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Abstract. OMAC — a single-keyed variant of CBC-MAC by Iwata and
Kurosawa — is a widely used and standardized (NIST FIPS 800-38B,
ISO/IEC 29167-10:2017) message authentication code (MAC) algorithm.
The best security bound for OMAC is due to Nandi who proved that
OMAC’s pseudorandom function (PRF) advantage is upper bounded
by O(q2�/2n), where n, q, and �, denote the block size of the under-
lying block cipher, the number of queries, and the maximum permis-
sible query length (in terms of n-bit blocks), respectively. In contrast,
there is no attack with matching lower bound. Indeed, the best known
attack on OMAC is the folklore birthday attack achieving a lower bound
of Ω(q2/2n). In this work, we close this gap for a large range of mes-
sage lengths. Specifically, we show that OMAC’s PRF security is upper
bounded by O(q2/2n + q�2/2n). In practical terms, this means that for a
128-bit block cipher, and message lengths up to 64 GB, OMAC can pro-
cess up to 264 messages before rekeying (same as the birthday bound).
In comparison, the previous bound only allows 248 messages. As a side-
effect of our proof technique, we also derive similar tight security bounds
for XCBC (by Black and Rogaway) and TMAC (by Kurosawa and Iwata).
As a direct consequence of this work, we have established tight security
bounds (in a wide range of �) for all the CBC-MAC variants, except for
the original CBC-MAC.

Keywords: OMAC · CMAC · XCBC · TMAC · CBC-MAC · PRF ·
Tight security

1 Introduction

Message Authentication Code (or, MAC) algorithms are symmetric-key primi-
tives which are used for data authenticity and integrity. The sender generates
a short tag based on message and a secret key which can be recomputed by
any authorized receiver. MACs are commonly designed either based on a hash
function or a block cipher. CBC-MAC is a block cipher-based MAC (message
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authentication code) which is based on the CBC mode of operation invented by
Ehrsam et al. [11]. Given an n-bit block cipher E instantiated with a key K,
the CBC-MAC construction is defined recursively as follows: for any x ∈ {0, 1}n,
CBCEK

(x) := EK(x). For all m = (m[1], . . . ,m[�]) ∈ ({0, 1}n)� where � ≥ 2, we
define

CBCEK
(m) := EK(CBCEK

(m[1], . . . ,m[� − 1]) ⊕ m[�]) (1)

It was an international standard, and has been proven secure for fixed-length
messages or prefix-free message spaces (i.e., no message is a prefix to another
message). Simple length extension attacks prohibit its usage for arbitrary length
messages. However, appropriately chosen operations to process the last block
can resist these attacks. One such idea was first applied in EMAC [2,4], where
the CBC-MAC output was encrypted using an independently keyed block cipher.
It worked for all messages with lengths that are divisible by the block size of the
underlying block cipher. Black and Rogaway proposed [5] three-keyed construc-
tions, ECBC, FCBC, and XCBC, which are proven to be secure against adver-
saries querying arbitrary length messages. Later, in back-to-back works, Iwata
and Kurosawa proposed two improved constructions (in terms of the key size),
namely, TMAC [17] that uses two keys, and OMAC1 [12] that requires just a
single key. Nandi proposed [20] GCBC1 and GCBC2, a slight improvement over
OMAC in terms of the number of block cipher calls for multi-block messages.

1.1 Related Works and Motivation

It is well-established [1] that the security of any deterministic MAC can be quan-
tified via the pseudorandom function (or PRF2) security. Consequently, most of
the works on CBC-MAC variants analyze their PRF security. For constructions
like ECBC, FCBC and EMAC, Pietrzak [25] showed a PRF bound of O(q2/2n)
for � < 2n/8, where q and � denote the number of messages and the maximum
permissible length (no. of n-bit blocks) of the messages. Later, Jha and Nandi
[15] discovered a flaw in the proof of the earlier bound and showed a bound of
O(q/2n/2) up to � < 2n/4. However, in these constructions an extra (indepen-
dent) block cipher is called at the end. Considering the number of block cipher
calls, XCBC, TMAC and OMAC are better choices. XCBC uses two independent
masking keys for the last block which are used depending on whether the last
block is padded or not. In case of TMAC, the two masking keys are derived from
a single n-bit key. OMAC optimized the key derivation further. Here, both the
keys are derived using the underlying block cipher itself. Thus, it is much better
in this respect. Classical bound for these constructions was O(σ2/2n) [5,17], σ
being the total number blocks among all the messages. Later, in a series of work
[13,19,21,22], the improved bounds for XCBC, TMAC, and OMAC were shown to
be in the form of O(q2�/2n), O(σ2/2n) and O(σq/2n). Interestingly, it has also
1 This is same as CMAC [10] — a NIST recommended AES based MAC — for appro-

priate choice of constants.
2 A keyed construction is called a PRF if it is computationally infeasible to distinguish

it from a random function.
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been shown in [14] that if we use a PRF, instead of a block cipher in these con-
structions, there is an attack with roughly Ω(q2�/2n) advantage, which is tight.
No such attack is known in the presence of a block cipher. This gives an implicit
motivation to study the exact security of these constructions in the presence of
block ciphers. In this paper, we aim to show birthday-bound security for these
block cipher based MACs for a suitable range of message lengths.

In a different paradigm but with similar motivations, recently Chattopad-
hyay et al. [8] showed birthday-bound security for another standardized MAC
called LightMAC [18]. However, similar result for original PMAC [6] is still an
open problem (although a result is available for its variant in [7]). In addition
to the improved bound for LightMAC, Chattopadhyay et al. proposed a new
proof approach called the reset-sampling method. They also hinted (via a very
brief discussion) that this method could be useful for proving better security
for OMAC. However, the discussion in [8] is overly simplistic and contains no
formal analysis of bad events. Indeed, the reset-sampling is more involved than
anticipated in [8], giving rise to some crucial and tricky bad events (see Sect. 4).
To their credit, they do say that

A more formal and rigorous analysis of OMAC using reset-sampling will
most probably require handling of several other bad events, and could be
an interesting future research topic.

In this paper, we take up this topic and give a complete and rigorous analysis.

1.2 Our Contributions

In Sect. 3, we show that the PRF advantages for OMAC, XCBC and TMAC are
upper bounded by O

(
q2/2n

)
+ O

(
q�2/2n

)
, which is almost tight in terms of

the number of queries q while � � 2n/4. This bound is not exactly the birthday
bound O

(
q2/2n

)
, but for any fixed target advantage, in terms of the limit on q it

behaves almost like the birthday bound for a fairly good range of � (see the fol-
lowing discussion). The proof of our security bound is given in Sect. 4 and follows
the recently introduced reset-sampling approach [8]. These improved bounds, in
combination with previous results [15,16] for EMAC, ECBC and FCBC, com-
pletely characterize (see Table 1) the security landscape of CBC-MAC variants
for message lengths up to 2n/4 blocks.

A Note on the Tightness and Improvement in Bounds: In Fig. 1, we
present a graph3 comparing the best known bound for OMAC [21], i.e., B1(�, q) =
10q2�/2n, the ideal birthday bound, i.e., Bid = q2/2n, and the bound shown in
this paper (see Theorem 3.1), i.e., B2(�, q) ≈ 16q2

2n + 2q�2

2n (as the remaining terms
are dominated by these two terms). In the graph, we show the trade-off curve
for the parameters X = log � and Y = log q, where log denotes “log base 2”, for
a fixed choice of advantage value, say ε = 2−a for some a ∈ N. Let na := n − a.
Then, we have

3 Using GeoGebra Classic available at https://www.geogebra.org/classic.

https://www.geogebra.org/classic
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Table 1. Summary of security (PRF advantage) bounds for the CBC-MAC family. Here
n, q, �, and σ denote the block size, number of queries, maximum permissible message
length, and sum of message lengths of all q queries, respectively.

Scheme
State-of-the-art This paper

Bound Restriction Bound Restriction

CBC-MAC [11] O (σq/2n) [15,16] � = o
(
2n/3

)
- -

EMAC [2,4] O
(
q2/2n + q�2/2n

)
[15,16] - - -

ECBC,FCBC [5] O
(
q2/2n + q�2/2n

)
[15,16] - - -

XCBC [5], TMAC [17]
O

(
q2�/2n

)
[19]a � = o

(
2n/3

)
O

(
q2/2n + q�2/2n

)
-

O
(
σ2/2n

)
[13]a -

OMAC [12] O (σq/2n) [21] � = o
(
2n/3

)
O

(
q2/2n + q�2/2n

)
-

a σ2 and q2� are incomparable, as they depend on the query length distribution.

Bid : Y =
na

2
B1 : X + 2Y = na − log 10 B2 : log(16 · 22Y + 2 · 22X+Y ) = na.

Looking at the equation related to the bound B2 we can see that it is actually
a combination of two linear equations: 2Y = na − 4 and 2X + Y = na − 1, the
choice depending on whether 16q2/2n or 2q�2/2n dominates. Precisely, the curve
expressing the relation between log � and log q in B2 is {(X,Y ) : X ≤ n/4, Y =
min{(na − 4)/2, na − 1 − 2X}}. From the above linear equations two important
facts about the curve related to B2 can be noticed:

– It remains very close to the straight line corresponding to Bid from (0, na−4
2 )

to (na+2
4 , na−4

2 ) and then moves downward.
– At around (na+1

3 , na−5
3 ) it starts to degrade below the curve related to B1 .

