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Preface

The 28th Annual International Conference on Theory and Application of Cryptology
and Information Security (ASIACRYPT 2022) was held in Taiwan during December
5–9, 2022.

The conference covered all technical aspects of cryptology, and was sponsored by
the International Association for Cryptologic Research (IACR).

We received a total of 364 submissions from all over the world, and the Program
Committee (PC) selected 98 papers for publication in the proceedings of the conference.
The two program chairs were supported by a PC consisting of 79 leading experts in
aspects of cryptology. Each submission was reviewed by at least three PC members
(or their sub-reviewers). The strong conflict of interest rules imposed by IACR ensure
that papers are not handled by PC members with a close working relationship with the
authors. The two program chairs were not allowed to submit a paper, and PC members
were limited to two submissions each. Therewere approximately 331 external reviewers,
whose input was critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first-
round discussions the PC selected 224 submissions to proceed to the second round
and the authors were then invited to participate in an interactive rebuttal phase with
the reviewers to clarify questions and concerns. The second round involved extensive
discussions by the PC members.

Alongside the presentations of the accepted papers, the program of ASIACRYPT
2022 featured two invited talks by Jian Guo and Damien Stehlé. The conference also
featured a rump sessionwhich contained short presentations on the latest research results
of the field.

The four volumes of the conference proceedings contain the revised versions of the
98 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

Using a voting-based process that took into account conflicts of interest, the PC
selected the three top papers of the conference: “Full Quantum Equivalence of Group
Action DLog and CDH, and More” by Hart Montgomery and Mark Zhandry, “Crypto-
graphic Primitives with Hinting Property” by Navid Alamati and Sikhar Patranabis, and
“SwiftEC: Shallue–van de Woestijne Indifferentiable Function to Elliptic Curves” by
Jorge Chavez-Saab, Francisco Rodriguez-Henriquez, and Mehdi Tibouchi. The authors
of all three papers were invited to submit extended versions of their manuscripts to the
Journal of Cryptology.

Many people have contributed to the success of ASIACRYPT 2022. We would like
to thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge and
expertise, and for the tremendous amount of work that was done with reading papers
and contributing to the discussions. We are greatly indebted to Kai-Min Chung and
Bo-Yin Yang, the General Chairs, for their efforts and overall organization. We thank
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Bart Preneel, Ron Steinfeld, Mehdi Tibouchi, Jian Guo, and Huaxiong Wang for their
valuable suggestions and help. We are extremely grateful to Shuaishuai Li for checking
all the files and for assembling the files for submission to Springer. We also thank
the team at Springer for handling the publication of these conference proceedings.

December 2022 Shweta Agrawal
Dongdai Lin
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Full Quantum Equivalence of Group
Action DLog and CDH, and More

Hart Montgomery1(B) and Mark Zhandry2

1 Linux Foundation, San Francisco, USA
hart.montgomery@gmail.com

2 NTT Research and Princeton University, Princeton, USA

Abstract. Cryptographic group actions are a relaxation of standard
cryptographic groups that have less structure. This lack of structure
allows them to be plausibly quantum resistant despite Shor’s algorithm,
while still having a number of applications. The most famous example
of group actions are built from isogenies on elliptic curves.

Our main result is that CDH for abelian group actions is quantumly
equivalent to discrete log. Galbraith et al. (Mathematical Cryptology)
previously showed perfectly solving CDH to be equivalent to discrete log
quantumly; our result works for any non-negligible advantage. We also
explore several other questions about group action and isogeny protocols.

Proving the equivalence of breaking the
Diffie-Hellman protocol and computing
discrete-log is one of the oldest problems in
public key cryptography.

Boneh and Lipton [BL96]

1 Introduction

Diffie-Hellman key agreement [DH76] is one of the most important protocols in
cryptography. Given a generator g of a cyclic group of order p, Alice and Bob
choose random a ← Zp and b ← Zp, respectively, and exchange the values ga

and gb. Their shared key is then gab = (ga)b = (gb)a.
One way to break Diffie-Hellman is to compute discrete logarithms (DLog):

extract a from (g, ga) and then compute gab = (gb)a from Alice’s message. Fortu-
nately, computing discrete logs appears hard, and after decades of cryptanalytic
effort the best classical algorithms on certain groups—multiplicative groups of
finite fields and elliptic curves—have sub-exponential or exponential complexity.

The security of Diffie-Hellman key exchange, however, is potentially easier
than solving DLog. Indeed, computing the shared key is equivalent to solving the
computational Diffie-Hellman problem (CDH): computing gab from (g, ga, gb).

A portion of this work was done when the author was employed by Fujitsu Research.
The full version of this paper is available at https://eprint.iacr.org/2022/1135.

c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13791, pp. 3–32, 2022.
https://doi.org/10.1007/978-3-031-22963-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22963-3_1&domain=pdf
http://orcid.org/0000-0002-8907-5791
http://orcid.org/0000-0001-7071-6272
https://eprint.iacr.org/2022/1135
https://doi.org/10.1007/978-3-031-22963-3_1


4 H. Montgomery and M. Zhandry

While CDH is clearly no harder than DLog, it is not a priori obvious that the
converse should hold. After all, CDH and DLog are very different problems:
CDH is in essence computing multiplication a, b �→ a × b homomorphically on
the encoded values ga, gb, whereas DLog is inverting the encoding. The good
news is that there has been classical progress towards proving such an equiva-
lence [den90,Mau94,MW96,BL96]. However, the polynomial-time equivalence of
DLog and CDH in general groups without any auxiliary information still remains
an important fundamental open question. As such, the hardness of CDH must
simply be assumed in Diffie-Hellman key exchange, requiring a potentially much
stronger assumption than the hardness of DLog.

Quantum Diffie-Hellman. Shor [Sho94] shows that DLog is easy on a quantum
computer, meaning the Diffie-Hellman protocol is no longer secure. Numerous
proposals have been made for replacement “post-quantum” cryptosystems. One
interesting example preserving the spirit of the original Diffie-Hellman protocol is
due to Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06]. They propose
to replace the group in Diffie-Hellman with a group action. Very roughly, the
group action allows for a similar operation as discrete exponentiation as in Diffie-
Hellman, but does not have an analagous operation for multiplying two group
elements, as is needed by Shor’s attack.

In more detail, a group action consists of a group G and a set X, together
with an action � : G × X → X such that for any a, b ∈ G and x ∈ X, it holds
that (ab) � x = a � (b � x). In this setting, DLog is the task of recovering a from
(x, a � x), and CDH is the task of computing (ab) � x from (x, a � x, b � x). If we
consider abelian and regular1 group actions, we can translate Diffie-Hellman key
exchange from groups to group actions by viewing Zp as the group acting on the
set 〈g〉 through discrete exponentiation: a�x = xa. DLog and CDH on the group
immediately correspond to DLog and CDH on the group action. However, other
group actions that do not correspond to plain groups are possible. The most
notable example is isogenies over elliptic curves [CLM+18], one of the leading
candidates for post-quantum public key cryptography proposed by Couveignes,
Rostovtsev, and Stolbunov2. In the full version of the paper, we discuss how
other plausibly post-quantum proposals can sometimes also be phrased as group
actions.

As in the classical case, the DLog-CDH equivalence is an important funda-
mental question in the quantum world. It may even be more important than
the classical equivalence today, as the post-quantum hardness of group actions
has so far seen a much smaller cryptanalytic effort than the classical hardness
of groups, and therefore our confidence in the post-quantum CDH assumption
on group actions is much weaker. An equivalence to DLog would therefore be an
1 A regular group action is a group action that, for every x1, x2 ∈ X, there exists a

unique element g ∈ G such that x1 = g � x2.
2 A few very recent works [CD22,MM22,Rob22] break a certain isogeny-based protocol

called SIDH. SIDH, however, is just one of a number of isogeny protocols, and in
particular it is not a group action. For a slightly more in depth discussion about
different isogeny protocols, see Sect. 2.5.
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important step toward improving this confidence. In ordinary groups, the post-
quantum equivalence is trivial: they are both easy. In group actions, however,
it is less clear: group actions have less exploitable structure for proving such an
equivalence, but quantum algorithms are more powerful and can potentially be
used to facilitate a reduction.

In a short paper, Galbraith et al. [GPSV18] give a promising first step toward
proving an equivalence: they show that any perfect algorithm for solving CDH
in abelian group actions can be converted into a DLog algorithm. The core idea
is that a perfect, efficient CDH algorithm essentially turns the set of a group
action into a plain group, with x1 × x2 = CDH(x1, x2). One can then apply
Shor’s DLog algorithm to the derived group. The main difficulty is that solving
DLog in the derived group is not exactly identical to DLog in the original group
action. Galbraith et al. essentially show how to translate one DLog to the other
to complete the reduction.

Unfortunately, if the CDH algorithm has even relatively minor correctness
error (even, say, 10%), the above algorithm does not work. On the other hand,
for cryptographic applications, we want to justify that no efficient algorithm can
solve CDH with any non-negligible success probability. It could therefore be, for
example, that CDH can be broken—and hence also group action key agreement—
with probability 0.9, but that DLog is still hard. In plain groups, one can amplify
success probability using standard random self-reductions for CDH. However, as
pointed out by Galbraith et al., the limited structure of group actions prevents
such random self-reductions. They therefore leave the full quantum equivalence
of DLog and CDH for group actions as an important open question.

1.1 This Work: Full Quantum Equivalence of DLog and CDH

In this work, we resolve the open question above, showing that DLog and CDH
are quantumly equivalent for abelian group actions (Sect. 3). Since the most
commonly used group actions in cryptography (from isogenies) are abelian, our
results here have wide applicability and can be used directly on isogeny-based
cryptosystems such as CSI-FiSh [BKV19]3.

As a secondary result, we also show that the same cannot hold generically
for Decisional Diffie-Hellman (DDH), which is equivalent to asking that the
shared key not only cannot be predicted by the adversary, but that it is indistin-
guishable from a random string. In other words, there is no black box quantum
equivalence between DLog (or even CDH) and DDH (Sect. 4). We also formally
specify a generic model for group actions (Sect. 5), explore relaxations of group
actions relevant to certain isogeny protocols (Sect. 6), and discuss the relation-
ship between group actions and the dihedral hidden subgroup problem (Sect. 7).

Our Reduction (Sect. 3). Our DLog-CDH equivalence will use Galbraith et al.
to reduce the problem of proving equivalence to that of boosting the success

3 We note that our result does not directly apply to restricted effective group actions
(REGAs) like CSIDH [CLM+18] and explain this in more detail later.
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probability of a CDH algorithm. However, this comes with many challenges,
which we now explore. Consider a deterministic algorithm A such that:

Pr
a,b←G

[A(x, a�x, b�x) = (ab)�x] = p Pr
a,b←G

[A(x, a�x, b�x) = (uab)�x] = 1−p

for some constant p ∈ [0, 1] and fixed known group element u ∈ G\{1}. This
would certainly be a valid CDH adversary with success probability p.

Remark 1. Throughout, we will consider x as being fixed; this is usually how
CDH is modeled, and typically makes hardness results for CDH more challenging.
It is also possible to consider a variant where x is chosen randomly and A works
for a random x. [BMZ19] explore the fixed vs random question for plain groups.

In the plain group setting, the equivalent setup would be that A on input
(g, ga, gb), outputs gab with probability p and guab with probability 1− p. An easy
random self-reduction for this A would be to run h ← A(g, (ga)×gc, (gb)×gd) for
random choices of c, d. Each trial will run A on random independent inputs, so we
know that h = g(a+c)(b+d) with probability p, and h = gu(a+c)(b+d) with probabil-
ity 1−p. We can then compute h′ = h×(ga)−d(gb)−cg−cd. If h = g(a+c)(b+d), then
h′ = gab. Meanwhile, if h = gu(a+c)(b+d), then h′ = g(u−1)(a+c)(b+d)+ab, which is
a uniformly random element. Therefore, by repeating this process many times on
independent c, d, a p fraction of the elements will be identical to gab, and the rest
will be uniformly random. Taking a majority therefore gives gab with overwhelm-
ing probability. An important feature of this self-reduction is that when A is cor-
rect, the self-reduction gives the correct answer, and when A is incorrect, the self-
reduction gives a uniformly random answer. The self-reduction can be strength-
ened to handle arbitrary A, thus giving a generic way to boost success probability.

Unfortunately, the above re-randomization is not possible with group actions,
since there is no multiplication analog for set elements. Given (x, a � x, b � x), one
could try choosing a random c, d and running (cd)−1�A(x, c�(a�x), d�(b�x)). The
result will be (cd)−1 � [(ac)(bd)]�x = (ab)�x with probability p and (uab)�x with
probability 1 − p. This allows us to obtain many samples of each. But unlike the
plain group self-reduction, now when A is incorrect we do not output a uniformly
random answer, but instead output a fixed incorrect answer (uab) �x. This means
we cannot in general take a majority since if p < 1/2 this would actually give the
incorrect answer. In this case, if we knew that p < 1/2, we would know to actually
take the minority element as output. This would require making non-black box use
of A, which is non-standard but acceptable. However, if p = 1/2, then the majority
or minority element is just a random sample between (ab)�x and (uab)�x. In this
case, even knowing p is not enough to identify the correct answer.

We will now show how to resolve the reduction for this particular class of
adversaries. To do so, we consider two cases: u2 = 1, or not. The exponent 2
in u2 = 1 is a result of our algorithm A outputting a random choice amongst
two elements, and in more general settings we could consider higher, but still
polynomial, exponents. Note that group actions are defined and plausibly hard
for non-cyclic or non-prime order groups, so it is reasonable to consider group
orders that have small factors. For isogenies, the group order is indeed smooth.
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If u2 = 1 and p = 1/2, we are basically stuck: A is simply outputting a
random sample in the orbit of (ab) � x under action by u. Nothing we can do
will amplify the success probability. Instead, we observe that A can be viewed
as essentially solving CDH—with perfect probability!—in the subgroup G/〈u〉.
We then apply Galbraith et al. to this subgroup to solve DLog relative to G/〈u〉.
We can then solve for the full DLog in G by brute forcing the 〈u〉 component.
This works regardless of p, but requires u to generate a small group.

If u2 �= 1 and/or if p �= 1/2, another approach will work. Here, we can first
run our re-randomized A several times on (x, a � x, b � x) to obtain y0 = (ab) � x
and y1 = (uab) � x, but we do not yet know which is which. But in this case,
we can use the fact that A is not generating uniform outputs in the orbit of
(ab) � x to distinguish the two cases. Concretely, we run the re-randomized A
several times on (x, x, y0) and (x, x, y1). Since x = 1 � x, we know that (x, x, y0)
will output y0 with probability p and u � y0 = y1 with probability 1 − p. This
distribution of outputs exactly matches the distribution from our original set of
trials on (x, a�x, b�x). Meanwhile, (x, x, y1) will output y1 and u�y1 = (u2ab)�x
with probabilities p and 1 − p. This distribution will be different than that from
our original set of trials. Thus by comparing the distributions generated from
(x, x, y0) and (x, x, y1) with the distribution generated from (x, a � x, b � x), we
can identify which of y0, y1 are the correct CDH output.

Our result generalizes the approach above to work with arbitrary adver-
saries A, and to work without needing any side-information (like the probability
p) about the distribution of outputs of A. Essentially, we show that there is
always a polynomial-sized subgroup H of G such that we can amplify A to have
near-perfect success probability on G/H. We then apply Galbraith et al. to the
subgroup, and then brute-force the quotient group.

There are a number of challenges to getting this sketch to work. One issue is
to actually identify the subgroup of G. Suppose G has order n = 2 × 3 × 5 × ....
Then the number of subgroups of polynomial-size will be λO log(λ); if G is non-
cyclic, the number of small subgroups can even be exponential. So we cannot
simply guess the subgroup, and must instead compute it.

Another issue is thresholding : we need to make decisions about whether var-
ious distributions of elements are close or far. These decisions are made by sam-
pling a number of samples from the distributions, and comparing frequencies.
But we can only obtain frequency estimates with inverse-polynomial error. For
whatever criteria we use to distinguish distributions, if two distributions are close
but not too close, the noise in our estimates will cause the criteria to output just
a random bit. The question is then: if the various decisions underlying our algo-
rithm may have random answers, how can we guarantee consistent outputs, as
required to achieve a high success probability?

The randomness from thresholding seems impossible to fully overcome. How-
ever, we show via careful arguments that the randomness can all be contained
within the choice of the subgroup H. Once this subgroup is fixed, we show that
we can set our decision-making criteria such that we always make consistent
decisions, resulting in consistent CDH solutions.
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We note that our main proof assumes the group action is regular, meaning
for a fixed x, a�x is a bijection. This is the most relevant setting to isogeny-based
group actions. Nevertheless, we explain in Sect. 3.1 how to extend to arbitrary
abelian group actions.

Impossibility of Extending to DDH (Sect. 4). Given the above, one may hope to
actually prove that DLog implies DDH, namely that (ab)�x is indistinguishable
from c � x for a random c, given x, a � x, b � x.

Unfortunately, we refute this possibility, at least in the composite-order set-
ting that is most relevant to post-quantum cryptosystems. The idea is simple:
we start with any group action � : G × X → X where CDH—and maybe even
DDH—is hard. We then define a slightly larger group and set G′ = G × Zp and
X ′ = X × Zp, for some polynomially bounded p. We expand � to an action of
G′ on X ′ by defining (a, u) � (x, y) = (a � x, u + y). DLog and CDH easily hold
for the expanded group action, but DDH is trivially false just by looking at the
Zp component, which has no hardness. We note that if G is cyclic, we can make
G′ cyclic as well by choosing p to be relatively prime to the order of G.

Generic Group Actions (Sect. 5). Next, we propose a generic group action model,
analogous to the generic group model of [Sho97]. In this model, the set elements
X are just random strings, and the action of G on X is provided by an oracle
which can be queried by the adversary. This model is implicit in much of the
prior work on group actions, but we are not aware of it being formally written
down. We also note that the model trivially extends to the quantum setting,
where classical queries are replaced by quantum queries.

On REGAs (Sect. 6). Many isogeny protocols cannot be phrased as clean group
actions. Essentially, in some isogeny-based protocols (such as CSIDH [CLM+18])
there is a set of generators g1, . . . , g� ∈ G, and it is only known how to efficiently
compute the actions of the gi or g−1

i ; one can then compute the action of any
g ∈ G provided one has a representation of g =

∏�
i=1 gαi

i for polynomially-sized
αi. In general, finding such a representation is believed to be hard. This setting
is referred to as a Restricted Effective Group Action (REGA).

Our reduction (as with Galbraith et al.) does not apply to REGAs, since
applying Shor’s algorithm requires the ability to compute the action of arbitrary
group elements g. Formalizing some discussion from Galbraith et al., we show
that the reduction works for REGAs if a problem similar to the 1D Short Integer
Solution (1D-SIS) problem is easy which we call REGA-SIS.4 In the case that
G = Zp–which we can assume since we are focused on abelian groups–the prob-
lem becomes essentially the one-dimensional version of the inhomogeneous SIS
(ISIS) problem [BGLS19]: given a target integer t ∈ Zp and a vector of integers
s ∈ Z

�
p defined by the REGA description, the problem is to find a vector of

integers v ∈ [−β, β]� such that t = s ·v. The only difference between REGA-SIS

4 We defer a formal definition of this problem to the body of the paper. It is shown
in [BLP+13] that 1D-SIS, for certain parameter settings, is equivalent to the “stan-
dard” LWE problem.
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and what a natural definition of “1D-ISIS” would be is that the given vector of
integers s is defined by the REGA rather than sampled randomly.

Essentially, we show that such a REGA-SIS oracle is enough to compute a
representation of g in terms of the gi, which converts the REGA into a stan-
dard group action. This shows that in a world where REGA-SIS is easy, our
equivalence between DLog and CDH also holds for REGAs. It turns out that
the hardness of REGA-SIS is, in fact, inherent in solving DLog on REGAs: we
also show that any algorithm which solves DLog on REGAs can be used to solve
this REGA-SIS problem. This result is quite interesting since it implies DLog
on REGAs is at least as hard as a (not necessarily randomized, and thus maybe
not hard) version of a hard lattice problem.

If we could somehow strengthen this to show that a CDH solver on REGAs
must also solve REGA-SIS, then we would obtain a full quantum equivalence
between DLog and CDH for REGAs. We do not know how to prove such a result,
but we give some evidence that generic adversaries for CDH on REGAs may have
to solve REGA-SIS or, for certain groups, 1D-SIS itself. More precisely, we show a
reduction that generic adversaries for CDH on REGAs that make classical group
and group action “queries” can solve REGA-SIS.5 We leave formally proving this
equivalence as an interesting and practically important open problem.

The Dihedral Hidden Subgroup Problem (Sect. 7). Childs et al. [CJS14] apply the
Dihedral Hidden Subgroup Problem (DHSP) algorithm of [Kup05] to compute
isogenies between elliptic curves. This is a special case of the folklore result that
any algorithm for DHSP yields an algorithm for DLog on regular, abelian group
actions. We prove this folklore theorem.

The DHSP is the main approach for cryptanalyzing regular, abelian group
actions, and no known better general algorithm is known. However, we point out
that the two are not trivially equivalent: group actions have significant extra
structure that could potentially be used for attacks that is not exploited by
the reduction to DHSP. We are not aware of this observation being explicitly
mentioned previously.

We next conjecture that, nevertheless, DHSP and regular, abelian group
actions are generically equivalent, meaning any generic algorithm for solving
these group actions can be used to solve DHSP generically. We offer some evi-
dence of this conjecture, but leave proving or disproving it as a fascinating open
question.

2 Preliminaries

In this section we discuss background material that is used in the rest of the
paper. We expect that experienced readers can skip this section. For a more
thorough presentation of preliminary material, please see the full version of the
paper.

5 The adversary could be quantum but is restricted to classical queries to the group
and group action oracles.
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2.1 Min-Entropy and Leftover Hash Lemma

Let Z be a discrete random variable Z with sample space Ω. Its min-entropy is

H∞(Z) = min
ω∈Ω

{− log Pr[Z = ω]}.

For two random variables Y and Z, we use H∞(Z|Y ) to denote the min-entropy
of Z conditioned on Y . We will use the following lemma, which is a simplified
version of the leftover hash lemma [ILL89].

Lemma 1. Let {Hs : Z → Y }s∈S be a family of pairwise independent hash
functions, and Z and S be discrete random variables over Z and S, respectively.
If H∞(Z) > log |Y | + 2 log(ε−1) we have Δ[(S,HS(Z)), (S,U)] ≤ ε, where Δ
denotes statistical distance and U denotes the uniform distribution over Y .

We will also use the following corollary of the leftover hash lemma.

Lemma 2. Let G be an (additive) finite abelian group such that |G| = λω(1).
Let n ∈ Z such that n > log |G| + ω(log(λ)). If g ← Gn and s ← {0, 1}n, then

(

g,
n∑

i=1

si · gi

)
s≈ (g, u),

where u ← G is a uniformly chosen element from G.

2.2 1D-SIS Problem

The 1D-SIS problem dates to the original work of Ajtai [Ajt96] and has been
used in many cryptographic applications [BV15,BKM17]. These cases use special
moduli, but the case for general moduli follows from [BLP+13], where it is shown
that the 1D-SIS problem with certain parameters but no special restrictions on
the modulus is as hard as standard polynomial modulus LWE.

Definition 1. Let m, β, and q be positive integers. In the 1D-SISm,q,β prob-
lem, an adversary is given a random vector v ← Zm

q and asked to provide a
vector u ∈ Zm

q such that ||u|| < β. We say that an adversary efficiently solves
the 1d-SISm,q,β problem if it can provide such a vector in PPT time.

2.3 Cryptographic Group Actions

Here we define cryptographic group actions following Alamati et al. [ADMP20],
which are based on those of Brassard and Yung [BY91] and Couveignes [Cou06].

Definition 2 (Group Action). A group G is said to act on a set X if there is
a map � : G × X → X that satisfies the following two properties:

1. Identity: If e is the identity of G, then ∀x ∈ X, we have e � x = x.
2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh)�x = g �(h�x).
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We may use the abbreviated notation (G,X, �) to denote a group action. We
extensively consider group actions that are regular :

Definition 3. A group action (G,X, �) is said to be regular if, for every x1, x2 ∈
X, there exists a unique g ∈ G such that x2 = g � x1.

We emphasize that most results in group action-based cryptography have
focused on regular actions. As emphasized by [ADMP20], if a group action is
regular, then for any x ∈ X, the map fx : g �→ g � x defines a bijection between
G and X; in particular, if G (or X) is finite, then we must have |G| = |X|.

In this paper, unless we specify otherwise, we will work with effective group
actions (EGAs). An effective group action (G,X, �) is, informally speaking, a
group action where all of the (well-defined) group operations and group action
operations are efficiently computable, there are efficient ways to sample random
group elements, and set elements have unique representation. Since the focus
of this paper is on abelian group actions in a quantum world, we note that
we can efficiently map any abelian group to Zp for some integer p (see the full
version of our paper and our discussion on KEGAs for more details), and all
of the less obvious properties needed for EGAs follow automatically. However,
the definition of an EGA itself is a little bit tedious (and quite formal so as to
properly model isogeny-based constructions in a classical world) so we defer it
to the full version of the paper.

2.4 Computational Problems

We next define problems related to group action security that are more seman-
tically similar to typical group-based problems than those that are traditionally
used in isogeny literature. We define the formal definitions that are typically
used in isogenies (based on [ADMP20] in the full version of the paper, where we
also compare them to our (intuitively simpler, but almost equivalent) notions of
security defined here. We emphasize that we are defining problems here and not
assumptions because these are easier to use in reductions.

Definition 4 (Group Action Discrete Logarithm). Given a group action
(G,X, �) and distributions (DX ,DG), the group action discrete logarithm prob-
lem is defined as follows: sample g ← DG and x ← DX , compute y = g � x, and
create the tuple T = (x, y). We say that an adversary solves the group action dis-
crete log problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs g.

Definition 5 (Group Action Computational Diffie-Hellman (CDH)). Given a
group action (G,X, �) and distributions (DX ,DG), the group action CDH prob-
lem is defined as follows: sample g ← DG and x, x′ ← DX , compute y = g�x, and
create the tuple T = (x, y, x′). We say that an adversary solves the group action
CDH problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs y′ = g � x′.
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Definition 6 (Group Action Decisional Diffie-Hellman (DDH)). Given a group
action (G,X, �) and distributions (DX ,DG), the group action DDH problem is
defined as follows: sample g1, g2 ← DG and x, z′ ← DX , compute y1 = g1 � x,
y2 = g2 � x, and z = g1g2 � x.

The group action DDH problem is to distinguish whether a tuple is of the
form (x, y1, y2, z) or (x, y1, y2, z

′).

Remark 2. The above definitions allow for different distributions DX on X. In
particular, DX could be uniform over X, or it could be a singleton distribution
that places all its weight on a single fixed x. Whether x is fixed or uniform
potentially changes the nature of these problems (see [BMZ19] for an exploration
in the group-based setting). Looking ahead, our reduction between DLog and
CDH will preserve x, and therefore it works no matter how x is modeled.

2.5 Instantiations of Cryptographic Group Actions

We next discuss various instantiations of cryptographic group actions and where
they fall into our definitions. We start by discussing isogenies. For more details,
we refer the reader to [ADMP20], which has an extensive discussion on the
classification of various isogeny protocols into group action definitions.

Isogenies that Are EGAs. CSI-FiSh [BKV19] and its derivatives/applications
[DM20a] have EGA functionality and are conjectured to even have weak pseu-
dorandomness. However, there have recently been some subexponential attacks
on CSI-FiSh [Pei20,BS20] and current cryptosystems built from CSI-FiSh are
not particularly efficient. In fact, there are not efficient algorithms to (asymp-
totically) generate parameter sets for CSI-FiSh. However, if a powerful quantum
computer were available, then efficient (quantum) computation of the class group
structure could be used to generate arbitrary parameter sets for CSI-FiSh and
improve efficiency.

Isogenies that Are Restricted EGAs (REGAs). Recall that, in a REGA,
there is a set of generators g1, . . . , g� ∈ G, and it is only known how to efficiently
compute the actions of the gi or g−1

i ; one can then compute the action of any
g ∈ G provided one has a representation of g =

∏�
i=1 gαi

i for polynomial αi.
We define REGAs formally in the full version of the paper. Many of the most
commonly used isogeny protocols are based on CSIDH [CLM+18], which is a
REGA. These include things like the signature scheme SeaSign [DG19] or OT
protocols [LGdSG21].

Isogenies that Are Not GAs. There are many isogeny-based schemes that
cannot be modeled as group actions. Examples include SIDH [DJP14] and the
recently proposed OSIDH [CK20,Onu21,DDF21]. Most isogeny-based protocols
that are not group actions are typically used for key exchange or other very
simple cryptographic applications.
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Remark 3. A few very recent works [CD22,MM22,Rob22] break SIDH by show-
ing how to solve the discrete log problem. However, the attack crucially exploits
certain extra points that are made public in SIDH, and these points are precisely
one of the reasons that SIDH is not a group action. In particular, the the attack
does not seem to apply to CSI-FISH or CSIDH, the main instantiations of EGAs
and REGAs, respectively.

Non-isogeny Group Actions. Currently all instantiations of abelian candi-
date cryptographic group actions that are thought to be secure are isogeny-
based [DDF21]. There have been a number of attempts to build key exchange
and other basic primitives from nonabelian groups that amount to group actions
or have hardness assumptions that can be modeled in some way as group
actions [KLC+00,Sti05,SU05a], but the proposed instantiations of these schemes
have been completely cryptanalyzed [Shp08,BKT18].

We note that these candidate cryptosystems typically propose an abstract
scheme and then attempt to instantiate it with a group. We note that it is not
usually the case that the abstract schemes themselves are broken: the cryptanal-
ysis typically works directly on the instantiations, so it is possible that some of
these protocols could be implemented securely with different choices of groups.

There have also been some candidate nonabelian cryptographic group actions
proposed [JQSY19]. While these are not known to be insecure, they have far
fewer applications than abelian group actions.

3 Reducing DLog to CDH Quantumly

Let (G,X, �) be a regular abelian group action. In Sect. 3.1 we explain how to
extend our reduction to non-regular abelian actions. Let x ∈ X be a fixed set
element.

Theorem 1. If DLog is post-quantum hard in (G,X, �), then so is CDH.
More precisely, there exists an oracle algorithm RA,(G,X,�)(μ, y) that runs in
time poly(1/μ, log |G|) and makes poly(1/μ, log |G|) total queries to a supposed
CDH adversary A and group action (G,X, �), such that the following holds. If
Pra,b←G [A(a � x, b � x) = (ab) � x] ≥ μ, then for any a ∈ G, Pr[RA,(G,X,�)(μ, a �
x) = a] ≥ 0.99.

We note that the above means that R is very slightly non-black box, in that
its running time and number of calls to A depend on the success probability
μ of A. We note that any amplification of success probability (say, from μ to
0.99) will always come with such a dependence on μ. In our case, amplification
is critical to our algorithm, and the dependence on μ would persist even if we
only wanted RA to have very small success probability. The remainder of this
section is devoted to proving Theorem 1.

Define CDH to be the function which correctly solves CDH relative to x:
CDH(a � x, b � x) = (ab) � x. We will also allow CDH to take as input a vector
of elements, behaving as CDH(a1 � x, · · · , an � x) = (a1 · · · an) � x. Furthermore,
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we will allow CDH to take as input distribution(s) over the set X; in this case,
CDH will also output a distribution.

Let a, b ∈ G be group elements, and let y = a � x and z = b � x. Suppose A
is an efficient (quantum) algorithm such that

q := Pr[A(y, z) = CDH(y, z)]

is a non-negligible function in the security parameter, where a and b are random
elements in G, and the probability is over the randomness of a and b and A.

Our goal is to turn A into a quantum algorithm for discrete logarithms.
As a first step, we introduce a random self-reduction for CDH. In the case of
groups (as opposed to group actions), a more powerful random self-reduction
allows for amplifying the success probability on any input. The result would be
an algorithm for CDH with overwhelming success probability. In our case, due
to the restricted nature of group actions, we can only perform a more limited
self-reduction. Nevertheless, this self-reduction has useful properties.

The Basic Random Self-reduction. The random self-reduced version of A,
denoted A0, works as follows:

– On input y = a � x, z = b � x, choose random a′, b′ ∈ G.
– Let y′ = a′ � y, z′ = b′ � z.
– Run w′ ← A(y′, z′).
– Output w = (a′b′)−1 � w′.

Note that each run of A0 runs A exactly once, and uses a constant number of
group action operations. This reduction is correct since, if A is correct, then we
output

w = (a′b′)−1
CDH ((a′a) � x, (b′b) � x) = (a′b′)−1 (aa′bb′) � x = (ab) � x

which is the correct output for CDH. Moreover, the set elements y′, z′ are uni-
formly distributed over the possible set elements.

Let D be the distribution A0(x, x). That is, we are feeding the “dummy” dis-
tribution to our random self-reduction. While we know what the answer should
be (x = CDH(x, x)), we use this distribution to learn more about A’s behavior.

Lemma 3. Pr[x ← D] = q.

Proof. Recall that D is the distribution A0 (x, x). A0 on input (x, x) calls
A (a′ � x, b′ � x) for random a′, b′ ∈ G. With probability q, A (a′ � x, b′ � x)
returns (a′b′) � x, and in this case we have w = x as desired. �

We next generalize our notation. For any y, z ∈ X where y = a � x and
z = b � x for some a, b ∈ G, let Dy,z be the distribution of outputs of A0(y, z).

Lemma 4. For every y, z ∈ X such that there exist a, b ∈ G where y = a�x and
z = b � x, Dy,z = CDH(y, z,D), where CDH(·, ·, ·) is the 3-way CDH function. In
other words, A0(a � x, b � x) is identically distributed to (ab) � A0(x, x).
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Proof. Fix a, b ∈ G. Consider the probability that A0(a � x, b � x) outputs w:

Pr[A0(a � x, b � x) = w] = Pr
a′,b′∈G

[(a′b′)−1
� A((aa′) � x, (bb′) � x) = w]

= Pr
a′,b′∈G

[A((aa′) � x, (bb′) � x) = (a′b′) � w]

= Pr
a′′,b′′∈G

[A(a′′ � x, b′′ � x) = (a′′b′′ (ab)−1) � w]

= Pr[A0(x, x) = (ab)−1 � w]

Thus, A0(a � x, b � x) is just the distribution A0 (x, x), but shifted by ab. �

Using this “shift invariance,” we can define Dw := Dw,x = Dx,w = Dy,z, if
CDH(y, z) = w. Lemma 4 shows that Dy,z outputs CDH(y, z) with probability q.
Thus, by running A0 many times, the right answer is almost certainly amongst the
list of outputs. However, to amplify the success probability, we would need to know
which of the list of outputs is the correct answer; we cannot determine this yet.

In the following, we will take steps to remedy this issue. Throughout this
section, it is instructive to keep the following examples in mind:

1. Let g ∈ G\{1}. A(Y,Z) outputs CDH(y, z) with probability 1/3, and g �
CDH(Y,Z) with probability 2/3. Notice that in this case, A0 has the same
distribution of outputs as A. Also notice that taking the majority element
will give the wrong answer. Thus, we cannot immediately decide which of the
outputs of A0 is the right answer just by looking at the frequencies.

2. Let H be a subgroup of G of size 1/q. Then consider the case where A(y, z)
outputs c � CDH(y, z), where c ← H is chosen uniformly. Note that A is still
correct with probability q in this case, since c = 1H with probability q. Similar
to Example 1, there is no way to identify the correct output just by looking
at frequencies.

3. Suppose H = Zlog λ
2 , which we can decompose as a chain of subgroups Hi =

Zi
2 with Hi−1 ⊆ Hi. A outputs c � CDH(y, z), where c ∈ H. However, c is

not uniform. Instead, i ∈ [0, log λ] is chosen according to some probability
distribution, and then c is chosen uniformly from Hi.

4. Suppose H = Zlog λ
2 . Again, A outputs c � CDH(y, z), where c ∈ H but not

uniform. Here, c occurs with probability 1 − α|c|1, where |c|1 denotes the
Hamming weight of c.

Example 1. It turns out Example 1 can be handled using the shifting prop-
erty from Lemma 4. Suppose we are given a CDH challenge parameterized by
(y = a � x, z = b � x). Basically, after repeating many runs of A0 (y, z), we obtain
two elements: w0 = (ab) � x and w1 = (gab) � x. In theory, in this example we
could exploit the fact that we know the probabilities with which A outputs the
correct set element and the “g-multiplied” set element, but let’s assume that we
do not know this. What can we do?

Suppose we feed these outputs back into A0, running A0 (w0, x) and
A0 (w1, x) several times each. Each of these two runs will output two distinct



16 H. Montgomery and M. Zhandry

elements. Since w0 = (ab) � x, Lemma 4 shows that A0 (w0, x) = Dw0 =
Dy,z = A0 (y, z) as distributions. Likewise, since w1 = (gab) � x, we have
A0 (w1, x) = A0 (g � y, z).

Therefore, because A0 (w0, x) is distributed the same as A0 (y, z) and
A0 (w1, x) is not, we can effectively distinguish w0 from w1 and find the cor-
rect CDH output.

Example 2. On the other hand, Example 2 is much harder to handle. Mimicking
the above, we first run A0 several times, obtaining the list of values c�CDH(y, z)
as c ranges over H, but we don’t know c. We can then try, for each c�CDH(y, z),
running A0(c�CDH(y, z), x) several times, to obtain tuples of elements. However,
this will not give us any useful information: each tuple will be exactly the same
list as in the original run of A0, namely the entire set H�CDH(y, z). The problem
is that the output distribution of A0 is invariant under action by H.

Looking ahead, we cannot improve the CDH algorithm for this example.
However, this particular example gives a perfect CDH oracle relative to the
group G/H acting on X/H := {H � w : w ∈ X}. We will use such an algorithm
to solve discrete log in G/H. We can then solve discrete logarithms in H by
brute force, and then piece the two results together to solve discrete logarithms
in G.

Examples 3 and 4. In general, however, we may not get a perfect CDH oracle for
H, and are not even obviously guaranteed that the outputs lie in a small sub-
group. In Example 3, consider the distribution over i such that larger subgroups
are very unlikely, but not too unlikely. For any fixed number of queries, it could
be that, with probability 1/2, all results end up in Hi, but with probability 1/2
some of the results will end up in Hi+1. It might, a priori, not even be possible
to identify when you have all the elements from a subgroup, since “chaining”
calls to A0 as we have done above might move us outside a subgroup. So it is
unclear if there is a way to always output a consistent complete subgroup, so as
to get a near-perfect CDH solver relative to G mod this subgroup.

Next, we will gradually improve our CDH solver to resolve these difficulties.

Restricting to a Small Subgroup. We show how to discard some wrong outputs
of A0 so that the remaining outputs lie in a reasonably-small subgroup of G,
while still guaranteeing that we keep CDH(y, z).

We first give some notation. For any two distributions D0,D1 over X, let
‖D0 − D1‖∞ = maxw∈X |Pr[w ← D0] − Pr[w ← D1]|. For a distribution D over
X, consider sampling T elements w1, . . . , wT from D. This vector of wi gives rise
to an “empirical” distribution D̃, where the probability of any w is just the relative
frequency of w amongst the wi. Note that even though D̃ has a domain of expo-
nential size, we can represent it by the list w1, . . . , wT , which has size T . Also note
that there are two distributions here: the empirical distribution D̃ itself, and the
distribution over empirical distributions. We denote the latter as D̃ ← DT .

We are now ready to give our next algorithm, A1(y, z):

– Let T = λ/δ2 for some parameter δ ∈ (0, 1).
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– Run D̃∗ ← A0(y, z)T

– For each w in the support of D̃∗, run D̃w ← A0(w, x)T .
– Output L, the set of w in the support of D̃∗ such that ‖D̃w − D̃∗‖∞ ≤ δ/2.

We will think of λ being poly(log q), so that 2−Ω(λ) is negligible in 1/q.
Note that A1 makes at most T 2 + T = O(λ2/δ4) evaluations of A1, and hence
T 2 + T evaluations of A0 and O(T 2 + T ) group action operations. In order to
analyze the algorithm A1, we need to give some basic results. First we recall the
Dvoretzky-Kiefer-Wolfowitz inequality:

Lemma 5 ([Mas90]). For any ζ > 0 and distribution D, except with probability
2e−2ζ2T , ‖D̃ − D‖∞ ≤ ζ, where D̃ ← DT .

In other words, the empirical distribution converges to the underlying distri-
bution D as the number of samples T grows large.

Now consider the distribution D = A0(x, x) from before, and the derived
distributions Dw = CDH(w,D). Let dw = ‖Dw − D‖∞.

Lemma 6. ∀y, z ∈ X, ‖DCDH(y,z) − Dy‖∞ = dz and dCDH(y,z) ≤ dy + dz.

Proof. For the equality, note that ‖DCDH(y,z) − Dy‖∞ = ‖CDH(y,Dz) −
CDH(y,D)‖∞. Since CDH(y, ·) simply permutes the elements of X—more pre-
cisely, it maps v ∈ X to a � v where y = a � x—it does not affect the distance
between distributions, and therefore |CDH(y,Dz)−CDH(y,D)| = |Dz −D| = dz.
For the inequality, we have dCDH(y,z) = |DCDH(y,z) − D|∞ ≤ |DCDH(y,z) − Dy|∞ +
|Dy − D|∞ = dz + dy, where we used the equality in the second to last step. �

Now we prove the following general result about abelian groups. Fix an
abelian group H and a set of generators a = (a1, . . . , an). For any vector e ∈ N

n

of non-negative integers, define ae :=
∏n

i=1 aei
i . Let ‖e‖1 :=

∑n
i=1 |ei|. Then for

any r ∈ H, we define ‖r‖ := mine∈Nn:r=ae ‖e‖1.
Lemma 7. If U = {r ∈ H : ‖r‖ ≤ ns} has size at most s, then U = H.

In other words, if the subset of H with small ‖ · ‖ is not too big, then in fact all
of H has small ‖ · ‖.

Proof. Clearly U ⊆ H. In the other direction, consider a single ai. Since U has
size at most s, then so does the set {aei

i : 0 ≤ ei ≤ s} ⊆ U . As there are s + 1
different possibilities for ei, there must be e′

i < ei such that aei
i = a

e′
i

i . Then
a

e′
i−ei

i = 1, and 0 < e′
i − ei ≤ s. For any r ∈ H, write r = ae. Since ai has order

at most s, we can reduce each ei to an integer smaller than s without changing
r. After such a reduction, ‖e‖1 ≤ ns, and so r ∈ U . Hence H ⊆ U . �

Let Lδ ⊂ G be the set of all a ∈ G such that da�x ≤ δ, and Hδ be the
subgroup of G generated by Lδ. We have the following:

Lemma 8. Let ε ∈ (0, 1] be a real number. Then if δ ≤ εq4/8, |Hδ| ≤ q−1 + ε.
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Note that ε is necessary: D may output g � x for a g in a subgroup H of size n,
with q−1 negligibly smaller than n. Suppose Pr[x ← D] = q and Pr[g � x ← D]
is slightly less than q for all other g. Then Hδ = H for any non-negligible δ.

Proof. We first prove that |Lδ| ≤ q−1 + ε. Note that d1G�x = dx = 0 and so
1G ∈ Lδ. From Lemma 3, Pr[x ← D] = q. Therefore, for any a ∈ Lδ,

Pr[a−1 � x ← D] = Pr[x ← Da�x] ≥ Pr[x ← D] − δ = q − δ,

where the inequality follows since da�x ≤ δ for a ∈ Lδ. Then

1 =
∑

a∈G

Pr[a−1 � x ← D] ≥
∑

a∈Lδ

Pr[a−1 � x ← D]

= Pr[1 � x ← D] +
∑

a∈Lδ\{1}
Pr[a−1 � x ← D] ≥ q + (|Lδ| − 1)(q − δ)

Solving for |Lδ| gives |Lδ| ≤ (1 − δ)/(q − δ). Setting the right hand side to be
≤ q−1 + ε gives the desired bound whenever δ ≤ εq2/(1 − q + qε). Note that
(1 − q + qε) ≤ 1. Therefore, δ ≤ εq4/8 is only a stronger bound on δ.

We now bound |Hδ| by applying Lemma 7 to H = Hδ and a = Lδ and
s = 1/q+ε. Consider some r = ae in Hδ. Then by iteratively applying Lemma 6,

dr�x = dCDH(a1�x,··· ,a1�x
︸ ︷︷ ︸

e1

,a2�x,··· ,a2�x
︸ ︷︷ ︸

e2

,a3�x,··· ) ≤
∑

i

eidai�x ≤
∑

i

eiδ = |e|1δ

By minimizing over all e, we have that dr�x ≤ ‖r‖δ. For U as in Lemma 7, this
means that Pr[r−1 � x ← D] = Pr[x ← Dr�x] ≥ q − ‖r‖δ ≥ q − nsδ. Since the
probabilities of each outcome sum to at most 1, we therefore have that |U | ≤
(q − nsδ)−1. In order to satisfy the conditions of Lemma 7, we therefore need
1/(q − nsδ) ≤ s, which is equivalent to 1 ≤ s(q − nsδ). Since n = |Lδ| ≤ 1/q + ε,
we have that this inequality is satisfied whenever δ ≤ εq4/(1+εq)3. As 1+εq ≤ 2,
our bound of δ ≤ εq4/8 is only a stronger bound, showing that Hδ = Lδ. Our
prior bound on |Lδ| thus proves Lemma 8. �

We are finally ready to analyze the algorithm A1. Let D′ be the distribu-
tion A1(x, x), and D′

y,z be the distribution A1(y, z). The next lemma follows
immediately from Lemma 4:

Lemma 9. For every y, z ∈ X where y = a � x and z = b � x for some a, b ∈ G,
D′

y,z = CDH(y, z,D′).

Thus, we define D′
w := D′

w,1 = D′
1,w = D′

y,z, if CDH(y, z) = w. We now prove:

Lemma 10. Except with probability 2(T + 1)e−δ2T/8 + (1 − q)T ≤ 2−Ω(λ) over
L ← A1(x, x), we have that x ∈ L ⊆ Hδ � x.
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Proof. Suppose we set ζ = δ
4 . By Lemma 5, we have that |D̃�−DCDH(y,z)|∞ ≤ δ/4

and for each w in the support of D̃�, |D̃w − Dw| ≤ δ/4, each individually except
with probability at most 2e−δ2T/8. We also have that with probability 1−(1−q)T ,
x will be amongst the T samples of A1(x, x). By a union bound, all of these
happen simultaneously, except with probability 2(T + 1)e−δ2T/8 + (1 − q)T .

If all of these happen, then |D̃x − D̃�| ≤ |D̃x − D| + |D̃� − D| ≤ 2δ/4 = δ/2.
Thus x ∈ L assuming the above hold. On the other hand, for any w ∈ L,
dw = |Dw − D| ≤ |D̃w − Dw| + |D̃w − D̃�| + |D̃� − D| ≤ δ. Hence w ∈ Lδ � x by
the definition of the set Lδ, which immediately implies that each w ∈ Hδ � x. �

As a consequence, we have that D′ has negligible support outside of Hδ � x.
Note that D′ may not be random in Hδ � x, as the list L may not include all
of Hδ � x, and L itself may be randomized. Indeed, in Example 4, α may be
such that D and Dc�w are sufficiently close for c with small Hamming weight,
but Dc�w is far for c with large Hamming weight. Some c may even be right on
the cusp, being included in L with constant probability. The result is that the
output may not be a whole subgroup and may have entropy.

We note that by setting ε a constant and δ = εq4/8 = O(q4), we have that
A1 runs in time O(λq−8) = Õ(q−8) and makes Õ(q−8) total queries to A and
the group action operations.

Filling an Entire Subgroup. A1 outputs a subset of Hδ � CDH(y, z), and the
subset must include CDH(y, z). We will now devise a new algorithm A2 which
outputs H � CDH(y, z), where H is a (potentially unknown) subgroup of Hδ.
We split A2(y, z) into two phases, A0

2(), which outputs the set H � x, and then
A1

2(y, z,H � x), which outputs the set H � CDH(y, z). We first give A0
2():

– Initialize list L = {x}. Let s = q−1 + ε be an upper bound on the size of Hδ.
– Let T = sλ/τ , for a parameter τ ∈ (0, 1) to be chosen later.
– Repeat the following at least T times:

• For each pair (w,w′) ∈ L2, run Lw,w′ ← A1(w,w′)
• Let L′ = ∪w,w′Lw,w′

• If |L′| = |L| and the number of iterations so far is ≥ T , terminate and
output L. Otherwise (if the number of iterations is < T or |L′| �= |L|),
replace L with L′, and continue.

We now analyze the algorithm L ← A0
2().

Lemma 11. Except with negligible probability 2−Ω(λ), all of the following hold:

– L = H � x for some (potentially unknown) subgroup H ⊆ Hδ.
– A0

2() will terminate in at most T + s steps.
– For the resulting H, Pr[M � H : M ← D′] < τ .

Proof. Combining Lemmas 9 and 10, we know that except with probability
2−Ω(λ), Lw,w′ will be a list containing CDH(w,w′). Throughout the rest of the
proof of Lemma 11, we will therefore assume CDH(w,w′) ∈ Lw,w′ for all itera-
tions and for all w,w′.



20 H. Montgomery and M. Zhandry

We first argue that L ⊆ L′ in every iteration, except with probability 2−Ω(λ).
In particular, since L is set to L′ at the end of each iteration, this means that L
is never decreasing in size, and once an element is added to L it will remain for
the rest of the algorithm. Indeed, L initially contains x. By induction, assume L
contains x for the first i iterations, and consider computing L′ in this iteration.
L′ is set to L′ = ∪w,w′Lw,w′ where Lw,w′ ← A1(w,w′) as w,w′ range over L. In
particular, since x ∈ L, L′ will contain Lw,x ← A1(w, x) for every w ∈ L. Since
we assume Lw,x contains CDH(w, x) = w, every w ∈ L will be included in L′.

Therefore, if |L′| = |L|, it must mean that L′ = L. Additionally, once we
terminate, we know that CDH(w,w′) ∈ L′ = L for every w,w′ ∈ L, meaning L
is closed under CDH/multiplication once we terminate. Hence, L forms H � x
for some subgroup H. By Lemma 10, our algorithm maintains the invariant that
L ⊆ Hδ at all times, and hence H ⊆ Hδ.

Now consider any w ∈ Hδ such that Pr[w ∈ M : M ← D′] ≥ τ/s. Then after T
iterations, the probability w never gets added to L is (1−τ/s)T = (1−τ/s)sλ/τ ≈
e−λ. Union bounding over at most s such w, we see that all such w get added to
L, except with probability at most 2−Ω(λ). In this case, a union bound over the w
such that Pr[w ∈ M : M ← D′] < τ/s, of which there are at most s, shows that
the probability of sampling any value not in H is less than τ . �

We now give the algorithm A1
2(y, z, L):

– Initialize M to be an empty list of unordered sets.
– Repeat the following λ times:

• Run M ← A1(y, z).
• For each w ∈ M,w′ ∈ L, run Mw,w′ ← A1(w,w′).
• Let M = ∪w,w′Mw,w′ . Add M to M (keeping duplicates).

– Let M∗ be the most common element in M.

We now analyze the algorithm A1
2(y, z, L).

Lemma 12. If τ ≤ 1/4(s2 + 1), then except with probability 2−Ω(λ), L = H � x
for some subgroup H ⊆ Hδ, and M∗ = CDH(y, z,H � x).

Proof. Define w∗ = CDH(y, z). We assume the bullets of Lemma 11 hold, which
Lemma 11 shows hold except with probability 2−Ω(λ). Therefore, L = H � x for
some subgroup H ⊆ Hδ. It remains to show that M∗ = CDH(y, z,H�x) = H�w∗.
By union-bounding over the s2 + 1 runs of A1 in each iteration and invoking
the last bullet of Lemma 11, the following holds: for each iteration, except with
probability at most τ × (s2 + 1) ≤ 1/4, we have that

– Mw,w′ ⊆ H � w∗ for each w ∈ M,w′ ∈ L, and therefore in particular M ⊆
H � w∗.

– w∗ ∈ M .

Provided M ⊆ H � w∗, except with probability 2−Ω(λ), we have CDH(w,w′) ∈
Mw,w′ , and so H � w∗ = CDH(w�,H � x) ⊆ M . Therefore, M = H � w∗ with
probability at least 3/4 − 2−Ω(λ) ≥ 2/3. Since each iteration samples indepen-
dently the distribution over M , by simple concentration bounds H � w� will be
the majority element of M, except with probability 2−Ω(λ). �
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Note that A0
2 runs A1 for (T + s)|L|2 = O(|L|2λ/q3) = Õ(q−5) times, giving

Õ(q−13) total queries to A and the group action operation. Meanwhile, A1
2 runs

A1 for λ|L|2 times, giving Õ(q−10) queries to A and the group operation.
From this point on, we fix a single L ← A0

2() once and for all.

Removing Superfluous Information. We will next want to run quantum period-
finding algorithms which make queries to A1

2 on superpositions of inputs. These
algorithms, however, assume A1

2 is a function. Unfortunately, our algorithm gen-
erates significant side information, namely all the intermediate computations
used to arrive at the final answer. Fortunately, since our algorithm outputs a
single answer with overwhelming probability, we can use the standard trick of
purifying the execution of A1

2 and then un-computing all the intermediate values.
The result is that A1

2 is negligibly close to behaving as the function mapping
(y, z) �→ H � CDH(y, z). From now on, we will therefore assume that A1

2 is such
a function.

Computing H. Given algorithm A1
2, we can compute the subgroup H using

quantum period-finding [BL95]. Concretely, the function a �→ A1
2(a�x, x, L) will

output (aH) � x, which is periodic with set of periods H. Therefore, applying
quantum period finding to the procedure a �→ A1

2(a�x, x, L) will recover H. This
will make O(log |G|) calls to A1

2(a � x, x, L).

Solving DLog in G/H. Notice that A1
2 is a (near) perfect CDH-solver, just in the

group action corresponding to G/H. Concretely, the group G/H acts on the set
X/H := {H � y : y ∈ X} in the obvious way; the distinguished element of X/H
is H � x. Our algorithm A1

2 gives a perfect CDH algorithm for this group action:
we compute CDH(H�y,H�z) as A1

2(y
′, z′) for an arbitrary y′ ∈ H�y, z′ ∈ H�z.

We apply Galbraith et al. [GPSV18] to our CDH adversary for (G/H,X/H)
to obtain a DLog adversary B(gH � x) which computes gH. For completeness,
we sketch the idea: Let a be a set of generators for G/H. Since G is abelian, we
can write any g as av for some vector v ∈ Zn1 ×· · ·×Znk

where ni is the period
of ai. We assume the ni are fully reduced, so that the choice of v is unique.
Shor’s algorithm is used in this step, and we note that Shor’s algorithm will not
necessarily work if G is not abelian and our group action is not regular, which
is why we need this restriction.

The CDH oracle allows, given h � (H � x), to compute hy � (H � x) in O(log y)
steps using repeated squaring. Given a DLog instance g � (H � x) = av � (H � x),
we define the function (x, y) �→ ax+yv � (H � x), which can be computed using
the CDH oracle. Then this function is periodic with period (v,−1). Running
quantum period-finding therefore gives v, which can be used to compute h.

Solving DLog inG. We now have an algorithm which solves, with overwhelming
probability, DLog in G/H. We now turn this into a full DLog adversary, which
works as follows:

– Given y = c � x, first apply the DLog adversary for G/H, which outputs cH.
– For each a ∈ cH (which is polynomial sized), test if y = a � x. We output the

unique such a.
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Overall, assuming q is small relative to log |G|, the running time of the algo-
rithm is dominated by the cost of running A0

2, namely Õ(q−13) total calls to A
and the group action operations.

Remark 4. The dependence on q in our reduction is not ideal. The cost of our
attack, however, is dominated by the cost of determining the subgroup. Typically,
however, we expect the possible small-order subgroups to be known, and for
there to only be a very limited number of options. In this case, we expect the
complexity of our attack could be drastically improved.

3.1 Extending to Non-regular Group Actions

The above assumed a regular group action, which captures all the cryptographic
abelian group actions currently known. Here, we briefly sketch how to extend to
an arbitrary abelian group action. The idea is that, within any ablelian group
action, we can pull out a regular group action, and then apply the reduction
above.

Concretely, we first consider restricting (G,X, �) to the orbit of x under G,
namely G�x. Let S ⊆ G the set of a that “stabilizes” x, namely a�x = x. Then
S is a subgroup. Moreover, for any y ∈ G � x, the set of a that stabilize y is also
exactly S.

The first step is to compute the (representation of the) subgroup S. Let
f : G → X be defined as f(a) = a � x. Then f is an instance of the abelian
hidden subgroup problem with hidden subgroup exactly S. Therefore, we can
find S using Shor’s quantum algorithm.

Then we can define the new group action (G/S,G � x, �), which is a regular
abelian group action. CDH in this group action is identical to CDH in the original
group action, in that a CDH adversary for one is also a CDH adversary for the
other. We can also solve DLog in (G,X, �) by solving DLog in (G/S,G � x, �),
and then lifting a ∈ G/S to a′ = (a, g) ∈ G for an arbitrary g ∈ S.

The main challenge is that our CDH adversary A may not always output
elements in G � x, and it may be infeasible to tell when it outputs an element
in G � x versus a different orbit. Nevertheless, the same reduction as used above
applies, and the analysis can be extended straightforwardly but tediously to
handle the fact that A may output elements in different orbits. The rough idea
is that L outputted by A1 may no longer be a subset of Hδ � x, as it may have
pieces from elements from different orbits. But L∩G�x is still a subset of Hδ �x,
and similar statements hold for A0

2,A1
2 as well. This is enough to ensure that we

obtain a near-perfect CDH algorithm on (G/S)/H.

4 On the DDH and CDH (In)Equivalence

A natural question to ask is whether we can show that the group action variants
of CDH and DDH are equivalent. In traditional groups, there are a number of
ways to argue that CDH and DDH are not equivalent, including by positing the
existence of bilinear maps [BF01].
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We show that for general group actions, the problems are also not equivalent.
We do this by providing examples of group actions where “CDH” is hard and
“DDH” is easy. In particular, we show that any group action where the group
can be written as a non-trivial product group has the potential to be “CDH”
hard but not “DDH” hard. This mirrors what we know classically and in the
plain group setting, since there we can have groups that are CDH hard but not
DDH hard. We state this formally in the following lemma.

Lemma 13. Let (G,X, �) be an effective group action such that no efficient
adversary can solve the group action CDH problem (as defined in Definition 5)
over it. Then there exists a group action (G′,X ′,�) where no efficient adversary
can solve the CDH problem, but there exists a PPT algorithm for solving the
group action DDH problem (as defined in Definition 6).

Proof. Consider some extra group G̃. We can define a “group action” G̃×G̃ → G̃
where the group action operation is simply group multiplication in G̃. Discrete
log is trivial on this group since group inversion is efficient.

From our secure group action (G,X, �) and our insecure “group action,” we
construct another group action (G′,X ′,�) which we define as follows:

G′ = G × G̃

X ′ = X × G̃

� :
{

G × G̃
}

×
{

X × G̃
}

→
{

X × G̃
}

For some g ∈ G, x ∈ X, g̃1, g̃2 ∈ G̃, we define the action as follows:

{g, g̃1} � {x, g̃2} = {g � x, g̃1g̃2}
Note that this definition meets all of the requirements of the group action. G×G̃
is a (product) group, and all of the group action axioms hold.

We can immediately build a PPT distinguisher: given a DDH tuple
(x′

1 = (x, g̃1) , g′ � x′
1 = (g � x1, g̃g̃1) , x′

2 = (x, g̃2) , g′ � x′
2 = (g � x2, g̃g̃2)), we can

perform the following check:

(g̃g̃2)
−1 (g̃g̃1) = g̃−1

2 g̃1

This immediately breaks the pseudorandomness of the group action, meaning
that the group action DDH problem is not hard over

(
G̃, X̃,�

)
. However, any

adversary that breaks the group action CDH problem on
(
G̃, X̃,�

)
also breaks

it on (G,X, �), which contradicts our assumption that the CDH problem is hard
on this group action. �

In the above example, we used a product group. A nice question is as follows:
what happens if we assume that the group must be, say, prime-order cyclic? This
case is much harder to show interesting results since we don’t have efficiently
computable bilinear pairings as in the standard group setting.
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5 A Generic Group Action Framework

In this section, we define a generic group action framework. We create two
models: one for classical queries, and one which allows quantum queries. Our
framework is based on the generic group framework of Shoup [Sho97]. We borrow
from Shoup’s description in our own explanation below.

Let G be a group of order n, let X be a set that is representable by bit
strings of length m, and let (G,X, �) be a group action. We define additional
sets SG and SX such that they have cardinality of at least n and 2m, respectively.
We define encoding functions of σG and σX on SG and SX , respectively, to be
injective maps of the form σG : G → SG and σX : X → SX .

A generic algorithm A for (G,X, �) on (SG, SX) is a probabilistic algo-
rithm that behaves in the following way. It takes as input two encoding lists
(σG (g1) , ..., σG (gk)) and (σX (x1) , ..., σX (xk′)) where each gi ∈ G and xi ∈ X
and where σG and σX are encoding functions of G on SG and X on SX , respec-
tively. As the algorithm executes, it may consult two oracles, OG and OX .

The oracle OG takes as input two strings y, z representing group elements
and a sign “+” or “–”, computes σG

(
σ−1

G (y) ± σ−1
G (z)

)
. The oracle OX takes

as input a string y representing a group element and string z representing a set
element, and computes σX

(
σ−1

G (y) � σ−1
X (z)

)
. As is typical in the literature, we

can force all queries to be on either the initial encoding lists or the results of
previous queries by making the string length m very long. We typically measure
the running time of the algorithm by the number of oracle queries.

We can also extend the generic group action model to the quantum setting,
where we allow quantum queries to the oracles. We model quantum queries in
the usual way: OG

∑
y,z,±,w αy,z,±,w|y, z,±, w〉 =

∑
y,z,±,w αy,z,±,w|y, z,±, w ⊕

OG(y, z,±)〉 and OX

∑
y,z,w αy,z,w|y, z, w〉 =

∑
y,z,w αy,z,w|y, z, w ⊕ OX(y, z)〉.

6 On REGAs

Our reductions showing the equivalence of group action DLog and CDH unfor-
tunately only hold for EGAs and not for REGAs. In their work showing an
equivalence for a perfect oracle [GPSV18], Galbraith et al. suggest that apply-
ing the BKZ algorithm [SE94] or other lattice reduction techniques can be used
to complete the reduction. In this section, we formalize this idea with a number
of results on the relationship between REGAs and lattices, and, in particular,
focus on the 1D-SIS problem, which is a lattice problem that is equivalent to the
standard form of LWE modulo PPT reductions. Due to space constraints, we
only state the relevant lemmas in this section and defer proofs to the full version
of the paper. We present the full, unabridged version of this section as well as
the formal definitions related to REGAs in full in the full version of the paper.

In this section, we will rely on the fact that, using a generalization of Shor’s
algorithm [CM01], we can (quantumly) efficiently compute the isomorphism
between any abelian group G and a product group over groups of the integers

G ∼= Z1 × ... × Zm.



Full Quantum Equivalence of Group Action DLog and CDH, and More 25

We additionally note that most of our results here only hold for regular group
actions. We do not consider this a major drawback since all popular REGAs
(e.g. CSIDH and its derivatives) are regular REGAs.

A “1D-SIS Oracle” Completes the DLog/CDH Reduction for REGAs.
We begin by formalizing the argument from Galbraith et al. [GPSV18] that effi-
cient lattice reductions could be used to show the discrete log/CDH equivalence
of REGAs. While doing this in full would involve completely replicating our ear-
lier proof, we simply point out at which stages using a REGA makes a difference
and how we can handle these points.

We first need to ensure that we can randomly sample elements from a REGA.
We define a notion of “sampleable REGA” capturing this:

Definition 7. Sampleable REGA: Let (G,X, �) be a REGA with group
element vector g = (g1, ...,gm) for some m. We say that such a REGA is sam-
pleable if there exists an efficient way to sample a vector b ∈ {−γ, γ}m for some
polynomial γ such that the vector r =

∑m
i=1 bigi is distributed statistically close

to uniform over G.

This requirement essentially just requires that some form of the leftover hash
lemma applies over the group with the action-computable elements as the “base.”
We note that many cryptosystems build on REGAs (i.e. those using CSIDH)
implicitly make this assumption. We need this to rule out cases where the ele-
ments of g are too clustered: for instance, if G is Zp and all of the gi are small
integers, we will not be able to effectively compute the group action on ran-
domly distributed group elements. Next, we define a specialized problem we call
“REGA-SIS.” Note that this is not a standard problem because, among other
things, the gi distribution comes from the definition of the REGA.

Definition 8. REGA-SIS: Let (G,X, �) be a REGA with group element
vector g = (g1, ...,gm) for some m. We define SISREGA,β in the following way:
given a random element h ← G, the problem is to find some vector u ∈ [−β, β]m

such that h =
∑m

i=1 uigi.

This problem is parameterized by the REGA and, in particular, by both the
group and the computable elements. Furthermore, for G = Zq and when each
coefficient of g is distributed uniformly at random, REGA-SIS is exactly the
1D-inhomogeneous SIS (1D-ISIS) problem (which is reducible to standard 1D-
SIS with a slight loss in parameters, and 1D-SIS itself is again reducible to and
from standard LWE, for appropriate parameter settings). So this problem can
be viewed as a slightly unnatural generalization of SIS. We can now state our
core lemma on REGAs.

Lemma 14. Consider any efficiently sampleable REGA as defined in
Definition 7. Then any adversary that can solve the CDH problem on the REGA
with advantage ε1 and the SISREGA,β problem for the same REGA and some
polynomial β with advantage ε2 can be used to solve the discrete log problem on
the same REGA with advantage ε1ε2.



26 H. Montgomery and M. Zhandry

Discrete Log on REGAs and 1D-SIS. Recall that a REGA is a group action
(G,X, �) where the action is only computable on a set of group elements defined
by a vector g = (g1, . . . , gn). Suppose that G is an abelian group. We claim
that if these group elements are distributed randomly, then any adversary that
can solve discrete log on the REGA can be used to solve the 1D-SIS problem
for certain parameter settings (which are all reducible to some form of standard
LWE). The analysis of most practical REGAs (e.g. CSIDH) assume follow this
convention, so this is not an unreasonable assumption to make. We formalize
this with the following lemma.

Lemma 15. Let q and m be integers such that m ≥ 3 log q. Let A be an adver-
sary that can solve the group action DLog problem on regular REGAs of the form
(Zq,X, �) where the vector of group elements g = (g1, ..., gm) is m elements long
and distributed uniformly at random with advantage ε. Then A can be used to
solve the 1D-SISm,q,β problem for some polynomial β with advantage ε.

CDH on REGAs. We above showed that an adversary that can solve discrete
log on a REGA can solve a variant of the SIS problem, and that any adversary
that can solve this SIS variant can also be used to complete the CDH/DLog
reduction. Can we tie all of this together to get an unconditional CDH to DLog
reduction to work for REGAs?

We give some mild evidence in this direction. We can show that any generic
adversary that makes only classical queries to a generic group action oracle (that
may still be able to perform quantum computations) can be used to solve the
REGA-SIS problem we defined above in Definition 8. We can then use this to
complete the CDH to DLog reduction for generic, classically-querying adver-
saries. Of course, classically we can prove CDH and DLog are unconditionally
hard (this follows from the unconditional hardness of these problems in plain
groups), and therefore equivalent. But phrasing the equivalence as a reduction
suggests a possible starting point for a quantum equivalence

Lemma 16. Consider some regular, abelian, and efficiently sampleable REGA
(G,X, �) with computable elements g = (g1, ...,gm). Suppose there exists a
generic adversary making only classical group and group action queries that
can solve the GA-CDH problem on this REGA with advantage ε. Then there
exists an adversary that can solve REGA-SIS for some polynomial parameter β
with advantage ε/2.

Discussion. We have shown three core results on REGAs (stated informally):
an adversary for our REGA-SIS problem would complete our CDH/DLog reduc-
tion for REGAs, an adversary for DLog on REGAs solves this REGA-SIS prob-
lem, and a generic adversary that only makes classical queries that can solve
CDH on REGAs can be used to solve REGA-SIS as well. All together, these
seemingly tightly bind CDH and DLog on a REGA to a SIS-like problem that
appears to be vulnerable to lattice-based cryptanalysis [GPSV18]. We therefore
provide some evidence for a quantum DLog-CDH equivalence on REGAs.
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7 Hidden Subgroup Problems and GAs

In this section, we discuss some similarities between different kinds of hidden
subgroup problems (HSPs) and solving group actions. We particularly focus on
the generalized dihedral group. We note that, among other things, formalizing
a connection between group actions and these kinds of problem would allow us
to potentially tie two of the most popular forms of post-quantum cryptosystems
(lattices and isogenies) together. Once again, due to space constraints, we just
state lemmas here and defer the full presentation to the full version of the paper.

The Generalized Dihedral Hidden Subgroup Problem. We begin by defin-
ing the generalized dihedral group.

Definition 9. Generalized Dihedral Group: Let A be an abelian group. The
generalized dihedral group on A, denoted DA, is the group defined by Z2 � A.

When A ∼= Zn, we get back the standard notion of the dihedral group on 2n
elements. The dihedral group has a number of nice geometric explanations and
properties, but we defer those to others [KLG06]. We next define the general
dihedral hidden subgroup problem. However, rather than defining this problem
in its traditional sense, we will use an equivalent formulation known as the abelian
hidden shift problem. These problems are well known to be equivalent [CVD05].

Definition 10. Abelian Hidden Shift Problem (equivalent to
GDHSP): Consider some functions f, g such that, for some c ∈ A and for
all b ∈ Zn, f(b) = g (b + c). We also require that each of the ||A|| output values
of f and g are also distinct. We say that an algorithm solves the abelian hidden
shift problem if, given descriptions of f and g, it outputs c (which reveals the
subgroup in the generalized dihedral hidden subgroup version of the problem).

The dihedral hidden subgroup problem has strong connections to lattice prob-
lems [Reg02], in that if an efficient algorithm for the DHS problem that uses a
special type of “coset sampling” exists, then an efficient algorithm for the LWE
problem exists as well. The best known algorithms for solving the DHS problem
are subexponential and based on Kuperberg’s algorithm [Kup05,Reg04,Kup13].

An Algorithm for the AHSP Breaks Regular, Abelian Group Actions.
We first show a relatively straightforward result: any algorithm that can solve the
abelian hidden shift problem can be used to solve DLog on a regular, abelian
group action. This is essentially already folklore since there have been many
instances (starting with [CJS14]) using Kuperberg’s algorithm or related prin-
ciples to build attacks against isogenies that can be modelled as EGAs.

Lemma 17. Let (G,X, �) denote a regular, abelian group action. Suppose there
exists a PPT algorithm A for solving the abelian hidden shift problem on A with
probability ε. Then there exists for solving the GA-DLog problem on (G,X, �)
with probability ε.
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Using Group Action Algorithms to Solve the AHSP. What about the
other direction? Can we show that an adversary that can break DLog on a
group action can solve the AHSP? Unfortunately, this seems difficult: because
the AHSP is described so generally–the functions f and g can be anything as
long as the functions are injective–so it seems difficult or impossible to prove
this for any non-generic algorithm.

But what about generic algorithms? Could we prove that the AHSP is equiv-
alent to generically solving DLog over group actions? This seems like it might
be plausible. The most interesting result would show equivalence in a generic
group action model with quantum queries. While this may be attainable, unfor-
tunately we do not know how to achieve this result. However, we can show that
an adversary that can generically solve group action DLog with classical queries
can be used to solve the AHSP, which is seemingly a step in the right direction.
We formalize this result below.

Lemma 18. Let (G,X, �) be an abelian, regular group action (EGA). Suppose
there exists a generic adversary A that breaks the group action DLog problem
(as defined in Definition 4) with advantage ε on this group action. Then there
exists an algorithm that solves that AHSP on G with advantage ε.

Discussion. Unfortunately, it seems difficult to show a full quantum equivalence
between the generalized dihedral hidden subgroup problem and solving DLog on
a generic group action. The challenge comes from the fact that it is difficult
quantumly to “remember” an adversary’s query for later use in the simulation.
One possible direction is to use compressed oracles [Zha19], which offer some
ability to record quantum queries. However, it appears challenging to adapt the
compressed oracle framework to highly structured oracles such as generic group
actions. Nevertheless, we close this section with the following conjecture, which
we think is very interesting future work:

Conjecture 1. The generalized dihedral hidden subgroup problem on an abelian
group A is equivalent to the group action discrete logarithm problem on a regular,
abelian group action (A,X, �) in a quantum generic model.
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Abstract. A hinting PRG is a (potentially) stronger variant of PRG
with a “deterministic” form of circular security with respect to the seed
of the PRG (Koppula and Waters, CRYPTO 2019). Hinting PRGs enable
many cryptographic applications, most notably CCA-secure public-key
encryption and trapdoor functions. In this paper, we study cryptographic
primitives with the hinting property, yielding the following results:

• We present a novel and conceptually simpler approach for designing
hinting PRGs from certain decisional assumptions over cyclic groups
or isogeny-based group actions, which enables simpler security proofs
as compared to the existing approaches for designing such primitives.

• We introduce hinting weak PRFs, a natural extension of the hinting
property to weak PRFs, and show how to realize circular/KDM-
secure symmetric-key encryption from any hinting weak PRF. We
demonstrate that our simple approach for building hinting PRGs
can be extended to realize hinting weak PRFs from the same set of
decisional assumptions.

• We propose a stronger version of the hinting property, which we call
the functional hinting property, that guarantees security even in the
presence of hints about functions of the secret seed/key. We show
how to instantiate functional hinting PRGs and functional hinting
weak PRFs for certain (families of) functions by building upon our
simple techniques for realizing plain hinting PRGs/weak PRFs. We
also demonstrate the applicability of a functional hinting weak PRF
with certain algebraic properties in realizing KDM-secure public-key
encryption in a black-box manner.

• Finally, we show the first black-box separation between hinting weak
PRFs (and hinting PRGs) from public-key encryption using simple
realizations of these primitives given only a random oracle.

1 Introduction

A pseudorandom generator (PRG) is one of the most fundamental and widely
studied cryptographic primitives. Informally speaking, a PRG is an expanding
function with the security guarantee that the output of the PRG on a randomly
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chosen input (also called the “seed”) is computationally indistinguishable from
random. However, a plain PRG does not provide any security guarantees if the
adversary has some additional “hint” with respect to the each bit of the seed.

A hinting PRG, introduced recently by Koppula and Waters in [KW19], is
a (potentially) stronger variant of PRG that provides security even given some
hinting information about each bit of the seed. This hinting property can be
viewed as a “deterministic” form of circular security with respect to the seed
of the PRG. We informally recall the definition of a hinting PRG to provide a
more concrete view of what this hinting property actually entails, and how it
encapsulates circular security with respect to the seed.

A hinting PRG is a PRG of the form G : {0, 1}n → Y n that expands n-bit
seed s ∈ {0, 1}n into a vector y = (y1, . . . , yn) of n elements from the set Y ,
such that an n × 2 matrix Z = {zi,b}i∈[n],b∈{0,1} distributed as follows:

zi,b =

{
yi if b = si,

ui ← Y otherwise,

is computationally indistinguishable from a truly random matrix U ← Y n×2,
where each element is sampled uniformly from the set Y .1 Note that the matrix Z
not only contains the output of the PRG, but also has some hinting information
about each bit si of the seed s encoded into the arrangement of the elements in
each row.

Hinting PRGs have been recently used as a key ingredient to con-
struct several cryptographic primitives, such as realizing CCA-secure public-
key encryption (PKE) and attribute-based encryption from their CPA-secure
counterparts [KW19], trapdoor functions [KMT19a,GHMO21], black-box non-
interactive non-malleable commitments [GKLW21], and CCA-compatible public-
key infrastructure [KW21]. This wide range of applications motivates: (i) build-
ing hinting PRGs from a wide variety of mathematical assumptions, (ii) inves-
tigating some natural extensions of the hinting property to other cryptographic
primitives, and (iii) studying the complexity of cryptographic primitives with
hinting property.

Instantiations of Hinting PRGs. Koppula and Waters [KW19] showed how
to realize hinting PRGs from the computational Diffie-Hellman (CDH) and the
learning with errors (LWE) assumptions. Their constructions are based on the
“missing block” framework that was introduced by Choi et al. [CDG+17]. Later,
Goyal et al. [GVW20] introduced a new accumulation-style framework to build
hinting PRGs, and they showed (efficient) constructions of hinting PRGs from
the Decisional Diffie-Hellman Inversion (DDHI) and Phi-hiding assumptions.
However, despite such considerable progress, it is not known how to realize hint-
ing PRGs from a notable class of plausibly post-quantum secure assumptions,
namely isogeny-based assumptions. Note that current techniques to construct
1 The original definition of hinting PRG in [KW19] uses an additional output element

z0 ∈ Y which has no hint about the seed of the PRG. We omit this element from
the definition of hinting PRG here for simplicity of exposition.
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hinting PRGs either use groups with infeasible inversion or the missing-block
framework, both of which seem to be out of reach based on our understanding of
structural properties of isogeny-based assumptions [ADMP20]. This leads to the
following question: can we realize hinting PRGs from isogeny-based assumptions?

On a related note, a hinting PRG is an ostensibly symmetric-key primitive,
and one would expect to achieve it from decisional assumptions (such as the
DDH assumption) in a considerably simpler manner than allowed by current
constructions and their security proofs. In particular, the closely related notion
of symmetric-key circular secure encryption [BRS03] has significantly simpler
realizations and security proofs based on decisional assumptions such as the DDH
assumption [BHHO08]. This leads to the question: is there a simple construction
of hinting PRGs from decisional assumptions such as DDH ? More concretely,
our aim is to achieve constructions and security proofs for hinting PRGs that
are simpler than those based on the missing block framework [KW19] or the
accumulation framework [GVW20]. Our hope is that a simpler construction of
hinting PRGs would be amenable to instantiations from decisonal isogeny-based
assumptions, while also naturally enabling extensions of the hinting property to
other cryptographic primitives.

Hinting Property for Other Primitives. The authors of [KMT19a] showed
that a hinting PRG can be used to construct a one-time key-dependent message
(KDM) secure symmetric-key encryption (SKE) scheme. This motivates us to ask
if there exists a natural extension of hinting PRGs that implies circular/KDM
security with respect to many encryptions of the secret key, and if so, can such
an extension also be realized in a simple manner from decisional assumptions
such as DDH or isogeny-based decisional assumptions. Concretely, we ask the
following question: can we instantiate natural extensions of the hinting property
to other cryptographic primitives from concrete hardness assumptions?

Functional Hinting Property. The original definition of hinting PRG, as
introduced in [KW19], only considers security in the presence of hints about each
bit of the PRG seed itself. A natural extension of this security property would
be to guarantee PRG security in the presence of hints about each bit of some
function of the seed. For example, for a PRG seed s = (s1, . . . , sn) ∈ {0, 1}n,
what if the PRG output provides hints about each bit of f(s) = (si · sj)i,j∈[n],
which is an n2-length vector? This might be particularly challenging to achieve
because the adversary now not only gets hints about each bit of s (via si ·si = si),
but also about the pair-wise product of each bit of s.

This strengthening of the hinting property to its functional counterpart is
analogous to the strengthening of circular security to KDM security; in fact,
one can view the functional hinting property with respect to a class of functions
F as a “deterministic” form of KDM security with respect to F . Additionally,
this property also generalizes to other cryptographic primitives with the hinting
property, if such primitives exist. In this paper, we ask the following question:
can we instantiate functional hinting PRG (and natural extensions of the func-
tional hinting property to other cryptographic primitives) in a black-box way from
concrete hardness assumptions?
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The Complexity of Primitives with Hinting Property. Another natural
direction is to investigate the complexity of a hinting PRG, and its extensions
to other cryptographic primitives. Based on the current constructions of hinting
PRGs, it is unclear if we necessarily need structured mathematical assumptions
to realize hinting PRGs. It is seemingly hard to build a hinting PRG in a generic
way from any PRG (or equivalently, any one-way function). On the other hand, a
hinting PRG does not immediately entail any “public-key”-style functionalities,
and we do not know if it implies PKE. This leads to the following question: does
a hinting PRG (or any of its extensions to other symmetric-key cryptographic
primitives) imply PKE in a black-box way?

Observe that the closely related notion of symmetric-key circular/KDM-
secure encryption, in fact, does not imply PKE in a black-box way because
it can be realized from a random oracle [BRS03]. However, this does not answer
the question outlined above because, as the authors of [KMT19a] point out, it
is not known if a hinting PRG can be realized from any symmetric-key circular
secure encryption scheme in a black-box way.

1.1 Our Contributions

In this paper, we address all of the above questions by showing the following
results.

Simpler Constructions of Hinting PRG from DDH or Isogenies. We
propose a new approach for realizing hinting PRGs from decisional assumptions.
Our approach yields significantly simpler constructions and security proofs for
hinting PRGs as compared to the existing constructions and proofs based on the
missing block framework [KW19] or the accumulation-style framework [GVW20].
We show how to instantiate our approach based on the DDH assumption, as well
as from a recent plausibly post-quantum secure isogeny-based assumption called
the linear hidden shift (LHS) assumption [ADMP20] over certain isogeny-based
group actions (e.g., variants of CSIDH [CLM+18,BKV19,ADMP20]). To the
best of our knowledge, prior to our work, it was not known how to securely
realize a hinting PRG from any isogeny-based assumption, including the LHS
assumption [ADMP20].

Building upon our technique to realize hinting PRGs from the LHS assump-
tion, we also show a direct construction of trapdoor (one-way) functions (TDFs)
from any weak pseudorandom group action (which is a plausibly post-quantum
secure analogue of the DDH assumption over isogeny-based group actions, intro-
duced in [ADMP20]) for which the LHS assumption holds. Our construction
of TDFs and the corresponding proof of security are significantly simpler as
compared to the previously known constructions of TDFs from such isogeny-
based assumptions proposed in [ADMP20], which relied on the framework
of [KMT19a]. We note that the authors of [GHMO21] proposed a construc-
tion of TDFs given any hinting PRG and a PKE scheme with pseudorandom
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ciphertexts; however, their construction needs the ciphertext space to be a group,
which does not hold for any isogeny-based PKE scheme.

Hinting weak PRF and Instantiations. We introduce a natural extension of
the hinting property to another symmetric-key primitive, namely a weak pseu-
dorandom function (wPRF). We call the resulting primitive a hinting wPRF,
which is a strengthening of a hinting PRG in the sense that it guarantees weak
pseudorandomness even in the presence of multiple hints with respect to the
key of a weak PRF. We show that a hinting weak PRF can be used to con-
struct a symmetric-key circular-secure encryption scheme (where the circular
security guarantee holds with respect to multiple encryptions of the secret key)
in a black-box manner (this can be amplified to achieve KDM security, albeit in
a non-black-box way using known techniques [App14]). We also show that our
approach for constructing hinting PRGs can be leveraged to construct hinting
weak PRFs. This yields simple constructions of hinting weak PRFs based on
either DDH or the LHS assumption.

Functional Hinting PRG/wPRF and Implications. We introduce func-
tional hinting PRG - a strengthening of hinting PRG that guarantees PRG secu-
rity in the presence of hints about each bit of some function of the seed. We also
introduce a natural extension, namely a functional hinting wPRF, that guaran-
tees wPRF security in the presence of hints about each bit of some (adversarially
chosen) function of the secret key. We show that a functional hinting weak PRF
with respect to a family of functions F can be used to realize a symmetric-
key KDM-secure encryption scheme with respect to the same function family F
in a black-box manner. We then build upon our approach of realizing hinting
PRGs and hinting weak PRFs to realize simple constructions of functional hint-
ing PRGs and functional weak PRFs for a family of quadratic functions (and
functions of higher degree) based on the DDH assumption.

We note that our techniques enable achieving a deterministic form of KDM-
security in a black-box manner, which is a different approach as compared to
prior works on KDM security [KM19,KMT19b,KM20].

Complexity of Hinting PRG/wPRF. We make progress on understanding
the complexity of cryptographic primitives with the hinting property. We show
the first black-box separation between hinting PRG and public-key encryption
by realizing a hinting PRG given only a random oracle. We then build upon our
construction of hinting PRG to also show how to construct a hinting wPRF given
only a random oracle. This additionally rules out the possibility of constructing
public-key encryption in a black-box manner from any hinting wPRF. In fact, our
separation result holds even if we replaced a hinting wPRF with a hinting PRF
– a strengthening of a hinting wPRF that satisfies plain/strong PRF security as
opposed to weak PRF security in the presence of multiple hints with respect to
the secret key.
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1.2 Technical Overview

In this section, we provide an overview of our techniques. For simplicity of expo-
sition, we focus primarily on two of our basic results – our construction of hinting
PRG from DDH, and our construction of functional hinting PRG from DDH for
the quadratic function f(s ∈ {0, 1}n) = s ⊗ s ∈ {0, 1}n2

. For all of our other
results, we provide some high-level intuition while referring to the relevant sec-
tions in the body of the paper for details.

Hinting PRG from DDH. Let (G, g, q) be a DDH-hard group of prime order
q with generator g. Throughout this paper, we use the notation [M] to denote
gM (exponentiation being applied componentwise) for any matrix M ∈ Z

m×n
q .

