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Abstract. Hashing arbitrary values to points on an elliptic curve is a
required step in many cryptographic constructions, and a number of tech-
niques have been proposed to do so over the years. One of the first ones was
due to Shallue and van de Woestijne (ANTS-VII), and it had the interest-
ing property of applying to essentially all elliptic curves over finite fields.
It did not, however, have the desirable property of being indifferentiable
from a random oracle when composed with a random oracle to the base
field.

Various approaches have since been considered to overcome this limita-
tion, starting with the foundational work of Brier et al. (CRYPTO 2011).
For example, if f : Fq → E(Fq) is the Shallue–van de Woestijne (SW)
map and h1, h2 are two independent random oracles to Fq, we now know
that m �→ f

(
h1(m)

)
+ f

(
h2(m)

)
is indifferentiable from a random oracle.

Unfortunately, this approach has the drawback of being twice as expen-
sive to compute than the straightforward, but not indifferentiable, m �→
f
(
h1(m)

)
. Most other solutions so far have had the same issue: they are at

least as costly as two base field exponentiations, whereas plain encoding
maps like f cost only one exponentiation. Recently, Koshelev (DCC 2022)
provided the first construction of indifferentiable hashing at the cost of one
exponentiation, but only for a very specific class of curves (some of those
with j-invariant 0), and using techniques that are unlikely to apply more
broadly.

In this work, we revisit this long-standing open problem, and observe
that the SW map actually fits in a one-parameter family (fu)u∈Fq of encod-
ings, such that for independent random oracles h1, h2 to Fq, F : m �→
fh2(m)

(
h1(m)

)
is indifferentiable. Moreover, on a very large class of curves

(essentially those that are either of odd order or of order divisible by 4),
the one-parameter family admits a rational parametrization, which lets us
compute F at almost the same cost as small f , and finally achieve indiffer-
entiable hashing to most curves with a single exponentiation. Our new app-
roach also yields an improved variant of the Elligator Squared technique
of Tibouchi (FC 2014) that represents points of arbitrary elliptic curves as
close-to-uniform random strings.
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1 Introduction

Indifferentiable Hashing to Elliptic Curves. Numerous cryptographic
primitives and protocols constructed over elliptic curve groups involve hashing
to an elliptic curve: they assume the existence of a public function H mapping
arbitrary bit strings to elliptic curve points/group elements. Moreover, the func-
tion H is supposed to behave “like a random oracle”. Such a functionality is
required for example for many password-authenticated key exchange protocols,
identity-based encryption schemes, short signature schemes, verifiable random
functions, oblivious PRFs and more. It is therefore important to understand how
it can be efficiently instantiated in practice, and moreover with constant-time
implementations, since the data that is hashed to the curve is often sensitive
and can thus be compromised by timing side-channel attacks. This problem is in
fact currently the subject of an IETF standardization effort within the Crypto
Forum Research Group [FHSS+22].

It became an active research topic about a decade ago, particularly after the
work of Brier et al. [BCI+10], which applied Maurer et al.’s indifferentiability
framework [MRH04] to properly formalize what it meant for H to “behave like a
random oracle”, and proposed several constructions satisfying the required prop-
erties. The design paradigm that emerged at the time as the main approach to
hashing to elliptic curve groups combines so-called encoding functions to the ellip-
tic curve, which are algebraic (or piecewise algebraic) maps from the base field to
the group of points on the curve, with random oracles to the base field and other
sets that are “easy to hash to”, as well as simple arithmetic operations on the curve.

More precisely, consider for instance1 the problem of hashing to the subgroup
G of cofactor h in E(Fq), where E is an elliptic curve defined over the finite field
Fq and such that E(Fq) is cyclic of order n with generator P . Then Brier et al.
[BCI+10] showed that the following construction:

Hslow(m) = [h] ·
(
f
(
h1(m)

)
+ [h2(m)]P

)
(1)

is indifferentiable from a random oracle when h1 and h2 are modeled as inde-
pendent random oracles to Fq and Z/nZ respectively (which are easy to realize,
heuristically, using bitstring-valued hash functions) and f : Fq → E(Fq) is a
mapping (the encoding function) satisfying mild conditions. This means that
whenever2 a cryptographic scheme or protocol is proved secure in the random
oracle model with respect to a G-valued random oracle H, that random oracle
can be instantiated securely with the construction Hslow.

1 The general case of a non-cyclic E(Fq) can be treated similarly. We refer to Brier et
al. [BCI+10] for details.

2 Technically, this holds in the case of single-stage security games, as clarified by
Ristenpart et al. [RSS11]. This limitation is rarely of concern in our context.
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As we have mentioned, the construction above requires a suitable encoding
function f : Fq → E(Fq). A number of candidates were known at the time for
various classes of elliptic curves, such as those of Shallue and van de Woesti-
jne [SvdW06], Ulas [Ula07] or Icart [Ica09], and many more have been proposed
since [KLR10,FT10,Far11,FT12,FJT13,BHKL13,WB19]. All of them can be
computed in constant time at the cost of one full size exponentiation in Fq (typ-
ically a square root or cube root computation), which dominates the complexity,
plus a few other less costly operations in the field, like multiplications, inversions
and Jacobi symbol computations.

In contrast, the second term of Hslow is a full-size scalar multiplication over
the curve, which typically exceeds the computationally cost of a field exponenti-
ation by a factor of 10 or more depending on base field size and curve arithmetic.
This makes Hslow a fairly inefficient construction.

To alleviate this issue, Brier et al. also proved that the following construction
is also indifferentiable from a random oracle:

Hsquare(m) = [h] ·
(
f
(
h1(m)

)
+ f

(
h2(m)

))
(2)

when h1 and h2 are modeled as independent random oracles to Fq, and when
f is specifically Icart’s function. The result was later extended by Farashahi et
al. [FFS+13], who showed that basically all of the known encoding functions
f could also be plugged into that construction. This provides indifferentiable
hashing to arbitrary elliptic curves at the cost of essentially two base fields
exponentiations.

On the other hand, in certain primitives and protocols proved secure with
respect to a G-valued random oracle H, one can show that H can be securely
instantiated using the following simpler construction:

Hnon-unif(m) = [h] · f
(
h(m)

)
(3)

where h is modeled as a random oracle to Fq. This construction is not nearly as
well-behaved as (2). In fact, f usually only reaches a fraction of the points on
E(Fq), and induces a non-uniform distribution over its image, so that Hnon-unif
can typically be efficiently distinguished from a random oracle, and in particu-
lar it is not indifferentiable in the sense discussed so far. Nevertheless, certain
primitives and protocols do not require the full strength of indifferentiability,
and Hnon-unif is sometimes sufficient to let their security proofs go through.

A rough idea of why this happens is that, in a random oracle proof of security,
the simulator generally wants to program the random oracle by setting the hash
of some message m to a value Q, but that point Q itself can usually be anything
depending on some randomness. So assuming that h = 1, the simulator might
typically want to setH(m) to Q = [r]·P for some random r, say. Now ifH is defined
in the protocol using a construction like (3), the simulator would pick a random r
and set h(m) to one of the preimages u ∈ f−1(P ) if P ∈ f(Fq). If however P is not
in the image of f , the simulator would pick another random r and try again.

Therefore, construction (3), while less general and well-behaved than (2), is
sometimes good enough for security at half the computational cost. This is a
substantial difference in terms of efficiency that practitioners may be sensitive
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to, so much so that both of these constructions are in fact proposed in the current
IETF draft [FHSS+22]. Construction (3), however, comes with the caveats that
applications using it “SHOULD carefully analyze the security implications of
nonuniformity”, and that “cryptographic protocols whose security analysis relies
on a random oracle that outputs points with a uniform distribution MUST NOT”
use it. This results in the somewhat unfortunate situation that implementers
have to choose between two approaches for implementing hashing to elliptic
curves: one which is secure in all cases but slower, and one which is faster but
requires a careful analysis to ascertain that it does not fully compromise the
security of the scheme.

The Quest for Fast Indifferentiable Hashing. Ideally, one would prefer
to have the best of both worlds: indifferentiable hashing at the cost of a single
exponentiation in the base field instead of two. Obtaining this for general elliptic
curves is a long-standing open problem.

In special cases, solutions exist: this is particularly the case for supersingular
curves of j-invariant 0 and 1728, for which it has long been known [BF01,FT10]
that an “almost bijective” encoding function f exists; it is then easy to check
that plugging that f into construction (3) does achieve indifferentiability. Unfor-
tunately, those types of supersingular curves, which were popular to reach the
80-bit security level in pairing applications in the early 2000s, are no longer used
today due to exceedingly large parameters at higher security levels. Moreover,
there are strong reasons to believe that almost bijective encodings cannot exist
for general elliptic curves [Tib14b].

