈[m] e(v
zk

k ,Hk) a commitment to the product
of component-wise exponentiation between (v1, . . . ,vm) and (z1, . . . ,zm). The
homomorphic property of commitment to group elements enables us to construct
ProdMEA similarly to BP-IP using the homomorphic Pedersen commitment to
integers. We provide the construction and the detailed explanation of the pro-
tocol ProdMEA in the full version [35].

The computational costs of ProdMEA for the prover and the verifier are linear
and the communication cost is logarithmic in the size of witness, like BP-IP. The
reduction from aAggMEA to ProdMEA requires a constant communication cost
and linear computational costs for both prover and verifier in the size of witness.
Therefore, aAggMEA requires linear computational complexity and logarithmic
communication complexity in the size of witness.

4 Sublinear Verifier via Second Generalization

In this section, we propose an IP argument with logarithmic communication and
sublinear verifier computation, solely based on the DL assumption.

4.1 Matrices and Operations

For succinct exposition, we additionally define notations using matrices. Similar
to a vector, a matrix is denoted by a bold letter and a vector is considered a row
matrix. For a matrix a ∈ Z

m×n
p , its separation to the upper half matrix a1 ∈

Z
m/2×n
p and the lower half matrix a−1 ∈ Z

m/2×n
p is denoted by a = �a1‖a−1�.

We define three matrix operations as follows.

Inner-Product. For a, b ∈ Z
m×n
p , the inner-product between a and b is defined

as 〈a, b〉 :=
∑

r∈[m],s∈[n] ar,sbr,s ∈ Zp.
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Multi-exponentiation. For g ∈ G
m×n
i , i ∈ {1, 2, t} and a ∈ Z

m×n
p , the multi-

exponentiation is defined as ga :=
∏

r∈[m],s∈[n] g
ar,s
r,s ∈ Gi.

Outer-Pairing Product. For g ∈ G
m
1 and H ∈ G

n
2 , the outer-pairing product5 is

defined as

g ⊗ H :=

⎡

⎢
⎣

e(g1,H1) . . . e(g1,Hn)
...

. . .
...

e(gm,H1) . . . e(gm,Hn)

⎤

⎥
⎦ ∈ G

m×n
t .

Note that we set the output of the outer-pairing product to be a matrix instead
of a vector, unlike an usual vector-representation of a tensor product since the
matrix-representation is useful when separating it into two parts.

4.2 General Discrete Logarithm Relation Assumption

We restate the DLR assumption in terms of problem instance sampler to gener-
alize it. Let GDLRsp be a sampler that takes the security parameter λ as input
and outputs (p, g1, . . . , gn,G), where G is a group G of λ-bit prime-order p and
g1, . . . , gn are generators of G.

Definition 5 (General Discrete Logarithm Relation Assumption). Let
GDLRsp be a sampler. We say that GDLRsp satisfies the general discrete loga-
rithm relation (GDLR) assumption if all non-uniform polynomial-time adver-
saries A, the following inequality holds.

Pr
[

a 	= 0 ∧ ga = 1G

∣
∣
∣
∣
(p, g ∈ G

n,G) ← GDLRsp(1λ)
a ← A(p, g,G)

]

< negl(λ),

where 1G is the identity of G and negl(λ) is a negligible function in λ.

Definition 6. For a fixed integer N , the sampler GDLRspRand is defined as
follows.

GDLRspRand(1λ) : Choose a group G of λ-bit prime-order p; g
$←G

N ;
Output (p, g,G).

Theorem 3. GDLRspRand satisfies the GDLR assumption if the DL assumption
holds for the same underlying group G.

The soundness theorem of BP-IP holds under the GDLR assumption; it uses
only the fact that no adversary can find a non-trivial relation, regardless of the
distribution of generators g. We restate the soundness theorem of BP-IP below.

Theorem 4 [17]. The BP-IP has perfect completeness and computational
witness-extended-emulation under the GDLR assumption.
5 Note that this operation is also called “projecting bilinear map” in the context of

converting composite-order bilinear groups to prime-order bilinear groups [26].
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We propose another sampler that satisfies the GDLR assumption.

Definition 7. For m,n ∈ N, the sampler GDLRspBM is defined as follows.

GDLRspBM (1λ) : (p, g,H,G1,G2,Gt, e) ← G(1λ); g $←G
m
1 ;H $←G

n
2 , u

$←Gt;
Output (p, g ⊗ H, u,Gt).

Theorem 5. GDLRspBM satisfies the GDLR assumption if the DL assumption
holds on G1 and G2.

Proof. Suppose that there exists a non-uniform polynomial-time adversary A
breaking the GDLR assumption with non-negligible probability. That is, with
non-negligible probability, A outputs a matrix a ∈ Z

m×n
p and an integer c ∈ Zp

such that (g ⊗H)auc = 1Gt
and a, c are not all zeros, where 1Gt

is the identity
of Gt. We separate the adversarial types according to the output distribution.
Let ai ∈ Z

n
p be the i-th row vector of a for i ∈ [m].

– (Type 1) c 	= 0
– (Type 2) Not Type-1. ∀i ∈ [m], Hai = 1G2 .
– (Type 3) Neither Type-1 or Type-2.

It is straightforward that A should be at least one of the above 3 types. For each
adversary, we show how to break one of the DL assumption on G1, G2, and Gt.6

Type-1 adversary. Given a DL instance ht ∈ Gt, we construct a simulator finding
Dloge(g,H)ht. First, choose x and z

$←Z
n
p and set g = gx , H = Hz , and u = ht.

Then, the distribution of (g,H, u) is identical to the real GDLR instance. The
type-1 adversary outputs a and c such that c 	= 0 and a 	= 0. From the necessary
condition for a and c, we know the following equality holds.

〈x ⊗ z,a〉 + c · Dloge(g,H)ht = 0 (mod p)

Since we know all components except for Dloge(g,H)ht and c 	= 0, we can find
Dloge(g,H)ht by solving the above modular equation.

Type-2 adversary. This type of adversary can be used as an attacker breaking
the GDLR assumption on G2 with a sampler GDLRspRand. Theorem 3 guar-
antees that there is no type-2 adversary breaking the GDLR assumption with
GDLRspBM under the DL assumption on G2.

Type-3 adversary. Given a DL instance ĝ ∈ G1, we construct a simulator finding
DLg ĝ. First, choose an index k

$←[m], integer vectors x = (x1, . . . , xm) $←Z
m
p ,

z
$←Z

n
p , and w

$←Zp, and set g = (gx1 , . . . , gxk−1 , ĝ, gxk+1 , . . . , gxm), H = Hz ,
and u = e(g,H)w. Then, the distribution of (g,H, u) is identical to the real
GDLR instance. Let x̂ = (x1, . . . , xk−1,Dlogg ĝ, xk+1, . . . , xm). Then, g = gx̂ .

6 Note that the DL assumption on G1 implies the DL assumption on Gt by the MOV
attack [39].
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The type-3 adversary outputs a and c such that c = 0 and Hai 	= 1G2 for
some i ∈ [n]. From the necessary condition for a and c, we know the following
equality holds.

〈x̂ ⊗ z,a〉 + c · w = x1〈z,a1〉 + · · · + (Dlogg ĝ)〈z,ak〉 + · · · + xm〈z,am〉 + c · w

= 0 (mod p)

Since the index k is completely hidden from the viewpoint of A, i = k with
non-negligible 1/m probability. If i = k, then 〈z,ak〉 	= 0, so that we can recover
(Dlogg ĝ) by solving the above modular equation, since we know all components
except for Dlogg ĝ. ��

4.3 Another Generalization of BP-IP with Sublinear Verifier

In BP-IP, most of the common input for P and V are uniformly selected group
elements, which is the common random string. What we expect from these group
elements is that their discrete logarithms are unknown, so that the DLR assump-
tion holds. The DL assumption implies the GDLR assumption with uniform
sampler and this assumption is the root of the soundness of BP-IP. We can gen-
eralize BP-IP while keeping the soundness proof by using an arbitrary sampler
satisfying the GDLR assumption, instead of GDLRspRand to create the CRS.

Sublinear Common Inputs. We uniformly generate g,h ∈ G
m
1 and H ∈ G

n
2 and

use g⊗H and h⊗H ∈ G
m×n
t instead of the CRS in BP-IP. That is, we construct

a proof system for the following relation.
{

(g,h ∈ G
m
1 ,H ∈ G

n
2 , u, P ∈ Gt; a, b ∈ Z

m×n
p )

: P = (g ⊗ H)a(h ⊗ H)bu〈a,b〉 ∈ Gt

}

(6)

Note that this modification does not require the structured reference string since
g ⊗ H and h ⊗ H are publicly computable from the common random string g,
h and H. Furthermore, the proof system is still sound since, like the CRS in
BP-IP, g⊗H and h⊗H hold the GDLR assumption under the DL assumption
on G1 and G2 by Theorem 5.

Sublinear Verification. If we set m = n =
√

N , the above modification can
reduce the CRS size to be a square root of BP-IP. Nevertheless, computing
g ⊗ H requires linear computation in N so that the verification cost is still
linear in N . We arrange the order of witness a and b in each round, and thus we
can go through the process without exactly computing g ⊗ H and h ⊗ H. We
explain how to avoid a full computation of g ⊗ H and h ⊗ H. Without loss of
generality, we assume that m and n are powers of 2.7 If m > 1, then let m̂ = m

2
and parse a, b ∈ Z

m×n
p , g,h ∈ G

m
1 to

7 If needed, we can appropriately pad zeros in the vectors since zeros do not affect the
result of inner-product.
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a = �a1‖a−1� b = �b1‖b−1�, g = g1‖g−1, and h = h1‖h−1.

Then, the bases g ⊗ H ∈ G
m×n
t and h ⊗ H ∈ G

m×n
t are able to be implicitly

parsed to �g1 ⊗ H‖g−1 ⊗ H� and �h1 ⊗ H‖h−1 ⊗ H�, respectively. Let g̃i =
gi ⊗ H ∈ G

m̂×n
t and h̃i = hi ⊗ H ∈ G

m̂×n
t for i ∈ {1,−1}. Next, P calculates

L = g̃a1
−1 h̃

b−1

1 u〈a1,b−1〉 and R = g̃
a−1
1 h̃

b1

−1 u〈a−1,b1〉 ∈ Gt

and sends them to V. This computation of P is equivalent to BP-IP with CRS
g ⊗ H and h ⊗ H. V returns a random challenge x

$←Z
∗
p to P. Finally, both P

and V compute

ĝ = gx−1

1 ◦ gx
−1 ∈ G

m̂
1 , ĥ = hx

1 ◦ hx−1

−1 ∈ G
m̂
1 , and P̂ = Lx2

P Rx−2 ∈ Gt

and P additionally computes â = a1x+a−1x
−1 and b̂ = b1x

−1 +b−1x ∈ Z
m̂×n
p .

Then, P̂ is well computed since L and R are equivalent to those in BP-IP. In

BP-IP, however, g̃x−1

1 ◦ g̃x
−1 and h̃

x

1 ◦ h̃x−1

−1 should be computed as the new bases
for the next round argument with witness â and b̂. Instead, in Protocol3, we use

the equality ĝ ⊗H = g̃x−1

1 ◦ g̃x
−1 and ĥ⊗H = h̃

x

1 ◦ h̃x−1

−1 such that ĝ and ĥ are
the bases for the next argument with â and b̂. Therefore, both P and V can run
the protocol with (ĝ, ĥ,H , u, P̂ ; â, b̂). If m = 1, the CRS is of the form e(g,H)
and e(h,H), which is uniform in Gt, so that we can directly run BP-IP over Gt.
We present the full description of our protocol, denoted by Protocol3, in Fig. 5.
The number of rounds and the communication cost in Protocol3 are the same
as those of BP-IP over Gt. The verification cost is O(

√
N) when setting m = n.

Note that a näıve verification in the (m = 1) case requires O(
√

N) expensive
pairing computation for calculating e(g,H) and e(h,H), but using a similar
trick in the case (m > 1), the verifier can update H only instead of e(g,H) and
e(h,H) and then perform constant pairing operations only at the final stage.

Linear Prover and Logarithmic Communication. In terms of the prover’s com-
putation and communication overheads, Protocol3 is asymptotically the same as
BP-IP since we can consider Protocol3 as BP-IP with CRS g ⊗ H and h ⊗ H.
That is, O(N) and O(log2 N) for computation and communication, respectively.

Theorem 6. The argument presented in Fig. 5 for the relation (6) has perfect
completeness and computational witness-extended-emulation under the GDLR
assumption with the sampler GDLRspBM .

Proof. Although the verification cost in Protocol3 is reduced compared with BP-
IP, both players’ computation in Protocol3 is equivalent to that of BP-IP with
the CRS g ⊗ H and h ⊗ H. Therefore, the proof of this theorem should be
exactly the same as the proof of BP-IP [35], except that the GDLR assumption
is guaranteed by Theorem 5 instead of Theorem 3. ��
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Fig. 5. Protocol3: Another Generalization of BP-IP

4.4 Practical Verification of Protocol 3

When it comes to asymptotic complexity, Protocol3 is definitely better than BP-
IP. However, for practical performance, we need to consider the computation
time of group operations which depends on the choice of elliptic curves. Actu-
ally, BP-IP and Protocol3 are built on different elliptic curves. Current imple-
mentations of BP-IP use two curves, i.e., secp256k1 and ed25519 curves. The
dalek project has reported that the use of ed25519 provides approximately 2x
speepup [23]. However, Protocol3 cannot use ed25519 because it requires pairing
operations. Therefore, we take ed25519 for BP-IP and BLS12-381 for Protocol3
in the below estimation.

We consider a typical parameter setting N = 220 in 128-bits security which
both secp256k1 and ed25519 curves provide. BP-IP requires 2× 220 group oper-
ations for verification. Protocol3 requires 2 × 210 G1 operations and 2 × 210 G2

operations for verification. According to the implementation results from [43],
the execution times of operations in G1 and G2 of BLS12-381 are roughly 5× and
10× slower than that of ed25519, respectively. Thus, we expect that Protocol3’s
verifier is significantly faster (approximately 70×) than that of BP-IP.

5 Sublinear Verifier Without Pairing

We propose another IP argument with sublinear verifier, particularly without
pairings. The crucial ingredient for Protocol3 is pairing-based homomorphic com-
mitments to group elements [1], which is employed as the second layer scheme
of the two-tiered commitment scheme. For example, L in Step 1 of Protocol3
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contains a factor (g−1 ⊗ H)a1 , which can be considered as a vector of homo-
morphic commitments to ga1

−1 ∈ G
n
1 , where ga1

−1 is a vector of the first layer
commitments to columns of a1 and g−1 ∈ G

m
1 and H ∈ G

n
2 are the com-

mitment keys of first and second layer schemes, respectively. When the verifier
checks P̂ = Lx2

P Rx−2 ∈ Gt in Step 3 of Protocol3, the homomorphic prop-
erty of the second layer scheme guarantees a vector of linear group equations
(ga1

−1)
x2 · (gahb) · (hb−1

1 )x−2 ∈ G
n
1 holds, where (ga1

−1), (gahb), and (hb−1
1 ) are

second layer openings of L,R, and P . Since the first layer scheme is homomor-
phic, these n equations in G

n
1 similarly guarantee that mn linear equations hold.

In order to circumvent the necessity of using the pairing-based primitive, we
propose a new two-tiered commitment scheme such that the first layer scheme
is still Pedersen commitment scheme mapping from integers to group elements
and the second layer scheme for committing to group elements is replaced with
the new one. We show that although the new second layer scheme is not homo-
morphic in group operations, it facilitates efficient proving group operations.

Indeed the integrity of homomorphic operation is sufficient to build an argu-
ment system. For example, if the prover computes L and R in Step 1 by using
the new two-tiered commitments, the verifier cannot compute P̂ by herself in
Step 3, so that the prover should send P̂ along with its integrity proof. As
mentioned above, the relation for the integrity proof is exactly a vector of linear
group equations between the second layer openings. Since the new commitment
scheme facilitates proving this type of relation, the new argument system still
has the benefit of sublinear verifier.

Unfortunately, this approach increases the proof size due to additional
integrity proofs for each round. Finally, we bring in the aggregation technique
used for the sublogarithmic proofs in Sect. 3, so that we can simultaneously
attain both logarithmic proof size and sublinear verifier.

Notation. We use a pair of elliptic curve groups, denoted by (Gp,Gq), of distinct
prime order p and q such that Gp := E(Zq). In order to avoid confusion, we
use lower case letters to denote elements in Gp and upper case letters to denote
elements in Gq. For example, g ∈ Gp and G ∈ Gq. In our protocol, we repeatedly
use parallel multi-exponentiations with the same base g ∈ G

m
p . For example,

given an integer matrix a ∈ Z
m×n
p , we often compute gai for i ∈ [n], that are

n multi-exponentiations, where ai is the i-th column of a. This computation is
compactly denoted by

−→
ga := (ga1 , . . . , gan).

5.1 Projective Presentation for Elliptic Curve Group

Affine coordinates are the conventional way of expressing elliptic curve points.
However, there is no complete addition formula in affine coordinates, i.e., affine
coordinates require special addition formulas for exceptional cases such as dou-
bling and operations with the point at infinity or the inverse point. In our con-
struction, it is desirable to have an arithmetic circuit which correctly computes
the operation between any two points in the elliptic curve group. Thus, we make
use of complete addition formulas for prime order elliptic curves in projective
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coordinates, which have been proposed by Renes et al. [41] based on the work
of Bosma and Lenstra [16].

Let E(Zq) with q ≥ 5 be a prime order elliptic curve group given by the short
Weierstrass equation in two-dimensional projective space P

2(Zq), i.e.,

{(X,Y,Z) ∈ Z
3
q|Y 2Z = X3 + aXZ2 + bZ3}.

Two points (X1, Y1, Z1) and (X2, Y2, Z2) are equal in P
2(Zq) if and only if

(X2, Y2, Z2) = (λX1, λY1, λZ1) for some λ ∈ Z
∗
q . The point at infinity is equal

to (0, 1, 0). Because E(Zq) has prime order, there is no Zq-rational point of
order 2. In this setting, for any two pair of points (X1, Y1, Z1) and (X2, Y2, Z2),
Bosma and Lenstra gave the complete formulas to compute (X3, Y3, Z3) =
(X1, Y1, Z1) + (X2, Y2, Z2) where X3, Y3, and Z3 are expressed as polynomials
in X1, Y1, Z1, X2, Y2, and Z2. Later, Renes et al. presented the algorithm [41,
Algorithm 1] for the optimized version of Bosma and Lenstra’ addition formula.
The algorithm covers both doubling and addition operations without exceptional
cases using 12 multiplications, 5 multiplications by constant, and 23 additions
over Zq. Thus, we consider the arithmetic circuit from this formula for group
operations of E(Zq) in our construction. For the convenience of readers, we pro-
vide the algorithm given by Renes et al. in the full version [35].

5.2 Two-Tiered Commitment Scheme and Proof for Second Layer

We introduce a two-tiered commitment scheme for handing columns of a matrix
a ∈ Z

m×n
p . The first layer commitment is for committing to a vector in Z

m
p .

The second layer commitment is for committing to the multiple, say n, first
layer commitments. Therefore, the final two-tiered commitment scheme is for
committing to a matrix a ∈ Z

m×n
p .

We begin with a pair of elliptic curve groups (Gp = E(Zq),Gq) of respective
order p and q such that the discrete logarithm assumption holds in both Gp

and Gq. Note that there are efficient methods to generate such a pair of prime
order elliptic curves (Gp = E(Zq),Gq) of given primes p and q whose sizes are
both 2λ for the security parameter λ [42]. In the first layer, we use the Peder-
sen commitment scheme with commitment key g ∈ G

m
p to commit to columns

of a.8 That is, the commitment is
−→
ga ∈ G

n
p , which is an n-tuple of Pedersen

commitments to columns of a. Since it consists of elliptic curve group elements,
it can be represented by n sequences of 3-element tuples (Xi, Yi, Zi)n

i=1 ∈ Z
3n
q ,

where (Xi, Yi, Zi) is the projective representation of the i-th component of
−→
ga .

For the second layer, we again use the Pedersen commitment with a differ-
ent commitment key G = (G1, . . . , G3n) ∈ G

3n
q so that the commitment to−→

ga = (Xi, Yi, Zi)n
i=1 is defined as

∏n
i=1 GXi

3i−2G
Yi
3i−1G

Zi
3i , denoted by Com(

−→
ga ;G).

8 More precisely, we use a slightly modified Pedersen commitment scheme in the sense
that (1) opening is not an integer but a vector and (2) the random element is always
set to be zero since the hiding property is not required.
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Note that we often consider
−→
ga as an element in Z

3n
q since we always use the

projective representation for Gp = E(Zq) throughout the paper. The binding
property of the proposed commitment scheme holds under the discrete logarithm
assumption in Gp and Gq.

Proving for Relation Between Second Layer Opening. The second layer
opening is

−→
ga ∈ G

n
p , a vector of group elements, which can be considered as

a vector of Z3n
q . As aforementioned in the first part of this section, we should

prove a relation among the second layer openings that consist of a vector of
group operations. As shown in Sect. 5.1, the group law of E(Zq) can be repre-
sented by an arithmetic circuit over Zq of constant size. Therefore, we eventually
need a proof system for arithmetic circuits over Zq such that the input of the
circuit is given as commitments. In fact, the bulletproofs for arithmetic circuit
(BP-AC) [17] allows to take Pedersen commitments as input. However, BP-AC
uses the ordinary Pedersen commitment to an integer, so that it is not directly
applicable with the generalized Pedersen commitment to a vector of integers. We
generalize BP-AC for handling the general Pedersen commitments and provide
the protocol, denoted by Comp.BPAC , and the security and efficiency analysis
in the full version [35]. If we prove O(�) group operations, then the circuit size
is O(� · n), so that both the computational cost for the prover and the verifier
are O(� · n) and the cost for round and communication is O(log n + log �).

In fact, the new commitment scheme can take any sequence of 3-integer
tuples (Xi, Yi, Zi) ∈ Z

3
q as input. Although we normally take (Xi, Yi, Zi) from

Gp = E(Zq), to prevent abnormal usages, we need a proof that (Xi, Yi, Zi) ∈ Z
3
q

is on the elliptic curve, equivalently, it satisfies Y 2Z = Z3 + aXZ2 + bZ3 for
some a, b ∈ Zq. Since the relation for the membership proof consists of low degree
polynomials, it can be performed by Comp.BPAC whose cost is cheaper than that
for elliptic curve operations.

5.3 Sublinear Verifier from New Two-Tiered Commitment Scheme

We propose a new IP argument with the sublinear verifier, denoted by Protocol4,
that proves the following IP relation.

Rm,n
IP =

{
(g,h ∈ G

m
p ,F ∈ G

6n
q , P ∈ Gq, c ∈ Zp;a, b ∈ Z

m×n
p ) :

P = Com(
−→
ga ‖

−→
hb ;F ) ∧ c = 〈a, b〉,

}

(7)

where 〈a, b〉 is the Frobenius inner product between matrices a and b. Simi-
larly to Protocol3, Protocol4 consists of two parts, the row-reduction and the
column-reduction. The row-reduction part is denoted by Protocol4.Row and
reduces from the relation Rm,n

IP to R1,n
IP . The column-reduction part is denoted

by Protocol4.Col and reduces from the relation R1,n
IP to R1,1

IP .
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Let � = log m. For each (�+1−k)-th row-reduction9 round in Protocol4.Row
the prover sends the verifier a commitment Sk by using the new commitment
scheme in Sect. 5.2. However, contrary to Protocol3, the verifier cannot compute
a valid instance Pk for the next round by himself, due to lack of homomorphic
property. Instead, the prover sends a new instance for the next round along with
a proof for its integrity. For the column-relation R1,n

IP , both the prover and the
verifier can similarly perform a column-reduction protocol Protocol4.Col and the
corresponding integrity proof at the final step of the protocol. In a nutshell,
Protocol4 resembles Protocol3 except that Protocol4 uses a different commit-
ment scheme and additionally requires the integrity proof. The full description
of Protocol4.Row is provided in the full version [35].

In general, this commit-first-and-prove-later approach indeed ends up with
low efficiency if the relation is not algebraic (e.g., non-polynomial relations) or
we do not use homomorphic commitment scheme (e.g., collision-resistant hash
functions). Our new two-tiered commitment scheme helps to circumvent such
efficiency degradation since it is friendly to proving homomorphic operations and
the prover’s computation in Protocol4 exactly consists of elliptic curve operations
that can be represented by polynomials as we already investigated in Sect 5.1.

Although the new two-tiered commitment scheme contributes for the sublin-
ear verifier, the näıve approach for the integrity proof increases the proof size
O(log(N)2), which is larger than O(log N) of Protocol3, where N = mn. There-
fore, we bring in another technique to make the proof size compact. We apply
the aggregation techniques as in Sect 3.3 such that the integrity of the prover’s
computation in all reduction rounds is relegated to the final round and then
proven in aggregate. More concretely, the integrity proof should guarantee that
the openings pk+1 ∈ G

2n
p , lk‖rk ∈ G

4n, and pk ∈ G
2n
p of Pk+1, Sk, and Pk

satisfies pk = lx
2

k ◦ pk+1 ◦ rx−2

k , which is essentially equivalent to the relation
between openings of P̂ = Lx2

PRx−2
in Step 3 of Protocol3. The formal rela-

tion for the aggregated integrity proof is given in Eq. (8) (for Protocol4.row)
and Eq. (9) (for Protocol4.col), where xk is a challenge chosen by the veri-
fier and the others are the common random strings. Using the protocol for
RAggMEC.Row (RAggMEC.Col, resp.), denoted by AggMEC.Row (AggMEC.Col, resp.),
Protocol4.Row (Protocol4.Col, resp.) reduces from the relation Rm,n

IP (R1,n
IP , resp.)

to the relation R1,n
IP (R1,1

IP , resp.).

RAggMEC.Row =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

([
(Sk,F k, Sk, Pk, xk)
( · ,F �+1, · , P�+1, · )

]

;
[

(lk, rk,pk)
( ·, ·,p�+1)

]

for k ∈ [�]
)

:

∧�+1
j=1

(
Pj = Com(pj ;F j)

)

∧�
k=1

(
Sk = Com(lk ‖ rk;Sk) ∧ pk = l

x2
k

k ◦ pk+1 ◦ r
x−2

k

k

)

∧�
k=1lk, rk ∈ G

2n
p ∧ p�+1 ∈ G

2n
p

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8)

9 Notice that we use a subscript k in reverse order from k = � to k = 1. That is,
Protocol4.Row reduces an instance from Pk+1 to Pk.
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where
(
(Sk,F k, Sk, Pk, xk); (lk, rk,pk)

) ∈ (
(G12n

q ×G
6n
q ×Gq ×Gq ×Zp)×(Z6n

q ×
Z
6n
q × Z

6n
q )
)
.

RAggMEC.Col =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

([
(Dk, Pk, xk)
(D�+1, P�+1, · )

]

;
[

(pk) for k ∈ [�]
(p�+1)

])

:

∧�+1
j=1

(
Pj = Com(pj ;Dj)

) ∧ p�+1 ∈ G
2�+1

p

∧�
k=1

(
pk = (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x−1

k

)

where pk+1 = p1,k+1 ‖ p2,k+1 ‖ p3,k+1 ‖ p4,k+1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(9)

where
(
(Dk, Pk, xk); (pk)

) ∈ (
(G3·2k

q × Gq × Zp) × (Z3·2k

q )
)
.

The concrete descriptions of the four protocols Protocol4.Row, Protocol4.Col,
AggMEC.Row, and AggMEC.Col and the proofs for proving argument systems
are given in the full version [35].

We remark that RAggMEC.Row and RAggMEC.Col contain the group membership
relations of the openings, which are marked with the block boxes. As for the
group membership proof, it is sufficient to prove only memberships of lk, rk for
k ∈ [�] and p�+1 since pk for k ∈ [�] are defined as a result of the group operations
among lk, rk for k ∈ [�] and p�+1.

Efficiency Analysis. We analyze the efficiency of Protocol4 at a high level.
The detailed analysis is given in the full version [35]. Below, we denote group
operations in a group G by G-operations. The efficiency of Protocol4 is basi-
cally equivalent to that of Protocol3 except for using a different commitment
scheme and the most computational cost of V shifts to the column reduction
part (Protocol4.Col). In the row-reduction part (Protocol4.Row), the computation
cost for P is dominated by O(mn log p) Gp-operations for computing two-tiered
commitments with N = mn integers, the computation cost for V is O(m log p)
Gp-operations, and P and V communicate with O(log m) Gq-elements. The com-
plexity of the column-reduction part is dominated by proving the following rela-
tions, which can be represented by small-degree polynomials, by running the
arithmetic circuit argument Comp.BPAC given in Sect. 5.2:

lk
x2

k ◦ pk+1 ◦ rk
x−2

k − pk = 0 for k ∈ [�] (10)

(p1,k+1 ‖ p4,k+1)
xk ◦ (p2,k+1 ‖ p3,k+1)

x−1
k − pk = 0 ∈ G

2k
p for k ∈ [�]. (11)

Arithmetic circuits for computing Eq. (10) and Eq. (11) consist of O(n� log p)
and O(2� log p) Gp-operations, respectively. Finally, Comp.BPAC for the above
arithmetic circuits cost O((n� + 2�) log p log q) Gq-operations for each P and V
and transmissions of O(log n+ �+log log p) Gq-elements. Setting � ← log m, P’s
computation complexity is O(mn log p) Gp-operations, V’s computation com-
plexity is O(m log p) Gp-operations and O(n log m log p log q) Gq-operations, and
the communication complexity is O(log n + log m + log log p) Gq-elements.
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6 Extensions

6.1 Transparent Polynomial Commitment Scheme

Informally, using the polynomial commitment scheme (PCS), a committer first
commits to a polynomial f(X), and then later opens f(x) at some point x
(mostly chosen by a verifier) and convinces a verifier of correctness of f(x).
Due to space constraint, we provide the definition of the PCS, a way to use the
proposed IP arguments as PCS, and a comparison table in the full version [35].

6.2 Zero-Knowledge Argument for Arithmetic Circuits

There is a well-established approach toward the argument for arithmetic cir-
cuits via polynomial commitment scheme; an IP argument is firstly reduced to
polynomial commitment schemes as in 6.1 and then combined with polynomial
IOPs [18]. This reduction increases constant times the complexity, where linear
preprocessing is required for the verifier. Therefore, the final argument for the
arithmetic circuit of size N has the same complexity as those of our IP arguments
between vectors of length N , where the online verifier’s complexity is unchanged,
but the offline verifier’s complexity is linear in N .

The perfect special honest verifier zero-knowledge (SHVZK) means that given
the challenge values, it is possible to simulate the whole transcript even without
knowing the witness. If the polynomial commitment scheme is hiding and the
proof of evaluation is SHVZK, then the resulting argument for arithmetic circuit
is SHVZK as well. Although the proposed IP protocols do not have these prop-
erties yet, there is a simple method to add ZK into IP arguments [18,46]. For
example, we can extend commitment schemes used in the paper to have hiding
factors like the original Pedersen commitment scheme.

There is another approach for converting from an IP argument without
SHVZK to the SHVZK argument for arithmetic circuit [13,17]. We can apply
this reduction to our IP arguments. We provide the details in the full version [35].

7 Discussion on Best of Two Generalizations

It would be interesting to devise a technique for combining two generalizations.
First, we find that näıve combining Protocol2 and Protocol3 is difficult

because each of them uses a bilinear map for a different purpose. In Proto-
col2, the bilinear map is used in the first step for compressing multiple group
elements by sending a commitment instead of multiple group elements. In the
first step of Protocol3, the P sends L and R to the verifier, where L and R are
elements in Gt. We can generalize Protocol3 like Protocol1, but we cannot put
L and R into a homomorphic commitment scheme directly since L and R are
already in the target group of the bilinear map.

Although Protocol4 does not use the bilinear map, combining Protocol2 and
Protocol4 will be challenging as well. Since both protocols use two-tier commit-
ment schemes, we may need three-tier commitment scheme such as C3 ◦C2 ◦C1,
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where C3 is pairing-based AFGHO scheme, C2 is a commitment to elliptic curve
point, and C1 is Pedersen commitment scheme. Protocol4 requires to prove small-
degree polynomial relations over C1 and C2 supports an efficient protocol for it.
C3 may support to prove a small-degree polynomial relation over C2. However,
since C1 is an opening of an opening of C3, the small-degree polynomial relation
over C1 might be represented as a complicated relation over C2 of higher-degree.
We leave achieving the best of both generalizations as an open problem.
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Abstract. Non-interactive zero-knowledge (NIZK) proof systems are
often constructed based on cryptographic assumptions. In this paper, we
propose the first unconditionally secure NIZK system in the AC0-fine-
grained setting. More precisely, our NIZK system has perfect soundness
for all adversaries and unconditional zero-knowledge for AC0 adversaries,
namely, an AC0 adversary can only break the zero-knowledge property
with negligible probability unconditionally. At the core of our construc-
tion is an OR-proof system for satisfiability of 1 out of polynomial many
statements.

Keywords: Non-interactive zero-knowledge · Fine-grained
cryptography · AC0 · Unconditional security

1 Introduction

Constructing non-interactive zero-knowledge (NIZK) proof systems [7] is one of
the central topics in cryptography, since NIZK is a fundamental primitive that
can convince a verifier the validity of a statement with minimum communication
round.

Most NIZK systems are constructed based on various cryptographic assump-
tions, such as Discrete-Logarithm-like (e.g., [10,11]) and Learning With Errors
(LWE, e.g., [17]) assumptions. Recent development of succinct NIZK systems
[2,6,8,9,16] even base their security on rather strong, non-falsifiable assump-
tions, such as knowledge assumptions and assuming generic groups. Although
there are many cryptanalysis results on assumptions, such as Discrete Logarithm
and LWE, it is natural to consider whether it is possible to construct NIZK from
much mild assumptions.
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NIZK Based on Mild Assumptions. Very recently, Wang and Pan [19] put
forth this direction in the fine-grained setting. Here fine-grained setting (or
fine-grained cryptography) [3] means that adversaries can only have bounded
resources and honest users have no more resources than adversaries. More pre-
cisely, the work of Wang and Pan considers that all parties are in NC1. In
this setting, they obtained a NIZK system under a rather mild assumption,
NC1

� ⊕L/poly. Their system is very efficient since only simple operations such
as AND, OR, and PARITY for bits are involved. The assumption, NC1

� ⊕L/poly,
also yields the security of proof systems in [1,5,20].

However, in complexity theory, it has not been proven that NC1
� ⊕L/poly,

although it is widely accepted. It is desirable to further push this direction and
study whether it is possible to construct an unconditionally secure NIZK system
in the fine-grained setting.

We suppose that in the classical setting it seems not possible to have uncon-
ditional security for NIZK. The reason is that for proving the zero-knowledge
property, the common reference string (CRS) is often related to the simula-
tion trapdoor, and given the CRS an (unbounded) adversary may recover the
simulation trapdoor and break the soundness. Meanwhile, it is promising to con-
struct unconditionally secure NIZK in the fine-grained setting, since it restricts
the capability of an adversary. However, this will also limit the resources of an
honest user, which makes it particularly difficult to instantiate a scheme. Our
technical goal is to resolve this tension.

1.1 Our Contributions

We consider the AC0-fine-grained setting, namely, all adversaries, honest provers,
and verifiers are in AC0. In this setting, we construct the first unconditionally
secure NIZK proof system for circuit satisfiability (SAT). More precisely, it is per-
fectly sound and has zero-knowledge against any adversaries in AC0. Our system
only involves simple operations in GF (2) and does not require any cryptographic
group operations or assumptions such as Discrete Logarithm and Factoring.

Our NIZK only supports statements verifiable in AC0 given witnesses, since
if a statement circuit is beyond AC0 then an honest prover in AC0 cannot decide
its truth with the witness. However, we stress that our method is not limited to
AC0 statements. For instance, if we allow polynomial-time honest provers as in
[1], our constructions naturally support statement circuits with polynomial-size.
Moreover, any polynomial-size statement circuit can be represented as one veri-
fiable in AC0. Specifically, if a witness contains the bits of all wires in the circuit,
then an AC0 algorithm can efficiently verify the validity of an input/output pair
of each gate in parallel and check whether the bit for the final output wire is
1. In this sense, the prover of our NIZK works for any NP statement, given a
witness containing “enough information”.

Applications of Security Against AC0. Security against AC0 naturally cap-
tures adversaries with limited resources. Moreover, an AC0-fine-grained NIZK
works well in systems requiring “online security”, where attacks are valid only
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if they succeed immediately. For instance, our NIZK with composable zero-
knowledge against AC0 and perfect soundness can be used to protect secrets
only valuable in a short period of time. Also, its dual mode enjoys everlasting
security. Namely, its perfect zero-knowledge continuously prevents the adversary
from learning information on secrets and its soundness guarantees security in a
system requiring users to provide proofs in a short time.

Impacts of Our Work. Our work gives us interesting insights to the minimum
hardness assumptions required by NIZK and the landscape of AC0-fine-grained
cryptography. Before our work, it seemed that cryptographic assumptions, in
particular, those imply public-key encryption (PKE), were necessary for NIZK
in the standard model. Putting it in Impagliazzo’s view of complexity landscape
[14], NIZK seemed to be in the Cryptomania. Examples are Diffie-Hellman-based
NIZKs [10,11]. Even in the NC1-fine-grained setting, NIZK systems [19] require
the assumption NC1

� ⊕L/poly, which implies PKE schemes [3].
Our work shows that those assumptions implying PKE are not necessary,

since in the AC0-fine-grained setting, it is not known whether there is a PKE
scheme yet.1 Up until now, only “minicrypt primitives” such as one-way function,
weak pseudorandom function, secret-key encryption, and collision-resistant hash
function are known to exist [3,12] in this setting, and we were not aware of any
impossibility or possibility results showing that assumptions implying PKE are
necessary for NIZK, in particular, in the AC0-fine-grained setting, or not. As a
further direction left open, we will explore how to extend our techniques in the
classical setting and construct a NIZK from weaker assumptions (e.g., Discrete
Logarithms) that are not known to imply PKE.

Extensions. While all the aforementioned NIZKs are in the CRS model, we
can further extend them to the uniform random string (URS) model, where
a trust setup only samples public coins. We also prove that our NIZKs have
verifiable correlated key generations [10], which lead to a conversion from our
NIZKs to unconditionally secure non-interactive zaps [4] (i.e., non-interactive
witness-indistinguishability proof systems in the plain model) [10] against AC0.

1.2 Technical Overview

In this section, we give more details about our techniques. Our approach is
divided into three intermediate steps. We firstly construct a simple NIZK for
linear languages, and then compile it to an OR-proof scheme for 1-out-of-� dis-
junction, where � can be any polynomial. Both schemes run in NC0, which is a
subset of AC0. Thirdly, we use this OR-proof scheme to construct a NIZK system
for circuit SAT.

A main technical hurdle throughout our work is that in the AC0-fine-grained
setting, many standard operations, such as computing the sum of a polynomial
number of random elements and multiplication of two random matrices, are

1 How to construct a provably secure PKE scheme in the AC0-fine-grained setting is
left as an open problem in [3].
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not allowed. These operations can be easily performed in NC1 and thus previous
fine-grained NIZKs under complexity assumptions [1,19] are not confronted with
this problem. As a result, it is more challenging to construct a NIZK (or any
cryptographic scheme, in general) in AC0, compared to the work of Wang and
Pan [19].

NIZK for Linear Languages in AC0. Our starting point is a simple NIZK
that is computable in NC0 and has perfect soundness and composable zero-
knowledge against adversaries in AC0 under no assumption. The linear languages
we consider are of the form

LM = {t : ∃w ∈ {0, 1}t, s.t. t = Mw},

where each row vector in M ∈ {0, 1}n×t is sparse. Here, by sparse we mean that
each row vector in M has only constant Hamming weight. This restriction is
inherent, since otherwise even the multiplication of M and w cannot be per-
formed in NC0.2 However, this is still sufficient for our final NIZK for circuit
SAT.

The technique behind our scheme is based on the fact that an AC0 adversary
cannot tell the parity of a random string with the size being the security param-
eter λ [13,15]. For our purpose, we explain it as the indistinguishability between
the following distributions:

{Eλr̃|̃r $← {0, 1}λ−1}
︸ ︷︷ ︸

= D0

and {Eλr̃ + eλ
λ |̃r $← {0, 1}λ−1

︸ ︷︷ ︸

=D1

},

where eλ
λ ∈ {0, 1}λ denotes constant vector with the parity being 1 and

Eλ ∈ {0, 1}λ×(λ−1) denotes a fixed constant matrix (see Sect. 2 for the formal
definitions). More specifically, we prove that a vector sampled from D0 (respec-
tively, D1) is uniformly distributed conditioned on the parity being 0 (respec-
tively 1). A useful property of Eλ we will exploit is that each row and column
vector in it has constant Hamming weight, which implies that multiplication
between Eλ and r̃ or other matrices can be performed in NC0.

For the aforementioned linear language LM, we set the binding CRS as a vec-

tor r sampled from D1. The prover computes C = MR and D = (R||w)
(

E�
λ

r�

)

,

where R $← {0, 1}t×(λ−1), and the verifier accepts iff (C||x)
(

E�
λ

r�

)

= MD. For

each multiplication of matrices (or vectors) involved, one can see that either the
row vectors of the left hand side matrix or the column vectors of the right hand
side matrix have only constant Hamming weight. Hence, all the operations can
be performed in NC0. Roughly speaking, soundness follows from the fact that,
for a valid proof, either x being in the span of M or r being in the span of Eλ

must hold, while all r ∈ D1 are outside the span of Eλ. To prove zero-knowledge,
we switch the binding CRS to a hiding CRS by replacing the distribution of r
2 An NC0 circuit cannot compute the inner product of two vectors unless one of them

is sparse.



Unconditionally Secure NIZK in the Fine-Grained Setting 441

by D0. In this case, seeing C and D simultaneously reveals no information on w
except for x. Due to this CRS switching, we call this zero-knowledge composable,
and this change does not modify the view of an AC0 adversary.

OR-Proof for One Disjunction. Following a fine-grained version of the “OR-
proof techniques” [10,18], the above NIZK can be transformed to an OR-proof
for the 1-out-of-2 disjunction (namely, satisfiability of 1 out of 2 statements). Let
r be a binding CRS sampled from D1. Assuming the prover knows the witness
w of statement xj for some j ∈ {0, 1}, it generates a hiding CRS r1−j with a
trapdoor r̃1−j and a binding CRS rj such that rj = r − r1−j . Then the prover
generates proofs for xj and x1−j with w and r̃1−j respectively. The verifier
receives r0 and generates r1 by itself for verification. Soundness follows from the
fact that for any pair of (r0, r1) such that r = r0 + r1, at least one of (r0, r1)
must be a binding CRS with the parity being 1. Composable zero-knowledge
follows from that switching the distribution of r to D0 leads both r0 and r1 to
become hiding CRSs.

OR-Proof for Multiple Disjunctions. While the above construction works
for the 1-out-of-2 disjunction, our NIZK for all AC0 circuit SAT requires 1-out-
of-� disjunction for any polynomial �. This is due to the fact that an AC0 circuit
may contain unbounded fan-in AND or OR gates. A natural idea is to let the
prover “split” r into � CRSs (ri)i∈[�] instead of two, among which one is binding
and � − 1 ones are hiding. However, this will result in workload beyond AC0 for
both the prover and the verifier. Especially, a prover with a witness for the jth
statement will have to compute rj = r − ∑

i�=j ri and the verifier will have to
compute r� = r − ∑�−1

i=1 ri. Neither of them can be performed in AC0.
To overcome the above problems, we develop a new framework of OR-proof

for multiple disjunctions. At the core of our framework is a verifiable “double
layer” sampling procedure.

In the first layer, we adopt a distribution, say D′
0, which is the same as D0

except that it outputs vectors with size �. By running D′
0 for λ − 1 times, we

immediately achieve a matrix in {0, 1}�×(λ−1), which can be parsed as � random
vectors in {0, 1}λ−1 with the sum being a 0-vector. In the second layer, we
sample � vectors from D0, while using the vectors generated in the first layer
as the internal randomness. This results in � random vectors conditioned on the
sum being a 0-vector and the parities being 0’s. Assuming that the witness for
the jth statement is known, we add the jth vector with the original CRS r from
D1 to obtain a binding CRS and use the rest � − 1 vectors as the hiding CRSs.
Notice that when switching r to a hiding CRS sampled from D0, the � split CRSs
are all randomly distributed in D0 conditioned on the sum being r. In this case,
information on the index j is information-theoretically hidden, which preserves
the zero-knowledge.

For verification, we propose a method to extract a matrix from the internal
randomness used in the first layer. We then use the matrix as a witness to prove
that the sum of the CRSs generated by the prover is exactly r, via our NIZK
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for linear languages. In this way, we can convince the verifier that at least one
of the CRSs must be binding, and thus soundness can be guaranteed.

In conclusion, the above sampling procedure gives rise to ways to split a CRS
into multiple ones and to convince the verifier that some of the resulting CRSs is
binding, while all the operations involved can be performed in AC0. Combining
this sampling procedure with our OR-proof for one disjunction, we achieve an
OR-proof for multiple disjunction, which plays a key component of our NIZK
for circuit SAT.

NIZK for Circuit SAT. We now give an overview on how we construct a
NIZK for all statements verifiable in AC0 (given a witness) by using our NIZK
for linear languages and our OR-proof.

For a valid witness, we extend it to contain bits of all wires in the statement
circuit and commit each bit wi as cmi = Eλri +twi, where ri is a random vector
in {0, 1}λ−1 and t $← D1 is in the CRS. For the final output, we commit it as t.
Note that the commitment is additively homomorphic and t is a commitment to
1. For each NOT gate with input commitments (cmi1, cmi2), we use the NIZK
for linear languages to prove that cmi1 + cmi2 + t is in the span of Eλ, i.e., it
commits to 0. For each AND gate with input commitments (cmij)j∈[�] and output
commitments cmi(�+1), we use an OR-proof for 1-out-of-(� + 1) disjunction to
prove that either both cmij and cmi(�+1) commit to 0 for some j ∈ [�] or cmij −t
commits to 0 for all j ∈ [� + 1]. Proofs for OR gates are generated analogously.
Notice that when generating the proof of compliance for each AND (respectively,
OR) gate, the prover needs to find the index of the lexicographically first 0-bit
(respectively, 1-bit) of its input from the extended witness. While common ways
may go beyond AC0 due to the unbounded fan-in of each gate, we prove that this
can indeed be performed in AC0 by proposing concrete circuits (See Theorem 5
for details).

Due to the perfect soundness of the underlying OR-proof and NIZK for linear
languages, if there exist valid proofs for all gates, we can extract a witness leading
the circuit to output 1 by computing the parities of all commitments for the input
wires of the circuit. Notice that the statement here is information-theoretical,
and thus the extraction procedure is not necessarily runnable in AC0. Moreover,
when switching the distribution of t to D0, all the commitments are just random
vectors with parities being 0 and the proofs of the underlying NIZKs reveal no
useful information.

If we only treat statements verifiable in NC0, which consists only of fan-in 2
gates, rather than AC0, we can further reduce the proof size by instantiating the
underlying OR-proof with our warm-up construction for one disjunction.

Overview of Extensions. Due to the fact that a random string falls into D0
and D1 with half-half probability, we can also implement our construction in
the URS model by running it for multiple times in parallel. Composable zero-
knowledge of the resulting construction follows from that of the original NIZK
and statistical soundness follows from the fact that at least one CRS falls into
D1 with overwhelming probability.
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Moreover, we can merge each CRS of all our NIZKs into one vector sampled
from D1. In this case, switching a binding CRS to a hiding one can be efficiently
done by changing a single bit, and for any two CRSs with the sum being a
constant vector where only one entry is 1, at least one of them must be binding.
This implies that our NIZKs have verifiable correlated key generation. Based
on this observation, we can convert our NIZKs into unconditionally secure non-
interactive ZAPs in AC0, following the conversion technique in [10].

2 Preliminaries

Notations. We note that all arithmetic computations are over GF (2) in this
work. Namely, all arithmetic computations are performed with a modulus of 2,
and addition and subtraction are equivalent. We write a $← A(b) (respectively,
a = A(b)) to denote the random variable output by a probabilistic (respectively,
deterministic) algorithm (or circuit) A on input b. By x $← S we denote the
process of sampling an element x from a set or distribution S uniformly at
random. By [n] we denote the set {1, · · · , n}. By negl we denote an unspecified
negligible function.

By x ∈ {0, 1}n we denote a column vector with size n, and by xi we denote
the ith element of a vector x. By x1◦· · ·◦x� for some �, we denote (x�

1 , · · · ,x�
� )�,

i.e., the concatenation of (xi)i∈[�].
For a matrix A ∈ {0, 1}n×t with rank t′ ≤ n, we denote the sets

{y | ∃x s.t. y = Ax} and {x | Ax = 0} by Span(A) (i.e., the span of A)
and Ker(A) respectively. By A⊥ ∈ {0, 1}n×(n−t′) we denote a matrix of rank
n − t′ in Ker(A�). Note that for any y /∈ Span(A), we have y�A⊥ �= 0. By A
(respectively, A) we denote the upper (n−1)× t matrix (respectively, lower 1× t
vector) of A.

By In we denote an identity matrix in {0, 1}n×n. By ei
n we denote the column

vector in {0, 1}n with the ith element being 1 and the other elements being 0. By
0 we denote a zero vector or matrix. By f i

n we denote the vector in {0, 1}n such
that the first i − 1 entries are 0’s and the other entries are 1’s. By En we denote
the following n × (n − 1) matrix, where the entries of the two main diagonals are
1’s and the other entries are 0’s.

En =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
1 1

. . .
1 1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ {0, 1}n×(n−1).

One can check that f1n ∈ Ker(E�
n ) and Enf i

n−1 = ei
n + en

n for i ∈ [n − 1].

2.1 Circuits in AC0

We now recall the definitions of function family, NC0, and AC0.
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Definition 1 (Function family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and
a range Rf

λ.

Definition 2 (NC0). The class of (non-uniform) AC0 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant d such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth d, and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (AC0). The class of (non-uniform) AC0 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant d such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth d, and unbounded fan-in using AND, OR, and NOT gates.

One can easily see that NC0 is a subset of AC0, and for any polynomial n = n(λ)
and x,y ∈ {0, 1}n where either x or y has only constant Hamming weight, the
inner product of x and y is computable in NC0.

Let {PARITYλ}λ∈N be the function family such that for all λ ∈ N, PARITYλ

on input any x ∈ {0, 1}λ outputs
∑λ

i=1 xi. The following theorem states that
any AC0 circuit has very small correlation with PARITYλ.

Theorem 1 ([13,15]). For any A = {aλ}λ∈N ∈ AC0 with size p and constant
depth d and any λ ∈ N, we have

∣

∣

∣

∣

∣

Pr
x $←{0,1}λ

[aλ(x) = 1|PARITYλ(x) = 1]

− Pr
x $←{0,1}λ

[aλ(x) = 1|PARITYλ(x) = 0]

∣

∣

∣

∣

∣

≤ 2−Ω(λ/ logd−1(p)).

One can see that for any polynomial p in λ, 2−Ω(λ/ logd−1(p)) = 2−Ω(λ/ logd−1(λ))

is negligible.

2.2 Proof Systems

Definition 4 (Non-interactive zero-knowledge (NIZK) proof). A C1-
NIZK for a family of relations {Rλ}λ∈N is a function family NIZK =
{Genλ,Proveλ,Verλ}λ∈N ∈ C1 with the following properties.

– Genλ returns a binding CRS crs.
– Proveλ(crs, x,w) returns a proof π.
– Verλ(crs, x, π) deterministically returns 1 (accept) or 0 (reject).

Completeness is satisfied if for all λ ∈ N, all (x,w) such that Rλ(x,w) = 1,
all crs ∈ Genλ, and all π ∈ Proveλ(crs, x,w), we have Verλ(crs, x, π) = 1.

C2-composable zero-knowledge is satisfied if there exists a simulator {TGenλ,
Simλ}λ∈N ∈ C1 such that for any adversary A = {aλ}λ∈N ∈ C2, we have

| Pr[1 $← aλ(crs)|crs $← Genλ] − Pr[1 $← aλ(crs)|(crs, td) $← TGenλ]| ≤ negl(λ),
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and for all λ ∈ N and all (x,w) such that Rλ(x,w) = 1, the following distributions
are identical.

π $← Proveλ(crs, x,w) and π $← Simλ(crs, td, x),

where (crs, td) $← TGenλ.
Perfect soundness is satisfied if for all λ ∈ N, all crs ∈ Genλ, all x /∈ Lλ, and

all π, we have Verλ(crs, x, π) = 0.

URS Model. In the above definition, if Genλ only returns a public string crs $←
{0, 1}p(λ) uniformly at random for some polynomial p, then we say that NIZK is
in the URS model.

Non-interactive Zap. A non-interactive zap is a witness-indistinguishable non-
interactive proof system in the plain model, where there is no trusted setup. The
definition is as follows.

Definition 5 (Non-interactive zap). A C1-non-interactive zap for a family
of relations {Rλ}λ∈N is a function family ZAP = {ZProveλ,ZVerλ}λ∈N ∈ C1 with
the following properties.

– ZProveλ(x,w) returns a proof π.
– ZVerλ(x, π) deterministically returns 1 (accept) or 0 (reject).

Completeness is satisfied if for all λ ∈ N and all (x,w) such that Rλ(x,w) = 1,
and all π ∈ ZProveλ(x,w), we have ZVerλ(x, π) = 1.

C2-witness indistinguishability is satisfied if for all λ ∈ N, all (x,w0,w1) such
that Rλ(x,w0) = Rλ(x,w1) = 1, and any adversary A = {aλ}λ∈N ∈ C2, we have

| Pr[1 $← aλ(x, π)|π $← ZProveλ(x,w0)]−
Pr[1 $← aλ(x, π)|π $← ZProveλ(x,w1)]| ≤ negl(λ).

Perfect soundness is satisfied if for all λ ∈ N, all x /∈ Lλ, and all π, we have
ZVerλ(x, π) = 0.

3 NIZK for Linear Languages

In this section, we propose an NC0-NIZK for linear languages with perfect sound-
ness and AC0-composable zero-knowledge. Before giving our construction, we
prove the following lemma, which says that the uniform distribution in and out
of the span of Eλ are indistinguishable for an AC0 adversary.

Lemma 1. For any A = {aλ}λ∈N ∈ AC0 and any λ ∈ N, we have
∣

∣

∣

∣

∣

Pr
r $←{0,1}λ−1

[aλ(Eλr) = 1] − Pr
r $←{0,1}λ−1

[aλ(Eλr + eλ
λ) = 1]

∣

∣

∣

∣

∣

≤ negl(λ).
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Proof. We first note that for r $← {0, 1}λ−1, the first λ − 1 bits of y = Eλr+eλ
λb

are uniformly distributed for b ∈ {0, 1}, due to the fact that Eλ is of full rank.
Moreover, the last bit of y is uniquely determined by the first λ − 1 ones condi-
tioned on PARITYλ(y) = f1λ

�y = b. Thus, y is uniformly distributed conditioned
on PARITYλ(y) = b. Then Lemma 1 follows immediately from Theorem 1. 	


Our Construction. Let M be a matrix from {0, 1}n×t, where n = n(λ), t =
t(λ), and t′ = t′(λ) are polynomials in λ and the Hamming weight of each row
vector in M is constant. We define the associated language as

LM = {x : ∃w ∈ {0, 1}t, s.t. x = Mw}.

For the associated relation RM, we have RM(x,w) = 1 iff x = Mw. We give the
construction of a NIZK LNIZK for {LM}λ∈N and its simulator in Figs. 1 and 2
respectively.

Fig. 1. Definition of LNIZK = {Genλ,Proveλ,Verλ}λ∈N.

Fig. 2. Definition of the simulator {TGenλ, Simλ}λ∈N of LNIZK.

Theorem 2. LNIZK in Fig. 1 is an NC0-NIZK with perfect soundness and AC0-
composable zero-knowledge.

Proof. Complexity. First, we note that in Figs. 1 and 2, the Hamming weight of

each row vector in Eλ, M, and x and each column vector in
(

E�
λ

r�

)

is constant.3

Thus, the multiplication of matrices involved can be performed in NC0. Since
3 Notice that x can be treated as a matrix with row vectors with Hamming weight at

most 1.
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addition of a constant number of matrices can be performed in NC0 as well, we
have {Genλ,Proveλ,Verλ,TGenλ,Simλ}λ∈N ∈ NC0.

Completeness. Completeness follows from the fact that for x = Mw, C =

MR, and D = (R||w)
(

E�
λ

r�

)

, we have

(C||x)
(

E�
λ

r�

)

= (MR||Mw)
(

E�
λ

r�

)

= M(R||w)
(

E�
λ

r�

)

= MD.

AC0-Composable Zero-Knowledge. The indistinguishability between CRSs
generated by Genλ and TGenλ follows immediately from Lemma 1.

For r = Eλr̃ ∈ TGenλ and x = Mw, we have MR = M(R +w · r̃�) − x · r̃�

and
(R||w)

(

E�
λ

r�

)

= (R||w)
(

E�
λ

r̃�E�
λ

)

= (R + w · r̃�)E�
λ .

Moreover, for R $← {0, 1}t×(λ−1), the distribution of R + w · r̃� is uniformly
random in {0, 1}t×(λ−1). Thus, for any valid statement, the simulator perfectly
simulates honest proofs, completing the proof of composable zero-knowledge.

Perfect Soundness. Recall that f1λ denotes the vector consisting only of 1’s
and f1λ ∈ Ker(E�

λ ). When r is generated as r $← Genλ, we have r /∈ Span(Eλ)
since f1λ

�r = 1. Moreover, for any valid statement/proof pair (x, (C,D)) such

that (C||x)
(

E�
λ

r�

)

= MD, we have M⊥�(C||x)
(

E�
λ

r�

)

= 0, i.e., Eλ(C�M⊥) =

r(x�M⊥). When r /∈ Span(Eλ), we must have x�M⊥ = 0, which in turn implies
x ∈ LM, completing the proof of statistical soundness. Notice that in this part,
the arguments are information-theoretical and the equations are not necessarily
efficiently computable.

Putting all the above together, Theorem 2 immediately follows. 	


Remark. By replacing Genλ by TGenλ in LNIZK, we immediately achieve a
fine-grained NIZK with perfect zero-knowledge and computational soundness.
Similar arguments can also be made for our OR-proofs and NIZK for circuit
SAT given in the following sections.

4 NIZK for OR-Languages

In this section, we extend the NIZK LNIZK in Sect. 3 to an OR-proof system. We
first give an efficient warm-up construction for 1-out-of-2 disjunction languages,
and then show how to extend it to a fully-fledged one for the disjunction of
polynomial number of linear languages.
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4.1 A Warm-Up Construction

Let n0 = n0(λ), n1 = n1(λ), t0 = t0(λ), and t1 = t1(λ) be any polynomials in λ.
We define the following language

Lor(M0,M1) = {(x0,x1) : ∃w s.t. x0 = M0w ∨ x1 = M1w},

where Mi ∈ {0, 1}ni×ti and the Hamming weight of each row vector in Mi

is constant for i ∈ {0, 1}. For the associated relation Ror
(M0,M1), we have

Ror
(M0,M1)((x0,x1),w) = 1 iff xj = Mjw for some j ∈ {0, 1}. The OR-proof

and its simulator are given in Figs. 3 and 4 respectively. Roughly, the prover
splits the original binding CRS r into a binding one rj and a hiding one r1−j

for some j ∈ {0, 1}, and respectively uses the witness and trapdoor to generate
proofs for the two linear statements. The verifer on receiving r0 recovers r1 as
r1 = r − r0 and executes the verification procedure.

Fig. 3. Definition of ORNIZKwm = {ORGenλ,ORProveλ,ORVerλ}λ∈N.

Theorem 3. ORNIZKwm in Fig. 3 is an NC0-NIZK with perfect soundness and
AC0-composable zero-knowledge.

Proof. Complexity. First, we note that in Figs. 3 and 4, the Hamming weight of

each row vector in Eλ, Mi, and xi and each column vector in
(

E�
λ

r�
i

)

is constant
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Fig. 4. Definition of the simulator {ORTGenλ,ORSimλ}λ∈N of ORNIZKwm.

for all i ∈ {0, 1}. Thus, the multiplication of matrices involved can be performed
in NC0. Also, addition of a constant number of matrices can be performed in NC0.
Hence, we have {ORGenλ,ORProveλ,ORVerλ,ORTGenλ,ORSimλ}λ∈N ∈ NC0.

Completeness. Completeness follows from the fact that for xj = Mjw, Cj =

MjRj , and Dj = (Rj ||w)
(

E�
λ

r�
j

)

, we have

(Cj ||xj)
(

E�
λ

r�
j

)

= (MjRj ||Mjw)
(

E�
λ

r�
j

)

= MjDj ,

and for C1−j = MR′
1−j − x1−j · r̃�

1−j and D1−j = R′
1−jE�

λ , we have

(C1−j ||x1−j)
(

E�
λ

r�
1−j

)

= ((MR′
1−j − x1−j · r̃�

1−j)||x1−j)
(

E�
λ

r�
1−j

)

= MR′
1−jEλ = MD1−j .

AC0-Composable Zero-Knowledge. The indistinguishability between CRSs
generated by Genλ and TGenλ follows immediately from Lemma 1.

When the CRS is generated as r = Eλr̃ where r̃ $← {0, 1}λ−1, r0 and r1
generated by both ORProveλ and ORSimλ are uniformly distributed in Span(Eλ),
conditioned on r = r0 + r1. Moreover, we have

MjRj = Mj(Rj + w · r̃�) − xj · r̃�

and
(Rj ||w)

(

E�
λ

r̃�
j E�

λ

)

= (Rj + w · r̃�
j )E�

λ

for xj = Mjw. Since the distribution of Rj + w · r̃�
j for Rj

$← {0, 1}tj×(λ−1)

is uniform in {0, 1}tj×(λ−1), the simulator perfectly simulates honest proofs,
completing the proof of composable zero-knowledge.
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Perfect Soundness. Recall that f1λ denotes the vector consisting only of 1’s
and f1λ ∈ Ker(E�

λ ). For r ∈ Genλ, we have f1λ
�r = 1, i.e., r /∈ Span(Eλ).

Hence, for a valid statement/proof pair (x, π) where x = (x0,x1) and π =

((Ci,Di)i∈{0,1}, r0), we must have rj /∈ Span(Eλ) and (Cj ||xj)
(

E�
λ

r�
j

)

=

MjDj for some j ∈ {0, 1}, where r1 = r − r0. For such j, we have

(M⊥
j )�(Cj ||xj)

(

E�
λ

r�
j

)

= 0, i.e., rj(x�
j M⊥

j ) = Eλ(C�
j M⊥

j ). Since rj /∈
Span(Eλ), we must have x�

j M⊥
j = 0, which in turn implies x ∈ LorM0,M1

, com-
pleting the proof of perfect soundness. Notice that this part of arguments is
information-theoretical and thus the equations are not necessarily computable
in AC0.

Putting all the above together, Theorem 3 immediately follows. 	


Remark. As discussed in Sect. 1.2, the above construction can not be naturally
extended to 1-out-of-� disjunction for any polynomial �, due to the fact that
an AC0 algorithm cannot compute the sum of a polynomial number of random
vectors (even conditioned on the parity being fixed). Specifically, if we extend
the construction in a straightforward way, the prover and the verifier will have
to compute rj = r−∑

i�=j ri and r� = r−∑�−1
i=1 ri respectively, while neither can

be performed in AC0. In the next section, we propose a new method to overcome
this problem.

4.2 A Fully-Fledged Construction

We now extend the warm-up OR-proof to a fully-fledged one for 1-out-of-� dis-
junction.

Let � = �(λ), (ni = ni(λ))i∈[�], (ti = ti(λ))i∈[�] be any polynomials in λ. We
define the following languages:

LE�
= {Y :∃W ∈ {0, 1}(�−1)×λ, s.t. Y = E�W}.

and
Lor(Mi)i∈[�]

= {(xi)�
i=1 : ∃w ∈ {0, 1}ti , s.t.

∨

i∈[�]

xi = Miw},

where Mi ∈ {0, 1}ni×ti and the Hamming weight of each row vector in Mi is
constant for i ∈ [�]. One can easily see that {LE�

}λ∈N is supported by our NIZK
for linear languages given in Sect. 3, since LE�

is equivalent to the following linear
language:

L′
E�

= {(yi)i∈[�] :∃w ∈ {0, 1}(�−1)λ, s.t. y1 ◦ · · · ◦ y� = Mw}
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where Y = (yi)i∈[�] and

M =

⎛

⎜

⎜

⎜

⎜

⎝

E� 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 E�

⎞

⎟

⎟

⎟

⎟

⎠

∈ {0, 1}�·λ×(�−1)λ

contains Eλ’s in the main diagonal and 0 in the other positions. Here recall that
y1 ◦ · · · ◦ y� denotes the concatenation of (yi)i∈[�]. It is easy to see that the
Hamming weight of each row vector in M is constant.

Let LNIZK = {Genλ,Proveλ,Verλ}λ∈N be a NIZK with a simulator
{TGenλ,Simλ}λ∈N for {LE�

}λ∈N, we give an OR-proof for {Lor(Mi)i∈[�]
}λ∈N and

its simulator in Figs. 5 and 6 respectively.
Roughly, we adopt a verifiable sampling procedure with double layers to split

the original CRS into � − 1 hiding CRSs and one binding CRS. In the first layer,
we sample � vectors with a trapdoor S, and in the second layer, we in turn use
the � vectors as trapdoors to sample � random hiding CRSs with the sum being
0, and add one of them with r to make it binding. Later, we use a NIZK for
linear languages to prove that the sum of the � CRSs is r, where the witness can
be extracted from S. In this way, a verifier in AC0 can check that at least one of
the split CRSs is binding, without learning any useful information.

Theorem 4. If LNIZK is an NC0-NIZK with perfect soundness and AC0-
composable zero-knowledge, then ORNIZK in Fig. 5 is an NC0-NIZK with perfect
soundness and AC0-composable zero-knowledge.

Proof. Complexity. First, we note that in Figs. 5 and 6, the Hamming weight

of each row vector in Eλ, E�−1, Mi, and xi and each column vector in
(

E�
λ

r�
i

)

is constant for all i ∈ [�]. Thus, the multiplication of matrices involved can
be performed in NC0. Since addition of a constant number of matrices and
running LNIZK and its simulator can be performed in NC0 as well, we have
{ORGenλ,ORProveλ,ORVerλ,ORTGenλ,ORSimλ}λ∈N ∈ NC0.

Completeness. For xj = Mjw, Cj = MjRj , and Dj = (Rj ||w)
(

E�
λ

r�
j

)

, we

have
(Cj ||xj)

(

E�
λ

r�
j

)

= (MjRj ||Mjw)
(

E�
λ

r�
j

)

= MjDj .

For (ri)i∈[�] = R = Eλ
˜R + r · ej

�

�
, we have ri = Eλr̃i for all i ∈ [�]\{j}. Then,

for Ci = MR′
i − xi · r̃�

i and Di = R′
iE�

λ where i ∈ [�]\{j}, we have

(Ci||xi)
(

E�
λ

r�
i

)

= ((MR′
i − xi · r̃�

i )||xi)
(

E�
λ

r�
i

)

= MR′
iEλ = MDi.
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Fig. 5. Definition of ORNIZK = {ORGenλ,ORProveλ,ORVerλ}λ∈N. Recall that by
f j
�−1 ∈ {0, 1}�−1 we denote the vector such that the first j − 1 entries are 0’s and

the last � − j ones are 1’s.

Moreover, since E�f j
�−1 = ej

� + e�
�, for ˜R� = E�S and R = Eλ

˜R + r · ej
�

�
, we

have
R� = ˜R�E�

λ + ej
� · r�

= E�SE�
λ + ej

� · r�

= E�SE�
λ + (e�

�r� + ej
� · r�) + e�

� · r�

= E�SE�
λ + E�f j

�−1r
� + e�

�r�

= E�(SE�
λ + f j

�−1r
�) + e�

�r�,

i.e., R� −e�
�r� = E�(SE�

λ + f j
�−1r�). Then the completeness of ORNIZK follows

immediately from that of LNIZK.

AC0-Composable Zero-Knowledge. The indistinguishability between CRSs
generated by ORGenλ and ORTGenλ follows immediately from the composable
zero-knowledge of LNIZK and Lemma 1.
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Fig. 6. Definition of the simulator {ORTGenλ,ORSimλ}λ∈N of ORNIZK.

Next we define a modified prover ORProveλ
′, which is exactly the same as

ORProveλ except that π is generated as π $← Simλ(crs, td,R� − e�
�r�). The

following distributions are identical due to the composable zero-knowledge of
ORNIZK.

Π $← ORProveλ(crsor, (xi)i∈[�],w) and Π $← ORProveλ
′(crsor, (xi)i∈[�],w),

for (crsor, tdor) $← ORTGenλ and any ((xi)i∈[�],w) such that xj = Mjw for some
j ∈ [�].

Next we note that for S $← {0, 1}(�−1)×(λ−1), ˜R� = E�S is uniformly
distributed conditioned on

∑�
i=1 r̃i = 0 for ˜R� = (r̃i)i∈[�]. The reason is

that (r̃i)i∈[�−1] are randomly distributed (since E� is of full rank) and r̃� is
uniquely determined conditioned on

∑�
i=1 r̃i = 0. Thus, for any r = Eλr̃ where

r̃ ∈ {0, 1}λ−1, both ˜R + r̃ · ej
�

�
and ˜R + r̃ · e�

�

� are uniformly distributed condi-
tioned on the sum of the column vectors being r̃. In this case, the distributions
of R = Eλ

˜R + r · ej
�

�
and R = Eλ

˜R + r · e�
�

� (generated by ORProveλ and
ORSimλ respectively) are identical as well. Moreover, we have

MjRj = Mj(Rj + w · r̃�
j ) − xj · r̃�

j

and
(Rj ||w)

(

E�
λ

r̃�
j E�

λ

)

= (Rj + w · r̃�
j )E�

λ

for xj = Mjw. Since the distribution of Rj + w · r̃�
j for Rj

$← {0, 1}tj×(λ−1) is
uniform in {0, 1}tj×(λ−1), the following distributions are identical.

Π $← ORProveλ
′(crsor, (xi)i∈[�],w) and Π $← ORSimλ(crsor, tdor, (xi)i∈[�]),
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for (crsor, tdor) $← ORTGenλ and any ((xi)i∈[�],w) such that xj = Mjw for some
j ∈ [�], completing the proof of composable zero-knowledge.

Perfect Soundness. Due to the perfect soundness of LNIZK, for a valid
proof πor = ((Ci,Di)i=0,1,R, π), we have R� = E�W + e�

�r� for some
W ∈ {0, 1}(�−1)×λ. Hence, we have

�
∑

i=1
r�

i = f1�
�R� = f1�

�(E�W + e�
�r�) = f1�

�e�
�r� = r�.

Here, recall that f1� denotes a vector in {0, 1}� consisting only of 1’s and
f1� ∈ Span(E�

� ). Since we have r /∈ Span(Eλ) in any CRS generated by
Genλ, we must have rj /∈ Span(Eλ) for some j ∈ [�]. For such j ∈ [�],

we have (Cj ||xj)
(

E�
λ

r�
j

)

= MjDj , i.e., (M⊥
j )�(Cj ||xj)

(

E�
λ

r�
j

)

= 0. Hence,

rj(x�
j M⊥

j ) = Eλ(C�
j M⊥

j ) must hold. Since rj /∈ Span(Eλ), we must have
x�

j M⊥
j = 0, which implies x ∈ Lor(Mi)i∈[�]

, completing the proof of perfect sound-
ness. Notice that this part of arguments is information-theoretical and thus the
equations are not necessarily computable in AC0.

Putting all the above together, Theorem 4 immediately follows. 	


Remark on the CRS. When instantiating LNIZK in ORNIZK with our NIZK
given in Sect. 3, both crs and r in crsor are uniformly distributed conditioned on
the parities being 1. Hence, we can reduce the length of crsor by merging crs and
r in crsor as a single vector in Span(Eλ).

5 NIZK for Circuit SAT

In this section, we propose a fine-grained NIZK for AC0 circuit SAT running in
AC0 and secure against adversaries in AC0.

Before giving our construction, we prove the following theorem, which is
necessary to show that our NIZK can be executed in AC0.

Theorem 5. There exists a family of circuits {ZeroFλ}λ∈N ∈ AC0 (respectively,
{OneFλ}λ∈N ∈ AC0) such that ZeroFλ (respectively, OneFλ) on input a bit-string
(b1, . . . , bn) (for some polynomial n = n(λ)) outputs the index i∗ of the lexico-
graphically first 0-bit (respectively, 1-bit) of (bi)i∈[n].

Proof. We first define ZeroFλ as in Fig. 7.
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Fig. 7. Definition of ZeroFλ. By i ∈ {0, 1}� we denote the bit-string representing the
index i, where we assume that the bit-representation of n has � bits. By yi,j we denote
the j-th bit of yi.

Complexity. The first step can be done by running the NOT and AND gates
in parallel with depth 2. The second step can be done by running the NOT, OR,
and AND gates in parallel with depth 3. The third step can be done in parallel
by running the OR gates with depth 1. Hence, ZeroFλ can be performed in AC0

with constant depth 6 by using unbounded fan-in AND, OR, and NOT gates.

Correctness. We now show that ZeroFλ correctly finds the index of the lexico-
graphically first 0-bit of its input. Via the first step, we can obtain a sequence
of strings (xi)i∈[n] such that xi = i if bi = 0 and xi = 0 otherwise. This step is
to pick up indices corresponding to 0-bits.

The second step is to cancel all the indices larger than i∗, where i∗ is the
index of the first 0-bit in (b1, . . . , bn). Specifically, we use the OR gate to compute
yi such that yi = xi if all x1, . . . ,xi−1 are 0�, and yi = 0� otherwise.

After the second step, we have obtained (yi)i∈[n] such that yi∗ = i∗ and
yi = 0 for all i �= i∗, where i∗ is the index of the first 0-bit in (b1, . . . , bn). Then
we can conclude that the final step outputs each bit of yi∗ = i∗ correctly by
using the OR gate.

Construction of OneFλ. One can see that by generating xi as xi = i ·bi instead
of xi = i · (1 − bi), we immediately obtain a circuit OneFλ running in AC0 and
outputting the first 1-bit of a bit string.

Putting all the above together, Theorem 5 immediately follows. 	


An Example for ZeroFλ. For ease of understanding, we now give an exam-
ple of the running procedure of ZeroFλ. Assuming that the string is 10100. In
the first step, the circuit outputs 000 − 010 − 000 − 100 − 101 by using the
NOT and AND gates. In the second step, for each block, the circuit checks
wether all its left bits are 0 by using the NOT and OR gates. We can see
that the check only works for the block 010. Hence, the circuit now out-
puts 000 − 010 − 000 − 000 − 000. In the third step, the circuit outputs
(OR(0, 0, 0, 0, 0),OR(0, 1, 0, 0, 0),OR(0, 0, 0, 0, 0)) = 010 = 2, which is exactly
the index of the first bi = 0.

Construction of Our NIZK. We now define the following languages

Lλ = {x : ∃w ∈ {0, 1}λ−1, s.t. x = Eλw}
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and
Lorλ = {(xi)i∈[�] :∃w ∈ {0, 1}2λ s.t.

∨

i∈[�]

xi = M1w

or ∃w ∈ {0, 1}(�+1)·λ s.t. x(�+1) = M2w}
where

M1 =
(

Eλ 0
0 Eλ

)

∈ {0, 1}2λ×2(λ−1)

and

M2 =

⎛

⎜

⎜

⎜

⎜

⎝

Eλ 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 Eλ

⎞

⎟

⎟

⎟

⎟

⎠

∈ {0, 1}(�+1)·λ×(�+1)·(λ−1),

i.e., M1 and M2 contain Eλ’s in the main diagonal and 0 in the other positions.
One can see that {Lλ}λ∈N and {Lorλ }λ∈N are supported by our NIZK for linear
languages in Sect. 3 and our OR-proof given in Sect. 4.2 respectively.

Let {LAC0

λ }λ∈N be any family of languages such that for all x ∈ LAC0

λ , we can
run RAC0

λ (x, ·) in AC0, where RAC0

λ (x, ·) is the associated relation.4 Without loss
of generality, we assume that all the AND and OR gates have fan-in of some
polynomial � = �(λ). Let LNIZK = {Genλ,Proveλ,Verλ}λ∈N and ORNIZK =
{ORGenλ,ORProveλ,ORVerλ}λ∈N be NIZKs with simulators {TGenλ,Simλ}λ∈N

and {ORTGenλ,ORSimλ}λ∈N for {Lλ}λ∈N and {Lorλ }λ∈N respectively. We give our
NIZK for {LAC0

λ }λ∈N and its simulator in Figs. 8 and 9 respectively.