It was shown in [PW08,FGK+10,AMP19] that for a uniformly sampled matrix
M ← Z

n×n
q and a uniformly sampled binary vector s ← {0, 1}n where n is

sufficiently large, we have

([M], [Ms])
c≈ ([M], [u]) , (∗)

where u ← Z
n
q . Observe that this naturally yields a PRG with public parameter

[M] and seed s defined as
G[M](s) = [Ms].

We now argue that this PRG already satisfies the hinting property. At a high
level, our approach is as follows: we reduce the hinting property of G to the
pseudorandomness of G, which in turn relies on the DDH assumption. We explain
this in more details below.

Suppose we are given a PRG challenge of the form ([M], [y]), where the
vector [y] is either the “real” output of the PRG G, i.e., we have [y] = [Ms]
for some s ← {0, 1}n, or [y] is uniformly random, i.e., we have [y] ← G

n. We
construct a PPT algorithm B as follows: B takes as input a PRG challenge of
the form ([M], [y]) and outputs ([M′], [Z]) where the matrix [M′] is a uniformly
distributed matrix in G

n×n, and [Z] is an n × 2 matrix of group elements of the
form [Z] = ([zi,b])i∈[n],b∈{0,1} such that:

• When [y] is distributed as the “real” output of the PRG G, [Z] is distributed
as in the “real” hinting PRG game w.r.t. the public parameter [M′].

• On the other hand, when [y] is uniformly random in G
n, [Z] is distributed

uniformly randomly over G
n×2.

The main challenge here is that B needs to produce this output without any
knowledge of the seed s of the PRG G. To do this, given a PRG challenge of
the form ([M], [y]), B “shifts” each diagonal entry mi,i of the matrix [M] by a
random value di ← Zq in the exponent of g, i.e., it computes the shifted diagonal
element in the exponent as

[m′
i,i] = [mi,i] + [di].
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Let [M′] be the corresponding matrix in G
n×n with the shifted diagonal ele-

ments ([M′] is identical to [M] in all non-diagonal entries), and define the matrix
[Z] = ([zi,b])i∈[n],b∈{0,1} as follows: for each i ∈ [n] and b ∈ {0, 1}, set

[zi,b] :=
{

[yi] if b = 0,
[yi + di] if b = 1.

Suppose that [y] = [Ms], and let [y′] = [M′s]. If si = 0, we have

[zi,0] = [yi] = [y′
i], [zi,1] = [y′

i + di],

where the latter is uniformly random. Likewise, if si = 1, we have

[zi,1] = [yi + di] = [y′
i], [zi,0] = [y′

i − di],

where the latter is again uniformly random. Hence, [Z] is distributed as in the
real hinting PRG game w.r.t. the public parameter [M′], as desired. On the other
hand, when [y] is uniformly random, so is [Z]. We refer to Sect. 3.1 for a more
formal description of our construction and proof.

Translation to Isogeny-Based Group Actions. In the above security proof,
the crux of the argument is in introducing a “shift” both in the public parameter
[M] and in the challenge vector [y] when constructing ([M′], [Z]), without having
to solve discrete logs in the group G. It turns out that for certain isogeny-based
effective group actions (e.g., variants of CSIDH [CLM+18,BKV19,ADMP20]),
we can introduce such a “shift” using the algebraic properties of group actions
without having to solve a computationally hard problem analogous to discrete
log over group actions. This observation allows us to translate our construction
and proof technique for hinting PRGs outlined above from DDH-hard groups to
group actions satisfying the LHS assumption introduced in [ADMP20]. We refer
to Sect. 3.2 for a more formal description.

It turns out that we can extend this technique of publicly computable shifts
in the outputs of group action computations to achieve a direct construction of
TDFs from any LHS-hard weak pseudorandom effective group action. We refer to
Sect. 4 for the detailed construction and proof. We point out that our construc-
tion avoids the many layers of generic transformation required by the prior con-
struction of TDFs from such isogeny-based assumption, proposed in [ADMP20]
based on the framework of [KMT19a].

Comparison with Prior Works. Our approach for realizing hinting PRGs
from DDH-hard groups or LHS-hard effective group actions yields significantly
simpler constructions and security proofs as compared to prior constructions and
proofs for hinting PRGs based on the missing block framework [KW19] or the
accumulation framework [GVW20]. Specifically, the authors of [GVW20] need
to prove a new hashing lemma, which is crucial to their proof of security, besides
relying on the DDHI assumption, which is a seemingly stronger assumption as
compared to DDH. Similarly, the authors of [KW19] propose a construction of
hinting PRGs such that proving the hinting property itself requires multiple
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hybrids, where one of the intermediate hybrids relies on a statistical hashing
lemma. On the other hand, in our construction, we directly reduce the hinting
property of the PRG to its own pseudorandomness.

We also observe that neither the missing block framework of [KW19] nor
the accumulation framework of [GVW20] seems amenable to realizations from
isogeny-based assumptions; in particular, their techniques seem incompatible
with the algebraic properties of isogeny-based group actions, especially given
the long history of failed attempts to integrate standard hashing techniques into
the framework of isogeny-based cryptography [BBD+22]. On the other hand, our
proposed technique readily extends to the setting of isogeny-based group actions,
and enables the first realizations of hinting PRGs from (plausibly post-quantum
secure) isogeny-based assumptions.

Hinting wPRF from DDH or LHS. For our hinting PRG construction, we
used a simple proof technique that (informally speaking) allows reducing the
hinting property of the PRG to its own pseudorandomness. Observe that in this
reduction, we rely on the fact that the adversary only sees a single evaluation
of the hinting PRG w.r.t. a uniformly sampled seed. To realize hinting wPRF,
we use an extension of this technique that allows similarly reducing the hinting
property of the wPRF, albeit over multiple evaluations, to the weak pseudo-
randomness of the wPRF. We note that for prior approaches to constructing
hinting PRGs (e.g., the construction of hinting PRGs from CDH [KW19]), such
an extension to hinting weak PRFs is seemingly hard to achieve.

Our extension is designed to work with both DDH-hard groups as well as
any LHS-hard weak pseudorandom effective group action; in particular, we pre-
serve compatibility with the algebraic properties of group actions to enable our
isogeny-based constructions of hinting wPRFs. We refer to Sects. 5.1 and 5.2 for
the detailed constructions and proofs of hinting wPRFs from DDH and LHS
respectively, and to the full version for a simple construction of circular/KDM-
secure SKE from any hinting wPRF.

Functional Hinting PRG from DDH. Our simple technique for realizing
hinting PRGs from DDH is actually powerful enough to allow constructing func-
tional hinting PRGs, which are strengthenings of hinting PRG that guarantee
PRG security in the presence of hints about each bit of some function of the
seed. For this overview, we show how to construct a functional hinting PRG
from DDH, where the function f that we consider is defined as follows: given a
seed s ∈ {0, 1}n, f(s) = (si · sj)i,j∈[n], which is an n2-length vector.

The starting point of our functional hinting PRG from DDH is a stronger
version of the indistinguishability (∗) from [PW08,FGK+10] that we prove in
this paper based on the DDH assumption: for n2 uniformly sampled matrices{
Mi ← Z

n×n
q

}
i∈[n2]

and a uniformly sampled binary vector s ← {0, 1}n (where
n is sufficiently large), we have

(
[Mi], [stMis]

)
i∈[n2]

c≈ ([Mi], [ui])i∈[n2] ,
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where each ui ← Zq. Observe that this naturally yields a PRG with public
parameter ([M1], . . . , [Mn2 ]) and seed s defined as

G([M1],...,[Mn2 ])(s) =
(
[stM1s], . . . , [stMn2s]

)
.

Similar to our technique for proving the security of hinting PRG, even in this
case, we can reduce the functional hinting PRG security of the above construc-
tion to its own pseudorandomness (which in turn relies on DDH) by introduc-
ing shifts on a suitable entry of each matrix [Mi] in the public parameter. We
refer to Sect. 6.1 for the detailed construction and proof of security, and also for
extensions of the above construction to achieve functional hinting PRGs w.r.t.
functions of higher degree.

Functional Hinting wPRF and Applications. For our functional hinting
PRG construction, we use a reduction where we rely on the fact that the adver-
sary only sees a single evaluation of the hinting PRG w.r.t. a uniformly sampled
seed, while only getting hints about each bit of a single function of the seed.
Achieving a functional hinting wPRF is significantly more complicated, since
not only can the adversary see multiple evaluations of the wPRF on uniformly
random inputs, but also get hints about multiple functions of the secret key,
where the function may be chosen adversarially from a fixed function family.
In this paper, we show a construction of functional hinting wPRF from DDH
w.r.t. the function family F consisting of (projective) quadratic functions (and
functions of higher degree) over the bits of the key. We refer to Sect. 6.2 for the
detailed construction and proof of functional hinting wPRFs from DDH.

In the full version, we describe a simple construction of KDM-secure SKE
w.r.t. a function family F from any functional hinting wPRF w.r.t. the same
function family F in a black-box manner. We also show a strengthening of this
result to obtain a construction of F-KDM secure public-key encryption scheme
from any F-functional hinting wPRF that additionally satisfies homomorphism
between the input and output space – a property that is actually satisfied by
our construction of functional hinting weak PRF from DDH.

Note that existing approaches for achieving KDM-secure PKE in a black-
box way [BGK11,KMT19b] are somewhat incomparable to ours; in particular,
these prior constructions are designed specifically for arithmetic function families
that inherently require some form of algebraic structure on the secret key space,
while the function family that we consider can be viewed as a certain form of
boolean function family (e.g., in the case of quadratic functions, an adversary is
provided with hints w.r.t. the conjunction/AND of each pair of bits of the secret
key). Additionally, the primitive underlying our construction, namely functional
hinting weak PRF, provides a deterministic form of KDM-security that has not
been considered in prior works to the best of our knowledge.
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We note that our construction of (functional) hinting wPRF from DDH/LHS
essentially subsumes our construction of hinting PRG from DDH/LHS, while
building upon our techniques for the latter construction. More generally, we
chose to present our results in a progressive manner, where each result builds
upon our techniques used to construct simpler primitives. We do this for ease of
exposition, and also for highlighting the simplicity/modularity of our techniques.

Hinting PRF and wPRF in ROM. Let H : {0, 1}n → Y n+1 be a truly
random function (modeled as a random oracle), where Y is a sufficiently large
set. It is easy to see that H is a pseudorandom generator in the random oracle
model since for any uniformly random input s ← {0, 1}n, no (computationally
unbounded) adversary can distinguish (with non-negligible probability) between
H(s ← {0, 1}n) and u ← Y n+1 while issuing polynomially many queries to the
function H. In the full version, we show that this simple PRG in the ROM
actually also satisfies the hinting property via a simple information-theoretic
argument. This implies the first black-box separation between hinting PRG and
PKE [IR89] to the best of our knowledge.

We then build upon our construction of hinting PRG to also show how to
construct a hinting PRF given only a random oracle. As mentioned earlier, a
hinting PRF is a strengthening of a hinting wPRF that satisfies plain/strong
PRF security as opposed to weak PRF security in the presence of multiple hints
with respect to the secret key (i.e., the adversary is allowed to ask for hints
with respect to the key of PRF for arbitrarily chosen inputs instead of randomly
chosen ones). We refer to the full version for the detailed construction and proof.
Note that our result also rules out the possibility of constructing PKE in a black-
box way from any hinting (weak) PRF [IR89].

2 Preliminaries

Notations. For any positive integer n, we use [n] to denote the set {1, . . . , n}.
We may use [a] to denote ga where a ∈ Zq and g is a generator of a cyclic
group with order q. However, the difference between [n] and [a] will be clear
from context.

We use the notation
s≈ (respectively,

c≈) to denote statistical (respectively,
computational) indistinguishability. We denote the security parameter by λ. For
a finite set S, we use s ← S to sample uniformly from the set S.

Definition 1 (Weak PRF). Let F : K × X → Y be a function family, where
each set is indexed by the security parameter. We say that F is a weak PRF if
for any Q = poly(λ) it holds that

{
(xi, F (k, xi))

}
i∈[Q]

c≈ {
(xi, yi)

}
i∈[Q]

,

where k ← K, xi ← X, and yi ← Y .
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Definition 2 (KDM-secure SKE). Let F = {fI | fI : {0, 1}n → {0, 1}m}I∈I
be a family of boolean functions, and let f̄ ∈ F where f̄ is the constant func-
tion f(x) = 0m. Let Π = (Gen,Enc,Enc) be a symmetric-key encryption (SKE)
scheme with M = {0, 1}m and K = {0, 1}n, where M and K denote the message
space and the key space, respectively. We say that Π is KDM secure with respect
to F if the advantage of any PPT adversary A in distinguishing the experiments
ExpKDM

0 and ExpKDM
1 (defined in Fig. 1) is negligible.

Note that KDM security for public-key encryption with respect to a function
family F is defined similarly, except that the adversary is given public key in
the beginning of the experiment.

Fig. 1. Experiment ExpKDM
b .

We recall the definition of hinting PRG [KW19]. We use a slightly different
syntax compared to [KW19] for each block of the output of hinting PRG.2

Definition 3 (Hinting PRG). Let n = poly(λ) be an integer. Let (Setup,Eval)
be a pair of algorithms such that

• Setup(1λ) is a randomized algorithm that outputs some public parameter pp,
• Eval(pp, s ∈ {0, 1}n

, i ∈ {0} ∪ [n]) is a deterministic algorithm that outputs
(a representation of) some element y in Y , where Y is the codomain of the
algorithm and |Y | = ω(log λ).

We say that (Setup,Eval) defines a hinting PRG if for pp ← Setup(1λ) and
s ← {0, 1}n it holds that

(pp, y0,Y)
c≈ (pp, u0,U),

2 Specifically, the authors of [KW19] use the set {0, 1}� for each block (where � is fixed
during the setup) whereas we use a sufficiently large (efficiently representable) set Y .
Our definition allows defining hinting PRG in a setting where Y does not necessarily
have a compact representation, i.e., when each element of Y is represented using more
than log |Y | bits (which is the case for isogeny-based group actions). One can obtain
a hinting PRG with bit-string blocks by using a suitable (statistical) extractor.
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where these terms are distributed as

y0 = Eval(pp, s, 0), yi,si = Eval(pp, s, i), yi,1−si ← Y, u0 ← Y, U ← Y n×2.

Definition 4 (The DDH Assumption). Let G be a group of prime order q
with generator g. We say that the DDH assumption holds over G if for a ← Zq,
b ← Zq, c ← Zq it holds that

(g, ga, gb, gab)
c≈ (g, ga, gb, gc).

We will use the following special case of leftover hash lemma. We refer
to [Reg09] for a proof.

Lemma 1. Let G be an additively written abelian group such that |G| = λω(1),
and let m > log|G| + ω(log λ) be an integer. If r ← Gm and s ← {0, 1}m, it
holds that

(r,
m∑

i=1

siri)
s≈ (r, u),

where u ← G is a uniformly chosen group element.

Definition 5. An extractor Ext : S × X → Y is a deterministic function with
the seed space S and domain X such that if seed ← S is sampled uniformly and
x is sampled from a distribution over X with min-entropy λc (for some constant
0 < c < 1), then it holds that

(seed,Ext(seed, x))
s≈ (seed, y),

where y ← Y is sampled uniformly.

2.1 Cryptographic Group Actions

We recall some definitions related to cryptographic group actions from
[ADMP20], which provided a framework to construct cryptographic primitives
from certain isogeny-based assumptions (e.g., variants of CSIDH [CLM+18,
BKV19]).

Notations. We use (G,X, �) to denote a group action � : G×X → X. Through-
out the paper, we will assume that group actions are abelian and regular, i.e.,
both free and transitive (which is the case for CSIDH-style group actions). Note
that for regular group actions, we have |G| = |X|. Thus, if a group action is
regular, then for any x ∈ X, the map fx : g 	→ g � x defines a bijection between
G and X.

We always use the additive notation + to denote the group operation in G.
Since G is abelian, it can be viewed as a Z-module and hence for any z ∈ Z and
g ∈ G, the term zg is well-defined. This property naturally extends to matrices
as well, so for any matrix M ∈ G

m×n and any vector z ∈ Z
n, the term Mz is

also well-defined. The group action also extends naturally to the direct product
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group G
n for any positive integer n. If g ∈ G

n and x ∈ Xn, we use g � x to
denote a vector of set elements whose ith component is gi � xi.

Effective Group Action. We recall the definition of an effective group action
(EGA) from [ADMP20]. In a nutshell, an effective group action allows us to
do certain computations over G efficiently (e.g., group operation, inversion, and
sampling uniformly), and there is an efficient procedure to compute the action
of any group element on any set element. As pointed out by [ADMP20], the
CSIDH-style assumption in [BKV19] (called “CSI-FiSh”) is an instance of effec-
tive group action. We refer to [CLM+18,BKV19,ADMP20] for more details on
distributional properties of such group actions.

Definition 6 (Effective Group Action). A group action (G,X, �) is effective
if it satisfies the following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing (deciding whether a binary string represents a group

element).
(b) Equality testing and sampling uniformly in G.
(c) Group operation and computing inverse of any element in G.

2. The set X is finite and there exist efficient algorithms for:
(a) Membership testing (to check if a string represents a valid set element),
(b) Unique representation (there is a canonical representation for any set

element x ∈ X).
3. There exists a distinguished element x0 ∈ X with known representation.
4. There exists an efficient algorithm that given any g ∈ G and any x ∈ X,

outputs g � x.

Definition 7 (Weak Pseudorandom EGA). An effective group action
(G,X, �) is said to be a weak pseudorandom EGA (wPR-EGA) if it holds that

(x, y, t � x, t � y)
c≈ (x, y, u, u′),

where x ← X, y ← X, t ← G, u ← X, and u′ ← X.

Definition 8 (Linear Hidden Shift assumption [ADMP20]). Let (G,X, �)
be an effective group action (EGA), and let n > log |G| + ω(log λ) be an integer.
We say that liner hidden shift (LHS) assumption holds over (G,X, �) if for any
� = poly(λ) the following holds:

(x,M,Ms � x)
c≈ (x,M,u),

where x ← X�, M ← G
�×n, s ← {0, 1}n, and u ← X�.

3 Hinting PRG from DDH or LHS

In this section, we show how to construct a hinting PRG from either any DDH-
hard group or any LHS-hard effective group action.
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3.1 Hinting PRG from DDH

We begin by describing our construction of hinting PRG from any DDH-hard
group.

Construction. Let (G, g, q) be a DDH-hard group, and fix some integer n such
that n > log |G| + ω(log λ). Given a cyclic group G with generator g, we use the
notation [a] = ga and [M] = gM (exponentiation being applied componentwise)
where a ∈ Zq and M ∈ Z

m×n
q for any positive integer m and n. We use the

notation 〈a,b〉 to denote the “dot” product of a ∈ Z
n
q and b ∈ Z

n
q modulo q.

Our construction of hinting PRG from DDH assumption is as follows:

• Setup(1λ): Sample [M] ← G
(n+1)×n and publish pp = [M].

• Eval(pp = [M], s ∈ {0, 1}n
, i ∈ {0} ∪ [n]): Let [mi] denote the ith3 row of

[M]. Output [〈mi, s〉].4 Note that stacking up evaluation of the PRG on all
indices i ∈ {0} ∪ [n] can simply be viewed as [Ms].

Security. We prove the security of the construction via the following theorem.

Theorem 1. If (G, g, q) is a DDH-hard group then the construction above yields
a hinting PRG.

Proof. Observe that by Lemma 2 (proved below) we have ([M], [Ms])
c≈

([M], [u]) (where [u] ← G
n+1) and hence the pseudorandomness of the output

in the plain PRG game follows from Lemma 2. Let [m0] ∈ G
n be the 0th row of

[M], and let [M̄] be all but the 0th row of [M] (i.e., bottom square matrix). To
establish the security of the construction in the hinting PRG game, it is enough
to show that

([m0], [〈m0, s〉], [M̄], [Y])
c≈ ([m0], [u], [M̄], [U]), (∗)

where [u] ← G and [U] ← G
n×2 are sampled uniformly and [Y] ∈ G

n×2 is
distributed as follows

[yj,sj
] = [〈mj , s〉], [yj,1−sj

] ← G, j ∈ [n].

We prove (∗) via a hybrid argument. Let H0 and H1 be the hybrids that
correspond to the left-hand side and right-hand side of (∗), respectively (i.e.,
“real” game and “ideal” game). We now argue that H0

c≈ H1.
Let A be an adversary that distinguishes H0 from H1. We construct an

adversary A′ that distinguishes H ′
0 from H ′

1 where5

H ′
0 := ([m0], [〈m0, s〉], [M̄], [M̄s]), H ′

1 := ([m0], [u0], [M̄], [u]),
3 For any matrix with n + 1 rows, we number rows from 0 to n.
4 Note that given any vector of group elements [v] ∈ G

n and any vector s ∈ {0, 1}n,
one can efficiently compute [〈v, s〉] without the need to solve the discrete log problem.

5 This is simply Lemma 2 with k = n + 1, where we wrote the first row separately.
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and by Lemma 2 it follows that the advantage of A should also be negligible.
Given a tuple H ′

b = ([m0], [z0], [M̄], [z]), where H ′
b is either distributed as H ′

0

or H ′
1, the external adversary A′ samples a random [d] ← G

n. Let [D] ∈ G
n×n

be a diagonal matrix whose diagonal is [d], i.e., ijth entry of D is 0 for any
i �= j. In the next step, A′ runs A on the following tuple

([m0], [z0], [M′] := [M̄ + D], [Y]),

where [Y] is an n by 2 matrix whose first and second columns are [z] and [z+d]
respectively. We define the output of A′ to be the same as the output of A.

Observe that (in the view of A) the terms [m0] and [M′] are distributed
uniformly. Moreover, if [z] is uniform then [Y] will be distributed uniformly as
well. Therefore, A′ perfectly simulates the “ideal” hybrid H1. On the other hand,
if [z] = [M̄s] then from the view of A the matrix [Y] is distributed as

[yj,sj
] = [〈m′

j , s〉], [yj,1−sj
] = [(−1)sj · dj + 〈m′

j , s〉], j ∈ [n].

To see why the relations above hold, notice that [〈m′
j , s〉] = [〈m̄j , s〉+ sj · dj ]

where m′
j and m̄j denote the jth row of M′ and M̄, respectively. Because [d] is

distributed uniformly and independently from [M′] (in the view of A), it follows
that in the view of A we have(

[M′], {[yj,sj
]}j∈n, [yj,1−sj

]}j∈n

) s≈ (
[M′], {[yj,sj

]}j∈n, [u]),

where [u] ← G
n, and hence A′ properly simulates the “real” hybrid H0, as

required.

A generic version of the following lemma has been proved in [AMP19] for the
output group of any key-homomorphic weak PRF. Below, we provide a short
proof for any DDH-hard group G.

Lemma 2. Let (G, g, q) be a DDH-hard group, and fix some integer � and n such
that n > log |G| + ω(log λ) and � = poly(λ). If [M] ← G

�×n and s ← {0, 1}n,
then ([M], [Ms])

c≈ ([M], [u]), where [u] ← G
� is sampled uniformly.

Proof. Let [M̄] ∈ G
�×n be a matrix of group elements whose (i, j) entry is

[ai · bj ] where ai ← Zq, bj ← Zq (for i ∈ [�], j ∈ [n]). By the leftover hash lemma,
it follows that given [M̄], the term [M̄s] is statistically indistinguishable from a
fresh DDH tuple, i.e., given [M̄] it holds that

[M̄s] =

⎛
⎜⎜⎜⎝

[a1 · 〈b, s〉]
[a2 · 〈b, s〉]

...
[a� · 〈b, s〉]

⎞
⎟⎟⎟⎠ s≈

⎛
⎜⎜⎜⎝

[a1 · b∗]
[a2 · b∗]

...
[a� · b∗]

⎞
⎟⎟⎟⎠ ,

where b∗ ← Zq is chosen randomly. By a standard hybrid argument, it follows
from the DDH assumption that ([M̄], [M̄s])

c≈ ([M̄], [u]). Moreover, by the DDH
assumption we have [M̄]

c≈ [M]. Therefore, it follows from a simple hybrid
argument that ([M], [Ms])

c≈ ([M], [u]), as desired.
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3.2 Hinting PRG from LHS

We now show how to construct a hinting PRG from any LHS-hard EGA. The
construction is similar to our DDH-based construction of hinting PRG, with
suitable modifications to translate our techniques to the setting of EGA.

Construction. Let (G,X, �) be an EGA such that LHS assumption holds. Let
n be the secret dimension of the LHS assumption. We describe a construction
of hinting PRG from the LHS assumption as follows. In the construction below,
note that the group G is written additively (viewed as a Z-module).

• Setup(1λ): Sample M ← G
(n+1)×n and x = (x0, x1, . . . , xn) ← Xn+1, and

publish pp = (M,x).

• Eval(pp = M, s ∈ {0, 1}n
, i ∈ {0} ∪ [n]): Let mi denote the ith6 row of M.

Output 〈mi, s〉 � xi.
Note that similar to the DDH-based construction, concatenating evaluation
of the PRG on all indices i ∈ {0} ∪ [n] can be viewed as a larger instance of
LHS assumption, i.e., Ms � x.

Security. We argue the security of the construction above based on the LHS
assumption as follows.

Theorem 2. Let (G,X, �) be an EGA. If LHS assumption holds over (G,X, �)
then the construction above yields a hinting PRG.

Proof. Pseudorandomness of the output in the plain PRG game follows directly
from the LHS assumption. Let m0 ∈ G

n be the 0th row of M, and let M̄ be all
but the 0th row of M (i.e., bottom square matrix). It suffices to show that

H0 := (x,m0, 〈m0, s〉 � x0, M̄,Y)
c≈ (x,m0, u, M̄,U) := H1, (∗∗)

where u ← X and U ← Xn×2 are uniform and Y ∈ Xn×2 is distributed as

yj,sj
= 〈m̄j , s〉 � xj , yj,1−sj

← X, j ∈ [n].

Let H0 and H1 be the hybrids that correspond to the left-hand side and
right-hand side of (∗∗), respectively. We now argue that H0

c≈ H1.
Let A be an adversary that distinguishes H0 from H1, we construct another

adversary A′ that distinguishes between the following tuples

H ′
0 := (x,m0, 〈m0, s〉 � x0, M̄, M̄s � x̄), H ′

1 := (x,m0, u0, M̄,u),

where u0 ← X and u ← Xn are sampled uniformly, and x̄ = (x1, . . . , xn) is the
last n components of x. Indistinguishability of H ′

0 and H ′
1 follows directly from

the LHS assumption. Given a tuple of the form H ′
b = (x,m0, z0, M̄, z), where H ′

b

6 As before, we number rows from 0 to n.
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is either distributed as H ′
0 or H ′

1, the external adversary A′ samples a random
d ← G

n. Let D ∈ G
n×n be a diagonal matrix whose diagonal is d, i.e., ijth

entry of D is the identity element of G for any i �= j. In the next step, A′ runs
A on the following tuple

(x,m0, z0,M′ := M̄ + D,Y),

where Y ∈ Xn×2 is a matrix whose first and second rows are z and d � z
respectively. Finally, A′ outputs whatever A outputs.

It follows by inspection that A′ perfectly simulates the “ideal” hybrid, i.e.,
it maps H ′

1 to H1. On the other hand, if z = M̄s � x̄ then from the view of A′

the matrix Y is distributed as

yj,sj
= 〈m′

j , s〉 � xj , yj,1−sj
=

(
(−1)sj · dj

)
�

(〈m′
j , s〉 � xj

)
, j ∈ [n].

Because d is distributed uniformly and independently from M̄ (in the view
of A), it follows that {yj,1−sj

}j∈[n] is distributed uniformly in the view of A as
well, and hence A′ properly simulates the “real” hybrid H0, as required.

4 Trapdoor Functions from LHS-Hard wPR-EGA

In this section, we extend our technique of publicly computable shifts in the out-
puts of group action computations used in our construction of hinting PRG from
LHS-hard EGA to achieve a direct construction of TDFs from any LHS-hard
weak pseudorandom EGA. Our construction avoids the many layers of generic
transformation required by the prior construction of TDFs from such isogeny-
based assumption, proposed in [ADMP20] based on the framework of [KMT19a].

Construction. Let (G,X, �) be a wPR-EGA such that LHS assumptions holds
over (G,X, �). We now describe a construction of TDF from such EGA. Let
Ext : S × X → G be a (statistical) extractor where S denotes the seed space.7

• Gen(1λ): Sample M ← G
n×n where n = n(λ) is the secret dimension of

the LHS assumption. Sample x̄ ← Xn, x ← Xn, t ← G
n, seed ← S, and

let y = t � x where the action is applied componentwise. Output the tuple
ek = (seed,M, x̄,x,y) as evaluation key and t as trapdoor.

• Eval(ek = (seed,M, x̄,x,y), (s ∈ {0, 1}n
, r ∈ Xn, r′ ∈ Xn)): To evaluate the

function on the input (s, r, r′), output (V ∈ Xn×2,Z ∈ Xn×2) where8

vi,si
= Ext

(
seed, 〈mi, s〉 � x̄i

)
� xi, vi,1−si

= ri,

zi,si
= Ext

(
seed, 〈mi, s〉 � x̄i

)
� yi, zi,1−si

= r′
i, i ∈ [n].

7 Note that we cannot use the bit representation of an element of X to generate a
group element G without using extractor, because for some EGAs (and in particular
for isogeny-based group actions), elements of X do not have compact represenation.

8 mi denotes the i row of M.
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• Invert(t, (V,Z)): To invert on the input (V,Z) using the trapdoor t, first
compute s as follows:

si =

{
0 ti � vi,0 = zi,0,

1 ti � vi,1 = zi,1.

Let r and r′ be two vectors such that ri = vi,1−si
and r′

i = zi,1−si
for i ∈ [n].

Output (s, r, r′).

Correctness of the inversion algorithm follows by inspection. We prove the
one-wayness of the scheme via the following theorem.

Theorem 3. If (G,X, �) is an LHS-hard wPR-EGA then the construction above
satisfies one-wayness.

Proof. To prove the one-wayness it suffices to show that

H0 := (ek,V,Z)
c≈ (ek,U,U′) := H3,

where ek, V, Z are distributed as in the construction above, and U, U′ are two
random matrices of set elements. We do the proof via a hybrid argument.

• H0: This is the “real” game and H0 corresponds to the tuple (ek,V,Z) where
ek, V, Z are distributed as in the construction.

• H1: In this hybrid we change the way two matrices are generated. Specifically,
this hybrid corresponds to the tuple (ek,V(1),Z(1)) where V(1) and Z(1) are
distributed as follows.

v
(1)
i,si

= Ext
(
seed, 〈mi, s〉 � x̄i

)
� xi, v

(1)
i,1−si

= ρi � xi, ρi ← G,

z
(1)
i,si

= Ext
(
seed, 〈mi, s〉 � x̄i

)
� yi, z

(1)
i,1−si

= ρi � yi, i ∈ [n].

• H2: In this hybrid we use randomly chosen group elements instead of using
the vector s to generate the output matrices. This hybrid corresponds to the
tuple (ek,V(2),Z(2)) where V(2) and Z(2) are distributed as follows.

v
(2)
i,si

= σi � xi, v
(2)
i,1−si

= ρi � xi, (σi, ρi) ← G
2,

z
(2)
i,si

= σi � yi, z
(2)
i,1−si

= ρi � yi, i ∈ [n].

• H3: This hybrid corresponds to the tuple (ek,U,U′) where two matrices U
and U′ are generated randomly.

We argue the indistinguishability of consecutive hybrids as follows:

• H0
c≈ H1: This follows from the weak pseudorandomness of the group action.

Given a challenge tuple (x,y,x′,y′) where (x′,y′) is either uniform and inde-
pendent of (x,y) or x′

i = ρi � xi, y′
i = ρi � yi for i ∈ [n], the reduction

samples
seed ← S, M ← G

n×n, s ← {0, 1}n
, x̄ ← Xn,
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and outputs (ek = (seed,M, x̄,x,y), V̄, Z̄), where V̄ and Z̄ are computed as

v̄i,si
= Ext

(
seed, 〈mi, s〉 � x̄i

)
� xi, v̄i,1−si

= x′
i,

z̄i,si
= Ext

(
seed, 〈mi, s〉 � x̄i

)
� yi, z̄i,1−si

= y′
i, i ∈ [n].

It follows by inspection that the reduction maps a totally random tuple to
H0 and a pseudorandom tuple to H1. Thus, the hybrid H0 is computationally
indistinguishable from H1 based on the weak pseudorandomness of EGA.

• H1
c≈ H2: This follows from the security of the underlying hinting PRG.

By Theorem 2 we know that (M, x̄,W)
c≈ (M, x̄,U), where U ← Xn×2,

wi,si
= 〈mi, s〉 � x̄i, and wi,1−si

← X for i ∈ [n]. Given a challenge tuple
of the form (M, x̄,W̄) such that W̄ is either distributed as W or U, the
reduction samples seed ← S, x ← Xn and y ← Xn, and outputs

(ek = (seed,M, x̄,x,y), V̄, Z̄),

where V̄ and Z̄ are computed as

v̄i,0 = Ext
(
seed, w̄i,0

)
� xi, v̄i,1 = Ext

(
seed, w̄i,1

)
� xi,

z̄i,0 = Ext
(
seed, w̄i,0

)
� yi, z̄i,1 = Ext

(
seed, w̄i,1

)
� yi, i ∈ [n].

Observe that the reduction maps “hinting” samples (W) to H1, and it maps
random samples (U) to H2. Thus, H1 is computationally indistinguishable
from H2 based on the LHS assumption.

• H2
c≈ H3: This follows from the weak pseudorandomness of the group action.

The proof is similar to the proof of H0
c≈ H1 and hence we omit the details.

5 Hinting Weak PRF: Instantiations and Implications

In this section, we define hinting weak PRF and we show instantiations of this
primitive based on DDH or LHS assumption. Informally, a hinting weak PRF
can be viewed as an extended version of hinting PRG, where polynomially many
hints of the secret key can be provided (as opposed to only one hint in hinting
PRG security game).

Definition 9. Let F : K × X → Ȳ be a weak PRF where K = {0, 1}n and
Ȳ = Y n for some efficiently samplable set Y . We say that F is a hinting weak
PRF if for any Q = poly(λ) it holds that(

xi,S(y(i), r(i))
)
i∈[Q]

c≈ (
xi,Ui

)
i∈[Q]

,

where k ← K, xi ← X, r(i) ← Y n, Ui ← Y n×2, y(i) = F (k, xi), and S(y(i), r(i))
is an n by 2 “selector” matrix (with respect to k) defined as follows:

Sj,kj
(y(i), r(i)) = y

(i)
j , Sj,1−kj

(y(i), r(i)) = r
(i)
j , j ∈ [n].

To clarify the notation, Sj,b denotes the (j, b)th entry, kj is the jth bit of k,
and y

(i)
j (respectively, r

(i)
j ) denotes the jth entry of the vector y(i) (respectively,

r(i)).
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5.1 Hinting Weak PRF from DDH

We begin by showing how to construct a hinting weak PRF from any DDH-hard
group.

Construction. Let (G, g, q) be a DDH-hard group, and fix some integer n
such that n > log |G| + ω(log λ). We use the notation from Sect. 3.1 to describe
a construction of hinting weak PRF from DDH assumption. Our DDH-based
hinting weak PRF is a function of the form F : {0, 1}n ×G

n×n → G
n. Thus, for

any input, one group element is published per each bit of the secret key.

• Gen(1λ): To generate a key, sample k ← {0, 1}n.
• F (k = {0, 1}n

, [M] ∈ G
n×n): To evaluate the function, output [Mk].

Security. We argue the security of the hinting weak PRF above based on the
DDH assumption as follows.

Theorem 4. If (G, g, q) is a DDH-hard group then the construction above yields
a hinting weak PRF.

Proof. Note that weak pseudorandomness of F (in the weak PRF game) follows
from Lemma 2. To argue the hinting security property we need to show that

H0 :=
(
[Mi],S

(
[y(i)], [r(i)]

))
i∈[Q]

c≈ (
[Mi], [Ui]

)
i∈[Q]

=: H1, (♦)

where [Mi] ← G
n×n, k ← {0, 1}n, [r(i)] ← G

n, [Ui] ← G
n×2, [y(i)] = [Mik],

and

Sj,kj

(
[y(i)], [r(i)]

)
= [y(i)

j ], Sj,1−kj

(
[y(i)], [r(i)]

)
= [r(i)j ], j ∈ [n].

To show that (♦) holds, we extend the proof of DDH-based hinting PRG to
multiple instances. By Lemma 2 for Q = poly(λ) we have

H ′
0 :=

(
[Mi],

(
[Mik]

)
i∈[Q]

c≈ (
[Mi], [ui]

)
i∈[Q]

=: H ′
1.

Let A be an adversary that distinguishes H0 from H1. We construct an
adversary A′ to distinguish H ′

0 from H ′
1. Given H ′

b = ([Mi], [z(i)])i∈[Q] (where
H ′

b is distributed as either H ′
0 or H ′

1), the adversary A′ samples Q uniform
vectors ([d(i)] ← G

n)i∈[Q], and it sets [M′
i] := [Mi +Di] where Di is a diagonal

matrix whose diagonal is d(i). It then runs A on ([M′
i], [Yi])i∈[Q] where [Yi]

is an n by 2 matrix whose first (respectively, second) row is [z(i)] (respectively,
[z(i) +d(i)]). The output of A′ is defined to be the same as the output of A. It is
immediate to see that A′ maps H ′

1 to H1. On the other hand, {[M′
i], [d

(i)]}i∈[Q]

are uniform in the view of A and hence if H ′
b ≡ H ′

0 then an argument similar to
the proof of DDH-based hinting PRG implies that(

[M′
i], [Yi]

)
i∈[Q]

s≈ (
[M′

i],S
(
[z(i)], [r(i)]

))
i∈[Q]

.

where [r(i)] ← G
n for each i. Thus, A′ properly maps H ′

0 to (a hybrid that is
statistically indistinguishable from) H0, and the proof is complete.
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5.2 Hinting Weak PRF from LHS

We now show how to construct a hinting weak PRF from any LHS-hard EGA.
Our construction is similar to our DDH-based construction of hinting weak PRF,
with suitable modifications to translate our techniques to the setting of EGA.

Construction. Let (G,X, �) be an EGA such that LHS assumption holds. Let
n be the secret dimension of the LHS assumption. Building upon the notation
from Sect. 3.2, we describe a hinting weak PRF F : {0, 1}n×(Gn×n×Xn) → Xn.

• Gen(1λ): To generate a key, sample k ← {0, 1}n.
• F (k = {0, 1}n

, (M ∈ G
n×n,x ∈ Xn)): Output Mk � x.

Security. We establish the security of the hinting weak PRF above based on
the LHS assumption as follows.

Theorem 5. Let (G,X, �) be an EGA. If LHS assumption holds over (G,X, �)
then F (defined above) is a hinting weak PRF.

Proof. Weak pseudorandomness of F directly follows from the LHS assumption.
To prove hinting security property, it suffices to show that

H0 :=
(
xi,Mi,S

(
y(i), r(i)

))
i∈[Q]

c≈ (
xi,Mi,Ui

)
i∈[Q]

=: H1, (♦♦)

where Mi ← G
n×n, k ← {0, 1}n, r(i) ← Xn, Ui ← Xn×2, y(i) = Mik �xi, and

Sj,kj

(
y(i), r(i)

)
= y

(i)
j , Sj,1−kj

(
y(i), r(i)

)
= r

(i)
j , j ∈ [n].

In the next step, we show a reduction from the LHS assumption to (♦♦).
First, by the LHS assumption we have

H ′
0 :=

(
xi,Mi,Mik � xi

)
i∈[Q]

c≈ (
xi,Mi,ui

)
i∈[Q]

=: H ′
1.

Given an adversary A that distinguishes H0 from H1, we construct another
adversary A′ against the LHS assumption. Given an LHS challenge of the form
H ′

b = (xi,Mi, z(i))i∈[Q] (where H ′
b is identical to either H ′

0 or H ′
1), the adversary

A′ samples Q uniform vectors (d(i) ← G
n)i∈[Q] and it sets M′

i := Mi+Di, where
Di is a diagonal matrix whose diagonal is d(i). We define the output of A′ to be
the output of A on (xi,M′

i,Yi)i∈[Q] where Yi ∈ Xn×2 is the matrix whose first
and second rows are z(i) and d(i) � z(i), respectively. Clearly, A′ maps H ′

1 to H1.
Moreover, (M′

i,d
(i))i∈[Q] are uniform in the view of A and hence if H ′

b ≡ H ′
0

then an argument similar to the proof of LHS-based hinting PRG implies that

(
xi,M′

i,Yi

)
i∈[Q]

s≈ (
xi,M′

i,S
(
z(i),u(i)

))
i∈[Q]

,

and so A′ properly maps H ′
0 to (a hybrid that is statistically close to) H0.
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6 Primitives with Functional Hinting Property

In this section, we introduce functional hinting PRG - a strengthening of hinting
PRG that guarantees PRG security in the presence of hints about each bit
of some function of the seed. We also introduce a natural extension, namely
a functional hinting wPRF, that guarantees wPRF security in the presence of
multiple hints about each bit of some (adversarially chosen) function of the secret
key. We show that a functional hinting weak PRF with respect to a family of
functions F can be used to realize a symmetric-key KDM-secure encryption
scheme with respect to the same function family F in a black-box manner. We
then build upon our approach of realizing hinting PRGs and hinting weak PRFs
to realize simple constructions of functional hinting PRGs and functional weak
PRFs for the family of projective quadratic functions (and functions of higher
degree) based on the DDH assumption.

6.1 Functional Hinting PRG

We first define functional hinting PRG – a generalized version of hinting PRG
for which the security game is defined in terms of a function of the seed of PRG,
rather the seed itself. A plain hinting PRG can be simply viewed as a functional
hinting PRG with respect to the identity function.

Definition 10. Let f : {0, 1}n → {0, 1}m be an efficiently computable function.
A functional hinting PRG Gpp : {0, 1}n → Ȳ = Y m+1 with respect to f is defined
by two algorithms (Setup,Eval) as follows:

• Setup(1λ, 1n, 1m): A randomized algorithm that takes the seed length n and
the number of hinting blocks m, and it outputs pp as the public parameter.

• Eval(pp, i ∈ {0} ∪ [m], s ∈ {0, 1}n): A deterministic algorithm that on pp and
an index i, it outputs yi ∈ Y . By stacking the outputs for all ∈ {0} ∪ [m], we
can view the output as an element of Y m+1, i.e., Gpp(s) ∈ Y m+1.

We say that Gpp (defined by the algorithms above) is a functional hinting
PRG with respect to f : {0, 1}n → {0, 1}m, if for pp ← Setup(1λ, 1n, 1m) and
randomly chosen seed s ← {0, 1}n it holds that(

y0, (yj,b)j∈[m],b∈{0,1}
) c≈ (

u0, (uj,b)j∈[m],b∈{0,1}
)
,

where

v := f(s) ∈ {0, 1}m
, (y0, y1,v1 , . . . , ym,vm

) = Gpp(s) ∈ Y m+1,

and all other elements generated uniformly from Y , i.e.,

{yj,1−vj
← Y }j∈[m], u0 ← Y, {uj,b ← Y }j∈[m],b∈{0,1}.

In the next part, we describe a construction of functional hinting PRG for
the quadratic function of the seed (where the seed is viewed a vector of bits)
from the DDH assumption, i.e., it is possible to (securely) provide a hint with
respect to f(s) where f : {0, 1}n → {0, 1}n2

defined as f(s) = s ⊗ s, which can
be viewed as a vectorized form of sst ∈ {0, 1}n×n.
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Functional Hinting PRG for Quadratic Function from DDH. Let
(G, g, q) be a DDH-hard group, and let n be an integer such that n > 2 log |G|+
ω(log λ). We use the notation from Sect. 3.1 to show a construction of functional
hinting PRG for the quadratic function based on the DDH assumption. Our
construction of functional hinting PRG Gpp : {0, 1}n → G

n2+1 from DDH is as
follows:

• Setup(1λ, 1n, 1n2
): For each j ∈ {0} ∪ [n2], sample [Mj ] ← G

n×n and publish
pp =

(
[Mj ]

)
j∈{0}∪[n2]

.
• Eval(pp, s ∈ {0, 1}n

, i ∈ {0} ∪ [n2]): Let [Mi] denote the ith matrix from pp.
Output [stMis].9

Security. We prove the security of the construction via the following theorem.

Theorem 6. If (G, g, q) is a DDH-hard group then the construction above yields
a functional hinting PRG for the quadratic function from DDH.

Proof. First, observe that by Lemma 3 (proved below) for Q = n2 + 1 samples
we have (

[Mj ], [stMjs]
)
j∈[n2+1]

c≈ (
[Mj ], [uj ]

)
j∈[n2+1]

(where [uj ] ← G for each j ∈ [n2 + 1]) and hence the pseudorandomness of
the output in the plain PRG game follows from Lemma 3. Let α : [n2] → [n]
and β : [n2] → [n] be two simple index mapping functions that map any index
i ∈ [n2] to (α(i) = �i/n�, β(i) = i mod n). Note that α and β simply provide a
way to write a vector with n2 elements as an n × n matrix.

To establish the security of the construction in the functional hinting PRG
game, it is enough to show that

(
[M0], [stM0s],

(
[Mi]

)
i∈[n2]

, [Y]
) c≈ ([M0], [u], [M̄], [U]), (�)

where [u] ← G and [U] ← G
n2×2 are sampled uniformly and [Y] ∈ G

n2×2 is
distributed as follows

σ(i) = sα(i) · sβ(i), [yi,σ(i)] = [stMis], [yi,1−σ(i)] ← G, i ∈ [n2].

Note that σ(i) outputs the (α(i), β(i)) entry of sst ∈ {0, 1}n×n for any index
i ∈ [n2]. We prove (�) via a hybrid argument. Let H0 and H1 be the hybrids
that correspond to the left-hand side and right-hand side of (�), respectively.

Let A be an adversary that distinguishes H0 from H1. We construct an
adversary A′ that distinguishes H ′

0 from H ′
1 defined as10

H ′
0 :=

(
[M0], [stM0s],

(
[Mi]

)
i∈[n2]

,y
)
, H ′

1 :=
(
[M0], [u],

(
[Mi]

)
i∈[n2]

,u
)
,

9 Note that given any matrix of group elements [M] ∈ G
n×n and any binary vector

s ∈ {0, 1}n, one can efficiently compute [stMs].
10 Note that this is simply Lemma 3 with n2 + 1 samples.
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where [yi] = [stMis] for each i ∈ [n2], and by Lemma 3 it follows that the
advantage of A should also be negligible.

Given a tuple H ′
b =

(
[m0], [z0],

(
[Mi]

)
i∈[n2]

, [z]
)
, where H ′

b is distributed as
either H ′

0 or H ′
1, the external adversary A′ forms n2 matrices [Pjk] ∈ G

n×n

(for j ∈ [n], k ∈ [n]) where [Pjk] is a matrix whose all but one entry is the
identity element of the group and the remaining one entry at the position (j, k)
is sampled uniformly from G. Concretely, A′ samples a shift vector [d] ∈ G

n2
,

and it sets the (α(i), β(i)) entry of [Pα(i),β(i)] as [di] for each i ∈ [n2]. In the
next step, A′ runs A on the following tuple

([m0], [z0], [M′
i] := [Mi + Pα(i),β(i)], [Y]),

where [Y] is an n2 by 2 matrix whose first and second columns are [z] and [z+d]
respectively. We define the output of A′ to be the same as the output of A.

Observe that (in the view of the adversary A) [M0] and ([M′
i])i∈[n2] are

distributed uniformly. Moreover, if [z] is uniform then [Y] will be distributed
uniformly as well. Thus, A′ perfectly simulates the “ideal” hybrid H1. On the
other hand, if [zi] = [stMis] (for each i ∈ [n2]) then from the view of A′ the
matrix [Y] is distributed as

σ(i) = sα(i) · sβ(i), [yi,σ(i)] = [stM′
is], [yi,1−σ(i)] = [(−1)σ(i) · di + stM′

is], i ∈ [n2].

Note that the relations above hold because

[stM′
is] = [stMis + sα(i) · sβ(i) · di], i ∈ [n2].

Since [d] is distributed uniformly and independently from [M′] (in the view of
A), it follows that in the view of A we have

(
([M′

i])i∈[n2],Y
) s≈ (

([M′
i])i∈[n2],U

)
,

where [U] ← G
n2×2, and hence A′ properly maps the hybrid H ′

0 to (a hybrid
that is statistically indistinguishable from) H0, as required.

Lemma 3. Let (G, g, q) be a DDH-hard group, and fix some integer � and n
such that n > 2 log |G| + ω(log λ) and � = poly(λ). If {[Mi] ← G

n×n}i∈[�] and
s ← {0, 1}n, then

(
[Mi], [stMis]

)
i∈[�]

c≈ (
[Mi], [ui]

)
i∈[�]

,

where [ui] ← G is sampled uniformly for each i ∈ [�].

Proof. Let M̄ ∈ G
n×n be a matrix of group elements whose (j, k) entry is [aj ·bk]

where aj ← Zq, bk ← Zq (for j ∈ [�], k ∈ [n]). In addition, let ([M̂i])i∈[�] be �
matrices of group elements defined as

[M̂i] = [ri · M̄], ri ← Zq, i ∈ [�].
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By applying the leftover hash lemma to the group G
2, it follows that

([M̄], [stM̄s])
s≈ ([M̄], [u′]),

where [u′] ← G, which in turn implies that

(
[M̂i], [stM̂is]

)
i∈[�]

s≈ (
[M̂i], [ri · u′]

)
i∈[�]

,
c≈ (

[M̂i], [ui]
)
i∈[�]

,

and the computational indistinguishability follows from the DDH assumption.
On the other hand, by the DDH assumption we have

(
[Mi]

)
i∈[�]

c≈ (
[M̂i]

)
i∈[�]

,

and hence a standard hybrid argument implies that

(
[Mi], [stMis]

)
i∈[�]

c≈ (
[Mi], [ui]

)
i∈[�]

,

as required.

Functional Hinting PRG for Higher Degree Functions. The above con-
struction of functional hinting PRG allows us to publish a hint with respect to
the function g(s) = s⊗s ∈ {0, 1}n2

. Here we describe a way to obtain functional
hinting PRG for functions of higher degree. One can generalize the construction
above for functions of higher degree k > 2 by using nk many k-dimensional
array/tensor of uniformly chosen group elements as the public parameter, and
the evaluation will be shrinking down each array in the public parameter to only
one group element by computing a G-linear function across each dimension using
the seed s. For instance, given nk many k-dimensional array of uniformly chosen
group elements one can construct a functional hinting PRG for degree k func-
tions where each of nk blocks provides a hint with respect to si1si2 · · · sik , for
(i1, . . . , ik) ∈ [n]k. The construction and proof will be similar to the quadratic
case, and hence we omit the details.

6.2 Functional Hinting Weak PRF

Similar to the case of hinting PRG, we define a generalized version of hinting
weak PRF for which the security game is defined in terms of function(s) of the
secret key, rather the key itself. Our notion of hinting weak PRF can be viewed
as a functional hinting weak PRF with respect to the identity function. There
are two approaches to define a functional hinting weak PRF; one approach is
to guarantee security in the presence of multiple hints of a fixed function of
the secret key (corresponding to different inputs), and another approach is to
provide security in the presence of multiple hints of different functions of the
secret key. We provide a formal definition of the latter in this section, and later
we provide an instantiation based on DDH for certain family of functions.
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Definition 11. Let F = {fI | fI : {0, 1}n → {0, 1}m}I∈I be a family of boolean
functions, and let F : K × X → Ȳ be a weak PRF where K = {0, 1}n and
Ȳ = Y m for some efficiently samplable set Y . We say that F is a functional
hinting weak PRF with respect to F if the advantage of any PPT attacker in
distinguishing between the experiments ExpFHwPRF

0 and ExpFHwPRF
1 (described in

Fig. 2) is negligible.

Fig. 2. Experiment ExpFHwPRF
b with respect to F .

For a (boolean) function g : {0, 1}n → {0, 1}m we define the projective
function family Fg as follows:

Fg = {f : {0, 1}n → {0, 1}m | ∃b ∈ {0, 1}m : f(x) = (b1 · g1(x), . . . , bm · gm(x))},

where gi(x) denotes the ith bit of g(x) and the condition holds for all x ∈ {0, 1}n.
We may drop the subscript g for the sake of simplicity when the function is clear
from context. Informally, F contains all of the functions whose ith bit of the
output (on any input) is either 0 or the ith output bit of g (on the same input).
Note that given the function g, each function in F can be described by a binary
vector b. For instance, the function g itself corresponds to all-one vector 1.

In the next part of this section, we show a construction of functional hinting
weak PRF for the family of projective quadratic functions based on the DDH
assumption. Later, we describe how we can generalize this construction to the
family of projective functions of higher degree. We note that a functional hinting
weak PRF for the family of projective quadratic functions can be viewed as
an extended version of a functional hinting PRG for the quadratic function
g(s) = s⊗ s, with an additional property that an adversary can adaptively “fix”
the hint for arbitrary positions. Below, we describe a construction of functional
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hinting weak PRF for the family of projective quadratic functions Fg (as defined
above) based on the DDH assumption.

Functional Hinting Weak PRF for Projective Quadratic Functions. Let
(G, g, q) be a DDH-hard group, and let n > 2 log |G| + ω(log λ) be an integer.
We use the notation from Sect. 3.1 to show a construction of functional hinting
weak PRF. Consider the weak PRF F : {0, 1}n × (Gn×n)n2 → G

n2
defined as

follows:

• Gen(1λ): To generate a key, sample k ← {0, 1}n.
• F (k = {0, 1}n

, ([Mi])i∈[n2] ∈ (Gn×n)n2
): Output ([ktMik])i∈[n2].

Security. We prove the security of the construction via the following theorem.

Theorem 7. If (G, g, q) is a DDH-hard group then the construction above yields
a functional hinting weak PRF for the projective quadratic function family Fg

from DDH.

Proof. Weak pseudorandomness of F (in the plain weak PRF game) follows from
Lemma 3. To establish the functional hinting security (with respect to Fg) we
need to prove that ExpFHwPRF

0

c≈ ExpFHwPRF
1 . To show this, we extend the proof of

DDH-based functional hinting PRG for quadratic function to multiple instances
by keeping track of each function fi (determined by bi). As mentioned before, a
binary vector bi ∈ {0, 1}n2

can be used to describe any function fi ∈ Fg (along
with g). First, by Lemma 3 for any Q = poly(λ) we have11

H0 :=
((

[M(�)
i ]

)
�∈[n2]

,
(
[ktM(�)

i k]
)
�∈[n2]

)
i∈[Q]

c≈

H1 :=
((

[M(�)
i ]

)
�∈[n2]

, [ui]
)

i∈[Q]
,

where [ui] ← G
n2

.
Let A be an adversary that distinguishes ExpFHwPRF

0 from ExpFHwPRF
1 , and let

Q be the total of queries made by A. We construct an adversary A′ to distinguish
H0 from H1. Given samples of the form

Hb :=
((

[M(�)
i ]

)
�∈[n2]

, [zi]
)

i∈[Q]

where Hb is distributed as either H0 or H1, the adversary A′ runs A. Whenever
A makes its ith query for a function fi ∈ Fg determined by a binary vector
bi ∈ {0, 1}n2

, the adversary A′ responds the ith query as follows. A′ samples
[di] ← G

n2
. Let α and β be the index mapping functions from the proof of

Theorem 6. For � ∈ [n2], the adversary A′ sets

[M̄(�)
i ] := [M(�)

i ] + [b(�)i · d
(�)
i · Eα(�),β(�)],

11 Note that we are using Lemma 3 with Q · n2 = poly(λ) samples.
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where Eα(�),β(�) is an n × n matrix whose (α(�), β(�)) entry is 1, and all other
entries are 0. (Note that b̄

(�)
i and d

(�)
i denote the �th component of bi and di,

respectively.)
A′ sends

((
[M̄(�)

i ]
)
�∈[n2]

, [Yi]
)

to A as the response for the ith query, where

[Yi] ∈ G
n2×2 is the matrix whose first and columns are [z(i)] and [d(i) + z(i)].

We now argue that A′ properly maps Hb to ExpFHwPRF
b for b ∈ {0, 1}. First,

we consider the simpler case b = 1. Observe that the matrices
(
[M̄(�)

i ]
)
�∈[n2],i∈[Q]

are uniformly distributed in the view of A. Moreover, if ([zi])i∈[Q] are distributed
uniformly and independently (which happens when b = 1), then ([Yi])i∈[Q] will
be uniformly distributed as well and hence A′ properly maps H1 to ExpFHwPRF

1 .
If b = 0, based on an argument similar to the proof of DDH-based hinting

PRG for the quadratic function, it can be verified that for each i ∈ [Q] we have

[Yi] = S(fi, [y(i)], [u(i)]),

where S is the “selector” mapping (as defined in the experiment) and

v(i) := fi(k) = bi � g(k) = bi � (k ⊗ k),

[y(i)] :=
(
[ktM̄(�)

i k]
)
�∈[n2]

, [u(i)] := [(−1)v
(i) � d(i) + y(i)],

S
j,v

(i)
j

(
fi, [y(i)], [u(i)]

)
= y

(i)
j , S

j,1−v
(i)
j

(
fi, [y(i)], [u(i)]

)
= u

(i)
j , j ∈ [n2],

where � denotes the component-wise/Hadamard product and (−1)v(i) is the
vector obtained by component-wise exponentiation. It follows that in the view
of the adversary A

((
[M̄(�)

i ]
)
�∈[n2]

, [Yi]
)
i∈[Q]

s≈ S
(
fi, [y(i)], [r(i)]

)
i∈[Q]

,

where [ri] ← G
n2

. Therefore, A′ properly maps the hybrid H0 to (a hybrid that
is statistically indistinguishable from) ExpFHwPRF

0 , as required.

Functional Hinting Weak PRF for Higher Degree Function Families.
The construction above allows (securely) publishing many hints with respect to
the projective function family Fg where g(s) = s ⊗ s ∈ {0, 1}n2

. Similar to the
case of hinting PRG, we briefly describe how to construct functional hinting
weak PRF for the projective function family Fh (where h is degree k function
for some k > 2), which enables publishing a hint in each block with respect to a
projective function of si1si2 · · · sik , for (i1, . . . , ik) ∈ [n]k. Similar to the case of
functional hinting PRG, a generalized version of the construction above can be
obtained using nk many k-dimensional array/tensor of uniformly chosen group
elements for each input, and the output of F is obtained by computing a G-linear
function across each dimension using the weak PRF key k.



Cryptographic Primitives with Hinting Property 61

References

[ADMP20] Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic
group actions and applications. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 14

[AMP19] Alamati, N., Montgomery, H., Patranabis, S.: Symmetric primitives with
structured secrets. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part I. LNCS, vol. 11692, pp. 650–679. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 23

[App14] Applebaum, B.: Key-dependent message security: generic amplification and
completeness. J. Cryptol. 27(3), 429–451 (2014)

[BBD+22] Booher, J., et al.: Failing to hash into supersingular isogeny graphs. IACR
Cryptol. ePrint Arch., p. 518 (2022)

[BGK11] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure
encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 201–218. Springer, Heidelberg (2011)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 7

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny
based signatures through class group computations. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–
247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 9

[BRS03] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC
2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36492-7 6
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Abstract. Hashing arbitrary values to points on an elliptic curve is a
required step in many cryptographic constructions, and a number of tech-
niques have been proposed to do so over the years. One of the first ones was
due to Shallue and van de Woestijne (ANTS-VII), and it had the interest-
ing property of applying to essentially all elliptic curves over finite fields.
It did not, however, have the desirable property of being indifferentiable
from a random oracle when composed with a random oracle to the base
field.

Various approaches have since been considered to overcome this limita-
tion, starting with the foundational work of Brier et al. (CRYPTO 2011).
For example, if f : Fq → E(Fq) is the Shallue–van de Woestijne (SW)
map and h1, h2 are two independent random oracles to Fq, we now know
that m �→ f

(
h1(m)

)
+ f

(
h2(m)

)
is indifferentiable from a random oracle.

Unfortunately, this approach has the drawback of being twice as expen-
sive to compute than the straightforward, but not indifferentiable, m �→
f
(
h1(m)

)
. Most other solutions so far have had the same issue: they are at

least as costly as two base field exponentiations, whereas plain encoding
maps like f cost only one exponentiation. Recently, Koshelev (DCC 2022)
provided the first construction of indifferentiable hashing at the cost of one
exponentiation, but only for a very specific class of curves (some of those
with j-invariant 0), and using techniques that are unlikely to apply more
broadly.

In this work, we revisit this long-standing open problem, and observe
that the SW map actually fits in a one-parameter family (fu)u∈Fq of encod-
ings, such that for independent random oracles h1, h2 to Fq, F : m �→
fh2(m)

(
h1(m)

)
is indifferentiable. Moreover, on a very large class of curves

(essentially those that are either of odd order or of order divisible by 4),
the one-parameter family admits a rational parametrization, which lets us
compute F at almost the same cost as small f , and finally achieve indiffer-
entiable hashing to most curves with a single exponentiation. Our new app-
roach also yields an improved variant of the Elligator Squared technique
of Tibouchi (FC 2014) that represents points of arbitrary elliptic curves as
close-to-uniform random strings.

c© International Association for Cryptologic Research 2022
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Keywords: Elliptic curve cryptography · Hashing to curves ·
Indifferentiability · Elligator · Algebraic geometry

1 Introduction

Indifferentiable Hashing to Elliptic Curves. Numerous cryptographic
primitives and protocols constructed over elliptic curve groups involve hashing
to an elliptic curve: they assume the existence of a public function H mapping
arbitrary bit strings to elliptic curve points/group elements. Moreover, the func-
tion H is supposed to behave “like a random oracle”. Such a functionality is
required for example for many password-authenticated key exchange protocols,
identity-based encryption schemes, short signature schemes, verifiable random
functions, oblivious PRFs and more. It is therefore important to understand how
it can be efficiently instantiated in practice, and moreover with constant-time
implementations, since the data that is hashed to the curve is often sensitive
and can thus be compromised by timing side-channel attacks. This problem is in
fact currently the subject of an IETF standardization effort within the Crypto
Forum Research Group [FHSS+22].

It became an active research topic about a decade ago, particularly after the
work of Brier et al. [BCI+10], which applied Maurer et al.’s indifferentiability
framework [MRH04] to properly formalize what it meant for H to “behave like a
random oracle”, and proposed several constructions satisfying the required prop-
erties. The design paradigm that emerged at the time as the main approach to
hashing to elliptic curve groups combines so-called encoding functions to the ellip-
tic curve, which are algebraic (or piecewise algebraic) maps from the base field to
the group of points on the curve, with random oracles to the base field and other
sets that are “easy to hash to”, as well as simple arithmetic operations on the curve.

More precisely, consider for instance1 the problem of hashing to the subgroup
G of cofactor h in E(Fq), where E is an elliptic curve defined over the finite field
Fq and such that E(Fq) is cyclic of order n with generator P . Then Brier et al.
[BCI+10] showed that the following construction:

Hslow(m) = [h] ·
(
f
(
h1(m)

)
+ [h2(m)]P

)
(1)

is indifferentiable from a random oracle when h1 and h2 are modeled as inde-
pendent random oracles to Fq and Z/nZ respectively (which are easy to realize,
heuristically, using bitstring-valued hash functions) and f : Fq → E(Fq) is a
mapping (the encoding function) satisfying mild conditions. This means that
whenever2 a cryptographic scheme or protocol is proved secure in the random
oracle model with respect to a G-valued random oracle H, that random oracle
can be instantiated securely with the construction Hslow.

1 The general case of a non-cyclic E(Fq) can be treated similarly. We refer to Brier et
al. [BCI+10] for details.

2 Technically, this holds in the case of single-stage security games, as clarified by
Ristenpart et al. [RSS11]. This limitation is rarely of concern in our context.
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As we have mentioned, the construction above requires a suitable encoding
function f : Fq → E(Fq). A number of candidates were known at the time for
various classes of elliptic curves, such as those of Shallue and van de Woesti-
jne [SvdW06], Ulas [Ula07] or Icart [Ica09], and many more have been proposed
since [KLR10,FT10,Far11,FT12,FJT13,BHKL13,WB19]. All of them can be
computed in constant time at the cost of one full size exponentiation in Fq (typ-
ically a square root or cube root computation), which dominates the complexity,
plus a few other less costly operations in the field, like multiplications, inversions
and Jacobi symbol computations.

In contrast, the second term of Hslow is a full-size scalar multiplication over
the curve, which typically exceeds the computationally cost of a field exponenti-
ation by a factor of 10 or more depending on base field size and curve arithmetic.
This makes Hslow a fairly inefficient construction.

To alleviate this issue, Brier et al. also proved that the following construction
is also indifferentiable from a random oracle:

Hsquare(m) = [h] ·
(
f
(
h1(m)

)
+ f

(
h2(m)

))
(2)

when h1 and h2 are modeled as independent random oracles to Fq, and when
f is specifically Icart’s function. The result was later extended by Farashahi et
al. [FFS+13], who showed that basically all of the known encoding functions
f could also be plugged into that construction. This provides indifferentiable
hashing to arbitrary elliptic curves at the cost of essentially two base fields
exponentiations.

On the other hand, in certain primitives and protocols proved secure with
respect to a G-valued random oracle H, one can show that H can be securely
instantiated using the following simpler construction:

Hnon-unif(m) = [h] · f
(
h(m)

)
(3)

where h is modeled as a random oracle to Fq. This construction is not nearly as
well-behaved as (2). In fact, f usually only reaches a fraction of the points on
E(Fq), and induces a non-uniform distribution over its image, so that Hnon-unif
can typically be efficiently distinguished from a random oracle, and in particu-
lar it is not indifferentiable in the sense discussed so far. Nevertheless, certain
primitives and protocols do not require the full strength of indifferentiability,
and Hnon-unif is sometimes sufficient to let their security proofs go through.

A rough idea of why this happens is that, in a random oracle proof of security,
the simulator generally wants to program the random oracle by setting the hash
of some message m to a value Q, but that point Q itself can usually be anything
depending on some randomness. So assuming that h = 1, the simulator might
typically want to setH(m) to Q = [r]·P for some random r, say. Now ifH is defined
in the protocol using a construction like (3), the simulator would pick a random r
and set h(m) to one of the preimages u ∈ f−1(P ) if P ∈ f(Fq). If however P is not
in the image of f , the simulator would pick another random r and try again.

Therefore, construction (3), while less general and well-behaved than (2), is
sometimes good enough for security at half the computational cost. This is a
substantial difference in terms of efficiency that practitioners may be sensitive
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to, so much so that both of these constructions are in fact proposed in the current
IETF draft [FHSS+22]. Construction (3), however, comes with the caveats that
applications using it “SHOULD carefully analyze the security implications of
nonuniformity”, and that “cryptographic protocols whose security analysis relies
on a random oracle that outputs points with a uniform distribution MUST NOT”
use it. This results in the somewhat unfortunate situation that implementers
have to choose between two approaches for implementing hashing to elliptic
curves: one which is secure in all cases but slower, and one which is faster but
requires a careful analysis to ascertain that it does not fully compromise the
security of the scheme.

The Quest for Fast Indifferentiable Hashing. Ideally, one would prefer
to have the best of both worlds: indifferentiable hashing at the cost of a single
exponentiation in the base field instead of two. Obtaining this for general elliptic
curves is a long-standing open problem.

In special cases, solutions exist: this is particularly the case for supersingular
curves of j-invariant 0 and 1728, for which it has long been known [BF01,FT10]
that an “almost bijective” encoding function f exists; it is then easy to check
that plugging that f into construction (3) does achieve indifferentiability. Unfor-
tunately, those types of supersingular curves, which were popular to reach the
80-bit security level in pairing applications in the early 2000s, are no longer used
today due to exceedingly large parameters at higher security levels. Moreover,
there are strong reasons to believe that almost bijective encodings cannot exist
for general elliptic curves [Tib14b].

Progress towards addressing the general open problem was made by Tibouchi
and Kim [TK17], who extended the statistical results of Farashahi et al., and
established in particular that, asymptotically, it was possible to achieve indif-
ferentiable hashing at a cost of less than two exponentiations by tweaking con-
struction (1) with a random oracle h2 mapping to a short interval. That result
is mostly of theoretical significance, however, since it requires very large base
fields to provide meaningful error bounds.

Recently, Koshelev [Kos22] made a practically significant advance, by showing
that indifferentiable hashing at the cost of a single exponentiation was possible
for certain ordinary curves of j-invariant 0 over suitable base fields. This is still
a negligible fraction of all elliptic curves, but it is practically relevant since it
includes pairing-friendly curves like some of the BLS curves [BLS03] used today.
Koshelev’s approach is also the first one considered in the last decade or so
that substantially departs from the framework of constructions (1)–(3) above.
While those earlier techniques reduce the problem of indifferentiable hashing to
the encoding function f : Fq → E(Fq), which is defined over a one-dimensional
domain, Koshelev bases his construction on a map F : F2

q → E(Fq) with a two-
dimensional range. Looking back at Brier et al.’s original proof for the indifferen-
tiability of construction (2) using Icart’s encoding function, this is fairly natural
(since that proof was constructed around a two-dimensional argument), but it
is an important shift in perspective.
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In this paper, we use a similar idea (albeit very different techniques) to settle
the open problem for a large class of elliptic curves: for essentially all curves
over fields Fq with q ≡ 1 (mod 3) with either odd order or order divisible by 4
(this includes almost all elliptic curves in current use), we are able to construct
a new indifferentiable hashing, which we call SwiftEC, at the cost of a single
exponentiation in the base field.

Representing Points as Uniform Random Strings. A very different ques-
tion, but which has been tackled using similar techniques, was introduced in
Bernstein et al.’s Elligator paper [BHKL13]: how can one represent a uniform
point on E(Fq) in a public way as a close to uniform random bit string? The
stated goal was to achieve a form of steganography for censorship circumven-
tion. Indeed, network traffic containing points on a certain elliptic curve (e.g.
public keys for encryption or signature) represented in usual ways (either as full
coordinates (x, y), in compressed form (x, sgn y) or in x-only form) can be easily
distinguished from random, which may lead to automated traffic interruption or
targeted surveillance.

As a countermeasure, Bernstein et al. suggested to use an encoding function
f : Fq → E(Fq) with the property that it maps an interval I ⊂ Fq of length
≈ q/2 injectively into E(Fq). Then, any point in f(I) can be represented by its
unique preimage under f in I. In particular, if q is close to a power of two, this
readily gives a simple representation of random elements in f(I) ⊂ E(Fq) as
uniform random bit strings (and when q is far from a power of two, it suffices to
represent elements of I as uniform random bit strings, which can be easily done
by expanding the representation and introducing randomness).

This approach has two drawbacks. First, suitable encodings f that are injec-
tive over a large interval are hard to construct, and only known for limited
families of elliptic curves [Far11,FJT13,BHKL13], all of order divisible by 3 or 4
(and hence not including curves of prime order, for example). Second, one needs
to address the issue of points falling outside f(I). Since the goal is to represent
random points on E(Fq) as bit strings, the assumption is that in the crypto-
graphic protocol under consideration, the point to represent is obtained by some
sort of random process, and it is possible to use rejection sampling until reaching
f(I). Since the image size covers roughly half of all points on the curve, this will
require about two iterations on average, often an acceptable cost. However, if
the process generating the point is expensive, rejecting may be less than ideal.

Tibouchi’s Elligator Squared paper [Tib14a] addressed these shortcomings by,
in essence, applied construction (2) above “in reverse”. One of the key properties
that makes construction (2) an indifferentiable hash function is the fact that, for
an encoding function f : Fq → E(Fq), the following map:

f⊗2 : F2
q → E(Fq)

(u, v) �→ f(u) + f(v)
(4)

induces a close-to-uniform distribution on its image. In particular, a uniformly
random preimage of a uniformly random point in E(Fq) is close to uniform in F

2
q.
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This provides a simple solution to the point representation problem that works
for general elliptic curves and can represent all points, avoiding the need for
rejection sampling inside the protocol to reach a particular subset of the curve.
However, representation size is about twice as large as Elligator (a drawback
partially addressed in subsequent work [TK17]) and the representation func-
tion, computing uniformly random preimages under f⊗2, is also somewhat more
complicated and costly than that of Elligator.

Basically, to compute a random preimage of P ∈ E(Fq), one picks a uniform
v ∈ Fq and computes u as a preimage of P − f(v). However, rejection sam-
pling is necessary to ensure the uniformity of the distribution, which requires
multiple iterations, each of them evaluating the function f (at a cost of a field
exponentiation each).

In this paper, as a by-product of our new SwiftEC construction, we also
obtain ElligatorSwift, a much faster variant of Elligator Squared over all
the curves over which SwiftEC is defined. The idea is that fully computing the
underlying encoding in the forward direction becomes unnecessary, saving many
field exponentiations in the process.

Contributions and Technical Overview. The starting point of our work
is to revisit the first construction of an encoding function to general elliptic
curves, originally due to Shallue and van de Woestijne [SvdW06]. We observe
that construction actually had a number of interesting properties that have not
been considered so far, and that we manage to build upon with suitable addi-
tional analysis. To describe them, we need to first recall a few facts about the
Shallue–van de Woestijne encoding itself.

Given an elliptic curve E : y2 = g(x) = x3 + ax + b over a finite field Fq

of characteristic ≥ 5, Shallue and van de Woestijne construct a certain alge-
braic surface S in the affine space over Fq together with three rational functions
x1, x2, x3 such that the product g(x1)g(x2)g(x3) is a square. This means in par-
ticular that, when evaluated at any point P of S(Fq) (outside of the locus of
poles), at least one of x1(P ), x2(P ) or x3(P ) must be the x-coordinate of a
point in E(Fq). Indeed, the product g

(
x1(P )

)
g
(
x2(P )

)
g
(
x3(P )

)
is a square in

Fq, and since the product of three nonsquares in Fq is a nonsquare, at least one
of the factors must be square, yielding the x-coordinate of a point in E(Fq).
Based on that, we can define an encoding function from S(Fq) to E(Fq) simply
by mapping a point P to one of the points of x-coordinate xi(P ) that works
(selecting the index i and the sign of the y-coordinate in a predetermined way).

The second step of the construction is to note that the specific surface S
under consideration can in fact be seen as a one-parameter family of conics over
Fq. Based on that, Shallue and van de Woestijne fix the value of the parameter,
obtain a single non-degenerate conic over Fq, and use the fact that such a conic
always admits a rational parametrization to obtain a map Fq → S(Fq) to the
chosen conic. Composing with the previous map finally gives an encoding Fq →
E(Fq) as desired, which can be used in constructions (1)–(3) above for hashing,
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and in the Elligator Squared framework: this is what is usually known as the
Shallue–van de Woestijne encoding.

Our contributions rely on two novel observations regarding that original con-
struction:

– first, for a large class of elliptic curves E which we characterize in detail,
the surface S regarded as a family of conics actually admits a global, two-
parameter parametrization over Fq. This means that one can effectively con-
struct a rational map F

2
q → S(Fq) that is essentially a bijection. This result is

obtained using techniques due to van Hoeij and Cremona [vHC06] classifying
conics over function fields;

– second, unlike each of the maps defined by individual conics, the map
from S(Fq) as a whole to the set XE,Fq

of elements of Fq which are x-
coordinates on E(Fq) is admissible: it satisfies the sufficient conditions of
Brier et al. [BCI+10] to construct indifferentiable hashing. The most impor-
tant of those conditions is regularity: the image of a uniform point in S(Fq)
is close to uniform in XE,Fq

. We are able to establish that property by giv-
ing a precise description of the preimage of an x ∈ XE,Fq

: it consists of
the union of one algebraic curve drawn on S (the set of points P such that
x1(P ) = x, say) and two halves of two other curves (the subset of the curves
given by x2(P ) = x and x3(P ) = x respectively, with the condition that
g(x1(P )) is a nonsquare). By counting points on those curves and curve sub-
sets, we are able to establish the required statistical properties, and deduce
that S(Fq) → XE,Fq

is admissible.

Combining those two observations, we obtain, for a large, explicit class of
elliptic curves E (including almost all curves in practical use), an admissible
encoding F

2
q → XE,Fq

. Adding a sign bit to choose the y-coordinate on E yields
an admissible encoding F : F2

q × {0, 1} → E(Fq) as well, which can be computed
at the cost of a single exponentiation in Fq (namely, the square root computation
needed to derive the y-coordinate). This has the two consequences mentioned
above, over the elliptic curves E of interest:

– given a hash function h modeled as a random oracle with values in F
2
q ×

{0, 1} (which is easy to heuristically instantiate), the map m �→ F
(
h(m)

)
is

indifferentiable from a random oracle, and can be computed at the cost of a
single exponentiation. This is the SwiftEC construction;

– given a uniform point on the curve, we can efficiently sample a uniform preim-
age of it under F , and this becomes a close-to-uniformly distributed element
of F

2
q × {0, 1}. Since such an element is easy to represent as a uniform bit

string, we thus obtain an Elligator Square-like representation technique which
is much faster than Elligator Square itself, as it requires far fewer field expo-
nentiations on average. This is the ElligatorSwift construction.

In addition, we also get indifferentiable hashing to the set XE,Fq
without

any field exponentiation at all. This even faster construction, XSwiftEC, is
particularly interesting in context where x-only arithmetic is feasible, such as
for example BLS signatures [BLS01].
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2 Preliminaries

2.1 Quadratic Residuosity

Throughout this paper, Fq denotes the finite field with q elements. We only
consider finite fields of characteristic 	= 2, 3. The quadratic character χ2 : Fq →
{−1, 0, 1} is the map that sends 0 to 0, nonzero squares to 1 and nonzero non-
squares to −1. It is well-defined, multiplicative, and extends the unique nontrivial
multicative group morphism F

×
q → {−1, 1}. A related map is IsSquare, which

sends all squares to 1 and nonsquares to 0.
When q is prime, the quadratic character coincides with the Legendre sym-

bol, and can be computed efficiently by repeated applications of quadratic reci-
procity. This can be implemented in fast constant time [Por20,Ham21,AG21],
similar to the constant-time binary GCD technique of Bernstein–Yang for field
inversion [BY19]. Similarly, the quadratic character over extension fields can be
computed fast by descending to the prime field, and IsSquare can be trivially
computed from χ2.

We also fix an efficiently computable map sgn: Fq → {−1, 0, 1} called the
“sign”, with the property that sgn 0 = 0, sgn x 	= 0 for x 	= 0, and sgn(−x) =
− sgn x. The choice is arbitrary, but for example over prime fields, it is customary
to use the sign of an integer representative in the interval (−q/2, q/2) (over
extension fields, one might choose the sign of the first nonzero coefficient in
some basis over the prime field).

An element x ∈ Fq which is a square has exactly two square roots (except 0
which has just one), exactly one of which is of nonnegative sign. We denote it by√

x; it typically requires a single base field exponentiation to compute (although
slightly faster approaches may exist over extension fields).

2.2 Elliptic Curves and Isogenies

An elliptic curve is a smooth projective curve of genus 1 endowed with a distin-
guished rational point. Such curves admit the definition of a point addition law,
which gives the curve a structure as group variety, with the distinguished point
playing the role of the group identity. Over Fq, any elliptic curve can be written
up to isomorphism in the short Weierstrass form:

E : y2 = x3 + ax + b,

for some a, b ∈ Fq such that the discriminant ΔE := −16(4a3 +27b2) is nonzero.
On such a curve, group inverses are defined by −(x, y) = (x,−y) and the points
of order 2 are those with y = 0. When ΔE is a square there are either zero or
three points of order 2. Otherwise, there is exactly one.

We denote by E(Fq) the group of Fq-rational points of E. The cardinality of
this group is always #E(Fq) = q − t + 1 for some t bounded by |t| ≤ 2

√
q. We

say that the curve is supersingular if t is a multiple of the field characteristic,
and otherwise the curve is ordinary. We focus on the case of ordinary elliptic
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curves, where finding adequate and efficient encodings has long been a greater
challenge.

An isogeny is any non-constant rational map between elliptic curves that
is also a group homomorphism. Up to an isomorphism, a separable isogeny is
uniquely determined by its kernel and its degree as a rational map is equal to the
size of the kernel. Any isogeny φ : E → E′ has a dual isogeny φ̂ : E′ → E such
that the composition φ̂◦φ equals the multiplication-by-d map, where d = deg(φ).
Two curves over a finite field are isogenous if and only if they have exactly the
same number of points.

2.3 Point Counting and Character Sums

A generalization of the result above on the number of rational points of an elliptic
curve is that any (absolutely irreducible) smooth curve of bounded genus over Fq

has a number of points over Fq close to q. More precisely, the following celebrated
result holds:

Lemma 1 (Hasse–Weil bound). For any smooth projective absolutely irre-
ducible curve X/Fq of genus g, we have:

∣∣#X(Fq) − (q + 1)
∣∣ ≤ 2g

√
q.

For curves of bounded degree, the number of points at infinity is also bounded,
and we thus get a bound of the form #Xaff(Fq) = q + c

√
q + O(1) (|c| ≤ 2g) on

the number of affine points on X.
A related result concerns character sums on such curves. Let χ be a multi-

plicative character of Fq (a group homomorphism F
×
q → C

× extended by 0 at
0), and f ∈ Fq(X) a rational function on the curve X. We consider the following
character sum:

W (X,χ, f) =
∑

P∈X(Fq)
f(P ) �=∞

χ
(
f(P )

)
.

Using the Bombieri–Weil methodology, Perret [Per91] proves the following
bound. See also [CM00,TK17].

Lemma 2 (Perret). Let X be a smooth projective absolutely irreducible curve
of genus g over Fq, χ a nontrivial multiplicative character of order m|q − 1, and
f ∈ Fq(X) a rational function which is not a perfect m-th power in F̄q(X). The
character sum W (X,χ, f) can be bounded as:

∣∣W (X,χ, f)
∣∣ ≤ (2g − 2 + 2deg f)

√
q.

2.4 Quadratic Residuosity over Function Fields

Many results of classical arithmetic over Q and number fields have analogues
over function fields. This is in particular the case for quadratic reciprocity. We
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recall some of the relevant results below. An exhaustive treatment is provided
in Rosen’s textbook [Ros02, pp. 23-31].

For a fixed monic irreducible polynomial f ∈ Fq[t], we define the quadratic
residue symbol

(
g
f

)
2

for any g ∈ Fq[t] as the image of g under the quadratic
character of the finite field Fq[t]/(f). In other words:

(
g

f

)

2

=

⎧
⎪⎨
⎪⎩

0 if f divides g;
1 if g is coprime to f and a square modulo f ;
−1 if g is coprime to f and a nonsquare modulo f.

We then extend this symbol to not necessarily irreducible f ’s by multiplica-
tivity, similarly to how the Jacobi symbol extends the Legendre symbol. If
f = αfe1

1 · · · fen
n with α ∈ F

×
q and the fi irreducible, we let:

(
g

f

)

2

=
n∏

i=1

(
g

fi

)

2

.

Note that the symbol does not depend on the leading coefficient lc(f) = α of f .

Lemma 3. The quadratic residue symbol has the following properties.

– If g1 ≡ g2 (mod f),
(

g1
f

)
2

=
(

g2
f

)
2
.

–
(

g1g1
f

)
2

=
(

g1
f

)
2

(
g2
f

)
2
.

–
(

g
f1f2

)
2

=
(

g
f1

)
2

(
g
f2

)
2
.

–
(

g
f

)
2

	= 0 if and only if f and g are coprime.

– If g is a nonzero square modulo f , then
(

g
f

)
2

= 1 (but the converse does not
need to hold).

Furthermore, it satisfies the following law of quadratic reciprocity. For f, g ∈
Fq[t] coprime and nonzero, it holds that:

(
g

f

)

2

(
f

g

)

2

= (−1)
q−1
2 deg f deg g lc(f)

q−1
2 deg g lc(g)

q−1
2 deg f .

2.5 Statistical Notions

For D a probability distribution on a finite set S, we write Pr[s ← D ] for the
probability assigned to the singleton {s} ⊂ S by D . The uniform distribution
on S is denoted by US (or just U if the context is clear).

Definition 1 (Statistical distance). Let D and D ′ be two probability distri-
butions on a finite set S. The statistical distance between them is defined as the
�1 norm:

Δ1(D ,D ′) =
1
2

∑
s∈S

∣∣ Pr[s ← D ] − Pr[s ← D ′]
∣∣.
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We simply denote by Δ1(D) the statistical distance between D and US:

Δ1(D) =
1
2

∑
s∈S

∣∣∣ Pr[s ← D ] − 1
#S

∣∣∣,

and say that D is ε-statistically close to uniform when Δ1(D) ≤ ε. When Δ1(D)
is negligible, we simply say than D is statistically close to uniform.

Definition 2 (Pushforward). Let S, T be two finite sets and F any map-
ping from S to T . For any probability distribution DS on S, we can define the
pushforward F∗DS of DS by F as the probability distribution on T such that
sampling from F∗DS is equivalent to sampling a value s ← DS and returning
F (s). In other words:

Pr
[
t ← F∗DS

]
= Pr

[
s ← DS ; t = F (s)

]
= μS

(
F−1(t)

)
=

∑
s∈F−1(t)

Pr[s ← DS ],

where μS is the probability measure defined by DS.

Definition 3 (Regularity). Let S, T be two finite sets and F any mapping
from S to T . We say that F is ε-regular when F∗US is ε-close to the uniform
distribution. We may omit ε if it is negligible.