Progress towards addressing the general open problem was made by Tibouchi
and Kim [TK17], who extended the statistical results of Farashahi et al., and
established in particular that, asymptotically, it was possible to achieve indif-
ferentiable hashing at a cost of less than two exponentiations by tweaking con-
struction (1) with a random oracle h2 mapping to a short interval. That result
is mostly of theoretical significance, however, since it requires very large base
fields to provide meaningful error bounds.

Recently, Koshelev [Kos22] made a practically significant advance, by showing
that indifferentiable hashing at the cost of a single exponentiation was possible
for certain ordinary curves of j-invariant 0 over suitable base fields. This is still
a negligible fraction of all elliptic curves, but it is practically relevant since it
includes pairing-friendly curves like some of the BLS curves [BLS03] used today.
Koshelev’s approach is also the first one considered in the last decade or so
that substantially departs from the framework of constructions (1)–(3) above.
While those earlier techniques reduce the problem of indifferentiable hashing to
the encoding function f : Fq → E(Fq), which is defined over a one-dimensional
domain, Koshelev bases his construction on a map F : F2

q → E(Fq) with a two-
dimensional range. Looking back at Brier et al.’s original proof for the indifferen-
tiability of construction (2) using Icart’s encoding function, this is fairly natural
(since that proof was constructed around a two-dimensional argument), but it
is an important shift in perspective.
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In this paper, we use a similar idea (albeit very different techniques) to settle
the open problem for a large class of elliptic curves: for essentially all curves
over fields Fq with q ≡ 1 (mod 3) with either odd order or order divisible by 4
(this includes almost all elliptic curves in current use), we are able to construct
a new indifferentiable hashing, which we call SwiftEC, at the cost of a single
exponentiation in the base field.

Representing Points as Uniform Random Strings. A very different ques-
tion, but which has been tackled using similar techniques, was introduced in
Bernstein et al.’s Elligator paper [BHKL13]: how can one represent a uniform
point on E(Fq) in a public way as a close to uniform random bit string? The
stated goal was to achieve a form of steganography for censorship circumven-
tion. Indeed, network traffic containing points on a certain elliptic curve (e.g.
public keys for encryption or signature) represented in usual ways (either as full
coordinates (x, y), in compressed form (x, sgn y) or in x-only form) can be easily
distinguished from random, which may lead to automated traffic interruption or
targeted surveillance.

As a countermeasure, Bernstein et al. suggested to use an encoding function
f : Fq → E(Fq) with the property that it maps an interval I ⊂ Fq of length
≈ q/2 injectively into E(Fq). Then, any point in f(I) can be represented by its
unique preimage under f in I. In particular, if q is close to a power of two, this
readily gives a simple representation of random elements in f(I) ⊂ E(Fq) as
uniform random bit strings (and when q is far from a power of two, it suffices to
represent elements of I as uniform random bit strings, which can be easily done
by expanding the representation and introducing randomness).

This approach has two drawbacks. First, suitable encodings f that are injec-
tive over a large interval are hard to construct, and only known for limited
families of elliptic curves [Far11,FJT13,BHKL13], all of order divisible by 3 or 4
(and hence not including curves of prime order, for example). Second, one needs
to address the issue of points falling outside f(I). Since the goal is to represent
random points on E(Fq) as bit strings, the assumption is that in the crypto-
graphic protocol under consideration, the point to represent is obtained by some
sort of random process, and it is possible to use rejection sampling until reaching
f(I). Since the image size covers roughly half of all points on the curve, this will
require about two iterations on average, often an acceptable cost. However, if
the process generating the point is expensive, rejecting may be less than ideal.

Tibouchi’s Elligator Squared paper [Tib14a] addressed these shortcomings by,
in essence, applied construction (2) above “in reverse”. One of the key properties
that makes construction (2) an indifferentiable hash function is the fact that, for
an encoding function f : Fq → E(Fq), the following map:

f⊗2 : F2
q → E(Fq)

(u, v) �→ f(u) + f(v)
(4)

induces a close-to-uniform distribution on its image. In particular, a uniformly
random preimage of a uniformly random point in E(Fq) is close to uniform in F

2
q.
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This provides a simple solution to the point representation problem that works
for general elliptic curves and can represent all points, avoiding the need for
rejection sampling inside the protocol to reach a particular subset of the curve.
However, representation size is about twice as large as Elligator (a drawback
partially addressed in subsequent work [TK17]) and the representation func-
tion, computing uniformly random preimages under f⊗2, is also somewhat more
complicated and costly than that of Elligator.

Basically, to compute a random preimage of P ∈ E(Fq), one picks a uniform
v ∈ Fq and computes u as a preimage of P − f(v). However, rejection sam-
pling is necessary to ensure the uniformity of the distribution, which requires
multiple iterations, each of them evaluating the function f (at a cost of a field
exponentiation each).

In this paper, as a by-product of our new SwiftEC construction, we also
obtain ElligatorSwift, a much faster variant of Elligator Squared over all
the curves over which SwiftEC is defined. The idea is that fully computing the
underlying encoding in the forward direction becomes unnecessary, saving many
field exponentiations in the process.

Contributions and Technical Overview. The starting point of our work
is to revisit the first construction of an encoding function to general elliptic
curves, originally due to Shallue and van de Woestijne [SvdW06]. We observe
that construction actually had a number of interesting properties that have not
been considered so far, and that we manage to build upon with suitable addi-
tional analysis. To describe them, we need to first recall a few facts about the
Shallue–van de Woestijne encoding itself.

Given an elliptic curve E : y2 = g(x) = x3 + ax + b over a finite field Fq

of characteristic ≥ 5, Shallue and van de Woestijne construct a certain alge-
braic surface S in the affine space over Fq together with three rational functions
x1, x2, x3 such that the product g(x1)g(x2)g(x3) is a square. This means in par-
ticular that, when evaluated at any point P of S(Fq) (outside of the locus of
poles), at least one of x1(P ), x2(P ) or x3(P ) must be the x-coordinate of a
point in E(Fq). Indeed, the product g

(
x1(P )

)
g
(
x2(P )

)
g
(
x3(P )

)
is a square in

Fq, and since the product of three nonsquares in Fq is a nonsquare, at least one
of the factors must be square, yielding the x-coordinate of a point in E(Fq).
Based on that, we can define an encoding function from S(Fq) to E(Fq) simply
by mapping a point P to one of the points of x-coordinate xi(P ) that works
(selecting the index i and the sign of the y-coordinate in a predetermined way).

The second step of the construction is to note that the specific surface S
under consideration can in fact be seen as a one-parameter family of conics over
Fq. Based on that, Shallue and van de Woestijne fix the value of the parameter,
obtain a single non-degenerate conic over Fq, and use the fact that such a conic
always admits a rational parametrization to obtain a map Fq → S(Fq) to the
chosen conic. Composing with the previous map finally gives an encoding Fq →
E(Fq) as desired, which can be used in constructions (1)–(3) above for hashing,
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and in the Elligator Squared framework: this is what is usually known as the
Shallue–van de Woestijne encoding.

Our contributions rely on two novel observations regarding that original con-
struction:

– first, for a large class of elliptic curves E which we characterize in detail,
the surface S regarded as a family of conics actually admits a global, two-
parameter parametrization over Fq. This means that one can effectively con-
struct a rational map F

2
q → S(Fq) that is essentially a bijection. This result is

obtained using techniques due to van Hoeij and Cremona [vHC06] classifying
conics over function fields;

– second, unlike each of the maps defined by individual conics, the map
from S(Fq) as a whole to the set XE,Fq

of elements of Fq which are x-
coordinates on E(Fq) is admissible: it satisfies the sufficient conditions of
Brier et al. [BCI+10] to construct indifferentiable hashing. The most impor-
tant of those conditions is regularity: the image of a uniform point in S(Fq)
is close to uniform in XE,Fq

. We are able to establish that property by giv-
ing a precise description of the preimage of an x ∈ XE,Fq

: it consists of
the union of one algebraic curve drawn on S (the set of points P such that
x1(P ) = x, say) and two halves of two other curves (the subset of the curves
given by x2(P ) = x and x3(P ) = x respectively, with the condition that
g(x1(P )) is a nonsquare). By counting points on those curves and curve sub-
sets, we are able to establish the required statistical properties, and deduce
that S(Fq) → XE,Fq

is admissible.