Theorem 6. If LNIZK and ORNIZK are NC0-NIZKs with perfect soundness
and AC0-composable zero-knowledge, then ACNIZK is an AC0-NIZK with per-
fect soundness and AC0-composable zero-knowledge.

Proof. Complexity. First, we note that the Hamming weight of each row vector
in Eλ, M1, and M2 is constant. Thus, the multiplication of matrices involved
in Figs. 8 and 9 and running NIZK and ORNIZK and their simulators can be
performed in NC0. Also, addition of a constant number of matrices can be
performed in NC0, and extending the witness to contain the bits of all wires
can be performed in AC0. Moreover, finding the lexicographically first j ∈ [�]
such that wij = 0 (respectively wij = 1) for each AND (respectively, OR) gate
can also be performed in AC0 according to Theorem 5. As a result, we have
{ACGenλ,ACProveλ,ACVerλ,ACTGenλ,ACSimλ}λ∈N ∈ AC0. Notice that after
extending the witness, the prover can generate commitments and run ORNIZK
for each wire and gate in parallel and the verifier can check the proofs in parallel.

4 We can assume that each RAC0
λ (x, ·) consists only of AND and OR gates, since by

De Morgan Rules, we can move all NOT gates to just the inputs and the resulting
circuit is still in AC0. However, this may cause loss on efficiency.
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Fig. 8. Definition of ACNIZK = {ACGenλ,ACProveλ,ACVerλ}λ∈N. Recall that for any
vectors (xi)i∈[�], by x1 ◦ · · · ◦ x� we denote (x�

1 , · · · ,x�
� )�.

Completeness. Let (wi1,wi2) be an input/output pair of a NOT gate and
(cmib = Eλrib + twib)b∈[2] be the corresponding commitments, we must have

cmi1 + cmi2 + t = Eλ(ri1 + ri2) + t(wi1 + wi2 + 1) = Eλ(ri1 + ri2).

Let ((wij)j∈[�],wi(�+1)) be a valid input/output pair of an AND or OR gate
in the statement circuit and (cmij = Eλrij + twij)j∈[�+1] be the corresponding
commitments.

If the gate is an AND gate, we must have wij = 0 ∧ wi(�+1) = 0 for some
j ∈ [�] or wij = 1 for all j ∈ [� + 1], which implies

cmij ◦ cmi(�+1) = M1(rij ◦ r�+1)
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Fig. 9. Definition of the simulator {ACTGenλ,ACSimλ}λ∈N of ACNIZK.

for some j ∈ [�] or

(cmi1 − t) ◦ · · · ◦ (cmi(�+1) − t) = M2(r1 ◦ · · · ◦ r�+1).

If the gate is an OR gate, we must have wij = 1 ∧wi(�+1) = 1 for some i ∈ [�] or
wij = 0 for all j ∈ [� + 1], which implies

(cmij − t) ◦ (cmi(�+1) − t) = M1(ri ◦ r�+1)

for some i ∈ [�] or

cmi1 ◦ · · · ◦ cmi(�+1) = M2(r1 ◦ · · · ◦ r�+1).

Then the completeness of ACNIZK follows from that of LNIZK and that of
ORNIZK.
AC0-Composable Zero-Knowledge. The indistinguishability of CRSs gen-
erated by ACGenλ and ACTGenλ follows immediately from Lemma 1 and the
composable zero-knowledge of LNIZK and ORNIZK.

Next we define a modified prover ACProve′
λ, which is exactly the same as

ACProveλ except that for each NOT gate, πi is generated as

πi
$← Simλ(crs, td, xi),

and for each AND or OR gate, πi is generated as

πi
$← ORSimλ(crsor, tdor, (xij)j∈[�+1]).

The following distributions are identical due to the composable zero-knowledge
of LNIZK and ORNIZK.

Π $← ACProveλ(CRS, x,w) and Π $← ACProve′
λ(CRS, x,w),
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for (CRS,TD) $← TGenλ and any (x,w) such that RAC0

λ (x,w) = 1.
Moreover, since the distribution of cmi = Eλri is identical to that of cmi =

Eλri + twi for ri
$← {0, 1}λ when t ∈ Span(Eλ), the distributions of

Π $← ACProve′
λ(CRS, x,w) and Π $← ACSimλ(CRS,TD, x),

where (CRS,TD) $← ACTGenλ and RAC0

λ (x,w) = 1, are identical as well, complet-
ing the proof of composable zero-knowledge.

Perfect Soundness. Due to the perfect soundness of LNIZK and ORNIZK, for
each NOT gate with input/output commitments (cmi0, cmi1), we have cmi0 +
cmi1 = t. For each AND gate with input commitments (cmij)i∈[�] and an output
commitment cmi(�+1) in a valid proof, we have

xij = (cmij ◦ cmi(�+1)) ∈ Span(M1)

for some j ∈ [�] or

xk = (cmi1 − t) ◦ · · · ◦ (cmi(�+1) − t) ∈ Span(M2).

Similarly, for each OR gate, we have

xij = (cmij − t ◦ cmi(�+1) − t) ∈ Span(M1)

for some j ∈ [�] or

xk = cmi1 ◦ · · · ◦ cmi(�+1) ∈ Span(M2).

Recall that f1λ denotes a vector in {0, 1}λ consisting only of 1’s and f1λ ∈
Ker(E�

λ ). For t = Eλr̃ + eλ
λ where r̃ ∈ {0, 1}λ−1, we have f1λ

�t = 1. For a NOT
gate, we must have

f1λ
�cmi1 + f1λ

�cmi2 + 1 = 0.

For an AND gate, we must have

f1λ
�cmij = 0 and f1λ

�cmi(�+1) = 0 for some j ∈ [�]

or
f1λ

�cmij = 1 for all j ∈ [� + 1].

For an OR gate, we must have

f1λ
�cmij = 1 and f1λ

�cmi(�+1) = 1 for some j ∈ [�]

or
f1λ

�cmij = 0 for all j ∈ [� + 1].

For the output wire, we have

f1λ
�cmout = f1λ

�t = 1.
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As a result, we can extract valid values of all the wires with the final output being
1, completing the proof of perfect soundness. Notice that the extraction proce-
dure is not necessarily in AC0 since the arguments in this part are information-
theoretical.

Putting all the above together, Theorem 6 immediately follows. 	


Remark. If we only treat statement circuits in NC0, we can further reduce the
proof size by instantiating the underlying OR-proof with our warm-up construc-
tion for one disjunction given in Sect. 4.1.

Similar to previous fine-grained NIZKs [1,19], our construction also works
in the “inefficient prover setting”. Namely, if we allow the prover to run in
polynomial-time, we immediately have an unconditionally secure NIZK for all
NP against AC0 adversaries.

Extension to NIZK in the URS model. As remarked in Sect. 4.2, the CRS
of the underlying OR-proof can be generated as a single vector uniformly dis-
tributed conditioned on the parity being 1. For ACNIZK, we can further merge
crsor and t in the same way. Moreover, by running ACNIZK in parallel for the same
statement and generating each CRS as a uniformly random string, we immedi-
ately achieve a NIZK with perfect soundness and composable zero-knowledge in
the URS model. The reason is that a random string is a binding and a hiding
CRS with “half-half” probability. Composable zero-knowledge of the resulting
scheme follows immediately from Lemma 1, and statistical soundness follows
from that at least one string is a binding CRS with overwhelming probability.

6 Non-interactive Zap

In this section, we show that our NIZKs have verifiable correlated key generation
and exploit the framework in [10] to convert our NIZKs into non-interactive zaps.

6.1 Verifiable Correlated Key Generation

The definition of verifiable correlated key generation is as follows.

Definition 6 (Verifiable correlated key generation). A C1-NIZK NIZK =
{Genλ,Proveλ,Verλ}λ∈N with a simulator {TGenλ,Simλ}λ∈N has verifiable corre-
lated key generation if there exists a function family {Convertλ,Checkλ}λ∈N ∈ C1
such that

1. the distribution of Convertλ(crs0) is identical to that of crs1, where crs0 $←
Genλ and (crs1, td1) $← TGenλ,

2. Checkλ(crs0,Convertλ(crs0)) = 1 for all crs0 ∈ Genλ, and
3. for any crs0 and crs1 (not necessarily in the support of Genλ or TGenλ) such

that Checkλ(crs0, crs1) = 1, we have crs0 ∈ Genλ or crs1 ∈ Genλ.

Lemma 2. LNIZK in Sect. 3 (see Fig. 1) has verifiable correlated key generation.



Unconditionally Secure NIZK in the Fine-Grained Setting 461

Fig. 10. Definition of {Convertλ,Checkλ}λ∈N.

Proof. For LNIZK where a binding (respectively, hiding) CRS consists only of a
vector uniformly sampled conditioned on the parity being 1 (respectively, 0), we
define {Checkλ}λ∈N and {Convertλ}λ∈N as in Fig. 10.

First we note that {Convertλ}λ∈N ∈ NC0 and {Checkλ}λ∈N ∈ NC0 since they
only involve addition of two vectors.

For r0 $← Genλ and r1 $← TGenλ, the distributions of r0 + eλ
λ and r1 are

identical. Hence, the first condition in Definition 6 is satisfied. The second con-
dition is satisfied since for r1 = r0 + eλ

λ, we have r0 + r1 = r0 + (r0 + eλ
λ) = eλ

λ.
For r0 and r1 such that eλ

λ = r0 + r1, we must have PARITYλ(r0) = 1 or
PARITYλ(r1) = 1, i.e., r0 ∈ Genλ or r1 ∈ Genλ. Hence, the third condition is
also satisfied, completing the proof of Lemma 2. 	


As remarked in Sects. 4.2 and 5, the CRSs of our OR-proof and our NIZK
for circuit SAT can be generated in exactly the same way as those of LNIZK.
Hence, we have the following corollary.

Corollary 1. ORNIZK in Sect. 4.2 (see Fig. 5) and ACNIZK in Sect. 5 (see
Fig. 8) have verifiable correlated key generation.

6.2 Construction of Non-interactive Zap

We now show how to convert our NIZKs with verifiable correlated key generation
to non-interactive zaps by using the technique in [10].

Let {LAC0

λ }λ∈N be any family of languages such that for all λ ∈ N and
all x ∈ LAC0

λ , we can run RAC0

λ (x, ·) in AC0, where RAC0

λ is the associated
relation. Let NIZK = {Genλ,Proveλ,Verλ}λ∈N be a NIZK with a simulator
{TGenλ,Simλ}λ∈N and verifiable correlated key converting and checking algo-
rithms {Checkλ,Convertλ}λ∈N for {LAC0

λ }λ∈N. We give a non-interactive zap
ZAP = {ZProveλ,ZVerλ}λ∈N for {LAC0

λ }λ∈N in Fig. 11.

Fig. 11. Definition of ZAP = {ZProveλ,ZVerλ}λ∈N for {LAC0
λ }λ∈N.
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Theorem 7. If NIZK is an AC0-NIZK with AC0-composable zero-knowledge,
perfect soundness, and verifiable correlated key generation, then ZAP is an AC0-
non-interactive zap with perfect soundness and AC0-witness indistinguishability.

We refer the reader to Appendix A for the security proof.
By instantiating the underlying NIZK with our NIZK in Sect. 5, we obtain an

AC0-non-interactive zap for AC0-circuit SAT with AC0-witness indistinguishabil-
ity.

Acknowledgement. We are grateful to the anonymous reviewers of ASIACRYPT
2022 for the helpful feedback.

Appendix

A Proof of Theorem 7

We prove Theorem 7 in this section.

Proof. Complexity. our ZAP runs in AC0, since the underlying NIZK runs in
AC0.

Completeness. The completeness of ZAP follows immediately from that of
NIZK and the fact that Checkλ(crs0,Convertλ(crs0)) = 1 for all crs0 ∈ Genλ (see
Definition 6).

Perfect Soundness. Due to the verifiable correlated key generation of NIZK,
we have crs0 ∈ Genλ or crs1 ∈ Genλ for a valid proof π = (crs0, crs1, π0, π1).
Hence, the perfect soundness of ZAP follows immediately from that of NIZK.

AC0-Witness Indistinguishability. We prove the witness indistinguishability
of ZAP by a sequence of games as in Fig. 12.

Fig. 12. Modifications on ZProveλ in the intermediate games.
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Let A = {aλ}λ∈N ∈ AC0 be an adversary against the witness indistinguisha-
bility of ZAP. It receives a proof π generated by the (modified) prover in each
game as defined in Fig. 12. Below by εi we denote the probability that aλ outputs
1 in Game Gi for i = 0, · · · , 4.

Games G0 and G1. G0 is the real game where aλ receives π = (crs0, crs1,
π0, π1) $← ZProveλ(x,w0). G1 is the same as G0 except that π0 is generated
as π0

$← Proveλ(crs0, x,w1) instead of π0
$← Proveλ(crs0, x,w0).

Lemma 3. ε0 = ε1.

Proof. Lemma 3 follows immediately from the composable zero knowledge of
NIZK. 	


Game G2. This is the same as G1 except that crs0 is generated as crs0 $← Genλ

instead of (crs0, td0) $← TGenλ.

Lemma 4. There exists an adversary B1 = {b1λ}λ∈N ∈ AC0 such that b1λ breaks
the composable zero-knowledge of NIZK with probability |ε2 − ε1|.
Proof. We build the distinguisher b1λ as follows.

b1λ runs as in G1 except that now it takes crs0 as input from the composable
zero-knowledge game of NIZK. crs0 can be generated as (crs0, td0) $← TGenλ or
crs0 $← Genλ. When aλ outputs β ∈ {0, 1}, b1λ outputs β as well.

If crs0 is generated as (crs0, td0) $← TGenλ (respectively, crs0 $← Genλ), the
view of aλ is the same as its view in G1 (respectively, G2). Hence, the probability
that b1λ breaks the fine-grained matrix linear assumption is |ε2 − ε1|.

Moreover, since all operations in b1λ are performed in AC0, we have B1 =
{b1λ}λ∈N ∈ AC0, completing this part of proof. 	


Game G3. G3 is the same as G2 except that π1 is generated as π1
$← Proveλ(crs1,

x,w1) instead of π1
$← Proveλ(crs1, x,w0).

Lemma 5. ε3 = ε2.

Proof. By the verifiable correlated key generation, the distribution of
Convertλ(crs0) is the same as crs1 for crs0 $← Genλ and (crs1, td1) $← TGenλ.
Then Lemma 5 follows from the composable zero-knowledge of NIZK. 	


Game G4. G4 is the same as G3 except that crs0 is generated as (crs0, td0) $←
TGenλ instead of crs0 $← Genλ.

Lemma 6. There exists an adversary B2 = {b2λ}λ∈N ∈ AC0 such that b2λ breaks
the composable zero-knowledge of NIZK with probability |ε4 − ε3|.
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Proof. We build the distinguisher b2λ as follows.
b2λ runs as in G3 except that crs0 is taken as input from its composable

zero-knowledge challenger, namely, crs0 can be generated as crs0 $← Genλ or
(crs0, td0) $← TGenλ. When aλ outputs β ∈ {0, 1}, b2λ outputs β as well.

If crs0 is generated as crs0 $← Genλ (respectively, (crs0, td0) $← TGenλ), the
view of aλ is the same as its view in G3 (respectively, G4). Hence, the probability
that b2λ breaks the composable zero-knowledge of NIZK is |ε4 − ε3|.

Moreover, since all operations in b2λ are performed in AC0, we have B2 =
{b2λ}λ∈N ∈ AC0, and this completes the proof. 	


Putting all the above together, Theorem 7 immediately follows. 	

Remark on Non-interactive Zap for NP. Similar to the work of Wang and
Pan [19], our transformation from NIZK to the non-interactive zap also works
for polynomial-time provers, namely, we have an unconditionally secure non-
interactive zap for all NP against AC0 adversaries if we allow polynomial-time
provers. In our transformation, generating a zap proof (see Fig. 11) involves
two proofs of the underlying NIZK. In this case, we have to show that the above
reductions run in AC0, i.e., we need to ensure that they can generate proofs of the
underlying NIZK in AC0. This is possible for our NIZK in Fig. 8. More precisely,
to generate a NIZK proof for an NP statement, AC0-reductions can perform all
the steps except for extending the witness (since the commitments and OR-
proofs can be generated in parallel). Extending the witness is not necessary,
since the extended witness can be hard-wired in an AC0-reduction beforehand,
due to the fact that any statement x and its two witnesses w0 and w1 are a-prior
fixed in the hybrid games.
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Abstract. Non-interactive zero knowledge (NIZK) enables proving the
validity of NP statement without leaking anything else. We study multi-
instance NIZKs in the common reference string (CRS) model, against an
adversary that adaptively corrupts parties and chooses statements to be
proven. We construct the first such triply adaptive NIZK that provides
full adaptive soundness, as well as adaptive zero-knowledge, assuming
either LWE or else LPN and DDH (previous constructions rely on non-
falsifiable knowledge assumptions). In addition, our NIZKs are univer-
sally composable (UC). Along the way, we:

– Formulate an ideal functionality, FNICOM, which essentially captures
non-interactive commitments, and show that it is realizable by exist-
ing protocols using standard assumptions.

– Define and realize, under standard assumptions, Sigma protocols
which satisfy triply adaptive security with access to FNICOM.

– Use the Fiat-Shamir transform, instantiated with correlation
intractable hash functions, to compile a Sigma protocol with triply
adaptive security with access to FNICOM into a triply adaptive UC-
NIZK argument in the CRS model with access to FNICOM, assuming
LWE (or else LPN and DDH).

– Use the UC theorem to obtain UC-NIZK in the CRS model.

1 Introduction

Non-Interactive zero knowledge (NIZK) [BFM90,BSMP91] is a magical primi-
tive: with the help of a trusted reference string, it allows parties to publicly assert
knowledge of sensitive data and prove statements regarding the data while keep-
ing the data itself secret. Proofs are written once and for all, to be inspected
and verified by anyone at any time.
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However, harnessing this magic in a concrete and realizable set of security
requirements has turned out to be non trivial. A first thrust provides basic formu-
lations of soundness and zero knowledge in the presence of a reference string, and
constructions that satisfy them under standard assumptions [BSMP91,FLS99,
GR13]. Indeed, even these basic requirements turn out to be non-trivial to for-
mulate and obtain, especially in the case of multiple proofs that use the same ref-
erence string and where the inputs and witnesses are chosen adversarially in an
adaptive way.

A second thrust addresses malleability attacks [SCO+01,DDN91], and more
generally universally composable (UC) security [CLOS02] in a multi-party set-
ting. In particular, UC NIZK has been used as a mainstay for incorporating NIZK
proofs in cryptographic protocols and systems - actively secure MPC [GMW87],
CCA secure encryption [NY90,DDN91], signatures [BMW03,BKM06] and cryp-
tocurrencies [BCG+14].

A third thrust is to construct NIZK protocols that are secure in a multi-party
setting where the adversary can corrupt parties adaptively [CLOS02,CSW20a,
AMPS21,CGPS21] as the computation proceeds. Here the traditional definition
(which requires that the attacker does not gain any advantage towards breaking
the security of the overall system beyond the ideal case where the NIZK is
replaced by a trusted party) is extended to the case where the attacker obtains
the hidden internal state of some provers after the proof was sent. Indeed, this
extended guarantee is essential whenever NIZK is used as a primitive within
larger protocols that purport to obtain security against adaptive corruptions1.

The first protocol that provides security against adaptive corruptions is that
of Groth, Ostrovsky, and Sahai [GOS06,GOS12] (GOS). That protocol is also
UC secure, even in a multi-proof, multi-party setting. However it only guarantees
culpable soundness, namely that the sequence of instances proven to be in a
language L during an execution of the protocol is indistinguishable (given the
reference string) from a sequence of instances that are actually in L. The works of
[KNYY19,KNYY20] have similar characteristics: they provide security against
adaptive corruptions, but only culpable adaptive soundness.

Abe and Fehr [AF07] show how to prove full adaptive soundness of a vari-
ant of the GOS protocol, under a knowledge-of-exponent (KOE) assumption2.
However, their analysis is incompatible with UC security [KZM+15], since KOE-
style assumptions require existence of a knowledge extractor that has full access
to, and whose code is larger than the code of the environment, In contrast, in
the UC framework a single extractor/simulator would have to handle arbitrary
poly-time environments. The recent work of [KKK21] investigated composable
security for knowledge assumptions in the generic group model. They rule out
general composition but demonstrate that it is possible under restricted settings.

1 In cases where the prover is able to immediately erase all records of its sensitive state
- specifically the witness and randomness used in generating the proof - adaptive
security is easy to obtain. However such immediate and complete erasure of local
state is not always practical.

2 [AF07] provides adaptive soundness and adaptive zero knowledge and claims security
against adaptive corruptions in Remark 11 of their paper.
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We refer to their paper for more details. Proving composable security of [AF07]
in their model is still an open question.

We are thus left with the following natural question: Can we have triply
adaptive NIZK protocols, namely full-fledged UC NIZK protocols in the multi-
party, multi-proof setting, in the case of adaptive corruptions without erasures,
and with full adaptive soundness? And if so, under what assumptions?

1.1 Our Contributions

We develop a general methodology for obtaining triply adaptive NIZKs, namely
UC NIZKs with full adaptive soundness, withstanding adaptive corruptions with
no erasures. Using this methodology, we obtain triply adaptive NIZK protocols
from statically secure Sigma protocols. The NIZK protocols reuse a single crs
for multiple NIZK instances between different pairs of parties. Moreover, one
of the NIZK protocols also avoids expensive Karp reductions. Upon concrete
instantiation based on either Learning With Errors (LWE), or Decisional Diffie
Hellman (DDH) plus Learning Parity with Noise (LPN) assumption, we obtain
the following result:

Theorem 1. (Informal) Assuming either 1) LWE assumption holds or 2) both
DDH and LPN assumptions hold, there exists a multi-theorem NIZK protocol
that UC-securely implements the NIZK functionality (Fig. 2) against adaptive
corruptions in the crs model for multiple instances. Furthermore, it is adaptively
sound and adaptively zero knowledge.

As an independent result we also obtain a compiler that (assuming either
LWE or DDH) transforms a given NIZK protocol, where the length of the crs can
depend on the NP relation to be asserted, to a NIZK protocol where the length
of the crs depends only on the security parameter. Furthermore, we do so while
preserving triple adaptive security. Previous such compilers [GGI+15,CsW19]
were known only from LWE:

Theorem 2. (Informal) Assuming either 1) LWE assumption holds or 2) both
DDH and LPN assumptions hold, there exists a multi-theorem NIZK protocol
that UC-securely implements the NIZK functionality (Fig. 2) against adaptive
corruptions with short crs (i.e. |crs| = poly(κ) and κ is the computational secu-
rity parameter) for multiple instances. Furthermore, it is adaptively sound and
adaptively zero knowledge.

Furthermore, by plugging our NIZK protocol in the compiler of [CsW19]
we can obtain a triply adaptive NIZK protocol from LWE, where the reference
string size depends only on the security parameter and the proof size depends
on the witness size and the security parameter.

1.2 Our Techniques

Our approach follows the general paradigm of applying the Fiat-Shamir trans-
form (instantiated via correlation in tractable hash functions) to Sigma proto-
cols, as developed in [CGH98,HL18,CCH+19,PS19,BKM20,HLR21]. However,
to preserve triple adaptivity the transform should be applied with some care.
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Starting Point. Let us briefly recall the definition of a Sigma protocol: A Sigma
protocol is a 3 round protocol for proving validity of an NP statement x ∈ L
(where L is the language) using the knowledge of an accepting witness w. The
prover sends the first message a, the verifier samples a random challenge c, and
based on the challenge c ∈ C the prover computes the response z. The verifier
accepts an honest proof when x ∈ L. Soundness ensures that the verifier rejects
cheating proofs with 1

|C| probability. Honest verifier zero knowledge (HVZK)
ensures that the simulator constructs an honest proof given a random challenge
c and the simulated proof is indistinguishable from an honest proof. However, the
usual Sigma protocols [FLS99,Blu86] are only secure against static corruption
of prover, i.e. upon post-execution corruption of prover the HVZK simulator
obtains witness w and is unable to provide randomness such that it is consistent
with the proof (a, c, z) constructed by the HVZK simulator.

New UC-Commitment Functionality FNICOM. To solve the above issue in a mod-
ular fashion, we first introduce a new non-interactive UC commitment function-
ality, FNICOM, that enables modular analyzing of NIZK protocols that use com-
mitments as an underlying primitive. Specifically, FNICOM returns a commitment
string and a decommitment to the committer as an output of the commit phase,
where the committer commits to a message. The open phase allows non-interactive
verification of the commitment, decommitment and message tuple by a verifier.
Moreover, the functionality is provided with an explicit simulation algorithm SC

which extracts committed messages from maliciously generated commitments
and permits equivocation of simulated commitments. Looking ahead, the CI-
hash function would be equipped with the SC algorithm to run the bad challenge
function and yet we would argue security of the NIZK protocol in the FNICOM

model. Hence, FNICOM provides a cleaner abstraction of non-interactive UC com-
mitments. The formal description of the FNICOM functionality can be found in
Fig. 1. We also show that the [CF01] protocol satisfies FNICOM.

Strengthening Sigma Protocols in FNICOM Model. Now, we define the notion of an
adaptively secure Sigma protocol in the FNICOM model as a stepping stone towards
security against adaptive corruptions. These are Sigma protocols which provide
security against adaptive corruption of prover in the FNICOM model. To attain
constructions of such Sigma protocols, we replace the underlying commitment
scheme in the commit-and-open protocols of [Blu86,FLS99,HV16] with FNICOM.
Then we prove that these Sigma protocols are adaptively secure in the FNICOM

model, while preserving special soundness. Furthermore, these protocols satisfies
full adaptive soundness and provides adaptive ZK in the FNICOM model. If FNICOM

is concretely instantiated using an adaptively secure non-interactive commitment
in non-programmable crs model3 then the protocol also preserves full adaptive
soundness and adaptive ZK.

Removing Interaction. It is now tempting to apply the Fiat-Shamir (FS)
transform [FS87] using correlation intractable (CI) hash functions [CGH98,
3 The crs distribution in the real world is statistically close to the crs distribution in

the ideal world.
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HL18,CCH+19,PS19,BKM20,HLR21], and conclude that the resulting pro-
tocol is a NIZK. However, it is not clear how the transform would actually
work: the bad challenge function for the CI hash function cannot be defined
given blackbox access to a and the challenge space can be exponentially large,
for example consider Schnorr’s protocol [Sch90]. The current CI-based NIZKs
[CGH98,HL18,CCH+19,PS19] consider specific Sigma protocols to construct
NIZKs. We take a different route to solve this problem by relying on special
soundness property. Special soundness property of a Sigma protocol ensures that
given two accepting transcripts (a, c0, z0) and (a, c1, z1) for different challenges
c0 �= c1 there exists an extractor which extracts a valid witness from the tran-
scripts. If the statement x /∈ L is not in the language then the prover cannot
construct two such accepting transcripts for the same a.

We generalize the framework of [CD00] to construct our compiler. In our
compiler, the prover computes a, samples two challenges c0 and c1, computes
responses z0 and z1 and commits to (c0, z0) and (c1, z1) in FNICOM model. This
step is repeated for τ = O(κ) times, where κ is the security parameter. Let
Y denote the commitments to (c0, c1, z0, z1) for the τ iterations. The CI-hash
function is defined in the statistical mode equipped with the extraction algorithm
SC for FNICOM. The hash function is CI for the bad challenge function - for each
iteration (a, c0, c1, z0, z1) it outputs 0 if (a, c0, z0) is accepting. The prover invokes
the CI hash function on (a,Y) to obtain a challenge bit e for each iteration.
For each iteration, the prover computes the response as the decommitment to
(c0, c1, ze). Special soundness of the Sigma protocol ensures that a malicious
prover is unable to compute two such valid transcripts (a, c0, z0) and (a, c1, z1)
for a false statement x /∈ L.

CI-Based NIZK Transformations for Arguments. Now we would like to apply
the analysis of [CCH+19] to argue soundness of the NIZK protocol, which says
that if the malicious prover is able to construct an accepting proof for x /∈ L
then it breaks correlation intractability. However, now we are faced with another
barrier: The [CCH+19] analysis for CI crucially needs the underlying Sigma
protocol to be statistically sound. In contrast, our Sigma protocols are only
computationally sound since it relies on the special soundness property (which
can be computational) of the Sigma protocol and the computational binding
property of the commitment scheme. Furthermore, this is inherent: Statistically
sound ZK protocols cannot possibly be secure against adaptive corruptions. In
particular, this means that we cannot “switch the crs in the hybrids to make the
sigma protocol statistically sound”: As soon as we do so, the protocol (in that
hybrid) stops being secure against adaptive corruptions.

We get around this barrier4 as follows: with each commitment made dur-
ing the interaction we can associate an event B, determined at the time of

4 The recent work of [CJJ21] also applied the Fiat-Shamir paradigm on an interactive
protocol which is not statistically sound using CI hash functions. However, their
protocol is not adaptively sound. Meanwhile, the plain-model sigma protocol that
[CCH+19] start from is statistically sound.).
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commitment, such that: (a) event B can be shown to occur only with negligi-
ble probability, and (b) conditioned on event B not occurring, the commitment
is statistically binding. Event B is the event where the adversary successfully
evades the extraction algorithm SC of FNICOM and yet the corresponding decom-
mitment is accepted. Given that event B does not occur, we then associate an
event D with each of the τ adaptively secure Sigma protocol executions, such
that: (a) event D can be shown to occur only with negligible probability, and (b)
conditioned on event D not occurring, the Sigma protocol is statistically sound.
The event D is the event where the adversary breaks special soundness property
of the Sigma protocol. The [CCH+19] analysis can now be resurrected, condi-
tioned on event B not occurring for any of the commitments made, and event
D not occurring for the Sigma protocols. Initializing the hash function in the
statistical mode ensures that soundness of the protocol is reduced to breaking
statistical correlation intractability of the hash function, provided event B and
event D does not occur.

Adaptive soundness of our protocol follows in a straightforward way from the
fact that the entire proof is performed without changing the distribution of the
crs in the FNICOM model. (Indeed, this important feature allows us to avoid the
main obstacle that prevents the [GOS12] protocol from being adaptively sound.)
Adaptive zero knowledge follows from the adaptive security of the Sigma protocol
in the FNICOM model. If FNICOM is concretely instantiated using an adaptively
secure non-interactive commitment in non-programmable crs model5 then the
protocol also preserves full adaptive soundness and adaptive ZK.

Instantiations of Adaptively Secure Sigma Protocols in FNICOM Model. We
demonstrate that a wide variety of Sigma protocols satisfy (in FNICOM model)
adaptive security with special soundness and adaptive soundness - Schnorr’s
protocol, Sigma protocol of [FLS99] (FLS), Blum’s Hamiltonicity protocol and
garbled circuit (GC) based protocol of [HV16]. Furthermore, the GC based pro-
tocol avoids expensive Karp reduction.

Instantiating the CI-Hash and FNICOM. The CI function can be instantiated from
LWE [PS19], or it can be replaced by a CI-Approx [BKM20] function based on
LPN+DDH. FNICOM is instantiated using the protocol of [CF01] from equivocal
commitments and CCA-2 secure public key encryption with oblivious ciphertext
sampling property in the non-programmable crs model.

Reducing crs Size. By applying techniques from GOS, we obtain a compiler which
reduces the crs size of a NIZK argument. Assuming reusable non-interactive
equivocal commitments with additive homomorphism and PKE (with oblivious
ciphertext sampleability) we compile any triply adaptive NIZK argument with
a long multi-proof crs, i.e. |crs| = poly(κ, |C|) to obtain a triply adaptive NIZK
argument with a short multi-proof common reference string scrs, where |scrs| =
poly(κ), C is the NP verification circuit and κ is the computational security
parameter. The prover commits to each wire value (of the circuit) and proves that
5 The crs distribution in the real world is statistically close to the crs distribution in

the ideal world.
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they are bit commitments using the NIZK. In addition, the prover applies some
homomorphic operation on the input wire and output wire commitments for each
gate. If the input and output wire values are consistent with the gate evaluation
then the homomorphically evaluated commitment will be a bit commitment. The
prover proves this using NIZK for every gate in the circuit. Each NIZK statement
is short and depends only on the committer’s algorithm (= poly(κ)) and not on
|C|. As a result the crs size of the NIZK can be short. The commitment can
be instantiated from DDH (Pedersen commitment or [CSW20a]) or LWE/SIS
[GVW15]. The encryption scheme can be instantiated from DDH assumption
using Elgamal encryption or LWE [GSW13] assumption.

Obtaining Multi-session UC Security. We add non-malleability to our NIZK
argument using standard techniques from GOS to obtain the multi-session UC-
secure NIZK in the short crs model. It relies on a tag-based simulation-sound
trapdoor commitment scheme and a strong one-time signature scheme. The tag-
based commitment can be instantiated from UC-commitments - DDH [CSW20a]
and LWE [CsW19]. Strong one-time signatures can be constructed from one-way
functions. This transformation also preserves triply adaptive security.

1.3 Related Work

The works of [GOS06,KNYY19,KNYY20] construct NIZKs which are secure
against adaptive corruptions but they lack adaptive soundness. The works of
[CCH+19,BKM20] construct statically secure NIZKs which attain adaptive
soundness and adaptive ZK. A concurrent work by [CPV20] compiled delayed
input Sigma protocol into a Sigma protocol which satisfies adaptive zero knowl-
edge. Upon applying the result of [CPS+16] they obtain adaptive soundness. The
Fiat-Shamir transform is applied using CI hash function to obtain NIZKs, but
they lack security against adaptive corruptions. The only work which achieves
triple adaptive security is [AF07] based on knowledge assumptions; which is
incompatible with the UC framework.

The literature consists of work [GGI+15,CsW19] that make the crs size inde-
pendent of |C| but those approaches are instantiatable only from LWE. Whereas,
our compiler can be instantiated from non-lattice based assumptions like DDH.

Paper Organization. In Sect. 2, we present the key intuitions behind our proto-
cols. We introduce some notations and important concepts used in this paper
in Sect. 3. This is followed by our triply adaptively-secure NIZK compiler in
Sect. 4. We present our compiler to reduce the crs length in Sect. 5. Finally, we
conclude with our multi-session UC-NIZK protocol in the short crs model in
Sect. 6. Throughout the paper we refer to security against adaptive corruptions
as adaptive security.
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2 Technical Overview

In this section we provide an overview of our protocols. As discussed in the Intro-
duction, a key component in our approach is to break the Fiat-Shamir trans-
formation into two steps: A first step that uses an ideal UC commitment fucn-
tionality, and a second step of instantiating this functionality with an adaptively
secure protocol. Validity of the approach would follow from the UC theorem and
the special soundness of the sigma protocol.

We first overview the new formulation of ideal UC commitments, FNICOM,
that enables our two-step approach, and argue that known protocols, that UC
realize the traditional ([CF01]) formulation of ideal commitment, realize FNICOM

as well. Next, we overview our notion of fully adaptive Sigma protocols that use
FNICOM, followed by the first step of the Fiat-Shamir transform. We demonstrate
that the resulting NIZKs satisfy triply adaptive security in the FNICOM-hybrid
model, and that triple adaptivity is preserved even after replacing FNICOM with a
protocol that realizes it. Next, we show instantiations of adaptive Sigma protocol.
Finally we show how to reduce the crs size of our NIZK protocols to poly(κ) by
assuming homomorphic equivocal commitments. Till this point, all our protocols
are triply adaptive and single-prover UC-secure. Finally, we make them UC-
secure in the general, multi-prover sense by adding non-malleability.

2.1 Formalizing UC Non-interactive Commitment

Our new UC-commitment functionality FNICOM can be found in Fig. 1. The func-
tionality receives an algorithm SC algorithm from the adversary S. When an
honest committer P wants to commit to a message m for subsession ssid, the
functionality invokes SC for a commitment string π and an internal state st. π
is independent of the message m. The functionality then invokes SC with the
message m and the state st to obtain a decommitment d and an updated state st.
The functionality stores (ssid,P,m, π, d, st) and returns the commitment string π
and the decommitment d to the committer. The committer sends π as the com-
mitment to message m. An honest committer decommits to a commitment string
π′ by sending (m′, d′) to the verifier V . The verifier locally verifies the decom-
mitment by invoking FNICOM on the tuple (m′, π′, d′). The functionality returns
verified if the tuple is stored in memory corresponding to the subsession and the
same committer P. If the same commitment string π′ is stored but with dif-
ferent messages/decommitments/committers/ssid then the functionality rejects
the opening by sending verification-failed. Finally, if the commitment string has
never been stored in the memory of FNICOM then FNICOM invokes SC to extract
a valid message m′′ from the commitment string π′. If m′′ == m′ then the func-
tionality invokes SC with the opening (m′, π′, d′) to verify the decommitment.
If the decommitment correctly verifies then the functionality stores the tuple in
the memory and returns verified to V. Else, it rejects the decommitment.

Our model allows a prover to send a commitment that was not computed
by invoking the FNICOM functionality. Furthermore, access to the SC algorithm
enables extraction from a maliciously generated commitment and equivocating
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Fig. 1. Non-interactive UC-commitment functionality FNICOM

a simulated commitment. The SC(Equiv, ssid,P, π, st,m) command is used to
equivocate a commitment string π such that it opens to m. The SC(Ext, ssid,P, π)
command is used to extract a message from the commitment π. These algorithms
come in handy for simulation purposes when FNICOM is used in bigger protocols.

Implementing FNICOM. We implement FNICOM in the full version [CSW20c] using
the non-interactive commitment scheme of [CF01] based on equivocal commit-
ments and CCA-2 secure public key encryption with oblivious ciphertext sam-
pleability. The committer P commits to a bit message m as c = Com(m; r). The
commitment randomness is encrypted via a pair of encryptions. The committer
encrypts the corresponding randomness r, subsession id ssid and committer id
P using a CCA-2 secure PKE as Em = Enc(pk, (r, ssid,P); sm) with random-
ness sm. The other encryption E1−m is obliviously sampled using randomness
s1−m. The commitment consists of (c, E0, E1) and the opening information is
(m, r, s0, s1). The verifier performs the canonical verification by reconstructing
the commitment. The equivocal commitment can be instantiated from Pedersen
Commitment and the obliviously sampleable encryption scheme can be instan-
tiated from Cramer Shoup encryption [CS98], yielding a protocol from DDH.
Similarly, we can instantiate the equivocal commitment from LWE [CsW19] and
the obliviously sampleable encryption scheme from LWE [MP12].
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2.2 Adaptively Secure Sigma Protocols in the FNICOM Model

We recall the definition of a Sigma protocol and then we introduce the notion
of adaptively Sigma protocols in the FNICOM model.

Sigma Protocol. A Sigma protocol consists of a prover possessing an NP state-
ment x ∈ L (for language L) and witness w which validates the statement. The
verifier possesses the statement x. The prover constructs a first message a and
the honest verifier challenges the prover with a random challenge c ←R C from
the challenge space C. Based on the challenge, the prover computes a response z
and sends it to the verifier. Completeness ensures that an honest verifier always
accepts the proof (a, c, z). Soundness ensures that the verifier accepts a proof
corresponding to an invalid statement x′ /∈ L with probability 1

|C| . The protocol
is repeated κ times to obtain negligible (in κ) soundness error. We also require
special soundness which guarantees a witness extractor given two accepting tran-
scripts (a, c, z) and (a, c′, z′) corresponding to the same first message but differ-
ent challenges c �= c′ ∈ C. Finally, we need honest verifier zero knowledge which
allows a simulator to simulate an accepting proof given an honestly sampled
challenge c. The simulated proof should be indistinguishable from an honestly
generated proof.

Limitations of a Sigma Protocol. A Sigma protocol does not necessarily guaran-
tee security against adaptive corruptions. The adversary can choose to corrupt
the prover after obtaining the simulated proof. In such a case, the simulator
obtains the witness and needs to provide prover’s randomness such that the
simulated proof is consistent with the witness. This problem crops up especially
when the first message of the Sigma protocol [FLS99] is statistically binding and
doesn’t allow equivocation later on. To tackle this issue, we introduce the notion
of adaptively secure Sigma protocols in the ideal UC commitment functionality
(for multiple subsessions) FNICOM model. The traditional UC commitment func-
tionality of [CF01] is not compatible with non-interactive commitments since
the functionality is required to interact with the parties during Commit and
open phases. So we use our new commitment functionality FNICOM which allows
non-interactive Commit and Open phases.

Adaptively Secure Sigma Protocols. As seen above, the traditional Sigma pro-
tocols does not necessarily guarantee security against adaptive corruptions. In
the light of this, we consider Sigma protocols in the FNICOM model. The prover
sends the first message a to the verifier, the verifier sends a random challenge
c to the prover and the prover computes the response z based on c. The prover
and verifier has access to the FNICOM functionality during the protocol execution.
In addition to HVZK and special soundness properties, we also require that the
simulator is able to produce consistent randomness for a simulated proof and
a valid witness when the prover gets corrupted post-execution. Looking ahead,
the first message a will consist of commitments that are obtained by invoking
FNICOM functionality. This enables the simulator to construct an HVZK proof
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during protocol execution - where it opens few of the commitments in a which
are required for verification. The other commitments in a remain unopened dur-
ing the protocol. When the prover gets corrupted post-execution, the simulator
obtains the witness w, and it equivocates the unopened commitments in a to
produce a simulated prover’s randomness such that it is indistinguishable from
honestly sampled prover randomness (in the real world execution).

We also require special soundness property from our adaptively secure Sigma
protocol to construct a NIZK protocol. We say that the protocol satisfies spe-
cial soundness if there exists a extractor which extracts the witness given two
transcripts (a, c0, z0) and (a, c1, z1) corresponding to the same a.

2.3 Compiling to an Adaptively-Secure NIZK

Next, we implement the FNIZK functionality for a single session by using the
Fiat-Shamir transform on τ = O(κ) iterations of the adaptively secure Sigma
protocol. We instantiate the hash function in the Fiat-Shamir Transform using
a correlation intractable hash function H [PS19,CCH+19,BKM20].

Correlation Intractability. A correlation intractable hash function H has the
following property: For every efficient function f , given a hash function H ← H
from the hash family H, it is computationally hard to find an x s.t. f(x) = H(x).
Based on the first message a of a trapdoor-Sigma Protocol, the Fiat-Shamir
challenge e can be generated using the hash function as e = H(a). The prover
computes the third message z using e. Trapdoor-Sigma protocol ensures that for
every statement not in the language there can be only one bad challenge e = g(a)
s.t. (a, e, z) is an accepting transcript. By setting the function f = g as the bad
challenge function in H it is ensured that a malicious prover who constructs a
bad challenge e = H(a) can be used to break correlation intractability since
e = g(a) = f(a). This guarantees soundness of the NIZK protocol.

Protocol. We compile our adaptively secure Sigma protocol into an adaptively
secure NIZK in the FNICOM model (the FNICOM functionality is later instantiated
using an adaptively secure non-interactive commitment scheme [CF01]). The
prover computes the first message aj of the adaptively secure Sigma protocol
for the jth iteration where j ∈ [τ ]. It samples two challenges cj

0 and cj
1 from the

challenge space such that cj
0 �= cj

1. The prover computes the responses zj
0 and zj

1

corresponding to both challenges cj
0 and cj

1 respectively. The prover commits to
the challenges cj

0 and cj
1, and the responses zj

0 and zj
1. Let us denote the set of

commitments as Y j . The prover repeats the above protocol for τ iterations. Let
Y = {Y j}j∈[τ ] denote the complete set of commitments and let a = {aj}j∈[τ ]

denote the complete set of first messages. The prover computes the challenge bit-
vector e = H(k, (a,Y)) (where k is the hash key) by invoking the hash function
on the commitments Y. The hash function is initialized in the statistical mode
and the hash key contains the algorithm SC obtained from FNICOM. The hash
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function internally runs SC to extract from the commitments. The hash key k
is provided as part of the crs and it is computed as follows.

k = H.StatGen(Csk).

Csk is a poly-size circuit that takes Y as input and sk = SC is the secret
algorithm of FNICOM. Csk(a,Y) is the circuit computing the function fsk(a,Y) =
e s.t. for j ∈ [τ ], ej = 0 iff (aj , cj

0, z
j
0) is an accepting proof where Csk extracts the

challenges (cj
0, c

j
1), and the responses (zj

0, z
j
1) by running SC . Setting the hash

function in the statistical mode ensures that the hash function H is correlation
intractable for all relations of the form:

Rsk = {(a,Y, e) : e = fsk(a,Y)}

In the jth iteration, upon obtaining e as the challenge bit the prover decom-
mits to (cj

0, c
j
1, z

j
e). The NIZK proof for the jth iteration is (aj , cj

0, c
j
1, z

j
e) and

the decommitments corresponding to (cj
0, c

j
1, z

j
e). The verifier checks that - 1)

the decommitments are correct, 2) the challenges are different, i.e. cj
0 �= cj

1, 3)
the proof - (aj , cj

e, z
j
e) verifies. The verifier runs the verification protocols for

every iteration j ∈ [τ ]. The verifier outputs accept if all the τ proofs verify
correctly. Correctness of the protocol follows from the correctness of the com-
mitment scheme and correctness of the sigma protocol.

Soundness and Proof of Knowledge. The soundness and proof of knowledge
argument follows through a sequence of hybrids. The correlation intractability
does not hold in the real world since we start off with an argument and not a
proof. The proof starts off with the real world protocol in the first hybrid. In
the second hybrid the proof relies on the binding and extractability property of
the commitment scheme to ensure that the committed messages can be either
correctly extracted or the commitment fails to open correctly. In the next hybrid,
we rely on the special soundness property of the Sigma protocol to ensure that
if for any jth iteration (for j ∈ [τ ]) if the prover constructs an accepting proof
for both ej = 0 and ej = 1 then the witness extractor of the sigma protocol
correctly extracts the underlying witness. In the final hybrid, if the prover has
evaded the witness extractor and yet succeeded in creating an accepting proof
then it has predicted the challenge vector e correctly by breaking the correlation
intractability of the hash function. However, we know that there does not exist e
such that the following holds due to statistical correlation intractability and the
underlying Sigma protocol in this hybrid is a proof. This ensures that either the
witness extractor extracts an accepting witness from atleast one of the iterations
or the proof does not verify. This completes our soundness argument.

Adaptive Soundness. Adaptive Soundness follows along the same lines provided
the underlying the sigma protocol satisfies adaptive soundness. The distribution
of the crs is identical in the real and ideal world. Hence, we argue that the proof
fails to verify for a statement x /∈ L since there does not exist any valid witness.
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Security against Adaptive Corruptions and Adaptive ZK. The ZK property cru-
cially relies on the adaptive security of the Sigma protocol and security against
adaptive corruptions of the commitment scheme. The ZK simulator of the NIZK
protocol invokes the HVZK simulator the sigma protocol to obtain a simulated
proof (aj , cj , zj) corresponding to a random ZK challenge cj for the jth itera-
tion. The simulator constructs the commitments Y in the equivocal mode and
invokes the hash function to obtain the challenge string e. Upon obtaining the
challenge bits ej (for j ∈ [τ ]) the simulator opens the commitments correspond-
ing to ej to the simulated proof (aj , zj , cj). It also equivocates the commitment
for the ZK challenge corresponding to bit 1 − ej to open to a different challenge
cj ′ as part of the protocol. The proof verifies correctly due to the HVZK prop-
erty of the Sigma protocol and equivocal property of the commitment scheme.
Upon post-execution corruption of the prover, the NIZK simulator obtains the
correct witness w and it invokes the simulator of the adaptively secure Sigma
protocol with w to obtain the internal prover state. Using these information
the NIZK simulator constructs the response corresponding to challenge cj ′ for
choice bit 1 − ej . The simulator equivocates the commitments in Y (mainly the
commitment to the jth response for challenge bit 1 − ej) such that the proofs
corresponding to challenge bits 1 − ej verify for every jth proof. Indistinguisha-
bility follows from the adaptive security of the Sigma protocol and the adaptive
security of the commitment scheme. Adaptive zero-knowledge also follows along
the same lines provided the sigma protocol satisfies adaptive zero-knowledge.

2.4 Constructing Adaptively Secure Sigma Protocols with Special
Soundness

Next, we show various instantiations of our adaptively sigma protocol which also
satisfies special soundness. Plugging these protocols in a blackbox manner into
our above compiler would yield a triply adaptive NIZK protocol.

Schnorr’s [Sch90] Protocol. The classic Schnorr’s identification protocol pro-
vides HVZK and satisfies special soundness. It also provides security against
adaptive corruption. Let us recall the protocol and demonstrate that the Sigma
protocol trivially satisfies adaptive security.

In the Schnorr’s protocol the prover has a witness w ∈ Zq and statement
x ∈ G such that x = gw, where g ∈ G is a generator of the cyclic group G where
Discrete Log problem holds. The prover samples a random r ∈ Zq and sets
a = gr. Upon obtaining a random challenge c ∈ Zq from the verifier the prover

sends z = r + wc as the response. The verifier checks that gz ?= a · xc. Given
two accepting transcripts (a, c, z) and (a, c′, z′) the witness w can be extracted
as w = (z−z′)

c−c′ . On the other hand, for HVZK the simulator samples a random
c ∈ Zq and a random z ∈ Zq and computes a = gz

xc . Upon post-execution
corruption of prover, the simulator obtains w and sets r = z −wc as the internal
state. It is straightforward to see that adaptive security follows.
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Adaptive Soundness and Adaptive ZK. Adaptive soundness cannot be defined
for Schnorr’s protocol since every statement x′ ∈ G lies in the language corre-
sponding to the witness w′ ∈ Zq where x′ = gw′

. Adaptive ZK follows from the
HVZK property of the protocol.

Sigma Protocol of [FLS99]. We briefly recall the Sigma protocol of [FLS99]
(FLS) for the sake of completeness. Let RHam be the set of Hamiltonian graphs.
The prover P proves that an n-node graph G is Hamiltonian, i.e. G ∈ RHam,
given a Hamiltonian cycle σ as a witness. P samples a random n-node cycle H
and commits to the adjacency matrix of the cycle as the first message a. The
matrix contains n2 entries, and P commits to the edges as Com(1), and non-edges
as Com(0). The prover sends these commitments to the verifier V. V samples a
random challenge bit e and sends it to the prover. If c = 0, then P decommits
to the cycle H. Else, it computes a random permutation π s.t. H = π(σ) and
decommits to the non-edges in π(G) and sends π. P sends the decommitments
as its response z. Upon obtaining z, the verifier performs the following check:

– c = 0 : Verify that z contains decommitments to 1, and they form a valid
cycle, i.e. the prover must have committed to a valid n-node cycle.

– c = 1 : Verify that z contains decommitments to 0, and the decommitted
edges correspond to non-edges in π(G).

Special Soundness. There are only two possible challenges in the boolean chal-
lenge space. Given the transcripts (a, 0, z0) and (a, 1, z1) where ac and a′

c are
computed as described above, the witness extractor obtains H from z0 and π
from z1. The extractor computes the witness cycle as σ = π−1(H). This proves
special soundness property of the Sigma protocol.

Honest Verifier Zero Knowledge. The FLS protocol achieves honest verifier zero
knowledge. The ZK simulator samples a random challenge e ∈ {0, 1} and based
on that he computes (a, z) as follows.

– c = 0 : The simulator samples a random n-node cycle H and commits to
the adjacency matrix of the cycle as a. It sets z as the decommitment to the
cycle.

– c = 1 : The simulator sets all the commitments to 0 in a, i.e. commits to
a null graph. It computes a random permutation π and decommits to the
non-edges in π(G). It sets z as π and the decommitments to the non-edges in
π(G).

Let us denote a proof as γ = (a, e, z). It can be observed that an honest γ is
identically distributed to a simulated γ when e = 0. When e = 1, an honestly
γ contains a committed cycle whereas γ contains commitments to 0. The two
proofs are indistinguishable due to the hiding of the commitment scheme.
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Adaptive Security in FNICOM Model. We observe that the FLS protocol satisfies
adaptive security if the commitments in a are computed in the FNICOM model.
We consider the simulated ZK proof and adaptive corruption of prover as follows:

– c = 0 : The HVZK simulator samples a random n-node cycle H and commits
to the adjacency matrix of the cycle as a by invoking FNICOM. It sets z as the
decommitment to the cycle.
Upon post execution corruption of prover, the simulator obtains the witness
cycle σ and it computes the permutation π such that H = π(σ). The internal
state of the prover is set as a, permutation π and the internal state of the
committer returned by FNICOM (for computing the commitments in a).

– c = 1 : The HVZK simulator sets a as the commitments to 0 in the FNICOM

model, i.e. the simulator commits to a null graph. It computes a random per-
mutation π, and sets z as the random permutation π and the decommitments
to the non-edges in π(G).
Upon post execution corruption of prover, the simulator obtains the witness
cycle σ and it computes the permutation π such that H = π(σ). The simulator
equivocates the unopened commitments in a by invoking the FNICOM simula-
tor, such that the unopened commitments decommit to H. The internal state
of the prover is set to the permutation π and the commitment randomness
returned by FNICOM for all the commitments.

For the case of c == 0, it can be observed that the simulated internal state is
identical to the honest prover internal state. When c == 1, the simulated proof
consists of commitments to 0 and the simulated prover internal state consists
of equivocation randomness which was returned by FNICOM. Hence, the real and
ideal world views are identically distributed in the FNICOM model. This shows
that the FLS protocol can be plugged into our NIZK compiler to obtain a NIZK
protocol which is secure against adaptive corruptions.

Adaptive Soundness and Adaptive ZK. In FLS, the first message a of the prover
is computed based on the parameter n without the knowledge of the graph or
the witness. After obtaining c from V, the prover requires the input graph G and
the witness cycle σ to construct the response. Thus, only the last message in this
protocol depends on the input. This property is called delayed-input property.
And hence the FLS protocol trivially satisfies adaptive soundness and adaptive
ZK in the FNICOM model where the input statement can be adversarially chosen
after observing the setup string distribution. This allows our NIZK protocol to
be adaptively sound and satisfy adaptive ZK when the FLS Sigma protocol is
plugged into the triply adaptive NIZK compiler.

Blum’s Protocol for Hamiltonicity. Following the above idea, it can be
shown that the Blum’s protocol [Blu86] for hamiltonicity also satisfies adaptive
security and special soundness in the FNICOM model. The protocol itself does not
satisfy delayed input property since the first message of the prover depends on
the statement. However, the protocol does achieve adaptive soundness since a
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malicious prover would be unsuccessful in generating an accepting proof for a
statement x /∈ L in the FNICOM model.

Garbled Circuit Based Protocol of [HV16]. Next, we modify the GC based
protocol of [HV16] to obtain an adaptively secure sigma protocol with special
soundness in the FNICOM model. We recall their protocol and then discuss the
bottlenecks involved.

Protocol of [HV16]. The protocol of [HV16] constructs an adaptively secure
ZK proof from one-way functions in the plain model. Their protocol relies on
a special commitment scheme called adaptive-instance dependent commitment
(AIDCS) schemes. It depends on the statement being proven. AIDCS is statisti-
cally binding when the statement (being proven) is not in the language. AIDCS
is equivocal when the statement is in the language. The committer can open a
commitment to any message given an accepting witness for the statement. In
[HV16], the prover constructs a garbled circuit computing the NP relation on the
statement x. The prover commits to the garbled circuit GC (garbling notations
can be found in [HV16,CSW20c]), encoding information u and the decoding
information v using the AIDCS. These commitments are jointly denoted as the
first message a. The verifier sends the challenge bit c. If the bit is c = 0 then
the prover decommits to (GC,u,v). The verifier checks that the garbled circuit
was correctly constructed. If the bit is c = 1 then the prover computes the input
wire labels W corresponding to the witness w and decommits to W, the decod-
ing information v and the path of the computation as path = ΠEv(GC,W) in
the GC which corresponds to evaluation of GC on W. The verifier accepts if
the computation of the garbled circuit on W along the path outputs 1. When x
is not in the language the AIDCS is statistically binding and hence the prover
has to guess the verifier’s bit. For ZK, the ZK simulator will guess the random
challenge bit of verifier and it will rewind if the guess is wrong. When the prover
gets corrupted post-execution, the simulator can equivocate the commitments
given the witness w using the equivocal property of AIDCS.

Bottlenecks in Obtaining NIZK. The proof is not binding when x ∈ L and a
corrupt prover knows the witness since the AIDCS is equivocal given the witness.
A malicious prover evades the special soundness property using the following
adversarial strategy: The adversary constructs the AIDCS in the equivocal mode
as the first message a and it constructs the responses as follows:

– c0 == 0 : It samples a garbled circuit as (GC,u,v) and sets z0 as (GC,u,v)
and the decommitment of a to (GC,u,v).

– c1 == 1 : It invokes the privacy simulator of the garbled circuit on output 1
to obtain a simulated GC and input wire labels for evaluation. The adversary
sets the response z1 as these wire labels and the path of GC evaluation. The
response z1 also contains the decommitments of a to the wire labels and the
evaluation path.
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The adversary is able to equivocate the AIDCS to open to different values and
this hampers witness extraction from the two accepting transcripts (a, c0, z0)
and (a, c1, z1). This hampers the special soundness property.

Our Solution. We solve this issue by replacing the AIDCS with the FNICOM

model and demonstrate that the new Sigma protocol in the FNICOM model sat-
isfies adaptive security and special soundness property. The prover constructs a
garbled circuit computing the NP relation on the statement x. The prover sets
a as the commitment to garbled circuit GC, encoding information u and the
decoding information v in the FNICOM model. The prover sends a to the verifier.
The verifier sends the challenge bit c. The prover performs the following based
on challenge c:

– c = 0 : The prover decommits to the garbled circuit GC, encoding informa-
tion u and decoding information v as the response z0.

– c = 1 : The prover decommits to the input wire labels and the evaluation
path in the garbled circuit as the response z1.

The verifier performs verification using the original verifier algorithm of
[HV16]. Completeness is straightforward. We show that the above Sigma proto-
col satisfies special soundness property and adaptive security in FNICOM model.

Special Soundness. There are only two possible challenges in the boolean chal-
lenge space. Given two accepting transcripts (a, 0, z0) and (a, 1, z1), the wit-
ness extractor obtains the encoding information u and the input wire labels W.
Assuming the garbling scheme is projective (for every input wire in the circuit
the encoding information consists of two possible wire labels corresponding to bit
values 0 and 1), it maps the wire labels with the encoding information to extract
the witness w. This proves special soundness property of the Sigma protocol.

Adaptive Security in FNICOM Model. We describe the HVZK simulator and then
extend it to satisfy adaptive security in the FNICOM model. We crucially rely
on the reconstructability property of the garbling scheme to argue adaptive
security. Reconstructability property says that given a path of computation, the
input wire labels and the input to a garbled circuit for circuit C it is possible
to reconstruct the rest of the garbled circuit as being honestly generated by
the garbling algorithm. We define the HVZK simulator as follows based on the
challenge c:

– c = 0 : The HVZK simulator computes a fresh garbled circuit as (GC,u,v)
and commits to it using FNICOM as the first message a. It sets a as the com-
mitment to (GC,u,v). The simulator sends z0 as (GC,u,v) and the decom-
mitments to a.
When the prover gets adaptively corrupted, the simulator obtains the wit-
ness w and it sets the randomness used to garble GC and the commitment
randomness as the internal randomness.
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– c = 1 : The HVZK simulator invokes the GC privacy simulator on output 1
and circuit C to obtain a simulated garbled circuit, input wire label, decoding
information and internal state - (GC′,W′,v′, st′). The HVZK simulator sets
a as the commitment to (GC′, 0|u|,v′) in the FNICOM model. The simulator
computes the path of computation as path = ΠEv(GC′,W′) on wire labels
W′. The simulator sends z1 as (path,W′) and decommitment to (path,W′)
from the set of commitments in a.
When the prover gets adaptively corrupted, the simulator obtains the witness
w. Using input w, simulated input wire labels W′ and the computation path
path, it uses the reconstructability property of the garbling scheme to recon-
struct a fresh garbled GC, encoding information u and decoding information
v and the corresponding garbling randomness. It sets the garbling random-
ness as the internal state and invokes the FNICOM simulator to equivocate the
commitments in a such that they open to (GC,u,v).

For the case of c == 0, it can be observed that the simulated internal state
is identical to the honest prover internal state. When c == 1, the proof contains
the evaluation path, the input wire labels and their decommitments. Upon post
execution corruption the simulator relies on the reconstructability property of
the garbling scheme to construct the garbled circuit. The distribution of the sim-
ulated a in the ideal world is indistinguishable from the honestly constructed a in
the real world in the FNICOM model due to the reconstructability property. The
garbling scheme of [LP09] based on one-way functions satisfies all the required
properties for the Sigma protocol. This was shown in the work of [HV16].

Adaptive Soundness and Adaptive ZK. The protocol achieves adaptive soundness
and adaptive ZK even when the functionality FNICOM is implemented by an
adaptively secure commitment protocol [CF01] in the crs model. The distribution
of crs is identical in the real and ideal world. A malicious prover fails to prove a
false statement x /∈ L without breaking the binding of the commitment scheme
(implementing FNICOM functionality). Adaptive ZK follows from the adaptive
security of the protocol.

3 Preliminaries

Notations. We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, 2, . . . , n} is represented by [n]. A func-
tion neg(·) is said to be negligible, if for every polynomial p(·), there exists a
constant c, such that for all n > c, it holds that neg(n) < 1

p(n) . We denote a
probabilistic polynomial time algorithm as PPT. We denote the computational
and statistical security parameters by κ by μ respectively. We denote compu-
tational and statistical indistinguishability by

c≈ and
s≈ respectively. When a

party P gets corrupted we denote it by P∗. Let RHam denote the set of n-node
Hamiltonian graphs for n > 1. We prove security of our protocol in the Universal
Composability (UC) model. We refer to the original paper [Can01] for details.
Our protocols are in the common reference string model where the parties of
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a session (sid, ssid) have access to a public reference string crs sampled from a
distribution. In the one-time crs model, each crs is local to each (sid, ssid). In
the reusable crs model, the same crs can be reused across different sessions by
different parties. The simulator knows the trapdoors of the crs in both cases. We
refer to [CLOS02] for more details.

Definition 1 [DN00] (PKE with Oblivious Ciphertext Sampling). A pub-
lic key encryption scheme PKE = (KeyGen,Enc,Dec) over message space M,
ciphertext space C and randomness space R satisfies oblivious ciphertext sam-
pling property if there exists PPT algorithms (oEnc, Inv) s.t. for any message
m ∈ M, the following two distributions are computationally indistinguishable to
a PPT adversary A:

∣
∣ Pr[A(m, c, r) = 1|m ← A(pk), c ← Enc(pk,m; r′), r ← Inv(pk, c)]

−Pr[A(m, c̃, r) = 1|m ← A(pk), c̃ ← oEnc(pk; r)]
∣
∣ ≤ neg(κ),

where (pk, sk) ← KeyGen(1κ).

We instantiate CCA-2 secure PKE with oblivious ciphertext sampling from
DDH [CS98] and LWE [MP12].

3.1 Non-interactive Zero Knowledge

We provide the ideal UC-NIZK functionality in Fig. 2 for a single prover and a
single proof. It also considers the case for adaptive corruption of parties where the
prover gets corrupted after outputting the proof π. In such a case, the adversary
receives the internal state of the prover.

Fig. 2. Single-proof non-interactive zero-knowledge functionality FNIZK

We also consider Fm
NIZK (Fig. 3) functionality where a single prover can par-

allelly prove multiple statements in a single session. The verifier verifies each of
them separately. It is a weaker notion than multi-session UC NIZK since Fm

NIZK
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Fig. 3. Non-interactive zero-knowledge functionality Fm
NIZK for single prover multi-proof

setting

considers only a single session between a pair of parties with roles preserved.
Different provers have to use different instances of Fm

NIZK to prove statements.
Next, we define the notion of triple adaptive security for NIZK protocols

and provide the property-based definitions of NIZK for completeness. UC-secure
NIZKs in the crs model imply adaptive ZK since an environment can statically
corrupt the verifier, obtain the crs of the protocol and then choose the statement
x to be proven by the honest prover. The simulator against a corrupt verifier
ensures that it constructs an accepting simulated proof which is indistinguishable
from an honestly generated proof. Hence, UC-NIZK implies adaptive ZK if the
environment is allowed to choose the statement being proven after corrupting
the verifier.

Definition 2. A non-interactive zero-knowledge argument system (NIZK) for
an NP-language L consists of three PPT machines ΠNIZK = (Gen,P,V), that
have the following properties:

– Completeness: For all κ ∈ N, and all (x,w) ∈ R, it holds that:

Pr[V(crs, x,P(crs, x, w)) = 1|(crs, td) ← Gen(1κ, 1|x|)] = 1.

– Soundness: For all PPT provers P∗ and x /∈ L the following holds for all
κ ∈ N:

Pr[V(crs, x, π) = 1|(crs, td) ← Gen(1κ, 1|x|), π ← P∗(crs)] ≤ neg(κ).

– Zero knowledge: There exists a PPT simulator S such that for every
(x,w) ∈ R, the following distribution ensembles are computationally indis-
tinguishable:

{(crs, π)|(crs, td) ← Gen(1κ, 1|x|), π ← P(crs, x, w)}κ∈N
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≈ {(crs, {S(1κ, x, td)})|(crs, td) ← Gen(1κ, 1|x|}κ∈N

Definition 3 (Full Adaptive Soundness). ΠNIZK is adaptively sound if for
every PPT cheating prover P∗ the following holds:

Pr[x /∈ L ∧ V(crs, x, π) = 1|(crs, td) ← Gen(1κ, 1|x|), (x, π) ← P∗(crs)] < neg(κ).

Definition 4 (Adaptive Zero-Knowledge). ΠNIZK is adaptively zero-
knowledge if for all PPT verifiers V∗ there exists a PPT simulator S such that
the following distribution ensembles are computationally indistinguishable:

{(crs,P(crs, x, w), aux)} c≈ {S(crs, td, 1κ, x)}κ∈N

where (crs, td) ← Gen(1κ, 1|x|) and (x,w, aux) ← V∗(crs).

The Gen algorithm takes the |x| (length of the statement) as input to generate
the crs. This shows that the crs size depends on |x|. When the crs is independent
of |x|, the Gen algorithm only takes 1κ as input.

Definition 5 (Triple Adaptive Security for a single instance).
Let ΠNIZK = (Gen,P,V) be a NIZK protocol in the crs model. Then ΠNIZK satis-
fies triple adaptive security for a single instance if it securely implements FNIZK

functionality for a single instance and provides adaptive soundness and adaptive
zero knowledge.

Definition 6 (Triple Adaptive Security for multiple instances).
Let ΠNIZK = (Gen,P,V) be a NIZK protocol in the crs model. Then ΠNIZK satis-
fies triple adaptive security for multiple instances if it UC-securely implements
FNIZK functionality for multiple instances and provides adaptive soundness and
adaptive zero knowledge.

3.2 Commitment Schemes

A commitment scheme Com = (Gen,Com,Ver,Equiv) allows a committing party
C to compute a commitment c to a message m, using randomness r, towards a
party V in the Com phase. Later in the open phase, C can open c to m by sending
the decommitment to V who verifies it using Ver. It should be binding, hiding and
equivocal using Equiv algorithm given trapdoor td of the crs. Moreover, we require
our commitment scheme to be additively homomorphic for message domain of
size at least four, i.e. Com(m1; r1) + Com(m2; r2) = Com(m1 + m2; r1 + r2).
We also need a tag-based simulation sound commitment consists of ComSST =
(KeyGen, Com, Ver, TCom, TOpen) for our protocols. Formal definitions can be
found in the full version [CSW20c].
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FNICOM-model. We also provide a new non-interactive UC-commitment func-
tionality in Fig. 1. The FNICOM functionality (Fig. 1) is implemented against
adaptive adversaries using adaptively secure non-interactive UC commitments
[CF01] in the crs model. We perform this using equivocal commitments and CCA-
2 secure PKE with oblivious ciphertext sampleability in the non-programmable
crs model. It can be found in the full version [CSW20c]. We also prove that this
new functionality implies the old UC commitment functionality (of [CF01]) but
our new functionality is more compatible with non-interactive protocols.

3.3 Correlation Intractability

As in [CCH+19,PS19,BKM20] we define efficiently searchable relations and
recall the definitions of correlation intractability, in their computational and
statistical versions.

Definition 7. We say that a relation R ⊆ X ×Y is searchable in size S if there
exists a function f : X → Y that is implementable as a boolean circuit of size
S, such that if (x, y) ∈ R then y = f(x). (In other words, f(x) is the unique
witness for x, if such a witness exists.)

Definition 8. Let R = {Rκ} be a relation class, i.e., a set of relations for each
κ. A hash function family H = (Gen,H) is correlation intractable for R if for
every non-uniform PPT adversary A = {Aκ} and every R ∈ Rκ the following
holds:

Pr[(x,H(k, x)) ∈ R : k ← Gen(1κ), x = Aκ(k)] ≤ neg(κ)

Definition 9. Let R = {Rκ} be a relation class. A hash function family H =
(Gen,H) with a fake-key generation algorithm StatGen is somewhere statistically
correlation intractable for R if for every R ∈ Rκ and circuits ∃zR ∈ Zκ s.t:

Pr[∃x s.t. (x,H(k, x)) ∈ R : k ← StatGen(1κ, zR)] ≤ neg(κ).

and for every zκ ∈ Zκ if the following distributions the indistinguishable:

{StatGen(1κ, zκ)}κ
c≈ {Gen(1κ)}κ.

Definition 10. A hash family H = (Gen,H), with input and output length n :=
n(κ) and, resp., m := m(κ), is said to be programmable if the following two
conditions hold:

– 1-Universality: For every κ ∈ N, x ∈ {0, 1}n and y ∈ {0, 1}m, the following
holds: Pr[H(k, x) = y : k ← Gen(1κ)] = 2−m.

– Programmability: There exists a PPT algorithm Gen′(1κ, x, y) that samples
from the conditional distribution Sample(1κ)|H(k, x) = y.

4 Triply Adaptive NIZK Argument in the crs Model

In this section, we present our NIZK protocol. First, we recall the definition of
Sigma protocol in the crs model and then build upon it to define adaptively Sigma
protocol in the FNICOM model. Finally, we compile adaptively Sigma protocols
into NIZKs using the Fiat-Shamir transform.
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4.1 Sigma Protocol

We consider Sigma protocol [CPV20] Σ = (Setup,P1,V1,P2,V2) for relation R
between a prover P and a verifier V that receive a common input statement x.
P receives an additional private input a witness w for x. The protocol has the
following form:

– Setup(1κ): The Setup algorithm runs on security parameter κ and generates
a common reference string crs and a trapdoor td. The crs is published as the
public setup string.

– P1(crs, x, w, 1κ; st): The prover runs algorithm P1 on common input x, crs,
private input w, security parameter κ and randomness st obtaining a =
P1(x,w, 1κ; st) and sends a to verifier.

– V1(crs, a): Verifier samples random challenge c ←R C and sends c to prover.
– P2(crs, x, w, st, c): The prover runs algorithm P2 on input x,w, crs, st, c and

obtain z. It sends z to verifier.
– V2(crs, x, a, c, z): The verifier outputs 1 if it accepts the proof else it outputs

0 to reject the proof.

The above protocol should satisfy completeness, honest verifier zero knowledge
and special soundness. We refer to the full version [CSW20c] for the property
definitions of Sigma protocol.

4.2 Fully Adaptive Sigma Protocol in FNICOM Model

The traditional Sigma protocols are not secure against adaptive corruption of
parties. Hence, we introduce the notion of fully adaptive Sigma protocols in the
UC-commitment functionality FNICOM model. Consider the above Sigma protocol
transcript (a, c, z). In the fully adaptive Sigma protocol, the prover has access
to the FNICOM functionality while computing the first message a. The prover
sends a to the verifier. Upon obtaining the challenge c, the prover computes the
response z and sends it to the verifier.

Definition 11. Let Σ = (Setup,P1,V1,P2,V2) be a Sigma protocol for relation
R over corresponding domains (A, C,Z), where parties make use of an instance
of FNICOM where the prover is the commiter, and where the first message con-
sists exclusively of a sequence of commitment strings that the prover obtains
from FNICOM. Then Σ is fully adaptive in the FNICOM model if the following
requirements hold:

1. Completeness. If (x,w) ∈ R, then honest transcripts of the form (x, a, c, z)
obtained by the verifier for (x,w) are accepting.

2. Computational Special soundness. There exists a PPT algorithm Ext
such that for any polytime adversarial prover P ∗ and two transcripts (a, c, z)
and (a, c′, z′), such that P ∗(κ) → (SC , x, a) where SC is the adversarial code
used by FNICOM, P ∗(κ, c) → z, P ∗(κ, c′) → z′, c′ �= c, and such that the
verifier accepts both transcripts when given access to FSC

NICOM, it holds that:

Pr[Ext(crs, SC , x, a, c, z, c′, z′) = w & (x,w) /∈ R] < neg(κ)
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3. Adaptive Honest-verifier zero knowledge. There exists PPT algorithm
S = (S1,S2) such that, for any (x,w) ∈ R, any PPT distinguisher A, and
any PPT adversarial code SC for FNICOM:

∣
∣
∣ Pr

[

(a, c, z, st) ← S1(crs, SC , x; td), r ← S2(st, w) : AFSC
NICOM(a, c, z, r) = 1

] −

Pr
[

r ← {0, 1}κ, (a, st) ← P
FSC

NICOM
1 (x,w, r), c ← C, z ← P

FSC
NICOM

2 (x,w, st, c) :

AFSC
NICOM(a, c, z, r) = 1

]
∣
∣
∣ ≤ neg(κ)

where (crs, td) ← Setup(1κ).

4.3 Our NIZK Compiler in the FNICOM Model

We apply the Fiat-Shamir transform on the Sigma protocol using correlation
intractable hash functions H to remove interaction and obtain our NIZK proto-
col. The CI hash function is provided with the description of the SC algorithm to
extract the prover’s view and compute the bad challenge function. Our compiler
can be found in Fig. 4.

A corrupt prover breaks soundness of the protocol if it breaks the special
soundness of the adaptively secure Sigma protocol or it breaks the binding prop-
erty of the commitment scheme. In the former case, the witness can be extracted
by invoking the witness extractor algorithm Ext (according Definition 11) of the
Sigma protocol on the proof. We show that our NIZK protocol ΠNIZK implements
FNIZK functionality against adaptive corruption of parties by proving Theorem
3 in the full version [CSW20c]. It can be further shown that the same protocol
implements the single prover multi-proof NIZK functionality Fm

NIZK.

Theorem 3. If H is a somewhere statistically correlation intractable hash func-
tion family with programmability, Σ = (Setup,P1,V1,P2,V2) is an adaptively
secure Sigma protocol (in the FNICOM model) with computational special sound-
ness then ΠNIZK implements FNIZK functionality in (crsNIZK,FNICOM) model
against adaptive corruption of parties.

Adaptive Soundness and Adaptive Zero knowledge. The NIZK protocol
can be made triply adaptive secure by adding adaptive soundness and adaptive
zero-knowledge. The NIZK protocol satisfies adaptive soundness if the underly-
ing Sigma protocol satisfies adaptive soundness and FNICOM is implemented using
a non-interactive UC-commitment Com in the non-programmable crsCom model
Com, whose real and ideal world crsCom distribution are identical. Moreover, the
NIZK protocol satisfies adaptive zero knowledge if the underlying Sigma pro-
tocol satisfies adaptive zero knowledge and Com is a non-interactive adaptively
secure commitment in the non-programmable crs model. This is summarized in
Theorem 4 and proven in the full version [CSW20c].
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Fig. 4. Adaptively secure NIZK protocol ΠNIZK
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Theorem 4. If H is a somewhere statistically correlation intractable hash func-
tion family, Σ = (Setup,P1,V1,P2,V2) is a Sigma protocol satisfying adaptive
special soundness and adaptive zero knowledge, and FNICOM is implemented using
an adaptively secure UC commitment in the non-programmable crsCom model
then ΠNIZK satisfies adaptive soundness and adaptive zero knowledge in the
(crsNIZK, crsCom) model.

Instantiations. The adaptively Sigma protocol can be instantiated using the
Schnorr’s protocol, Sigma protocol of FLS, Blum’s Hamiltonicity protocol or
the GC-based protocol of [HV16]. Detailed overview can be found in Sect. 2.4.
The CI hash function can be instantiated from LWE [PS19,CCH+19], or from
DDH+LPN assumption [BKM20]. This is discussed in the full version [CSW20c].
FNICOM is constructed from the UC-commitment scheme of [CF01] in the full ver-
sion [CSW20c] by relying on equivocal commitments and CCA-2 secure public
key encryption with oblivious sampleability. The equivocal commitment can be
instantiated from Pedersen Commitment and the obliviously sampleable encryp-
tion scheme can be instantiated from Cramer Shoup encryption [CS98], yielding
a protocol from DDH. Similarly, we can instantiate the equivocal commitment
from LWE [CsW19] and the obliviously sampleable encryption scheme from LWE
[MP12].