2.6 Admissible Encodings

In their work on the construction of indifferentiable hashing to elliptic curves,
Brier et al. [BCI+10] define the notion of an admissible map F : S → R between
two sets. The definition, which generalizes an early notion introduced by Boneh
and Franklin [BF01], is as follows.

Definition 4 (Admissible encoding). A function F : S → R between finite
sets is an ε-admissible encoding if it satisfies the following properties:

Computable: F is computable in deterministic polynomial time.
Regular: F is ε-regular (in the sense of the previous section).
Samplable: there is an efficient randomized algorithm I : R → S � {⊥} such

that for any r ∈ R, I (r) induces a distribution that is ε-statistically close to
the uniform distribution in F−1(r).

F is an admissible encoding if it is ε-admissible for some negligible ε.

That notion satisfies the suitable properties such that, given an S-valued
random oracle h, the composition F ◦h is indifferentiable from a R-valued random
oracle.

Moreover a similar results holds for arbitrary compositions of admissible
functions (even though admissibility need not be preserved under composition).
Namely, if Fi : Si → Si−1 are admissible encodings for i = 1, . . . , n, then it also
holds that, given an Sn-valued random oracle h, the composition F1◦· · ·◦Fn◦h is
indifferentiable from a S0-valued random oracle (even though it does not always
hold that F1 ◦ · · · ◦ Fn is admissible).
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3 The SW Encoding Family

In their seminal ANTS–VII paper [SvdW06], Shallue and van de Woestijne con-
structed the first encoding function to arbitrary elliptic curves. In this section,
we give a description of that construction (restricted for simplicity to base fields
of characteristic ≥ 5) that is slightly different but essentially equivalent to the
original one, and then we state new properties of that construction.

In the entire section, we fix an elliptic curve E : y2 = x3 + ax + b over the
finite field Fq (q prime power not divisible by 2 or 3), and denote by XE,Fq

the
subset of Fq consisting of x-coordinates of points in E(Fq); in other words:

XE,Fq
=

{
x ∈ Fq ; ∃y, (x, y) ∈ E(Fq)

}
.

3.1 Construction of the Shallue–van de Woestijne Encoding

Let g and h be the polynomials over Fq defined by:

g(u) = u3 + au + b and h(u) = 3u2 + 4a.

The starting point of the Shallue–van de Woestijne construction is the construc-
tion of a rational map ψ : S → V from the following quasi-affine surface in the
(x, y, u) affine space:

S : x2 + h(u)y2 = −g(u), y 	= 0 (5)

to the following threefold in the (x1, x2, x3, z) affine 4-dimensional space:

V : z2 = g(x1)g(x2)g(x3).

The rational map ψ is given by the following explicit equations and clearly
defined everywhere on S:

x1 =
x

2y
− u

2
x2 = − x

2y
− u

2

x3 = u + 4y2 z =
g(u + y2)

y
· R

(
u,

x

2y
− u

2

) (6)

where R(u, v) = u2 + uv + v2 + a. When referring to a point P on S, we will
denote by x1(P ), x2(P ), x3(P ) and z(P ) the corresponding coordinates of ψ(P )
in V . In particular, this defines x1, x2, x3 and z as rational functions on the
surface.

A remarkable property of the threefold V is that for any point (x1, x2, x3, z) ∈
V (Fq), at least one of the three values x1, x2, x3 must be in XE,Fq

. Indeed,
g(x1)g(x2)g(x3) is a square in Fq, so by multiplicativity of the quadratic char-
acter, they cannot be all nonsquares (and in fact, there must be exactly one or
three squares among them, except possibly when z = 0).
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As a result, one can therefore map points on S(Fq) to XE,Fq
by first map-

ping to V (Fq) with ψ, and then selecting one of the coordinates x1, x2, x3 in a
prescribed order. For example, in this paper we will consider the following map:

F0 : S(Fq) → XE,Fq

P �→

⎧
⎪⎨
⎪⎩

x3(P ) if g
(
x3(P )

)
is a square;

x2(P ) if g
(
x3(P )

)
is not a square but g

(
x2(P )

)
is;

x1(P ) if neither g
(
x3(P )

)
nor g

(
x2(P )

)
are squares.

(7)

Note that F0(P ) is very efficient to compute from the coordinates (x, y, u) of
P using the formulas of (6) and a few quadratic character computations. In
particular, it requires no field exponentiation.

Of course, once we have an element x̄ ∈ XE,Fq
, it is easy to deduce a point in

E(Fq): simply compute a square root of g(x̄) to get the y-coordinate up to sign.
Since we prefer to select the sign separately, we define the following extended
map to E(Fq) which takes an additional input bit b:

F+
0 : S(Fq) × {0, 1} → E(Fq)

(P, b) �→
(
F0(P ), (−1)b

√
g
(
F0(P )

))
.

(8)

The construction offers a way to map to E(Fq) provided that one can con-
struct rational points on the surface S itself, which may not be a priori obvious.
Fortunately, as seen from Eq. (5), each of the curves Su0 on S obtained by fixing
u to some u0 ∈ Fq are simply conics over Fq, with equations:

x2 + h(u0)y2 = −g(u0), y 	= 0.

Now, a conic over Fq always admits a rational parametrization. Therefore, we
can construct a map Fq → Su0(Fq) that can then be composed with F+

0 to
obtain an encoding function F0,u0 : Fq → XE,Fq

(and similarly to E(Fq)). This
is basically the approach taken in the original paper of Shallue and van de
Woestijne [SvdW06].

Note that obtaining the parametrization of the conic Su0 for a fixed u0

requires an a priori costly precomputation (it requires finding a point on the
conic, typically by trial-and-error: this costs a square root, and a number of
quadratic character computations that is hard to bound uniformly). Therefore,
while it may be tempting to try and define a two-parameter map F

2
q → XE,Fq

by
(t, u) �→ F0,u(t), this is not usually workable for hashing purposes, since a new
parametrization would have to be computed for any new input u.

Nevertheless, we show in the remainder of this section that the maps F0 and
F+
0 on the surface S(Fq) as a whole have nice statistical properties, and it would

therefore be beneficial to overcome the difficulty of efficiently parametrizing it.
That problem will then be addressed, at least for a large class of elliptic curves
E, in Sect. 4 below.
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3.2 Geometry of the SW Family

For a fixed element x̄ ∈ XE,Fq
, we now want to describe the set of points in

S(Fq) that map to x̄ under the encoding F0 of (7). By the previous description
of the encoding, this is the union of three disjoint sets:

F−1
0 (x̄) = C

(3)
x̄ (Fq) � C

(2)
x̄ (Fq)+ � C

(1)
x̄ (Fq)+,

where C
(i)
x̄ are algebraic curves on S defined by the condition that xi = x̄

(i ∈ {1, 2, 3}) and C
(i)
x̄ (Fq)+ is the subset of C

(i)
x̄ (Fq) under the condition that

g
(
xj(P )

)
is not a square for j 	= i. Note that since there are always exactly only

1 or 3 squares, it suffices to define

C
(1)
x̄ (Fq)+ := {P ∈ C

(1)
x̄ (Fq); x2(P ) not a square}

C
(2)
x̄ (Fq)+ := {P ∈ C

(2)
x̄ (Fq); x1(P ) not a square}

We would like to count the number of points in each of these sets. The first
step is to understand the geometry of the curves C

(i)
x̄ . It is easy to see that, for

a generic x̄, they are hyperelliptic curves of genus 2.
Consider for example C

(3)
x̄ . It is given by the equations (cf. (6)):

u + 4y2 = x̄ and x2 + h(u)y2 = −g(u).

Eliminating u = x̄ − 4y2 between those two equations, we see that C
(3)
x̄ is iso-

morphic to the curve in the (y, x) affine plane given by the equation:

x2 = −g(x̄ − 4y2) − h(x̄ − 4y2)y2.

The right-hand side is a polynomial of degree 6 in y, namely:

16y6 − 24x̄y4 + 9x̄2y2 − g(x̄),

whose discriminant is a polynomial of degree exactly 11 in x̄ (or exactly 9 if
a = 0). We thus get that C

(3)
x̄ is a hyperelliptic curve of genus 2, except for at

most 11 points x̄. Other than for those exceptional points, we have:

#C
(3)
x̄ (Fq) = q + c3

√
q + O(1), for some c3 such that |c3| ≤ 4.

by the Hasse–Weil bound. Note that the O(1) term comes from the fact that
we consider the affine situation rather than the projective one, and we could
easily provide an explicit bound for it, but this is typically not of interest for
cryptographic applications.

By a similar analysis, we find that both C
(1)
x̄ and C

(2)
x̄ are isomorphic to the

curve in the (u, v) affine plane (where v = y
[
(u + 2x̄)2 + h(u)

]
) of equation:

v2 = −g(u) · [
(u + 2x̄)2 + h(u)

]
.
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The right-hand side is a polynomial of degree 5 in u, namely:

−4
(
u5 + x̄u4 + (x̄2 + 2a)u3 + (ax̄ + b)u2 + (ax̄2 + bx̄ + a2)u + b(x̄2 + a)

)
,

and its discriminant is always of degree 14 in x̄ (the degree 14 coefficient is
216 · 3 · (4a3 + 27b2) 	= 0). Thus, C

(1)
x̄ and C

(2)
x̄ are hyperelliptic curves of genus

2, except for at most 14 points x̄. Other than for those exceptional points, we
therefore have:

#C
(1)
x̄ (Fq) = q + c1

√
q + O(1) for some c1 such that |c1| ≤ 4

#C
(2)
x̄ (Fq) = q + c2

√
q + O(1) for some c2 such that |c2| ≤ 4

by the Hasse–Weil bound.
It remains to evaluate the cardinality of the subsets C

(i)
x̄ (Fq)+ ⊂ C

(i)
x̄ (Fq) for

i ∈ {1, 2}. One can do so in various ways, but the simplest is probably to relate
them to character sums. Consider for example the following character sum on
C

(1)
x̄ :

W1 := W
(
C

(1)
x̄ , χ2, g ◦ x2

)
=

∑

P∈C
(1)
x̄ (Fq)

χ2

(
g
(
x2(P )

))
,

where χ2 is the quadratic multiplicative character of Fq. The term χ2

(
g
(
x2(P )

))

is equal to −1 if g
(
x2(P )

)
is not a square in Fq, which is exactly when P ∈

C
(1)
x̄ (Fq)+. Moreover, it is otherwise equal to 1 (for points outside C

(1)
x̄ (Fq)+

such that x2(P ) 	= 0) or 0 (for points outside C
(1)
x̄ (Fq)+ such that x2(P ) = 0).

As a result, we have:

W1 = (−1) · #C
(1)
x̄ (Fq)+ + 1 · (#C

(1)
x̄ (Fq) − #C

(1)
x̄ (Fq)+ − N0) + 0 · N0

= #C
(1)
x̄ (Fq) − 2 · #C

(1)
x̄ (Fq)+ − N0,

where N0 = O(1) is the number of points in C
(1)
x̄ (Fq) such that x2(P ) = 0. This

gives:

#C
(1)
x̄ (Fq)+ =

1
2
#C

(1)
x̄ (Fq) − W1

2
+ O(1) =

q

2
+

c1
2

√
q − W1

2
+ O(1),

where the O(1) term accounts both for N0 and for the fact that we consider an
affine situation instead of a projective one.

Then, by the character sum estimate of Lemma 2, we have:

|W1| ≤ (
4−2+2deg(g ◦x2)

)√
q +O(1) = (2+2 ·3 ·2)

√
q +O(1) = 14

√
q +O(1)

since x2 = −u− x̄ on C
(1)
x̄ is a rational function of degree 2. It then follows that:

#C
(1)
x̄ (Fq)+ =

q

2
+ c+1

√
q + O(1) for some c+1 such that |c+1 | ≤ 4 + 14

2
= 9.
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Obviously, the exact same argument applies to C
(2)
x̄ , yielding:

#C
(2)
x̄ (Fq)+ =

q

2
+ c+2

√
q + O(1) for some c+2 such that |c+2 | ≤ 9.

Combining all the previous estimates, we finally obtain the following result.

Theorem 1. For all x̄ ∈ XE,Fq
except at most 39 of them, the number of preim-

ages of x̄ under the F0 map of Eq. (7) is close to 2q, and the difference is bounded
as: ∣∣#F−1

0 (x̄) − 2q
∣∣ ≤ 22

√
q + O(1).

Proof. Indeed, except for the at most 11 + 14 + 14 = 39 exceptional points
mentioned above, we have:

#F−1
0 (x̄) =

(
1 +

1
2

+
1
2

)
q +

(
c+1 + c+2 + c3

)√
q + O(1)

and since
∣∣c+1 + c+2 + c3| ≤ 4 + 9 + 9 = 22, the result follows.

3.3 The SW Family Is Admissible

Using Theorem 1, we are now in a position to prove that the encoding function
F0 is admissible in the sense of Sect. 2.6. The main step in doing so is to prove
that it is regular.

Lemma 4. The map F0 : S(Fq) → XE,Fq
of Eq. (7) is ε-regular for ε =

(
6 +

o(1)
)
q−1/2.

Proof. Let Δ = Δ1

(
(F0)∗US(Fq)

)
be the statistical distance between the distri-

bution induced by F0 on XE,Fq
and the uniform distribution. By definition, we

have:

Δ =
1
2

∑
x̄∈XE,Fq

∣∣∣∣
#F−1(x̄)
#S(Fq)

− 1
#XE,Fq

∣∣∣∣.

Now for each element x̄ ∈ XE,Fq
, there are exactly two points of E(Fq) with

x-coordinate equal to x̄, except if g(x̄) = 0, in which case there is exactly one
(and this happens for at most three values of x̄). Taking the point at infinity
into account, we therefore get:

#XE,Fq
=

1
2
#E(Fq) + O(1) =

q

2
+ cE

√
q + O(1) for some cE with |cE | ≤ 1

by yet another application of the Hasse–Weil bound. Up to sign, the constant
cE is half the normalized Frobenius trace of E.

Moreover, S(Fq) is the disjoint union of the various affine conics
{
x2 +

h(u0)y2 = −g(u0), u = u0

}
for all u0 ∈ Fq. Those conics are nondegenerate

whenever g(u0)h(u0) 	= 0, in which case they have q +O(1) points. In remaining
exceptional cases, they have at most 2q points. As a result, we get:

#S(Fq) =
(
q − O(1)

) · (
q + O(1)

)
+ O(1) · O(q) = q2 + O(q).
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As for the number of preimages of F , we know by Theorem 1 that for each
x̄ ∈ XE,Fq

\ Xbad, where Xbad is a set of 39 points, there exists c0,x̄ ∈ [−22, 22]
such that:

#F−1(x̄) = 2q + c0,x̄
√

q + O(1) ∀x̄ ∈ XE,Fq
\ Xbad

For x̄ ∈ Xbad, we can still obtain a less strict but simpler bound: note that
for any fixed u = u0 ∈ Fq the equations x̄ = x1(x, y, u0), x̄ = x2(x, y, u0) and
x̄ = x3(x, y, u0) have at most 2, 2, and 4 solutions in S, respectively (these
solutions are given explicitly in Sect. 6). Hence, any point can have at most 8
preimages for any fixed u0 and at most 8q preimages in all.

We can now bound Δ as follows:

2Δ =
∑

x̄∈XE,Fq \Xbad

∣
∣
∣∣
#F −1(x̄)

#S(Fq)
− 1

#XE,Fq

∣
∣
∣∣ +

∑

x̄∈Xbad

∣
∣
∣∣
#F −1(x̄)

#S(Fq)
− 1

#XE,Fq

∣
∣
∣∣

=
∑

x̄∈XE,Fq \Xbad

∣
∣
∣∣
2q + c0,x̄

√
q + O(1)

q2 + O(q)
− 1

q/2 + cE
√

q + O(1)

∣
∣
∣∣

+
∑

x̄∈Xbad

∣
∣
∣∣

cbad,x̄q

q2 + O(q)
− 1

q/2 + cE
√

q + O(1)

∣
∣
∣∣

=
∑

x̄∈XE,Fq \Xbad

1

q

∣
∣
∣
∣
(
2 + c0,x̄q−1/2 + O(q−1)

) − (
2 − cEq−1/2 + O(q−1)

)
∣
∣
∣
∣

+
∑

x̄∈Xbad

1

q

∣∣
∣
∣
(
cbad,x̄ + O(q−3)

) − (
2 − cEq−1/2 + O(q−1)

)
∣∣
∣
∣

=
∑

x̄∈XE,Fq \Xbad

1

q

∣
∣∣
∣
(
c0,x̄ + cE

)
q−1/2 + O(q−1)

∣
∣∣
∣ +

∑

x̄∈Xbad

1

q

∣
∣∣
∣cbad,x̄ − 2 + O(q−1/2)

∣
∣∣
∣

where each of the constants c0,x̄ is in [−22, 22] and each of the constants cbad,x̄
is in [0, 8]. In particular, |c0,x̄ + cE | ≤ 23 and |cbad,x̄ − 2| ≤ 6 for all x̄, and we
have:

2Δ ≤ #
(
XE,Fq

\ Xbad
)

q
· (

23q−1/2 + O(q−1)
)

+
#Xbad

q
· (

6 + O(q−1/2)
)

=
1
2q + O(

√
q)

q
· (

23 + o(1)
)
q−1/2 +

39
q

· (
6 + o(1)

)

=
(23

2
+ o(1)

)
q−1/2 ≤ 2 · (

6 + o(1)
)
q−1/2

as required.

As an easy consequence, we obtain the following theorem.

Theorem 2. The map F0 : S(Fq) → XE,Fq
of Eq. (7) is ε-admissible for ε =(

6+o(1)
)
q−1/2. In particular, if h is a random oracle with values in S(Fq), F0◦h

is indifferentiable from an XE,Fq
random oracle.

Moreover, the same results hold for F+
0 : S(Fq) × {0, 1} → E(Fq).
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Proof. By definition, we need to prove that F0 is efficiently computatable, ε-
regular and ε-samplable. Computability is obvious. Regularity is the result of
Lemma 4. And 0-samplability is obtained using the preimage sampling algorithm
discussed in Sect. 6 below. To fix ideas, we sketch its construction.

Fix x̄ ∈ XE,Fq
. As previously mentioned, for any fixed u0 ∈ Fq, there are

at most 8 preimages (x, y, u) ∈ F−1(x̄) such that u = u0 (at most two coming
from each of x1 and x2 and four coming from x3). We can efficiently compute all
those preimages and in particular count them. Therefore, the following simple
rejection sampling algorithm has an output distribution uniform in F−1(x̄): pick
u0 uniformly at random, compute the list Lu0 of preimages with u = u0, restart
with probability 1 − #Lu0/8 and otherwise return a random element of Lu0 .

Finally, the extension to F+
0 is straightforward.

4 Parametrizing the SW Conic

4.1 Parametrizability Conditions

In the previous section, we have seen how the Shallue–van de Woestijne construc-
tion could be leveraged to construct admissible encodings F0 : S(Fq) → XE,Fq

and F+
0 : S(Fq) × {0, 1} → E(Fq). However, we have also seen that mapping to

Fq-points on the surface S efficiently (without base field exponentiations) is a
priori not straightforward, since the most naive approach involves finding points
on new conics for all inputs.

Fortunately, the surface S has a fairly simple description: it can be seen as a
one-parameter family of conics (the conics Su; this is also called a relative conic
over the u-line, or a fibration in conics, etc.). In any case, finding a global, two-
parameter parametrization of S is thus a function field analogue of the classical
problem, studied by Legendre, of finding rational points on conic over Q.

In their paper [vHC06], van Hoeij and Cremona show that Legendre’s orig-
inal approach can be directly adapted to the function field case. They provide
necessary and sufficient conditions for the existence of solutions, as well as an
effective algorithm to compute the parametrization if it exists.

A special case of their main result in as follows.

Lemma 5 (van Hoeij–Cremona). Let r, s be polynomials in Fq[u] that are
coprime, squarefree, and such that at least one of them is of odd degree. Then,
the following projective conic over Fq(t):

X2 + rY 2 + sZ2 = 0

admits rational points over Fq(u) (i.e., a global rational parametrization) if and
only if the following two conditions hold:

1. −r is a square in Fq[u]/(s)
2. −s is a square in Fq[u]/(r).

Moreover, if this is the case, there is an efficient algorithm to compute those
points.
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Proof. This is a special case of [vHC06, Th. 1]. More precisely, the assumptions
ensure that the conic is in reduced form and in “case 1”, in the terminology of
van Hoeij and Cremona, and the squareness conditions are equivalent to the
existence of a “solubility certificate”.

The proof presented by van Hoeij and Cremona is constructive in that it
yields an explicit algorithm for finding the rational parametrization. Our case of
interest, corresponding to the surface S, is r = h(u) = 3u2 + 4a and s = g(u) =
u3 +au+b (except when a = 0, in which case a slight adjustment is necessary to
meet the assumptions of the theorem). In that case, if a parametrization exists,
it can be put in the form where Z = 1, and X,Y are polynomials of degree 2
and 1 in u respectively, as will be shown below. These polynomials depend only
on the parameters a, b of the target elliptic curve, so the polynomial coefficients
can be precomputed while their evaluation at a given u is done at runtime.

4.2 Curves with a Parametrizable SW Conic

Due to the conditions in Lemma 5, the SwiftEC encoding is not applicable
to every ordinary elliptic curve. We present a different characterization of these
conditions from the point of view of the target curve’s geometric properties.

Theorem 3. The surface S, as a one-parameter family of conics, admits a
global two-parameter parametrization if and only if the following three condi-
tions are satisfied.

1. The size of the field satisfies q ≡ 1 mod 3 (i.e., −3 is a square in Fq).
2. The discriminant ΔE = −16(4a3 + 27b2) is a square in Fq (i.e. E has either

zero or three points of order 2).
3. At least one of the constants ν± = 1

2 (−b ± √−3ΔE/36) is a square in Fq.

Proof. As a first observation, note that if we let r = h(u) and s = g(u), then r
and s are indeed coprime (their resultant is 4a3 + 27b2 = −ΔE/16 	= 0) and s is
of odd degree and squarefree. Moreover, r is squarefree if and only if a 	= 0. For
now, we assume that a 	= 0, so that Lemma 5 applies directly. We will treat the
special case of a = 0 at the end.

Let us first assume that −h is a square in Fq[u]/(g) and −g is a square in
Fq[u]/(h). Note that h and g are coprime since their resultant is 4a3 + 27b2 =
−ΔE/16 	= 0, so the law of quadratic reciprocity over function fields gives

(−h

g

)

2

(
g

−h

)

2

= (−1)
q−1
2 deg g deg hχ2(1)deg hχ2(−3)deg g

1 ·
(

g

−h

)

2

= 1 · 1 · χ2(−3), (9)

where
(

·
f

)
2

and χ2(·) denote quadratic residue symbols over Fq[u]/(f) and Fq,
respectively.
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On the other hand, we have

1 =
(−g

h

)

2

=
(−1

h

)

2

(−g

h

)

2

= χ2(−1)2
(

g

−h

)

2

=
(

g

−h

)

2

,

so (9) reduces to χ2(−3) = 1, which shows the necessity of condition 1.
Next, since −g is a square in Fq[u]/(h), there exists α, β ∈ Fq such that:

−g ≡ (αu + β)2 (mod h)

−u3 − au − b ≡ α2u2 + 2αβu + β2 (mod 3u2 + 4a)
4a

3
u − au − b ≡ −4a

3
α2 + 2αβu + β2 (mod 3u2 + 4a)

a

3
u − b = 2αβu +

( − 4a

3
α2 + β2

)
.

It follows that the constants α, β satisfy

a

3
= 2αβ (10)

b =
4a

3
α2 − β2. (11)

Recalling that a 	= 0, it follows from (10) that α, β 	= 0 and we can substitute
β = a/(6α) into (11) to obtain

48aα4 − 36bα2 − a2 = 0, (12)

which is a quadratic equation on α2 whose discriminant is 362b2+192a3 = −3ΔE .
Since −3 is a square, it follows that ΔE must also be a square for α2 to exist,
showing the necessity of condition 2. The solution to (12) is then given by

α2 =
36b ± √−3ΔE

96a
=

−3
4a

ν±. (13)

If a is a square this means that at least one of ν± must be a square for α to
exist. On the other hand, if a is not a square then the same condition always
holds since the product ν+ν− = −a3/27 is a non-square.

The proof of the converse is similar: if conditions 2 and 3 are met then there
exists α, β ∈ Fq that are solutions to (10) and (11), which shows that −g has a
square root mod h, and then condition 1 together with (9) shows that −h is a
square mod g.

Finally, consider the special case a = 0. In that case, since h(u) = 3u2, we
can apply the change of variables Y ′ = uY to reduce to the case of the conic:

X2 + 3Y 2 + gZ2 = 0,

i.e., r = 3 and s = g. It is then clear that r and s are coprime, squarefree, and
one of them is of odd degree. Moreover, the condition that −s is a square modulo
r is vacuous, and the condition that −r is a square modulo s simply says that
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−3 is a square in Fq[u]/(g); since that etale algebra admits either Fq or Fq3 as
a factor, this is equivalent to −3 being a square in Fq, namely q ≡ 1 (mod 3)
as required. This shows that in this case, condition 1 is necessary and sufficient.
The result still holds, however, because conditions 2 and 3 become vacuous: the
discriminant ΔE = −16(27b2) = −3 · 122b2 is always a square, and one of ν± is
always zero.

Out of the three conditions in Theorem 3, condition 1 is the most restrictive
discarding half of the prime fields. Condition 3 only fails about 1/4 of the time,
whereas condition 2 fails half of the time. However, conditions 2 and 3 are not
isogeny-invariant and so they may be circumvented under certain conditions by
finding a small-degree isogeny and mapping to the isogenous curve instead, as
discussed in the next section.

Notable curves that satisfy the conditions for SwiftEC include the NIST
P-256 curve, the curve secp256k1 used in Bitcoin [SEC10] and the pairing-
friendly curve BLS12-381 [Bow17] as well as all BN curves [BN06] and BLS
curves [BLS03] over any field with q ≡ 1 mod 3. On the other hand, curves
such as the Ed448-Goldilocks curve [Ham15] and the NIST P-384 curve are
incompatible due to the field cardinality alone.

4.3 Reaching More Curves with Isogenies

While Theorem 3 discards the possibility of applying SwiftEC directly to curves
with a non-square discriminant, here we present a small modification that can
work around this condition, at least some of the time. The condition that the
discriminant be a square is invariant under isomorphisms, but not under iso-
genies. Hence, we may hope that there is an isogenous curve that satisfies the
condition and compose the SwiftEC encoding to this curve with the isogeny
to obtain a map to the original curve. Curves with a non-square discriminant
always contain exactly one point of order 2, so one may be tempted to exploit the
small 2-isogeny that is available. The following result shows that this intuition
is correct, and indicates exactly when this is possible.

Theorem 4. Let E/Fq be an elliptic curve with non-square discriminant. There
exists a curve E′ with square discriminant isogenous to E over Fq if and only if
E(Fq) has a point of order 4. In this case, the isogeny can always be taken to be
of degree 2.

Proof. First suppose we have a point P4 ∈ E(Fq) of order 4, and let P2 = 2P4

be the unique point of order 2 in E(Fq). If φ : E → E′ is the isogeny with
kernel < P2 >, then φ(P4) is a point of order 2 in E′. There must also exist a
point P ′

2 ∈ E′(Fq) of order 2 generating the dual isogeny φ̂, and we cannot have
φ(P4) = P ′

2 because φ̂(P ′
2) = 0 but φ̂(φ(P4)) = 2P4 	= 0. This means we have

two distinct points of order 2 in E′, and their addition yields a third point of
order 2, so E′ must have a square discriminant as desired.

Conversely, if E has no point of order 4 then the group order is divisible by
2 exactly once, so any isogenous curve will also have exactly one point of order
2 and hence have a non-square discriminant.
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Note that the application of the 2-isogeny is a 2-to-1 map that would make the
distribution easily distinguishable from uniform. However, in essentially all cases
of interest, one needs to sample points only in a specific subgroup orthogonal to
the 2-torsion subgroup. For instance, consider Curve25519 [Ber06] which is non-
compatible with our construction because it does not have a square discriminant.
The curve is given by

E25519 : y2 = x3 + 486662x2 + x

over the prime field of size p = 2255 − 19. The group order for this curve is
#E25519 = 8� where � is a large prime, and points in the �-torsion subgroup are
used in the ECDH scheme. We can use SwiftEC to map onto the 2-isogenous
curve

E′ : y2 = x3 − 102314837774592x + 398341948567736549376

which does satisfy all conditions of Theorem 3. By composing with the 2-isogeny
generated by P ′

2 = (−11679888, 0) and the multiplication-by-4 map, we are
able to hash into the �−torsion subgroup of Curve25519 at the cost of only
an additional 20 field multiplications, 7 squarings and 11 additions. This is to
our knowledge the only currently known way of hashing deterministically and
indistinguishably into this subgroup using a single square root.

Likewise, condition 3 may also be circumvented with isogenies and in this
case we are not limited to degree 2 only. For instance, the curve secp521r1 also
known as NIST P-521 already has a square discriminant but fails condition 3.
However, it is 5-isogenous to the curve

E′′ : y2 = x3 + ax + b,

a=0x149a4e89bde4ad2e72c830ce3df36200e03c1abb6403f3a50cc56be41b0bd98f6a2bb16b7...

...5027c89a68174a7c458a0333ff283225259b57414a2e04a0681ca279a0

b=0x49d903da04fb382a8daec077738d7f3f5a2ca21e053847fb43c4740c39eaf3d2727a9898...

...d710bdcfa306450d7102a03bf9164294ee1a849928687cc8b343a3ed24

which satisfies all the conditions for SwiftEC, so we can map onto secp521r1 by
using our construction on E′′ and then composing with a 5-isogeny at negligible
overhead. Since the group order is coprime to 5, the isogeny is already a bijection.

In this way, one can always expect to find some isogeny of arbitrary degree
that will work, so condition 3 can in principle always be circumvented, although
an isogeny of small degree is more desirable for efficiency reasons. On the other
hand, Theorem 4 shows that condition 2 fails irremediably if and only if the
group order is divisible by 2 exactly once, so overall we heuristically expect
SwiftEC to be adaptable to a fraction 3/4 of all elliptic curves over fields with
q ≡ 1 mod 3.
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5 The SWIFTEC Encoding

5.1 Efficient Computation

As a proof of principle, we have prepared a Sage implementation of SwiftEC
that allows adding new compatible curves in a simple way. This implementation
makes explicit the number of field operations needed and uses a constant number
of them, but is non-constant time to the degree that the built-in field operations
are. Our implementation is freely available at https://github.com/Jchavezsaab/
SwiftEC.

For curves with a 	= 0, the implementation makes use of the polynomials
X0(u), Y0(u) that evaluate a point in Su as discussed in Sect. 4. Since these
polynomials only depend on the curve coefficients a, b, they are precomputed
and stored in the form of five field elements, with explicit formulas provided
in the extended version of this work [CRT22]. On input u, t, the initial point
(X0(u), Y0(u)) ∈ Su is evaluated and then a second point (X,Y ) ∈ Su is obtained
from the parametrization

X(u, t) =
g(u) + h(u)(Y0(u) − tX0(u))2

X0(u)(1 + t2h(u))
, (14)

Y (u, t) = Y0(u) + t(X − X0(u)).

In the case where a = 0, we have simply g(u) = u3+b and h(u) = 3u2. In this
case the van Hoeij-Cremona algorithm described in Sect. 4 always yields the point
at infinity (X0 : Y0 : Z0) = (

√−3 : 1 : 0), so the formulas for the parametrization
have to be adjusted. We can skip the computation of X0(u), Y0(u) altogether and
apply the following formulas directly:

X(u, t) =
u3 + b − t2

2t
, (15)

Y (u, t) =
X(u, t) + t

u
√−3

.

Finally, we apply the map ψ from (6) to get a point (x1, x2, x3, z) ∈ V (Fq).
It is not actually necessary to compute the z-coordinate of this point, and the
xi coordinates are computed projectively so that what we actually obtain is a
projective triplet (x1 : x2 : x3 : λ). Note that this introduces a small bias towards
the point at infinity: if any of the xi are infinite then we have to set λ = 0 and
all three points will be interpreted as being infinite. However, we neglect this
since the bias is negligible and dealing with this case explicitly would produce a
non-constant-time implementation.

We must then find which of the xi is the x-coordinate of a point in E(Fq),
choosing one arbitrarily but deterministically if all three are. This can be imple-
mented in constant time as shown in Algorithm 1 which prioritizes x3.

Finally, we use a single inverse to compute the affine x-coordinate and a
square root computation (the only one throughout the whole program) to recover
the y-coordinate. Note that there is a free choice for the sign of y in the end,
which we integrate as an additional input bit.

https://github.com/Jchavezsaab/SwiftEC
https://github.com/Jchavezsaab/SwiftEC
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Algorithm 1. x-picking algorithm.
Input: The projective xi coordinates (x1 : x2 : x3 : λ) of a point in V (Fq)
Output: One of the xi which is the x-coordinate of a point in E(Fq).
1: s2 ← x3

2λ + ax2λ
3 + bλ4

2: s3 ← x3
3λ + ax3λ

3 + bλ4

3: c2 ← IsSquare(s2)
4: c3 ← IsSquare(s3)
5: cswap(c2, x1, x2)
6: cswap(c3, x1, x3)
7: return (x1 : λ)

5.2 XSWIFTEC: x-Only Computation Without Exponentiation

Note that the only inverse and square root needed for SwiftEC are at the
very end when the affine x, y coordinates are computed. However, there are
many applications where obtaining an output in x-only projective coordinates
is acceptable, and these operations can be omitted. The resulting XSwiftEC
algorithm requires no inversions, square roots or exponentiations of any kind,
but only two Jacobi symbol computations that are considerably cheaper and
other elementary field operations.

This is particularly useful for the cases when SwiftEC is composed with a
2-isogeny as described in Sect. 4.3: even if an affine x, y output is desired, we are
better off using XSwiftEC and recovering the affine coordinates after applying
the projective x-only 2-isogeny formulas.

Although the output (x : λ) that is obtained is indistinguishable from uniform
as a projective pair, the individual values of x and λ are not and may leak
information about the input. This can be easily circumvented by multiplying
both coordinates by a random field element, or it may be ignored to avoid relying
on randomness in applications where this leakage is not a concern.

5.3 Implementation Results

We summarize in Table 1 the cost in operations for each version of SwiftEC.
The most noteworthy feature is the requirement of only one square root compu-
tation (and none when the y coordinate is not required), which is an improve-
ment on previous admissible encodings to ordinary elliptic curves. Moreover,
the square-root and the inversion can be performed simultaneously for further
savings as described by Hamburg [Ham12].

The results shown are for the a 	= 0 implementation. The implementations
for a = 0 always save exactly 7 additions and 6 multiplications due to the simpler
formulas in (15).

6 SWIFTEC For Point Representation: ELLIGATORSWIFT

In this section we describe an algorithm to efficiently compute a uniformly ran-
dom preimage of any point under SwiftEC. The existence of this algorithm is
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Table 1. Cost in operations of our implementations of SwiftEC for field additions,
squarings, multiplications, Jacobi symbol computations, inversions, and square roots.

Add Sqr Mul Jac Inv Sqrt

SwiftEC 25 7 18 2 1 1
SwiftEC with isogeny 36 14 38 2 1 1
XSwiftEC 22 9 23 2 0 0
XSwiftEC with isogeny 33 14 35 2 0 0

required for the encoding to be admissible, which is crucial for using SwiftEC
as part of a cryptographically secure hash function as described in Sect. 2. More-
over, it is important in practice because it allows us to encode points in an
elliptic curve as uniform bitstrings, as is done in Elligator [BHKL13] and Elliga-
tor Squared [Tib14a].

Compared to Elligator Squared, our ElligatorSwift construction has the
advantage that it does not need to compute any encodings in the forward direc-
tion. Indeed, all we need is to sample a random u ∈ Fq and then find an inverse
F−1
0,u(P ) of the SW encoding.

We first focus on inverting the map Ψ and note that under a change of
variables v = x/2y − u/2 and w = 2y, the image in (6) becomes

x1 = v, x2 = −u − v, x3 = u + w2,

while the equation for the conic becomes

w2(u2 + uv + v2 + a) = −(u3 + au + b). (16)

This yields up to four possible preimages for a given point (x, y) ∈ E(F ), namely:

1. v = x and w2 derived from (16), if x was drawn from x1

2. v = −u − x and w2 derived from (16), if x was drawn from x2

3,4. w2 = x − u and v derived from (16), if x was drawn from x3,

where the last case actually contains two preimages since (16) is a quadratic
equation for v with solutions

v =
−u

2
±

√−w2(4u3 + 4au + 4b + 3w2u2 + 4aw2)
2w2

.

Moreover, all cases have a duplicity from choosing the sign of w =
√

w2, so there
are up to 8 preimages in total per elliptic curve x coordinate. Note that flipping
the sign of w produces a new point in S that maps to the same x coordinate, so in
cases where we need to distinguish between the choice of sign for the elliptic curve
y coordinate this can be encoded into w by always choosing sgn(w) = sgn(y).
This choice gives up to 4 preimages for each pair of coordinates (x, y), and allows
the decoder to recover the correct choice of sgn(y) when computing SwiftEC
in the forward direction.
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Of course, some of the square roots needed may not exist and so different
values of u will yield a different number of preimages of a given point (including
possibly none). On top of this, if the preimage comes from cases 1 or 2 but
results in values where all three xi yield points in E(Fq), then the preimage will
be invalid even if the square root is well-defined since Algorithm 1 in the forward
encoding would have prioritized x3 over the intended one. Care must therefore
be taken to check for the existence of the various square roots and restart the

Algorithm 2. ElligatorSwift.
Input:(x, y) ∈ E(Fq)

Output: u, t, b
$←− SwiftEC−1(x, y)

1: u
$←− Fq

2: case
$←− {1, 2, 3, 4}

3: if case == 1 then
4: v ← x
5: if IsSquare((−v − u)3 + a(−v − u) + b) then
6: go to 1
7: end if
8: w2 ← −(u3 + au + b)/(u2 + uv + v2 + a)
9: else if case == 2 then

10: v ← −x − u
11: if IsSquare(v3 + av + b) then
12: go to 1
13: end if
14: w2 ← −(u3 + au + b)/(u2 + uv + v2 + a)
15: else
16: w2 ← x − u
17: r ← √−w2(4u3 + 4au + 4b + 3w2u2 + 4aw2)
18: if r == Null then
19: go to 1
20: end if
21: v ← −u/2 + r/2w2

22: end if
23: w ← √

w2

24: if w == Null then
25: go to 1
26: end if
27: if sgn(w) �= sgn(y) then
28: w ← −w
29: end if
30: Y ← 2w/2
31: X ← 2Y (v + u/2)
32: Evaluate X0(u) and Y0(u) from precomputed polynomials
33: t ← (Y − Y0)/(X − X0)
34: return u, t
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procedure when appropriate, as shown in Algorithm 2. This makes the algorithm
run in non-constant time but ensures that the preimage is uniformly sampled.

What remains is just to switch back to x, y coordinates and invert the
parametrization (14) to recover the parameter t.
Remark: For implementations with a = 0 we must take into account the differ-
ent parametrization formulas in (15). In this case, lines 29 and 30 of Algorithm 2
can be replaced by simply t ← Y u

√−3 − X, where the constant
√−3 is part of

the precomputed parameters.
We assume that the square root function returns Null for non-squares. It is

easy to see that the output of Algorithm 2 is uniformly distributed since each u
is attempted with a random choice of one of the 4 cases, so the probability of
each u being successful is proportional to how many preimages exist under it.

The main cost of Algorithm 2 is an average of 1.5 square root computations
per iteration. Since most points have roughly 2q preimages as per Theorem 1, we
can expect each choice of u to contain on average 2 valid preimages out of the 8
possible ones, and so the expected number of iterations is 4. Notice however that a
failed iteration can be aborted before computing any square roots by first comput-
ing the corresponding Jacobi symbols, which can be done much more efficiently
with constant-time efficient implementations such as [Por20,Ham21,AG21] (by a
factor of around 10× for most commonly-used primes). The cost of Elligator-
Swift is therefore always exactly 1 or 2 square root computations, and 6 Jacobi
symbol computations on average. This is a considerable improvement over Elliga-
tor Squared, with an average cost of 6.5 square roots.

As for curves where we need to compose SwiftEC with an isogeny, we can
obtain a corresponding variant of ElligatorSwift by composing with the dual
isogeny, but this has the side effect of introducing a multiplication by the isogeny
degree in the round trip. This can be circumvented by adding a point division
before applying ElligatorSwift, which is important for demonstrating that
the encoding with the isogeny trick is still admissible. However, the resulting
ElligatorSwift construction would be unappealing in terms of efficiency.

7 Conclusion

In this paper we presented SwiftEC, which is the first admissible and constant-
time encoding using a single square root that is applicable to a large class of
ordinary elliptic curves. This construction can lead to considerable performance
speedup compared to previously known methods. For instance, an efficient imple-
mentation of SwiftEC and ElligatorSwift for secp256k1 benchmarked sug-
gest computational savings of more than 50% when compared to their Elligator
Squared counterparts [Wui22]. On the other hand, in applications such as hash-
ing into BLS curves where we ultimately aim to map to points belonging to the
elliptic curve subgroups G1 and G2, the dominant cost might not be the square-
root computation associated to SwiftEC’s savings, but rather the clearing of
a per-curve fixed cofactor (typically, this cofactor is relatively small for G1 but
much larger for G2).
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While some curves remain incompatible with SwiftEC, our construction
applies to roughly 3/4 of all curves over fields with q ≡ 1 mod 3. The inverse
encoding also results in an Elligator-like encoding that is significantly more effi-
cient than previous constructions, using more than four times less square roots
on average than Elligator Squared, while retaining the same data transmission
size of two field elements.

It is still an open problem to determine if there are any workarounds that
could extend this encoding to more of the non-compatible curves, or even to find
a single-square root admissible encoding that could be applied to all ordinary
elliptic curves.

Acknowledgement. We thank Pieter Wuille for several insights regarding small opti-
mizations and special cases of ElligatorSwift, as well as sharing with us preliminary
benchmarks of his optimized SwiftEC and ElligatorSwift implementations. We
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Abstract. Multi-Client Functional Encryption (MCFE) and Multi-
Input Functional Encryption (MIFE) are very interesting extensions of
Functional Encryption for practical purpose. They allow to compute joint
function over data from multiple parties. Both primitives are aimed at
applications in multi-user settings where decryption can be correctly out-
put for users with appropriate functional decryption keys only. While
the definitions for a single user or multiple users were quite general and
can be realized for general classes of functions as expressive as Turing
machines or all circuits, efficient schemes have been proposed so far for
concrete classes of functions: either only for access control, i.e. the iden-
tity function under some conditions, or linear/quadratic functions under
no condition.

In this paper, we target classes of functions that explicitly combine
some evaluation functions independent of the decrypting user under the
condition of some access control. More precisely, we introduce a frame-
work for MCFE with fine-grained access control and propose construc-
tions for both single-client and multi-client settings, for inner-product
evaluation and access control via Linear Secret Sharing Schemes (LSSS),
with selective and adaptive security. The only known work that combines
functional encryption in multi-user setting with access control was pro-
posed by Abdalla et al. (Asiacrypt ’20), which relies on a generic trans-
formation from the single-client schemes to obtain MIFE schemes that
suffer a quadratic factor of n (where n denotes the number of clients) in
the ciphertext size. We follow a different path, via MCFE: we present a
duplicate-and-compress technique to transform the single-client scheme
and obtain a MCFE with fine-grained access control scheme with only a
linear factor of n in the ciphertext size. Our final scheme thus outper-
forms the Abdalla et al.’s scheme by a factor n, as one can obtain MIFE
from MCFE by making all the labels in MCFE a fixed public constant.
The concrete constructions are secure under the SXDH assumption, in
the random oracle model for the MCFE scheme, but in the standard
model for the MIFE improvement.

1 Introduction

Encryption enables people to securely communicate and share sensitive data in
an all-or-nothing fashion: once the recipients have the secret key then they will
c© International Association for Cryptologic Research 2022
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recover the original data, otherwise the recipients have no information about
the plaintext data. Functional Encryption (FE) [17,40], introduced by Boneh,
Sahai and Waters, overcomes this all-or-nothing limitation of PKE by allowing
recipients to recover encrypted data in a more fine-grained manner: instead of
revealing the whole original encrypted data, recipients can get the result of
evaluation of some function on the data, according to the function associated to
the decryption key, called functional decryption key. By allowing computation
of partial data, one can aim at getting both: the utility of analysis on large data
while preserving personal information private.

FE received large interest from the cryptographic community, first as a gener-
alization of Identity-Based Encryption (IBE) [15,16,23,42] and Attribute-Based
Encryption (ABE) [9,29,37,38,40], which are unfortunately only access control,
with all-or-nothing decryption as a result. Abdalla et al. [2] proposed the first
construction for evaluating a concrete function: the inner product between a
vector in the ciphertext and a vector in the functional decryption key, hence
coined IPFE. The interest in FE then increased, especially in the multi-user set-
ting in which the inputs come from different users, possibly in competition, and
the output characterizes a joint function on the inputs [20,32]. Applications are
then numerous, and the encryptors can even be the final recipients of aggre-
gated results. Then, this might look similar to multi-party computation (MPC),
where several players privately provide their inputs to allow computations on
them. But the main difference is that functional encryption is expected as a non-
interactive process, and thus quite more interesting in practice. While FE with a
single encryptor might be of theoretical interest, in real-life, the number of really
useful functions may be limited. When this number of functions is small, any
PKE can be converted into FE by additionally encrypting the evaluations by the
various functions under specific keys. This approach is impossible for multiple
users, even when a unique fixed function is considered.

In the multi-user case, Goldwasser et al. [27,28] introduced the notion of
Multi-Input Functional Encryption (MIFE) and Multi-Client Functional Encryp-
tion (MCFE) where the single input x to the encryption procedure is broken
down into an input vector (x1, . . . , xn) with independent components. An index
i for each client and, in the case of MCFE, a (typically time-based) tag tag
are used for every encryption: (c1 = Enc(1, x1, tag), . . . , cn = Enc(n, xn, tag)).
Anyone owning a functional decryption key dkf , for an n-ary function f and
multiple ciphertexts (for the same tag tag, in the case of MCFE) can compute
f(x1, . . . , xn) but nothing else about the individual xi’s. Implicitly, clients have
to be able to coordinate together on the tags, and different usability in practice.
In particular, in MCFE, the combination of ciphertexts generated for different
tags does not give a valid global ciphertext and the adversary learns nothing
from it. This leads to more versatility since encrypting xi under tag has a dif-
ferent meaning from encrypting xi under tag′ �= tag. On the other hand, MIFE
does not use tags and once a ciphertext of xi is computed, it can be reused for
different combinations. However, in both situations, encryption must require a
private key, otherwise anybody could complete the vector initiated by a user in
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many ways, and then obtain many various evaluations from a unique functional
decryption key. But then, since encryption needs a private key per user, for each
component ci, some of these keys might get corrupted. Therefore, there are two
main distinguishing aspects regarding MCFE that have to be dealt with: the role
of tags in construction and the danger of corruption for security.

Another classical issue with encryption is the decryption key, even if legit-
imately obtained: once delivered, it can be used forever. One may expect
revocation, or access control with more fine-grained authentication. This has
been extensively studied with broadcast encryption, revocation systems and
more generally, with attribute-based encryption (ABE) [44]. Finally, as already
explained, FE is a generalization of IBE and ABE, and after having been illus-
trated with IBE and ABE, linear evaluations [3,6,14,18] and quadratic evalua-
tions [8,10,26,33] have been proposed. However, there are still very few works
that combine function evaluation and access control with concrete schemes. This
could provide FE, with concrete function evaluation for some target users, or revo-
cation (of users or functions). Abdalla et al. [4] have been the first to address this
problem, for enhancing FE and MIFE with access control. In addition, they infor-
mally argue that from an ABE for MIFE one can lift it for free to get MCFE, thus
solving both problems at the same time. Precisely, they mentioned “by resorting
for instance, to the notion of multi-client IPFE, where ciphertexts are associated
with time-stamps, and only ciphertext with matching time-stamps can be com-
bined (e.g.. [20]) we believe that our proposed primitive provides a more general
and versatile solution to the problem”. Their idea can be interpreted as: tags
can be used as specific attributes, and tags can be embedded in policies to auto-
matically obtain multi-client settings. This argument seems formally valid when
considering the general form of MIFE and MCFE. However, when considering
concrete classes of functions, which is our main focus in this paper, it is unlikely
to be efficiently feasible and we will explain the reason in the technical overview
in Sect. 3. We underline that the principal difference between MCFE and MIFE
is the presence of tags for producing the ciphertext components, which can be
jointly decrypted only if all tags are equal. Thus, we can retrieve an MIFE from
MCFE by fixing and publishing one tag, which retains the same ciphertext’s size
from the MCFE scheme to the new MIFE one. Moreover, since the combination
of ciphertext components in MCFE is restrained by the tags, its security model
is far less restrictive than the security model of MIFE that has to deal with
arbitrary combination of ciphertext components. For these reasons, our main
objective becomes constructing an MCFE having smaller ciphertext size while
permitting access control over decryption keys.

We take a completely different approach than in [4] to answer this question.
Borrowing the terminology from ABE, our work will focus on key-policy (KP)
constructions, where the policy is defined at the moment of key extraction and
a ciphertext associated with certain attributes can be decrypted only if those
attributes satisfy the policy. The dual notion of ciphertext-policy (CP) construc-
tions is already studied in [4]. We concentrate solely on particular functionality
classes whose description contains two separate parts: a description of functions
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exclusively for evaluation and a binary relation exclusively for modeling access
control. Although this conceptual point of view does not take us out of the FE
realm and thus can be captured by the general FE notion, it suits perfectly our
purpose to compute inner-products along with fine-grained access control pro-
vided by Linear Secret Sharing Schemes (LSSS) in this paper. Then, we start
from single-client IPFE schemes with LSSS access control and leverage them to
get an MCFE scheme, where only tags are needed for hashing during encryption,
and the hash function is modeled as a random oracle. Removing labels by fixing
a public tag for all ciphertexts leads to an MIFE scheme in the standard model
that is more efficient than the one from [4].

1.1 Related Work

Recently, [30] improves upon the single-client construction based on Learning
with Errors (LWE) from [4], for IPFE with access control expressed by bounded
depth boolean circuits, achieving better security along with smaller ciphertexts.
In another work, [39] also studies LWE-based single client constructions for IPFE
with access control expressed by general boolean functions but under selective
challenge attributes. The single-client LWE-based construction in [39] is later
lifted to an MIFE using the generic transformation from [4].

Also in the single-client setting, another line of works attempts to construct
FE for a general uniform functionality class such as Turing machines (TMFE),
which naturally captures inner-product evaluation under LSSS access control.
The work of Agrawal et al. [7] provided a non-adaptively simulation-based secure
construction for TMFE in the dynamic bounded collusion model under sub-
exponential LWE. The construction is later improved in [5] to achieve adaptive
security under polynomial LWE, DDH or bilinear decisional Diffie-Hellman in
specific groups, or quadratic residuosity. Towards this goal, both works of [5,7]
additionally gave constructions of FE for circuits of unbounded size and depth,
which can also encompass inner-product computation under LSSS access control,
based on various standard assumptions such as computational Diffie-Hellman,
factoring, or polynomial LWE. All single-client constructions from [5,7] use a
wide range of cryptographic primitives in a generic manner, which deviates from
our goal to give explicit constructions in the multi-user setting.

1.2 Our Contributions

Single-client Setting. We propose new single-client schemes whose selectively-
secure version is almost as efficient as the selectively-secure version in [4] and
the adaptively-secure version is nearly three times as efficient as the adaptively-
secure version in [4]. More importantly, our schemes can be extended to multi-
client settings. Our constructions exploit the Dual Pairing Vector Spaces pro-
posed by Okamoto-Takashima [35,37].

Multi-client Setting. Our main contribution is an extension from single-client
to multi-client without linearly increasing the complexity in the number n of
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Table 1. We compare our constructions with existing works, in terms of the number
of group elements in the ciphertext (column |ct|), the largest predicate class that can
be handled (column P), the function class (column F), security (column Security).
We denote by d the number of attributes needed by the policy in a ciphertext. All our
schemes are defined for the functionality class F IP,poly

n,q,LSSS = F IP × LSSS constituted by

F IP = {Fy : Z
n
q → Zq;x �→ 〈x,y〉 ∈ R(Zq)} and LSSS of Linear Secret Sharing Schemes

over attributes in Zq, where n, q ∈ N, q is prime and |R(Zq)| = poly(log q). The schemes
from [4] are constructed for F IP×MSP and F IP×roMSP, where MSP, roMSP are classes
of monotone span programs, read-once monotone span programs over attributes in Zq.
The shorthands (mc,mi, sel, ad, ind, sim) denote multi-client setting, multi-input setting,
selective security, adaptive security, indistinguishability-based, simulation-based.

Scheme P F |ct| Security

[4, Sect. 3.1] MSP;CP F IP,poly
n,q,MSP n + 2d + 2 sel-sim

[4, Sect. 3.2] roMSP;CP F IP,poly
n,q,roMSP 3nd + 3d + 2 ad-ind

Sect. 4, Fig. 1 LSSS;KP F IP,poly
n,q,LSSS n + 8d + 4 sel-ind

LSSS;KP nd + 2n + 7d + 3 ad-ind

[4, Sect. 6.2] MSP;CP F IP,poly
n,q,MSP n2 + 2nd + 2n mi-ad-ind

applied to [4, Sect. 3.1]

Sect. 5.2 LSSS;KP F IP,poly
n,q,LSSS 8nd + 5n mc-ad-ind

clients. The generic transformation proposed by Abdalla et al. [4, Theorem 6.3]
results in a degradation of factor n in both construction and security reduc-
tion. As previously stated, Abdalla et al.’s generic transformation can only help
to achieve a multi-input scheme and is unlikely to be generalized to a multi-
client scheme without further seriously degrading efficiency. On the other hand,
because MIFE can be defined as MCFE with a fixed public constant tag, our con-
struction yields a much more efficient MIFE with access control than the Abdalla
et al.’s scheme (in fact, n times more efficient). More concretely, the total com-
munication among n clients in our MCFE construction is a linear function in n
and does not suffer a quadratic blow-up of n2 group elements as in [4].

Comparisons. Our concrete constructions focus on the functionality class
whose member’s description contains inner-product evaluation functions and
binary relations to describe access control. In the pairing-based setting, we give
comparisons with existing works in Table 1. Recall that in MCFE, n can be a
large number of clients, while d is the number of attributes, generally small, used
in a policy. Concretely, we can consider identity-based functional encryption, as
outlined in [4], where d = 1, whatever the size of n: our ciphertext’s size is linear
instead of quadratic in n as in [4].
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Organization. We first give the necessary preliminaries in Sect. 2, then we
present the high-level ideas and intuitions of our results in Sect. 3, before going
into purely technical details in Sect. 4 for the single-client schemes and in Sect. 5
for the multi-client schemes.

2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we
let Zq denote the ring of integers with addition and multiplication modulo q. For
a prime q and an integer N , we denote by GLN (Zq) the general linear group of
of degree N over Zq. We write vectors as row-vectors, unless stated otherwise.
For a vector x of dimension n, the notation x[i] indicates the i-th coordinate of
x, for i ∈ [n]. We will follow the implicit notation in [25] and use �a� to denote
ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This
implicit notation extends to matrices and vectors having entries in Zq. We use
the shorthand ppt for “probabilistic polynomial time”. In the security proofs,
whenever we use an ordered sequence of games (G0,G1, . . . ,Gi, . . . ,GL) indexed
by i ∈ {0, 1, . . . , L}, we refer to the predecessor of Gj by Gj−1, for j ∈ [L].

2.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 1. In a cyclic group G of prime order q, the Decisional Diffie-
Hellman (DDH) problem is to distinguish the distributions

D0 = {(�1� , �a� , �b� , �ab�)} D1 = {(�1� , �a� , �b� , �c�)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can

solve the DDH problem with non-negligible probability.

Definition 2. In the bilinear setting (G1, G2, Gt, g1, g2, gt, e, q), the Symmetric
eXternal Diffie-Hellman (SXDH) assumption makes the DDH assumption in
both G1 and G2.

2.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in
prime-order bilinear group setting (G1, G2, Gt, g1, g2, gt, e, q) and G1, G2, Gt are
all written additively. The DPVS technique dates back to the seminal work by
Okamoto-Takashima [35–37] aiming at adaptive security for ABE as well as IBE,
together with the dual system methodology introduced by Waters [43]. In [31],
the setting for dual systems is composite-order bilinear groups. Continuing on
this line of works, Chen et al. [19] used prime-order bilinear groups under the
SXDH assumption. Let us fix N ∈ N and consider G

N
1 having N copies of G1.

Any x = �(x1, . . . , xN )�1 ∈ G
N
1 is identified as the vector (x1, . . . , xN ) ∈ Z

N
q .
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There is no ambiguity because G1 is a cyclic group of order q prime. The 0-
vector is 0 = �(0, . . . , 0)�1. The addition of two vectors in G

N
1 is defined by

coordinate-wise addition. The scalar multiplication of a vector is defined by
t · x := �t · (x1, . . . , xN )�1, where t ∈ Zq and x = �(x1, . . . , xN )�1. The addi-
tive inverse of x ∈ G

N
1 is defined to be −x := �(−x1, . . . ,−xN )�1. Viewing

Z
N
q as a vector space of dimension N over Zq with the notions of bases, we

can obtain naturally a similar notion of bases for G
N
1 . More specifically, any

invertible matrix B ∈ GLN (Zq) identifies a basis B of G
N
1 , whose i-th row bi

is
�
B(i)

�
1
, where B(i) is the i-th row of B. The canonical basis A of G

N
1 con-

sists of a1 := �(1, 0 . . . , 0)�1 ,a2 := �(0, 1, 0 . . . , 0)�1 , . . . ,aN := �(0, . . . , 0, 1)�1. It
is straightforward that we can write B = B · A for any basis B of G

N
1 corre-

sponding to an invertible matrix B ∈ GLN (Zq). We write x = (x1, . . . , xN )B
to indicate the representation of x in the basis B, i.e. x =

∑N
i=1 xi · bi. By

convention the writing x = (x1, . . . , xN ) concerns the canonical basis A.
Treating G

N
2 similarly, we can furthermore define a product of two vec-

tors x = �(x1, . . . , xN )�1 ∈ G
N
1 ,y = �(y1, . . . , yN )�2 ∈ G

N
2 by x × y :=

∏N
i=1 e(x[i],y[i]) = �〈(x1, . . . , xN ), (y1, . . . , yN )〉�t. Given a basis B = (bi)i∈[N ]

of G
N
1 , we define B∗ to be a basis of G

N
2 by first defining B′ := (B−1)� and the

i-th row b∗
i of B∗ is

�
B′(i)�

2
. It holds that B · (B′)� = IN the identity matrix

and bi × b∗
j = �δi,j�t for every i, j ∈ [N ], where δi,j = 1 if and only if i = j.

We call the pair (B,B∗) a pair of dual orthogonal bases of (GN
1 , GN

2 ). If B is
constructed by a random invertible matrix B

$← GLN (Zq), we call the result-
ing (B,B∗) a pair of random dual bases. A DPVS is a bilinear group setting
(G1, G2, Gt, g1, g2, gt, e, q,N) with dual orthogonal bases. In this work, we also
use extensively basis changes over dual orthogonal bases of a DPVS to argue the
steps of switching key as well as ciphertext vectors to semi-functional mode in
our proofs. The details of such basis changes are recalled in the full version [34].

2.3 Access Structure and Linear Secret Sharing Schemes

We recall below the vocabularies of access structures and linear secret sharing
schemes that will be used in this work. Let Att = {att1, att2, . . . , attm} be a finite
universe of attributes. An access structure over Att is a family A ⊆ 2Att \ {∅}.
A set in A is said to be authorized ; otherwise it is unauthorized. An access
structure A is monotone if S1 ⊆ S2 ⊆ Att and S1 ∈ A imply S2 ∈ A. Given a
set of attributes S ⊆ Att, we write A(S) = 1 if and only if there exists A ⊆ S
such that A is authorized. A secret sharing scheme for an access structure A over
the attributes Att = {att1, att2, . . . , attm} allows sharing a secret s among the m
attributes attj for 1 ≤ j ≤ m, such that: (1) Any authorized set in A can be used
to reconstruct s from the shares of its elements; (2) Given any unauthorized set
and its shares, the secret s is statistically identical to a uniform random value.
We will use linear secret sharing schemes (LSSS), which is recalled below:

Definition 3 (LSSS [11]). Let K be a field, d, f ∈ N, and Att be a finite universe
of attributes. A Linear Secret Sharing Scheme LSSS over K for an access struc-
ture A over Att is specified by a share-generating matrix A ∈ Kd×f such that for
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any I ⊂ [d], there exists a vector c ∈ Kd with support I and c · A = (1, 0, . . . , 0)
if and only if {atti | i ∈ I} ∈ A.

In order to share s using an LSSS over K, one first picks uniformly random values
v2, v3, . . . , vf

$← K and the share for an attribute atti is the i-th coordinate s[i]
of the share vector s := (s, v2, v3, . . . , vf ) · A�. Then, only an authorized set
{atti | i ∈ I} ∈ A for some I ⊆ [d] can recover c to reconstruct s from the shares
by: c · s� = c · (A · (s, v2, v3, . . . , vf )�) = s. Some canonical examples of LSSS
include Shamir’s secret sharing scheme for any f -out-of-d threshold gate [41]
or Benaloh and Leichter’s scheme for any monotone formula [13]. An access
structure A is said to be LSSS-realizable if there exists a linear secret sharing
scheme implementing A.

Let y ∈ Zq where q is prime and for the sake of simplicity, let Att ⊂ Zq be a
set of attributes. Let A be a monotone access structure over Att realizable by an
LSSS over Zq. A random labeling procedure Λy(A) is a secret sharing of y using
LSSS:

Λy(A) := (y, v2, v3, . . . , vf ) · A� ∈ Z
d
q (1)

where A ∈ Z
d×f
q is the share-generating matrix and v2, v3, . . . , vf

$← Zq.

2.4 The Masking Lemma

We state a technical lemma that is employed throughout our proofs. A detailed
proof can be found in the full version [34]. The general purposes of the variables
τ, x, y, zj in the lemma are discussed in the technical overview in Sect. 3.2.

Lemma 4 (Adapted from [24,35–37]). Let A be an LSSS-realizable over a set
of attributes Att ⊆ Zq. We denote by List−Att(A) the list of attributes appearing
in A and by P the cardinality of List−Att(A). Let S ⊆ Att be a set of attributes.
Let (H,H∗) and (F,F∗) be two random dual bases of (G2

1, G
2
2) and (G8

1, G
8
2),

respectively. The vectors (h1, f1, f2, f3) are public, while all other vectors are
secret. Suppose we have two random labelings (aj)j∈List−Att(A) ← Λa0(A) and
(a′

j)j ←Λa′
0
(A) for a0, a

′
0

$← Zq. Then, under the SXDH assumption in (G1, G2),
the following two distributions are computationally indistinguishable:

D1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x, y
∀ j ∈ S : cj = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F
∀ j ∈ List−Att(A) : k∗

j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, 0)H
k∗
root = (a0 · z, 0)H∗

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭



Multi-Client Functional Encryption with Fine-Grained Access Control 103

and

D2 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x, y
∀ j ∈ S : cj = (σj · (1,−j), ψ, 0, 0, τzj · x, 0, 0)F
∀ j ∈ List−Att(A) : k∗

j = (πj · (j, 1), aj · z, 0, 0, a′
j · y/zj , 0, 0)F∗

croot = (ψ, τ · x)H
k∗
root = (a0 · z, a′

0 · y )H∗

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

for any x, y ∈ Zq and zj , σj , πj , ψ, τ, z, r′
0

$← Zq.

2.5 Functional Encryption with Fine-Grained Access Control

We first present the syntax of functional encryption with a fine-grained access
control following the works in [4,30,39]. The functionality class is F×AC−K. The
evaluation functions is taken from F := {Fλ : Dλ → Rλ}λ is a family of functions
indexed by security parameters λ ∈ N. When Fλ,Dλ, and Rλ are clear from
context, we drop the subscript λ and use the shorthands F,D, and R respectively.
The access control is captured by a relation Rel : AC−K × AC−Ct → {0, 1}, for
some sets AC−Ct and AC−K. A plaintext consists of (ac−ct, x) ∈ AC−Ct × Dλ,
whose corresponding ciphertext can be decrypted to Fλ(x) using the functional
key skFλ,ac−k for ac−k ∈ AC−K if and only if Rel(ac−k, ac−ct) = 1. The syntax
of such functional encryption schemes is given below:

Definition 5 (Functional encryption with fine-grained access control).
A functional encryption scheme with fine-grained access control for F × AC−K
consists of four algorithms (Setup,Extract,Enc,Dec):

Setup(1λ): Given as input a security parameter λ, output a pair (pk,msk).
Extract(msk, Fλ, ac−k): Given ac−k ∈ AC−K, a function description Fλ ∈ F ,

and the master secret key msk, output a secret key skFλ,ac−k.
Enc(pk, x, ac−ct): Given as inputs ac−ct ∈ AC−Ct, the public key pk, and a

message x ∈ Dλ, output a ciphertext ct.
Dec(skFλ,ac−k, ct): Given the functional secret key skFλ,ac−k, and a ciphertext ct,

output an element in Rλ or an invalid symbol ⊥.

Correctness. For sufficiently large λ ∈ N, for all (Fλ, ac−k) ∈ F × AC−K and
(msk, pk)←Setup(1λ), skFλ,ac−k ←Extract(msk, Fλ, ac−k) for all ac−ct satisfying
Rel(ac−k, ac−ct) = 1, it holds with overwhelming probability that

Dec(skFλ,ac−k,Enc(pk, x, ac−ct)) = Fλ(x) whenever Fλ(x) �= ⊥,

where the probability is taken over the random coins of the algorithms1.

1 See [1,12] for discussions about this relaxation. The general reason is that some
functionality might contain ⊥ in its range and if Fλ(x) = ⊥ we do not impose
Dec(skFλ,ac−k,Enc(pk, x, ac−ct)) = Fλ(x), neither do we disallow it..
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Security. We recall in the full version [34] the notion of indistinguishability-
based security against chosen-plaintext attacks (IND-CPA) in the same manner
as in [2], taking into account the attribute-based control using policies, as well
as a simulation-based notion in a selective setting as in [4].

Remark 6. In Sects. 4 and 5, our concrete constructions instantiate AC−K as
a class of policies and AC−Ct as a superset over an attribute space, while the
relation is the natural evaluation Rel(A ∈ AC−K,S ∈ AC−Ct) := A(S). Following
the terminology of ABE schemes, our constructions are key-policy (KP). By
treating AC−K as a superset over an attribute space and AC−Ct as a class of
policies, we will obtain ciphertext-policy (CP) schemes. The KP and CP notions
are symmetric in terms of how we determine the support AC−K×AC−Ct of Rel.

3 Technical Overview

3.1 Formalizing Access Control in Functional Encryption

First of all, we discuss how we formalize access control in the notion of functional
encryption, which will affect our formal definitions in both single-client setting
(Definition 5) and multi-client setting (Definition 8). On the one hand, accompa-
nying an encryption scheme with access control over decryption keys is already
expressed by ABE, which in itself is a special case of FE. Thus, FE schemes
with fine-grained access control can be described by the general FE notion for
any class of functions that can handle the desired access control along with the
required computation.

On the other hand, when working with concrete functionality, we usually find
ourselves in the context where the evaluation cannot express the access control
and they cannot be described abstractly using a single functionality. Therefore, in
this paper we consider FE with access control as FE schemes for particular func-
tionality class whose description can be separated into two parts F×AC−K: (1) a
first part F ∈ F for evaluation, (2) and a second part for access control captured
by a binary relation Rel : AC−K×AC−Ct → {0, 1}, for some sets AC−K,AC−Ct.
The key extraction is done with respect to (ac−k ∈ AC−K, F ), meanwhile
the encryption procedure will receive (ac−ct ∈ AC−Ct, x). A key skac−k,F can
decrypt a ciphertext ctac−ct(x) to F (x) if and only if Rel(ac−k, ac−ct) = 1. We
stress that this way of formulation does not take us out of the FE regime, as it
is still captured by the general FE notion.

We show how the above formalization is used in a concrete case. In the
following discussion we will distinguish the input during encryption from the
parameters during key extraction. In this paper we focus on F ∈ F IP = {Fy :
Z

n
q → Zq} for computing inner products over Z

n
q for some prime q and n ∈ N,

where Fy(x) := 〈x,y〉. The simplest non-trivial example for access control is
identity-based control, i.e. AC−K = AC−Ct = ID for some identity space ID

and Relibe(id-k, id-ct) =
(
id-k ?= id-ct

)
. The functional keys are extracted using

(id-k,y) and the ciphertexts are encrypted using (id-ct,x) . First of all, it is
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not immediate how F IP can be used to implement the check τz · ( id-k − id-ct )
for the identity-based control, where τ and z are random values generated for
encryption and key extraction, respectively, together acting as a mask of the
decryption value. Notably, the value z cannot be specified as part of the inner-
product evaluation function, because the inner-product evaluation itself must be
independent of users at the time of generating functional keys, nor as part of the
ciphertext. It thus seems indispensable to treat the functionality as F IP× ID: the
functional key is generated w.r.t Fy ∈ F IP and id-k ∈ ID, while the ciphertext is

encrypted w.r.t (id-ct ∈ ID,x ∈ Z
n
q ) . During decryption for obtaining 〈 x , y 〉 +

τz · ( id-k − id-ct ), the ID-part of the functional key will implement the control
τz · ( id-k − id-ct ) whilst the F IP-part will compute 〈 x , y 〉.

Treatment of Tags in MCFE with Access Control. As mentioned in the
introduction, our current objective is constructing MCFE schemes with access
control having smaller ciphertexts. We use the functionality F IP×ID as a running
example. The input x for inner-product calculation is broken down into n com-
ponents for the entries xi of x . The encryption procedure takes (xi, id-cti, tagi)
and outputs a ciphertext component cti, for some identity id-cti and a tag
tagi . The decryption procedure receives a functional key, which is derived from
Fy ∈ F IP and id-k ∈ ID, and the n ciphertext components (cti)n

i=1. The

decrypted result is 〈 x , y 〉 if id-cti = id-k for all i and tagi = tagj for all
i, j. In the setting that the identities and tags can be public, if the identity con-
trol does not pass or if the tags are not the same, a totally random value is
returned by the decryption procedure. We now face the same problem of check-
ing equality among tagi in the same manner that has to be done for identities
from ID.

First of all, it is unlikely that we want to embed the checks tagi
?= tagj

in the F IP-part. More specifically, we would have to make the decryption com-
pute (

∑n
i=1 xi , yi ) + τz · ( id-k − id-cti ) +

∑n−1
i=1 zi( tagi − tagi+1 ) from n

ciphertext components cti of (xi, id-cti) , for some random values z, zi
$← Zq

and y = (y1, ..., yn) . It is worth noting that the check zi( tagi − tagi+1 ) needs
two values defined at encryption time and not key extraction time. Therefore,
in order for the functional key to “perform” the n required checks, all n tags
(tag1, . . . , tagn) must be encrypted in an IBE-style in cti. Roughly speaking,
this makes each cti of size linear in n, due to the number of group elements
required for encrypting the n tags, in addition to a constant number of group
elements for encrypting (xi, id-cti) . Thus the total communication increases to
quadratic in n over all n components cti, which is exactly what we are trying to
avoid.

Furthermore, it might be tempting to embed the equality checks in the access
control but because tagi, tagj are defined only at encryption time, they are
unknown to the key extraction for the ID-part. More generally, in a setting that
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permits a different2 attribute set Si in each individual ciphertext, one can try
to regard tagi as an attribute in Si . The correctness insists on the condition

A
(
Si

)
= 1 for all i and the equality checks tagi

?= tagj must somehow be

done by A
(
Si

)
, which is not possible due to the fact that tagj is independent

of both A and Si . Consequently, we have to cope with the tags independently
from the functionality’s description. As a final remark, this also demonstrates the
gap between MIFE and MCFE for the concrete functionality to compute inner
products under access control by access structures, even though the general
notion of MIFE can describe MCFE, provided that the evaluation functions of
the underlying functionality class can test equality between tagi .

3.2 Adaptively Secure Single-Client Construction

Our construction for functional encryption schemes with fine-grained access con-
trol is using Dual Pairing Vector Spaces (DPVSes). We highlight our main ideas
to achieve adaptive security. We refer to Sect. 2.2 for background on DPVSes.
Our schemes are key-policy, such that the access structure A is expressed in
the key using vectors {(k∗

j )j∈List−Att(A),kroot} over G2 and a set S of attributes
are embedded in the ciphertext using vectors {(cj)j∈S, croot} over G1, where
List−Att(A) is the list of attributes appearing in the access structure A. We use
a linear secret sharing scheme based on A to create the shares (aj)j∈List−Att(A) of
a0

$← Zq. The shares will then be embedded in the functional secret key compo-
nents (k∗

j )j∈List−Att(A). When all the components corresponding to an authorized
set in A are present, the shares can be combined to reconstruct the secret value
a0, which is now embedded in a key component k∗

root. In all vectors (cj)j and
croot, we put a random value ψ. Intuitively, �ψa0�t is masking the IPFE-related
ciphertext of Agrawal et al.’s type [6]. The vectors ((k∗

j )j∈List−Att(A),k∗
root) and

((cj)j∈S, croot) lie in the dual orthogonal bases. Performing the products cj × k∗
j

and combining over j ∈ S, where S is an authorized set, will permit recovering
�ψa0�t that can be used to cancel out �ψa0�t in croot × kroot:

cj ( · · · ψ 0 · · · )F ;
k∗

j ( · · · aj 0 · · · )F∗ ;
croot ( · · · ψ 0 · · · )H
k∗
root ( · · · a0 0 · · · )H∗

We use the techniques for adaptively-secure ABE introduced in the original
work of Okamoto and Takashima [35–37] in the ensuing steps. In vein of the
dual-system methodology, there are two modes of operation for keys and cipher-
texts: a normal mode and a semi-functional mode. A normal key can decrypt
any ciphertext, a semi-functional key can decrypt only normal ciphertexts, and
decrypting semi-functional ciphertexts using semi-functional keys gives totally

2 If all clients must use the same set of attributes S , we can treat tagi as a virtual

attribute in S, while enforcing the same S for all i. This implies that all tagi must
be the same. However, this approach requires a consensus among all n clients on S,
which general might be more complicated than agreeing on tag.
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random values. The dual-system method proves security by a sequence of indis-
tinguishable changes to make the challenge ciphertext semi-functional, then to
make the keys semi-functional and in the end the challenge message will be per-
fectly hidden from the adversary. Interestingly, there is a twist stemming from
the security model when integrating this technique into our security proofs for
FE with access control: an adversary can additionally query for keys that work
with the challenge ciphertext, i.e. the key’s policy is satisfied. So as to achieve
adaptive security, we have to be much more careful about which key to turn
semi-functional, because the keys whose policies are satisfied should be capable
of decrypting the (semi-functional) challenge ciphertext.

Our goal is to mask the value a0 in k∗
root by introducing a random mask a′

0y
in the coordinate of hidden basis vectors, i.e. those that are not used at all in
real life and are defined only for the proof, while the facing coordinate in croot
is also changed to τx so as to mask ψ:

cj ( · · · ψ τxzj · · · )F ;

k∗
j ( · · · aj a′

jy/zj · · · )F∗ ;

croot ( · · · ψ τx · · · )H

k∗
root ( · · · a0 a′

0y · · · )H∗
.

The values x, y are known constants, τ, a′
0, (zj)j

$← Zq, and (a′
j)j∈List−Att(A) is

another ensemble of secret shares for a′
0. Consequently, this will introduce a value

�τa′
0xy�t masking �ψa0�t when performing the product croot×kroot. We note that

the value a′
0 is related to (a′

j/zj)j by a′
0 =

∑
j∈S′ zj · (a′

j/zj) for any S′ such that
A(S′) = 1. In the end, if A(S) = 1, from cj and kj it is possible to reconstruct
�τa′

0xy�t and recover �ψa0�t. Otherwise, the entropy of a′
0 is preserved thanks

to the randomness provided by zj
$← Zq for randomizing (a′

j)j to (a′
j/zj)j in the

components (cj)j of the unique challenge ciphertext3, as well as the fact that
A(S) = 0 means there will be some a′

j/zj missing in the components (k∗
j )j and

the value zj is information-theoretically hidden. Hence, if A(S) = 0 we will be
able to change a′

0 to an independent and uniformly random value r0
$← Z

∗
q . It is

obligatory that we apply this argument key by key, while considering the key’s
capability to decrypt the challenge ciphertext, because two different keys might
mutually leak information about the same zj and our statistically argument no
longer holds. After a sequence of hybrids on the functional key queries, we can
mask all the keys as desired so that the key and the challenge ciphertext will
become readily semi-functional for later steps in the proof.

However, only for functional keys whose policy is not satisfied can we perform
such a change from a′

0 to r0, and we can decide the satisfiability only when the
adversary adaptively queries for functional keys. Our idea is to introduce r0 in
all key components and at the same time use a mechanism to “cancel out” the
masks ((a′

j/zj)j , r0) in ((k∗
j )j∈List−Att(A),k∗

root) if A(S) = 1. It is indispensable
to have this mechanism because otherwise, as soon as we change a′

0 to r0, even
the reconstruction

∑
j∈S′ zj · (a′

j/zj) = a′
0 is not able to remove r0 for a correct

decryption. In our particular setting for computing inner-products, we observe
3 Since our single-client scheme is public-key, we can obtain multi-challenge security

using a standard hybrid argument.
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that if A(S) = 1, then 〈Δx,y〉 = 0 for the sake of avoiding trivial attacks, where
Δx := x∗

1 − x∗
0 is the difference of the two left-or-right challenge messages and

y is specified the functional key. In the selective setting where Δx is known in
advance, the key and ciphertext components can simply be masked using the
constants (x, y) := (1, 〈Δx,y〉). However, for the goal of adaptive security where
Δx is unknown at the time of key extraction, we have to make a trade-off and
use DPVSes of dimensions linear in the dimension n of vectors for inner-products
and mask the key and ciphertext components as follows:

cj ( · · · ψ τzjΔx[1] · · · τzjΔx[n] · · · )F
k∗

j ( · · · aj a′
jy[1]/zj · · · a′

jy[n]/zj · · · )F∗

croot ( · · · ψ τΔx[1] · · · τΔx[n] · · · )H
k∗
root ( · · · a0 r0y[1] · · · r0y[n] · · · )H∗

where each i-th pair of constants (x, y) is set to (Δx[i],y[i]) for all i ∈ [n]. Our
arguments resort to a slight variant of the technique in [35–37], stated as a
technical lemma (see Lemma 4) in Sect. 2.4. The lemma will use some auxiliary
hidden vectors (which we do not show here) during the masking process and so
as to economize the dimensions of our DPVSes, we apply the lemma n times in
a sequence of hybrids to introduce (τΔx[i], r0y[i])i while reusing and cleaning
those auxiliary hidden vectors after each application. After successfully laying
(r0y[i])i in place, the rest of the proof will use r0 as a source of randomness
to completely hide the challenge message. Our single-client constructions are
presented in Sect. 4.

3.3 The “Duplicate-and-Compress” Technique

We give a glimpse of our main technical method to obtain a multi-client construc-
tion from our single-client construction, while maintaining the total ciphertext’s
size of order linear in n. The intriguing point we observe is as long as each client
uses an independent DPVS, the technique we use to take care of the ciphertex-
t/key vectors in the single-client case can be carried out in a parallel manner,
to some extent. Therefore, in the security proof, we can distribute and accumu-
late in parallel the necessary information in small-dimension vectors rather than
centralizing such information in few vectors of big dimension. Our treatment for
the multi-client setting is twofold and we give below the main technical ideas.

The More Restrictive MCFE. Firstly, Sect. 5.2 presents a construction that
enforces the same S1 = · · · = Sn = S for all clients, by hashing it using a full-
domain hash function modeled as a random oracle (RO), along with the tag
at the time of encryption. Indeed, we will use an argument resembling what
we do in the single-client construction and perform a masking procedure key
by key, where the functional key query for (A,y(�)) is indexed by 
. For each
i ∈ [n],we mask (k∗

i,j)j = (..., a(�)
i,j , a

′(�)
i,j y/zj , ...)j ,k∗

i,root = (..., a(�)
i,0, a

′(�)
i,0y, ...) and

(ci,j)j = (..., ψi, τxzj , ...)j , ci,root = (..., ψi, τx, ...), where (a(�)
i,j)j , (a

′(�)
i,j )j are secret

shares of a(�)
i,0, a

′(�)
i,0 respectively. In this more restrictive case of Sect. 5.2 where all
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n clients use the same S, it entails all clients i ∈ [n] using the same a(�)
0 , a′(�)

0

with their secret shares (a(�)
j )j , (a

′(�)
j )j in (k∗

i,j)j = (..., a(�)
j , a′(�)

j y/zj , ...)j and
k∗

i,root = (..., a(�)
0 , a′(�)

0 y, ...). Afterwards, we want to replace a′(�)
0 by an indepen-

dent and uniformly random value r(�)
0

$← Z
∗
q if A(Si) = 0 and clearing the masks

otherwise. As our first observation, the reasoning is still based crucially on the
fact that in S there will lack some j whose corresponding zj permits recovering
a′(�)
0 =

∑
j zj(a

′(�)
j /zj) if A(S) = 0. It gets clear that as long as A(S) = 0, for all

i independently, the same argument will hold because all i use the same set S
of attributes. This observation leads to a compression of all (ci,j)j , (k∗

i,j)j into
one pair of dual bases (F,F∗) instead of n separate pairs for each i ∈ [n]. As a
second observation,when A(S) = 1, all ciphertext components must be combined
together for a correct decryption. As a result, to program the canceling mech-
anism, instead of naively embedding n pairs of constants (Δx[k],y(�)[k])n

k=1 in
(ci,root, (ci,j)j ,k∗

i,root, (k
∗
i,j)j) for each i, we only need to embed (Δx[i],y(�)[i]) in

(ci,root, (ci,j)j ,k∗
i,root, (k

∗
i,j)j). The grouping by i of the products ci,root×k∗

i,root as
well as

∑
j ci,j × k∗

i,j will retrieve
�
τr(�)

0 〈Δx,y(�)〉�
t

and we proceed the remain-
ing as in the single-client proof. We point out that in the multi-client setting, it
might be the case that some i are corrupted and the retrieval of

�
τr(�)

0 〈Δx,y(�)〉�
t

is more complicated when regrouping over i. However, by carefully defining (see
Definition 9) and considering only admissible adversaries, i.e. they cannot win by
trivial attacks4, it remains the case. This individual insertion of (Δx[i],y(�)[i])
for each i leads to a duplication of one pair of dual bases (Hi,H∗

i ) for each
(ci,root,k∗

i,root), while all (ci,j)j , (k∗
i,j)j are readily put in the same basis following

our first observation:

(Compressing) for all i ∈ [n] ci,j ( · · · ψ τΔx[i]zj · · · )F

k∗
i,j ( · · · a(�)

j a′(�)
j y(�)[i]/zj · · · )F∗

(Duplicating) for each i ∈ [n] ci,root ( · · · ψ τΔx[i] · · · )Hi

k∗
i,root ( · · · a(�)

0 a′(�)
0 y(�)[i] · · · )H∗

i

We emphasize that this parallel process is feasible thanks to a conveniently
smooth control, as low as the level of the vectors’ coordinates in DPVSes. This
potential of parallelization helps us spread the necessary information for answer-
ing adaptive key queries, which accounts for the linearly large dimension, into n
collections {(k∗

i,j)j∈List−Att(A),k∗
i,root}i∈[n]. On the one hand, we change the vec-

tors (k∗
i,j , ci,j)i,j in parallel for all i, while these vectors are written in bases

(F,F∗). On the other hand, we change the vectors (k∗
i,root, ci,root)i independently

for each client i, using the fact that each pair (k∗
i,root, ci,root) belong to a separate

pair of dual bases (Hi,H∗
i ). In the end, instead of using n bases of dimension n,

we can use n bases of constant dimension for (k∗
i,root)i along with one constant-

dimension basis for all {(k∗
i,j)j∈List−Att(A)}i, saving a factor n in the ciphertext’s

size.

4 For instance, the adversary might corrupt i∗, query a left-or-right challenge (x0,x1)
where Δx[i∗] := x0[i

∗] − x1[i
∗] �= 0 and Δx[i] = 0 for i �= i∗, then decrypt the

challenge ciphertext with a satisfied key for y(�) whose i∗-th entry is non-zero.
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The More Flexible MCFE. Section 5.4 discusses an extension of the above
MCFE construction where we do not impose the same set of attributes among
n clients. Each client i can now encrypt using a different Si and the decryption
can decrypt the inner-product if and only if A(Si) = 1 for all i. Unsurpris-
ingly, our argument as it is from the previous construction, for masking and for
replacing a′(�)

i,0 by an independent and uniformly random value, does not hold
anymore because there might be two keys corresponding to A

(�) and A
(�′) such

that A
(�)(Si) �= A

(�′)(Si) and the adversary might try to use key components of
the 
′-th query to recover a′(�)

i,0 in the 
-th query. We thus make use of another
layer of random secret shares (d�,i)n

i=1 over n components of each 
-th func-
tional key, facing θi in the ciphertext components such that

∑n
i=1 θid�,i = 0.