Combining those two observations, we obtain, for a large, explicit class of
elliptic curves E (including almost all curves in practical use), an admissible
encoding F

2
q → XE,Fq

. Adding a sign bit to choose the y-coordinate on E yields
an admissible encoding F : F2

q × {0, 1} → E(Fq) as well, which can be computed
at the cost of a single exponentiation in Fq (namely, the square root computation
needed to derive the y-coordinate). This has the two consequences mentioned
above, over the elliptic curves E of interest:

– given a hash function h modeled as a random oracle with values in F
2
q ×

{0, 1} (which is easy to heuristically instantiate), the map m �→ F
(
h(m)

)
is

indifferentiable from a random oracle, and can be computed at the cost of a
single exponentiation. This is the SwiftEC construction;

– given a uniform point on the curve, we can efficiently sample a uniform preim-
age of it under F , and this becomes a close-to-uniformly distributed element
of F

2
q × {0, 1}. Since such an element is easy to represent as a uniform bit

string, we thus obtain an Elligator Square-like representation technique which
is much faster than Elligator Square itself, as it requires far fewer field expo-
nentiations on average. This is the ElligatorSwift construction.

In addition, we also get indifferentiable hashing to the set XE,Fq
without

any field exponentiation at all. This even faster construction, XSwiftEC, is
particularly interesting in context where x-only arithmetic is feasible, such as
for example BLS signatures [BLS01].



70 J. Chavez-Saab et al.

2 Preliminaries

2.1 Quadratic Residuosity

Throughout this paper, Fq denotes the finite field with q elements. We only
consider finite fields of characteristic 	= 2, 3. The quadratic character χ2 : Fq →
{−1, 0, 1} is the map that sends 0 to 0, nonzero squares to 1 and nonzero non-
squares to −1. It is well-defined, multiplicative, and extends the unique nontrivial
multicative group morphism F

×
q → {−1, 1}. A related map is IsSquare, which

sends all squares to 1 and nonsquares to 0.
When q is prime, the quadratic character coincides with the Legendre sym-

bol, and can be computed efficiently by repeated applications of quadratic reci-
procity. This can be implemented in fast constant time [Por20,Ham21,AG21],
similar to the constant-time binary GCD technique of Bernstein–Yang for field
inversion [BY19]. Similarly, the quadratic character over extension fields can be
computed fast by descending to the prime field, and IsSquare can be trivially
computed from χ2.

We also fix an efficiently computable map sgn: Fq → {−1, 0, 1} called the
“sign”, with the property that sgn 0 = 0, sgn x 	= 0 for x 	= 0, and sgn(−x) =
− sgn x. The choice is arbitrary, but for example over prime fields, it is customary
to use the sign of an integer representative in the interval (−q/2, q/2) (over
extension fields, one might choose the sign of the first nonzero coefficient in
some basis over the prime field).

An element x ∈ Fq which is a square has exactly two square roots (except 0
which has just one), exactly one of which is of nonnegative sign. We denote it by√

x; it typically requires a single base field exponentiation to compute (although
slightly faster approaches may exist over extension fields).

2.2 Elliptic Curves and Isogenies

An elliptic curve is a smooth projective curve of genus 1 endowed with a distin-
guished rational point. Such curves admit the definition of a point addition law,
which gives the curve a structure as group variety, with the distinguished point
playing the role of the group identity. Over Fq, any elliptic curve can be written
up to isomorphism in the short Weierstrass form:

E : y2 = x3 + ax + b,

for some a, b ∈ Fq such that the discriminant ΔE := −16(4a3 +27b2) is nonzero.
On such a curve, group inverses are defined by −(x, y) = (x,−y) and the points
of order 2 are those with y = 0. When ΔE is a square there are either zero or
three points of order 2. Otherwise, there is exactly one.

We denote by E(Fq) the group of Fq-rational points of E. The cardinality of
this group is always #E(Fq) = q − t + 1 for some t bounded by |t| ≤ 2

√
q. We

say that the curve is supersingular if t is a multiple of the field characteristic,
and otherwise the curve is ordinary. We focus on the case of ordinary elliptic
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curves, where finding adequate and efficient encodings has long been a greater
challenge.

An isogeny is any non-constant rational map between elliptic curves that
is also a group homomorphism. Up to an isomorphism, a separable isogeny is
uniquely determined by its kernel and its degree as a rational map is equal to the
size of the kernel. Any isogeny φ : E → E′ has a dual isogeny φ̂ : E′ → E such
that the composition φ̂◦φ equals the multiplication-by-d map, where d = deg(φ).
Two curves over a finite field are isogenous if and only if they have exactly the
same number of points.

2.3 Point Counting and Character Sums

A generalization of the result above on the number of rational points of an elliptic
curve is that any (absolutely irreducible) smooth curve of bounded genus over Fq

has a number of points over Fq close to q. More precisely, the following celebrated
result holds:

Lemma 1 (Hasse–Weil bound). For any smooth projective absolutely irre-
ducible curve X/Fq of genus g, we have:

∣∣#X(Fq) − (q + 1)
∣∣ ≤ 2g

√
q.

For curves of bounded degree, the number of points at infinity is also bounded,
and we thus get a bound of the form #Xaff(Fq) = q + c

√
q + O(1) (|c| ≤ 2g) on

the number of affine points on X.
A related result concerns character sums on such curves. Let χ be a multi-

plicative character of Fq (a group homomorphism F
×
q → C

× extended by 0 at
0), and f ∈ Fq(X) a rational function on the curve X. We consider the following
character sum:

W (X,χ, f) =
∑

P∈X(Fq)
f(P ) �=∞

χ
(
f(P )

)
.

Using the Bombieri–Weil methodology, Perret [Per91] proves the following
bound. See also [CM00,TK17].

Lemma 2 (Perret). Let X be a smooth projective absolutely irreducible curve
of genus g over Fq, χ a nontrivial multiplicative character of order m|q − 1, and
f ∈ Fq(X) a rational function which is not a perfect m-th power in F̄q(X). The
character sum W (X,χ, f) can be bounded as:

∣∣W (X,χ, f)
∣∣ ≤ (2g − 2 + 2deg f)

√
q.

2.4 Quadratic Residuosity over Function Fields

Many results of classical arithmetic over Q and number fields have analogues
over function fields. This is in particular the case for quadratic reciprocity. We
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recall some of the relevant results below. An exhaustive treatment is provided
in Rosen’s textbook [Ros02, pp. 23-31].

For a fixed monic irreducible polynomial f ∈ Fq[t], we define the quadratic
residue symbol

(
g
f

)
2

for any g ∈ Fq[t] as the image of g under the quadratic
character of the finite field Fq[t]/(f). In other words:

(
g

f

)

2

=

⎧
⎪⎨
⎪⎩

0 if f divides g;
1 if g is coprime to f and a square modulo f ;
−1 if g is coprime to f and a nonsquare modulo f.

We then extend this symbol to not necessarily irreducible f ’s by multiplica-
tivity, similarly to how the Jacobi symbol extends the Legendre symbol. If
f = αfe1

1 · · · fen
n with α ∈ F

×
q and the fi irreducible, we let:

(
g

f

)

2

=
n∏

i=1

(
g

fi

)

2

.

Note that the symbol does not depend on the leading coefficient lc(f) = α of f .

Lemma 3. The quadratic residue symbol has the following properties.

– If g1 ≡ g2 (mod f),
(

g1
f

)
2

=
(

g2
f

)
2
.

–
(

g1g1
f

)
2

=
(

g1
f

)
2

(
g2
f

)
2
.

–
(

g
f1f2

)
2

=
(

g
f1

)
2

(
g
f2

)
2
.

–
(

g
f

)
2

	= 0 if and only if f and g are coprime.

– If g is a nonzero square modulo f , then
(

g
f

)
2

= 1 (but the converse does not
need to hold).

Furthermore, it satisfies the following law of quadratic reciprocity. For f, g ∈
Fq[t] coprime and nonzero, it holds that:

(
g

f

)

2

(
f

g

)

2

= (−1)
q−1
2 deg f deg g lc(f)

q−1
2 deg g lc(g)

q−1
2 deg f .

2.5 Statistical Notions

For D a probability distribution on a finite set S, we write Pr[s ← D ] for the
probability assigned to the singleton {s} ⊂ S by D . The uniform distribution
on S is denoted by US (or just U if the context is clear).

Definition 1 (Statistical distance). Let D and D ′ be two probability distri-
butions on a finite set S. The statistical distance between them is defined as the
�1 norm:

Δ1(D ,D ′) =
1
2

∑
s∈S

∣∣ Pr[s ← D ] − Pr[s ← D ′]
∣∣.
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We simply denote by Δ1(D) the statistical distance between D and US:

Δ1(D) =
1
2

∑
s∈S

∣∣∣ Pr[s ← D ] − 1
#S

∣∣∣,

and say that D is ε-statistically close to uniform when Δ1(D) ≤ ε. When Δ1(D)
is negligible, we simply say than D is statistically close to uniform.