5 Triply Adaptive NIZK Argument in the Short crs
Model

In this section we present our compiler ΠsNIZK which obtains a triply adap-
tive NIZK protocol where the crs size is independent of the circuit size and
depends only on κ assuming a non-interactive equivocal commitment scheme
in the reusable crs model which supports additive homomorphism, PKE with
oblivious ciphertext sampleability and a triply adaptively secure NIZK protocol
ΠNIZK in the crs model. Our compiler is presented in the full version [CSW20c].
We prove triple adaptive security of ΠsNIZK by proving Theorem 5 in the full
version [CSW20c]. By applying this result, we reduce the crs size of ΠNIZK.
The homomorphic commitment scheme can be instantiated from DDH (Peder-
sen commitment or [CSW20a]) or LWE [GVW15] assumptions. The PKE can
be instantiated from DDH assumption (Elgamal encryption) or LWE [GSW13]
assumptions. This yields our compiler from DDH or LWE assumption.

Theorem 5. Assuming PKE is a public key encryption scheme with oblivi-
ous ciphertext sampling, Com is an equivocal additively homomorphic commit-
ment scheme in the reusable crsCom model and ΠNIZK implements Fm

NIZK against
adaptive corruption of parties, then ΠsNIZK UC-securely implements FNIZK func-
tionality for NP languages against adaptive adversaries in the crs model where
|crs| = poly(κ). ΠsNIZK is also adaptively sound and adaptively zero knowledge.
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6 Triply Adaptive, Multi-proof UC-NIZK Argument

In this section, we add non-malleability to our ΠsNIZK protocol to obtain our
multi-proof UC-NIZK protocol ΠUC-NIZK by using simulation sound tag-based
commitments ComSST and strong one-time signature scheme Sig. We add non-
malleability to our proof by signing the proof using a pair of keys (vk, sk) from
Sig and committing the witness using a ComSST where the tag is (vk, sid, ssid, x).
The adversary is bound to vk since vk is part of the tag used to encrypt w using
ComSST in the proof γ. Sig ensures that an adversary cannot forge a signature
using vk and this prevents non-malleability. The same crs is used for multiple
subsessions and this ensures adaptive soundness and adaptive zero knowledge.
The protocol and the proofs can be found in the full version [CSW20c]. Security
of ΠUC-NIZK is summarized in Theorem 6.

Theorem 6. If ΠsNIZK UC-realizes FNIZK for a single proof, Sig is a strong one-
time secure signature scheme, ComSST is a tag-based simulation-sound trapdoor
commitment and PKE is a public key encryption scheme with oblivious cipher-
text sampling property then ΠUC-NIZK UC-securely implements FNIZK for multiple
instances against adaptive adversaries. In addition, ΠUC-NIZK is adaptively sound
and adaptively zero knowledge.
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Abstract. All existing works building non-interactive zero-knowledge
(NIZK) arguments for NP from the Learning With Errors (LWE)
assumption have studied instantiating the Fiat-Shamir paradigm on
a parallel repetition of an underlying honest-verifier zero knowledge
(HVZK) Σ protocol, via an appropriately built correlation-intractable
(CI) hash function from LWE. This technique has inherent efficiency
losses that arise from parallel repetition.

In this work, we show how to make use of the more efficient “MPC in
the Head” technique for building an underlying honest-verifier protocol
upon which to apply the Fiat-Shamir paradigm. To make this possible,
we provide a new and more efficient construction of CI hash functions
from LWE, using efficient algorithms for polynomial reconstruction as
the main technical tool.

We stress that our work provides a new and more efficient “base con-
struction” for building LWE-based NIZK arguments for NP. Our proto-
col can be the building block around which other efficiency-focused boot-
strapping techniques can be applied, such as the bootstrapping technique
of Gentry et al. (Journal of Cryptology 2015).

1 Introduction

A recent line of work instantiates the Fiat-Shamir heuristic by building
correlation-intractable hash functions from the Learning With Errors (LWE)
assumption [7,29,34], yielding the first Non-Interactive Zero-Knowledge (NIZK)
protocols for NP from LWE. Such protocols are particularly desirable as LWE is
believed to be hard even for quantum computers. While this line of work has
been exciting in terms of achieving new feasibility based on LWE, our under-
standing of how to optimize the efficiency of such constructions is still in its
infancy.

In particular, before our work, all known papers constructing NIZK argu-
ments for NP from the LWE assumption studied instantiating the Fiat-Shamir
paradigm on a parallel repetition of an underlying honest-verifier zero knowledge
(HVZK) Σ protocol. Unfortunately, parallel repetition entails inherent efficiency
loss. Can we do better?
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Our Work. In this work, we study how to apply the “MPC-in-the-Head”
paradigm [30] to the construction of NIZK arguments for NP from the LWE
assumption. Moreover, we do so by directly using simple and efficient poly-
nomial reconstruction algorithms [27,37], avoiding the need for more complex
coding previously used in [29]1 We note that this paradigm has previously been
used to yield practically efficient constructions in other contexts [1,11,18].

The starting point: Zero Knowledge Protocols. A zero knowledge protocol [22]
is an interactive protocol which allows a prover to prove to a verifier that an
input x is in some NP language L without revealing anything more than the fact
that x ∈ L. A classic example of such a protocol was introduced by Goldreich,
Micali and Wigderson [21] for Graph 3-Coloring. The NP-completeness of Graph
3-Coloring implies that the GMW protocol indeed leads to zero knowledge proofs
for all problem in NP. The basic version of this protocol is public coin and has
large soundness error, but this error can be made negligible while still preserving
honest-verifier zero-knowledge by parallel repetition. However, such parallel rep-
etition is a source of significant inefficiency, both asymptotically and concretely.
This is especially true if the number of parallel repetitions required is large – an
issue that we will come back to later!

An alternative to using parallel repetition of such classic protocols is the
MPC-in-the-head paradigm introduced by Ishai, Kushilevitz, Ostrovsky and
Sahai [30], which allow us to construct highly sound general zero knowledge
proof systems for any NP relation R(x,w), where w is a witness to the fact that
x ∈ L. Such a protocol makes black box use of an honest-majority MPC pro-
tocol Πf for a functionality f for the circuit for NP relation R. This approach
bypasses the computational overhead of a Karp reduction. Moreover, there is a
successful line of work on producing highly efficient perfectly-robust MPC with
minimal communication [3,13,14,24].

The MPC-in-the-head paradigm avoids the need for parallel repetition
entirely. At a high level, the paradigm works by having the prover run the MPC
protocol among q virtual servers entirely in the imagination of the prover, and then
commit to the views of these virtual servers. The verifier then specifies a small
random subset of these servers to the prover. The prover then opens the commit-
ments to the inputs of the chosen servers, and all messages sent and received by
those servers. This allows the verifier to check that the prover correctly executed
the MPC protocol for almost all servers. It is absolutely crucial that the number of
servers that the verifier specifies to open is significantly smaller than the number
of servers q, otherwise no security would remain for the prover.

Using the Fiat-Shamir paradigm with Correlation-Intractable Hash Functions to
obtain NIZK. A non-interactive zero knowledge protocol (NIZK) [19] lets the
1 In personal correspondence after the initial posting of our result, Alex Lombardi

showed us that it was possible to use the construction in [29] using Parvaresh-Vardy
codes over extension fields to achieve parameters compatible with our variant of
MPC-in-the-head, albeit at a significant efficiency cost relative to what we achieve
here. Refer to Appendix A.1 for a detailed discussion.
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prover eliminate the need for interaction by assuming a common random string
(CRS2) that is given as input to both parties. A beautiful tool for constructing
NIZKs is the Fiat Shamir heuristic [15]: it starts with a public-coin honest-
verifier zero knowledge proof system and transforms it into a NIZK. This works
by placing a random hash key in the CRS and replacing each of the verifier’s
messages in the interactive protocol with the hash of the input and the entire
transcript so far. A sequence of works [5,7–9,28,31,34] has shown that if this
hash function is correlation-intractable for certain relations, then the resulting
NIZK is sound.

The recent work of [29,34] constructs such a correlation-intractable hash
function from the LWE assumption and demonstrates how to apply the Fiat-
Shamir transformation to a broad class of public-coin honest-verifier zero knowl-
edge protocols built using parallel repetition. However, it is worth noting that
the number of parallel repetitions needed for the technique of [29] to apply is
actually a rather large polynomial. Specifically, if k is the security parameter for
LWE and if the size of the verifier’s challenge set is bounded by any polynomial
in k, then the number of repetitions required is roughly O(k2) (though they
note this can be optimized to O(k1+ε)). One crucial reason for this polynomial
expression being O(kc), for c > 1, is that list-recoverable error correcting codes
play a starring role in the work of [29], and unfortunately the best-known such
codes require large block lengths to achieve the parameters needed for [29] to
work3.

Our New Idea in a Nutshell. Our starting technical observation is that the corre-
lation that needs to be intractable for the hash function is in fact far more struc-
tured in the case of a variant of the MPC-in-the-head protocol that we consider,
than in the case of parallel repetition based protocols. The looser structure of
the correlation behind parallel repetition based protocols is what led to the work
of [29] requiring general list-recoverable codes. The greater structure present in
the case of MPC-in-the-head protocols allows us to significantly relax the require-
ments, and in particular lets us use an aggregate size analysis when decoding. As
a result, we are able to use standard polynomial reconstruction algorithms [27,37]
directly to solve our problem. To highlight this structure, we define a new vari-
ant of list-recoverability, that we call Recurrent List-Recoverability, over product
sets where each term in the product is the same set.

Definition 1 (Recurrent List-Recoverable Codes). An ensemble of codes
{Cλ : Mλ → Z

nλ
qλ

} is said to be a (�(·), L(·)) -recurrent list recoverable (for
�, L : Z+ → Z

+) if there is a polynomial-time algorithm Recover that:

– Takes as input λ ∈ Z
+ and explicit descriptions of “constraint” sets S ⊆ Z

n
q

where |S| ≤ �(λ).
2 More generally, CRS can also refer to a common reference string, but our work will

achieve NIZKs with a common random string.
3 In particular, the alternative method pointed out to us by Lombardi using Parvaresh-

Vardy codes over extension fields would also incur this O(k1+ε), ε > 0 overhead. We
show a more detailed computation in Section A.1.
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– Produces as output a list of at most L(λ) messages, containing all m ∈ M
for which C(m)i ∈ S for all i ∈ [n].

We show that this aggregate size analysis and polynomial reconstruction algo-
rithms implies the existence of recurrent list-recoverable codes with the desired
parameters, resulting in the following theorem.

Theorem 1. (Restatement of Theorem 6). For arbitrary constants 0 < η, α < 1
and 0 < δ ≤ ε < 1, there exists a probabilistic constructible ensemble for codes

{
Ck : Zk+1

q2 → Z
ηq
q

}

such that Ck is (αq, T 2)-Recurrent List Recoverable with probability at least 1 −
e−ω(k log k), where q = k log1+ε+ δ

2 k and T = O(k log2ε− δ
2 k).

Main Technical Milestone: Quasi-linear blocklength. As noted above, the (ordi-
nary) list-recoverable codes constucted in [29] have block length O(k1+ε), for
ε > 0, in the number of input symbols k above. In contrast, in our theorem
above, we achieve quasi-linear blocklength Õ(k). This improvement is despite
using a qualitatively weaker algebraic component (polynomial reconstruction)
in our codes compared to the one used previously (Parvaresh-Vardy codes over
extension fields). We discuss why this is possible in our technical overview below.

Composing this recurrent list-recoverable code with the Peikert-Shiehian cor-
relation intractable hash function allows us to instantiate the Fiat-Shamir tech-
nique with the MPC-in-the-head technique.

Theorem 2. (Restatement of Theorem 8). Assuming that LWE m
2 log q ,m,q,χ holds

for the particular parameter settings where χ is a B-bounded distribution for
B = qΩ(1), q = poly(k), k is the security parameter, and a MPC protocol with
perfect αn-robustness and perfect, statistical, or computational security exists,
where α ∈ (0, 1/2) is a constant and n is the size of the challenge set in the
interactive protocol, there exists NIZKs with computational soundness for all of
NP whose proof size is

O(|C| + q · depth(C)) + poly(k)

where C is an arithmetic circuit for the NP verification function and q =
k log1+ε k for any ε > 0.

Bootstrapping. A NIZK with proof size |w| + poly(λ) for witness w and security
parameter λ can be constructed using Fully Homomorphic Encryption [17] to
bootstrap an underlying NIZK. Their construction uses this NIZK to prove that
the fully homomorphic encryption key generation and evaluation is performed
correctly by the Prover. Our construction provides an efficient base NIZK con-
struction and can be used in conjunction with the construction of [17] to yield
a more efficient form of this bootstrapping. Similarly, other (future) methods
of bootstrapping for efficiency can potentially make use of our NIZK as a base
construction.
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1.1 Technical Overview

MPC-in-the-head. An MPC protocol [4,12,20,38] allows us to compute a
q-party functionality (a function of their inputs) while maintaining privacy of
the inputs and correctness of the output. In a n-private MPC protocol, any
adversary that corrupts at most n players is unable to learn any information
about the non-corrupted players’ private inputs beyond that obtainable from
learning the output of the function. Zero-knowledge protocols can be viewed as
a special case of secure two-party computation, where the function verifies the
validity of a witness held by the prover.

Modifying the IKOS protocol. Recall that we will be using the Fiat-Shamir
paradigm (more on this below) to convert a public coin honest-verifier zero
knowledge (HVZK) proof into a NIZK argument. All previous work studied
using parallel repetition of a HVZK protocol. We aim to avoid this by starting
with an HVZK protocol based on the MPC-in-the-head paradigm [30], as we
explain next. The HVZK protocol we use slightly modifies the original protocol
presented in [30] by asking the Prover to commit to a single copy of the transcript
rather than commit to several (possibly overlapping) views. For any party the
Verifier specifies to the Prover, the Prover opens up the relevant commitments
in the transcript. The modification, not only simplifies the soundness proof, but
ensures that each party’s view can be independently verified rather than cross
checking different party views for consistency of the views, as was the case in the
original protocol. In this way, each party that the Verifier specifies constitutes
an independently verifiable challenge. This property of independently verifiable
challenges is necessary to cleanly define a single fixed bad challenge set S for the
correlation-intractable hash function (the bad challenge space is S ×S × . . .×S).

Let RL be a relation corresponding to a NP language L. In other words,
RL(x,w) = 1 if and only if x ∈ L and w is a witness for x. Define a functionality
fL such that fL(x,w1, w2, ..., wq) = RL(x,w1 ⊕ w2 ⊕ · · · ⊕ wq). Thus, fL can be
viewed as a function computed by q parties where x is the public input and wi is
the private input for Player i. The HVZK protocol ΠZK begins with the Prover
carrying out all the steps of a q-party MPC protocol ΠfL

in her head. First,
she secret shares w into w1, . . . , wq and executes the q-party MPC protocol to
produce the protocol transcript of inputs, initial randomness, and messages sent.
The Prover sends commitments to the transcript of the execution to the Verifier.
Now the Verifier picks a random set S of n < q parties, challenging the Prover to
open the commitments to the private inputs, their randomness, and all messages
sent or received by parties in S. The Verifier accepts if the openings form a
consistent MPC protocol (that is, every message sent matches what the MPC’s
next message function would output given the previous messages received) and
every party in the set S outputs 1.

The HVZK property follows from the privacy guarantee of the MPC. Assum-
ing that the underlying MPC protocol ΠfL

is perfectly robust, violating the
soundness requires a cheating prover to commit to many messages that are not
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consistent with the rest of the transcript and we show in Lemma 2 that such a
cheating prover gets caught with overwhelming probability.

Fiat-Shamir Heuristic. We begin by reviewing the Fiat-Shamir Heuristic, a
generic technique that compresses public-coin interactive arguments into non-
interactive arguments in the CRS model. The Fiat-Shamir Heuristic is defined
with respect to a public hash function family H. Let us consider the following
three-round interactive proof between a prover P and verifier V , in which P ’s
goal is to convince V that x ∈ L, for some language L ∈ NP:

1. P sends a first message α.
2. V responds with a uniform randomly chosen string β.
3. P finally sends a message γ to V .

Note that V accepts the proof (α, β, γ) if and only if x ∈ L. In order to convert
this to a non-interactive proof, the CRS consists of a randomly chosen hash
function h ← H. P computes β = h(x, α) and uses this compute γ. Finally,
V can recompute β using the publicly known h and checks if the transcript
(x, α, β, γ) is accepting.

This technique requires a careful analysis of soundness, because V no longer
has the capability to generate uniformly random strings β. One way to ensure
that the Fiat-Shamir transform is indeed sound is to instantiate the hash function
with one that is Correlation Intractable (CI), which we now define.

Suppose x /∈ L. Let us define the set of “bad” βs as:

Badα = {β | ∃γ such that V (x, α, β, γ) = 1},

A CI hash requires that it is computationally infeasible for an efficient cheating
prover to come up with an α such that h(x, α) ∈ Badα when given h ← H as
input, where H is a Correlation Intractable hash family with respect to Badα.
Formally, we say that H is a correlation intractable hash function family for
Badα if for all PPT adversaries A,

Pr
h←H

[h(x, α) ∈ Badα | A(h, x) = α] ≤ negl(λ).

Peikert and Shiehian [34] constructed a CI hash family when |Badα| = 1 from
the LWE assumption. In fact, Canetti et. al. [7] have shown that this construction
can be extended to settings when |Badα| is polynomially bounded.

Correlation Intractable Hash Functions from List Recoverable Codes.
In their recent work, [29] propose a correlation intractable hash function family
for any three round public coin commit and open protocol. The classical GMW
protocol for 3-coloring with parallel repetition falls in the category of the proto-
cols that [29] dealt with. To illustrate the techniques from [29], we briefly review
them in the context of parallel repetition of the basic GMW protocol.

In the GMW protocol, the Prover who knows a 3-coloring of a graph G first
commits to a randomly chosen permutation on the 3-coloring. The Verifier then
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randomly picks an edge of G and asks the Prover to open the vertex colors
incident to that edge. If the colors differ, the Verifier accepts; otherwise, the
verifier rejects. Repeating the interactive protocol in parallel achieves negligible
soundness error while keeping the round complexity low. In any iteration of
the interactive protocol there are at most |E| − 1 edges which can allow the
prover to cheat (referred to as the “bad” challenge set). We define Si to be the
bad challenge set in the ith iteration of the interactive protocol. In a parallel
repetition of the protocol n times, these bad challenge sets form a product of
sets S1 × · · · × Sn, where ∀ i ∈ [n], |Si| ≤ |E| − 1. For G 
∈ 3-COL, a malicious
Prover is able to convince the Verifier to accept if for all iterations i ∈ [n] the
challenge edges selected by the Verifier in the ith iteration belong to Si. This
product of sets defines a product relation R = S1 × · · · × Sn.

The usefulness of CI hash families prior to the work of [29], such as those
in [7,34], were limited to functions and polynomially bounded relations. Our
relation R does not fall in this category as there may be exponentially many
bad challenges on which an adversary can find the desired correlation. The work
of [29] addresses this concern by constructing new correlation intractable hash
functions for such product relations that are efficiently verifiable (defined in
Sect. 6). In order to do so, they use list recoverable codes to construct another
relation R′ which is “efficiently enumerable” and therefore amenable to the tech-
niques of [7,34].

To build this relation R′, they use a derandomization approach based on
list-recoverable error correcting codes. Informally, an error correcting code is
a function C : M → Z

n
q . Here, n is called the block length of the code.

We say that an error correcting code C is (�, L)-list recoverable if for all sets
S1, S2, . . . , Sn ⊆ Zq each of size at most �, the number of messages v in M such
that C(v) ∈ S1×· · ·×Sn is less than L+1. Moreover, there must exist an efficient
algorithm Recover which extracts all such v. This notion was introduced in [26].
The parameters of the codes can be interpreted as follows in the context of the
GMW protocol:

– The size of the alphabet q is the maximum size of the Verifier’s challenge set,
i.e. q = |E|.

– The input list size � is |E| − 1 which corresponds to the maximum size of a
bad challenge set for a single execution of the GMW protocol.

– The block length n is the number of parallel repetitions.
– The output list size L must be polynomially bounded.

The new CI Hash function they construct is given by H′ := C(H(·)) where C is
the list recoverable error correcting code as defined above and H is the previous
CI hash function from [34].

Our recurrent list-recoverable codes achieve a quasi-linear block size of
O(k log1+ε k) for arbitrary ε > 0. We emphasize that this block size is not known
to be achievable by any previous framework.

Exploiting the MPC-in-the-head Product Relation. We first highlight
the structure of the bad challenge set when using MPC-in-the-head to build a
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zero-knowledge protocol. Consider a cheating Prover that simulates a q-party
MPC protocol and corrupts an α fraction of them in an attempt to fool the
Verifier. The Prover commits to a transcript of the execution (denoted by com).
The Verifier then specifies n parties to the Prover. The Prover must decommit to
the corresponding commitments to inputs and the randomness of the specified
parties as well as the messages incident (sent or received) to these parties. Let
Scom ⊆ [q] be the set of the parties for which the messages sent are consistent
with the input, the randomness, and the previous messages received and where
the final output of the party is 1. The bad challenge set (equivalently the bad
challenge relation) that convinces a Verifier to accept, denoted by RMPC ⊆ [q]n,
is therefore seen to be the product Scom × · · · × Scom︸ ︷︷ ︸

n times

. Observe that this product

relation is a specific product relation where each component is the same set Scom.
The special structure of the bad challenge set in the MPC-in-the-head setting
opens up a new avenue for us to exploit in order to construct a CI hash for
RMPC.

Revisiting Random Codes. A common technique in coding theory introduced by
Forney in 1966 [16] is that of code concatenation. Code concatenation involves
two codes, an inner code Cin and an outer code Cout. The code concatenation
encoding scheme first encodes a message m with the outer code Cout to produce
e = Cout(m). Then it encodes each symbol in e with the inner code Cin. We
denote the resulting code as Cout ◦ Cin

4.
This technique was used by [29] to obtain list-recoverable codes. In partic-

ular, their list-recoverable codes result from concatenating an inner code, given
by a family of random codes, with an outer code, given by an algebraic code
instantiated by the Parvaresh-Vardy code [33]. The inner code reduces the size
of the lists to be fed as input to the outer code, achieving an overall smaller
block length. The question before us is: Can we use the inner code to help us
reduce the size of the lists to be fed as input to the outer code, thereby helping
us achieve an overall block length that is smaller than the input list size to the
outer code?

Suppose we have a random code Crand : ZQ → Z
m
q , where the parameters

Q, q,m are all polynomial in the security parameter. Then a list recovery algo-
rithm is trivial to implement by enumerating every codeword and checking to
see if the components of the codeword lie in the input lists. If one analyzes the
list recoverability of such a code, one immediately encounters a fundamental
barrier: If � is the input list size to the list recovery algorithm, then the output
list size must also sometimes be at least �. This is simply because the input lists
can correspond to the union of � different codewords in Crand. Indeed, the work
of [29] analyzed the list recoverability of a single random code further to show

4 The standard notation for code concatenation Cout ◦Cin differs in two ways from the
standard function composition notation in which f ◦ g(x) = f(g(x)). Firstly, Cout is
used first to encode the message m. Secondly, Cin is applied index-by-index to each
symbol in the Cout(m).
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that this worst case is close to tight, but as we noted above, their analysis is not
good enough for us.

Can we exploit the fact that the inputs lists must all be equal, and equal
to Scom in particular? Unfortunately the output list size of the random code
must be at least �/m, as the worst case Scom could be equal to the union of
all the symbols found in �/m codewords. This seems to present a fundamental
barrier to us regarding the applicability of random codes as “inner” codes in
concatenated codes, since the random code blows up the overall blocklength of
the concatenated code by a factor of m, while only shrinking the list size by at
most a factor of m. In other words, we seem to have made no progress.

Many random codes are better than one. The key insight behind our work is
that while the barrier above applies to a single random code, a much different
picture emerges if we consider the sum of the list sizes output by the recover
algorithm of many random codes.

Indeed, suppose we have t completely independently chosen random codes
C(i)
rand : ZQ → Z

m
q for i ∈ [t]. While it is true that for each code there exist

input sets Scom that would lead to an output list of size �/m, with overwhelming
probability, these input sets would have tiny intersections because of the inde-
pendence of the choice of each code. For i ∈ [t], let Li be the list obtained as
output of the list recovery algorithm of C(i)

rand on input lists all equal to Scom. It
is hopeless to get a better bound on maxi {|Li|}. So instead we aim to bound∑

i |Li|.
In our work, we give a new analysis of this quantity for t independently

chosen random codes. We formulate a new variant of Chernoff’s Bound (see
Lemma 1), and use this to give our analysis in Theorem 5. This shows that with
suitably chosen parameters, with overwhelming probability. for every input list
Scom,

∑
i |Li| will be bounded by roughly Õ(t + �/m). In other words, we get t

output lists roughly for the “price” of a single output list!

Using Polynomial Reconstruction to leverage the aggregate list bound. Now that
we have this bound, how can we take advantage of it to build a CI Hash function?
We do so by departing from the language of list recoverability of error correct-
ing codes, and instead adopting the more basic algebraic tool of polynomial
reconstruction.

In the polynomial reconstruction problem, we are given as input a prime Q,
a degree bound k, and n distinct pairs {(αi, yi)}i∈[n] where each αi, yi ∈ ZQ.
The algorithm of Guruswami and Sudan [27] outputs a list of every polynomial
f over ZQ of degree at most k, such that f(αi) = yi for at least

√
kn indices

i ∈ [n]. Furthermore, this output list has size at most n2. Combining polynomial
reconstruction to leverage the aggregate list bound results in a recurrent list-
recoverable code with the desired parameter settings.

The existence of this code and the Peikert-Shiehan correlation-intractable
hash function gives rise to our final construction of a CI hash function as follows:
Let H be the Peikert-Shiehan correlation-intractable hash and let α be the first



Efficient NIZKs from LWE via Polynomial Reconstruction 505

message of the protocol (including the instance x being proven). Interpret H(α)
as coefficients for a degree k polynomial over field ZQ. Then use the evaluation
map on this polynomial at t fixed distinct elements in ZQ to yield the code
Calg : Z

k+1
Q → Z

t
Q to obtain t field elements in ZQ. We assume that we have

already sampled t independent random codes C(i)
rand : ZQ → Z

m
q for i ∈ [t] at

setup time (this is part of the description of the hash function). Then we apply
the ith random code C(i)

rand on the ith element of Calg(H(α)). If Crand = {C(i)
rand}i∈[t],

we denote this operation by Ck(H (α)) where Ck = (Calg ◦ Crand). This operation,
(Calg ◦ Crand) (H (·)), defines our final construction of a CI hash function.

This construction indeed satisfies correlation-intractability by observing an
efficient recovery algorithm for (Calg ◦ Crand) (H (·)). Namely a brute force enu-
meration of the codewords for the random codes in Crand gives an output list of
size Õ(t+ �/m) that consists of pairs {(αi, yi)}i. Of these, at most t pairs can be
consistent with a degree-k polynomial. The polynomial reconstruction algorithm

of [27] will succeed as long as t >
√

k · Õ(t + �/m). This provides us with ample
room to set parameters, and indeed we have significant freedom when choosing
values of k, t, �,m to make this work. Then the polynomial reconstruction algo-
rithm outputs at most Õ(t2 + �2/m2) many polynomials. Therefore this efficient
recovery algorithm produces a polynomial-size set so the Peikert-Shiehian CI
hash function can now be applied, yielding a CI hash function for the MPC-in-
the-head setting, achieving our goal. In the remainder of the paper, we show how
to instantiate parameters precisely and provide all details regarding our analysis.

2 Preliminaries

2.1 Proof Systems

Zero Knowledge: We define the standard notion of zero knowledge as well
known in prior work [21,23,30].

An NP Relation R(x,w) is an efficiently decidable binary relation which can
be viewed as a boolean function that outputs 0 or 1. Any NP relation defines
a language L = {x : ∃w,R(x,w) = 1}. A zero knowledge proof consists of two
PPT algorithms, namely, a prover P and verifier V . The prover is given access
to instance x and witness w, whereas the verifier only has the instance w.

Definition 2 (Interactive Honest Verifier Zero Knowledge Proof). The
protocol (P, V ) for a language L defined above consists of an interactive P and
V with the following requirement:

– Completeness: If x ∈ L, and both P, V are honest, then V must always accept.
– Statistical Soundness: If x /∈ L, then for any malicious and computationally

unbounded prover P ∗, V accepts with a negligible probability only.
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– Zero Knowledge: If x ∈ L, then for any non-malicious PPT verifier V ∗, there
exists a PPT simulator M such that the view of V ∗ upon interaction with
P is computationally indistinguishable from the output distribution of M(x).
Here, view of V ∗ consists of its input x, its random coins and all incoming
messages.

Definition 3 (Public Coin). An interactive proof system is said to be public
coin if for every x ∈ {0, 1}n, and some l(n), the messages sent by an honest
verifier V are i.i.d uniform l(n) bit strings. Moreover, the final output of V
must be efficiently computable in polynomial time given x and the transcript
upon interaction with P .

Definition 4 (Non-Interactive Zero Knowledge(NIZK) Arguments in
the CRS model). A non interactive zero knowledge argument for a language L
in the Common Reference String (CRS) model is defined three PPT algorithms:

– Setup(1n, 1λ) outputs a uniform random string crs given a statement of length
n and security parameter λ.

– Prover P (crs, x, w) outputs a proof π given a statement witness pair (x,w) in
the NP relation R.

– Verifier V (crs, x, π) either accepts or rejects.

The following properties must be satisfied:

– Completeness: V (crs, x, π) must always accept if x ∈ L and π ← P (crs, x, w).
– Computational Soundness: for every non-uniform poly time prover P ∗, there

exists a negligible function ε(λ) such that for any n ∈ N and x /∈ L,

Pr[crs ← Setup(1n, 1λ), π∗ ← P (crs, x), V (crs, x, π∗) accepts] ≤ ε(λ).

– Non Interactive Zero Knowledge: There exists a PPT simulator M such that
for every x ∈ L such that the distribution of the transcript output by Setup
and P , i.e., (crs, P (crs, x, w)) : crs ← Setup(1n, 1λ) is statistically indistin-
guishable from the output of M(x). Note that M is allowed to generate its own
CRS.

2.2 Cryptographic Assumptions and Commitment Schemes

Definition 5 (Decisional Learning with Errors Problem [36]). Let n ≥ 1
be a parameter for dimension, and let q = q(n) ≥ 2 be a modulus. Let m ≥ 1 be a
parameter for number of samples. Let χ = χ(n) be an error distribution over Zq.
The decisional learning with errors problem LWEn,m,q,χ is to distinguish between
the following two distributions:

{
(A,As + e) | A

$←− Z
m×n
q , s

$←− Z
n
q , e

$←− χm
}

and {
(A, u) | A

$←− Z
m×n
q , u

$←− Z
m
q

}
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Definition 6 (Bounded Error Distributions). Let B = B(λ) such that
B(λ) ∈ N. We say that a family of distributions χ = {χλ}λ∈N over the inte-
gers is B-bounded if for all λ ∈ N,

Pr [x ← χλ | |x| ≤ B(λ)] = 1.

Definition 7 (Statistically Binding Commitment Scheme in the CRS
model). A Statistically binding commitment scheme in the CRS model is a pair
of efficiently computable functions (Setup,Com), where,

– Setup(1λ) outputs a common reference string crs.
– Com(crs,m; r) takes as input crs, a message m to be commited, and uses

randomness r to output a commitment com.

They have the following security properties:

– Statistical Binding: With high probability over the choice of crs ←
Setup(1λ), there does not exists r0, r1, and messages m0 
= m1 such that
Com(crs,m0; r0) = Com(crs,m1; r1).

– Computational Hiding: For messages m0 
= m1, and randomness r0, r1
the distribution of (crs, com0) is computationally indistinguishable from
(crs, com1). Here, crs ← Setup(1λ), com0 ← Com(crs,m0; r0), and com1 ←
Com(crs,m1; r1).

Given a commitment com and crs, a valid corresponding pair (m, r) is known as
the opening for com.

Remark 1. [Non-interactive Perfectly Binding Commitment Schemes from LWE-
based PKEs] Any PKE with perfect decryption correctness gives a non-interactive
commitment. As observed previously [32], this perfect decryption correctness
implies perfect binding even though the committer is allowed to choose the
public key maliciously. Since LWE with polynomial modulus-to-noise ratio under
a bounded error distribution gives Regev encryption with perfect decryption
error [2], it also gives non-interactive perfectly binding, computationally hiding
non-interactive commitments.

2.3 Error Correcting Codes

Definition 8. A q-ary code is a function C : M → Z
n
q , where n is called the

block length, M is called the message space, and Zq is called the alphabet of C.

Definition 9 (List-Recoverable Codes [25–27]). An ensemble of codes
{Cλ : Mλ → Z

nλ
qλ

} is said to be a (�(·), L(·))-list recoverable (for �, L : Z+ → Z
+)

if there is a polynomial-time algorithm Recover that:

– Takes as input λ ∈ Z
+ and explicit descriptions of “constraint” sets

S1, . . . , Sn ⊆ Z
n
q with each |Si| ≤ �(λ), and

– produces as output a list of at most L(λ) messages, containing all m ∈ M for
which C(m)i ∈ Si for all i ∈ [n].
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Definition 10 (N-independent Concatenated Code). LetC =
{

C(2)
1 , . . . ,

C(2)
N

}
be a collection of N codes where for i ∈ [N ], C(2)

i : ZQ → Z
m
q . Let C(1) :

M → Z
N
Q be a code. The N -independent concatenated code C(1) ◦C : M → Z

Nm
q

is defined by
(C1 ◦ C )(x)(i−1)m+j = C(2)

i

((
C(1)(x)

)
i

)
j
,

for all x ∈ M, i ∈ [N ], and j ∈ [m].

Definition 11 (Reed-Solomon codes [35]). A Reed-Solomon code Cλ :
Z

k+1
Q → Z

t
Q is parameterized by a base field size q = q(λ), a degree d = k(λ), a

block length t = t(λ), and a set of values Qλ = {α1, . . . , αt}. Cλ takes as input
a polynomial p of degree k over Zq, represented by its k + 1 coefficients, and
outputs the vector of evaluations (p(α1), . . . , p(αt)) of p on each of the points αi.

We look into the problem of list recovery for Reed-Solomon Codes for our
desired parameters. Note that as mentioned in Sect. 1.1, the primary challenge
for us is to have list recoverability of Reed-Solomon with list sizes larger than
what is standard in the error correcting codes world. We point out that the
problem of list recovery for Reed-Solomon Codes boils down to the following
notion of polynomial reconstruction due to Sudan’s algorithm [37].

Polynomial Reconstruction
– INPUT: Integers kp and np distinct pairs {(αi, yi)}i∈[np], where αi, yi ∈
ZQ.

– OUTPUT: A list of all polynomials p(X) ∈ ZQ[X] of degree at most
kp which satisfy p(αi) = yi, ∀ i ∈ [np].

This polynomial reconstruction can be performed efficiently by interpolation.
We refer readers to Chap. 4 of [25] for a detailed analysis of the algorithm and
how to use it for list recovery. In this work we use the following theorem from
Guruswami and Sudan [27] as a black-box.

Definition 12 (Agreement Parameter). For a Reed-Solomon Code Calg :
Z

k+1
Q → Z

t
Q, the L many reconstructed polynomials {pj}j∈[L] are said to have an

agreement parameter tA ≤ t if ∀j ∈ [L], pj(αi) = yi for at least tA many pairs
(αi, yi), i ∈ [t].

Note that tA = t denotes the case of perfect polynomial reconstruction which
is the setting of interest in this work.

Theorem 3 (Efficient Polynomial Reconstruction of Reed-Solomon
Codes).

The polynomial reconstruction problem with np input pairs, degree kp, and
agreement parameter tA can be solved in polynomial time as long as tA is at least√

kp · np. Furthermore, at most n2
p polynomials will be output by the algorithm.
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2.4 Correlation Intractable Hash Function Family
and the Fiat-Shamir Transform

We present this section by following the same flavor as [29].

Definition 13 (Hash Family). A hash family is a collection H = {hλ : Iλ ×
Xλ → Yλ}λ of keyed hash functions such that {Iλ} is uniformly poly(λ)-time
sampleable and {hλ} is uniformly poly(λ)-time evaluable. We will also write Hλ

to denote the distribution on functions hλ(i, ·) obtained by sampling i ∈ Iλ.

Definition 14 (Correlation-Intractability [10]). For a hash family H =
{hλ : Iλ × Xλ → Yλ}λ and a relation ensemble R = {Rλ ⊆ Xλ × Yλ}, the
correlation intractability game is the following game, played by any adversary A
against a fixed challenger C:

1. On input 1λ, C samples i ∈ Iλ and sends i to A.
2. A sends x ∈ Xλ to C, and wins the game if (x, hλ(i, x)) ∈ Rλ.

We say that H is correlation intractable for R if every nonuniform poly-time
A wins the correlation-intractability game only with probability negligible in the
security parameter λ.

Definition 15. Let Π be a public coin interactive protocol where the mes-
sages exchanged between P and V are denoted by (α1, β1, . . . , αr, βr) for r
rounds of interaction. Here αi and βi denote messages sent by P and V respec-
tively. If the verifier’s messages are l bits long, then for a hash function family
H : {0, 1}∗ → {0, 1}l, we define FSH[Π] to be the non interactive protocol by
sampling a common reference string h ← H and computing the message βi if V
as h(x, α1, β1, . . . , αi). The verifier for FSH(Π) accepts iff the verifier for the
interactive protocol accepts and all βi are correctly computed.

Definition 16 (FS Compatible). We say that a hash function family H is
FS- compatible for an interactive proof Π for language L if the non interactive
protocol FSH(Π) defined above is a non interactive argument.

2.5 Secure Multiparty Computation (MPC)

We define the standard notion of a Multiparty Computation along with some
of the necessary properties of a MPC protocol necessary in our work. All the
definitions are standard in literature [6,19,30].

Definition 17 (q-Party Protocol). Let P1, . . . , Pq be q parties, and let each
Pi each have a shared public input x, a private input wi, and private random-
ness ri. Let m

(i)
j be the messages received by party Pi in the jth round. We

specify a q-party protocol by its next message function NEXT which on input
(1λ, i, x, wi, ri, (m

(i)
1 , . . . ,m

(i)
j )) where λ is the security parameter, outputs all

messages sent or output by Pi in round j + 1 given inputs x,wi, ri and round
messages (m(i)

1 , . . . ,m
(i)
j ).
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Definition 18 (View of a Party). The view Vi of a party Pi during protocol Π
contains common input x, private input wi, randomness ri, its received messages
{m

(i)
j }, and all messages sent or output by Pi.

Definition 19 (Transcript of an Execution). The transcript Ξ of an exe-
cution of a q-party protocol Π is a set containing the public input, every party’s
randomness ri, every party’s private input wi, every message sent in each round.

Definition 20 (Correctness). Let f be a deterministic functionality that on
inputs (x,w1, . . . , wq) outputs (f(x,w1, . . . , wq))i∈q. We say that a q-party proto-
col Πf realizes f with perfect (respectively statistical) correctness if for all inputs
(x,w1, . . . , wq), the probability that there exists an i ∈ [q] such that the output of
party Pi is not equal to f(x,w1, . . . , wq) is 0 (respectively negl(λ)).

Definition 21 (n-Privacy). Let 1 ≤ n < q. We say that Πf realizes f with
perfect (respectively statistical) n-privacy if there is a PPT simulator Sim such
that for all inputs x,w1, . . . , wq and every set of corrupted players T ⊆ [q] where
|T | ≤ n, the joint views {Vi}i∈T of players in T is distributed identically (respec-
tively statistically close) to Sim(T, x, (wi)i∈T , (fi(x,w1, . . . , wq))i∈T ).

Definition 22 (n-Robustness (imported from [30]). We say that Πf real-
izes f with perfect (resp., statistical) n-robustness if it is perfectly (resp., statis-
tically) correct in the presence of a semi-honest adversary as in Definition 20,
and furthermore for any computationally unbounded malicious adversary cor-
rupting a set T of at most n players, and for any inputs (x,w1, . . . , wq),
the following robustness property holds. If there is no (w′

1, . . . , w
′
q) such that

f(x,w′
1, . . . , w

′
q) = 1, then the probability that some uncorrupted player outputs

1 in an execution of Πf in which the inputs of the honest players are consistent
with (x,w1, . . . , wn) is 0 (resp., is negligible in λ).

Efficiently Instantiable Perfectly Robust MPC Protocol

Remark 2. Several previous works give perfectly robust communication-efficient
MPC protocols [3,14,24].

Theorem 4 (Theorem 7 from [24]). In the client-server model, let c denote
the number of clients, and n = 2s + 1 denote the number of parties (servers).
Let k be the security parameter and let F denote a finite field. For an arithmetic
circuit C over F and for all 1 ≤ o ≤ s, there exists an information-theoretic
MPC protocol which securely computes the arithmetic circuit C in the presence
of a semi-honest adversary controlling up to c clients and s − o + 1 parties. The
communication complexity of this protocol is O(|C|·n/k+n·(c+depth(C))+n5·k)
elements in F.

Remark 3. The client-server generalizes the standard MPC model of parties. To
translate this communication complexity into the standard MPC model, every
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party has a single client and single server so if there are q parties there are
q clients and q servers. Choose o = s, then in the standard MPC model, the
communication complexity is given by,

O(|C| + q · depth(C)) + poly(k).

where o, k, |C| are as defined in the previous theorem.

Remark 4. The protocol defined above was proved to have perfect security in
the Universal Composability (UC) Model [6].

3 A Chernoff Bound

In our work, we will analyze the sum of n Bernoulli random variables Xi where
the probability p that Xi = 1 is much smaller than 1/n. We derive a “custom”
Chernoff bound that is useful for this case:

Lemma 1 (Chernoff for Bernoulli distributions Ber(p) with small p).
For i ∈ [n] let Xi ∼ Ber(p) be independent identically distributed Bernoulli

random variables for p = p(n) ∈ (0, 1]. Let X �
∑n

i=1 Xi. Then for t ≥ 0, we
have:

Pr[X − np ≥ t] ≤
(

1
e

+
t

enp

)−t

Proof. Let τ = np + t. For tidiness, we use the notation exp(a) to denote ea for
any a ∈ R. For all λ ≥ 0, by Markov’s inequality,

Pr[X ≥ τ ] ≤ E
[
eλX

]
eλτ

=

(
peλ + (1 − p)

)n

eλτ

=

(
1 + p

(
eλ − 1

))n

eλτ

≤ exp
(
np(eλ − 1)

)
exp(λτ)

= exp
(
np

(
eλ − 1

) − λ(np + t)
)
.

Minimizing for λ ≥ 0, we choose λ = ln (1 + t/np). Plugging in for λ gives,

exp
(
np

(
eλ − 1

) − λ(np + t)
)

= et

(
1 +

t

np

)−(t+np)

≤ et

(
1 +

t

np

)−t

=
(

1
e

+
t

enp

)−t

.

This immediately yields:
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Corollary 1. For i ∈ [n] let Xi ∼ Ber(p) be independent identically distributed
Bernoulli random variables for p = p(n) ∈ (0, 1]. Let X �

∑n
i=1 Xi. Then for

t > enp,

Pr[X − np ≥ t] ≤
(

t

enp

)−t

.

4 Recurrent List Recoverable Error Correcting Codes

We present a new notion of Recurrent List Recoverable error correcting codes
by N -independent concatenating Reed Solomon with random codes. This is a
special case of general list recoverability of concatenated codes which we shall
formally define later in the section. First, we introduce Aggregate List Recovery
for Random Codes where a collection of independent random codes have identical
constraint sets which are input to their corresponding Recover algorithm.

4.1 Aggregate List Recoverability of Random Codes

Definition 23 (Aggregate List Recoverability). Given a collection of t
independent codes {Cj : ZQ → Z

n
q }t

j=1, we say that they are (t, �, T )-aggregate
list recoverable if the constraint sets Sj1, . . . , Sjn that the Recover algorithm cor-
responding to the jth code takes as input are such that ∀i ∀j, Sji = S and |S| ≤ �.
Furthermore the output list for Recover of the jth code is of size Lj, where∑

j∈[t] Lj ≤ T .

Theorem 5 (Aggregate List Recoverability of t independent random
codes). Let {Crand,i : ZQ → Z

m
q }i∈[t] be a collection of t independent random

codes, and assume that there exist ε, δ, α, T such that the following hold,

– q = k log1+ε+ δ
2 k, ε > δ > 0,

– t = k logε k
– Q = q2,
– l = αq, for some constant α ∈ (0, 1)
– T ≤ 1

k2 log2+2ε+δ k
+ k log2ε− δ

2 k, and
– αm ≤ 1

q4t ,

then t of such independent random codes are (t, l, T )-aggregate list recoverable
with probability at least 1 − e−ω(k log k).

Proof. Given a function Crand,i : ZQ → Z
m
q , let S ⊆ Zq be a subset of size l. Let

Xi,x be an indicator variable such that,

Xi,x =

{
1 if (Crand,i(x))j ∈ S,∀, j ∈ [m],
0 otherwise

Thus, T =
∑

i,x Xi,x. Now, Pr[Xi,x = 1] = |S|
q = αm, where the probability is

taken over the choice of the set S. Thus, E[T ] = Qtαm.
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A direct application of Corollary 1 immediately gives an upper bound on the
size of T . We have,

Pr[T − Qtαm ≥ k0] ≤
(

k0
eQtαm

)−k0

.

Plugging in Q,αm, t, k0 as q2, 1
q4t , k logε k, k log2ε− δ

2 k respectively, we get,

Pr[T ≥ 1
k2 log2+2ε+δ k

+ k log2ε− δ
2 k] ≤

(
q2k0

e

)−k log2ε− δ
2 k

≤
(

k3 log2+4ε+ δ
2 k

e

)−k log2ε− δ
2 k

.

Taking a union bound over all choices of S, the probability that there exists a
set S for which the size of T is greater than 1

k2 log2+2ε+δ k
+ k log2ε− δ

2 k is upper
bounded by,

(
q

αq

) (
k3 log2+4ε+ δ

2 k

e

)−k log2ε− δ
2 k

≤
( e

α

)αq
(

k3 log2+4ε+ δ
2 k

e

)−k log2ε− δ
2 k

=
exp {αq − αq ln α + k log2ε− δ

2 k}
(
k3 log2+4ε+ δ

2 k
)k log2ε− δ

2 k

=
exp {α′q + k log2ε− δ

2 k}
(
k3 log2+4ε+ δ

2 k
)k log2ε− δ

2 k
where, α′ = α(1 − ln α)

= exp

{
α′k log1+ε+ δ

2 k + k̃ − k̃ ln k̃ − k̃ ln
(
k2 log2+2ε+δ k

) }

where, k̃ = k log2ε− δ
2 k

= exp

{
k̃
(
α′ log1−ε+δ k + 1 − ln k̃ − ln

(
k2 log2+2ε+δ k

) )}

= exp
{

k̃
(
α′ log1−ε+δ k + 1 − 3 ln k − ln

(
log4ε+2+ δ

2 k
))}

= exp
{

k̃ (−ω(log k))
}

= exp {−ω (k log k)}
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Thus, the probability that Crand,i are (αq, Li)-list recoverable such that∑
i Li ≤ 1

k2 log2+2ε+δ k
+ k log2ε− δ

2 k is at least 1 − e−ω(k log k).

4.2 Recurrent List Recoverability

We first define recurrent list-recoverability as a special case of list-recoverability
where the sets are identical, S1 = . . . = Sn.

Definition 24 (Recurrent List-Recoverable Codes). An ensemble of
codes {Cλ : Mλ → Z

nλ
qλ

} is said to be a (�(·), L(·))-recurrent list recoverable
(for �, L : Z+ → Z

+) if there is a polynomial-time algorithm Recover that:

– Takes as input λ ∈ Z
+ and explicit descriptions of “constraint” sets S ⊆ Z

n
q

where |S| ≤ �(λ).
– Produces as output a list of at most L(λ) messages, containing all m ∈ M

for which C(m)i ∈ S for all i ∈ [n].

Theorem 6. For arbitrary constants 0 < η, α < 1 and 0 < δ ≤ ε < 1, there
exists a probabilistic constructible ensemble for codes

{
Ck : Zk+1

q2 → Z
ηq
q

}

such that Ck is (αq, T 2)-Recurrent List Recoverable with probability at least 1 −
e−ω(k log k), where q = k log1+ε+ δ

2 k and T = O(k log2ε− δ
2 k)

Proof. Let C be a collection of t independent random codes {Crand,i : ZQ →
Z

m
q }i∈[t] with t = k logε k, Q = q2 and m such that αm ≤ 1

q4t . Then, Theorem 5
tells us that with parameters set as above, the collection C is (t, αq, T )- aggregate
list recoverable with probability at least 1 − e−ω(k log k), for T ≤ 1

k2 log2+2ε+δ k
+

k log2ε− δ
2 k.

Let Calg,k : Zk+1
Q → Z

t
Q be a Reed Solomon Code. Theorem 3 tells us that if

Calg,k is a Reed Solomon Code, then O(k2 log4ε−δ k) polynomials can be recov-
ered by polynomial reconstruction as long as t ≥ √

k · T , where T is the total
number of input pairs. Choose T = O(k log2ε− δ

2 k) and t = k logε k ,then the
necessary condition is satisfied. Thus, we can feed this list T to the polynomial
reconstruction algorithm of Calg,k.

Combining these two results and our choice of parameters which satisfy the
list recoverability constraint for Reed-Solomon in Theorem 3, we get that poly-
nomial reconstruction outputs a list Lst of size O(k2 log4ε−δ k). Moreover, our
choice of parameter ensures that there exists a constant 0 < η < 1 such that
mt = 2k log1+ε k+23k log k log log k

log 1
α

≤ ηk log1+ε k.

Thus, our code ensemble Ck can be constructed by an t-independent con-
catenation of Calg,k with C , i.e., Ck = Calg,k ◦ C . To elaborate further, accord-
ing to Definition 10, we first apply Calg,k on a message m ∈ Z

k+1
q2 . This pro-

duces Calg,k(m) := (m′
1, . . . ,m

′
t) ∈ Z

t
Q. The final code output is then Ck =

Calg,k ◦ C (m) := (Crand,i(m′
1), . . . , Crand,t(m′

t)).
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5 Zero Knowledge from Secure Computation

Definition 25 (Functionality fL). For a language L ∈ NP and its corre-
sponding relation RL, let fL be the functionality for q players P1, . . . , Pq. Given
a public input x and q shares of the witness w1, . . . , wq received from the Prover,
the functionality delivers to all players 1 if (x,w) ∈ RL and 0 otherwise.

Following [30], we slightly modify their zero knowledge protocol which makes
“black box” use of an MPC protocol ΠfL

. This means that the zero knowledge
protocol simply implements the next message function for each party without
looking into the details of the circuits that describe these functions. The next
message function NEXT is used by the prover and verifier to interact. NEXT
determines the next message to be sent based on the inputs and messages
received so far. In particular, we commit to a single transcript of the entire
protocol rather than committing to views of a party. We also note that Proto-
col 1 achieves only honest-verifier zero knowledge. Although, the scheme can be
extended to obtain a standard zero knowledge proof, it leads to an increase in
the number of rounds (cf. Theorem 4.4 in [30]). Hence, we stick to honest-verifier
zero knowledge which suffices for the purpose of producing a NIZK argument.

Fig. 1. HVZK Interactive Protocol using MPC.

Completeness and Honest Verifier Zero Knowledge. The correctness
property follow directly from an identical argument to that in [30]. However,
we present a sketch here for the sake of completeness. If (x,w) ∈ RL and the
prover is honest and w1 ⊕ . . . ⊕ wq = w, then the perfect correctness of ΠfL

implies that all the messages which were a part of the transcript Ξ will always
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be consistent with the application of the next-message function NEXT, and the
outputs of each party must be 1. This implies correctness.

Let x belong to the language L, i.e., the functionality fL outputs 1. For
Honest Verifier Zero Knowledge, we construct a simulator M that simulates the
view of an honest verifier as follows: M samples a challenge set of cardinal-
ity β of indices chosen uniformly at random among q parties. Let the set be
S′
Ch � {i1, . . . , iβ}. Sim simulates the MPC protocol ΠfL

in its head using the
parties with indices in S′

Ch. Hence, M picks strings w′
1, . . . , w

′
β uniformly at ran-

dom and simulates an execution of ΠfL
on input x,w′

1, . . . , w
′
β by invoking the

MPC simulator Sim on input (S′
Ch, x, (w′

i)i∈S′
Ch

, 1). Sim outputs a transcript Ξ ′.
Recall that the transcript Ξ ′ consists of the public input, every party’s random-
ness, every party’s private input, and every message sent in each round. Along
with a commitment to the public input, for all i ∈ S′

Ch, M commits to the ith
party’s input, randomness, private input, and messages sent and received in Ξ ′.
Let com(S′

Ch) be defined to be the tuple of commitments listed in the previous
sentence. For the remaining values in the transcript Ξ ′, M commits to 0. M
sends all commitments, S′

Ch, and openings to all commitments in com(S′
Ch). The

opened values of the transcript generated by Sim has an identical (statistically-
close) distribution to the view of an Honest-Verifier due to the perfect (statisti-
cal) t-privacy of ΠfL

. Moreover, the hiding property of the commitment scheme
implies that the Verifier cannot distinguish between the unopened commitments
of 0 from commitments to values in transcript Ξ ′.

Lemma 2 (Statistical Soundness). Let L ∈ NP be a language. Let ComSB

be a statistically-binding commitment scheme. Suppose that protocol ΠfL
realizes

the q-party functionality fL with perfect β-robustness (in the malicious model),
and perfect, statistical or computational β-privacy (in the honest-but-curious
model) for β < �q/2 − 1�, then the soundness error in ZK protocol ΠHVZK is
given by negl(q).

Proof. Suppose x 
∈ L so that there does not exist w such that (x,w) ∈ RL for
relation RL on NP language L.

If the Prover commits to inputs, randomness, and messages from an honest
execution of ΠfL

, all parties output 0 and the Verifier will reject for any choice
of SCh.

Otherwise, there exists a message m
(j)
i in Ξ that is not consistent with the

previous received messages and the next-message function NEXT. For any party
Pi who sends an inconsistent message, we say that Pi is a “corrupted” party.
There are two cases to consider: If malicious prover P ∗ corrupts at most β parties
and if P ∗ corrupts strictly more than β parties. For a fixed execution of ΠfL

and its corresponding commitments made by malicious Prover P ∗, we let B be
the set of the indices of all corrupted parties.

In the first case, the β-perfect robustness property guarantees that for all
indices i 
∈ B, the output of Pi is 0. If the Verifier chooses any index i 
∈ B,
then the Verifier will observe the output of Pi is 0 and the Verifier will catch the
Prover cheating. Therefore, with probability at least 1 − 1/

(
q
β

)
, the Verifier will



Efficient NIZKs from LWE via Polynomial Reconstruction 517

choose a set of indices of size β that is not contained in set B (if |B| < β then
the probability that Verifier catches the prover is 1).

In the second case, the Prover has chosen strictly more than β parties to
corrupt. Here, we argue that the Verifier will ask for the commitment openings
to a corrupted party with overwhelming probability. Suppose the Prover has
chosen as little as β+1 many corrupted parties. The probability that the Verifier
chooses a subset of size β that does not contain any of these corrupted parties
is given by

(
q−β−1

β

)
(

q
β

) =
β∏

i=0

q − β − i

q − i

=
β∏

i=0

(
1 − β

q − i

)

≤
β∏

i=0

e−β/(q−i)

≤
(
e−β/(q−β)

)β+1

where we apply the inequality 1 − x ≤ e−x for all real x. Then observe that by
our assumption β = αq for some constant α < 1, so

(
e−β/(q−β)

)β+1

≤ e−c2q−c.

Observe this probability forms an upper bound for the probability the Verifier
is fooled for when the Prover chooses at least β + 1 many corrupted parties.
Formally, for all i ≥ 1,

(
q − β − i

β

)
≤

(
q − β − 1

β

)
.

Therefore the probability that the Verifier fails to catch the Prover in this setting
is negligible in q and therefore negligible in security parameter λ.

Finally, by a union bound the soundness error is then e−c2q−c + 1/
(

q
β

)
=

negl(q).

6 Instantiating Fiat-Shamir via Correlation Intractable
Hash Functions

We first reintroduce the notions of Efficient Product Verifiability and Product
Sparsity from [29].

Definition 26 (Product Relation). A relation R ⊂ X × Yt is a product
relation, if for any x, the set Rx = {y | (x, y) ∈ R} is the Cartesian product of
several sets S1,x, S2,x, . . . , St,x,

Rx = S1,x × S2,x × . . . × St,x.
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Definition 27 (Efficient Product Verifiability, Definition 3.3). A relation
R is efficiently product verifiable, if there exists a polynomial-sized circuit C such
that, for any x, the sets S1,x, S2,x, . . . , St,x (in Definition 26) satisfy for any
i, yi ∈ Si,x if and only if C(x, yi, i) = 1.

Definition 28 (Product Sparsity, Definition 3.4). A relation R ⊆ X × Yt

has sparsity ρ, if for any x, the sets S1,x, S2,x, . . . , St,x (in Definition 26) satisfies
|Si,x| ≤ ρ|Y|.
Definition 29 (Bad Challenge Set). For Protocol 1, let com be a string con-
taining all commitments the prover sends to the verifier and let Vi denote the
view of Pi formed by taking the appropriate subset of decommitments to com.
We say that Vi is consistent if there exists an honest execution of the the q-party
Protocol Πf with Pi’s inputs, randomness, and messages sent and received. Then
we have the following set of bad challenges

B = S|I|
com = Scom × Scom × · · · × Scom︸ ︷︷ ︸

|I| times

where Scom = {i | Vi is consistent}.
Remark 5. The set Scom is efficiently verifiable by the MPC next message func-
tion. Also, |Scom| ≤ αq, for some tiny constant α ∈ {0, 1}. Here q is the number
of parties involved in the MPC-in-the-Head protocol so the size of the Bad Chal-
lenge Set is the maximum number of parties in the MPC protocol that can be
corrupted.

6.1 Construction of CIH Family

Lemma 3 (CIH for Efficient Enumerable Relations [7,34]). Assuming
that LWE m

2 log q ,m,q,χ holds for the particular parameter settings where χ is a B-
bounded distribution for B = qΩ(1), q = poly(m). Then, for every triplet of
polynomials T = T (λ), n = n(λ),m = m(λ), there exists a hash function family
H : {0, 1}n → {0, 1}m log q that is correlation-intractable for relation that is
enumerable in time T .

Lemma 4 ([29]). Let R ⊆ ×X × Z
n
q be an efficiently verifiable product rela-

tion with sparsity α. Moreover, let C : M → Z
n
q be a code that is (αq, L) list

recoverable and H be a hash function family that is correlation intractable for all
efficiently enumerable relations R′ ⊆ X ×M, then C◦H is correlation intractable
for R.

Theorem 7. Let Cconcat = Calg ◦ C : Zk+1
Q → Z

ηq
q , η < 1 be the Recurrent List

Recoverable Code with parameters as in Theorem 6. Let H be a Correlation
Intractable Hash Function Family for an efficiently enumerable relation as in
Lemma 3. Then the hash function family Cconcat ◦ H is a correlation intractable
hash function family for the efficiently verifiable relation B.
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Proof. From Theorem 6, the recurrent list recovery of Cconcat tells us that a list
of size O(k2 log4ε−δ k), for arbitrary constants 0 < δ < ε < 1 can be efficiently
recovered. This is indeed bound by a polynomial, hence is certainly efficiently
enumerable. Thus, from Lemma 3 and Lemma 4, we conclude that C ◦ H is
indeed Correlation Intractable for the relation B.

This leads to our final theorem.

Theorem 8. Assuming that LWE m
2 log q ,m,q,χ holds for the particular parameter

settings where χ is a B-bounded distribution for B = qΩ(1), q = poly(k), k is the
security parameter, and a MPC protocol with perfect αn-robustness and perfect,
statistical, or computational security, where α ∈ (0, 1/2) is a constant and n is
the size of the challenge set in the interactive protocol, there exists NIZKs with
computational soundness for all of NP whose proof size is

O(|C| + q · depth(C)) + poly(λ)

where C is an arithmetic circuit for the NP verification function at q = k log1+ε k
for any ε > 0.

This theorem is a direct consequence of the following results:

– Theorems 3 and 7 combine to provide a hash function family which is Fiat-
Shamir compatible with parameters aligning with the “MPC-in-the-Head”
paradigm.

– Applying the Fiat-Shamir compatible hash to Protocol 1 gives us a com-
putational sound NIZK from the MPC-in-the-Head model without parallel
repetition.

– There exists perfect αn-robust MPC protocols with the aforementioned com-
munication complexity for α < 0.5 (Theorem 4).
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Abstract. 3kf9 is a three-key CBC-type MAC that enhances the stan-
dardized integrity algorithm f9 (3GPP-MAC). It has beyond-birthday-
bound security and is expected to be a possible candidate in constrained
environments when instantiated with lightweight blockciphers. Two vari-
ants 2kf9 and 1kf9 were proposed to reduce key size for efficiency, but
recently, Leurent et al. (CRYPTO’18) and Shen et al. (CRYPTO’21)
pointed out critical flaws on these two variants and invalidated their
security proofs with birthday-bound attacks.

In this work, we revisit previous constructions of key-reduced variants
of 3kf9 and analyze what went wrong in security analyses. Interestingly,
we find that a single doubling near the end restores the intended beyond-
birthday-bound security of both 2kf9 and 1kf9. We then propose two new
key-reduced variants of 3kf9, called n2kf9 and n1kf9. By leveraging pre-
vious attempts, we prove that n2kf9 is secure up to 22n/3 queries, and
prove that n1kf9 is secure up to 22n/3 queries when the message space
is prefix-free. We also provide beyond-birthday analysis of n2kf9 in the
multi-user setting. Note that compared to EMAC and CBC-MAC, the
additional cost to provide a higher security guarantee is expected to be
minimal for n2kf9 and n1kf9. It only requires one additional blockcipher
call and one doubling.

Keywords: Message authentication code · CBC-MAC · 3kf9 ·
Beyond-birthday-bound security

1 Introduction

A Message Authentication Code (MAC) is a fundamental symmetric-key prim-
itive used to ensure the authenticity of messages. A MAC is typically built
from a blockcipher (e.g., CBC-MAC [1,8], OMAC [23], PMAC [11]), or from a
hash function (e.g., HMAC [7], NMAC [7], NI-MAC [4]). At a high level, many
of these constructions iterate the underlying primitive with an n-bit internal
state size, and thus they are subject to a generic attack using 2n/2 queries
by Preneel and Oorschot [32] exploiting internal state collisions. However, the
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birthday-bound security 2n/2 is not always enough in practice, particularly when
a MAC is implemented with a lightweight blockcipher. To reduce implementa-
tion costs, these blockciphers often offer a block length n of 64 bits or even
shorter [3,5,6,12,13,18,35]. In the case of n = 64, the birthday-bound becomes
232 and is vulnerable in certain practical applications [10].

Double-block Hash-then-Sum Constructions. To overcome the birthday-
bound barrier, a series of blockcipher-based MACs has been proposed, including
SUM-ECBC [36], PMAC Plus [37], 3kf9 [38], and LightMAC Plus [27]. The first one
is a rate-2 construction, whereas the last three are rate-1 constructions and thus
more efficient in that aspect.1 2 These constructions follow a similar paradigm
called Double-block Hash-then Sum (DbHtS), where the internal state of the hash
function is 2n-bit and two encrypted values each of n-bit half are xored to generate
the tag. Datta et al. [15] formalized this paradigm and proved these DbHtS MACs
including their two-key variants are secure up to 22n/3 queries. Leurent et al. [26]
proposed a generic attack on DbHtS MACs with query complexity 23n/4. Later,
a matching proof by Kim et al. [25] confirmed that the security of DbHtS MACs
stands at 23n/4 queries. Shen et al. [34] also proved that two-key variants of DbHtS
MACs are secure against 22n/3 queries in the multi-user setting.

Key-size Reduction and Field Multiplications. All the above DbHtS
MACs require at least three or two blockcipher keys. Although in some prac-
tical protocols, the multiple keys can be generated from a master key, it has
two drawbacks: (i) the construction inherently requires multiple blockcipher key
schedulings, and typically need more invocation time and more energy consump-
tion; (ii) the previous provable results cannot be applied since they are done by
assuming independent keys. Hence another popular direction is to study how to
reduce the key size of these MACs for better efficiency, while at the same time
keeping their high security. Datta et al. [17] showed that the single-key variant of
PMAC Plus dubbed 1k-PMAC Plus is secure up to 22n/3 queries. Naito [28] also
showed that the single-key variant of LightMAC Plus dubbed LightMAC Plus1k
remains secure up to 22n/3 queries. Inheriting from their original versions, besides
blockcipher invocations, both 1k-PMAC Plus and LightMAC Plus1k require at
least one additional field multiplication per message block (and totally at least
� field multiplications if the message is �-block). On the contrary, as a CBC-
type mode, 3kf9 does not need field multiplications, and its key-reduced version
is likely to be particularly appealing to applications in serial processing. Yet,
reducing its key size appears to be a challenging problem as discussed below.

A Brief History of Key-reduced Variants of 3kf9. 3kf9 [38] is designed
by combining f9 (3GPP-MAC) [2,22] and EMAC [31]. Datta et al. [16] initialized
the study of key-reduced variants of 3kf9 and proposed a single-key variant called
1kf9. Later, Leurent et al. [26] showed a birthday-bound attack on 1kf9 and thus
invalidated its security proof. In an other paper, Datta et al. [15] proposed a
two-key variant called 2kf9. Very recently, Shen et al. [34] found a flaw in 2kf9

1 Rate is the average number of blockcipher invocations per message block [19,20].
2 The rate of LightMAC Plus will increase with the counter size.
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that it can be forged by using a single-block message. They also attempted to
fix 2kf9 with several variants, yet all subject to a birthday-bound attack.

Our Contributions. We revisit previous constructions of key-reduced variants
of 3kf9 and analyze what went wrong in previous proofs. Interestingly, we find that
a single doubling near the end (which can be computed efficiently by one-bit shift
and one conditional XOR with a constant string) restores the intended beyond-
birthday-bound security of both 2kf9 and 1kf9. We then propose two key-reduced
variants of 3kf9, namely a two-key variant called n2fk9 and a single-key variant
called n1kf9 (illustrated in Fig. 6 and Fig. 7, respectively). Note that to provide a
higher security guarantee that is beyond the birthday-bound, the additional cost
compared to EMAC and CBC-MAC is expected to be minimal for n2kf9 and n1kf9:
it only requires one additional blockcipher call and one finite field doubling.

We then give security analyses for n2kf9 and n1kf9. We prove that n2kf9 is
secure up to 22n/3 queries, and prove that n1kf9 is secure up to 22n/3 queries when
the message space is prefix-free. Prefix-free means that no query is a prefix of
another as in the case of CBC-MAC, and can be realized by putting the n-bit
length encoding of each message as its first block. Note that both our proofs and
previous attempts [15,16] use a similar proof strategy: first show that any pair of
the final 2n-bit state (Σi, Λi) is cover-free, that is at least one of them is fresh, and
then apply the lemma of sum of two identical permutations to get to a beyond-
birthday-bound security result. Yet, the difficulties lie in how to show that (Σi, Λi)
is cover-free, which is an essential part of the proof and where previous attempts
failed. Learning from previous mistakes, we provide detailed analyses to show that
(Σi, Λi) of constructions n2kf9 and n1kf9 is indeed cover-free with the help of dou-
bling, and thus prove that both of them are secure beyond the birthday-bound.
These analyses require surmounting some obstacles and are based on the structure
graph of CBC-MAC [9,24]. Moreover, the dominant term in our bound is q3�2/22n

for n2kf9 and q3�3/22n for n1kf9 where q is the number of MAC queries and � is the
maximal block length among these MAC queries. Both are better than the previ-
ous bound q3�4/22n of 2kf9 [15] and 1kf9 [16] in terms of length �. The improvement
of mitigating the influence of length � on the bound is non-trivial since it requires
a fine-grained analysis of cases with multiple ‘accidents’ (collisions) in CBC-MAC.
We also provide a beyond-birthday analysis of n2kf9 in the multi-user setting.

Discussion of Our Bound. Our bound is interesting for beyond-birthday-
bound security with practical interest, especially when communicated messages
are of limited length. We show that for any adversary making q MAC queries of
maximal block length �, the advantages against the PRF security of n2kf9 and
n1kf9 are of the order q3�2/22n +q2�4/22n and q3�3/22n +q2�4/22n respectively.3

We compare the later term with the bound q2�/2n of conventional rate-1 MACs
such as CBC-MAC, OMAC and PMAC. With a 64-bit block size and a guarantee

3 To the best of our knowledge, all security bounds of CBC-like MACs (regardless of
beyond the birthday-bound or not) include a similar term (�2/2n)a for a ≥ 1 [9,15,
25,29]. This seems to be inherent that arises from the collision analysis of CBC-like
structure.
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that adversaries do not forge with probability more than one in a million, one
gets a restriction of the form

q2�

264
≤ 1

220
or

q3�3

2128
+

q2�4

2128
≤ 1

220
.

If the messages are 26 blocks long, then 219 messages can be tagged and total 231

bits = 256 MB of data for the bound q2�/2n, while 229 messages and total 241

bits = 256 GB for the bound q3�3/22n + q2�4/22n. We stress that using 128-bit
blockciphers with n2kf9 and n1kf9 can also provide higher security guarantees.

Organization. First, we set useful notations and security notions in Sect. 2.
In Sect. 3 we revisit different variants of 3kf9 with their associated proofs, and
motivate our constructions n2kf9 and n1kf9. Then, in Sect. 4 and Sect. 5 we give
the security proofs for n2kf9. In Sect. 6, we demonstrate the proof for n1kf9.

2 Preliminaries

Notation. Let ε denote the empty string. Let {0, 1}∗ be the set of all finite
bit strings including the empty string ε. For a finite set S, we let x ←$ S denote
the uniform sampling from S and assigning the value to x. Let |x| denote the
length of string x. Let |x|n denote the n-bit encoding of the length of string
x. Concatenation of strings x and y is written as x ‖ y or simply xy. x10∗

denotes the padding that right padded with a single 1 and as few 0 bits so
that the length of string to be a multiple of n bits. We let y ← A(x1, . . . ; r)
denote running algorithm A with randomness r on inputs x1, . . . and assigning
the output to y. We let y ←$ A(x1, . . .) be the result of picking r at random and
letting y ← A(x1, . . . ; r). Let Perm(n) denote the set of all permutations over
{0, 1}n, and let Func(∗, n) denote the set of all functions from {0, 1}∗ to {0, 1}n.
For integer 1 ≤ a ≤ N , let (N)a denote N(N − 1) . . . (N − a + 1).

Security Definitions. An adversary A is an algorithm that always outputs a
bit. We write AO = 1 to denote the event that A outputs 1 when given access to
oracle O. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher. Let π ←$ Perm(n)
be a random permutation. The advantage of A against the PRP security of E
is defined as

AdvprpE (A) = Pr
[ AEK = 1

] − Pr [Aπ = 1 ]

where K is chosen uniformly at random from {0, 1}k.
Let F : K × {0, 1}∗ → {0, 1}n be a MAC algorithm. Let R ←$ Func(∗, n)

be a random function. The advantage of A against the PRF security of F is
defined as

AdvprfF (A) = Pr
[ AFK = 1

] − Pr
[ AR = 1

]

where K is chosen uniformly at random from K. We note that the above defi-
nition captures the security of a MAC as a pseudorandom function (PRF). It is
well known that any PRF is a secure MAC [8].
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The H-coefficient Technique. Following from Hoang and Tessaro [21], we
consider interactions between an adversary A and an abstract system S which
answers A’s queries. The resulting interaction can then be recorded with a tran-
script τ = ((x1, y1), . . . , (xq, yq)). Let pS(τ) denote the probability that S pro-
duces τ . It is known that pS(τ) is the description of S and independent of the
adversary A. We say that a transcript is attainable for the system S if pS(τ) > 0.

We now describe the H-coefficient technique of Patarin [14,30]. Generically,
it considers an adversary that aims at distinguishing a “real” system S1 from
an “ideal” system S0. The interactions of the adversary with those systems
induce two transcript distributions X1 and X0 respectively. It is well known
that the statistical distance SD(X1,X0) is an upper bound on the distinguishing
advantage of A.

Lemma 2.1. [14,30] Suppose that the set of attainable transcripts for the ideal
system can be partitioned into good and bad ones. If there exists ε ≥ 0 such that
pS1 (τ)

pS0(τ)
≥ 1 − ε for any good transcript τ , then

SD(X1,X0) ≤ ε + Pr[X0 is bad] .

Sum of Two Identical Permutations. The following result of sum of two
identical permutations under conditional distribution is helpful in our analysis.

Lemma 2.2. [17] For any tuple (T1, . . . , Tq) such that each Ti �= 0n, let
U1, . . . , Uq, V1, . . . , Vq be 2q random variables sampled without replacement from
{0, 1}n \ Z that can be regarded as the outputs of a random permutation where
the subset Z is of size z, and satisfy Ui ⊕ Vi = Ti for 1 ≤ i ≤ q. Denote by S
the set of tuples of these 2q variables. Then

|S| ≥ (2n)2q

2nq
(1 − μ) ,

where μ = 4qz2+8q2z+6q3

22n by assuming z + 2q ≤ 2n−1.

3 The n2kf9 and n1kf9 Constructions

In this section, we first go through previous constructions based on f9-hash
(see Fig. 1), including 3kf9 [38], 2kf9 [15], 1kf9 [16] and a plausible construction
(see Fig. 5) where 2kf9 and 1kf9 are actually broken. We then propose two new
constructions called n2kf9 and n1kf9, and show that they are both secure beyond
the birthday-bound.

3.1 Previous Constructions

The 3kf9 Construction uses 3 different keys (see Fig. 2). It processes the
message via f9-hash and then compute T = EK1(Σ)⊕EK2(Λ). It has a provable
beyond-birthday-bound security. Intuitively, using two different keys to compute
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Fig. 1. The f9-hash algorithm producing a 2n-bit output.

Fig. 2. The 3kf9 construction. It is built on top of a blockcipher E : {0, 1}k ×{0, 1}n →
{0, 1}n with three keys L, K1 and K2.

the tag makes it harder for an attacker to exploit some relations between Σ and
Λ. Events like Σi = Λi for some message Mi or again Σi = Λj , Σj = Λi for some
pair of messages Mi,Mj are hardly detectable by looking at the output tags.

The 1kf9Construction uses a single-key for both the f9-hash and tag computa-
tion (K = L) (see Fig. 3). It starts by processing an all-0 block before the message
in f9-hash and then finishes by computing T = EL(fix0(2Σ))⊕EL(fix1(2Λ)) where
the fix0 and fix1 functions set the least significant bit to 0 and 1 respectively, and
multiplication by 2 is done in a Galois field. The fix function acts as a domain-
separation ensuring that no fix0(2Σ) values can ever collide with a fix1(2Λ) value.
However, there is a birthday-bound attack by Leurent et al. [26] on 1kf9 that actu-
ally exploits the fix function. The attack looks for two values x and y such that
EL(x ⊕ EL(0)) ⊕ EL(y ⊕ EL(0)) = d, where d is the inverse of 2, as it implies
a collision between the tags of messages x||0 and y||d. Indeed, the Σ parts will
be equal as the injection of d cancels the difference, and the Λ parts will differ by
d which becomes 1 after multiplication and is absorbed by the fix function. This
describes a full-state collision attack with birthday-bound complexity.

The 2kf9 Construction uses two different keys (see Fig. 4), one for f9-hash and
the other for the tag computation as T = EK(Σ) ⊕ EK(Λ). It doesn’t use any fix
function or finite field multiplication. However, Shen et al. [34] realized that when
f9-hash processes a single-block message then Σ is always equal to Λ and thus the
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Fig. 3. The 1kf9 construction. It is built on top of a blockcipher E : {0, 1}k ×{0, 1}n →
{0, 1}n with a single key L.

Fig. 4. The 2kf9 Construction. It is built on top of a blockcipher E : {0, 1}k×{0, 1}n →
{0, 1}n with two keys L and K.

tag is always 0. This is a single-query forgery attack which clearly demonstrates
that one cannot simply use the raw f9-hash to get security beyond the birthday-
bound. Shen et al. [34] further realized that adding a fix function and finite field
multiplication leads to essentially the same birthday-bound attack as for 1kf9.