For example, if we take (n, a) = (128, 32), the bound proved in this paper is very
close to the birthday bound for � ≤ 225 and even after degrading, it remains
better than the bound in [21] till � ≤ 232. Moreover, if we take (n, a) = (128, 64),
q remains 230 until � ≤ 216 and degrades below the existing bound only after
� ≥ 222. Thus, if we consider the advantage in general terms, we can always take
the minimum among the advantage proved in this paper and that proved in [21].

2 Preliminaries

For n ∈ N, [n] and (n] denote the sets {1, 2, . . . , n} and {0}∪[n], respectively. The
set of all bit strings (including the empty string ⊥) is denoted {0, 1}∗. The length
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1.1: For ε = 2−1 1.2:For ε = 2−64

Fig. 1. (log �, log q)-Trade-off Graph for the bounds of OMAC. For n = 128, and two
different choices of the target advantage, ε = 2−1 (on the left), and ε = 2−64 (on
the right), the above graphs show the relation between X = log � and Y = log q.
The dashed, dotted and continuous curves represent the equations Bid, B1, and B2,
respectively.

of any bit string x ∈ {0, 1}∗, denoted |x|, is the number of bits in x. For n ∈ N,
{0, 1}n denotes the set of all bit strings of length n, and {0, 1}≤n :=

⋃n
i=0{0, 1}i.

For x, y ∈ {0, 1}∗, z = x‖y denotes the concatenation of x and y. Additionally, x
(resp. y) is called the prefix (resp. suffix ) of z. For x, y ∈ {0, 1}∗, let Prefix(x, y)
denote the length of the largest possible common prefix of x and y. For 1 ≤ k ≤ n,
we define the falling factorial (n)k := n!/(n − k)! = n(n − 1) · · · (n − k + 1). Any
pair of q-tuples x̃ = (x1, . . . , xq) and ỹ = (y1, . . . , yq), are said to be permutation
compatible, denoted x̃ � ỹ, if (xi = xj) ⇐⇒ (yi = yj), for all i 
= j. By an
abuse of notation, we also use x̃ to denote the set {xi : i ∈ [q]} for any x̃.

2.1 Security Definitions

Distinguishers: A (q, T )-distinguisher A is an oracle Turing machine, that
makes at most q oracle queries, runs in time at most T , and outputs a
single bit. For any oracle O, we write A O to denote the output of A
after its interaction with O. By convention, T = ∞ denotes computation-
ally unbounded (information-theoretic) and deterministic distinguishers. In this
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paper, we assume that the distinguisher is non-trivial, i.e., it never makes a
duplicate query. Let A(q, T ) be the class of all non-trivial distinguishers limited
to q queries and T computations.

Primitives and Their Security: The set of all functions from X to Y is
denoted F(X ,Y), and the set of all permutations of X is denoted P(X ). We
simply write F(a, b) and P(a), whenever X = {0, 1}a and Y = {0, 1}b. For a
finite set X , X←$ X denotes the uniform at random sampling of X from X .

Pseudorandom Function: A (K,X ,Y)-keyed function F with key space K,
domain X , and range Y is a function F : K×X → Y. We write Fk(x) for F (k, x).

The pseudorandom function or PRF advantage of any distinguisher A
against a (K,X ,Y)-keyed function F is defined as

Advprf
F (A ) = AdvF ;Γ(A ) :=

∣
∣
∣
∣ Pr
K ←$K

(
A FK = 1

) − Pr
Γ ←$F(X ,Y)

(
A Γ = 1

)
∣
∣
∣
∣ . (2)

The PRF insecurity of F against A(q, T ) is defined as

Advprf
F (q, T ) := max

A ∈A(q,T )
Advprf

F (A ).

Pseudorandom Permutation: For some n ∈ N, a (K,B)-block cipher E with
key space K and block space B := {0, 1}n is a (K,B,B)-keyed function, such that
E(k, ·) is a permutation over B for any key k ∈ K. We write Ek(x) for E(k, x).

The pseudorandom permutation or PRP advantage of any distinguisher A
against a (K,B)-block cipher E is defined as

Advprp
E (A ) = AdvE;Π(A ) :=

∣
∣
∣
∣ Pr
K ←$K

(
A EK = 1

) − Pr
Π ←$P(n)

(
A Π = 1

)
∣
∣
∣
∣ . (3)

The PRP insecurity of E against A(q, T ) is defined as

Advprp
E (q, T ) := max

A ∈A(q,T )
Advprp

E (A ).

2.2 H-coefficient Technique

Let A be a computationally unbounded and deterministic distinguisher that’s
trying to distinguish the real oracle O1 from the ideal oracle O0. The collection
of all queries and responses that A made and received to and from the oracle,
is called the transcript of A , denoted as ν. Let V1 and V0 denote the transcript
random variable induced by A ’s interaction with O1 and O0, respectively. Let
V be the set of all transcripts. A transcript ν ∈ V is said to be attainable if
Pr (V0 = ν) > 0, i.e., it can be realized by A ’s interaction with O0.

Following these notations, we state the main result of the so-called H-
coefficient technique [23,24] in Theorem 2.1. A proof of this result is available
in [24].
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Theorem 2.1 [H-coefficient]. For ε1, ε2 ≥ 0, suppose there is a set Vbad ⊆ V,
referred as the set of all bad transcripts, such that the following conditions hold:

– Pr (V0 ∈ Vbad) ≤ ε1; and

– For any ν ∈ V \ Vbad, ν is attainable and
Pr (V1 = ν)
Pr (V0 = ν)

≥ 1 − ε2.

Then, for any computationally unbounded and deterministic distinguisher A , we
have

AdvO1;O0(A ) ≤ ε1 + ε2.

Reset-Sampling Method: In H-coefficient based proofs, often we release addi-
tional information to the adversary in order to make it easy to define the bad
transcripts. In such scenarios, one has to define how this additional informa-
tion is sampled, and naturally the sampling mechanism is construction spe-
cific. The reset-sampling method [8] is a sampling philosophy, within this highly
mechanized setup of H-coefficient technique, where some of the variables are
reset/resampled (hence the name) depending upon the consistency requirement
for the overall transcript. We employ this sampling approach in our proof.

3 The CBC-MAC Family

Throughout, n denotes the block size, B := {0, 1}n, and any x ∈ B is referred
as a block. For any non-empty m ∈ {0, 1}∗, (m[1], . . . , m[�m]) n←− m denotes the
block parsing of m, where |m[i]| = n for all 1 ≤ i ≤ �m − 1 and 1 ≤ |m[�m]| ≤ n.
In addition, we associate a boolean flag δm to each m ∈ {0, 1}∗, which is defined
as

δm :=

{
−1 if |m| = n�m,

0 otherwise.

For any m ∈ {0, 1}≤n, we define

m :=

{
m‖10n−|m|−1 if |m| < n,

m otherwise.

CBC Function: The CBC function, based on a permutation4 π ∈ P(n), takes
as input a non-empty message m ∈ B∗ and computes the output CBCπ(m) :=
yπ

m[�m] inductively as described below:

yπ
m[0] = 0n and for 1 ≤ i ≤ �m, we have

xπ
m[i] := yπ

m[i − 1] ⊕ m[i],
yπ

m[i] := π(xπ
m[i]),

(4)
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yπ
m[0] ⊕⊕⊕

m[1]

π ⊕⊕⊕

m[2]

π ⊕⊕⊕

m[3]

π ⊕⊕⊕

m[4]

π yπ
m[4]

xπ
m[1] yπ

m[1] xπ
m[2] yπ

m[2] xπ
m[3] yπ

m[3] xπ
m[4]

Fig. 2. Evaluation of CBC function over a 4-block message m.

where (m[1], . . . , m[�m]) n←− m. For empty message, we define the CBC output
as the constant 0n. Figure 2 illustrates the evaluation of CBC function over a
4-block message m.
Given the definition of CBCπ, one can easily define all the variants of CBC-MAC.
Here, we define XCBC, TMAC and OMAC— the three constructions that we
study in this paper.

XCBC: The XCBC algorithm is a three-key construction, based on a permutation
π ∈ P(n) and keys (L−1, L0) ∈ B2, that takes as input a non-empty message
m ∈ {0, 1}∗, and computes the output

XCBCπ,L−1,L0(m) := t = π
(
CBCπ (m∗) ⊕ m[�m] ⊕ Lδm

)
, (5)

where (m[1], . . . ,m[�m]) n←− m, and m∗ := m[1]‖ · · · ‖m[�m − 1].

TMAC: The TMAC algorithm is a two-key construction, based on a permutation
π ∈ P(n) and key L ∈ B, that takes as input a non-empty message m ∈ {0, 1}∗,
and computes the output

TMACπ,L(m) := t = π
(
CBCπ (m∗) ⊕ m[�m] ⊕ μδm � L

)
, (6)

where (m[1], . . . ,m[�m]) n←− m, m∗ := m[1]‖ · · · ‖m[�m − 1], μ−1 and μ0 are con-
stants chosen from GF(2n) (viewing B as GF(2n)), such that μ−1, μ0, 1⊕μ−1, 1⊕
μ0 are all distinct and not equal to either 0 or 1, and � denotes the field mul-
tiplication operation over GF(2n) with respect to a fixed primitive polynomial.
For the sake of uniformity, we define Lδm := μδm � L in context of TMAC.