Definition 2 (Pushforward). Let S, T be two finite sets and F any map-
ping from S to T . For any probability distribution DS on S, we can define the
pushforward F∗DS of DS by F as the probability distribution on T such that
sampling from F∗DS is equivalent to sampling a value s ← DS and returning
F (s). In other words:

Pr
[
t ← F∗DS

]
= Pr

[
s ← DS ; t = F (s)

]
= μS

(
F−1(t)

)
=

∑
s∈F−1(t)

Pr[s ← DS ],

where μS is the probability measure defined by DS.

Definition 3 (Regularity). Let S, T be two finite sets and F any mapping
from S to T . We say that F is ε-regular when F∗US is ε-close to the uniform
distribution. We may omit ε if it is negligible.

2.6 Admissible Encodings

In their work on the construction of indifferentiable hashing to elliptic curves,
Brier et al. [BCI+10] define the notion of an admissible map F : S → R between
two sets. The definition, which generalizes an early notion introduced by Boneh
and Franklin [BF01], is as follows.

Definition 4 (Admissible encoding). A function F : S → R between finite
sets is an ε-admissible encoding if it satisfies the following properties:

Computable: F is computable in deterministic polynomial time.
Regular: F is ε-regular (in the sense of the previous section).
Samplable: there is an efficient randomized algorithm I : R → S � {⊥} such

that for any r ∈ R, I (r) induces a distribution that is ε-statistically close to
the uniform distribution in F−1(r).

F is an admissible encoding if it is ε-admissible for some negligible ε.

That notion satisfies the suitable properties such that, given an S-valued
random oracle h, the composition F ◦h is indifferentiable from a R-valued random
oracle.

Moreover a similar results holds for arbitrary compositions of admissible
functions (even though admissibility need not be preserved under composition).
Namely, if Fi : Si → Si−1 are admissible encodings for i = 1, . . . , n, then it also
holds that, given an Sn-valued random oracle h, the composition F1◦· · ·◦Fn◦h is
indifferentiable from a S0-valued random oracle (even though it does not always
hold that F1 ◦ · · · ◦ Fn is admissible).
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3 The SW Encoding Family

In their seminal ANTS–VII paper [SvdW06], Shallue and van de Woestijne con-
structed the first encoding function to arbitrary elliptic curves. In this section,
we give a description of that construction (restricted for simplicity to base fields
of characteristic ≥ 5) that is slightly different but essentially equivalent to the
original one, and then we state new properties of that construction.

In the entire section, we fix an elliptic curve E : y2 = x3 + ax + b over the
finite field Fq (q prime power not divisible by 2 or 3), and denote by XE,Fq

the
subset of Fq consisting of x-coordinates of points in E(Fq); in other words:

XE,Fq
=

{
x ∈ Fq ; ∃y, (x, y) ∈ E(Fq)

}
.

3.1 Construction of the Shallue–van de Woestijne Encoding

Let g and h be the polynomials over Fq defined by:

g(u) = u3 + au + b and h(u) = 3u2 + 4a.

The starting point of the Shallue–van de Woestijne construction is the construc-
tion of a rational map ψ : S → V from the following quasi-affine surface in the
(x, y, u) affine space:

S : x2 + h(u)y2 = −g(u), y 	= 0 (5)

to the following threefold in the (x1, x2, x3, z) affine 4-dimensional space:

V : z2 = g(x1)g(x2)g(x3).

The rational map ψ is given by the following explicit equations and clearly
defined everywhere on S:

x1 =
x

2y
− u

2
x2 = − x

2y
− u

2

x3 = u + 4y2 z =
g(u + y2)

y
· R

(
u,

x

2y
− u

2

) (6)

where R(u, v) = u2 + uv + v2 + a. When referring to a point P on S, we will
denote by x1(P ), x2(P ), x3(P ) and z(P ) the corresponding coordinates of ψ(P )
in V . In particular, this defines x1, x2, x3 and z as rational functions on the
surface.

A remarkable property of the threefold V is that for any point (x1, x2, x3, z) ∈
V (Fq), at least one of the three values x1, x2, x3 must be in XE,Fq

. Indeed,
g(x1)g(x2)g(x3) is a square in Fq, so by multiplicativity of the quadratic char-
acter, they cannot be all nonsquares (and in fact, there must be exactly one or
three squares among them, except possibly when z = 0).
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As a result, one can therefore map points on S(Fq) to XE,Fq
by first map-

ping to V (Fq) with ψ, and then selecting one of the coordinates x1, x2, x3 in a
prescribed order. For example, in this paper we will consider the following map:

F0 : S(Fq) → XE,Fq

P �→

⎧
⎪⎨
⎪⎩

x3(P ) if g
(
x3(P )

)
is a square;

x2(P ) if g
(
x3(P )

)
is not a square but g

(
x2(P )

)
is;

x1(P ) if neither g
(
x3(P )

)
nor g

(
x2(P )

)
are squares.

(7)

Note that F0(P ) is very efficient to compute from the coordinates (x, y, u) of
P using the formulas of (6) and a few quadratic character computations. In
particular, it requires no field exponentiation.

Of course, once we have an element x̄ ∈ XE,Fq
, it is easy to deduce a point in

E(Fq): simply compute a square root of g(x̄) to get the y-coordinate up to sign.
Since we prefer to select the sign separately, we define the following extended
map to E(Fq) which takes an additional input bit b:

F+
0 : S(Fq) × {0, 1} → E(Fq)

(P, b) �→
(
F0(P ), (−1)b

√
g
(
F0(P )

))
.

(8)

The construction offers a way to map to E(Fq) provided that one can con-
struct rational points on the surface S itself, which may not be a priori obvious.
Fortunately, as seen from Eq. (5), each of the curves Su0 on S obtained by fixing
u to some u0 ∈ Fq are simply conics over Fq, with equations:

x2 + h(u0)y2 = −g(u0), y 	= 0.

Now, a conic over Fq always admits a rational parametrization. Therefore, we
can construct a map Fq → Su0(Fq) that can then be composed with F+

0 to
obtain an encoding function F0,u0 : Fq → XE,Fq

(and similarly to E(Fq)). This
is basically the approach taken in the original paper of Shallue and van de
Woestijne [SvdW06].

Note that obtaining the parametrization of the conic Su0 for a fixed u0

requires an a priori costly precomputation (it requires finding a point on the
conic, typically by trial-and-error: this costs a square root, and a number of
quadratic character computations that is hard to bound uniformly). Therefore,
while it may be tempting to try and define a two-parameter map F

2
q → XE,Fq

by
(t, u) �→ F0,u(t), this is not usually workable for hashing purposes, since a new
parametrization would have to be computed for any new input u.

Nevertheless, we show in the remainder of this section that the maps F0 and
F+
0 on the surface S(Fq) as a whole have nice statistical properties, and it would

therefore be beneficial to overcome the difficulty of efficiently parametrizing it.
That problem will then be addressed, at least for a large class of elliptic curves
E, in Sect. 4 below.
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3.2 Geometry of the SW Family

For a fixed element x̄ ∈ XE,Fq
, we now want to describe the set of points in

S(Fq) that map to x̄ under the encoding F0 of (7). By the previous description
of the encoding, this is the union of three disjoint sets:

F−1
0 (x̄) = C

(3)
x̄ (Fq) � C

(2)
x̄ (Fq)+ � C

(1)
x̄ (Fq)+,

where C
(i)
x̄ are algebraic curves on S defined by the condition that xi = x̄

(i ∈ {1, 2, 3}) and C
(i)
x̄ (Fq)+ is the subset of C

(i)
x̄ (Fq) under the condition that

g
(
xj(P )

)
is not a square for j 	= i. Note that since there are always exactly only

1 or 3 squares, it suffices to define

C
(1)
x̄ (Fq)+ := {P ∈ C

(1)
x̄ (Fq); x2(P ) not a square}

C
(2)
x̄ (Fq)+ := {P ∈ C

(2)
x̄ (Fq); x1(P ) not a square}

We would like to count the number of points in each of these sets. The first
step is to understand the geometry of the curves C

(i)
x̄ . It is easy to see that, for

a generic x̄, they are hyperelliptic curves of genus 2.
Consider for example C

(3)
x̄ . It is given by the equations (cf. (6)):

u + 4y2 = x̄ and x2 + h(u)y2 = −g(u).

Eliminating u = x̄ − 4y2 between those two equations, we see that C
(3)
x̄ is iso-

morphic to the curve in the (y, x) affine plane given by the equation:

x2 = −g(x̄ − 4y2) − h(x̄ − 4y2)y2.

The right-hand side is a polynomial of degree 6 in y, namely:

16y6 − 24x̄y4 + 9x̄2y2 − g(x̄),

whose discriminant is a polynomial of degree exactly 11 in x̄ (or exactly 9 if
a = 0). We thus get that C

(3)
x̄ is a hyperelliptic curve of genus 2, except for at

most 11 points x̄. Other than for those exceptional points, we have:

#C
(3)
x̄ (Fq) = q + c3

√
q + O(1), for some c3 such that |c3| ≤ 4.

by the Hasse–Weil bound. Note that the O(1) term comes from the fact that
we consider the affine situation rather than the projective one, and we could
easily provide an explicit bound for it, but this is typically not of interest for
cryptographic applications.