A Plausible Construction. The 1kf9 construction does not need the fix
functions to avoid the one-query attack, thanks to prepending an all-0 block
at the beginning which forbids one-block calls to f9-hash. One can wonder if
doing the same for 2kf9 would suffice to fix it (see Fig. 5). Unfortunately, in this
case, there is still a distinguisher attack with birthday-bound complexity that
exploits another undesirable property of f9-hash. For any prefix M (note that
ΣM and ΛM as the internal state values of f9-hash after processing M), if we
query M ||x for many x, then the tags should collide about twice often than
expected. Indeed, by varying the last block only a new Σx value is added to
the bottom part to compute Λx = ΛM ⊕ Σx. Therefore, for any value x, the
probability that Σy = ΛM ⊕Σx is about 1/2n for another value y, which implies
Σy = Λx and Λy = Σx and thus results in a non-random tag collision. Both
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Fig. 5. A plausible construction. It is built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n with two keys L and K, and prepends an all-0 block at the beginning.

non-random and random tag collisions happen at the birthday-bound which
effectively doubles the chance of observing a tag collision compared with a PRF.
Even though it is not clear whether we can use this property to forge a tag, we
can easily construct a distinguisher with non-negligible advantage that looks at
the number of tag collisions happening around the birthday-bound. Notice that
this birthday-bound distinguisher also applies to the original 2kf9 construction.

3.2 Looking Back at Proofs

Those attacks often indicate flaws in the proof that we can learn from. In
fact, there are flaws in the original proofs of 3kf9 (see the discussion in [15,
Section 6.5]), 2kf9 (attacked by [34]) and 1kf9 (withdrawn by the authors [16]
and attacked by [26]). Therefore, it is important to analyze what went wrong
before moving forward to fix with new constructions.

The proof of 1kf9 was already known to have flaws and was withdrawn so
the attack only confirmed that the proof couldn’t be fixed.

The single-query attack on 2kf9 exploits the fact that the event Σi = Λi

automatically occurs for any single-block message Mi. In the proof of [15], they
study the probability of the event Σi = Λi as the event that the following
equation occurs (namely the intermediate values as in Fig. 1):

Y i
1 ⊕ · · · ⊕ Y i

li−1 = 0

whose dotted notation may prevent to see that whenever li − 1 = 0, the case
of a one-block message, the equation becomes trivial. Interestingly, even though
they pointed out the attack, [34] missed this event from their multi-user setting
analysis. While the missing analysis is simple in most cases, it still shows that
some terms are missing from the final bound.

The birthday-bound distinguisher of the plausible construction exploits the
event that “Σi = Λj and Σj = Λi” for two messages Mi and Mj . The analysis
of this event is simply missing from [15].
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Fig. 6. The n2kf9[E] construction. It is built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n with two keys L and K.

3.3 Our Constructions

In the rest of this paper, we will show that a simple doubling (multiply by 2) of
the Λ value can fix both 2kf9 and 1kf9 to go beyond the birthday-bound security.
We now present the two new constructions n2kf9 and n1kf9.

Intuition Behind the Designs. Before the presentation of new construc-
tions, we briefly discuss the intuition that the single doubling helps to avoid the
problems in previous constructions. The reason is that multiplying the sum of
Y1 ⊕ Y2 · · · ⊕ Y� by 2 can break the relation between Σ and Λ. More concretely,
firstly, it avoids the single-query attack as finite field doubling has no fix point
except for 0. Secondly, for any prefix M , playing with a single block suffix x
will introduce a unique 3 · Σx difference between the top and bottom part and
thus avoids the birthday-bound distinguishing attack. Thirdly, the removal of
two fix functions fix0 and fix1 avoids the attack in 1kf9. Finally, as evidenced in
the proof, for any three messages Mi, Mj and Mk, the probability that Σi = Σj

or Σi = Λj , and Λi = Σk or Λi = Λk is small. Similar argument also holds for
the case of two messages Mi and Mj .

The n2kf9 Construction. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher.
The n2kf9 is built from a blockcipher E with two keys L and K. Multiplication

 is done on a finite field. Note that the single doubling (multiply by 2) can be
computed efficiently by one-bit shift and one conditional XOR with a constant
string. The specification of n2kf9 is illustrated in Fig. 6.
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Security of n2kf9. Given that EL and EK are two good PRPs, we have the
following result.

Theorem 3.1. For any adversary A against the PRF security of n2kf9 that
runs in time at most t and makes at most q queries of block length at most �,
we have

Advprfn2kf9[E](A) ≤ AdvprpE (B1) + AdvprpE (B2) +
60q3�2

22n
+

8q3

22n
+

122q3�6

23n
+

30q2�4

22n

+
108q3�4

23n
+

2q2

22n
+

q�2

2n
+

3q

2n

by assuming � ≤ 2n−3, where B1 and B2 are two adversaries against the PRP
security of the blockcipher EL and EK respectively, the former running in time
at most t1 = t + O(q�) and making at most q� queries while the latter running
in time at most t2 = t + O(q) and making at most q queries.

The proof of Theorem 3.1 is in Sect. 4 and Sect. 5. We also provide beyond-
birthday analysis of n2kf9 in the multi-user setting in the full version of this
paper [33].

The n1kf9 Construction. Let E : {0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher.
The n1kf9 is built from a blockcipher E with a single key K. Multiplication 

is done on a finite field. The specification of n1kf9 is illustrated in Fig. 7. Note
that the first block should always be the n-bit length encoding of the message
to realize prefix-free as in the case for CBC-MAC.

Security of n1kf9. Given that EK is a good PRP, the n1kf9 is a good PRF
with beyond-birthday-bound security as shown in the following theorem. The
proof of this theorem is in Sect. 6.

Theorem 3.2. For any adversary A against the PRF security of n1kf9 that
runs in time at most t and makes at most q queries of block length at most �,
we have

Advprfn1kf9[E](A) ≤ AdvprpE (B) +
8q3(� + 3)3

22n
+

129q3(� + 2)6

23n
+

36q2(� + 2)4

22n

+
6q3

22n
+

q(� + 2)2

2n
+

3q

2n

by assuming � ≤ 2n−3 − 2, where B is an adversary against the PRP security of
the blockcipher EK that runs in time at most t = t + O(q(� + 3)) and makes at
most q(� + 3) queries.

Tightness of the Bound. We remark that the provable 2n/3-bit security
for both n2kf9 and n1kf9 may not be tight. Currently we don’t find a matching
attack with 22n/3 queries complexity. On the other hand, intuitively the difficulty
of improving the bound lies in how to handle the case when (Σi, Λi) is not cover-
free instead of simply setting bad events since the final two blockciphers use the
same key.
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Fig. 7. The n1kf9[E] construction. It is built on top of a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n with a single key K.

4 Security Analysis of N2kf9 Construction

In this section, we prove Theorem 3.1, which shows that n2kf9 achieves beyond-
birthday-bound security.

Overview of the Proof. In the proof, we first replace blockciphers with ran-
dom permutations in a standard way, and then adopt the H-coefficient technique
as described in Sect. 2 to bound the distance between real world and ideal world.

To upper bound the probability of bad transcripts in the ideal world, we
define several bad conditions and grant the adversary simulated values which
may be reminiscent of previous attempts [15,34]. Yet, we work on the case of
the permutation instead of the key being revealed to the adversary, and some
subtleties arise when calculating the ratio of good transcripts. Moreover, to ana-
lyze the bad conditions when (Σi, Λi) is not cover-free and obtain a good bound
(beyond birthday-bound), we need to show that the equations related to these
two variables have a rank greater than or equal to 2. This analysis requires
surmounting some obstacles and is based on the knowledge of structure graph
of CBC-MAC [9,24]. In particular, to mitigate the influence of length � on the
bound, it requires to consider the event when there are two collisions among the
computation of a triplet of messages, and show that these equations (including
the ones related to variables Σi and Λi and the ones induced by these two colli-
sions) have a rank greater than or equal to 3. Multiple subcases also occur when
analyzing the event of one collision among the computation of a pair of messages.
Finally, we conclude the proof by analyzing the ratio of good transcripts.
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4.1 Game Description

Proof. Without loss of generality, we assume that the adversary A never repeats
a previous query since otherwise it will receive the same answer. It is helpful to
decompose the 2n-bit hash function H of n2kf9 into two n-bit hash function H1

and H2 where H1
L(M) = Y� and H2

L(M) = 2 · (Y1 ⊕ Y2 ⊕ · · · ⊕ Y�), and thus
n2kf9[E](L,K,M) = EK(H1

L(M)) ⊕ EK(H2
L(M)). We first replace the blockci-

phers EL and EK of n2kf9 with two independent random permutations π1 and
π2, and by using the standard argument, we have

Advprfn2kf9[E](A) ≤ AdvprpE (B1) + AdvprpE (B2) + Advprfn2kf9[π1,π2]
(A) ,

where B1 is an adversary against the PRP security of EL that runs in time at
most t1 = t + O(q�) and makes at most q� queries, B1 is an adversary against
the PRP security of EK that runs in time at most t2 = t + O(q) and makes at
most q queries. To bound the last term on the right side of the inequality (the
main part of the proof), we will use the H-coefficient technique. At this stage,
we can further assume that the adversary A is computationally unbounded and
thus is deterministic. Here the real system corresponds to the world when A is
interacting with the scheme n2kf9[π1, π2], and the ideal system corresponds to
the world when A is interacting with a random function R ← Func(∗, n).

Setup. After the adversary A finishes querying, it obtains a sequence of query-
answer entries (M1, T1), . . . , (Mq, Tq) that records the interaction between the
adversary and its oracle, where Ti = n2kf9[π1, π2](Mi) in the real world and
Ti = R(Mi) in the ideal world. In the real world, we denote by Σi and Λi

the internal outputs of H during the computation of entry (Mi, Ti), namely
Σi = H1(Mi) and Λi = H2(Mi). We denote by Ui and Vi the corresponding
outputs of permutation π2, namely Ui = π2(Σi) and Vi = π2(Λi). After the
interaction, we will reveal the encoding of permutation π1 to the adversary, and
grant it all the internal values Ui and Vi. While in the ideal world, we will
instead give the adversary a permutation π1 ←$ Perm(n) that is independent of
its queries, and grant it q pairs of dummy values Ui and Vi sampled as follows:
the simulation oracle Off(q) is invoked which is illustrated in Fig. 8 and returns
q pairs of (Ui, Vi) to the adversary. Note that this additional information can only
help the adversary as it can simply ignore them. In addition, the internal values
Σi and Λi appeared during the computation of Off(q) are uniquely determined
by message Mi and permutation π1. Hence a transcript consists of the query-
answer pairs (Mi, Ti), the permutation π1, and the internal values (Ui, Vi).

4.2 Bad Transcripts

Defining Bad Transcripts. We now give the definition of bad transcripts.
The goal of this definition is to ensure that for each query, the corresponding
pair of (Σi, Λi) is always cover-free. That is, at least one of Σi and Λi is fresh.
Formally, we say a transcript is bad if at least one of the following conditions is
triggered:
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(1) There exists an entry (Mi, Ti) such that Ti = 0n. This will force Ui = Vi in
the real world even when both Σi and Λi are fresh, while there is no such
constraint in the ideal world.

(2) There exists an entry (Mi, Ti) such that Σi = Λi. This will force Ti = 0n,
while there is no such constraint in the ideal world.

(3) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi = Σj and
Λi = Λj , or Σi = Λj and Λi = Σj . This will force Ti = Tj in the real world,
while there is no such constraint in the ideal world.

(4) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi ∈ {Σj , Λj}
and Vi ∈ {Vj , Uj}. This guarantees that the outputs of Φ in the simulation
oracle Off(q) are compatible with a permutation in all good transcripts;
namely, when the inputs are distinct the corresponding outputs should also
be distinct.

(5) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Λi ∈ {Σj , Λj}
and Ui ∈ {Vj , Uj}. Again, this guarantees that the outputs of Φ in the
simulation oracle Off(q) are compatible with a permutation in all good
transcripts.

(6) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that
Σi ∈ {Σj , Λj} and Λi ∈ {Σk, Λk}. This guarantees that for each query of
good transcripts, at least one of Σi and Λi is fresh, and thus at least one of
corresponding outputs Ui and Vi has fresh randomness in the real world.

(7) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that
Σi ∈ {Σj , Λj} and Vi ∈ {Uk, Vk}. This guarantees that the outputs of Φ in
the simulation oracle Off(q) are compatible with a permutation in all good
transcripts; namely, distinct inputs lead to distinct outputs.

(8) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that
Λi ∈ {Σj , Λj}, and Ui ∈ {Uk, Vk}. Again, this guarantees that the outputs
of Φ in the simulation oracle Off(q) are compatible with a permutation in
all good transcripts.

If none of above conditions is met, then we say it is a good transcript. Denote by
X1 and X0 the random variables for the transcript distribution in the real and
ideal worlds respectively.

Probability of Bad Transcripts. We now proceed to bound the probability
that X0 is bad in the ideal world. For 1 ≤ i ≤ 8, denote by badi the event when
the ith condition is triggered. We analyze each event in turn. We begin with the
first event. Recall that in the ideal world, each Ti is a random n-bit string. Hence
the probability that Ti = 0n is exactly 1/2n. Summing over at most q queries,

Pr [ bad1 ] =
q

2n
. (1)

The probability of events from 2 to 8 is bounded by the following lemma. The
proof of this lemma is postponed to Sect. 5, as its analysis is based on the struc-
ture graph of CBC-MAC [9,24] and is involved.
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Lemma 4.1. For any adversary that makes at most q queries of block length at
most �,

8∑

j=2

Pr [ badj ] ≤ 60q3�2

22n
+

2q3

22n
+

122q3�6

23n
+

22q2�2

22n
+

108q3�4

23n
+

8q2�4

22n
+

2q2

22n

+
q�2

2n
+

2q

2n
.

4.3 Good Transcripts

Transcript Ratio. Let τ be a good transcript. Note that for any good tran-
script and for any pair of (Σi, Λi), at least one of Σi and Λi is fresh. Hence the
set N in Off(q) (see Fig. 8) is empty, and the game will not abort. In the set H,
there are exactly q + |F| fresh values (2|F| fresh values for all indices in F and
additional (2q−2|F|)/2 fresh values for some indices in G), and q−|F| non-fresh
values. For the entries that are recorded by the set G, suppose that there are g
classes among the values Σi and Λi: the elements in the same class are either
connected by the equation of Φ(Σi) ⊕ Φ(Λi) = Ti, or connected by the equation
of Σi = Σj or Σi = Λj , or Λi = Σj or Λi = Λj . That is, the pair (Σi, Λi) is
obviously in the same class. And if Σi = Σj , then (Σi, Λi) and (Σj , Λj) are also
in the same class. Note that each class contains at least three elements, and has
only one corresponding sampled value since other values will be determined by
the equations. On the other hand, since τ is good, the corresponding values Ui

and Vi of these g distinct classes are compatible with a permutation. That is,
these g sampled values are sampled such that they are distinct from each other
and do not collide with other values during the computation of the set F .
We now proceed to compute the transcript ratio. In the ideal world, since τ is
good, the event X0 = τ is the composition of the following independent events:

– We sample a random permutation π1 ←$ Perm(n) to compute the internal
Y state values in τ . Let σ the number of unique inputs, this happens with
probability 1/(2n)σ.

– The answers of these q queries are the same as the values defined in τ .
This happens with probability 2−qn. On the other hand, the internal values
(Ui, Vi)1≤i≤q from Off(q) (Fig. 8) are the same as the values defined in τ .
This happens with probability 1/|S| ·1/(2n −2|F|)g: the variables (Ui, Vi)i∈F
are uniformly at random sampled from the set S, and there are g variables
sampled without replacement from the remaining 2n − 2|F| elements for the
rest (Ui, Vi)i∈G .

Therefore,

Pr [X0 = τ ] =
1

(2n)σ
· 1
2qn

· 1
|S| · 1

(2n − 2|F|)g
.

On the other hand, in the real world, the probability of the event X1 = τ entirely
comes from the two random permutations:



Key-Reduced Variants of 3kf9 with Beyond-Birthday-Bound Security 539

– For the first permutation π1 ←$ Perm(n), the number of unique inputs appear-
ing in τ is σ as defined in the ideal world analysis. This happens with prob-
ability 1/(2n)σ.

– The number of unique inputs to the second permutation is the number of
unique (Ui, Vi)1≤i≤q as appearing in τ . That is exactly q + |F| + g, because
we have a total of q + |F| fresh input-output tuples, and for each class in G,
we have one additional input-output tuple.

Hence,

Pr [X1 = τ ] =
1

(2n)σ
· 1
(2n)q+|F|+g

.

Therefore,

Pr [X1 = τ ]
Pr [X0 = τ ]

=
2qn · |S| · (2n − 2|F|)g

(2n)q+|F|+g

≥ 2(q−|F|)n · (2n)2|F| · (2n − 2|F|)g

(2n)q+|F|+g
· (1 − 6|F|3

22n
)

≥ 2(q−|F|)n

(2n − 2|F| − g)q−|F|
· (1 − 6|F|3

22n
)

≥ 1 − 6q3

22n
, (2)

where the first inequality comes from Lemma 2.2 by fixing the conditional set
to be empty.

4.4 Conclusion

Wrapping Up. From Lemma 2.1, and combining Eq. (1), Lemma 4.1 and
Eq. (2), we obtain

Advprfn2kf9[π1,π2]
(A) ≤ 60q3�2

22n
+

8q3

22n
+

122q3�6

23n
+

30q2�4

22n
+

108q3�4

23n
+

2q2

22n

+
q�2

2n
+

3q

2n

and conclude the proof of Theorem 3.1.

5 Proof of Lemma 4.1

In this section, we analyze the probability of events from 2 to 8 and prove
Lemma 4.1. In n2kf9[π1, π2], the first n-bit hash function H1(M) is exactly
the CBC-MAC on message M , while the second n-bit hash function H2(M)
simply xor-sums all the internal outputs of CBC-MAC and then doubles it. In
Appendix B of the full version [33], we recall the definition and properties of a
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Fig. 8. Offline oracle used in the proof of n2kf9. Here Φ is a partial function that
aims to simulate a random permutation. Variables Σi and Λi are inputs of a random
permutation, and Ui and Vi are corresponding outputs of this random permutation.
The domain and range of Φ are both initialized to be empty.

combinatorial tool called the structure graph of CBC-MAC [9,24] that is useful
in our analysis.

Intuitively, a structure graph GM
π is a directed graph that is generated from

the computation of CBC-MAC on various inputs M = {M1,M2, . . .}. The start-
ing node of a structure graph is always the value 0n, and each output of the
permutation π is regarded as a node in the graph. In the structure graph GM

π ,
there may be some accidental collisions (called accidents) on the nodes that is
captured by the set Acc(GM

π ). We will first limit the number of accidents, and
then analyze the probability of bad events conditioned on it.

Restricting the Accidents. We limit the number of accidents that can arise
within any single, pair or triplet of messages. Consider the following event for
any distinct messages Mi,Mj ,Mk:

crash = |Acc(GMi
π )| ≥ 1 or |Acc(G{Mi,Mj}

π )| ≥ 2 or |Acc(G{Mi,Mj ,Mk}
π )| ≥ 3 .
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From [33, Lemma B.2] and the union bound, and summing over q messages,
(
q
2

)

pairs of messages,
(
q
3

)
triplets of messages:

Pr [ crash ] ≤ q�2

2n
+

(
q

2

)
· 16�4

22n
+

(
q

3

)
· 729�6

23n
≤ q�2

2n
+

8q2�4

22n
+

122q3�6

23n
. (3)

We now analyze the probability of events from 2 to 8 in conjunction with
¬crash. That is when there is no accident within any single message, at most
one accident within any pair of messages, and at most two accidents within any
triplet of messages.

Proof Ideas of each Event. We provide some intuition before the formal
analysis of each event. For event 2, it involves only one message and is easy to
show that the rank of one equation produced by this event is 1. For event 3, it
consists of two sub-cases from two messages. The crucial part is to show that the
rank of two equations produced by each sub-case is 2 when |Acc(G{Mi,Mj}

π )| = 1.
The analyses of event 4 and 5 are a bit easier than the one of event 3 since one
of two equations comes from the string Ti which is random and independent of
queries in the ideal world. For event 6, it includes totally four sub-cases that
are involved three messages. Each sub-case should be analyzed separately but
the main idea is similar. The point is to show that the rank of two equations
produced by each sub-case is 2 when |Acc(G{Mi,Mj ,Mk}

π )| = 1. Moreover, when
|Acc(G{Mi,Mj ,Mk}

π )| = 2, it requires to show that the rank of two equations
produced by each sub-case and the additional equation introduced by accidents
is 3. Some details are required in this analysis. Finally, the analyses of event 7
and 8 are analogous to those of event 4 and 5, since one of two equations comes
from the random string Ti.

Event 2. For the event 2, it is the same as the equation

Y i
� = 2 · (Y i

1 ⊕ · · · ⊕ Y i
� ) ,

which is equivalent to

3 · Y i
� ⊕ 2 · (Y i

1 ⊕ · · · ⊕ Y i
�−1) = 0 .

Since the number of accidents of the structure graph GMi
π is 0, Y i

1 , . . . , Y i
� are

all distinct from each other, and thus the rank of this equation is exactly 1.
According to [33, Lemma B.3], the probability that this equation holds is at
most 1/(2n − � + 1) ≤ 2/2n by assuming � ≤ 2n−1. Summing over at most q
queries,

Pr [ bad2 ∧ ¬crash ] ≤ 2q

2n
. (4)

Event 3. Next, we bound the probability of event 3. This event consists of two
subcases: (i) Σi = Σj ∧ Λi = Λj ; (ii)Σi = Λj ∧ Λi = Σj . The first subcase is the
same as

{
Y i

�i
= Y j

�j

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) = 2 · (Y j

1 ⊕ · · · ⊕ Y j
�j

) .
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If the number of accidents of the structure graph G
{Mi,Mj}
π is 0, then this sub-

case cannot happen since the first equation requires at least one accident. If
|Acc(G{Mi,Mj}

π )| = 1, then the rank of the above two equations is 2, which will
be justified below. Hence from [33, Lemma B.3]

Pr
[
Σi = Σj ∧ Λi = Λj ∧ |Acc(G{Mi,Mj}

π )| = 1
]

≤ 1
(2n − 2� + 2)2

·
(

2�

2

)
≤ 8�2

22n

where we assume � ≤ 2n−2 and the number of structure graphs G
{Mi,Mj}
π with

one accident is at most
(
2�
2

)
from [33, Lemma B.1]. We now justify that when

|Acc(G{Mi,Mj}
π )| = 1, the rank of above two equations is 2. Without loss of

generality, assume that �i ≥ �j . Let α be the length of common suffix of Mi and
Mj . Then the above two equations are the same as

{
Y i

�i−α ⊕ Y j
�j−α = 0

Y i
1 ⊕ · · · ⊕ Y i

�i−α−1 ⊕ Y j
1 ⊕ · · · ⊕ Y j

�j−α−1 = 0 .

If α = �j , namely Mj is a suffix of Mi, then these two equations degenerate to
{

Y i
�i−�j

= 0
Y i
1 ⊕ · · · ⊕ Y i

�i−�j−1 = 0 .

In this case, the first equation cannot hold otherwise it contradicts the assump-
tion that |Acc(GMi

π )| = 0. If α + 1 ≤ �j , then these two equations are the
same as

{
Y i

�i−α−1 ⊕ Y j
�j−α−1 = Mi[�i − α] ⊕ Mj [�j − α]

Y i
1 ⊕ · · · ⊕ Y i

�i−α−1 ⊕ Y j
1 ⊕ · · · ⊕ Y j

�j−α−1 = 0 .

If �i = α+1, then the first equation cannot hold since Mi[1]⊕Mj [1] �= 0 (note that
Y i
0 = Y j

0 = 0). If �i = α+2, then the second equation degenerates to Y i
1 ⊕Y j

1 = 0
or Y i

1 = 0, neither of which can hold. Therefore �i ≥ α+2. Due to |Acc(GMi
π )| = 0,

all the variables Y i
1 , . . . , Y i

�i−α−1 are distinct, and Y i
�i−α−2 /∈ {Y j

1 , . . . , Y j
�j−α−1},

otherwise it will induce one additional accident on the structure graph G
{Mi,Mj}
π .

Hence variable Y�i−α−2 is unique in the second equation and does not appear
in the first equation. Therefore, the rank of these two equations is 2. The first
subcase holds with probability at most

Pr [Σi = Σj ∧ Λi = Λj ∧ ¬crash ] ≤ 8�2

22n
.

Next, we analyze the subcase ii. This subcase is the same as
{

Y i
�i

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
)

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) = Y j

�j
,
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which is equivalent to
{

Y i
�i

⊕ 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
) = 0

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) ⊕ Y j

�j
= 0 .

If |Acc(G{Mi,Mj}
π )| = 0, then the rank of above two equations is 2. From [33,

Lemma B.3], we have

Pr
[
Σi = Λj ∧ Λi = Σj ∧ |Acc(G{Mi,Mj}

π )| = 0
]

≤ 1
(2n − 2� + 2)2

≤ 4
22n

by assuming � ≤ 2n−2. If |Acc(G{Mi,Mj}
π )| = 1, then this accident appears

between the path of Mi and Mj since |Acc(GMi
π )| = |Acc(GMj

π )| = 0. With-
out loss of generality, assume �i ≥ �j . Then there exists some variable Y i

a for
1 ≤ a ≤ �i such that Y i

a /∈ {Y j
1 , . . . , Y j

�j
}. It can be seen that the rank of these two

equations is 2, since Y i
a is unique and has different coefficients in each equation,

and at least one of two equations contains a different variable Y j
b for 1 ≤ b ≤ �j .

Hence from [33, Lemma B.3],

Pr
[
Σi = Λj ∧ Λi = Σj ∧ |Acc(G{Mi,Mj}

π )| = 1
]

≤ 1
(2n − 2� + 2)2

·
(

2�

2

)
≤ 8�2

22n

where we assume � ≤ 2n−2 and the number of structure graphs G
{Mi,Mj}
π with

one accident is at most
(
2�
2

)
from [33, Lemma B.1]. Thus the probability that

subcase ii occurs is at most

Pr [Σi = Λj ∧ Λi = Σj ∧ ¬crash ] ≤ 4
22n

+
8�2

22n
.

By the union bound, and summing over at most
(
q
2

)
pairs of Mi and Mj ,

Pr [ bad3 ∧ ¬crash ] ≤ 8q2�2

22n
+

2q2

22n
. (5)

Events 4 and 5. We then bound the probability of event 4. We begin by analyzing
the first two equations. The equations Σi = Σj or Σi = Λj are the same as

Y i
�i

= Y j
�j

or Y i
�i

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
) .

If |Acc(G{Mi,Mj}
π )| = 0, then the first equation cannot hold since it requires one

accident. For the second equation, all these variables are distinct and thus the
rank of this equation is 1. By [33, Lemma B.3], this equation holds with proba-
bility at most 1/(2n − �) ≤ 2/2n by assuming � ≤ 2n−1. If |Acc(G{Mi,Mj}

π )| ≥ 1,
then by [33, Lemma B.2], this condition itself holds with probability at most
4�2/2n. For the last two equations Vi = Vj or Vi = Uj , they are the same as

Ui ⊕ Ti = Vj or Ui ⊕ Ti = Uj
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which holds with probability at most 2/2n since Ti is a random string and
independent of these queries. Summing over at most

(
q
2

)
pairs of queries,

Pr [ bad4 ∧ ¬crash ] ≤
(

q

2

)
· (

2
2n

+
4�2

2n
) · 2

2n
≤ 6q2�2

22n
.

From similar arguments,

Pr [ bad5 ∧ ¬crash ] ≤
(

q

2

)
· (

4
2n

+
4�2

2n
) · 2

2n
≤ 8q2�2

22n

by assuming � ≤ 2n−2.

Event 6. Next, we bound the probability of event 6. This event consists of four
subcases, namely (i)Σi = Σj ∧ Λi = Σk; (ii) Σi = Σj ∧ Λi = Λk; (iii)Σi =
Λj ∧ Λi = Σk; (iv) Σi = Λj ∧ Λi = Λk. The first subcase is the same as

{
Y i

�i
= Y j

�j

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) = Y k

�k
,

which is equivalent to
{

Y i
�i

⊕ Y j
�j

= 0
2 · (Y i

1 ⊕ · · · ⊕ Y i
�i

) ⊕ Y k
�k

= 0 .

If |Acc(G{Mi,Mj ,Mk}
π )| = 0, then the first equation cannot hold since it requires

one accident. If |Acc(G{Mi,Mj ,Mk}
π )| = 1, then the first equation counts this

accident. If �i = 1, then obviously these two equations have rank 2 since Y i
1 has

different coefficients in each equation. If �i > 1, then we can always find some
Y i

a for 1 ≤ a < �i such that Y i
a �= Y i

�i
since |Acc(GMi

π )| = 0. Hence the rank of
these two equations is 2 since Y i

a only appears in the second equation. From [33,
Lemma B.3],

Pr
[
Σi = Σj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 1
]

≤ 1

(2n − 3� + 2)2
·
(

3�

2

)
≤ 18�2

22n

where we assume � ≤ 2n−3 and the number of structure graphs G
{Mi,Mj ,Mk}
π

with one accident is at most
(
3�
2

)
from [33, Lemma B.1]. On the other hand, if

|Acc(G{Mi,Mj ,Mk}
π )| = 2, then again, the first equation counts one accident. Then

the other accident will introduce a third equation Y α
a ⊕Y β

b = Mα[a+1]⊕Mβ [b+1]
which is linearly independent from the first equation. The second equation is
always linearly independent from the first and the third equation due to the
coefficient 2. Hence the rank of these three equations is 3. From [33, Lemma
B.3],

Pr
[
Σi = Σj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 2
]

≤ 1
(2n − 3� + 2)3

·
(

3�

2

)2

≤ 162�4

23n
,
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where the number of structure graphs G
{Mi,Mj ,Mk}
π with two accidents is at most

(
3�
2

)2
from [33, Lemma B.1]. Thus subcase i holds with probability at most

Pr [Σi = Σj ∧ Λi ∧ ¬crash ] ≤ 18�2

22n
+

162�4

23n

We then bound the probability of subcase ii. This subcase is the same as
{

Y i
�i

= Y j
�j

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) = 2 · (Y k

1 ⊕ · · · ⊕ Y k
�k

) ,

which is equivalent to
{

Y i
�i−1 ⊕ Y j

�j−1 = Mi[�i] ⊕ Mj [�j ]
Y i
1 ⊕ · · · ⊕ Y i

�i
⊕ Y k

1 ⊕ · · · ⊕ Y k
�k

= 0 .

If |Acc(G{Mi,Mj ,Mk}
π )| = 0, then the first equation cannot hold since it requires

one accident. If |Acc(G{Mi,Mj ,Mk}
π )| = 1, then the first equation counts this

accident. If �i = 1, then �k �= 1 otherwise the second equation cannot hold since
Mi and Mk are two distinct messages. Hence we can always find some Y k

a for
1 ≤ a ≤ �k such that Y k

a �= Y i
1 . Then Y k

a only appears in the second equation,
and thus the rank of these two equations is 2. If �i > 1, then we can always find
some Y i

a for 1 ≤ a ≤ �i such that Y i
a �= Y i

�i−1 since |Acc(GMi
π )| = 0. Then Y i

a

only appears in the second equation, and thus the rank of these two equations
is 2. From [33, Lemma B.3],

Pr
[
Σi = Σj ∧ Λi = Λk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 1
]

≤ 1

(2n − 3� + 2)2
·
(

3�

2

)
≤ 18�2

22n
.

On the other hand, if |Acc(G{Mi,Mj ,Mk}
π )| = 2, then the first equation counts one

accident. The other accident will introduce a third equation Y α
a ⊕Y β

b = Mα[a+
1] ⊕ Mβ [b + 1] which is linearly independent from the first equation. Obviously
(α, β) �= (i, j) otherwise |Acc(G{Mi,Mj}

π )| = 2 which contradicts ¬crash. We
discuss two cases here, namely (α, β) = (i, k) or (α, β) = (j, k). For (α, β) =
(i, k), the third equation is Y i

a ⊕Y k
b = Mi[a+1]⊕Mk[b+1]. If �i = �k = 1, then

the second equation cannot hold since Mi and Mk are two distinct messages.
If �k = 1 and �i = 2, then if a = 1, Y i

2 only appears in the second equation,
and thus the rank of these three equations is 3; and if a = 0, then Y i

2 also only
appears in the second equation and the rank of these three equations is 3. If
�k = 1 and �i ≥ 3, then we can always find some Y i

c /∈ {Y i
�i−1, Y

i
a} so that Y i

c

only appears in the second equation, and thus the rank of these three equations
is 3. If �k > 1, then we can always find some Y k

c �= Y k
b such that Y k

c only appears
in the second equation. Thus the rank of these three equations is 3. On the other
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hand, for the case of (α, β) = (j, k), we can analyze it similarly. Hence the rank
of these three equations is 3. From [33, Lemma B.3],

Pr
[
Σi = Σj ∧ Λi = Λk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 2
]

≤ 1
(2n − 3� + 2)3

·
(

3�

2

)2

≤ 162�4

23n
.

Thus,

Pr [Σi = Σj ∧ Λi = Λk ∧ ¬crash ] ≤ 18�2

22n
+

162�4

23n
.

Next, we bound the probability of subcase iii. This subcase is the same as
{

Y i
�i

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
)

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) = Y k

�k
,

which is equivalent to
{

Y i
�i

⊕ 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
) = 0

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) ⊕ Y k

�k
= 0 .

If |Acc(G{Mi,Mj ,Mk}
π )| = 0, then the rank of above two equations is 2 due to the

coefficient 2. From [33, Lemma B.3], we have

Pr
[
Σi = Λj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 0
]

≤ 1
(2n − 3� + 2)2

≤ 4
22n

by assuming � ≤ 2n−3. If |Acc(G{Mi,Mj ,Mk}
π )| = 1, then this accident appears

between two paths of Mi, Mj and Mk. Suppose this accident introduces a third
equation Y α

a ⊕Y β
b = Mα[a+1]⊕Mβ [b+1] for α �= β. Then these two equations

are linearly independent from this third equation due to the coefficient 2 (note
that Y ⊕ 2 · Y = 3 · Y ). Thus the rank of these three equations is at least 2.

From [33, Lemma B.3], we have

Pr
[
Σi = Λj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 1
]

≤ 1

(2n − 3� + 2)2
·
(

3�

2

)
≤ 18�2

22n

where we assume � ≤ 2n−3 and the number of structure graphs G
{Mi,Mj ,Mk}
π with

one accident is at most
(
3�
2

)
from [33, Lemma B.1]. If |Acc(G{Mi,Mj ,Mk}

π )| = 2,
then it introduces two linearly independent equations: Y α

a ⊕ Y β
b = Mα[a + 1] ⊕

Mβ [b + 1] and Y γ
c ⊕ Y δ

d = Mγ [c + 1] ⊕ Mδ[d + 1] where α, β, γ, δ ∈ {i, j, k} and
α �= β, γ �= δ, (α, β) �= (γ, δ). Then these two accidental equations are linearly
independent from the above two equations due to the coefficient 2. Thus the
rank of these four equations is at least 3. From [33, Lemma B.3],

Pr
[
Σi = Λj ∧ Λi = Σk ∧ |Acc(G{Mi,Mj ,Mk}

π )| = 2
]

≤ 1
(2n − 3� + 2)3

·
(

3�

2

)2

≤ 162�4

23n
.
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Thus subcase iii holds with probability at most

Pr [Σi = Λj ∧ Λi = Σk ∧ ¬crash ] ≤ 18�2

22n
+

4
22n

+
162�4

23n
.

Next, we bound the probability of subcase iv. This subcase is the same as
{

Y i
�i

= 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
)

2 · (Y i
1 ⊕ · · · ⊕ Y i

�i
) = 2 · (Y k

1 ⊕ · · · ⊕ Y k
�k

) ,

which is equivalent to
{

Y i
�i

⊕ 2 · (Y j
1 ⊕ · · · ⊕ Y j

�j
) = 0

Y i
1 ⊕ · · · ⊕ Y i

�i
⊕ Y k

1 ⊕ · · · ⊕ Y k
�k

= 0 .

Then analogously to the analysis in subcase iii,

Pr [Σi = Λj ∧ Λi = Λk ∧ ¬crash ] ≤ 18�2

22n
+

4
22n

+
162�4

23n
.

By the union bound, and summing over at most
(
q
3

)
triplets of (Mi,Mj ,Mk),

Pr [ bad6 ∧ ¬crash ] ≤ 12q3�2

22n
+

2q3

22n
+

108q3�4

23n
. (6)

Events 7 and 8. Bounding the probability of event 7 is similar to handling event
4, except that now there are at most q3 triplets of queries and the probability
of |Acc(G{Mi,Mj ,Mk}

π )| ≥ 1 is bounded by 9�2/2n. Hence,

Pr [ bad7 ∧ ¬crash ] ≤ q3 · (
2
2n

+
9�2

2n
) · 2

2n
≤ 22q3�2

22n
.

Similarly,

Pr [ bad8 ∧ ¬crash ] ≤ q3 · (
4
2n

+
9�2

2n
) · 2

2n
≤ 26q3�2

22n
.

Summing up,

8∑

j=2

Pr [ badj ] ≤ Pr [ crash ] +
8∑

j=2

Pr [ badj ∧ ¬crash ]

≤ 60q3�2

22n
+

2q3

22n
+

122q3�6

23n
+

22q2�2

22n
+

108q3�4

23n
+

8q2�4

22n
+

2q2

22n
+

q�2

2n
+

2q

2n

and conclude the proof of Lemma 4.1.
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6 Security Analysis of N1kf9 Construction

In this section, we prove Theorem 3.2 that states the beyond-birthday-bound
security of n1kf9 (illustrated in Fig. 7).

Overview of the Proof. The proof idea of n1kf9 mainly follows from the
one of n2kf9. Yet, since n1kf9 only requires one key that is both used in the
hash part and final encryption, there are some points that are different and non-
trivial. This is also the reason that the bound of n1kf9 is slightly worse than the
bound of n2kf9. First, the simulation oracle used in the ideal world is adjusted to
take into account the relation between the hash part and final encryption. The
calculation of good transcripts is changed accordingly. In addition, more bad
events emerge since Σi and Λi may collide with previous inputs of hash part.
Moreover, to mitigate the influence of length � on the bound, a fine-grained
analysis is again required.

Remark. It may be interesting to summarize some property of enhanced f9 hash
for generalized proof. However, as far as we can see, the analysis of single-key
2n-bit hash function is case dedicated and requires many insights on the concrete
construction.

6.1 Game Description

Proof. Without loss of generality, we assume that the adversary never repeats
a prior query since otherwise it will receive the same answer. The 2n-bit hash
function H of n1kf9 consists of two n-bit hash functions H1 and H2 where
H1

K(M) = Y� and H2
K(M) = 2 · (Y0 ⊕Y1 ⊕ · · ·⊕Y�), and thus n1kf9[E](K,M) =

EK(H1
K(M))⊕EK(H2

K(M)). As usual, we first replace the blockcipher EK with
a random permutation π ←$ Perm(n), and from the standard argument,

Advprfn1kf9[E](A) ≤ AdvprpE (B) + Advprfn1kf9[π](A) ,

where B is an adversary against the PRP security of the blockcipher EK that
runs in time at most t = t + O(q(� + 3)) and makes at most q(� + 3) queries.
We will use the H-coefficient technique to bound Advprfn1kf9[π](A), even when A
is computationally unbounded. The real system and ideal system correspond to
the game when A is interacting with the scheme n1kf9[π] and a random function
R ←$ Func(∗, n), respectively.

Setup. After the adversary A finishes querying, it obtains a sequence of query-
answer entries (M1, T1), . . . , (Mq, Tq) that records the interaction with its oracle,
where Ti = n1kf9[π](Mi) in the real world and Ti = R(Mi) in the ideal world. In
the real world, let Σi = H1(Mi) and Λi = H2(Mi) be the internal outputs of H
for entry (Mi, Ti). Let Ui = π(Σi) and Vi = π(Λi) be the outputs of permutation
π after the hash part. After the interaction, we reveal the random permutation
π to the adversary, and grant it all the internal values Ui and Vi. In the ideal
world, we instead give the adversary a fresh random permutation π that is inde-
pendent of its queries, and grant it q pairs of dummy values Ui and Vi sampled
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as follows: the simulation oracle Off(q) is invoked which is illustrated in the full
version [33, Fig. 12] and returns (Ui, Vi) to the adversary. These additional infor-
mation can only help the adversary. In addition, the internal values Σi and Λi

(and also Y i
0 , . . . , Y i

�i
) appearing during the computation of Off(q) are uniquely

determined by message Mi and permutation π. Hence a transcript consists of the
query-answer pairs (Mi, Ti), the permutation π, and the internal values (Ui, Vi).

6.2 Bad Transcripts

Defining Bad Transcripts. We now give the definition of bad transcripts.
The goal is to ensure that for each query, the corresponding pair of (Σi, Λi)
is always cover-free. Formally, we say a transcript is bad if at least one of the
following conditions is triggered:

(1) There exists an entry (Mi, Ti) such that Ti = 0n. This will force Ui = Vi in
the real world, while there is no such constraint in the ideal world.

(2) There exists an entry (Mi, Ti) such that Σi = Λi. This will force Ti = 0n,
while there is no such constraint in the ideal world.

(3) There exists an entry (Mi, Ti) such that Σi ∈ {|Mi|n, Y i
0 ⊕Mi[1], . . . , Y i

�i−1⊕
Mi[�i]} and Λi ∈ {|Mi|n, Y i

0 ⊕ Mi[1], . . . , Y i
�i−1 ⊕ Mi[�i]}. That is, both Σi

and Λi collide with previous inputs of permutation π for the same query.
This guarantees that for each query of all good transcripts, at least one of
Σi and Λi is fresh, and thus at least one of corresponding outputs Ui and Vi

has fresh randomness in the real world.
(4) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi ∈

{|Mj |n, Y j
0 ⊕ Mj [1], . . . , Y j

�j−1 ⊕ Mj [�j ], Σj , Λj} and Λi ∈ {|Mj |n, Y j
0 ⊕

Mj [1], . . . , Y j
�j−1 ⊕ Mj [�j ], Σj , Λj}. That is, both Σi and Λi collide with

previous inputs of permutation π for another entry (Mj , Tj). Again, this
guarantees that for each query of good transcripts, at least one of Σi and Λi

is fresh.
(5) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Σi ∈

{|Mj |n, Y j
0 ⊕Mj [1], . . . , Y j

�j−1⊕Mj [�j ], Σj , Λj} and Vi ∈ {Y j
0 , . . . , Y j

�j
, Uj , Vj}.

This guarantees that the outputs of permutation π in the simulation oracle
Off(q) are compatible with a permutation for all good transcripts, namely
when the inputs are distinct, then the corresponding outputs should also be
distinct.

(6) There exists a pair of entries (Mi, Ti) and (Mj , Tj) such that Λi ∈ {|Mj |n,

Y j
0 ⊕Mj [1], . . . , Y j

�j−1⊕Mj [�j ], Σj , Λj} and Ui ∈ {Y j
0 , . . . , Y j

�j
, Uj , Vj}. Again,

this guarantees that the outputs of permutation π in the simulation oracle
Off(q) are compatible with a permutation for all good transcripts.

(7) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that
Σi ∈ {|Mj |n, Y j

0 ⊕ Mj [1], . . . , Y j
�j−1 ⊕ Mj [�j ], Σj , Λj} and Λi ∈ {|Mk|n, Y k

0 ⊕
Mk[1], . . . , Y j

�k−1 ⊕ Mk[�k], Σk, Λk}. That is, Σi and Λi collide with previous
inputs of permutation π for two different entries (Mj , Tj) and (Mk, Tk).
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(8) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that
Σi ∈ {|Mj |n, Y j

0 ⊕ Mj [1], . . . , Y j
�j−1 ⊕ Mj [�j ], Σj , Λj} and Vi ∈ {Y k

0 , . . . , Y k
�k

,

Uk, Vk}. This guarantees that the outputs of permutation π in the simulation
oracle Off(q) are compatible with a permutation for all good transcripts,
namely distinct inputs produce distinct outputs (and conversely).

(9) There exists a triplet of entries (Mi, Ti), (Mj , Tj) and (Mk, Tk) such that
Λi ∈ {|Mj |n, Y j

0 ⊕ Mj [1], . . . , Y j
�j−1 ⊕ Mj [�j ], Σj , Λj} and Ui ∈ {Y k

0 , . . . , Y k
�k

,

Uk, Vk}. Again, this guarantees that the outputs of permutation π in the
simulation oracle Off(q) are compatible with a permutation for all good
transcripts.

If none of above conditions is met, then we say it is a good transcript. Denote by
X1 and X0 the random variables for the transcript distribution in the real and
ideal worlds respectively. The probability of bad transcripts in the ideal world
is bounded by the following lemma; the proof is in [33, Appendix C].

Lemma 6.1. For any adversary that makes at most q queries of block length at
most � ≤ 2n−3 − 2,

Pr [X0 is bad ] ≤ 5q3(� + 3)3

22n
+

3q3(� + 3)2

22n
+

24q2(� + 2)4

22n
+

122q3(� + 2)6

23n

+
7q3(� + 3)5

23n
+

q(� + 2)2

2n
+

3q

2n
.

6.3 Good Transcripts

Transcript Ratio. Let τ be a good transcript. Similarly to the arguments
in Sect. 4.3, the set N in Off(q) (illustrated in the full version [33, Fig. 12])
is empty. In the set of Σi and Λi, there are q + |F| fresh values and q − |F|
non-fresh values. For the entries that are recorded by the set G, suppose there
are g sampled values.
We now proceed to compute the transcript ratio. In the ideal world, since τ is
good, the event X0 = τ is the composition of the following independent events:

– When we sample a random permutation π ←$ Perm(n), we use exactly |H|
values which appear in τ . This happens with probability 1/(2n)|H|.

– The answers of these q queries are the same as the values defined in τ .
This happens with probability 2−qn. On the other hand, the internal val-
ues (Ui, Vi)1≤i≤q from Off(q) are the same as the values defined in τ . This
happens with probability 1/|S| ·1/(2n −|H|−2|F|)g: the variables (Ui, Vi)i∈F
are uniformly at random sampled from the set S, and there are g variables
sampled without replacement from the remaining 2n − |H| − 2|F| elements
for the rest (Ui, Vi)i∈G .

Therefore,

Pr [X0 = τ ] =
1

(2n)|H|
· 1
2qn

· 1
|S| · 1

(2n − |H| − 2|F|)g
.
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On the other hand, in the real world, the probability of the event X1 = τ only
comes from the computation of the random permutation π:

– First we draw |H| values from π to compute the internal Y states values.
– To compute the (Ui, Vi)1≤i≤q, the number of permutation outputs required is

exactly q + |F|+ g, because we totally have q + |F| fresh input-output tuples,
and for each class in G, we have one additional input-output tuple.

Hence,

Pr [X1 = τ ] =
1

(2n)|H|+q+|F|+g
.

Therefore,

Pr [ X1 = τ ]

Pr [ X0 = τ ]
=

2qn · |S| · (2n − |H| − 2|F|)g

(2n − |H|)q+|F|+g

≥ 2(q−|F|)n · (2n − |H|)2|F| · (2n − |H| − 2|F|)g

(2n − |H|)q+|F|+g

· (1 − 4|F||H|2 + 8|F|2|H| + 6|F|3
22n

)

≥ 2(q−|F|)n

(2n − |H| − 2|F| − g)q−|F|
· (1 − 4|F||H|2 + 8|F|2|H| + 6|F|3

22n
)

≥ 1 − 4q(� + 2)2 + 8q2(� + 2) + 6q3

22n
, (7)

where the first inequality comes from Lemma 2.2.

6.4 Conclusion

Wrapping Up. From Lemma 2.1 and combining Lemma 6.1 and Eq. (7), we
obtain

Advprfn1kf9[π](A) ≤ 8q3(� + 3)3

22n
+

129q3(� + 2)6

23n
+

36q2(� + 2)4

22n

+
6q3

22n
+

q(� + 2)2

2n
+

3q

2n

and conclude the proof of Theorem 3.2.
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family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 20

19. Dodis, Y., Pietrzak, K., Puniya, P.: A new mode of operation for block ciphers
and length-preserving MACs. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 198–219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 12

20. Dodis, Y., Steinberger, J.: Message authentication codes from unpredictable block
ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 16

21. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

22. Iwata, T., Kohno, T.: New security proofs for the 3GPP confidentiality and
integrity algorithms. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
427–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 27

23. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39887-5 11

24. Jha, A., Nandi, M.: Revisiting structure graph and its applications to CBC-MAC
and EMAC. Cryptology ePrint Archive, Report 2016/161 (2016). https://eprint.
iacr.org/2016/161

25. Kim, S., Lee, B., Lee, J.: Tight security bounds for double-block hash-then-sum
MACs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105,
pp. 435–465. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-
1 16

26. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound MACs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 306–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 11

27. Naito, Y.: Blockcipher-based MACs: beyond the birthday bound without message
length. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
446–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 16

28. Naito, Y.: Improved security bound of LightMAC Plus and its single-key variant.
In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 300–318. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 16

29. Nandi, M.: A unified method for improving PRF bounds for a class of Blockcipher
based MACs. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 212–
229. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 12

30. Patarin, J.: The Coefficients H technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

31. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. J. Cryptol. 13(3),
315–338 (2000). https://doi.org/10.1007/s001450010009

32. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 1

https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-540-78967-3_12
https://doi.org/10.1007/978-3-540-78967-3_12
https://doi.org/10.1007/978-3-642-03356-8_16
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/978-3-540-25937-4_27
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://eprint.iacr.org/2016/161
https://eprint.iacr.org/2016/161
https://doi.org/10.1007/978-3-030-45721-1_16
https://doi.org/10.1007/978-3-030-45721-1_16
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-70700-6_16
https://doi.org/10.1007/978-3-319-76953-0_16
https://doi.org/10.1007/978-3-642-13858-4_12
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/s001450010009
https://doi.org/10.1007/3-540-44750-4_1


554 Y. Shen and F. Sibleyras

33. Shen, Y., Sibleyras, F.: Key-reduced variants of 3kf9 with beyond-birthday-bound
security. Cryptology ePrint Archive, Paper 2022/668 (2022). https://eprint.iacr.
org/2022/668 (full version)

34. Shen, Y., Wang, L., Gu, D., Weng, J.: Revisiting the security of DbHtS MACs:
beyond-birthday-bound in the multi-user setting. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12827, pp. 309–336. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84252-9 11

35. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
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Abstract. Currently, a vast majority of symmetric-key cryptographic
schemes are built as block cipher modes. The block cipher is designed to
be hard to distinguish from a random permutation and this is supported
by cryptanalysis, while (good) modes can be proven secure if a random
permutation takes the place of the block cipher. As such, block ciphers
form an abstraction level that marks the border between cryptanalysis
and security proofs. In this paper, we investigate a re-factored version
of symmetric-key cryptography built not around the block ciphers but
rather the deck function: a keyed function with arbitrary input and out-
put length and incrementality properties. This allows for modes of use that
are simpler to analyze and still very efficient thanks to the excellent per-
formance of currently proposed deck functions. We focus on authenticated
encryption (AE) modes with varying levels of robustness. Our modes have
built-in support for sessions, but are also efficient without them. As a by-
product, we define a new ideal model for AE dubbed the jammin cipher .
Unlike the OAE2 security models, the jammin cipher is both a operational
ideal scheme and a security reference, and addresses real-world use cases
such as bi-directional communication and multi-key security.

Keywords: Deck functions · Authenticated encryption · Wide block
cipher · Modes of use · Ideal model

1 Introduction

Currently, a vast majority of symmetric-key cryptographic schemes are built as
a mode of use of a block cipher. A block cipher is governed by a secret key
and transforms an input block of fixed length into an output block of the same
length, and as such its functionality is rather limited. However, the existence of
powerful modes of use really unleashes the power of block ciphers: Combining
them allows building cryptographic schemes for encryption, authentication and
authenticated encryption of messages consisting of arbitrary-length plaintext
and associated data. Block ciphers have even been used to build hash functions.
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1.1 Moving to Deck Functions

Need for PRF Security. Modes of use usually come with a security guar-
antee: Assuming the underlying block cipher satisfies some security criterion,
the cryptographic scheme can be proven secure. Often, this criterion is that the
block cipher, when keyed with a uniformly chosen key unknown to the adver-
sary, is hard to distinguish from a random permutation; this is known as the
pseudorandom permutation (PRP) security of a block cipher, in the case that
an adversary is only allowed to query the block cipher in the forward direction,
otherwise it is called strong PRP (SPRP) security. The PRP and SPRP secu-
rity notions have become so accepted that they are referred to as the standard
model. Thanks to this split in block ciphers and modes, the assurance of such
cryptographic schemes relies on public scrutiny of the block cipher with respect
to its (S)PRP security.

The security guarantee of many modes hit the so-called birthday bound and
that causes the security of block-cipher based modes to break down as soon
as the data complexity reaches 2n/2, with n the block size. This accounts for
the presence, or absence, of collisions in block cipher outputs, depending on the
mode.

Hitting this birthday bound is due to the invertibility of the block cipher
while most modern block cipher modes do not even use the inverse block cipher.1

Such modes often rely on the keyed block cipher to behave like a random function
rather than a permutation, e.g., see [33], and this is called pseudorandom function
(PRF) security.

Variable-input and Output Lengths. Block cipher modes parse variable-
length inputs as fixed-length blocks. This often comes with considerable com-
plexity, such as dealing with complete last blocks, that propagates to the security
proofs. Modes would be simpler if the underlying primitive would natively sup-
port variable input and output lengths. Moreover, (S)PRP security makes little
sense for a primitive with variable input and output lengths, and striving for
good PRF security makes more sense.

Such primitives would be a good replacement of block ciphers as a focus
point in symmetric key cryptography and they have actually been proposed by
Daemen et al. under the name of deck function [15]. A construction for building
deck functions is called farfalle, and the authors showcased an instance of farfalle
based on Keccak-f called Kravatte with excellent performance, and later a
second one called Xoofff improving on all aspects over Kravatte [8,15]. But
deck function just specifies an interface and farfalle is not the only way to build
a deck function, in the same way that there are multiple ways to build a block
cipher: a wide design space is waiting to be explored!

1 The input and output of a block cipher are often called plaintext and ciphertext,
respectively. This may be correct for the ECB mode, but for the majority of today’s
modes, the input is not the plaintext and/or the output is not the ciphertext.
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Performance. We focus on authenticated encryption (AE), i.e., schemes that
simultaneously achieve confidentiality and authenticity [7,36]. Next to the sim-
plicity of modes, performance is a clear and natural motivation for exploring
AE using deck functions. For instance, Kravatte and Xoofff have excellent
reported performance figures and outperform modes using the AES block cipher,
sometimes even when the platform has hardware AES support [13]. Even if faster
block ciphers can be built, security proofs of their modes rely on their (S)PRP
security, and achieving a solid level of (S)PRP security comes at the price of
a relatively large number of rounds. Building a variable-input-length function
that targets PRF security using the same building blocks can be done more effi-
ciently when the reductionist security argument is dropped. We illustrate this
with two MAC functions: CMAC [34] with underlying block cipher AES-128 [18]
and Pelican-MAC [19]: for long messages the former costs 10 AES rounds while
the latter only 4 (unkeyed) AES rounds per 128-bit block of input. Despite the
absence of a reductionist security proof, Pelican-MAC has maintained its secu-
rity claim, very close to that of CMAC with AES-128, up to this day. A similar
argument can be made for functions with variable-length output. Efficient deck
functions support both a variable-length input and output and trade reduction-
ist (S)PRP-based security proofs in for security based on cryptanalysis. Clearly,
deck function-based cryptography seems like an alternative to block-ciphers that
is worth exploring.

1.2 Processing Sessions

Sequences of Messages. Today’s applications for cryptography go beyond the
encryption or authentication of individual messages. The processing of streams
of data, with intermediate tags, and bi-directional communication are common
use cases. To this end, we cover as well the traditional authenticated encryption
of a single message, i.e., a plaintext-associated data pair, as the authenticated
encryption of a sequence of messages. More specifically, we define a session as
the process of authenticating a message in the context of previously sent ones
within the sequence. By extension, we also speak of a session for a sequence of
messages that are processed in this way. We envision session-supporting AE as
a scheme holding a rolling state that “accumulates” the messages as they are
processed.

There exist other techniques for dealing with a sequence of messages. First,
stateful authenticated encryption (sAE) refers to a scheme that deals with
reordering, replay and omission of messages [6,41]. In its most generic defini-
tion, it is parameterized with is a set of admissible message numbers. E.g., if the
sender emits messages (1, 2, 3, 4), would the receiver accept ciphertext messages
arriving the order (2, 1, 2, 4)? In a sense, our concept of session is a special case of
sAE where the only admissible sequence of ciphertexts is the original sequence.

Then, online authenticated encryption refers to the ability to decrypt on
the fly with a bounded memory size, see Hoang et al. [25] (HRRV). A typical
example would be the encryption of a large message (e.g., a movie) that is cut it
into segments (e.g., chunks of a few seconds), each of these being authenticated.
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Our concept of session can implement such a use case, although with a diverging
definition of a message: One segment in HRRV is treated as one message in our
session. Yet, it is not in HRRV’s philosophy to support bi-directional communi-
cations as it focuses on sending just one message, even if cut into segments.

If a unique identifier N of the message sequence is available, authenticated
encrypting a sequence of messages can be approached in a rather simple way.
We can simply encrypt messages under the diversifier (N,n), with n the message
number within the sequence, since (N,n) is a nonce. As a rule, the receiver only
decrypts and checks message (N,n) if all the previous messages (N,n′ < n) were
correct.

Adding a rolling state that “accumulates” the messages as they are pro-
cessed gives additional benefits. First, it provides further robustness. If a mes-
sage is tampered with at any point in the session, the rest of the session becomes
completely corrupted-so if the attacker somehow tricks the implementation into
continuing after a bad tag, everything will look like random noise. It forces the
implementation to deal with a bad message and it becomes impossible to ignore
it. With the previous approach, it was still possible to decrypt message n + 1
successfully even if message n was corrupted.

Second, the management of unique diversifiers becomes simpler and more
natural. Uniqueness of the diversifier must be ensured at the level of sessions,
as individual messages within the session are diversified at least by the number
of messages received so far. If a key is bound to only one session, the need of
session-level unique diversifiers even vanishes; this can happen, e.g., if the key
is the result of a ephemeral Diffie-Hellman key exchange aimed at securing one
particular session. Also, with diversifier-reuse-resistant modes, the rest of the
session becomes perfectly diversified if any message in the session contains a
diversifier.

Sessions and Incrementality. There is another reason for looking at sessions
with a rolling state. Several symmetric cryptographic primitives and modes sup-
port incrementality properties, i.e., by keeping state, appending additional input
or requesting further output does not require to re-process everything from the
beginning. Note that this is also an explicitly required property of deck functions.

Incrementality comes in handy when defining session-supporting AE schemes:
A formal definition specifies that any output of the scheme (keystream or authen-
tication tag) depends on the entire sequence of messages received so far, while
the implementation relies on the incrementality and a rolling state to process
each message only once. A striking example is the duplex construction that pro-
vides an incremental interface to the sponge construction, on top of which it is
fairly easy to build session-supporting AE [9].

We could say that the definition of sessions was influenced by the existence
of incrementality properties, but in the end sessions and incrementality combine
in an elegant and useful way.
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1.3 Looking for an Ideal Model

Having set out our goal as to build AE modes on top of a deck function, we need
to opt for an ideal model. An obvious choice would be the ($,⊥) model: The
ciphertext looks random and any decryption attempt returns an error. However,
this model is referential but not operational:

– operational : serves as an ideal scheme for use in higher-level protocols;
– referential : serves as an ideal-world model in distinguishability settings for

modes or schemes, to prove, or claim, a distinguishing bound.

We aim for an ideal scheme that is both operational and referential. This
allows using it in a higher-level protocol, prove that secure, and subsequently
instantiate it with a concrete AE scheme; the security of the resulting protocol
can then be quantified using the triangle inequality. Some definitions come as
a pair of an operational and a referential model, but often with a security gap
between the two. For instance, the referential deterministic AE (DAE) is paired
with the operational pseudo-random injection (PRI) [40]. In the former encryp-
tion gives uniformly distributed ciphertext without replacement and is hence
non-deterministic and decryption always returns an error.

The online authenticated encryption 2 (OAE2) security definitions from
HRRV are the closest to what we try to achieve [25]. Specifically, OAE2 supports
something very close to our sessions and covers streaming applications, where
plaintexts and ciphertexts can be processed on the fly. However, they define not
a single ideal-world scheme, but a set of three schemes, Ideal2A, Ideal2B and
Rand2C. The former two are operational and define the same security concept,
but have different interfaces, whereas the third, Rand2C, is referential-only and
defines a different security concept. In particular, in Ideal2A and Ideal2B forgery
is possible and in Rand2C forgery is impossible by construction. Interestingly,
the security gap between Ideal2 and Rand2C is larger than the one between the
modes we define in this paper and our ideal scheme, see Sect. 2.4.

1.4 Our Contributions

Our two main contributions are an ideal model and a number of deck function
modes, both for session-supporting and non-session-supporting authenticated
encryption.

The “ultimate” Ideal-world Authenticated Encryption Scheme. We
define the jammin cipher that is at the same time deterministic, session-
supporting, operational and referential. The designation “ultimate” means it
achieves the highest security thinkable while behaving deterministically: Forgery
is impossible, the cryptograms are as random as injectivity allows and equal
inputs give equal outputs in the same context. Our ideal-world scheme supports
sessions, although it naturally also covers non-session AE.

Besides combining operational and referential roles in a single scheme, the
jammin cipher has several interesting features and compares favorably to OAE2:
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– It can serve as a security reference for both nonce-enforcing and nonce-misuse-
resistant schemes. For OAE2, variants like nOAE or dOAE must be used
instead [25].

– It produces cryptograms whose distribution is intuitive and is as random as
allowed while leaving the possibility for decryption. In contrast, the definition
of Ideal2A/B make use of a rather complex building block IdealOAE (τ),
called uniformly sampled τ -expanding injective functions.

– It has ciphertext expansion as a parameter, required when dealing with
schemes that have variable ciphertext expansion due to the use of block
encryption.

– It addresses multi-key security by supporting multiple instances. While OAE2
focuses on single-key security, Hoang and Shen propose a generalization of
nOAE called nOAE2 in the multi-key setting [26].

– It supports unwrap and wrap calls in any order, including bi-directional com-
munication. Instead, an instance of Ideal2B can only encipher messages or
decipher cryptograms but not both.

Deck Function-Based Session-Supporting Authenticated Encryption.
We introduce a number of modes based on deck functions, with different combi-
nations of features, as summarized in Table 1. For the last four modes, we propose
a unified approach of achieving several security goals via a Feistel network.

There exist generic modes for building session-supporting AE, like CHAIN
and STREAM [25]. However, these build a secure session AE scheme using a
secure conventional AE scheme whereas we build both using a deck function.
Some other constructions are block-oriented, which is what we try to improve
using deck functions [1,5,10,21]. The authenticated streamwise on-line encryp-
tion (ASOE) construction explicitly avoids blocks, but it aims for a weaker secu-
rity notion [42]. Note that Barbosa and Farshim point out that an indifferentiable
AE can be realized via a 3-round Feistel network [4].

Table 1. Overview of our AE modes.

Mode Section Tolerates Tolerates release of Minimal ciphertext

nonce misuse unverified plaintext expansion

Deck-PLAIN 4 �
Deck-BO 5.1 �
Deck-BOREE 5.2 � �
Deck-JAMBO 5.3 � �
Deck-JAMBOREE 5.4 � � �

Note that the jammin cipher and the deck function-based modes are efficient
for single message AE and can be used in sAE modes.
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1.5 Conventions

The set of all bit strings is denoted Z
∗
2 and ε is the empty string. The length

in bits of the string X is denoted |X|. The concatenation of two strings X,Y is
denoted as X||Y and their bitwise addition as X + Y , with the resulting string
having length min(|X|, |Y |). Bit string values are noted with a typewriter font,
such as 01101. The repetition of a bit is noted in exponent, e.g., 03 = 000. In a
sequence of m strings, we separate the individual strings with a semicolumn, i.e.,
X(0);X(1); . . . ;X(m−1). The set of all sequences of strings is denoted (Z∗

2)
∗ and

∅ is the sequence containing no strings at all. Similarly, the set of all sequences
containing at least one string is denoted (Z∗

2)
+. Finally, ∅ is the empty set and

⊥ denotes an error code.
In this paper we perform security analysis in the distinguishability framework

where one bounds the advantage of an adversary A in distinguishing a real-world
system from an ideal-world system.

Definition 1. Let O,P be two collections of oracles with the same interface.
The advantage of an adversary A in distinguishing O from P is defined as

ΔA(O ; P) =
∣
∣Pr

(

AO → 1
)

− Pr
(

AP → 1
)∣
∣ .

Here A is an algorithm that returns 0 or 1.

If we can build a real-world system P that is hard to distinguish from the
ideal-world system O, then we can replace O by P in the protocol without
sacrificing much security. Concretely, if we can prove an upper bound on the
distinguishing advantage ΔA(O ; P) for any adversary A, the attack success
probability increases by at most that bound.

1.6 Outline

In Sect. 2, we define the jammin cipher. In Sect. 3, we discuss deck functions and
some of their basic applications. In Sect. 4 we define Deck-PLAIN, the simplest of
our five AE modes. If using a strong deck function and on the condition that the
encryption context is a nonce, Deck-PLAIN can be distinguished from the jam-
min cipher only through tag guessing. In Sect. 5, we introduce four modes that
do not require the encryption context to be a nonce, with different properties.

2 The Jammin Cipher, an Ideal-World AE Scheme

We define the jammin cipher in Algorithm 1. We describe it in an object-
oriented way, with object instances (or instances for short) held by the com-
municating parties. An instance belongs to a given party who initializes it with
an object identifier ID. Such an identifier is the counterpart of a secret key in
the real world: Encryption and decryption will work consistently only between
instances initialized with the same identifier. This setup models independent
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Algorithm 1. The jammin cipher J WrapExpand(p)

1: Parameter: WrapExpand, a t-expanding function
2: Global variables: codebook initially set to ⊥ for all, taboo initially set to empty

3: Instance constructor: init(ID)
4: return new instance inst with attribute inst.history = ID

5: Instance cloner: inst.clone()
6: return new instance inst′ with the history attribute copied from inst

7: Interface: inst.wrap(A, P ) returns C
8: context ← inst.history; A
9: if codebook(context; P ) = ⊥ then

10: C = Z
WrapExpand(|P |)
2 \ (codebook(context; ∗) ∪ taboo(context))

11: if C = ∅ then return ⊥
12: codebook(context; P )

$← C
13: inst.history ← inst.history; A; P
14: return codebook(context; P )

15: Interface: inst.unwrap(A, C) returns P or ⊥
16: context ← inst.history; A
17: if ∃!P : codebook(context; P ) = C then
18: inst.history ← inst.history; A; P
19: return P
20: else
21: taboo(context) ← C
22: return ⊥

pairs (or groups) that make use of the AE scheme simultaneously. For exam-
ple, Alice and Bob may secure their communication each using instances that
share the same identifier IDAlice and Bob, while Edward and Emma use instances
initialized with IDEdward and Emma. We will informally call an object the set of
instances sharing the same object identifier. This way, all the instances of the
same object have indistinguishable behavior, and this justifies that we collec-
tively call them an object, whereas instances of different objects are completely
independent.

Our scheme supports two functions: wrap and unwrap. With the wrap function
the object computes a cryptogram C from a message that has a plaintext P
and associated data A, both arbitrary bit strings. With the unwrap function
the object computes the plaintext P from the cryptogram C and A again. The
cryptogram C is the encryption of P for a given A.

The jammin cipher is parameterized with a function WrapExpand(p) that
specifies the length of the cryptogram given the length p of the plaintext. Typical
examples observed in AE schemes in the literature are WrapExpand(p) = p + t
with t some fixed length, e.g., 128 for stream encryption followed by a 128-bit
tag. For OCB [39], we have WrapExpand(p) = t

⌈
p
t + 1

⌉

with t the block length
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of the cipher. Both are examples of t-expanding functions. For use with the
jammin cipher, we require WrapExpand to satisfy this property, defined below.

Definition 2. A function f : Z≥0 → Z≥0 is t-expanding iff (i) ∀� > 0: f(�) >
f(0) and (ii) ∀� : f(�) ≥ � + t.

Property (i) is needed in some of the modes to distinguish authentication-only
messages from others. Property (ii) allows us to use t as a security parameter:
the advantage of distinguishing a real-world scheme from an ideal scheme will
be lower bound by an expression in the number of queries multiplied by 2−t.

When two parties communicate, they usually have more than one message to
send to each other. And a message is often a response to a previous request, or in
general its meaning is to be understood in the context of the previous messages.
The jammin cipher is stateful, where the sequence of messages exchanged so far
is tracked in the attribute history. Initialization sets this attribute to the object
identifier and each wrap and (successful) unwrap appends a message (A,P ). So
history is a sequence with ID followed by zero, one or more messages (A,P ).

A session is the process in which the history grows with the messages
exchanged so far. The wrap and unwrap functions make the history act as associ-
ated data, so that a cryptogram authenticates not only the message (A,P ) but
also the sequence of messages exchanged so far. An important application of this
are intermediate tags, which authenticate a long message in an incremental way.

Finally, a jammin cipher object can be cloned. This is the ideal world’s equiv-
alent of making a copy of the state of the cipher. This means the user can save
the history and restart from it ad libitum.

2.1 Inner Workings

The jammin cipher keeps track of all wrap queries in a global archive called
codebook. This is a mapping from tuples (history;A;P ) to a cryptogram or an
error code. The data elements history and A together form the context for the
encryption of P : In different contexts, the jammin cipher encrypts plaintexts
independently. We write context ← history;A as the context for encryption in a
wrap call, or decryption in an unwrap call, is the history with A appended.

Initially, all the entries of codebook return an error. In the algorithm,
the expression codebook(context;P ) $← S denotes the assignment of a ran-
dom element chosen uniformly from S to the entry codebook(context;P ), and
codebook(context; ∗) denotes the set of the values of codebook(context;P ) over
all P .

Similarly, the jammin cipher keeps track of invalid cryptograms in a global
archive called taboo. This is a mapping from (decryption) contexts to a set of
cryptograms. Initially taboo is empty and with each attempt at decryption of
an invalid cryptogram, it adds the cryptogram to the set of the corresponding
context context = history;A. The expression taboo(context) ← C denotes the
addition of C to taboo(context).

Cryptograms in codebook are never overwritten, as the only place where a
cryptogram value is assigned to codebook is on line 12, under the condition that
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codebook previously contains ⊥. This makes wrapping deterministic. Similarly,
the jammin cipher will unwrap any ciphertext C to the same plaintext value in
any given context, i.e., unwrapping is deterministic. This is formalized in the
following property.

Proposition 1. From codebook one always recovers at most one plaintext
value:

∀(context, C), |{P : codebook(context;P ) = C}| ≤ 1.

Proof. Let C ∈ C be the value that is added to codebook(context;P ) in line 12.
If P ′ 
= P was another plaintext value such that codebook(context;P ′) = C,
then we would get a contradiction as C ∈ codebook(context; ∗) and thus C /∈ C,
proving the proposition. ��

We see that in line 11, wrap may return an error and therefore exhibit non-
ideal behavior. We will now prove that for reasonable ciphertext expansion this
requires an excessive number of specific unsuccessful unwrap queries.

Proposition 2. If WrapExpand is t-expanding with t ≥ 2, wrap is successful
unless there were at least 2t unsuccessful unwrap queries with the same context.

Proof. A necessary condition for an error to be returned is the following. There
exists a context and a cryptogram length n such that the sum of the following
two items is at least 2n:

– the number of calls to wrap(A,P ) with WrapExpand(|P |) = n,
– the number of unsuccessful calls to unwrap(A,C) with |C| = n.

This is because the cardinality of C in line 10 is at least 2n minus the number
of n-bit strings in codebook(context; ∗) or in taboo(context).

First, let us consider the case where n = WrapExpand(0) ≥ t with P = ε.
Given that WrapExpand is t-expanding, only taboo(context) can exclude possible
cryptograms from C on line 10. It is therefore necessary to have at least 2n ≥ 2t

unsuccessful calls to unwrap.
Then, say n > WrapExpand(0). The number of plaintext values that wrap

to ciphertexts of size n is limited to 2n−t+1. The possible plaintext lengths p
are such that WrapExpand(p) = n but they must satisfy p ≤ n − t. Summing
over all such possible lengths, the number of distinct plaintext values is upper
bounded by 2n−t+1. For line 11 to return an error, it is therefore necessary to
have at least 2n − 2n−t+1 unsuccessful calls to unwrap. Since n > t ≥ 2 this is
lower bounded by 2t. ��

2.2 Properties

The jammin cipher enjoys the following properties:

Deterministic wrapping: In a given context, an object wraps equal messages
(A,P ) to equal cryptograms C. It achieves this by tracking the cryptograms
in the codebook archive.
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Injective wrapping: An object wraps messages with equal context and A and
different P to different cryptograms. It achieves this by excluding cryptogram
values that it returned in earlier wrap calls for the same context and A.

Random cryptograms: Except for determinism and injectivity, all cryp-
tograms C are fully random.

Deterministic unwrapping: In a given context, an object unwraps equal cryp-
tograms to equal responses. It achieves this by tracking in taboo cryptogram
values that it returns an error to.

Correctness: Thanks to deterministic (un)wrapping and injective wrapping,
one jammin cipher object correctly unwraps what another wrapped, when-
ever their contexts are equal.

Forgery-freeness: In a given context, an object will only unwrap successfully
cryptograms C resulting from prior wrap calls in the same context.

2.3 Discussion

Deterministic AE leaks in the sense identical plaintexts map to identical cryp-
tograms. In particular, if the possible plaintexts form a small set, an adversary
can recover it from the cryptogram by wrapping all of them. This opens to a
family of attacks such as the chosen-prefix secret-suffix (CPSS) attack [20,25].

The countermeasure against these attacks is to make encryption context-
dependent. If the user can ensure that the encryption context is unique per
plaintext, equal plaintexts will give different cryptograms. Usually, this context
is a message counter (e.g., in counter mode) or a (random) initial value (e.g., in
CBC) and called a nonce. This naming is confusing when discussing use cases
where the uniqueness of the data element cannot be guaranteed.

The jammin cipher does not enforce the encryption context to be a nonce,
this is left up to the higher level protocol or use case.

The jammin cipher takes as encryption context the sequence of messages
exchanged so far, including the associated data in the message containing the
plaintext to be encrypted (in a message without plaintext, there is no encryp-
tion and hence no encryption context). The advantage of doing authenticated
encryption in sessions is immediate as this reduces the requirement for global
diversifiers of one per session rather than one per message. Session-level diver-
sifiers may even be omitted unless communicating parties wish to start parallel
threads or start afresh from the same shared key.

Definition 3. We say that the encryption context is a nonce iff all wrap queries
with non-empty plaintext have a different context context.

In case of re-use of encryption context, the jammin cipher will leak equality of
plaintexts given equal cryptograms obtained with equal encryption contexts, but
nothing more. In some use cases this may be acceptable. For such use cases, the
jammin cipher can serve as a security reference for modes or schemes. A proven
upper bound on the distinguishing advantage between such a mode and the
jammin cipher, proves that leakage is limited to equal plaintexts and encryption
contexts, plus the proven advantage that is typically negligible.
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In particular, stream encryption with a keystream that is generated from the
encryption context is perfectly secure in use cases where the encryption context
is a nonce, but its security completely breaks down when re-using encryption
contexts. Therefore, if we wish security in case of repeating encryption contexts,
we must use a more elaborate encryption mechanism than stream encryption.

An example of protocol with bi-directional communications can be found in
the full version [11].

2.4 Security of the Jammin Cipher in the OAE2 Security Model

We demonstrate the OAE2 security of the jammin cipher by proving an upper
bound on the distinguishing advantage between the jammin cipher and OAE2
ideal-world system Rand2C. Concretely, referring to the OAE2c security defini-
tion [25, Fig. 6], we prove a tight bound for the case that the ciphertext expansion
is t bits.

Theorem 1. Let J +t be the jammin cipher with WrapExpand(p) = p+t. Then,
for any adversary D that makes at most q queries, we have

Advoae2-priv
J +t (D) ≤ q

2t+1
and Advoae2-auth

J +t (D) = 0 .

Furthermore, when the encryption context is a nonce, we have

Advoae2-priv
J +t (D) = Advoae2-auth

J +t (D) = 0 .

The proof can be found in the full version [11].
Our operational jammin cipher is hence fully indistinguishable from the non-

operational Rand2C by a nonce-respecting adversary and defines the exact same
security concept in that case. In case the encryption context is not a nonce, they
can be distinguished only and exclusively by a property of Rand2C that makes
it non-operational: non-injective encryption.