The values (θi)i are generated as part of the master secret key but (d�,i)n
i=1 are

chosen independently for each key. A fully working key can be obtain only if
all the n components corresponding to (d�,i)n

i=1 are combined. That will prevent
the adversary from trying to mix components between two different keys, i.e. if
A

(�)(Si) = 0 we can be sure that a′(�)
i,0 retains its entropy and stays hidden. After

a similar masking step using the secret shares (a′(�)
i,j )j of a′(�)

i,0 independently gen-
erated for each i, the randomness provided by (d�,i)n

i=1 allows us to tweak a′(�)
i,0

with a uniformly random value r(�)
0 :

(Compressing) for all i ∈ [n] ci,j ( · · · ψ τΔx[i]zj · · · · · · )F
k∗

i,j ( · · · a(�)
j a′(�)

i,j y
(�)[i]/zj · · · · · · )F∗

(Duplicating) for each i ∈ [n] ci,root ( · · · ψ τΔx[i] θi · · · )Hi

k∗
i,root ( · · · a(�)

0 (a′(�)
i,0 + r(�)

0 )y(�)[i] d�,i · · · )H∗
i

It is of the utmost importance that we rely on (d�,i)n
i=1, which is particu-

lar for each 
-th key, to carry out this change from a′(�)
i,0 to a′(�)

i,0 + r(�)
0 . Or else,

the adversary can mix and match the 
-th and 
′-th keys to remove a′(�)
i,0 and

distinguish the adding of r(�)
0 , regardless whether Si is authorized or not. The

argument is now computational, in contrast to the information-theoretical indis-
tinguishability when changing from a′(�)

0 to r(�)
0 in the more restrictive MCFE. We

now perform an unmasking by going backwards to remove the sharing (a′(�)
i,j )j

and a′(�)
i,0 in the key. This transition is completely symmetric. If A(Si) = 1 for all i,

then the admissibility requires 〈Δx,y(�)〉 = 0 and the noise τr(�)
0 can be removed.

Otherwise, in case 〈Δx,y(�)〉 �= 0, the mask τr(�)
0 persists but the admissbil-

ity implies there exists i such that A(Si) = 0 and the functional key cannot
decrypt the challenge ciphertext. We emphasize that the incapability of the key
when A(Si) = 0 is ensured by (d�,i)n

i=1. After introducing r(�)
0 , the remaining

steps resemble the proof of the less flexible construction in Sect. 5.2. A desirable
byproduct of this more flexible construction is that the hash function, which is
modeled as a random oracle (RO), is now applied only on the tag. Therefore,
we can obtain an MIFE in the standard model that is comparable to the work
in [4] by fixing the hash value of a tag for all ciphertexts and publishing it as a
parameter of the scheme.
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4 Single-Client Functional Encryption for Inner-product
with Fine-Grained Access Control via LSSS

We present constructions of FE for the inner-product functionality with
attribute-based control expressed using linear secret sharing schemes, start-
ing with the simpler single-client setting. We are in the bilinear group
(G1, G2, Gt, g1, g2, gt, e, q) and G1, G2, Gt are written additively. The function
class of interests is F IP × LSSS where F IP contains Fy :

(
Z

∗
q

)n → Zq defined
as Fy(x) := 〈x,y〉. The access control is given by Rel : LSSS × 2Att → {0, 1},
where Rel(A,S) = A(S), the class LSSS contains Linear Secret Sharing Schemes
over Att, and 2Att denotes the superset of an attribute space Att ⊆ Zq. Our con-
structions are key-policy, where A is embedded in the key and S is specified in
the ciphertext. In order to facilitate the understanding and the motivation of our
later multi-client constructions in Sect. 5, we present both selectively-secure and
adaptively-secure single-client constructions in Fig. 1. We leverage the selectively-
secure scheme to obtain the adaptively-secure one by replacing certain elements
in the former by the corresponding boxed components for the latter.

The main difference between the adaptive version and the selectively-secure
version is the increase in the dimension of dual bases, from constant dimensions
to dimensions linear in n. The details can be found in Fig. 1. The computation
for encrypting and decrypting stays essentially the same. We refer to the tech-
nical overview in Sect. 3 for the main ideas why using bigger DPVSes allows
us to achieve the stronger adaptive notion. The correctness can be verified in
a straightforward manner. Theorem 7 proves the adaptive IND-security for the
construction corresponding to boxed components in Fig. 1, where the adversary
can query a unique challenge ciphertext and multiple functional keys. Using a
standard hybrid argument and recalling that our scheme is public-key provide us
with adaptive security against multiple challenge ciphertexts. The easier selec-
tive security can be proved using similar techniques. Full details can be found in
the full version [34].

Theorem 7. Let E = (Setup,Extract,Enc,Dec) be an IPFE scheme with fine-
grained access control via LSSS presented in Fig. 1 in a bilinear group setting
(G1, G2, Gt, g1, g2, gt, e, q), for the functionality class F IP × LSSS. Then, E is
secure against chosen-plaintext attacks, adaptively in the attributes and the chal-
lenge messages, if the SXDH assumption holds for G1 and G2. More precisely,
for λ ∈ N and for any ppt adversary A, let n be the dimension of vectors for
inner-product computation, K denote the total number of functional key queries,
and P denote the total number of attributes used by the adversary. We have the
following bound:

Advind-cpaE,F IP,LSSS,A(1λ) ≤ (2nK · (P (6P + 3) + 2) + 5) · AdvSXDH
G1,G2

(1λ)

where AdvSXDH
G1,G2

(1λ) denotes the maximum advantage over ppt adversaries against
the SXDH problem in (G1, G2) set up with parameter λ.
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Fig. 1. The selectively-secure and adaptively-secure single-client constructions for
IPFE with fine-grained access control via LSSS. The high-level ideas can be found
in the technical overview of Sect. 3 and more details are presented in the full version
[34].
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5 Multi-Client Functional Encryption for Inner-Product
with Fine-Grained Access Control via LSSS

First of all, we define and give the model of security for multi-client functional
encryption with fine-grained access control in Sect. 5.1. We then present our
main contribution by extending our FE scheme in Sect. 4 from the single-client
setting to the multi-client setting in Sect. 5.2, for the functionality class to eval-
uate inner-products under access control by linear secret-sharing schemes. The-
orem 14 proves its adaptive security. Finally, in Sect. 5.4 we discuss further our
construction and revisit the MIFE regime for comparison with [4].

5.1 Definitions

We extend the notion of functional encryption with fine-grained access control
to the multi-client setting. The access control is defined via a relation Rel :
AC−K × AC−Ct1 × · · · × AC−Ctn → {0, 1}, for some sets AC−Ct1, . . . ,AC−Ctn
and AC−K. A plaintext for client i consists of (ac−cti, xi) ∈ AC−Cti × Dλ,
whose corresponding ciphertext can be decrypted to Fλ(x) using the functional
key skFλ,ac−k for ac−k ∈ AC−K if and only if Rel(ac−k, (ac−cti)i) = 1.

Definition 8 (Multi-client functional encryption with fine-grained
access control). A multi-client functional encryption (MCFE) scheme with
fine-grained access control for the functionality class F ×AC−K consists of four
algorithms (Setup,Extract,Enc,Dec):

Setup(1λ): Given as input a security parameter λ, output a master secret key
msk and n = n(λ) encryption keys (eki)i∈[n] where n : N → N is a function.

Extract(msk, Fλ, ac−k): Given ac−k ∈ AC−K, a function description Fλ ∈ F ,
and the master secret key msk, output a decryption key dkFλ,ac−k.

Enc(eki, xi, tag, ac−cti): Given as inputs ac−cti ∈ AC−Cti, an encryption key
eki, a message xi ∈ Dλ, and a tag tag, output a ciphertext cttag,i.

Dec(dkFλ,ac−k, c): Given the decryption key dkFλ,ac−k and a vector of ciphertexts
c := (cttag,i)i of length n, output an element in Rλ or an invalid symbol ⊥.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n]) ← Setup(1λ),
(Fλ, ac−k) ∈ F × AC−K and dkFλ,ac−k ← Extract(msk, Fλ, ac−k), for all
tag and (ac−cti)i satisfying Rel(ac−k, (ac−cti)i) = 1, for all (xi)i∈[n] ∈
Dn

λ , if Fλ(x1, . . . , xn) �= ⊥, the following holds with overwhelming probability:

Dec
(
dkFλ,ac−k, (Enc(eki, xi, tag, ac−cti))i∈[n]

)
= Fλ(x1, . . . , xn)

where Fλ : Dn
λ → Rλ and the probability is taken over the coins of algorithm.

Security. We define an indistinguishability-based security notion taking into
account the attribute-based access control as well as the possibility of collusion
among multiple clients. Below we define the admissibility of an adversary A in the
security game against E = (Setup,Extract,Enc,Dec). Intuitively, we consider only
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admissible adversaries who do not win our security game in a trivial manner as
well as other meaningful restrictions in the multi-client setting. The admissibility
additionally takes into account the satisfiability of the relation for access control,
which also complicates the way we model the security notion. In the plain setting,
interested readers can refer to [20] or [32] for more details.

Definition 9 (Admissible adversaries). Let A be a ppt adversary and let E =
(Setup,Extract,Enc,Dec) be an MCFE scheme with fine-grained access control
for the functionality class F ×AC−K. In the security game given in Fig. 2 for A
considering E, let the sets (C,Q,H) be the sets of corrupted clients, functional
key queries, and honest clients, in that order. We say that A is NOT admissible
w.r.t (C,Q,H) if any of the following conditions holds:

1. There exist two different partial ciphertexts for x(b)
i �= x(b)

i

′, for some b ∈ {0, 1},
under one challenge tag tag that is queried to LoR.

2. There exist a tag tag and i, j ∈ H such that i �= j, there
exists a query (i, x(0)

i , x(1)
i , tag, ac−cti) to LoR but there exist no query

(j, x(0)
j , x(1)

j , tag, ac−ctj) to LoR.
3. There exists (tag, ac−cti) for i ∈ [n], a function F ∈ F , and ac−k ∈ AC−K

such that
• We have Rel(ac−k, (ac−cti)i) = 1 and (F, ac−k) ∈ Q.
• For all i ∈ H, there exists a query (i, x(0)

i , x(1)
i , tag, ac−cti) to LoR for

(x(0)
i , x(1)

i ).
• For all i ∈ C, it holds that x(0)

i = x(1)
i .

Otherwise, we say that A is admissible w.r.t (C,Q,H).

Remark 10. As in the plain MCFE with no attribute-based access control
in [20,32], we will consider security with no repetitions, i.e. the adversary can-
not query Enc nor LoR for multiple ciphertexts under the same (i, tag, ac−cti).
Moreover, the adversary is not allowed to query the encryption oracle Enc
for ciphertexts under the challenge tag∗ that was previously queried to LoR.
The intuition of this restriction is to prevent trivial attacks where, by querying
for ciphertexts under tag∗, the adversary can combine them with the challenge
ciphertext under the same tag∗ to learn much more information about the chal-
lenge bit b and win the game. In addition, for every honest clients i, there must
be a ciphertext query to LoR under the challenge (tag, ac−cti). That is, we do
not take into account the scenario where only partial (in terms of honest clients)
challenge ciphertext is queried to LoR. We can relax this condition and allow
partial challenge ciphertexts by adding a layer of All-or-Nothing Encapsulation
(AoNE). The AoNE encapsulates the partial components from clients and guar-
antees that all encapsulated components can be decapsulated if and only if all
components are gathered, otherwise the original information remain hidden. The
work by Chotard et al. [22] presents constructions for AoNE in the prime-order
(asymmetric) bilinear groups compatible with our current setting. In the MIFE
realm, the work of [4] considers the similar restriction and expects all honest
slots i ∈ [n] are queried to LoR.
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Remark 11. Our syntax and model of MCFE with fine-grained access con-
trol require that in order to combine the ciphertext components, they must be
encrypted under the same tag and the same set of attributes. One can aim for a
more flexible notion in which each client i can encrypt their ciphertext compo-
nent under a different (tag, ac−cti). However, this creates a much more intricate
situation and we have to take into account non-trivial attacks where two differ-
ent functional keys, whose policies are satisfied by different subsets of clients,
may be combined to evaluate the underlying plaintext components of the union
of the foregoing subsets. By hashing the tags and attributes during encryption,
our concrete constructions enforce the same set of attributes embedded in the
ciphertext components. In Sect. 5.4, we discuss how to relax the constraint and
achieve the flexible notion where each client i can use a different (tag, ac−cti)
and hash only tag. As a result, this more flexible MCFE scheme in the RO model
can be morphed into an MIFE scheme in the standard model by fixing a public
tag and publishing its hash.

We are now ready to give the definition for the indistinguishability-based security.

Definition 12 (IND-security for MCFE with fine-grained access
control). An MCFE scheme with fine-grained access control E =
(Setup,Extract,Enc,Dec) for the functionality class F × AC−K is IND-secure
if for all ppt adversaries A, and for all sufficiently large λ ∈ N, the following
probability is negligible

Advmc-ind-cpa
E,F,AC−K,A(1λ) :=

∣
∣
∣
∣Pr[Exprmc-ind-cpa

E,F,AC−K,A(1λ) = 1] − 1
2

∣
∣
∣
∣ .

The game Exprmc-ind-cpa
E,F,AC−K,A(1λ) is depicted in Fig. 2. The probability is taken over

the random coins of A and the algorithms.
In a more relaxed notion, the scheme E is selectively IND-secure if the fol-

lowing probability is negligible

Advmc-sel-ind-cpa
E,F,AC−K,A(1λ) :=

∣
∣
∣
∣Pr[Exprmc-sel-ind-cpa

E,F,AC−K,A(1λ) = 1] − 1
2

∣
∣
∣
∣ .

We also define a notion of security where only one challenge tag tag∗ is allowed.
That is, the scheme E is one-time IND-secure if the following probability is neg-
ligible

Advmc-ind-cpa-1-chal
E,F,AC−K,A (1λ) :=

∣
∣
∣
∣Pr[Exprmc-ind-cpa-1-chal

E,F,AC−K,A (1λ) = 1] − 1
2

∣
∣
∣
∣ .

Lemma 13 allows us to concentrate on the notion of one-time IND-security
for our construction. The proof is a standard hybrid argument and we give it in
the full version [34] for completeness.

Lemma 13. Let E = (Setup,Extract,Enc,Dec) for the function class F ×AC−K
be an MCFE scheme with fine-grained access control. If E is one-time IND-secure,
then E is IND-secure.
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Fig. 2. The security games Exprmc-ind-cpa
E,F,AC−K,A(1λ), Exprmc-sel-ind-cpa

E,F,AC−K,A(1λ) and

Exprmc-ind-cpa-1-chal
E,F,AC−K,A (1λ) for Definition 12

5.2 Construction

This section presents a multi-client FE scheme with fine-grained access control,
as defined in Sect. 5.1. We are in the bilinear group (G1, G2, Gt, g1, g2, gt, e, q) and
G1, G2, Gt are written additively. In our concrete construction, the functionality
class of interests is F IP ×LSSS and F IP contains Fy :

(
Z

∗
q

)n → Zq that is defined
as Fy(x) := 〈x,y〉. The access control is given by Rel : LSSS × (∏n

i=1 2Att
) →

{0, 1}, where Rel(A, (Si)i) =
∏

i A(Si), the class LSSS contains Linear Secret
Sharing Schemes over Att, and 2Att denotes the superset of an attribute space
Att ⊆ Zq. Our constructions are key-policy, where A is embedded in the key
and S is specified in the ciphertext. The tag space Tag contains the tags that
accompany plaintext components at the time of encryption.

We also need a full domain hash function H : Tag × 2Att → G
2
1, where Tag

denotes the set of tags and 2Att contains the subsets of attributes of Att. The
details of our construction is given in Fig. 3. We remark that currently all clients
i ∈ [n] must use the same S for encrypting their inputs xi, because S is hashed
together with tag by H. Section 5.4 presents another construction that relaxes the
matching condition on S and H then receives only tag as inputs. We note that the
duplicate-and-compress technique is used by putting the vectors {(ci,j ,ki,j)j} in
the same pair of dual bases (F,F∗) for all client i ∈ [n], meanwhile each pair
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of vectors (ci,ipfe,ki,ipfe) is put in bases (Hi,H∗
i ) for each client i ∈ [n]. In the

proof of Theorem 14 we detail how the basis changes in Lemma 4 can be done
in parallel for (Hi,H∗

i ), (F,F∗) for all i ∈ [n]. The correctness of the scheme is
verified by:

�out�t =
∑n

i=1

⎛

⎝

⎛

⎝
∑

j∈A

ci,j × (cj · ki,j)

⎞

⎠ − (ci,ipfe × ki,ipfe) + e(ti,mi)

⎞

⎠

=
∑n

i=1

(
�ψia0z�t − �ωpi · 〈S,y〉 + ω′pi · 〈U,y〉 + ψia0z�t

+ �(ωsi + ω′ui + xi)yi�t

)
= �〈x,y〉�t .

5.3 Adaptive Security

We now present the main ideas of the adaptive proof for the multi-client con-
struction described in Sect. 5.2, the detailed proof is presented in the full version
[34]. A high-level intuition can be revisited in Sect. 3.

Theorem 14. Let E = (Setup,Extract,Enc,Dec) be a multi-client IPFE scheme
with fine-grained access control via LSSS for the functionality class F IP × LSSS,
constructed in Sect. 5.2 in a bilinear group setting (G1, G2, Gt, g1, g2, gt, e, q).
Then, E is one-time IND-secure if the SXDH assumption holds for G1 and G2.
More specifically, for λ ∈ Z and for any adversary A, let K denote the total
number of functional key queries, P denote the total number of attributes used
by A, and Q denote the maximum number of random oracle (RO) queries. We
have the following bound:

Advmc-ind-cpa-1-chal
E,F IP,LSSS,A (1λ) ≤ (2KP · (6P + 3) + 2K + 2Q + 5) · AdvSXDH

G1,G2
(1λ)

where AdvSXDH
G1,G2

(1λ) denotes the maximum advantage over ppt adversaries against
the SXDH problem in (G1, G2) set up with parameter λ.

By combining with Lemma 13, we have the following Corollary:

Corollary 15. Let E = (Setup,Extract,Enc,Dec) be a multi-client IPFE scheme
with fine-grained access control via LSSS, for the functionality class F IP ×LSSS,
constructed in Sect. 5.2 in a bilinear group setting (G1, G2, Gt, g1, g2, gt, e, q).
Then, E is IND-secure if the SXDH assumption holds for G1 and G2.

Proof (of Theorem 14- Main ideas). Recall that in the security proof for single-
client adaptive security (Theorem 7) we switch the 
-th functional key to semi-
functional by augmenting the dimension of the dual bases so that the challenge
ciphertext is masked by τΔx[i], facing the mask r(�)

0 y(�)[i] in the corresponding
coordinate of the 
-th key and τ, r(�)

0
$← Zq where Δx := x∗

1 − x∗
0. Afterwards,

when doing the product of vectors in the dual bases, there will exist the quantity∑n
i=1 τr(�)

0 Δx[i]y(�)[i] = τr(�)
0 〈Δx,y(�)〉, which is non-zero when 〈Δx,y(�)〉 �= 0.
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Fig. 3. The construction for multi-client IPFE with fine-grained access control via
LSSS from Sect. 5.2.
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The dual bases now must have dimension at least n in order to accommodate
all the n terms Δx[i]y[i]. However, in the multi-client setting, we are already
using n different dual basis pairs (Hi,H∗

i ) for n clients and the correctness of
the construction in Sect. 5.2 makes sure that only when gathering all n cipher-
text parts can we decrypt to obtain the inner product. Therefore, it suffices to
introduce only τiΔx[i] in the component ci,ipfe returned from LoR of client i
and only r(�)

i,0y
(�)[i] in the corresponding key component k∗

i,ipfe, while duplicating
the pair of bases (Hi,H∗

i ) for each i ∈ [n]. Indeed, this is also the best we can
do because a client i is not supposed to know other inputs x∗

b [j] of other clients
j, where b

$← {0, 1} is the challenge bit. At the same time, we compress the
components of the access control part (ci,j)j , (k∗

i,j)j into the same pair of bases
(F,F∗) for all clients i. We refer to the introduction for more intuition on this
duplicate-and-compress process.

There are some further technical tweaks to be done when applying Lemma 4.
First of all, we need the factors τi, r

(�)
i,0 to be the same, for the grouping later when

doing products of vectors in DPVS. This can be done by using the same τi = τ
for all i and during the basis change to mask the ciphertext component there
will be a factor Δx[i]. Our argument to introduce r(�)

i,0 in fact does not depend on
i and therefore we can use the same r(�)

i,0 = r(�)
0 for all i as well. One might wonder

if the dependence of the masks still relies on 〈Δx,y(�)〉 because the adversary is
not supposed to query LoR for corrupted clients and we can only introduce the
masks in the vector components of honest i. As a result, the product of vectors in
the dual bases in the end will have

∑
i∈H τr(�)

0 Δx[i]y(�)[i]. However, the security
model imposes that for all corrupted i, the challenge message satisfies x∗

1[i] =
x∗
0[i] and consequently, 〈Δx,y(�)〉 = 0 if and only if

∑
i∈H Δx[i]y(�)[i] = 0. This

implies that the mask τr(�)
0

∑
i∈H Δx[i]y(�)[i] persists only when 〈Δx,y(�)〉 �= 0,

which is our goal. The masking of ciphertext and key components results from the
application of Lemma 4 as we are in the adaptive setting and not knowing what
policy the ciphertext’s attributes will satisfy. The lemma will mask all vectors
k(�)

i,ipfe with a′(�)
0

$← Zq, using which we perform a random labeling, and under
the constraint that all clients i use the same S, the mask a′(�)

0 will either appear
for all i or neither. This enables us to replace it with r(�)

0 , similarly to the all-at-
once-changing step in the adaptive single-client proof. We recall that currently
the constraint on using the same S for all i is guaranteed by hashing (tag,S)
together. The more complicated and flexible case with possibly different Si for
each i is discussed in Sect. 5.4. The application of Lemma 4 needs some auxiliary
vectors in the dual bases (F,F∗), which are not needed in the real usage of the
scheme. Following the terminology of Okamoto-Takashima [37], those auxiliary
vectors form a hidden part of the bases.

The final steps are to change (si, ui) in the challenge ciphertext to (s′
i, u

′
i) so

that the ciphertext from LoR is encrypting x∗
0 instead of x∗

b by solving a linear
system for (ΔS,ΔU) depending on x∗

b − x∗
0. We stress that the simulation of

corrupted keys can still be done using (si, ui) regardless of the order of LoR
query, under the admissibility from condition 3. in Definition 9 that requires
Δx[i] = x∗

1[i] − x∗
0[i] = 0 if i is corrupted.



120 K. Nguyen et al.

In the case of 〈Δx,y〉 �= 0, which then implies A(S) �= 0, the functional
key queries that are simulated using (〈S,y〉, 〈U,y〉) are computaionally indistin-
guishable from the ones in correct forms using (〈S′,y〉, 〈U ′,y〉), under the SXDH
assumption. However, the situation is more complicated than the single-client
construction because the oracle Enc is using (si, ui) as well. In order to be able
to perform the correction step on the functional key, we have to program the
full-domain hash function, which is modeled as an RO, such that for all queries
(tag′,S′) different from the challenge (tag,S), the value H(tag′,S′) belongs to
span(�(1, μ)�1) ⊆ G

2
1, for μ

$← Zq. For the challenge (tag,S), the value H(tag,S)
remains a pair of random group elements. The main reason behind this is that
our correction step requires H(tag′,S′) belongs to span(�(1, μ)�1) so that it will
not affect the normal ciphertext returned from Enc. This implies a linear rela-
tion between ΔS := S′ − S and ΔU := U ′ − U . However, if we put H(tag,S)
on the line span(�(1, μ)�1) as well, then the intention to switch from x∗

0 to x∗
b

in the ciphertext from LoR will create another linear relation, which reduces
significantly the degree of freedom to choose (ΔS,ΔU) in order to make the
simulation successful. In the end, the challenge ciphertext no longer depends on
b and the advantage becomes 0, concluding the proof. ��

5.4 Revisiting MIFE in the Standard Model

We recall that currently our MCFE scheme from Sect. 5.2 enforces the same
(tag,S) when encrypting for all client i ∈ [n], by hashing them using the full-
domain hash function that is modeled as an RO in the security proof. In practice,
this could render a significant cost for synchronisation among clients so as to
agree on tag and the attributes S at the time of encryption. In addition, by
fixing one public tag, one can only obtain an MIFE scheme whose security can
be proven in the ROM because we still need the random oracle to process S.

If we allow different (tag,Si) for each client i and during encryption the
input for hashing depends only on tag, i.e.

�
(ωtag, ω

′
tag)

�
1

← H(tag), there is a
mix-and-match attack among functional keys that has to be considered. More
precisely, suppose for two clients {1, 2} encrypting x = (x1, x2) under differ-
ent sets (S1,S2) of attributes, the 
-th and 
′-th key queries have access struc-
tures A and A

′ where A(S1) = A
′(S2) = 1 and A

′(S1) = A(S2) = 0, for
the same inner-product with y = y′ = (y1, y2). Neither of these keys should
decrypt x1y1 + x2y2 for the sake of security. However, the construction from
Fig. 3 permits an adversary to use the vectors {(c1,j)j , (k1,j)j , c1,ipfe,k1,ipfe} to
recover p1ωtag〈S,y〉 + p1ω

′
tag〈U,y〉. Similar computation allows the same adver-

sary to obtain p2ωtag〈S,y〉 + p2ω
′
tag〈U,y〉 using {(c2,j)j , (k2,j)j , c2,ipfe,k2,ipfe}.

Finally, observing that p1 + p2 = 1, exploiting the linear combination y1 ·�
ωtags1 + ω′

tagu1 + x1

�
1
+y2 ·

�
ωtags2 + ω′

tagu2 + x2

�
1

permits finding 〈x,y〉. This
demonstrates the main reason why we put S as part of the input to the hash
function H in our current scheme. The core of the above problem is the fact
that the construction from Sect. 5.2 does not prohibit combining different “root”
vectors k1,ipfe and k2,ipfe w.r.t different access structure A and A

′.
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In this section we present a solution, with minimal modifications to the
scheme, to overcome the need for hashing S. Suppose now we are in the more
flexible setting where

�
(ωtag, ω

′
tag)

�
1
←H(tag) during encryption. During setup

phase, the pair (Hi,H∗
i ) is a pair of dual bases for (G5

1, G
5
2), with one more

dimension compared to our less flexible construction. The master secret key msk
stays the same, while the encryption key eki now contains furthermore θihi,5 for
some θi

$← Zq. Given an LSSS-realizable monotone access structure A, the key
extraction Extract(msk, A,y ∈ Z

n
q ) returns dkA,y := ((ki,j)i,j , (mi,ki,ipfe)i∈[n]).

The encryption Enc(eki, xi, tag,Si) returns cttag,i := ((ci,j)j , ti, ci,ipfe) for each
i ∈ [n]. There is a new element dA,i appearing in the extra coordinate in ki,ipfe

for every i ∈ [n], where (dA,i)i satisfies
∑n

i=1 θidA,i = 0, independently chosen
for each functional keys. The vectors are essentially the same as in Fig. 3, except
(ci,ipfe,ki,ipfe) for each i as follows:

eki := (si, ui, pi · H
(1)
i , pi · H

(2)
i , hi,3, θihi,5, f1, f2, f3)

msk := (S, U, (θi)i, f∗
1 , f∗

2 , f∗
3 , (h∗

i,1,h
∗
i,2,h

∗
i,3)i∈[n])

ci,ipfe := (ωtagpi, ω′
tagpi, ψi, 0, θi)Hi

ki,ipfe := (〈S,y〉, 〈U,y〉, ai,0 · z, 0, dA,i)H∗
i

The decryption calculation stays invariant because
∑n

i=1 θidA,i = 0. In retro-
spection, the mix-and-match attack we gave at the beginning of this section no
longer works, because A �= A

′ and θ1dA,1 + θ2dA′,2 = 0 only with negligible
probability over the choices of θ1, θ2, dA,1, dA′,2

$← Zq, for two independent ran-
dom families (dA,i)i∈[2] and (dA′,i)i∈[2]. More formally, the security proof for this
modified scheme, where we exploit the one extra 5-th coordinate in (Hi,H∗

i ),
can be obtained with recourse to the proof of theorem 14 in Sect. 5.2 under few
changes. We sketch the proof and highlight the main differences compared to
the less flexible scheme in the full version [34].

Remark 16. Adding this new layer of masking increases the ciphertext’s size
by only a factor linear in n. Moreover, given this new construction where the
set of attributes does not involve in the computation of the full-domain hashing
anymore, we can obtain an MIFE in the standard model by fixing one tag for
every ciphertext. The random oracle can be removed by publishing a random
fixed value corresponding to H(tag) for encryption. In the end, we obtain an
attribute-based MIFE for inner-products with adaptive security in the standard
model, where the adversary can make the challenge query to LoR at most once
for each slot i ∈ [n]. To achieve security w.r.t multiple queries for same slot,
we can apply the technique in [21] to enhance our construction with repetitions.
Finally, we can apply a layer of All-or-Nothing Encapsulation to the ciphertext
components of construction in Sect. 5.4, so as to remove the tradeoff with respect
to partial challenge ciphertexts in case of (tag,Si) for different Si.



122 K. Nguyen et al.

Acknowledgements. This work was supported in part by the European Union Hori-
zon 2020 ERC Programme (Grant Agreement no. 966570 – CryptAnalytics), the
Beyond5G project and the French ANR Project ANR-19-CE39-0011 PRESTO.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11799-2 28

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for func-
tional encryption for inner product evaluations. Cryptology ePrint Archive, Report
2016/011 (2016). https://eprint.iacr.org/2016/011

4. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption
with fine-grained access control. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020,
Part III. LNCS, vol. 12493, pp. 467–497. Springer, Heidelberg (2020). https://doi.
org/10.1007/978-3-030-64840-4 16

5. Agrawal, S., Kitagawa, F., Modi, A., Nishimaki, R., Yamada, S., Yamakawa, T.:
Bounded functional encryption for turing machines: Adaptive security from general
assumptions. Cryptology ePrint Archive, Report 2022/316 (2022). https://ia.cr/
2022/316
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Abstract. This paper presents the first functional encryption (FE)
scheme for the attribute-weighted sum (AWS) functionality that supports
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takes as input a pair of attributes (x, z) where the attribute x is public
while the attribute z is private. A secret key corresponds to some weight
function f , and decryption recovers the weighted sum f(x)z. This is an
important functionality with a wide range of potential real life applica-
tions, many of which require the attribute lengths to be flexible rather
than being fixed at system setup. In the proposed scheme, the public
attributes are considered as binary strings while the private attributes
are considered as vectors over some finite field, both having arbitrary
polynomial lengths that are not fixed at system setup. The weight func-
tions are modelled as Logspace Turing machines.

Prior schemes [Abdalla, Gong, and Wee, CRYPTO 2020 and Datta
and Pal, ASIACRYPT 2021] could only support non-uniform Logspace.
The proposed scheme is built in asymmetric prime-order bilinear groups
and is proven adaptively simulation secure under the well-studied sym-
metric external Diffie-Hellman (SXDH) assumption against an arbitrary
polynomial number of secret key queries both before and after the chal-
lenge ciphertext. This is the best possible level of security for FE as noted
in the literature. As a special case of the proposed FE scheme, we also
obtain the first adaptively simulation secure inner-product FE (IPFE) for
vectors of arbitrary length that is not fixed at system setup.
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1 Introduction

Functional Encryption: Functional encryption (FE), formally introduced by
Boneh et al. [8] and O’Neill [22], redefines the classical encryption procedure
with the motivation to overcome the limitation of the “all-or-nothing” paradigm
of decryption. In a traditional encryption system, there is a single secret key
such that a user given a ciphertext can either recover the whole message or
learns nothing about it, depending on the availability of the secret key. FE in
contrast provides fine grained access control over encrypted data by generating
artistic secret keys according to the desired functions of the encrypted data to
be disclosed. More specifically, in a public-key FE scheme for a function class F ,
there is a setup authority which produces a master secret key and publishes a
master public key. Using the master secret key, the setup authority can derive
secret keys or functional decryption keys SKf associated with functions f ∈ F .
Anyone can encrypt messages msg belonging to a specified message space msg ∈
M using the master public key to produce a ciphertext CT. The ciphertext CT
along with a secret key SKf recovers the function of the message f(msg) at the
time of decryption, while unable to extract any other information about msg.
More specifically, the security of FE requires collusion resistance meaning that
any polynomial number of secret keys together cannot gather more information
about an encrypted message except the union of what each of the secret keys
can learn individually.

FE for Attribute-Weighted Sum: Recently, Abdalla, Gong and Wee [2] and
Datta and Pal [13] studied FE schemes for a new class of functionalities termed as
“attribute-weighted sums” (AWS). This is a generalization of the inner product
functional encryption (IPFE) [1,4]. In such a scheme, an attribute pair (x, z) is
encrypted using the master public key of the scheme, where x is a public attribute
(e.g., demographic data) and z is a private attribute containing sensitive infor-
mation (e.g., salary, medical condition, loans, college admission outcomes). A
recipient having a secret key corresponding to a weight function f can learn the
attribute-weighted sum f(x)z. The attribute-weighted sum functionality appears
naturally in several real life applications. For instance, as discussed by Abdalla
et al. [2] if we consider the weight function f as a boolean predicate, then the
attribute-weighted sum functionality f(x) would correspond to the average z
over all users whose attribute x satisfies the predicate f . Important practical
scenarios include average salaries of minority groups holding a particular job
(z = salary) and approval ratings of an election candidate amongst specific
demographic groups in a particular state (z = rating).

The works of [2,13] considered a more general case of the notion where the
domain and range of the weight functions are vectors, in particular, the attribute
pair of public/private attribute vectors (x,z), which is encrypted to a ciphertext
CT. A secret key SKf generated for a weight function f allows a recipient to learn
f(x)�z from CT without leaking any information about the private attribute z.

The FE schemes of [2,13] support an expressive function class of arithmetic
branching programs (ABPs) which captures non-uniform Logspace computations.
Both schemes were built in asymmetric bilinear groups of prime order and are
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proven secure in the simulation-based security model, which is known to be
the desirable security model for FE [8,22], under the (bilateral) k-Linear (k-
Lin)/ (bilateral) Matrix Diffie-Hellman (MDDH) assumption. The FE scheme of
[2] achieves semi-adaptive security, where the adversary is restricted to making
secret key queries only after making the ciphertext queries, whereas the FE
scheme of [13] achieves adaptive security, where the adversary is allowed to make
secret key queries both before and after the ciphertext queries.

However, as mentioned above, ABP is a non-uniform computational model.
As such, in both the FE schemes [2,13], the length of the public and private
attribute vectors must be fixed at system setup. This is clearly a bottleneck in
several applications of this primitive especially when the computation is done
over attributes whose lengths vary widely among ciphertexts and are not fixed
at system setup. For instance, suppose a government hires an external audit
service to perform a survey on average salary of employees working under dif-
ferent job categories in various companies to resolve salary discrepancy. The
companies create salary databases (X,Z) where X = (xi)i contains public
attributes xi = (job title,department, company name) and Z = (zi)i includes
private attribute zi = salary. To facilitate this auditing process without reveal-
ing individual salaries (private attribute) to the auditor, the companies encrypt
their own database (X,Z) using an FE scheme for AWS. The government pro-
vides the auditor a functional secret key SKf for a function f that takes input a
public attribute X and outputs 1 for xi’s for which the “job title” matches with
a particular job, say manager. The auditor decrypts ciphertexts of the various
companies using SKf and calculates the average salaries of employees working
under that job category in those companies. Now, if the existing FE schemes for
AWS [2,13] supporting non-uniform computations are employed then to make the
system sustainable the government would have to fix a probable size (an upper
bound) of the number of employees in all the companies. Also, the size of all
ciphertexts ever generated would scale with that upper bound even if the num-
ber of employees in some companies, at the time of encryption, are much smaller
than that upper bound. This motivates us to consider the following problem.

Open Problem. Can we construct an FE scheme for AWS in some uniform
computational model capable of handling public/private attributes of arbitrary
length?

Our Results. This work resolves the above open problem. For the first time in
the literature, we formally define and construct a FE scheme for unbounded AWS
(UAWS) functionality where the setup only depends on the security parameter of
the system and the weight functions are modeled as Turing machines. The pro-
posed FE scheme supports both public and private attributes of arbitrary lengths.
In particular, the public parameters of the system are completely independent of
the lengths of attribute pairs. Moreover, the ciphertext size is compact meaning
that it does not grow with the number of occurrences of a specific attribute in the
weight functions which are represented as Logspace Turing machines. The scheme
is adaptively simulation secure against the release of an unbounded (polynomial)



Compact FE for Unbounded AWS for Logspace from SXDH 129

number of secret keys both before and after the challenge ciphertext. As noted in
[8,22], simulation security is the best possible and the most desirable model for
FE. Moreover, simulation-based security also captures indistinguishability-based
security but the converse does not hold in general.

Our FE for UAWS is proven secure in the standard model based on the sym-
metric external Diffie-Hellman (SXDH) assumption in the asymmetric prime-
order pairing groups. Our main result in the paper is summarized as follows.

Theorem 1.1 (Informal). Assuming the SXDH assumption holds in asymmet-
ric pairing groups of prime-order, there exists an adaptively simulation secure
FE scheme for the attribute weighted sum functionality with the weight functions
modeled as Logspace Turing machines such that the lengths of public and pri-
vate attributes are unbounded and can be chosen at the time of encryption, the
ciphertexts are compact with respect to the multiple occurrences of attributes in
the weight functions.

Viewing IPFE as a special case of FE for AWS, we also obtain the first adap-
tively simulation secure IPFE scheme for unbounded length vectors (UIPFE), i.e.,
the length of the vectors is not fixed in setup. Observe that all prior simula-
tion secure IPFE [2,3,13,26] could only support bounded length vectors, i.e., the
lengths must be fixed in the setup. On the other hand, the only known construc-
tion of UIPFE [23] is proven secure in the indistinguishability-based model.

The proposed FE construction is semi-generic and extends the frameworks of
the works of Lin and Luo [18] and Datta and Pal [13]. Lin and Luo [18] develop an
adaptively secure attribute-based encryption (ABE) scheme for Logspace Turing
machines proven secure in the indistinguishability-based model. Although the
input length of their ABE is unbounded, but an ABE is an “all-or-nothing” type
primitive which fully discloses the message to a secret key generated for accept-
ing policies. Further, the ABE of [18] is only payload hiding secure meaning that
the ciphertexts themselves can leak sensitive information about the associated
attributes. In contrast, our FE for UAWS provides more fine grained encryption
methodologies where the ciphertexts reveal nothing about the private part of
associated attributes but their weighted sums. Our FE construction depends on
two building blocks, an arithmetic key garbling scheme (AKGS) for Logspace
Turing machines which is an information-theoretic tool and a function hiding
(bounded) slotted IPFE scheme which is a computational primitive. An impor-
tant motivation of [18] is to achieve compact ciphertexts for ABEs. In other
words, they get rid of the so-called one-use restriction from prior adaptively
secure ABEs [6,9,10,15–17,20,21,25] by replacing the core information-theoretic
step with the computational primitive of function hiding slotted IPFE. The FE of
[13] is able to accomplish this property for non-uniform computations by devel-
oping a three-slot encryption technique. Specifically, three slots are utilized to
simulate the label functions obtained from the underlying AKGS garbling for
pre-ciphertext secret keys. Note that, the three-slot encryption technique is an
extension of dual system encryption methodologies [15,16,24]. In this work, we
extend their frameworks [13,18] to avoid the one-use restriction in the case of FE
for UAWS that computes weights via Logspace Turing machines. It is non-trivial
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to implement such three-slot techniques in the uniform model. The main reason
behind this fact is that in case of ABPs [13] the garbling randomness can be
sampled knowing the size of ABPs, and hence the garbling algorithm is possible
to run while generating secret keys. However, in the case of AKGS for Logspace
Turing machines, the garbling randomness depends on the size of the Turing
machine as well as its input lengths. Consequently, it is not possible to execute
the garbling in the key generation or encryption algorithms as the information
about the garbling randomness is distributed between these two algorithms. We
tackle this by developing a more advanced three-slot encryption technique with
distributed randomness which enables us to carry out such a sophisticated pro-
cedure for Logspace Turing machines.

Our FE for UAWS is a one-slot scheme. This means one pair of public-private
attribute can be processed in a single encryption. An unbounded-slot FE for
UAWS [2] enables us to encrypt unbounded many such pairs in a single encryp-
tion. Abdalla et al. [2] devise a generic transformation for bootstrapping from
one-slot to unbounded-slot scheme. However, this transformation only works if
the underlying one-slot scheme is semi-adaptively secure [13]. Thus, if we restrict
our scheme to semi-adaptive security then using such transformations [2,13] our
one-slot FE scheme can be bootstrapped to support unbounded slots.

Organization. We discuss a detailed technical overview of our results in Sect. 2.
We provide useful notations, related definitions, and complexity assumptions in
Sect. 3. Our construction of a single key and single ciphertext secure FE scheme
for UAWS is described in Sect. 4. The simulator and security analysis of the
scheme can be found in the full version. Next, we build our full fledge 1-slot FE
scheme for UAWS in Sect. 5. The correctness and security analysis of the scheme
is available in the full version. For completeness, we present the definition of
function-hiding slotted IPFE and the construction of AKGS for Turing machine
computations [18] in the full version.

2 Technical Overview

We now present an overview of our techniques for achieving a FE scheme for AWS
functionality which supports the uniform model of computations. We consider
prime-order bilinear pairing groups (G1, G2, GT, g1, g2, e) with a generator gT =
e(g1, g2) of GT and denote [[a]]i by an element ga

i ∈ Gi for i ∈ {1, 2,T}. For any
vector z, the k-th entry is denoted by z[k] and [n] denotes the set {1, . . . , n}.

The Unbounded AWS Functionality. In this work, we consider an unbounded
FE scheme for the AWS functionality for Logspace Turing machines (or the class
of L), in shorthand it is written as UAWSL. More specifically, the setup only
takes input the security parameter of the system and is independent of any
other parameter, e.g., the lengths of the public and private attributes. UAWSL

generates secret keys SK(M ,IM ) for a tuple of Turing machines denoted by
M = {Mk}k∈IM

such that the index set IM contains any arbitrary number
of Turing machines Mk ∈ L. The ciphertexts are computed for a pair of public-
private attributes (x,z) whose lengths are arbitrary and are decided at the time
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of encryption. Precisely, the public attribute x of length N comes with a polyno-
mial time bound T = poly(N) and a logarithmic space bound S, and the private
attribute z is an integer vector of length n. At the time of decryption, if IM ⊆ [n]
then it reveals an integer value

∑
k∈IM

Mk(x)z[k]. Since Mk(x) is binary, we
observe that the summation selects and adds the entries of z for which the cor-
responding Turing machine accepts the public attribute x. An appealing feature
of the functionality is that the secret key SK(M ,IM ) can decrypt ciphertexts of
unbounded length attributes in unbounded time/(logarithmic) space bounds. In
contrast, existing FE for AWSs [2,13] are designed to handle non-uniform com-
putations that can only handle attributes of bounded lengths and the public
parameters grows linearly with the lengths. Next, we describe the formulation
of Turing machines in L considered in UAWSL.

Turing Machines Formulation. We introduce the notations for Logspace
Turning machines (TM) over binary alphabets. A Turing machine M =
(Q,yacc, δ) consists of Q states with the initial state being 1 and a characteris-
tic vector yacc ∈ {0, 1}Q of accepting states and a transition function δ. When
an input (x, N, T, S) with length N and time, space bounds T, S is provided,
the computation of M |N,T,S(x) is performed in T steps passing through con-
figurations (x, (i, j,W , q)) where i ∈ [N ] is the input tape pointer, j ∈ [S] is
the work tape pointer, W ∈ {0, 1}S the content of work tape, and q ∈ [Q] the
state under consideration. The initial internal configuration is (1, 1,0S , 1) and
the transition function δ determines whether, on input x, it is possible to move
from one internal configuration (i, j,W , q) to the next ((i′, j′,W ′, q′)), namely
if δ(q,x[i],W [j]) = (q′, w′,Δi,Δj). In other words, the transition function δ
on input state q, an input bit x[i] and an work tape bit W [j], outputs the
next state q′, the new bit w′ overwriting w = W [j] by w′ = W ′[j] (keeping
W [j′′] = W ′[j′′] for all j �= j′′), and the directions Δi,Δj ∈ {0,±1} to move
the input and work tape pointers.

Our construction of adaptively simulation secure UAWSL depends on two
building blocks: AKGS for Logspace Turing machines, an information-theoretic
tool and slotted IPFE, a computation tool. We only need a bounded slotted IPFE,
meaning that the length of vectors of the slotted IPFE is fixed in the setup,
and we only require the primitive to satisfy adaptive indistinguishability based
security. Hence, our work shows how to (semi-)generically bootstrap a bounded
IPFE to an unbounded FE scheme beyond the inner product functionality. Before
going to describe the UAWSL, we briefly discuss about these two building blocks.

AKGS for Logspace Turing Machines. In [18], the authors present an ABE
scheme for Logspace Turing machines by constructing an efficient AKGS for
sequence of matrix multiplications over Zp. Thus, their core idea was to represent
a Turing machine computation through a sequence of matrix multiplications.
An internal configuration (i, j,W , q) is represented as a basis vector e(i,j,W ,q)

of dimension NS2SQ with a single 1 at the position (i, j,W , q). We define a
transition matrix given by

M(x)[(i, j, W , q), (i
′
, j

′
, W

′
, q

′
)] =

⎧
⎪⎨

⎪⎩

1, if δ(q, x[i], W [j]) = (q′, W ′[j], i′ − i, j′ − j)

and W ′[j′′] = W [j′′] for all j′′ �= j;

0, otherwise;
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such that e�
(i,j,W ,q)M(x) = e�

(i′,j′,W ′,q′). This holds because the ((i, j,W , q),
(i′, j′,W ′, q′))-th entry of M(x) is 1 if and only if there is a valid transition
from (q,x[i],W [j]) to (q′,W ′[j], i′ − i, j′ − j). Therefore, one can write the
Turing machine computation by right multiplying the matrix M(x) for T times
with the initial configuration e�

(1,1,0S ,1) to reach of one of the final configurations
1[N ]×[S]×{0,1}S ⊗ yacc. In other words, the function M |N,T,S(x) is written as

M |N,T,S(x) = e�
(1,1,0S ,1)(MN,S(x))T (1[N ]×[S]×{0,1}S ⊗ yacc) (2.1)

Thus, [18] constructs an AKGS for the sequence of matrix multiplications as in
Eq. (2.1). Their AKGS is inspired from the randomized encoding scheme of [5]
and homomorphic evaluation procedure of [7]. Given the function M |N,T,S over
Zp and two secrets z, β, the garbling procedure computes the label functions

Linit(x) = β + e�
(1,1,0S ,1)r0,

for t ∈ [T ] : (Lt,θ)θ = −rt−1 + MN,S(x)rt,
(LT+1,θ)θ = −rT + z1[N ]×[S]×{0,1}S ⊗ yacc.

and outputs the coefficients of these label functions �init, �t = (�t,θ)θ where θ =

(i, j,W , q) and rt ← Z
[N ]×[S]×{0,1}S×[Q]
p . To compute the functional value for

an input x, the evaluation procedure add �init with a telescoping sum e�
(1,1,0S ,1) ·

∑T
t=1(MN,S(x))t−1�t and outputs zM |N,T,S(x) + β. More precisely, it uses the

fact that

e�
it+1,jt+1,W t+1,qt+1

rt+1 = e�
it,jt,W t,qt

rt + e�
it,jt,W t,qt

(−rt + M(x)rt+1
︸ ︷︷ ︸

�t+1

)

A crucial and essential property that the AKGS have is the linearity of evaluation
procedure, meaning that the procedure is linear in the label function values �s
and, hence can be performed even if �s are available in the exponent of a group.
Lin and Luo identify two important security notions of AKGS, jointly called
piecewise security. Firstly, �init can be reversely sampled given a functional value
and all other label values, which is known as the reverse sampleability. Secondly,
�t is random with respect to the subsequent label functions Lt′,θ for all t′ > t
and z, which is called the marginal randomness.

Function Hiding Slotted IPFE. A normal IPFE computes inner product
between two vectors v and u using a secret key IPFE.SKv and a ciphertext
IPFE.CTu . The IPFE is said to satisfy indistinguishability-based security if an
adversary having received many functional secret keys {IPFE.SKv} remains inca-
pable to extract any information about the message vector u except the inner
products {v · u}. It is easy to observe that if encryption is done publicly then
no security can be ensured about v from the secret key IPFE.SKv [11] due to
the linear functionality. However, if the encryption algorithm is private then
IPFE.SKv can be produced in a fashion to hide sensitive information about v.
This is termed as function hiding security notion for private key IPFE. Slotted
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IPFE [19] is a hybrid of public and private IPFE where vectors are divided into
public and private slots, and function hiding is only guaranteed for the entries
in the private slots. Further, Slotted IPFEs of [18,19] generate secret keys and
ciphertexts even when the vectors are given in the exponent of source groups
whereas decryption recovers the inner product in the target group.

2.1 From All-or-Nothing to Functional Encryption

We are all set to describe our approach to extend the framework of [18] from
all-or-nothing to functional encryption for the uniform model of computations.
In a previous work of Datta and Pal [13], an adaptively secure FE for AWS
functionality was built for the non-uniform model of computations, ABPs to be
precise. Their idea was to garble a function fk(x)z[k]+βk during key generation
(keeping z[k] and x as variables) and compute IPFE secret keys to encode the
m labels, and a ciphertext associated to a tuple (x,z) consists of a collection of
IPFE ciphertexts which encode the attributes:

SKf = {IPFE.SKv k,t<m
, ˜IPFE.SKṽ k,m

}k,m :
vk,t<m = �k,t, ṽk,m = �k,m where

(�k,t)t ← Garble(fk(x)z [k] + βk) s.t.
∑

k βk = 0

CTx = (IPFE.CTu , { ˜IPFE.CTũ k
}k) : u = (1, x), ũk = (1, z [k])

Therefore, using the inner product functionality, decryption computes the actual
label values with x,z[k] as inputs and recovers fk(x)z[k] + βk for each k, and
hence finally

∑
k fk(x)z[k]. However, this approach fails to build UAWSL because

we can not execute the AKGS garbling for the function Mk|N,T,S(x)z[k] + βk at
the time of generating keys. More specifically, the garbling randomness depends
on parameters N,T, S, n that are unknown to the key generator. Note that, in
contrast to the ABE of [18] where z can be viewed as a payload (hence n = 1),
the UAWS functionality has an additional parameter n (length of z) the value of
which is chosen at the time of encryption. Moreover, the compactness of UAWSL

necessitates the secret key size |SK(M ,IM )| = O(|IM |Q) to be linear in the
number of states Q and the ciphertext size |CT(x,T,S)| = O(nTNS2S) be linear
in TNS2S .

The obstacle is circumvented by the randomness distribution technique used
in [18]. Instead of computing the AKGS garblings in key generation or encryp-
tion phase, the label values are produced by a joint effort of both the secret
key and ciphertext. To do so, the garbling is executed under the hood of IPFE
using pseudorandomness, instead of true randomness. That is, some part of the
garbling randomness is sampled in key generation whereas the rest is sampled in
encryption. More specifically, every true random value rt[(i, j,W , q)] is written
as a product rx [(t, i, j,W )]rk,f [q] where rx [(t, i, j,W )] is used in the ciphertext
and rk,f [q] is utilized to encode the transition blocks of Mk in the secret key. To
enable this, the transition matrix associated to Mk is represented as follows:

M(x)[(i, j,W , q), (i′, j′,W ′, q′)] = δ(?)((i, j,W , q), (i′, j′,W ′, q′))
× Mx[i],W [j],W ′[j],i′−i,j′−j [q, q′]
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where δ(?)((i, j,W , q), (i′, j′,W ′, q′)) is 1 if there is a valid transition from the
configuration (i, j,W , q) to (i′, j′,W ′, q′), otherwise 0. Therefore, every block
of M(x)[(i, j,W , q), (i′, j′,W ′, q′)] is either a Q × Q zero matrix or a transition
block that belongs to a small set

T = {Mτ | τ = (x,w,w′,Δi,Δj) ∈ {0, 1}3 × {0,±1}2}

The (i, j,W , q)-th block row Mτ = Mx,w,w′,Δi,Δj appears at MN,S(x)
[(i, j,W , ), (i′, j′,W ′, )] if x = x[i], w = W [j],Δi = i′ − i,Δj = j′ − j,
and W ′ is W with j-th entry changed to w′. Thus, every label �k,t[i, q] with
i = (i, j,W ) can be decomposed as inner product vk,q ·uk,t,i,j,W . More precisely,
�k,t[i, q] = −rt−1[i, q] + Mk,N,S(x)[(i, q), ( , , , )]rt

= −rt−1[i, q] +
∑

w′,Δi,Δj

(Mk,x [i],W [j],w′,Δi,Δjrt[i
′
, ])[q] (i

′
= (i + Δi, j + Δj, W

′
))

= rx [t − 1, i]rk,f [q] +
∑

w′,Δi,Δj

rx [t, i
′
](Mk,x [i],W [j],w′,Δi,Δjrk,f )[q]

= rx [t − 1, i]rk,f [q] +
∑

w′,Δi,Δj

rx [t, i
′
](Mk,τ rk,f )[q] = vk,q · uk,t,i,j,W

so that one can set the vectors

vk,q = ( −rk,f [q], 0, (Mk,τ rk,f )[q] ‖ 0 ),
ut,i = ( rx [t − 1, i], 0, cτ (x; rx ) ‖ 0 )

where cτ (x; rx) (a shorthand of the notation cτ (x, t, i, j,W ; rx) [18]) is given by

cτ (x; rx) =

{
rx [t, i′], if x = x[i], w = W [j];
0, otherwise.

Similarly, the other labels can be decomposed: �k,init = (rk,f [1], βk, 0)·(rx [(0, 1, 1,
0S)], 1, 0) = βk + e�

(1,1,0S ,1)r0 and �k,T+1[(i, q)] = ṽk,q · ũk,T+1,i,j,W =
−rT [(i, q)] + z[k]yk,acc[q] where

ṽk,q = ( −rk,f [q], yk,acc[q] ‖ 0 ),
ũT+1,i = ( rx [T, i], z[k] ‖ 0 )

A First Attempt. Armed with this, we now present the first candidate UAWSL

construction in the secret key setting and it supports a single key. We consider
two independent master keys imsk and ˜imsk of IPFE. For simplicity, we assume
the length of private attribute z is the same as the number of Turing machines
present in M = (Mk)k∈IM

, i.e., n = |IM |. We also assume that each Turing
machine in the secret key share the same set of states.
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SKM ,IM
= {IPFE.SKvk,init

, IPFE.SKvk,q
, ˜IPFE.SKṽk,q

}k∈IM
:

[[vk,init]]2 = [[( −rk,f [1], βk, 0, ‖ 0 )]]2,
[[vk,q]]2 = [[( −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( −rk,f [q], yk,acc[q] ‖ 0 )]]2

CTx = (IPFE.CTu init , IPFE.CTu , { ˜IPFE.CTũk
}k) :

[[uinit]]1 = [[( rx [(0, 1, 1,0S)], 1, 0, ‖ 0 )]]1,
[[ut<T,i]]1 = [[( rx [t − 1, i], 0, cτ (x; rx) ‖ 0 )]]1,

[[ũk,T+1,i]]1 = [[( rx [T, i], z[k] ‖ 0 )]]1
Observe that the inner products between the ciphertext and secret key vec-

tors yield the label values [[�k,init]]T, [[�k,t]]T = [[(�k,t,θ)θ]]T for θ = (i, j,W , q).
Now, the evaluation procedure of AKGS is applied to obtain the partial values
[[z[k]Mk|N,T,S(x) + βk]]T. Combining all this values gives the required attribute
weighted sum

∑
k Mk|N,T,S(x)z[k] Since

∑
k βk = 0.

However, this scheme is not fully unbounded, in particular, the setup needs
to know the length of the private attribute. To realise this, let us try to prove
the security of the scheme. The main idea of the proof would be to make all
the label values (�k,t,θ)θ truly random and simulated except the initial labels
�k,init so that one can reversely sample �k,init hardcoded with a desired functional
value. Suppose, for instance, the single secret key is queried before the challenge
ciphertext. In this case, the honest label values are first hardwired in the cipher-
text vectors and then the labels are transformed into their simulated version.
This is because the ciphertext vectors are computed after the secret key. So, the
first step is to hardwire the initial label values �k,init into the ciphertext vector
uinit and hence it indicates that the length of uinit must grow with respect to
the number of �k,init’s. The same situation arises while simulating the other label
values through ut,i. In other word, we need to know the size of IM or the length
of z in setup, which is against our desired functionality.

To tackle this, we increase the number of uinit and ut<T,i in the above system.
More specifically, each of these vectors are now computed for all k ∈ [n], just
like ũk,T+1,i. Although this fix the requirement of unboundedness of the system,
there is another issue related to the security that must be solved. Note that, in the
current structure, there is a possibility of mix-and-match attack since, for exam-
ple, ũk1,T+1,i can be paired with ṽk2,q and this results in some unwanted attribute
weighted sum of the form

∑
k �=k1,k2

Mk(x)z[k] + Mk1(x)z[k2] + Mk2(x)z[k1].
We employ the index encoding technique used in previous works achieving
unbounded ABE or IPFE [21,23] to overcome the attack. In particular, we add
two extra dimension ρk(−k, 1) in the ciphertext and πk(1, k) in the secret key for
encoding the index k in each of the vectors of the system. Observe that for each
Turing machine Mk an independent randomness πk is sampled. It ensures that
an adversary can only recover the desired attribute weighted sum and whenever
vectors from different indices are paired only a garbage value is obtained.



136 P. Datta et al.

Combining the Ideas. After combining the above ideas, we describe our
UAWSL supporting a single key as follows.

SKM ,IM
= {IPFE.SKvk,init

, IPFE.SKvk,q
, ˜IPFE.SKṽk,q

}k∈IM
:

[[vk,init]]2 = [[( πk(1, k), −rk,f [1], βk, 0, ‖ 0 )]]2,
[[vk,q]]2 = [[( πk(1, k), −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), −rk,f [q], yk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init
, IPFE.CTuk,t<T,i

, ˜IPFE.CTũk,T+1,i
}k :

[[uk,init]]1 = [[( ρk(−k, 1), rx [(0, 1, 1,0S)], 1, 0, ‖ 0 )]]1,
[[uk,t<T,i]]1 = [[( ρk(−k, 1), rx [t − 1, i], 0, cτ (x; rx) ‖ 0 )]]1,
[[ũk,T+1,i]]1 = [[( ρk(−k, 1), rx [T, i], z[k] ‖ 0 )]]1

Although the above construction satisfies our desired functionality, preserves the
compactness of ciphertexts and resists the aforementioned attack, we face mul-
tiple challenges in adapting the proof ideas of previous works [13,18,23].

Security Challenges and Solutions. Next, we discuss the challenges in prov-
ing the adaptive simulation security of the scheme. Firstly, the unbounded IPFE
scheme of Tomida and Takashima [23] is proved in the indistinguishability-based
model whereas we aim to prove simulation security that is much more chal-
lenging. The work closer to ours is the FE for AWS of Datta and Pal [13], but
it only supports a non-uniform model of computation and the inner product
functionality is bounded. Moreover, since the garbling randomness is distributed
in the secret key and ciphertext vectors, we can not adapt their proof tech-
niques [13,23] in a straightforward manner. Although the ABE scheme of Lin
and Luo [18] handles a uniform model of computation, they only consider all-
or-nothing type encryptions and hence the adversary is allowed to query secret
keys which always fail to decrypt the challenge ciphertext. In contrast, we con-
struct a more advanced encryption mechanism which overcomes all the above
constraints of prior works, i.e., our UAWSL is an adaptively simulation secure
functional encryption scheme that supports unbounded inner product function-
ality with a uniform model of computations over the public attributes.

Our proof technique is inspired by that of [13,18]. One of the core tech-
nical challenges is involved in the case where the secret key is queried before
the challenge ciphertext. Thus, we focus more on “sk queried before ct” in this
overview. As noted above, in the security analysis of [18] the adversary A is
not allowed to decrypt the challenge ciphertext and hence they completely ran-
domize the ciphertext in the final game. However, since we are building a FE
scheme any secret key queried by A should be able to decrypt the challenge
ciphertext. For this, we use the pre-image sampleability technique from prior
works [12,13]. In particular, the reduction samples a dummy vector d ∈ Z

n
p

satisfying
∑

k Mk|N,T,S(x)z[k] =
∑

k Mk|N,T,S(x)d[k] where M = (Mk)k is a
pre-challenge secret key. To plant the dummy vector into the ciphertext, we first
need to make all label values {�k,t,i,q} truly random depending on the terms
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rk,f [q]rx [t − 1, i]’s and then turn them into their simulated forms, and finally
traverse in the reverse path to get back the original form of the ciphertext with
d taking place of the private attribute z. In order to make all these labels truly
random, the honest label values are needed to be hardwired into the ciphertext
vectors (since these are computed later) so that we can apply the DDH assump-
tion in G1 to randomize the term rk,f [q]rx [t − 1, i] (hence the label values).
However, this step is much more complicated than [18] since there are two inde-
pendent IPFE systems in our construction and rk,f [q] appears in both vk,q and
ṽk,q (i.e., in both the IPFE systems). We design a two-level nested loop running
over q and t for relocating rk,f [q] from v’s and ṽk,q to u’s and ũk,T+1,i. To this
end, we note that the case of “sk queried after ct” is simpler where we embed the
reversely sampled initial label values into the secret key. Before going to discuss
the hybrids, we first present the simulator of the ideal world.

SKM ,IM
= {IPFE.SKvk,init

, IPFE.SKvk,q
, ˜IPFE.SKṽk,q

}k∈IM
: (sk queried before ct)

[[vk,init]]2 = [[( πk(1, k), −rk,f [1], βk, 0 ‖ 0 )]]2,
[[vk,q]]2 = [[( πk(1, k), −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), −rk,f [q], yk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init
, IPFE.CTuk,t<T,i

, ˜IPFE.CTũk,T+1,i
}k :

[[uk,init]]1 = [[( ρk(−k, 1), rx [(0, 1, 1,0S)], 1, 0, ‖ 1, 0 )]]1,
[[uk,t<T,i]]1 = [[( ρk(−k, 1), rx [t − 1, i], 0, cτ (x; rx) ‖ sx [t, i], 0 )]]1,
[[ũk,T+1,i]]1 = [[( ρk(−k, 1), rx [T, i], d[k] ‖ sx [T + 1, i], 0 )]]1

SKM ,IM
= {IPFE.SKvk,init

, IPFE.SKvk,q
, ˜IPFE.SKṽk,q

}k∈IM
: (sk queried after ct)

[[vk,init]]2 = [[( πk(1, k), 0, 0, 0 ‖ �k,init, 0 )]]2,
[[vk,q]]2 = [[( πk(1, k), 0, 0, 0 ‖ sk,f [q], 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), 0, 0 ‖ sk,f [q], 0 )]]2

where �k,init ← RevSamp((Mk,x,Mk[x]z[k] + βk, {�k,t,i,q}) s.t.∑
k∈IM

βk = 0 if IM ⊆ [n]; otherwise βk ← Zp.

Security Analysis. We use a three-step approach and each step consists of a
group of hybrid sequence. At a very high level, we discuss the case of “sk queried
before ct”. In this overview, for simplicity, we assume that the challenger knows
the length of z while it generates the secret key.

First group of Hybrids: The reduction starts with the real scheme. In the first
step, the label function �k,init is reversely sampled with the value Mk[x]z[k]+βk

which is hardwired in uk,init.
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vk,init = ( · · · , 1 , 0 , 0 ‖ 0, 0 ),
vk,q = ( · · · , −rk,f [q], 0, (Mk,τrk,f )[q] ‖ sk,f [q] , 0 ),
ṽk,q = ( · · · , −rk,f [q], yk,acc[q] ‖ 0, 0 )

uk,init = ( · · · , �k,init , 0 , 0, ‖ 0, 0 ),
uk,t<T,i = ( · · · , rx [t − 1, i], 0, cτ (x; rx) ‖ 0, 0 ),
ũk,T+1,i = ( · · · , rx [T, i], z[k] ‖ sx [T + 1, i] , 0 )

where �k,init ← RevSamp((Mk,x,Mk[x]z[k] +βk, {�k,t,i,q}) and �k,t,i,q’s are com-
puted honestly. Note that, the secret values {βk} are sampled depending on
whether the queried key is eligible for decryption. More specifically, if IM ⊆ [n],
then βk’s are sampled as in the original key generation algorithm, i.e.,

∑
k βk = 0.

On the other hand, if maxIM > n then βk’s are sampled uniformly at ran-
dom, i.e., they do not necessarily be secret shares of zero. This can be done
by the function hiding property of IPFE which ensures that the distributions
{{IPFE.SK

v
(b)
k

}k∈[n+1,|IM |], {IPFE.CTuk′ }k′∈[n]} for b ∈ {0, 1} are indistinguish-
able where

v
(b)
k = ( πk, k · πk, 0, βk + b · rk, 0 ) for k ∈ [n + 1, |IM |], rk ← Zp

uk′ = ( −k′ · ρk′ , ρk′ , 0, 1, 0 ) for k′ ∈ [n]

Thus, the indistinguishability between the group of hybrids can be guaran-
teed by the piecewise security of AKGS and the function hiding security of IPFE.

Second Group of Hybrids: The second step is a loop. The purpose of the
loop is to change all the honest label values �k,t,i,q to simulated ones that take
the form �k,t,i,q = sx [t, i]sk,f [q] where sx [t, i] is hardwired in uk,t,i or ũk,T+1,i

and sk,f [q] is hardwired in vk,q or ṽk,q.
The whole procedure is executed in via a two-level loop with outer loop

running over t and inner loop running over q (both in increasing order). In each
iteration of the loop, we move all occurrences of rk,f [q] into the u’s in one shot
and hardwire the honest labels �k,t,i,q into uk,t,i for all i. Below we present two
crucial intermediate hybrids of the loop when t ≤ T .

vk,q = ( · · · , − ✗rk,f [q] − ‖ 0 , 1 , 0 ),

ṽk,q = ( · · · , − 0 − ‖ 0, 1 , 0 ),

uk,t<T,i = ( · · · , − ✓rk,f [q] − ‖ sx [t, i] ,
honest �k,t,i,q

= −rx [t − 1, i]rk,f [q] +· · · , 0 ),

ũk,T+1,i = ( · · · , rx [T, i], z[k] ‖ sx [T + 1, i],
honest �k,T+1,i,q

= −rx [T, i]rk,f [q] +· · · , 0 )
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where ✗rk,f [q] and ✓rk,f [q] indicate the presence of rk,f [q] in their respective
positions. The indistinguishability can be argued using the function hiding secu-
rity of IPFE. Next, by invoking DDH in G1, we first make rx [t − 1, i]rk,f [q] truly
random for all i and then transform the label values into their simulated form
�k,i,q = sx [t, i]sk,f [q] again by using DDH in G1 for all i. We emphasize that the
labels �k,T+1,i,q are kept as honest and hardwired when the loop runs for t ≤ T .
Finally, the terms sk,f [q] are shifted back to vk,q or ṽk,q.

vk,q = ( · · · , −rk,f [q] , 0, (Mk,τrk,f )[q] ‖ sk,f [q] , 0 , 0 ),

ṽk,q = ( · · · , −rk,f [q] , yk,acc[q] ‖ 0, 0 , 0 ),

uk,t<T,i = ( · · · , − 0 − ‖ sx [t, i], 0 , 0 ),

ũk,T+1,i = ( · · · , rx [T, i], z[k] ‖ sx [T + 1, i], 0 , 0 )

After the two-label loop finishes, the reduction run an additional loop over q
with t fixed at T + 1 to make the last few label values �k,T+1,i,q simulated. The
indistinguishability between the hybrids follows from a similar argument as in
the two-level loop.
vk,q = ( · · · , −rk,f [q], 0, (Mk,τrk,f )[q] ‖ sk,f [q], 0, 0 ),

ṽk,q = ( · · · , −rk,f [q], yk,acc[q] ‖ sk,f [q] , 0, 0 ),

uk,t<T,i = ( · · · , −0− ‖ sx [t, i], 0, 0 ),

ũk,T+1,i = ( · · · , − 0 − ‖ sx [T + 1, i], 0, 0 )

Third Group of Hybrids: After all the label values �k,t,i,q are simulated, the
third step uses a few more hybrids to reversely sample �1,init and �k,init|k>1 with
the hardcoded values M(x)�z+β1 and βk|k>1 respectively. This can be achieved
through a statistical transformation on {βk|

∑
k βk = 0}. Finally, we are all set

to insert the dummy vector d in place of z keeping A’s view identical.

vk,init = ( · · · , 1, 0, 0 ‖ 0, 0, 0 ),
vk,q = ( · · · , − 0 − ‖ sk,f [q], 0, 0 ),

ṽk,q = ( · · · , − 0 − ‖ sk,f [q], 0, 0 ),

uk,init = ( · · · , �k,init , 0, 0, ‖ 0, 0, 0 ),
uk,t<T,i = ( · · · , −0− ‖ sx [t, i], 0, 0 ),

ũk,T+1,i = ( · · · , −0− ‖ sx [T + 1, i], 0, 0 )

where all the label values {�k,t,i,q} are simulated and the initial label values are
computed as follows
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�1,init ← RevSamp(M1,x,M(x)�d + β1, {�k,t,i,q}),
�k,init ← RevSamp(Mk,x, βk, {�k,t,i,q}), for all k > 1

From this hybrid we can traverse in the reverse direction all the way to the
very first hybrid while keeping the private attribute as d. We also rearrange the
elements using the security of IPFE so that the distribution of the ciphertext
does not change with the occurrence of the secret key whether it comes before
or after the ciphertext. This is important for the public key UAWSL. The formal
security is discussed in Theorem 4.1.

From Single Key to Full-Fledge UAWSL. The next and final goal is to
bootstrap the single key, single ciphertext secure UAWSL to a public key UAWSL

scheme that supports releasing many secret keys and ciphertexts. Observe that
our secret key UAWSL already supports multiple keys and single ciphertext.
However, it fails to remain secure if two ciphertexts are published. This is because
the piecewise security of AKGS can not be guaranteed if the label functions are
reused. Our bootstrapping procedure takes inspiration from prior works [13,18],
that is to sample a random multiplier s ← Zp at the time of encryption, which
will randomize the label values in the exponent of G2. In particular, using IPFE
security the random multiplier s is moved to the secret key vectors where the
DDH assumption ensures that s�k,t,i,q’s are pseudorandom in the exponent of
G2. To upgrade the scheme into public key setting, we employ the Slotted IPFE
that enables encrypting into the public slots using the public key whereas the
function hiding security still holds in the private slots. We describe below our
public key UAWSL scheme.

SKM ,IM
= {IPFE.SKvpad

IPFE.SKvk,init
, IPFE.SKvk,q

, ˜IPFE.SKṽk,q
}k∈IM

: α ← Zp

[[vk,init]]2 = [[( 0, α, 0, 0, 0, ‖ 0 )]]2,
[[vk,init]]2 = [[( πk(1, k), 0, −rk,f [1], βk, 0, ‖ 0 )]]2,
[[vk,q]]2 = [[( πk(1, k), 0, −rk,f [q], 0, (Mk,τrk,f )[q] ‖ 0 )]]2,
[[ṽk,q]]2 = [[( πk(1, k), 0, −rk,f [q], αyk,acc[q] ‖ 0 )]]2

CTx = {IPFE.CTuk,init
, IPFE.CTuk,t<T,i

, ˜IPFE.CTũk,T+1,i
}k : s ← Zp

[[upad]]1 = [[( 0, s, 0, 0, 0, ‖ ⊥ )]]1,
[[uk,init]]1 = [[( ρk(−k, 1), 0, s · rx [(0, 1, 1,0S)], s, 0, ‖ ⊥ )]]1,

[[uk,t<T,i]]1 = [[( ρk(−k, 1), 0, s · rx [t − 1, i], 0, s · cτ (x; rx) ‖ ⊥ )]]1,
[[ũk,T+1,i]]1 = [[( ρk(−k, 1), 0, s · rx [T, i], s · z[k] ‖ ⊥ )]]1

The slots at the left/right of “ ‖ ” are public/private. The ciphertexts are
computed using only the public slots and the private slots are utilized only in
the security analysis. At a very high level, we utilize the triple-slot encryption
technique devised in [13] to simulate the pre-challenge secret keys with a dummy
vector encoded into the ciphertext and hardwire the functional value into the
post-challenge secret keys. As mentioned earlier that the triple-slot encryption
technique [13] was devised for non-uniform model which crucially uses the fact
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that the garbling randomness can be (fully) sampled in the key generation pro-
cess. It does not hold in our setting. Thus, we design a more advanced three-slot
encryption technique that is compatible with distributed randomness of AKGS
garbling procedure. More specifically, we add one additional hidden subspace
in order to realize such sophisticated mechanism for Logspace Turing machines.
This additional subspace enables us to simulate the post-ciphertext secret keys
with distributed randomness. However, shuttle technical challenges still remain
to be overcome due to the structure of AKGS for Logspace Turing machines. We
prove the security of the scheme in Theorem 5.1 and provide detailed security
analysis in the full version.

3 Preliminaries

In this section, we provide the necessary definitions and backgrounds that will
be used in the sequence.

Notations. We denote by λ the security parameter that belongs to the set of
natural number N and 1λ denotes its unary representation. We use the notation
s ← S to indicate the fact that s is sampled uniformly at random from the finite
set S. For a distribution X , we write x ← X to denote that x is sampled at
random according to distribution X . A function negl : N → R is said to be a
negligible function of λ, if for every c ∈ N there exists a λc ∈ N such that for all
λ > λc, |negl(λ)| < λ−c.

Let Expt be an interactive security experiment played between a challenger
and an adversary, which always outputs a single bit. We assume that ExptCA is
a function of λ and it is parametrized by an adversary A and a cryptographic
protocol C. Let ExptC,0

A and ExptC,1
A be two such experiment. The experiments are

computationally/statistically indistinguishable if for any PPT/computationally
unbounded adversary A there exists a negligible function negl such that for all
λ ∈ N,

AdvCA(λ) = |Pr[1 ← ExptC,0
A (1λ)] − Pr[1 ← ExptC,1

A (1λ)]| < negl(λ)

We write ExptC,0
A

c≈ ExptC,1
A if they are computationally indistinguishable (or

simply indistinguishable). Similarly, ExptC,0
A

s≈ ExptC,1
A means statistically indis-

tinguishable and ExptC,0
A ≡ ExptC,1

A means they are identically distributed.

Sets and Indexing. For n ∈ N, we denote [n] the set {1, 2, . . . , n} and for n,m ∈
N with n < m, we denote [n,m] be the set {n, n + 1, . . . ,m}. We use lowercase
boldface, e.g., v, to denote column vectors in Z

n
p and uppercase boldface, e.g.,

M, to denote matrices in Z
n×m
p for p, n,m ∈ N. The i-th component of a vector

v ∈ Z
n
p is written as v[i] and the (i, j)-th element of a matrix M ∈ Z

n×m
p is

denoted by M[i, j]. The transpose of a matrix M is denoted by M� such that
M�[i, j] = M[j, i]. To write a vector of length n with all zero elements, we write
0n or simply 0 when the length is clear from the context. Let u,v ∈ Z

n
p , then the
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inner product between the vectors is denoted as u · v = u�v =
∑

i∈[n] u[i]v[i] ∈
Zp. We define generalized inner product between two vectors u ∈ Z

I1
p ,v ∈ Z

I2
p

by u · v =
∑

i∈I1∩I2
u[i]v[i].

Tensor Products. Let u ∈ Z
I1
p and v ∈ Z

I2
p be two vectors, their tensor

product w = u ⊗ v is a vector in Z
I1×I2
p with entries defined by w[(i, j)] =

u[i]v[j]. For two matrices M1 ∈ Z
I1×I2
p and M1 ∈ Z

I′
1×I′

2
p , their tensor product

M = M = M1 ⊗ M2 is a matrix in Z
(I1×I′

1)×I2×I′
2

p with entries defined by
M[(i1, i′1), (i2, i

′
2)] = M1[i1, i2]M2[i′1, i

′
2].

Currying. Currying is the product of partially applying a function or specifying
part of the indices of a vector/matrices, which yields another function with fewer
arguments or another vector/matrix with fewer indices. We use the usual syntax
for evaluating a function or indexing into a vector/matrix, except that unspeci-
fied variables are represented by “ ”. For example, let M ∈ Z

([I1]×[I2])×([J1]×[J2])
p

and i1 ∈ I1, j2 ∈ J2, then M[(i1, ), ( , j2)] is a matrix N ∈ Z
[I2]×[J2]
p such that

N[i2, j1] = M[(i1, i2), (j1, j2)] for all i2 ∈ I2, j1 ∈ J1.

Coefficient Vector: Let f : Z
I
p → Zp be an affine function with coefficient

vector f ∈ Z
S
p for S = {const} ∪ {coefi| i ∈ I}. Then for any x ∈ Z

I
p , we have

f(x) = f[const] +
∑

i∈I f[coefi]x[i].

3.1 Bilinear Groups and Hardness Assumptions

We use a pairing group generator G that takes as input 1λ and outputs a tuple
G = (G1, G2, GT, g1, g2, e) where G1, G2, GT are groups of prime order p = p(λ)
and gi is a generator of the group Gi for i ∈ {1, 2}. The map e : G1 × G2 → GT

satisfies the following properties:

– bilinear : e(ga
1 , gb

2) = e(g1, g2)ab for all a, b ∈ Zp.
– non-degenerate: e(g1, g2) generates GT.

The group operations in Gi for i ∈ {1, 2,T} and the map e are efficiently
computable in deterministic polynomial time in the security parameter λ. For
a matrix A and each i ∈ {1, 2,T}, we use the notation [[A]]i to denote gAi
where the exponentiation is element-wise. The group operation is written addi-
tively while using the bracket notation, i.e. [[A + B]]i = [[A]]i + [[B]]i for
matrices A and B. Observe that, given A and [[B]]i, we can efficiently com-
pute [[AB]]i = A · [[B]]i. We write the pairing operation multiplicatively, i.e.
e([[A]]1, [[B]]2) = [[A]]1[[B]]2 = [[AB]]T.

Assumption 3.1 (Symmetric External Diffie-Hellman Assumption). We
say that the SXDH assumption holds in a pairing group G = (G1, G2, GT, g1, g2, e)
of order p, if the DDH assumption holds in Gi, i.e., {[[a]]i, [[b]]i, [[ab]]i} ≈ {[[a]]i, [[b]]i,
[[c]]i} for i ∈ {1, 2,T} and a, b, c ← Zp.
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3.2 Turing Machine Formulation

In this subsection, we describe the main computational model of this work,
which is Turing machines with a read-only input and a read-write work tape.
This type of Turing machines are used to handle decision problems belonging to
space-bounded complexity classes such as Logspace predicates. We define below
Turing machines with time complexity T and space complexity S. The Turing
machine can either accept or reject an input string within this time/space bound.
We also stick to the binary alphabet for the shake of simplicity.

Definition 3.1 (Turing machine with time/space bound computation).
[18] A (deterministic) Turing machine over {0, 1} is a tuple M = (Q,yacc, δ),
where Q ≥ 1 is the number of states (we use [Q] as the set of states and 1 as the
initial state), yacc ∈ {0, 1}Q indicates whether each state is accepting, and

δ : [Q] × {0, 1} × {0, 1} → [Q] × {0, 1} × {0,±1} × {0,±1},

(q, x, w) �→ (q′, w′,Δi,Δj)

is the state transition function, which, given the current state q, the symbol x
on the input tape under scan, and the symbol w on the work tape under scan,
specifies the new state q′, the symbol w′ overwriting w, the direction Δi to
which the input tape pointer moves, and the direction Δj to which the work
tape pointer moves. The machine is required to hang (instead of halting) once
it reaches on the accepting state, i.e., for all q ∈ [Q] such that yacc[q] = 1 and
all x,w ∈ {0, 1}, it holds that δ(q, x, w) = (q, w, 0, 0).

For input length N ≥ 1 and space complexity bound S ≥ 1, the set of internal
configurations of M is

CM,N,S = [N ] × [S] × {0, 1}S × [Q],

where (i, j,W , q) ∈ CM,N,S specifies the input tape pointer i ∈ [N ], the work
tape pointer j ∈ [S], the content of the work tape W ∈ {0, 1}S and the machine
state q ∈ [Q].

For any bit-string x ∈ {0, 1}N for N ≥ 1 and time/space complexity bounds
T, S ≥ 1, the machine M accepts x within time T and space S if there exists
a sequence of internal configurations (computation path of T steps) c0, . . . , cT ∈
CM,N,S with ct = (it, jt,Wt, qt) such that

i0 = 1, j0 = 1,W0 = 0S , q0 = 1(initial configuration),

for 0 ≤ t < T

{ δ(qt,x[it],Wt[jt]) = (qt+1,Wt+1[jt], it+1 − it, jt+1 − jt),
Wt+1[j] = Wt[j] for all j �= jt (valid transitions);
yacc[qT ] = 1 (accepting).

Denote by M |N,T,S the function {0, 1}N → {0, 1} mapping x to whether M
accepts x in time T and space S. Define TM = {M | M is a Turing machine} to
be the set of all Turing machines.
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Note that, the above definition does not allow the Turing machines moving
off the input/work tape. For instance, if δ specifies moving the input pointer
to the left/right when it is already at the leftmost/rightmost position, there is
no valid next internal configuration. This type of situation can be handled by
encoding the input string described in [18]. The problem of moving off the work
tape to the left can be managed similarly, however, moving off the work tape to
the right is undetectable by the machine, and this is intended due to the space
bound. That is, when the space bound is violated, the input is silently rejected.

3.3 Functional Encryption for Unbounded Attribute-Weighted Sum
for Turing Machines

We formally present the syntax of FE for unbounded attribute-weighted sum
(AWS) and define adaptive simulation security of the primitive. We consider the
set of all Turing machines TM = {M | M is a Turing machine} with time bound
T and space bound S.

Definition 3.2 (The AWS Functionality for Turing machines). For any
n,N ∈ N, the class of attribute-weighted sum functionalities is defined as
{

((x ∈ {0, 1}N
, 1

T
, 1

2S
), z ∈ Z

n
p ) 	→ M (x)

�
z =

∑

k∈IM

z [k] · Mk(x)

∣
∣
∣
∣
∣

N, T, S ≥ 1,
Mk ∈ TM ∀k ∈ [n],

IM ⊆ [n] with |IM | ≥ 1

}

Definition 3.3 (Functional Encryption for Attribute-Weighted Sum).
An unbounded-slot FE for unbounded attribute-weighted sum associated to the
set of Turing machines TM and the message space M consists of four PPT algo-
rithms defined as follows:

Setup(1λ): The setup algorithm takes as input a security parameter and outputs
the master secret-key MSK and the master public-key MPK.

KeyGen(MSK, (M,IM )): The key generation algorithm takes as input MSK
and a tuple of Turing machines M = (Mk)k∈IM

. It outputs a secret-key
SK(M ,IM ) and make (M , IM ) available publicly.

Enc(MPK, ((xi,1Ti ,1Si ), zi)i∈[N ]): The encryption algorithm takes as input
MPK and a message consisting of N number of public-private pair of attributes
(xi,zi) ∈ M such that the public attribute xi ∈ {0, 1}Ni for some Ni ≥ 1 with
time and space bounds given by Ti, Si ≥ 1, and the private attribute zi ∈ Z

ni
p .

It outputs a ciphertext CT(xi,Ti,Si) and make (xi, Ti, Si)i∈[N ] available publicly.

Dec((SK(M,IM ),(M ,IM )),(CT(xi ,Ti ,Si ),(xi,Ti,Si)i∈[N ])): The decryption algorithm
takes as input SK(M ,IM ) along with the tuple of Turing machines and index sets
(M , IM ), and a ciphertext CT(xi,Ti,Si) along with a collection of associated
public attributes (xi, Ti, Si)i∈[N ]. It outputs a value in Zp or ⊥.

Correctness: The unbounded-slot FE for unbounded attribute-weighted sum is
said to be correct if for all ((xi ∈ {0, 1}Ni , 1Ti , 1Si),zi ∈ Z

ni
p )i∈[N ] and for all

(M = (Mk)k∈IM
, IM ), we get
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Pr

⎡

⎢
⎢
⎣

Dec((SK(M ,IM ), (M , IM )), (CT(x i,Ti,Si), (xi, Ti, Si)i∈[N ])) =
∑

i∈N

∑

k∈IM

Mk(xi)zi[k] :

(MSK,MPK) ← Setup(1λ), SK(M ,IM ) ← KeyGen(MSK, (M , IM )),

CT(x i,Ti,Si) ← Enc(MPK, ((xi, 1
Ti , 1Si ), zi)i∈[N ]), IM ⊆ [ni] ∀i ∈ N

⎤

⎥
⎥
⎦ = 1

We now define the adaptively simulation-based security of FE for unbounded
attribute-weighted sum for Turing machines.