By a similar analysis, we find that both C
(1)
x̄ and C

(2)
x̄ are isomorphic to the

curve in the (u, v) affine plane (where v = y
[
(u + 2x̄)2 + h(u)

]
) of equation:

v2 = −g(u) · [
(u + 2x̄)2 + h(u)

]
.
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The right-hand side is a polynomial of degree 5 in u, namely:

−4
(
u5 + x̄u4 + (x̄2 + 2a)u3 + (ax̄ + b)u2 + (ax̄2 + bx̄ + a2)u + b(x̄2 + a)

)
,

and its discriminant is always of degree 14 in x̄ (the degree 14 coefficient is
216 · 3 · (4a3 + 27b2) 	= 0). Thus, C

(1)
x̄ and C

(2)
x̄ are hyperelliptic curves of genus

2, except for at most 14 points x̄. Other than for those exceptional points, we
therefore have:

#C
(1)
x̄ (Fq) = q + c1

√
q + O(1) for some c1 such that |c1| ≤ 4

#C
(2)
x̄ (Fq) = q + c2

√
q + O(1) for some c2 such that |c2| ≤ 4

by the Hasse–Weil bound.
It remains to evaluate the cardinality of the subsets C

(i)
x̄ (Fq)+ ⊂ C

(i)
x̄ (Fq) for

i ∈ {1, 2}. One can do so in various ways, but the simplest is probably to relate
them to character sums. Consider for example the following character sum on
C

(1)
x̄ :

W1 := W
(
C

(1)
x̄ , χ2, g ◦ x2

)
=

∑

P∈C
(1)
x̄ (Fq)

χ2

(
g
(
x2(P )

))
,

where χ2 is the quadratic multiplicative character of Fq. The term χ2

(
g
(
x2(P )

))

is equal to −1 if g
(
x2(P )

)
is not a square in Fq, which is exactly when P ∈

C
(1)
x̄ (Fq)+. Moreover, it is otherwise equal to 1 (for points outside C

(1)
x̄ (Fq)+

such that x2(P ) 	= 0) or 0 (for points outside C
(1)
x̄ (Fq)+ such that x2(P ) = 0).

As a result, we have:

W1 = (−1) · #C
(1)
x̄ (Fq)+ + 1 · (#C

(1)
x̄ (Fq) − #C

(1)
x̄ (Fq)+ − N0) + 0 · N0

= #C
(1)
x̄ (Fq) − 2 · #C

(1)
x̄ (Fq)+ − N0,

where N0 = O(1) is the number of points in C
(1)
x̄ (Fq) such that x2(P ) = 0. This

gives:

#C
(1)
x̄ (Fq)+ =

1
2
#C

(1)
x̄ (Fq) − W1

2
+ O(1) =

q

2
+

c1
2

√
q − W1

2
+ O(1),

where the O(1) term accounts both for N0 and for the fact that we consider an
affine situation instead of a projective one.

Then, by the character sum estimate of Lemma 2, we have:

|W1| ≤ (
4−2+2deg(g ◦x2)

)√
q +O(1) = (2+2 ·3 ·2)

√
q +O(1) = 14

√
q +O(1)

since x2 = −u− x̄ on C
(1)
x̄ is a rational function of degree 2. It then follows that:

#C
(1)
x̄ (Fq)+ =

q

2
+ c+1

√
q + O(1) for some c+1 such that |c+1 | ≤ 4 + 14

2
= 9.
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Obviously, the exact same argument applies to C
(2)
x̄ , yielding:

#C
(2)
x̄ (Fq)+ =

q

2
+ c+2

√
q + O(1) for some c+2 such that |c+2 | ≤ 9.

Combining all the previous estimates, we finally obtain the following result.

Theorem 1. For all x̄ ∈ XE,Fq
except at most 39 of them, the number of preim-

ages of x̄ under the F0 map of Eq. (7) is close to 2q, and the difference is bounded
as: ∣∣#F−1

0 (x̄) − 2q
∣∣ ≤ 22

√
q + O(1).

Proof. Indeed, except for the at most 11 + 14 + 14 = 39 exceptional points
mentioned above, we have:

#F−1
0 (x̄) =

(
1 +

1
2

+
1
2

)
q +

(
c+1 + c+2 + c3

)√
q + O(1)

and since
∣∣c+1 + c+2 + c3| ≤ 4 + 9 + 9 = 22, the result follows.

3.3 The SW Family Is Admissible

Using Theorem 1, we are now in a position to prove that the encoding function
F0 is admissible in the sense of Sect. 2.6. The main step in doing so is to prove
that it is regular.

Lemma 4. The map F0 : S(Fq) → XE,Fq
of Eq. (7) is ε-regular for ε =

(
6 +

o(1)
)
q−1/2.

Proof. Let Δ = Δ1

(
(F0)∗US(Fq)

)
be the statistical distance between the distri-

bution induced by F0 on XE,Fq
and the uniform distribution. By definition, we

have:

Δ =
1
2

∑
x̄∈XE,Fq

∣∣∣∣
#F−1(x̄)
#S(Fq)

− 1
#XE,Fq

∣∣∣∣.

Now for each element x̄ ∈ XE,Fq
, there are exactly two points of E(Fq) with

x-coordinate equal to x̄, except if g(x̄) = 0, in which case there is exactly one
(and this happens for at most three values of x̄). Taking the point at infinity
into account, we therefore get:

#XE,Fq
=

1
2
#E(Fq) + O(1) =

q

2
+ cE

√
q + O(1) for some cE with |cE | ≤ 1

by yet another application of the Hasse–Weil bound. Up to sign, the constant
cE is half the normalized Frobenius trace of E.

Moreover, S(Fq) is the disjoint union of the various affine conics
{
x2 +

h(u0)y2 = −g(u0), u = u0

}
for all u0 ∈ Fq. Those conics are nondegenerate

whenever g(u0)h(u0) 	= 0, in which case they have q +O(1) points. In remaining
exceptional cases, they have at most 2q points. As a result, we get:

#S(Fq) =
(
q − O(1)

) · (
q + O(1)

)
+ O(1) · O(q) = q2 + O(q).
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As for the number of preimages of F , we know by Theorem 1 that for each
x̄ ∈ XE,Fq

\ Xbad, where Xbad is a set of 39 points, there exists c0,x̄ ∈ [−22, 22]
such that:

#F−1(x̄) = 2q + c0,x̄
√

q + O(1) ∀x̄ ∈ XE,Fq
\ Xbad

For x̄ ∈ Xbad, we can still obtain a less strict but simpler bound: note that
for any fixed u = u0 ∈ Fq the equations x̄ = x1(x, y, u0), x̄ = x2(x, y, u0) and
x̄ = x3(x, y, u0) have at most 2, 2, and 4 solutions in S, respectively (these
solutions are given explicitly in Sect. 6). Hence, any point can have at most 8
preimages for any fixed u0 and at most 8q preimages in all.

We can now bound Δ as follows:

2Δ =
∑

x̄∈XE,Fq \Xbad

∣
∣
∣∣
#F −1(x̄)

#S(Fq)
− 1

#XE,Fq

∣
∣
∣∣ +

∑

x̄∈Xbad

∣
∣
∣∣
#F −1(x̄)

#S(Fq)
− 1

#XE,Fq

∣
∣
∣∣

=
∑

x̄∈XE,Fq \Xbad

∣
∣
∣∣
2q + c0,x̄

√
q + O(1)

q2 + O(q)
− 1

q/2 + cE
√

q + O(1)

∣
∣
∣∣

+
∑

x̄∈Xbad

∣
∣
∣∣

cbad,x̄q

q2 + O(q)
− 1

q/2 + cE
√

q + O(1)

∣
∣
∣∣

=
∑

x̄∈XE,Fq \Xbad

1

q

∣
∣
∣
∣
(
2 + c0,x̄q−1/2 + O(q−1)

) − (
2 − cEq−1/2 + O(q−1)

)
∣
∣
∣
∣

+
∑

x̄∈Xbad

1

q

∣∣
∣
∣
(
cbad,x̄ + O(q−3)

) − (
2 − cEq−1/2 + O(q−1)

)
∣∣
∣
∣

=
∑

x̄∈XE,Fq \Xbad

1

q

∣
∣∣
∣
(
c0,x̄ + cE

)
q−1/2 + O(q−1)

∣
∣∣
∣ +

∑

x̄∈Xbad

1

q

∣
∣∣
∣cbad,x̄ − 2 + O(q−1/2)

∣
∣∣
∣

where each of the constants c0,x̄ is in [−22, 22] and each of the constants cbad,x̄
is in [0, 8]. In particular, |c0,x̄ + cE | ≤ 23 and |cbad,x̄ − 2| ≤ 6 for all x̄, and we
have:

2Δ ≤ #
(
XE,Fq

\ Xbad
)

q
· (

23q−1/2 + O(q−1)
)

+
#Xbad

q
· (

6 + O(q−1/2)
)

=
1
2q + O(

√
q)

q
· (

23 + o(1)
)
q−1/2 +

39
q

· (
6 + o(1)

)

=
(23

2
+ o(1)

)
q−1/2 ≤ 2 · (

6 + o(1)
)
q−1/2

as required.