OMAC: The OMAC algorithm is a single-keyed construction, based on a permu-
tation π ∈ P(n), that takes as input a non-empty message m ∈ {0, 1}∗, and
computes the output

OMACπ(m) := t = π
(
CBCπ (m∗) ⊕ m[�m] ⊕ μδm � π(0n)

)
, (7)

where (m[1], . . . ,m[�m]) n←− m, m∗ := m[1]‖ · · · ‖m[�m − 1], μ−1 and μ0 are
constants chosen analogously as in the case of TMAC. For the sake of uniformity,
we define Lδm := μδm � π(0n) in context of OMAC.

4 Instantiated with a block cipher in practical applications.
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Input and Output Tuples: In the context of CBC evaluation within OMAC, we
refer to xπ

m := (xπ
m[1], . . . , xπ

m[�m − 1]) and yπ
m := (yπ

m[0], . . . , yπ
m[�m − 1]) as the

intermediate input and output tuples, respectively, associated to π and m. We
define the final input variable as xπ

m[�m] := yπ
m[�m − 1] ⊕ m[�m] ⊕ μδm � π(0n).

Clearly, the input and output tuples (including the final input) are well defined
for OMAC. Analogous definitions are possible (and useful in proof) for XCBC
and TMAC as well. It is worth noting that the intermediate input tuple xπ

m is
uniquely determined by the intermediate output tuple yπ

m and the message m,
and it is independent of the permutation π. Going forward, we drop π from the
notations, whenever it is clear from the context.

3.1 Tight Security Bounds for OMAC, XCBC and TMAC

The main technical result of this paper, given in Theorem 3.1, is a tight security
bound for OMAC for a wide range of message lengths. The proof of this theorem
is postponed to Sect. 4. In addition, we also provide similar result for XCBC and
TMAC in Theorem 3.2. We skip the proof since it is almost identical to the one
for Theorem 3.1, and has slightly less relevance given that a more efficient and
standardized algorithm OMAC already achieves similar security. In what follows
we define

ε′(q, �) :=
16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
.

Theorem 3.1 (OMAC bound). Let q, �, σ, T > 0. For q + σ ≤ 2n−1, the PRF
insecurity of OMAC, based on block cipher EK, against A(q, T ) is given by

Advprf
OMACEK

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) +

4σ

2n
+ ε′(q, �), (8)

where q denotes the number of queries, � denotes an upper bound on the number
of blocks per query, σ denotes the total number of blocks present in all q queries,
T ′ = T + σO(TE) and TE denotes the runtime of E.

Theorem 3.2 (XCBC-TMAC bound). Let q, �, σ, T > 0. For q + σ ≤ 2n−1,
the PRF insecurity of XCBC and TMAC, based on block cipher EK and respective
masking keys (L, L−1, L0), against A(q, T ) is given by

Advprf
XCBCEK,L−1,L0

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) + ε′(q, �) (9)

Advprf
TMACEK,L

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) + ε′(q, �) (10)

where q denotes the number of queries, � denotes an upper bound on the number
of blocks per query, σ denotes the total number of blocks present in all q queries,
T ′ = T + σO(TE) and TE denotes the runtime of E.
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Proof of this theorem is almost same as that of Theorem 3.1. The bad event on
a collision on zero block input is redundant and hence dropped here. Rest of the
proof remains the same and so we skip the details.

Remark 3.1. Note that the actual advantage cannot exceed 1. Let us denote
q2

2n = α and q�2

2n = β. Looking at ε(q, �) (where ε(q, �) = ε′(q, �) + 4σ
2n in case of

OMAC and ε(q, �) = ε′(q, �) in case of XCBC,TMAC), we see that any term in
the expression is upper bounded by c · αsβt for some constant c and s, t ≥ 0
such that at least one of s and t is at least 1. As we can assume both α, β to
be less than 1, each αsβt will be less than or equal to α or β. Thus, the above
PRF-advantage expressions for MAC ∈ {OMAC,XCBC,TMAC} can be written
as

Advprf
MAC(q, �, σ) = O

(
q2

2n

)
+ O

(
q�2

2n

)
.

Indeed, under the assumption that � ≤ 2n/4−0.5 and q ≤ 2n/2−1, one can simplify
the above bounds to 20q2/2n + 23q�2/2n.

A Note on The Proof Approach: In the analysis of OMAC, XCBC and
TMAC, we have to handle the case that the final input collides with some inter-
mediate input, the so-called full collision event. In earlier works the probability
of this event is shown to be q2�/2n (as there are less than q� many intermedi-
ate inputs and q final inputs and any such collision happens with roughly 1/2n

probability). So, in a way they avoid handling this tricky event by disallowing it
all together. In this work, we allow full collisions as long as the next intermedi-
ate input is not colliding with some other input (intermediate or final). Looking
ahead momentarily, this is captured in BadW3. We can do this via the application
of reset-sampling, resulting in a more amenable (q2/2n + q�2/2n) bound.

4 Proof of Theorem 3.1

First, using the standard hybrid argument, we get

Advprf
OMACEK

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) + Advprf

OMACΠ
(q, �, σ,∞). (11)

Now, it is sufficient to bound Advprf
OMACΠ

(q, �, σ,∞), where the corresponding
distinguisher A is computationally unbounded and deterministic. To bound this
term, we employ the H-coefficient technique (see Sect. 2.2), and the recently
introduced reset-sampling method [8]. The remaining steps of the proof are given
in the remainder of this section.

4.1 Oracle Description and Corresponding Transcripts

Real Oracle: The real oracle corresponds to OMACΠ. It responds faithfully to
all the queries made by A . Once the query-response phase is over, it releases all
the intermediate inputs and outputs, as well as the masking keys L−1 and L0 to
A . We write L = Π(0n).
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In addition, the real oracle releases three binary variables, namely, FlagT,
FlagW and FlagX, all of which are degenerately set to 0. These flags are more of
a technical requirement, and their utility will become apparent from the descrip-
tion of ideal oracle. For now, it is sufficient to note that these flags are degenerate
in the real world.

Formally, we have V1 := (M̃, T̃, X̃, X̃∗, Ỹ, L−1, L0,FlagT,FlagW,FlagX), where

– M̃ = (M1, . . . ,Mq), the q-tuple of queries made by A , where Mi ∈ {0, 1}∗ for

all i ∈ [q]. In addition, for all i ∈ [q], let �i :=
⌈

|Mi|
n

⌉
.

– T̃ = (T1, . . . ,Tq), the q-tuple of final outputs received by A , where Ti ∈ B.
– X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th

query.
– X̃∗ = (X1[�1], . . . ,Xq[�q]), where Xi[�i] denotes the final input for the i-th

query.
– Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the i-th

query.
– L−1 and L0 denote the two masking keys. Note that L−1 and L0 are easily

derivable from L. So we could have simply released L. The added redundancy
is to aid the readers in establishing an analogous connection between this
proof and the proof for XCBC and TMAC.

– FlagT = FlagW = FlagX = 0.

From the definition of OMAC, we know that Π(Xi[a]) = Yi[a] for all (i, a) ∈
[q] × [�i]. So, in the real world we always have (0n, X̃, X̃∗) � (L, Ỹ, T̃), i.e.,
(0n, X̃, X̃∗) is permutation compatible with (L, Ỹ, T̃). We keep this observation in
our mind when we simulate the ideal oracle.

Ideal Oracle: By reusing notations from the real world, we represent the ideal
oracle transcript as V0 := (M̃, T̃, X̃, X̃∗, Ỹ, L−1, L0,FlagT,FlagW,FlagX). This
should not cause any confusion, as we never consider the random variables V1

and V0 jointly, whence the probability distributions of the constituent variables
will always be clear from the context.

The ideal oracle transcript is described in three phases, each contingent on
some predicates defined over the previous stages. Specifically, the ideal oracle
first initializes FlagT = FlagW = FlagX = 0, and then follows the sampling
mechanism given below:
Phase I (Query-Response Phase): In the query-response phase, the ideal
oracle faithfully simulates Γ ←$ F({0, 1}∗,B). Formally, for i ∈ [q], at the i-th
query Mi ∈ {0, 1}∗, the ideal oracle outputs Ti ←$ B. The partial transcript
generated at the end of the query-response phase is given by (M̃, T̃), where

– M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

Now, we define a predicate on T̃:

BadT : ∃i 
= j ∈ [q], such that Ti = Tj .
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If BadT is true, then FlagT is set to 1, and X̃, X̃∗, and Ỹ are defined degenerately:
Xi[a] = Yi[b] = 0n for all i ∈ [q], a ∈ [�i], b ∈ (�i − 1]. Otherwise, the ideal oracle
proceeds to the next phase.
Phase II (Offline Initial Sampling Phase):Onward, we must have Ti 
=
Tj whenever i 
= j, and FlagT = 0, since this phase is only executed when BadT
is false. In the offline phase, the ideal oracle’s initial goal is to sample the input
and output tuples in such a way that the intermediate input and output tuples
are permutation compatible. For now we use notations W and Z, respectively,
instead of X and Y, to denote the input and output tuples. This is done to
avoid any confusions in the next step where we may have to reset some of these
variables. To make it explicit, W and Z respectively denote the input and output
tuples before resetting, and X and Y denote the input and output tuples after
resetting.