In [25, Proposition 2] the authors provide similar bounds for Ideal2B and
obtain Advoae2-priv

Ideal2B (D) ≤ q2/2t and Advoae2-auth
Ideal2B (D) ≤ �/2t with � the number

of messages in a single session. Thus, the jammin cipher is closer to the security
definition Rand2C than Ideal2B is.

3 Deck functions

A deck function is a keyed function that takes a sequence of strings and returns
a pseudorandom string of arbitrary length and that can be computed incremen-
tally. Here deck stands for Doubly-Extendable Cryptographic Keyed function.

Definition 4 ([15]). A deck function F takes as input a secret key K ∈ KF

and a sequence of an arbitrary number of strings X(0); . . . ;X(m−1) ∈ (Z∗
2)

+,
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produces a string of bits of arbitrary length and takes from it the range starting
from a specified offset q ∈ N and for a specified length n ∈ N. We denote this as

Z = 0n + FK

(

X(0); . . . ;X(m−1)
)

 q .

A deck function must allow efficient incremental computing, as described below,
and typically comes with a security claim, see Sect. 3.1.

By efficient incremental computing we mean the following: by keeping state
after computing an output for input X = X(0); . . . ;X(m−1), computing an out-
put for X;Y (0); . . . ;Y (n−1) should have cost independent of X. In addition,
by keeping state after computing 0n + FK

(

X(0); . . . ;X(m−1)
)

 q, computing
0m + FK

(

X(0); . . . ;X(m−1)
)

 (q + n) should have cost independent of n or q.
Regarding the notation, we assume that the number of bits that the deck

function outputs is determined by the context. For instance, in the expression
X + FK (. . . ), we assume that the deck function outputs |X| bits. Also, in X +
(FK (. . . ) ||Y ), the deck function outputs |X| − |Y | bits so that the string inside
the brackets matches X in length.

3.1 Security Claim

A deck function equipped with a fixed unknown random key should behave like
a random oracle. We call this pseudorandom function (PRF) security.

Definition 5. The advantage of an adversary D in distinguishing a deck func-
tion F from a random oracle RO is:

AdvprfF (D) =
∣
∣
∣P

[

K
$←− KF : DFK = 1

]

− P
[

DRO = 1
]
∣
∣
∣ .

Here RO is a random oracle that takes as input a string sequence. We define
the PRF advantage of a deck function AdvprfF as

AdvprfF (R) = sup
D∈D(R)

AdvprfF (D) ,

with D(R) the set of all distinguishers with given resource limits R. Here, we
define the resource vector R in a rather abstract way, and in practice it typically
comprises the data complexity M and the computational complexity N quantified
in some well-defined unit.

Expressions for the PRF advantage of a particular deck function is not
something that can be measured or proven. Rather, they are useful in secu-
rity claims. For a particular deck function one can claim an upper bound on the
PRF advantage and this serves as a challenge for cryptanalysts. For designers
of cryptographic schemes making use of the deck function, they can serve as
a security specification: Assuming the bound holds, it allows determining the
security strength of the scheme. For the validity of the underlying assumption,
one has no choice but to rely on cryptanalysis.
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3.2 Multi-key Security

In a multi-user setting with u users, we can adapt Definition 5 and replace the key
K with a key array �K drawn from Ku

F . The adversary has to distinguish between
u independently keyed deck functions and u independent random oracles:

Advprf
F (D) =

∣
∣
∣P

[

�K
$←− Ku

F : DFK1 ,...,FKu = 1
]

− P
[

DRO1,...,ROu = 1
]
∣
∣
∣ .

The deck functions are independently keyed, that is, the keys are drawn
from KF with replacement. Consequently, Advprf

F (D) cannot be smaller than

the probability of collision within u draws in KF , or approximately (u2)
|KF | if u is

small compared to the square root of the key space size.
Exhaustive key search is always possible, limiting the security of the deck

function to log |KF | bits. If the adversary has access to the outputs of FK1 , . . . ,
FKu

for the same input, a single key guess has u chances of hitting one of the
keys, leading to a security degradation of log u bits. Yet, one can avoid this
degradation if the adversary is forced to feed different instances with different
inputs, e.g., if the input is prefixed with a unique identifier. Whether adversary D
has such a restriction is part of its resources R.

3.3 Examples of Deck Functions

Deck functions can be built in many ways and two established constructions
for building them from cryptographic permutations are the keyed duplex con-
struction [17] and farfalle [8]. For the former, we can mention Strobe [23] and
Xoodyak [14] as concrete instantiations. For the latter, Kravatte [8] and
Xoofff [15] are two farfalle instantiations making use of the Keccak-f and
Xoodoo permutations respectively. Another example of deck function is Sub-
terranean-deck as part of the Subterranean 2.0 cipher suite [16].

A deck function can be built from other primitives and guarantee a certain
PRF security level on the condition that the underlying primitive satisfies some
security definition. For instance, we can imagine that a deck function can be
fairly naturally built as a mode on top of a tweakable block cipher [29]. First, we
compress the input through a secure MAC construction such as PMAC1 [37] or
ZMAC [27], with slight adaptations for the multi-string input support. Then, we
generate the output by processing the MAC through the tweakable block cipher,
for instance with the tweak as a counter albeit in a different domain than during
the compression. It is plausible that this construction can be proven PRF-secure
assuming the tweakable block cipher to have tweakable PRP security.

3.4 Basic Applications

Deck function can readily be used for stream encryption, authentication, and
(nonce-based) AE of single messages.

One can use a deck function for stream encryption by taking as input a diver-
sifier D and use the output to encrypt a plaintext P as C ← P + FK(D) and
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decrypt again as P ← C + FK(D). If the diversifier D is a nonce and FK is
random oracle, this is one-time pad encryption and so achieves perfect secrecy.
Information leakage of this stream cipher is upper bounded by the PRF distin-
guishing advantage of the deck function. We refer to notion of indistinguishabil-
ity from random bits under an adaptive chosen-plaintext-and-message-number
attack, or IND$ [38]. This shows the following proposition:

Proposition 3. Let D be any adversary attacking this stream cipher Π. Then
there is an adversary D′ using the same resources as D such that

Advind$
Π (D) ≤ Advprf

F (D′) .

One can use a deck function as a MAC function returning a t-bit tag by taking
as input the message P and truncate the output to t: bits T ← 0t +FK(P ). One
can verify a tag by taking as input the message P and its tag T and check whether
T +FK(P ) equals 0t. If so, we say (P, T ) verifies successfully. We speak of forgery
if an adversary can find a (message,tag) pair (P, T ), with T not generated in a
tag generation query and that verifies successfully. Plugging in a random oracle
for FK would give a forgery success probability of q/2t with q the number of tag
verification queries. It follows that the forgery success probability of our MAC
function is at most by q/2t plus the PRF distinguishing advantage of the deck
function. We hence prove the following proposition, see also [28, Section 4.4]:

Proposition 4. Let D be any adversary attacking this authentication scheme Π.
Then there exists an adversary D′ using equivalent resources as D such that

Advuf-cma
Π (D) ≤ Advprf

F (D′) +
qver
2t

,

with D making qver verification queries. The equivalence of resources means that
the queries to the tag generation and tag verification methods are translated into
queries to F of same length.

From this, AE with a deck function in an encrypt-then-MAC fashion is imme-
diate. The plaintext is encrypted as Z ← P + FK(A), with A associated data
that should be a nonce (it may contain a diversifier). Then a tag is computed
as T ← 0t + FK(A;Z). The cryptogram (Z, T ) can be first verified and then
decrypted if the tag is correct. Apart from string encoding details, this is a
non-session special case of Deck-PLAIN, covered in the next section.

4 Deck-PLAIN

We specify in Algorithm 2 a deck function mode for nonce-based session-
supporting AE called Deck-PLAIN. It allows two parties to exchange a sequence
of messages, each consisting of associated data and plaintext. At sending end it
wraps a message by encrypting the plaintext to a ciphertext and appending a
tag that authenticates the sequence of all messages up to that point. At receiving
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end it unwraps a cryptogram by verifying the tag and, if correct, it decrypts the
ciphertext; otherwise, it will return an error.

Deck-PLAIN offers the same interface as the jammin cipher. The only differ-
ence is upon initialization, where the jammin cipher takes an identifier as input,
while Deck-PLAIN takes a secret key, in particular from an array of keys to be
able to model multi-key support. It has two length parameters: the tag length t
that determines the security level and an alignment unit length � that is related
to an implementation optimization as detailed below.

In the individual messages both associated data and plaintext are optional.
We call messages without plaintext authentication-only messages and messages
without associated data plaintext-only messages. Deck-PLAIN even supports
empty messages for the purpose of authenticated acknowledgments.

If a key is used more than once, the associated data of the first message of
the session must be a nonce per key, e.g., a session counter. One may choose to
have an authentication-only first message. The corresponding tag is then called
a startup tag. Verification of a startup tag allows the receiver of the message to
authenticate the origin of the session start request including the session counter.

4.1 Inner Workings

Similar to the jammin cipher, Deck-PLAIN accumulates the sequence of mes-
sages in a data element called history. Concretely, this is the sequence of asso-
ciated data and plaintexts of messages received and differs only from history in
the jammin cipher by the explicit encoding used.

In a wrap call, Deck-PLAIN encrypts a plaintext by adding to it a keystream
that is the output of the underlying deck function with input the context. This
context is the history followed by A of the message. Clearly, the encryption
context is the same as in the jammin cipher. Initialization of a session loads the
key in the deck function and initializes the history to an empty sequence.

Deck-PLAIN performs the wrapping of a message in two steps:

1. Encryption: It extracts keystream from the deck function and adds it to the
plaintext, yielding the ciphertext.

2. Tag generation: It appends associated data and ciphertext to the history
and extracts the tag from the deck function.

Unwrapping is similar. Tag verification is performed before decryption.
In consecutive plaintext-only wrap or unwrap calls, Deck-PLAIN reserves

the first t bits of deck function outputs for tags and the remaining ones for
keystream. It takes keystream from an offset that is the smallest multiple of
� not shorter than t. So Deck-PLAIN requires only one deck function call per
message in this important use case.

For authentication-only messages Deck-PLAIN skips the en(de)cryption step
and the absorbing of ciphertext. For plaintext-only messages it skips the absorb-
ing of associated data, except for a blank message where it absorbs the empty
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Algorithm 2. Definition of Deck-PLAIN(F, t, �)
Parameters: deck function F , tag length t ∈ N and alignment unit length � ∈ N

Let offset = �
⌈

t
�

⌉
: the smallest multiple of � not smaller than t

Instance constructor: init( �K, i) taking key array �K, key index i
(inst.K, inst.history) ← ( �K[i], ∅)
return Deck-PLAIN instance
Note: in the sequel, K, history denote the attributes of inst

Instance cloner: inst.clone()
return new instance inst′ with all attributes (K, history) copied from inst

Interface: inst.wrap(A, P ) returns C
if |P | = 0 then

history ← history; A||00
else if |A| > 0 or history = ∅ then

context ← history; A||10
Z ← P + FK (context)
history ← context; Z||1

else
context ← history
Z ← P + FK (context) � offset
history ← context; Z||1

T ← 0t + FK (history)
return C = Z||T

Interface: inst.unwrap(A, C) returns P or ⊥
if |C| < t then return ⊥
Parse C in Z and T
if |Z| = 0 then

history′ ← history; A||00
else if |A| > 0 or history = ∅ then

history′ ← history; A||10; Z||1
else

history′ ← history; Z||1
T ′ ← 0t + FK (history′)
if T ′ 	= T then return ⊥
if |A| > 0 or history = ∅ then

context ← history; A||10
P ← Z + FK (context)

else
context ← history
P ← Z + FK (context) � offset

history ← history′

return P
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associated data. To make the mapping from sequences of messages to the his-
tory injective, Deck-PLAIN appends frame bits to associated data and cipher-
text strings for domain separation before appending to the history. In partic-
ular, ciphertext strings end with 1 and associated data strings with 00 (in an
authentication-only message) or 10 (otherwise).

4.2 Security Analysis

To be secure, Deck-PLAIN relies on the encryption context to be a nonce, as it
otherwise leaks the difference between two plaintexts, as for stream ciphers. If
the encryption context is a nonce, Deck-PLAIN can be distinguished from the
jammin cipher only by a forgery or by distinguishing the deck function from
a random function, as captured in the following theorem. Multi-key security is
covered by the Advprf

F (D′) term, see Sect. 3.2. In particular, one can avoid multi-
key security degradation by ensuring that the encryption context is different per
instance of Deck-PLAIN.

Theorem 2. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-PLAIN(F, t, �) from J +t, the jammin cipher with WrapExpand(p) =
p + t. If in the queries of D the encryption context is a nonce, there exists an
adversary D′ using the same resources as D such that

ΔD(Deck-PLAIN(F, t, �) ; J +t) ≤ qunwrap
2t

+ Advprf
F (D′),

with qunwrap the number of unwrap calls D makes.

We now introduce the proof technique and given the proof in Sect. 4.4.

4.3 The H-coefficient Technique

Our proofs use the H-coefficient technique from Patarin [35]. We will follow the
adaptation of Chen and Steinberger [12]. Consider any information-theoretic
deterministic adversary A whose goal is to distinguish O from P, with its advan-
tage denoted ΔA(O ; P). The interaction of A with its oracles, either O or P,
will be recorded in a transcript τ . Denote by DO (resp. DP) the probability dis-
tribution of transcripts that can be obtained from interaction with O (resp. P).
Call a transcript τ attainable if Pr (DP = τ) > 0. Denote by T the set of attain-
able transcripts, and consider any partition T = Tgood ∪ Tbad into “good” and
“bad” transcripts. The H-coefficient technique states the following [12].

Lemma 1 (H-coefficient Technique). Consider a fixed information-theoretic
deterministic adversary A whose goal is to distinguish O from P. Let ε be such that
for all τ ∈ Tgood: Pr (DO = τ) /Pr (DP = τ) ≥ 1 − ε . Then, ΔA(O ; P) ≤
ε + Pr (DP ∈ Tbad).

The H-coefficient technique can thus be used to bound a distinguishing advantage
in the terminology of Definition 1. In our proofs below, we use the special case
where Pr (DO = τ) ≥ Pr (DP = τ) for all τ ∈ Tgood, so that ΔA(O ; P) ≤
Pr (DP ∈ Tbad), and we set O to the jammin cipher and P to the real world.
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4.4 Proof of Theorem 2

Proof. We use a hybrid argument and replace the deck function with a random
oracle before comparing Deck-PLAIN with the jammin cipher, i.e.,

ΔD(Deck-PLAIN(F, t, �) ; J +t)

≤ ΔD′′(Deck-PLAIN(RO, t, �) ; J +t) + Advprf
F (D′),

where D′′ has the same resources as D. Here Deck-PLAIN(RO, t, �) is a slight
abuse of notation. It means that the instance constructor chooses the i-th random
oracle from an array and that FK refers to ROi in Algorithm 2.

We then use Lemma 1 with O = J +t � J and P = Deck-PLAIN(RO, t, �).
In this proof, we use the session syntax of the jammin cipher. This is w.l.o.g. as
in Deck-PLAIN the history is an encoding of the more abstract history in J .

We define a transcript τ as a sequence of records of the form

(wrap/unwrap, context, P, C),

where the first component indicates the type of call made and the context is the
combination of the history as in the definition of J and A of the wrap/unwrap
call. In a wrap record, P is a parameter and C is the returned value, with C 
= ⊥.
In an unwrap record, C is a parameter and P is a return value and may contain
an error code ⊥. We ignore in the transcript wrap records with equal tuple
(context, P ) and unwrap records with equal tuple (context, C). This is w.l.o.g. as
both worlds act deterministically. Similarly, we ignore in the transcript unwrap
records that have the same tuple (context, P, C) as a wrap record. This is w.l.o.g.
as both worlds behave consistently in this respect. This yields a simple definition
of forgery, namely the presence of a successful unwrap record in the transcript.

We have one type of bad event: a successful forgery. Tbad is the set of tran-
scripts containing a record (unwrap, context, P, C) with P 
= ⊥. In a forgery
attempt, unwrap compares a tag to a tag generated with the underlying RO
applied to a unique input. As the latter is a uniformly generated t-bit string,
the probability that they are equal is 2−t, hence Pr (DP ∈ Tbad) ≤ qunwrap

2t after
qunwrap calls to unwrap.

We now prove that, for all τ ∈ Tgood, we have Pr (DJ = τ) ≥ Pr (DP = τ),
hence ε = 0 in Lemma 1. In both worlds, the cryptogram bits are generated ran-
domly and independently for different contexts, so we can partition the transcript
records per context and take the probability as the product of the probabilities
over the different contexts. We will now consider a subset of the transcript for a
given context value.

As the context is unique per wrap call for non-empty plaintexts, there
can be only one of the form (wrap, context, P 
= ε, C) and one of the form
(wrap, context, ε, Cε 
= C).

Upon an unsuccessful unwrap query, the jammin cipher returns ⊥ as it avoids
forgeries and hence contributes a factor 1 to the probability. Upon a wrap query,
the jammin cipher selects C from a set of cardinality at most 2|P |+t and hence
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contributes a factor at least 2−(|P |+t) to Pr (DJ = τ). It may return an error,
but thanks to Proposition 2, this would require qunwrap ≥ 2t.

Upon an unsuccessful unwrap query, P = Deck-PLAIN(RO, t, �) returns ⊥
in a good transcript and this contributes at most 1 to Pr (DP = τ). Upon a wrap
query, P computes the value C = Z||T with Z = P + RO(context), context =
history;A (or P + RO(history)  offset when A = ε and history 
= ∅) and T =
RO(updated history). Thanks to the fact that upon wrap the context is unique
and P takes tags and keystream in different domains or from different parts of
the RO output stream, it contributes a factor exactly 2−(|P |+t) to Pr (DP = τ).
A wrap record with P = ε contributes a factor 2−t to Pr (DP = τ).

This shows that Pr (DJ = τ) ≥ Pr (DP = τ) and concludes the proof. ��

5 Feistel Network Modes

The security of Deck-PLAIN breaks down when the encryption context is not a
nonce. In this section, we introduce four different modes of deck functions that
are more robust against nonce misuse. Two of the modes make optimal use of
the redundancy: for t-bit security they only require a plaintext expansion by t
bits. Moreover, two of them provide protection against the accidental release of
unverified decrypted ciphertext (a.k.a. release of unverified plaintext or RUP [3]).

Fig. 1. Feistel network inside the different modes, Deck-BO(REE) on the left and
Deck-JAMBO(REE) on the right.

It turns out that different modes like Synthetic Initial Value (SIV) [40],
Robust IV (RIV) [2] and wide-block ciphers [30,31] can all be expressed under



Jammin’ on the Deck 575

the hood of a Feistel network. We here give an intuitive overview of these con-
structions, starting with the simplest case: SIV. Consider Fig. 1 (left) with only
the first two rounds. The left branch is initialized with t bits set to zero, while
the right branch contains the plaintext. After the first round, V is a pseudoran-
dom function of the plaintext and becomes the tag. We use V also as a synthetic
diversifier in the next round, and encrypt the plaintext Y = P by adding to it a
keystream that depends on V .

In case the implementation (accidentally) releases unverified decrypted
ciphertexts, an adversary can obtain such for chosen values of V .

After querying unwrap with C0 = V ||Z0 and C1 = V ||Z1 and get unverified
decrypted ciphertexts P0 and P1, she observes that Z0 + Z1 = P0 + P1. The
RIV mode avoids this by adding a third round. The ciphertext Z serves as input
to a third pseudorandom function to mask V . Compared to SIV, the adversary
cannot control V at decryption anymore since she has access to W only.

To avoid collisions in V , SIV and RIV need to have t large enough. In case
of unbounded nonce misuse, due to the birthday paradox we must take t = 2s
for s bits of security. Consider now Fig. 1 (right). Compared to SIV and RIV, it
adds a round at the beginning and the plaintext is spread onto the two branches,
with t bits of redundancy on the left branch. This round compresses P into Y ,
and then we proceed as with SIV and RIV. The left and right branch must be
wide enough to avoid collisions in Y , but this is decoupled from the expansion
length t and we can now have t = s for s bits of security. If a mode performs
the first three rounds but not the last one, we obtain a variant of an SIV mode
with optimal redundancy but no resistance to RUP.

We call our modes Deck-BO, Deck-BOREE, Deck-JAMBO and
Deck-JAMBOREE and they make use of the Feistel network-based block cipher
in Algorithm 3. This algorithm is parameterized with the deck function F and
whether the optional first (jam) and last (ree) rounds are performed. A call to
the block cipher takes as input a secret key K, a context (tweak) and the input
already split into four parts L0||L+||R0||R+. The left branch is L0||L+ and the
right branch is R0||R+. The first (resp. last) round affects only R0 (resp. L0).
Additionally, the block cipher returns a history that is the combination of its
context and the intermediate value Y . In Deck-BO(REE), Y coincides with the
plaintext, while in Deck-JAMBO(REE) it is the compressed plaintext or plain-
text representative. In all cases, Y needs to be absorbed when evaluating the
block cipher and this allow the returned history not to have to be absorbed
again, thanks to the incrementality of the deck function.

5.1 Deck-BO

Deck-BO, defined in Algorithm 4, combines the SIV approach [40] with the
session support of Deck-PLAIN. Deck-BO wraps a message in three phases:

1. Tag generation: It generates the tag by applying the deck function to the
context (history and A) and the plaintext of the message, if non-empty.
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2. Encryption: If the plaintext is non-empty, it generates the ciphertext by
adding to the plaintext the output of the deck function applied to the context
extended with the tag.

3. It updates the history.

Unwrapping is similar. Deck-BO has a single length parameter: the tag length t.
It applies domain separation between associated data and plaintext strings in
the history, as well as between the generation of keystream and of tag.

Algorithm 3. Definition of block cipher B and its inverse.
Parameters: deck function F and round flags ⊆ {jam, ree}
Note: in the sequel, L is a shortcut notation for L0||L+ and R for R0||R+.

Interface: O = BF,flags(K, context, L0, L+, R0, R+)
if jam ∈ flags then

R0 ← R0 + FK (context; L||001)
L ← L + FK (context; R||011)
history ← context; R||011
R ← R + FK (context; L||101)
if ree ∈ flags then

L0 ← L0 + FK (context; R||111)
return (history, L||R)

Interface: O = B−1
F,flags(K, context, L0, L+, R0, R+)

if ree ∈ flags then
L0 ← L0 + FK (context; R||111)

R ← R + FK (context; L||101)
L ← L + FK (context; R||011)
history ← context; R||011
if jam ∈ flags then

R0 ← R0 + FK (context; L||001)
return (history, L||R)

In contrast to Deck-PLAIN, leakage of Deck-BO is limited to revealing plain-
text equality under equal encryption context. To achieve that, Deck-BO com-
putes the tag over the history with associated data and plaintext attached and
then generates the keystream from the encryption context with this tag appended
to it. Unless we have colliding tags for equal encryption contexts, keystreams are
independent. Therefore, for its security Deck-BO relies on the absence of (rare)
tag collisions. The security of Deck-BO is captured in Theorem 3.

Theorem 3. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-BO(F, t) from J +t, the jammin cipher with WrapExpand(p) = p+t.
Then there exists an adversary D′ using the same resources as D such that

ΔD(Deck-BO(F, t) ; J +t) ≤ qunwrap
2t

+
∑

context

(
σ(context)

2

)

2t
+ Advprf

F (D′),
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Algorithm 4. Definition of Deck-BO(F, t) and Deck-BOREE(F, t)
Parameters: deck function F and expansion length t
B = BF,∅ for Deck-BO or B = BF,{ree} for Deck-BOREE

Constructor: init( �K, i) taking key array �K, key index i
(K, history) ← ( �K[i], ∅)
return instance

Interface: wrap(A, P ) returning C
if |P | = 0 then

history ← history; A||00
return C ← 0t + FK (history)

if |A| = 0 then context ← history else context ← history; A||10
(history, C) ← B(K, context, 0t, ε, P, ε)
return C

Interface: unwrap(A, C) returning P or ⊥
if |C| = t then

history′ ← history; A||00
P ← ε
C′ ← 0t + FK (history′)
if C′ 	= C then return ⊥

else if |C| > t then
if |A| = 0 then context ← history else context ← history; A||10
T ||Z ← C such that |T | = t
(history′, P ′) ← B−1(K, context, T, ε, Z, ε)
L||P ← P ′ such that |L| = t
if L 	= 0t then return ⊥

else return ⊥
history ← history′

return P

with qunwrap the number of unwrap calls that D makes and σ(context) the number
of wrap queries with P 
= ε for a given context value.

The second term is due to tags colliding for equal encryption contexts and it
determines the length of the tag to achieve a certain security strength s. If the
encryption context is a nonce, the term vanishes and it is sufficient to take

t = s. In case of unbounded nonce misuse, it may reach q2
wrap

2t+1 and we have to
set t ≥ 2s − 1. In use cases where the number of times an encryption context is
repeated can be upper bounded by 2x, we can relax this to t = s + x − 1.

The proof can be found in the full version [11].

5.2 Deck-BOREE and Release of Unverified Decrypted Ciphertexts

Deck-BO does not tolerate the release of unverified decrypted ciphertexts when
unwrapping. This leads to a distinguisher as detailed earlier. We introduce
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Deck-BOREE to address use cases where this is a concern. Deck-BOREE hides
the tag value from the adversary by encrypting it using keystream computed
from the ciphertext. The distinguisher described above for Deck-BO no longer
works as the tag (SIV) depends on the ciphertext and decryption leads to inde-
pendent keystreams and therefore independent decrypted ciphertexts. We define
Deck-BOREE in Algorithm 4.

Theorem 4 formalizes the security of Deck-BOREE. For the release of unver-
ified decrypted ciphertexts, we use an approach similar to indifferentiability [32].
In the real world, we extend the interface of the adversary with the value of the
right branch (Y ) after processing the unwrap query, as this is where the plain-
text appears before the tag is verified. For the ideal world, such a right branch
does not exist and we simulate it with independently distributed random bits,
so without connection to any actual plaintexts. Infeasibility to distinguish the
two systems with this extended interface implies that security is preserved even
when releasing unverified decrypted ciphertext.

In addition, we grant the adversary the choice per query whether she gets
the value of the right branch (or its simulated value). If not, she just receives ⊥.
So Theorem 4 also covers the case where the unverified decrypted ciphertexts
are not disclosed, or only a limited number of them.

Theorem 4. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-BOREE(F, t) from J +t, the jammin cipher with WrapExpand(p) =
p + t. In addition, this adversary has access to the unverified decrypted cipher-
texts in the case of Deck-BOREE and to a random string of bits |C| − t bits in
the case of the jammin cipher. Then there exists an adversary D′ using the same
resources as D such that

ΔRUP
D (Deck-BOREE(F, t) ; J +t) ≤ qunwrap

2t
+

∑

context

(
σ′(context)

2

)

2t
+ Advprf

F (D′),

with qunwrap the number of unwrap calls that D makes and σ′(context) the number
of wrap (resp. unwrap) queries with P 
= ε (resp. |C| > t and the adversary
accesses the unverified decrypted ciphertext) for a given context value.

The second term is due to (hidden) tag collisions for wrap call and unwrap
calls with leakage for given encryption contexts. As for Deck-BO, it determines
the length of the tag to achieve a certain security strength s and the same
trade-offs apply. If the adversary does not access unverified decrypted ciphertext,
unwrap queries do not contribute to σ′(context) and we get the same bound as
in Theorem 3 for Deck-BO.

The proof can be found in the full version [11].

5.3 Deck-JAMBO and Optimal Redundancy

Deck-JAMBO is an enhancement of Deck-BO in that it resulting in less required
expansion at the cost of an additional round at the beginning in order to pro-
tect against chosen plaintext attacks. With Deck-JAMBO, it is possible to take
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advantage of redundancy that is already present in the plaintext, as long as it
resides in the left branch of the Feistel network. We define it in Algorithm 5.

We leave the specifications of how to split the input of the block cipher into
left and right parts out of the definition of Deck-JAMBO and Deck-JAMBOREE.
The reason is that the most efficient way to do so may vary with the particular
deck function in use. For instance, for farfalle-based deck functions, one may
wish the left part of the input to fit in exactly one block after padding. Such
specific technicalities do not belong in the definition of a general-purpose mode.

The split cuts the expanded plaintext or cryptogram into four parts. We
formalize this with three functions that must satisfy some properties: plaintext
expansion and extraction and a split function.

First, the expand function takes as input the plaintext P and the expansion
length t and returns the expanded plaintext P ′ = expand(P, t) of the form
0t||P ||10∗. The number of zero bits at the end may depend on the length of P
but shall not depend on its value. This function must ensure that |P ′| ≥ 4t. The
expand function implicitly defines a WrapExpand function, namely,

WrapExpand(|P |) = |expand(P, t)| .

For P = ε, Deck-JAMBO has a special treatment and the resulting cryptogram
has |C| = t bits. So, we can set WrapExpand(0) = t and therefore the implicitly
defined WrapExpand function is t-expanding by construction.

Second, we define a plaintext extraction function called extract(P ′, t) that
returns ⊥ if P ′ does not start with 0t or cannot be unpadded, and extracts P
otherwise. Naturally, we require that extract(expand(P, t)) = P for any P . Note
that the behavior of this function is fixed and cannot be customized.

Third, the split function takes as input the expanded plaintext P ′ or cipher-
text C and the expansion length t, and it returns a tuple (L0, L+, R0, R+) =
split(α, t) such that α = L0||L+||R0||R+, |L0| ≥ 2t and |R0| ≥ 2t. Here again,
the lengths of the four parts may depend on the length of the input string but
not on its value. If the input string is shorter than 4t bits, it returns an error.

Compared to Deck-BO, we renamed the history to story as it is no longer
guaranteed that the mapping of the sequence of messages to this sequence of
strings is injective. In particular, we do not append plaintexts but rather plain-
text representatives. Different plaintexts with colliding plaintext representatives
are rare, and we treat them as bad events in the proof.

The security of Deck-JAMBO is captured in the theorem below. Compared
to Deck-BO, the expansion parameter t can be equal to the security strength s
in all cases. Collisions that happen on the left or right branch are bad events,
but as the branches are at least 2t bits wide, these are rare.

Theorem 5. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-JAMBO(F, t, expand, split) from J t,expand, the jammin cipher with
WrapExpand that follows from t and the chosen expand function (or J for
short). Then there is an adversary D′ using the same resources as D such that

ΔD(Deck-JAMBO(F, . . . ) ; J ) ≤ qunwrap
2t

+
∑

context

(
σ(context)

2

)

22t−1
+ Advprf

F (D′),
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Algorithm 5. Definition of Deck-JAMBO(REE)(F, t, expand, split)
Parameters: deck function F , expansion length t, expand and split functions
B = BF,{jam} for Deck-JAMBO or B = BF,{jam,ree} for Deck-JAMBOREE

Constructor: init( �K, i) taking key array �K, key index i
(K, story) ← ( �K[i], ∅)
return instance

Interface: wrap(A, P ) returning C
if |P | = 0 then

story ← story; A||00
return C ← 0t + FK (story)

if |A| = 0 then context ← story else context ← story; A||10
P ′ ← expand(P, t)
(L0, L+, R0, R+) ← split(P ′, t)
(story, C) ← B(K, context, L0, L+, R0, R+)
return C

Interface: unwrap(A, C) returning P or ⊥
story′ ← story
if |C| = t then

story′ ← story′; A||00
C′ ← 0t + FK (story′)
if C′ = C then P ← ε else P ← ⊥

else if split(C, t) 	= ⊥ then
if |A| = 0 then context ← story else context ← story; A||10
(L0, L+, R0, R+) ← split(C, t)
(story′, P ′) ← B−1(K, context, L0, L+, R0, R+)
P ← extract(P ′, t)

else P ← ⊥
if P 	= ⊥ then story ← story′

return P

with qunwrap the number of unwrap calls that D makes and σ(context) the number
of wrap queries with P 
= ε for a given context value.

The proof can be found in the full version [11].

5.4 Deck-JAMBOREE

Deck-JAMBOREE combines the advantages of Deck-BOREE and Deck-JAMBO
in a natural way. For encryption it makes use of a wide tweakable block cipher
such as AEZ [24] but rather specified in terms of a deck function, like Double-
decker [22]. For authentication, it relies on the redundancy in the expanded
plaintext presented to this block cipher.

The security of Deck-JAMBOREE is captured in the theorem below. Like
Deck-JAMBO, the expansion parameter t can be equal to the security strength s.
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And like Deck-BOREE, it is secure even in the case of the release of unverified
decrypted ciphertext. The RUP model is defined similarly, with the difference
that there is no clear split anymore between the ciphertext and the tag as in
Deck-BOREE. Hence, the adversary has access to the entire unverified decrypted
cryptogram, which would contain the expanded plaintext in a successful unwrap.

Theorem 6. Let D be any fixed deterministic adversary whose goal is to distin-
guish Deck-JAMBOREE(F, t, expand, split) from J t,expand, the jammin cipher
with WrapExpand that follows from t and the chosen expand function (or J for
short). In addition, this adversary has access to the unverified decrypted cryp-
tograms in the case of Deck-JAMBOREE and to a random string of bits |C| bits
in the case of the jammin cipher. Then there exists an adversary D′ using the
same resources as D such that

ΔRUP
D (Deck-JAMBOREE(F, . . . ) ; J ) ≤ qunwrap

2t
+

∑

context

(
σ′(context)

2

)

22t−1
+ Advprf

F (D′),

with qunwrap the number of unwrap calls that D makes and σ′(context) the number
of wrap (resp. unwrap) queries with P 
= ε (resp. |C| > t and the adversary
accesses the unverified decrypted cryptogram) for a given context value.

The proof can be found in the full version [11].

6 Conclusions

We found that proving the security of the deck function-based modes is rela-
tively easy and gives strong bounds that are tight, as the bounds account only
for simple bad events like tag guessing and internal collisions. New modes are
relatively easy to design, and this opens the door to more tailored schemes for
niche applications, but we leave this as future work.
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11. Băcuiei, N., Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: Jammin’ on
the deck. IACR Cryptology ePrint Arch, p. 531 (2022)

12. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

13. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: All on Deck!
Real World Crypto 2020, New York, USA, 8–10 January 2020. https://rwc.iacr.
org/2020/slides/Assche.pdf, https://www.youtube.com/watch?v=CQDsLhf-d-A

14. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak,
a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020)

15. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

16. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subterranean 2.0
cipher suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–294 (2020)

17. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70697-9 21

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

19. Daemen, J., Rijmen, V.: The pelican MAC function. IACR Cryptol. ePrint Arch.
2005, 88 (2005)

20. Duong, T., Rizzo, J.: Here come the XOR ninjas. Manuscript (2011)

https://doi.org/10.1007/978-3-319-96884-1_7
https://doi.org/10.1007/3-540-44647-8_18
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-24660-2_1
https://doi.org/10.1007/978-3-642-55220-5_19
https://rwc.iacr.org/2020/slides/Assche.pdf
https://rwc.iacr.org/2020/slides/Assche.pdf
https://www.youtube.com/watch?v=CQDsLhf-d-A
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-662-04722-4


Jammin’ on the Deck 583

21. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated on-line encryp-
tion. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp.
145–159. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24654-
1 11

22. Gunsing, A., Daemen, J., Mennink, B.: Deck-based wide block cipher modes and an
exposition of the blinded keyed hashing model. IACR Trans. Symmetric Cryptol.
2019(4), 1–22 (2019)

23. Hamburg, M.: The STROBE protocol framework. In: Real World Crypto (2017)
24. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and

the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

25. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 24

26. Hoang, V.T., Shen, Y.: Security of streaming encryption in google’s tink library.
In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) CCS 2020: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, USA, 9–13
November 2020, pp. 243–262. ACM (2020)

27. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block
cipher mode for highly secure message authentication. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 34–65. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 2

28. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

29. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

30. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

31. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60865-6 53

32. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

33. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017)

34. NIST: NIST special publication 800–38b, recommendation for block cipher modes
of operation: the cmac mode for authentication, June 2016

35. Patarin, J.: The Coefficients H technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

36. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity, CCS 2002, Washington, DC, USA, 18–22 November 2002, pp. 98–107. ACM
(2002)

https://doi.org/10.1007/978-3-540-24654-1_11
https://doi.org/10.1007/978-3-540-24654-1_11
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-47989-6_24
https://doi.org/10.1007/978-3-319-63697-9_2
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/3-540-60865-6_53
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-04159-4_21
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Abstract. Incompressibility is one of the most fundamental security
goals in white-box cryptography. Given recent advances in the design of
efficient and incompressible block ciphers such as SPACE, SPNbox and
WhiteBlock, we demonstrate the feasibility of reducing incompressible
AEAD modes to incompressible block ciphers. We first observe that sev-
eral existing AEAD modes of operation, including CCM, GCM(-SIV),
and OCB, would be all insecure against white-box adversaries even when
used with an incompressble block cipher. This motivates us to revisit and
formalize incompressibility-based security definitions for AEAD schemes
and for block ciphers, so that we become able to design modes and reduce
their security to that of the underlying ciphers. Our new security notion
for AEAD, which we name whPRI, is an extension of the pseudo-random
injection security in the black-box setting. Similar security notions are
also defined for other cryptosystems such as privacy-only encryption
schemes. We emphasize that whPRI ensures quite strong authenticity
against white-box adversaries: existential unforgeability beyond leak-
age. This contrasts sharply with previous notions which have ensured
either no authenticity or only universal unforgeability. For the underly-
ing ciphers we introduce a new notion of whPRP, which extends that of
PRP in the black-box setting. Interestingly, our incompressibility reduc-
tions follow from a variant of public indifferentiability. In particular, we
show that a practical whPRI-secure AEAD mode can be built from a
whPRP-secure block cipher: We present a SIV-like composition of the
sponge construction (utilizing a block cipher as its underlying primitive)
with the counter mode and prove that such a construction is (in the vari-
ant sense) public indifferentiable from a random injection. To instantiate
such an AEAD scheme, we propose a 256-bit variant of SPACE, based
on our conjecture that SPACE should be a whPRP-secure cipher.
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1 Introduction

White-box cryptography, which has been introduced by Chow et al. for AES [25]
and DES [26], is a technique to protect data in the presence of adversaries who
have access to implementations of cryptographic algorithms. For two decades
since Chow et al. published the seminal papers, target systems of white-box
cryptography have spread out from digital rights management (DRM) to mobile
payment and banking services [2,41]. Today white-box cryptography is applied
to a wide range of cryptographic algorithms [29], and in this paper we focus on
symmetric-key encryption schemes.

Secure white-box implementations must resist key extraction and “code lift-
ing” [29]. While the goal of key extraction is to retrieve a secret key from a
white-box implementation, code lifting tries to isolate and copy (a part of)
the functionality of the cryptographic algorithm. Security against code lifting
is in general stronger than security against key extraction, as key extraction
implies code lifting of the full functionality. Preventing code lifting is indispens-
able to realize secure white-box implementations because arbitrary message can
be encrypted or decrypted once the program is copied.

Delerablée et al. [29] have introduced the notion of incompressibility to for-
malize resistance to code lifting. Roughly, a white-box program of an encryption
scheme is incompressible if it is infeasible to compress the encryption program
while keeping its functionality. Delerablée et al. have shown that incompress-
ibility is achievable by an RSA-group-based construction. Follow-up work by
Fouque et al. [35] has introduced variants of incompressibility regarding privacy
(IND-COM) or limited authenticity of universal unforgeability (ENC-COM).
They have presented randomized schemes ensuring each of the security notions
but not both at the same time.1 The more recent work by Bock et al. [18] has
shown that an incompressible randomized encryption scheme can be built from
one-way permutations. Closely related to incompressibility is the work by Bellare
et al. on big-key symmetric encryption [9]2, which was later improved by Bellare
and Dai [8]. They have provided efficient randomized encryption schemes with
a high level of privacy (LIND) and without authenticity, in the setting where
information of the key is partially leaked, by making the key big, say, 1GB.

While there exist other white-box security notions, we focus on incompress-
ibility because it is achievable by relatively efficient schemes and without rely-
ing on special hardware. True that trusted execution environments are in com-
mon use today, but demands for software-only solutions are still high in various
scenarios—e.g., cloud servers providing digital rights management based services,
mobile phones running cloud-based payment services with host card emulations,
and memory-leakage resilient software—as listed by Bogdanov et al. [22].

It should be noted that some pieces of previous work [9,21,22,35] (and we also
do) assume that a black-box adversary resides outside the target program and
1 A scheme in Sect. 2 of the paper [35] achieves authenticity but not privacy in the

white-box setting, because its tag-generation part does not depend on keys.
2 This work focuses on bounded retrieval model rather than white-box cryptography,

but as Fouque et al. point out, its security notion almost matches IND-COM.
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tries to attack in the conventional sense. More precisely, the white-box adversary,
which here we call a lifter, tries to isolate and copy the functionality of the
encryption program. Then, the black-box adversary tries to break privacy and/or
authenticity with the aid of leakage generated by the lifter. Here, the amount
of leakage is properly restricted in agreement with the bounded retrieval model
[24,27] of leakage-resilient cryptography.

There is another line of research: Designing incompressible block ciphers.
Bogdanov and Isobe [21] have introduced the concept of SPACE-hard white-box
block ciphers and presented a concrete construction SPACE based on a dedicated
design rather than on an obfuscated implementation of an existing cipher (such
a direction of adopting dedicated designs for block ciphers was initiated with
ASASA [14]). The notion of SPACE hardness is a variant of incompressibility and
provides immunity against code lifting. Similar notions include weak white-box
security [14] and ENC-TCOM [35]. Bogdanov and Isobe have shown that SPACE
achieves SPACE hardness, assuming AES is secure. SPACE is reasonably efficient,
running faster than a hundred cycles per byte on modern PCs. A number of
follow-up SPACE-hard white-box block ciphers have been proposed, including
SPNbox [22] and WhiteBlock [35].

Now our motivation behind this work becomes evident: There is a large gap
between the two lines of research. Specifically, we would like to address the
following issues:

1. There exist no modes of operation that turn incompressible block ciphers
into incompressible authenticated encryption (AE) schemes. As described in
Sect. 3 (and in the full version of this paper [40]), existing modes such as
GCM [51], GCM-SIV [36], CCM [61], and OCB [46] would not yield incom-
pressible AE even if combined with an incompressible block cipher. The state-
of-the-art incompressible block ciphers mentioned above, though secure and
reasonably efficient, are not utilized.

2. As mentioned above, there exist no AE schemes that simultaneously ensure
both privacy and authenticity against white-box adversaries, unless one relies
on special hardware. Moreover, the only type of authenticity that has been
achieved in the context of incompressibility is universal unforgeability, which
is much weaker than what has been done in the conventional setting. Similar
discussions are provided in the previous work by Bock et al. [19] where the
authors point out that “the definition of incompressibility does not capture
any further security such as confidentiality and authenticity”.

3. The lack of secure AE modes or schemes indicates the need for further investi-
gation into the incompressibility notion. Specifically, we would like to come up
with a usable definition of incompressible block ciphers as well as a new notion
of incompressibility that captures more perfectly the privacy and authenticity
requirements on AE schemes. Having done that, we should be able to design a
mode that enjoys both privacy and authenticity in a strong sense, by relying
on the underlying incompressible cipher.
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1.1 Our Contributions

We introduce new incompressibility-based white-box security notions for AEAD
schemes and BCs which we name whPRI and whPRP, respectively. Intuitively,
with the two notions we attempt to define the best possible security such that
any λ-bit leakage from a lifter (e.g., malware) does not allow adversaries to
break privacy and/or authenticity, or equivalently indistinguishability, except
for λ-bit ciphertexts. In particular, the notions demand authenticity in quite
a strong sense: existential unforgeability beyond leakage. Our definition, we
believe, should be the first one to formalize this notion concretely. Obviously,
this is a much stronger requirement than universal unforgeability. We remark
that whPRI and whPRP are extensions of pseudo-random injections (PRI) [58]
and pseudo-random permutations (PRP) in the black-box setting, respectively:
they exactly match in the extreme case of λ = 0. The security games for our
new definitions involve both of black-box adversaries and lifters. These games
become inherently multi-stage.

We properly bound the computational resource tlif of a lifter and the leakage
size λ. Especially, no security is guaranteed after either tlif or λ reaches a certain
threshold, e.g., tlif = 250 or λ = 220. We expect that an attack (malware activ-
ity) should be detectable, before the threshold is reached, by some means, e.g.,
monitoring active processes and/or outgoing packets. We conjecture that SPACE
should satisfy whPRP-security under some reasonable parameter settings.

For completeness we study theoretical possibilities of security reductions of
various symmetric-key schemes; we introduce similar notions for keyed functions
and conventional (privacy-only) encryption schemes. Our notion for keyed func-
tions, which we call whPRF, is an extension of the standard pseudo-random
function (PRF). For conventional encryption schemes, we define two security
notions which we name whIND$-CPA and wh ˜SPRP. The former is an extension
of IND$-CPA security (for random-IV schemes) in the black-box setting. The
latter is obtained as a special case of whPRI where ciphertext lengths are always
equal to message lengths. Thus, wh ˜SPRP is an extension of the tweakable strong
PRP ( ˜SPRP) security for tweakable enciphering schemes [38] in the black-box
setting. We observe that meaningful counterparts of MAC security and nonce-
based security notions seem unachievable in our context. Table 1 gives compar-
isons between various security notions for (authenticated) encryption schemes.

We prove that a reduction between the new security notions is possible if the
construction in hand satisfies a variant of public indifferentiability [32,63], which
we name weak public indifferentiability. Then we demonstrate that all the new
notions can be reduced to whPRP, by presenting corresponding constructions
that are weak public indifferentiable.

Finally, as an example of practical AEAD modes of block ciphers, we show
that a composition of the sponge construction [12] and the counter mode (CTR)
via SIV [58] is whPRI-secure if the underlying block cipehr EK is whPRP-secure.
Here, the underlying primitive EK is used both by the sponge and by the CTR.
Roughly speaking, if EK is secure up to λ-bit leakage, the resulting AEAD is
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Table 1. Comparison of incompressibility or related notions for symmetric-
key (authenticated) encryption schemes. We assume that AEADs always take a
nonce (or IV) as a part of input. Especially, a nonce is included into inputs of
deterministic AEADs.

Security notion Target scheme Leakage Adversarial goal

(λ, δ)-incompressibility [18,29] deterministic or
randomized encryption
(RSA group or OWP-
based schemes [18,29])

whole implementation δ-functionality with code size < λ

(Privacy) (Authenticity)
LIND [9] randomized encryption

(Big-Key Encryption [8,9])
via function with output
size = �

distinguishing —

IND-COM [35] randomized AE
(WhiteKey [35])

via function
with entropy left � μ

distinguishing —

ENC-COM [35] randomized AE
(WhiteKey+RO)

via function with entropy
left ≥ μ

— universal forgery

whPRI [Sect. 4.3] deterministic AE
(SIV+CTR (Sect. 7))

via lifter (malware)
with output size � λ

distinguishing existential forgery
beyond leakage

whIND$-CPA [Sect. 5.3] randomized encryption
(CTR (Sect. 6.3))

via lifter (malware)
with output size � λ

distinguishing —

wh ˜SPRP [Sect. 5.3] tweakable enciphering
scheme
(6-round Feistel (Sect. 6.3))

via lifter (malware)
with output size � λ

distinguishing —

secure as long as the amount of processed data is � 2n/4 and leakage is less than
λ. To instantiate EK , we propose to use a 256-bit-block variant of SPACE which
we name SPACE256. We conjecture that SPACE256 is secure up to 220 bits of
leakage. The resulting AEAD scheme is implemented on an Intel platform for
experiments, and we confirm that the performance is practical. The size of the
program is in an order of KB or MB, which is reasonably small for mobile
applications. Unlike previous schemes achieving incompressibility, our scheme
does not need random nonces. This is an advantage in the white-box setting
because random number generators may be compromised by adversaries.

Note that our notions do not supersede previous ones but rather coexist with
other white-box security approaches such as binding [19,20]. Which security
approaches, definitions or solutions one should choose changes depending on
use cases and what one wants to achieve. Specifically, when trusted hardware
is available or when lifters have much more limited access to programs, other
security notions would be more suitable.

1.2 Related Work

Other Security Notions in White-Box Cryptography. The initial goal
set by Chow et al. was to protect software implementations of existing block
ciphers from key extraction when an attacker is given an unlimited access to
a white-box implementation. Many pieces of previous work have proposed such
implementations, but none of them remains unbroken [13,47,53,62]. Some of the
state-of-the-art work focus on limited white-box adversaries such as DCA and a
certain class of algebraic attacks [5,16,17,23].
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Several solutions outside incompressibility have been suggested to mitigate
code lifting. Chow et al. suggested external encoding [25], which yields a white-
box implementation of E′

K = G◦EK ◦F−1 for some functions F and G instead of
EK . The problem is that even an ordinary user needs a separate implementation
of G−1 or F to compute EK . Thus, white-box adversaries would also be able
to peel off the external encoding, unless the encoding is stored in trusted hard-
ware. Delerablée et al. suggested one-wayness [29], which formalizes the notion
that one is unable to perform decryption even if an encryption program is given.
They also suggested traceability [29], which allows a program distributor to
trace malicious users who leak their encryption programs. Both are interesting,
but they do not encompass resistance to copying encryption programs. Other
works have discussed the possibility of binding [1,19,20], where the execution of
encryption is bound by trusted hardware or applications. Unfortunately, cryp-
tographically secure binding requires, together with secure hardware, primitives
such as indistinguishability obfuscation (iO) or LWE, which are richer than usual
symmetric-key primitives.

Symmetrically and Asymmetrically Hard Cryptography. Biryukov and
Perrin [15] introduced the HSp mode (and its instantiation WHALE), which
can be used to build an incompressible VIL/VOL hash function from a usual
sponge hash (like SHA-3) and an FIL/FOL incompressible function. The mode
is proven to achieve a universal-unforgeability-like security notion on incom-
pressibility. Their result seems close to ours (in Sect. 6.3) that the sponge
construction becomes a VIL/VOL whPRF if the underlying primitive is a
whPRP (or FIL/FOL whPRF). Still, there are two differences between theirs
and ours. First, they proved only universal-unforgeability-like security while
we proved existential-unforgeability-like security (i.e., whPRF-security). Second,
their proof is in the random oracle model while ours is in the standard model in
that the existence of a whPRP (or a FIL/FOL whPRF) is a falsifiable assump-
tion.

Leakage Resilient Cryptography. An important area related to white-box
cryptography is leakage resilient cryptography, which aims to achieve provable
security against side-channel attacks. Security models in leakage resilient cryp-
tography are roughly classified into two types3, depending on whether (1) an
adversary is allowed to obtain arbitrary leakage from the secret key as long as
the leakage length is bounded by a certain parameter, or (2) some form of secu-
rity is assumed on memory or storage, and/or leakage is obtained only when some
computation (e.g., encryption) is performed through a special class of functions
such as the Hamming weight of internal states with some noise.

Models of the First Type. A typical model of the first type closely related to
our results is the Bounded Retrieval Model (BRM) [27,33], where large (e.g.,

3 This classification is based on (still not completely the same as) the one in [43,44].
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1GB) keys are used to prevent key exfiltration. The BRM and related notions
have been studied in a long line of research [3,4,8,9,24,27,33]. Among others,
Bellare et al. [9] showed practical symmetric-key encryption schemes achieving
confidentiality in the BRM, which was later improved by Bellare and Dai [8].

As pointed out by Fouque et al. [35], the goals of Bellare et al. [8] and
incompressibility are quite close. Still, each of the BRM and incompressibility
has its own advantages. An advantage of the BRM is that, for well designed
schemes such as the one by Bellare et al. [8], bounding the running time of a lifter
(malware) is not mandatory (it is mandatory for incompressible ciphers because
the secret key sizes are very small). Meanwhile, no previous works on symmetric
encryption scheme in the BRM achieve both confidentiality and authenticity
simultaneously4, while we prove that SIV+CTR achieves whPRI.

Models of the Second Type. Major models of the second type include the “only
computation leaks information” (OCL) model [52] and wire-probing leakage [42].
In models of the second type, lots of previous works have shown various leak-
age resilient schemes including AEADs [7,10,11,28,30,31,34,37,45,48,52,55,59].
Especially, Krämer and Struck [45] showed that the security of a leakage-resilient
AEAD can be reduced to the security of leakage-resilient PRFs in the “only com-
putation leaks information” model [52]. However, these results are incomparable
to ours because they essentially assume that attackers do not have a direct full
access to memory or storage that stores the secret key.

A clear advantage of the second type is that the size of implementations can
be small, compared to incompressibility and the first type. When we can assume
that adversaries do not have a full direct access to memory or storage (e.g.,
leakage can be obtained only by measuring power consumption of a circuit),
models of the second type will be more suitable than incompressibility and the
first type. When we cannot, incompressibility or the first type will be suitable.

1.3 Paper Organization

Section 2 introduces basic notations and definitions, and review basics on (pub-
lic) indifferentiability. Section 3 shows an observation that GCM is unlikely to
achieve incompressibility. In Sect. 4, we introduce whPRI, a new security notions
for AEADs. New security notions for other schemes are introduced in Sect. 5.
Section 6 introduces weak public indifferentiability and shows that weak public
indifferentiability implies white-box security reductions. The section also demon-
strates that our new notions on various schemes can be reduced to whPRP, by
showing (weak) public indifferentiable constructions. In Sect. 7 we show that a
practical whPRI-secure AEAD mode of whPRP can be realized as a composition
by SIV of the sponge construction and the counter mode.

4 A scheme by Bellare et al. [9] also achieves authenticity, but only in the absence of
leakage (See also Table 1).
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2 Preliminaries

Throughout the paper, len(M) denotes the bit length for a bit string M . Given
a positive integer m < len(X), we write (A,B)

m, ∗←−−− X to mean assignment
of bit strings, the leftmost m bits of X to A and the remaining bits to B.
The variable A or B may be omitted with the symbol “ · ” in which case
the corresponding bits are not assigned to any variable. When we write like
(X1,X2, . . . , X�)

n←− X we mean partitioning X into n-bit blocks and assign-
ing them to X1,X2, . . . , X� where � =

⌈
len(X)/n

⌉
and the last X� is possi-

bly fractional, i.e., len(X�) < n. The symbol ‖ stands for concatenation of bit
strings and the symbol ⊕ exclusive OR of two bit stings of the same length.
By block length of M we denote �len(M)/n	 when the parameter n is clear
from the context. For an invertible function F by F± we denote the oracles of
F and F−1. We denote the empty bit string by ε and define {0, 1}0 := {ε}.
{0, 1}∗ denotes the set of all bit strings of arbitrary length. For positive inte-
gers x and n, by x mod n we denote the minimum positive integer i such that
i ≡ x mod n. We say an m-input function f : (Z≥0)×m → R≥0 is non-decreasing
if f(x1, . . . , xi + z, . . . , xm) ≥ f(x1, . . . , xm) holds for arbitrary 1 ≤ i ≤ m,
(x1, . . . , xm) ∈ (Z≥0)×m, and z ∈ Z≥0.

Definition 1 (Variable-key and fixed-key random injection). Let τ ≥ 0
be an integer and Injτ (K×N×A×M,C) denote the set of functions F : K×N×
A×M → C such that FK,N,A := F (K,N,A, ·) is an injection for each (K,N,A)
and len(F (K,N,A,M)) = len(M)+ τ . A variable-key random injection F is an
injection chosen uniformly at random from Injτ (K×N×A×M,C). The inverse
F−1 : K×N×A×C → M∪{⊥} is defined so that F−1(K,N,A, F (N,A,M)) =
M for each (K,N,A,M) and F−1(K,N,A,C) = ⊥ for all C �∈ FK,N,A(M). If
K is a set that contains exactly a single element, we say F is a fixed-key random
injection and omit to write K and K.

Syntax of Symmetric-Key Cryptosystems and Basic Constructions.

Keyed Functions. A keyed function is a function f : {0, 1}κ × X → Y. Here, κ
is a positive integer and {0, 1}κ is called the key space. We write fK(M) and
f(K,M) interchangeably.

Block Ciphers. A block cipher is a keyed function E : {0, 1}κ ×{0, 1}n → {0, 1}n

such that E(K, ·) is a permutation for each K. The inverse function (EK)−1 is
denoted by DK , and we write DK(C) and D(K,C) interchangeably. E and D
are called the encryption and decryption functions.

AEADs. An AEAD scheme is a tuple Π = (E ,D). The first element of
Π is an encryption function E : K × N × A × M → C. Here, K is the
key space from which the secret key is chosen uniformly at random. The set
N = {0, 1}ν is a nonce space with the nonce length ν being a non-negative
integer. The sets A,M,C correspond to the spaces of associated data, plaintext
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Algorithm 1: CTR(K, IV,M)

1: (M1,M2, . . . ,M�)
n←− M

2: for i = 1 to � do
3: y ← fK(IV + i − 1),

4:
(
y′, · ) len(Mi), ∗←−−−−−− y,

5: Ci ← Mi ⊕ y′

6: return C1 ‖ C2 ‖ · · · ‖ C�

Algorithm 2: EK1,K2(N,A,M)

1: IV ← fK1(N,A,M)
2: C ′ ← E ′

K2
(IV,M)

3: return C ← IV ‖ C ′

Algorithm 3: DK1,K2(N,A,C)

1: (IV , C ′)
τ, ∗←−− C

2: M ← DK2(IV,C ′)
3: T ← fK1(N,A,M)
4: if IV = T then
5: return M

6: else
7: return ⊥

and ciphertext, respectively, where M = C = {0, 1}∗. We write interchangeably
E(K,N,A,M) = EK(N,A,M) = EK,N,A(M). For each (K,N,A) ∈ K × N × A
we demand that len

(EK,N,A(M)
)

= len(M) + τ should hold for all M ∈ M,
where τ a fixed non-negative integer. The second element of Π is a decryption
function D : K×N×A×C → M∪{⊥}. Here, the symbol ⊥ signifies rejection.
We write interchangeably D(K,N,A,M) = DK(N,A,M) = DK,N,A(M). For
each (K,N,A,M) we demand that DK,N,A(EK,N,A(M)) = M should hold.

Conventional Encryption Schemes. The syntax for a conventional (privacy-only)
encryption scheme is essentially the same as that of AEAD except that it does
not take any associated data, i.e., A = {ε}, and τ = 0. In addition, nonce N and
nonce space N are renamed as IV and IV. We assume IV is chosen uniformly at
random for every encryption query or arbitrarily chosen by adversary depending
on security notions we focus on.

Counter Mode. Counter mode (CTR) is the construction to convert a keyed
function into a conventional encryption scheme. Let f : {0, 1}κ × {0, 1}m →
{0, 1}n be a keyed function. The encryption function of CTR based on f , which
we denote by CTR(K, IV,M), is computed as in Algorithm 1. The key, IV, and
message spaces are {0, 1}κ, {0, 1}m, and {0, 1}∗, respectively. The decryption
function is identical to the encryption function.

SIV. SIV is the construction introduced by Rogaway and Shrimpton to realize
a deterministic AEAD [58]. Let N and A be arbitrarily chosen space of nonces
and associated data. (We assume N = {0, 1}ν for some ν ∈ Z>0 and A = {0, 1}∗

unless otherwise noted.) Let f : {0, 1}κ1 ×(N×A×{0, 1}∗) → {0, 1}τ be a keyed
function and Π ′ = (E ′,D′) be a conventional encryption scheme with the key
space {0, 1}κ2 , IV space {0, 1}τ , and message space {0, 1}∗. The SIV construction
based on f and Π is an AEAD with key space {0, 1}κ1 × {0, 1}κ2 , nonce space
N, associated data space A, and message space {0, 1}∗. The encryption function
E and decryption function D are defined as in Algorithm 2 and Algorithm 3,
respectively. We call an output of f a tag and f a tag-generation part.
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Programs and White-Box Compilers. We follow the abstraction and nota-
tion used by Delerablée et al. [29] for dealing with programs and compilers. A
program implements an algorithm, specific to some explicit language and execu-
tion model. A program can be read, copied and modified at will. A program can
be viewed as a bit string, and its binary code can be executed locally. A program
is inherently stateless. A program may, via APIs including system calls, make
use of external resources such as random coins and additional functionalities. A
white-box compiler CE of a block cipher E is an algorithm that takes K ∈ {0, 1}κ

as an input and outputs a program that implements EK . We use the notation
�Ek� to denote a white-box implementation of EK in a context where explicitly
indicating the compiler is unnecessary. Moreover, we call �EK� white-box block
cipher simply. A white-box compiler may be probabilistic, outputting different
programs for the same key5. White-box compilers of other cryptosystems are
defined in the same way.

Indifferentiability. Let TP be an algorithm (a cryptographic scheme, e.g., a
VIL hash function) making queries to P, where P is an ideally random primitive
(e.g., a FIL random oracle). In addition, let R be an ideally random scheme
corresponding to TP with the same input-output interface (e.g., a VIL random
oracle). Then, the indifferentiability advantage of A against (TP,R) with respect
to a simulator S is defined as Advindiff

T,R,S(A) := Pr
[
1 ← ATP,P

]
−Pr

[
1 ← AR,SR

]
.

Informally, we say TP is indifferentiable from R if there is an efficient simulator
S such that the above advantage becomes negligibly small for any efficient A.
We call TP (resp., R) a construction oracle and P a primitive oracle. We call
queries to TP or R (resp., P or SR) construction queries (resp., primitive queries).

The most important feature of indifferentiability is the general “composition
theorem” [50,56]: Suppose the following (1)–(3) hold: (1) A scheme (or protocol)
ΠR depending on the ideal object R is proven secure. (2) TP is indifferentiable
from R. (3) The security of Π is defined by single-stage games. Then the com-
position theorem guarantees that ΣTP

is secure [50]. Note that not only (1) and
(2) but also (3) is crucial; the composition theorem does not necessarily hold for
schemes of which security is defined by multi-stage games [56]. We do not get
into further details because it is not directly related to our results.

Indifferentiability of Sponge. Let r, c > 0 and f : {0, 1}r+c → {0, 1}r+c be
a function. Let pad : {0, 1}∗ → ({0, 1}r)+ be an injective padding function
such that the last (r-bit) block of pad(X) is not 0r for every X.6 The sponge
construction Spongef maps bit strings of arbitrary length to bit strings of any

5 In practice, many white-box implementations of AES are the output of the proba-
bilistic compiler. On the other hand, the dedicated white-box block cipher such as
SPACE uses the deterministic compiler in general.

6 In what follows, we assume the padding function pads “1” and the minimum number
of zeroes so that the total length of the padded string becomes multiple of r, i.e.,
pad(X) := X||1||0len(X) mod r−1.
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Algorithm 4: Spongef (X) with requested output length m

1: (X1, . . . , X�)
r←− pad(X), s ← 0r+c, y ← ε

2: for i = 0 to � − 1 do
3: s ← f(s ⊕ (Xi+1||0c))
4: for i = � to � + �m

r 	 − 1 do
5: y ← y||(the upper r bits of s), s ← f(s)
6: return y

requested length as in Algorithm 4 (i.e., Spongef can be regarded as a function
from {0, 1}∗×N to {0, 1}∞). The parameters r and c are called rate and capacity.

Bertoni et al. [12] proved that the sponge construction is indifferentiable from
a VIL/VOL random oracle RO : {0, 1}∗ → {0, 1}∞ if f is an ideally random
function. More precisely, they showed the following theorem7.

Theorem 1 (Theorem 1 of [12]). Let ε(q) := 1 − ∏q
i=1

(
1 − 1

2c

)
. There

exists a simulator S making queries of total length at most � r+c
r 	q2 such that

Advindiff
Sponge,RO,S(A) ≤ ε(q) holds for any adversary A that calls f at most q(< 2c)

times in the real world, either directly or indirectly through Spongef .

Indifferentiable AEAD Schemes. Barbosa and Farshim studied indifferentiable
AEAD schemes [6], where the ideal oracle is a variable-key random injection F
and its inverse F−1 (see Definition 1)8. Note that a variable random injection
takes not only nonce, associated data, and message (or ciphertext) but also a
key as an input. They especially showed that indifferentiable AEADs cannot be
achieved by some generic compositions such as SIV, and that indifferentiable con-
structions can be built by Encode-then-Encipher (EtE) or 3-round Feistel-based
scheme. In particular, by using the sponge construction for round functions of the
Feistel-based scheme, an indifferentiable AEAD can be built from a FIL/FOL
random function. See the full version of this paper [40] for details.

Public Indifferentiability. Again, let TP be a construction calling an ideal
primitive P, and R be an ideal object of which interface is compatible with
7 The theorem roughly says Spongef is secure up to 2c/2 queries because ε(q) ≈ 1 −

e
− q(q+1)

2c+1 < q(q+1)

2c+1 holds for q � 2c. The original theorem in [12] did not mention the
exact number of queries by S but we can deduce it is at most � r+c

r
�q by checking

the details of the proof.
8 The parameter τ (the length of ciphertext-stretch) is also considered as an input to

AEADs and random injections in [6], but this paper considers the special case where
is τ fixed to a constant.
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TP. Public indifferentiability [32,63] is defined in the same way as the origi-
nal indifferentiability, except that a simulator S is allowed to observe all the
queries by adversaries to R and the responses. (Public-indifferentiability is actu-
ally a special case of indifferentiability rather than a variant. However, we regard
it as a variant for readability.) More precisely, in the ideal world, there is
an additional oracle-query interface to reveal the list of all the queries made
so far to R and the responses, and an access to this interface is given to S
(but not to A). We call this interface the revealing interface, and denote by
Rev[R]. This models the condition that every input to R (and the output) is
visible to all the parties involved in a security game, and the general “com-
position theorem” on public-indifferentiability holds only for schemes of which
security games satisfy such a condition. The restriction that the “composi-
tion theorem” does not necessarily hold for multi-stage games also applies to
public-indifferentiability, but the theorem holds for single-stage games as long
as this condition holds. The public indifferentiability advantage is defined as
Advpub-indiff

T,R,S (A) := Pr
[
1 ← ATP,P

]
− Pr

[
1 ← AR,SR,Rev[R]

]
. Informally, we say TP

is public indifferentiable from R if there exists an efficient simulator S such that
the above advantage becomes negligibly small for any efficient A. The Merkle-
Damg̊ard construction is proven public indifferentiable [32].

Remark 1. While it is straightforward to show the composition of two indiffer-
entiable constructions becomes again indifferentiable9, its seems quite hard (or
even impossible) to prove that the composition of two public indifferentiabile
constructions becomes again public indifferentiable. (See Sect. 6.1 for details).

3 Code Lifting on GCM

This section briefly explains that GCM [51] is unlikely to achieve incompress-
ibility in the presence of a lifter given an unlimited access to an implementation,
even when used with an incompressible block cipher. Recall that GCM is an
AEAD mode of 128-bit block cipher composed of CTR and a universal hash
function called GHASH (see Fig. 4 of the full version [40] for details). As an
input, the encryption function of GCM takes a tuple of a nonce N , associated
data A, and a message M . Given an input (N,A,M), CTR first encrypts M
into a ciphertext C ′ with an IV derived from N . Then, a tag value T is com-
puted as T := GHASHEK(0128)(A,C ′)⊕EK(N ||1). The output of the encryption
function is T ||C ′. GCM is proven secure in the nonce-respecting scenario where
each nonce is never repeated for encryption queries10. When a nonce is repeated,
GCM is broken even in the black-box setting.

An important feature of GCM is that the authenticity heavily relies on
the value EK(0128): Suppose we know EK(0128) in addition to the tag T

9 If S (resp., S ′) is a simulator for a construction TP (resp., UQ) making the indiffer-

entiability advantage small (and if the interfaces are compatible), then S ′S makes

the advantage for TUQ

small.
10 Note that nonce reuse for decryption is allowed.
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and the ciphertext C ′ for an input (N,A,M). Then, for arbitrary Ã and
M̃ with len(M̃) ≤ len(M), we can produce the tag T̃ and the ciphertext
C̃ ′ corresponding to (N, Ã, M̃) without knowing the secret key K as C̃ ′ =
M̃ ⊕ (the upper len(M̃) bits of M ⊕ C) and T̃ = GHASHEK(0128)(A,C ′) ⊕
T ⊕ GHASHEK(0128)(Ã, C̃ ′). This means the universal forgery attack is possible
and the authenticity of GCM is completely broken once an adversary retrieves
EK(0128).

In the black-box setting, the value EK(0128) is hidden from adversaries and
GCM achieves authenticity. However, in the white-box setting where a lifter has
an unlimited access to a white-box implementation of GCM, the lifter could copy
and leak the value EK(0128) to an attacker to break authenticity11. This attack
works even if the underlying block cipher EK is incompressible. Just copying a
single 128-bit string EK(0128) would not be difficult no matter how hard copying
the full functionality of EK is.

The above attack shows that GCM fails to inherit incompressibility from
EK : A relatively small amount of data EK(0128) leaks information on an expo-
nentially many input-output pairs of GCM. Similar attacks exist for other AE
modes such as CCM, GCM-SIV, and OCB. See the full version [40] for details.

4 New AEAD Security Notion

This section gives us a formal definition of incompressibility-based white-box
security of an AEAD implementation. Security notions for other cryptosystems
are given later based on the definition for AEADs.

The attack in the previous section (and the ones in the full version of the
paper [40]) shows that, with raw implementation of AEAD modes such as GCM,
a small amount of leakage from the underlying white-box cipher could lead to
giving the adversary a great deal of information concerning valid ciphertext
values of the overlying AEAD scheme. Clearly this is an undesirable situation.

Basically, we want that a small amount of leakage would only lead to a small
amount of valid ciphertext information, but there is a subtlety. A white-box
attacker, or lifter (e.g., malware) could locally encrypt a large number of mes-
sages and then compute leakage of a small size from the obtained ciphertexts. As
a result, the leakage, as a function, may depend on a large number of ciphertext
values. Intuitively, we want that:

1. The leakage should not contain information yielding ciphertext values that
have not been computed by the lifter, so that the ciphertexts that the adver-
sary can compute from the leakage are limited to those that have been already
computed by the lifter, and

11 The value EK(0128) could be protected from some white-box attacks with software
or hardware countermeasures. Still, the effectiveness of such countermeasures would
be limited, given that existing white-box implementations of AES ensure security
only when adversaries have limited access to implemented algorithms. In addition,
our aim is to achieve white-box security without assuming trusted hardware.
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2. The number of ciphertexts that the adversary can compute from the leakage
should be small likewise the leakage size.

We establish a security notion that formalizes these requirements.

4.1 White-Box AEAD Attack Model

This section shows our attack model on white-box AEADs. We discuss on the
security after the code lifting because no security can be guaranteed before and
during the code lifting.

First, we provide an intuitive observation on what kind of attackers we have
to take into account. Assume a white-box AEAD scheme is running on a target
device, e.g., a remote server or a smartphone. Real-world attackers will behave
as follows: First, an attacker performs advance preparation on the target scheme,
making black-box queries to the encryption and decryption functions if possible.
Then the attacker creates a lifter, e.g., a malware or an analysis tool, and give
the lifter access to the white-box implementation by any means12. After analyz-
ing the implementation, the lifter leaks some information on the scheme to the
attacker. Finally, the attacker tries to break the privacy or authenticity of the
scheme by using the leakage.

Based on the above observation, we reach the following attack model. For-
mally, let Π = (E ,D) be an AEAD and CΠ its compiler. A white-box adver-
sary A = (Acreate,Adist) is a pair of oracle-aided, probabilistic random-access
machines (RAMs.) The adversary A attacks CΠ , running in two stages, as fol-
lows:

Initialization. A key K is chosen uniformly at random. Then using this key we
put P ← CΠ(K).

1st stage: creating a lifter. The first-stage is run by the sub-adversary Acreate

which has only black-box access to P, making queries to oracles EK and DK .
The goal of Acreate is to output a deterministic RAM L which we call a lifter.

Lifter execution. Once created, the lifter L gets full access to the AEAD
program P. The lifter L tries to extract some useful information out of the
implementation P, for example key material or compressed codes, and sends
leakage data L to the adversary. The size of L is restricted to λ bits, which
are properly smaller than the description of P.

2nd stage: distinguishing. Upon receiving leakage L from the lifter, the
second-stage sub-adversary Adist resumes querying to Ek and Dk, and finally
outputs a bit string.

We could consider various sorts of adversarial goals, such as key recovery,
plaintext recovery and ciphertext forgery. Of these, we choose the distinguishing

12 For instance, if the target device is a remote server, the lifter would be a malware
that sneaks into the server. If the device is a smartphone, the lifter would be an
analysis tool and the attacker may take the advantage of a slight opportunity to
analyze the smartphone while the owner does not pay attention to it.
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attack, extending the “gold-standard” IND-CCA in the black-box setting: We
assume Adist finally outputs a bit b. The final goal of the adversary A is to
distinguish between the real world (b = 1) and the ideal world (b = 0), i.e.,
whether the oracles EK and DK and the leakage have been real, or they have
been some random and simulated ones.

Of course, white-box implementation is not present in the black-box security
definitions, so we shall define how the leakage is computed in the ideal world.
Consequently, we shall later introduce a simulator that imitates the behavior of
the lifter L.

Even if it is impossible to prevent lifters from getting access to the white-
box implementation, we expect it is still possible to notice an attack is being
mounted when non-negligible amount of data is sent to a strange and suspicious
direction, by monitoring outgoing packets. Hence we define security notions when
the leakage size λ is limited, e.g., up to 220 bits. No security is guaranteed after
λ reaches the limitation. In addition, basically we assume the running time of
the lifter tlif is much smaller than that of the adversary t (e.g., tlif = 250 while
t = 2112) and the intrusion of the lifter can be detected after tlif time has passed.

We do not formalize the attack model in such a way L communicates with
A since L can do everything A can do, and thus communications do not help
much to break the scheme.

4.2 Ideal Oracles and Simulators

It remains to describe the ideal world in order to give a formal definition of
white-box AEAD security.

When black-box security of nonce-based AEAD is studied, typically the ideal
encryption (resp., decryption) oracle is set to be the one that always returns
a random ciphertext (resp., the reject symbol). The adversary is prohibited to
forward outputs from the encryption oracle to the decryption oracle to exclude
trivial attacks.

On the other hand, in our white-box setting we cannot set the ideal oracles
like above because the adversary can distinguish the ideal decryption oracle from
the real one if the lifter leaks a valid ciphertext C and the adversary queries C
to the decryption oracle.

Thus we set a fixed-key random injection F and its inverse F−1 as the ideal
oracles (see Definition 1), following previous works on pseudorandom injection
(PRI) security of AEADs [39,58]. In particular, our security notion will com-
pletely match the black-box PRI security when λ = 0.

Note that the black-box PRI security matches the misuse-resistant AE
(MRAE) security [39,58] if the tag length τ is sufficiently long: Roughly speak-
ing, the difference between the PRI advantage and the MRAE advantage of an
AEAD scheme is upper-bounded by O(q2/2τ ), where q is the number of black-
box oracle queries [39, Theorem 1]. Thus our white-box security notion will
require a secure scheme to be at least MRAE-secure in the black-box model.
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Simulators. Now what remains of the real world is the program P and the lifter
L. P does not exist in the ideal world and it is non-trivial how we should define
the behavior of L. To remedy this, we introduce a simulator that imitates the
behavior of L.

Recall our intuition on the property that a secure white-box scheme must
meet: Any leakage on a secure scheme does not contain information enabling an
adversary to compute ciphertext values that have not been computed by a lifter.
In other words, information that a lifter L can send to an adversary Adist (with
reasonable computational resources) is only those computable or simulatable
from some input-output pairs of EK and DK .

We model this situation by existence of a simulator S working as follows.
Given the description of a lifter L13 and oracle access to F and F−1 in the ideal
world, S produces a bit string Lideal which is, to Adist, indistinguishable from
leakage Lreal by L in the real world.

Since F is an ideally random object, S in the ideal world cannot leak more
than λ bits of information on F± via λ-bit leakage Lideal. Hence, intuitively, if
Adist cannot Lreal and Lideal, then L in the real world cannot leak more than λ
bits of information on EK and DK via λ-bit leakage Lreal.

More specifically, a simulator S is an oracle-aided RAM. We give S the ability
to do its job as follows:

1. We give S as its input the lifter L just as it is. Then S can perform static and
dynamic analyses on L. The code of L can be read, dissected and studied, so
that S can determine the functionality of L.

2. Needless to say, we let S have oracle access to F±1.
3. We give S sufficient computational power and do not explicitly bound its

running time. We only demand that the algorithm S be a finite sequence
of well-defined instructions and operations. By doing so, we believe that our
security notion should become achievable by a sound portion of AEAD pro-
grams while dismissing the rest.

In addition, we assume that S can observe all the queries to F± by Acreate

and the responses. The reasons that we assume this is as follows. First, if we
define a security notion for conventional encryption schemes similarly without
this assumption, then a conventional encryption scheme (random-IV CTR) which
intuitively seems white-box-secure is deemed insecure (see the full version of this
paper [40] for details). However, if the assumption is included in the definition,
random-IV CTR can be proven secure (Sect. 6.3). Thus it seems reasonable to
include the assumption into the definition for conventional encryption schemes.
Second, We would like to make security definitions for various cryptosystems
consistent as much as possible. Thus we include this assumption not only for
conventional encryption schemes but also for AEADs.