As an easy consequence, we obtain the following theorem.

Theorem 2. The map F0 : S(Fq) → XE,Fq
of Eq. (7) is ε-admissible for ε =(

6+o(1)
)
q−1/2. In particular, if h is a random oracle with values in S(Fq), F0◦h

is indifferentiable from an XE,Fq
random oracle.

Moreover, the same results hold for F+
0 : S(Fq) × {0, 1} → E(Fq).



80 J. Chavez-Saab et al.

Proof. By definition, we need to prove that F0 is efficiently computatable, ε-
regular and ε-samplable. Computability is obvious. Regularity is the result of
Lemma 4. And 0-samplability is obtained using the preimage sampling algorithm
discussed in Sect. 6 below. To fix ideas, we sketch its construction.

Fix x̄ ∈ XE,Fq
. As previously mentioned, for any fixed u0 ∈ Fq, there are

at most 8 preimages (x, y, u) ∈ F−1(x̄) such that u = u0 (at most two coming
from each of x1 and x2 and four coming from x3). We can efficiently compute all
those preimages and in particular count them. Therefore, the following simple
rejection sampling algorithm has an output distribution uniform in F−1(x̄): pick
u0 uniformly at random, compute the list Lu0 of preimages with u = u0, restart
with probability 1 − #Lu0/8 and otherwise return a random element of Lu0 .

Finally, the extension to F+
0 is straightforward.

4 Parametrizing the SW Conic

4.1 Parametrizability Conditions

In the previous section, we have seen how the Shallue–van de Woestijne construc-
tion could be leveraged to construct admissible encodings F0 : S(Fq) → XE,Fq

and F+
0 : S(Fq) × {0, 1} → E(Fq). However, we have also seen that mapping to

Fq-points on the surface S efficiently (without base field exponentiations) is a
priori not straightforward, since the most naive approach involves finding points
on new conics for all inputs.

Fortunately, the surface S has a fairly simple description: it can be seen as a
one-parameter family of conics (the conics Su; this is also called a relative conic
over the u-line, or a fibration in conics, etc.). In any case, finding a global, two-
parameter parametrization of S is thus a function field analogue of the classical
problem, studied by Legendre, of finding rational points on conic over Q.

In their paper [vHC06], van Hoeij and Cremona show that Legendre’s orig-
inal approach can be directly adapted to the function field case. They provide
necessary and sufficient conditions for the existence of solutions, as well as an
effective algorithm to compute the parametrization if it exists.

A special case of their main result in as follows.

Lemma 5 (van Hoeij–Cremona). Let r, s be polynomials in Fq[u] that are
coprime, squarefree, and such that at least one of them is of odd degree. Then,
the following projective conic over Fq(t):

X2 + rY 2 + sZ2 = 0

admits rational points over Fq(u) (i.e., a global rational parametrization) if and
only if the following two conditions hold:

1. −r is a square in Fq[u]/(s)
2. −s is a square in Fq[u]/(r).

Moreover, if this is the case, there is an efficient algorithm to compute those
points.
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Proof. This is a special case of [vHC06, Th. 1]. More precisely, the assumptions
ensure that the conic is in reduced form and in “case 1”, in the terminology of
van Hoeij and Cremona, and the squareness conditions are equivalent to the
existence of a “solubility certificate”.

The proof presented by van Hoeij and Cremona is constructive in that it
yields an explicit algorithm for finding the rational parametrization. Our case of
interest, corresponding to the surface S, is r = h(u) = 3u2 + 4a and s = g(u) =
u3 +au+b (except when a = 0, in which case a slight adjustment is necessary to
meet the assumptions of the theorem). In that case, if a parametrization exists,
it can be put in the form where Z = 1, and X,Y are polynomials of degree 2
and 1 in u respectively, as will be shown below. These polynomials depend only
on the parameters a, b of the target elliptic curve, so the polynomial coefficients
can be precomputed while their evaluation at a given u is done at runtime.

4.2 Curves with a Parametrizable SW Conic

Due to the conditions in Lemma 5, the SwiftEC encoding is not applicable
to every ordinary elliptic curve. We present a different characterization of these
conditions from the point of view of the target curve’s geometric properties.

Theorem 3. The surface S, as a one-parameter family of conics, admits a
global two-parameter parametrization if and only if the following three condi-
tions are satisfied.

1. The size of the field satisfies q ≡ 1 mod 3 (i.e., −3 is a square in Fq).
2. The discriminant ΔE = −16(4a3 + 27b2) is a square in Fq (i.e. E has either

zero or three points of order 2).
3. At least one of the constants ν± = 1

2 (−b ± √−3ΔE/36) is a square in Fq.

Proof. As a first observation, note that if we let r = h(u) and s = g(u), then r
and s are indeed coprime (their resultant is 4a3 + 27b2 = −ΔE/16 	= 0) and s is
of odd degree and squarefree. Moreover, r is squarefree if and only if a 	= 0. For
now, we assume that a 	= 0, so that Lemma 5 applies directly. We will treat the
special case of a = 0 at the end.

Let us first assume that −h is a square in Fq[u]/(g) and −g is a square in
Fq[u]/(h). Note that h and g are coprime since their resultant is 4a3 + 27b2 =
−ΔE/16 	= 0, so the law of quadratic reciprocity over function fields gives

(−h

g

)

2

(
g

−h

)

2

= (−1)
q−1
2 deg g deg hχ2(1)deg hχ2(−3)deg g

1 ·
(

g

−h

)

2

= 1 · 1 · χ2(−3), (9)

where
(

·
f

)
2

and χ2(·) denote quadratic residue symbols over Fq[u]/(f) and Fq,
respectively.
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On the other hand, we have

1 =
(−g

h

)

2

=
(−1

h

)

2

(−g

h

)

2

= χ2(−1)2
(

g

−h

)

2

=
(

g

−h

)

2

,

so (9) reduces to χ2(−3) = 1, which shows the necessity of condition 1.
Next, since −g is a square in Fq[u]/(h), there exists α, β ∈ Fq such that:

−g ≡ (αu + β)2 (mod h)

−u3 − au − b ≡ α2u2 + 2αβu + β2 (mod 3u2 + 4a)
4a

3
u − au − b ≡ −4a

3
α2 + 2αβu + β2 (mod 3u2 + 4a)

a

3
u − b = 2αβu +

( − 4a

3
α2 + β2

)
.

It follows that the constants α, β satisfy

a

3
= 2αβ (10)

b =
4a

3
α2 − β2. (11)

Recalling that a 	= 0, it follows from (10) that α, β 	= 0 and we can substitute
β = a/(6α) into (11) to obtain

48aα4 − 36bα2 − a2 = 0, (12)

which is a quadratic equation on α2 whose discriminant is 362b2+192a3 = −3ΔE .
Since −3 is a square, it follows that ΔE must also be a square for α2 to exist,
showing the necessity of condition 2. The solution to (12) is then given by

α2 =
36b ± √−3ΔE

96a
=

−3
4a

ν±. (13)

If a is a square this means that at least one of ν± must be a square for α to
exist. On the other hand, if a is not a square then the same condition always
holds since the product ν+ν− = −a3/27 is a non-square.

The proof of the converse is similar: if conditions 2 and 3 are met then there
exists α, β ∈ Fq that are solutions to (10) and (11), which shows that −g has a
square root mod h, and then condition 1 together with (9) shows that −h is a
square mod g.

Finally, consider the special case a = 0. In that case, since h(u) = 3u2, we
can apply the change of variables Y ′ = uY to reduce to the case of the conic:

X2 + 3Y 2 + gZ2 = 0,

i.e., r = 3 and s = g. It is then clear that r and s are coprime, squarefree, and
one of them is of odd degree. Moreover, the condition that −s is a square modulo
r is vacuous, and the condition that −r is a square modulo s simply says that
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−3 is a square in Fq[u]/(g); since that etale algebra admits either Fq or Fq3 as
a factor, this is equivalent to −3 being a square in Fq, namely q ≡ 1 (mod 3)
as required. This shows that in this case, condition 1 is necessary and sufficient.
The result still holds, however, because conditions 2 and 3 become vacuous: the
discriminant ΔE = −16(27b2) = −3 · 122b2 is always a square, and one of ν± is
always zero.