Definition 3.4 (Adaptive Simulation Security). Let (Setup,KeyGen,Enc,
Dec) be an unbounded-slot FE for unbounded attribute-weighted sum for TM and
message space M. The scheme is said to be (Φpre,ΦCT,Φpost)-adaptively simula-
tion secure if for any PPT adversary A making at most ΦCT ciphertext queries and
Φpre,Φpost secret key queries before and after the ciphertext queries respectively,
we have ExptUAWS

A,real(1
λ)

c≈ ExptUAWS
A,ideal(1

λ), where the experiments are defined as fol-
lows. Also, an unbounded-slot FE for attribute-weighted sums is said to be (poly,
ΦCT, poly)-adaptively simulation secure if it is (Φpre,ΦCT,Φpost)-adaptively simu-
lation secure as well as Φpre and Φpost are unbounded polynomials in the security
parameter λ.

ExptUAWS
A,real(1

λ)

1. 1N ← A(1λ);
2. (MSK,MPK) ← Setup(1λ);
3. (((xi, 1Ti , 1Si),zi ∈ Z

ni
p )i∈[N ]) ←

AOKeyGen(MSK,·)(MPK);
4. CT(xi,Ti,Si) ← Enc(MPK, ((xi, 1Ti , 1Si),

zi)i∈[N ]);
5. return AOKeyGen(MSK,·)(MPK,CT)

ExptUAWS
A,ideal(1

λ)

1. 1N ← A(1λ);
2. (MSK∗,MPK) ← Setup∗(1λ, 1N );
3. (((xi, 1Ti , 1Si),zi ∈ Z

ni
p )i∈[N ]) ←

AOKeyGen∗
0(MSK∗,·)(MPK)

4. CT(xi,Ti,Si) ← Enc∗(MPK,MSK∗, (xi, 1Ti ,
1Si , ni)i∈[N ],V);

5. return A
O

KeyGen∗
1(MSK∗,(x i,1Ti ,1Si )i∈[N ],·,·)(MPK,

CT(xi,Ti,Si))

OKeyGen(MSK,·)

1. input: (M , IM )
2. output: SK(M ,IM )

OKeyGen∗
0(MSK∗,·)

1. input: (Mφ, IMφ
) for φ ∈ [Φpre]

2. output: SK(Mφ,IM φ
)

Enc∗(MPK,MSK∗, (xi, 1Ti , 1Si , ni)i∈[N ], ·)

1. input: V =
{(Mφ, IMφ

),
∑

i∈[N ] Mφ(xi)�zi

: φ ∈ [Φpre]}
2. output: CT(xi,Ti,Si)

OKeyGen∗
1(MSK∗,(x∗

i )i∈[N],·,·)

1. input: (Mφ, IMφ
),

∑
i∈N Mφ(xi)�zi

for φ ∈ [Φpost]
2. output: SK(Mφ,IM φ

)

3.4 Arithmetic Key Garbling Scheme for Turing Machines

Lin and Luo [18] introduced arithmetic key garbling scheme (AKGS). The notion
of AKGS is an information theoretic primitive, inspired by randomized encodings
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[5] and partial garbling schemes [14]. It garbles a function f : Z
n
p → Zp (possibly

of size (m + 1)) along with two secrets z, β ∈ Zp and produces affine label
functions L1, . . . , Lm+1 : Z

n
p → Zp. Given f , an input x ∈ Z

n
p and the values

L1(x), . . . , Lm+1(x), there is an efficient algorithm which computes zf(x) + β
without revealing any information about z and β. Lin and Luo [18] additionally
design AKGS for Turing machines with time/space bounds. Many parts of this
section is verbatim to the Sects. 5 and 7.1 of [18]. Thus, the reader familiar with
the notion of AKGS for Turing machines can skip this section. We define AKGS
for the function class

F = {M |N,T,S : Z
N
p → Zp, N, T, S ≥ 1, p prime}

for the set of all time/space bounded Turing machine computations. We refer
to [18] for a detailed discussion on the computation of Turing machines as a
sequence of matrix multiplications, and the construction of AKGS for matrix
multiplication.

Definition 3.5 (Arithmetic Key Garbling Scheme (AKGS), [18]). An
arithmetic garbling scheme (AKGS) for the function class F , consists of two
efficient algorithms:

Garble((M,1N ,1T ,1S , p), z, β): The garbling is a randomized algorithm that
takes as input a tuple of a function M |N,T,S over Zp from F , an input length N ,
a time bound T , a space bound S with N,T, S ≥ 1, a prime p, and two secret
integers z, β ∈ Zp. It outputs a set of affine functions Linit, (Lt,θ)t∈[T+1],θ∈CM,N,S

:
Z

N
p → Zp which are called label functions that specifies how an input of length

N is encoded as labels. Pragmatically, it outputs the coefficient vectors �init,
(�t,θ)t∈[T+1],θ∈CM,N,S

.

Eval((M,1N ,1T ,1S , p), x, �init, (�t,θ)t∈[T +1],θ∈CM ,N ,S
): The evaluation is a

deterministic algorithm that takes as input a function M |N,T,S over Zp from
F , an input vector x ∈ Z

N
p and the integers �init, (�t,θ)t∈[T+1],θ∈CM,N,S

∈ Zp

which are supposed to be the values of the label functions at x ∈ Z
N
p . It outputs

a value in Zp.

Correctness: The AKGS is said to be correct if for all tuple (M, 1N , 1T , 1S , p),
integers z, β ∈ Zp and x ∈ Z

N
p , we have

Pr

⎡

⎢
⎢
⎣

Eval((M, 1N , 1T , 1S , p), x, �init, (�t,θ)t∈[T+1],θ∈CM,N,S
) = zM |N,T,S(x) + β :

(�init, (�t,θ)t∈[T+1],θ∈CM,N,S
) ← Garble((M, 1N , 1T , 1S , p), z, β), where � ← L(x)

⎤

⎥
⎥
⎦ = 1

The scheme have deterministic shape, meaning that the number of label func-
tions, m = 1+(T+1)NS2SQ, is determined solely by the tuple (M, 1N , 1T , 1S , p),
independent of z, β and the randomness in Garble. The number of label func-
tions m is called the garbling size of M |N,T,S under this scheme. For the shake of
simpler representation, let us number the label values (or functions) as 1, . . . ,m
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in the lexicographical order where the first two label values are �init, �(1,1,1,0S ,1)

and the last label value is �(T+1,N,S,1S ,Q).

Linearity: The AKGS is said to be linear if the following conditions hold:

– Garble((M, 1N , 1T , 1S , p), z, β) uses a uniformly random vector r ← Z
m
p as its

randomness, where m is determined solely by (M, 1N , 1T , 1S , p), independent
of z, β.

– The coefficient vectors �1, . . . , �m produced by Garble((M, 1N , 1T , 1S , p), z, β)
are linear in (z, β, r).

– Eval((M, 1N , 1T , 1S , p),x, �1, . . . , �m) is linear in �1, . . . , �m.

For our UAWS, we consider the piecewise security notion of AKGS defined by
Lin and Luo [18]1.

Definition 3.6 (Piecewise Security of AKGS, [18]). An AKGS = (Garble,
Eval) for the function class F is piecewise secure if the following conditions hold:

– The first label value is reversely sampleable from the other labels together with
(M, 1N , 1T , 1S , p) and x. This reconstruction is perfect even given all the other
label functions. Formally, there exists an efficient algorithm RevSamp such
that for all M |N,T,S ∈ F , z, β ∈ Zp and x ∈ Z

N
p , the following distributions

are identical:
{

(�1, �2, . . . , �m) :
(�1, . . . , �m) ← Garble((M, 1N , 1T , 1S , p), z, β),
�1 ← L1(x)

}

,

⎧
⎪⎪⎨

⎪⎪⎩

(�1, �2, . . . , �m) :
(�1, . . . , �m) ← Garble((M, 1N , 1T , 1S , p), z, β),
�j ← Lj(x) for j ∈ [2, m],

�1 ← RevSamp((M, 1N , 1T , 1S , p), x, zM |N,T,S(x) + β, �2, . . . , �m)

⎫
⎪⎪⎬

⎪⎪⎭

– For the other labels, each is marginally random even given all the label func-
tions after it. Formally, this means for all M |N,T,S ∈ F , z, β ∈ Zp,x ∈ Z

n
p

and all j ∈ [2,m], the following distributions are identical:
{

(�j , �j+1, . . . , �m) :
(�1, . . . , �m) ← Garble((M, 1N , 1T , 1S , p), z, β),
�j ← Lj(x)

}

,

{

(�j , �j+1, . . . , �m) :
(�1, . . . , �m) ← Garble((M, 1N , 1T , 1S , p), z, β),
�j ← Zp

}

We now define special structural properties of AKGS as given in [18], related to
the piecewise security of it.

Definition 3.7 (Special Piecewise Security of AKGS, [18]). An AKGS =
(Garble,Eval) for a function class F is special piecewise secure if for any
(M, 1N , 1T , 1S , p) ∈ F , z, β ∈ Zp and x ∈ Z

N
p , it has the following special form:

1 The usual simulation-based security considered in previous works [13,14] follows
from the piecewise security of AKGS.
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– The first label value �1 is always non-zero, i.e., Eval((M, 1N , 1T , 1S , p),x, 1, 0,
. . . , 0) �= 0 where we take �1 = 1 and �j = 0 for 1 < j ≤ m.

– Let r ← Z
m
p be the randomness used in Garble((M, 1N , 1T , 1S , p), z, β). For

all j ∈ [2,m]. the label function Lj produced by Garble((M, 1N , 1T , 1S , p), z,
β; r) can be written as

Lj(x) = kjr[j − 1] + L′
j(x; z, β, r[j], r[j + 1], . . . , r[m])

where kj ∈ Zp is a non-zero constant (not depending on x, z, β, r) and L′
j

is an affine function of x whose coefficient vector is linear in (z, β, r[j], r[j +
1], . . . , r[m]). The component r[j − 1] is called the randomizer of Lj and �j .

Lemma 3.1 ([18]). A special piecewise secure AKGS = (Garble,Eval) for a func-
tion class F is also piecewise secure. The RevSamp algorithm (required in piece-
wise security) obtained for a special piecewise secure AKGS is linear in γ, �2, . . . ,
�m+1 and perfectly recovers �1 even if the randomness of Garble is not uniformly
sampled. More specifically, we have the following:

Eval((M, 1
N

, 1
T

, 1
S

, p), x, �1, . . . , �m)

= �1Eval((M, 1
N

, 1
T

, 1
S

, p), x, 1, 0, . . . , 0) + Eval((M, 1
N

, 1
T

, 1
S

, p), x, 0, �2, . . . , �m) (3.1)
RevSamp((M, 1

N
, 1

T
, 1

S
, p), x, γ, �2, . . . , �m)

= (Eval((M, 1
N

, 1
T

, 1
S

, p), x, 1, 0, . . . , 0))
−1

(γ − Eval((M, 1
N

, 1
T

, 1
S

, p), x, 0, �2, . . . , �m)) (3.2)

Note that, Eq. (3.1) follows from the linearity of Eval and Eq. (3.2) ensures
that RevSamp perfectly computes �1 (which can be verified by Eq. (3.1) with
γ = zM |N,T,S(x) + β).

Lemma 3.2 ([18]). A piecewise secure AKGS = (Garble,Eval) is also special
piecewise secure after an appropriate change of variable for the randomness used
by Garble.

4 (1-SK, 1-CT, 1-Slot)-FE for Unbounded AWS in L

In this section, we build a secret-key, 1-slot FE scheme for the unbounded
attribute-weighted sum functionality in L. At a high level, the scheme satisfies
the following properties:

– The setup is independent of any parameters, other than the security parameter
λ. Specifically, the length of vectors and attributes, number of Turing machines
and their sizes are not fixed a-priori during setup. These parameters are
flexible and can be chosen at the time of key generation or encryption.

– A secret key is associated with a tuple (M , IM ), where M = (Mk)k∈IM
is

a tuple of Turing machines with indices k from an index set IM . For each
k ∈ IM ,Mk ∈ L, i.e., Mk is represented by a deterministic log-space bounded
Turing machine (with an arbitrary number of states).

– Each ciphertext encodes a tuple of public-private attributes (x,z) of lengths
N and n respectively. The runtime T and space bound S for all the machines
in M are associated with x which is the input of each machine Mk.
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– Finally, decrypting a ciphertext CTx that encodes (x,z) with a secret key
SKM ,IM

that is tied to (M , IM ) reveals the value
∑

k∈IM
z[k] ·Mk(x) when-

ever IM ⊆ [n].

We build an FE scheme for the functionality sketched above (also described
in Definition 3.2) and prove it to be simulation secure against a single cipher-
text and secret key query, where the key can be asked either before or after
the ciphertext query. Accordingly, we denote the scheme as SK-UAWSL(1,1,1) =
(Setup,KeyGen,Enc,Dec), where the index (1, 1, 1) represents in order the num-
ber of secret keys, ciphertexts and slots supported. Below, we list the ingredients
for our scheme.

1. IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec): a secret-key,
function-hiding IPFE based on G, where G = (G1, G2, GT, g1, g2, e) is pairing
group tuple of prime order p. We can instantiate this from [18].

2. AKGS = (Garble,Eval): a special piecewise-secure AKGS for the function class
M = {M |N,T,S : Z

N
p → Zp | M ∈ TM, N, T, S ≥ 1, p prime} describing the

set of time/space bounded Turing machines. In our construction, the Garble
algorithm would run implicitly under the hood of IPFE and thus, it is not
invoked directly in the scheme.

We are now ready to describe the SK-UAWSL(1,1,1) = (Setup,KeyGen,Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and define
the slots for two IPFE master secret keys as follows:

S1-UAWS =
{
index1, index2, init, rand, randtemp, randcomp, randtemp,comp, acc, sim, simtemp, simcomp

}

⋃{
tbτ , tbtemp

τ , tbcomp
τ , tbtemp,comp

τ

∣
∣ τ ∈ T

}
,

S̃1-UAWS =
{
index1, index2, init, rand, randtemp, randtemp,comp, acc, acctemp, sim, simtemp

}

Finally, it returns MSK = (IPFE.MSK, IPFE.M̃SK).
KeyGen(MSK, (M , IM )): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK) and a function tuple M = (Mk)k∈IM
indexed w.r.t. an index set

IM ⊂ N of arbitrary size , parse Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM and
sample the set of elements

{

βk ← Zp |
∑

k

βk = 0 mod p

}

k∈IM

For all k ∈ IM , do the following:
1. For Mk = (Qk,yk, δk), compute its transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,

∀τ ∈ T .
2. Sample independent random vectors rk,f ← Z

Qk
p and a random element

πk ∈ Zp.
3. For the following vector vk,init, compute a secret key IPFE.SKk,init ←

IPFE.KeyGen(IPFE.MSK, [[vk,init]]2):
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vector index1 index2 init rand acc tbτ
the other
indices

vk,init πk k · πk rk,f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2),

where the vectors vk,q, ṽk,q are defined as follows:

vector index1 index2 init rand acc tbτ
the other
indices

vk,q πk k · πk 0 −rk,f [q] 0 (Mk,τrk,f ) [q] 0

vector index1 index2 rand acc the other
indices

ṽk,q πk k · πk −rk,f [q] yk[q] 0

Finally, it returns the secret key as

SK(M ,IM ) =

(

(M , IM ),
{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}

k∈IM

)

.

Enc(MSK, (x, 1T , 12S

),z): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with
time and space complexity bounds given by T, S ≥ 1 (as 1T , 12S

) respectively,
and the private attribute z ∈ Z

n
p for some arbitrary n ≥ 1, it does the

following:
1. Sample a random vector rx ← Z

[0,T ]×[N ]×[S]×{0,1}S

p .
2. For each k ∈ [n], do the following:

(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.Enc(IPFE.MSK, [[uk,init]]1)

for the vector uk,init:

vector index1 index2 init rand acc tbτ
the other
indices

uk,init −k · ρk ρk rx [(0, 1, 1,0S)] 0 1 0 0

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T

using rx .
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(ii) Compute the ciphertext IPFE.CTk,t,i,j,W ← IPFE.Enc(IPFE.MSK,
[[uk,t,i,j,W ]]1) for the vector uk,t,i,j,W :

vector index1 index2 init rand acc tbτ
the other
indices

uk,t,i,j,W −k · ρk ρk 0 rx [(t − 1, i, j,W )] 0 cτ (x; t, i, j,W ; rx) 0

(d) For t = T +1, compute the ciphertext ˜IPFE.CTk,T+1,i,j,W ← ĨPFE.Enc

(IPFE.M̃SK, [[ũk,T+1,i,j,W ]]1) for the vector ũk,T+1,i,j,W :

vector index1 index2 rand acc the other
indices

ũk,T+1,i,j,W −k · ρk ρk rx [(T, i, j,W )] z[k] 0

3. Finally, it returns the ciphertext as

CT(x ,T,S) =

(

(x, T, S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}

k∈[n],i∈[N],j∈[S],W ∈{0,1}S

)

.

Dec(SK(M ,IM ),CT(x,T,S)): On input a secret key SK(M ,IM ) and a ciphertext
CT(x,T,S), do the following:
1. Parse SK(M ,IM ) and CT(x,T,S) as follows:

SK(M ,IM ) =

(
(
(Mk)k∈IM

, IM

)
,
{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}

k∈IM

)

,

Mk = (Qk, yk, δk),

CT(x ,T,S) =

(

(x, T, S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}

k∈[n],i∈[N],j∈[S],W ∈{0,1}S

)

, x ∈ {0, 1}N
.

2. Output ⊥, if IM �⊆ [n]. Else, select the sequence of ciphertexts for the
indices k ∈ IM as

CT(x ,T,S) =

(

(x, T, S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}

k∈IM ,i∈[N],j∈[S],W ∈{0,1}S

)

3. Recall that ∀k ∈ IM , CMk,N,S = [N ] × [S] × {0, 1}S × [Qk], and that we
denote any element in it as θk = (i, j,W , q) ∈ CMk,N,S where the only
component in the tuple θk depending on k is q ∈ [Qk]2. Invoke the IPFE
decryption to compute all label values as:

2 For simplicity of notations, we enumerate the states of each Mk as 1, . . . , q, i.e.,
[Qk] = [Q] for some Q ∈ N.
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∀k ∈ IM : [[�k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)

∀k ∈ IM , t ∈ [T ], θk = (i, j,W , q) ∈ CMk,N,S :
[[�k,t,θk

]]T = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,t,i,j,W )

∀k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S :
[[�k,T+1,θk

]]T = IPFE.Dec( ˜IPFE.SKk,q, ˜IPFE.CTk,T+1,i,j,W )
4. Next, invoke the AKGS evaluation and obtain the combined value

[[μ]]T =
∏

k∈IM

Eval

((

Mk, 1
N

, 1
T

, 1
2S

, p

)

, x, [[�k,init]]T,
{

[[�k,t,θk
]]T
}

t∈[T+1],θk∈CMk,N,S

)

5. Finally, it returns μ = DLoggT
([[μ]]T), where gT = e(g1, g2). Similar to [2],

we assume that the desired attribute-weighted sum lies within a specified
polynomial-sized domain so that discrete logarithm can be solved via
brute-force.

Correctness: Correctness follows from that of IPFE and AKGS. The first step
is to observe that all the AKGS label values are correctly computed as functions
of the input x. This holds by the correctness of IPFE and AKGS encoding of
the iterated matrix-vector product representing any TM computation. The next
(and final) correctness follows from the linearity of AKGS.Eval.

In more detail, for all k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S , let Lk,init, Lk,t,θk

be the label functions corresponding to the AKGS garbling of Mk = (Qk,yk, δk).
By the definitions of vectors vk,init,uinit and the correctness of IPFE, we have

�k,init = (−kρkπk + kπkρk) + rx [(0, 1, 1,0S)]rk,f [1] + βk

= r0[(1, 1,0S , 1)] + βk = eT
(1,1,0S ,1)r0 + βk = Lk,init(x).

Next, ∀k ∈ IM , t ∈ [T ], q ∈ [Qk], the structures of vk,q,ut,i,j,W and the
correctness of IPFE yields

�k,t,i,j,W ,q = (−kρkπk + kπkρk) − rx [(t − 1, i, j, W )]rk,f [q] +
∑

τ∈T
cτ (x ; t, i, j, W ; rx )(Mk,τ rk,f )[q]

= −rt−1[(i, j, W , q)] +
∑

τ∈T
cτ (x ; t, i, j, W ; rx )(Mk,τ rk,f )[q] = Lk,t,i,j,W ,q(x)

Finally, ∀k ∈ IM , q ∈ [Qk], the vectors ṽk,q, ũk,T+1,i,j,W and the ĨPFE cor-
rectness again yields

�k,T+1,i,j,W ,q = (−kρkπk + kπkρk) − rx [(T, i, j,W )]rk,f [q] + z[k]yk[q]

= −rT [(i, j,W , q)] + z[k]
(
1[N ]×[S]×{0,1}S ⊗ yk

)
[(i, j,W , q)]

= Lk,T+1,i,j,W ,q(x).

The above label values are computed in the exponent of the target group GT.
Once all these are generated correctly, the linearity of Eval implies that the
garbling can be evaluated in the exponent of GT. Thus, this yields
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[[μ]]T =
∏

k∈IM

Eval

((

Mk, 1
N

, 1
T

, 1
2S

, p

)

, x, [[�k,init]]T,
{

[[�k,t,θk
]]T
}

t∈[T+1],θk∈CMk,N,S

)

= [[
∑

k∈IM

Eval((Mk, 1
N

, 1
T

, 1
2S

, p), x, �k,init, {�k,t,θk
}t∈[T+1],θk∈CMk,N,S

)]]T

= [[
∑

k∈IM

(z [k] · Mk|N,T,S(x) + βk)]]T = [[
∑

k∈IM

z [k] · Mk|N,T,S(x)]]T = [[M (x)
�

z ]]T

Theorem 4.1. Assuming the SXDH assumption holds in G and the IPFE is
function hiding secure, the above construction of (1-SK, 1-CT, 1-Slot)-FE for
UAWS is adaptively simulation secure.

The security analysis is provided in the full version.

5 1-Slot FE for Unbounded AWS for L

In this section, we construct a public key 1-slot FE scheme for the unbounded
attribute-weighted sum functionality for L. The scheme satisfies the same prop-
erties as of the SK-UAWSL(1,1,1). However, the public key scheme supports releas-
ing polynomially many secret keys and a single challenge ciphertext, hence we
denote the scheme as PK-UAWSL(poly,1,1).

Along with the AKGS for Logspace Turing machines we require a function-
hiding slotted IPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.
Dec) based on G, where G = (G1, G2, GT, g1, g2, e) is pairing group tuple
of prime order p. We now describe the PK-UAWSL(poly,1,1) = (Setup,KeyGen,
Enc,Dec).

Setup(1λ): On input the security parameter, fix a prime integer p ∈ N and define
the slots for generating two pair of IPFE master keys as follows:

Spub =
{
index1, index2, pad, init

pub, randpub, accpub
}

∪ {tbpubτ |τ ∈ T },

Scopy = {initcopy, randcopy} ∪ {tbcopyτ |τ ∈ T },
Spriv = Scopy ∪ S1-UAWS ∪ {padcopy, padtemp, accperm, simcopy},

S̃pub ={index1, index2, rand
pub, accpub},

S̃1,copy ={randcopy1 , acccopy1 }, S̃2,copy = {randcopy2 , acccopy2 },

S̃priv = S̃1,copy ∪ S̃2,copy ∪ S̃1-UAWS ∪ {simcopy}

It generates (IPFE.MPK, IPFE.MSK) ← IPFE.Setup(Spub,Spriv) and
(IPFE.M̃PK, IPFE.M̃SK) ← IPFE.Setup(S̃pub, S̃priv) and returns MSK =
(IPFE.MSK, IPFE.M̃SK) and MPK = (IPFE.MPK, IPFE.M̃PK).

KeyGen(MSK, (M , IM )): On input the master secret key MSK = (IPFE.MSK,

IPFE.M̃SK) and a function tuple M = (Mk)k∈IM
indexed w.r.t. an index set
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IM ⊂ N of arbitrary size , it parses Mk = (Qk,yk, δk) ∈ TM ∀k ∈ IM and
samples the set of elements

{

α, βk ← Zp | k ∈ IM ,
∑

k

βk = 0 mod p

}

.

It computes a secret key IPFE.SKpad ← IPFE.KeyGen(IPFE.MSK, [[vpad]]2) for
the following vector vpad: For all k ∈ IM , do the following:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv

vpad 0 0 α 0 0 0 0 0

1. For Mk = (Qk,yk, δk), compute transition blocks Mk,τ ∈ {0, 1}Qk×Qk ,
∀τ ∈ Tk.

2. Sample independent random vector rk,f ← Z
Qk
p and a random element

πk ∈ Zp.
3. For the following vector vk,init, compute a secret key IPFE.SKk,init ←

IPFE.KeyGen(IPFE.MSK, [[vk,init]]2):

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv

vk,init πk k · πk 0 rk,f [1] 0 βk 0 0

4. For each q ∈ [Qk], compute the following secret keys

IPFE.SKk,q ← IPFE.KeyGen(IPFE.MSK, [[vk,q]]2) and

˜IPFE.SKk,q ← IPFE.KeyGen(IPFE.M̃SK, [[ṽk,q]]2)

where the vectors vk,q, ṽk,q are defined as follows:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv

vk,q πk k · πk 0 0 −rk,f [q] 0 (Mk,τrk,f )[q] 0

vector index1 index2 randpub accpub in S̃priv

ṽk,q k k · πk −rk,f [q] α · yk[q] 0
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Finally, it returns the secret key as

SK(M ,IM ) =

(

(M , IM ), IPFE.SKpad,
{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}

k∈IM

)

.

Enc(MPK, (x, 1T , 12S

),z): On input the master public key MPK = (IPFE.MPK,

IPFE.M̃PK), a public attribute x ∈ {0, 1}N for some arbitrary N ≥ 1 with
time and space complexity bounds given by T, S ≥ 1 (as 1T , 12S

) respectively,
and the private attribute z ∈ Z

n
p for some arbitrary n ≥ 1, it samples s ← Zp

and compute a ciphertext IPFE.CTpad ← IPFE.Enc(IPFE.MPK, [[upad]]1) for
the vector upad:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv

upad 0 0 s 0 0 0 0 0

Next, it does the following:
1. Sample a random vector rx ← Z

[0,T ]×[N ]×[S]×{0,1}S

p .
2. For each k ∈ [n], do the following:

(a) Sample a random element ρk ← Zp.
(b) Compute a ciphertext IPFE.CTk,init ← IPFE.SlotEnc(IPFE.MPK,

[[uk,init]]1) for the vector uk,init:

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv

uk,init −k · ρk ρk 0 s · rx [(0, 1, 1,0S)] 0 s 0 ⊥

(c) For all t ∈ [T ], i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , do the following:
(i) Compute the transition coefficients cτ (x; t, i, j,W ; rx),∀τ ∈ T

using rx .
(ii) Compute IPFE.CTk,t,i,j,W ← IPFE.SlotEnc(IPFE.MPK,

[[uk,t,i,j,W ]]1) for the vector uk,t,i,j,W :

vector index1 index2 pad initpub randpub accpub tbpubτ in Spriv

uk,t,i,j,W −k · ρk ρk 0 0 s · rx [(t − 1, i, j,W )] 0 s · cτ (x; t, i, j,W ; rx) ⊥

(d) For t = T + 1, and for all i ∈ [N ], j ∈ [S],W ∈ {0, 1}S , compute
˜IPFE.CTk,T+1,i,j,W ← IPFE.SlotEnc(IPFE.M̃PK, [[ũk,T+1,i,j,W ]]1) for

the vector ũk,T+1,i,j,W :
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vector index1 index2 randpub accpub in S̃priv

ũk,T+1,i,j,W −k · ρk ρk s · rx [(T, i, j,W )] s · z[k] ⊥

3. Finally, it returns the ciphertext as

CT(x ,T,S) =

(

(x, T, S) , n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}

k∈[n],i∈[N],j∈[S],W ∈{0,1}S

)

.

Dec(SK(M ,IM ),CT(x,T,S)): On input a secret key SK(M ,IM ) and a ciphertext
CT(x,T,S), do the following:
1. Parse SK(M ,IM ) and CT(x,T,S) as follows:

SK(M ,IM ) =

(
(
(Mk)k∈IM

, IM

)
, IPFE.SKpad,

{
IPFE.SKk,init,

{
IPFE.SKk,q, ˜IPFE.SKk,q}q∈[Qk]

}

k∈IM

)

, Mk = (Qk, yk, δk),

CT(x ,T,S) =

(

(x, T, S) , n, IPFE.CTpad,
{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}

k∈[n],i∈[N],j∈[S],W ∈{0,1}S

)

.

2. Output ⊥, if IM �⊂ [n]. Else, select the sequence of ciphertexts for the
indices k ∈ IM as

CT(x ,T,S) =

(

(x, T, S) ,
{
IPFE.CTk,init, {IPFE.CTk,t,i,j,W }t∈[T ],

˜IPFE.CTk,T+1,i,j,W

}

k∈IM ,i∈[N],j∈[S],W ∈{0,1}S

)

.

3. Use the IPFE decryption to obtain [[μpad]]T ← IPFE.Dec(IPFE.SKpad,
IPFE.CTpad).

4. Recall that ∀k ∈ IM , CMk,N,S = [N ] × [S] × {0, 1}S × [Qk], and that we
denote any element in it as θk = (i, j,W , q) ∈ CMk,N,S where the only
component in the tuple θk depending on k is q ∈ [Qk]. Invoke the IPFE
decryption to compute all label values as:

∀k ∈ IM : [[�k,init]]T = IPFE.Dec(IPFE.SKk,init, IPFE.CTk,init)
∀k ∈ IM , t ∈ [T ], θk = (i, j,W , q) ∈ CMk,N,S :

[[�k,t,θk
]]T = IPFE.Dec(IPFE.SKk,q, IPFE.CTk,t,i,j,W )

∀k ∈ IM , θk = (i, j,W , q) ∈ CMk,N,S :
[[�k,T+1,θk

]]T = IPFE.Dec( ˜IPFE.SKk,q, ˜IPFE.CTk,T+1,i,j,W )

5. Next, invoke the AKGS evaluation procedure and obtain the combined
value

[[μ]]T =
∏

k∈IM

Eval

((

Mk, 1
N

, 1
T

, 1
2S

, p

)

, x, [[�k,init]]T,
{

[[�k,t,θk
]]T
}

t∈[T+1],θk∈CMk,N,S

)
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6. Finally, it returns μ′ such that [[μ]]T = ([[μpad]]T)μ′
, where gT = e(g1, g2).

Similar to [2], we assume that the desired attribute-weighted sum lies
within a specified polynomial-sized domain so that μ′ can be searched via
brute-force.

The correctness of our PK-UAWSL(poly,1,1) can be shown similarly to our secret
key scheme of the previous section. Please see the full version of the paper for
details.

Theorem 5.1. Assuming the SXDH assumption holds in G and the IPFE is
function hiding secure, the above construction of 1-Slot FE for UAWS is adap-
tively simulation secure.

The description of the simulator and the proof of the above theorem is given
in the full version.
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Abstract. In recent years, functional encryption (FE) has established
itself as one of the fundamental primitives in cryptography. The choice
of model of computation to represent the functions associated with the
functional keys plays a critical role in the complexity of the algorithms
of an FE scheme. Historically, the functions are represented as circuits.
However, this results in the decryption time of the FE scheme growing
proportional to not only the worst case running time of the function but
also the size of the input, which in many applications can be quite large.

In this work, we present the first construction of a public-key collusion-
resistant FE scheme, where the functions, associated with the keys, are
represented as random access machines (RAMs). We base the security
of our construction on the existence of: (i) public-key collusion-resistant
FE for circuits and, (ii) public-key doubly-efficient private-information
retrieval [Boyle et al., Canetti et al., TCC 2017]. Our scheme enjoys
many nice efficiency properties, including input-specific decryption time.

We also show how to achieve FE for RAMs in the bounded-key set-
ting with weaker efficiency guarantees from laconic oblivious transfer,
which can be based on standard cryptographic assumptions. En route
to achieving our result, we present conceptually simpler constructions of
succinct garbling for RAMs [Canetti et al., Chen et al., ITCS 2016] from
weaker assumptions.

Keywords: Functional Encryption · RAMs

1 Introduction

Functional Encryption. In the recent years, several interesting cryptographic
primitives have been proposed in the domain of computing on encrypted data,
with one such primitive being functional encryption [11,51,52]. This notion
allows for an entity to encrypt their input x such that anyone in possession
of secret keys associated with functions f1, . . . , fq, also referred to as functional
c© International Association for Cryptologic Research 2022
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keys, can decrypt this ciphertext to obtain the values f1(x), . . . , fq(x) and noth-
ing else. The setting where q is not a priori bounded is called the collusion
resistant setting and will be the primary focus of this work.

Functional encryption (FE) has proven to be a useful abstraction for many
theoretical applications, including constructing indistinguishability obfusca-
tion [5,10], succinct randomized encodings [1,6,34], watermarking schemes [40],
proving lower bounds in differential privacy [47], proving hardness of finding a
Nash equilibrium [9,32] and many more.

Model of Computation. A vast majority of FE constructions model the functions
associated with the functional keys as circuits. While circuits are easy to work
with, when compared to other models of computation, they come with many
disadvantages. The parameters in the system tend to grow polynomially in the
worst-case time bound of the function; this includes the decryption time. Even
worse, for functions that take sub-linear runtime in the “big data” setting, the
decryption time would now take time proportional to the size of the entire data,
which could be massive.

Designing FE for Alternate Models of Computation. These drawbacks prompt
us to look beyond circuits and construct FE for more general models of computa-
tion. One general model of computation that we could hope to support is random
access machines (RAMs). There are many advantages to FE for RAMs, we will
mention a couple of them now and defer more when we formally define the prim-
itive in the next section: firstly, the parameters of the scheme do not grow with
the worst-case time bound and moreover, the decryption time is input-specific.

Despite its utility, the feasibility of collusion-resistant FE for RAMs had
not been explored in prior works. Prior works did make partial progress in
this direction by either considering weaker models of computation such as finite
automata [2], Turing machines [1,6,7,34,45] or in the single-key setting [36]1.
However, the problem of constructing FE for RAMs was unanswered and has
been one of the important open problems in this area.

1.1 Contributions

We resolve this open problem; we give the first feasibility result of functional
encryption for RAMs. Before stating our result, we first elaborate on the defini-
tion of FE for RAMs. A public-key functional encryption for RAMs consists of
the following algorithms:

• The setup algorithm Setup that produces a public key pk and a master secret key
MSK. The runtime of the setup algorithm is polynomial in λ (security param-
eter) and grows poly-logarithmically in the worst-case runtime bound T .

1 Note that the work of [36] also construct an FE for RAMs scheme in the bounded-
key setting: however, the decryption time of the bounded-key FE scheme grows
polynomially in the database size and thus doesn’t enjoy the sublinear decryption
runtime property that we desire.
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• The key generation algorithm KeyGen that takes as input MSK, a RAM pro-
gram P and outputs a functional key for P , denoted by skP . The running
time of key generation is only proportional to λ, the description size of P and
grows poly-logarithmically in T .

• The encryption procedure Enc takes as input MSK, database D and outputs
a ciphertext CT. The running time of the encryption procedure grows poly-
nomially in λ, |D| and poly-logarithmically in T .

• The decryption procedure Dec, modeled as a RAM program, takes as input
ciphertext CT, functional key skP and produces the output PD(). The runtime
of decryption should grow proportional only to t and λ, where t is the time
to execute PD.

The security notion2 for the above notion can be appropriately defined along the
same lines as (collusion-resistant) FE for circuits.

In terms of efficiency, FE for RAMs schemes enjoy better efficiency guaran-
tees than FE for circuits schemes in terms of both the running time of the key
generation algorithm as well as the running time of the decryption algorithm.
We clarify this in Fig. 1.

Fig. 1. Comparison of efficiency guarantees of FE for circuits via naively simulating
RAM programs (that is, to issue a key for a program P and time bound T , generate
a key for a circuit that runs P for T time steps) and our work. We denote P to be
the program input to the key generation algorithm, D to be the database input to the
encryption algorithm and T to be the worst case running time of P . We denote t to be
the running time of P on D. Since, the typical setting of T is 2λ, we omit mentioning
the dependence on poly-log factors in T . (‡ A well-known technique for decreasing the
running time from T to t is to issue log T decryption keys, with the i-th one running
in time at most 2i.)

Main Result: Collusion-resistant FE for RAMs. We show how to generically
transform any (collusion-resistant) FE for circuits scheme into a (collusion-
resistant) FE for RAMs scheme. Our transformation additionally assumes
the existence of public-key doubly-efficient private information retrieval (PK-
DEPIR) scheme, introduced independently by the works of Boyle et al. [16] and
Canetti et al. [21].

In more detail, we show the following.
2 The security notion we consider in this work is indistinguishability-based (IND-

based) selective security. We delve more on this when we formally define FE for
RAMs in the technical sections.
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Theorem 1 (Informal). There exists a collusion-resistant public-key FE scheme
for RAMs assuming the existence of:

• collusion-resistant public-key FE for circuits and,
• public-key doubly efficient PIR [16,21].

We note that the construction of public-key DEPIR is currently based on
security of VBB for specific class of circuits. However, we note that even demon-
strating the feasibility of FE for RAMs from any cryptographic assumption was
wide open. Thus, we believe that our work takes an important step towards estab-
lishing the feasibility of FE for RAMs. We point out that a related primitive,
FHE for RAMs [41], was also based on the assumption of public-key DEPIR.

Our construction involves a novel combination of pebbling techniques [31],
rewindable ORAMs [41], and hybrid functional encryption techniques [3]. We
only work in the selective security setting, where the challenge message query
needs to be declared by the adversary even before looking at the public key.

Observe that the assumption of FE for circuits is inherent in Theorem 1 since
FE for RAMs imply FE for circuits. It is natural to ask whether the assumption
of public-key DEPIR is inherent. While we don’t answer this question, we still
make a useful observation: an FE for RAMs scheme implies a weaker notion,
called secret-key DEPIR.

Theorem 2 (Informal). Assuming the existence of unbounded private-key FE
for RAMs, there exists a construction for unbounded secret-key DEPIR.

The works of Boyle et al., Canetti et al. [16,21] also proposed constructions
for secret-key doubly efficient PIR; while they are based on new cryptographic
assumptions, a thorough study of the assumptions was recently conducted
by [15].

Intermediate Result: Succinct Garbled RAMs from Falsifiable Assumptions.
Towards proving our main result, we obtain a new construction3 of succinct gar-
bled RAMs [8,19,20,23,46]. A succinct garbling scheme for RAMs consists of the
following algorithms: (i) Database encoding algorithm that encodes a database D
in time poly(λ, |D|), (ii) RAM garbling algorithm garbles a program P in time
poly(λ, |P |) and, (iii) Evaluation algorithm that takes as input garbling of D,
garbling of a program P and outputs PD(), in time polynomial in (λ, |P |, |D|, t),
where t is the running time of PD().

It has two advantages over prior constructions: (i) first, it is arguably simpler
than existing constructions [4,18,19,23] and, (ii) second, it is based on polynomi-
ally secure functional encryption scheme for circuits (a falsifiable assumption) as
opposed to existing constructions which are based on indistinguishability obfus-
cation4 schemes (a non falsifiable assumption).
3 In fact, we define a stronger version called succinct reusable garbled RAM; this

notion implies succinct garbled RAM.
4 In the technical sections, we use indistinguishability obfuscation for circuits with

logarithmic inputs to construct succinct reusable garbled RAMs. However, it has
been shown [49] that iO for logarithmic inputs is equivalent to collusion-resistant
functional encryption for circuits.
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Formally, we prove the following.

Theorem 3 (Informal). There exists a succinct garbling scheme for RAMs
assuming polynomially secure (collusion-resistant) public-key functional encryp-
tion for circuits.

Bounded-Key FE for RAMs. Our techniques also extend naturally to the
bounded-key setting. In this setting, the adversary can only query an a priori
bounded number of functions in the security experiment. We show how to con-
struct a bounded-key FE for RAMs from standard assumptions; unfortunately,
the resulting FE for RAMs scheme does not enjoy the same efficiency properties
as before. In particular, the algorithms run in time polynomial in the worst case
time bound. Nonetheless, this still performs better than the bounded key FE for
circuits scheme since the decryption time only grows with the worst case time
bound and in particular, does not explicitly depend on the size of the database
encrypted. Formally,

Theorem 4 (Informal). Assuming the existence of laconic oblivious trans-
fer [24] and public-key encryption, there exists a bounded-key public-key FE for
RAMs scheme satisfying the following efficiency properties:

• The time to compute setup is poly(λ,Q, |P |, T ), where T is the worst case
time bound and Q is the collusion bound.

• The time to compute the key generation of a program P is poly(λ,Q, |P |, T ).
• The time to compute the encryption of a database D is poly(λ,Q, |P |, |D|, T ).
• The time to compute the decryption of a functional key associated with P

and a ciphertext of database D is poly(λ,Q, |P |, t), where t is the runtime of
PD().

In comparison, a bounded key FE for circuits scheme has similar setup, key
generation and encryption runtimes except that the decryption time is polyno-
mial in (λ,Q, |D|, |P |, t). When t � |D|, our bounded key FE for RAMs scheme
outperforms bounded key FE for circuits schemes.

The primitive of laconic oblivious transfer can be instantiated using a host
of well studied assumptions (for example, computational Diffie-Helman (CDH),
learning with errors [17,24]). Thus, we obtain different constructions of bounded-
key FE for RAMs based on standard assumptions.

Corollary 5 (Informal). Assuming X ∈ {CDH,LWE,Factoring}, there exists a
bounded-key public-key encryption scheme for RAMs.

Related Work. Goldreich and Ostrovsky [38] initiated the area of building cryp-
tographic primitives for RAM programs and since then, several works have pro-
posed cryptographic constructions for RAM computations: for example, garbling
schemes [4,8,18–20,23,29,30], secure multiparty computation for RAMs [28,43],
doubly-efficient private-information retrieval [16,21], private anonymous data
access [42] and fully homomorphic encryption for RAMs [41]. Of particular
interest to us is the work of Gentry et al. [36] which introduced and constructed
(single-input) functional encryption for RAMs in the single-key setting. We view
our work as continuing this exciting line of research.
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2 Technical Overview

We present an overview of our construction.

Recap: Garbled RAMs. Towards building FE for RAMs, we first start with
a weaker but similar notion of FE for RAMs, popularly referred to as garbled
RAMs [29,30,35] in the literature. A garbled RAM allows for separately encoding
a RAM program-database pair (P,D) such that the encodings only leak the
output PD() (here we assume the program input is hardcoded in the program);
computing both the encodings requires a private key that is not revealed to the
adversary. Notice that a garbled RAM scheme already implies a one-time, secret
key FE for RAM scheme; meaning that the adversary only gets to make a single
ciphertext query and a single functional key query in the security experiment.

Traditionally, the following two-step approach is employed to construct a
garbled RAM scheme:

• First construct a garbled RAM scheme in the UMA (unrestricted memory
access) setting; the setting where the memory access pattern is not hidden.

• To hide the access pattern, generically combine any garbled RAM scheme
satisfying UMA security with an oblivious RAM scheme [38].

The blueprint employed to construct a garbled RAM scheme in the UMA
setting is the following: to garble a RAM program P (associated with a step
circuit C), database D, generate T garbled circuits [54], where T is an upper
bound on the running time of P . The ith garbled circuit performs the “CPU
circuit” which evaluates the ith time step of P . The garbling of P consists of all
T garbled circuits.

To evaluate a garbling of P on a suitably encoded database D, perform the
following operations for i = 1, . . . , T − 1: evaluate the ith garbled circuit to
obtain output encodings of the ith step of execution of PD. Next, we compute
the recoding step that converts the output encodings of the ith step into the
wire labels for the (i + 1)th garbled circuit; only the recoding step involves the
encoded database where we retrieve information and enforce honest evaluation.
The resulting wire labels will be used to evaluate the (i + 1)th garbled circuit.

The output of the T th garbled circuit is the output of execution of PD.
Recall that in the UMA setting, we do not hide memory access pattern,

memory content, or intermediate states. In order to achieve full security, we
additionally need to compile the original program with additional protection,
usually this involves a specially crafted oblivious RAM scheme to hide the access
pattern, and a suitable secret key encryption to hide the rest.

Towards FE for RAMs: Challenges. To leap from a toy case of FE for RAMs,
a.k.a. garbled RAMs, to building a full-fledged collusion-resistant public-key FE
for RAMs involves many hurdles. We start by highlighting two such challenges.
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Challenge: Parallel5 Reusability. Let the adversary receive as input,
encryption of a challenge database D∗ and functional keys skP1 , . . . , skPq

asso-
ciated with RAM programs P1, . . . , Pq. We can decrypt the same encryption of
D∗ using the different functional keys skP1 , . . . , skPq

to obtain PD∗
1 , . . . , PD∗

q .
Typically, in the RAM setting, however, reusability has only been studied

in the sequential setting (also called persistent memory setting [35]) where P1

first acts on D∗ to obtain an updated database; P2 then acts upon the updated
database and so on. To construct FE for RAM, the notion of parallel reusability
is required, where different programs P1, . . . , Pq need to act upon the same initial
database D∗.

Prior results show that some of the existing garbled RAMs are insecure in
the parallel reusability setting [42]6.

Challenge: Succinctness. Recall that we enforce stringent efficiency require-
ments on FE for RAMs schemes: the parameters should neither grow with the
database length nor with the worst-case time bound, the decryption time should
only grow proportional to the input-specific running time and so on. Even for
simpler primitives such as randomized encodings, achieving succinctness has
proven to be very challenging; for instance, the constructions of succinct garbled
RAMs by [19,23] are quite complex and involve heavy tools.

Moreover, unlike weaker models, generic constructions of FE using succinct
garbling do not work in the RAM setting. For instance, in the setting of Turing
machines, here is an approach to obtain FE for Turing machines from FE for
circuits: use FE for circuits to generate a succinct garbling of the database
encrypted and the TM associated with the functional key. Such solutions would
necessarily blow up the decryption time proportional to the size of the database
encrypted, even if the program only runs in sublinear time.

Known Tools. The above two challenges are not new and have presented them-
selves in different contexts. We mention some of the relevant contexts below.

Succinct Garbling for RAMs [8,19,20,23]: Succinct garbling schemes for
RAMs do solve the problem of succinctness but does not satisfy the parallel
reusability property. They either only allow the evaluation of one garbled pro-
gram, or only allow evaluating several programs sequentially in a stateful man-
ner, while for functional encryption we would like the program evaluation to be
stateless.

5 We note that the parallel notion we consider here is also different from the notion
considered by the works of constructing garbled parallel RAM [13,23,25,50], in
particular, we consider the setting where each agent can compute a different pro-
gram in parallel, while garbled parallel RAMs consider the setting where multiple
CPUs/agents jointly compute a single program to speed up the computation.

6 To be precise, [42] shows that traditional ORAM schemes are insecure in the paral-
lel reusability setting. This correspondingly means that the garbled RAMs schemes
building upon these ORAM schemes would correspondingly be insecure in the par-
allel setting.
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FE for circuits [11,51,52]: As we mention in the introduction, FE schemes for
circuits do address the challenge of parallel reusability; functional keys associ-
ated with programs P1, . . . , PQ can be used in parallel to decrypt an encryption
of x. However they do not achieve succinctness since the decryption time grows
with the worst-case runtime of the computation.

Rewindable ORAMs [42]: A recently introduced primitive, rewindable
ORAM, allows for rewinding the encoded database of the ORAM scheme to
an earlier state. The security property states that the access patterns generated
even after rewinding the encoded database should not reveal any information
about the underlying database. This primitive does address the challenge of
parallel reusability, succinctness (only a small amount of secret state needed
to perform evaluation) but in itself is not useful since this gives an interactive
solution and hence needs to be used in conjunction with other (possibly non-
interactive) primitives.

2.1 Our Template

We show how to combine the techniques used to construct the above seemingly
unrelated tools to obtain a construction of FE for RAMs. As mentioned earlier,
the current known constructions of succinct garbling schemes for RAMs are
difficult to work with. We will first simplify (and improve!) these constructions
before achieving our main result.

The template for the rest of the overview is as follows:

• We first tackle the challenge of succinctness. We present a new construction of
a garbled RAM (GRAM) scheme. This will serve as an alternative to existing
schemes which are significantly more complex and additionally assumes sub-
exponentially secure FE for circuits. Our scheme is simpler and only assumes
polynomially-secure FE for circuits.

• We upgrade this succinct GRAM scheme to satisfy parallel reusability; the
same garbled database can be evaluated upon by multiple garbled programs.
We call this succinct reusable GRAM. This notion would imply a single-
ciphertext collusion-resistant FE for RAMs in the secret-key setting. The
adversary can only make a single ciphertext query. One of the important
tools we use to achieve parallel reusability is rewindable ORAMs.
In the technical sections, we present the construction of succinct reusable
GRAM directly, instead of first presenting the non-reusable version and then
upgrading it to the reusable version. We present the upgrading step in this
overview to explain the construction better to the reader.

• Finally, we combine succinct reusable GRAMs with collusion-resistant FE for
circuits to obtain collusion-resistant FE for RAMs.

2.2 Starting Point: Simpler, Better and Modular Succinct GRAM

Our starting point is the following template introduced by [8] to construct suc-
cinct garbled RAMs.
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• We start with a non-succinct garbled RAM scheme, i.e. the parameters in the
scheme could grow proportional to the worst runtime bound T of the compu-
tation. However, we still require that the evaluation runs in time proportional
to the runtime of the computation and in particular, could be independent of
the database length. Such a garbled scheme can be constructed from one-way
functions [29–31], and these constructions follow the two-step approach that
we have outlined at the beginning of the section.

• To go from a non-succinct to a succinct garbled RAM scheme, we need to
reduce the size of the garbled program to be independent of the worst case
bound T . We achieve this size reduction using program obfuscation7. Specif-
ically, we use obfuscation to delegate the execution of the non-succinct pro-
gram garbling procedure to the time of evaluation. That is, to garble a pro-
gram P via a succinct garbling scheme, compute an obfuscated circuit that
produces a non-succinct garbling of P .

To make the above high level approach work, we need to nail down the precise
properties that we need from the underlying non-succinct garbled RAM scheme.
For starters, just obfuscating the non-succinct garbling procedure would not
work: the size of the obfuscated circuit will be as large as the size of the non-
succinct garbled program and thus, we didn’t achieve size reduction.

Thus, we need to start with a non-succinct garbling scheme where the garbled
program can be decomposed into many components such that the obfuscated cir-
cuit produces one component at time. Even if we do this, arguing proof turns
out to be tricky: a naive approach to reduce to the security of the non-succinct
garbling scheme involves hardwiring the entire garbled program inside the obfus-
cated circuit but this again is not possible as it violates succinctness.

Local Simulatability: These issues are not unique to our setting and have
already been encountered while designing succinct garbled RAMs with bounded
space [8] or succinct garbled Turing machines [6,33]. They identified two main
properties that are necessary for the underlying non-succinct garbling scheme to
satisfy.

• The program being garbled can be broken down into small components (say,
of size poly(λ, log T )) and each of these components can be garbled indepen-
dently. This property also helps in proving security of the succinct garbled
Turing machine without having to hardwire the entire garbled circuit inside
the obfuscated circuit.

• The security proof of the non-succinct scheme should be argued in such a
way that only a “small” (say, poly(λ, log T )) subset of the garbled program
components need to be changed from one hybrid to the next hybrid.

7 A program obfuscation is a compiler that transforms a program P into a function-
ally equivalent program that hides all the implementation details of the original
program. In the technical sections, we use a specific definition of obfuscation, called
indistinguishability obfuscation.
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We now revisit the template mentioned above and change the circuit being obfus-
cated to output the (non-succinct) garbled program, one component at a time.
On input i, the obfuscated circuit outputs the ith component of the garbled
program, instead of producing the whole garbled program at once. To argue
security, we carry out the hybrids of the non-succinct garbling scheme by only
hardwiring a small subset of components at a time. By local simulatability, we
are guaranteed that in each hybrid, the amount of hardwired information is never
too large and therefore we achieve succinctness.

Therefore, we have reduced the problem of constructing succinct GRAM to
identify and instantiate an appropriate non-succinct garbling scheme satisfying
the above two properties. This is where previous works fall short. Their instan-
tiations yielded succinct garbling schemes only for Turing machines [6,33] or
succinct garbled RAMs with bounded space [8].

Non-Succinct Garbled RAMs with Local Simulatability8: To con-
struct (non-succinct) garbled RAM satisfying the local simulatability property,
we split the construction into two parts: in the first part we construct a succinct
garbled RAM with unprotected memory access (UMA), where we forget about
protecting memory contents, access patterns and intermediate CPU states; in
the second part, we bootstrap UMA-GRAM to fully secure GRAM.

For the first step, we observe that the UMA-secure adaptive garbled RAM
construction of [31] already satisfies the local simulatability property. For the
second part, previous schemes usually employ an ORAM to hide the memory
access pattern and an encryption scheme to hide the memory content. How-
ever, these tools are not quite compatible with the local simulatability property,
therefore, their compatible versions of ORAM with strong localized randomness,
and timed encryption scheme – originally introduced by the same paper [31] to
construct adaptive garbled RAMs – are needed for the proof.

Timed encryption, at a high level, is an encryption scheme that allows issuing
encryption/decryption keys with growing power as the evaluation goes on, i.e. a
key issued at time t can decrypt anything that was encrypted under time t′ ≤ t,
but any message encrypted at a later time remains hidden. Using the tool of
timed encryption allows us to use a sequence of hybrids to remove the timed
encryption keys one by one (and hence allowing us to simulate each evaluation
step locally), from the strongest (which is one hardwired in the last step circuit)
to the weakest (which is the one hardwired in the first step circuit).

Looking ahead, there is another more subtle issue for constructing succinct
GRAM that is not captured by local simulatability: in the succinct garbling
scheme, we can only use a very small amount of randomness in the simulator, as
otherwise the size of the simulated circuit will blow up and break succinctness.
In particular, this means that we cannot simply hardcode the timed encryption
of 0. For this issue, we develop timed encryption with pseudorandom ciphertexts,
which is a timed encryption whose ciphertext is indistinguishable from uniformly
random bitstrings; and construct it from one-way functions. Once we have that,
8 The terminology of local simulation is only introduced for the benefit of describing

our techniques and will be implicit in our security proof.
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we can simply use a PRF to generate all the simulated ciphertexts in a succinct
way.

We now move on to hiding access pattern in a local simulatable way. Strong
localized randomness property for ORAM, at a high level, simply requires that
the randomness used by ORAM is equipped with some structural properties
that will allow us to equivocate (and change) the randomness in a local way. For
now, the ORAM with strong localized randomness constructed in [31] suffices
for succinct (non-resuable) garbled RAM.

2.3 Succinct Garbled RAM: Achieving Reusability

Succinct GRAM alone itself is not going to be sufficient to construct FE for
RAMs. Instead, it turns out to require the reusability property: given an encoding
of a database D and multiple garbled programs ˜P1, . . . , ˜Pq, the adversary can
recover the outputs PD

1 (), . . . , PD
q () and moreover, the database encoding and

the garbled programs do not leak any information about D beyond the outputs
that can be recovered. We call this notion succinct reusable garbled RAM.

Note that this definition is different from the persistent memory setting [35];
the programs sequentially evaluate on the databases as against the parallel exe-
cution that we desire. In addition, we also require that the reusable GRAM also
satisfies succinctness properties as defined in a succinct GRAM scheme.

From Succinct GRAM to Succinct Reusable GRAM. To construct a succinct
reusable garbled RAM, again it is helpful to split things into two part: in the first
part we construct a succinct reusable garbled RAM with unprotected memory
access (UMA), and in the second part we use this UMA primitive to construct
fully secure succinct reusable garbled RAM. Note that in UMA setting, essen-
tially all we are protecting is the program execution, and we do not face much
trouble in adapting the scheme above into the reusable setting. Therefore, we
focus on the full security setting and highlight the new challenges in the reusabil-
ity setting.

Challenges in Protecting Memory Content: To protect the content of
the memory, we need to include the encryption key into our garbled program.
However, once we have given out one garbled program, we can no longer invoke
the security of the encryption scheme to say that the adversary has no informa-
tion about the underlying database, as the garbled program contains a hardwired
secret key. Indeed, the adversary can simply read from the encrypted database
by simply reading the output of the garbled program. Therefore we need to
remove the encryption keys in the hybrids very carefully. In the non-reusable
setting, it has been shown in prior work [31] that using timed encryption fixes
this issue. On a high level, their idea is to remove the encryption key one by one
in each hybrid, in particular, they would remove the encryption key from the
last garbled program (and write junk to the database instead) indistinguishably
in the first hybrid, and then move forward and remove the encryption key in the
second last garbled program, and so on. Essentially, timed encryption allows us
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to encrypt messages under a different key in each time step, while the decryption
key can only decrypt messages before the current timestep but not after, which
allows the hybrid argument to go through. However, this security proof does not
work in the reusable case: when we try to equivocate the output/database writes
and remove the encryption key, the adversary could in principle still be able to
distinguish the two distributions as the same timed encryption key still appears
in other garbled programs.

In order to tackle this issue, we employ a different time step labeling and also
a different hybrid strategy. In particular, instead of the time steps increasing
in each garbled program, each garbled program will use a shared global time
counter. Note that this also makes sense from the reusability point of view, as
the evaluator can in principle evaluate garbled programs on the garbled database
in any order that he wishes.

Now suppose we want to remove the strongest encryption key in the last step
circuit. We can employ the following hybrid sequence: first, we use the security of
UMA-GRAM to change each last step circuit into a dummy circuit that directly
outputs the output in all garbled programs in parallel (to do it more carefully,
we replace each garbled program one by one and argue each change is indis-
tinguishable) – this effectively removes all the timed encryption keys that are
used in the last time step; this allows us to do the next step which is to change
the encrypted CPU states and write data into garbage in parallel ; finally, we
reverse the change of dummy circuit again in parallel. By doing so, we remove
the strongest timed encryption key in all garbled programs at once. We can
repeat this process for each remaining encryption keys until all encryption keys
are removed from garbled program, at which point we can replace the database
with an empty database and arrive at the simulated distribution.

Challenges in Protecting Memory Access Pattern: Another issue is
that we need to protect the database read/write patterns in a way that is com-
patible with succinct UMA GRAM. Basically, we need to change each database
read/write pattern without hardwiring too much additional information, which
would blow up the size of the garbled program and break succinctness. This is fur-
ther complicated by the fact that the adversary can evaluate different programs
on the same database in parallel and compare the results to acquire additional
information.

To resolve both these issues, we design a rewindable ORAM scheme satisfying
strong localized randomness property. The starting point of the construction is
the plain rewindable ORAM scheme given in [41], which consists of two parts: a
read-only rewindable ORAM and a read-write non-rewindable ORAM. The idea
of the construction is that the read-write ORAM will act as a read-write cache
to the underlying database, which is encoded in the read-only ORAM.

Given this beautiful construction, it is straightforward to construct a rewind-
able ORAM scheme with strong localized randomness. In particular, we simply
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instantiate the read-write ORAM with the ORAM with strong localized ran-
domness property. The access pattern in read-only ORAM is by definition locally
sampled, and we can simulate the access pattern in read-write ORAM locally by
using the strong localized randomness property of the read-write ORAM that
we use.

2.4 Bootstrapping Step: From FE for Circuits to FE for RAMs

Once we construct a succinct reusable garbled RAM scheme, we show how to
bootstrap a FE for circuits scheme into a FE for RAMs scheme. Our transfor-
mation is inspired by a similar transformation described in [26].

• To encrypt a database D, encode D using a succinct reusable GRAM scheme.
Denote the output by ( ˜D, sk). Encrypt sk using an FE for circuits scheme;
call the resulting ciphertext ct. Output the ciphertext of the FE for RAMs
scheme, CT = ( ˜D, ct).

• To generate a functional key for a program P , generate a FE key for a circuit
G that takes as input a secret key sk and produces a garbling of the program
P with respect to sk; call the FE key SKG. Set the functional key for the FE
for RAMs scheme to be SKG.

• The decryption algorithm first recovers the garbled program ˜P by running
the FE decryption algorithm. It then runs the succinct GRAM evaluation of
˜P on ˜D to obtain PD.

To argue security, we can use the hybrid functional encryption technique of [3,22]
to first hardwire the garbled programs in the function keys and then invoke the
reusable security of the GRAM scheme to prove the indistinguishability security
of the FE scheme.

2.5 Organization

We organize the technical sections of our paper as follows:

• In Sect. 3, we introduce our notations and preliminaries, with additional pre-
liminaries described in the full version.

• In Sect. 4, we present a construction of succinct reusable garbled RAM.
First, we present the definition of succinct reusable garbled RAM in Sect. 5.1.
Next, in Sect. 5.2, we present a construction of succinct garbled RAM in the
UMA setting. In this step, we use pebbling techniques in conjunction with
indistinguishability obfuscation for inputs of logarithmic length (implied by
functional encryption). Finally, in Sect. 5.3, we show how to transform UMA-
secure garbled RAM to fully secure garbled RAM in the reusability setting.
As a result, we obtain the construction of succinct reusable garbled RAM. We
use the tool of rewindable ORAM in this step. The missing proofs in Sect. 5
are presented in the full version.

• In Sect. 6, we show how to combine (collusion-resistant) FE for circuits with
succinct reusable garbled RAM to achieve (collusion-resistant) FE for RAMs.
The missing proofs in Sect. 6 are presented in the full version. At last, we show
implication of FE for RAMs to secret-key DEPIR in the full version as well.
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3 Preliminaries

We denote λ to be the security parameter. We denote the computational indistin-
guishability of two distributions D1 and D2 by D1 ≈ D2. We use the abbreviation
PPT to denote probabilistic polynomial time algorithms. Additional preliminar-
ies are presented in the full version.

RAM Model of Computation. We recall the definition of RAM computations.
A RAM computation consists of a RAM program P and a database D. The
representation size of P is independent of the length of the database D. The
program P has random access to the database D. We denote the output to be
PD In more detail, the computation proceeds as follows.

The RAM program P is represented as a step-circuit C. It takes as input
internal state from the previous step, location to be read, value at that location
and it outputs the new state, location to be written into, value to be written
and the next location to be read. More formally, for every τ ∈ T , where T is an
upper bound on the running time,

(stτ , rdτ ,wtτ ,wbτ ) ← C(stτ−1, rdτ−1, bτ )

where we have the following:

• stτ−1 denotes the state in the (τ − 1)th step and stτ denotes the state in the
τ th step.

• rdτ−1 denotes the location to be read from, as output by the (τ − 1)th step.
• bτ denotes the bit at the location rdτ−1.
• rdτ denotes the location to be read from, in the τ th step.
• wtτ denotes the location to be written into in the τ th step.
• wbτ denotes the value to be written at τ -th step at the location wtτ .

Remark 1 (Additional Input). In the literature, when defining RAM programs,
we also additionally define an input x and the program in addition to having
random access to D, takes as input x, and outputs PD. Without loss of generality,
we assume that the input x is part of the database and hence we omit including
this as an explicit input to P .

Remark 2 (Outputs). In this work, we only consider RAM programs with
boolean outputs. We can suitably extend the schemes we construct to handle
multiple outputs at the cost of blowing up the parameters proportional to the
output length.

3.1 Puncturable PRF

Puncturable PRFs [12,14,44] are PRFs for which a key can be given out such
that, it allows evaluation of the PRF on all inputs, except for any polynomial-size
set of inputs. The following definition is adapted from [53].
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Definition 1 (Puncturable PRF). A puncturable family of PRFs F mapping is
given by a typle of ppt algorithms (GenF ,EvalF ,PuncF ) and a pair of computable
functions n(·) and m(·), satisfying the following conditions:

• Functionality preserved under puncturing: For every ppt adversary A
such that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where
x /∈ S, we have that

Pr[EvalF (K,x) = EvalF (KS , x) : K ← GenF (1λ),KS = PuncF (K,S)] = 1

• Pseudorandom at punctured points: Foe every ppt adversary (A1,A2)
such that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an exper-
iment where K ← GenF (1λ) and KS = PuncF (K,S). Then we have

∣
∣Pr[A2(σ, KS , S,EvalF (K, S)) = 1]− Pr[A2(σ, KS , S, Um(λ)·|S|) = 1]

∣
∣ = negl(λ)

where EvalF (K,S) denotes the the concatenation of (EvalF (K,x1), . . . ,
EvalF (K,xk)), where S = {x1, . . . , xk} is the enumeration of the elements of S
in lexicographic order and U� denotes the uniform distribution over � bits.

The GGM tree-based construction of PRFs [37] from one-way function are easily
seen to yield puncturable PRFS, as shown in [12,14,44]. Thus we have:

Theorem 6. If one-way functions exist, then for all efficiently computable func-
tions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits
to m(λ) bits.

3.2 Indistinguishability Obfuscation

The definition below is from [27].

Definition 2. A uniform ppt machine iO is called an Indistinguishability obfus-
cator for a circuit class {Cλ}, if the following conditions are satisfied:

• For all security parameter λ, all circuit C ∈ Cλ, all input x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For all (not necessarily uniform) ppt adversaries (A0,A1), there exists a neg-
ligible function α, such that the following holds: if Pr[∀x,C0(x) = C1(x) :
(C0, C1, σ) ← A0(1λ)] > 1 − α(λ), then we have

|Pr[A1(σ, iO(λ,C0)) = 1] − Pr[A1(σ, iO(λ,C1)) = 1]| ≤ α(λ)

Theorem 7 [48,49]. For every large enough security parameter λ, assuming
2nε-secure functional encryption, there exists an ε-secure indistinguishability
obfuscator for circuits with input length n.

In particular, when n = log(λ) and ε is negligible in security parameter, iO
for n-length circuits, can be based on polynomially secure compact functional
encryption.
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3.3 Selective-Database Laconic Oblivious Transfer

The definition of laconic oblivious transfer is proposed in [24,34]. The security
notion we need about laconic oblivious transfer is based on work [45].

A laconic oblivious transfer scheme LacOT consists of four algorithms
(crsGen,Hash,Send,Receive) with details as follows:

• crsGen(1λ) takes as input security parameter λ and outputs a common refer-
ence string crs.

• Hash(crs,D) is a deterministic algorithm that takes as input the crs as well
as a database D ∈ {0, 1}∗, and outputs a hash value h and a state ̂D.

• Send(crs, h, L,m0,m1) takes as input the crs, hash value h, a pair of messages
(m0,m1) and an index L ∈ N. It outputs a ciphertext c.

• Receive
̂D(crs, c, L) is an algorithm with random access to a database ̂D that

takes as input the crs, a ciphertext c and an index L ∈ N. It outputs a message
m.

The scheme LacOT satisfies the following correctness and security properties:

Correctness. We say the scheme LacOT is correct, if for all D ∈ {0, 1}∗ of size
N = poly(λ), all i ∈ [N ] and all (m0,m1) ∈ {0, 1}p(λ), it holds that

Pr
[

Receive
̂D(crs, c, L) = mD[L]

]

= 1

where crs ← crsGen(1λ), (h, ̂D) ← Hash(crs,D) and c ← Send(crs, h, L,m0,m1).

Selective-Database Adaptive-Message Sender Privacy Against Semi-honest
Receivers. There exists a ppt simulator Sim that satisfies the following:

|Pr[Exptselreal(1
λ) = 1] − Pr[Exptselsim(1λ) = 1]| ≤ negl(λ)

where the experiments Exptselreal(1
λ) and Exptselsim(1λ) are in Fig. 2:

Fig. 2. Experiments associated with sender privacy for reads

where |D| = N = poly(λ), L ∈ [N ] and m0,m1 ∈ {0, 1}p(λ).
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Efficiency. We require that |h| is bounded by a fixed polynomial in λ, and being
independent of |D|. The runtime of algorithm Hash is |D| · poly(log |D|, λ), and
the runtime of Send and Receive are poly(log |D|, λ).

A variant of laconic OT that supports write operation is called updatable
laconic OT, defined in the following:

Definition 3 (Updatable laconic OT [24]). A laconic OT scheme LacOT is
called updatable if it supports the following two algorithms:

• ew ← SendWrite
(

crs, h, L, b, {mj,0,mj,1}|h|
j=1

)

: On input the common refer-
ence string crs, a hash value h, a location L ∈ [N ], bit b ∈ {0, 1} and |h| pairs
of messages {mj,0,mj,1}|h|

j=1, it outputs a ciphertext ew.

• {mj}|h|
j=1 ← ReceiveWrite

̂D (crs, L, b, ew): On input the common reference
string crs, location L, a bit b ∈ {0, 1}, a ciphertext ew and random access
to state ̂D, it updates the state ̂D (such that D[L] = b) and outputs mes-
sages {mj}|h|

j=1.

We require an updatable laconic oblivious transfer to additionally satisfy the
following properties:

• Correctness of Writes: Let database D be of size at most N = poly(λ).
Let D∗ be a database that is identical to D except that D∗[L] = b for bit
b ∈ {0, 1}. For any sequence of messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ), it
holds that

Pr[m′
j = mj,d∗

j
,∀j ∈ [|h|] : {m′

j}|h|
j=1 ← ReceiveWrite

̂D(crs, L, b, ew)] = 1

where crs ← crsGen(1λ), (d, ̂D) ← Hash(crs,D), (d∗, ̂D∗) ← Hash(crs,D∗),
and we have

ew ← SendWrite
(

crs, h, L, b, {mj,0,mj,1}|h|
j=1

)

• Selective-database adaptive-message sender privacy against semi-
honest receivers with regard to writes: There exists a ppt simulator
SimWrite satisfies the following

∣

∣Pr[Exptwrtreal(1
λ) = 1] − Pr[Exptwrtideal(1

λ) = 1]
∣

∣ = negl(λ)

where experiments Exptwrtreal and Exptwrtideal are defined in Fig. 3, where D∗ is
identical to D except D∗[L] = b.

• Efficiency. We require that the runtime of algorithms SendWrite and
ReceiveWrite are poly(log |D|, λ).
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Fig. 3. Experiments associated with sender privacy for writes

In [45], the authors show that selective-database laconic OT can be con-
structed from weakly-selectively secure, single-key public-key functional encryp-
tion for circuits, i.e.

Theorem 8 [45]. Assuming the existence of public-key functional encryption
for circuits, there exists selective-database laconic OT.

Theorem 9 [17,24]. Assuming the existence of laconic OT, there exists public-
key encryption.

4 Functional Encryption for RAMs

We define a public-key functional encryption scheme for RAM programs [36]. A
public-key FE for RAM programs consists of the probabilistic polynomial time
(ppt) algorithms Π = (Setup,Enc,KeyGen,Dec), defined as follows:

• Setup algorithm. Setup(1λ, T ): On input security parameter λ, an upper
bound T on the running time of the RAM program, the setup algorithm
outputs the master secret key MSK and public key pk.

• Encryption algorithm. Enc(pk,D): On input public key pk and database
D, the encryption algorithm outputs the ciphertext CT.

• Key generation algorithm. KeyGen(MSK, P ): On input master secret key
MSK, RAM program P , the key generation algorithm outputs the functional
key skP .

• Decryption algorithm. DecCT(skP ): On input a functional key skP and
with random access to ciphertext CT, the decryption algorithm (modeled as
a RAM program) outputs the result y.

Definition 4 (Correctness). A public-key functional encryption for RAMs
scheme Π is correct, if there exists a negligible negl(·) such that for any security
parameter λ, any database D, for any RAM program P , it holds that

Pr
[

DecCT (skP ) = PD
]

= 1 − negl(λ)
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where (pk,MSK) ← Setup(1λ, T ),CT ← Enc(pk,D), skP ← KeyGen(MSK, P )
and the probability is taken over the internal randomness of algorithms Setup,
Enc and KeyGen.

Succinctness. Unlike the traditional functional encryption for circuits scheme,
where the parameters can grow with the worst case runtime of the computation,
we require the parameters in the functional encryption for RAMs schemes to
have the following efficiency guarantees.

Definition 5 (Succinctness). A public-key functional encryption for RAMs
scheme (Setup,Enc,KeyGen,Dec) satisfies succinctness if the following proper-
ties hold:

• Setup(1λ, T ) runs in time poly(λ, log(T )).
• Enc(pk,D) runs in time poly(λ, log(T ), |D|).
• KeyGen(MSK, P ) runs in time poly(λ, log(T ), |P |).
• DecCT(skP ) runs in time poly(λ, T ).

Remark 3 (Input-Specific Runtime). An astute reader would notice that we only
require the decryption time to grow with the worst case time bound, and not
with input-specific runtime. Luckily, there is a simple generic transformation
that shows how to modify a scheme with worst-case time bound into a scheme
that has input-specific runtime: we encourage the reader to refer to [39] for a
description of this transformation.

Security. Our security notion is modeled along the same lines as FE for circuits.
We only focus on selective security in this work.

Definition 6 (Selective security). A public-key FE for RAMs scheme Π is selec-
tively secure if for any ppt adversary A, there exists a negligible function negl(·)
such that

AdvpfeΠ,A(1λ) =
∣

∣

∣Pr[ExptpfeΠ,A(1λ, 0) = 1] − Pr[ExptpfeΠ,A(1λ, 1) = 1]
∣

∣

∣ ≤ negl(λ)

for any sufficiently large security parameters λ, where ExptpfeΠ,A(1λ, b) is defined
via the following experiment:

1. Setup phase: The challenger computes (pk,MSK) ← Setup(1λ, T ).
2. Challenge phase: On input 1λ, the adversary submits (D0,D1), and the

challenger replies with pk and CT ← Enc(pk,Db).
3. Query phase: The adversary adaptively queries the challenger with any

RAM program P such that PD0 = PD1 . The challenger replies with skP ←
KeyGen(MSK, P ).

4. Output phase: The adversary outputs guess b′, which is defined as the
output of the experiment.
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5 Succinct Reusable Garbled RAM

We first start with the definition of succinct reusable garbled RAM. This will be
followed by the construction of succinct UMA-secure reusable GRAM. Finally,
we give a transformation from UMA security to full security.

5.1 Syntax and Security Definition

A succinct reusable garbled RAM scheme consists of PPT algorithms GRAM =
(GrbDB,GProg,GEval), with details as follows:

• GrbDB(1λ,D, T, 1Q): On input security parameter λ, time upper bound T ,
collusion upper bound Q, a database D, output the garbled database encoding
̂D along with secret key sk.

• GrbProg(sk, P ): On input secret key sk, and a RAM program P , output the
garbled program ̂P .

• GEval
̂D

(

̂P
)

: On input garbled program ̂P , database encoding ̂D, output y.

Correctness. For correctness, we require that for any program P , any database
D, we have that

Pr
[

GEval
̂D

(

̂P
)

= PD()
]

= 1

where ( ̂D, sk) ← GrbDB(1λ, T,D), and ̂P ← GrbProg(sk, P ).

Succinctness. We define succinctness property of garbled RAM. In the definition
below, we note the dependence of log T is implicit since log T is at most the
security parameter.

Definition 7 (Weak succinctness). A garbled RAM scheme GRAM = (GrbDB,
GrbProg,GEval) satisfies the weak succinctness property if the following holds:

• GrbDB(1λ, T, 1Q,D) runs in time poly (λ, log T,Q, |D|).
• GrbProg(sk, P ) runs in time poly(λ, T, log Q, log |D|, |P |).
• GEval

̂D
(

̂P
)

runs in time poly(λ, t, |P |, log Q, log |D|).

Definition 8 (Succinctness). A garbled RAM scheme GRAM = (GrbDB,
GrbProg,GEval) satisfies (full) succinctness property if the following holds:

• It satisfies the weak succinctness;
• GrbProg(sk, P ) runs in time poly(λ, log T, log Q, log |D|, |P |), instead of T .
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Reusable Security. We define a notion of reusable security that will be compat-
ible with the security definition of FE for RAMs.

To define reusable security, we first describe the experiment below.

ExptA(1λ, b):

• A submits two databases D0 and D1, a collusion bound Q (or ⊥ for
unbounded GRAM scheme), and a running time bound encoded in unary
1T .

• The challenger responds back with database encoding ̂Db.
• Proceeding adaptively, A submits RAM programs P0, P1. The challenger

checks that PD0
0 () = PD1

1 () and each program executes for the same number
of time steps. It also checks that |D0| = |D1|. If both the checks fail, it aborts;
otherwise, it sends the garbled program ̂Pb and garbled input x̂b. A repeats
this step for Q = poly(λ) times.

• A outputs b′. The output of the experiment is b′.

Definition 9 ((Indistinguishability) reusability). A garbled RAM scheme
(GrbDB,GrbProg,Eval) satisfies (indistinguishability) reusability property if the
following holds for every ppt adversary A:

∣

∣

∣Pr[0 ← ExptA(1λ, 0)] − Pr[0 ← ExptA(1λ, 1)]
∣

∣

∣ ≤ negl(λ)

Remark 4. Our construction actually satisfies a stronger security of simulation
security, where simulated version of GrbDB only takes as input (1λ, 1|D|), and
the simulated version of GrbProg only takes as input (sk, 1|P |, y). Note that for
this definition, simulation security is in fact equivalent to indistinguishability
security9.

Unbounded Reusability. Ideally, we would like the garbled database encoding
to be reusable by a priori unbounded number of garbled programs. We capture
this in the formal definition below.

Definition 10 (Unbounded reusability). In addition to succinctness, a succinct
garbled RAM scheme satisfies unbounded reusability, if the algorithm GrbDB
takes Q = ⊥ and all algorithms run in time independent of Q, for example,
GrbDB runs in time poly (λ, log T, |D|).

5.2 Succinct UMA Reusable GRAM

To construct succinct reusable GRAM, we start by constructing a succinct gar-
bled RAM scheme that only satisfies a weaker notion of reusable security, which
we call UMA security.

9 In general these two notions are not equivalent: in our setting, they are equivalent
since we only consider programs with boolean outputs.
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UMA Security. UMA security is defined similar as the indistinguishability secu-
rity above, except that the challenger in addition to checking PD0

0 () = PD1
1 (),

she also checks that D0 = D1, and every step circuits in PD0
0 (), PD1

1 () at the
same time step output the exact same output.

Ingredients. We use the following ingredients in our construction:

• Selective-database updatable laconic oblivious transfer (crsGen,Hash,Send,
SendWrite,Receive,ReceiveWrite).

• A puncturable PRF (PRF.Gen,PRF.Eval,PRF.Punc).
• Indistinguishability obfuscation iO for circuits with log-sized inputs.

Construction. We construct Π = (GrbDB,GrbProg,GEval) as follows:

• GrbDB(1λ,D, 1Q, Tmax): On input security parameter λ, database D and run-
ning time upper bound Tmax, it does the following:
1. Sample crs ← crsGen(1λ) and compute (d, ̂D) = Hash(crs,D)
2. Output ̂D as garbled database and (d, crs, Q, Tmax) as the secret key sk.

• GrbProg (sk, P ): On input secret key sk and program P , it does:
1. Sample a PRF key K ← PRF.Gen(1λ).
2. For each step τ ∈ [2, T ], k ∈ [λ + n + 1] and b ∈ {0, 1}, let labτ

k,b =
PRFK(τ ||k||b).

3. We use {labτ
k,b} to denote {labτ

k,b}k∈[λ+n+1],b∈{0,1}.
4. Output ̂P = (iO(PG[P, crs,K, d]), {lab1

k,dk
}k∈[λ], {lab1

k+λ,0}k∈[n+1]),
where PG is described in Fig. 4.
Note: we pad the circuit PG such that its size is |P | ·poly(λ, log |D|, log T )
bits. This will become clear later in the security proof.

Fig. 4. Description of program generator circuit PG
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Fig. 5. Description of step circuit C

• GEval
̂D

(

̂P
)

: With random access to ̂D and on input garbled program ̂P ,

1. Extract ˜lab ← {lab1
k,xk

}k∈[λ+n+1] from the garbled program
2. For τ from 1 to T ,

– Invoke the iO program on τ to obtain ̂Cτ .
– Compute

(

op, addr, A, {labk}k∈[λ+1,λ+n], B
)

= EvalCkt
(

̂Cτ , ˜lab
)

.
– If the labels corresponding to st are in plain-text, abort the loop
– If op = write, parse A as (ew,wb) and B as {labk}k∈[λ+1,λ+n]. Com-

pute {labk}k∈[λ] ← ReceiveWrite
̂D(crs, addr,wb, ew).

– Otherwise, parse A as {labk}k∈[λ+n] and B as e. Compute labλ+n+1 ←
Receive

̂D(crs, addr, e).
– Let ˜lab ← {labk,xk

}k∈[λ+n+N ]

3. Output {labk}k∈[λ+1,λ+n].

Correctness. We can prove the correctnss of our construction using an inductive
argument that for each step τ , the state st and databases are updated correctly
at the end of execution of step circuit. The base case is τ = 0. For τ 
= 0,
observe that if op = write, then algorithm Eval updates the database Dj and
its associated digest, where Dj is the corresponding database for write location
addr. Otherwise, if op = read, the labels recovered in Eval step 2 correspond to
the value in the location addr as requested (Fig. 5).

Succinctness

1. By the efficiency of laconic OT, GrbDB runs in time poly(λ, |D|) + log Q +
log Tmax.
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2. By the efficiency of indistinguishability obfuscation, GrbProg runs in time
poly(λ, log T, log |D|, |P |).

3. Finally, GEval runs in time t · poly(λ, log T, log |D|, |P |), as it will abort exe-
cution once the new state is in abort state.

We now prove that the above scheme is secure.

Theorem 10. Assuming the security of selective-database updatable laconic
oblivious transfer, puncturable PRF and iO with log-sized inputs, there exists
a succinct (unbounded) reusable garbled RAM scheme satisfying UMA security.

The crux of the proof is to show that the above construction satisfies reusable
security. Consider a PPT adversary A. Let A submit Q program pairs
(P1,0, P1,1), . . . , (PQ,0, PQ,1). We employ a standard hybrid argument.

Hybprog
k : In this hybrid, the challenger generates the database encoding ̂D hon-

estly. For i ≤ k − 1, it generates the garbled program ̂Pi,0 and for i ≥ k, it
generates the garbled program to be ̂Pi,1.

If we show that Hybprog
k ≈c Hybprog

k+1 , for any k ∈ {1, . . . , Q − 1} then this
implies that Hybprog

0 ≈c Hybprog
Q+1; thus proving that the scheme satisfies reusabil-

ity security. Due to the space limit, we only describe a sketch here. The full proof
is presented in the full version.

Instantiation. Combining the above theorem with the FE-based iO construc-
tion [48,49] and FE-based laconic OT construction [45], we arrive at the following
corollary.

Corollary 11. Assuming the existence of public-key functional encryption for
circuits, there exists a succinct (unbounded) garbled RAM scheme satisfying
UMA security.

Bounded-key setting. For the bounded-key setting, since we only aim for the
weak succinctness, we can consider the same construction as before except that
we can instantiate iO with an inefficient iO scheme, i.e., a scheme that outputs
the truth table of the circuit being obfuscated. Note that since we only consider
iO for logarithmic inputs, the size of the truth table is still polynomial in λ. As
a result, the running time of GrbProg is now T · poly(λ, log T, log |D|, |P |). Thus,
we have the following theorem.

Theorem 12. Assuming the existence of selective-database updatable laconic
oblivious transfer, there exists a weakly-succinct (unbounded) garbled RAM
scheme satisfying UMA security.

5.3 Succinct Reusable GRAM: From UMA to Full Security

In this section, we will present the construction of (fully) succinct reusable gar-
bled RAM. We present a transformation that converts a succinct reusable garbled
RAM with UMA security into a succinct reusable garbled RAM scheme with full
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security. While such UMA to full security setting have been known in the past,
they have not been studied in the (parallel) reusable setting, which is the focus
of our work.

One of the main ingredients in our construction is an initial-state rewindable
ORAM scheme satisfying strong localized randomness property. We start by
presenting a construction of this.

5.3.1 Rewindable ORAM with Strong Localized Randomness
Alternate Formulation of ORAMs. Before we recall the definition of strong
localized randomness, we first consider an alternate (equivalent) definition of
ORAM schemes. We consider a pair of PPT algorithms (OData,OProg).

Algorithm OData(1λ,D) takes as input security parameter λ, database D ∈
{0, 1}N and outputs the oblivious database D∗ and some client key ck. Algorithm
OProg(1λ, 1log N , 1T , P, ck) takes as input security parameter λ, memory size N ,
runtime T , a RAM program P , and the client key ck, and outputs a compiled
program P ∗, which is a RAM program that instead operates on D∗.

Strong Localized Randomness. The additional property we need from ORAM
is called strong localized property from an ORAM scheme. The definition we use
here is based on [31] and is stronger than the original definition.

Let D ∈ {0, 1}N be any database and (P, x) be any program/input pair. Let
the step circuits of P ∗ be indicated by {Cτ

CPU}τ∈[T ′] and R be the contents of
the random tape used in the execution.

Definition 11 (Strong localized randomness). We say that an ORAM scheme
has strong localized randomness property if for any sequence of memory accesses
of length T , there exists a sequence of efficiently computable values 1 = τ1 <
τ2 < · · · < τm = T ′ + 1, where τt − τt−1 ≤ poly(log N) for all t ∈ [2,m], such
that

1. For every j ∈ [m − 1], there exists an interval Ij of size poly(log N,λ), such
that for any τ ∈ [τj , τj+1], the random tape accessed by Cτ

CPU is given by
RIj .