13 Note that a lifter is also made by a first-stage adversary Acreate in the ideal world,
but the black-box oracles given to Acreate are (F, F −1) instead of (EK , DK).
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4.3 Formal Security Notion: whPRI

Now we are ready to define new security notion of AEAD programs. We call our
notion white-box pseudo-random injection security (whPRI).

We consider a white-box adversary A = (Acreate,Adist) running in two dif-
ferent experiments called games. The real white-box PRI game ( PRI -real) is
an experiment in the real world as described in Sect. 4.1. We assume that the
white-box program P contains an implementation of not only encryption but
also decryption. The ideal white-box PRI game ( PRI -ideal) is an experiment
in the ideal world, where the oracles and the lifter are replaced with a random
injection and a simulator, respectively. These two games are formally defined
in Exp. 5 and Exp. 6 (Fig. 1).

Fig. 1. Experiments for whPRI. In the ideal experiment, Listcreate denotes the
list of queries by Acreate to F± and the responses.

Now, given an AEAD scheme Π and its compiler CΠ , let us define
the whPRI advantage of a white-box adversary A = (Acreate,Adist) with

respect to a simulator S as AdvwhPRI
Π,CΠ ,S(A) := Pr

[

Exp
PRI -real

Π,CΠ ,A = 1

]

−

Pr

[

Exp
PRI -ideal

S,A = 1

]

.

Definition 2 (whPRI). The pair of an AEAD scheme Π and a compiler
CΠ is (λ, t, q, σ, tlif , qsim, σsim, ε)-whPRI-secure white-box AEAD if the following
condition is satisfied: Let A be an arbitrary adversary running in time t and
making queries at most q times. The lengths of the queries are at most σ in
total14. In addition, A creates a lifter that runs in time tlif and outputs at most
λ-bit leakage. For arbitrary such A, there exists a simulator S that makes at
most qsim queries of which lengths are at most σsim in total, and satisfies an
inequality AdvwhPRI

Π,CΠ ,S(A) < ε.

14 The unit of length can be set arbitrarily (e.g., bit or block) depending on the context.



602 A. Hosoyamada et al.

Informally, suppose the following claim holds: For any “efficient” A, there exists
a simulator S that makes a “reasonable amount of” queries and making the
whPRI-advantage small15. Then we say that Π is whPRI-secure.

The attacks on GCM, GCM-SIV, CCM, OCB in Sect. 3 (or in the full version
of this paper [40]) show that, for each of those schemes, there exists a lifter L
that leaks the information on exponentially many number of input-output pairs
by only a small amount of leakage. In the ideal world, the information of input-
output pairs of the black-box oracle F± that a simulator can output by a λ-bit
leakage is at most λ-bit. Hence no simulator will be able to mimic the behavior
of such L. Therefore those modes are unlikely to achieve whPRI-security.

Fig. 2. Experiments for whPRP. Listcreate in Experiment 2 denotes the list of
queries to P by Acreate and the responses.

5 New White-Box Security Notions for Other Schemes

This section introduces white-box security notions for block ciphers, keyed func-
tions, and conventional encryption schemes.

5.1 whPRP: Secure White-Box Block Ciphers

We call the new security notion for white-box block ciphers white-box pseudo-
random permutation security (whPRP). The definition of whPRP is similar to
that of whPRI; the oracles EK and DK are now just EK , and its counterpart in
the ideal game is a random permutation P ∈ Perm(n), where Perm(n) denotes
the set of permutations on {0, 1}n.

We again consider a white-box adversary A = (Acreate,Adist) running in two
games: the real white-box PRP game ( PRP -real) which is formally defined
in Exp. 7 and the ideal white-box PRP game ( PRP -ideal) in Exp. 8 (Fig. 2).

15 We set quantifiers as ∀A∃S rather than ∃S∀A so that the possibility of existence of
primitives will increase, and the order of the quantifiers seems to have little impact
on whether a practical scheme is judged secure or not. Indeed, our proofs in later
sections, in addition to the discussions about the attacks on GCM, GCM-SIV, CCM,
OCB mentioned below, work regardless of the order of the quantifiers.



A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 603

We assume that the white-box program given to a lifter contains an implemen-
tation of not only encryption but also decryption. Then, given a block cipher E
and its compiler CE , let us define the whPRP advantage of a white-box adver-
sary A = (Acreate,Adist) with respect to a simulator S as AdvwhPRP

E,CE ,S(A) :=

Pr

[

Exp
PRP -real

E,CE ,A = 1

]

− Pr

[

Exp
PRP -ideal

S,A = 1

]

.

Definition 3 (whPRP). The pair of a block cipher E and a compiler CE is a
(λ, t, q, tlif , qsim, ε)-secure whPRP if the following condition is satisfied: Let A be
an arbitrary adversary running in time t and making at most q queries. A makes
a lifter that runs in time tlif and outputs at most λ-bit leakage. For arbitrary such
A, there exists a simulator S that runs in time tsim, makes at most qsim queries,
and satisfies an inequality AdvwhPRP

E,CE ,S(A) < ε.

Informally, suppose the following claim holds: For any “efficient” A, there exists
a simulator S that makes a “reasonable amount of” queries and making the
whPRP-advantage small. Then we say that Π is whPRP-secure.

The definition of whPRP is a strengthening of the conventional black-
box PRP, as the latter corresponds to the case λ = 0. It should be noted that
we allow the simulator S to make queries to P−1.

We can also consider the strong PRP version, whSPRP, where A is given
oracle access to not only EK but also E−1

K . It is strictly stronger than whPRP.
As a candidate of whPRP, we conjecture16 that SPACE-na (na ∈

{8, 16, 24, 32}) is a (λ, t, q, tlif , qsim, ε)-secure whPRP with t ≈ 2κ, q ≈ 2n,
λ ≈ (n − na) · 2na−2, and ε � 1, as long as tlif � qsim(< 2n). Here, n and
κ denote the block and key length, which are 128. See the full version [40] for
more details.

5.2 whPRF: Secure White-Box Keyed Functions

We call the new security notion for white-box keyed functions white-box pseudo-
random function security (whPRF )17, which is defined in the same way as
whPRP except that the black-box oracle given to the adversary is a random
function RF instead of a random permutation P , and that simulators have access
to RF instead of P and P−1. Real and ideal experiments in addition to a distin-
guishing advantage are defined in the same way as those for whPRP.
16 Note that it is unrealistic to “prove” whPRP-security of SPACE-256-16 in the same

sense as proving PRP security of AES is unrealistic. Generally, the only realistic way
to be confident with security of a block cipher is to see whether it withstands various
attempts of cryptanalysis by experts. Recently, the security of some space-hard block
ciphers was reviewed against a similar adversary to whPRP in [60].

17 We define a white-box version of PRF security but does not for MAC security such
as existential unforgeability. This is because a lifter can leak a valid message-tag
pair that has not been queried to oracles before, and thus it seems hard to achieve a
sound white-box version of existential unforgeability. It might be possible to define
a white-box version of weaker notions such as universal unforgeability, but such
notions are out of the scope of this paper. Studying weaker notions is a future work.
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5.3 White-Box Security of Conventional Encryption Schemes

We define two security notions on conventional IV-based encryption schemes,
which we name tweakable strong PRP security (wh ˜SPRP) and white-box IND$-
CPA security (whIND$-CPA).

wh ˜SPRP. The most natural way to obtain a definition of conventional IV-based
encryption schemes is to consider the special case of whPRI where A = {ε} and
τ = 0. This is an extension of (VIL) tweakable strong PRP (˜SPRP) security for
enciphering schemes in the black-box setting [38], and thus we call it wh ˜SPRP.

whIND$-CPA. Though wh ˜SPRP is naturally derived from whPRI, many pop-
ular conventional encryption schemes such as CTR and CBC are not ˜SPRP-
secure even in the black-box setting. Thus we seek for another definition extend-
ing ones that CTR and CBC meet in the black-box setting. Since CTR and CBC
cannot achieve indistinguishability against CCAs, we focus on security against
CPAs.

In the black-box setting, we have three scenarios depending on how IVs for
encryption queries are chosen.

1. Arbitrary IV (or, nonce-misuse) scenario: IVs are chosen by adversaries com-
pletely arbitrarily.

2. Nonce IV (or, nonce-respecting) scenario: IVs are chosen by adversaries arbi-
trarily, but repeated uses are prohibited (i.e., once an IV value is used for a
query, it is never be used again).

3. Random IV scenario: An IV is chosen uniformly at random for every encryp-
tion query.

CTR and CBC cannot achieve indistinguishability in the first scenario. The
second scenario is popular in the black-box setting but not suitable in our context
since a lifter may leak information on a valid message-ciphertext pair w.r.t. an
unused nonce. Thus we focus on the random IV scenario.

We follow [54] for the black-box security notion against CPAs for conven-
tional random-IV encryption scheme. The notion is defined by real and ideal
experiments. In the real experiment, an adversary has an access to a modified
version of the encryption oracle EK , which we denote by EK,rnd. For each encryp-
tion query, EK,rnd chooses IV uniformly at random, and returns (IV, EK(IV )).
In the ideal experiment, EK,rnd is replaced with an oracle $(·) that just returns a
random IV and a random ciphertext of the same length as the message. A scheme
is defined to be secure if an adversary with a reasonable amount of computa-
tional resources cannot distinguish the two experiments. We call this black-box
security notion IND$-CPA18.

18 This name is from [57], though it is defined for nonce-based scheme rather than
random-IV schemes.
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Our new notion whIND$-CPA is defined by extending IND$-CPA in the same
way as whPRI is defined extending PRI security. In the real world, the black-box
oracle given to A is EK,rnd only. In the ideal world, the oracle $(·) is given to
both of A and S. A complete description of the real and ideal experiments can be
found in the full version of this paper [40]. The advantage AdvwhIND$−CPA

Π,CΠ ,S (A)
is defined as before. We assume that the white-box program given to a lifter
contains an implementation of not only encryption but also decryption.

6 Weak Public Indifferentiability and White-Box Security
Reductions

This section first introduces a weaker version of public indifferentiability which
we name weak public indifferentiability. Second, we show that weak public indif-
ferentiability implies reductions between our white-box security notions intro-
duced in Sects. 4 and 5. Third, we provide feasibility results that our white-box
security notions on various schemes can be reduced to whPRP, by showing weak
public indifferentiable constructions.

6.1 Weak Public Indifferentiability and Compositions

An important point to be aware of about public indifferentiability is that it seems
quite hard to prove a composition of two arbitrary public indifferentiable scheme
become again public indifferentiable. This is because the general “composition
theorem” is not applicable to show public indifferentiability of composite schemes
due to the following reason. Suppose a scheme UQ (Q is an ideally random prim-
itive) is public indifferentiable from a random object P (e.g., a random oracle).
Then, what the general “composition theorem” for public indifferentiability says
is that we can safely replace P in a protocol or construction with UQ if the secu-
rity of the protocol/construction is defined by single-stage games satisfying the
following condition: Queries to P by any party involved in the security games
can be made public without affecting the security. (We denote this condition by
(C).) Now, assume that there is another scheme TP that is public indifferentiable
from a random object R. If (C) were satisfied by the security games of TP (i.e.,
by the security games of public indifferentiability), public indifferentiability of
UQ and the “composition theorem” would imply public indifferentiability of TUQ

.
However, (C) is not satisfied because queries by a simulator must not be visible
to an adversary in the ideal game. Thus the general “composition theorem” is
not applicable to prove public indifferentiability of TUQ

. (See also Remark 2.)
However, infeasibility of compositions is inconvenient because security proofs

cannot be provided in a modular way. To remedy this, we introduce a weaker
variant which we name weak public indifferentiability. Let TP be a construc-
tion querying to an ideally random primitive P, and let R be a random object
of which input-output interfaces are compatible with TP. Now, let Rev′[R]
be a variant of the revealing interface Rev[R] that returns the list of all the
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queries made so far by A, but not by S, together with the responses19. We
define weak public indifferentiability in the same way as public indifferentiabil-
ity is defined except that the revealing interface is Rev′[R] instead of Rev[R].
Weak public indifferentiability advantage is defined as Advweak-pub-indiff

T,R,S (A) :=

Pr
[
1 ← ATP,P

]
− Pr

[
1 ← AR,SR,Rev′[R]

]
.

A public indifferentiable scheme is weak public indifferentiable20. This is
because a simulator S for public indifferentiability can be converted into a one
for weak public indifferentiability just by recording queries that S makes to R.

On Compositions of Two Weak Public Indifferentiable Schemes. Here
we explain that a composition of two weak public indifferentiable schemes
become weak public indifferentiable if a few additional conditions are satisfied.
To explain this, we formally define random-IV schemes. Note that we say a
construction TP is deterministic if, for an arbitrary input X, the output value
TP(X) is unchanged during each game.

Definition 4. A construction TP is a random-IV scheme if it is a public-coin
protocol. Namely, there exists a deterministic construction T̃P and a set IV such
that, on arbitrary input X, TP runs as follows: (1) Take a value IV from IV
uniformly at random. (2) Return (IV, T̃P(IV,X)).

The following lemma shows the composition of two weak public indifferentiable
schemes is again weak public indifferentiable if a few additional conditions are
satisfied. Here we provide only an informal version due to page limitation. See
the full version of this paper [40] for a formal version and a proof.

Lemma 1 (Composition of weak public indifferentiable schemes, infor-
mal). Suppose the following (1)–(3) hold: (1) TP is a deterministic or random-
IV scheme calling an ideally random primitive P and is weak public indifferen-
tiable from R, (2) UQ is another deterministic construction calling an ideally
random primitive Q and is weak public indifferentiable from P, and (3) P and Q

are deterministic. Then TUQ

is also weak public indifferentiable from R, regarding
Q as the primitive oracle.

All compositions of (weak public) indifferentiable schemes appearing in this
paper satisfy (1)–(3).

19 Note that lists returned by Rev′[R] contain more useful information for S than lists
returned by Rev[R]. This is because (1) S can record what it has queried to R so far
by itself, and (2) Sometimes S cannot tell which queries recorded in a list by Rev[R]
have been queried by A: If a value x had been queried to R for the first time by S
but not A, there is no means for S to know whether A queried x to R afterwards.

20 It seems hard to prove weak public indifferentiability implies public indifferentiabil-
ity, but currently we are not aware of any separation example that is weak public
indifferentiable but not public indifferentiable.
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Intuition of the Proof. Here we explain a sketch of the proof when all the func-
tions and constructions are deterministic. Suppose the ideal game for TU is being
executed with an adversary A.

Let ST (resp., SU) be a “good” simulator for T (resp., U) making the indiffer-
entiability advantage small. Then, a “good” simulator STU for TU is defined as
follows, by using ST and SU as subroutines: When a value x is queried to STU , it
first runs SU on the input x as a subroutine. Intuitively, STU tries to convince the
subroutine SU that “now SU is run as a part of ATP,SP,Rev′[P]

U ”. When SU returns
an output, STU returns it to A as its own output. To achieve this, STU simulates
the oracles P and Rev′[P] for SU. P is simulated just by running SR,Rev′[R]

T . (Note
that STU is given oracle access to R and Rev′[R].) The non-trivial part is how to
simulate the oracle Rev′[P].

What the subroutine SU is expecting to receive when it makes a query to
the revealing interface is a list storing queries (and the responses) to P that are

made so far by A through T (but not by SU) while running ATP,SP,Rev′[P]
U . Hence,

when the subroutine SU makes a query to the revealing interface, STU simulates
the oracle Rev′[P] as follows. First, STU queries to Rev′[R] to get the list ListA[R]
of queries made so far to R by A (but not by STU). Then STU computes the

function TSR,Rev′[R]
T on the input X for each entry (X,Y ) in ListA[R], recording

all the queries by T to SR,Rev′[R]
T into a list Listprim, together with the responses.

Finally, STU returns Listprim to SU as a response. The simulation works well
because STU can tell which value has been queried to R so far by A (but not by
STU). See the full version of this paper [40] for further details.

Remark 2. The above idea does not work for (original) public indifferentiability.
Here we explain which part fails for public indifferentiability. The non-trivial
part of the proof is again how to simulate Rev[P] for SU. The issue in simulating
Rev[P] is also again how to determine the values queried to P through T by A
but not by SU. Now, the procedure “First, STU queries to Rev′[R] to get...” does
not work for public indifferentiability due to the property (2) in Footnote 23.

6.2 Weak Public Indifferentiability Implies White-Box Reduction

Let (π, Cπ) be a white-box symmetric-key scheme that are either of a keyed
function, block cipher, AEAD, or a conventional IV-based encryption scheme.
In addition, let (Σπ, CΣπ ) be another white-box symmetric-key scheme built on
(π, Cπ). We assume Σ calls π in a black-box manner not only at a level of syntax
but also at a level of implementation, i.e., the following conditions are satisfied.

1. The implementation of π (denoted by �π�) is included into the implementation
of Σπ (denoted by �Σπ�). In particular, �π� and an implementation of an
oracle-aided algorithm Σ (which is independent from π) is explicitly separated
in �Σπ�.

2. The implementation of Σ calls �π� in a black-box manner.
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Our goal is to reduce the security of (Σπ, CΣπ ) to the security of (π, Cπ). By sec-
const (resp., sec-prim) we denote the security notion corresponding to (Σπ, CΣπ )
(resp., (π, Cπ)), which is whPRI, whPRP, whPRF, wh˜SPRP, or whIND$-CPA21.

By abuse of notations, we use the same symbols Σπ and π to denote the
corresponding keyed black-box oracles given to (Acreate,Adist) in the white-box
security definitions. We assume Σπ is a deterministic or random-IV scheme: If
it is a random-IV scheme, there exists a scheme Σ̃π and a set IV such that Σπ

runs as follows on arbitrary input X: (1) IV is chosen uniformly at random from
IV. (2) Return (IV, Σ̃π(IV,X)).

Let R and P denote the ideal oracles given to a simulator in the ideal games of
the security definition of (Σπ, CΣπ ) and (π, Cπ), respectively. Suppose there exist
non-decreasing functions qΣ(·, ·) and σΣ(·, ·) satisfying the following property: If
Σπ is evaluated on q inputs of which lengths22 are σ in total during a game, Σ
makes at most qΣ(q, σ) queries to π and the lengths of the queries are at most
σΣ(q, σ) in total. In addition, assume we have the following three algorithms.

1. An adversary A = (Acreate,Adist) against (Σπ, CΣπ ). The running time is at
most tA. The number of black-box oracle queries by A is at most qA and the
lengths of queries are at most σA in total. A creates a lifter running in time
tlif and outputs at most λ-bit leakage.

2. A simulator Sprim for (π, Cπ) on sec-prim. Sprim makes at most qSprim queries
to the ideal oracle P. The lengths of queries are at most σSprim in total.

3. A simulator Sindiff for weak public indifferentiability of ΣP from R23. There
exist non-decreasing functions qSindiff (·, ·, ·, ·) and σSindiff (·, ·, ·, ·) satisfying the
following properties: If an adversary makes at most qc (resp., qp) construction
(resp., primitive) queries of which lengths are at most σc (resp., σp) in total
in the ideal game of weak public indifferentiability, Sindiff makes at most
qSindiff (qc, σc, qp, σp) queries to the ideal oracle R. The lengths of the queries
are σSindiff (qc, σc, qp, σp) in total.

Theorem 2. Let A, Sprim, and Sindiff be as above. Then there exists an adver-
sary A′ = (A′

create,A′
dist) against (π, Cπ), a simulator Sconst for (Σπ, CΣπ ), and

an algorithm A′′ against weak public indifferentiability of Σ such that

Advsec-const
Σπ,CΣπ ,Sconst

(A) = Advsec-prim
π,Cπ,Sprim

(A′) + Advweak-pub-indiff
Σ,R,Sindiff

(A′′) (1)

21 We assume the interfaces of π that Σ accesses to are only those given to A as black-
box oracles in the security games of sec-prim. For instance, if π is a block cipher
EK and sec-prim is whPRP, we assume that Σ calls only EK and does not call E−1

K

(though simulators in the ideal game of whPRP access to both of P and P −1).
22 The unit of length can be set arbitrarily (e.g., bit or block) depending on the context.
23 Since P is the oracle given to a simulator while π is the black-box oracle given to

an adversary in the security games of sec-prim, Σ may access to only a part of the
interfaces of P: If sec-prim is whPRP and π = EK , P is the pair (P, P −1) (here, P
is a random permutation) but Σ accesses only to P (and not to P −1) because the
black-box oracle interface given to an adversary A in the definition of whPRP is
only EK (and E−1

K is not given to A).
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holds. Here, we can construct Sconst, A′, and A′′ so that (a) A′ does not
depend on Sprim and Sindiff , (b) Sconst does not depend on A, (c) A′′ does not
depend on Sindiff , and the following conditions hold: (1) Sconst makes at most
qSindiff (qA, σA, q′

Σ+qSprim , σ′
Σ+σSprim) queries to R. The lengths of the queries are

at most σSindiff (qA, σA, q′
Σ + qSprim , σ′

Σ +σSprim) in total. Here, q′
Σ := qΣ(qA, σA)

and σ′
Σ := qΣ(qA, σA) (2) A′ runs in time O(tA + σ′

Σ) and makes at most q′
Σ

queries to a black-box oracle. The lengths of the queries are at most σ′
Σ in total.

A′ creates a lifter L′ that runs in time O(tlif) and outputs at most λ-bit leakage.
(3) A′′ makes at most qA construction queries of which lengths are at most σA
in total, and makes at most q′

Σ + qSprim primitive queries of which lengths are at
most σ′

Σ + σSprim in total.

Interpretation of Theorem 2. The above theorem indeed shows that (Σπ, CΣπ )
is a secure white-box scheme w.r.t. sec-const if the underlying scheme (π, Cπ) is
secure w.r.t. sec-prim and ΣP is weak public indifferentiable from R: Let A be
an adversary attacking (Σπ, CΣπ ). Then, we can construct an adversary A′ to
attack (π, Cπ) as in Theorem 2. If (π, Cπ) is secure (w.r.t. sec-prim), then there
is a simulator Sprim for (π, Cπ) that makes Advsec-prim

π,Cπ,Sprim
(A′) small. In addition,

if ΣP is weak public indifferentiable from R, then there exists a simulator Sindiff

making Advweak-pub-indiff
Σ,Sindiff

(A′′) small, where A′′ is the adversary built from A
and Sprim as in the theorem. Again, Theorem 2 assures that we can construct
Sconst from Sprim and Sindiff such that Advsec-const

Σπ,CΣπ ,Sconst
(A) satisfies Eq. (1).

If all the parameters appearing in Theorem 2 are not so large, the advantage
Advsec-const

Σπ,CΣπ ,Sconst
(A) is sufficiently small.

Intuition of the Proof. Here we provide a rough sketch on why Σπ becomes
secure if π is secure and ΣP satisfies the original indifferentiability. Let Sindiff be
a simulator making the indifferentiability advantage of ΣP small. We consider
the following three games.

1. [The real world (for Σπ on sec-const).] The adversary A = (Acreate,Adist)
is given a black-box oracle access to Σπ. A lifter L is given a white-box
implementation of Σπ.

2. [Intermediate world.] The black-box oracle of π and the lifter L in the real
world are replaced with a random permutation P and a simulator Sprim (for
π on sec-prim), respectively. The adversary A = (Acreate,Adist) and §prim are
given oracle access to ΣP and P, respectively. Especially, this game executes
three algorithms AΣP

create, SP
prim, and AΣP

dist.
3. [The ideal world] The black-box oracle given to A = (Acreate,Adist) is R.

In addition, the simulator (for Σπ on sec-const) is defined to be SSindiff
prim .

SSindiff
prim is also given an oracle access to R. Especially, this game executes

three algorithms AR
create, SSR

indiff
prim , and AR

dist.

If π is secure, then we can replace π (in Σπ) and a lifter in the real world with P
and a simulator Sprim, respectively, with a small security loss. That is, the differ-
ence between the first and the second worlds is small. Next, regarding the tuple
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(Acreate,Sprim,Adist) as a single algorithm, we can regard the intermediate world
as a game where a single-stage adversary (Acreate,Sprim,Adist) runs relative to
the oracles (ΣP,P). Moreover, we can also regard the ideal wold as a game where
the single algorithm (Acreate,Sprim,Adist) runs relative to the oracles (R,SR

indiff).
Especially, the difference between the intermediate and ideal worlds matches the
indifferentiability advantage of the single algorithm (Acreate,Sprim,Adist) against
TP and R with respect to Sindiff

24. Since ΣP is indifferentiable from R by Sindiff ,
the difference between the intermediate world and the ideal world is also small.

In fact there are some subtleties on how to simulate list of queries passed
to Sprim. Moreover, when we consider weak public indifferentiability instead of
original indifferentiability, we also have to consider how to simulate the revealing
interface Rev′[R]. See the full version of this paper [40] for details.

6.3 Feasibility Results

This section shows feasibility results that various white-box security notions can
be reduced to that of block ciphers (whPRP) and FIL/FOL keyed functions
(whPRF) like in the black-box setting. We only prove (weak) public indiffer-
entiability of the constructions because Theorem 2 shows white-box security
reductions follow from (weak) public indifferentiability.

whPRP-whPRF Switch. Let P be an n-bit random permutation. Then,
regarding (P, P−1) as a primitive oracle, P is public indifferentiable from a ran-
dom function RF : {0, 1}n → {0, 1}n. (In the real world, the construction oracle
is P and the primitive oracle is (P, P−1).) Specifically, the proposition below
holds.

Proposition 1. There is a simulator S making at most qp queries to RF sat-
isfying Advpub-indiff

P,RF,S (A) ≤ (qc+qp)2

2n for any adversary A making at most qc and
qp queries to the construction and primitive oracles, respectively.

The proof is quite straightforward. See the full version of this paper [40] for
a complete proof. Together with Theorem 2, this proposition implies that a
whPRP-secure BC is a whPRF-secure keyed function.

Reduction from whPRP to whPRF. The 6-round Feistel construction is
public indifferentiable from a random invertible permutation when round func-
tions are random functions [49]. Thus we can build a whPRP-secure BC from a
whPRF-secure keyed function.

24 This is the reason that we can utilize the indifferentiability of ΣP from R to show
the security of Σπ although the security games of Σπ are not single-stage games.
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Reduction from VIL/VOL-whPRF to FIL/FOL-whPRF. The indiffer-
entiability result of the sponge construction (Theorem 1) implies that we can
build VIL/VOL-whPRF from FIL/FOL-whPRF. We can also build VIL/FOL-
whPRF from FIL/FOL-whPRF by the Merkle-Damg̊ard construction since it is
public indifferentiable [32].

Reduction from whPRI to FIL/FOL-whPRF. By the result of Barbosa
and Farshim [6], an indifferentiable AEAD can be constructed from a FIL/FOL
random function by a scheme based on (unbalanced) 3-round Feistel that uses
the sponge construction as round functions. (See Theorem 5 of the full version of
this paper [40] and the explanation below for more details.) Thus we can build a
whPRI-secure AEAD from a whPRF-secure FIL/FOL keyed function. In Sect. 7
we show a more practical construction.

Reduction from wh ˜SPRP to whPRF. A weak public indifferentiable VIL
tweakable ideally random permutation can be built from a FIL/FOL random
function f , by a (balanced) 6-round Feistel construction of which round functions
are the sponge construction using f as an underlying primitive. See the full
version of this paper [40] for more details.

Reduction from whIND$-CPA to whPRF. Let us modify the encryption
oracle of CTR in such a way that (1) a uniformly random IV is chosen for each
encryption query (rather than IV is chosen by adversary) and IV is returned
together with the ciphertext, and (2) the underlying keyed function of CTR is
replaced with a random function ρ. We denote the resulting encryption oracle
by Eρ

rnd. Then Eρ
rnd is public indifferentiable from $(·) that appears in the ideal

experiment of whIND$-CPA. More precisely, the following proposition holds.

Proposition 2. There exists a simulator S making at most qc queries to the
$(·), where the lengths of queries are at most σ blocks in total, that satisfies
Advpub-indiff

Ernd,$(·),S(A) ≤ σ2

2m + σ(σ+qp)
2m for any adversary A making at most qc queries

to the construction oracle of which lengths are at most σ blocks in total and qp

queries to the primitive oracle.

Intuition of the Proof. For simplicity, we assume len(M) is always a multiple of
n and denote the i-th block of M by Mi, i.e., M = M1|| · · · ||Mlen(M)/n. Roughly
speaking, the simulator S runs as follows: Let List[$(·)] be the list storing queries
made so far to $(·) and the responses. When a fresh value x is queried to the
interface corresponding to ρ, the simulator first queries to the revealing interface
to get List[$(·)]. If there exists (M, (IV,C)) ∈ List[$(·)] such that x = IV + i − 1
for 1 ≤ i ≤ len(M)/n, the adversary may be trying to compute the i-th block of
C itself. Thus the simulator sets the value ρ(x) as ρ(x) := Mi ⊕ Ci so that the
adversary cannot notice that ρ is simulated. If such (M, (IV,C)) does not exist
in List[$(·)], the value ρ(x) is just randomly sampled.

The simulator may not be able to sample the value ρ(x) in compatible with
C and fail if the following (a) or (b) happen: (a) when a message M is queried to
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$(·) and IV is randomly chosen, IV +i = IV ′+j holds for some (M ′, (IV ′, C ′)) ∈
List[$′(·)], where 0 ≤ i < len(M)/n and 0 ≤ j < len(M ′)/n. (b) when a message
M is queried to $(·) and IV is randomly chosen, the value IV + i (0 ≤ i <
len(M)/n) collides with a value x on which the output value of ρ is already
defined. The events (a) and (b) correspond to the terms σ2

2m and σ(σ+qp)
2m in

the security bound, respectively. If both of (a) and (b) do not happen in the
ideal world, then outputs of ρ are appropriately simulated in compatible with
ciphertexts, and thus an adversary cannot distinguish the ideal world from the
real world. See the full version of this paper [40] for a complete proof.

On Reduction of Pairs and Generic Compositions. We also observe fea-
sibility of reductions of pairs (i.e., providing proof in a modular way), and infea-
sibility of generic compositions for AEADs. See the full version [40] for details.

7 A Search for a Practical whPRI-Secure AEAD Mode

This section shows a practical AEAD mode to convert whPRP into whPRI.
Section 7.1 shows that SIV with CTR is public indifferentiable from a fixed-key
random injection when the tag-generation (or, MAC) part is a single VIL/FOL
random function f and the underlying keyed function of CTR is a FIL/FOL
random function ρ. Then, in Sect. 7.2, we replace ρ and f with keyed functions
built from a single whPRP, and observe that the resulting scheme is a whPRI-
secure AEAD.

7.1 Public Indifferentiability of SIV+CTR

Let CTRρ(IV,M) denote the encryption function of the counter mode with the
underlying keyed function being replaced with a random function ρ : {0, 1}τ →
{0, 1}n (τ ≤ n). In addition, let Π = (Ef,ρ,Df,ρ) be the SIV construction of
which keyed function for tag-generation is replaced with a random function
f : N × A × {0, 1}∗ → {0, 1}τ and conventional encryption scheme is replaced
with CTRρ. Let enc : N×A×{0, 1}∗ → {0, 1}∗ be an arbitrary encoding function
that encodes each tuple (N,A,X) into a single bit string in a uniquely decod-
able manner. We let len(N,A,X) := len(enc(N,A,X)) and call �len(X)/n	 the
block length of a bit string of X. The following theorem shows Π is public
indifferentiable from a random injection.

Theorem 3. Let F : N×A×{0, 1}∗ → {0, 1}∗ be a fixed-key random injection
with message space {0, 1}∗ and such that len(F (N,A,M)) = len(M) + τ . There
exists a simulator S for public indifferentiability of Π from F±, where a primitive
oracle is (f, ρ), such that the number of queries by S to the construction oracle
is at most qf and the block lengths of the queries are at most σf in total, and

Advpub-indiff
Π,F ±,S (A) ≤ (σc + σf )2

2τ
+

(σc + σf )(qρ + σc)
2τ

+
3qc

2τ
+

(qc + qf )2

2τ
(2)
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holds for any adversary A of which computational resources are as follows: To
the construction oracle, A makes at most qc queries of which block lengths are
at most σc in total. To the first primitive oracle (corresponding to f), A makes
at most qf queries of which block lengths are at most σf in total. To the second
primitive oracle (corresponding to ρ), A makes at most qρ queries. Here, we
assume (qc + qf ) ≤ 2τ−1.

Intuition of the Proof. For simplicity, we assume len(M) is always a multiple
of n. For each (N,A,M), we assume F (N,A,M) is divided as F (N,A,M) =
IV ||C1|| · · · ||C�, where IV ∈ {0, 1}τ and C1, . . . , C� ∈ {0, 1}n. The simulation of
ρ is almost the same as that for the proof of random-IV CTR (See the explanation
below Proposition 2. Here, $(·) in Proposition 2 is replaced with F .). Simulation
of f(N,A,M) is done just by querying (N,A,M) to F and return F0(N,A,M).
Intuitively, the simulation does not work well if the simulation of ρ fails (the
events (a) and (b) in the explanation below Proposition 2), or (c) an adversary
computes Df,ρ(N,A,C) itself for a tuple (N,A,C) such that C has never been
returned from F , and Df,ρ(N,A,C) happens to be a value that is not ⊥. The
events (a) and (b) correspond to the terms (σc+σf )2

2τ and (σc+σf )(qρ+σc)
2τ of Eq. (2),

respectively. Due to (c), an additional term qc

2τ is added. Moreover, we need

another term (qc+qf )2+2qc

2τ to deal with lazy sampling of a random injection. See
the full version of this paper [40] for a complete proof.

7.2 Instantiation with Block Ciphers

This section discusses how to combine the scheme in the previous subsection
with a whPRP-secure block cipher to build a whPRI-secure AEAD.

Assume τ < n and let P : {0, 1}n → {0, 1}n a random permutation.
Define P0 : {0, 1}n−1 → {0, 1}n−1 and P1 : {0, 1}τ → {0, 1}n by P0(x) :=
(The lower (n − 1) bits of P (0||x)) and P1(x) := P (1n−τ ||x). Set N = {0, 1}n/2.
Let enc be an encoding function such that enc(N,A,M) = N ||A||M ||len(M).
(We assume len(M) is represented as an n/4-bit string.) In addition, define
MACP (N,A,M) := SpongeP0(enc(N,A,M)). Replace f (tag generation func-
tion) and ρ (underlying function of CTR) of Π in Theorem 3 with MACP and
P1, and denote the resulting scheme by Π[P ].

Then, Π[P ] is weak public indifferentiable from a fixed-key random injection
F± when P± is regarded as a primitive oracle25. Furthermore, if we replace P
with a whPRP-secure block cipher EK , the resulting scheme Π[EK ] becomes a
whPRI-secure AEAD by Theorem 2. (Here, we assume Π[EK ] is implemented
in such a way that the implementation of the mode is explicitly separated from

25 This is because (1) an invertible permutation is public indifferentiable from a ran-
dom function (Proposition 1), (2) the sponge construction is indifferentiable from
a random oracle (Theorem 1), (3) the scheme Π in Theorem 3 is public indiffer-
entiable from a fixed-key random injection, (4) composition of deterministic weak
public indifferentiable schemes are again weak public indifferentiable (Lemma 1, or
its formal version in the full version of this paper [40])..
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the implementation of EK and the former calls the latter in a black-box manner,
so that Theorem 2 can be applied.) More precisely, the following corollary holds.
(See the full version [40] for more details on how to derive the corollary.)

Corollary 1. Let A be an adversary against (Π[EK ], CΠ[EK ]) on whPRI-
security. The running time of A is at most t. The number of queries by A
to a black-box oracle is at most q and the block lengths of the queries are at
most σ in total. A creates a lifter running in time tlif and outputs at most
λ-bit leakage. In addition, let Sprim be a simulator for (E, CE) on whPRP-
security. Sprim makes at most qsim queries to P±. Then there exists a sim-
ulator Sconst for (Π[EK ], CΠ[EK ]) on whPRI-security and an adversary A′

against (E, CE) on whPRP-security such that AdvwhPRI
Π[EK ],CΠ[EK ],Sconst

(A) is upper

bounded by AdvwhPRP
EK ,CEK

,Sprim
(A′) + � n

r �6(10� n
r �σ+qsim)4

2τ + � n
r �4(10� n

r �σ+qsim)3

2τ +
� n

r �2(10� n
r �σ+qsim)2

2τ + � n
r �2(9� n

r �σ+2qsim)2

2n + 3qc

2τ + ε
(
2
⌈

n
r

⌉
(8

⌈
n
r

⌉
σ + qsim)

)
, where

ε(j) = 1 − Πj
i=1(1 − 1

2c ). Sconst makes at most
⌈

n
r

⌉
(9

⌈
n
r

⌉
σ + qsim) queries to

F± and the lengths of the queries are at most (
⌈

n
r

⌉3 (9
⌈

n
r

⌉
σ + qsim)2) blocks in

total. A′ runs in time O(t + σ) and makes at most (2σ +
⌈

n
r

⌉
q) black-box oracle

queries. A′ outputs a lifter that runs in time O(tlif) and outputs at most λ bits
of leakage.

Interpretation of Corollary 1. Let us set τ = n − 1 and (r, c) = (n/2, n/2 − 1).
Then, Corollary 1 says that AdvwhPRI

Π[EK ],CΠ[EK ],Sconst
(A) becomes small as long as

AdvwhPRP
E,CE ,Sprim

(A) is small and qsim, q, σ � 2n/4. This means the following: Let
λ and tlif be some reasonable parameters (� 2n/4) and assume the underlying
block cipher EK is a secure whPRP. More concretely, let A′ be an adversary
attacking EK with t � 2κ and q � 2n/4, and L be a lifter running in time
tlif(< 2n/4) that leaks at most λ-bit leakage. Suppose, for any such A′ and L,
there exists Sprim with making qsim(� 2n/4) queries such that AdvwhPRP

E,CE ,Sprim
(A′)

is sufficiently small. Then Π[EK ] is whPRI-secure against an adversary A as long
as (1) the running time of A is � 2κ, (2) the length of messages processed by
Π[EK ] is � 2n/4 blocks in total while running A in the real world, and (3) the
running time and leakage of a lifter (output by A) are at most tlif and λ bits26.

On Underlying Block Cipher. The above discussions show that Π[EK ] is
whPRI-secure if EK is whPRP-secure and the amount of data processed by
Π[EK ] is � 2n/4. As a candidate of whPRP-secure BC, we conjecture that
SPACE is whPRP-secure for some parameter settings (see Sect. 5.1). However,
the block length of SPACE is basically n = 128 only, when 2n/4 = 232. In practical
use cases, the limitation of 232 is inconvenient and unsatisfactory.

26 Note that λ does not explicitly appear in the upper bound of AdvwhPRI
Π[EK ],CΠ[EK ],Sconst

(A) in the corollary. This is because we (implicitly) assume λ ≤ qsim and the effect
of λ is absorbed into qsim in the security bound.
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Thus, we propose a 256-bit block variant of SPACE-16, which we name
SPACE256-16. Its details are provided in the full version of this paper [40], where
we discuss its security against various attacks following the convention of block
cipher designs. We conjecture27 that SPACE256-16 is a (λ, t, q, tlif , qsim, ε)-secure
whPRP with λ ≈ 220, t ≈ 2128, q ≈ 264, qsim ≈ 264, and ε � 1, as long as
tlif � qsim. Assuming our conjecture is true, Π[EK ] with EK instantiated with
SPACE256-16 is secure until the amount of processed data is � 264 (and the
amount of leakage is < 220).

To evaluate the performance, we implemented Π[EK ] using SPACE256-16 on
a single core in a laptop PC with Intel Core i7-1065G7, being Turbo Boost and
hyperthreading disabled. The implementation size is in the order of KB or MB.
As a result, the performance reaches about 530 CPB when a 1KB message is
processed. Considering the performance of raw SPACE-16 is 305.11 cpb [22], we
believe our mode of operation achieves relevant performance.

The limit of leakage for SPACE256-16 is not large. Still, in the same way
as (the original, 128-bit-block) SPACE-32 and SPACE-24 provide better security
than SPACE-16 does, a better limit could be achieved by 256-bit-block versions
of SPACE-32 or SPACE-24 (at the cost of performance). We introduced a 256-bit-
block version of SPACE-16 rather than SPACE-32 or SPACE-24 to balance secu-
rity and performance. Improving the performance and the limit of the leakage
is an interesting future work. This could be achieved by improving SPACE-hard
block ciphers, modes of operations, or both.
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Abstract. Indifferentiability is a powerful notion in cryptography. If a
construction is proven to be indifferentiable from an ideal object, it can
under certain assumptions instantiate that ideal object in higher-level
constructions. Indifferentiability is a particularly useful model for crypto-
graphic hash functions, and myriad results are known proving that a hash
function behaves like a random oracle under the assumption that the
underlying primitive (typically a compression function, a block cipher,
or a permutation) is random. Recently, advances have been made in prov-
ing indifferentiability of one-way functions with fixed input length. One
such example is truncation of a permutation. If one evaluates a random
permutation on an input value concatenated with a fixed initial value,
and truncates the output, one obtains a construction that is indifferen-
tiable from a random function up to a certain bound (Dodis et al., FSE
2009; Choi et al., ASIACRYPT 2019). Security of this construction, how-
ever, is in part determined by the length of the initial value; omission of
this fixed value yields an insecure construction.

In this paper, we reconsider truncation of a permutation, and prove
that the construction is indifferentiable from a random oracle, even if
this fixed initial value is replaced by a randomized value. This random-
ized value may be the same for different evaluations of the construction,
or freshly generated, up to the discretion of the adversary. The security
level is the same as that of truncation with fixed initial value, up to col-
lisions in the randomized value.

We show that our construction has immediate implications in the con-
text of parallel variable-length digest generation. In detail, we describe
Cascade-MGF, that operates on top of any cryptographic hash function
and uses the hash function output as randomized initial value in trunca-
tion. We demonstrate that Cascade-MGF compares favorably over earlier
parallel variable-length digest generation constructions, namely Counter-
MGF and Chained-MGF, in almost all settings.

Keywords: Random permutation · Truncation · Indifferentiability ·
MGF · Digest generation

1 Introduction

A cryptographic hash function is a one-way function that maps data of arbitrary
size to an output of a fixed size. Cryptographic hash functions are amongst the
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most-studied and most-used cryptographic functions. They are used to provide
integrity and authenticity in a large number of applications and protocols, includ-
ing digital signatures, message authentication codes (MACs), and other forms
of authentication.

The first hash functions appeared in the 70s, when Rabin introduced his iter-
ative hash function design [40] and Merkle his ideas on tree hashing [36]. The
iterative Merkle-Damg̊ard construction, independently described by Damg̊ard
and Merkle [17,35], later became the predominant approach in hash function
design. Given a compression function F that maps 2n bits to n bits, the con-
struction first pads and splits an arbitrarily sized input M ∈ {0, 1}∗ injectively
into n-bit blocks M0,M1, . . . ,Mμ. The hash value is obtained by compressing
these blocks one-by-one into an n-bit state:

hi+1 = F(hi,Mi) for i = 0, . . . , μ , (1)

where h0 = IV ∈ {0, 1}n is an initial value. Classical hash functions, including
SHA-1, SHA-2, and MD5, are of this form.

In more recent years, the approach of permutation based hashing has gained
popularity, mainly due to the rise of the sponge hash function construction [4,6],
that is (among others) used as mode in the SHA-3 construction Keccak [8].
The sponge construction accommodates for both arbitrarily sized inputs and
arbitrarily sized outputs. Let P be a permutation over {0, 1}b, and let b = r + c,
where c denotes the capacity and r the rate. As before, an input message M ∈
{0, 1}∗ is first injectively padded and split into r-bit blocks M0,M1, . . . ,Mμ.
Then, the message blocks are compressed one-by-one into a b-bit state:

hi+1 = P(hi ⊕ (Mi‖0c)) for i = 0, . . . , μ , (2)

where h0 = IV ∈ {0, 1}b is an initial value. Let hi+1 = P(hi) for i ≥ μ+1. After
the absorption of the last message block, the output is of the form

leftr(hμ+1) ‖ leftr(hμ+2) ‖ leftr(hμ+3) ‖ · · · ,

where leftr(·) denotes the r leftmost bits of its input.
All of these constructions have faced extensive security analysis. Whereas

originally the focus was collision resistance, preimage resistance, and second
preimage resistance, the current trend is to argue that a hash function construc-
tion is secure in the indifferentiability model, described and recalled in detail
in Sect. 2.1. This model, introduced by Maurer et al. [29] and tailored to hash
functions by Coron et al. [13], considers a security game where an adversary has
access to either the hash function construction and an idealized primitive, or it
has access to a random oracle and a simulator with the same interface as the
hash function primitive. The goal of the simulator is to “mimic” the behavior
of the idealized primitive so that any transcript an adversary has from commu-
nication with the random oracle and the simulator is hard to distinguish from
a transcript that it may obtain from the actual construction and the idealized
primitive. Although the plain Merkle-Damg̊ard construction was not indiffer-
entiable (see Coron et al. [13]), several variations of it have been proven to be
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indifferentiable up to around 2n/2 queries [11,13]. Likewise, Bertoni et al. [6]
proved that the sponge construction (based on a random function or a permu-
tation) is indifferentiable from a random oracle up to around 2c/2 queries.

The Merkle-Damg̊ard indifferentiability result was proven under the assump-
tion that the underlying function F is a random compression function. In prac-
tice, however, compression functions are built from invertible primitives such as
block ciphers or permutations, e.g., the PGV compression functions [10,39]. Such
compression functions are often easy to differentiate from random, which makes
the aforementioned indifferentiable result futile. Instead, the research commu-
nity had to resort to proving indifferentiability of Merkle-Damg̊ard constructions
based on a block cipher directly [13].

1.1 State of the Art on Compression Function Design

Having said that, there do exist compression functions based on block ciphers or
permutations that are indifferentiable from a random function, up to a proper
bound, and that can be used to instantiate F in the Merkle-Damg̊ard con-
struction. Two notable block cipher based examples are a double block length
compression function of Mennink [30,31] and the compression function used in
BLAKE2 [2,27]. Both constructions achieve indifferentiability by operating on
an internal state that is larger than the block size of the compression function.

A notable permutation based example is the compression function used in the
MD6 hash function [41]. Given P a permutation over {0, 1}b, the compression
function consists of truncating (TRUNC) the output of the permutation:

TRUNC(I) = leftn (P(IV ‖I)) , (3)

where IV ∈ {0, 1}m is an initial value, I ∈ {0, 1}b−m is the input, and where
leftn(·) returns the n leftmost bits (where n < b). Dodis et al. [18] proved that
this compression function is hard to distinguish from random. Choi et al. [12]
recently derived an improved bound and proved that (3) is indifferentiable from
a random function up to around min

{
2

2b−n
3 , 2b−n

b−n , 2m
}

queries.
Note that the TRUNC construction is not a compression function in the strict

sense of the word: its input may be larger or smaller than its output, or they may
be of the same size, depending on the parameter choice, and it should rather
be named a one-way function. Another well-known permutation based one-way
function design that is proven to be indifferentiable from a random function is
the sum of independent permutations (SOP) construction, that operates based
on two permutations P1 and P2 over {0, 1}b:

SOP(I) = P1(I) ⊕ P2(I) , (4)

where I ∈ {0, 1}b is the input. The earliest analysis of a construction of this
kind (in which the random permutations are publicly available to the adversary)
is by Mandal et al. [28], who proved 2b/3-bit security. The proof turned out to
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have a subtle but non-negligible flaw which has been fixed by Mennink and Pre-
neel [32]. Later, Lee [26] proved improved security for the general construction,
and Bhattacharya and Nandi [9] improved all these known bounds and proved
(full) b-bit indifferentiability of the sum of k ≥ 2 independent permutations.

1.2 Improving Truncation

Common to all aforementioned compression function constructions is that they
operate on an increased internal state and/or make multiple primitive calls to
achieve indifferentiability. In addition, TRUNC has the property of additionally
taking an initial value IV ∈ {0, 1}m as input. This fixed initial value is, in fact,
crucial for the indifferentiability proof: if omitted, the TRUNC construction (3)
can be easily distinguished from random. (To wit, also the proven security bound
becomes void for m = 0.)

Still, intuitively, the initial value is overkill. To see this, assume for the sake
of example that we drop the initial value. In other words, we consider TRUNC
of (3) with m = 0. If we set n = c, we obtain a compression function from b
to c bits, and we can use it in the Merkle-Damg̊ard construction (1) with state
c and message block size b − c. The resulting construction is very similar to
the sponge construction (2), the only difference is that message blocks are not
added to the outer part but rather substituted, and this construction is known
to be secure [6]. (This is known as the Grindahl construction [25].) Bottom line
is that this initial value in TRUNC helps us in proving indifferentiability of the
compression function and making it possible to instantiate the Merkle-Damg̊ard
construction with TRUNC. On the other hand, it is overkill in the sense that
it is not strictly necessary for guaranteeing the security of the hashing scheme
(equivalently, its omission does not make the resulting hashing scheme insecure).

1.3 Truncation Without Fixed IV

In this work, we take a closer look at the TRUNC construction, and particularly
the role of the initial value IV . Concretely, we consider TRUNC of (3) where the
fixed initial value IV is replaced by a random value. The adversary may choose
to evaluate TRUNC multiple times for the same random value, it may choose
to evaluate TRUNC for a different random value each query, and it may learn
all random values used. We prove that this construction is still indifferentiable
from a random oracle up to a comparable bound: the only difference occurs in
the event of collisions in the random initial values.

More detailed, our proof incorporates an additional random oracle H, and
queries that the adversary makes to the TRUNC construction do not just consist
of an input value I ∈ {0, 1}b−m, but also include a message M . The IV is
subsequently replaced by H(M). Formally, for a hash function H with range
{0, 1}m and a permutation P over {0, 1}b, our construction RTRUNC is defined
as

RTRUNC(M, I) = leftn (P(H(M)‖I)) . (5)
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Under the assumption that H is a random oracle and P is a random permutation,
we prove that the RTRUNC construction is indifferentiable from a random oracle
up to around

min
{

2
2b−n

3 , 2
m
2 ,

2b−n

b − n

}
≈ min

{
2

2b−n
3 , 2

m
2 , 2b−n

}
(6)

queries. The proof is given in Sect. 4. It is inspired by the proof of Choi et al. for
their isolated compression function, but deals with the complicating factor that
comes with the presence of the hash function outputs.

1.4 Application: Parallel Digest Generation

Despite the fact that the applicability of earlier compression function indiffer-
entiability results was negligible, mostly due to its expensive internal operation
to make the indifferentiability proof work, our construction has direct practical
applications. The main application, in fact, immediately comes from the proof
approach: RTRUNC allows to extend any cryptographic hash function H into
a parallel eXtendable Output Function (XOF) [38] that generates arbitrarily
sized outputs. Note that, indeed, the Merkle-Damg̊ard construction only out-
puts a fixed sized digest; the sponge construction does allow for arbitrarily sized
outputs, but this output generation is inherently sequential. Parallel digest gen-
eration can lead to a significant speed-up in certain implementations, and would
particularly be relevant in use with parallel tree hashing.

The quest for parallel digest generation is not new. Indeed, evaluating several
permutations simultaneously in modern CPUs is faster than evaluating them in
sequence. Hence, it is desirable to have schemes that can be efficiently paral-
lelized. In the case of PRFs, this goal has been achieved by, e.g., the Farfalle
construction proposed by Bertoni et al. [5] at ToSC 2017. For hashing, there
already exist several constructions for achieving such a goal, which are com-
monly called “Mask Generation Functions” (MGFs).

Counter-MGF. To the best of our knowledge, the first construction – denoted
as MGF1 (“Mask Generating Function 1”) – was introduced by Kaliski and
Staddon [24] in 1998 for use in public key cryptography. The majority of existing
MGFs [1,22,23,42] follow the counter-based design and have been standardized
by ANSI, IEEE, and ISO/IEC. Focusing on the MGF1 construction, it is built
on top of a hash function H : {0, 1}∗ → {0, 1}m. It takes as input an arbitrarily
sized message M , glues a counter 〈i〉l of fixed size l to it, and outputs

H(M‖〈0〉l) ‖ H(M‖〈1〉l) ‖ H(M‖〈2〉l) ‖ · · · . (7)

This construction is also known as Counter-MGF. Its indifferentiability from a
(variable output length) random oracle follows from the indifferentiability of H
from a (fixed output length) random oracle. See also Suzuki and Yasuda [43].
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Chained-MGF. A comparable approach is Chained-MGF [37]. This mask gen-
eration function is built on top of a hash function H : {0, 1}∗ → {0, 1}m and a
one-way function F : {0, 1}m+l → {0, 1}n. It evaluates H on the message M ,
glues a counter 〈i〉l of fixed size l to this digest, and outputs

F(H(M)‖〈0〉l) ‖ F(H(M)‖〈1〉l) ‖ F(H(M)‖〈2〉l) ‖ · · · . (8)

This construction is proven to be indifferentiable from a random oracle up to
the random oracle security of H and F by Suzuki and Yasuda [43]. Note, in
particular, that security is capped by 2m/2 because security breaks in case one
finds collisions in the output of H.

Clearly, Chained-MGF has a disadvantage over Counter-MGF in that it uses
two independent primitives. On the other hand, it does allow for more freedom
in the choice of the finalizing one-way function F , and the design is ignorant of
the actual hash function in use. This is an advantage that will become clearer if
we apply these modes to permutation-based hashing.

Cascade-MGF. The transition of our construction RTRUNC to a new MGF,
which we dub Cascade-MGF, is immediate. For a hash function H : {0, 1}∗ →
{0, 1}m and a permutation P : {0, 1}b → {0, 1}b, it plainly evaluates RTRUNC
on message M and counter 〈i〉l of fixed size l = b − m, and outputs

RTRUNC(M, 〈0〉l) ‖ · · · ‖ RTRUNC(M, 〈i〉l) ‖ · · ·
= leftn (P(H(M)‖〈0〉l) ‖ · · · ‖ leftn (P(H(M)‖〈i〉l) ‖ · · · ,

(9)

where 〈i〉l ∈ {0, 1}l denotes the bit representation of i ∈ Z2b−m . Note that
Cascade-MGF of (9) is exactly equal to Chained-MGF of (8) instantiated with
the construction (3) of Choi et al., but with the IV removed.

Comparison. In Sect. 5 we perform a generic comparison of Cascade-MGF with
Counter-MGF and Chained-MGF with the focus on parallelizable permutation-
based hashing and achieving k-bit security. It appears that Cascade-MGF com-
pares favorably in most cases. An overview of this general comparison is given in
Table 1. For the sake of exemplification, we now restrict our focus to k = 128-bit
security with the use of a 384-bit permutation such as GIMLI [3] or Xoodoo [14].
In this case, the hash function H outputs digests of size m = 256 bits.

It appears that Cascade-MGF now achieves the exact same level of security
as Chained-MGF instantiated with TRUNC (3). The only difference is that
our construction does not use/need an initial value whereas Chained-MGF with
TRUNC requires a k = 128-bit initial value. Due to this, our construction allows
for a counter of size l = b − m = 128 bits whereas Chained-MGF with TRUNC
allows for a counter of size l = b−m−k = 0 bits. As a concrete application, the
squeezing phase in the recent tree-sponge construction proposed by Gunsing [20]
can be instantiated via Cascade-MGF instead of Chained-MGF.

Chained-MGF instantiated with SOP (4) allows for the generation of
more output blocks. Keeping the security parameters as in above choices,
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Chained-MGF with SOP can generate 384-bit digests at a time as opposed to
256-bit digests in Cascade-MGF. The price to pay is that SOP makes two per-
mutation evaluations per digest blocks instead of one, effectively making it less
efficient.

The comparison of Cascade-MGF with Counter-MGF is less trivial.
The reason is that Cascade-MGF is more versatile and is defined regard-
less of the hash function H in use, whereas Counter-MGF processes the
counter 〈i〉l by the hash function. This means that a comparison between
Cascade-MGF and Counter-MGF can only be made for a specific hash func-
tion choice. In Sect. 5.2, we instantiate both constructions with a minimal
parallelizable permutation-based tree hash construction that is proven to be
indifferentiable [15,21], and argue that even in this case, Cascade-MGF has
advantages. First of all, and more importantly, the cost in terms of the num-
ber function/permutation calls for generating an output of arbitrary length is
independent of the size of the input message for Cascade-MGF, while it depends
on it for Counter-MGF. In particular, we show that the cost in term of func-
tion/permutation calls of Counter-MGF is at least double with respect to the cost
necessary for Counter-MGF, but such factor can even be much bigger depend-
ing on the size of the input message. Secondly, in Cascade-MGF one can take
a smaller permutation for digest generation. On the downside, Counter-MGF
would then be based on only one primitive whereas Cascade-MGF takes two.
This can be remedied by instantiating the primitives using a single permutation
with different round constants.

2 Preliminaries

Notation. For m,n ∈ N, {0, 1}n denotes the set of bit strings of length n. By
{0, 1}∗ we denote the set of arbitrarily sized strings, and by {0, 1}∞ the set of
infinitely long strings. We denote by Hw(x) the Hamming Weight of a binary
string x ∈ {0, 1}∗. We denote by func(m,n) the set of all functions from {0, 1}m

to {0, 1}n and by perm(n) the set of permutations on {0, 1}n. Abusing notation,
we denote by func(∗, n) the set of all functions from {0, 1}∗ to {0, 1}n. For a
finite set X, x

$←− X denotes the uniform random sampling of an element x from
X. The definition extends to func(∗, n) by lazy sampling.

A random oracle RO gives access to a function that takes as input binary
strings of arbitrary length and returns a random infinite string for each input,
that is, RO : {0, 1}∗ → {0, 1}∞. In a slightly more practical view, RO gets both
a binary string and a length parameter � ∈ N as inputs, and it outputs a random
string of length �. If it is queried twice for the same message but for different
length parameters �, �′ ∈ N, the shorter output is a substring of the longer one.

For m,n ∈ N with m ≥ n, we denote by leftn : {0, 1}m → {0, 1}n the function
that outputs the leftmost n bits of the input. Likewise, rightn : {0, 1}m → {0, 1}n

outputs the rightmost n bits of the input. For a set X ⊆ {0, 1}m, we write
leftn(X) = {leftn(x) | x ∈ X}, rightn(X) = {rightn(x) | x ∈ X}, and X‖∗n =
{x‖y ∈ {0, 1}m+n | x ∈ X ∧ y ∈ {0, 1}n}.
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Fig. 1. The indifferentiability model.

2.1 Indifferentiability Model

Consider a hash function construction C built on top of an ideal component I.
To measure how good this hash function behaves like a random oracle RO, we
adopt the indifferentiability framework of Maurer et al. [29], and more precisely
its version tailored to hash functions by Coron et al. [13]. In this framework,
we consider a distinguisher D. This distinguisher has access to either of two
worlds: the real world (C[I], I) and the simulated world (RO,S[RO]), where S
is a simulator that has the same interface as I and that has as goal to mimic
its behavior in such a way that transcripts appearing in the ideal world are
hard to distinguish from transcripts appearing in the real world. The goal of
the distinguisher is to determine, for a given simulator S, which world it is
communicating with. If this is computationally hard, we say that C[I] behaves
like a random oracle, or simply that it is indifferentiable from a random oracle
(up to a certain bound). Formally, we have the following definition.

Definition 1. Let C by a cryptographic hash function with access to an ideal
component I. Let RO be a random oracle with the same interface as C. We say
that C is (Q, q, ε)-indifferentiable from RO if there exists a simulator S such
that

AdvC,S(D) =
∣∣∣Pr

(
DC[I],I = 1

)
− Pr

(
DRO,S[RO] = 1

)∣∣∣ < ε ,

for any distinguisher D making at most Q queries to the outer construction (C[I]
in the real world and RO in the simulated world) and at most q queries to the
inner construction (I in the real world and S[RO] in the simulated world).

The indifferentiability model is depicted in Fig. 1.
In our work, we will consider hash functions C built on top of a set of com-

ponents I, namely a hash function H and a random permutation P. In this
case, S will also consist of two collaborating sub-simulators, and we split the
inner complexity q into qH and qP . Also, as we consider information-theoretic
distinguishers and maximize over all of them, we will consider deterministic dis-
tinguishers only (without loss of generality).
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2.2 χ2 Method

At Crypto 2017, Dai et al. [16] introduced the chi-squared method (χ2 method),
which can be exploited to obtain an upper bound on the statistical distance
between two joint probability distributions.

Let W0 and W1 be two random systems over a sample space Ω. Let D be a
deterministic distinguisher that makes ρ oracle queries to one of the two random
systems. For each j ∈ {1, . . . , ρ}, we denote by ZW,j the random variable over Ω
that follows the distribution of the j-the answer obtained by D interacting with
W. Let

Zj
W = (ZW,1, ZW,2, . . . , ZW,j) ,

and for each zj−1 = (z1, z2, . . . , zj−1) ∈ Ωj−1, let

p
zj−1
W,j (z) = Pr

(
ZW,j = z | Zj−1

W = zj−1

)
.

Assume that W0 and W1 are such that p
zj−1
W0,j(z) > 0 whenever p

zj−1
W1,j(z) > 0.

Define, for any j ∈ {1, . . . , ρ} and any zj−1 = (z1, z2, . . . , zj−1) ∈ Ωj−1,

χ2(zj−1) =
∑

z∈Ω such that p
z j−1
W0,j (z)>0

(
p

zj−1
W0,j(z) − p

zj−1
W1,j(z)

)2

p
zj−1
W0,j(z)

.

Dai et al. [16] proved that the distinguishing advantage between W0 and W1,
denoted |ZW0 − ZW1 |, is upper bounded as follows:

|ZW0 − ZW1 | ≤
⎛
⎝1

2

ρ∑
j=1

Ex
(
χ2(zj−1)

)
⎞
⎠

1
2

.

3 The RTRUNC and Cascade-MGF Constructions

In this section, we describe the RTRUNC construction that we are going to
analyze, as well as the Cascade-MGF hash function mode that can naturally be
built on top of RTRUNC.

Let b,m, n ∈ N such that m,n ≤ b, and let l = b − m. Let H ∈ func(∗,m)
be a hash function and P ∈ perm(b) a permutation. The function RTRUNC is
defined as

RTRUNC : {0, 1}∗ × {0, 1}l → {0, 1}n ,

(M, I) �→ leftn (P(H(M)‖I)) .
(10)

As already informally explained in Sect. 1, this construction immediately
yields an MGF, which we dub Cascade-MGF. This construction is built on the
same primitives, namely a hash function H ∈ func(∗,m) and a permutation
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P ∈ perm(b), and it consists of concatenating multiple evaluations of RTRUNC
for different inputs I = 〈i〉l for i = 0, 1, 2, . . .:

RTRUNC(M, 〈0〉l) ‖ RTRUNC(M, 〈1〉l) ‖ RTRUNC(M, 〈2〉l) ‖ · · · . (11)

If we prove that the RTRUNC construction of (10) is indifferentiable from a
fixed output length random oracle, then (11) is indifferentiable from a variable
length random oracle. It thus suffices to prove the former, and this is the topic
of next section.

Before proceeding with that proof, we admit that, even after concatenating
outputs, (11) is not variable output length, as the counter can take at most 2l

values. Nevertheless, if l is large enough, for example if l is at least as much as
the targeted security parameter, this is sufficient. Note that a similar limitation
holds, e.g., for the sponge construction: in theory it can output an arbitrary
amount of output blocks, but the security proof dictates that its security cannot
be guaranteed once the permutation is evaluated more than 2c/2 times.

4 Indifferentiability of the RTRUNC Construction

In this section, we prove the indifferentiability of the RTRUNC construction.

Theorem 1. Let b,m, n ∈ N such that m,n ≤ b, and let l = b − m. Let H $←−
func(∗,m) be a random hash function and P $←− perm(b) a random permutation.
Consider the RTRUNC construction of (10), which we denote by C. Let RO
be a random oracle with the same interface as C. There exists a simulator S,
explicitly constructed in the proof, such that

AdvC,S(D) ≤
(
qH
2

)
+ 3 · qH · qP

2m
+

Q · qP
2b−3

+
(3 · ln(Q) + 3n + 1) · qP

2b−n−1

+
(

6 · (Q + qH + qP)3

22b−n
+

3 · (Q + qH + qP)2

2m
+

5 · (Q + qH + qP)
2b−n

) 1
2

(12)

for any distinguisher D making Q queries to the outer construction and qH and
qP to the inner constructions, where Q + qH + qP ≤ 2m−1 and 1 + qP ≤ 2b−n−1.

An interpretation of the security bound will be given in Sect. 5.
The first step of the proof will be to design a simulator S. This will be done

in Sect. 4.1. Note that, in fact, this simulator must simulate multiple functions:
a hash function SH as well as the forward and inverse interfaces SP and S−1

P .
The next step is to bound the distance AdvC,S(D) of Definition 1 for the given
simulator and for any computationally unbounded distinguisher that can make
Q queries to the outer construction and qH and qP to the inner constructions.
This is done in Sect. 4.2. This bounding itself relies on a triangle inequality with
an intermediate world, by bounding the two distances from the real and from
the simulated world to this intermediate world. These two bounds are derived
in separate lemmas in Sects. 4.3 and 4.4.
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4.1 Simulator

The first step is to design a simulator S[RO], which consists of three algorithms:
SH, SP , and S−1

P . These three algorithms are related, i.e., any algorithm might
have access to the query history of another algorithm. In addition, they may
query RO. The goal is to design algorithms that are hard to distinguish from
random functions H, P, and P−1, respectively, and that are consistent with the
random oracle RO.

Simulators. To store input-output tuples of SH,SP and S−1
P , we maintain the

following initially empty sets CH and CP :

CH = {(M,x) ∈ {0, 1}∗ × {0, 1}m | SH(M) = x} ,

CP = {(X,Y ) ∈ {0, 1}b × {0, 1}b | SP(X) = Y and S−1
P (Y ) = X} .

We additionally define the domain and range values respectively of CH and CP
as follows:

DH = {M ∈ {0, 1}∗ | ∃x ∈ {0, 1}m such that (M,x) ∈ CH} ,

RH = {x ∈ {0, 1}m | ∃M ∈ {0, 1}∗ such that (M,x) ∈ CH} ,

DP = {X ∈ {0, 1}b | ∃Y ∈ {0, 1}b such that (X,Y ) ∈ CP} ,

RP = {Y ∈ {0, 1}b | ∃X ∈ {0, 1}b such that (X,Y ) ∈ CP} .

Moreover, for each y ∈ {0, 1}n, we define Ry
P as follows:

Ry
P = {y′ ∈ {0, 1}b−n | y‖y′ ∈ RP} .

Likewise, to store the input-output tuples of C, we maintain the following
initially empty set CC :

CC = {((M, I), y) ∈ {0, 1}∗ × {0, 1}l × {0, 1}n | C(M, I) = y} .

We additionally define the domain and range values of CC as follows:

DC = {(M, I) ∈ {0, 1}∗ × {0, 1}l | ∃x ∈ {0, 1}n such that ((M, I), y) ∈ CC} ,

RC = {y ∈ {0, 1}n | ∃(M, I) ∈ {0, 1}∗ × {0, 1}l such that ((M, I), y) ∈ CC} .

Note that the simulator has no access to CC ; we will need it later to bound the
indifferentiability advantage.

Based on this, simulator SH is now given in Algorithm 1, simulator SP in
Algorithm 2, and simulator S−1

P in Algorithm 3.

Discussion. We briefly elaborate on some design choices of the simulator.
Regarding SH, the output is chosen from the set {0, 1}m \(RH ∪ leftm(DP)).

One of our goals is to avoid a collision at the output of SH. The problem is not
about collisions itself (note that a collision can also occur in the real world), but
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Algorithm 1: Simulator SH
Data: input M ∈ {0, 1}∗

Result: output x ∈ {0, 1}m

1 if M ∈ DH then
2 return x such that (M, x) ∈ CH

3 x
$←− {0, 1}m \ (RH ∪ leftm(DP))

4 CH ← CH ∪ {(M, x)}
5 return x

Algorithm 2: Simulator SP

Data: input X ∈ {0, 1}b

Result: output Y ∈ {0, 1}b

1 if X ∈ DP then
2 return Y ∈ RP such that (X, Y ) ∈ CP
3 parse X = x‖I where x = leftm(X) ∈ {0, 1}m

4 if x ∈ RH then
5 let M ∈ {0, 1}∗ be such that (M, x) ∈ CH
6 y ← RO(M, I)

7 y′ $←− {0, 1}b−n \ Ry
P

8 Y ← y‖y′

9 else

10 Y
$←− {0, 1}b \ RP

11 CP ← CP ∪ {(X, Y )}
12 return Y

Algorithm 3: Simulator S−1
P

Data: input Y ∈ {0, 1}b

Result: output X ∈ {0, 1}b

1 if Y ∈ RP then
2 return X ∈ DP such that (X, Y ) ∈ CP

3 X
$←− {0, 1}b \ (

DP ∪ RH‖∗b−m
)

4 CP ← CP ∪ {(X, Y )}
5 return X

rather about the fact that the two outputs of the overall construction C[H,P]
would be equal, and this could be problematic when defining SP .

In a similar way, we want to avoid that calls to SH create collisions between
the outputs of SH and the leftmost m bits of the inputs to SP . This type of
collisions is also explicitly avoided in calls to S−1

P . The problem of collisions
between the outputs of SH and the inputs to SP is related to the consistency
between the inner constructions and the outer one, in this case the random
oracle RO. For example, assume that SH(M) returns a value x that already
belongs to leftm(DP), or in a similar way that S−1

P returns a value X such that
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leftm(X) ∈ RH. Let I ∈ {0, 1}l be such that rightl(X) = I. In this case, an
attacker can check the consistency of these two simulator queries with RO, by
verifying if RO(M, I) = leftn(Y ). This equality would hold with probability 1
in the real world.

Besides these two collisions, no other types of collisions are avoided, and the
simulators SH and S±

P behave like a random hash function and permutation,
respectively, with one difference: if the simulator SP is queried on an input X
such that leftm(X) ∈ RH, the simulator must maintain oracle consistency, i.e.,
query its random oracle RO to generate a response to the query.

4.2 Proof of Theorem 1

Let C be the construction of (10) defined via a random hash function H and a
random permutation P. Let RO be a random oracle with the same interface as
C, and let S be the simulator of Sect. 4.1. Let WS = (RO,SH[RO],S±

P [RO]) and
WR = (C[H,P],H,P) denote the simulated world and the real world, respec-
tively. Let D be any distinguisher that makes at most Q construction queries
(to RO or C[H,P]), qH queries to the first primitive oracle (SH[RO] or H) and
qP queries to the second primitive oracle (SP [RO] or P). Assume that D never
makes redundant queries, i.e., query an oracle twice on the same input. From
Definition 1, our goal is to bound

AdvC,S(D) =
∣∣Pr

(DWS = 1
) − Pr

(DWR = 1
)∣∣ . (13)

Additional World. First, we will consider the differences between the two
worlds. Focusing on SH and H, it is obvious that the former never results in
collisions, but they might occur in the latter. This means that there exist com-
munication transcripts that can occur in WR but not in WS. At the same time,
the random oracle RO in WS outputs random strings, whereas in WR the out-
puts of the function C[H,P] depend on the details of the function H and of the
permutation P. Hence, there exist communication transcripts that can occur in
WS but not in WR.

As our goal is to apply the chi-squared method, our first step is to introduce
an intermediate world WI = (C[H�,P�],H�,P�), which has the same oracle
interface as WS and WR. The idea is that the world WI behaves closely to WR,
and that WI is in the support of WS, and this world reminds of the intermediate
world introduced by Choi et al. [12], though it is more involved as a hash function
interface is added. These functions maintain initially empty sets to store input-
output tuples C�

H,C�
P and C�

C , in a similar vein as in Sect. 4.1, with D�
H, R�

H,
D�

P , R�
P , R�

P
y, D�

C , and R�
C defined analogously as before. The algorithms H�,

P�, and P�−1 are now given in Algorithms 4, 5, 6, respectively.
In a nutshell, the world WI operates as WR but instantiates it with lazily-

sampled primitives H� and P� that slightly deviate from H and P. In particular,
H� never samples any element in R�

H ∪ leftm(D�
P), and P�−1 never samples any

element of D�
P ∪ (R�

H‖∗b−m). The world uses flags denoted by bad1, bad2, and
bad3 (all initialized as false), to mark events in which WI differs from WR.
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Algorithm 4: Procedure H� with appended bad events

Data: input M ∈ {0, 1}∗

Result: output x ∈ {0, 1}m

1 x
$←− {0, 1}m

2 if x ∈ R�
H or x ∈ leftm(D�

P) then
3 if x ∈ R�

H then
4 bad1 ← true
5 if x ∈ leftm(D�

P) then
6 bad2 ← true

7 x
$←− {0, 1}m \ (R�

H ∪ leftm(D�
P))

8 C�
H ← C�

H ∪ {(M, x)}
9 return x

Algorithm 5: Procedure P� with appended bad events

Data: input X ∈ {0, 1}b

Result: output Y ∈ {0, 1}b

1 Y
$←− {0, 1}b \ R�

P
2 C�

P ← C�
P ∪ {(X, Y )}

3 return Y

Algorithm 6: Procedure P�−1 with appended bad events

Data: input Y ∈ {0, 1}b

Result: output X ∈ {0, 1}b

1 parse Y = y‖y′ where y = leftn(Y ) ∈ {0, 1}n

2 if Y /∈ R�
P then

3 X
$←− {0, 1}b \ D�

P
4 if leftm(X) ∈ R�

H then
5 bad2 ← true

6 X
$←− {0, 1}b \ (

D�
P ∪ R�

H‖∗b−m
)

7 C�
P ← C�

P ∪ {(X, Y )}
8 else
9 bad3 ← true

10 let X ′ ∈ {0, 1}b be such that (X ′, Y ) ∈ C�
P

11 X
$←− {0, 1}b \ (

D�
P ∪ R�

H‖∗b−m
)

12 y′ $←− {0, 1}b−n \ R�
P

y

13 Y ′ ← y‖y′

14 C�
P ← (C�

P \ ({X ′, Y }) ∪ {(X, Y ), (X ′, Y ′)}
15 return X

A significant change is in the oracle P�−1, where it makes a distinction
between whether or not Y /∈ R�

P . Recall that the adversary never evaluates
repeated queries. This means that if Y ∈ R�

P holds, necessarily there had been
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a query (M, I) to C(M, I) that returned y = leftn(Y ). In this case, the distin-
guisher did not obtain any information on the b − n rightmost bits of Y , yet.
The only thing it knows, is that there should be an evaluation

P�(∗̂‖I) = y‖∗

for unknown ∗̂ ∈ {0, 1}n and ∗ ∈ {0, 1}b−m. When this inverse query P �−1(y‖∗)
is made later during the attack, the rightmost bits rightb−n(y‖∗) are replaced
by a new element y′, and P �−1(y‖∗) is also given a new element X outside
D�

P ∪ R�
H‖∗b−m.

Triangle Inequality. Using intermediate world WI, a triangle inequality yields
for (13):

AdvC,S(D) ≤∣∣Pr
(DWS = 1

) − Pr
(DWI = 1

)∣∣ +
∣∣Pr

(DWI = 1
) − Pr

(DWR = 1
)∣∣ .(14)

Bounds on the remaining two terms are derived separately. In Lemma 1, a bound
on the distance between WI and WR is derived, and in Lemma 2, a bound on
the distance between WS and WI is derived.

Lemma 1. Let WI = (C[H�,P�],H�,P�) and WR = (C[H,P],H,P) be respec-
tively the intermediate and the real world, as defined before. Then,

∣∣Pr
(DWI = 1

) − Pr
(DWR = 1

)∣∣ ≤
(
qH
2

)
+ 3 · qH · qP

2m
+

Q · qP
2b−3

+
(3 · ln(Q) + 3n + 1) · qP

2b−n−1

for any distinguisher D making Q queries to the outer construction and qH and
qP to the inner constructions, where Q + qH + qP ≤ 2b−1.

Lemma 2. Let WS = (RO,SH[RO],S±
P [RO]) and WI = (C[H�,P�],H�,P�)

be respectively the simulated world and the intermediate world, as defined before.

∣∣Pr
(DWS = 1

) − Pr
(DWI = 1

)∣∣ ≤
(

6 · (Q + qH + qP)3

22b−n

+
3 · (Q + qH + qP)2

2m
+

5 · (Q + qH + qP)
2b−n

) 1
2

for any distinguisher D making Q queries to the outer construction and qH and
qP to the inner constructions, where Q + qH + qP ≤ 2m−1 and 1 + qP ≤ 2b−n−1.