Out of the three conditions in Theorem 3, condition 1 is the most restrictive
discarding half of the prime fields. Condition 3 only fails about 1/4 of the time,
whereas condition 2 fails half of the time. However, conditions 2 and 3 are not
isogeny-invariant and so they may be circumvented under certain conditions by
finding a small-degree isogeny and mapping to the isogenous curve instead, as
discussed in the next section.

Notable curves that satisfy the conditions for SwiftEC include the NIST
P-256 curve, the curve secp256k1 used in Bitcoin [SEC10] and the pairing-
friendly curve BLS12-381 [Bow17] as well as all BN curves [BN06] and BLS
curves [BLS03] over any field with q ≡ 1 mod 3. On the other hand, curves
such as the Ed448-Goldilocks curve [Ham15] and the NIST P-384 curve are
incompatible due to the field cardinality alone.

4.3 Reaching More Curves with Isogenies

While Theorem 3 discards the possibility of applying SwiftEC directly to curves
with a non-square discriminant, here we present a small modification that can
work around this condition, at least some of the time. The condition that the
discriminant be a square is invariant under isomorphisms, but not under iso-
genies. Hence, we may hope that there is an isogenous curve that satisfies the
condition and compose the SwiftEC encoding to this curve with the isogeny
to obtain a map to the original curve. Curves with a non-square discriminant
always contain exactly one point of order 2, so one may be tempted to exploit the
small 2-isogeny that is available. The following result shows that this intuition
is correct, and indicates exactly when this is possible.

Theorem 4. Let E/Fq be an elliptic curve with non-square discriminant. There
exists a curve E′ with square discriminant isogenous to E over Fq if and only if
E(Fq) has a point of order 4. In this case, the isogeny can always be taken to be
of degree 2.

Proof. First suppose we have a point P4 ∈ E(Fq) of order 4, and let P2 = 2P4

be the unique point of order 2 in E(Fq). If φ : E → E′ is the isogeny with
kernel < P2 >, then φ(P4) is a point of order 2 in E′. There must also exist a
point P ′

2 ∈ E′(Fq) of order 2 generating the dual isogeny φ̂, and we cannot have
φ(P4) = P ′

2 because φ̂(P ′
2) = 0 but φ̂(φ(P4)) = 2P4 	= 0. This means we have

two distinct points of order 2 in E′, and their addition yields a third point of
order 2, so E′ must have a square discriminant as desired.

Conversely, if E has no point of order 4 then the group order is divisible by
2 exactly once, so any isogenous curve will also have exactly one point of order
2 and hence have a non-square discriminant.
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Note that the application of the 2-isogeny is a 2-to-1 map that would make the
distribution easily distinguishable from uniform. However, in essentially all cases
of interest, one needs to sample points only in a specific subgroup orthogonal to
the 2-torsion subgroup. For instance, consider Curve25519 [Ber06] which is non-
compatible with our construction because it does not have a square discriminant.
The curve is given by

E25519 : y2 = x3 + 486662x2 + x

over the prime field of size p = 2255 − 19. The group order for this curve is
#E25519 = 8� where � is a large prime, and points in the �-torsion subgroup are
used in the ECDH scheme. We can use SwiftEC to map onto the 2-isogenous
curve

E′ : y2 = x3 − 102314837774592x + 398341948567736549376

which does satisfy all conditions of Theorem 3. By composing with the 2-isogeny
generated by P ′

2 = (−11679888, 0) and the multiplication-by-4 map, we are
able to hash into the �−torsion subgroup of Curve25519 at the cost of only
an additional 20 field multiplications, 7 squarings and 11 additions. This is to
our knowledge the only currently known way of hashing deterministically and
indistinguishably into this subgroup using a single square root.

Likewise, condition 3 may also be circumvented with isogenies and in this
case we are not limited to degree 2 only. For instance, the curve secp521r1 also
known as NIST P-521 already has a square discriminant but fails condition 3.
However, it is 5-isogenous to the curve

E′′ : y2 = x3 + ax + b,

a=0x149a4e89bde4ad2e72c830ce3df36200e03c1abb6403f3a50cc56be41b0bd98f6a2bb16b7...

...5027c89a68174a7c458a0333ff283225259b57414a2e04a0681ca279a0

b=0x49d903da04fb382a8daec077738d7f3f5a2ca21e053847fb43c4740c39eaf3d2727a9898...

...d710bdcfa306450d7102a03bf9164294ee1a849928687cc8b343a3ed24

which satisfies all the conditions for SwiftEC, so we can map onto secp521r1 by
using our construction on E′′ and then composing with a 5-isogeny at negligible
overhead. Since the group order is coprime to 5, the isogeny is already a bijection.

In this way, one can always expect to find some isogeny of arbitrary degree
that will work, so condition 3 can in principle always be circumvented, although
an isogeny of small degree is more desirable for efficiency reasons. On the other
hand, Theorem 4 shows that condition 2 fails irremediably if and only if the
group order is divisible by 2 exactly once, so overall we heuristically expect
SwiftEC to be adaptable to a fraction 3/4 of all elliptic curves over fields with
q ≡ 1 mod 3.
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5 The SWIFTEC Encoding

5.1 Efficient Computation

As a proof of principle, we have prepared a Sage implementation of SwiftEC
that allows adding new compatible curves in a simple way. This implementation
makes explicit the number of field operations needed and uses a constant number
of them, but is non-constant time to the degree that the built-in field operations
are. Our implementation is freely available at https://github.com/Jchavezsaab/
SwiftEC.

For curves with a 	= 0, the implementation makes use of the polynomials
X0(u), Y0(u) that evaluate a point in Su as discussed in Sect. 4. Since these
polynomials only depend on the curve coefficients a, b, they are precomputed
and stored in the form of five field elements, with explicit formulas provided
in the extended version of this work [CRT22]. On input u, t, the initial point
(X0(u), Y0(u)) ∈ Su is evaluated and then a second point (X,Y ) ∈ Su is obtained
from the parametrization

X(u, t) =
g(u) + h(u)(Y0(u) − tX0(u))2

X0(u)(1 + t2h(u))
, (14)

Y (u, t) = Y0(u) + t(X − X0(u)).

In the case where a = 0, we have simply g(u) = u3+b and h(u) = 3u2. In this
case the van Hoeij-Cremona algorithm described in Sect. 4 always yields the point
at infinity (X0 : Y0 : Z0) = (

√−3 : 1 : 0), so the formulas for the parametrization
have to be adjusted. We can skip the computation of X0(u), Y0(u) altogether and
apply the following formulas directly:

X(u, t) =
u3 + b − t2

2t
, (15)

Y (u, t) =
X(u, t) + t

u
√−3

.

Finally, we apply the map ψ from (6) to get a point (x1, x2, x3, z) ∈ V (Fq).
It is not actually necessary to compute the z-coordinate of this point, and the
xi coordinates are computed projectively so that what we actually obtain is a
projective triplet (x1 : x2 : x3 : λ). Note that this introduces a small bias towards
the point at infinity: if any of the xi are infinite then we have to set λ = 0 and
all three points will be interpreted as being infinite. However, we neglect this
since the bias is negligible and dealing with this case explicitly would produce a
non-constant-time implementation.

We must then find which of the xi is the x-coordinate of a point in E(Fq),
choosing one arbitrarily but deterministically if all three are. This can be imple-
mented in constant time as shown in Algorithm 1 which prioritizes x3.

Finally, we use a single inverse to compute the affine x-coordinate and a
square root computation (the only one throughout the whole program) to recover
the y-coordinate. Note that there is a free choice for the sign of y in the end,
which we integrate as an additional input bit.

https://github.com/Jchavezsaab/SwiftEC
https://github.com/Jchavezsaab/SwiftEC
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Algorithm 1. x-picking algorithm.
Input: The projective xi coordinates (x1 : x2 : x3 : λ) of a point in V (Fq)
Output: One of the xi which is the x-coordinate of a point in E(Fq).
1: s2 ← x3

2λ + ax2λ
3 + bλ4

2: s3 ← x3
3λ + ax3λ

3 + bλ4

3: c2 ← IsSquare(s2)
4: c3 ← IsSquare(s3)
5: cswap(c2, x1, x2)
6: cswap(c3, x1, x3)
7: return (x1 : λ)

5.2 XSWIFTEC: x-Only Computation Without Exponentiation

Note that the only inverse and square root needed for SwiftEC are at the
very end when the affine x, y coordinates are computed. However, there are
many applications where obtaining an output in x-only projective coordinates
is acceptable, and these operations can be omitted. The resulting XSwiftEC
algorithm requires no inversions, square roots or exponentiations of any kind,
but only two Jacobi symbol computations that are considerably cheaper and
other elementary field operations.