2. For every j, j′ ∈ [m − 1] and j 
= j′, it holds that Ij ∩ Ij′ = ∅.
3. There exists a PPT procedure CkSim that takes as input (τk, τk+1, ck) and

outputs ck′. It has the following guarantee: there exists a PPT algorithm
that takes as input τi for i 
= k, ck′, RIi and outputs the correct (real world)
memory access pattern.
Furthermore, the following security guarantee is satisfied. ∀j ∈ [m], ∃k < j,
the following distributions are computationally indistinguishable:

• R\Ik∪Ij (where R\Ik∪Ij denotes the content of random tape except in
positions Ik ∪ Ij), ck′ := CkSim(τk, τk+1, ck), the memory accesses for
τ ∈ [τk, τk+1)10 and the memory accesses for τ ∈ [τj , τj+1).

10 [τk, τk+1) denotes the contents of the random tape starting from τ th
k position to

(τk+1 − 1)th position.
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• R\Ik∪Ij , ck′ := CkSim(τk, τk+1, ck) and the memory accesses for τ ∈
[τk, τk+1) and uniformly random memory accesses (with the same length
as the memory accesses for τ ∈ [τj , τj+1)).

Theorem 13 (ORAM with strong localized randomness [31]). Assuming one-
way functions, there exists ORAM with strong localized randomness property.

We remark that even though the definition of strong localized randomness
in [31] does not talk about CkSim, they implicitly constructed such a simulator
at the end of Appendix B, and their proof in Appendix D.1 implicitly relied on
the fact that such simulation is possible.

Our Construction. We present our construction of ISR-ORAM with strong local-
ized randomness property.

Theorem 14. Assuming the existence of ORAM with strong localized random-
ness and (unbounded) PK-DEPIR, there exists unbounded ISR-ORAM with
strong localized randomness.

Proof. The proof is done via two steps. First, we construct an ORAM with
initially-empty database and strong localized randomness property, from an
ORAM with strong localized randomness property; next, we add the ISR prop-
erty to the construction via using PK-DEPIR.

From Large Initial DB to Empty Initial DB. To prove the theorem, first we
build an ORAM with initially-empty database and strong localized randomness
from ORAM with only strong localized randomness property. The requirements
for ORAM with an initially-empty database are essentially the same as ordinary
ORAM, except that we restrict the scheme to having an empty database at the
beginning and allow the size of the database to grow as the number of operations
increase. (On the other hand, traditional ORAM works on a fixed-size database
who is given in its entirety at the beginning.) Furthermore, it needs to be able
to achieve this without knowing an upper bound on the number of operations a
priori.

The construction is as follows:

1. Initialize an ORAM D of length C; (at the beginning take C to be any
constant, say 1)

2. Read/write to the ORAM until ORAM program has performed over C writes;
3. Reinitialize another ORAM D′ of length 2C and copy data from D to D′;
4. Discard D and take D′ to be the new D, return to 2.

Despite possibly running in time linear in the size of the entire database for a
single write, this construction will only have amortized cost constant times the
original read/write amortized cost. This is because every time we are expanding
the database from size S to 2S, while this costs O(S) operations, it means that
we have performed S/2 operations since the last expansion. Therefore, we can
average the cost of this expansion into each operation, and thus on average the
cost for each operation is independent of S. On the other hand, strong localized
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randomness property follows naturally as we are using an ORAM with strong
localized randomness as our building block. Finally, since by construction the
expansion only depends on the running time/the number of writes, the security
properties are preserved.

Generically Achieving Initial-State Rewindable Property. Next, we recall the
construction of ISR-ORAM. The idea is that we will have a read-only ORAM
instantiated by PK-DEPIR and another read-write (initially-empty) ORAM
“cache” instantiated by the actual ORAM. The overall client state will con-
sists of (ck, k), where ck is the client state for the initially-empty ORAM, and
k is the (public) key for the PK-DEPIR. Whenever we do a read, we read from
both databases and return the cached result if cache read results in a hit. For
writes, we simply write directly to the cache.

To construct unbounded ISR-ORAM with SLR, we simply change the con-
struction above to use the initially-empty ORAM with SLR instead of initially-
empty ORAM. Note that the construction has the efficiency we desire as argued
above.

We now argue that it satisfies the strong localized randomness property. The
first two properties follow naturally, as there are only two places where we use
randomness; for the ORAM, this follows as we are using an ORAM with strong
localized randomness property; for the DEPIR, this follows as the randomness
used by DEPIR is freshly sampled for every access and therefore independent
of everything else. To argue the third property, CkSim simulates ck by calling
the underlying CkSim of ORAM with SLR, and output the public key k for the
PK-DEPIR as is. Using SLR of the initially-empty ORAM, the memory access
pattern for ISR-ORAM is indistinguishable from random; and by the security of
PK-DEPIR (where the distinguisher gets access to the key), the memory access
pattern for PK-DEPIR is indistinguishable from random.

Finally, it is apparent that for this construction, if we start with ORAM
without SLR instead of ORAM with SLR, and PK-DEPIR instead of B-bounded
SK-DEPIR, we will end up with B-bounded ISR-ORAM without SLR property
by the same argument. ��
We are now ready to present the construction of succinct reusable GRAM in the
full security setting.

Ingredients. We use the following cryptographic tools:

• Unbounded ISR-ORAM scheme (OData,OProg) with strong localized ran-
domness (Sect. 5.3).

• UMA-secure reusable garbled RAM scheme (Sect. 5.2).
• Puncturable PRF [12,14,44] (PRF.Gen,PRF.Eval,PRF.Punc).
• Timed encryption scheme [31] (TE.KeyGen,TE.Enc,TE.Dec,TE.Constrain).

Let M be the output length of TE.Enc when encrypting single bit messages.

Construction. We describe the succinct reusable (fully-secure) GRAM (GrbDB,
GrbProg,GEval) below:
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• GrbDB(1λ,D, 1Q, Tmax): On input security parameter λ, database D and run-
ning time upper bound Tmax,
1. Sample K ← TE.KeyGen(1λ).
2. For i ∈ [N ], compute D′[i] ← TE.Enc(K, 0λ,D[i]).
3. Compute (D∗, ck) ← OData(1λ,D′).
4. Run UGRAM.GrbDB(1λ,D∗, T ′(Tmax)) to obtain (sk, ̂D), where T ′(·) is

a polynomial corresponding to the running time blow-up of using the
ORAM scheme.

5. Output ̂D as garbled memory and (sk,K, ck) as secret key SK.
• GrbProg(SK, P ): On input secret key SK = (sk,K, ck) and a program P ,

1. Generate a puncturable PRF key K ′ ← PRF.Gen(1λ).
2. Compute P ∗ ← OProg(1λ, N, 1T , P, ck), where P ∗ runs in time T ′.
3. Construct a RAM program P ′ such that on input τ ∈ [T ′], do

(a) Compute K[τ ] ← TE.Constrain(K, τ).
(b) Let τ1, . . . , τm be the sequence of values guaranteed by the strong

localized randomness property of the ORAM scheme.
(c) Let j ∈ [m − 1] such that τ ∈ [τj , τj+1) and CP ∗

CPU ← P ∗(τ). Out-
put Cτ

CPU = SCτ [CP ∗
CPU, τ,K[τ ], Ij ,K

′]. The circuit SC is described in
Fig. 6.
Note: We need to pad the program P ′ such that the total size is
|P | · poly(λ, log D, log T ) bits.

4. Compute and output ̂P ← UGRAM.GProg(sk, P ′).

Fig. 6. Description of step circuit Cτ
CPU[τ, Ij , K[τ ], K′]

• GEval
̂D( ̂P ): With random access to garbled database ̂D and input ̂P , it com-

putes and outputs y = UGRAM.GEval
̂D( ̂P ).

Theorem 15. Assuming the existence of public-key functional encryption for
circuits and unbounded PK-DEPIR, there exists a succinct reusable garbled RAM
scheme.
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Due to the space constraints, we present the proof in the full version.

Bounded Setting. We observe that our techniques can be adapted to get
bounded reusable garbled RAM albeit satisfying the weaker succinctness prop-
erty.

Theorem 16. Assuming the existence of selective-database updatable laconic
oblivious transfer, there exists a weakly-succinct bounded reusable garbled RAM
scheme.

Proof. To put our construction to the Q-bounded-key setting, we implement the
following changes for the construction above:

1. UGRAM is replaced by the weakly-succinct reusable UMA GRAM we con-
structed in Theorem 12;

2. Unbounded ISR-ORAM with strong localized randomness property is
replaced with (Q · Tmax)-bounded ISR-ORAM without strong localized ran-
domness property, which can be constructed from one way functions, as we
show in Theorem 14.

Even though we lose the strong localized randomness property, since we only
need weak succinctness, we can get around the issue by hardwiring all the ran-
domness for the program. Furthermore, as we will only generate at most Q ·Tmax

queries to ISR-ORAM, intuitively, we can simply invoke the security proof above
to argue security for the new construction. We present the full proof also in the
full version. ��

6 Collusion-Resistant Public-Key FE: From Circuits
to RAMs

In this part, we show how to construct public-key FE for RAMs from public-key
FE for circuits. We use the following tools:

• Public-key FE scheme for circuits scheme ˜FE.
• Succinct reusable garbled RAM scheme GRAM, where the length of random-

ness used in algorithm GRAM.GrbProg is �1, the length of garbled program is
�2 and the length of garbling key is λ.

• Pseudorandom function PRF1 : K × {0, 1}λ → {0, 1}�1 , and PRF2 : K ×
{0, 1}λ → {0, 1}�2 where K is the space of keys of size λ.

We construct public-key functional encryption for RAMs scheme FE = (Setup,
Enc,KeyGen,Dec) as follows:

• Setup(1λ, T ): On input security parameter λ and upper time bound T ,
1. Compute (˜FE.MSK, ˜FE.pk) ← ˜FE.Setup(1λ).
2. Output MSK = ˜FE.MSK, pk = ˜FE.pk.

• Enc(pk,D): On input public key pk = ˜FE.pk and database D,
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1. Run the garbling database algorithm,

( ̂D,GRAM.sk) ← GRAM.GrbDB(1λ,D, T )

2. Choose a random PRF key K1 from PRF key space K.
3. Compute ˜FE.CT ← ˜FE.Enc

(

pk, (GRAM.sk,K1, 0λ, 0)
)

.

4. Output ciphertext as CT =
(

̂D, ˜FE.CT
)

.

• KeyGen(MSK, P ): On input master secret key MSK = (˜FE.MSK, T ), a RAM
program P ,
1. Sample random string τ ← {0, 1}λ, and r ← {0, 1}�2 .
2. Compute ˜FE.skP ← ˜FE.KeyGen(˜FE.MSK, C[P, r, τ ]) for circuit C[P, r, τ ]

as described in Fig. 7.
3. Output skP = ˜FE.skP .

Fig. 7. Description of circuit C [P, r, τ ] (GRAM.sk, K1, K2, β)

• DecCT (skP ): On input secret key skP and random access to ciphertext CT,
the decryption algorithm does:
1. Parse the functional key skP as ˜FE.skP .
2. Parse the ciphertext CT as ( ̂D, ˜FE.CT).
3. Compute ̂P = ˜FE.Dec

(

˜FE.skP , ˜FE.CT
)

.

4. Compute and output y ← GRAM.GEval
(

̂P , ̂D
)

.

Correctness. For any RAM program P , database D, let CT ← Enc(pk,D),
and skP ← KeyGen(MSK, P ), where (pk,MSK) are generated as above. Parse
CT as ( ̂D, ˜FE.CT), and skP = ˜FE.skP . The correctness of ˜FE guarantees that
̂P = GRAM.GrbProg(GRAM.sk, P ;PRF(K, τ)), where ̂P = Dec (skP ,CT). By the
correctness of pseudorandom function PRF and FE scheme ˜FE, it follows that
the output of GEval

(

̂P , ̂D
)

= PD().

Succinctness. We analyze the succinctness property of the construction as fol-
lows:
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• Setup(1λ, T ) runs in time poly(λ, log(T )): first observe that ˜FE.Setup(1λ)
runs in time poly(λ, log(s)), where s denotes the size of supported circuits.
Now we determine an upper bound for s. By the succinctness of GRAM,
GrbProg(sk, ·;PRF1(K1, τ)) can be represented by a circuit of size at most
poly(λ, log(T ), |P |); thus, |C| = poly(λ, log(T ), |P |). Thus, s = poly(λ, log(T ),
|P |).

• Enc(pk,D) runs in time poly(λ, log(T ), |D|): we first note that ˜FE.Enc(pk,
GRAM.sk) runs in time poly(λ, log(s)), while GRAM.GrbDB(1λ,D, T ) runs in
time poly(λ, log(T ), |D|).

• KeyGen(MSK, P ) runs in time poly(λ, log(T ), |P |): ˜FE.KeyGen(˜FE.MSK,
C [P, r, τ ] (GRAM.sk,K1,K2, β)) runs in time poly(λ, s) and from the first bul-
let, s = poly(λ, log(T ), |P |).

• DecCT(skP ) runs in time poly(λ, T ): the runtime of ˜FE.Dec(˜FE.skP , ˜FE.CT) is
poly(λ, log(T ), |P |). Moreover, from the succinctness of GRAM, the runtime
of GEval

(

̂P , ̂D
)

is poly(λ, t), where t is the time taken to execute PD().

Theorem 17. If ˜FE is a public-key functional encryption for circuits satisfying
indistinguishability security, GRAM is a succinct reusable garbled RAM scheme
and PRF is a secure pseudorandom function, then the FE for RAMs construction
FE described above is selectively secure.

Proof. We describe the hybrids below; in the first hybrid Hyb0,b, the challenger

uses challenge bit b
$←− {0, 1} to generate the ciphertexts and in the final hybrids

Hyb4, all the parameters in the system computationally hide b.

Hyb0,b: This correspondes to the real experiment. The challenger computes the
following: (i) (pk,MSK) ← Setup(1λ, T ), (ii) CTb ← Enc(MSK,Db), and (iii)
{skP ← KeyGen(MSK, P )}. It sends public key, functional keys and challenge
ciphertext to A.

Hyb1,b: In this hybird, we change how the functional keys are generated for
each query. The challenger chooses a key K2 from K for PRF2 and computes
( ̂Db,GRAM.skb) ← GRAM.GrbDB(1λ, T,Db) at the very beginning, then for each
query Pi, where i ∈ [Q]

1. Sample a random string τ ← {0, 1}λ.
2. Compute ̂P = GRAM.GrbProg(GRAM.skb, P ;PRF1(K1, τ)).
3. Set r = ̂P ⊕ PRF2(K2, τ).
4. Compute and output functional key skP = ˜FE.KeyGen(MSK, C[P, r, τ ]).

The indistinguishability argument of hybrid Hyb0,b and Hyb1,b is based on the
pseudorandom property of PRF2(K2, τ), which is not used in any other place,
and the randomness of string τ .
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Hyb2,b: In this hybrid, we set the ˜FE.CT part in challenge ciphertext as

˜FE.Enc
(

pk, (0λ, 0λ,K2, 1)
)

The indistinguishability between hybrid Hyb1,b and Hyb2,b is based on the indis-
tinguishability security of FE scheme ˜FE, since

C [P, r, τ ] (GRAM.sk,K1, 0λ, 0) = C [P, r, τ ] (0λ, 0λ,K2, 1)

where r, τ are generated as described in hybrid Hyb2,b.

Hyb3,b: In this hybird, we change how the hardwired value τ is generated
in each functional key query. Instead of computing ̂P = GRAM.GrbProg(sk,
P ;PRF1(K1, τ)), we compute ̂P = GRAM.GrbProg(sk, P ;u), where u ∈ {0, 1}�1

is a random string.
The indistinguishability of Hyb2,b and Hyb3,b follows from the security of

pseudorandom function PRF1 using key K1, which is not used anywhere else
except for computing hardwired value τ .

The indistinguishability of Hyb3,0 and Hyb3,1 follows the reusable security of
garbled RAM scheme GRAM and query restraint PD0 = PD1 for program P .

��
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Abstract. Witness encryption (WE) allows us to use an arbitrary NP
statement x as a public key to encrypt a message, and the witness w
serves as a decryption key. Security ensures that, when the statement
x is false, the encrypted message remains computationally hidden. WE
appears to be significantly weaker than indistinguishability obfuscation
(iO). Indeed, WE is closely related to a highly restricted form of iO
that only guarantees security for null circuits (null iO). However, all
current approaches towards constructing WE under nice assumptions go
through iO. Such constructions are quite complex and are unlikely to
lead to practically instantiable schemes. In this work, we revisit a very
simple WE and null iO candidate of Chen, Vaikuntanathan and Wee
(CRYPTO 2018). We show how to prove its security under a nice and
easy-to-state assumption that we refer to as evasive LWE following Wee
(EUROCRYPT 2022). Roughly speaking, the evasive LWE assumption
says the following: assume we have some joint distributions over matrices
P, S and auxiliary information aux such that

(SB + E,SP + E′, aux) ≈c (U,U′, aux),

for a uniformly random (and secret) matrix B, where U,U′ are uniformly
random matrices, and E,E′ are chosen from the LWE error distribution
with appropriate parameters. Then it must also be the case that:

(SB + E,B−1(P), aux) ≈c (U,B−1(P), aux).

Essentially the above says that given SB + E, getting the additional
component B−1(P) is no more useful than just getting the product
(SB + E) · B−1(P) ≈ SP + E′.

1 Introduction

Witness encryption (WE), a notion introduced by Garg, Gentry, Sahai and
Waters [GGSW13], allows us to use an arbitrary NP statement x as a public
key to encrypt a message. If x is a true statement then any user who knows
the corresponding witness w for x will be able to decrypt the message, but if x
is a false statement then the encrypted message is computationally hidden. For
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13791, pp. 195–221, 2022.
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example, the Clay Mathematics Institute could encrypt $1M worth of bitcoin
reward under the NP statement that corresponds to the Riemann hypothesis. If
anyone comes up with such a proof, they can use that as the witness to decrypt
the ciphertext and recover the reward.

WE is known to be implied by indistinguishability obfuscation (iO) [BGI+01,
GGH+13b]. However, iO appears to be a significantly stronger primitive than
WE, and provably so with respect to black-box constructions [GMM17]. On an
intuitive level, in WE, we only require functionality (ability to correctly decrypt)
in a setting where the statement is true and there are no security guarantees.
Conversely, we only require security to hold in a setting where the statement is
false and there is no functionality requirement. On the other hand, iO requires us
to provide security and functionality simultaneously since the obfuscated pro-
gram needs to function correctly on all inputs while at the same time hiding
the code of the original program. Indeed, modulo the LWE assumption, WE is
equivalent to a very weak form of iO, referred to as null-iO, where security (indis-
tinguishability of circuits) only needs to hold for null programs that output 0 on
all inputs, while functionality needs to hold for all programs [WZ17,GKW17].

Despite WE being seemingly much weaker than iO, the current state-of-
the-art in constructions does not reflect this. In particular, a beautiful series
of recent works constructs iO under simple-to-state assumptions [AJL+19,
JLMS19,Agr19,GJLS21], culminating in a recent break-through that bases iO
on well-studied hardness assumptions [JLS21b,JLS21a]. Another recent line of
works obtains lattice-inspired iO candidates [Agr19,CHVW19,AP20,BDGM20a,
WW21,GP21,BDGM20b,DQV+21] that avoid the use of pairings and are plau-
sibly post-quantum secure, but requires less well-studied assumptions pertain-
ing to variants of LWE with leakage. Both of these routes to iO also incur high
computational complexity due to the use of non-black-box recursion (following
[BV15,AJ15]), making it almost unimaginable that they could be implemented
even for the simplest of programs. Unfortunately, the only known avenue for
constructing WE under similarly nice assumptions goes through iO and inherits
all of its corresponding complexity.

In this work, we turn our attention to earlier frameworks for constructing iO
and witness encryption [GGH+13b,GGSW13,GLW14]: encode the correspond-
ing program or NP instance, represented as a branching programs1, using multi-
linear encodings [GGH13a,CLT15,GGH15]. The ensuing schemes are remarkably
simple, direct, reasonably efficient (e.g., implemented in [HHSS17]), and could
even achieve plausible post-quantum security. Unfortunately, we have attacks
on the iO schemes for read-c branching programs for c = O(1) [CHL+15,
MSZ16,CLLT16,ADGM17,CLLT17,CGH17,Pel18,CVW18,CCH+19]. On the
other hand, none of these attacks are applicable to the WE schemes.

Arguably the simplest of these WE schemes is due to Chen, Vaikuntanathan
and Wee [CVW18] (henceforth CVW) based on GGH15 multi-linear encodings
[GGH15,CC17]. It only relies on LWE-style tools/algebra and is very simple to

1 For iO, we need some additional pre-processing to prevent mixed-input attacks; see
Sect. 7.
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write down, with complexity similar to the iO candidate for read-once branching
programs implemented in [HHSS17]. We do not currently know any attacks on
the CVW WE scheme, nor do we know how to base it on any nice assumption,
other than just tautologically assuming its security. This motivates the main
question of this work:

Question: Can we prove security of the CVW scheme for WE (or a variant
thereof) under a simple assumption?

For the optimist, the assumption would ideally increase our confidence in the
security of the CVW scheme and give us a better understanding of the basis
of this security. For the skeptic, the assumption would constitute a simpler and
easier target for cryptanalysis. More broadly, the assumption could provide new
insights into the security and weakness of GGH15 multi-linear encodings, extend-
ing the positive results in [CC17,GKW17,WZ17,GKW18,CVW18].

1.1 Our Results

We prove the security of the CVW schemes for WE and null-IO under a variant
of Wee’s evasive LWE assumption [Wee22], together with LWE with subexpo-
nential hardness. We analyze the CVW schemes essentially “as is”, with some
modifications to the underlying parameters. We proceed to state the assumption
and then provide an overview of our security proof.

Evasive LWE. Fix some efficiently samplable distributions (S,P, aux) over
Z

n′×n
q × Z

n×t
q × {0, 1}∗. We would like to assert statements of the form

( SB + E ,B−1(P), aux) ≈c ( C ,B−1(P), aux)

where B ← Z
n×m
q ,C ← Z

n′×m
q are uniformly random. Think of parameters

O(n log q) ≤ m ≤ t, so that P is wider than B. We have two distinguishing
strategies in the literature:

– distinguish SB + E from C given aux;
– compute (SB + E) · B−1(P) ≈ SP and distinguish the latter from uniform

(the afore-mentioned zeroizing attacks on iO fall into this category).

The evasive LWE assumption essentially asserts that these are the only distin-
guishing attacks. Namely,

if ( SB + E , SP + E′ , aux) ≈c ( C , C′ , aux), (1)

then ( SB + E ,B−1(P), aux) ≈c ( C ,B−1(P), aux) (2)

where E′ is a fresh noise matrix of sufficiently larger magnitude than E.2 In
[Wee22] (c.f. Sect. 1.3), the assumption is conceptually similar, but the matrix B
2 Note that (SB + E) · B−1(P) has rank at most m and therefore cannot be pseu-

dorandom whenever n′, m < t. Instead, we merely require that the high-order bits
of (SB + E) · B−1(P) ≈ SP are pseudorandom, as formalized by SP + E′ being
pseudorandom.
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is public and S is secret and uniformly random, while in our case both B,S are
secret and S can be chosen from an arbitrary distribution subject to (1) holding.

First, to give some intuition for the assumption, we begin with two quick
sanity checks:

– If P is drawn from the uniform distribution over Zm×t
q , then the evasive LWE

assumption holds unconditionally. In particular, (2) follows unconditionally
from (1), since B−1(P) is distributed like a random Gaussian and hence can
be simulated without knowing a trapdoor for B. This is the case even if aux
can depend on P, as long as it is efficiently sampleable given P.

– If P = 0 or P is the gadget matrix, then both the pre- and post-conditions
are false, so evasive LWE is vacuously unconditionally true.

We will need to rely on a version of evasive LWE where P is not uniformly
random, but we still manage to ensure that (1) holds. We use the evasive LWE
assumption to argue that (2) holds in this case as well.

Unfortunately, we show that the evasive LWE assumption is unlikely to hold
in its completely full generality with arbitrary aux. In particular, we cook up a
highly contrived auxiliary info aux that contains a carefully crafted obfuscated
program (containing a trapdoor for P). Under a heuristic obfuscation assump-
tion, we show that for this choice of aux, the pre-condition holds, while the
post-condition is clearly violated. This is similar in spirit to the implausibility of
differing-inputs obfuscation (diO) with general auxiliary information, as shown
in [GGHW14]. See Sect. 8.2 for details of our counter-example. Nevertheless,
analogously to the case of diO, it is still reasonable to assume security with
essentially any “natural distribution” of aux that is not specifically cooked up to
contain a counter-example. This is the route we take in this work. In addition,
we also describe in Sect. 8.2 a class of distributions that are sufficient for our
proofs and seem to avoid obfuscated-based counter-examples.

We note that evasive LWE is qualitatively different from the LWE with leak-
age assumptions used in recent lattice-inspired iO candidates. With the latter,
a distinguisher can easily obtain equations of the LWE secrets over the inte-
gers (which in turn allows zeroizing attacks), whereas the pre-condition in eva-
sive LWE essentially rules this out. Indeed, the variants of LWE with leakage
used in [GP21,WW21] have since been broken in [HJL21], whereas the ones
in [DQV+21,JLMS19] rely on the pseudorandomness of structured low-degree
polynomials over the integers which while plausible, still requires further crypt-
analysis (e.g. we do not know how to rule out sum-of-squares attacks, even
heuristically).

WE and Null-IO via GGH15 Encodings. We consider a read-once branching
program (BP) specified by values u ∈ {0, 1}w, {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}.

On input x ∈ {0, 1}h we define Mx :=
∏h

i=1 Mi,xi
, and the output of the

branching program is determined by uMx
?= 0. (Note that the matrices Mi,b

are not necessarily permutations.) The GGH15 encoding of such a branching
program ggh.encode⊗(u, {Mi,b}) is given by
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{

(uM1,b ⊗ S1,b)A1
���������������

,A−1
1 ((M2,b ⊗ S2,b)A2

��������������
), . . . ,A−1

h−1((Mh,b ⊗ Sh,b)Ah
��������������

)
}

b∈{0,1}

where Si,b ← Dn×n
Z,χ ,Ai,b ← Z

nw×O(nw log q)
q and we use A−1

i,b (·) to denote random
Gaussian pre-images, and we use curly underlines

�������������
in place of noise terms. Given

the encoding and any x ∈ {0, 1}h, we can approximate (uMx ⊗ Sx)Ah where
Mx :=

∏h
i=1 Mi,xi

,Sx :=
∏h

i=1 Si,xi
, and therefore check if uMx

?= 0.
For WE, we can embed a CNF formula and the message into the read-

once BP, and x corresponds to a truth assignment. For null-IO, we can take
an arbitrary branching program or a NC1 formula and perform some additional
pre-processing on it to convert it into a read-once BP, and x corresponds to a
repetition-encoding of the input to the program/formula. In either case, the way
we do this ensures that, if the formula is unsatisfiable or the program is a null
program, it will be the case that uMx �= 0 for all x ∈ {0, 1}h. (In the case of null
iO, this will hold even for values x that are not valid repetition-encodings of any
input.) We show what whenever this condition holds, ggh.encode⊗(u, {Mi,b})
is pseudorandom and therefore hides u, {Mi,b}. The latter immediately implies
security of the CVW schemes for WE and null-IO. We sketch the proof of this
statement in our technical overview.

Concurrent Independent Work. The concurrent and independent work of
Tsabary [Tsa22] gives a similar construction of witness encryption and shows
security under a variant of evasive LWE, via a similar proof strategy. See
Appendix A for a comparison.

1.2 Technical Overview

The technical core of this work lies proving the following statement:

Theorem 1 (informal). Suppose subexponential LWE and evasive LWE holds.
If uMx �= 0 for all x ∈ {0, 1}h, then

ggh.encode⊗(u, {Mi,b}) ≈c {C1,b,D2,b, . . . ,Dh,b}b∈{0,1}

where C1,b ← Z
n×O(nw log q)
q ,Di,b ← DO(nw log q)×O(nw log q)

Z,χ .

As a warm-up, we prove security under a strengthening of evasive LWE where
we omit SB + E in the pre-condition, namely we assume:

if (SP + E′, aux) ≈c ( C′ , aux),

then ( SB + E ,B−1(P), aux) ≈c ( C ,B−1(P), aux)

Intuitively, evasive LWE says that to prove pseudorandomness of (SB +
E,B−1(P), it suffices to “peel off” B and prove pseudorandomness of the prod-
uct SP + E′. Our proof essentially proceeds in two steps:
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– We will use evasive LWE to successively “peel off” A1,A2, . . . ,Ah−1 in
our “encoded program”, which leaves us with 2h products {(uMx ⊗ Sx)

����������

Ah
��

}x∈{0,1}h .

– We then show that these 2h evaluated products are pseudorandom under the
LWE assumption, following the BLMR PRF [BLMR13].

We proceed to describe this in more detail.

Proof Idea. Suppose instead of getting the full “encoded program”
{

(uM1,b ⊗ S1,b)A1
���������������

,A−1
1 ((M2,b ⊗ S2,b)A2

��������������
), . . . ,A−1

h−1((Mh,b ⊗ Sh,b)Ah
��������������

)
}

b∈{0,1}
,

we were only given the 2h “evaluated products” (with fresh independent errors):
{

(uMx ⊗ Sx)Ah
�������������

}

x∈{0,1}h

,

which is something we could approximate from evaluating the encoded program
on all inputs x ∈ {0, 1}h.3

First, by the same security analysis as the BLMR PRF [BLMR13], we can
rely on (sub-exponential) LWE to show that such “evaluated products” look
pseudorandom. In particular, we have

(uMx ⊗ Sx)Ah
�������������

≈ (

�=0
︷ ︸︸ ︷
uMx ⊗ I) ·

pseudorandom
︷ ︸︸ ︷
(I ⊗ Sx)Ah
���������

.

Next, we rely on evasive LWE with B = Ah−1 to show that if we were given
{

(uMx ⊗ Sx)Ah−1
���������������

}

x∈{0,1}h−1

,

{

A−1
h−1((Mh,b ⊗ Sh,b)Ah

��������������
)
}

b∈{0,1}

corresponding to 2h−1 “evaluated products” for all possible choices of the first
h − 1 bits of the input and the last two components of the “encoded program”,
the 2h−1 “evaluated products” would still look pseudorandom.

We repeat the argument with B = Ah−2, . . . ,A1 until we show that just

the first 2 “evaluated products”
{

(uM1,b ⊗ S1,b)A1
���������������

}

b∈{0,1}
look pseudoran-

dom even given all the remaining components of the “encoded program”.
3 While a polynomial-time adversary cannot evaluate the encoded program on

all 2h inputs, it can still efficiently approximate some linear combination of
an exponential number of inputs, e.g. the sum of all 2h evaluated products,
using ((uM1,0 ⊗ S1,0)A1

��������������
+ (uM1,1 ⊗ S1,1)A1

��������������
) · ∏h

i=2(A
−1
i−1((Mi,0 ⊗ Si,0)Ai

������������
) +

A−1
i−1((Mi,1 ⊗ Si,1)Ai

������������
) .
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But the first 2 “evaluated products” are just the first two components of the
“encoded program” and hence we can replace them by uniformly random matri-
ces {C1,b}b∈{0,1} At this point, we can invoke an argument from [CVW18] to
replace the subsequent components of the encoded program by uniformly ran-
dom Gaussians to complete the proof.4

Example for h = 3. In more detail, let’s see an example for h = 3. In that case,
the proof shows:

{

(uMx ⊗ Sx)A3
�������������

}

x∈{0,1}3

≈c

{
Cx ← Z

n×O(nw log q)
q

}

x∈{0,1}3

=⇒
{

(uMx′ ⊗ Sx′)A2
��������������

}

x′∈{0,1}2

,

{

A−1
2 ((M3,b ⊗ S3,b)A3

��������������
)
}

b∈{0,1}

≈c

{
Cx′ ← Z

n×O(nw log q)
q

}

x′∈{0,1}2
,

{

A−1
2 ((M3,b ⊗ S3,b)A3

��������������
)
}

b∈{0,1}

=⇒
{

(uMb ⊗ Sb)A1
������������

,A−1
1 ((M2,b ⊗ S2,b)A2

��������������
),A−1

2 ((M3,b ⊗ S3,b)A3
��������������

)
}

b∈{0,1}

≈c

{

C1,b,A−1
1 ((M2,b ⊗ S2,b)A2

��������������
),A−1

2 ((M3,b ⊗ S3,b)A3
��������������

)
}

b∈{0,1}
≈c {C1,b,D2,b,D3,b}b∈{0,1}

The first statement uses subexponential LWE, and uses security of the BLMR
PRF [BLMR13] (as described earlier) asserting pseudorandomness of the set of

values
{

(I ⊗ Sx)A3
���������

}

x∈{0,1}3

, together with the condition uMx �= 0 for all x.

The next two =⇒ corresponds to invocations of evasive LWE. In particular, for
the second =⇒, we invoke the assumption with:

S =
(
uM1,0 ⊗ S1,0

uM1,1 ⊗ S1,1

)

P = [(M2,0 ⊗ S2,0)A2
��������������

‖(M2,1 ⊗ S2,1)A2
��������������

]

aux =
{

A−1
2 ((M3,b ⊗ S3,b)A3

��������������
)
}

b∈{0,1}

For this step, we will actually additionally need to use noise flooding to prove
the pre-condition. As a result, the noise parameter in (uM1,b ⊗ S1,b)A1

���������������
is going

to much be larger than that in A−1
j−1((Mj,b ⊗ Sj,b)Aj

�������������
), j = 2, . . . , h . The final ≈c

4 The above proof strategy forces us to rely on LWE with sub-exponential security
for two distinct reasons. Firstly, in the base case, we rely on LWE with 2h terms.
Secondly, we rely on h levels of induction, where each level of the induction incurs a
polynomial security loss.
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follows from an argument used in [CVW18], repeatedly applying A−1(Z
�
) ≈c D

(follows from LWE) from “left to right”.

Tying up the Loose Ends. More generally, we invoke evasive LWE h − 1 times,
where each statement contains up to 2h terms, so the size of the evasive LWE
instances are as large as 2h · poly(λ). With each invocation of evasive LWE, we
also incur a multiplicative polynomial security loss (in the size of the instance),
and therefore our total security loss is (2h · poly(λ))O(h).

To extend the argument to the setting where SB+E is also provided in the
pre-condition, we observe that

(SB + E,S, aux) ≈c (C,S, aux) ∧ (SP + E′,S, aux) ≈c (C′,S, aux)
=⇒ (SB + E,SP + E′,S, aux) ≈c (SB + E,C′,S, aux) ≈c (C,C′,S, aux)

This allows us to treat pseudorandomness of SB + E and that of SP + E′

separately, where the former will rely on security of the BLMR PRF (which holds
even if the distinguisher gets {Si,b}i∈[h],b∈{0,1}) and the latter uses the argument
as before. This step is important as it captures the fact that the adversary can
in fact compute 22h − 1 evaluated products {(uMx′ ⊗ Sx′)Aj

��������������
}x′∈{0,1}j ,j∈[h]

corresponding to all possible prefixes x′ of length at most h.

1.3 Discussion

Comparison with [Wee22]. Wee’s evasive LWE assumption in [Wee22] considers
distributions over pairs of matrices (A′,P) together with auxiliary input aux
and stipulates that

if (A′,B,P, sA+ e′ , sB+ e , sP+ e′′ , aux) ≈c (A′,B,P, c′ , c , c′′ , aux),

then (A′,B, sA+ e′ , sB+ e ,B−1(P), aux) ≈c (A′,B, c′ , c ,B−1(P), aux)

For the applications in [Wee22], the auxiliary input includes the coin tosses used
to sample A′,P, which rules out obfuscation-based counter-examples.

In [Wee22], evasive LWE was used to build ciphertext-policy ABE for circuits
and optimal broadcast encryption schemes. The schemes are very different from
the ones analyzed and in particular, do not rely on GGH15 encodings. The
techniques are also quite different: in [Wee22], evasive LWE is only invoked once,
whereas in this work, we invoke evasive LWE h times. For ease of comparison, we
reproduce the informal description of the CP-ABE scheme described in [Wee22,
Sect. 2.1] below:

mpk := A0,B0 ← Z
n×m
q , B1 ← Z

mn×m2

q , A ← Z
n×�m
q

ctf := s0B0
����

, s(Af ⊗ Im) + s0A0
����������������

+ μ · g, sB1
���

, where s ← Z
mn
q , s0 ← Z

n
q

skx := B−1
0 (A0r),B−1

1 ((A − x ⊗ G) ⊗ r), r, where r ← Dm
Z,χ
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WE Proof Strategies. It is instructive to compare our proof strategy with that for
WE in [GLW14] (henceforth GLW) based on static assumptions over multi-linear
encodings; unfortunately, existing candidate instantiations for these assumptions
are broken due to zeroizing attacks. Our proof uses O(h) hybrids and evasive
LWE instances of size 2h ·poly(λ), whereas the GLW proof, based on the notion
of positional WE, uses 2h hybrids and problem instances of size poly(λ).

Zeroizing Attacks and iO vs WE. What iO and WE have in common is that
they require handling an exponential number of possible evaluations for both
correctness and security. A key difficulty in constructing post-quantum iO arises
from the fact that all known approaches yield schemes in the zeroizing regime
[CHL+15] wherein an attacker can easily obtain sufficiently many equations
in low-norm secret values —low-norm LWE secrets, error vectors, or both—
over the integers that information-theoretically determine these secret values.5

These equations arise naturally from the interaction of the correctness con-
straints and the security requirements, and could in turn be exploited to yield
a zeroizing attack on the scheme [MSZ16,CLLT16,ADGM17,CLLT17,CGH17,
Pel18,CVW18,CCH+19,HJL21]. In order to rule out zeroizing attacks, current
approaches to post-quantum iO rely on some form of pseudorandomness of low-
norm values over the integers [AJL+19,Agr19,CHVW19] to argue that the leak-
ages in the zeroizing regime do not lend themselves to an attack. As mentioned
earlier in the introduction, the evasive LWE assumption is qualitatively different
from these assumptions as it does not refer to pseudorandomness of low-norm
values.

Weak Multi-linear Map Models. Prior works analyzed security of iO and WE can-
didates in the so-called weak multi-linear map models, e.g. [GMM+16,BGMZ18,
CHVW19]. Most of these models (notably [CVW18, Sect. 11.3] and [CHVW19])
immediately yield a statement similar to Lemma 2 (used in the proof of The-
orem 1), whereas our proof of Lemma 2 from evasive LWE requires a careful
inductive argument combined with noise flooding.

On Security Losses. The CVW18-type schemes are the most promising (and
currently only) approach towards practical witness encryption, which begs the
question: are the schemes secure and the underlying design principle sound?
Towards answering these questions, we follow the cryptographic tradition of
relating the security of the schemes to a simpler assumption. As is often the
case, the parameters we achieve in our security reduction are far from practical.
Nonetheless, they constitute some evidence that the underlying design is indeed
sound, and the first step in a broader research agenda. Indeed, many NIST
post-quantum candidates and the sub-field of “tight security” (e.g. for TLS 1.3)

5 As a point of comparison, we have examples such as k-LWE [LPSS14] and inner
product functional encryption [ALS16] based on LWE where it is easy to obtain a
few such equations, but the equations do not information-theoretically determine
the secret values.
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start with provably secure schemes with poor parameters, and the parameters
for practical instantiations are based on the best-known attacks on the scheme
and often more aggressive than the parameters given by the security reduction.

Looking Ahead. Looking ahead, we see 4 possible scenarios, starting with the
most optimistic and ambitious:

1. In a few years, we have witness encryption based on LWE, as has been the
case for several lattice-based schemes where the initial candidates were based
on non-standard assumptions (outside the zeroizing regime), such as fully
homomorphic encryption and its multi-key variant, attribute-based encryp-
tion and predicate encryption, and the Fiat-Shamir heuristic. If so, we hope
that the insights and techniques developed in this work play a small role, but
even if not, the ensuing witness encryption scheme will almost certainly be
substantially more complex than the CVW scheme. This would place us in
a world analogous to the state of the art for discrete-log and pairing-based
cryptography: while we do have fairly efficient schemes based on standard
assumptions like DDH, the most practical schemes as well as the ones being
deployed are often the ones for which we only know how to prove security in
the generic group model, possibly augmented with random oracles.

2. The evasive LWE assumption survives cryptanalysis: this gives us confidence
in the CVW18 WE, and the techniques in this work would likely further
enable other cryptographic constructions based on evasive LWE as well as
GGH15 multi-linear encodings.

3. The evasive LWE assumption is broken but the CVW18 WE scheme is not.
This would require new and valuable cryptanalytic advances beyond the state-
of-the-art zeroizing attacks. The current statement of evasive LWE is fairly
general, and an attack could guide us towards identifying restricted variants
of the assumption that would suffice for our analysis of the CVW18 scheme
and more generally yield new insights into GGH15 multi-linear encodings.

4. The CVW18 scheme (and thus evasive LWE) is broken. This would be a
fairly exciting result in cryptanalysis, and we hope that our statement of
evasive LWE plays an important role as an intermediate and easier target for
cryptanalysis.

We believe any of these scenarios would advance our current scientific under-
standing of lattice-based cryptography and assumptions (hardness and/or
attacks).

2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. v) and boldface
upper case for matrices (e.g. V). For integral vectors and matrices (i.e., those
over Z), we use the notation |v|, |V| to denote the maximum absolute value over
all the entries. We use v ← D to denote a random sample from a distribution
D, as well as v ← S to denote a uniformly random sample from a set S. We also
use U(S) to denote the uniform distribution over a set S. We use ≈s and ≈c as
the abbreviation for statistically close and computationally indistinguishable.
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Tensor Product. The tensor product (Kronecker product) for matrices A =
(ai,j) ∈ Z

�×m, B ∈ Z
n×p is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp.

The mixed-product property for tensor product says that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

We adopt the convention that matrix multiplication takes precedence over tensor
product, so that we can write A ⊗ BC to mean A ⊗ (BC).

2.1 Lattices Background

We use DZ,χ to denote the discrete Gaussian distribution over Z with standard
deviation χ.

Learning with Errors (LWE). Given n,m, q, χ ∈ N, the LWEn,m,q,χ assumption
states that

(A, sA + e) ≈c (A, c)

where
A ← Z

n×m
q , s ← Z

n
q , e ← Dm

Z,χ, c ← Z
m
q

We rely on the LWE assumption with sub-exponential hardness (for time, advan-
tage and modulus-to-noise ratio), namely for some δ > 0, indistinguishability
holds against adversaries running in time 2nδ

with advantage at most 2−nδ

, as
long as q/χ ≤ 2nδ

.

Trapdoor and Preimage Sampling. Given any Z ∈ Z
n×n′
q , σ > 0, we use

B−1(Z, σ) to denote the distribution of a matrix Y sampled from D
Zm×n′ ,σ

conditioned on BY = Z (mod q). We sometimes suppress σ when the context
is clear.

There is a p.p.t. algorithm TrapGen(1n, q) that, given the modulus q ≥ 2
and dimension n, outputs B ≈s U(Zn×2n log q

q ) with a trapdoor τ . Moreover,
there is a p.p.t. algorithm that given (B, τ) ← TrapGen(1n, q), Z ∈ Z

n×n′
q , and

σ ≥ 2
√

n log q, outputs a sample from B−1(Z, σ).

2.2 Matrix Branching Programs

A (matrix) branching program Γ with width w and length h is a set

Γ =
{
u ∈ {0, 1}1×w,

{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1} ,� : {0, 1}� → {0, 1}h

}
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where w is called width of branching program and � an input-to-index function.
We say that a branching program Γ computes a function f : {0, 1}� → {0, 1} if

∀x ∈ {0, 1}� : u
h∏

i=1

Mi,�(x) = 0 ⇐⇒ f(x) = 1

For simplicity, we only consider “oblivious” branching programs, where � :
{0, 1}� → {0, 1}h that outputs h/	 copies of x, i.e. �(x) = x|x| · · · |x. We denote
c := h/	 and call this a read-c branching program. For most of the paper, we
will focus on read-once branching programs, with c = 1, 	 = h and � being the
identity function, and where we write Mx :=

∏h
i=1 Mi,xi

.

3 Evasive LWE

We proceed to provide a formal statement of our evasive LWE assumption, stated
informally in Sect. 1.1.

Evasive LWE. Let Samp be a PPT algorithm that on input 1λ, outputs

S ∈ Z
n′×n
q ,P ∈ Z

n×t
q , aux ∈ {0, 1}∗

We define the following advantage functions:

AdvpreA0
(λ) := Pr[A0( SB + E , SP + E′ , aux) = 1]

−Pr[A0( C , C′ , aux) = 1], (3)

AdvpostA1
(λ) := Pr[A1( SB + E ,D, aux) = 1]

−Pr[A1( C ,D, aux) = 1] (4)

where

(S,P, aux) ← Samp(1λ),

B ← Z
n×m
q ,E ← Dn′×m

Z,χ ,E′ ← Dn′×t
Z,χ′ ,

C ← Z
n′×m
q ,C′ ← Z

n′×t
q ,

D ← B−1(P, χ)

We say that the evasive LWE assumption holds if for every PPT Samp there
exists some polynomial Q(·) such that for every PPT A1, there exists another
PPT A0 such that

AdvpreA0
(λ) ≥ AdvpostA1

(λ)/Q(λ) − negl(λ)

and Time(A0) ≤ Time(A1) · Q(λ). We consider parameter settings for which
χ′ � χ so that the pre-condition is stronger, which in turn makes evasive LWE
weaker. See Sect. 8 for further discussion.
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4 GGH15 Encodings

We describe (generalized) GGH15 encodings, following [GGH15,CC17,CVW18].
We find it helpful to break down the description into two separate algorithms
ggh.encode and ggh.encode⊗. The former is more general, and refers to matrices
Ŝi,b, whereas the latter instantiates Ŝi,b with Mi,b ⊗ Si,b.

Construction 2 (GGH15 Encodings). The randomized algorithm
ggh.encode takes the following inputs

– parameters 1λ, h,m, q, n̂0, n̂ ∈ N and Gaussian parameters χ, χ′, χ′′, χ′′′;
– matrices Ŝ1,b ∈ Z

n̂0×n̂
q , Ŝ2,b, . . . , Ŝh,b ∈ Z

n̂×n̂
q , b ∈ {0, 1};

and

– samples Ai, τAi
← TrapGen(1n̂, q) for i = 1, . . . , h,

– samples E1,b ← Dn̂0×m
Z,χ ,E2,b, . . . ,Eh,b ← Dn̂×m

Z,χ′′′ for b ∈ {0, 1},6
– outputs

{
Ŝ1,bA1 + E1,b

}

b∈{0,1}
,
{
A−1

i−1(Ŝi,bAi + Ei,b)
}

i=2,...,h,b∈{0,1}

where A−1
i−1(·) is computed with Gaussian parameter χ′′ using τAi−1 .

Construction 3 (⊗-GGH15 Encodings). The randomized algorithm
ggh.encode⊗ takes as input

u ∈ {0, 1}w,
{
Mi,b ∈ {0, 1}w×w

}
i∈[h],b∈{0,1}

and

– samples Si,b ← Dn×n
Z,O(1),

– sets Ŝi,b :=

{
uM1,b ⊗ S1,b if i = 1
Mi,b ⊗ Si,b if i > 1

– outputs ggh.encode(
{
Ŝi,b

}

i∈[h],b∈{0,1}
) with n̂0 = n, n̂ = wn, i.e.,

{
(uM1,b ⊗ S1,b)A1 +E1,b

}
b∈{0,1} ,

{
A−1

i−1((Mi,b ⊗ Si,b)Ai +Ei,b)
}

i=2,...,h,b∈{0,1}

Correctness. The next lemma from [CVW18, Lemma 5.3] (also [GGH15,CC17])
captures the functionality provided by ggh.encode⊗, namely for all x =
(x1, . . . , xh) ∈ {0, 1}h:

C1,x1 · D2,x2 · · ·Dh,xh
≈ (uMx ⊗ Sx) · Ah

where Mx :=
∏h

i=1 Mi,xi
,Sx :=

∏h
i=1 Si,xi

.

Lemma 1 (Correctness). We have for all x ∈ {0, 1}h: w.h.p. over

(C1,0,C1,1,D2,0,D2,1, . . . ,Dh,0,Dh,1) ← ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

we have

|C1,x1 · D2,x2 · · ·Dh,xh
− (uMx ⊗ Sx) · Ah| ≤ h · χ · (λnw(χ′′ + χ′′′) log q)h

6 Prior works all use χ = χ′′′. Looking ahead, we require χ � χ′′′.
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5 Pseudorandomness of GGH15 Encodings from Evasive
LWE

In this section, we prove Theorem 1 in the introduction, i.e., pseudorandomness
of GGH15 encodings under subexponential LWE and evasive LWE.

Theorem 4 (Theorem 1, restated). Fix {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}, u ∈
{0, 1}w, such that for all x ∈ {0, 1}h, we have uMx �= 0. Then, by LWE and the
evasive LWE assumption, we have

ggh.encode⊗(u,
{
Mi,b

}
i∈[h],b∈{0,1})

=
{
(uM1,b ⊗ S1,b)A1 +E1,b

}
b∈{0,1} ,

{
A−1

i−1((Mi,b ⊗ Si,b)Ai +Ei,b)
}

i=2,...,h,b∈{0,1}

≈c

{
U(Zn̂0×m

q )
}

b∈{0,1}
,
{

Dm×m
Z,χ′′

}

i=2,...,h,b∈{0,1}

An overview of the proof is given in Sect. 1.2. We proceed to describe the
parameter settings, followed by an overview of the proof structure and then the
proof.

Remark 1 (Parameter settings.). Here, 1λ denotes the security parameter and in
particular, the running time of the adversary is poly(λ). We rely on 2nδ

-hardness
for LWE (i.e., indistinguishability against adversaries running in time 2nδ

and a
modulus-to-noise ratio of 2nδ

), and set the parameters so that

2nδ ≥ max{2h2λ, q/χ′′′} LWE hardness

χ′ = λh · χ′′′ · λω(1) noise flooding

χ = χ′ · λω(1) evasive LWE

q ≥ 4h · χ · (λnw(χ′′ + χ′′′) log q)h correctness

χ′′ = 2
√

nw log q trapdoor sampling

The first line comes from the fact that we need to instantiate Lemma 3 with
hardness 2h2λ � (2h · poly(λ))ω(1) to accommodate the fact that the instances
have size up to 2h ·poly(λ) (we think of the corresponding instantiation of evasive
LWE as using security parameter λ′ = 2hλ so that n′ ≤ 2h · poly(λ) is bounded
by poly(λ′)), and we iterate the security loss from evasive LWE a total of h
times. We can realize the above constraints with

n = (h2λ)1/δ, q = 2nδ

= 2h2λ, χ′′′ = O(n), m = O(
√

nw log q)

The main differences from prior instantiations is that we use χ � χ′′′ (whereas
prior works use χ = χ′′′) and that n is much larger as a function of h.
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Proof Structure. We break down the proof of Theorem 4 into two separate
lemmas: Lemmas 2 and 3.

– In the first lemma, we show that if the 2h “evaluated products” (with fresh
independent errors)

{

(uMx ⊗ Sx)Ah
�������������

}

x∈{0,1}h

(5)

are pseudorandom, then the “encoded program” ggh.encode⊗(u,
{Mi,b}i∈[h],b∈{0,1}) given by

{
(uM1,b ⊗ S1,b)A1 +E1,b

}
b∈{0,1} ,

{
A−1

i−1((Mi,b ⊗ Si,b)Ai +Ei,b)
}

i=2,...,h,b∈{0,1}

is pseudorandom. This step relies on h − 1 invocations of evasive LWE. In
fact, we prove a more general statement that does not depend on properties of
the matrices {Mi,b}i∈[h],b∈{0,1} or the tensor product structure in Mi,b ⊗Si,b.

Specifically, the formalization refers to matrices Ŝi,b in place of Mi,b ⊗ Si,b.
– In the second lemma, we show that the 2h evaluated products in (5) are

pseudorandom under the (standard) LWE assumption, provided uMx �= 0
for all x ∈ {0, 1}h.

Lemma 2. Fix some distributions for
{
Ŝi,b

}

i∈[h],b∈{0,1}
. Suppose for all j ∈ [h],

we have:
{

Ŝx′Aj + Ex′
}

x′∈{0,1}j
,
{
Ŝi,b

}
i∈[h],b∈{0,1}

≈c

{
U(Z

n̂0×m
q )

}

x′∈{0,1}j

,
{
Ŝi,b

}
i∈[h],b∈{0,1}

(6)

where
Aj ← Z

n̂×m
q ,Ex′ ← Dn̂0×m

Z,χ

Then, by the evasive LWE assumption, we have

ggh.encode(
{
Ŝi,b

}

i∈[h],b∈{0,1}
)

=
{
Ŝ1,bA1 + E1,b

}

b∈{0,1}
,
{
A−1

i−1(Ŝi,bAi + Ei,b)
}

i=2,...,h,b∈{0,1}

≈c

{U(Zn̂0×m
q )

}
b∈{0,1} ,

{
Dm×m

Z,χ′′

}

i=2,...,h,b∈{0,1}

Proof. The proof proceeds in two steps.

Step 1. First, we show that:
{

Ŝ1,bA1 + E1,b

}

b∈{0,1}
,
{
A−1

i−1(Ŝi,bAi + Ei,b)
}

i=2,...,h,b∈{0,1}

≈c

{
U(Zn̂0×m

q )
}

b∈{0,1}
,
{
A−1

i−1(Ŝi,bAi + Ei,b)
}

i=2,...,h,b∈{0,1}
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This proceeds via a proof by induction on j = h, . . . , 1 that:
{

Ŝx′Aj +Ex′

}

x′∈{0,1}j

,
{
A−1

i−1(Ŝi,bAi +Ei,b)
}

i≥j+1,b∈{0,1}
,
{
Ŝi,b

}

i∈[h],b∈{0,1}

≈c

{
U(Zn̂0×m

q )

}

x′∈{0,1}j

,
{
A−1

i−1(Ŝi,bAi +Ei,b)
}

i≥j+1,b∈{0,1}
,
{
Ŝi,b

}

i∈[h],b∈{0,1}
(7)

where we have additionally augmented the distinguisher’s view with{
Ŝi,b

}

i∈[h],b∈{0,1}
. The base case j = h corresponds to the pre-condition (6)

in the lemma. For the inductive step, suppose (7) holds for some j and we would
like to deduce the same statement for j − 1.

We want to invoke our evasive LWE assumption with

n′ = 2j−1n̂0, t = 2m = O(n̂0 log q)

S = Ŝj−1 :=
{
Ŝx′

}

x′∈{0,1}j−1
∈ Z

2j−1n̂0×n̂
q ,

P = Ŝj,0Aj + Ej,0‖Ŝj,1Aj + Ej,1 ∈ Z
n̂×2m
q

aux =
{
A−1

i−1(Ŝi,bAi + Ei,b)
}

i≥j+1,b∈{0,1}
,
{
Ŝi,b

}

i∈[h],b∈{0,1}
,

B = Aj−1,

E = Ej−1 ← D2j−1n̂0×m
Z,χ ,

E′ = E′
j−1 ← D2j−1n̂0×2m

Z,χ′

where {·}x′∈{0,1}j−1 denotes stacking the matrices vertically.
First, we verify that the pre-condition of evasive LWE is satisfied. Observe

that

Ŝj−1Aj−1 + Ej−1, Ŝj−1P + E′
j−1 , aux

≈s Ŝj−1Aj−1 + Ej−1, [Ŝj−1Ŝj,0Aj‖Ŝj−1Ŝj,1Aj ] + E′
j−1 , aux

≈c Ŝj−1Aj−1 + Ej−1 , U(Z2j−1n̂0×2m
q ) , aux

≈c U(Z2j−1n̂0×m
q ) ,U(Z2j−1n̂0×2m

q ), aux

where

– the ≈s uses noise flooding to deduce that E′
j−1 ≈s E′

j−1 + Ŝj−1 · [Ej,0‖Ej,1];
– the first ≈c follows from the induction hypothesis (7) for j, since we can

expand [Ŝj−1Ŝj,0Aj‖Ŝj−1Ŝj,1Aj ]+E′
j−1 as

{
Ŝx′Aj + Ex′

}

x′∈{0,1}j
, together

with the observation that given
{
Ŝi,b

}

i∈[h],b∈{0,1}
in aux, we can sample a

random Aj−1 and simulate Ŝj−1Aj−1 + Ej−1 (note that aux depends on
Aj , . . . ,Ah but not Aj−1);
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– the second ≈c follows from the pre-condition in (6), along with the fact that
given

{
Ŝi,b

}

i∈[h],b∈{0,1}
, we can simulate aux by sampling Aj , . . . ,Ah along

with the respective trapdoors.

Then, it follows from evasive LWE that

Ŝj−1Aj−1 + Ej−1 ,A−1
j−1(Pj), aux

≈c U(Z2j−1n̂0×m
q ) ,A−1

j−1(Pj), aux

which corresponds to the statement in (7) for j − 1. This completes the proof of
the inductive step.

To complete the proof of this step, we need to write down the parameters
for evasive LWE. Let Aj denote an adversary that breaks the statement in (7).
Then, evasive LWE with security parameter λ′ = 2jλ (so that n′ = 2j−1n̂0 is
bounded by poly(λ′)) tells us:

Adv(Aj) ≥ Adv(Aj−1)/poly(2jλ), Time(Aj) ≤ Time(Aj−1) · poly(2jλ)

which implies:

Adv(Ah) ≥ Adv(A1)/poly(2h2
λh), Time(Ah) ≤ Time(A1) · poly(2h2

λh)

That is, we will need poly(2h2
λh) hardness for the pre-condition in (6). We

account for this when setting the final parameters in Remark 1.

Step 2. Next, we show that
{
A−1

i−1(Ŝi,bAi + Ei,b)
}

i=2,...,h,b∈{0,1}
≈c

{
Dm×m

Z,χ′′

}

i=2,...,h,b∈{0,1}

This proceeds exactly as in the proof of [CVW18, Lemma 5.11]: for j = 2, . . . , h,
we replace

{
A−1

j−1(Ŝj,bAi + Ej,b)
}

b∈{0,1}
with

{
Dm×m

Z,χ′′

}

b∈{0,1}
, using

{
A−1

j−1(Ŝj,bAj + Ej,b)
}

b∈{0,1}
, Ŝj,0, Ŝj,1,Aj , τAj

≈c

{
Dm×m

Z,χ′′

}

b∈{0,1}
, Ŝj,0, Ŝj,1,Aj , τAj

which in turn follows from LWE [CVW18, Lemma 4.4].

Lemma 3. Fix u ∈ {0, 1}w, {Mi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1} such that for all x ∈
{0, 1}h, we have uMx �= 0. Then, by the LWE assumption, for all j ∈ [h], we
have:
{

(uM
x′ ⊗ S

x′ )Aj + E
x′

}

x′∈{0,1}j
,

{
Si,b

}
i∈[h],b∈{0,1} ≈c

{
U(Zn×m

q )

}

x′∈{0,1}j
,

{
Si,b

}
i∈[h],b∈{0,1}

where Aj ← Z
n̂×m
q ,Ex′ ← Dn̂0×m

Z,χ .
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Similar statements were shown and used in [CVW18,CHVW19] for the spe-
cial case j = h, and where {Si,b}i∈[h],b∈{0,1} were not provided to the adversary.
The proof is essentially the same as before, since uMx �= 0 for all x ∈ {0, 1}h

implies uMx′ �= 0 for all x′ ∈ {0, 1}j .

Proof. The proof proceeds in three steps:

– First, by the mixed-product property of tensor products and noise flooding,
we have

(uMx′ ⊗ Sx′)Aj + Ex′ ≈s (uMx′ ⊗ In) · (Iw ⊗ Sx′)Aj + Dnw×m
Z,χ′ ) + Ex′

– Next, by the security of the BLMR PRF [BLMR13,BPR12] (also [CVW18,
Lemma 7.4]), we have:

{

(Iw ⊗ Sx′)Aj + Dnw×m
Z,χ′

}

x′∈{0,1}j

, {Si,b}i∈[h],b∈{0,1}

≈c

{
U(Znw×m

q )
}

x′∈{0,1}j
, {Si,b}i∈[h],b∈{0,1}

where we use ((Iw ⊗ S)A + E,S) ≈c (U(Znw×m
q ),S), which in turn follows

from LWE [BLMR13,CC17].
– Finally, for all x′ ∈ {0, 1}j , we have uMx′ · U(Znw×m

q ) ≈s U(Zn×m
q ), since

uMx′ �= 0.

This completes the proof.

We proceed to complete the proof of Theorem 4.

Proof (Proof of Theorem 4). We instantiate Lemma 2 with:

Ŝi,b =

{
uM1,b ⊗ S1,b if i = 1
Mi,b ⊗ Si,b if i > 1

The pre-condition in (6) is satisfied, via Lemma 3.

6 Witness Encryption

6.1 Definition

We recall the definition of witness encryption from [GGSW13].

Definition 1 (Witness encryption [GGSW13]). A witness encryption
scheme for an NP language L (with corresponding witness relation R) consists
of the following two p.p.t. algorithms:

Encryption. Enc(1λ, Ψ, μ) takes as input a security parameter 1λ, an instance
Ψ ∈ {0, 1}poly(λ), and a message μ ∈ {0, 1}, outputs a ciphertext ct.
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Decryption. Dec(ct, x) takes as input a ciphertext ct and string x ∈
{0, 1}poly(λ), outputs a message μ or the symbol ⊥.

These algorithms satisfy

Correctness. For any security parameter λ, for any μ ∈ {0, 1}, and for any
Ψ ∈ L such that R(Ψ, x) holds, we have that

Pr[Dec(Enc(1λ, Ψ, μ), x) = μ] ≥ 1 − negl(λ).

Soundness. For any p.p.t. adversary A, there exists a negligible function negl(·)
such that for any Ψ /∈ L, we have

∣
∣Pr[A(Enc(1λ, Ψ, 0)) = 1] − Pr[A(Enc(1λ, Ψ, 1)) = 1]

∣
∣ ≤ negl(λ).

6.2 CVW WE Scheme

To build a witness encryption scheme for all of NP, it suffices to build one for
the class of CNF formulas. We describe the CVW18 scheme [CVW18, Sect. 10]:

Construction 5 (CVW witness encryption). We construct a witness
encryption scheme for the class of CNF formula as follows:

Encryption. Enc(1λ, Ψ, μ) proceeds as follows:

– Apply [CVW18, Constructions 6.4,10.2 ] to the CNF Ψ (of c clauses and h
literals) to obtain a read-once branching program u = (1 · · · 1) ∈ {0, 1}c+1

and
{
Mi,b ∈ {0, 1}(c+1)×(c+1)

}
i∈[h],b∈{0,1} such that for all x ∈ {0, 1}h:

uMx =

{
(0‖μ) if Ψ(x) = 1
(�= 0‖μ) if Ψ(x) = 0

.

That is, the program computes Ψ(x) = 1 ∧ μ = 0. Concretely,

1. Initialization: for all i ∈ [	], b ∈ {0, 1}, Let Mi,b :=
(
Ic

μ

)

.

2. If xi appears in ψj: set the jth entry on the diagonal of Mi,1 to be 0.
3. If x̄i appears in ψj: set the jth entry on the diagonal of Mi,0 to be 0.

– Output
ct = ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

Decryption. Dec(ct,x) takes as input ct = {C1,b,D2,b, . . . ,Dh,b}b∈{0,1} and x ∈
{0, 1}h, outputs 0 if |C1,x1 ·D2,x2 · · ·Dh,xh

| ≤ B = h ·χ · (λnw(χ′′ +χ′′′) log q)h,
and 1 otherwise.

We will set the parameters as in Remark 1 with w = c + 1. Correctness
follows readily from that of ggh.encode. Security follows readily from Theorem 4,
together with the fact that if Ψ is not satisfiable, then uMx �= 0 for all x ∈
{0, 1}h.
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7 Null iO

We analyze the CVW iO scheme for branching programs in [CVW18, Sect. 11],
incorporating simplifications from [CHVW19, Sect. 6]. The same paper presents
a poly(λ)O(c) attack on the iO scheme for read-c branching programs, which
could be avoided by artificially padding the branching program when c is small.
Here, we show that the scheme is secure as a null-iO scheme for any c even
without padding, assuming subexponential LWE and evasive LWE.

7.1 Definition

Definition 2. An obfuscation scheme Obf is a null-iO scheme if it satisfies the
following properties:

Correctness: There is a negligible function ν such that for all circuits
C : {0, 1}� → {0, 1}:

Pr[∀x ∈ {0, 1}n : C(x) = C̃(x) | C̃ ← Obf(1λ, C)] ≥ 1 − ν(λ),

where the probability is over the coin tosses of Obf.
Security: Let C = {Cλ}, C ′ = {C ′

λ} be two circuit ensembles, such that C,C ′

have equal input length and circuit size and furthermore are everywhere null,
meaning that ∀x : C(x) = C ′(x) = 0. Then we require that: Obf(1λ, Cλ) ≈c

Obf(1λ, C ′
λ).

7.2 CVW Null-IO Scheme

Construction 6 (CVW null-IO)

Obfuscation. On input a branching program u, {Mi,b}i∈[h],b∈{0,1} computing a
function C : {0, 1}� → {0, 1},
– Following [CHVW19, Sect. 6 ], we may assume WLOG (at the cost of increas-

ing the width w) that7

∀x′ ∈ {0, 1}h : uMx′ = 0 ⇐⇒ x′ ∈ �({0, 1}�) ∧ C(�−1(x′)) = 1

– Output
ggh.encode⊗(u, {Mi,b}i∈[h],b∈{0,1})

Evaluation. On input {C1,b,D2,b, . . . ,Dh,b}b∈{0,1} and x ∈ {0, 1}�, outputs 0
if |C1,�(x)1 · D2,�(x)2 · · ·Dh,�(x)h

| ≤ B = h · χ · (λnw(χ′′ + χ′′′) log q)h, and 1
otherwise.

We will set the parameters as in Remark 1. Correctness follows readily from
that of ggh.encode. Security follows readily from Theorem 4, together with the
fact that if C is the null program, then uMx′ �= 0 for all x′ ∈ {0, 1}h.

7 This basically follows from the fact that we can compute x′ ?∈ �({0, 1}�) using a
read-once matrix branching program.
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8 Cryptanalysis of Evasive LWE

8.1 Algorithmic Attacks

The known algorithmic attacks essentially fall into one of two categories:

– Attacks on LWE: namely break pseudorandomness of SB+E given aux, which
is ruled out via the pre-condition;

– Zero-izing attacks: here, given aux, an attacker is able to compute a short
vector z such that SPz mod q ≈ 0 has low-norm; these attacks are also ruled
out via the pre-condition. But first, observe that such a z breaks the post-
condition, since

(SB + E) · B−1(P) · z = SPz + E · B−1(P) · z ≈ 0

and therefore an attacker can distinguish SB + E from a random C. On the
other hand, we also have

(SP + E′) · z ≈ 0

and therefore an attacker can also distinguish SP + E′ from a random C′,
which violates the pre-condition.

A Direct Attack Strategy that Fails. It is instructive to consider the following
direct attack strategy: Let aux = P. Find any (big) x via Gaussian elimination
such that: Px = 0 and Kx is small (but non-zero), where K = B−1(P). This
would yield a distinguisher for the post-condition since (SB+E) ·K ·x is small
whereas C · K · x is not small. We provide three explanations why this attack
does not work:

– The matrix
(
P
K

)
is a (n + m) × t matrix but only has rank at most m. This

is because [I | −B]
(
P
K

)
= 0 (that is, the top rows are a linear combination of

the bottom ones). Therefore, not every system of linear equations
(
P
K

)
x = z

has a solution x.
– Any solution x for which Kx is small yields a solution Kx to SIS with respect

to the random matrix B. Therefore, attacks of this type are already ruled out
by SIS.

– More generally, the assumption provably holds when P is uniformly random
and aux is an efficient function of P that is independent of S. Therefore, an
attack on the assumption must crucially exploit some properties of P, aux
and fundamentally different from the one here.

8.2 Auxiliary Inputs

Next, we describe a (heuristic) auxiliary-input attack on our assumption based
on general obfuscation, and describe a restricted class of (P, aux) that avoid
these attack, while still sufficient for our security proofs.
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A (Heuristic) Auxiliary-Input Attack. Suppose S ← Z
2m×n
q ,P ← Z

n×2m
q (that

is, n′ = t = 2m). Let aux be an obfuscation of the follow program ΠP,τ which has
P and a corresponding trapdoor τ hard-wired, and on input C ∈ Z

2m×m
q ,D ∈

Z
m×2m
q ,

– use τ to solve for S0 such that |C · D − S0 · P| is small
– if |D| is small and such a S exists, output 1, else output 0.

Observe that ΠP,τ would output 1 on input (SB + E,B−1(P)), and 0 on input
(U(Zn′×m

q ),B−1(P)), which yields a distinguisher for the post-condition. On the
other hand, by LWE, (SB+E,SP+E′) is pseudorandom. Moreover, given oracle
access to ΠP,τ , it is statistically hard to find an accepting input. This means that
the pre-condition would hold given an ideal obfuscation of ΠP,τ .

Restricted Class (P, aux). We consider (P, aux) of the form:

P :=[Ŝ1,0A1‖Ŝ1,1A1] + E1

aux :=(A−1
1 ([Ŝ2,0A2‖Ŝ2,1A2] + E2), . . . ,A−1

�−1([Ŝ�,0A�‖Ŝ�,1A�] + E�),

Ŝ1,0, Ŝ1,1, . . . , Ŝ�,0, Ŝ�,1, aux0)

where Ŝ1,0, Ŝ1,1, . . . , Ŝ�,0, Ŝ�,1, aux0 are “public-coin” (by requiring that aux also
contains the coin tosses used to sample Ŝi,b, aux0) and independent of the random
matrices A1, . . . ,A�. Note that

– the private randomness for aux are only used in sampling (i) A1, . . . ,A�

along with the respective trapdoors, (ii) E1, . . . ,E�, as well as (iii)
A−1

1 (·), . . . ,A−1
� (·);

– we only require that the Ŝi,b’s are “public-coin” and do not require that they
compute a tensor of the form Mi,b ⊗ Si,b;

– this restricted class of (P, aux) is sufficient for our security reductions in
Lemma 2.

Next, we argue that this restricted class do not capture the obfuscation-based
aux. The reasons are two-fold:

– The matrices Ŝi,b’s are public-coin and given to the distinguisher as part of
aux, so any secret information (e.g. matrix trapdoors τ) embedded into these
matrices will also be provided to the distinguisher in the pre-condition “in
the clear”.

– The matrices Ŝi,b’s are independent of the random matrices A1, . . . ,A� and
in particular cannot depend on trapdoors for any of these matrices.

8.3 A Special Case

We consider a special case for evasive LWE that is closely related to the WE
and null-IO scheme. Suppose uiM �= 0 for all i ∈ [N ]. Then, evasive LWE (plus
LWE) tells us that the following distribution is pseudorandom:
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{S1,i, (ui ⊗ S1,i)A1 + E1,i}i∈[N ] ,S2,A−1
1 ((M ⊗ S2)A2 + E2)

We observe that for the case N = 1, such a statement follows from LWE. In
fact, it suffices to prove pseudorandomness of

(u ⊗ I)A1,S2,A−1((M ⊗ S2)A2 + E2)

– First, we apply LWE with secret A2 to replace (I ⊗ S2)A2
���������

with a random

P.
– Next, by LWE and adapting an argument from [CVW18], we have

(u⊗ I)A2,A−1
2 ((M⊗ I)P+E) ≈c (u⊗ I)A2, ((u⊗ I)A2)−1((uM⊗ I)P+E′)

The idea is to treat the part of A2 that is perfectly hidden given (u ⊗ I)A2

as the LWE secret.
– The rest of the proof follows from a statistical argument.
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A Comparison with [Tsa22]

An independent work of Tsabary [Tsa22] (also independent of [Wee22]) presents
a new witness encryption scheme under a variant of evasive LWE. We describe
some high-level differences between the two works:

– Tsabary [Tsa22] presents a new witness encryption scheme that uses read-
many branching programs and does not consider null-IO. We prove security
of existing candidate WE and null-IO schemes in CVW, where the former
uses read-once (matrix) branching programs.

– The formulation of evasive LWE in [Tsa22] allows (P, aux) to depend on B,
whereas ours and that in [Wee22] does not. In particular, our formulation of
evasive LWE is more conservative.

– The analysis in [Tsa22] relies on a formulation of evasive LWE with polyno-
mial hardness and oracle access to a possibly exponential number of matrices,
whereas we crucially rely on evasive LWE with instances of exponential size 2h

(which in turn requires a careful setting of parameters). In our security reduc-
tion, the adversary receives all possible partial evaluated products, whereas
the adversary in [Tsa22] only has oracle access to these quantities. Note that
in both analysis, the complexity of the adversary could double with each
invocation of evasive LWE, so that we would necessarily need to consider
adversaries running in time at least 2h, for which there is no real distinction
between receiving and oracle access to all possible partial products.
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Abstract. By exploiting the feature of partial nonlinear layers, we pro-
pose a new technique called algebraic meet-in-the-middle (MITM) attack
to analyze the security of LowMC, which can reduce the memory com-
plexity of the simple difference enumeration attack over the state-of-the-
art. Moreover, while an efficient algebraic technique to retrieve the full
key from a differential trail of LowMC has been proposed at CRYPTO
2021, its time complexity is still exponential in the key size. In this work,
we show how to reduce it to constant time when there are a sufficiently
large number of active S-boxes in the trail. With the above new tech-
niques, the attacks on LowMC and LowMC-M published at CRYPTO
2021 are further improved, and some LowMC instances could be broken
for the first time. Our results seem to indicate that partial nonlinear
layers are still not well-understood.

Keywords: LowMC · LowMC-M · Algebraic attack · Linearization ·
Key recovery · Meet-in-the-middle

1 Introduction

Being the first dedicated symmetric-key primitive design for advanced protocols
like secure multiparty computation (MPC) and fully homomorphic encryption
(FHE), the LowMC block cipher family [7] has attracted lots of attention from
the cryptography community. Especially, one of the alternate third-round can-
didate signature schemes in NIST post-quantum cryptography competition [1]
called Picnic [3,16] uses LowMC as the underlying block cipher, whose security
is directly related to the difficulty to recover the key of LowMC from a single
plaintext-ciphertext pair.
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Most importantly, the proposal of LowMC directly starts a new trend to
design symmetric-key primitives with different metrics, e.g. low AND depth and
low AND gates. There is a long line of research focusing on such primitive designs
in recent years, like Kreyvrium [15], FLIP [32], Rasta [20], MiMC [6], GMiMC [5],
Jarvis [9], Hades [26], Poseidon [25], Vision [8], Rescue [8] and Ciminion [22].

On the other hand, these primitives also raise new challenges for cryptan-
alysts to evaluate their security. One reason is that some of them are defined
over a (large) prime field, which received little attention in symmetric-key crypt-
analysis in the past few decades [13,27]. Another important reason is that some
of them adopt unusual designs, which make common cryptanalytic techniques
difficult to apply. However, these also imply that some fatal errors may be
overlooked at the design phase, which is the case of the algebraic attack on
full Jarvis [4] and the guess-and-determine attack on the first version of full
FLIP [23]. Moreover, due to the lack of tools to evaluate their security, some
designs may be too aggressive and will soon turn out to be vulnerable to some
novel attacks [13,19,24,28,30,34]. Therefore, developing new cryptanalytic tech-
niques for these new designs becomes an important task due to the fact that the
security of a symmetric-key primitive is highly related to the evolution of crypt-
analytic techniques.

In this paper, we focus on new attacks on LowMC [7] for its special design
strategy of using partial nonlinear layers, which has inspired the designs of Hades
and a real-world hash function Poseidon. Moreover, its applications in the Pic-
nic signature scheme and the backdoored cipher LowMC-M [33] proposed at
CRYPTO 2020 also make it meaningful to further understand its security.

Cryptanalysis of LowMC. Since its publication, LowMC has been quickly
analyzed with the higher-order differential attack [21] and interpolation
attack [19], which directly made LowMC move to LowMC v2.

To study its security with low data complexity, e.g. its application in the
Picnic signature scheme, the difference enumeration attack [34] was proposed to
break several instances of LowMC v2 with 3 or slightly more chosen plaintexts.
Consequently, the formula to determine the secure number of rounds of LowMC
was updated further [2], and this version is called LowMC v3. For convenience,
LowMC simply refers to LowMC v3 in the following.

However, a recent work [28] at CRYPTO 2021 reveals that some important
LowMC instances are still insecure and they could be broken with 2 chosen
plaintexts only and negligible memory complexity. Devising the attacks with 2
chosen plaintexts is mainly due to the assumption used in the security proof of
the Picnic signature scheme, where LowMC with 2 plaintexts is required to be
secure [16]. Moreover, the idea to attack LowMC with 2 chosen plaintexts can be
simply extended to the attack with a large number of chosen plaintexts, as can
be seen from the powerful attacks on LowMC-M in the same paper [28], which
has pushed the designers of LowMC-M to increase the number of rounds.

In another direction, the recent LowMC competition to recover the secret
key from a single plaintext-ciphertext pair has motivated three teams to develop
new attacks [10,11,18,29] on LowMC in this attack scenario. According to
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the announcement of the third-round results, the attacks with the MITM
method [11] and the polynomial method [18] were selected as currently the best
attacks. In particular, the polynomial method [18] requires huge memory.

Regarding the memory complexity, we cite the statement in [18]: There is
no consensus among researchers on a model that takes memory complexity into
account and the formal security claims of the Picnic (and LowMC) designers
only involve time complexity. Indeed, the memory complexity of an attack may
be reduced as new techniques develop. A very recent related example is the
algebraic technique in [28], which not only significantly reduces the memory
complexity of the original difference enumeration attack [34] on LowMC v2 but
also improves the number of attacked rounds.

Our Contributions. We aim to further improve the difference enumeration
attack on LowMC. The general idea of this attack is very simple. Given a pair
of plaintexts and the corresponding ciphertexts, the input difference and output
difference of the cipher are known. The first step is to enumerate all the possible
differential trails such that this input difference can reach this output difference,
i.e. to recover the possible difference transitions through each round. The second
step is to retrieve the full secret key from each possible differential trail and test
its correctness via the plaintext-ciphertext pair.

For the first step, the memory complexity of the simple MITM method in [34]
is exponential in the number of attacked rounds. Although the algebraic tech-
nique [28] can make the memory complexity negligible, the number of attacked
rounds is limited. Specifically, the algebraic technique converts the difference
enumeration into the problem to solve a linear equation system. However, as
the number of attacked rounds increases, the linear equation system will become
under-determined, i.e. the number of equations is smaller than the number of
variables, which will increase the time complexity to enumerate all the possi-
ble differential trails as there are many solutions to the under-determined linear
equation system. In addition, it is unclear how to use additional memory to
improve this algebraic technique.

Our first contribution is a new method to handle this under-determined lin-
ear equation system. This is based on the fact that the variables in this equation
system are not independent and there are nonlinear relations inside them. Our
first attempt is to convert solving such a linear equation system into solving a
linear equation system and a nonlinear equation system based on a new observa-
tion on the LowMC S-box. However, it is difficult to bound its time complexity
and it seems inefficient as the number of attacked rounds increases. This moti-
vates us to develop a MITM strategy to exploit the nonlinear relations inside
these variables to efficiently solve this under-determined linear equation system.
This new strategy is shown to outperform both the simple MITM strategy [34]
and the simple algebraic technique [28] and is applicable to a wide range of
LowMC parameters. Specifically, it can not only reduce the memory complexity
of the simple MITM strategy [34] over the state-of-the-art but also improves
the number of attacked rounds by using additional memory for the algebraic
technique [28]. In a word, the algebraic technique and the MITM strategy are
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combined in the new strategy and this is why we call it the algebraic MITM
attack.

As the number of attacked rounds increases, it is natural that the number
of possible differential trails will increase significantly due to the effect of the
S-boxes. Hence, it becomes crucial to further optimize the time complexity to
retrieve the full key from a random differential trail for the second step. Oth-
erwise, the final time complexity will exceed that of brute force. While a novel
and efficient algebraic technique is proposed in [28] to achieve this purpose, i.e.
recovering the key by solving a linear equation system, we observe that it is
still not extremely optimized due to an inefficient way to deal with the inactive
S-boxes in the differential trail. Specifically, the guess-and-determine strategy
is still involved in order to process the inactive S-boxes, which makes the time
complexity to retrieve the full key from a random differential trail still exponen-
tial in the key size. To handle the inactive S-boxes more efficiently, we directly
exploit the nonlinear relations in their inputs and outputs. Specifically, by intro-
ducing intermediate variables for the inactive S-boxes, we convert the problem
to recover the key into solving a linear equation system and a quadratic equation
system in terms of more variables, i.e. the key and the intermediate variables.
To ensure that the whole equation system can be efficiently solved, we make
a compromise that we may fail to recover the correct key with probability of
about 0.5. However, as the success probability is sufficiently high. i.e. 0.5, the
new technique is useful in practice. In a word, by directly solving a quadratic
equation system, the time complexity to retrieve the full key from a random
differential trail is reduced to constant time, i.e. almost close to 1.

Due to the significant improvements for both steps, the attacks on LowMC
and LowMC-M will naturally be improved. It can be found in Table 4 and Table 5
that the security margins (see the column R − r) of LowMC and LowMC-M
decrease quickly and some parameters are extremely vulnerable against our new
attacks.

Outline of this Paper. In Sect. 2, we introduce the notations and briefly
describe LowMC and LowMC-M. Then, an overview of the algebraic MITM
attack is given in Sect. 3. Next, in Sect. 4, we revisit the previous difference enu-
meration attacks on LowMC and discuss the problems to improve the attacks.
The details of the new methods to enumerate differential trails and to efficiently
recover the full key from a differential trail are explained in Sect. 5 and Sect. 6,
respectively. The summary of our new attacks on LowMC and LowMC-M is
shown in Sect. 7. The experimental results are reported in Sect. 8. Finally, the
paper is concluded in Sect. 9.

2 Preliminaries

2.1 Notation

Because both LowMC [7] and LowMC-M [33] have many parameters, we use n,
k, m, R and D to represent the block size in bits, the key size in bits, the number
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of S-boxes in each round, the total number of rounds and the allowed log2 data
complexity for each key, respectively. In addition,

1. rank(M) represents the rank of the matrix M .
2. M0||M1 represents the composition of two matrices M0 and M1 of the same

number of rows.
3. V0|V1 represents the composition of the two vectors V0 and V1.
4. Ej×j represents an identity matrix of size j × j.
5. (a1, a2, . . . , ai)T also represents an i-bit vector. To number the elements in a

vector V , we start the index from 1, i.e. V [i] represents the i-th element in V
and V [1] is the first element.

6. V [i : j] represents a new vector by taking the i-th element to the j-th element
from V .

For example, when V0 = (0, 0)T and V1 = (1, 1, 0)T , we have V0|V1 =
(0, 0, 1, 1, 0)T and V1[2 : 3] = (1, 0)T . When M0 =

(
0 0
1 1

)
and M1 =

(
1 0
0 1

)
,

we have M0||M1 =
(
0 0 1 0
1 1 0 1

)
.

2.2 Description of LowMC

LowMC [7] is a family of SPN block ciphers proposed at EUROCRYPT 2015. A
notable feature of LowMC is that each user can independently choose parameters
to instantiate it. LowMC follows a common encryption procedure as most block
ciphers. Specifically, it starts with a key whitening (WK) and then iterates a
round function R times. The round function at the (i + 1)-th (0 ≤ i ≤ R − 1)
round can be described as follows:

1. SBoxLayer (S): A 3-bit S-box (z0, z1, z2) = S(x0, x1, x2) with (z0, z1, z2) =
(x0 ⊕x1x2, x0 ⊕x1 ⊕x0x2, x0 ⊕x1 ⊕x2 ⊕x0x1) is applied to the first 3m bits
of the state in parallel, while an identity mapping is applied to the remaining
n − 3m bits.

2. MatrixLayer (L): A regular matrix Li ∈ F
n×n
2 is randomly generated and the

n-bit state is multiplied with Li.
3. ConstantAddition (AC): An n-bit constant Ci ∈ F

n
2 is randomly generated

and is XORed to the n-bit state.
4. KeyAddition (AK): A full-rank n × k binary matrix Ui+1 is randomly gener-

ated. The n-bit round key Ki+1 is obtained by multiplying the k-bit master
key with Ui+1. Then, the n-bit state is XORed with Ki+1.

The whitening key is denoted by K0 and it is also calculated by multiplying the
master key with a random full-rank n × k binary matrix U0.

LowMC-M [33] is a family of tweakable block ciphers built on LowMC pro-
posed at CRYPTO 2020. The only difference between them is that there is an
additional operation AddSubTweak (AT ) after AK and WK in LowMC-M,
where the sub-tweaks are the output of an extendable-output-function (XOF)
function by setting the tweak as the input. A detailed description can be referred
to [33]. As both the tweak and XOF are public, we can equivalently view AT as
a known-constant addition operation.
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As shown below, in the (i + 1)-th round, the difference of the input state
of S is denoted by Δi and the difference of the corresponding output state is
denoted by ΔS

i . The difference of plaintexts is denoted by Δp, i.e. Δp = Δ0. In
our attacks, Δi and ΔS

i will be viewed as n-bit vectors.