The proof of Lemma 1 is given in Sect. 4.3, and consists of bounding the proba-
bility that a bad event occurs in WI. The proof of Lemma 2 is given in Sect. 4.4,
and is based on the chi-squared method. The proof of Theorem 1 is immediately
completed by plugging the bounds of Lemmas 1 and 2 into (14).
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Additional Notation. For world WI, and specifically for evaluations of P�

and P�−1, we introduce the following additional notation. Consider any query
P�−1(Y ) with y = leftn(Y ). At the point of making this query,

– Vy counts the number of elements X where P�(X) has been determined by
a function query or a distinguisher query such that P�(X) = y‖y′ for some
y′ ∈ {0, 1}b−n:

Vy = |{X ∈ {0, 1}b | ∃y′ ∈ {0, 1}b−n such that P�(X) = y‖y′}| ;
– Sy counts the number of elements X where P�(X) has been determined only

by a distinguisher query such that P�(X) = y‖y′ for some y′ ∈ {0, 1}b−n;
– Fy counts the number of elements X where P�(X) has been partially deter-

mined only by a function query and P�(X) = y‖� for some unknown
� ∈ {0, 1}b−n, in such a way that Fy = Vy − Sy.

Finally, let V =
∑

y∈{0,1}n Vy. At any point in time, V = |C�
P |.

4.3 Upper Bound on Distance Between WI and WR (Lemma 1)

The two worlds behave in the same way until one of the bad events is set to true
in WI. Hence, we can upper bound this term by computing the probability that
one of the bad events is set to true:

∣∣Pr
(DWI = 1

) − Pr
(DWR = 1

)∣∣ ≤ Pr(bad1 ∪ bad2 ∪ bad3)
≤ Pr(bad1) + Pr(bad2) + Pr(bad3) .

In the following, we compute Pr(badi) for each i ∈ {1, 2, 3}. The proof of the
lemma is then completed by a simple addition of the three terms.

Probability of bad1. This event happens if H� returns a value x that already
belongs to R�

H, or equivalently, a value x for which there exists an earlier M ′ such
that (M ′, x) ∈ C�

H. As the distinguisher makes qH queries to H�, the probability
that this occurs is bounded as follows:

Pr(bad1) ≤
qH∑
j=1

j − 1
2m

≤
(
qH
2

)
2m

.

Probability of bad2. This event happens if H� returns a value x that already
belongs to leftm(D�

P) or if P�−1 returns a value X such that leftm(X) ∈ R�
H. In

a query to H�, bad2 is set with probability at most qP/2m. In a query to P�−1,
bad2 is set with probability at most (qH · 2b−m)/(2b − qP) ≤ 2qH/2m (provided
that qP ≤ 2b−1). After qH queries to H� and at most qP queries to P�−1, the
probability of this event to occur is upper bounded by:

Pr(bad2) ≤
qH∑
j=1

qP
2m

+
qP∑
j=1

2qH
2m

=
3 · qH · qP

2m
.
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Probability of bad3. The event is very similar to bad event E2 of Choi et al. [12],
and we adopt their reasoning. This event happens if a query Y = y‖y′ to P�−1

belongs to R�
C‖∗b−m, that is if y = leftn(Y ) is the result of a query to the outer

construction. Consider any query. Note that this query fixes y = leftn(Y ). The
probability, conditioned on the previous queries, that this query with leftn(Y ) =
y sets bad3 is at most Fy·2n

2b−qP
, as for any guess there are Fy possible values y′ that

could set the bad event, and the adversary knows at most qP earlier outcomes of
P�. Provided that qP ≤ 2b−1, and as the adversary can choose y, the conditional
probability that the j-th query sets bad3 is upper bounded by

maxy∈{0,1}n Fy

2b−n−1
.

Thus, summing over all queries we get

Pr(bad3) ≤
qP∑
j=1

Exj

(
maxy∈{0,1}n Fy

2b−n−1

)
, (15)

where Exj(·) denotes the expectation taken over the interaction between D and
P� up to the j-th simulator query. Choi et al. [12] derived the following bound:

Exj

(
max

y∈{0,1}n
Fy

)
≤ Q

2n−1
+ 3 · ln(Q) + 3n + 1 , (16)

provided that Q + qH + qP ≤ 2b−1. The proof of this bound is included in
Supplementary Material [19, App. A] for reference. By combining (15) and (16),
we obtain:

Pr(bad3) ≤
qP∑

j=1

(
Q

2b−2
+

3 · ln(Q) + 3n+ 1

2b−n−1

)
=

Q · qP
2b−3

+
(3 · ln(Q) + 3n+ 1) · qP

2b−n−1
.

4.4 Upper Bound on Distance Between WS and WI (Lemma 2)

We will use the chi-squared method (recalled in Sect. 2.2) to provide an upper
bound of the distance between the simulated world and the intermediate world.
The analysis is inspired by Choi et al. [12], but crucially differs on certain aspects.
Most importantly, the elimination of the initial value IV and the subsequent
changes to the intermediate world have created significant differences in the
distributions between the two worlds WS and WI, as we will explain below.

Note that, by design, the support of the intermediate world WI is contained
in the support of the simulated world WS. Let Ω = {0, 1}n ×{0, 1}m ×{0, 1}b be
the set that contains all possible answers for oracle queries to the simulated world
WS. For fixed j ∈ {1, . . . , Q + qH + qP} and zj−1 = (z1, z2, . . . , zj−1) ∈ Ωj−1

such that pj−1
WS

(zj−1) > 0, our goal is to compute a bound on

χ2(zj−1) =
∑

z∈Ω such that p
z j−1
WS,j(z)>0

(
p

zj−1
WS,j(z) − p

zj−1
WI,j

(z)
)2

p
zj−1
WS,j(z)

. (17)
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Note that the distinguisher can make four types of queries:

– to the outer construction (either the function RO in world WS or C[H�,P�]
in world WI);

– to the first primitive (either the function SH[RO] in world WS or H� in world
WI);

– to the forward interface of the second primitive (either the function SP [RO]
in world WS or P� in world WI);

– to the forward interface of the second primitive (either the function S−1
P [RO]

in world WS or P�−1 in world WI).

To bound χ2(zj−1) of (17), we will make a case distinction depending on the
type of oracle query, below. Afterwards, we will combine the computations and
conclude the proof using the chi-squared technique.

Query to Outer Construction. Suppose that the j-th query is an outer
construction query. For any y ∈ {0, 1}n, we have that

p
zj−1
WS,j(y) =

1
2n

, and p
zj−1
WI,j

(y) =
2b−n − |R�

P
y|

2b − |R�
P | .

For world WS, this is obvious as the outer construction is the random oracle.
For world WI, note that different inputs for C are mapped into different inputs
for P�, as the middle state value is drawn x

$←− {0, 1}m \ (R�
H ∪ leftm(D�

P)). The
resulting output Y of P� is drawn from a set of 2b − |R�

P | elements and exactly
2b−n − |R�

P
y| of them satisfy leftn(Y ) = y.

We thus obtain for (17) that, for outer construction queries,

χ2(zj−1) =
∑

y∈{0,1}n

(
p

zj−1
WS,j(y) − p

zj−1
WI,j

(y)
)2

p
zj−1
WS,j(y)

=
∑

y∈{0,1}n

(2n · |R�
P

y| − |R�
P |)2

2n · (2b − |R�
P |)2 .

Using that |R�
P | ≤ Q + qP ≤ 2b−1 and subsequently using that |R�

P | =∑
y∈{0,1}n |R�

P
y|, we can bound this term as follows:

χ2(zj−1) ≤ 4
22b−n

·
∑

y∈{0,1}n

(
|R�

P
y| − |R�

P |
2n

)2

≤ 4
22b−n

·
⎛
⎝ ∑

y∈{0,1}n

(|R�
P

y|)2 +
∑

y∈{0,1}n

(|R�
P |)2

22n

⎞
⎠

≤ 4
22b−n

·

⎛
⎜⎝

⎛
⎝ ∑

y∈{0,1}n

|R�
P

y|
⎞
⎠

2

+
(|R�

P |)2
2n

⎞
⎟⎠ =

4 · (|R�
P |)2

22b−n
·
(

1 +
1
2n

)

≤ 6 · (Q + qP)2

22b−n
, (18)

using that 1 + 1
2n ≤ 3/2.
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Query to First Primitive. Suppose that the j-th query is a query to the first
primitive. For any x ∈ {0, 1}m, we have that

p
zj−1
WS,j(x) =

⎧
⎨
⎩

1
2m − |RH ∪ leftm(DP)| if x ∈ {0, 1}m \ (RH ∪ leftm(DP)) ,

0 otherwise ,

p
zj−1
WI,j

(x) =

⎧
⎨
⎩

1
2m − |R�

H ∪ leftm(D�
P)| if x ∈ {0, 1}m \ (R�

H ∪ leftm(D�
P)) ,

0 otherwise .

Note that, despite what intuition suggests, these distributions are not the same.
In world WI, any construction query adds tuples to C�

H and C�
P , whereas this is

not the case for WS. In the proof of Choi et al., this issue is resolved by restricting
world WI in such a way that the differences are annihilated. In our case, with
the omission of the initial value, this is not possible.1

Nevertheless, we do have that (RH ∪ leftm(DP)) ⊆ (R�
H ∪ leftm(D�

P)). Thus,
(17) satisfies, for queries to the first primitive,

χ2(zj−1) =
∑

x∈{0,1}m

(
p

zj−1
WS,j(x) − p

zj−1
WI,j

(x)
)2

p
zj−1
WS,j(x)

=
∑

x∈(R�
H∪leftm(D�

P))\(RH∪leftm(DP))

p
zj−1
WS,j(x)

+
∑

x∈{0,1}m\(R�
H∪leftm(D�

P))

(
p

zj−1
WS,j(x) − p

zj−1
WI,j

(x)
)2

p
zj−1
WS,j(x)

,

where p
zj−1
WI,j

(x) = 0 in the first sum. As | (R�
H ∪ leftm(D�

P))\ (RH ∪ leftm(DP)) |
≤ Q, we can bound this term as follows:

χ2(zj−1) ≤ Q

2m − |RH ∪ leftm(DP)|

+ 2m · (|RH ∪ leftm(DP)| − |R�
H ∪ leftm(D�

P)|)2
(2m − |RH ∪ leftm(DP)|) · (2m − |R�

H ∪ leftm(D�
P)|)2

≤ Q

2m − |RH ∪ leftm(DP)| +
2m · Q2

(2m − |R�
H ∪ leftm(D�

P)|)3

≤ 2 · Q

2m
+

8 · Q2

22m
, (19)

where we used that |R�
H ∪ leftm(D�

P)| ≤ Q + qH + qP ≤ 2m−1.

1 Note that Choi et al. did not have a hash primitive, whereas we do, so the drawn
parallel here is a bit odd. The comparison with Choi et al.’s proof and the induced
difficulties become more apparent when we consider inverse queries, later on.
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Forward Query to Second Primitive. Suppose that the j-th query is a
forward query X = x‖I to the second primitive. We can distinguish three cases:

1. a query that does not complete a construction evaluation, namely a query X
for which x /∈ RH (equivalently, for which �M ∈ DH such that H(M) = x);

2. a forward query on an element related to a previous outer construction query,
namely a query X for which there exists M ∈ DH such that (i) H(M) = x
and (ii) (M, I) ∈ DC ;

3. a query that does complete a construction evaluation, namely a query X for
which there exists M ∈ DH such that (i) H(M) = x and (ii) (M, I) /∈ DC .

We will analyze these three cases separately.

First Case. For any Y ∈ {0, 1}b, we have that

p
zj−1
WS,j(Y ) =

⎧
⎨
⎩

1
2b − |RP | if Y ∈ {0, 1}b \ RP ,

0 otherwise ,

p
zj−1
WI,j

(Y ) =

⎧
⎨
⎩

1
2b − |R�

P | if Y ∈ {0, 1}b \ R�
P ,

0 otherwise .

As for the case of queries to the first primitive, these distributions are not the
same. Nevertheless, we do have that RP ⊆ R�

P . Thus, (17) satisfies, for forward
queries to the first primitive of type 1,

χ2(zj−1) =
∑

Y ∈{0,1}b

(
p

zj−1
WS,j(Y ) − p

zj−1
WI,j

(Y )
)2

p
zj−1
WS,j(Y )

=
∑

Y ∈R�
P\RP

p
zj−1
WS,j(Y ) +

∑
Y ∈{0,1}b\R�

P

(
p

zj−1
WS,j(Y ) − p

zj−1
WI,j

(Y )
)2

p
zj−1
WS,j(Y )

.

where p
zj−1
WI,j

(Y ) = 0 in the first sum. As |R�
P \RP | ≤ Q, we can bound this term

as follows:

χ2(zj−1) ≤ Q

2b − |RP | + 2b · (|RP | − |R�
P |)2

(2b − |RP |) · (2b − |R�
P |)2

≤ Q

2b − |RP | +
2b · Q2

(2b − |R�
P |)3

≤ 2 · Q

2b
+

8 · Q2

22b
, (20)

where we used that |R�
P | ≤ Q + qP ≤ 2b−1.
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Second Case. Let M ∈ DH be the unique (by design of SH and H�) value
such that (M,x) ∈ CH. Let y be such that ((M, I), y) ∈ CC . By design, in both
worlds, the response Y will be of the form y‖y′ for some y′ ∈ {0, 1}b−n. As a
matter of fact, in both worlds, the value y′ is randomly drawn in such a way
that y‖y′ does not collide with a former primitive evaluation. In other words, for
any Y ∈ {0, 1}b, we have that

p
zj−1
WS,j(Y ) =

⎧
⎨
⎩

1
2b−n − |Ry

P | if Y = y‖y′ with y′ ∈ {0, 1}b−n \ Ry
P ,

0 otherwise ,

p
zj−1
WI,j

(Y ) =

⎧
⎨
⎩

1
2b−n − |R�

P
y| if Y = y‖y′ with y′ ∈ {0, 1}b−n \ R�

P
y ,

0 otherwise .

The case of world WI, however, needs some clarification. In principle, procedure
P� draws Y

$←− {0, 1}b \ R�
P . However, as we condition on the query history, we

are given the earlier tuple including the value y. Condition on this, Y is drawn
uniformly randomly such that leftn(Y ) = y and such that Y hits no other range
value. This is equivalent to drawing y′ $←− {0, 1}b−n\R�

P
y, for given y. Note, also,

that this value might have been given a different value internally in the shuffling
of P�−1, but also here, Y is generated identically.

As for the case of queries to the first primitive, these distributions are not
the same. Nevertheless, we do have that Ry

P ⊆ R�
P

y. Thus, (17) satisfies, for
forward queries to the first primitive of type 2,

χ2(zj−1) =
∑

Y ∈{0,1}b

(
p

zj−1
WS,j(Y ) − p

zj−1
WI,j

(Y )
)2

p
zj−1
WS,j(Y )

=
∑

Y =y‖y′ with
y′∈R�

P
y\Ry

P

p
zj−1
WS,j(Y ) +

∑
Y =y‖y′ with

y′∈{0,1}b−n\R�
P

y

(
p

zj−1
WS,j(Y ) − p

zj−1
WI,j

(Y )
)2

p
zj−1
WS,j(Y )

.

where p
zj−1
WI,j

(Y ) = 0 in the first sum. As |R�
P

y \ Ry
P | ≤ 1 (as in world WI, H�

does not output collisions), we can bound this term as follows:

χ2(zj−1) ≤ 1
2b−n − |Ry

P | + 2b−n · (|Ry
P | − |R�

P
y|)2

(2b−n − |Ry
P |) · (2b−n − |R�

P
y|)2

≤ 1
2b−n − |Ry

P | +
2b−n

(2b−n − |R�
P

y|)3

≤ 2
2b−n

+
8

22b−2n
, (21)

where we used that |R�
P

y| ≤ 1 + qP ≤ 2b−n−1.
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Third Case. Let M ∈ DH be the unique (by design of SH and H�) value such that
(M,x) ∈ CH. In world WS, the response Y is generated by calling y ← RO(M, I)
and generating y′ $←− {0, 1}b−n \ Ry

P . Thus, for any Y ∈ {0, 1}b, we have that

p
z j−1
WS,j(Y ) =

⎧
⎨

⎩

1

2n
· 1

2b−n − |Ry
P | if Y = y‖y′ with y ∈ {0, 1}n, y′ ∈ {0, 1}b−n \ Ry

P ,

0 otherwise .

For world WI, the response Y is generated as Y
$←− {0, 1}b \ R�

P . Thus, for any
Y ∈ {0, 1}b, we have that

p
zj−1
WI,j

(Y ) =

⎧
⎨
⎩

1
2b − |R�

P | if Y ∈ {0, 1}b \ R�
P ,

0 otherwise .

As for the case of queries to the first primitive, these distributions are not the
same. Nevertheless, we do have that Ry

P ⊆ R�
P

y, and any value Y ∈ {0, 1}b \R�
P

can be written as Y = y‖y′ with y ∈ {0, 1}n, y′ ∈ {0, 1}b−n \ R�
P

y. Thus, (17)
satisfies, for forward queries to the first primitive of type 3,

χ2(zj−1) =
∑

Y ∈{0,1}b

(
p

zj−1
WS,j(Y ) − p

zj−1
WI,j

(Y )
)2

p
zj−1
WS,j(Y )

=
∑

Y =y‖y′ with
y∈{0,1}n and
y′∈R�

P
y\Ry

P

p
zj−1
WS,j(Y ) +

∑
Y =y‖y′ with
y∈{0,1}n and

y′∈{0,1}b−n\R�
P

y

(
p

zj−1
WS,j(Y ) − p

zj−1
WI,j

(Y )
)2

p
zj−1
WS,j(Y )

.

where p
zj−1
WI,j

(Y ) = 0 in the first sum. As |R�
P

y \ Ry
P | ≤ 1 for any y (as in world

WI, H� does not output collisions), we can bound this term as follows:

χ2(zj−1) ≤ 2n

2b − 2n · |Ry
P | +

∑
y∈{0,1}n

(2n · |Ry
P | − |R�

P |)2
(2b − 2n · |Ry

P |)(2b − |R�
P |)2 .

Using that |R�
P | ≤ Q + qP ≤ 2b−1 and that |Ry

P | ≤ |R�
P

y| ≤ 1 + qP ≤ 2b−n−1,
we can bound this term as follows:

χ2(zj−1) ≤ 2
2b−n

+
8

23b−2n
·

∑
y∈{0,1}n

(
|Ry

P | − |R�
P |

2n

)2

≤ 2
2b−n

+
8

23b−2n
·
⎛
⎝ ∑

y∈{0,1}n

(|Ry
P |)2 +

∑
y∈{0,1}n

(|R�
P |)2

22n

⎞
⎠

≤ 2
2b−n

+
8

23b−2n
·

⎛
⎜⎝

⎛
⎝ ∑

y∈{0,1}n

|Ry
P |

⎞
⎠

2

+
(|R�

P |)2
2n

⎞
⎟⎠

≤ 2
2b−n

+
12 · (Q + qP)2

23b−2n
, (22)
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again using that 1 + 1
2n ≤ 3/2.

Inverse Query to Second Primitive. Suppose that the j-th query is an
inverse query to the second primitive. For any X ∈ {0, 1}b, we have that

p
zj−1
WS,j(X) =

⎧
⎨
⎩

1
2b − |DP ∪ RH‖ ∗b−m | if X ∈ {0, 1}b \ (

DP ∪ RH‖∗b−m
)

,

0 otherwise ,

p
zj−1
WI,j

(X) =

⎧
⎨
⎩

1
2b − |D�

P ∪ R�
H‖ ∗b−m | if X ∈ {0, 1}b \ (

D�
P ∪ R�

H‖∗b−m
)

,

0 otherwise .

As for the case of queries to the first primitive, these distributions are not the
same. Choi et al. had a comparable case, but they managed to construct WI

in such a way that the values were drawn identically to world WS. Due to our
omission of the initial value IV , this is (again) not an option for us. Thus, we
follow a comparable reasoning as for queries to the first primitive.

We do have that
(
DP ∪ RH‖∗b−m

) ⊆ (
D�

P ∪ R�
H‖∗b−m

)
. Thus, (17) satisfies,

for inverse queries to the second primitive,

χ2(zj−1) =
∑

X∈{0,1}b

(
p

zj−1
WS,j(X) − p

zj−1
WI,j

(X)
)2

p
zj−1
WS,j(X)

=
∑

X∈(D�
P∪R�

H‖∗b−m)\(DP∪RH‖∗b−m)

p
zj−1
WS,j(X)

+
∑

X∈{0,1}b\(D�
P∪R�

H‖∗b−m)

(
p

zj−1
WS,j(X) − p

zj−1
WI,j

(X)
)2

p
zj−1
WS,j(X)

.

where p
zj−1
WI,j

(X) = 0 in the first sum. As | (D�
P ∪ R�

H‖∗b−m
) \(

DP ∪ RH‖∗b−m
) | ≤ 2b−m · Q, we can bound this term as follows:

χ2(zj−1) ≤ 2b−m · Q

2b − |DP ∪ RH‖ ∗b−m |

+ 2b ·
(|DP ∪ RH‖ ∗b−m | − |D�

P ∪ R�
H‖ ∗b−m |)2

(2b − |DP ∪ RH‖ ∗b−m |) · (2b − |D�
P ∪ R�

H‖ ∗b−m |)2

≤ 2b−m · Q

2b − |DP ∪ RH‖ ∗b−m | +
23b−2m · Q2

(2b − |D�
P ∪ R�

H‖ ∗b−m |)3

≤ 2 · Q

2m
+

8 · Q2

22m
, (23)

where we used that |D�
P ∪ R�

H‖ ∗b−m | ≤ 2b−m · Q + 2b−m · qH + qP ≤ 2b−1.
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Conclusion. The j-th query is of either of the four types outlined in the begin-
ning of this section (construction query, first primitive query, forward second
primitive query (of any type), or inverse primitive query). We can thus obtain
that the term of (17) satisfies

χ2(zj−1) ≤ max{(18), (19), (20), (21), (22), (23)}

≤ 12 · (Q + qP)2

22b−n
+

6 · Q

2m
+

10
2b−n

,

where we summarize that the individual terms held conditioned on the fact that
Q + qH + qP ≤ 2m−1 and 1 + qP ≤ 2b−n−1. Using the chi-squared method, we
obtain the following bound on the distance between WS and WI:

∣∣Pr
(DWS = 1

) − Pr
(DWI = 1

)∣∣ ≤
⎛
⎝1

2

Q+qH+qP∑
j=1

Ex
(
χ2(zj−1)

)
⎞
⎠

1
2

≤
(

6 · (Q + qH + qP)3

22b−n
+

3 · (Q + qH + qP)2

2m
+

5 · (Q + qH + qP)
2b−n

) 1
2

.

5 Application and Comparison

We will compare the Cascade-MGF construction of (11) with the existing MGF
constructions mentioned in Sect. 1, Counter-MGF and Chained-MGF. In this
comparison, we aim for a security level k. Note that both Cascade-MGF and
Chained-MGF can be compared regardless of the actual hash function H in
use, and we will compare these two schemes in Sect. 5.1. The efficiency of
Counter-MGF depends on the actual hash function H in use, and we will mount
a comparison of our scheme with Counter-MGF in Sect. 5.2.

5.1 Cascade-MGF Versus Chained-MGF

The two schemes can be compared regardless of the hash function H in use, the
only thing we require of H is that it must output digests of size m = 2k bits, for
both schemes. Likewise, in order to achieve k-bit security, we set n = 2k for both
schemes. (Strictly seen, we have a log2(k) loss in the output, in the sense that
digest blocks are of size around 2k − log2(k) bits. This makes the comparison
much harder to grasp, and in addition, the same loss occurs for both schemes.)

For our construction Cascade-MGF, we can conclude from Theorem 1 that we
require the width b of the permutation P to satisfy b ≥ max

{
3k+n

2 , k + n
}

= 3k.
As the permutation P takes as input the hash result H(M) ∈ {0, 1}2k and the
counter 〈i〉l, we can conclude that in Cascade-MGF we can take l = b − 2k.

For fair comparison, we will consider Chained-MGF to be instantiated with
a permutation-based F as well. We will consider it to be instantiated with either
TRUNC of (3) or SOP of (4). The comparison is summarized in Table 1.



644 L. Grassi and B. Mennink

Table 1. Security of existing methods for variable-length digest generation, tailored to
the use of a b-bit permutation with k-bit security. The size of the digest blocks discards
logarithmic factors for simplicity – see Sect. 5.1 for details.

Construction (Underlying)
primitive(s)

Size of digest
block

# primitive call(s)
per digest block

Max # of digest
blocks

Reference

Chained-MGF
with TRUNC (3)

H, P b − k 1 min{2k, 2b−3k} (8), [43]

Chained-MGF
with SOP (4)

H, P1, P2 b 2 min{2k, 2b−2k} (8), [43]

Cascade-MGF H, P b − k 1 min{2k, 2b−2k} (9)

Comparison to Chained-MGF with TRUNC (3). Also in this case, we
require b ≥ 3k for the same reason as for Cascade-MGF. In order to achieve k
bits of security, it is required that the initial value IV is of size k bits. As the
b-bit hash function must absorb the hash output H(M) ∈ {0, 1}2k, the initial
value IV ∈ {0, 1}k, and the counter 〈i〉l, we can conclude that the construction
can only take l = b − 3k bits of counter. (Note that also for this construction,
we have omitted the log2(k) loss in the output, in the sense that digest blocks
are of size around 2k − log2(k) bits.)

We can observe that Cascade-MGF is exactly as secure and as efficient
as Chained-MGF with TRUNC, with the sole difference that our construction
allows for the generation of more output blocks: min{2k, 2b−2k} as opposed to
min{2k, 2b−3k}. The difference is particularly significant if one instantiates P
with a small permutation. For example, focusing on k = 128-bit security, one can
instantiate P using a 384-bit permutation such as GIMLI [3] or Xoodoo [14]. In
this case, Cascade-MGF can be used to generate up to 2128 digest blocks, whereas
Chained-MGF with TRUNC can only be used to generate 1 digest block (as the
counter size is 0).

As a concrete application, Gunsing [20] recently proposed the tree sponge,
a generalization of the sequential sponge construction with parallel absorbing
and squeezing. Referring to [20, Sect. 5.3], the squeezing phase is set up via a
Chained-MGF instantiated with TRUNC. Our results imply that such construc-
tion would benefit by replacing Chained-MGF with Cascade-MGF.

Comparison to Chained-MGF with SOP (4). The sum of permutation
construction achieves optimal b-bit security, and by using this function as final-
ization in Chained-MGF, one can output b-bit digest blocks in parallel. This
is more than the (b − k)-bit (or in fact, b − k − log2(k)-bit) digest blocks in
Cascade-MGF, but the downside is that two permutation calls are made for one
output block. Concretely, Cascade-MGF improves over Chained-MGF with SOP
if b/2 ≤ b − k, or equivalently if 2k ≤ b. By construction, this is always the case,
recalling that the hash function output is of size 2k bits.
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Fig. 2. The Cascade-MGF construction instantiated via a tree hash construction.

5.2 Cascade-MGF Versus Counter-MGF

A comparison between the Counter-MGF and Cascade-MGF constructions can-
not be mounted without being specific about the hash function H : {0, 1}∗ →
{0, 1}m in use, where m = 2k for k-bit security. Since the focus of this work is
a parallel digest generation, it makes sense to consider parallelizable hashing as
well, and more specifically, tree hashing.

The idea of tree hashing [33,34] is to partition the message into blocks, which
are subsequently placed at the leaves of a tree. Each non-leaf node of the tree is
then a compression function evaluation of its child notes. The indifferentiability
of permutation-based tree hashing was analyzed by Dodis et al. [18] and Bertoni
et al. [7], and more recently by Daemen et al. [15] and Gunsing et al. [21].

Let P ′ : {0, 1}b′ → {0, 1}b′
be a permutation. Define F ′ : {0, 1}b′ → {0, 1}m

as F ′(X) = leftm (P ′(X)). The most minimalistic permutation-based tree hash-
ing construction that is proven to be indifferentiable initiates the leaves with
an m-bit initial value IV , with message bits (possibly injectively padded), and
frame bits 00. Non-leaf nodes consist of chaining bits coming from evaluations
of F ′ of the children and frame bits 10. The final evaluation takes frame bits 11.
The construction is depicted in Fig. 2, where it is already used to instantiate H
in Cascade-MGF.

Daemen et al. [15] and Gunsing et al. [21] proved that if P ′ is a random
permutation, this tree hash function construction behaves like a random oracle
against distinguishers with a complexity of around min{2m/2, 2(b

′−m)/2}. It fol-
lows that k-bit security is achieved for m ≥ 2k and b′ ≥ 4k. Strictly seen, putting
m = 2k, we require b′ = 4k + 2 for the frame bits {00, 10, 11} to be taken into
account.

For the permutation P in Cascade-MGF, the same restrictions as before
apply, and most importantly, b ≥ 3k. This means that one can perform digest
generation with a permutation that is approximately 25% smaller than the one
used for hashing, without any security sacrifice. If necessary, we expect that
Cascade-MGF can also run on a single permutation, or strictly seen two permu-
tations that are similar, possibly instantiated with different round constants.

Comparison to Counter-MGF. By the generic design of the Counter-MGF
construction (7), the same truncated permutation is used both in the absorbing
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Fig. 3. The Counter-MGF construction instantiated via a tree hash function. The
highlighted sub-trees are independent of the counter 〈i〉l. We emphasize that the initial
points represent the result of the compression between the initial value IV and the
corresponding message block/〈i〉.

Algorithm 7: Generation of t output blocks via Counter-MGF instantiated with
a tree-hash function

Data: input message M ∈ {0, 1}∗

Result: output h0, h1, . . . , ht−1 ∈ {0, 1}m for t ≥ 1
1 parse M‖10∗ = M0‖M1‖ . . . ‖Mz−1 for z ≥ 1 and M0, M1, . . . , Mz−1 ∈ {0, 1}m

2 let ζ0, ζ1, . . . , ζ�log2(z)� ∈ {0, 1} be such that z =
∑�log2(z)�

i=0 ζi · 2i

3 let S0,S1, . . . ,S�log2(z)� be empty sets
4 l ← 0

// Initially parallelizable phase

5 for i from 0 to 
log2(z)� do
6 if ζi = 1 then

// Computing the hash of the subtrees

7 for j from 0 to 2ζi − 1 do
8 Si ← Si ∪ {Ml}
9 l ← l + 1

10 h′
i ← tree-hash(Si)

// Non-parallelizable phase

11 for i from 0 to t − 1 do
12 hi ← tree-hash(〈i〉, IV )
13 for j from 0 to 
log2(z)� do
14 if ζj = 1 then
15 hi ← tree-hash(h′

j , hi)

16 return h0, h1, . . . , ht−1

and squeezing part. Hence, compared to Cascade-MGF, it is not possible to work
with a smaller permutation in the squeezing part.

Secondly, and more importantly, the cost for generating an output of size
n · t for t ≥ 1 could be much higher for Counter-MGF than for Cascade-MGF,
depending on the size of the input message M and on the value of m = 2k.
Consider, for example, the simplified depiction of tree hashing in Fig. 3:
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– In case (a), the number of message blocks happens to be a power of 2. In this
case, the digest blocks are generated in parallel, since the message is fully
absorbed independently of the counter 〈i〉.

– In case (b), only part of the message can be absorbed independently of the
counter 〈i〉, and the digest blocks are only partially generated in parallel (the
extreme case showed in the picture occurs when the number of blocks that
composed M is a power of 2 minus 1).

As a result, while the cost in terms of the number of function/permutation calls
is the same for Counter-MGF and for Cascade-MGF in the first case (a), the cost
is much smaller for Cascade-MGF than for Counter-MGF in the second case (b).
In more detail, the cost for Counter-MGF is at least twice that of Cascade-MGF.
Indeed, given an input message composed of z blocks, the cost for generating t
output blocks via Cascade-MGF instantiated via a tree-hash function consists of
2 · z − 1 F ′-calls for the compression part, and t P-calls for the expansion part,
for a total of

t + 2 · z − 1 ∈ O(t)

function/permutation calls. In the case of Counter-MGF instantiated via a tree-
hash function, the cost is

(1 + Hw(z)) · t + 2 · z − Hw(z) ∈ O ((1 + Hw(z)) · t)

function/permutation calls, based on the algorithm given in Algorithm 7. The
difference between the two cases is approximately a factor (1 + Hw(z)) ≥ 2, and
the maximum is attained when the number of blocks z is a power of 2 minus 1.
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Abstract. We introduce puncturable key wrapping (PKW), a new cryp-
tographic primitive that supports fine-grained forward security proper-
ties in symmetric key hierarchies. We develop syntax and security def-
initions, along with provably secure constructions for PKW from sim-
pler components (AEAD schemes and puncturable PRFs). We show how
PKW can be applied in two distinct scenarios. First, we show how to use
PKW to achieve forward security for TLS 1.3 0-RTT session resump-
tion, even when the server’s long-term key for generating session tickets
gets compromised. This extends and corrects a recent work of Aviram,
Gellert, and Jager (Journal of Cryptology, 2021). Second, we show how
to use PKW to build a protected file storage system with file shredding,
wherein a client can outsource encrypted files to a potentially malicious
or corrupted cloud server whilst achieving strong forward-security guar-
antees, relying only on local key updates.

1 Introduction

Key wrapping. Key encryption, or key wrapping, is a mechanism often deployed
to build symmetric key hierarchies: systems in which the confidentiality and
integrity of multiple cryptographic keys are protected by a single (master wrap-
ping) key. The wrapped keys may in turn be used to secure data at a more
fine-grained level, e.g., at the level of individual files, messages, or financial trans-
actions. This hierarchical approach eases key management: it allows strong but
more expensive protection to be applied to a small number of wrapping keys
while limiting the security impact if individual wrapped keys are exposed. Key
wrapping is widely used in practice; specific schemes have been standardized by
NIST in [24]. Formal foundations for key wrapping were established in [47].

As a pertinent example, when using the pre-shared key (PSK) mode of
TLS 1.3 [45] for session resumption, new sessions between client and server are
protected by independent, symmetric keys (denoted PSK) established in an ear-
lier session. To reduce storage overhead, servers often use a long-term symmetric
encryption key to wrap PSKs into so-called tickets. These tickets are sent to the
client, thereby outsourcing the PSK storage from the server to the client.

Another example of key hierarchies is found in cloud storage systems, where
service providers encrypt data before storing it on their servers—so called encryp-
tion at rest. The encryption is done to meet customer demand and regulatory
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requirements. To ensure good key-hygiene, best practices stipulate that separate
encryption keys be used for separate files (or even parts of large files). To this end,
cloud storage providers use a new data encryption key (DEK) to encrypt each
(part of a) file. The DEK is then wrapped using a key encryption key (KEK)
and stored together with the encrypted file. Here, using a key hierarchy also
allows for a form of key rotation, a process in which a key is replaced by a fresh
one, and the encrypted data is updated to be secured under the new key. The
technique used by all four of Amazon Web Services [4], Google Cloud [30], IBM
Cloud [34] and Microsoft Azure [42] is to rotate only the KEK rather than all of
the DEKs. This limits the amount of data that needs to be re-encrypted under
the new KEK to just the DEKs that were wrapped under the original KEK,
rather than the actual files themselves. This approach provides an efficient but
security-limited form of key rotation [25].

Forward-Secure Session Resumption and Puncturable Encryption. Aviram,
Gellert, and Jager (AGJ) [1,2] observed that the key hierarchy induced by the
ticketing mechanism in TLS 1.3 PSK mode can be used to achieve forward
security for resumed sessions. By updating the Session Ticket Encryption Key
(STEK) after accepting the ticket of a resumed session, and deleting the corre-
sponding PSK, the confidentiality of the session is guaranteed even against an
attacker who later compromises the STEK. AGJ formalized this idea with their
notion of a forward-secure session resumption protocol. The per-session forward
security enjoyed by such a resumption protocol is reminiscent of the fine-grained
forward security achieved by puncturable encryption [31], and indeed, AGJ make
use of puncturable pseudo-random functions (PPRFs) [13,17,36] for their con-
struction. Their innovation naturally begs the question: Can puncturing be com-
bined with key hierarchies to bring fine-grained forward security also to other
applications? This work provides the affirmative response.

Our Contributions. We investigate how puncturing can be combined with
key wrapping to provide fine-grained forward security in applications using a
symmetric key hierarchy. To this end, we introduce a new cryptographic prim-
itive that we call puncturable key wrapping (PKW). We provide formal defini-
tions, relations between security notions, and an efficient, generic construction
for PKW. We also show how to use PKW in two sample applications: TLS tick-
eting (inspired by [2], but addressing several shortcomings of that work) and
protected file storage. We argue that, while PKW is closely related to exist-
ing primitives like PPRFs, it provides a useful abstraction that more intuitively
captures what is needed for achieving fine-grained forward security in symmetric
key hierarchies. This makes building applications conceptually simpler and less
error-prone.1

1 A broad analogy that readers may find useful: PKW is to PPRFs as AEAD is to
block ciphers.
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Fig. 1. Security notions and relations for PPRFs, puncturable key-wrapping (PKW),
protected file storge (PFS), and TLS ticketing (TLS). Confidentiality/forward security
notions are in rounded boxes, integrity notions in rectangular boxes. Solid lines indicate
implications, with numbers referencing the respective theorem in this paper (others
in [5]) and a plus + when combining several notions. Barred lines denote separations,
dotted lines trivial implications, and dashed lines non-tight implications. A star � or
dagger † next to an arrow indicates that the implication holds if puncture invariance
(Definitions 2, 5), resp. consistency (Definition 6) is assumed; a ∗ indicates additional
assumptions.

Puncturable Key Wrapping. A puncturable key-wrapping scheme provides the
basic functionality needed for a symmetric key hierarchy: algorithms to wrap
and unwrap data encryption keys under a master secret key. Additionally, a
puncturing algorithm allows the master secret key to be updated such that spe-
cific wrapped data encryption keys are rendered irrecoverable. Our PKW syntax
merges classical key wrapping/deterministic authenticated encryption [47] with
tag-based puncturable encryption [31]. The resulting primitive allows authen-
ticated headers and uses tags to enable fine-grained puncturing of ciphertexts.
The puncturing tags simplify the exposition of PKW and allow for versatile
treatments of the targeted applications: e.g., tags may be chosen via a counter
when keeping state or ordering is required, or as random strings when meta-data
privacy is a concern (cf. [7]). This contrasts with the foundational work on (non-
puncturable) key wrapping [47], where randomness needed for secure wrapping
is effectively extracted from the wrapped key in the SIV construction.

We introduce four different security notions for PKW schemes (see Fig. 1),
three relating to confidentiality (find$-cpa: a classical “real-or-random” notion,
find$-rcpa: additionally allowing “real” wrappings, and find$-1cpa: a one-time
challenge notion) and one to integrity (of ciphertexts, int-ctxt). They are devel-
oped with an eye towards applications, catering to the needs of key hierarchies
found in cloud storage systems and the TLS ticketing mechanism. Hence, all
four are in a multi-key (or multi-user) setting [6]. We also provide a simple and
generic construction for a PKW scheme based on a PPRF and a nonce-based
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AEAD [46] scheme. The core idea is to view the master key as the secret key of
a PPRF; wrapping of a selected data encryption key is performed by evaluating
the PPRF on the tag to generate a one-time AEAD key, and then using that
AEAD key to encrypt the data encryption key. PKW puncturing equates to
PPRF puncturing. Depending on the precise assumptions made on the PPRF,
we reach our three different levels of confidentiality for the PKW scheme; the
integrity notion requires nothing further of the PPRF. In all cases, standard
multi-user notions of AEAD security suffice. Using a misuse-resistant AEAD
scheme [47] could further enable batch puncturing of wrappings under the same
tag. Full details of our treatment of PKW can be found in Sect. 3.

PPRFs. While the precise PPRF security notions we require resemble those in
prior work [13,17,36,48], they appear to be, strictly speaking, new. This shows
how an application-driven analysis can bring to the surface new requirements on
existing primitives. In Sect. 2 (see also Fig. 1), we explore the relations between
our different PPRF notions and discuss possible instantiations, e.g., using the
GGM construction for PRFs (as adapted to PPRFs in e.g. [36]).

To summarize, we obtain a generic instantiation of PKW, achieving a variety
of security notions from standard primitives (AEAD schemes and PRGs).

Application: Forward-Secure Session Resumption. Equipped with our new prim-
itive, we revisit the idea of Aviram, Gellert, and Jager (AGJ) [2] for achieving
forward security for the zero round-trip time (0-RTT) data that is immediately
sent by clients in the TLS 1.3 PSK resumption mode. In Sect. 4, we show how
a find$-1cpa-secure PKW scheme can readily be deployed for TLS ticketing to
yield forward-secure TLS 1.3 0-RTT resumption that is secure in the sense of
a multi-stage key exchange (MSKE) protocol [27]; see also Fig. 1. Using PKWs
in place of PPRFs (as in AGJ) permits us to take a more generic and abstract
viewpoint. This not only directly facilitates constructions offering differing func-
tionality and security guarantees, but also enabled us to identify and correct
some technical issues arising in the approach of AGJ.

In particular, building TLS ticketing from PKW allows us to seamlessly
switch to a more privacy-friendly approach, addressing an open problem in [2]:
by sampling tags randomly, we are able to make TLS tickets indistinguishable
from random, whereas the AGJ proposal uses a counter in the construction,
making their tickets potentially linkable to the time of issuance. Thus our app-
roach can alleviate privacy concerns for TLS ticketing, e.g., regarding tracking
users on the web by passively observing network traffic.

The integration of a session resumption protocol into the TLS 1.3 resumption
handshake is described in [2, Section 4]. Rephrasing the AGJ proposal in the lan-
guage of puncturable key wrapping led us to discover conceptual and technical
issues in the security model, the proposed protocol, and the proof that prevent
the proposal of AGJ from being forward secure, as we discuss in Sect. 4. Specif-
ically, the security model used in [2] does not reflect the ticketing mechanism of
a key exchange protocol in how pre-shared secrets are sampled, registered with
parties, and potentially corrupted. Furthermore, the proposed protocol encrypts
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the TLS resumption master secret RMS in the session ticket. Since RMS is used
to derive multiple PSK values, this violates forward security (an adversary learn-
ing RMS from one ticket can use it to decrypt prior sessions using a PSK derived
from the same RMS). However, this can be easily fixed by ticketing the respec-
tive PSK instead of RMS. Finally, we identified overlooked steps and missing
underlying assumptions in the AGJ security proof, which were surfaced when
applying our PKW formalism. We address all these points in our treatment of
forward-secure session resumption for TLS 1.3, see Sect. 4.

Application: Protected File Storage. As a second application example, we show
in Sect. 5 how our new PKW primitive can be used in an encrypted file storage
system to give forward security to deleted files. This application is motivated by
the current trust assumptions in cloud storage systems, where the confidentiality
of the stored data rarely extends to the service provider. Indeed, if the master
key in the key hierarchy is managed by the cloud, then the service provider can
trivially decrypt any file. The aim of our protected file storage (PFS) system is
to provide strong security guarantees for the user, even when encrypted files are
outsourced to a malicious or corrupted storage system.

Using a PKW scheme, a client can locally encrypt files under separate data
encryption keys, wrap the DEKs with its master key (acting as a KEK) and then
outsource both the encrypted files and the wrapped keys to the cloud. In addition
to relieving the user of the need to store anything beyond the master key for the
PKW scheme, our PFS system also allows secure shredding of files: by puncturing
the master key such that a specific wrapped DEK is rendered irrecoverable,
the file encrypted by the DEK is made permanently inaccessible, even if the
ciphertext is not actually deleted by the cloud storage provider when the client
requests it to be. This means that a motivated attacker with access both to the
encrypted files and the secret key of the user will not be able to compromise
the contents of files that were shredded before the user key was compromised.
The system hence provides very strong forward security guarantees for shredded
files. Crucially in our approach, there is no need for the user to trust the storage
provider to actually delete the shredded files, an assumption which would seldom
hold in practice due to the presence of backups for disaster recovery purposes
(see, e.g., [30]) or bugs in the deletion process [44].

An additional feature of our PFS system is that, in line with current industry
practice, it supports key rotation at the KEK level. Key rotation extends the life-
time of encrypted data, overcomes usage limits of encryption through rekeying,
and supports forward security in practice. It is also important given that the
PKW schemes we build have a finite puncturing capability; KEK rotation is then
used to restore puncturing capability whenever needed. The multi-key aspect of
our PKW security notions readily supports this key rotation.

As core contributions here, we define a syntax for PFS and security notions
capturing confidentiality, forward security, and integrity of stored files in a PFS
scheme. We show how all of these notions can be achieved by building a PFS
scheme from a PKW scheme and an AEAD scheme in a natural and efficient
way. We actually provide two different routes to proving our main results on the
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forward security of PFS, as represented in the first and third column in Fig. 1.
These routes rely on different security assumptions on the underlying crypto-
graphic components, specifically the PKW scheme used, and result in security
theorems with different tightness properties—using a stronger PKW scheme
yields a tighter proof of security for the PFS scheme. This in turn relates to
the properties required of the underlying PPRF in each of the two routes. While
the left, tighter, route requires a PPRF satisfying the strongest security notion
(fpr-rro$) as a basic building block—an assumption which, to the best of our
knowledge, generally relies on a non-tight (complexity-leveraging) reduction to
weaker PPRF notions—it asks less from the building blocks in terms of other
properties. Specifically, it avoids the technical requirements of puncture invari-
ance and consistency which we detail in Sect. 3 and that not all PPRFs may
provide, yet which are required for the right, less tight route. The two routes
hence show that secure PFS schemes can be constructed from different levels of
PKW (and PPRF) schemes; we see this as motivating future work on efficient
PKW (or PPRF) constructions that directly fulfill our strong security notions.

We stress that the aim of our PFS system is to showcase how integrating
PKWs into existing symmetric key hierarchies can improve security for the cryp-
tographic core of secure file storage systems. Building a full-blown system is left
to future work.

Further Related Work. The origins of forward security, in the context of key
exchange, date back to Günther [32] and Diffie et al. [23]. A helpful systemati-
zation is given by Boyd and Gellert [16].

Green and Miers [31] introduced puncturable (public-key) encryption as a
means of achieving fine-grained forward security. The ideas of [31] were applied
to 0-RTT key exchange and session resumption for TLS 1.3 in [2,22,33] as well as
symmetric key exchange [3,15]. The treatment of [15] is for general key exchange,
where both parties share a key to a PPRF and puncture it in a semi-synchronized
manner. By contrast, our approach to achieving forward security for TLS 1.3
PSK resumption mode using session tickets (in common with [2]) targets the
use of puncturable primitives in a “one-sided” setting, where only the server
holds the key and performs puncturing operations.

Puncturing techniques have further been used in the context of searchable
encryption [51,52]. Fine-grained forward security is also targeted in Derived
Unique Keys Per Transaction (DUKPT) [18]: keys are derived in a tree structure
and used in a one-time manner, with the aim of improving security against side-
channel attacks on weakly protected devices, e.g., payment terminals.

The idea of secure outsourced storage is not new. Blaze [10] designed a “Cryp-
tographic File System” already in 1993 to empower users to encrypt their files,
preventing remote file servers used for storage from gaining plaintext access to
user data. A rich body of work followed suit, improving on and expanding the
security guarantees in the direction of, for example, data integrity and file shar-
ing [43], group collaboration [26], access pattern and metadata hiding [19,20] and
minimizing trust assumptions [41]. There is also a plethora of services running
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on top of existing storage systems, for example [14,39]. Key rotation for sym-
metric encryption is widely used by outsourced storage systems in practice, but
was only recently formally treated, see [25] and follow-up works [37,40] including
work using puncturing [50].

Our approach to secure file storage shares the aim of removing the need to
trust the storage provider for confidentiality, but we specifically focus on adding
forward security for individual files. Boneh and Lipton [12] introduced the idea
of using key deletion to revoke access to encrypted files, with an emphasis on
file backup systems. Their proposal uses linear data structures to store keys, but
lacks the fine-grained forward security and key rotation our PFS scheme offers.

A more recent proposal, BurnBox [54], recognizing the difficulty of truly
secure file deletion, introduced self-revocable encryption to limit the power of
compelled searches of devices. BurnBox achieves fine-grained forward security
for deleted files via a tree-based key hierarchy, storing the root in erasable stor-
age. It further hides file metadata in a protected lookup table, an approach
we also suggest for our system. On the surface, these properties make Burn-
Box very similar to our PFS concept. However, the main goal of BurnBox is
not forward security, but the much stronger notion of compelled access security,
which encompasses temporarily revoking file access when device compromise is
expected and further goals such as deletion/revocation obliviousness and timing
privacy. This forces BurnBox to use highly application-specific approaches, rely
on secure storage, and compromise on efficiency (e.g., of file lookups, in favor of
privacy). In contrast, our approach is more generic, requires fewer assumptions,
and can directly benefit from optimizations of the underlying PKW or PPRF
schemes.

Notation and Conventions. For a string a ∈ {0, 1}∗, |a| denotes its bit length.
By x ←$ S, we denote sampling x uniformly at random (u.a.r.) from a set S of
size |S|. For sets S1,S2, the shorthand S1

∪←− S2 denotes S1 ← S1 ∪S2. We write
X = (x1, x2, . . . , xn) for an n-tuple and X += x or X −= x for adding, resp.
removing, an element x to/from a list or set. By x‖y we denote the concatenation
of strings or lists x and y. For an algorithm A, we denote by y ← A(x1, . . . ; r)
running A on inputs x1, . . . and random coins r with output y; by y ←$ A(x1, . . .)
running A on uniformly random coins. The distinguished output ⊥ indicates
rejecting; by convention we require that any algorithm on input ⊥ also outputs ⊥.

We use the game-playing framework of [8]. By Pr [G(A) ⇒ x ] we denote
the probability that game G interacting with adversary A outputs x; where
Pr [G(A) ] is a shorthand for Pr [G(A) ⇒ true ]. In games, adversaries implic-
itly have access to all described oracles unless otherwise indicated, and integer
variables, strings, set variables and boolean variables are initialized, respectively,
to 0, the empty string ε, the empty set ∅, and false, unless otherwise specified.
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2 Puncturable PRFs, Security Notions, and Relations

Puncturable PRFs (PPRFs) were conceived of independently in [13,17,36]. We
recall the definition from Sahai and Waters [48], but restrict our attention to
PPRFs with deterministic puncturing algorithms.

Definition 1 (PPRF). A puncturable pseudorandom function PPRF =
(KeyGen,Eval,Punc) is a triple of algorithms with three associated sets; the secret-
key space SK, the domain X and the range Y.

– Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen, taking
no input, outputs the secret key sk ∈ SK.

– Via y/⊥ ← Eval(sk, x), the function evaluation algorithm Eval, on input the
secret key sk and an element x ∈ X outputs y ∈ Y or, to indicate failure, ⊥.

– Via sk′ ← Punc(sk, x), the deterministic puncturing algorithm Punc, on input
the secret key sk and an element x ∈ X outputs an updated secret key sk′ ∈
SK.

For correctness we require that for all sk ∈ SK and all x, y ∈ X :

(1) Pr [Eval(sk0, x) 	= ⊥ | sk0 ←$ KeyGen() ] = 1.
(2) If sk′ ← Punc(sk, x) and y 	= x, then Eval(sk, y) = Eval(sk′, y).
(3) If sk′ ← Punc(sk, x), then Eval(sk′, x) = ⊥.

Requirement (1) ensures that for any freshly generated secret key sk0 and for
any x ∈ X , Eval(sk0, x) will not be ⊥. Requirement (2) says that puncturing any
secret key sk on x only affects the evaluation of x. Requirement (3) demands
that the evaluation of a punctured point will always be ⊥.

Requirement (3)—which goes beyond prior PPRF definitions [2,48]—is
needed to achieve integrity in applications like TLS ticketing, as we shall see
in Sect. 4. Alternative to phrasing it as a correctness property, one could implic-
itly demand it in the security games. We find the explicit requirement cleaner
and argue that it captures the intuitive understanding that PPRF function eval-
uation on punctured points should “fail”. Alternative concepts such as private
puncturable PRFs [11] could achieve similar results, but are harder to construct.

Following [2], we define an additional property of PPRFs called “puncture
invariance” which demands that the scheme is insensitive to the order in which
punctures are performed. I.e., the puncturing operation is commutative with
respect to the resulting secret key. As noted in [2], this property enables reduc-
tions that change the order of punctures without an adversary later compro-
mising the secret key noticing; this is necessary for example to have our single-
challenge notion (fpr-1ro$) imply our core PPRF notion (fpr-ro$), as we shall
see.

Definition 2 (PPRF puncture invariance). A puncturable pseudorandom
function PPRF=(KeyGen,Eval,Punc) is puncture invariant if for all keys sk∈SK
and all x0, x1 ∈ X it holds that Punc(Punc(sk, x0), x1)=Punc(Punc(sk, x1), x0).
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Fig. 2. Left: Games defining real-or-$ (fpr-ro$, without the boxed Eval oracle) and
real-and-real-or-$ (fpr-rro$, with A having access to Eval) forward pseudorandomness.
Right: Game defining one-time forward pseudorandomness (fpr-1ro$) PPRF security.
Grey code prevents trivial attacks. (Color figure online)

PPRF Security. We define three security notions for PPRFs, all in the multi-
user setting [6], capturing the combined forward security and pseudorandomness
goals, or forward pseudorandomness (fpr) for short. Let us start with our core
forward pseudorandomness notion (fpr-ro$), given in Fig. 2. It is an extension of
classical PRF security, where the adversary is given oracle access (Ro$-Eval)
either to the real function evaluated on a hidden key, or a lazily-sampled random
function. Forward security is captured through access to a puncturing oracle
(Punc) as well as corruption oracle (Corr), through which the adversary can
obtain secret keys that have been punctured on all challenge points.

Our second, stronger notion, forward pseudorandomness with real evaluations
(fpr-rro$), in addition gives the adversary access to a real evaluation oracle
(Eval), capturing that real evaluations do not help distinguishing challenge
outputs (even post-corruption).

In our third, weaker notion, single-challenge forward pseudorandomness (fpr-
1ro$), the adversary only gets a single challenge evaluation under each key. The
challenge is obtained from oracle New-Ro$-Eval, which on input a domain
point x returns either the real function evaluation of x under the (unpunctured)
secret key (in the “real” world), or a string drawn u.a.r. from Y (in the “ideal”
world). Additionally the adversary obtains the secret key punctured on x. As
usual, the adversary wins if it can distinguish the real world from the ideal one.
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Definition 3 (PPRF security (fpr-ro$, fpr-rro$, fpr-1ro$)). Let PPRF be a
puncturable pseudorandom function. We define the advantage of an adversary
A against the forward pseudorandomness X ∈ {fpr-ro$, fpr-rro$, fpr-1ro$} of
PPRF as AdvX

PPRF(A) = 2
∣
∣Pr

[

GX
PPRF(A) ⇒ true

]

− 1
2

∣
∣, where game GX

PPRF(A)
is given in Fig. 2.

Comparison to Prior Work. Our PPRF notions resemble those in prior work, but
also differ in several ways. For example, fpr-1ro$ is similar to the non-adaptive
notion in [2,48], but restricted to a single challenge. Through a multi-key hybrid
argument [6], their notion implies ours. The adaptive “rand” notion of [2] most
closely corresponds to our fpr-rro$ notion, but our notion provides the adver-
sary with more flexibility by both allowing multiple real-or-random challenge
evaluations under each key (compared to a single evaluation under the single
key in [2]) and giving it access both to a separate puncturing oracle (the rand
experiment only punctures on the single challenge point) and corruption oracle,
thereby allowing multiple key compromises of keys punctured on points chosen
by the adversary. Our middle notion fpr-ro$ is, to the best of our knowledge,
new.

PPRF Relations. Figure 1 (on page 3) shows the relations between our PPRF
security notions. The trivial implications (dotted lines) immediately arise from
restricting the adversary. As an example, fpr-rro$ implies fpr-ro$ because an
adversary against the fpr-rro$ security can simply ignore the Eval-oracle. Sim-
ilarly fpr-ro$ implies fpr-1ro$.

In the other direction, fpr-1ro$ implies fpr-ro$ for any puncture-invariant
PPRF PPRF. That is, for any adversary A against the fpr-ro$ security of PPRF,
there exists an adversary B running in approximately the same time as A such
that Advfpr-ro$

PPRF (A) ≤ qro$ · Advfpr-1ro$
PPRF (B), via a standard hybrid argument,

where puncture invariance ensures that reorderings of punctures do not affect
simulation of the later-corrupted secret key.

Via a non-tight reduction, we can also show that fpr-ro$ implies fpr-rro$ for
a puncture-invariant PPRF. This is again via a hybrid argument, which however
now involves guessing the input to the challenge query Ro$-Eval under each key
(so-called complexity leveraging [13,17]), resulting in reduction loss proportional
to the size of the PPRF domain.

Instantiations From the Literature. One, by now folklore, way of building a
PPRF is to use the GGM PRF construction via a tree of pseudorandom-
generator (PRG) evaluations [29], extended with a puncturing algorithm, as first
noted by [13,17,36]. The core idea to enable puncturing on a domain point x
in a GGM PRF is to update the secret key, removing nodes on the path to x
in the PRG tree and adding all nodes on the co-path from the root to x. For
a more in-depth description and argument of security we refer to [2,36]. Note
that the GGM-based construction is correct and puncture invariant, and hence,
via our established relations, yields an fpr-ro$-secure PPRF. Additionally, for
this specific construction, adaptive security can be achieved with a loss factor
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that is only quasi-polynomial in the input length, improving greatly over the
exponential loss of complexity leveraging [28]. An alternative construction for a
PPRF with security based on the Strong RSA assumption can be found in [2].

3 Puncturable Key Wrapping

We now present our core cryptographic primitive, puncturable key wrapping
(PKW). With puncturable key wrapping, we merge the notion of key wrap-
ping, originally extensively studied by Rogaway and Shrimpton [47], with tag-
based puncturable encryption [31], adapted to the symmetric setting, to capture
forward security through puncturing. Puncturable key wrapping, beyond the
key K to be wrapped, hence takes a tag T used as a pointer for puncturing,
as well as optional associated header data H which is authenticated along with
the wrapped key (akin to associated data in AEAD). In the following, we give
syntax, security, and further notions for this new primitive.

Definition 4 (PKW scheme). A puncturable key-wrapping scheme PKW =
(KeyGen,Wrap,Unwrap,Punc) is a 4-tuple of algorithms with four associated sets;
the secret-key space SK, the tag space T , the header space H and the wrap-key
space K. Associated to the scheme is a ciphertext-length function cl : N → N.

– Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen, taking
no input, outputs a secret key sk ∈ SK.

– Via C/⊥ ← Wrap(sk,T,H ,K), the deterministic wrapping algorithm Wrap
on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a key
K ∈ K outputs a ciphertext C ∈ {0, 1}cl(|K|) or, to indicate failure, ⊥.

– Via K/⊥ ← Unwrap(sk,T,H ,C), the deterministic unwrapping algorithm
Unwrap on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a
ciphertext C ∈ {0, 1}∗ returns a key K ∈ K or, to indicate failure, ⊥.

– Via sk′ ← Punc(sk,T), the deterministic puncturing algorithm Punc on input
a secret key sk ∈ SK and a tag T ∈ T returns a potentially updated secret
key sk′ ∈ SK.

Correctness of a PKW scheme intuitively demands that a wrapped key can be
recovered from its wrapping ciphertext unless the secret key has been punctured on
the tag used for the wrapping step, i.e., even if the secret key has been punctured
on other tags. Formally, we require that for all T ∈ T , H ∈ H, K ∈ K, and all
tuples T̄1, T̄2 ∈ T ∗ where T /∈ T̄1 and T /∈ T̄2,

Pr
[

Unwrap(sk\T̄1
,T,H ,Wrap(sk\T̄2

,T,H ,K)) = K | sk ←$ KeyGen()
]

= 1.

Here sk\(T1,T2,...,Tn) = Punc(. . . (Punc(Punc(sk,T1),T2), . . . ),Tn) is shorthand
for the secret key obtained via puncturing sk in order on T1, . . . ,Tn ∈ T .

Analogously to Definition 2 for PPRFs, we also define puncture invariance
for PKW schemes, demanding that the order of punctures does not affect the
resulting secret key.
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Definition 5 (PKW puncture invariance). A puncturable key-wrapping
scheme PKW = (KeyGen,Wrap,Unwrap,Punc) is puncture invariant if for all
keys sk ∈ SK and all tags T0,T1 ∈ T it holds that

Punc(Punc(sk,T0),T1) = Punc(Punc(sk,T1),T0).

Additionally, we introduce a property of PKW schemes which we call con-
sistency, inspired by the definition of consistent puncturable signature schemes
in [9]. A consistent PKW scheme is one for which the output of algorithm Wrap
only depends on the tag, header and wrap-key input, and not on the (puncturing)
state of the secret key—except for when the output is ⊥ due to puncturing.

Definition 6 (PKW consistency). A puncturable key wrapping scheme
PKW = (KeyGen,Wrap,Unwrap,Punc) is consistent if for all keys K ∈ K, all
headers H ∈ H, all tags (T1, . . . ,Tn) ∈ T ∗ and all T ∈ T \{T1, . . . ,Tn} it holds
that

Pr
[

Wrap(sk,T,H ,K) = Wrap(sk\(T1,...,Tn),T,H ,K) | sk ←$ KeyGen()
]

= 1.

Puncture invariance and consistency guarantee a kind of indifference of the
PKW scheme with respect to puncturing, allowing sequences of punctures and
wrappings to be flexibly reordered without affecting the scheme’s future behav-
ior. As we shall see, these properties are important to consider when deploying
PKW schemes in, and proving the security of, higher-level applications.

3.1 PKW Security

Confidentiality. Following Rogaway and Shrimpton [47], we adopt indistin-
guishability from random bits (ind$) as the appropriate notion to model con-
fidentiality for (puncturable) key-wrapping schemes. Our three confidentiality
notions, formalized in Fig. 3, capture forward security in the sense that the con-
fidentiality guarantees hold also after compromise of the secret key, given that
it has been appropriately punctured prior to corruption to avoid trivial wins. As
before, they are all in the multi-key (or multi-user) setting [6]2

Our first notion, which we call find$-cpa, can be viewed as a form of ind$-cpa
security adapted to the PKW setting. The adversary is given access to a chal-
lenge wrapping oracle Ro$-Wrap, which on input a key index i, a tag T, a
header H and a key K chosen by the adversary, returns either an honest wrap-
ping of K under secret key ski, or a random bit-string of length cl(|K |). Forward
security is captured via a corruption oracle Corr which allows the adversary
to compromise the current version of a secret key ski, given that all tags used

2 To focus on forward security, we separate confidentiality (with forward security) and
integrity (below) into distinct notions, contrasting with the combined notion in [47].
We give a combined notion in the full version [5], also capturing CCA-style active
attacks, and show that it is equivalent to the junction of our separate notions.
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Fig. 3. Left and middle: Forward security and privacy find$-cpa (without access to

the boxed Wrap oracle)/find$-rcpa (with access to Wrap) of a puncturable key-
wrapping scheme PKW. Right: One-time privacy and forward security find$-1cpa secu-
rity of a puncturable key-wrapping scheme PKW. Grey code prevents trivial attacks
and ensures that unique tags are used for wrapping. (Color figure online)

in challenge queries under ski must be punctured on at the time of corruption
(via the puncturing oracle Punc). Focusing on fine-grained forward security, we
restrict the adversary to use tags only once for wrapping and call this behavior
tag-respecting (akin to a nonce-respecting adversary in authenticated encryp-
tion); this enables puncturing of individual ciphertexts.3

Guided by the envisioned usage of puncturable key-wrapping schemes, our
second, stronger confidentiality notion, find$-rcpa, additionally gives the adver-
sary access to real wrappings that it does not have to puncture on via an addi-
tional oracle Wrap. The rationale behind the notion is that although find$-
cpa provides forward security for all wrapped keys which have been punctured
on at the time of compromise, it does not capture the potential leakage from
unpunctured ciphertexts which the adversary gains insight into by corrupting.

3 We note that a stronger formalization is possible where tag reuse is allowed: by stor-
ing and checking the whole tuple (T,H ,K) in the sets ST,i instead of only T, one can
demand wraps to look random except when this is impossible due to entirely repeat-
ing inputs. This could cater to applications interested in “batch puncturing” [31],
i.e., revoking access to multiple wrapped keys via a single puncturing call. Such
stronger notions would also require stronger building blocks, as we will see below.
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Fig. 4. Integrity of ciphertexts of a puncturable key-wrapping scheme PKW. Grey code
prevents trivial attacks and ensures that tags are not repeated in wrap queries. (Color
figure online)

That is, we would like to ensure that there is a form of independence across key
wrappings produced with distinct tags. This is motivated by what we believe
to be realistic attack scenarios for applications which use a PKW scheme for
key management—such as our protected file storage system (to be defined in
Sect. 5). In such a system, normal usage implies the existence of some unpunc-
tured ciphertexts (corresponding to non-shredded files) at any given time, and
hence in particular at the time of a key compromise. The idea of find$-rcpa secu-
rity is that compromising ciphertexts generated with tags that have not been
punctured on, should not give the adversary a higher advantage in distinguishing
challenge ciphertexts from random bits.

Lastly, we also introduce a one-time security notion, find$-1cpa, which only
provides the adversary with one challenge output and the punctured secret key,
per key. As we will see, together with puncture invariance and consistency, find$-
1cpa turns out to be sufficiently strong to achieve full security in the applications
we are interested in.

Definition 7 (PKW confidentiality (find$-cpa, find$-rcpa, find$-1cpa)).
Let PKW be a puncturable key-wrapping scheme. We define the advantage of an
adversary A against the forward indistinguishability X ∈ {find$-cpa, find$-rcpa,
find$-1cpa} of PKW as AdvX

PKW(A) = 2
∣
∣Pr

[

GX
PKW(A) ⇒ true

]

− 1
2

∣
∣, where

GX
PKW(A) is defined in Fig. 3.

Integrity. In addition to the confidentiality notions we also define (multi-key)
integrity of ciphertexts (int-ctxt) for PKW schemes as shown in Fig. 4. Here, the
adversary is given oracle access to wrapping (Wrap), unwrapping (Unwrap),
and puncturing (Punc). Its goal is to forge a ciphertext (together with a tag and
a header) that was not output by Wrap, or for which the tag was punctured
on via Punc, and that unwraps to something other than the error symbol ⊥.
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Note that we particularly treat ciphertexts under punctured tags as valid forgery
attempts, even if previously output by Wrap. This ensures that after punctur-
ing on a tag, no ciphertext with that tag will be accepted any more, which is
sometimes referred to as replay protection.

Definition 8 (PKW integrity (int-ctxt)). Let PKW be a puncturable key-
wrapping scheme. We define the advantage of an adversary A against the
integrity of ciphertexts of PKW as Advint-ctxt

PKW (A) = Pr
[

Gint-ctxt
PKW (A) ⇒ true

]

,
where Gint-ctxt

PKW (A) is defined in Fig. 4.

Notably, in the integrity setting, forging a valid ciphertext becomes trivial if
one would allow the adversary to compromise the secret key. Forward security
hence seems to only make sense in scenarios where two copies of the key are
available simultaneously, one “more punctured” than the other. The challenge
then would be to forge a ciphertext on a punctured tag T using access to the
compromised, more punctured key, such that the ciphertext unwraps under the
less punctured key (which has not been punctured on T). This could be inter-
esting, e.g., in a setting where punctured keys are distributed across servers. We
leave extending puncturing to the distributed setting as future work.

Relations Between PKW Notions. We briefly explain how the PKW confidential-
ity notions are related. See Fig. 1 for an overview of all security notions and their
relations, and the full version [5] for details and proofs. Beginning from strong
to weak: the trivial implications (dotted arrows) arise directly from restricting
the adversary. As an example, find$-rcpa implies find$-cpa because an adversary
against the find$-rcpa security can simply ignore the Wrap-oracle.

In the opposite direction the relations are more complex. Generally, find$-
1cpa does not imply find$-cpa. Showing the separation is straightforward: Mod-
ify any find$-1cpa secure scheme so that Wrap outputs a fixed string when
receiving an already-punctured tag as input. This makes challenge wraps on
punctured tags—which are available in the find$-cpa game, but not in find$-
1cpa—easily distinguishable. In contrast, for the special case of a PKW scheme
that is puncture invariant and consistent, and additionally for which attempting
to wrap using a punctured tag always results in ⊥ (i.e., Wrap(sk\T̄ ,T, ·, ·) = ⊥
if T ∈ T̄ ⊆ PKW.T )4 , find$-1cpa implies find$-cpa via a hybrid argument.

Lastly, assuming a (forward) secure source of pseudorandomness, such as a
fpr-ro$ secure PPRF, find$-rcpa is strictly stronger than find$-cpa. The separa-
tion relies on the fact that in the find$-cpa game, an adversary must puncture
on all tags which have been used for wrapping before compromising the secret
key; a restriction which is not imposed on tags queried to oracle Wrap in the
find$-rcpa game. This can be used to construct a scheme which leaks a copy
of the original, unpunctured secret key when punctured only once on a hidden,
special tag T̂, which can only be learned by wrapping under a different, fixed
and publicly known tag T0. Tag T̂ is accessible to an adversary in the find$-
4 The last assumption is necessary for the reduction to simulate a Ro$-Wrap challenge

query on an already punctured tag in the find$-cpa game.
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Fig. 5. The PKW[PPRF,AEAD] instantiation of a puncturable key-wrapping scheme
based on a puncturable pseudorandom function PPRF and a nonce-based AEAD
scheme AEAD (with N0 a fixed nonce in the nonce space of AEAD).

rcpa game via oracle Wrap, but not to a find$-cpa adversary. The latter can
learn T̂ only through a Ro$-Wrap call on T0, forcing it to also puncture on T0

and thereby destroying the key copy.

3.2 Instantiating PKW from PPRF and AEAD

Next, we give a generic construction of a PKW scheme, formalized in Fig. 5.
The construction uses an authenticated encryption scheme with associated
data AEAD to encrypt (wrap) keys, using a new AEAD key together with a
fixed nonce N0 for each key-wrap. The keys of AEAD are generated by a pseudo-
random function PPRF on input the wrap tag, the key of which is the secret key
of the PKW scheme. This allows AEAD keys to be “forgotten” via puncturing
the PPRF key, thereby rendering the key-wrap ciphertexts unrecoverable. The
construction is inspired by, and re-captures, the generic construction of a “0-RTT
session resumption protocol” by Aviram, Gellert, and Jager [2], with the differ-
ence that we use a nonce-based AEAD scheme, following practically deployed
schemes like AES-GCM or ChaCha20-Poly1305, rather than a probabilistic one.

The only technical requirement for our construction is that the range of PPRF
matches the key space of AEAD. The key space of the resulting PKW scheme is
the key space of PPRF, the tag space the PPRF domain, the header space the
associated data space of AEAD, and the wrap-key space the message space of
AEAD. The ciphertext-length function cl for PKW is that of AEAD.

Our construction PKW[PPRF,AEAD] achieves puncture invariance and con-
sistency (given PPRF is puncture invariant), all levels of forward indistinguisha-
bility (find$-cpa, find$-rcpa, and find$-1cpa) given AEAD ind$-cpa security and
the corresponding strength (fpr-ro$, fpr-rro$, resp. fpr-1ro$) of the underlying
PPRF security, as well as integrity of ciphertexts (given PPRF fpr-ro$ security
and AEAD int-ctxt security). For space reasons, we only give security statements
for find$-cpa forward indistinguishability and integrity here, deferring the details
of the other results to the full version [5].
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Theorem 9 (PKW[PPRF,AEAD] is find$-cpa secure). Let PKW[PPRF,AEAD]
be the PKW scheme in Fig. 5. For every adversary A against the find$-cpa-
security of PKW[PPRF,AEAD] making at most qn, qro$, qcorr and qp queries
to oracles New, Ro$-Wrap, Corr and Punc, respectively, there exists adver-
saries Bpprf and Baead running in approximately the same time as A such that

Advfind$-cpa
PKW[PPRF,AEAD](A) ≤ 2 · Advfpr-ro$

PPRF (Bpprf) + Advind$-cpa
AEAD (Baead).

Adversary Bpprf makes at most qn, qro$, qcorr , and qp queries to oracles New,
Ro$-Eval, Corr, resp. Punc. Adversary Baead makes at most qro$ queries to
oracles New and Ro$.

Proof. We first leverage the fpr-ro$ security of PPRF to replace the AEAD keys
by random ones, then in a second step apply ind$-cpa security of AEAD to
argue that wrapped PKW[PPRF,AEAD] ciphertexts are indistinguishable from
random. The first step consists of a game hop from the original find$-cpa game,
abbreviated G0, to a game G1 which replaces the outputs of PPRF by random
AEAD keys in the implementation of oracle Ro$-Wrap. We bound the differ-
ence |Pr [G0 ] − Pr [G1 ]| by the distinguishing advantage of an adversary Bpprf

against the fpr-ro$ security of PPRF (cf. Definition 3).
Adversary Bpprf draws a random bit b′ and acts as the challenger in game

G0. When b′ = 1 adversary Bpprf simulates the “real world” in the PKW game,
wrapping the keys output by adversary A. When b′ = 0, adversary Bpprf simulates
the “random world” and returns random strings in the ciphertext space of the
AEAD scheme in response to challenge queries from A. Finally, when adversary
A halts and outputs bit b∗

A, adversary Bpprf returns 1 if b∗
A = b′ and 0 otherwise.

Let b denote the random bit drawn by the challenger in the fpr-ro$
game. When b = 1, adversary Bpprf simulates game G0 for A. When b =
0, the simulation corresponds to game G1. This gives Advfpr-ro$

PPRF (Bpprf) =
|Pr [G0 ] − Pr [G1 ]| .

It remains to bound Pr [G1(A) ]. A straightforward reduction to the multi-
key ind$-cpa security of AEAD gives Pr

[

Gind$-cpa
AEAD (Baead)

]

= Pr [G1(A) ] for an
adversary Baead which simulates game G1 for adversary A. Adversary Baead acts
as the challenger in the game, except for when adversary A makes a query to
oracle Ro$-Wrap. To respond to such a query Ro$-Wrap(j,T,H ,K), Baead

first queries oracle New to initiate a new AEAD key. Additionally it increments
an internal key counter i by one. It then issues a (single) query Ro$(i,N0,H ,K),
requesting the challenge to be under the new key. The assumption that adversary
A is tag-respecting ensures that this is a sound simulation. �

Note that for all our forward indistinguishability results, one-time multi-user
AEAD security suffices, since the uniqueness of tags means that each AEAD
encryption is performed under a new key. If we wanted to allow tag-reuse to
enable batch puncturing (cf. Footnote 3), our PKW[PPRF,AEAD] scheme would
need to be instantiated with a misuse-resistant AEAD scheme [47] to achieve
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find$-cpa security. Interestingly, this straightforward modification is insufficient
for find$-rcpa security: the reuse of tags across real and challenge wrap queries
creates a key commitment problem which breaks the reduction. This could poten-
tially be addressed in an idealized model, cf. [35], but we leave this to future
work.

Theorem 10 (PKW[PPRF,AEAD] is int-ctxt secure).
Let PKW[PPRF,AEAD] be the PKW scheme in Fig. 5. For every adversary A
against the int-ctxt-security of PKW[PPRF,AEAD] (Def. 8) making at most qw ,
qu, qp and qn to oracles Wrap, Unwrap, Punc and New, respectively, there
exists adversaries Baead and Bpprf running in approximately the same time as A
such that

Advint-ctxt
PKW[PPRF,AEAD](A) ≤ Advfpr-ro$

PPRF (Bpprf) + Advint-ctxt
AEAD (Baead).

Adversary Bpprf makes at most qw +qu, qp, and qn queries to oracles Ro$-Eval,
Punc, resp. New. Adversary Baead makes at most qw + qu, qw , and qu queries
to oracles New, Enc, resp. Dec.

Proof. We first apply the fpr-ro$ security of PPRF to replace all AEAD keys
by (consistent) random strings, denoting the original game as G0 and the mod-
ified one as G1. Somewhat similarly to the first step in the proof of Theo-
rem 9, a reduction Bpprf can bound the introduced difference as |Pr [G0(A) ] −
Pr [G1(A) ] | = Advfpr-ro$

PPRF (Bpprf). Here, Bpprf uses its challenge oracle Ro$-Eval
to request AEAD keys upon wrapping and unwrapping, and directly relays New
and Punc query from A to its own corresponding oracles. When A halts, Bpprf

checks and outputs 1 iff A produced a valid forgery; this yields the first bound.
The second part of the proof now leverages the independent random AEAD

keys to reduce a forgery of A in G1 to an AEAD multi-key integrity forgery
via the following adversary Baead. Adversary Baead simulates G1 using its oracles
Enc and Dec to wrap, resp. unwrap. Each time A makes a wrap or unwrap
query under a new pair (i,T), Baead employs a new key index j in the int-ctxt
game which it tracks via some table T[i,T] = j. To track puncturing on (i,T),
Baead sets T[i,T] = ⊥ and responds with ⊥ to any subsequent Wrap/Unwrap
calls on (i,T). This way, Baead perfectly simulates game G1 for A. Additionally,
Baead wins game Gint-ctxt

AEAD precisely when adversary A submits a valid forgery
in G1, as the latter means A unwraps a not previously output ciphertext under
a non-punctured key (as otherwise that key was set to T[i,T] = ⊥, yielding ⊥
upon unwrapping), which translates to an AEAD forgery in Baead’s Dec call.
This completes the bound, as now Advint-ctxt

AEAD (Baead) ≥ Pr [G1(A) ⇒ true ]. �

4 TLS Ticketing

We now turn our attention to applications and begin with the Transport Layer
Security (TLS) protocol. We show how the ticketing approach taken in its
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resumption handshake protocol can be instantiated with a PKW scheme, increas-
ing forward security of resumed sessions. A TLS connection between clients and
servers begins with the establishment of a shared symmetric key through a so
called handshake. For repeated connections, TLS offers a resumption handshake
mode with better performance, which bootstraps security from a pre-shared key
(PSK) established in a prior full handshake.