Let P be a key-value table representing a partial permutation of B, which
is initialized to empty, i.e., the corresponding permutation is undefined on all
points. We write P.domain and P.range to denote the set of all keys and values
utilized till this point, respectively. The ideal oracle uses this partial permutation
P to maintain permutation compatibility between intermediate input and output
tuples, in the following manner:

Initial sampling

L ←$ B \ ˜T

L−1 ← μ−1 � L

L0 ← μ0 � L

P(0n) ← L

for i = 1 to q do

Zi[0] ← 0n

for a = 1 to �i − 1 do

Wi[a] ← Zi[a − 1] ⊕ Mi[a]

if Wi[a] ∈ P.domain

Zi[a] ← P(Wi[a])

else

Zi[a] ←$ B \
(

˜T ∪ P.range
)

P(Wi[a]) ← Zi[a]

Wi[�i] ← Zi[�i − 1] ⊕ Mi[�i] ⊕ LδMi

At this stage we have Zi[a] = Zj [b] if and only if Wi[a] = Wj [b] for all (i, a) ∈
[q]× [�i −1] and (j, b) ∈ [q]× [�j −1]. In other words, (0n, W̃) � (L, Z̃). But it is
obvious to see that the same might not hold between (0n, W̃, W̃∗) and (L, Z̃, T̃).
In the next stage our goal will be to reset some of the Z variables in such a
way that the resulting input tuple is compatible with the resulting output tuple.
However, in order to reset, we have to identify and avoid certain contentious
input-output tuples.
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Identifying Contentious Input-Outptut Tuples: We define several pred-
icates on (W̃, W̃∗), each of which represents some undesirable property of the
sampled input and output tuples.

First, observe that L is chosen outside the set T̃. This leads to the first
predicate:

BadW1 : ∃(i, a) ∈ [q] × [�i], such that (Wi[a] = 0n) and (�i > 1 =⇒ a > 1).

since, if BadW1 is true, then (0n, W̃∗) is not compatible with (L, T̃). In fact,
¬BadW1 implies that none of the inputs, except the first input which is fully in
adversary’s control, can possibly be 0n. This stronger condition will simplify the
analysis greatly. The second predicate simply states that the final input tuple is
not permutation compatible with the tag tuple, i.e., we have

BadW2 : ∃i 
= j ∈ [q], such that Wi[�i] = Wj [�j ].

At this point, assuming ¬(BadW1 ∨ BadW2) holds true, the only way we can
have permutation incompatibility is if Wi[a] = Wj [�j ], for some i, j ∈ [q] and
a ∈ [�i − 1]. A simple solution will be to reset Zi[a] to Tj , for all such (i, a, j).
In order to do this, we need that the following predicates must be false:

BadW3 : ∃i, j, k ∈ [q], a ∈ [�i − 1], b ∈ [�k], such that

(Wi[a] = Wj [�j ]) ∧ (Wi[a + 1] = Wk[b]) ∧ Prefix(Mi,Mk) < max{a + 1, b}.

BadW4 : ∃i, j, k ∈ [q], a 
= b ∈ [�i − 1], such that

(Wi[a] = Wj [�j ]) ∧ (Wi[b] = Wk[�k]).

BadW5 : ∃i, j, k ∈ [q], a ∈ [�i − 1], b ∈ [�j − 1], such that

(Wi[a] = Wj [�j ]) ∧ (Wj [b] = Wk[�k]).

If BadW3 is true, then once Zi[a] is reset, we lose the permutation compatibility
since, the reset next input, i.e., Xi[a+1] = Wi[a+1]⊕Zi[a]⊕Tj = Mi[a+1]⊕Tj 
=
Wk[b] with high probability, whereas Zi[a + 1] = Zk[b] with certainty. BadW4
simply represents the scenario where we may have to apply the initial resetting
to two indices in a single message. Looking ahead momentarily, this may lead
to contradictory induced resettings. Avoiding this predicate makes the resetting
operation much more manageable. Similarly, avoiding BadW5, is just proactive
prevention of contradictory resetting at Zi[a], since if BadW5 occurs, then we may
have a case where Xj [�j ] is reset due to induced resetting, leading to the case,
Xi[a] 
= Xj [�j ] and Yi[a] = Tj , where recall that Yi[a] is the resetting value of
Zi[a]. We write

BadW := BadW1 ∨ BadW2 ∨ BadW3 ∨ BadW4 ∨ BadW5.

If BadW is true, then FlagW is set to 1, and (X̃, X̃∗, Ỹ) is again defined degen-
erately, as in the case of BadT. Otherwise, the ideal oracle proceeds to the next
and the final phase, i.e., the resetting phase.
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Phase III.a Initial Resetting Phase: At this stage we must have ¬(BadT∨
BadW), i.e., FlagW = FlagT = 0. We describe the resetting phase in two sub-
stages. First, we identify the indices affected by the initial resetting operation.

Definition 4.1 [full collision index]. Any (i, a, j) ∈ [q]× [�i −1]× [q] is called
a full collision index (FCI) if Wi[a] = Wj [�j ]. Additionally, let

FCI := {(i, a, j) : i, j ∈ [q], a ∈ [�i − 1], such that (i, a, j) is an FCI}
F̃CI := {(i, a) ∈ [q] × [�i − 1] : ∃j ∈ [q], such that (i, a, j) is an FCI}

The first sub-stage, executes a resetting for full collision indices in the following
manner:

1. For all (i, a, j) ∈ FCI, define Yi[a] := Tj ;
2. For all (i, a, j) ∈ FCI, define

Xi[a + 1] := Wi[a + 1] ⊕ Zi[a] ⊕ Yi[a] = Mi[a + 1] ⊕ Tj ⊕ 1a=�i−1 � LδMi
,

where 1a=�i−1 is an indicator variable that evaluates to 1 when a = �i − 1,
and 0 otherwise.

Once the initial resetting is executed, it may result in new permutation incom-
patibilities. This necessitates further resettings, referred as induced resettings,
which require that the following predicates are false:

BadX1 : ∃(i, a, j) ∈ FCI, k ∈ [q], b ∈ [�k] \ {1}, such that

( Xi[a + 1] = Wk[b]) ∨ ( Xi[a + 1] = 0n).

BadX2 : ∃(i, a, j) ∈ FCI, k ∈ [q], such that

( Xi[a + 1] = Mk[1]) ∧ (Mi[a + 2, . . . , �i] = Mk[2, . . . , �k]).

BadX3 : ∃(i, a, j), (k, b, l) ∈ FCI, such that ( Xi[a + 1] = Mk[1]).
BadX4 : ∃(i, a, k), (j, b, l) ∈ FCI, such that

( Xi[a + 1] = Xj [b + 1] ) ∧ (Prefix(Mi,Mj) < max{a + 1, b + 1}).

Here, the variable highlighted in red denotes the update after initial resetting.
Let’s review these predicates in slightly more details. First, BadX1, represents
the situation where after resetting the next input (highlighted text) collides
with some intermediate input or 0n. This would necessitate induced resetting at
Zi[a+1]. In other words, if BadX1 is false then no induced resettings occur, unless
the next input collides with some first block input. This case is handled in the
next two predicates. BadX2 represents the situation when the next input collides
with a first block and the subsequent message blocks are all same. This would
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induce a chain of resetting going all the way to the final input. As BadT is false,
this would immediately result in a permutation incompatibility since tags are
distinct. If BadX2 is false, then the chain of induced resetting must end at some
point. BadX3 is used to avoid circular or contradictory resettings. It is analogous
to BadW5 defined earlier. If it is false, then we know that the k-th message is
free from resetting, so the induced resetting will be manageable. Finally, BadX4
represents the situation when two newly reset variables collide. We write

BadX1234 := BadX1 ∨ BadX2 ∨ BadX3 ∨ BadX4

If BadX1234 is true, then FlagX is set to 1, and (X̃, X̃∗, Ỹ) is again defined degen-
erately, as in the cases of BadT and BadW. Otherwise, the ideal oracle proceeds
to the second and the final sub-stage of resetting.
Phase III.b Induced Resetting Phase: Here, the goal is to execute the
induced resettings necessitated by the initial resetting operation.

First, we define the index of induced resetting for each (i, a) ∈ F̃CI, as the
smallest index j such that Xi[a + 1] = Mj [1] and

Prefix(Mi[a+2, . . . , �i], Mj [2, . . . , �j ]) = max{Prefix(Mi[a+2, . . . , �i], Mj′ [2, . . . , �j′ ]) : j′ ∈ [q]},

i.e., Prefix(Mi[a + 2, . . . , �i],Mj [2, . . . , �j ]) maximizes.