Δp
WK−→ Δ0

S−→ ΔS
0

AK−→ L−→ AC−→ Δ1 → · · · → ΔR−1
S−→ ΔS

R−1
AK−→ L−→ AC−→ ΔR.

In addition, the compact differential trail is defined as below:

Definition 1 [28]. A differential trail Δ0 → Δ1 → · · · → Δr is called a r-round
compact differential trail when all (Δj ,Δ

S
j ) (0 ≤ j ≤ r − 1) and Δr are

known.

3 The Trick for Algebraic MITM Attack on LowMC

We use a toy example to explain the trick used in our algebraic MITM attack
on LowMC. Consider an underdetermined equation system in GF (2):

A · (ν1, ν2, . . . , ν6)T = (μ1, μ2, μ3)T ,

where A =
( 1 1 0 1 0 1
0 1 1 1 1 1
1 1 1 0 0 1

)
and (ν1, ν2, ν3, ν4) ∈ V = {(1, 1, 0, 0), (0, 1, 0, 1)}.

Note that it is constrained that (ν1, ν2, ν3, ν4) can only take 2 possible val-
ues. The problem is how to efficiently find (ν1, ν2, . . . , ν6) for an arbitrary given
(μ1, μ2, μ3). With Gaussian elimination, we have

A′ · (ν1, ν2, . . . , ν6)T = B′ · (μ1, μ2, μ3)T ,

where A′ =
( 1 0 1 0 1 0
1 1 0 1 0 1
0 0 1 1 0 0

)
and B′ =

( 1 1 0
1 0 0
1 0 1

)
. Hence, we obtain a linear relation

only in (ν1, ν2, ν3, ν4, μ1, μ2, μ3), which is

(0, 0, 1, 1) · (ν1, ν2, ν3, ν4)T = (1, 0, 1) · (μ1, μ2, μ3)T .

Let � = (1, 0, 1) · (μ1, μ2, μ3)T . We can build a table for the tuple
(�, ν1, ν2, ν3, ν4) at the offline phase, which is W = {(0, 1, 1, 0, 0), (1, 0, 1, 0, 1)}.
Then, at the online phase, for any given (μ1, μ2, μ3), we compute � and retrieve
(ν1, ν2, ν3, ν4) from W based on �. In this way, (ν1, ν2, ν3, ν4) is determined and
we then compute (ν5, ν6) according to the first two rows of A′ and B′, thus
recovering the full information of (ν1, ν2, . . . , ν6) for any given (μ1, μ2, μ3).

Abstracting the Above Trick. In the above example, an underdeter-
mined linear equation system F (ν1, ν2, . . . , νi) = μ is considered, where μ =
(μ1, μ2, . . . , μj) and F : Fi

2 → F
j
2 is a linear function. Moreover, some variables

of (ν1, ν2, . . . , νi) can only take values from a constrained space. The generic
procedure of our algebraic MITM attack can be described as follows:

Step 1: Determine the constrained space for some variables. Denote these vari-
ables by I = (νI0 , νI1 , . . . , νIi0

) and the constrained space by V, i.e.
I ∈ V.
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Step 2: Find some linear relations only in I and μ. Denote these linear relations
with a linear equation system

A′ · (νI0 , νI1 , . . . , νIi0
)T = B′ · (μ1, μ2, . . . , μj)T . (1)

For convenience, let � = B′ · (μ1, μ2, . . . , μj)T .
Step 3: At the offline phase, for each element in V, compute the corresponding

� based on Eq. 1 and store (�, I). Denote the set of all possible values
of (�, I) by W.

Step 4: At the online phase, for each given μ, compute � using

� = B′ · (μ1, μ2, . . . , μj)T

and retrieve the corresponding I from W with �. Then, we determine
the remaining unknown variables in (ν1, ν2, . . . , νi) by considering the
whole equation system F (ν1, ν2, . . . , νi) = (μ1, μ2, . . . , μj).

It can be found that the trick is very simple. However, it is surprising that
this has never been utilized nor observed in the cryptanalysis of LowMC. More-
over, from the above generic procedure, it can be found that some variables of
(ν1, ν2, . . . , νi) are computed on-the-fly. This is indeed the core idea to reduce the
memory complexity of the simple difference enumeration attack on LowMC [34].

4 Overview of Previous Difference Enumeration Attacks

The most important application of LowMC is the Picnic signature scheme,
which is an alternate third-round candidate in NIST post-quantum cryptog-
raphy competition. Although the security of Picnic is based on the difficulty to
recover the secret key of LowMC under 1 plaintext-ciphertext pair, in its secu-
rity proof, it is also assumed that the LowMC instance should be secure up to
2 plaintext-ciphertext pairs. This has motivated the LowMC team to devise the
difference enumeration attack [34] and they succeeded in breaking many LowMC
v2 instances with an extremely low data complexity.

To resist this attack, the formula to compute the secure number of rounds of
LowMC is further updated. However, a recent improved attack with algebraic
techniques proposed at CRYPTO 2021 indicates that some of the latest LowMC
parameters are still insecure. In the following, we will briefly describe the above
two attacks.

4.1 The Original Attack Framework [34]

The difference enumeration attack [34] is a meet-in-the-middle-style attack, as
depicted in Fig. 1. From now on, we call the original difference enumeration
attack [34] Attack-O. The attack procedure1 in general consists of two crucial

1 We consider the standard XOR difference for simplicity.
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steps. First, recover the compact differential trail for 2 chosen plaintexts with a
meet-in-the-middle method, which we call the difference enumeration phase.
Second, compute the key from this recovered differential trail, which we call
the key-recovery phase. Since there must exist a correct compact differential
trail, by restricting that only on average one trail will survive after the difference
enumeration phase, the trail obtained after this phase will be the correct one.

Some Notations Related to the Complexity of the Attack. Throughout
this paper, we denote the time complexity of the difference enumeration phase
by Td and the expected time complexity to retrieve the full key from a compact
differential trail by Tk. Moreover, we denote the number of potentially correct
compact differential trails after the difference enumeration phase by Nd. In this
way, the whole time complexity of the attack is Td + NdTk.

An important feature of Attack-O [34] is that Nd ≈ 1, i.e. only one trail will
survive after the difference enumeration phase. Hence, the whole time complexity
of the attack becomes Td + Tk.

Constraints at the Difference Enumeration Phase. In the following, we
will briefly describe the difference enumeration phase of Attack-O. The key-
recovery phase will not be detailed as it is inefficient and it has been significantly
improved with algebraic techniques in [28].

As shown in Fig. 1, when targeting a r-round attack, we can split the r rounds
into three parts: the first r0 rounds, the middle r1 rounds and the last r2 rounds,
i.e. r = r0 + r1 + r2. The procedure to find the compact differential trails can be
summarized as follows:

Step 1. Find an input difference Δ0 such that there will be no active S-boxes in
the first r0 rounds. In this way, Δr0 is uniquely determined. Therefore,
r0 = �n/(3m)�.

Step 2. Enumerate the state differences forwards from Δr0 for the next r1
rounds and store the set of state differences Δr0+r1 . Denote such a
set by Df and the size of Df by |Df |.

Step 3. Encrypt a plaintext pair whose XOR difference is Δ0 for r rounds and
obtain the XOR difference Δr of the ciphertexts.

Step 4. Enumerate the state differences backwards from Δr for r2 rounds and
again obtain the state difference Δr0+r1 . If the obtained Δr0+r1 is in
Df , one compact differential trail is found and exit. Otherwise, repeat
enumerating Δr0+r1 from Δr.

Since on average one differential trail is allowed to survive and the time
complexity Td cannot exceed 2k, the constraints2 specified in [34] are
2 The constraints indeed can be improved with 21.86mr1−3τ < 2k, 21.86mr2 < 2k and

21.86m(r1+r2)−3τ ≤ 2n, where τ = �(n − 3mr0)/3�. This is because we can also make
τ S-boxes in the (r0 + 1)-th round inactive. This slight improvement can work for
m > 1. However, it is not used in [34]. One reason we believe is that this is not that
useful to improve the number of attacked rounds and the improvement is slight.
Hence, to make a fair comparison and to make the analysis simpler, this trivial trick
to slightly improve the attack will not be considered in our new techniques.
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Fig. 1. The original difference enumeration attack framework

21.86mr1 < 2k, 21.86mr2 < 2k, 21.86m(r1+r2) ≤ 2n. (2)

For the first two constraints, it is necessary to know the fact that for an input
difference of the 3-bit S-box of LowMC, there are on average 29/8 ≈ 21.86 output
differences and vice versa. Hence, the first two constraints mean that the time
complexity to construct the set Df and to enumerate the difference backwards
cannot exceed 2k.

For the last constraint, as the block size is n bits and about 21.86mr1 possible
state differences are stored in Df , the probability to find a match is 2−n+1.86mr1 .
As there are in total 21.86mr2 state differences Δr0+r1 computed backwards,
we can expect to find on average 2−n+1.86mr1+1.86mr2 matches, i.e. compact
differential trails. To ensure on average one trail survives, we thus have the third
constraint 21.86m(r1+r2) ≤ 2n.

The Drawbacks of Attack-O. The most obvious drawback is the consumption
of memory to store Df , which is directly related to the number r1, i.e. the
memory complexity is 21.86mr1 . As r1 increases, the memory complexity increases
exponentially. The second drawback is the strong constraint on Nd, i.e. Nd ≈ 1
is required. Note that the time complexity of the attack is Td + NdTk. Hence,
the second drawback can be easily fixed as long as we can make Tk significantly
small, which is indeed what the algebraic techniques [28] achieved.

4.2 The Improved Attack Framework

At CRYPTO 2021, Attack-O has been significantly improved with algebraic
techniques [28]. The first strategy is to allow many possible r-round compact
differential trails to survive after the difference enumeration phase, i.e. Nd can
be much larger than 1. The second strategy is to significantly optimize Tk with
advanced algebraic techniques. The third strategy is to reduce the memory com-
plexity of the difference enumeration by converting the problem to find a r-round
compact trail into the problem to solve a linear equation system, which is inspired
by Bar-On et al.’s work [12]. For convenience, we call the improved attack in [28]
Attack-I.
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To avoid the abuse of notation, we still split the r-round LowMC into three
parts: the first r0 rounds, the middle r1 rounds and the last r2 rounds, while
there will be different constraints for (r1, r2) in Attack-I.

The general idea is still the same with Attack-O, i.e. it consists of the differ-
ence enumeration phase and the key-recovery phase. As the key-recovery phase
will be further optimized in our new attack, its general idea will be explained
later and we will mainly focus on the constraints on (r1, r2) at the difference
enumeration phase in this section.

Fig. 2. The improved difference enumeration attack framework

Fig. 3. Introduce variables to represent the output differences of the S-boxes.

As depicted in Fig. 2, the general procedure to find a r-round compact dif-
ferential trail can be described as follows:

Step 1. It is the same as Step 1 of Attack-O.
Step 2. It is the same as Step 3 of Attack-O.
Step 3. Introduce 3mr1 variables U ′ = (u1, u2, . . . , u3mr1)

T to represent the
output difference of the all the mr1 S-boxes in the middle r1 rounds, as
depicted in Fig. 3. In this way, in the forward direction, Δr0+r1 can be
written as linear expressions in these variables, i.e. Δr0+r1 = H ′ ·U ′ ⊕c,
where both the coefficient matrix H ′ and the n-bit constant vector c
are fixed.

Step 4. Enumerate the state differences backwards from Δr for r2 rounds and
obtain the state difference Δr0+r1 . According to Δr0+r1 , solve the lin-
ear equation system Δr0+r1 = H ′ · U ′ ⊕ c and get the solutions of
U ′ = (u1, u2, . . . , u3mr1)

T . For each solution, the difference transitions
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in these r1 rounds are specified and the correctness can be checked via
the differential distribution table (DDT). If it is correct, a potentially
correct compact r-round differential trail is found.

The Constraints. Indeed, the variables (u3m(r1−1)+1, u3m(r1−1)+2, . . . , u3mr1)
are not necessary. Moreover, based on some properties of the S-box [28], at least
n− 3m+2m = n−m linear equations in terms of (u1, u2, . . . , u3m(r1−1)) can be
constructed, i.e. we get at least m linear equations inside (u1, u2, . . . , u3m) and we
get at least additional m linear equations from the m S-boxes in the (r0+r1)−th
round. Hence, Td = max(21.86mr2 , 21.86mr2+(3mr1−n−2m)). To reach the maximal
number of attacked rounds, r2 = �k/(1.86m)�. In this way, it can be found in [28]
that the maximal value of r1 is either �(n+2m)/(3m)� or �(n+2m)/(3m)�+1,
i.e. 21.86mr2+(3mr1−n−2m) < 2k should hold. Roughly speaking, r1 is at most
�n/(3m)� + 1.

The Advantages of Attack-I. There is no more a strong constraint Nd ≈ 1.
In other words, Nd = 21.86m(r1+r2)−n can be much larger than 1 as long as
NdTk < 2k. As Tk is significantly reduced in [28], the upper bound for Nd

accordingly increases, which implies that the upper bound for r1 + r2 increases
as well. Moreover, computing a compact differential trail is equivalent to solving
a linear equation system in Attack-I and therefore there is no need to use a
large amount of memory to store a set of possible values for Δr0+r1 computed
forwards, i.e. the memory complexity of Attack-I is negligible.

The Drawbacks of Attack-I. The most obvious drawback of Attack-I is that
the constraint on r1 is too strong, i.e. its maximal value is about �n/(3m)� + 1,
which will directly limit the number of attacked rounds.

4.3 Problems to Improve the Attacks

The maximal values of (r0, r2) in both Attack-O and Attack-I are the same,
which are specified below:

r0 = �n/(3m)�, r2 = �k/(1.86m)�. (3)

There seems to be little room to improve the upper bounds for (r0, r2).
However, this seems to be not the case for r1. Assuming Tk can be reduced to

1, the maximal value of Nd = 21.86m(r1+r2)−n will then be slightly smaller than
2k, i.e. TkNd < 2k has to hold. In this way, with the simple MITM strategy of
Attack-O, the maximal value for r1 is �k/(1.86m)� and the memory complexity
is 21.86mr1 . With the algebraic techniques of Attack-I, the maximal value for r1
is about �n/(3m)� + 1 and the memory complexity is negligible.

When n is much larger than k and m is small, e.g. (n, k,m) = (1024, 128, 1),
the algebraic technique is more powerful than the simple MITM strategy as
the upper bound for r1 is much larger. Moreover, the memory complexity is
negligible. However, it is not difficult to observe that even allowing attackers to
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use memory in Attack-I, it is unclear how to use it to further increase r1, i.e.
what should we store in advance?

When n = k, e.g. (n, k,m) = (128, 128, 1), the simple MITM strategy is more
powerful because it is possible to pick an r1 such that r1 > �n/(3m)� + 1 at the
cost of using 21.86mr1 memory.

Hence, the to-be-solved problems now become clear, as stated below:

Problem 1. For the case when the simple MITM strategy is more powerful at
the cost of using memory, e.g. n = k, how to significantly optimize the memory
complexity?

Problem 2. For the case when the algebraic technique is more powerful, e.g.
n >> k, how to further enlarge r1 by using memory?

5 The Algebraic MITM Attack Framework

In Attack-I, finding a compact differential trail is reduced to solving a linear
equation system with the introduction of intermediate variables. An implicit
assumption in this attack is that these intermediate variables are independent.
Obviously, this is not the fact because we still need to check the validity of the
obtained solutions of these variables via DDT. This motivates us to consider
whether it is possible to exploit some nonlinear relations in these variables.

5.1 A New Observation on the 3-Bit S-box

Denote the input difference and output difference of the 3-bit LowMC S-box by
(Δx0,Δx1,Δx2) and (Δz0,Δz1,Δz2), respectively. We observe that the follow-
ing 2 cubic equations are sufficient to fully describe its DDT:

(1 ⊕ Δx0)(1 ⊕ Δx1)(1 ⊕ Δx2) = (1 ⊕ Δz0)(1 ⊕ Δz1)(1 ⊕ Δz2),
(1 ⊕ Δx0)(1 ⊕ Δx1)(1 ⊕ Δx2) = Δx0Δz0 ⊕ Δx1Δz1 ⊕ Δx2Δz2 ⊕ 1.

Moreover, when (Δx0,Δx1,Δx2) 	= (0, 0, 0) and (Δz0,Δz1,Δz2) 	= (0, 0, 0),
all the possible values of (Δx0,Δx1,Δx2,Δz0,Δz1,Δz2) can be fully described
with only 1 quadratic equation, while all the invalid values do not satisfy it, as
specified below:

Δx0Δz0 ⊕ Δx1Δz1 ⊕ Δx2Δz2 ⊕ 1 = 0. (4)

This quadratic equation perfectly explains the property used in [28] that for each
nonzero input difference, its output differences form an affine space of dimension
2 and vice versa.

Although the above equations are derived by hand, it is also possible to run
a simple algorithm to find them. Specifically, we first guess the degree of the
equations and then determine the coefficients of the terms in the equations,
which can be converted into solving a linear equation system in terms of the
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to-be-determined coefficients. Each solution of the coefficients will correspond to
a possible equation. This is a widely-used method [17]. Using this algorithm, we
can simply prove that the DDT of the LowMC S-box cannot be described with
only 1 quadratic or cubic equation.

What Does the New Property Imply? With the algebraic technique to find
a compact differential trail, it seems possible to enlarge r1. In particular, if not
considering the dependency between the 3m(r1 − 1) variables, we can obtain
at least n − m linear equations in these variables. When n + 2m − 3mr1 ≈ 0,
these variables can be easily solved as in Attack-I. However, when 3mr1 − n −
2m >> 0, we may need to enumerate too many solutions to this linear equation
system. However, we may reduce the cost to enumerate the solutions by solving
nonlinear equations based on the new observations. Specifically, after performing
Gaussian elimination on the n − m linear equations, we obtain 3mr1 − 2m − n
free variables. Then, by utilizing the nonlinear relations in the input difference
and output difference of the 3-bit S-box, equations of degree 3 in these free
variables can be constructed because it is unclear which S-box is inactive. In this
way, enumerating the solutions is equivalent to solving a multivariate system of
degree-3 equations.

As r1 increases, the number of free variables 3mr1 − 2m − n increases in a
very fast way. In addition, it is difficult to bound the time complexity to solve
such a system of nonlinear equations. Moreover, when 21.86r2 becomes close to
2k, it is required to solve such an equation system with time complexity close
to 1. One way to remove this constraint is to decrease r2 and increase r1 at
the cost to solve a system of nonlinear equations in much more variables, which
will further make the complexity evaluation difficult. We leave this observation
here. In the following, we will describe a different way to utilize these nonlinear
relations, which is combining the MITM strategy and the algebraic techniques.

5.2 A New Attack Framework

As mentioned above, it is necessary to develop a new technique to solve an
under-determined system of linear equations by utilizing the nonlinear relations
in the variables. Moreover, it is expected that the time complexity to solve these
variables is 1.

To avoid the abuse of notation, we still split the r-round LowMC into three
parts as in Attack-O and Attack-I, i.e. the first r0 rounds, the middle r1 rounds
and the last r2 rounds. An overview of the new attack framework is depicted in
Fig. 4 and we call it Attack-N.

Focus on (Δr0+r1−1[1 : 3e],ΔS
r0+r1−1), where ΔS

r0+r1−1 is computed by per-
forming the inverse of the linear transform on Δr0+r1 and Δr0+r1−1[1 : 3e] is
obtained by further enumerating the input differences for the first e S-boxes
starting from ΔS

r0+r1−1. Note that ΔS
r0+r1−1[3m + 1 : n] = Δr0+r1−1[3m + 1 : n]

due to the partial nonlinear layer.



238 F. Liu et al.

Fig. 4. The new difference enumeration attack framework

Let

l = r1 − 1, (5)
γ = Δr0+r1−1[1 : 3e]|Δr0+r1−1[3m + 1 : n], (6)

i.e. γ is a (3e + n − 3m)-bit vector representing the concatenation of the 1st bit
to the 3e-th bit and the (3m + 1)-th bit to the n-th bit of Δr0+r1−1.

Similarly, we introduce 3ml variables U = (u1, u2, . . . , u3ml) variables to
represent the output differences of the S-boxes in the first r1 − 1 rounds of the
middle r1 rounds. In this way, we have

γ = M · (u1, u2, . . . , u3ml)T ⊕ α, (7)

where M is a fixed matrix of size (n − 3m + 3e) × 3ml and α ∈ F
n−3m+3e
2 is

uniquely determined by the fixed state difference Δr0 .
We now only consider the case when Eq. 7 is under-determined, i.e. n−3m+

3e < 3ml. Our aim is to efficiently solve the variables U = (u1, u2, . . . , u3ml)
given an arbitrary γ. For this purpose, we adopt a two-phase method, i.e. the
offline phase and online phase.

Solving the Under-Determined Linear Equation System. Before moving
to the details of the two phases, we need to perform some analysis for this
under-determined linear equation system. Our critical observation is that both
the coefficient matrix M and the constant vector α are fixed.

Let M = M0||M1, where M0 represents the first q columns of M while M1

represents the last 3ml − q columns of M , i.e. M0 is of size (n − 3m + 3e) × q
and M1 is of size (n − 3m + 3e) × (3ml − q).

First, let

Q′ = M1||E(n−3m+3e)×(n−3m+3e).

Note that Ej×j represents an identity matrix of size j × j.
Then, we perform the Gaussian elimination on the matrix Q′ such that M1

becomes the reduced row echelon form. Denote the new matrix after Gaussian
elimination by Q = Q0||Q1, where Q0 is of size (n − 3m + 3e) × (3ml − q) and
Q1 is of size (n − 3m + 3e) × (n − 3m + 3e). In this way, we have

Q0 = Q1 · M1
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and Q0 is in reduced row echelon form.
Let

ω = n − 3m + 3e − rank(Q0). (8)

Then, the elements in the last ω rows of Q0 are all zero.
After obtaining the transform matrix Q1, we apply it to Eq. 7, as shown

below:

Q1 · γ = Q1 · M · (u1, u2, . . . , u3ml)T ⊕ Q1 · α.

Note that the above new equation system is equivalent to the original equation
system Eq. 7.

Let

β = Q1 · γ, ε = Q1 · α, P = Q1 · M, P0 = Q1 · M0. (9)

In this way, P = P0||Q0 due to Q0 = Q1 · M1 and we can further obtain an
equivalent representation of Eq. 7, as specified below:

β = P0 · (u1, u2, . . . , uq)T ⊕ Q0 · (uq+1, uq+2, . . . , u3ml)T ⊕ ε. (10)

Note that Q0 is in reduced row echelon form.

Analyzing Equation 10. Since the elements in the last ω rows of Q0 are all zero,
we immediately obtain ω linear equations only involving β, ε and (u1, u2, . . . , uq),
as shown below:

β′ = P ′
0 · (u1, u2, . . . , uq)T ⊕ ε′, (11)

where P ′
0 is the submatrix of P0 representing the last ω rows of P0, while β′ and

ε′ are both an ω-bit vector representing the last ω elements of the bit vectors β
and ε, respectively. Formally speaking,

β′ = β[n − 3m + 3e − ω + 1 : n − 3m + 3e],
ε′ = ε[n − 3m + 3e − ω + 1 : n − 3m + 3e]. (12)

Suppose that there are Nu possible values of (u1, u2, . . . , uq), which can be
computed independent of (uq+1, uq+2, . . . , u3ml). In this case, for each possible
value of (u1, u2, . . . , uq), we can uniquely determine β′ as ε′ is a constant vector.
Therefore, we can precompute Nu possible values for (u1, u2, . . . , uq, β

′).
As β′ represents an ω-bit vector, it can take in total 2ω values. Hence, for

the computed Nu possible values of (u1, u2, . . . , uq, β
′), we can equivalently say

that on average each β′ corresponds to Nu/2ω solutions of (u1, u2, . . . , uq).

5.3 The Algebraic MITM Strategy

With the above analysis in mind, it is now easy to explain how to combine
the MITM strategy and the algebraic technique. Note that (u3i+1, u3i+2, u3i+3)
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represents the output difference of an S-box. Let us focus on the first 3t variables,
i.e. the variables (u1, u2, . . . , u3t).

The Offline Phase. For such a configuration, we have q = 3t. Moreover,
there are about 21.86t possible values for (u1, u2, . . . , u3t) if we enumerate the
state difference Δr0 in the forward direction, thus resulting in Nu = 21.86t.
In other words, on average each β′ will correspond to 21.86t/2ω solutions of
(u1, u2, . . . , u3t), which can be computed in advance via Eq. 11. Hence, the offline
phase can be described as follows.

Step 1: Enumerate the state difference Δr0 forwards to obtain all the solutions
of (u1, u2, . . . , u3t). For each solution, move to step 2. After all solutions
are traversed, move to Step 3.

Step 2: Compute β′ via Eq. 11 and insert the tuple (u1, u2, . . . , u3t, β
′) into a

table denoted by Du.
Step 3: Sort the table Du according to β′.

The Online Phase. For each value of (Δr0+r1−1[1 : 3e],ΔS
r0+r1−1) computed

backwards, we need to find the solutions of (u1, u2, . . . , u3ml). The procedure
can be stated as follows:

Step 1: Compute γ = Δr0+r1−1[1 : 3e]|ΔS
r0+r1−1[3m + 1 : n] and β = Q1 · γ as

well as β′ = β[n − 3m + 3e − ω + 1, n − 3m + 3e].
Step 2: For the computed β′, retrieve from Du the corresponding values of the

tuple (u1, u2, . . . , u3t). For each retrieved (u1, u2, . . . , u3t), move to Step
3.

Step 3: Only (u3t+1, u3t+2, . . . , u3ml) in Eq. 10 remain unknown, where q =
3t. As Q0 is in reduced row echelon form, there will be in total
2(3ml−3t)−rank(Q0) = 2(3ml−3t)−(n−3m+3e−ω) = 23m(l+1)−3t−n−3e+ω =
23mr1−3t−n−3e+ω solutions of (u3t+1, u3t+2, . . . , u3ml), which can be eas-
ily enumerated. For each solution of (u1, u2, . . . , u3ml), the difference
transitions in the middle r1 rounds are fully specified and the correctness
can be easily verified via DDT. If it passes the verification, a possible
r-round compact differential trail is obtained.

Complexity Evaluation. For the offline phase, the time and memory complex-
ity are both 21.86t. For the online phase, for each β′, there are on average 21.86t/2ω

solutions of (u1, u2, . . . , u3t). For each such solution, there are 23mr1−3t−n−3e+ω

solutions of (u3t+1, u3t+2, . . . , u3ml). In other word, for each given γ, there will
be on average 21.86t−ω+(3mr1−3t−n−3e+ω) = 23mr1−n−3e−1.14t full solutions of
(u1, u2, . . . , u3ml).

5.4 How to Choose Parameters

The time complexity and the memory complexity of the offline phase cannot
exceed 2k and therefore we have

21.86t < 2k. (13)
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Second, the total number of potentially correct compact differential trails
cannot exceed 2k. Hence,

Nd = 21.86m(r1+r2)−n < 2k. (14)

Finally, the time complexity to enumerate the differences cannot exceed 2k.
Note that as we need to compute γ = Δr0+r1−1[1 : 3e]|ΔS

r0+r1−1[3m + 1 : n],
it is necessary to enumerate the difference backwards for the last r2 rounds to
compute ΔS

r0+r1−1[3m+1 : n] and further enumerate the input differences for the
first e S-boxes in the (r0+r1)-th round to compute Δr0+r1−1[1 : 3e]. Therefore, it
is equivalent to say that e+mr2 S-boxes are taken into account at the backward
difference enumeration phase and the time complexity becomes 21.86(mr2+e). For
each γ computed backwards, we need to perform the online phase to retrieve the
full solution of (u1, u2, . . . , u3ml). Hence, the time complexity to enumerate the
difference is

max(21.86(mr2+e), 21.86(mr2+e)+3mr1−n−3e−1.14t)
= max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t), (15)

which implies

1.86(mr2 + e) < k, 1.86mr2 + 3mr1 − 1.14e − 1.14t < k + n. (16)

5.5 Maximizing the Attacked Rounds Using Less Memory

To ensure the memory complexity is less than that of the simple MITM strategy,
the following additional constraint should be added:

21.86t < 21.86m(r1−1) → t < m(r1 − 1). (17)

We should emphasize that t ≤ m(r1 −1) holds because we do not care about the
S-boxes in the last round of the middle r1 rounds. Indeed, we can also apply this
to the simple MITM strategy, i.e. ignoring the S-boxes in the last round of the
middle r1 rounds. This is why we use the constraint 21.86t < 21.86m(r1−1) rather
than 21.86t < 21.86mr1 .

With these constraints in mind, it is possible to discuss Problem 1 and Prob-
lem 2.

The Parameter (n, k,m,D) = (128, 128, 1, 1). In this case, n − 3m = 125.
First, choose the maximal values for (r0, r2), which are r0 = 42 and r2 = 68
based on r0 = �(n/3m)� and r2 = �(k/1.86m)�. Therefore, e = 0 according to
Eq. 16. Then, according to Eq. 16 and Eq. 17, there will be 1.14t > 3r1 −127 and
t < r1−1. As the memory complexity of the offline phase is 21.86t, we expect that
t takes the minimal value, i.e. t = 
(3r1 − 129.52)/1.14�. With the constraint
t < r1 − 1, the maximal value for r1 is 68 and t = 66. For r1 = 68 and t = 66,
the memory complexity of our new algebraic MITM strategy is 2122.7, while it
is 2124.6 for the simple MITM strategy, which shows the advantage of the new
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technique. When r1 becomes smaller, the advantage is more clear, as shown in
Table 1.

Table 1. Comparison between the memory complexity of the algebraic MITM strategy
(M1) and the simple MITM strategy (M0) for different r1.

r1 ≤ 42 43 44 . . . 61 62 63 64 65 66 67 68

t 0 1 3 . . . 47 50 53 55 58 61 63 66

log2M0 1.86(r1 − 1) 78.1 79.9 . . . 111.6 113.4 115.3 117.1 119.0 120.9 122.7 124.6

log2M1 0 1.8 5.5 . . . 87.4 93 98.5 102.3 107.8 113.4 117.1 122.7

The Parameter (n, k,m,D) = (128, 128, 10, 1). In this case, n−3m = 98. First,
r0 = 4 and r2 = 6 are determined in a similar way. Then, we choose e such that
1.86(mr2 + e) < k and therefore e = 8. Finally, we determine r1 and t according
to Eq. 16 and Eq. 17. Similarly, t = 
(3mr1 − k − n − 1.14e + 1.86mr2)/1.14� =

(3mr1 − 153.52)/1.14� and t < m(r1 − 1). Hence, the maximal value for r1 is
7 and t = 50. This implies that our attack requires less memory when r1 ≤ 7.
Specifically, for r1 = 7, the memory complexity of the simple MITM strategy is
2111.6, while our new technique only requires 293 memory.

The parameter (n, k,m,D) = (1024, 128, 1, 1). For such a parameter, r0 = 341,
r2 = 68 and e = 0. Based on Eq. 13, the maximal value for t is 68. According to
Eq. 16, we have 1.14t > 3mr1−k−n−1.14e+1.86mr2 = 3r1−1025.52. Therefore,
the maximal value for r1 is 367. In other words, by using 21.86t = 2126.48 memory,
our attack can reach up to 341 + 68 + 367 = 776 rounds and the claimed secure
number of rounds is exactly 776.

Since there must exist one valid compact differential trail and Nd = 2−214.9,
after the difference enumeration, there will be only 1 valid compact differential
trail surviving. Based on the key-recovery technique in [28], we can recover the
correct key from this trail with time complexity much smaller than 2128, i.e.
2128 >> Tk. Hence, even without optimizing the key-recovery technique in [28],
according to Eq. 15, we have already broken the full rounds of such an instance
with time complexity 2126.48 + 2126.48 = 2127.48 and memory complexity 2126.48.

5.6 Advantages of the Algebraic MITM Technique

Based on the above discussions, Problem 1 and Problem 2 have been success-
fully addressed. Indeed, the two problems are the same, which is how to reduce
the memory complexity of the simple MITM strategy. For example, with the sim-
ple MITM strategy, the attack on the parameter (n, k,m,D) = (1024, 128, 1, 1)
with (r0, r1, r2) = (341, 367, 68) will require 21.86r1 = 2682.62 memory and it soon
becomes ineffective. However, our new technique can reduce this to 2126.48 and
an effective attack is immediately obtained.
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Compared with the simple MITM strategy to find differential trails, our
new MITM technique is applicable to a wide range of parameters, i.e. n >> k.
Compared with the algebraic technique, this new technique sheds new insight
into how to combine the algebraic technique and the usage of memory to increase
r1. Hence, the algebraic MITM technique is more generic and can optimize the
memory complexity of the simple MITM strategy over the state-of-the-art.

6 Recovering the Key by Solving Quadratic Equations

Based on the above algebraic MITM strategy, we can increase r1 while using less
memory. As r1 increases, there will be much more potentially correct r-round
compact differential trails left, i.e. Nd = 21.86m(r1+r2)−n. To keep NdTk < 2k, it
becomes crucial to further optimize Tk.

Our new key-recovery strategy is essentially built on the algebraic technique
proposed in [28]. Therefore, we first revisit the technique and then describe how
to further optimize it.

6.1 The Algebraic Technique in [28]

The algebraic technique to retrieve the full key from a random r-round compact
differential trail is based on the following critical property of the LowMC S-box.

Observation 1 [28]. For each valid non-zero difference transition (Δx0,Δx1,
Δx2) → (Δz0,Δz1,Δz2), the inputs conforming to such a difference transition
will form an affine space of dimension 1. In addition, (z0, z1, z2) becomes linear
in (x0, x1, x2), i.e. the S-box is freely linearized for a valid non-zero difference
transition. A similar property also applies to the inverse of the S-box.

Example. We give an example for better understanding. If (Δx0,Δx1,Δx2) =
(0, 0, 1) and (Δz0,Δz1,Δz2) = (0, 0, 1), there will be x0 = 0 and x1 = 0. In
addition, the S-box is freely linearized, i.e. we have z0 = 0, z1 = 0 and z2 = x2.

Based on this simple property, given a random r-round compact differential
trail, the procedure to recover the key can be roughly described3 as follows,
which is further illustrated in Fig. 5.

1. Starting from a ciphertext, check the S-boxes in the backward direction round
by round and one by one.
(a) If the S-box is active, write its input as linear expressions in terms of the

output and obtain 2 linear equations4 in terms of the key, i.e. there are
two bits conditions on the output to ensure such a difference transition
and the S-box is freely linearized based on Observation 1.

3 There are some optimizations, but the general idea is still guess-and-determine.
4 This is because the output can be written as linear expressions in the key bits.

Specifically, each S-box is linearized and the round function can be treated as a
linear function. Similar explanations also apply to the inactive S-boxes.
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(b) If the S-box is inactive, guess 2 output bits and write the input as linear
expressions in the output. From the 2 guessed bits, we again obtain 2
linear equations in the key bits.

(c) If more than k linear equations are obtained, move to Step 2.
2. After obtaining more than k linear equations, solve the linear equation system

to determine the full key and test its correctness via the plaintext-ciphertext
pair. If it is the wrong key, try another guess and repeat the same procedure
until all possible guesses are traversed.

Fig. 5. Illustration of the key-recovery phase in [28]

Although a novel and efficient way is used to process the active S-boxes in
the algebraic technique, processing the inactive S-boxes is rather inefficient. We
are thus motivated to consider whether there is a more efficient way to handle
them. Although the authors also mentioned to introduce intermediate variables
to represent the input of the inactive S-box [28], the collected equations are still
from the active S-boxes, which makes the complexity evaluation difficult. Hence,
they simply adopted the above guess-and-determine method and provided a
loose upper bound for the average time complexity to retrieve the full key from a
random r-round compact differential trail. While this bound is sufficient to break
some instances, we need to further optimize it because Nd = 21.86m(r1+r2)−n will
become very huge in Attack-N due to the increase of r1.

6.2 A New Method to Handle the Inactive S-boxes

In this part, we show that from a random r-round compact differential trail
together with 2 plaintext-ciphertext pairs, it is possible to recover the full key
with time complexity 1 and with success rate of about 0.5.

We still follow the general procedure to recover the key described above,
apart from using a new method to process the inactive S-boxes. First, let us
discuss a useful property of the LowMC S-box. In [29], it is revealed that there
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are at most 14 linearly independent quadratic equations to describe the LowMC
S-box, as specified below:

z0 = x0 ⊕ x1x2, z1 = x0 ⊕ x1 ⊕ x0x2, z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1,

x0 = z0 ⊕ z1 ⊕ z1z2, x1 = z1 ⊕ z0z2, x2 = z0 ⊕ z1 ⊕ z2 ⊕ z0z1,

z0x1 = x0x1 ⊕ x1x2, z0x2 = x0x2 ⊕ x1x2, z1x0 = x0 ⊕ x0x1 ⊕ x0x2,

z1x2 = x1x2, z2x0 = x0 ⊕ x0x2, z2x1 = x1 ⊕ x1x2,

z0x0 ⊕ x0 = z1x1 ⊕ x0x1 ⊕ x1, z1x1 ⊕ x0x1 ⊕ x1 = z2x2 ⊕ x0x2 ⊕ x1x2 ⊕ x2.

Note that the above 14 equations can also be found with the algorithm in [17].
These quadratic equations are useful to handle the inactive S-boxes. Specif-

ically, instead of only deriving linear equations from the active S-boxes, we can
also derive these quadratic equations from the inactive S-boxes. Hence, the attack
procedure can be described as follows once we utilize the last h S-boxes in the
last 
h/m� ≤ r1 + r2 rounds for the key recovery.

Step 1: Choose a threshold amin and initialize two counters a and b as 0.
Step 2: If there are fewer than amin active S-boxes in these h S-boxes5, exit and

return Failure. Otherwise, move to Step 3.
Step 3: Starting from a ciphertext, check the S-boxes in the backward direction

round by round and one by one.
(a) If the S-box is active, increase a by 1 and write its input as linear

expressions in terms of the output and obtain 2 linear equations
in terms of the key and the intermediate variables, i.e. there are two
bits conditions on the output to ensure such a difference transition
and the S-box is freely linearized based on Observation 1.

(b) If the S-box is inactive, increase b by 1 and introduce 3 intermediate
variables to represent its input and obtain 14 quadratic equations
in terms of the input bits and output bits.

(c) If

2a ≥ k + 3b, (18)

or

2a < k + 3b,

14b ≥ (k + 3b − 2a) + (k + 3b − 2a)(k + 3b − 2a − 1)/2, (19)

move to Step 4.
Step 4: At this step, we have collected 2a linear equations and 14b quadratic

equations in terms of k + 3b variables, i.e. the key bits and the inter-
mediate variables. If we reach this step according to Eq. 18, we only
need to solve 2a linear equations to uniquely determine the k-bit key.
If we reach this step according to Eq. 19, we need to first perform the

5 We choose this condition mainly for easily bounding the success probability.
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Gaussian elimination on the 2a linear equations to obtain k + 3b − 2a
free variables. Then, we rewrite the 14b quadratic equations in these
k + 3b − 2a free variables and perform the Gaussian elimination on
it, where each quadratic term is viewed as a new variable6. As Eq. 19
holds, we can expect to obtain a unique solution to these k+3b−2a free
variables and then compute the remaining variables according to the 2a
linear equations. For both cases, we obtain a unique solution to the full
key and the correctness can be easily verified via a plaintext-ciphertext
pair. If it is the correct key, output it and return Success.

For better comparison, the new algebraic key-recovery technique is depicted
in Fig. 6.

Fig. 6. Illustration of the new key-recovery phase, where the inactive S-boxes are col-
ored in orange (Color figure online)

How to Choose (amin, h). According to the above procedure, we start solving
the equation system to recover the key only when (a, b) satisfies some constraints.
In addition, before moving to Step 3, we will directly reject some compact differ-
ential trails by counting the number of active S-boxes among the last h S-boxes.
It is possible that the correct differential trail is the rejected one and our attack
will then fail to recover the key. Once moving to Step 3, we expect that either
Eq. 18 or Eq. 19 must hold. To achieve a high success probability and to make
either Eq. 18 or Eq. 19 hold, we thus add the following constraints on (amin, h):

amin = 
(7h)/8�,
14h − 14amin ≥ (k + 3h − 5amin) + (k + 3h − 5amin)(k + 3h − 5amin − 1)/2,

k + 3h − 5amin > 0.

Suppose there are a′ active S-boxes among the h S-boxes. The first constraint
is based on the well-known statistical property that when amin ≈ (7h)/8, there
is Pr[a′ ≥ amin] =

∑h
i=amin

(
h
i

) × (7/8)i × (1/8)h−i ≈ 0.5.

6 This is called the linearization technique.
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The last two constraints can ensure that when the number of free variables
is a positive integer, i.e. there are exactly amin active S-boxes among the last h
S-boxes and (k + 3h − 5amin) > 0, the quadratic equation system can still be
efficiently solved with the linearization technique. Obviously, if (k+3h−5amin) ≤
0 → 2amin ≥ k + 3(h − amin), all the unknowns can be directly computed by
solving the 2amin linear equations. Then, for any a′ satisfying h ≥ a′ ≥ amin,
either Eq. 18 or Eq. 19 must hold if moving to Step 3. Specifically, the key can
be directly recovered by solving an equation system.

Therefore, with the above constraints on (amin, h), we can ensure a success
probability7 of about 0.5 to recover the key.

Some concrete choices for (h, amin) for different key sizes are specified in
Table 2. For example, the best choice is (h, amin) = (81, 71) for k = 128, which
will result in Pr[a′ ≥ amin] ≈ 0.56. Then, it is required to solve at most 142
linear equations and at most 140 quadratic equations, which corresponds to
the worst case when a′ = amin = 71. We simply estimate the cost to solve
these equation systems as 1423/(rn2) times of LowMC encryptions because each
LowMC encryption costs about 2rn2 binary operations.

Table 2. Choices for (h, amin) for different k

k h amin Pro. Linear Quadratic Cost (Tk)

128 81 71 0.56 142 140 1423/(rn2)

192 124 109 0.51 218 210 2183/(rn2)

256 169 148 0.54 296 294 2963/(rn2)

Comparison. Compared to the algebraic key-recovery technique in [28], the
new method requires no guessing phase and the key is directly computed via
solving a quadratic boolean equation system and a linear equation system. This
is based on a new way to handle the inactive S-box, i.e. we exploit the nonlinear
relations between its input and output rather than linearize it by guessing some
input or output bits as in [28]. The only drawback is that this new technique
cannot work for an arbitrarily given compact differential trail, i.e. its success
rate is about 0.5. However, 0.5 is high enough to claim an effective attack.

6.3 Recovering the Key in the Extended Attack Framework

In the extended framework [28], by using sufficiently many plaintext pairs, i.e.
when D >> 1, it is possible to find a pair of plaintext such that there is no active
S-box in the last r3 = �(D − 1)/(3m)� rounds either, as depicted in Fig. 7. The
time complexity and data complexity of this phase are both 23mr3+1 because we

7 The computed probability is just a lower bound, which is explained in [31] and is
intuitive.
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need to try 23mr3 pairs of plaintexts. As all the S-boxes are inactive in the last r3
rounds, the constraints on (r1, r2) will not change, i.e. we can still choose (r1, r2)
based on the constraints specified in Sect. 5.4. However, the key-recovery phase
will change as the last mr3 S-boxes are always inactive. Hence, it is required
to modify the constraints on (amin, h) in the extended framework in order to
efficiently recover the key.

Fig. 7. The extended attack framework [28] embedded with the algebraic MITM strat-
egy

Modifying the constraints is not difficult as we can equivalently consider the
case where the last mr3 S-boxes are always inactive in the last h S-boxes used
for key recovery. The modified constraints are specified below:

h′ = h − mr3,

amin = 
(7h′)/8�,
14h − 14amin ≥ (k + 3h − 5amin) + (k + 3h − 5amin)(k + 3h − 5amin − 1)/2.

The success probability is then computed with
∑h′

i=amin

(
h′

i

)×(7/8)i ×(1/8)h′−i.

Table 3. Choices for (h′, amin) for different (mr3, k)

k mr3 h′ amin Pro. linear quadratic cost (Tk)

128 20 114 100 0.54 228 476 4763/(rn2)

128 21 116 102 0.51 232 490 4903/(rn2)

256 20 203 178 0.52 406 630 6303/(rn2)

256 21 205 180 0.50 410 644 6443/(rn2)

In Table 3, we provide the accurate values of (h′, amin) for some (mr3, k) that
are relevant to our attacks on LowMC-M. The explanation of this table can be
referred to that for Table 2. Note that in this framework, 
h′/m� ≤ r1 + r2 has
to hold.
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7 Improved Attacks on LowMC and LowMC-M

With the above new techniques, we could significantly improve the number of
attacked rounds for both LowMC and LowMC-M. The correctness of these tech-
niques has been verified by experiments.

The Attacks on LowMC. For the attacks on LowMC, we only consider the
parameters where D = 1, i.e. the data complexity is 2. When D >> 1, we can
trivially use the extended attack framework and we only need to slightly modify
the key-recovery phase. Indeed, the attacks on LowMC-M are achieved under
the extended attack framework. As already mentioned, the attack consists of
two phases: the difference enumeration phase and the key-recovery phase. For
an attack on r = r0+r1+r2 rounds of LowMC (refer to Fig. 4), we first determine
r0 with r0 = �n/(3m)�. Then, we determine (r1, r2) as well as (t, e) based on
the constraints Eq. 13, Eq. 14 and Eq. 16. Examples have already been given in
Sect. 5.5.

The time complexity of the difference enumeration phase is

21.86t + max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t)

and the memory complexity is 21.86t. The time complexity of the key-recovery
phase is NdTk = 21.86m(r1+r2)−nTk, where the accurate estimation of Tk has
been explained at Sect. 6.2. The whole time complexity Tw is thus

Tw = 21.86m(r1+r2)−nTk + 21.86t + max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t).

For attacks with success probability of about 0.5, Tw < 2k−1 should hold. For
our attacks on the parameters where n >> k in Table 4, the success probabil-
ity is 1 because we simply use the key-recovery technique in [29]. In this case,
21.86t + max(21.86(mr2+e), 21.86mr2+3mr1−n−1.14e−1.14t) dominates Tw because
only 1 differential trail will survive after the difference enumeration phase, i.e.
1 >> 21.86m(r1+r2)−n. Our results are summarized in Table 4.

The Attacks on LowMC-M. LowMC-M is almost the same as LowMC. The
only difference is that after the key addition operation, there is a subtweak
addition operation and the subtweak can be derived from a public tweak. It has
been studied in [14] that by exploiting the freedom of the tweak, in the difference
enumeration attack, r0 can be increased to �(2k + n)/(3m)� by finding a proper
tweak pair with time complexity 2(3mr0−n)/2, i.e. the first r0 rounds contain
no active S-boxes. A detailed explanation can be referred to [28]. Moreover,
D = 64 in all the specified parameters for LowMC-M. Hence we utilize the
extended difference enumeration attack framework depicted in Fig. 7 where we
choose mr3 ∈ {20, 21} to make full use of the allowed data complexity, i.e. the
data complexity of our attacks on LowMC-M is either 261 or 264 and the last r3
rounds contain no active S-boxes. As for (r1, r2), we determine their values and
estimate the corresponding time/memory complexity as in the above attacks on
LowMC. Due to the costly phase to find a proper tweak pair, the whole time
complexity becomes 2(3mr0−n)/2 + Tw. The improved attacks on LowMC-M are
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summarized in Table 5. Note we consider the latest version of LowMC-M, which
only differs from the original LowMC-M [33] in the number of rounds.

Table 4. Summary of the attacks on LowMC, where D, T, M, Pro. and R − r repre-
sent the log2 data/time/memory complexity, success probability and security margin,
respectively. Moreover, − represents negligible memory.

n k m D R r0 r1 r2 t e r D T M Pro. R − r Ref.

128 128 1 1 182 42 43 67 0 0 152 1 124.62 − 1 30 [28]

42 51 59 21 0 152 1 110.8 39.06 0.56 30 This paper

42 68 67 66 0 177 1 125.38 122.76 0.56 5 This paper

128 128 10 1 20 4 5 6 0 0 15 1 122.8 − 1 5 [28]

4 7 6 53 7 17 1 125.2 98.58 0.56 3 This paper

192 192 1 1 273 64 64 101 0 0 229 1 187.86 − 1 44 [28]

64 101 102 98 0 267 1 189.72 182.28 0.51 6 This paper

192 192 10 1 30 6 7 10 0 0 23 1 186 − 1 7 [28]

6 9 10 67 2 25 1 189.72 124.62 0.51 5 This paper

256 256 1 1 363 85 86 137 0 0 306 1 254.82 − 1 57 [28]

85 136 136 133 0 357 1 253.34 247.38 0.54 9 This paper

256 256 10 1 38 8 9 13 0 0 30 1 241.8 − 1 8 [28]

8 13 13 101 6 34 1 253.82 187.86 0.54 4 This paper

1024 128 1 1 776 341 342 66 0 0 749 1 122.76 − 1 27 [28]

341 367 68 68 0 776 1 127.48 126.48 1 0 This paper

1024 256 1 1 819 341 342 136 0 0 819 1 253 − 1 0 [28]

341 393 136 136 0 870 1 253.96 252.96 1 −51 This paper

8 Experimental Verifications

In our experiments, the concrete LowMC instances are generated with the official
reference code [2]. The source code of our experiments is available at https://
anonymous.4open.science/r/lowMC algebraicMITM-3B1C/.

Verifying the Algebraic Difference Enumeration. Considering the cost of
the matrix multiplication in the difference enumeration phase, for efficient veri-
fications, we choose the parameters such that the time complexity of this phase
is about 225. Therefore, we choose to perform experiments on the parameter
(n, k,m, r) = (128, 128, 1, 103). For such a parameter, we choose r0 = 128/3 =
42, r2 = 13, r1 = 48 and e = 0. Then, to keep 21.86r2+3r1−n−1.14t−1.14e be about
225, we choose t = 13. Hence, the theoretical memory complexity is 21.86t = 224.18

and the theoretical time complexity to enumerate the differences backwards is

max(21.86r2 , 21.86r2+3r1−n−1.14t−1.14e) = 225.36.

For such a configuration, it is necessary to introduce 3 × (r1 − 1) = 141
variables (u1, u2, . . . , u141) to represent the output differences of the S-boxes

https://anonymous.4open.science/r/lowMC_algebraicMITM-3B1C/
https://anonymous.4open.science/r/lowMC_algebraicMITM-3B1C/
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in the middle r1 − 1 rounds. First, we construct the matrices M , M1, Q0, Q1

and P0 according to the generated LowMC instance [2], the sizes of which are
125 × 141, 125 × 102, 125 × 102 and 125 × 125, respectively. It is found that
ω = n − 3m − rank(Q0) = 128 − 3 − 102 = 23 and hence we obtain 23 linear
equations only in terms of (u1, u2, . . . , u39) and (β103, β104, . . . , β125).

Table 5. Summary of the attacks on LowMC-M

n k m D R r0 r1 r2 r3 t e r D T M Pro. R − r Ref.

128 128 1 64 294 122 43 64 21 0 0 250 64 120 − 1 44 [28]

124 66 66 21 60 0 277 64 124.36 111.6 0.51 17 This paper

128 128 2 64 147 61 22 32 10 0 0 125 61 120 − 1 22 [28]

62 33 33 10 60 0 138 61 124.36 111.6 0.52 9 This paper

128 128 3 64 99 40 15 21 7 0 0 83 64 118.18 − 1 16 [28]

41 22 22 7 60 0 92 64 124.36 111.6 0.51 7 This paper

128 128 10 64 32 12 5 6 2 0 0 25 61 118 − 1 7 [28]

12 7 6 2 53 7 27 61 125.2 98.58 0.52 5 This paper

256 256 1 64 555 253 86 136 21 0 0 496 64 252.96 − 1 59 [28]

253 136 136 21 133 0 546 64 253.34 247.38 0.50 9 This paper

256 256 3 64 186 83 29 45 7 0 0 164 64 250.1 − 1 22 [28]

84 45 45 7 129 1 181 64 252.96 239.94 0.50 5 This paper

256 256 20 64 30 12 5 6 1 0 0 24 61 232 − 1 6 [28]

12 7 6 1 115 15 26 61 251.1 213.9 0.52 4 This paper

For the offline phase, according to the experiments, the size of the table Du is
17134432 ≈ 224.03, which is almost the same as the expected value 21.86t = 224.18.
As β′ is a 23-bit value, each β′ will correspond to about 21.18 different values of
(u1, u2, . . . , u39) in Du.

At the online phase, for each computed γ in the backward direction, we
first compute β′ according to Eq. 9 and Eq. 12. Then, retrieve the correspond-
ing (u1, u2, . . . , u39) from Du according to β′. Finally, determine the remaining
unknowns (u40, u41, . . . , u141) by solving Eq. 10, which can be efficiently solved
as Q0 is in reduced row echelon form and rank(Q0) = 102. In this way, the dif-
ference transitions in the middle r1 rounds are fully known and their correctness
can be easily verified via DDT. After the online phase, we succeed in recovering
all the possible compact differential trails with time complexity of about 225.45,
which is almost consistent with the theoretical value 224.18+1.18 = 225.36.

Verifying the Optimized Key-Recovery Phase. There are two main con-
cerns regarding the optimized key-recovery phase. First, what is the actual suc-
cess probability? Second, can the key be really efficiently computed via solving
an overdefined system of quadratic equations with the linearization technique?
To deal with these concerns, we choose to perform experiments on the parameter
(n, k,m, r) = (128, 128, 1, 177). In this case, r0 = 42 and r1 + r2 = 135 > 81.

For the success probability, we randomly choose 10000 plaintext pairs such
that there is no difference in the first 42 rounds. For each plaintext pair, we record
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the corresponding r-round differential trail by tracing the encryption phase and
count the number of active S-boxes in the last 81 rounds. Finally, we compute the
number of plaintext pairs denoted by Np such that the number of active S-boxes
in the last 81 rounds is not smaller than 71. It is found that Np/10000 ≈ 0.56,
which means the success probability is correct.

To verify the correctness of the key recovery, for each recorded r-round dif-
ferential trail where there are at least 71 active S-boxes in the last 81 rounds,
we first construct the corresponding overdefined system of quadratic equations
and then solve it with the linearization technique. It is found that the key can
be correctly recovered, thus demonstrating the correctness of the optimized key-
recovery strategy.

9 Conclusion

We propose a simple yet novel technique called algebraic MITM attack to analyze
LowMC. This new technique can better capture the feature of partial nonlinear
layers. Since using partial nonlinear layers is a relatively new design strategy,
developing new techniques to understand its security is both important and
meaningful. As a consequence of this new technique and an extremely opti-
mized algebraic key-recovery technique for LowMC, the attacks on LowMC and
LowMC-M are significantly improved. Regarding the LowMC S-box, some new
algebraic properties are discovered, though they are not exploited in a pure
“algebraic” way in this work. It is interesting to investigate whether they can be
used to mount another type of algebraic attack on LowMC and whether studying
similar equations for DDT is useful for differential attacks on other ciphers.

Acknowledgement. We thank the reviewers of Asiacrypt 2022 for their comments.
Fukang Liu is supported by Grant-in-Aid for Research Activity Start-up (Grant
No. 22K21282). Takanori Isobe is supported by JST, PRESTO Grant Number
JPMJPR2031, Grant-in-Aid for Scientific Research. This research was in part con-
ducted under a contract of “Research and development on new generation cryptogra-
phy for secure wireless communication services” among “Research and Development
for Expansion of Radio Wave Resources (JPJ000254)”, which is supported by the Min-
istry of Internal Affairs and Communications, Japan. These research results were also
obtained from the commissioned research(No.05801) by National Institute of Informa-
tion and Communications Technology (NICT) , Japan. Gaoli Wang is supported by the
National Key R&D Program of China (Grant No. 2022YFB2700014), National Natural
Science Foundation of China (No. 62072181), NSFC-ISF Joint Scientific Research Pro-
gram (No. 61961146004), Shanghai Trusted Industry Internet Software Collaborative
Innovation Center.

References

1. https://csrc.nist.gov/projects/post-quantum-cryptography
2. Reference Code (2017). https://github.com/LowMC/lowmc
3. The Picnic signature algorithm specification (2019). https://microsoft.github.io/

Picnic/

https://csrc.nist.gov/projects/post-quantum-cryptography
https://github.com/LowMC/lowmc
https://microsoft.github.io/Picnic/
https://microsoft.github.io/Picnic/


Algebraic Meet-in-the-Middle Attack on LowMC 253

4. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: appli-
cation to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 371–397. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 13

5. Albrecht, M.R., et al.: Feistel structures for MPC, and More. In: Sako, K., Schnei-
der, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0 8

6. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 7

7. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

8. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans.
Symm. Cryptol. 2020(3), 1–45 (2020)

9. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-Friendly Family of Crypto-
graphic Primitives. Cryptology ePrint Archive, Report 2018/1098 (2018). https://
eprint.iacr.org/2018/1098

10. Banik, S., Barooti, K., Durak, F.B., Vaudenay, S.: Cryptanalysis of LowMC
instances using single plaintext/ciphertext pair. IACR Trans. Symm. Cryptol.
2020(4), 130–146 (2020)

11. Banik, S., Barooti, K., Vaudenay, S., Yan, H.: New attacks on LowMC instances
with a single plaintext/ciphertext pair. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13090, pp. 303–331. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92062-3 11

12. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46800-5 13

13. Beyne, T.: Out of oddity – new cryptanalytic techniques against symmetric primi-
tives optimized for integrity proof systems. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 299–328. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 11

14. Beyne, T., Li, C.: Cryptanalysis of the MALICIOUS Framework. Report 2020/1032
(2020). https://ia.cr/2020/1032

15. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018). https://doi.org/10.
1007/s00145-017-9273-9

16. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: CCS, pp. 1825–1842. ACM (2017)

17. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 17

18. Dinur, I.: Cryptanalytic applications of the polynomial method for solving multi-
variate equation systems over GF(2). In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 374–403. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 14

https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://doi.org/10.1007/978-3-030-92062-3_11
https://doi.org/10.1007/978-3-030-92062-3_11
https://doi.org/10.1007/978-3-662-46800-5_13
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-030-56877-1_11
https://ia.cr/2020/1032
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/3-540-36178-2_17
https://doi.org/10.1007/978-3-030-77870-5_14


254 F. Liu et al.

19. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 22

20. Dobraunig, C.: Rasta: a cipher with low ANDdepth and few ANDs per bit. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 662–692.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 22

21. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30840-1 6

22. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryp-
tion based on toffoli-gates over large finite fields. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 3–34. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77886-6 1

23. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
457–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 17

24. Eichlseder, M., et al.: An algebraic attack on ciphers with low-degree round func-
tions: application to full MiMC. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12491, pp. 477–506. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64837-4 16

25. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: USENIX Security Sym-
posium, pp. 519–535. USENIX Association (2021)
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Abstract. In this paper, we present 4 major contributions to ARX
ciphers and in particular to the Salsa/ChaCha family of stream ciphers:
(a) We propose an improved differential-linear distinguisher against

ChaCha. To do so, we propose a new way to approach the derivation
of linear approximations by viewing the algorithm in terms of sim-
pler subrounds. Using this idea we show that it is possible to derive
almost all linear approximations from previous works from just 3
simple rules. Furthermore, we show that with one extra rule it is
possible to improve the linear approximations proposed by Coutinho
and Souza at Eurocrypt 2021 [11].

(b) We propose a technique called Bidirectional Linear Expansions
(BLE) to improve attacks against Salsa. While previous works only
considered linear expansions moving forward into the rounds, BLE
explores the expansion of a single bit in both forward and backward
directions. Applying BLE, we propose the first differential-linear dis-
tinguishers ranging 7 and 8 rounds of Salsa and we improve PNB
key-recovery attacks against 8 rounds of Salsa.

(c) Using all the knowledge acquired studying the cryptanalysis of these
ciphers, we propose some modifications in order to provide better
diffusion per round and higher resistance to cryptanalysis, leading
to a new stream cipher named Forró. We show that Forró has higher
security margin, this allows us to reduce the total number of rounds
while maintaining the security level, thus creating a faster cipher in
many platforms, specially in constrained devices.

(d) Finally, we developed CryptDances, a new tool for the cryptanalysis
of Salsa, ChaCha, and Forró designed to be used in high performance
environments with several GPUs. With CryptDances it is possible
to compute differential correlations, to derive new linear approxi-
mations for ChaCha automatically, to automate the computation
of the complexity of PNB attacks, among other features. We make
CryptDances available for the community at https://github.com/
MurCoutinho/cryptDances.
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1 Introduction

Cryptography is an indispensable tool used to protect information in comput-
ing systems. It is used to protect data at rest and data in motion by billions
of people everyday. For example, cryptography is used in financial transactions,
mobile messaging applications, blockchain technology, authentication systems,
and many other systems and solutions. Among the most important crypto-
graphic primitives, stream ciphers are symmetric algorithms used to encrypt
large amounts of data with high performance both in software and in hardware.

In particular, ARX-based design is a major building block of modern ciphers
due to its efficiency in software. ARX stands for addition, word-wise rotation and
XOR. Indeed, ciphers following this framework are composed of those operations
and avoid the computation of smaller S-boxes through look-up tables. ARX-
based designs are not only efficient but also provide good security properties. The
algebraic degree of ARX ciphers is generally high after only a very few rounds
as the carry bit within one modular addition already reaches almost maximal
degree. For differential and linear attacks, ARX-based designs show weaknesses
for a small number of rounds. However, after some rounds the differential and
linear probabilities decrease rapidly. Thus, the probabilities of differentials and
the absolute correlations of linear approximations decrease very quickly as we
increase the number of rounds.

Salsa [6] is an ARX-based stream cipher designed by Bernstein in 2005 as
a candidate for the eSTREAM competition [27]. The original proposal was for
20 rounds. The 12-round variant of Salsa - Salsa20/12 - was accepted into the
final eSTREAM software portfolio. Salsa is especially important and is used
in practice in several applications, such as DNS implementations, in the Linux
Kernel, Password managers (e.g., KeePassX and MacPass), messaging software
(e.g., Viber and Discord), and many other (see [19] for a huge list of applications,
protocols and libraries using Salsa).

Later, in 2008, Bernstein proposed some modifications to Salsa in order to
provide better diffusion per round and higher resistance to cryptanalysis. These
changes created a new stream cipher, a variant named ChaCha [5]. Although
Salsa was one of the winners of the eSTREAM competition, ChaCha has received
much more attention through the years. Nowadays, we see the usage of this cipher
in several projects and applications.

ChaCha, along with Poly1305 [4], is one of the cipher suites of the new TLS
1.3 [21], which has been used by Google on both Chrome and Android. Not only
has ChaCha been used in TLS but also in many other protocols such as SSH,
Noise and S/MIME 4.0. In addition, the RFC 7634 proposes the use of ChaCha
in IKE and IPsec. ChaCha has been used not only for encryption, but also as a
pseudo-random number generator in any operating system running Linux kernel
4.8 or newer. Additionally, ChaCha has been used in several applications such as
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WireGuard (VPN) (see [18] for a huge list of applications, protocols and libraries
using ChaCha).

Related Work. Due to the popularity of both Salsa and ChaCha, it is important
to evaluate their security. Indeed, the cryptanalysis of Salsa is well understood
and several authors studied its security [8,17,25]. The cryptanalysis of Salsa was
introduced by Crowley [13] in 2005. Later, Aumasson et al. at FSE 2008 [2]
presented one of the most important works on the cryptanalysis of these ciphers
with the introduction of the notion of Probabilistic Neutral Bits (PNBs), showing
attacks against Salsa20/7, Salsa20/8, ChaCha20/6 and ChaCha20/7.

After that, several authors proposed small enhancements on the attack of
Aumasson et al. For example, the work by Shi et al. [28] introduced the concept
of Column Chaining Distinguisher (CCD) to achieve some incremental advance-
ments over [2] Salsa and ChaCha. Maitra, Paul, and Meier [24] studied an inter-
esting observation regarding round reversal of Salsa, but no significant crypt-
analytic improvement could be obtained using this method. Maitra [23] used a
technique of Chosen IVs to obtain certain improvements over existing results.
Dey and Sarkar [15] showed how to choose values for the PNB to further improve
the attack.

Then, in a paper presented at FSE 2017, Choudhuri and Maitra [9] signifi-
cantly improved the attacks by considering the mathematical structure of Salsa
and ChaCha to find differential characteristics with much higher correlations.
Other types of attacks were also studied, such as, related-cipher attacks [16] and
chosen-IV attacks [23].

Recently, several works presented improvements in attack against ChaCha.
First, Coutinho and Souza [10] proposed new multi-bit differentials using the
mathematical framework of Choudhuri and Maitra. In Crypto 2020, Beierle et al.
[3] proposed improvements to the framework of differential-linear cryptanalysis
against ARX-based designs and further improved the attacks against ChaCha.
At Eurocrypt 2021, Coutinho and Souza [11] developed a new technique to
expand linear trails improving the attack against ChaCha even further. However,
these new techniques were not used against Salsa. At Eurocrypt 2022 Dey et al.
[14] improved the analysis of the PNB construction and key recovery attacks
against ChaCha. Finally, in Crypto 2022, rotational-cryptanalysis of ChaCha
was improved [26].

Our Contribution. In this work, we present new attacks against ChaCha and
Salsa. In the case of ChaCha, we propose a simpler way to derive linear approx-
imations for the cipher. To do so, we view the algorithm in terms of subrounds.
With this approach, we are able to derive the results from previous works from
just 3 simple rules. As a reference, the methods of Coutinho and Souza [11] at
Eurocrypt 2021 encompasses at least 18 different rules to derive linear approxi-
mations for ChaCha. Moreover, with our techniques we are able to improve the
complexity of the best differential-linear distinguisher against ChaCha, reducing
the complexity from 2224 to 2214.

To attack Salsa, we introduce a novel technique called Bidirectional Linear
Expansions (BLE). While previous works only considered linear expansions mov-
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ing forward into the rounds, BLE explores the expansion of a single bit in both
forward and backward directions. As we show, BLE is specially useful in situa-
tions that we do not have enough computational power to compute a differential
correlation for the target single bit, but we can do so for each bit derived in
backward direction individually, and then combining them using the Piling-up
Lemma. Using BLE we were able to improve attacks against Salsa. In partic-
ular, we improved key recovery attacks, significantly reducing the complexity
from 2244.9 to 2218 for 8 rounds of Salsa. Also, we provide the first differential-
linear distinguishers ranging 7 and 8 rounds of Salsa in the literature. Still using
BLE, we were able to find several new differential for 3.5 rounds of ChaCha.
Unfortunately, we were not able to improve key recovery attacks in this case.

Next, we propose a new modification of Salsa and ChaCha, the stream cipher
Forró. We show that Forró has a higher security margin. For comparison, the
best distinguishers against 5 rounds of Salsa, ChaCha, and Forró, have complex-
ities of 28, 216, and 2130, respectively. To achieve that we introduce a new design
strategy, called Pollination, constructed to speed up confusion and diffusion.
Then, we show that Forró can deliver the same security in less time in sev-
eral platforms, specially in constrained devices. Finally, we present a new tool,
called CryptDances (https://github.com/MurCoutinho/cryptDances) designed
to allow researchers to explore the cryptanalysis of ChaCha, Salsa, and Forró in
a high performance environment configured using MPI to distribute the work to
several GPUs. We provide a summary of our cryptanalytic results in Table 1.

Organization of the Paper. This paper is organized as follows: in Sect. 2, we
review previous works and techniques. In Sect. 3, we propose a new approach
to the derivation of linear approximations for ChaCha and present a new and
improved differential-linear distinguisher. Then, in Sect. 4, we propose a new
technique called Bidirectional Linear Expansions (BLE) and use it to improve
attacks against Salsa. Next, in Sect. 5, we present the new stream cipher Forró
and in Sect. 6 we give a brief description of the tool CryptDances. Finally, in
Sect. 7 we present the conclusions and future works.

2 Specifications and Preliminaries

This section is divided in 5 parts as follows: first in Sects. 2.1 and 2.2 we describe
the algorithms Salsa and ChaCha, respectively. Then, in Sect. 2.3 we review the
state-of-the-art differential-linear cryptanalysis, and in Sect. 2.4 we review the
key recovery attacks using PNBs as used to attack Salsa and ChaCha. Finally, in
Sect. 2.5 we review state-of-the-art techniques to create linear approximations for
ARX ciphers and in particular to Salsa and ChaCha. To improve readability, we
provide a summary of the main notation used throughout the paper in Table 2.

2.1 Salsa

Salsa operates on a state of 64 bytes, organized as a 4 × 4 matrix with 32-bit
integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1 and a

https://github.com/MurCoutinho/cryptDances
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Table 1. Time and data complexity for the best attacks against ChaCha, Salsa, and
Forró.

Rounds Algorithm Type Time Data Reference

3 Forró Distinguisher 219 219 This work

4 ChaCha Distinguisher 26 26 [9]

Forró Distinguisher 237 237 This work

Salsa Distinguisher 28 28 [9]

5 ChaCha Distinguisher 216 216 [9]

Forró Key Recovery 2158 257 This work

Forró Distinguisher 2130 2130 This work

Salsa Distinguisher 232 232 [9]

ChaCha Key Recovery 2139 230 [2]

6 ChaCha Key Recovery 2127.5 237.5 [9]

ChaCha Key Recovery 277.4 258 [3]

ChaCha Distinguisher 2116 2116 [9]

ChaCha Distinguisher 251 251 [11]

Salsa Key Recovery 2137 261 [9]

Salsa Distinguisher 2109 2109 This work

7 ChaCha Key Recovery 2248 227 [2]

ChaCha Key Recovery 2237.7 296 [9]

ChaCha Key Recovery 2230.86 248.8 [3]

ChaCha Key Recovery 2221.95 248.83 [14]

ChaCha Distinguisher 2224 2224 [11]

ChaCha Distinguisher 2214 2214 This work

Salsa Key Recovery 2244.9 296 [9]

8 Salsa Key Recovery 2218 2114 This work

Salsa Distinguisher 2216 2216 This work

64-bit counter t0, t1 (we may also refer to the nonce and counter words as IV
words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574. For Salsa, we have the following initial state matrix:

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎞
⎟⎟⎠ . (1)

The state matrix is modified in each round by a Quarter Round Function
(QRF), named QRSalsa(a, b, c, d), which receives and updates 4 integers in the
following way:
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Table 2. Notation

Notation Description

X A 4 × 4 state matrix

X(m) State matrix after application of m rounds

X [s] State matrix after application of s subrounds

Z Output of Salsa, ChaCha or Forró, i.e., Z = X + X(R)

x
(m)
i ith word of the state matrix X(m)

x
(m)
i,j jth bit of ith word of the state matrix X(m)

x
(m)
i [j0, j1, ..., jt] The sum x

(m)
i,j0

⊕ x
(m)
i,j1

⊕ · · · ⊕ x
(m)
i,jt

x + y Addition of x and y modulo 232

Θ(x, y) Carry function of the sum x + y

x ⊕ y Bitwise XOR of x and y

x ≪ n Rotation of x by n bits to the left

Δx XOR difference of x and x′. Δx = x ⊕ x′

ID Input difference

OD Output difference

x
(m)
b = x

(m−1)
b ⊕ ((x(m−1)

d + x
(m−1)
a ) ≪ 7)

x
(m)
c = x

(m−1)
c ⊕ ((x(m−1)

a + x
(m)
b ) ≪ 9)

x
(m)
d = x

(m−1)
d ⊕ ((x(m)

c + x
(m)
b ) ≪ 13)

x
(m)
a = x

(m−1)
a ⊕ ((x(m)

d + x
(m)
c ) ≪ 18)

(2)

One round of Salsa is defined as 4 applications of the QRF. There is a dif-
ference, however, between odd and even rounds. Thus, for odd rounds, when
m ∈ {1, 3, 5, 7, ...}, X(m) is defined from X(m−1), from QRSalsa(a, b, c, d) with
(a, b, c, d) = {(0, 4, 8, 12), (5, 9, 13, 1), (10, 14, 2, 6), (15, 3, 7, 11)}, and for even
rounds m ∈ {2, 4, 6, ...} from QRSalsa(a, b, c, d) with (a, b, c, d) = {(0, 1, 2, 3),
(5, 6, 7, 4), (10, 11, 8, 9), (15, 12, 13, 14)}.

The output of Salsa20/R is then defined as the sum of the initial state with
the state obtained after R rounds of operations Z = X(0) + X(R). One should
note that it is possible to parallelize each application of the QRF on each round
and that each round is reversible, hence we can compute X(m−1) from X(m).
For more information on Salsa, we refer to [6].

2.2 ChaCha

The stream cipher ChaCha was also proposed by Bernstein [5] as an improvement
of Salsa. ChaCha consists of a series of ARX (addition, rotation, and XOR)
operations on 32-bit words, being highly efficient in software and hardware.



262 M. Coutinho et al.

Each round of ChaCha has a total of 16 bitwise XOR, 16 addition modulo 232

and 16 constant-distance rotations.
ChaCha operates on a state of 64 bytes, organized as a 4 × 4 matrix with

32-bit integers, initialized with a 256-bit key k0, k1, ..., k7, a 64-bit nonce v0, v1
and a 64-bit counter t0, t1 (we may also refer to the nonce and counter words as
IV words), and 4 constants c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574. For ChaCha, we have the following initial state matrix:

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

⎞
⎟⎟⎠ . (3)

The state matrix is modified in each round by a Quarter Round Function
(QRF), denoted by QRChaCha

(
x
(r−1)
a , x

(r−1)
b , x

(r−1)
c , x

(r−1)
d

)
, which receives

and updates 4 integers in the following way:

x
(r−1)
a′ = x

(r−1)
a + x

(r−1)
b ; x

(r−1)
d′ = (x(r−1)

d ⊕ x
(r−1)
a′ ) ≪ 16;

x
(r−1)
c′ = x

(r−1)
c + x

(r−1)
d′ ; x

(r−1)
b′ = (x(r−1)

b ⊕ x
(r−1)
c′ ) ≪ 12;

x
(r)
a = x

(r−1)
a′ + x

(r−1)
b′ ; x

(r)
d = (x(r−1)

d′ ⊕ x
(r)
a ) ≪ 8;

x
(r)
c = x

(r−1)
c′ + x

(r)
d ; x

(r)
b = (x(r−1)

b′ ⊕ x
(r)
c ) ≪ 7;

(4)

One round of ChaCha is defined as 4 applications of the QRF. There
is, however, a difference between odd and even rounds. For odd rounds, i.e.
r ∈ {1, 3, 5, 7, ...}, X(r) is obtained from X(r−1) by applying QRChaCha(a, b, c, d)
with (a, b, c, d) = {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}, and for
even rounds m ∈ {2, 4, 6, ...} from QRChaCha(a, b, c, d) with (a, b, c, d) =
{(0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)}.

The output of ChaCha20/R is then defined as the sum of the initial state
with the state after R rounds Z = X(0) + X(R). One should note that it is
possible to parallelize each application of the QRF on each round and also that
each round is reversible. Hence, we can compute X(r−1) from X(r).

Next, we introduce the concept of subrounds for ChaCha which will be very
useful in the rest of this paper. First, we define the Subround Function (SRF),
denoted by

(x[s]
a , x

[s]
b , x[s]

c , x
[s]
d ) = SRChaCha

(
x[s−1]

a , x
[s−1]
b , x[s−1]

c , x
[s−1]
d , r1, r2

)
,

which receives and updates 4 integers giving two rotation distances in the fol-
lowing way:

x
[s]
a = x

[s−1]
a + x

[s−1]
b ; x

[s]
d = (x[s−1]

d ⊕ x
[s]
a ) ≪ r1;

x
[s]
c = x

[s−1]
c + x

[s]
d ; x

[s]
b = (x[s−1]

b ⊕ x
[s]
c ) ≪ r2;

(5)

Note that we can define the QRF in terms of the SRF. More precisely, we
have that

QRChaCha(a, b, c, d) = SRChaCha(SRChaCha(a, b, c, d, 16, 12), 8, 7). (6)
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Therefore, it is easy to see that we can redefine ChaCha in terms of the SRF. Note
that, giving our notation, for each round of ChaCha we have 2 subrounds being
executed. In other words, if X [2s] denotes the state matrix after 2s subrounds,
then we have that X(s) = X [2s].

2.3 A Review of Differential-Linear Cryptanalysis

In this section, we describe the technique of Differential-Linear cryptanalysis as
used to attack ChaCha. Let E be a cipher and suppose we can write E = E2◦E1,
where E1 and E2 are sub ciphers, covering m and l rounds of the main cipher,
respectively. We can apply an input difference ID ΔX(0) in the sub cipher
E1 obtaining an output difference OD ΔX(m) (see the left side of Fig. 1). The
next step is to apply Linear Cryptanalysis to the second sub cipher E2. Using
masks Γm and Γout, we attempt to find good linear approximations covering the
remaining l rounds of the cipher E. Applying this technique we can construct a
differential-linear distinguisher covering all m + l rounds of the cipher E. This
is the main idea in Langford and Hellman’s classical approach [20].

Alternatively the cipher E can be represented as the product of three ciphers,
as follows: E = E3 ◦ E2 ◦ E1. In this scenario, we can explore properties of the
cipher in the first part E1, and then apply a differential linear attack where we
divide the differential part of the attack in two (see the right side of Fig. 1).
Here, the OD from the sub cipher E1 after r rounds, namely ΔX(r), is the ID
for the sub cipher E2 which produces an output difference ΔX(m). For more
information in this regard, see [3].

It is important to understand how to compute the complexity of a differential-
linear attack. We denote the differential of the state matrix as ΔX(r) = X(r) ⊕
X ′(r) and the differential of individual words as Δx

(r)
i = x

(r)
i ⊕ x

′(r)
i . Let x

(r)
i,j

denote the j-th bit of the i-th word of the state matrix after r rounds and let J
be a set of bits. Also, let σ and σ′ be linear combinations of bits in the set J ,
i.e., σ =

(⊕
(i,j)∈J x

(r)
i,j

)
, σ′ =

(⊕
(i,j)∈J x

′(r)
i,j

)
. Then Δσ =

(⊕
(i,j)∈J Δx

(r)
i,j

)

is the linear combination of the differentials. We can write Pr
[
Δσ = 0|ΔX(0)

]
=

1
2 (1 + εd), where εd is the differential correlation.

Using linear cryptanalysis, it is possible to go further and find new relations
between the initial state and the state after R > r rounds. To do so, let L denote
another set of bits and define ρ =

(⊕
(i,j)∈L x

(R)
i,j

)
, ρ′ =

(⊕
(i,j)∈L x

′(R)
i,j

)
. Then,

as before, Δρ =
(⊕

(i,j)∈L Δx
(R)
i,j

)
. We can define Pr[σ = ρ] = 1

2 (1+ εL), where

εL is the linear correlation. We want to find γ such that Pr
[
Δρ = 0|ΔX(0)

]
=

1
2 (1 + γ). To compute γ, we write (to simplify the notation we make the condi-
tional to ΔX(0) implicit):

Pr[Δσ = Δρ] = Pr[σ = ρ] · Pr [σ′ = ρ′] + Pr[σ = ρ̄] · Pr
[
σ′ = ρ′] =

1
2

(
1 + ε2L

)
.



264 M. Coutinho et al.

Then, Pr[Δρ = 0] =
1
2

(
1 + εd · ε2L

)
. Therefore, the differential-linear correlation

is given by γ = εd ·ε2L, which defines a distinguisher with complexity O(ε−2
d ε−4

L ).
For further information on differential-linear cryptanalysis we refer to [7].

2.4 Probabilistic Neutral Bits

This section reviews the attack of Aumasson et al. [2]. The attack first identi-
fies good choices of truncated differentials, then it uses probabilistic backwards
computation with the notion of Probabilistic Neutral Bits (PNB), and, finally, it
estimates the complexity of the attack. In [2], the ID is defined for a single-bit
difference Δx

(0)
i,j = 1 and a single-bit OD after r rounds Δx

(r)
p,q, such differential

is denoted (Δx
(r)
p,q|Δx

(0)
i,j ) and it has correlation εd.

Fig. 1. A classical differential-linear distinguisher (on the left) and a differential-linear
distinguisher with experimental evaluation of the correlation p2 (on the right). E is
divided into sub-ciphers E = E2 ◦ E1, or E = E3 ◦ E2 ◦ E1. In the differential part we
may apply an ID ΔX(0) in the sub cipher E1 obtaining an OD ΔX(m) after m rounds.
The next step is to apply Linear Cryptanalysis using masks Γm and Γout. Applying
this technique we can construct a differential-linear distinguisher of the cipher E. One
way to improve attacks is to explore properties of the cipher in the first part E1 (on
the right), and then apply a differential linear attack where we divide the differential
part of the attack in two.

Assume that the differential is fixed, and we observe outputs Z and Z ′ of
R = l+r rounds for nonce v, counter t and unknown key k. If we guess the key k

we can invert l rounds of the algorithm to get X(r) and X ′(r) and compute Δx
(r)
p,q.

Then, let f be the function which executes this procedure, i.e., f(k, v, t, Z, Z′) =
Δx

(r)
p,q. Hence, we expect that f(k̂, v, t, Z, Z ′) has correlation εd only if k̂ = k.

Then, if we have several pairs of Z and Z ′, it is possible to test our guesses for
k. Thus, we can search only over a subkey of m = 256 − n bits, provided we can
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find a function g that approximates f but only uses m key bits as input. Then,
let k̄ correspond to the subkey of m bits of key k and let f to be correlated to
g with correlation εa, i.e., Pr(f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)) = 1

2 (1 + εa).
If we denote the correlation of g by ε we can approximate ε by εdεa. The

problem that remains is how to efficiently find such a function g. In [2], this
is done by first identifying key bits that have little influence on the result of
f(k, v, t, Z, Z ′), these are called probabilistic neutral bits (PNBs). This is done
by defining the neutrality measure γi,j of a key bit ki,j . After computing γi,j

(see [2] for a method of estimation), for all i = (0, 1, ..., 7) and j = (0, 1, ..., 31),
we can define the set of significant key bits as Ψ = {(i, j) : γi,j ≤ γ} where γ
is a threshold value, and then define our approximation g as g(kΨ , v, t, Z, Z ′) =
f(k∗, v, t, Z, Z ′) where kΨ is defined as the subkey with key bits in the set Ψ and
k∗ is computed from kΨ by setting ki,j = 0 for all (i, j) /∈ Ψ .

We refer to [2] for further information about the estimation of the data and
time complexity of the attack and for further details on the described technique.
We also note that Dey et al. [14] provided new formulas to compute the com-
plexities, correcting some problems with previous formulas.

2.5 Linear Approximations for ARX Ciphers

To attack Salsa and ChaCha, only two simple approximations to the carry func-
tion have been used. Let Θ(x, y) = x ⊕ y ⊕ (x + y) be the carry function of
the sum x + y. Define Θi(x, y) as the i-th bit of Θ(x, y). By definition, we have
Θ0(x, y) = 0. Using Theorem 3 of Wallén [29], we can generate all possible lin-
ear approximations with a given correlation. In particular, at Eurocrypt 2021,
Coutinho and Souza [11] used the following linear approximations:

Pr(Θi(x, y) = yi−1) =
1
2

(
1 +

1
2

)
, i > 0. (7)

Pr(Θi(x, y) ⊕ Θi−1(x, y) = 0) =
1
2

(
1 +

1
2

)
, i > 0. (8)

As Coutinho and Souza explained, by combining Eqs. 7 and 8 when attacking
ARX ciphers we can create a strategy to improve linear approximations when
considering more rounds. The main idea is that when using Eq. 7 in one round
we will create consecutive terms that can be expanded together using Eq. 8.

Next, we review previous linear approximations for Salsa and ChaCha.