In order to enable a resumption handshake, the so-called “resumption master
secret” RMS is derived in a TLS 1.3 handshake and then used to derive (usually
multiple) pre-shared keys for later resumptions. For each such pre-shared key,
the TLS 1.3 server sends the client a unique nonce NT , and both derive the pre-
shared key as PSK ← HKDF.Expand(RMS, "tls13 resumption"‖NT ) using the
HKDF key derivation function [38]. The client will store all PSKs established,
but the server may outsource this storage to the client, e.g., by encrypting PSK
under a long-term symmetric key, the so-called Session Ticket Encryption Key
(STEK), and sending the resulting ciphertext (as the PSK identifier) to the
client. This process of outsourcing the server-side resumption state to the client
is commonly referred to as ticketing [49], and the identifier hence called a ticket.

One issue with TLS ticketing is that the tickets are generally not forward
secret: if an attacker compromises the STEK, it will be able to recover the PSKs
encrypted in prior resumption handshakes, thereby compromising the security
of the concerned sessions. While TLS 1.3 allows for ephemeral Diffie–Hellman
secrets to be mixed into the key derivation, the so-called “early” or “zero round-
trip time” (0-RTT) data that a client can send immediately does not enjoy this
protection, and hence would be exposed if the PSK were to be compromised.

Aviram, Gellert, and Jager (AGJ) [2] recently proposed an approach to
achieve forward-secure session ticketing, giving forward security even for 0-RTT
data, through what they call “session resumption protocols.” In this section we
revisit their approach and show how their session resumption mechanism can
be viewed more simply through the lens of puncturable key wrapping: First of
all, their construction is mimicked by our instantiation PKW[PPRF,AEAD] of a
PKW from a puncturable PRF and an AEAD scheme, when tags are chosen (and
sent as part of the TLS ticket) as counters. More importantly, capturing TLS
ticketing through the PKW scheme PKW[PPRF,AEAD] allows us to seamlessly
switch to a more privacy-friendly variant: by choosing the tags as random val-
ues, we make the entire TLS ticket random-looking. This avoids the potentially
traceable counter element in the AGJ [2] ticketing proposal, thereby addressing
privacy concerns for TLS ticketing, e.g., regarding tracking users on the web by
passive network observers (see [53] for a broader discussion).

When rephrasing the AGJ integration of a session resumption protocol into
the TLS 1.3 resumption handshake [2, Section 4.2, 4.3] as puncturable key
wrapping, we found conceptual and technical issues in their proposed proto-
col, the security model, and the proof. These prevent their proposal from being
(forward-)secure as-is. We rectify this situation through the following corrections:

1. Ticketing the right key. In AGJ, the TLS 1.3 resumption master secret RMS
is encrypted in the session ticket(s). However, RMS is used to derive multiple
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Fig. 6. Forward-secure TLS 1.3 0-RTT pre-shared key (PSK) resumption handshake
using a puncturable key-wrapping scheme PKW (bottom part), based on a session
ticket generated by the server and stored by the client in a prior full handshake (upper

part, in gray). The boxed sections can be read as the PKW-based instantiation of
a session resumption protocol [2], with tag sampling and wrapping corresponding to
ticket generation (TicketGen) and unwrapping and puncturing corresponding to session
resumption (ServerRes); the PKW key sk plays the role of the STEK. (Color figure
online)

pre-shared keys PSK for resumption. Ticketing RMS thus violates the goal
of forward security: an adversary learning RMS from one ticket can use that
value to decrypt prior sessions using a PSK derived from the same RMS.
In our protocol integration (cf. Fig. 6), we instead ticket PSK, not RMS,
following the TLS 1.3 RFC [45, Section 4.6.1].

2. Accurately modeling tickets and corruption. The security model in AGJ does
not reflect the ticketing mechanism of a key exchange protocol in how pre-
shared secrets are sampled, registered with parties, and possibly corrupted.
This leads to their model, strictly speaking, being unable to capture the
ticketing mechanism of TLS resumption. 5 Only allowing server-side corrup-
tions, their model also fails to capture that an adversary might compromise
pre-shared secrets stored by clients. In our security model, we integrate the
protocol’s ticketing mechanism and allow the adversary to corrupt both the
ticketing mechanism keys of servers, as well as stored secrets of clients.

3. Rectifying proof steps. The security proof for the protocol integration of
AGJ [2, Theorem 4] only uses part of the power of their session resumption

5 E.g., when setting up new pre-shared keys, their model takes the identifier psid of
the key as an adversary-provided input, while psid in fact corresponds to the ticket
(honestly) output by the protocol’s ticketing mechanism. This means that their model
is actually unable to capture how tickets are generated by (honest) servers.
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primitive (i.e., a single challenge where their primitive provides many), and
also misses some preliminary steps (esp. the necessity of puncture invariance
and consistency, which our PKW formalism brings to light).
In our proof, we add these missing steps and show that reducing to the weaker
one-time PKW security suffices for our integration.

4. Making underlying assumptions precise. The AGJ proof makes two undefined
assumptions on the underlying session resumption resp. PPRF scheme. For-
mally, this leads to an issue with the security proof of their construction,
which in turn enables a theoretical violation of the formal integrity claims on
their protocol.
Through our formalism for puncturable key wrapping and PPRFs, we make
the necessary assumptions (puncture invariance for PKW, resp. demanding ⊥
output after puncturing for PPRFs) visible and explicit.

Overall, our exposition stays close to the approach by AGJ, focusing on the nec-
essary corrections. We see this not only as an illustration that puncturable key
wrapping is readily applicable to achieve forward-secure 0-RTT session resump-
tion, but also that this conceptual framework helps to avoid errors when integrat-
ing puncturing techniques into more complex applications. For space reasons, we
defer the technical details of our integration of PKW-based ticketing into TLS
as well as the accompanying revised security model, proof, and discussion of
assumptions to the full version [5].

5 Protected File Storage

We now turn our focus to our second application, file storage, and show how
a PKW scheme can be used to provide (forward) security for remotely stored
sensitive data. To this end, we design a protected file storage (PFS) system, which
provides an interface for local encryption, decryption, and secure file shredding to
a privacy-concerned user. The system is inspired by the internals of existing cloud
storage services, but the final primitive is oblivious to the actual relationship
between data owner and storage provider: in a PFS system, all trust lies with
the holder of the secret key. This means that our system can cater both to users
who wish to maintain control over the security of their data while offloading
storage, and to storage providers who perform data encryption as a service.

The PFS interface is aimed at the former case, and hence hides internals
of the system such as the key hierarchy to minimize the risk of involuntary
misuse by an end user. However, it is still designed to support commonplace
attributes of cloud storage systems, such as functionality for key rotation, as
well as additionally providing fine-grained forward security for deleted files. This
makes our approach conformable for use also by cloud service providers who wish
to enhance the security guarantees in their existing systems.

5.1 PFS Syntax

We envision a PFS system to be utilized by a user who holds a set of (plaintext)
files that they wish to protect and outsource the storage of. The user generates
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a local secret key sk via the setup algorithm Setup(). They can then encrypt
and decrypt files via algorithms EncFile and DecFile, where encrypted files are
associated with an identifier id, a header h, and a ciphertext C , of which the user
stores h and C under the “filename” id at the storage service. (The user may
keep a local look-up table mapping human-readable filenames to identifiers id,
or decide to offload this table as yet another protected file to the storage service,
too. In the latter case, the user only needs to store the identifier of the mapping
file.) To shred a file, it suffices to locally run the algorithm ShredFile(sk, id) on
the file identifier to be shredded. This will ensure that the corresponding file is
irrecoverable (forward secure) from this point on; remote deletion at the service
provider is not required to ensure its forward security. Finally, a user may rotate
its secret key (e.g., for regulatory purposes or to refresh the key once its usage
limit has been reached), which is done through calling a RotKey algorithm, taking
the current list of file identifiers and headers as input and updating them with
new headers to be replaced at the storage provider.

Definition 11 (PFS scheme). A protected file storage scheme PFS = (Setup,
EncFile,DecFile,ShredFile,RotKey) is a 5-tuple of algorithms with four associated
sets; the secret key space SK, the file space F , the file identifier space I, and the
header space H. Associated to the PFS is a ciphertext-length function cl : N → N.

– Via sk ←$ Setup(), the probabilistic setup algorithm Setup, taking no input,
produces a secret key sk ∈ SK.

– Via (id,h,C)/⊥ ←$ EncFile(sk,F), the randomized file encryption algorithm
EncFile on input the secret key sk ∈ SK and a plaintext file F ∈ F produces
a file identifier id ∈ I, a header h ∈ H and a ciphertext C ∈ {0, 1}cl(|F|) or,
to indicate failure, ⊥.

– Via F/⊥ ← DecFile(sk, id,h,C), the deterministic file decryption algorithm
DecFile on input the key sk ∈ SK, a file header h ∈ H, and a ciphertext
C ∈ {0, 1}∗ returns a file plaintext F ∈ F or, to indicate failure, ⊥.

– Via sk′ ← ShredFile(sk, id), the deterministic file shredding algorithm
ShredFile on input the secret key sk ∈ SK and a file identifier id ∈ I returns
the updated secret key sk′ ∈ SK.

– Via (sk′, (h′
1, . . . ,h

′
�))/(sk′,⊥) ←$ RotKey(sk, ((id1,h1), . . . , (id�,h�))), the

randomized key-rotation algorithm RotKey on input the secret key sk ∈ SK
and a list of file identifier-header pairs (id1,h1), . . . , (id�,h�) ∈ (I × H)∗

returns the potentially updated secret key sk′ ∈ SK and a sequence of updated
headers (h′

1, . . . ,h
′
�) ∈ H∗ or, to indicate failure, ⊥.

5.2 Confidentiality and Integrity of PFS

A protected file storage scheme should provide confidentiality of the stored files,
including their metadata (file identifiers and headers), as well as forward secu-
rity when files have been shredded. Additionally, key rotation should allow the
scheme to recover from corruption, ensuring security of newly encrypted files.

We capture this form of confidentiality through the notion of forward indis-
tinguishability from random bits under real and chosen-plaintext attack (find$-
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Fig. 7. Confidentiality and forward security (find$-rcpa) game for a protected file stor-
age scheme PFS. Grey code prevents trivial attacks. Lists R and Q keep track of file
identifiers and headers currently in the system for the sake of key rotation. (Color figure
online)

rcpa). In the find$-rcpa security game, given in Fig. 7, the adversary is asked
to distinguish real from random outputs of a challenge real or $ encryption
oracle Ro$-Enc. We emphasize that indistinguishability here encompasses both
the file ciphertext and metadata (i.e., identifier and header), encoding a strong
form of privacy. The game further allows the adversary to shred files (via the ora-
cle Shred) and to rotate keys (via RotKey), leading to an update of the headers
of all non-shredded files. We encode forward security via a Corr oracle, through
which the adversary may ultimately learn the user’s current secret key, provided
that it shredded all challenge files (to prevent trivial distinguishing attacks) and
does not make further challenge queries on that key. Furthermore, we allow new
challenge queries after a successful key rotation, which captures security being
regained after key rotation in which the adversary remained passive, a form
of post-compromise security [21]. In order to capture potential leakage from
unshredded files in the system which a real-world adversary would gain access
to when corrupting a user’s secret key, the game additionally includes a real
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Fig. 8. Integrity of ciphertexts game for a protected file storage scheme PFS. Grey
code prevents trivial attacks. (Color figure online)

encryption oracle Enc, which provides the adversary with honest encryptions of
plaintexts of its choice that do not need to be shredded prior to corruption.

Definition 12 (PFS confidentiality (find$-rcpa)). Let PFS be a protected
file storage scheme and Gfind$-rcpa

PFS be the game defined in Fig. 7. We define
the advantage of an adversary A against the find$-rcpa security of PFS as
Advfind$-rcpa

PFS (A) = 2
∣
∣
∣Pr

[

Gfind$-rcpa
PFS (A) ⇒ true

]

− 1
2

∣
∣
∣.

We also define integrity (of ciphertexts) for a PFS scheme, via the game
in Fig. 8. The adversary’s goal here is to come up with a file tuple (id,h,C)
that was not output by the encryption oracle Enc, or has been shredded (using
oracle Shred), yet successfully decrypts (in the decryption oracle Dec). The
game further provides access to a key rotation oracle RotKey; in contrast to the
find$-rcpa game, this is strengthened to take adversarially-chosen file identifiers
and headers as input. This captures that a malicious storage service might inject
forged identifiers and headers into a user’s storage or omit files from key rotation.

Definition 13 (PFS integrity (int-ctxt)). Let PFS be a protected file storage
scheme and Gint-ctxt

PFS be the game defined in Fig. 8. We define the advantage
of an adversary A against the int-ctxt security of PFS as Advint-ctxt

PFS (A) =
Pr

[

Gint-ctxt
PFS (A) ⇒ true

]

.

5.3 Instantiating PFS from PKW and AEAD

We now construct a generic PFS scheme PFS[PKW,AEAD] from a puncturable
key-wrapping scheme PKW, which will handle the key management, and an
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authenticated encryption scheme with associated data AEAD, handling the
actual file encryption. The construction, formalized in Fig. 9, works as follows.

Setup generates a PKW key sk, which—for reference to cloud storage and
its key-wrapping functionality—we refer to as the key encryption key
(KEK).

EncFile first samples an AEAD “data encryption key” (DEK) and a file identi-
fier id at random, and wraps DEK under the KEK into a file header h,
using id as tag. 6 It then AEAD-encrypts the file plaintext under DEK
and a random 7 nonce N into a ciphertext C ; N‖C constitutes the PFS
file ciphertext.

DecFile inverts file encryption by first unwrapping the DEK from the header
and then using it to decrypt the file ciphertext.

ShredFile punctures the KEK sk on a file identifier id, using the PKW punc-
turing algorithm. This effectively prevents future unwrapping of the
DEK wrapped with tag id, and hence file decryptions of files with this
identifier.

RotKey first unwraps the DEKs in all headers it is handed, then samples a
fresh KEK to re-wrap them. The PKW tags are re-used in this process,
ensuring that encrypted files keep their identifiers across key rotations.

For PFS[PKW,AEAD], we establish confidentiality in Theorems 14 and 15
(below) and integrity (in the full version [5]). Notably, our two confidentiality
results follow different paths: Theorem 14 employs weak one-time (find$-1cpa)
PKW security in a hybrid together with puncture invariance and consistency.
Theorem 15 in contrast shows our construction achieves the same goal in a tight
manner if the underlying PKW scheme meets the stronger find$-rcpa notion.
While the latter notion is currently only known to be achievable from strong
(fpr-rro$) PPRF security, the route of Theorem 15 may still be interesting as it
does not require puncture invariance and consistency, properties which we expect
schemes with non-perfect correctness (e.g., employing Bloom filters), would not
achieve. We only give one proof sketch here and provide the full proofs in [5].

Theorem 14 (PFS[PKW,AEAD] is find$-rcpa secure, via PKW find$-1cpa
). Let PFS[PKW,AEAD] be the PFS construction in Fig. 9 with file identifier
space I = {0, 1}t. If PKW is puncture invariant and consistent (Definitions 5
and 6), then for every adversary A against the find$-rcpa security (Defini-
tion 12) of PFS[PKW,AEAD] making at most qro$, qe, resp. m − 1 queries in
total to its oracles Ro$-Enc, Enc, and RotKey, and at most qs queries to ora-
cle Shred between each query to the key rotation oracle RotKey, there exists
adversaries Bpkw and Baead running in approximately the same time as A such

6 Our construction leaves the PKW header empty. In practice, this field may be used
to authenticate control data of the DEK, such as expiration date or permitted usage.

7 Our construction only uses a single AEAD nonce N per any one data encryption
key DEK, which would allow using a fixed nonce. We still sample a random nonce
to enable file updates/re-encryption as a potential extension to our construction.
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Fig. 9. Construction of a protected file storage scheme PFS[PKW,AEAD] from a punc-
turable key-wrapping scheme PKW and an AEAD scheme AEAD. The PKW scheme
has wrap-key space {0, 1}k and tag space {0, 1}t. The AEAD scheme has key space
{0, 1}k and nonce space {0, 1}n. Hence, for the resulting PFS scheme, I = {0, 1}t,
H = {0, 1}PKW.cl(k), and PFS.cl(|F|) = n + AEAD.cl(|F|).

that Advfind$-rcpa
PFS[PKW,AEAD](A) ≤ 2qro$

(
(2qs+qe+qro$−1)

2t +m ·Advfind$-1cpa
PKW (Bpkw)+m ·

Advind$-cpa
AEAD (Baead)

)

. Adversary Bpkw makes at most m queries to oracle New-
Ro$-Wrap. Adversary Baead makes one query each to its oracles New and Ro$.

Proof idea. The proof proceeds by a series of six game hops, starting with game
G0 = Gfind$-rcpa

PFS[PKW,AEAD]. Let Advi(A) := 2
∣
∣Pr [Gi(A) ] − 1

2

∣
∣ for i ∈ {0, . . . , 6}. By

key phase we denote the period between two consecutive key rotation queries.
G0 → G1 : We begin by excluding, via a bad event [8], that the (real- or
ideal-world) challenge file identifier coincides with one already shredded in the
current key phase, since the output of wrapping with such an identifier as tag
is undefined and hence possibly distinguishable from the ideal-world behavior.
The probability of this happening is upper-bounded by 2qro$ · qs

2t .
G1 → G2 : We reduce the qro$ Ro$-Enc challenge queries to a single one via a
hybrid argument, yielding an adversary A′ making a single query to Ro$-Enc
and at most qe +qro$ −1 queries to Enc, such that Adv1(A) = qro$ ·Adv2(A′).
G2 → G3 : Next, we exclude that PKW tags used for the (at most qe +qro$ −1)
real encryption queries prior to the challenge query collide with the (single)
challenge tag, a bad event occurring with probability at most qe+qro$−1

2t .
G3 → G4 : The challenger now guesses in which of the at most m key phases the
challenge encryption occurs; silencing the output otherwise loses a factor of m.
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G4 → G5 : We can now apply the find$-1cpa security of PKW through a reduc-
tion Bpkw to replace the header in the challenge encryption by a random string.
This step requires PKW’s puncture invariance and consistency to reorder the
challenge PKW wrap in the reduction; the latter makes at most m queries to
oracle New-Ro$-Wrap and yields |Pr [G4 ] − Pr [G5 ]| ≤ Advfind$-1cpa

PKW (Bpkw).

G5 → G6 : Finally, we replace the challenge file ciphertext with a random string
via a reduction Baead to the AEAD scheme’s ind$-cpa security, which yields
|Pr [G5 ] − Pr [G6 ]| ≤ Advind$-cpa

AEAD (Baead). After this step, Adv6(A) = 0. �

Theorem 15. (PFS[PKW,AEAD] is find$-rcpa secure, via PKW find$-rcpa
). Let PFS[PKW,AEAD] be the PFS construction in Fig. 9 with file identifier
space I = {0, 1}t. For every adversary A against the find$-rcpa security (Defi-
nition 12) of PFS[PKW,AEAD] making at most qro$, qe, qcorr , resp. qrk queries
in total to its oracles Ro$-Enc, Enc, Corr and RotKey, and at most qs
queries to oracle Shred between each query to oracle RotKey, there exists
adversaries Bpkw and Baead running in approximately the same time as A such

that Advfind$-rcpa
PFS[PKW,AEAD](A) ≤ 2 ·

(
2qro$qs

2t + (qe+qro$)
2

2t+1 + Advfind$-rcpa
PKW (Bpkw) +

Advind$-cpa
AEAD (Baead)

)

. Adversary Bpkw makes at most qrk + 1, qro$(qrk + 1),
qe(qrk +1), qcorr and qrk ·qs queries to oracles New, Ro$-Wrap, Wrap, Corr
and Punc, respectively. Adversary Baead makes at most qro$ queries each to its
oracles New and Ro$.

6 Discussion and Future Work

Our approach to PKW integrates a flexible tag-based approach [31] with classical
key wrapping [47]. We build PKW generically from PPRF and AEAD, focus-
ing on applications which require fine-grained forward security. For applications
where batch puncturing might be useful, deploying nonce-misuse resistant AEAD
would allow tags to be reused, achieving a stronger version of our main find$-cpa
security notion. Interestingly, proving the (even stronger) find$-rcpa security of
such an instantiation runs into a key commitment problem; whether resolving
this needs idealized models (cf. [35]) or can be done in the standard model is an
interesting open problem.

Our PKWs and the PPRFs they are built from are not private [11]; we could
potentially obtain improved privacy after client compromise for our PFS system
if they were, cf. [54]. Finding practically efficient private PPRFs and building
private PKW schemes from them is an open problem whose solution would have
immediate applications.

Our work on TLS session resumption assumes the server’s key is held and
operated on by a single server. Yet distributed server environments are common
in TLS deployments, to reduce latency and improve scalability. It would be useful
to extend our work to this setting. The challenge is to maintain appropriate
synchronization amongst the punctured keys held by the servers.
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The applications we treat in this work are a sample from the set of possible
use-cases for PKW. They already demonstrate that it is a useful abstraction.
Examining further potential applications where puncturable key wrapping can
be integrated, such as in symmetric key exchange [15] and DUKPT [18], would
be interesting future work.
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1 Introduction

Block ciphers are usually considered to be pseudorandom permutations (PRPs)
from a cryptographic perspective. That means someone cannot distinguish a
secure block cipher from a random permutation before performing a certain num-
ber of encryption and decryption queries in a black-box manner. On the other
hand, various cryptographic constructions such as the Wegman-Carter message
authentication scheme use a pseudorandom function (PRF) as their building
primitives to achieve beyond-birthday-bound security. When the underlying PRF
is instantiated with a block cipher, the security of the resulting construction (e.g.,
the Wegman-Carter-Shoup construction) might be degraded down to the birth-
day bound [2–4].

In order to address the problem of security degradation, there has been a
significant amount of research on construction of beyond-birthday-bound secure
PRFs from (sufficiently secure) PRPs [1,3,5,9,14,16,19,20,23,30,31]. Among
such Luby-Rackoff backward constructions, two constructions are well-known
and have been comprehensively studied: summing two random permutations
and truncating partial bits of the output from a random permutation.

Sum of Random Permutations. Given two n-bit (keyed) PRPs P1 and P2,
their sum, denoted SoP, maps x ∈ {0, 1}n to

SoP[P1,P2](x)
def= P1(x)⊕P2(x).

This construction was first introduced by Bellare et al. [3], and its security has
been proved up to 22n/3 queries by Lucks [24]. A series of works followed [11,
27,30], culminating with the proof by Dai et al. [14] that the sum of two n-bit
random permutations is (fully) secure up to O(2n) queries.

Sum of Three or More Random Permutations. SoP[k] is a generalization
of SoP. With k random permutations, SoP[k] returns its output by summing
outputs of k random permutations. Lucks [24] showed that SoP[k] is secure up
to O(2kn/(k+1)) queries, and Mennink and Preneel [27] showed that SoP[k] is
not weaker than SoP. Since SoP is fully secure in terms of indistinguishability,
this problem seemed to be settled. However, a single permutation variant of
SoP[3] with domain separation, originally dubbed XORP[3], but denoted SoP3-1
throughout this paper, was revisited by Bhattacharya and Nandi [6], where they
proved its n-bit security in the multi-user setting with O(2n) users.

Truncated Random Permutations. Let n and m be positive integers such
that m < n. The TRP construction is defined as

TRP[P]
def= Trm(P(·)),

where P is an n-bit permutation (modeled as a random secret permutation) and

Trm : {0, 1}n −→ {0, 1}m

x �−→ xL,
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when x ∈ {0, 1}n is written as xL ‖ xR for xL ∈ {0, 1}m and xR ∈ {0, 1}n−m.
Truncating a random permutation was first considered by Hall et al. [20] and
proved secure up to O(2(n+m)/2) adversarial queries [16]. Besides, the authors
realized that their security bound follows from the result of Stam [32] which was
already published in 1978. This bound turns out to be tight as they also present
matching attacks. Mennink [25] generalized truncation functions used in TRP
and showed that the security of such constructions could not exceed that of the
original TRP.

Multi-User Security. In the real world, multiple users use the same crypto-
graphic scheme with independent keys. Even if a cryptographic scheme is proved
to be secure in the single-user setting, it does not generally guarantee its multi-
user security, where an adversary access multiple instances, each of which uses
a distinct key. Multi-user security of symmetric-key constructions was firstly
considered by Mouha et al. [28], by proving the multi-user security of the Even-
Mansour cipher. Since then, various constructions have been analyzed in the
multi-user setting [7,21,22,33].

1.1 Related Work

There have been some other approaches to building a PRF on top of PRPs. In
this section, P1 and P2 are independent n-bit permutations.

Encrypted Davis-Meyer. Cogliati and Seurin [12] introduced a PRF con-
struction, dubbed Encrypted Davis-Meyer (EDM), defined as

EDM[P1,P2](x)
def= P2(P1(x)⊕ x).

They proved PRF-security of EDM up to O
(
22n/3

)
queries. Later, Dai et al. [14]

improved this bound up to O
(
23n/4

)
via the chi-squared method. Mennink and

Neves [26] introduced a dual construction of EDM, dubbed Encrypted Davis-
Meyer Dual (EDMD), defined as

EDMD[P1,P2](x)
def= P2(P1(x))⊕P1(x).

They claimed both EDM and EDMD are secure up to (almost) 2n queries. How-
ever, the proof depends on Patarin’s Mirror theory, which has not been fully
verified. Cogliati and Seurin [13] proved that the single permutation variant of
EDM is secure up to 22n/3 queries.

Summation-Truncation Hybrid. Gunsing and Mennink [19] proposed the
so-called Summation Truncation Hybrid (STH) construction. The idea of this
construction is concatenating outputs of two independent TRPs and sum of
discarded bits from those TRPs. They proved that STH is asymptotically as
secure as TRP, which implies that the use of discarded bits does not degrade the
security.
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Sum of Even-Mansour. Sum of Even-Mansour (SoEM) [8] is a PRF built from
public permutations. When P1 and P2 are public permutations, the construction
is defined as

SoEM[P1,P2, k1, k2](x)
def= P1(x⊕ k1)⊕ k1 ⊕P2(x⊕ k2)⊕ k2,

where k1 and k2 are secret keys. The authors proved that SoEM with independent
permutations and keys achieves 2n/3-bit security, which is tight. They also pro-
posed another PRF construction, dubbed SoKAC, however, Nandi [29] pointed
out a flaw from the security proof of SoKAC and this construction is disclaimed.

1.2 Our Contribution

In this paper, we propose new Luby-Rackoff backward constructions: SaT1 and
SaT2. Let P, P1 and P2 be n-bit permutations. For a positive integer m such
that m < n, SaT1 and SaT2 are defined as follows (see Fig. 1).

SaT1[P] : {0, 1}n−1 −→ {0, 1}m

x �−→ Trm(P(0 ‖ x)⊕P(1 ‖ x)),
SaT2[P1,P2] : {0, 1}n −→ {0, 1}m

x �−→ Trm(P1(x)⊕P2(x)).

We also propose a variant of SoP[3] using three independent permutations,
dubbed SoP3-2. For n-bit permutations P, P1, P2 and P3, SoP3-1 and SoP3-2
are defined as follows (see Fig. 2).

SoP3-1[P] : {0, 1}n−2 −→ {0, 1}n

x �−→ P(00 ‖ x)⊕P(01 ‖ x)⊕P(10 ‖ x),
SoP3-2[P1,P2,P3] : {0, 1}n −→ {0, 1}n

x �−→ P1(x)⊕P2(x)⊕P3(x).

The multi-user security of SaT1, SaT2, and SoP3-2 is summarized in Table 1.
Note that the single-user security bound of SaT1 and SaT2 can be obtained
from our bound by setting μ = 1, while the generic multi-user bound is obtained
by multiplying μ to the single-user bound. Our security bound is proportional
to μ1/2, which is better than the one from the hybrid argument.

SaT1 and SaT2 can be regarded as the sum of two TRPs. Also, SaT2 (resp.
SaT1) can be obtained by truncating SoP (resp. SoP based on a single permu-
tation with domain separation). If we apply our proof technique to TRP, the
security bound would be

O

(√
μqmax

2n−m
2

)
.

We omit the proof, but proving the above bound would be straightforward. TRP
cannot achieve full security with respect to the permutation size in the multi-
user setting. For m = n/2 and μ = O(2n/2), TRP is secure up to O(2n/2) queries
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Fig. 1. SaT1 and SaT2 constructions

Fig. 2. SoP3-1 and SoP3-2 constructions

Table 1. Multi-user security and efficiency of SaT and SoP[3] constructions. Constants
are ignored in the security bounds. μ is the number of users and qmax is the maximum
number of queries per user. Rate is the number of output bits per permutation call.

Construction Security bound Rate Number of keys Reference

SaT1
√

μqmax/2n−0.5m m/2 1 Ours
SaT2

√
μq1.5

max/22n−0.5m m/2 2 Ours
SoP3-1

√
μqmax/2n n/3 1 [6]

SoP3-2
√

μq2
max/22.5n n/3 3 Ours



Multi-user Security of the Sum of Truncated Random Permutations 687

for each user, while SaT1 and SaT2 are secure up to O(2n) queries for each user.
Compared to SoP3-1, SaT1 and SaT2 can be made more secure at the cost of a
lower rate, or conversely, can be made more efficient according to the acceptable
level of security or the number of users. If μ � 2n/3, SaT1 and SaT2 can allow
O(2n) queries per user and the rate is higher than n/3 (the rate of SoP3-1) by
setting m = n − log2 μ.

As a concrete example, when n = 128, m = 64 and μ = 264, both SaT1
and SaT2 are optimally secure, i.e., (128 − ε)-bit secure for all μ = 264 users,
where ε is a small constant from our security bounds. If more output bits are
needed, one can truncate only 16 bits (with m = 112), in which case SaT1 enjoys
80-bit security, and SaT2 is even better, enjoying 112-bit security. Hence, SaT2
outputs 112-bit blocks with 112-bit security, while SoP3-1 outputs 128-bit blocks
with 128-bit security for 264 users, at the cost of two primitive calls and three
primitive calls, respectively.

When μ 	 O(2n−m), we note that SaT2 can accept significantly more queries
than SaT1. We also see our security bound of SoP3-2 is better than SoP3-1, while
the tightness of these security bounds is still open.

Proof Technique. Compared to SoP, it is not straightforward to compute the
expectation of the χ2-divergence for truncated values. We addressed this issue by
modifying the domain over which the expectation is taken. Moreover, we had to
precisely compute the expectation rather than loosely upper bounding it, which
was possible by using more involved counting - we take into account almost all
the terms appearing in our computation, and make them cancel out each other.

Application. The key-generation algorithm in AES-GCM-SIV [7,17,18] can be
replaced by SaT1 or SaT2. GCM-SIV and other authenticated encryption schemes
such as CWC+ [15] and SCM [10] use synthetic IVs derived from secure PRFs. We
expect that those constructions would perform better in the multi-user setting
when combined with SaT1 or SaT2, while proving their overall security would
be an independent topic of interest.

2 Preliminaries

Notation. Throughout this paper, we fix positive integers n, m, and μ such that
m < n to denote the block size, the number of output bits (after truncation), and
number of users, respectively. We denote 0m (i.e., m-bit string of all zeros) by
0. Given a non-empty finite set X , x ←$ X denotes that x is chosen uniformly
at random from X . |X | means the number of elements in X . The set of all
permutations of {0, 1}n is simply denoted Perm(n). The set of all functions with
domain {0, 1}n and codomain {0, 1}m is simply denoted by Func(n,m). For a
keyed function F : K × X → Y with key space K and non-empty sets X and Y,
we will denote F (K, ·) by FK(·) for K ∈ K. A truncating function is defined as
follows:

Trm : {0, 1}n −→ {0, 1}m

x �−→ xL,
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where x ∈ {0, 1}n is written as xL ‖ xR for xL ∈ {0, 1}m and xR ∈ {0, 1}n−m.

Multi-user Pseudorandom Function. Let C : K × {0, 1}n → {0, 1}m be
a keyed function with key space K. We will consider an information theoretic
distinguisher A that makes oracle queries to C, and returns a single bit. The
advantage of A in breaking the mu-prf security of C, i.e., in distinguishing
C(K1, ·), . . . ,C(Kμ, ·) where K1, . . . , Kμ ←$ K from uniformly chosen functions
F1, . . . ,Fμ ←$ Func(n,m), is defined as

Advmu-prf
C (A) =

∣
∣
∣Pr

[
K1, . . . , Kμ ←$ K : ACK1 (·),...,CKµ (·) = 1

]

− Pr
[
F1, . . . ,Fμ ←$ Func(n,m) : AF1(·),...,Fµ(·) = 1

]∣∣
∣.

We define Advmu-prf
C (μ, qmax, t) as the maximum of Advmu-prf

C (A) over all the
distinguishers against C for μ users making at most qmax queries to each user
and running in time at most t. When we consider information theoretic security,
we will drop the parameter t.

Multi-user Pseudorandom Permutation. Let E : K × {0, 1}n → {0, 1}n

be an n-bit block cipher with key space K. We will consider an information
theoretic distinguisher A that makes oracle queries to E, and returns a single
bit. The advantage of A in breaking the mu-prp security of E is defined as

Advmu-prp
E (A) =

∣
∣
∣Pr

[
K1, . . . , Kμ ←$ K : AEK1 (·),...,EKµ (·) = 1

]

− Pr
[
P1, . . . ,Pμ ←$ Perm(n) : AP1(·),...,Pµ(·) = 1

]∣∣
∣.

Similarly to the mu-prf security, we define Advmu-prp
E (μ, qmax, t).

The Chi-squared Method. We give here all the necessary background on the
chi-squared method [14] that we will use throughout this paper.

We fix a set of random systems, a deterministic distinguisher A that makes
q oracle queries to one of the random systems, and a set Ω that contains all
possible answers for oracle queries to the random systems. For a random system
S and i ∈ {1, . . . , q}, let ZS,i be the random variable over Ω that follows the
distribution of the i-th answer obtained by A interacting with S. Let

Zi
S

def= (ZS,1, . . . , ZS,i),

and let
pi

S(z)
def= Pr

[
Zi

S = z
]

for z ∈ Ωi. For i ≤ q and z = (z1, . . . , zi−1) ∈ Ωi−1 such that pi−1
S (z) > 0, the

probability distribution of ZS,i conditioned on Zi−1
S = z will be denoted pzS,i(·),

namely for z ∈ Ω,

pzS,i(z)
def= Pr

[
ZS,i = z | Zi−1

S = z
]
.
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For two random systems S0 and S1, and for i < q and z = (z1, . . . , zi−1) ∈
Ωi−1 such that pi−1

S0
(z), pi−1

S1
(z) > 0, the χ2-divergence for pzS0,i(·) and pzS1,i(·)

is defined as follows.

χ2
(
pzS1,i(·), pzS0,i(·)

) def=
∑

z∈Ω such that
pzS0,i(z)>0

(
pzS1,i(z) − pzS0,i(z)

)2

pzS0,i(z)
.

We will simply write χ2 (z) = χ2
(
pzS1,i(·), pzS0,i(·)

)
when the random systems

are clear from the context. If the support of pi−1
S1

(·) is contained in the support
of pi−1

S0
(·), then we can view χ2

(
pzS1,i(·), pzS0,i(·)

)
as a random variable, denoted

χ2
(
Zi−1

S1

)
, where z follows the distribution of Zi−1

S1
.

Then A’s distinguishing advantage is upper bounded by the total variation
distance of pq

S0
(·) and pq

S1
(·), denoted ‖pq

S0
(·) − pq

S1
(·)‖, and we also have

‖pq
S0

(·) − pq
S1

(·)‖ ≤
(

1
2

q∑

i=1

Ex
[
χ2

(
Zi−1

S1

)]
) 1

2

. (1)

See [14] for the proof of (1).

3 Summation-and-Truncation

In this section, we propose new PRF constructions based on PRPs. We will prove
that these constructions are fully secure (secure after almost 2n queries made
for each user) with 2n−m users. Let

SaT1[P] : {0, 1}n−1 −→ {0, 1}m

x �−→ Trm(P(0 ‖ x)⊕P(1 ‖ x))

where Trm is defined in Sect. 2 and P is an n-bit random permutation from
Perm(n). The mu-prf security of SaT1 is represented by the following theorem.

Theorem 1. Let n, m, μ, and qmax be positive integers such that m < n and
qmax ≤ 2n−3. Then one has

Advmu-prf
SaT1 (μ, qmax) ≤

(
20μq3

max

24n−m
+

21μqmax

22n−m

) 1
2

.

The proof is given in Sect. 4.

Remark 1. When m = n, it is well known that the mu-prf advantage of SaT1
(equivalently, SoP) is about μqmax/2n since SaT1 never outputs 0 which is dis-
tinguished from a random function.
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We also define SaT2 which is a variant of SaT1 on two independent random
permutations. Let

SaT2[P1,P2] : {0, 1}n −→ {0, 1}m

x �−→ Trm(P1(x)⊕P2(x))

where Trm is defined in Sect. 2 and P1 and P2 are two independent random
permutations from Perm(n). The mu-prf security of SaT2 is represented by the
following theorem.

Theorem 2. Let n, m, μ, and qmax be positive integers such that m ≤ n and
qmax ≤ 2n−2. Then one has

Advmu-prf
SaT2 (μ, qmax) ≤

(
2μq3

max

24n−m

) 1
2

.

The proof is given in Sect. 5.
One can consider SaT1 and SaT2 based on an n-bit block cipher E : K ×

{0, 1}n → {0, 1}n with key space K, which is defined as

– For x ∈ {0, 1}n−1 and K ∈ K,

SaT1[E](K,x) = Trm(EK(0 ‖ x)⊕EK(1 ‖ x));

– For x ∈ {0, 1}n and K1,K2 ∈ K,

SaT2[E](K1,K2, x) = Trm(EK1(x)⊕EK2(x)).

Up to the mu-prp security of E, one can derive the multi-user security of SaT1[E]
and SaT2[E].

Advmu-prf
SaT1[E](μ, qmax, t) ≤ Advmu-prp

E (μ, 2qmax, t
′) +

(
20μq3

max

24n−m
+

21μqmax

22n−m

) 1
2

,

Advmu-prf
SaT2[E](μ, qmax, t) ≤ Advmu-prp

E (2μ, qmax, t
′) +

(
2μq3

max

24n−m

) 1
2

where t′ ≈ t + 2μqmax.

4 Proof of Theorem 1

Before proving the security of SaT1, we define random experiments to make it
possible to prove it with the chi-squared method in Algorithm 1.
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Algorithm 1. Experiments for SaT1
Experiment B0

1: for j ← 1 to μ do
2: for i ← 1 to qmax do
3: yj

i ←$ {0, 1}m

4: Zj ← (yj
1, · · · , yj

qmax)

5: return (Z1, . . . ,Zµ)

Experiment B1

1: for j ← 1 to μ do
2: Ru ← {0, 1}n

3: for i ← 1 to qmax do
4: uj

2i−1 ←$ Ru, Ru ← Ru \ {uj
2i−1}

5: uj
2i ←$ Ru, Ru ← Ru \ {uj

2i}
6: rj2i−1 ← Trm(uj

2i−1), rj2i ← Trm(uj
2i)

7: yj
i ← rj2i−1 ⊕ rj2i

8: Zj ← (yj
1, · · · , yj

qmax)

9: return (Z1, . . . ,Zµ)

Experiment C0

1: for j ← 1 to μ do
2: Ru ← {0, 1}n

3: for i ← 1 to qmax do
4: yj

i ←$ {0, 1}m

5: T j
i (yj

i ) ← {(u, v) : u, v ∈ Ru, u �= v,Trm(u ⊕ v) = yj
i }

6: if
∣
∣T j

i (yj
i )

∣
∣ > 0 then

7: (uj
2i−1, u

j
2i) ←$ T j

i (yj
i )

8: else
9: (uj

2i−1, u
j
2i) ← (⊥, ⊥)

10: Ru ← Ru \ {uj
2i−1, u

j
2i}

11: rj2i−1 ← Trm(uj
2i−1), rj2i ← Trm(uj

2i)

12: zj
i ← (rj2i−1, y

j
i )

13: Zj ← (zj
1, · · · , zj

qmax)

14: return (Z1, . . . ,Zµ)

Experiment C1

1: for j ← 1 to μ do
2: Ru ← {0, 1}n

3: for i ← 1 to qmax do
4: uj

2i−1 ←$ Ru, Ru ← Ru \ {uj
2i−1}

5: uj
2i ←$ Ru, Ru ← Ru \ {uj

2i}
6: rj2i−1 ← Trm(uj

2i−1), rj2i ← Trm(uj
2i)

7: yj
i ← rj2i−1 ⊕ rj2i

8: zj
i ← (rj2i−1, y

j
i )

9: Zj ← (zj
1, · · · , zj

qmax)

10: return (Z1, · · · ,Zµ)
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The main purpose of the algorithm is to transform the distinguishing game
between S0 and S1 into the game between C0 and C1 (see equation (2)) in order to
evaluate the distinguishing advantage using the chi-squared method. The game
between C0 and C1 has two major differences from the game between S0 and S1:

1. C0 and C1 take no input, which can be seen as a reduction from an adaptive
adversary to a non-adaptive adversary and this reduction makes it easy to
apply the chi-squared method.

2. The outputs of C0 and C1 have additional information, namely rj
2i−1.

Note that B0 and B1 are intermediate games that yield equation (2).
For Experiment C0 in Algorithm 1, the following lemma holds.

Lemma 1. For any qmax ≤ 2n−3, Experiment C0 in Algorithm 1 never returns
(⊥,⊥).

Proof. We suppose any j ∈ [μ] and omit j for simplicity. If i = 1, it is trivial
that |Ti(yi)| > 0 since |Ti(yi)| = 2n(2n−m − 1) for yi = 0 and |Ti(yi)| = 22n−m

for yi �= 0. For 2 ≤ i ≤ qmax, we have |Ru| = 2n − 2(i − 1) and there-
fore |Ti(yi)| ≥ 22n−m − (4i − 3)2n−m > 0 since i ≤ qmax ≤ 2n−3 by our
assumption. ��

Let S0 be a random oracle with Func(n − 1,m) and S1 be a random oracle
with SaT1. It is obvious that transcripts for S0 (or S1) has same probability
distribution with the output of B0 (or B1). Secondly, statistical distance between
C0 and C1 is larger than statistical distance between B0 and B1 since the outputs
of C0 (or C1) contains the outputs of B0 (or B1), respectively. The two facts make
following inequality to be held.

‖pq
S0

(·) − pq
S1

(·)‖ = ‖pq
B0

(·) − pq
B1

(·)‖ ≤ ‖pq
C0

(·) − pq
C1

(·)‖. (2)

By (2) and Lemma 2, we can prove Theorem 1.

Lemma 2. For any qmax ≤ 2n−3, let C0 and C1 be the experiments described in
Algorithm 1. Then we have

‖pq
C0

(·) − pq
C1

(·)‖ ≤
(

20μq3
max

24n−m
+

21μqmax

22n−m

) 1
2

.

4.1 Proof of Lemma 2

Let q = μqmax. For i ∈ [q] where i = (j − 1)qmax + k such that j ∈ [μ] and
k ∈ [qmax], the response of the i-th query is seen as zi = zj

k. Then, we can
easily check that the support of pi−1

C1
(·) is contained in the support of pi−1

C0
(·) for

i = 1, . . . , q, allowing us to use the chi-squared method.
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Let Ω = {0, 1}m × {0, 1}m. For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1 such
pi−1

C1
(z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzC0,i(z)>0

(
pzC1,i(z) − pzC0,i(z)

)2

pzC0,i(z)

=
∑

z∈Ω such that
pzC0,i(z)>0

pzC0,i(z)

(

1 −
pzC1,i(z)
pzC0,i(z)

)2

Firstly, note that z = (z1, . . . , zi−1) and zl = (r2l−1, yl) for l = 1, . . . , i − 1.
Let Ω̂ = {0, 1}n × {0, 1}n, hl = (u2l−1, y

′
l) ∈ Ω̂ and h = (h1, . . . , hi−1) for

l = 1, . . . , i − 1. Note that h includes z. Let HC1,i be the random variable over
Ω̂ that follows the distribution of the internal values (u, y′) in C1 interacting the
i-th query by A. Let

Hi−1
C1

def= (HC1,1, . . . , HC1,i−1)

for h ∈ Ω̂i−1. For a fixed z = ((r1, y1), (r3, y2), . . . , (r2i−3, yi−1)), we denote h � z
if and only if hl = (u2l−1, y

′
l) satisfies Trm(u2l−1) = r2l−1 and Trm(y′

l) = yl for
all l = 1, . . . , i − 1, where h = (h1, h2, . . . , hi−1). Then one has

Ex
z

[
χ2(z)

]
=

∑

z∈Ωi−1

pi
C1

(z) · χ2(z)

=
∑

z∈Ωi−1

∑

h∈Ω̂i−1 such
that h�z

pi
C1

(z) · Pr
[
Hi−1

C1
= h | Zi−1

C1
= z

]
· χ2(z)

=
∑

h∈Ω̂i−1

Pr
[
Hi−1

C1
= h

]
· χ2(z)

= Ex
h

[
χ2(z)

]
(3)

where the last expectation is taken over the distribution Hi−1
C1

. Furthermore, let
i = (j − 1)qmax + k such that j ∈ [μ] and k ∈ [qmax]. For α ∈ {0, 1}m, we define
U j

k(α) as the number of elements α in (rj
l )l=1,...,2k−2. In other words,

U j
k(α) =

∣
∣
∣{l ∈ [2k − 2] | α = rj

l }
∣
∣
∣ .

Also, for y ∈ {0, 1}m, let T j
k (y) =

∣
∣
∣T j

k (y)
∣
∣
∣. Note that, for any j′ ∈ [j − 1], zi is

independent with Zj′
. Therefore, we see that, for y = 0,

pzC0,i(r,0) =
(2n−m − U j

k(r))(2n−m − U j
k(r) − 1)

2mT j
k (0)

,

pzC1,i(r,0) =
(2n−m − U j

k(r))(2n−m − U j
k(r) − 1)

(2n − 2k + 2)(2n − 2k + 1)
,
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and otherwise (y �= 0),

pzC0,i(r, y) =
(2n−m − U j

k(r))(2n−m − U j
k(r ⊕ y))

2mT j
k (y)

,

pzC1,i(r, y) =
(2n−m − U j

k(r))(2n−m − U j
k(r ⊕ y))

(2n − 2k + 2)(2n − 2k + 1)
.

For any y ∈ {0, 1}m,

T j
k (y) ≥

∑

α∈{0,1}m

(2n−m − U j
k(α))(2n−m − U j

k(α ⊕ y) − 1)

≥ 22n−m − (4k − 3)2n−m.

Let

Gj
k(y)

def=
(

(2n − 2k + 2)2
2m

− T j
k (y)

)2

.

Then we have,

χ2(z) =
∑

z=(r,y)∈Ω such that
pzC0,i(z)>0 and y �=0

(2n−m − U j
k(r))(2n−m − U j

k(r ⊕ y))

2mT j
k (y)

(

1 − 2mT j
k (y)

(2n − 2k + 2)2

)2

+
∑

z=(r,0)∈Ω such
that pzC0,i(z)>0

(2n−m − U j
k(r))(2n−m − U j

k(r) − 1)

2mT j
k (0)

(

1 − 2mT j
k (0)

(2n − 2k + 2)2

)2

≤
∑

(r,y)∈Ω such
that pzC0,i(r,y)>0

22n−2m
(

(2n − 2k + 2)2 − 2mT j
k (y)

)2

2mT j
k (y) ((2n − 2k + 2)2)

2

≤
∑

y∈{0,1}m

7Gj
k(y)

24n−m
. (4)

since k ≤ qmax ≤ 2n−3. We claim the following lemma.

Lemma 3. For any y �= 0, one has

Ex
h

[
Gj

k(y)
]

≤ 8(k − 1)2

2m
+ 3 · 22n−2m,

Ex
h

[
Gj

k(0)
]

≤ 8(k − 1)2 + 3 · 22n.

The proof of Lemma 3 is deferred to Sect. 7. From (4) and Lemma 3, it follows
that

Ex
h

[
χ2(z)

]
≤ 7

24n−m
Ex
h

⎡

⎣

⎛

⎝
∑

y∈{0,1}m\0
Gj

k(y)

⎞

⎠+ Gj
k(0)

⎤

⎦

≤ 112(k − 1)2

24n−m
+

42
22n−m
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and finally, we have

‖pq
C0

(·) − pq
C1

(·)‖ ≤
(

1
2

q∑

i=1

Ex
[
χ2(z)

]
) 1

2

≤

⎛

⎝1
2

μ∑

j=1

qmax∑

k=1

Ex
[
χ2(z)

]
⎞

⎠

1
2

≤

⎛

⎝1
2

μ∑

j=1

qmax∑

k=1

112(k − 1)2

24n−m
+

42
22n−m

⎞

⎠

1
2

≤
(

20μq3
max

24n−m
+

21μqmax

22n−m

) 1
2

.

5 Proof of Theorem 2

Similarly to Sect. 4, we define random experiments. See Algorithm 2. For Exper-
iment C0 in Algorithm 2, the following lemma holds.

Lemma 4. For any qmax ≤ 2n−2, Experiment C0 in Algorithm 2 never returns
(⊥,⊥).

Proof. We suppose any j ∈ [μ] and omit y for simplicity. If i = 1, it is trivial
that |Ti(yi)| = 22n−m > 0. For 2 ≤ i ≤ qmax, we have

∣
∣RU

∣
∣ =

∣
∣RV

∣
∣ = 2n −(i−1)

and therefore |Ti(yi)| ≥ 22n−m − 2(i − 1)2n−m > 0 since i ≤ qmax ≤ 2n−2 by our
assumption. ��

Let S0 be a random oracle with Func(n,m) and S1 be a random oracle with
SaT2. Similarly to the reasoning of (2), one has

‖pq
S0

(·) − pq
S1

(·)‖ = ‖pq
B0

(·) − pq
B1

(·)‖ ≤ ‖pq
C0

(·) − pq
C1

(·)‖. (5)

By (5) and Lemma 5, we can prove Theorem 2.

Lemma 5. For any qmax ≤ 2n−2, let C0 and C1 be the experiments described in
Algorithm 2. Then we have

‖pq
C0

(·) − pq
C1

(·)‖ ≤
(

2μq3
max

24n−m

) 1
2

.
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Algorithm 2. Experiments for SaT2
Experiment B0

1: for j ← 1 to μ do
2: for i ← 1 to qmax do
3: yj

i ←$ {0, 1}m

4: Zj ← (yj
1, . . . , y

j
qmax)

5: return (Z1, . . . ,Zµ)

Experiment B1

1: for j ← 1 to μ do
2: Ru, Rv ← {0, 1}n

3: for i ← 1 to qmax do
4: uj

i ←$ Ru, Ru ← Ru \ {uj
i}

5: vj
i ←$ Rv, Rv ← Rv \ {vj

i }
6: rji ← Trm(uj

i ), sji ← Trm(vj
i )

7: yj
i ← rji ⊕ sji

8: Zj ← (yj
1, . . . , y

j
qmax)

9: return (Z1, . . . ,Zµ)

Experiment C0

1: for j ← 1 to μ do
2: Ru, Rv ← {0, 1}n

3: for i ← 1 to qmax do
4: yj

i ←$ {0, 1}m

5: T j
i (yj

i ) ← {(u, v) : u ∈ Ru, v ∈ Rv,Trm(u ⊕ v) = yj
i }

6: if
∣
∣T j

i (yj
i )

∣
∣ > 0 then

7: (uj
i , v

j
i ) ←$ T j

i (yj
i )

8: else
9: (uj

i , v
j
i ) ← (⊥, ⊥)

10: Ru ← Ru \ {uj
i}, Rv ← Rv \ {vj

i }
11: rji ← Trm(uj

i ), sji ← Trm(vj
i )

12: zj
i ← (rji , y

j
i )

13: Zj ← (zj
1, . . . , z

j
qmax)

14: return (Z1, . . . ,Zµ)

Experiment C1

1: for j ← 1 to μ do
2: Ru, Rv ← {0, 1}n

3: for i ← 1 to qmax do
4: uj

i ←$ Ru, Ru ← Ru \ {uj
i}

5: vj
i ←$ Rv, Rv ← Rv \ {vj

i }
6: rji ← Trm(uj

i ), sji ← Trm(vj
i )

7: yj
i ← rji ⊕ sji

8: zj
i ← (rji , y

j
i )

9: Zj ← (zj
1, . . . , z

j
qmax)

10: return (Z1, . . . ,Zµ)
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5.1 Proof of Lemma 5

Let q = μqmax. For i ∈ [q], where i = (j − 1)qmax + k such that j ∈ [μ] and
k ∈ [qmax], the response of the i-th query is seen as zi = zj

k. Then, we can easily
check that the support of pi−1

C1
(·) is contained in the support of pi−1

C0
(·) for i =

1, . . . , q, allowing us to use the chi-squared method. Let Ω = {0, 1}m × {0, 1}m.
For fixed i ∈ {1, . . . , q} and z ∈ Ωi−1 such pi−1

C1
(z) > 0, we will compute

χ2(z) =
∑

z∈Ω such that
pzC0,i(z)>0

(
pzC1,i(z) − pzC0,i(z)

)2

pzC0,i(z)

=
∑

z∈Ω such that
pzC0,i(z)>0

pzC0,i(z)

(

1 −
pzC1,i(z)
pzC0,i(z)

)2

Firstly, note that z = (z1, . . . , zi−1) and zl = (rl, yl) for l = 1, . . . , i − 1. Let
Ω̂ = {0, 1}n×{0, 1}n, hl = (ul, y

′
l) ∈ Ω̂ and h = (h1, . . . , hi−1) for l = 1, . . . , i−1.

Let HC1,i be the random variable over Ω̂ that follows the distribution of the
internal values (u, y′) in C1 interacting the i-th query by A. Let

Hi−1
C1

def= (HC1,1, . . . , HC1,i−1)

for h ∈ Ω̂i−1. Similarly to (3), one has

Ex
z

[
χ2(z)

]
= Ex

h

[
χ2(z)

]

where the last expectation is taken over the distribution Hi−1
C1

. Furthermore,
let i = (j − 1)qmax + k such that j ∈ [μ] and k ∈ [qmax]. For α ∈ {0, 1}m,
we define U j

k(α) and V j
k (α) be the number of elements α in (rj

l )l=1,...,k−1 and
(sj

l )l=1,...,k−1, respectively. In other words,

U j
k(α) =

∣
∣
∣{l ∈ [k − 1] | α = rj

l }
∣
∣
∣ ,

V j
k (α) =

∣
∣
∣{l ∈ [k − 1] | α = sj

l }
∣
∣
∣ .

Also, for y ∈ {0, 1}m, let T j
k (y) =

∣
∣
∣T j

k (y)
∣
∣
∣. Note that, for any j′ ∈ [j − 1], zi is

independent with Zj′
. Therefore, we see that

pzC0,i(r, y) =
(2n−m − U j

k(r))(2n−m − V j
k (r ⊕ y))

2mT j
k (y)

,

pzC1,i(r, y) =
(2n−m − U j

k(r))(2n−m − V j
k (r ⊕ y))

(2n − k + 1)2
,
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and

T j
k (y) =

∑

α∈{0,1}m

(2n−m − U j
k(α))(2n−m − V j

k (α ⊕ y))

= 22n−m − 2(k − 1)2n−m +
∑

α∈{0,1}m

U j
k(α)V j

k (α ⊕ y)

≥ 22n−m − 2(k − 1)2n−m.

Therefore,

χ2(z) =
∑

z=(r,y)∈Ω such
that pzC0,i(z)>0

(2n−m − U j
k(r))(2n−m − V j

k (r ⊕ y))

2mT j
k (y)

(

1 − 2mT j
k (y)

(2n − k + 1)2

)2

≤
∑

(r,y)∈Ω such
that pzC0,i(r,y)>0

22n−2m
(
(2n − k + 1)2 − 2mT j

k (y)
)2

2mT j
k (y)(2n − k + 1)4

≤
∑

(r,y)∈Ω such
that pzC0,i(r,y)>0

7
(
(2n − k + 1)2 − 2mT j

k (y)
)2

24n+2m

≤
∑

y∈{0,1}m

7
24n−m

(
(2n − k + 1)2

2m
− T j

k (y)
)2

. (6)

since k ≤ qmax ≤ 2n−2. We claim the following lemma.

Lemma 6. One has

Ex
h

[
T j

k (y)
]

=
(2n − k + 1)2

2m
,

Var
h

[
T j

k (y)
]

≤ (k − 1)2

2m
.

The proof of Lemma 6 is given in the full version. From (6) and Lemma 6, it
follows that

Ex
h

[
χ2(z)

]
≤ Ex

h

⎡

⎣
∑

y∈{0,1}m

7
24n−m

(
(2n − k + 1)2

2m
− T j

k (y)
)2

⎤

⎦

≤ 7
24n−m

∑

y∈{0,1}m

Var
h

[
T j

k (y)
]

≤ 7(k − 1)2

24n−m
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and finally, we have

‖pq
C0

(·) − pq
C1

(·)‖ ≤
(

1
2

q∑

i=1

Ex
[
χ2(z)

]
) 1

2

≤

⎛

⎝1
2

μ∑

j=1

qmax∑

k=1

Ex
[
χ2(z)

]
⎞

⎠

1
2

≤

⎛

⎝1
2

μ∑

j=1

qmax∑

k=1

7(k − 1)2

24n−m

⎞

⎠

1
2

≤
(

2μq3
max

24n−m

) 1
2

.

6 Multi-user PRF Security of SoP3-2

In this section, we prove the security of SoP3-2. Bhattacharya and Nandi [6]
proved mu-prf advantage of SoP3-1 is upper bounded by

20
√

μqmax

2n

for all qmax ≤ 2n/12. However, to the best of our knowledge, the security of
SoP3-2 has not been analyzed. Let

SoP3-2[P1,P2,P3] : {0, 1}n −→ {0, 1}n

x �−→ P1(x)⊕P2(x)⊕P3(x)

where P1, P2 and P3 are three independent random permutations from Perm(n).
The mu-prf security of SoP3-2 is represented by the following theorem.

Theorem 3. Let n, μ, and qmax be positive integers such that qmax ≤ 2n−2.
Then one has

Advmu-prf
SoP3-2(μ, qmax) ≤

(
3μq4

max

25n

) 1
2

.

One can consider SoP3-2 based on an n-bit block cipher E : K × {0, 1}n →
{0, 1}n with key space K, which is defined as

SoP3-2[E](K1,K2,K3, x) = EK1(x)⊕EK2(x)⊕EK3(x).

Up to the mu-prp security of E, one can derive the multi-user security of
SoP3-2[E].

Advmu-prf
SoP3-2[E](μ, qmax, t) ≤ Advmu-prp

E (3μ, qmax, t
′) +

(
3μq4

max

25n

) 1
2

.

where t′ ≈ t + 3μqmax.
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6.1 Proof of Theorem 3

Similarly to Sect. 4, we define random experiments. See Algorithm 3. For Exper-
iment C0 in Algorithm 3, the following lemma holds.

Lemma 7. For any qmax ≤ 2n−2, Experiment C0 in Algorithm 3 never returns
(⊥,⊥,⊥).

Proof. We suppose any j ∈ [μ] and omit y for simplicity. If i = 1, it is trivial that
|Ti(yi)| = 22n > 0. For 2 ≤ i ≤ qmax, we have |RU | = |RV | = |RW | = 2n −(i−1)
and therefore |Ti(yi)| ≥ 22n − 3(i − 1) · 2n > 0 since i ≤ qmax ≤ 2n−2 by our
assumption. ��

Let S0 be a random oracle with Func(n, n) and S1 be a random oracle with
SoP3-2. Similarly to the reasoning of (2), one has

‖pq
S0

(·) − pq
S1

(·)‖ = ‖pq
B0

(·) − pq
B1

(·)‖ ≤ ‖pq
C0

(·) − pq
C1

(·)‖. (7)

By (7) and Lemma 8, we can prove Theorem 3.

Lemma 8. For any qmax ≤ 2n−2, let C0 and C1 be the experiments described in
Algorithm 3. Then we have

‖pq
C0

(·) − pq
C1

(·)‖ ≤
(

3μq4
max

25n

) 1
2

.

6.2 Proof of Lemma 8

Let q = μqmax. For i ∈ [q] where i = (j − 1)qmax + k such that j ∈ [μ] and
k ∈ [qmax], the response of the i-th query is seen as zi = zj

k. We can easily check
that the support of pi−1

C1
(·) is contained in the support of pi−1

C0
(·) for i = 1, . . . , q,

allowing us to use the chi-squared method. Let Ω = {0, 1}n × {0, 1}n × {0, 1}n.
For a fixed i ∈ {1, . . . , q}, let i ∈ [q] where i = (j−1)qmax+k such that j ∈ [μ]

and k ∈ [qmax]. Fix z ∈ Ωi−1 such that pi−1
C1

(z) > 0. Then, we will compute

χ2(z) =
∑

z=(u,v,y)∈Ω such
that pzC0,i(z)>0

(
pzC1,i(z) − pzC0,i(z)

)2

pzC0,i(z)

=
∑

z=(u,v,y)∈Ω such
that pzC0,i(z)>0

pzC0,i(z)

(

1 −
pzC1,i(z)
pzC0,i(z)

)2
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Algorithm 3. Experiments for SoP3-2
Experiment B0

1: for j ← 1 to μ do
2: for i ← 1 to qmax do
3: yj

i ←$ {0, 1}n

4: Zj ← (yj
1, . . . , y

j
qmax)

5: return (Z1, . . . ,Zµ)

Experiment B1

1: for j ← 1 to μ do
2: Ru, Rv, Rw ← {0, 1}n

3: for i ← 1 to qmax do
4: uj

i ←$ Ru, Ru ← Ru \ {uj
i}

5: vj
i ←$ Rv, Rv ← Rv \ {vj

i }
6: wj

i ←$ Rw, Rw ← Rw \ {wj
i }

7: yj
i ← uj

i ⊕ vj
i ⊕ wj

i

8: Zj ← (yj
1, . . . , y

j
qmax)

9: return (Z1, . . . ,Zµ)

Experiment C0

1: for j ← 1 to μ do
2: Ru, Rv, Rw ← {0, 1}n

3: for i ← 1 to qmax do
4: yj

i ←$ {0, 1}n

5: T j
i (yj

i ) ← {(u, v, w) : u ∈ Ru, v ∈ Rv, w ∈ Rw, u ⊕ v ⊕ w = yj
i }

6: if
∣
∣T j

i (yj
i )

∣
∣ > 0 then

7: (uj
i , v

j
i , w

j
i ) ←$ T j

i (yj
i )

8: else
9: (uj

i , v
j
i , w

j
i ) ← (⊥, ⊥, ⊥)

10: Ru ← Ru \ {uj
i}, Rv ← Rv \ {vj

i }, Rw ← Rw \ {wj
i }

11: zj
i ← (uj

i , v
j
i , y

j
i )

12: Zj ← (zj
1, . . . , z

j
qmax)

13: return (Z1, . . . ,Zµ)

Experiment C1

1: for j ← 1 to μ do
2: Ru, Rv, Rw ← {0, 1}n

3: for i ← 1 to qmax do
4: uj

i ←$ Ru, Ru ← Ru \ {uj
i}

5: vj
i ←$ Rv, Rv ← Rv \ {vj

i }
6: wj

i ←$ Rw, Rw ← Rw \ {wj
i }

7: zj
i ← (uj

i , v
j
i , u

j
i ⊕ vj

i ⊕ wj
i )

8: Zj ← (zj
1, . . . , z

j
qmax)

9: return (Z1, . . . ,Zµ)
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For y ∈ {0, 1}n, let T j
k (y) =

∣
∣
∣T j

k (y)
∣
∣
∣. From the proof of Lemma 7, we have

T j
k (y) ≥ 22n − 3(k − 1)2n.

Moreover, we see that

pzC0,i(u, v, y) =
1

2nT j
k (y)

,

pzC1,i(u, v, y) =
1

(2n − k + 1)3
.

Therefore,

χ2(z) =
∑

z=(u,v,y)∈Ω such
that pzC0,i(z)>0

1
2mT j

k (y)

(

1 − 2nT j
k (y)

(2n − k + 1)3

)2

≤
∑

(u,v,y)∈Ω such
that pzC0,i(u,v,y)>0

(
(2n − k + 1)3 − 2nT j

k (y)
)2

2nT j
k (y)(2n − k + 1)S6

≤
∑

(u,v,y)∈Ω such
that pzC0,i(u,v,y)>0

23
(
(2n − k + 1)3 − 2nT j

k (y)
)2

29n

≤ 23
25n

∑

y∈{0,1}n

(
(2n − k + 1)3

2n
− T j

k (y)
)2

. (8)

since k ≤ qmax ≤ 2n−2. We claim the following lemma.

Lemma 9. One has

Ex
z

[
T j

k (y)
]

=
(2n − k + 1)3

2n
,

Var
z

[
T j

k (y)
]

≤ (k − 1)3

2n
.

The proof of Lemma 9 is given in the full version. From (8) and Lemma 9, it
follows that

Ex
z

[
χ2(z)

]
≤ 23

25n
Ex
z

⎡

⎣
∑

y∈{0,1}n

(
(2n − k + 1)3

2n
− T j

k (y)
)2

⎤

⎦

≤ 23
25n

∑

y∈{0,1}n

Var
z

[
T j

k (y)
]

≤ 23(k − 1)3

25n
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and finally, we have

‖pq
C0

(·) − pq
C1

(·)‖ ≤
(

1
2

q∑

i=1

Ex
[
χ2(z)

]
) 1

2

≤

⎛

⎝1
2

μ∑

j=1

qmax∑

k=1

Ex
[
χ2(z)

]
⎞

⎠

1
2

≤

⎛

⎝1
2

μ∑

j=1

qmax∑

k=1

23(k − 1)3

25n

⎞

⎠

1
2

≤
(

3μq4
max

25n

) 1
2

.

7 Proof of Lemma 3

First, suppose y �= 0. Let Ψ = {0, 1}m × {0, 1}n−m × {0, 1}n−m and fix j, k, h
and y. Let Iψ where ψ = (α, β, γ) ∈ Ψ be an indicator variable

Iψ = 1 ⇔ (α ‖ β), (α ⊕ y ‖ γ) ∈ {0, 1}n \ {uj
l }l∈[2k−2].

Observe that

T j
k (y) =

∑

ψ∈Ψ

Iψ

and

Ex
h

[Iψ] =
(2n − 2k + 2)(2n − 2k + 1)

2n(2n − 1)
.

Thus, we have

Ex
h

[
T j

k (y)
]

=
∑

ψ∈Ψ

(2n − 2k + 2)(2n − 2k + 1)
2n(2n − 1)

=
2n(2n − 2k + 2)(2n − 2k + 1)

2m(2n − 1)
. (9)

Now, we compute the following expectation

Ex
h

[(
T j

k (y)
)2
]

= Ex
h

⎡

⎢
⎣

⎛

⎝
∑

ψ∈Ψ

Iψ

⎞

⎠

2
⎤

⎥
⎦ = Ex

h

⎡

⎣
∑

(ψ,ψ′)∈Ψ2

IψIψ′

⎤

⎦ .

For ψ = (α, β, γ) and ψ′ = (α′, β′, γ′), let r be the size of the following set

{α ‖ β, α′ ‖ β′, (α ⊕ y) ‖ γ, (α′ ⊕ y) ‖ γ′}.
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We see that, for r = 2, . . . , 4,

Ex
h

[IψIψ′ ] =
(2n − 2k + 2)r

(2n)r
.

For a fixed ψ ∈ Ψ, we have

|{ψ′ ∈ Ψ | r = 2}| = 2,

|{ψ′ ∈ Ψ | r = 3}| = 2n−m+2 − 4,

|{ψ′ ∈ Ψ | r = 4}| = 22n−m − 2n−m+2 + 2.

It follows that
∑

ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] = 2
(2n − 2k + 2)2

(2n)2
,

∑

ψ′∈Ψ,
r=3

Ex
h

[IψIψ′ ] = (2n−m+2 − 4)
(

1 − 2k − 2
2n − 2

)
(2n − 2k + 2)2

(2n)2
,

∑

ψ′∈Ψ,
r=4

Ex
h

[IψIψ′ ] = (22n−m − 2n−m+2 + 2)
(

1 − 2k − 2
2n − 2

)

×
(

1 − 2k − 2
2n − 3

)
(2n − 2k + 2)2

(2n)2
.

As Ex
h

[∑
(ψ,ψ′)∈Ψ2 IψIψ′

]
=

∑
(ψ,ψ′)∈Ψ2 Ex

h
[IψIψ′ ] =

∑
ψ∈Ψ

∑
ψ′∈Ψ Ex

h
[IψIψ′ ]

and the sum is divided into three cases according to the value of r, the sum of
the expectations is given as

Ex
h

⎡

⎣
∑

(ψ,ψ′)∈Ψ2

IψIψ′

⎤

⎦ = 22n−m

⎛

⎜
⎜
⎝

∑

ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] +
∑

ψ′∈Ψ,
r=3

Ex
h

[IψIψ′ ]

+
∑

ψ′∈Ψ,
r=4

Ex
h

[IψIψ′ ]

⎞

⎟
⎟
⎠ . (10)

Therefore, by (10), we have

Ex
h

⎡

⎣
∑

(ψ,ψ′)∈Ψ2

IψIψ′

⎤

⎦ =
(2n − 2k + 2)2

2n − 1

(
23n−2m − (22n−2m+1 + 2n−2m)(2k − 2)

+ 2n−2m(2k − 2)2

+ (22n−2m − 6 · 2n−2m + 2n−m+1)
(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

)
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and

Ex
h

[
(2n − 2k + 2)(2n − 2k + 1)

2m
· T j

k (y)
]

=
2n(2n − 2k + 2)2(2n − 2k + 1)2

22m(2n − 1)
.

Hence, for y �= 0, it follows that

Ex
h

[
Gj

k(y)
]

= Ex
h

[(
(2n − 2k + 2)(2n − 2k + 1)

2m
− T j

k (y)
)2

]

=
(2n − 2k + 2)2

2n − 1
(Ay + By) (11)

where

Ay = 23n−2m − (22n−2m+1 + 2n−2m)(2k − 2) + 2n−2m(2k − 2)2

+ (22n−2m − 6 · 2n−2m + 2n−m+1)
(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

and

By = −2n+1(2n − 2k + 2)(2n − 2k + 1)
22m

+
(2n − 1)(2n − 2k + 2)(2n − 2k + 1)

22m

= −23n−2m + 4k · 22n−2m − 4 · 22n−2m + 4k · 2n−2m − 3 · 2n−2m

− (2n−2m + 2−2m)(4k2 − 6k + 2).

Therefore, we have

Ay + By = 3 · 2n−2m − 2n−2m+1 − 2−2m+2(k − 1)

+ (2n−m+1 − 2n−2m − 6 · 2−2m)
(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

≤ 8(k − 1)2

2n+m
+ 3 · 2n−2m. (12)

By (11) and (12), conclude that

Ex
h

[
Gj

k(y)
]

≤ 8(k − 1)2

2m
+ 3 · 22n−2m. (13)

On the other hand, suppose y = 0. Note that Iψ = 0 if β = γ. So, for ψ =
(α, β, γ) ∈ Ψ such that β �= γ, we have

Ex
h

[Iψ] =
(2n − 2k + 2)(2n − 2k + 1)

2n(2n − 1)
.

Thus, we have

Ex
h

[
T j

k (0)
]

=
∑

ψ∈Ψ

(2n − 2k + 2)(2n − 2k + 1)
2n(2n − 1)

=
(2n−m − 1)(2n − 2k + 2)(2n − 2k + 1)

2n − 1
. (14)
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Now, we compute the following expectation

Ex
h

[(
T j

k (0)
)2
]

= Ex
h

⎡

⎢
⎣

⎛

⎝
∑

ψ∈Ψ

Iψ

⎞

⎠

2
⎤

⎥
⎦ = Ex

h

⎡

⎣
∑

(ψ,ψ′)∈Ψ2

IψIψ′

⎤

⎦ .

For ψ = (α, β, γ) and ψ′ = (α′, β′, γ′), let r be the size of following set

{α ‖ β, α′ ‖ β′, α ‖ γ, α′ ‖ γ′}.

We see that, for r = 2, . . . , 4,

Ex
h

[IψIψ′ ] =
(2n − 2k + 2)r

(2n)r
.

For a fixed ψ ∈ Ψ, we have

|{ψ′ ∈ Ψ | r = 2}| = 2,

|{ψ′ ∈ Ψ | r = 3}| = 2n−m+2 − 8,

|{ψ′ ∈ Ψ | r = 4}| = 22n−m − 2n−m+2 − 2n + 6.

It follows that
∑

ψ′∈Ψ,
r=2

Ex
h

[IψIψ′ ] = 2
(2n − 2k + 2)2

(2n)2
,

∑

ψ′∈Ψ,
r=3

Ex
h

[IψIψ′ ] = (2n−m+2 − 8)
(

1 − 2k − 2
2n − 2

)
(2n − 2k + 2)2

(2n)2
,

∑

ψ′∈Ψ,
r=4

Ex
h

[IψIψ′ ] = (22n−m − 2n−m+2 − 2n + 6)
(

1 − 2k − 2
2n − 2

)

×
(

1 − 2k − 2
2n − 3

)
(2n − 2k + 2)2

(2n)2
.

Similarly to (10), we have

Ex
h

⎡

⎣
∑

(ψ,ψ′)∈Ψ2

IψIψ′

⎤

⎦ =
(2n−m − 1)(2n − 2k + 2)2

2n − 1

(
22n−m − 2n

− (2n−m+1 + 2−m − 2)(2k − 2) + 2−m(2k − 2)2

+ (2n−m − 2n + 6 − 6 · 2−m)
(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

)

Also, we have

Ex
h

[
(2n − 2k + 2)(2n − 2k + 1)

2m
· T j

k (0)
]

=
(2n−m − 1) ((2n − 2k + 2)2)

2

2m(2n − 1)
.
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So, for y = 0, we have

Ex
h

[
Gj

k(0)
]

= Ex
h

[(
(2n − 2k + 2)2

2m
− T j

k (0)
)2

]

=
(2n − 2k + 2)2

2n − 1
(A0 + B0) (15)

where

A0 = (2n−m − 1)
(

22n−m − 2n − (2n−m+1 + 2−m − 2)(2k − 2) + 2−m(2k − 2)2

+ (2n−m − 2n + 6 − 6 · 2−m)
(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

)

= 23n−2m − 22n−m+1 + 2n + (2n−2m − 2−m)(2k − 2)2

− (22n−2m+1 − 2n−m+2 + 2n−2m − 2−m + 2)(2k − 2)

+ (2n−m − 1)(2n−m − 2n + 6 − 6 · 2−m)
(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

and

B0 = − (2n+1 − 2m+1)(2n − 2k + 2)2
22m

+
(2n − 1)(2n − 2k + 2)2

22m

= − (2n − 2m+1 + 1)(2n − 2k + 2)2
22m

= −23n−2m + 4k · 22n−2m − 4 · 22n−2m + 22n−m+1 − 4k · 2n−m+1 + 6 · 2n−m

+ 4k · 2n−2m − 3 · 2n−2m − (2n−2m − 2−m+1 + 2−2m)(2k − 2)(2k − 1).

Therefore, we have

A0 + B0 = 2n − 2n−m+1 + 2n−2m − 4
(

1 − 1
2m

)2

(k − 1)

+
(

1 − 1
2m

)
(2n + 2n−m − 6 + 6 · 2−m)

(2k − 2)(2k − 3)
(2n − 2)(2n − 3)

≤ 8(k − 1)2

2n
+ 3 · 2n. (16)

By (15) and (16), conclude that

Ex
h

[
Gj

k(0)
]

= 8(k − 1)2 + 3 · 22n. (17)

By (13) and (17), the proof completes.
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