This is particularly useful for the cases when SwiftEC is composed with a
2-isogeny as described in Sect. 4.3: even if an affine x, y output is desired, we are
better off using XSwiftEC and recovering the affine coordinates after applying
the projective x-only 2-isogeny formulas.

Although the output (x : λ) that is obtained is indistinguishable from uniform
as a projective pair, the individual values of x and λ are not and may leak
information about the input. This can be easily circumvented by multiplying
both coordinates by a random field element, or it may be ignored to avoid relying
on randomness in applications where this leakage is not a concern.

5.3 Implementation Results

We summarize in Table 1 the cost in operations for each version of SwiftEC.
The most noteworthy feature is the requirement of only one square root compu-
tation (and none when the y coordinate is not required), which is an improve-
ment on previous admissible encodings to ordinary elliptic curves. Moreover,
the square-root and the inversion can be performed simultaneously for further
savings as described by Hamburg [Ham12].

The results shown are for the a 	= 0 implementation. The implementations
for a = 0 always save exactly 7 additions and 6 multiplications due to the simpler
formulas in (15).

6 SWIFTEC For Point Representation: ELLIGATORSWIFT

In this section we describe an algorithm to efficiently compute a uniformly ran-
dom preimage of any point under SwiftEC. The existence of this algorithm is
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Table 1. Cost in operations of our implementations of SwiftEC for field additions,
squarings, multiplications, Jacobi symbol computations, inversions, and square roots.

Add Sqr Mul Jac Inv Sqrt

SwiftEC 25 7 18 2 1 1
SwiftEC with isogeny 36 14 38 2 1 1
XSwiftEC 22 9 23 2 0 0
XSwiftEC with isogeny 33 14 35 2 0 0

required for the encoding to be admissible, which is crucial for using SwiftEC
as part of a cryptographically secure hash function as described in Sect. 2. More-
over, it is important in practice because it allows us to encode points in an
elliptic curve as uniform bitstrings, as is done in Elligator [BHKL13] and Elliga-
tor Squared [Tib14a].

Compared to Elligator Squared, our ElligatorSwift construction has the
advantage that it does not need to compute any encodings in the forward direc-
tion. Indeed, all we need is to sample a random u ∈ Fq and then find an inverse
F−1
0,u(P ) of the SW encoding.

We first focus on inverting the map Ψ and note that under a change of
variables v = x/2y − u/2 and w = 2y, the image in (6) becomes

x1 = v, x2 = −u − v, x3 = u + w2,

while the equation for the conic becomes

w2(u2 + uv + v2 + a) = −(u3 + au + b). (16)

This yields up to four possible preimages for a given point (x, y) ∈ E(F ), namely:

1. v = x and w2 derived from (16), if x was drawn from x1

2. v = −u − x and w2 derived from (16), if x was drawn from x2

3,4. w2 = x − u and v derived from (16), if x was drawn from x3,

where the last case actually contains two preimages since (16) is a quadratic
equation for v with solutions

v =
−u

2
±

√−w2(4u3 + 4au + 4b + 3w2u2 + 4aw2)
2w2

.

Moreover, all cases have a duplicity from choosing the sign of w =
√

w2, so there
are up to 8 preimages in total per elliptic curve x coordinate. Note that flipping
the sign of w produces a new point in S that maps to the same x coordinate, so in
cases where we need to distinguish between the choice of sign for the elliptic curve
y coordinate this can be encoded into w by always choosing sgn(w) = sgn(y).
This choice gives up to 4 preimages for each pair of coordinates (x, y), and allows
the decoder to recover the correct choice of sgn(y) when computing SwiftEC
in the forward direction.
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Of course, some of the square roots needed may not exist and so different
values of u will yield a different number of preimages of a given point (including
possibly none). On top of this, if the preimage comes from cases 1 or 2 but
results in values where all three xi yield points in E(Fq), then the preimage will
be invalid even if the square root is well-defined since Algorithm 1 in the forward
encoding would have prioritized x3 over the intended one. Care must therefore
be taken to check for the existence of the various square roots and restart the

Algorithm 2. ElligatorSwift.
Input:(x, y) ∈ E(Fq)

Output: u, t, b
$←− SwiftEC−1(x, y)

1: u
$←− Fq

2: case
$←− {1, 2, 3, 4}

3: if case == 1 then
4: v ← x
5: if IsSquare((−v − u)3 + a(−v − u) + b) then
6: go to 1
7: end if
8: w2 ← −(u3 + au + b)/(u2 + uv + v2 + a)
9: else if case == 2 then

10: v ← −x − u
11: if IsSquare(v3 + av + b) then
12: go to 1
13: end if
14: w2 ← −(u3 + au + b)/(u2 + uv + v2 + a)
15: else
16: w2 ← x − u
17: r ← √−w2(4u3 + 4au + 4b + 3w2u2 + 4aw2)
18: if r == Null then
19: go to 1
20: end if
21: v ← −u/2 + r/2w2

22: end if
23: w ← √

w2

24: if w == Null then
25: go to 1
26: end if
27: if sgn(w) �= sgn(y) then
28: w ← −w
29: end if
30: Y ← 2w/2
31: X ← 2Y (v + u/2)
32: Evaluate X0(u) and Y0(u) from precomputed polynomials
33: t ← (Y − Y0)/(X − X0)
34: return u, t
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procedure when appropriate, as shown in Algorithm 2. This makes the algorithm
run in non-constant time but ensures that the preimage is uniformly sampled.

What remains is just to switch back to x, y coordinates and invert the
parametrization (14) to recover the parameter t.
Remark: For implementations with a = 0 we must take into account the differ-
ent parametrization formulas in (15). In this case, lines 29 and 30 of Algorithm 2
can be replaced by simply t ← Y u

√−3 − X, where the constant
√−3 is part of

the precomputed parameters.
We assume that the square root function returns Null for non-squares. It is

easy to see that the output of Algorithm 2 is uniformly distributed since each u
is attempted with a random choice of one of the 4 cases, so the probability of
each u being successful is proportional to how many preimages exist under it.

The main cost of Algorithm 2 is an average of 1.5 square root computations
per iteration. Since most points have roughly 2q preimages as per Theorem 1, we
can expect each choice of u to contain on average 2 valid preimages out of the 8
possible ones, and so the expected number of iterations is 4. Notice however that a
failed iteration can be aborted before computing any square roots by first comput-
ing the corresponding Jacobi symbols, which can be done much more efficiently
with constant-time efficient implementations such as [Por20,Ham21,AG21] (by a
factor of around 10× for most commonly-used primes). The cost of Elligator-
Swift is therefore always exactly 1 or 2 square root computations, and 6 Jacobi
symbol computations on average. This is a considerable improvement over Elliga-
tor Squared, with an average cost of 6.5 square roots.

As for curves where we need to compose SwiftEC with an isogeny, we can
obtain a corresponding variant of ElligatorSwift by composing with the dual
isogeny, but this has the side effect of introducing a multiplication by the isogeny
degree in the round trip. This can be circumvented by adding a point division
before applying ElligatorSwift, which is important for demonstrating that
the encoding with the isogeny trick is still admissible. However, the resulting
ElligatorSwift construction would be unappealing in terms of efficiency.

7 Conclusion

In this paper we presented SwiftEC, which is the first admissible and constant-
time encoding using a single square root that is applicable to a large class of
ordinary elliptic curves. This construction can lead to considerable performance
speedup compared to previously known methods. For instance, an efficient imple-
mentation of SwiftEC and ElligatorSwift for secp256k1 benchmarked sug-
gest computational savings of more than 50% when compared to their Elligator
Squared counterparts [Wui22]. On the other hand, in applications such as hash-
ing into BLS curves where we ultimately aim to map to points belonging to the
elliptic curve subgroups G1 and G2, the dominant cost might not be the square-
root computation associated to SwiftEC’s savings, but rather the clearing of
a per-curve fixed cofactor (typically, this cofactor is relatively small for G1 but
much larger for G2).
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While some curves remain incompatible with SwiftEC, our construction
applies to roughly 3/4 of all curves over fields with q ≡ 1 mod 3. The inverse
encoding also results in an Elligator-like encoding that is significantly more effi-
cient than previous constructions, using more than four times less square roots
on average than Elligator Squared, while retaining the same data transmission
size of two field elements.

It is still an open problem to determine if there are any workarounds that
could extend this encoding to more of the non-compatible curves, or even to find
a single-square root admissible encoding that could be applied to all ordinary
elliptic curves.

Acknowledgement. We thank Pieter Wuille for several insights regarding small opti-
mizations and special cases of ElligatorSwift, as well as sharing with us preliminary
benchmarks of his optimized SwiftEC and ElligatorSwift implementations. We
also thank Diego Aranha for extensive discussions on the efficiency of the Jacobi symbol
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