Definition 4.2 [induced collision sequence]. A sequence of tuples ((i, a +
1, j, 1), . . . , (i, a + p + 1, j, p + 1)) is called an induced collision sequence (ICS),
if (i, a) ∈ F̃CI, and j is the index of induced resetting for (i, a), where p :=
Prefix(Mi[a + 2, . . . , �i],Mj [2, . . . , �j ]). The individual elements of an ICS are
referred as induced collision index (ICI). Additionally, we let

ICI := {(i, a, j, b) : i, j ∈ [q], a ∈ [�i − 1], b ∈ [�j − 1], and (i, a, j, b) is an ICI.}
ĨCI := {(i, a) ∈ [q] × [�i − 1] : ∃(j, b) ∈ [q] × [�j − 1], and (i, a, j, b) is an ICI.}

Now, as anticipated, in the second sub-stage of resetting, we reset the induced
collision indices in the following manner:

1. For all (i, a, j, b) ∈ ICI, define Yi[a] := Zj [b];
2. For all (i, a, j, b) ∈ ICI, define

Xi[a + 1] := Wi[a + 1] ⊕ Zi[a] ⊕ Yi[a] = Mi[a + 1] ⊕ Zj [b] ⊕ 1a=�i−1 � LδMi
,

where 1a=�i−1 is an indicator variable that evaluates to 1 when a = �i − 1,
and 0 otherwise.

Given ¬BadX1234, we know that the induced resetting must stop at some point
before the final input. Now, it might happen that once the first chain of induced
resetting stops, the next input again collides which may result in nested resetting
or permutation incompatibility. The predicates BadX5, BadX6, and BadX7 below
represent these scenarios.
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– BadX5 : ∃(i, a, k, b) ∈ ICI, l ∈ [q], b ∈ [�l − 1], such that

( Xi[a + 2 + p] = Wl[b]) ∨ ( Xi[a + 2 + p] = 0n),

where p := Prefix(Mi[a + 2, . . . , �i],Mk[2, . . . , �k]).

– BadX6 : ∃(i, a) ∈ F̃CI, (j, b, k, c) ∈ ICI, such that ( Xi[a + 1] =

Xj [b + 2 + p] ), where p := Prefix(Mj [b + 2, . . . , �j ],Mk[2, . . . , �k]).

– BadX7 : ∃(i, a, k, c), (j, b, l, d) ∈ ICI, such that

( Xi[a + 2 + p] = Xj [b + 2 + p′] )∧(Prefix(Mi,Mj) < max{a+2+p, b+2+p′}),

where p := Prefix(Mi[a + 2, . . . , �i],Mk[2, . . . , �k]), and p′ := Prefix(Mj [b +
2, . . . , �j ],Ml[2, . . . , �l]).

Here, the variables highlighted in red and blue denote the update after initial
resetting and induced resetting, respectively. These predicates are fairly self-
explanatory. First BadX5 represents the situation that the immediate input after
induced resetting collides with some intermediate input or 0n. This may cause
permutation incompatibility and would lead to nested induced resetting at Zi[a+
2 + p]. BadX6 handles a similar collision with a full collision resetted variable,
and BadX7 handles the only remaining case where the immediate inputs after
two different induced resetting collides. Note that, ¬(BadX5 ∨ BadX6 ∨ BadX7)
would imply that for each message resetting stops at some point before the final
input, and the next input is fresh.5 We write

BadX := BadX1 ∨ BadX2 ∨ BadX3 ∨ BadX4 ∨ BadX5 ∨ BadX6 ∨ BadX7.

If BadX is true, then FlagX is set to 1, and (X̃, X̃∗, Ỹ) is again defined degenerately,
as in the case of BadT and BadW. Otherwise, for any remaining index (i, a) ∈
[q] × (�i − 1] \ (F̃CI ∪ ĨCI), the ideal oracle resets as follows:

1. define Yi[a] := Zi[a];
2. define Xi[a + 1] := Wi[a + 1].

At this point, the ideal oracle transcript is completely defined. Intuitively, if the
ideal oracle is not sampling (X̃, X̃∗, Ỹ) degenerately at any stage, then we must
have (0n, X̃, X̃∗) � (L, Ỹ, T̃). The following proposition justifies this intuition.

Proposition 4.1. For ¬(BadT ∨ BadW ∨ BadX), we must have (0n, X̃, X̃∗) �
(L, Ỹ, T̃).

Proof. Let ¬(BadT ∨ BadW ∨ BadX) hold. Recall that (0n, W̃, W̃∗) may not be
permutation compatible with (L, Z̃, T̃). For any (i, a) ∈ F̃CI, there exists i′ ∈ [q]

5 Does not collide with any other input.
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such that Wi[a] = Wi′ [�i′ ] but Zi[a] 
= Ti′ . We apply the initial resetting to solve
this issue. However, as a result of initial resetting, induced resetting takes place.
Our goal is to show that the non-occurrence of the bad events assures that the
compatibility is attained in the final reset tuples (0n, X̃, X̃∗) and (L, Ỹ, T̃). We
prove all possible cases as follows:

– Xi[a] = 0n ⇐⇒ Yi[a] = L: If a = 1 and Xi[a] = 0, then (i, a) /∈ F̃CI due
to ¬BadW1. Also, (i, 1) /∈ ĨCI. Thus, Yi[a] = Zi[a] = L and the converse also
holds. Otherwise, due to ¬BadX1, Xi[a] can not be equal to 0. Also, due to
¬BadW1, Yi[a] can not be equal to L.

– Xi[a] = Xi′ [�i′ ] ⇐⇒ Yi[a] = Ti′ : For (i, a) ∈ F̃CI, this equivalence holds.
Otherwise, Xi[a] = Xi′ [�i′ ] can not hold due to ¬(BadX1∨BadX5). Also Yi[a] =
Ti′ can not hold due to definition of T̃ and ¬BadX2.

– Xi[a] = Xj [b] ⇐⇒ Yi[a] = Yj [b]: To prove this part we divide it in the
following subcases:

• (i, a), (i, b) /∈ F̃CI ∪ ĨCI : Since in this case the variables are simply
renamed due to definitions of resetting and ¬BadW3, the result follows
from W̃ � Z̃.

• (i, a), (j, b) ∈ F̃CI : Since (i, a), (j, b) ∈ F̃CI, there exists unique i′, j′ ∈ [q],
such that Wi[a] = Wi′ [�i′ ] and Wj [b] = Wj′ [�j′ ]. Now, note that Xi[a] =
Wi[a] and Xj [b] = Wj [b] since F̃CI ∩ ĨCI = ∅ due to ¬BadW4; Wi′ [�i′ ] =
Xi′ [�i′ ] and Wj′ [�j′ ] = Xj′ [�j′ ] due to ¬BadW5. Therefore, we must have
Xj′ [�j′ ] = Wj′ [�j′ ] = Wj [b] = Xj [b] = Xi[a] = Wi[a] = Wi′ [�i′ ] = Xi′ [�i′ ],
which is possible if and only if i′ = j′ (since ¬BadW2 holds).

• (i, a), (j, b) ∈ ĨCI : Since (i, a), (j, b) ∈ ĨCI, there exists i′, j′ ∈ [q] and
a′ ∈ [�i′ − 1], b′ ∈ [�j′ − 1], such that Xi[a] = Wi′ [a′] and Xj [b] = Wj′ [b′].
Further, (i′, a′), (j′, b′) /∈ F̃CI ∪ ĨCI (due to ¬BadX3). If Xj [b] = Xi[a], then
we have Wj′ [b′] = Wi′ [a′]. This gives us Yj [b] = Zj′ [b′] = Zi′ [a′] = Yi[a]
(due to W̃ � Z̃). Similarly, Xi[a] 
= Xj [b] implies Yi[a] 
= Yj [b].

• (i, a) ∈ F̃CI and (j, b) ∈ ĨCI : Since (i, a) ∈ F̃CI, there exists a unique i′ ∈
[q], such that Xi[a] = Wi[a] = Wi′ [�i′ ] = Xi′ [�i′ ] (the first equality is due
to ¬BadW4, the second equality is due to the definition of full collision,
the third equality is due to ¬BadW5). Since (j, b) ∈ ĨCI, we also have
Xj [b] = Wj′ [b′]. If Xi[a] = Xj [b], then Wj′ [b′] = Wi′ [�i′ ]. Thus, (j′, b′) =
(i′, �i′) due to ¬BadX3. Now, we have Yi[a] = Ti′ . Also, Yj [b] = Yj′ [b′] =
Yi′ [�i′ ] = Ti′ . Therefore, Yi[a] = Yj [b]. Moreover, Xi[a] 
= Xj [b] implies
that Yi[a] 
= Yj [b] due to similar arguments as above and also ¬BadT.

• (i, a) ∈ ĨCI and (j, b) ∈ F̃CI : Similar as the above case.
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• (i, a) ∈ F̃CI ∪ ĨCI and (j, b) /∈ F̃CI ∪ ĨCI : Since (j, b) /∈ F̃CI ∪ ĨCI, we have

Xj [b] = Wj [b] and Yj [b] = Zj [b]. Suppose, (i, a) ∈ F̃CI. Then Xi[a] = Xj [b]
is not possible since it would imply that (j, b) ∈ F̃CI. Also, Yi[a] = Yj [b] is
not possible since it would contradict the definition of T̃. Now, suppose,
(i, a) ∈ ĨCI. Therefore, Xi[a] = Wi′ [a′] for some i′ ∈ [q] and a′ ∈ [�i′ − 1].
If Xi[a] = Xj [b], then Wj [b] = Xj [b] = Xi[a] = Wi′ [a′]. So, Yj [b] = Zj [b] =
Zi′ [a′] = Yi[a]. Similarly, Xi[a] 
= Xj [b] implies Yi[a] 
= Yj [b].

• (i, a) /∈ F̃CI ∪ ĨCI and (j, b) ∈ F̃CI ∪ ĨCI : Similar as the above case.

4.2 Transcript Analysis

Set of Transcripts: Given the description of transcript random variable cor-
responding to the ideal oracle, we can now define the set of transcripts V as the
set of all tuples ν = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0,flagT,flagW,flagX), where

– m̃ = (m1, . . . , mq), where mi ∈ {0, 1}∗ for i ∈ [q]. Let �i =
⌈

|mi|
n

⌉
for i ∈ [q].

– t̃ = (t1, . . . , tq), where ti ∈ B for i ∈ [q].
– x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[�i − 1]) for i ∈ [q].
– x̃∗ = (x1[�1], . . . , xq[�q]).
– ỹ = (y1, . . . , yq), where yi = (yi[0] = 0n, yi[1], . . . , yi[�i − 1]) for i ∈ [q].
– l−1 = μ−1 � l, l0 = μ0 � l where l ∈ B and μ−1, μ0 are constants chosen from

GF(2n) as defined before.
– flagT,flagW,flagX ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,W}, then xi[a] = yj [b] = 0n for all i, j ∈ [q],
a ∈ [�i], and b ∈ [�j − 1].

2. if flagT = 0, then ti’s are all distinct.
3. if flagI = 0 for all I ∈ {T,W,X}, then xi[a] = yi[a − 1] ⊕ mi[a] and

(0n, x̃, ỹ⊕) � (L, ỹ, t̃).

The first two conditions are obvious from the ideal oracle sampling mechanism.
The last condition follows from Proposition 4.1 and the observation that in ideal
oracle sampling for any I ∈ {T,Z,X}, FlagI = 1 if and only if BadI is true. Note
that, condition 3 is vacuously true for real oracle transcripts.

Bad Transcript: A transcript ν ∈ V is called bad if and only if the following
predicate is true:

(FlagT = 1) ∨ (FlagW = 1) ∨ (FlagX = 1).

In other words, we term a transcript bad if the ideal oracle sets (X̃, X̃∗, Ỹ) degen-
erately. Let

Vbad := {ν ∈ V : ν is bad.}.
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All other transcript ν′ = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0,flagT,flagW,flagX) ∈ V \ Vbad are
called good. From the preceding characterization of the set of transcripts, we
conclude that for any good transcript ν′, we must have (0n, x̃, x̃∗) � (L, ỹ, t̃).
Henceforth, we drop flagT, flagW, and flagX for any good transcript with an
implicit understanding that flagT = flagW = flagX = 0.

Following the H-coefficient mechanism, we have to upper bound the proba-
bility Pr (V0 ∈ Vbad) and lower bound the ratio Pr (V1 = ν)/Pr (V0 = ν) for any
ν ∈ V \ Vbad.

Lemma 4.1 (bad transcript analysis). For q + σ ≤ 2n−1, we have

Pr (V0 ∈ Vbad) ≤4σ

2n
+

16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
.

The proof of this lemma is postponed to Sect. 5.

Good Transcript: Now, fix a good transcript ν = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0). Let
σ be the total number of blocks (and one additional for 0n) and σ′ := |x̃∪{0n}|.
Since, ν is good, we have (0n, x̃, x̃∗) � (L, ỹ, t̃). Then, we must have |x̃∗| = q.
Further, let |x̃ ∩ x̃∗| = r. Thus, |{0n} ∪ x̃ ∪ x̃∗| = q + σ′ − r.
Real world: In the real world, the random permutation Π is sampled on exactly
q + σ′ − r distinct points. Thus, we have

Pr (V1 = ν) =
1

(2n)q+σ′−r
. (12)

Ideal World: In the ideal world, we employed a two stage sampling. First of all,
we have

Pr
(
T̃ = t̃,P(0n) = L

)
≤ 1

2nq
, (13)

since each Ti is sampled uniformly from the set B independent of others.
Now, observe that all the full collision and induced collision indices are fully
determined from the transcript ν itself. In other words, we can enumerate
the set C̃I := F̃CI ∪ ĨCI. Now, since the transcript is good, we must have
|C̃I| = σ − σ′ + |x̃ ∩ x̃∗| = σ − σ′ + r, and for all indices (i, a) /∈ C̃I, we have
Yi[a] = Zi[a]. Thus, we have

Pr
(
Yi[a] = yi

a ∧ (i, a) /∈ C̃I | T̃ = t̃
)

= Pr
(
Zi[a] = yi

a ∧ (i, a) /∈ C̃I | T̃ = t̃
)

=
1

(2n − q)σ′−r
, (14)
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where the second equality follows from the fact that truncation6 of a without
replacement sample from a set of size (2n − q) is still a without replacement
sample from the same set. We have

Pr (V0 = ω) = Pr
(
T̃ = t̃

)
× Pr

(
Ỹ = ỹ | T̃ = t̃

)

≤ 1
2nq

× Pr
(
Yi[a] = yi[a] ∧ (i, a) /∈ C̃I | T̃ = t̃

)
=

1
2nq(2n − q)σ′−r

.

(15)

The above discussion on good transcripts can be summarized in shape of the
following lemma.

Lemma 4.2 For any ν ∈ V \ Vbad, we have
Pr (V1 = ν)
Pr (V0 = ν)

≥ 1.

Proof The proof follows from dividing (12) by (15).

Using Theorem 2.1, and Lemma 4.1 and 4.2, we get

Advprf
OMACΠ

(q, �, σ,∞) ≤ 4σ

2n
+

16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
.

(16)

Theorem 3.1 follows from (11) and (16).

5 Proof of Lemma 4.1

Our proof relies on a graph-based combinatorial tool, called structure graphs
[3,15]. A concise and complete description of this tool and relevant results are
available in the full version of this paper [9, Appendix A]. Our aim will be to
bound the probability of bad events only when they occur in conjunction with
some “manageable” structure graphs. In all other cases, we upper bound the
probability by the probability of realizing an unmanageable structure graph.
Formally, we say that the structure graph GP(M̃) is manageable if and only if:

1. for all i ∈ [q], we have Acc(GP(Mi)) = 0, i.e., each Mi-walk is a path.
2. for all distinct i, j ∈ [q], we have Acc(GP(Mi,Mj)) ≤ 1.
3. for all distinct i, j, k ∈ [q], we have Acc(GP(Mi,Mj ,Mk)) ≤ 2.
4. for all distinct i, j, k, l ∈ [q], we have Acc(GP(Mi,Mj ,Mk,Ml)) ≤ 3.

6 Removing some elements from the tuple.
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Let unman denote the event that GP(M̃) is unmanageable. Then, using [9, Corol-
lary A.1], we have

Pr (unman) ≤ Pr (∃i ∈ [q] : Acc(GP(Mi)) ≥ 1) + Pr (∃i < j ∈ [q] : Acc(GP(Mi,Mj)) ≥ 2)

+ Pr (∃i < j < k ∈ [q] : Acc(GP(Mi,Mj ,Mk)) ≥ 3)

+ Pr (∃i < j < k < l ∈ [q] : Acc(GP(Mi,Mj ,Mk,Ml)) ≥ 4)

≤
∑

i∈[q]

(�i − 1)2

2n
+

∑

i<j∈[q]

(�i + �j − 2)4

22n
+

∑

i<j<k∈[q]

(�i + �j + �k − 3)6

23n

+
∑

i<j<k<l∈[q]

(�i + �j + �k + �l − 4)8

24n

≤ q�2

2n
+

8q2�4

22n
+

121.5q3�6

23n
+

5461.34q4�8

24n
. (17)

From now on we only consider manageable graphs. Observe that apart from the
fact that a manageable graph is just a union of Mi-paths, there is an added
benefit that it has no zero collision. Let TU := ¬(BadT ∨ unman) and TUW :=
¬(BadT ∨ unman ∨ BadW). Now, we have

Pr (V0 ∈ Vbad) = Pr ((FlagT = 1) ∨ (FlagW = 1) ∨ (FlagX = 1))

1≤ Pr (BadT ∨ BadW ∨ BadX)

≤ Pr (BadT) + Pr (BadW|¬BadT) + Pr (BadX|¬(BadT ∨ BadW))

2≤ Pr (∃i �= j : Ti = Tj) + Pr (BadW|¬BadT) + Pr (BadX|¬(BadT ∨ BadW))

3≤ q2

2n+1
+ Pr (unman) + Pr (BadW|TU) + Pr (BadX|TUW)

4≤ 0.5q2 + q�2

2n
+

8q2�4

22n
+

122q3�6

23n
+

5462q4�8

24n

+ Pr (BadW|TU) + Pr (BadX|TUW) (18)

Here, inequalities 1 and 2 follow by definition; 3 follows from the fact that Ti is
chosen uniformly at random from B for each i; and 4 follows from (17).

Bounding Pr (BadW|¬(BadT ∨ unman)): Let Ei = ¬(TU ∨ BadW1 ∨ · · · ∨ BadWi).
We have

Pr (BadW|TU) ≤ Pr (BadW1|TU) + Pr (BadW2|E1) + Pr (BadW3|E2)
+ Pr (BadW4|E3) + Pr (BadW5|E4) (19)

We bound the individual terms on the right hand side as follows:
Bounding Pr (BadW1|TU): Fix some (i, a) ∈ [q] × [�i]. The only way we can have
Wi[a] = 0n, for 1 < a < �i, is if Zi[a− 1] = Mi[a]. This happens with probability
at most (2n − q)−1. For a = �i, the equation

μδMi
� L ⊕ Zi[�i − 1] ⊕ Mi[�i] = 0n
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must hold non-trivially. The probability that this equation holds is bounded by
at most (2n − q − 1)−1. Assuming q + 1 ≤ 2n−1, and using the fact that there
can be at most σ choices for (i, a), we have

Pr (BadW1|TU) ≤ 2σ

2n
. (20)

Bounding Pr (BadW2|E1): Fix some i 
= j ∈ [q]. Since ¬unman holds, we know
that Acc(GP(Mi,Mj)) ≤ 1. We handle the two resulting cases separately:

(A) Acc(GP(Mi,Mj)) = 1: Suppose the collision source of the only accident are
(i, a) and (j, b). Then, we have the following system of two equations

Zi[a] ⊕ Zj [b] = Mi[a + 1] ⊕ Mj [b + 1]

(μδMi
⊕ μδMj

) � L ⊕ Zi[�i − 1] ⊕ Zj [�j − 1] = Mi[�i] ⊕ Mj [�j ]

Suppose δMi

= δMj

, i.e. μδMi
⊕μδMj


= 0n. Using the fact that ¬BadW1 holds,
we infer that L /∈ {Zi[a],Zj [b],Zi[�i − 1],Zj [�j − 1]}. So, the two equations
are linearly independent, whence the rank is 2 in this case. Again, using [9,
Lemma A.4], and the fact that there are at most q2/2 choices for i and j,
and �2 choices for a and b, we get

Pr
(
BadW2 ∧ Case A ∧ δMi


= δMj
|E1) ≤ q2�2

2(2n − q − σ + 2)2
.

Now, suppose δMi
= δMj

, i.e. μδMi
⊕ μδMj

= 0n. Then, we can rewrite the
system as

Zi[a] ⊕ Zj [b] = Mi[a + 1] ⊕ Mj [b + 1]

Zi[�i − 1] ⊕ Zj [�j − 1] = Mi[�i] ⊕ Mj [�j ]

We can have two types of structure graphs relevant to this case, as illustrated
in Fig. 3. For type 1 all variables are distinct. So, the two equations are
linearly independent, whence the rank is 2 in this case. Again, using [9,
Lemma A.4], we get

Pr
(
BadW2 ∧ Case A ∧ δMi

= δMj
∧ Type 1|E1) ≤ q2�2

2(2n − q − σ + 2)2
.

Type (1)

∗ ∗

Type (2)

∗ ∗

Fig. 3. Accident-1 manageable graphs for two messages. The solid and dashed lines
correspond to edges in Wi and Wj , respectively. ∗ denotes optional parts in the walk.
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For type 2, it is clear that Zj [�j − 1] = Zi[�i − 1]. So, we can assume that
the second equation holds trivially, thereby deriving a system in Zi[a] and
Zj [b], with rank 1. Further, a and b are uniquely determined as �i − p and
�j − p, where p is the longest common suffix of Mi and Mj . So we have

Pr
(
BadW2 ∧ Case A ∧ δMi

= δMj
∧ Type 2|E1) ≤ q2

2(2n − q − σ + 1)
.

(B) Acc(GP(Mi,Mj)) = 0: In this case, we only have one equation of the form

(μδMi
⊕ μδMj

) � L ⊕ Zi[�i − 1] ⊕ Zj [�j − 1] = Mi[�i] ⊕ Mj [�j ]

If δMi

= δMj

, we have an equation in three variables, namely L, Zi[�i − 1],
and Zj [�j − 1]; and if δMi

= δMj
, we have an equation in two variables,

namely Zi[�i − 1], and Zj [�j − 1]. In both the cases, the equation can only
hold non-trivially, i.e., rank is 1. Using [9, Lemma A.4], we get

Pr (BadW2 ∧ Case B|E1) ≤ q2

2(2n − q − σ + 1)
.

On combining the three cases, we get

Pr (BadW2|E1) ≤ q2

2n − q − σ + 1
+

q2�2

(2n − q − σ + 2)2
. (21)

Bounding Pr (BadW3|E2): Fix some i, j, k ∈ [q]. Since ¬unman holds, we must
have Acc(GP(Mi,Mj ,Mk)) ≤ 2. Accordingly, we have the following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: Suppose (α1, β1) and (α2, β2) are collision source
leading to one of the accident, and (α3, β3) and (α4, β4) are collision source
leading to the other accident. Then, considering Wi[a] = Wj [�j ], we have
the following system of equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]
Zα3 [β3] ⊕ Zα4 [β4] = Mα3 [β3 + 1] ⊕ Mα4 [β4 + 1]

Zj [a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

The first two equations are independent by definition. Further, using
¬BadW1, we can infer that the last equation is also independent of the first
two equations. Thus the system has rank 3. There are at most q3/6 choices
for (i, j, k), and for each such choice we have 3 choices for (α1, α2, α3, α4)
and at most �5 choices for (β1, β2, β3, β4, a). Using [9, Lemma A.4], we have

Pr (BadW3 ∧ Case A|E2) ≤ q3�5

2(2n − q − σ + 3)3
.
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(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source
leading to the accident. First consider the case a < �i − 1 and b < �k. In
this case, we have the following system of equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[a] ⊕ Zk[b − 1] = Mi[a + 1] ⊕ Mk[b]

The first two equations are clearly independent. Further, since Mi 
= Mk,
the last equation must correspond to a true collision as a consequence of
the accident. So, the rank of the above system is 2. Once we fix (i, j, k) and
(a, b), we have at most 3 choices for (α1, α2), and β1 and β2 are uniquely
determined as a + 1 − p and b − p, where p is the largest common suffix of
Mi[1, . . . , a + 1] and Mk[1, . . . , b]. So, we have

Pr (BadW3 ∧ Case B ∧ a < �i − 1 ∧ b < �k|E2) ≤ q3�2

2(2n − q − σ + 2)2
.

Now, suppose a = �i−1. Then we can simply consider the first two equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zj [�i − 2] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[�i − 1]

Clearly, the two equations are independent. We have at most q3 choices for
(i, j, k), 3 choices for (α1, α2), and �2 choices for (β1, β2). So we have

Pr (BadW3 ∧ Case B ∧ a = �i − 1|E2) ≤ q3�2

2(2n − q − σ + 2)2
.

The case where a < �i−1 and b = �k can be handled similarly by considering
the first and the third equations.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: In this case, we know that the three paths, Wi,
Wj , and Wk do not collide. This implies that we must have a = �i − 1, or
b = �k or both, in order for Wi[a + 1] = Wk[b] to hold. First, suppose both
a = �i − 1 and b = �k. Then, we have the following system of equations:

Zj [�i − 2] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[�i − 2]

(μδMi
⊕ μδMk

) � L ⊕ Zi[�i − 1] ⊕ Zk[�k − 1] = Mi[�i] ⊕ Mk[�k]

Using the properties of μ−1 and μ0, and ¬BadW1, we can conclude that the
above system has rank 2. There are at most q3/6 choices for (i, j, k), and at
most �2 choices for (a, b). So, we have

Pr (BadW3 ∧ Case C ∧ a = �i − 1 ∧ b = �k|E2) ≤ q3�2

6(2n − q − σ + 2)2
.
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The remaining two cases are similar. We handle the case a = �i − 1 and
b < �k, and the other case can be handled similarly. We have the following
system of equations

Zj [�i − 2] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[�i − 2]

μδMi
� L ⊕ Zi[�i − 1] ⊕ Zk[b − 1] = Mi[�i] ⊕ Mk[b]

If δMi

= δMj

, then using the same argument as above, we can conclude that
the system has rank 2, and we get

Pr
(

BadW3 ∧ Case C ∧ a = �i − 1 ∧ b < �k ∧ δMi �= δMj |E2
) ≤ q3�2

6(2n − q − σ + 2)2
.

So, suppose δMi
= δMj

. Now, in order for the second equation to be a
consequence of the first equation, we must have Zi[�i − 2] = Zj [�j − 1] and
Zi[�i − 1] = Zk[b]. The only we way this happens trivially is if Mi[1, . . . , �i −
1] = Mj [1, . . . , �j − 1] and Mi[1, . . . , �i − 1] = Mk[1, . . . , b]. But, then we
have b = �i − 1, and once we fix (i, k) there’s a unique choice for j, since
Mj [1, . . . , �j −1] = Mi[1, . . . , �i −1] and Mj [�j ] = Mi[�i]⊕Mi[�i −2]⊕Mk[b].
So, we get

Pr
(

BadW3 ∧ Case C ∧ a = �i − 1 ∧ b < �k ∧ δMi = δMj |E2
) ≤ q2

2(2n − q − σ + 1)
.

By combining all three cases, we have

Pr (BadW3|E2) ≤ q3�5

2(2n − q − σ + 3)3
+

2q3�2

(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

(22)

Type (1)

a − 1

�k − 1 b − 1

�j − 1

Type (2)

b − 1

�j − 1
a − 1

�k − 1

Fig. 4. Manageable graphs for case B.1. The solid, dashed and dotted lines correspond
to edges in Wi, Wj , and Wk, respectively.

Bounding Pr (BadW4|E3): Fix some i, j, k ∈ [q]. The analysis in this case is very
similar to the one in case of BadW3|E2. So we will skip detailed argumentation
whenever possible. Since ¬unman holds, we must have Acc(GP(Mi,Mj ,Mk)) ≤ 2.
Accordingly, we have the following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same
argument as used in Case A for BadW3|E2. So, we have

Pr (BadW4 ∧ Case A|E3) ≤ q3�5

2(2n − q − σ + 3)3
.
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(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source
leading to the accident. Without loss of generality we assume a < b. Specif-
ically, b ≤ �i − 1 and a ≤ b − 2 due to ¬(BadW2 ∧ BadW3). First consider
the case b = �i − 1. In this case, considering Wi[b] = Wk[�k], we have the
following system of equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mi[b]

Using a similar argument as used in previous such cases, we establish that
the two equations are independent. Now, once we fix (i, j, k), we have exactly
one choice for b, at most 3 choices for (α1, α2), and �2 choices for (β1, β2).
So, we have

Pr (BadW4 ∧ Case B ∧ b = �i − 1|E3) ≤ q3�2

2(2n − q − σ + 2)2
.

Now, suppose b < �i − 1. Here we can have two cases:
(B.1) Wi is involved in the accident : Without loss of generality assume that

α1 = i and β1 ∈ [�i−1]. Then, we have the following system of equations:

Zi[β1] ⊕ Zα2 [β2] = Mi[β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mi[b]

Suppose Zi[β1] = Zi[a−1]. Then, we must have β1 = a−1 as the graph
is manageable.In this case, we consider the first two equations. It is easy
to see that the two equations are independent, and once we fix i, j, k,
there are at most 2 choices for α2 and �2 choices for (β1, β2), which gives
a unique choice for a. So, we have

Pr (BadW4 ∧ Case B.1 ∧ β1 = a − 1|E3) ≤ q3�2

2(2n − q − σ + 2)2
.

We get identical bound for the case when Zi[β1] = Zi[b − 1]. Suppose
Zi[β1] /∈ {Zi[a−1],Zi[b−1]}. Then, using the fact that there is only one
accident in the graph and that accident is due to (i, β1) and (α2, β2),
we infer that Zα2 [β2] /∈ {Zi[a − 1],Zi[b − 1]}. Now, the only way rank of
the above system reduces to 2, is if Zi[a−1] = Zk[�k −1] and Zi[b−1] =
Zj [�j − 1] trivially. However, if this happens then a and b are uniquely
determined by our choice of (i, j, k, β1, α2, β2). See Fig. 4 for the two
possible structure graphs depending upon the value of α2. Basically,
based on the choice of α2, a ∈ {�k, �k −β2 +β1}. Similarly, b ∈ {�j , �j −
β2 + β1}. So, using [9, Lemma A.4], we get

Pr (BadW4 ∧ Case B.1 ∧ β1 /∈ {a − 1, b − 1}|E3) ≤ 2q3�2

3(2n − q − σ + 2)2
.
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(B.2) Wi is not involved in the accident : Without loss of generality assume
α1 = j and α2 = k. Then, we have the following system of equations:

Zj [β1] ⊕ Zk[β2] = Mj [β1 + 1] ⊕ Mk[β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mi[b]

Since the graph is manageable, {Zi[a−1],Zi[b−1]}∩{Zj [�j −1],Zk[�k −
1]} 
= ∅. Suppose {Zi[a−1],Zi[b−1]} = {Zj [�j −1],Zk[�k −1]}. Without
loss of generality, assume Zi[a−1] = Zk[�k −1] and Zi[b−1] = Zj [�j −1].
This can only happen if the resulting graph is of Type 2 form in Fig. 4,
which clearly shows that we have unique choices for a and b when we
fix the other indices. Now, suppose |{Zi[a − 1],Zi[b − 1]} ∩ {Zj [�j −
1],Zk[�k −1]}| = 1. Then, we must have Zi[a−1] ∈ {Zj [β1],Zk[β2]} since
a < b. Without loss of generality we assume that Zi[a− 1] = Zk[β2] and
Zi[b − 1] = Zj [�j − 1]. Using similar argument as before, we conclude
that a and b are fixed once we fix all other indices. So using [9, Lemma
A.4], we get

Pr (BadW4 ∧ Case B.2|E3) ≤ 2q3�2

3(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: In this case, we know that the three paths, Wi,
Wj , and Wk do not collide. We have the following system of equations:

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
) � L ⊕ Zk[�k − 1] = Mi[�k] ⊕ Mi[b]

Using a similar analysis as in case C of BadW3|E2, we get

Pr (BadW4 ∧ Case C|E3) ≤ q3�2

6(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

By combining all three cases, we have

Pr (BadW4|E3) ≤ q3�5

2(2n − q − σ + 3)3
+

3q3�2

(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

(23)
Bounding Pr (BadW5|E4): Fix some i, j, k ∈ [q]. The analysis in this case is again
similar to the analysis of BadW3|E2 and BadW4|E3. We have the following three
cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same
argument as used in Case A for BadW3|E2. So, we have

Pr (BadW5 ∧ Case A|E4) ≤ q3�5

2(2n − q − σ + 3)3
.
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(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source
leading to the accident. In this case, we have the following system of equa-
tions

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zj [b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mj [b]

We can have two sub-cases:
(B.1) Suppose the third equation is simply a consequence of the second equa-

tion. Then, we must have δMi
= δMj

and Zi[a − 1] = Zj [b − 1] and
Zj [�j − 1] = Zk[�k − 1] must hold trivially, since the graph is man-
ageable. We claim that a = b = Prefix(Mi[1],Mj [1]) + 1. If not, then
Mi[�i] = Mj [�j ] which in conjunction with Zj [�j −1] = Zk[�k −1] implies
that Wi[�i] = Wj [�j ] which contradicts BadW2. So, using [9, Lemma A.4],
we get

Pr (BadW5 ∧ Case B.1|E4) ≤ q3�2

2(2n − q − σ + 2)2
.

(B.2) The second and third equation are independent. Considering the sub-
system consisting of these two equations, and using [9, Lemma A.4], we
get

Pr (BadW5 ∧ Case B.2|E4) ≤ q3�2

6(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations:

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mi[�k] ⊕ Mi[b]

Let r denote the rank of the above system. Using a similar analysis as in
case B.1 above, we conclude that a = b = Prefix(Mi[1],Mj [1]) + 1 if r = 1.
Using [9, Lemma A.4], we get

Pr (BadW5 ∧ Case C ∧ r = 1|E4) ≤ q2

2(2n − q − σ + 1)
.

Pr (BadW5 ∧ Case C ∧ r = 2|E4) ≤ q3�2

6(2n − q − σ + 2)2
.

By combining all three cases, we have

Pr (BadW5|E4) ≤ q3�5

2(2n − q − σ + 3)3
+

5q3�2

6(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

(24)
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Further, from Eqs. (19)–(24), we have

Pr (BadW|TU) ≤ 2σ

2n
+

5q2

2(2n − q − σ + 1)
+

7q3�2

(2n − q − σ + 2)2
+

3q3�5

2(2n − q − σ + 3)3
.

(25)

Bounding Pr (BadX|TUW): In the full version [9, Appendix B] of this paper, we
show that

Pr (BadX|TUW) ≤ 2σ

2n
+

10q2

2n − q − σ + 1
+

15q3�2 + q2�3

(2n − q − σ + 2)2

+
12q3�6 + 6q4�3

(2n − q − σ + 3)3
+

8q4�6

(2n − q − σ + 4)4
(26)

Combining Eqs. (18), (25), and (26), we have

Pr (V0 ∈ Vbad) ≤ 4σ

2n
+

16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
. (27)

6 Conclusion

In this paper we proved that OMAC, XCBC and TMAC are secure up to q ≤ 2n/2

queries, while the message length � ≤ 2n/4. As a consequence, we have proved
that OMAC – a single-keyed CBC-MAC variant – achieves the same security level
as some of the more elaborate CBC-MAC variants like EMAC and ECBC. This, in
combination with the existing results [15,16], shows that the security is tight up
to � ≤ 2n/4 for all CBC-MAC variants except for the original CBC-MAC. It could
be an interesting future problem to extend our analysis and derive similar bounds
for CBC-MAC over prefix-free message space. In order to prove our claims, we
employed reset-sampling method by Chattopadhyay et al. [8], which seems to
be a promising tool in reducing the length-dependency in single-keyed iterated
constructions. Indeed, we believe that this tool might even be useful in obtaining
better security bounds for single-keyed variants of many beyond-the-birthday-
bound constructions.
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