Linear Approximations for Salsa. In the following, we review the work of [9]
using the notation of Coutinho and Souza [11]. We can write the QRF equations
of Salsa (Eq. 2) as
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x
(m)
b,i = x

(m−1)
b,i ⊕ x

(m−1)
a,i−7 ⊕ x

(m−1)
d,i−7 ⊕ Θi−7(x

(m−1)
d , x(m−1)

a ) (9)

x
(m)
c,i = x

(m−1)
c,i ⊕ x

(m)
b,i−9 ⊕ x

(m−1)
a,i−9 ⊕ Θi−9(x(m−1)

a , x
(m)
b ) (10)

x
(m)
d,i = x

(m−1)
d,i ⊕ x

(m)
c,i−13 ⊕ x

(m)
b,i−13 ⊕ Θi−13(x(m)

c , x
(m)
b ) (11)

x
(m)
a,i = x

(m−1)
a,i ⊕ x

(m)
d,i−18 ⊕ x

(m)
c,i−18 ⊕ Θi−18(x

(m)
d , x(m)

c ) (12)

Inverting these equations and changing to positive indexes, we get:

x
(m−1)
a,i = L(m)

a,i ⊕ Θi+14(x
(m)
d , x(m)

c ) (13)

x
(m−1)
d,i = L(m)

d,i ⊕ Θi+19(x(m)
c , x

(m)
b ) (14)

x
(m−1)
c,i = L(m)

c,i ⊕ Θi+23(x(m−1)
a , x

(m)
b ) ⊕ Θi+5(x

(m)
d , x(m)

c ) (15)

x
(m−1)
b,i = L(m)

b,i ⊕ Θi+25(x
(m−1)
d , x(m−1)

a ) ⊕ Θi+7(x
(m)
d , x(m)

c ) ⊕ Θi+12(x(m)
c , x

(m)
b )
(16)

where

L(m)
a,i = x

(m)
a,i ⊕ x

(m)
d,i+14 ⊕ x

(m)
c,i+14 (17)

L(m)
b,i = x

(m)
b,i ⊕ x

(m)
a,i+25 ⊕ x

(m)
d,i+7 ⊕ x

(m)
c,i+7 ⊕ x

(m)
d,i+25 ⊕ x

(m)
c,i+12 ⊕ x

(m)
b,i+12 (18)

L(m)
c,i = x

(m)
c,i ⊕ x

(m)
b,i+23 ⊕ x

(m)
a,i+23 ⊕ x

(m)
d,i+5 ⊕ x

(m)
c,i+5 (19)

L(m)
d,i = x

(m)
d,i ⊕ x

(m)
c,i+19 ⊕ x

(m)
b,i+19 (20)

From Eq. (7) and these equations is possible to derive the following result:

Lemma 1. For Salsa’s QRF, the following linear approximations hold

Equation Probability Condition

x
(m−1)
a,18 = L(m)

a,18 1 -

x
(m−1)
a,i = L(m)

a,i ⊕ x
(m)
c,i+13

1
2
(1 + 1

2
) i �= 18

x
(m−1)
d,13 = L(m)

d,13 1 -

x
(m−1)
d,i = L(m)

d,i ⊕ x
(m)
b,i+18

1
2
(1 + 1

2
) i �= 13

x
(m−1)
c,9 = L(m)

c,9 ⊕ x
(m)
c,13

1
2
(1 + 1

2
) -

x
(m−1)
c,27 = L(m)

c,27 ⊕ x
(m)
b,17

1
2
(1 + 1

2
) -

x
(m−1)
c,i = L(m)

c,i ⊕ x
(m)
a,i+22

1
2
(1 − 1

4
) i �= 9, 27

x
(m−1)
b,7 = L(m)

b,7 ⊕ x
(m)
c,13 ⊕ x

(m)
b,18

1
2
(1 + 1

4
) -

x
(m−1)
b,20 = L(m)

b,20 ⊕ x
(m)
a,12

1
2
(1 − 1

4
) -

x
(m−1)
b,25 = L(m)

b,25 ⊕ x
(m)
d,17

1
2
(1 − 1

4
) -

x
(m−1)
b,i = L(m)

b,i ⊕ x
(m)
a,i+24 ⊕ x

(m)
b,i+11

1
2
(1 − 1

8
) i �= 7, 20, 25

Proof. See Lemmas 2 and 7 of [9]. �
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Linear Approximations for ChaCha. In this section, we review the work
presented in [9,10], and in [11]. Since there are many results presented in these
papers, here we focus only on the linear approximations that we will need
throughout this paper.

Lemma 2. (Lemma 9 of [9] combined with Lemma 6 of [11]) For one active
input bit in round m−1 and multiple active output bits in round m, the following
holds for i > 0.

x
(m−1)
b,i = x

(m)
b,i+19 ⊕ x

(m)
c,i ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

2

)

x
(m−1)
a,i = x

(m)
a,i ⊕ x

(m)
b,i+7 ⊕ x

(m)
b,i+19 ⊕ x

(m)
c,i+12 ⊕ x

(m)
d,i ⊕

x
(m)
b,i+6 ⊕ x

(m)
b,i+18 ⊕ x

(m)
c,i+11 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

23

)

x
(m−1)
c,i = x

(m)
a,i ⊕ x

(m)
c,i ⊕ x

(m)
d,i ⊕ x

(m)
d,i+8 ⊕ x

(m)
a,i−1 ⊕ x

(m)
d,i+7 ⊕ x

(m)
d,i−1, w.p. 1

2

(
1 + 1

22

)

x
(m−1)
d,i = x

(m)
a,i ⊕ x

(m)
a,i+16 ⊕ x

(m)
b,i+7 ⊕ x

(m)
c,i ⊕ x

(m)
d,i+24 ⊕ x

(m)
c,i−1 ⊕ x

(m)
b,i+6, w.p.

1
2

(
1 + 1

2

)

Proof. See [9] and [11]. We provide an alternative proof of this lemma in
Sect. 3. �

Lemma 3. (Lemma 10 of [11]) The following linear approximation holds with
probability 1

2

(
1 + 1

28

)

x
(3)
3,0 ⊕ x

(3)
4,0 = x

(6)
0 [0, 16] ⊕ x

(6)
1 [0, 6, 7, 11, 12, 22, 23] ⊕ x

(6)
2 [0, 6, 7, 8, 16, 18,

19, 24] ⊕ x
(6)
4 [7, 13, 19] ⊕ x

(6)
5 [7] ⊕ x

(6)
6 [7, 13, 14, 19]⊕

x
(6)
7 [6, 7, 14, 15, 26] ⊕ x

(6)
8 [0, 7, 8, 19, 31] ⊕ x

(6)
9 [0, 6, 12, 26]⊕

x
(6)
10 [0] ⊕ x

(6)
11 [6, 7] ⊕ x

(6)
12 [0, 11, 12, 19, 20, 30, 31]⊕

x
(6)
13 [0, 14, 15, 24, 26, 27] ⊕ x

(6)
14 [8, 25, 26] ⊕ x

(6)
15 [24].

Proof. See [11]. �

3 A More Effective Approach to Derive Linear
Approximations for ChaCha

In this section, we propose a new approach to the derivation of linear approx-
imations for ChaCha. To do so, instead of considering the QRF as in previous
works, here we will consider the SRF, as defined in Eq. (5). We point out that
we used the techniques of this section to implement automatic linear expansions
of ChaCha in CryptDances.

3.1 New Framework: Linear Approximations to the SRF

From Eq. (5), we can write the SRF equations of ChaCha as

x
[s]
a,i = x

[s−1]
a,i ⊕ x

[s−1]
b,i ⊕ Θi(x

[s−1]
a , x

[s−1]
b ); x

[s]
d,i+r1

= x
[s−1]
d,i ⊕ x

[s]
a,i;

x
[s]
c,i = x

[s−1]
c,i ⊕ x

[s]
d,i ⊕ Θi(x

[s−1]
c , x

[s]
d ); x

[s]
b,i+r2

= x
[s−1]
b,i ⊕ x

[s]
c,i;

(21)
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Inverting these equations, we get:

x
[s−1]
b,i = x

[s]
b,i+r2

⊕ x
[s]
c,i (22)

x
[s−1]
c,i = x

[s]
c,i ⊕ x

[s]
d,i ⊕ Θi(x[s−1]

c , x
[s]
d ) (23)

x
[s−1]
d,i = x

[s]
a,i ⊕ x

[s]
d,i+r1

(24)

x
[s−1]
a,i = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i ⊕ Θi(x[s−1]

a , x
[s−1]
b ) (25)

Note that the expansions for x
[s−1]
b,i and x

[s−1]
d,i are deterministic. Therefore, we

only need to focus on expansions for x
[s−1]
a,i and x

[s−1]
c,i . To this end, consider the

following three lemmas:

Lemma 4. Consider the SRChaCha with rotation distances r1 and r2. Then we
have that x

[s−1]
c,0 = x

[s]
c,0 ⊕ x

[s]
d,0 and x

[s−1]
a,0 = x

[s]
a,0 ⊕ x

[s]
b,r2

⊕ x
[s]
c,0.

Proof. The proof follows from Eqs. (23) and (25) and using Θ0(.) = 0. �

Lemma 5. For one active input bit in subround s − 1 and multiple output bits
in subround s, the following linear approximations hold with probability 1

2 (1+ 1
2 )

for the function SRChaCha with rotation distances r1 and r2 when i > 0

x
[s−1]
c,i = x

[s]
c,i ⊕ x

[s]
d,i ⊕ x

[s]
d,i−1,

x
[s−1]
a,i = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i ⊕ x

[s]
b,i+r2−1 ⊕ x

[s]
c,i−1.

Proof. The proof follows directly from the application of Eq. (7) in Eqs. (23)
and (25). �

Lemma 6. For two active input bits in subround s − 1 and multiple output bits
in subround s, the following linear approximations hold with probability 1

2 (1+ 1
2 )

for the function SRChaCha with rotation distances r1 and r2

x
[s−1]
c,i ⊕ x

[s−1]
c,i−1 = x

[s]
c,i ⊕ x

[s]
d,i ⊕ x

[s]
c,i−1 ⊕ x

[s]
d,i−1,

x
[s−1]
a,i ⊕ x

[s−1]
a,i−1 = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i ⊕ x

[s]
a,i−1 ⊕ x

[s]
b,i+r2−1 ⊕ x

[s]
c,i−1.

Proof. The proof follows directly from the application of Eq. (8) after expanding
the left side of the equations with Eqs. (23) and (25). �

As we will show, from these three Lemmas it is possible to reproduce previous
works. Before that, we show an additional lemma that we use to improve previous
results.

Lemma 7. For two active input bits in subround s − 1 and multiple output bits
in subround s, the following linear approximations hold with probability 1

2 (1+ 1
2 )

for the function SRChaCha with rotation distances r1 and r2

x
[s−1]
c,i ⊕ x

[s−1]
c,i−1 = x

[s]
c,i ⊕ x

[s]
d,i,

x
[s−1]
a,i ⊕ x

[s−1]
a,i−1 = x

[s]
a,i ⊕ x

[s]
b,i+r2

⊕ x
[s]
c,i.

Proof. See the extended version of this paper. �
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Strategies. As the reader may have noticed, Lemmas 6 and 7 are actually
expanding the same pair of bits. Then we may ask which is the best choice.
However, it depends on the situation. As a general rule, we always look for
minimizing the number of active bits in the equations. That is because fewer
terms means fewer expansions which means a higher correlation (usually). From
this assertion, the reader might conclude that Lemma 7 is better. Notice, how-
ever, that adjacent bits are always expanded together (due to Lemma 6) and
should be counted as one. Therefore, the best rule will be the one that results in
other bits being canceled (see the extended version of this paper for a complete
example). We conclude that each situation needs to be evaluated individually
by considering all options to reach the best possible linear approximation.

3.2 Deriving Linear Approximations of Previous Works Using
the New Approach

The new framework proposed in Sect. 3 is simpler to understand and to use when
compared with previous works. For example, the methods of Coutinho and Souza
[11] encompasses at least 18 different rules to derive linear approximations for
ChaCha. Of course, being simpler is not enough, as the proposed framework
should also be at least as effective. Our claim is that using Lemmas 4, 5, and
6 is possible to derive most of the linear approximations (if not all) of previous
works. Of course, proving that to each one of them individually would be an
extremely tedious task. Therefore, here we will just prove this result to Lemma
2 that is the base to generate almost all linear approximations of ChaCha in the
literature, we leave the rest as a conjecture.

Proposition 1. Lemma 2 is a consequence of Lemmas 5 and 6.

Proof. See the extended version of this paper. �

3.3 Improve Linear Approximations and Differential-Linear
Distinguisher for ChaCha

In this section, we improve the best differential-linear distinguisher against
ChaCha by improving its linear part by using the framework of Sect. 3.1. We
highlight that the improvements are achieved through an intelligent use of
Lemma 7. The new result is given by the following lemma.

Lemma 8. The following linear approximation holds with probability
1
2

(
1 + 1

253

)
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x
[6]
3,0 ⊕ x

[6]
4,0 = x

[14]
0 [0, 3, 4, 7, 8, 11, 12, 14, 15, 18, 20, 27, 28] ⊕ x

[14]
1 [0, 5, 7, 8, 10, 14,

15, 16, 22, 23, 24, 25, 27, 30, 31] ⊕ x
[14]
2 [7, 9, 10, 16, 19, 25, 26] ⊕ x

[14]
3 [6, 7, 8, 24]⊕

x
[14]
4 [0, 2, 3, 5, 18, 22, 23, 27] ⊕ x

[14]
5 [1, 2, 9, 10, 13, 14, 18, 21, 22, 25, 29] ⊕ x

[14]
6 [0, 2,

3, 7, 10, 11, 13, 14, 19, 22, 23, 25, 27, 31] ⊕ x
[14]
7 [1, 2, 13, 25, 26, 30, 31] ⊕ x

[14]
8 [8, 11,

13, 20, 25, 27, 28, 30, 31] ⊕ x
[14]
9 [2, 3, 6, 7, 11, 14, 15, 18, 23, 27] ⊕ x

[14]
10 [0, 3, 4, 6, 8,

12, 13, 14, 18, 20, 23, 25, 27, 28] ⊕ x
[14]
11 [6, 14, 15, 18, 19, 23, 24, 27]⊕

x
[14]
12 [3, 4, 6, 11, 13, 22, 23, 24, 26, 27, 30, 31] ⊕ x

[14]
13 [1, 2, 6, 7, 8, 13, 14, 16,

18, 20, 22, 23, 24, 25, 26] ⊕ x
[14]
14 [0, 7, 13, 14, 15, 16, 17, 18, 23, 24] ⊕ x

[14]
15 [16, 25, 26]

Proof. We present just a sketch of the proof, for the complete proof see the
extended version of this paper. We start from the linear approximation of Lemma
3. Notice that since we are transitioning from round 6 to 7 (subrounds 12 to 14),
we have (a, b, c, d) ∈ {(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)}. There-
fore, we can divide the bits of the equation in 4 distinct groups:

– Group I - x
[12]
0 [0, 16], x[12]

4 [7, 13, 19], x[12]
8 [0, 7, 8, 19, 31], x

[12]
12 [0, 11, 12, 19, 20,

30, 31].
– Group II - x

[12]
1 [0, 6, 7, 11, 12, 22, 23], x

[12]
5 [7], x

[12]
9 [0, 6, 12, 26],

x
[12]
13 [0, 14, 15, 24, 26, 27].

– Group III - x
[12]
2 [0, 6, 7, 8, 16, 18, 19, 24], x[12]

6 [7, 13, 14, 19], x
[12]
10 [0],

x
[12]
14 [8, 25, 26].

– Group IV - x
[12]
7 [6, 7, 14, 15, 26], x

[12]
11 [6, 7], x[12]

15 [24].

We divide the proof for each group, and the proof for Group I and Group IV
is identical as the one of Lemma 11 of [11], with probabilities 1

2

(
1 + 1

212

)
and

1
2

(
1 + 1

24

)
, respectively. For Group II, it is possible to show that

x
[12]
1 [0, 6, 7, 11, 12, 22, 23] ⊕ x

[12]
5 [7] ⊕ x

[12]
9 [0, 6, 12, 26]⊕

x
[12]
13 [0, 14, 15, 24, 26, 27] = x

[14]
1 [0, 5, 7, 8, 10, 14, 15, 16, 22, 23, 24, 25, 27,

30, 31] ⊕ x
[14]
5 [1, 2, 9, 10, 13, 14, 18, 21, 22, 25, 29] ⊕ x

[14]
9 [2, 3, 6, 7, 11, 14,

15, 18, 23, 27] ⊕ x
[14]
13 [1, 2, 6, 7, 8, 13, 14, 16, 18, 20, 22, 23, 24, 25, 26],

(26)

with probability 1
2

(
1 + 1

214

)
. And for Group III, we get

x
[12]
2 [0, 6, 7, 8, 16, 18, 19, 24] ⊕ x

[12]
6 [7, 13, 14, 19] ⊕ x

[12]
10 [0] ⊕ x

[12]
14 [8, 25, 26] =

x
[14]
2 [7, 9, 10, 16, 19, 25, 26] ⊕ x

[14]
6 [0, 2, 3, 7, 10, 11, 13, 14, 19, 22, 23, 25, 27, 31]⊕

x
[14]
10 [0, 3, 4, 6, 8, 12, 13, 14, 18, 20, 23, 25, 27, 28]⊕

x
[14]
14 [0, 7, 13, 14, 15, 16, 17, 18, 23, 24],

(27)
with probability 1

2

(
1 + 1

215

)
. Aggregating the correlation via the Piling-up

Lemma completes the proof. �

Computational Result 1. The linear approximations of Eqs. (26) and (27)
hold computationally with εL2 = 0.000201 ≈ 2−12.31 and εL3 = 0.000141 ≈
2−12.813, respectively. These correlations were verified using 242 random samples.
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Finally, we compute the differential-linear distinguisher. For that, we use
the differential correlation εd = 0.00048 for (a, b) = (3, 4) described in [10],
and the Computational Results 1, 2 and 5 of [11] for linear correlations εL0 =
0.006942, εL1 = 0.000301, and εL4 = 0.0625, respectively. Additionally, we use
our Computational Result 1 for the linear correlations εL2 and εL3 . From that,
we get εd(εL0εL1εL2εL3εL4)

2 ≈ 2−107 which gives us a distinguisher for 7 rounds
of ChaCha with complexity approximately 2214.

4 Bidirectional Linear Expansions

In this section, we propose a new technique called Bidirectional Linear Expan-
sions (BLE). This section is divided in three parts: in Sect. 4.1 we present BLE.
In Sects. 4.2 and 4.3, we use BLE to study Salsa and ChaCha, respectively.

4.1 Proposed Technique

Previous works on the cryptanalysis of Salsa and ChaCha used an intensive
computational approach to find significant correlations for the differential part
of the attacks. To do so, authors considered an ID ΔX(0) and used several
random simulations to estimate a correlation for a single bit Δx

(m)
i,j . From this

point, this single bit was expanded into several bits using linear approximations,
like in the following diagram:

ΔX(0) Δx
(m)
i,j

Δx
(m+1)
i1,j1

Δx
(m+1)
i2,j2

. . .

Δx
(m+1)
ip,jp

In this work, we propose a different approach. More precisely, we expand a
single bit in both forward and backward directions. Therefore, in the differential
part we need to find a correlation for a combination of bits instead of just one.
This approach leads to the worst differential correlations, however it improves the
linear correlations. Since the linear part has a higher weight on the complexity of
the attack, the proposed technique leads to better results overall. We illustrate
the proposed technique in the following diagram:
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ΔX(0) Δx
(m+1)
i,j

Δx
(m+2)
i1,j1

Δx
(m+2)
i2,j2

. . .

Δx
(m+2)
ip,jp

Δx
(m)
r1,s1

Δx
(m)
r2,s2

. . .

Δx
(m)
rp,sp

This technique is useful to find differentials that reach more rounds. The rea-
son is that when we try to find differentials experimentally we have two parame-
ters to set: (1) the number of differentials to be tested D; and (2) the number of
random samples N to estimate the differential. Since for each differential we need
to execute the algorithm two times, then we need 2DN executions to try to find
successful differential correlations. However, as the number of rounds increases,
the correlations decreases, then we have to increase N accordingly. Because of
that, the computation quickly becomes infeasible.

Using BLE we can leverage the backward linear approximation to search for
correlations in the previous round. For example, suppose that we compute all
possible single bit differentials for m rounds of ChaCha and that we have a back-
ward linear approximation x

(m+1)
i,j = x

(m)
r1,s1 ⊕ x

(m)
r2,s2 ⊕ ... ⊕ x

(m)
rp,sp . Then, we can

use the Piling-up Lemma to aggregate the correlation for each single bit from the
previous round, achieving a differential correlation for further rounds. Mathemat-
ically, if we define Pr(Δx

(m)
rk,sk |ID) = 1

2 (1+εk), and Pr(Δx
(m+1)
i,j |ID) = 1

2 (1+εd),
then we can estimate εd =

∏p
k=1 εk.

4.2 Applying BLE to Salsa

Next, we use the techniques proposed in Sect. 4.1 to improve the attacks against
Salsa. This section is divided in three parts: first we present the first single bit
differential reaching 5 rounds of Salsa. Then, we present new linear approxi-
mations for Salsa, starting from the proposed differential. Finally, we use these
results to improve attacks against Salsa.

Proposed Differential for 5 Rounds of Salsa. In this section, we present
a new single bit differential correlation for 5 rounds of Salsa, constructed by
applying the technique proposed in the previous section. To do so, first notice
from Eq. (9), that we can write x

(5)
b,7 = x

(4)
b,7⊕x

(4)
a,0⊕x

(4)
d,0, with probability 1, where

(a, b, d) ∈ {(0, 4, 12), (5, 13, 1), (10, 2, 6), (15, 7, 11)}. Using this relationship, we
will find a correlation for a bit in the fifth round x

(5)
b,7 by combining the correlation

of three other bits in the fourth round.
To achieve this result, we start from the single bit ID of Δx

(0)
7,31 = 1,

proposed by Aumasson et al. [2], which is the one that provides the highest
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correlations presented in the literature. However, instead of relying on com-
putational results only, we expanded the first round theoretically and used
the techniques proposed by Beierle et al. [3] (see Sect. 2.3) to find differen-
tials with amplified probabilities. Here, we apply the techniques proposed by
Lipmaa and Moriai on efficient algorithms for computing differential proper-
ties of addition [22]. In the referred work, the authors define the Differential
Probability of Addition (DPA) modulo 2n as a triplet of two input and one
output differences, denoted as (α, β → γ), where α, β, γ ∈ F

n
2 , and is defined as

DP+(δ) = DP+(α, β → γ) := Prx,y[(x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ].
One important question is how to find γ such that DP+(δ) is maximum given

α and β. In other words, we want to find DP+
max(α, β) := maxγ DP+(α, β → γ).

In [22], the authors provide two important algorithms to compute DP+
max(α, β).

Specifically, Algorithm 3 of [22] returns all (α, β)-optimal output differences γ,
and Algorithm 4 of [22] finds an (α, β)-optimal γ in log-time.

Thus, starting from the ID given by ΔX(0), we propagated the differential
using the algorithms from [22] and chose the one that minimized the hamming
weight, from this we get (in hexadecimal notation):

Ψ = ΔX(1) =

⎛
⎜⎜⎝

0 0 0 0x00000000
0 0 0 0x80000000
0 0 0 0x00001000
0 0 0 0x40020000

⎞
⎟⎟⎠ .

The probability that ΔX(0) leads to ΔX(1) is 2−1. To compute this proba-
bility, we used Algorithm 2 of [22]. At this point, we used the strategy of Beierle
et al. [3] (see Sect. 2.3) to find differentials with amplified probabilities. We may
apply this technique because, as with ChaCha, the QRF of Salsa is indepen-
dently applied to each column in the first round. Therefore, when the output
difference of one QRF is restricted, the input of the other three QR functions is
trivially independent of the output difference. It implies that we have 96 inde-
pendent bits, and we can easily amplify the probability of the differential-linear
distinguisher.

We summarize the differential part combined with the backward linear expan-
sion of the proposed attacks in the diagram of Fig. 2.

Fig. 2. Differential part of the proposed attack.
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Considering Fig. 2, we need to estimate the transition probability from Ψ to
Δx

(5)
b,7 . We performed this task computationally, and we achieved the best results

when considering b = 4. Thus, consider the following computational result:

Computational Result 2. The following differentials were found computa-
tionally using 245 random samples.

ID OD Correlation

ΔX(1) = Ψ Δx
(4)
0,0 −0.00000159

ΔX(1) = Ψ Δx
(4)
4,7 −0.00085

ΔX(1) = Ψ Δx
(4)
12,0 0.000167

From this result, we can use the Piling-Up Lemma to reach a differential
correlation from round 1 to round 5 of Salsa. More precisely, we can write

Pr(Δx
(5)
4,7 = 0|ΔX(1) = Ψ) =

1
2
(1 + εd), (28)

where εd ≈ 2−42.01. Unfortunately, checking this correlation is computationally
infeasible as it would require approximately 284 samples. We note, however,
that we tested if the Piling-up Lemma holds using this technique for ChaCha
and Salsa for smaller correlations in fewer rounds. In our tests, the observed
correlation was always higher than predicted, therefore, our attack using this
correlation is probably better than what we report in this paper.

In the next section, we will present the linear expansion for the bit x
(5)
b,7 to

complete the differential-linear distinguisher.

New Linear Approximations for Salsa. First, we propose the following
Lemma:

Lemma 9. For two active input bits in round m − 1 and multiple active output
bits in round m of Salsa, the following holds for i /∈ I

x
(m−1)
λ,i ⊕ x

(m−1)
λ,i−1 = L(m)

λ,i ⊕ L(m)
λ,i−1, w.p.

1
2

(
1 +

1
2σ

)
,

where (λ, σ, I) ∈ {(a, 1, {18}), (b, 3, {7, 20, 25}), (c, 2, {9, 27}), (d, 1, {13})} and
L is given in Eqs. (17)–(20).

Proof. This proof follows from Eqs. (13)–(16) by noting that always we have pair
with the form Θi(x) ⊕ Θi−1(x). When i > 1 we apply the approximation of Eq.
(8) to get Θi(x)⊕Θi−1(x) = 0 with probability 1

2 (1+ 1
2 ). When i = 1 we use the

fact that Θ0(x) = 0 to get Θ1(x) ⊕ Θ0(x) = Θ1(x) = 0 again with probability
1
2 (1 + 1

2 ). When i = 0, Θi(x) ⊕ Θi−1(x) �= 0, thus we exclude these indexes. All
that is left is to use the Piling-Up Lemma to combine the probabilities. �
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Next, we consider new linear approximations to the bit x
(5)
4,7.

Lemma 10. The following linear approximation holds with probability
1
2

(
1 − 1

26

)

x
(5)
4,7 = x

(7)
0 [0] ⊕ x

(7)
2 [12, 13] ⊕ x

(7)
3 [17] ⊕ x

(7)
4 [7, 18, 19] ⊕ x

(7)
6 [25, 26] ⊕ x

(7)
7 [26, 31]⊕

x
(7)
8 [13, 14, 19] ⊕ x

(7)
11 [31] ⊕ x

(7)
12 [0, 14] ⊕ x

(7)
14 [12, 13] ⊕ x

(7)
15 [16, 17].

Proof. From x
(5)
4,7 we use the expansion for xd,i of Lemma 1 to get x

(5)
4,7 = x

(6)
4,7 ⊕

x
(6)
6,25 ⊕ x

(6)
6,26 ⊕ x

(6)
7,26, with probability 1

2

(
1 + 1

2

)
. Then, we use the expansion for

xb,7 and xc,i of Lemma 1 to get x
(6)
4,7 = L(m)

4,7 ⊕ x
(m)
8,13 ⊕ x

(m)
4,18 with probability

1
2

(
1 + 1

4

)
, and x

(6)
7,26 = L(m)

7,26 ⊕ x
(m)
15,16 with probability 1

2

(
1 − 1

4

)
. Additionally,

using Lemma 9 we get x
(6)
6,25 ⊕ x

(6)
6,26 = L(7)

6,25 ⊕ L(7)
6,26, with probability 1

2

(
1 + 1

2

)
.

Finally, using the Piling-Up Lemma to combine the probabilities completes the
proof. �

Lemma 11. The following linear approximation holds with probability
1
2

(
1 + 1

234

)

x
(5)
4,7 = x

(8)
0 [0, 3, 4] ⊕ x

(8)
2 [4, 12, 14, 17, 18] ⊕ x

(8)
3 [14, 18] ⊕ x

(8)
4 [0, 1, 4, 7, 31]⊕

x
(8)
5 [16, 17, 18, 19, 21, 22] ⊕ x

(8)
6 [17, 22] ⊕ x

(8)
7 [0, 1, 4]⊕

x
(8)
8 [6, 11, 13, 14, 18, 24] ⊕ x

(8)
9 [6, 18, 19] ⊕ x

(8)
10 [4, 5, 9, 10, 23, 24]⊕

x
(8)
11 [4, 5, 11, 31] ⊕ x

(8)
12 [11, 12, 14, 25, 26, 30, 31] ⊕ x

(8)
13 [0, 7, 12, 21, 26, 30]⊕

x
(8)
14 [12, 13, 21, 25, 30, 31] ⊕ x

(8)
15 [6, 7, 16, 17, 24, 25].

Proof. See the extended version of this paper. �

Additionally, we verified the theoretical results of Lemmas 10 and 11 compu-
tationally. In particular, for Lemma 11 the experiment is divided in 4 parts lead-
ing to the correlations εL1 , εL2 , εL3 and εL4 (for more details, see the extended
version of the paper).

Computational Result 3. The linear approximation of Lemma 10 holds com-
putationally with εL0 = −0.015627 ≈ −2−5.999. This correlation was verified
using 238 random samples.

Computational Result 4. The linear approximations for Lemma 11 hold
computationally with correlations εL1 = 0.083980 ≈ 2−3.57, εL2 = 0.007814 ≈
2−6.99, εL3 = 0.006368 ≈ 2−7.29, εL4 = 0.002234 ≈ 2−8.81, respectively. These
correlations were verified using 238 random samples.

New Attacks Against Salsa. Using the linear approximations of Lemma 10
and Lemma 11, the differential correlation εd ≈ −2−42.01 given in Eq. (28),
and the estimated correlations from the Computational Results 3 and 4, we
get εd(εL0)

2 ≈ 2−53.99 and εd(εL0εL1εL2εL3εL4)
2 ≈ 2−107.31 which gives us a

distinguisher for 7 and 8 rounds of Salsa with complexity less than 2−107.98 and
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2−214.62, respectively. As in [3], we have to repeat this attack 2 times on average
because of the transition probability from ΔX(0) to ΔX(1) = Ψ . Therefore, we
have a distinguisher with data and time complexity of 2108.98 for Salsa20/7 and
2215.62 for Salsa20/8.

Additionally, it is straightforward to combine the new differential-linear dis-
tinguisher for 5 rounds presented in Eq. 28 with the technique of PNB pre-
sented in Sect. 2.4. More precisely, to use the differential correlation for Δx

(5)
4,7,

we used the variation of PNB attack described by Beierle in [3]. Thus, consider
(x(5)

4,7|ΔX(1) = Ψ). To attack 8 rounds, we need to go back 3 rounds to reach
the desired differential. In this case, using γ = 0.3 we found 152 PNBs, and
we obtained εa = 0.000305. As in [3], we have to repeat this attack 2 times on
average because of the transition probability from ΔX(0) to ΔX(1) = Ψ . Thus,
the final attack has data complexity of 2113.14 and time complexity 2217.14.

4.3 Applying BLE Against ChaCha

Finding differentials for 3.5 rounds of ChaCha experimentally is very difficult,
only a few have been presented in the literature [3,11]. By searching for all
possible single bit differentials for 3 rounds of ChaCha we were able to find more
than 1000 new differentials using the backward expansion. Unfortunately, we
were not able to improve attacks in this case.

5 Forró: a Novel Latin Dance

Although they have a very similar structure, the literature (including this work)
suggests that ChaCha is safer than Salsa. Therefore, a natural question that
arises is if we can do better with fewer operations, it turns out the answer is
yes, and we show how with the design of a new stream cipher named Forró. To
do that, in Sect. 5.1 we will introduce a new concept which we call Pollination.
Then, in Sects. 5.2, 5.3, and 5.4 we present the design, security, and performance
of Forró, respectively.

5.1 Pollination

In this section, we propose a new technique that we call Pollination. We chose
this name as an analogy to the real Pollination in nature: when a bee collects
nectar from a flower, the pollen sticks to the hairs of her body. When she visits
the next flower, some of this pollen is rubbed off onto the stigma, making fertil-
ization possible. Here, our idea is to use the element that is likely to maximize
confusion and diffusion (we call this best element pollen) to bring non-linearity
and confusion to other elements in the state matrix.

Actually, one of the reasons behind the improved diffusion of ChaCha when
compared to Salsa is, in fact, pollination. Since the QRF function updates one
element after the other, using the previously updated element as input, then it
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is a natural consequence that the element updated last (x(r)
b ) has higher diffu-

sion. In ChaCha, the pattern of application of the QRF actually means that the
elements in the second row (which are the parameter x

(r)
b for each QRF appli-

cation), are used to update the first element in the next round. Salsa does not
have such a property, hence the improved diffusion of ChaCha.

ChaCha achieves pollination from one round to another, however, it fails to do
so within each round because the QRF is applied independently in each column
or diagonal. Thus, it is possible to have more diffusion with fewer operations if
we create a chain of pollination from one application of the QRF to the other.
It can be argued that we will lose parallelism in each round, however, as we will
show later, the improved diffusion will allow the same security in fewer rounds,
reducing the total number of operations. Also, in Sect. 5.4, we show that there
is another way to explore concurrency inside the processor to achieve better
performance.

5.2 Design

Forró’s Round Function. To deliver pollination from one round to the other
we propose to include an extra parameter into the QRF. Nevertheless, we want
to maintain (or to decrease) the number of arithmetic operations to achieve
competitive performance. Notice that each rotation in Eq. (4) actually makes
the same element be updated twice in a row, thus we could update more elements
if we had fewer rotations.

Actually, in [6], Bernstein asked the question of whether there should be
fewer rotations in the QRF, because rotations account for about 1/3 of the
integer operations in Salsa (and also in ChaCha), he wrote:

“If rotations are simulated by shift-shift-xor (as they are on the Ultra-
SPARC and with XMM instructions) then they account for about 1/2 of
the integer operations in Salsa20. Replacing some of the rotations with
a comparable number of additions might achieve comparable diffusion in
less time.”

With those ideas in mind, we define the subround function X [m] = SRforro(a,
b, c, d, e,X [m−1]) as the following set of operations over indexes a, b, c, d and e

x
′(m−1)
d = x

(m−1)
d + x

(m−1)
e ; x

′(m−1)
c = x

(m−1)
c ⊕ x

′(m−1)
d ;

x
′(m−1)
b =

(
x
(m−1)
b + x

′(m−1)
c

)
≪ r1;

x
′(m−1)
a = x

(m−1)
a + x

′(m−1)
b ; x

(m)
e = x

(m−1)
e ⊕ x

′(m−1)
a ;

x
(m)
d =

(
x

′(m−1)
d + x

(m)
e

)
≪ r2;

x
(m)
c = x

′(m−1)
c + x

(m)
d ; x

(m)
b = x

′(m−1)
b ⊕ x

(m)
c ;

x
(m)
a =

(
x

′(m−1)
a + x

(m)
b

)
≪ r3;

(29)

where r1 = 10, r2 = 27 and r3 = 8.



278 M. Coutinho et al.

Notice that SRforro has a total of 12 operations, just like QRChaCha, but
fewer rotations. Also, notice that SRforro is asymmetric in the sense that of
all elements there is one, namely x

(r)
e that is updated less frequently than the

others. However, this behavior is actually acceptable since x
(r)
e is the element

used for pollination, thus its job is to provide non-linearity and confusion and
not to gain more necessarily. In addition, except in the first subround, x

(r)
e is

always updated in the previous subround. Finally, notice that as the element
x
(r)
a is the last to be updated, then it will likely have the more complex boolean

functions in comparison to x
(r)
b , x

(r)
c , x

(r)
d and x

(r)
e , therefore x

(r)
a will become the

pollen for the next application of SRforro.
We define each round of Forró in terms of its subrounds. More precisely, each

round has 4 subrounds, thus we have X(r) = X [4r] (see Sect. 2.2). Then, in an
odd round, when r ∈ {1, 3, 5, 7, ...}, X(r) is defined from X(r−1) in the following
manner

X [4r−3] = SR(0, 4, 8, 12, 3,X [4r−4]); X [4r−2] = SR(1, 5, 9, 13, 0,X [4r−3]);
X [4r−1] = SR(2, 6, 10, 14, 1,X [4r−2]); X [4r] = SR(3, 7, 11, 15, 2,X [4r−1]);

(30)
and for even rounds r ∈ {2, 4, 6, 8, , ...} from

X [4r−3] = SR(0, 5, 10, 15, 3,X [4r−4]); X [4r−2] = SR(1, 6, 11, 12, 0,X [4r−3]);
X [4r−1] = SR(2, 7, 8, 13, 1,X [4r−2]); X [4r] = SR(3, 4, 9, 14, 2,X [4r−1]);

(31)

Initialization. To initialize the state matrix we have 16 integers available, being
8 key words, 2 nonce words, 2 counter words and 4 constants. All positions in
the state matrix are different in terms of diffusion and whether it is used sooner
or later. Forró’s initialization matrix is defined by

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

k0 k1 k2 k3
t0 t1 c0 c1
k4 k5 k6 k7
v0 v1 c2 c3

⎞
⎟⎟⎠ . (32)

When comparing Eqs. (3) and (32), one can notice that Forró’s initialization
is different from ChaCha’s. In differential cryptanalysis usually the attacker is
allowed to choose arbitrary values to t0, t1, v0 and v1, thus it is a good idea to
update these values as soon as possible allowing the differential to be propagated
faster decreasing the probability of a differential characteristic. Thus, we defined
the initialization in such a way that t0, t1, v0 and v1 are used in the first two
columns, however, separated by the application of parts of the key.
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Rotations. The rotation distances for Forró are set as r1 = 10, r2 = 27 and
r3 = 8. Most authors of ARX algorithms in the literature do not justify the choice
of the rotation distances with a numerical argument. It is generally argued that
it is difficult to find bad rotation distances for ARX. Therefore, authors tend to
choose aligned rotation distances (multiple of 8) because these are much faster
than unaligned rotation distances on many non-64-bit architectures. For exam-
ple, many 8-bit microcontrollers have only 1-bit shifts of bytes, so rotation by 3
bits is particularly expensive. Even 64-bit systems can benefit from alignment, for
example, when a sequence of shift-shift-xor can be replaced by SSSE3’s pshufb
byte-shuffling instruction [1].

On the other hand, it may be possible to improve the security of the algo-
rithm by carefully studying the behavior of the cipher when each combination of
rotation distances is evaluated. This approach could allow for a reduced number
of rounds to achieve the desired security. Hence, this approach could also improve
performance. For example, in [12] authors showed that changing the rotation dis-
tances of ChaCha to (19, 17, 25, 11) improved the resistance of ChaCha against
known attacks.

Here, the rotation distances were defined following a similar approach as
proposed in [12], with some adaptations. First, we define R as the set of all
combinations of rotation distances (note that |R| = 323). Next, we define Algo-
rithm 1, which returns the maximum observed differential correlation among all
single bit differentials (ID,OD) for a given combination of rotation distances
r = (r1, r2, r3) ∈ R when considering N random trials. Then, to define the
optimal rotation distances we executed the following steps:

1. Execute Algorithm 1 for all ri ∈ R, obtaining a list L = {δri}.
2. Compute δmin = min(L).
3. For each δri ∈ L, test the hypothesis Hi : δri = δmin. More precisely, we

used the standard statistical test to compare two proportions by converting
the correlation to a probability pri = (δri + 1)/2. In addition, since we are
dealing with multiple hypothesis tests, we used the Family-Wise Error Rate
(FWER) technique to guard against type-I errors.

4. Discard all rotations distances ri ∈ R that lead to the hypothesis Hi being
rejected. Thus, we are left with a subset of rotation distances R∗ ⊂ R.

5. For each rj ∈ R∗, compute the average neutrality measure γ̄rj using Algo-
rithm 1 of [2]. In this case, we considered an encryption with 5 rounds of
Forró and 3 rounds executed backwards.

6. For each rj ∈ R∗, define the metric μrj = δrj × γ̄rj .
7. Define the rotation distances for Forró as arg minrj{μrj}.



280 M. Coutinho et al.

Algorithm 1. Returns the maximum observed differential correlation for all
possible single bit differentials.
1: INPUT: rotation distances (r1, r2, r3), the number of trials N .
2: Setup Forró with rotation distances (r1, r2, r3).
3: for each single bit input difference ID do
4: for i ∈ {1, 2, ..., N} do
5: Generate random key k, nonce v, and counter t.
6: Initialize Forró’s state matrix X.
7: Execute 2 rounds of Forró from X, obtaining Y .
8: Compute X ′ = ID ⊕ X.
9: Execute 2 rounds of Forró from X ′, obtaining Y ′.

10: Compute OD = Y ⊕ Y ′.
11: Update the differential correlation δID,j for each bit of OD, where j ∈

{0, 1, ..., 512}.

12: return max(|δID,j |)

We executed these steps using a cluster of 24 NVIDIA GPUs RTX 2080ti.
This setup allowed us to run Algorithm 1 with N = 24 × 220, for all r ∈ R, in
two days of computation. From these, we defined Forró’s rotation distances as
(r1, r2, r3) = (10, 27, 8). See the extended version of this paper for some inter-
esting patterns that could be observed.

Constants. Since the choice of the constants does not impact security or per-
formance, we decided to go through a cultural route: the constants correspond
to the ASCII string “voltadaasabranca”, little-endian encoded. “A volta da asa
branca” is the name of a song of the Brazilian singer Luiz Gonzaga. It is a
continuation of the song “asa branca”, one of the greatest classics of Brazilian
music, composed more than 70 years ago. In “asa branca”, Luiz Gonzaga and
Humberto Teixeira tell us the story of a man who lost everything due to the
drought in the Brazilian northeast region and had to leave his home in search of
better living conditions. In “a volta da asa branca”, he returns to his home and
is reunited with his love with whom he intends to marry.

Number of Rounds. From Table 1, we know that we can attack a maximum
of 7 rounds of ChaCha and 5 rounds of Forró. Therefore, we know that we do
not need 20 rounds of Forró to achieve the security of ChaCha20 against known
attacks. That said, it is not easy to quantify exactly how many rounds would give
that security margin. Assuming that for every 7 rounds of ChaCha we can save 2
rounds in Forró, we recommend using Forró with a total of 14 rounds (Forro14)
to achieve a security margin comparable with ChaCha20. Also, we recommend
Forró with 10 rounds (Forro10) to achieve higher security than ChaCha12.
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5.3 Security

In the extended version of this paper, we present a complete analysis of the
security of Forró when considering the same techniques that are applied against
ChaCha and Salsa. In this version, we only present the main results.

Distinguishers. We constructed distinguishers for Forró by following the best
techniques used against ChaCha in the literature [9,11]. More precisely, we
looked for single bit differentials ranging 2 and 3 rounds of Forró. To do so,
we tested all possible single bit input differences (128 possibilities) combined
with every possible single bit output difference (512 possibilities). Hence, we
tested a total of 215 differentials. In each case, we estimated the correlation
experimentally with a total of 234 random samples. We present some examples
in Table 3.

Table 3. Some of the best single bit differentials for 2 rounds of Forró.

ID OD Correlation

ΔX
(0)
5 = 218 ΔX

(2)
15 = 27 −0.00379

ΔX
(0)
5 = 218 ΔX

(2)
10 = 27 −0.00221

ΔX
(0)
5 = 211 ΔX

(2)
15 = 1 −0.00139

ΔX
(0)
5 = 211 ΔX

(2)
10 = 1 −0.00053

Next, using CryptDances we expanded the linear equations of Forró auto-
matically. Using CryptDances functionalities, we also constructed distinguishers
against Forró for every single differential that had a statistically significant cor-
relation. From this study, we derived the best distinguisher for 3, 4, 5 and 5.25
rounds of Forró. We could not find any distinguishers against 5.5 rounds of Forró
or more. In the following, we present more information about these distinguish-
ers.

Distinguisher Against 3 Rounds of Forró. In this case, consider that single
bit differential with OD = ΔX

(2)
15 = 1 presented in Table 3. Thus, we have

εd = 0.00139. For the linear part, we have to expand the bit x
(2)
15,0 (or, considering

subrounds, x
[8]
15,0), obtaining x

[8]
15,0 = x

[12]
15,27 ⊕ x

[12]
3,8 ⊕ x

[12]
7,0 , with probability 1.

Clearly, εL = 1, then the complexity of the differential-linear distinguisher for 3
rounds of Forró is 1

ε2
d

≈ 218.9814.

Distinguisher Against 4 Rounds of Forró. In this case, consider that single
bit differential with OD = ΔX

(2)
10 = 1 presented in Table 3. Thus, we have

εd = 0.00053. For the linear part, we have to expand the bit x
(2)
10,0 = x

[8]
10,0, which

results in the following Lemma:
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Lemma 12. The following linear approximation holds with probability
1
2

(
1 + 1

25

)

x
[8]
10,0 = x

[16]
1 [8] ⊕ x

[16]
2 [16] ⊕ x

[16]
3 [2, 3, 24] ⊕ x

[16]
4 [0, 15, 16, 26, 27]⊕

x
[16]
7 [7, 8] ⊕ x

[16]
9 [0] ⊕ x

[16]
10 [0] ⊕ x

[16]
11 [0] ⊕ x

[16]
14 [22, 27] ⊕ x

[16]
15 [0, 27].

Proof. See the extended version of this paper. �

Computational Result 5. The linear approximation of Lemma 12 holds com-
putationally with εL0 = 0.0476 ≈ 2−4.39. This correlation was verified using 238

random samples.

We conclude that the complexity of the differential-linear distinguisher for 4
rounds of Forró is 1

ε2
dε4

L0

≈ 236.55.

Distinguisher Against 5 and 5.25 Rounds of Forró. For these distinguish-
ers, we just keep expanding the equation from Lemma 12. This will lead to
differential-linear distinguishers with complexities 2129.68 and 2176.81 for 5 and
5.25 rounds of Forró, respectively. See the extended version of this paper for a
complete description and proof of these distinguishers.

Attacks Using PNBs. In this section, we use the techniques developed by [2]
and later improved by [9] to attack Forró, see Sect. 2.4. We tested several different
attacks for different values of γ for all differentials presented in Table 3. With
this approach, the best attack we found against 5 rounds of Forró uses 2 rounds
forward and 3 rounds backwards. The attack uses the differential (Δ(2)

10,0|Δ(0)
5,11),

thus, from Table 3 we get εd = −0.00053. Using γ = 0.25 we get a total of 155
PNBs. From that, we estimated εa = 0.000068 which leads to an attack with
data complexity of 257 and time complexity of 2158.

5.4 Performance

By design, Forró achieves the same security with less operations than ChaCha,
the implication being that on embedded devices with limited concurrency capa-
bilities, such as the Raspberry Pi and others used in IoT, Forró naturally has
better performance, see Table 4 for measurements. However, in more advanced
processors, where speculative execution and out-of-order execution are empow-
ered by large caches, such as modern x86, ChaCha still has an advantage. It is
possible, however, to work around this apparent limitation with a clever imple-
mentation.

In order to pipeline instructions, the processor detects (or speculates) instruc-
tions that don’t have dependencies on each others output and are nearby to
anticipate them, so while one executes, the other can be fetching, for example.
In ChaCha, the QRF is applied independently inside a round, and pipelining
occurs without much impediment. In Forró, because of Pollination, every oper-
ation in a round has a dependency on the previous output, causing a serial data
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dependency. Meaning that the processor can’t detect independent instructions
to pipeline, or if it guesses the instructions are likely to not retire.

However, just like ChaCha, in order to get the next 512 bits of keystream, the
algorithm needs to be executed from the start with an increment on the counter.
This execution is completely independent of the previous one. Unfortunately, the
processor doesn’t have the foresight to anticipate that, since the code for it is far
into the future, but that can be bypassed. To take full advantage of pipelining,
whenever there is a need for more than 512 bits of keystream, we implement
it so that the code for the two executions of Forró is in the same scope, a
technique that for this specific use case we kindly named, “Xote”. This strategy
permits that Forró continues to leverage it’s better diffusion to produce better
performance on such processors, which can be seen in our measurements that
are available on Table 4. For reference, the measurements also contain ChaCha
with Xote. We make these implementations available at (https://github.com/
MurCoutinho/forro cipher).

Table 4. Performance comparison generating a 4096 bytes keystream between Salsa,
ChaCha and Forró on ARMv7, ARMv7 using NEON, ARMv8 (64 bits), Intel x86-64
and Intel x86-64 using SIMD (AVX2 and SSE as available).

ARMv7
ARMv7

ARMv8 Intel x86-64
Intel x86-64

NEON SIMD

Algorithm Cycles Cycles Cycles Cycles Cycles

Salsa20 83689 - 24622 20542 4418

Chacha20 89495 51914 35100 20118 3934

Chacha20 (Xote) 138284 - 36214 19362 4480

Forro14 73230 49575 46700 34472 6244

Forro14 (Xote) 76236 - 31666 20748 4826

6 CryptDances: A New Tool for Cryptanalysis of ARX
Ciphers

The final contribution of this work is a tool to perform cryptanalysis of ChaCha,
Salsa and Forró in high performance environments. As a brief summary, in the
current version of CryptDances we have:
– Implementation of most attacks from the literature for Salsa and ChaCha, in

particular from [2,3,9–11] (attacks for [14] are not yet available).
– It is easy to test any new differential or linear approximation for Salsa,

ChaCha or Forró.
– Automatic linear expansions for ChaCha and Forró (Salsa in development).
– Given a differential and linear expansion, CryptDances can compute the com-

plexity of distinguishers and PNB attacks.

CryptDances is available at https://github.com/MurCoutinho/cryptDances.

https://github.com/MurCoutinho/forro_cipher
https://github.com/MurCoutinho/forro_cipher
https://github.com/MurCoutinho/cryptDances
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7 Conclusion

In this work, we provided several contributions for ARX ciphers. In particular,
we provided a new way to derive linear approximations for ChaCha, improving
the complexity of the best differential-linear distinguisher from 2224 to 2214. In
addition, using the proposed BLE, we improved attacks against Salsa. More
precisely, we presented the first distinguishers against 7 and 8 rounds of Salsa
with complexities 2109 and 2216, and improved key recovery attacks achieving a
complexity of 2212 for 8 rounds when the best know attack so far had complexity
of 2244.9.

Another contribution of this work is a new stream cipher called Forró. We
showed that Forró can achieve the same security as ChaCha with fewer opera-
tions. Because of that, Forró can achieve faster performance in certain platforms,
specially in constrained devices. Finally, we developed CryptDances, a new tool
for the cryptanalysis of Salsa, ChaCha, and Forró designed to be used in high
performance environments with several GPUs, making it available for the com-
munity at https://github.com/MurCoutinho/cryptDances.

For future works, the techniques developed in this paper may be used to
improve cryptanalysis against other ARX primitives, such as Chaskey or the hash
function Blake. Also, the security of Forró should be analyzed further, specially
against other types of attacks, such as rotational cryptanalysis. Finally, the tool
CryptDances can be used by researchers to try to improve further attacks against
Salsa, ChaCha, and Forró.
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Abstract. Designing symmetric ciphers for particular applications
becomes a hot topic. At EUROCRYPT 2020, Naito, Sasaki and Sugawara
invented the threshold implementation friendly cipher SKINNYe-64-256

to meet the requirement of the authenticated encryption PFB Plus. Soon,
Thomas Peyrin pointed out that SKINNYe-64-256 may lose the secu-
rity expectation due the new tweakey schedule. Although the security
issue of SKINNYe-64-256 is still unclear, Naito et al. decided to intro-
duce SKINNYe-64-256 v2 as a response.

In this paper, we give a formal cryptanalysis on the new tweakey
schedule of SKINNYe-64-256 and discover unexpected differential can-
cellations in the tweakey schedule. For example, we find the number of
cancellations can be up to 8 within 30 consecutive rounds, which is sig-
nificantly larger than the expected 3 cancellations. Moreover, we take our
new discoveries into rectangle, MITM and impossible differential attacks,
and adapt the corresponding automatic tools with new constraints from
our discoveries. Finally, we find a 41-round related-tweakey rectangle
attack on SKINNYe-64-256 and leave a security margin of 3 rounds only.

As STK accepts arbitrary tweakey size, but SKINNY and
SKINNYe-64-256 v2 only support up to 4n tweakey size. We introduce
a new design of tweakey schedule for SKINNY-64 to further extend the
supported tweakey size. We give a formal proof that our new tweakey
schedule inherits the security requirement of STK and SKINNY. We also
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1 Introduction

The design of symmetric cryptographic constructions for important security
goals and practical applications becomes more and more popular. Typical
algorithms including LowMC [3], MiMC [2], etc., provide efficient implementa-
tion for multi-party secure computing (MPC), fully homomorphic encryption
(FHE), and zero-knowledge proofs (ZK). Another important topic is to design
symmetric ciphers that can be efficiently implemented against side-channel
attacks [12,28,47], especially because NIST lightweight cryptography compe-
tition optionally takes into account the security of the cryptographic modules
against side-channel attack (SCA). Masking is by far the most common coun-
termeasure against SCA [40,52]. Threshold implementation (TI) introduced by
Nikova et al. [52] is a masking particularly popular for hardware implementation.
Several TI-friendly Sboxes [13,36] are proposed. At TCHES 2020, Naito and Sug-
awara [51] discovered that for recently ciphers such as SKINNY [9] and GIFT [6],
the complexity of TI for the linear key schedule function is significantly smaller
than the nonlinear round function. With this asymmetry, Naito and Sugawara
[51] proposed a TBC-based scheme PFB which is particularly efficient with TI. To
further exploit this asymmetry, at EUROCRYPT 2020, Naito, Sasaki and Sug-
awara [48] invented tweakable block cipher (TBC) based AE modes PFB Plus,
PFBw, as well as a new TBC, i.e. SKINNYe-64-256, which are very efficient in
threshold implementations.

At ASIACRYPT 2014, Jean, Nikolić and Peyrin introduced the TWEAKEY
framework [42] with the goal to unify the design of tweakable block ciphers and
allow to build a primitive with arbitrary tweak and key sizes. It treats the key in-
put and the tweak input in the same way as the tweakey. Towards simplifying the
security analysis when the tweakey size is large, Jean et al. identified a subclass
of TWEAKEY, named as STK construction, which updates the round tweakey by
the use of finite field multiplications on low hamming weight constants. SKINNY
[9] is a well-known lightweight block cipher family proposed by Beierle et al.
at CRYPTO 2016, which follows closely the STK construction [42]. However, in-
stead of using multiplications by non-zero constants in a finite field adopted by
STK construction, SKINNY updates the tweakey cells by the cheap 4-bit or 8-bit
LFSRs (depending on the size of the cell) to minimize the hardware cost, while
maintaining the cancellation behavior required by the STK construction: for a
given position, z − 1 cancellations can only happen every 15 rounds for TK-z1.

As a concrete STK-like design, SKINNY only supports TK-1/-2/-3, while for
STK construction, the size of tweakey can be of arbitrary length. However,
in practical applications, tweakable block ciphers with large tweakeys may be
required, such as the TI-friendly AE modes PFB Plus and PFBw proposed by
Naito, Sasaki and Sugawara [48]. Without TK-4 available for SKINNY, Naito et
al. decided to build the SKINNYe-64-256 to support zn = 4n tweakey with
n = 64. In order to inherit the numerous cryptanalytic efforts on SKINNY-64
[4,24,30,31,37,46,54], SKINNYe-64-256 does not modify any components to

1 For TK-z, if the size of internal state is n, the size of tweakey will be zn.
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realize TK1, TK2, and TK3, and only find a new LFSR for updating TK4.
With the expectation of keeping a similar security margin with 36-round
SKINNY-64-128 and 40-round SKINNY-64-192, the authors decided to keep
the same rate for increasing the number of rounds, namely 44 rounds for
SKINNYe-64-256. However, Thomas Peyrin found that the security claim of
SKINNYe-64-256 may not hold due to the tweakey schedule. Although the
authors of SKINNYe-64-256 were unclear whether this issue causes some attacks
against the whole cipher [50, Section 7], they proposed an updated version of
SKINNYe-64-256, named as SKINNYe-64-256 v2 in Eprint 2020/542 [50].

Our Contributions. In this paper, we try to clarify the security issue of
SKINNYe-64-256 [48] by delving into its new tweakey schedule. There are some
previous works considered the relations of keys, such as the key-bridging tech-
nique [26,33]. The relations of subtweakeys for SKINNY and SKINNYe-64-256 are
mostly dependent on the LFSRm updating the cells of the tweakey states. For
LFSR2 used for TK2 and LFSR4 used for TK4 of SKINNYe-64-256, both of
them shift the 4-bit input to the left by 1 bit, while LFSR2 updates 1 output
bit with 1 XOR and LFSR4 updates 2 output bits with 3 XORs. Suppose for a
given cell of TK2 and TK4 with the initial value 0x8, then apply LFSR2 and
LFSR4 respectively to the given cell for 14 times and we get two sequences, i.e.,

[0x8, 0x1, 0x2, 0x4, 0x9, 0x3, 0x6, 0xd, 0xa, 0x5, 0xb, 0x7, 0xf, 0xe, 0xc],
[0x8, 0x1, 0x2, 0x5, 0x9, 0x3, 0x7, 0xc, 0xa, 0x4, 0xb, 0x6, 0xe, 0xf, 0xd].

For example, run LFSR2 or LFSR4 on 0x8 for 3 times, we get LFSR3
2(0x8)

= 0x4 and LFSR3
4(0x8) = 0x5, respectively. Intuitively, the longest common

subsequence of the two sequences is [0x8,0x1,0x2,0x9,0x3,0xa,0xb] which is
highlighted with underlines. In other words, when the initial values (or differ-
ences) for a given cell position of TK2 and TK4 are 0x8 and TK1 and TK3

are set to 0x0, the difference cancellations can happen 7 times within 15 LFSR
applications.

In order to further clarify the cancellation property of the new tweakey sched-
ule, we give a formal analysis of relations of subtweakeys. Since the tweakey
schedule of SKINNYe-64-256 is linear, each cell of subtweakeys can be derived
via multiplying some cells of the master tweakeys by certain binary matrix A,
which is determined by cell updating functions, i.e., LFSRs. The differential can-
cellation behavior means active input leads to zero output by multiplying A. We
analyze the properties of matrix A, especially for the influence of its rank on
the cancellations in the differential-like distinguishers, as well as the subtweakey
guessing strategy in the key-recovery phase. For the differential cancellation
behavior, we find the number of cancellations can be up to 8 within 30 consecu-
tive rounds for SKINNYe-64-256 (a cell is updated by LFSR in every two rounds
in SKINNY), which is significantly larger than the expected 3 cancellations. By
exploring the properties of A in rectangle attack, meet-in-the-middle (MITM)
attack and impossible differential attack, we discover unexpected distinguishers
or key-recovery attacks:
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– Related-tweakey rectangle attacks. The properties can not only extend
the rectangle distinguisher significantly, but also improve the key-recovery
phase. At EUROCRYPT 2022, Dong et al. [30] introduced the attacks on the
25-round SKINNY-64-128 with an 18-round distinguisher as well as the 31-
round SKINNY-64-192 with a 22-round distinguisher. With our discoveries
on SKINNYe-64-256, we find a 30-round rectangle distinguisher, where the
gap between SKINNY-64-192 and SKINNYe-64-256 is significantly increased
to 30–22 = 8 rounds comparing to 22–18 = 4 rounds between SKINNY-64-128
and SKINNY-64-192. Moreover, in the key-recovery phase, we explore the key
relations in detail with the help of matrix A, and finally perform a 41-round
key-recovery attack on SKINNYe-64-256.
In order to find the optimal configurations of the rectangle attack, we tweak
Dong et al.’s automatic model by applying the properties of the new tweakey
schedule into the model. Our attack leaves only a 3-round security margin for
SKINNYe-64-256, which is significantly reduced comparing to the 11-round
and 9-round security margins for SKINNY-64-128 and SKINNY-64-192.

– MITM attacks in single-tweakey setting. Not only the differential can-
cellation property can be used to improve attacks, but also the non-full rank
property of A. The MITM attack explores two independent chunks that over-
lap in a match point. Suppose A is of non-full rank, we compute the solution
space of Ax = c for given vector c. In SKINNYe-64-256, x is the master
tweakey bits and c is the subtweakey bits that will XORed into the internal
state. Denote solution set as {x : Ax = c}, if it is not empty, then its size
will be |{x : Ax = c}| > 1 due to non-full rank property of A. In the MITM,
those x ∈ {x : Ax = c} will have the same effect on the internal states,
i.e., the vector c. When building independent forward and backward chunks
in MITM, we may prefix c and c′ for these two chunks, then the values in
{x : Ax = c} and {y : A′y = c′} will have independent effects.
We adapt the previous automatic tools [7,29] for MITM attacks by taking the
non-full rank properties of A into the model. Finally, we find 31-round MITM
attack on SKINNYe-64-256, while previous MITM attacks on SKINNY-64-128
and SKINNY-64-192 reach 18 and 23 rounds, respectively. In other words,
the gaps of the attacked rounds increase from 23–18 = 5 rounds between
SKINNY-64-128 and SKINNY-64-192 to currently 31–23 = 8 rounds between
SKINNY-64-192 and SKINNYe-64-256.

– Related-tweakey impossible differential attack. With the differen-
tial cancellation properties, we find a 21-round impossible differential for
SKINNYe-64-256 based on a cancellation pattern, while previous impossi-
ble differential reaches 16 rounds [46] for SKINNY-64-192 and 15 rounds [56]
for SKINNY-64-128, respectively.

Our cryptanalysis proves that SKINNYe-64-256 does not keep a similar security
margin to SKINNY-64-128 and SKINNY-64-192 as expected by the designers.
The non-trivial properties of the new tweakey schedule can be used to improve
the attacks from the distinguishers to key-recovery.
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In addition, we also analyze the updated version, i.e., SKINNYe-64-256
v2 [50], and obtain a 37-round related-tweakey rectangle attack, a 27-round
MITM attack, as well as an 18-round impossible differential. Comparing to
the attacks on SKINNY-64-128 and SKINNY-64-192, the attacked rounds on
SKINNYe-64-256 v2 keep the same rate as expected by the designers. We sum-
marize results on SKINNY-64 and SKINNYe-64-256 and its version 2 in Table 1
and Table 2.

Table 1. Rectangle attacks on SKINNY-64 and SKINNYe-64-256 and its version 2

Version Rounds Data Time Memory Distinguisher Setting Ref.

SKINNY-64-128

23/36 260.54 2120.7 260.9 19 RK [37]

24/36 261.67 296.83 284 18 RK [54]

25/36 261.67 2118.43 264.26 18 RK [30]

SKINNY-64-192

29/40 262.92 2181.7 280 23 RK [37]

30/40 262.87 2163.11 268.05 22 RK [54]

31/40 262.78 2182.07 262.79 22 RK [30]

SKINNYe-64-256 41/44 262.24 2237.06 262.26 30 RK Sect. 4.3

SKINNYe-64-256 v2 37/44 262.8 2240.03 262.8 26 RK Full Ver. [53]

Table 2. MITM attacks on SKINNY-64 and SKINNYe-64-256 and its version 2

Version Rounds Data Time Memory Approach Setting Ref.

SKINNY-64-128 18/36 216 2124 24 MITM SK [39]

SKINNY-64-192 23/40 252 2188 24 MITM SK [29]

SKINNYe-64-256 31/44 252 2254 252 MITM SK Full Ver. [53]

SKINNYe-64-256 v2 27/44 252 2252 252 MITM SK Full Ver. [53]

Note that STK construction supports arbitrary length of tweakey, but SKINNY
and SKINNYe-64-256 v2 supports upto 4n-bit tweakey. As stated in [48, Page
5]: “... there is no consensus about the adequate tweak size to support”. SKINNY
with larger tweakey size may be useful in future applications, such as the TI-
friendly AE modes PFB Plus and PFBw with SKINNYe-64-256 v2. Therefore,
as another contribution, we propose a uniformed design strategy for tweakey
schedule of SKINNY-n-zn for positive integer z ≤ 14. Our uniformed tweakey
schedule satisfies the security requirements of the STK construction with a formal
proof. Interestingly, our schedule will be reduced to SKINNY-64 when z = 1, 2, 3,
and to SKINNYe-64-256 v2 when z = 4. In addition, we also discuss possible
ways to extend the tweakey size for SKINNY-128.
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2 Preliminaries

2.1 The TWEAKEY Framework

At ASIACRYPT 2014, Jean et al. [42] proposed a generic framework for tweak-
able block ciphers, named as the TWEAKEY framework. They consider the tweak
and key inputs in a unified manner, i.e., tweakey, that can be used to design a
tweakable block cipher with any key and any tweak sizes. The TWEAKEY frame-
work uses the tweakey scheduling algorithm. The ciphertext is computed from
the plaintext by applying the permutation f iteratively. Each round is composed
of three parts, a sub-tweakey extraction function g from the tweakey state, an
internal update permutation f and a tweakey state update function h. Based
on the TWEAKEY framework, many designs of tweakable block ciphers are pro-
posed, including Deoxys [43], SKINNY [9], and CRAFT [11], etc. Moreover, Jean et
al. identified a subclass of tweakey for AES-like ciphers named as Superposition
TWEAKEY (STK) construction shown in Fig. 1. In the STK construction, the n-bit
internal state and zn-bit tweakey state (denoted as TK-z) are partitioned into
n/c and zn/c c-bit cells respectively. The functions g and h become:

– the function g simply XORs all the z n-bit words of the tweakey state to the
internal state (AddRoundTweakey, denoted ART).

– the function h first applies the same cell position permutation function P to
each of the z n-bit words of the tweakey state, and then multiply each c-bit
cell of the j-th n-bit word by a nonzero coefficient αj in the finite field GF (2c)
(with αi �= αj for all 1 ≤ i �= j ≤ z).

Fig. 1. The STK [42]. (Thanks to https://www.iacr.org/authors/tikz/)

2.2 SKINNY Family and SKINNYe-64-256

SKINNY is a family of lightweight block cipher proposed by Beierle et al. at
CRYPTO 2016 [9]. Following the TWEAKEY framework and STK construction [42],
the round function of SKINNY that replaces the f function of STK in Fig. 1 is
given in Fig. 2. There are six main versions SKINNY-n-zn: n = 64, 128, z = 1, 2, 3.
The internal state is viewed as a 4 × 4 square arrays of cells. The tweakey state
is viewed as z 4 × 4 square arrays of cells, denoted as (TK1) when z = 1,

https://www.iacr.org/authors/tikz/
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(TK1, TK2) when z = 2, and (TK1, TK2, TK3) when z = 3. Denote the i-th
cell of TKm as TKm,i (1 ≤ m ≤ z, 0 ≤ i ≤ 15). An important difference between
the STK construction [42] and SKINNY is that in the tweakey schedule the cells
of the tweakey are updated by LFSRs for SKINNY instead of multiplying αj .
As shown in Fig. 2, the round function applies 5 transformations: SubCells
(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and
MixColumns (MC). For the details, please refer to [9].

Fig. 2. Round function of SKINNY

For the block size n = 64, SKINNY supports the tweakey sizes up to 192
bits. At EUROCRYPT 2020, to support the TI-friendly AE modes PFB Plus
and PFBw, Naito, Sasaki, and Sugawara [48] extended the design of SKINNY-64
to support a 256-bit tweakey and derived SKINNYe-64-256, which applies the
same round function of SKINNY but a new tweakey schedule. However, Thomas
Peyrin found that the security claim of SKINNYe-64-256 may not hold due to the
new tweakey schedule. In response, Naito et al. decided to propose an updated
version of SKINNYe-64-256, i.e., SKINNYe-64-256 v2 in Eprint 2020/542 [50].

New Tweakey Schedule. The 256-bit tweakey state is viewed as 4 4 × 4
square arrays of nibbles as (TK1, TK2, TK3, TK4). Denote the tweakey arrays
as TK

(r)
1 , TK

(r)
2 , TK

(r)
3 and TK

(r)
4 in round r (r ≥ 0), where TK

(0)
m = TKm

(1 ≤ m ≤ 4). For r ≥ 1, TK
(r)
m is generated in two steps.

First, apply the permutation P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]
on each nibble of all tweakey arrays:

TK
(r)
m,i ← TK

(r−1)
m,P [i], 1 ≤ m ≤ 4, 0 ≤ i ≤ 15, r ≥ 1. (1)

Then, apply LFSRm to update each nibble of the first and second rows of
TK

(r)
m with 2 ≤ m ≤ 4. The LFSR for TK

(r)
4 used in SKINNYe-64-256 and

SKINNYe-64-256 v2 is different. The LFSRs are given in Table 3.
In the ART operation, only the first two rows of subtweakey STK(r) are xored

to the internal state, where

STK
(r)
i = TK

(r)
1,i ⊕ TK

(r)
2,i ⊕ TK

(r)
3,i ⊕ TK

(r)
4,i , 0 ≤ i ≤ 7, r ≥ 0. (2)

Lemma 1. For any given SKINNY S-box S and any two non-zero differences δin

and δout, the equation Si(y) ⊕ Si(y ⊕ δin) = δout has one solution on average.
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Table 3. The LFSRs used in SKINNYe-64-256 and SKINNYe-64-256 v2

TK LFSRs

TK2 (x3‖x2‖x1‖x0) → (x2‖x1‖x0‖x3 ⊕ x2)

TK3 (x3‖x2‖x1‖x0) → (x0 ⊕ x3‖x3‖x2‖x1)

TK4 (x3‖x2‖x1‖x0) → (x2‖x1‖x2 ⊕ x0‖x3 ⊕ x2 ⊕ x1)

TK4 v2 (x3‖x2‖x1‖x0) → (x1‖x0‖x3 ⊕ x2‖x2 ⊕ x1)

3 Properties of the Tweakey Schedule of SKINNYe-64-256

In round r ≥ 0, each of the 64-bit tweakey TK
(r)
m ( 1 ≤ m ≤ 4) of

SKINNYe-64-256 can be represented as a 4 × 16 binary matrix TK
(r)
m (1 ≤

m ≤ 4, r ≥ 0) as

TK(r)
m =

⎛
⎜⎜⎜⎝

x
(r)
m,0 x

(r)
m,4, . . . , x

(r)
m,60

x
(r)
m,1 x

(r)
m,5, . . . , x

(r)
m,61

x
(r)
m,2 x

(r)
m,6, . . . , x

(r)
m,62

x
(r)
m,3 x

(r)
m,7, . . . , x

(r)
m,63

⎞
⎟⎟⎟⎠ ,

with x
(r)
m,j ∈ {0, 1} (0 ≤ j ≤ 63). Denote TK

(r)
m [∗, i] as the i-th column of the

binary matrix TK
(r)
m . Then TK

(r)
m [∗, i] is actually the i-th nibble of TK

(r)
m , i.e.,

TK
(r)
m,i (0 ≤ i ≤ 15), which is denoted as a binary vector tk

(r)
m,i ∈ F

4
2,

tk
(r)
m,i = [x(r)

m,4i, x
(r)
m,4i+1, x

(r)
m,4i+2, x

(r)
m,4i+3]

T , 0 ≤ i ≤ 15, 1 ≤ m ≤ 4, r ≥ 0.

Since TK
(0)
m = TKm, we also write tk

(0)
m,i = [xm,4i, xm,4i+1, xm,4i+2, xm,4i+3]T

for simplicity. We can deduce the relations between the subtweakeys transformed
from the same nibble of the master tweakey. For TK1, only the permutation P
is applied in each round. Assume P r means to apply the permutation P for r

times. We have tk
(r)
1,i = tk

(0)
1,P r[i], 0 ≤ i ≤ 15.

For TK2, TK3 and TK4, after applying the permutation, a LFSR is applied
to update each cell of the 1st and 2nd rows in each round, which is equivalent
to multiplying the cell by a 4 × 4 binary matrix. For SKINNYe-64-256 and its
version 2, the LFSRs used for TK2 and TK3 are the same, whose corresponding
matrices are denoted as L2 and L3. The LFSRs used in TK4 for SKINNYe-64-256
and version 2 are different, which are denoted as L4 and L̃4. We have

L2 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎠ , L3 =

⎛
⎜⎜⎝

1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ , L4 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 1 0 1
1 1 1 0

⎞
⎟⎟⎠ , L̃4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0

⎞
⎟⎟⎠ .

Since only the first two rows of subtweakey are XORed to the internal state, the
tweakey cells involved in the r-th round encryption will be involved again in the
(r+2)-th round according to P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. For
simplicity, we first consider the formulas of subtweakeys for SKINNYe-64-256,
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and for version 2, the formulas are different only for TK4. Assume Li
m repre-

sents the i-th power of matrix Lm in GF (2) and L0
m = I (2 ≤ m ≤ 4). Note

that the LFSRs for TK2 and TK3 in SKINNY and the new LFSR for TK4 in
SKINNYe-64-256 have the same cycle of 15, which lead to L15

m = I (2 ≤ m ≤ 4).
For SKINNYe-64-256 v2, although the update function for TK4 is not a LFSR,
it also has a cycle of 15, i.e., L̃15

4 = I. In the tweakey schedule, for each nibble
of TK

(r)
m , the LFSR is applied in every two rounds, we deduce: ∀m ∈ {2, 3, 4},

⎧⎨
⎩

tk
(r)
m,i = L�r/2�

m · tk(0)
m,P r[i], 0 ≤ i ≤ 7,

tk
(r)
m,i = L	r/2


m · tk(0)
m,P r[i], 8 ≤ i ≤ 15.

Denote the nibble STK
(r)
i (0 ≤ i ≤ 7) as a binary vector stk

(r)
i =

(y(r)
4i , y

(r)
4i+1, y

(r)
4i+2, y

(r)
4i+3)

T . Then we obtain stk
(r)
i =

⊕4
m=1 tk

(r)
m,i for 0 ≤ i ≤ 7.

Considering subtweakey cells stk
(r)
i derived from master tweakey, we get

stk
(r)
i = [I L

�r/2�
2 L

�r/2�
3 L

�r/2�
4 ] ·

(
tk

(0)

1,Pr [i], tk
(0)

2,Pr [i], tk
(0)

3,Pr [i], tk
(0)

4,Pr [i]

)T

. (3)

Without losing generality, we analyze the subtweakeys in the even rounds,
which are all transformed from the first two rows of master tweakeys. Let
P̄ = [8, 9, 10, 11, 12, 13, 14, 15, 2, 0, 4, 7, 6, 3, 5, 1] be the inverse permutation of
P . For a set Index = {r1, · · · , rt} (|Index| = t), which corresponding to a set
of subtweakeys {STK(2r1), STK(2r2) · · · , STK(2rt)}, we can get a set of linear
equations as

⎛
⎜⎜⎜⎜⎜⎜⎝

stk
(2r1)

P̄2r1 [i]

stk
(2r2)

P̄2r2 [i]

...

stk
(2rt)

P̄2rt [i]

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

I Lr1
2 Lr1

3 Lr1
4

I Lr2
2 Lr2

3 Lr2
4

...
...

...
...

I Lrt
2 Lrt

3 Lrt
4

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

tk
(0)
1,i

tk
(0)
2,i

tk
(0)
3,i

tk
(0)
4,i

⎞
⎟⎟⎟⎟⎠

, 0 ≤ i ≤ 7. (4)

Because the tweakey schedule only contains the permutation and LFSRs,
Eq. (4) is linear equation. Denote coefficient matrix as A and its rank as
rank(A) = a. The image space of A represents the solution space of {STK

(2r1)

P̄ 2r1 [i]
,

STK
(2r2)

P̄ 2r2 [i]
· · · , STK

(2rt)

P̄ 2rt [i]
} with arbitrary {tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i }, whose size

is |Im(A)| = 2a. Let the kernel space of A be Ker(A) = {x ∈ F
4t
2 :

Ax = 0}, then the size of the kernel space is |Ker(A)| = 216−a. For
example, assuming Index = {0, 1, 2, 3}, we can obtain the equations of
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{STK(0), STK(2), STK(4), STK(6)} as Eq. (4). For i = 0, there is

⎛
⎜⎜⎜⎜⎝

stk
(0)
0

stk
(2)
2

stk
(4)
4

stk
(6)
6

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

I L0
2 L0

3 L0
4

I L1
2 L1

3 L1
4

I L2
2 L2

3 L2
4

I L3
2 L3

3 L3
4

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

tk
(0)
1,0

tk
(0)
2,0

tk
(0)
3,0

tk
(0)
4,0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0
1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0
0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1
0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1
0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,0
x1,1
x1,2
x1,3
x2,0
x2,1
x2,2
x2,3
x3,0
x3,1
x3,2
x3,3
x4,0
x4,1
x4,2
x4,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)
The rank of the coefficient matrix A in Eq. (5) is 14. Therefore, the size of its
kernel space and image space is |Ker(A)| = 22 and |Im(A)| = 214.

Let Arj
= [I L

rj

2 L
rj

3 L
rj

4 ], which is a 4 × 16 matrix. Then the coefficient
matrix of Eq. (4) can be represented as A{r1,r2,··· ,rt} = [AT

r1
AT

r2
· · · AT

rt
]T ,

which is a 4t × 16 matrix. Since L15
i = I for 2 ≤ i ≤ 4, we can assume that all

subscripts of A{r1,r2,··· ,rt} are mod 15. We call A{r1,r2,··· ,rt} a full rank matrix if
and only if rank(A{r1,r2,··· ,rt}) = min{4t, 16}. We find that when t ≥ 4, certain
sets of Index lead to non-full rank coefficient matrices. Let K = {0, 1, 2, · · · , 14},
for any subset {r1, r2, · · · , rt} ⊂ K and 0 ≤ r′ ≤ 14, we have

A{r1+r′,r2+r′,··· ,rt+r′}

=

⎛
⎜⎜⎜⎜⎜⎝

I Lr1+r′
2 Lr1+r′

3 Lr1+r′
4

I Lr2+r′
2 Lr2+r′

3 Lr2+r′
4

...
...

...
...

I Lrt+r′
2 Lrt+r′

3 Lrt+r′
4

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

I Lr1
2 Lr1

3 Lr1
4

I Lr2
2 Lr2

3 Lr2
4

...
...

...
...

I Lrt
2 Lrt

3 Lrt
4

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

I

Lr′
2

Lr′
3

Lr′
4

⎞
⎟⎟⎟⎠

= A{r1,r2,··· ,rt} · diag(I,Lr′
2 ,Lr′

3 Lr′
4 ).

(6)

Since L2, L3 and L4 are all 4× 4 full rank matrices, Dr′ = diag(I,Lr′
2 ,Lr′

3 Lr′
4 )

is a 16 × 16 full rank matrix. Then we can deduce that

rank(A{r1+r′,r2+r′,··· ,rt+r′}) = rank(A{r1,r2,··· ,rt}). (7)

Since the rank of the coefficient matrix is our most concern, we introduce the
concept of rank-equivalent as follows.

Definition 1 (rank-equivalent). Given two subsets x = {r1, r2, . . . , rt}, y =
{r′

1, r
′
2, . . . , r

′
t} ⊂ K, we say x and y are rank-equivalent if there exits an integer

r′ such that
ri ≡ r′

i + r′ mod 15 for all 1 ≤ i ≤ t.

The rank-equivalence class of the subset x is defined by

[x] := {y ⊂ K : x and y are rank-equivalent}.
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From Eq. (7), rank(Ax) = rank(Ay) holds for any rank-equivalent subsets x
and y.

Table 4. Rank-equivalence class of non-full rank coefficient matrix for SKINNYe-64-256

rank t Rank-equivalence class [{r1, r2, · · · , rt}]

14 4 [{0,1,2,3}],[{0,1,2,10}],[{0,1,3,4}],[{0,1,3,7}],[{0,1,3,13}],[{0,1,4,5}],[{0,1,4,12}],

[{0,1,5,6}],[{0,1,5,8}],[{0,1,5,11}],[{0,1,6,7}],[{0,1,6,10}],[{0,1,6,12}],[{0,1,7,8}],

[{0,1,7,9}],[{0,1,11,13}],[{0,2,4,6}],[{0,2,5,7}],[{0,2,5,12}],[{0,2,6,8}],[{0,2,6,11}],

[{0,2,7,9}],[{0,2,7,10}],[{0,2,7,11}],[{0,2,9,12}],[{0,3,6,9}],[{0,3,7,10}],[{0,3,7,11}]

15 4 [{0,1,2,4}],[{0,1,2,5}],[{0,1,2,6}],[{0,1,2,7}],[{0,1,2,8}],[{0,1,2,9}],[{0,1,2,11}],

[{0,1,2,12}],[{0,1,2,13}],[{0,1,3,5}],[{0,1,3,6}],[{0,1,3,8}],[{0,1,3,9}],[{0,1,3,10}],

[{0,1,3,11}],[{0,1,3,12}],[{0,1,4,6}],[{0,1,4,7}],[{0,1,4,8}],[{0,1,4,9}],[{0,1,4,10}],

[{0,1,4,11}],[{0,1,4,13}],[{0,1,5,7}],[{0,1,5,9}],[{0,1,5,10}],[{0,1,5,12}],[{0,1,5,13}],

[{0,1,6,8}],[{0,1,6,9}],[{0,1,6,11}],[{0,1,6,13}],[{0,1,7,10}],[{0,1,7,11}],[{0,1,7,12}],

[{0,1,7,13}],[{0,1,8,10}],[{0,1,8,11}],[{0,1,8,12}],[{0,1,8,13}],[{0,1,9,11}],[{0,1,9,12}],

[{0,1,9,13}],[{0,1,10,12}],[{0,1,10,13}],[{0,2,4,7}],[{0,2,4,8}],[{0,2,4,9}],[{0,2,4,10}],

[{0,2,4,11}],[{0,2,4,12}],[{0,2,5,8}],[{0,2,5,9}],[{0,2,5,10}],[{0,2,5,11}],[{0,2,6,9}],

[{0,2,6,10}],[{0,2,6,12}],[{0,2,7,12}],[{0,2,8,11}],[{0,2,8,12}],[{0,3,6,10}],[{0,3,6,11}]

5 [{0,1,2,3,7}],[{0,1,2,3,10}],[{0,1,2,3,11}],[{0,1,2,3,13}],[{0,1,2,4,5}],[{0,1,2,4,8}],

[{0,1,2,4,10}],[{0,1,2,5,8}],[{0,1,2,5,10}],[{0,1,2,6,9}],[{0,1,2,6,10}],[{0,1,2,6,12}],

[{0,1,2,7,10}],[{0,1,2,7,11}],[{0,1,2,7,13}],[{0,1,2,8,10}],[{0,1,2,9,10}],[{0,1,2,9,12}],

[{0,1,2,10,11}],[{0,1,2,10,12}],[{0,1,2,10,13}],[{0,1,2,11,13}],[{0,1,3,4,7}],[{0,1,3,4,9}],

[{0,1,3,5,6}],[{0,1,3,5,7}],[{0,1,3,5,8}],[{0,1,3,5,12}],[{0,1,3,6,7}],[{0,1,3,6,8}],

[{0,1,3,6,12}],[{0,1,3,7,8}],[{0,1,3,7,9}],[{0,1,3,7,10}],[{0,1,3,7,11}],[{0,1,3,7,12}],

[{0,1,3,7,13}],[{0,1,3,8,12}],[{0,1,3,10,11}],[{0,1,3,10,13}],[{0,1,3,11,13}],[{0,1,4,5,8}],

[{0,1,4,5,10}],[{0,1,4,6,11}],[{0,1,4,6,12}],[{0,1,4,6,13}],[{0,1,4,7,9}],[{0,1,4,8,10}],

[{0,1,4,11,13}],[{0,1,5,6,12}],[{0,1,5,7,8}],[{0,1,5,7,12}],[{0,1,5,8,9}],[{0,1,5,8,10}],

[{0,1,5,8,11}],[{0,1,5,8,12}],[{0,1,5,8,13}],[{0,1,5,9,11}],[{0,1,5,9,13}],[{0,1,5,11,13}],

[{0,1,6,7,12}],[{0,1,6,8,12}],[{0,1,6,9,12}],[{0,1,6,10,12}],[{0,1,6,11,13}],[{0,1,7,10,13}],

[{0,1,7,11,13}],[{0,1,8,11,13}],[{0,1,9,11,13}],[{0,2,4,6,11}],[{0,2,4,7,11}],[{0,2,4,8,10}],

[{0,2,4,9,12}],[{0,2,5,7,11}],[{0,2,5,8,10}],[{0,2,5,9,12}],[{0,2,6,9,12}]

6 [{0,1,2,3,7,10}],[{0,1,2,3,7,11}],[{0,1,2,3,7,13}],[{0,1,2,3,10,11}],[{0,1,2,3,10,13}],

[{0,1,2,3,11,13}],[{0,1,2,4,5,8}],[{0,1,2,4,5,10}],[{0,1,2,4,8,10}],[{0,1,2,5,8,10}],

[{0,1,2,6,9,10}],[{0,1,2,6,9,12}],[{0,1,2,6,10,12}],[{0,1,2,7,10,11}],[{0,1,2,7,10,13}],

[{0,1,2,7,11,13}],[{0,1,2,9,10,12}],[{0,1,2,10,11,13}],[{0,1,3,4,7,9}],[{0,1,3,5,6,8}],

[{0,1,3,5,6,12}],[{0,1,3,5,7,8}],[{0,1,3,5,7,12}],[{0,1,3,5,8,12}],[{0,1,3,6,7,12}],

[{0,1,3,6,8,12}],[{0,1,3,7,8,12}],[{0,1,3,7,10,11}],[{0,1,3,7,10,13}],[{0,1,3,7,11,13}],

[{0,1,4,5,8,10}],[{0,1,4,6,11,13}],[{0,1,5,7,8,12}],[{0,1,5,8,11,13}],[{0,1,5,9,11,13}]

7 [{0,1,2,3,7,10,11}],[{0,1,2,3,7,10,13}],[{0,1,2,3,7,11,13}],[{0,1,2,3,10,11,13}],

[{0,1,2,4,5,8,10}],[{0,1,2,6,9,10,12}],[{0,1,2,7,10,11,13}],[{0,1,3,5,6,8,12}],

[{0,1,3,5,7,8,12}]

8 [{0,1,2,3,7,10,11,13}]

For SKINNYe-64-256, we compute all the rank-equivalence classes whose cor-
responding coefficient matrix is non-full rank with Algorithm 1 in Supplementary
Material A in our full version paper [53] and list the results in Table 4.

Similarly, for SKINNYe-64-256 v2, we set Ãrj
= [I L

rj

2 L
rj

3 L̃
rj

4 ], which is
also a 4 × 16 matrix. Then the coefficient matrix of Eq. (4) can be represented
as Ã{r1,r2,··· ,rt} = [ÃT

r1
ÃT

r2
· · · ÃT

rt
]T , which is a 4t × 16 matrix. For arbitrary

{r1, r2, · · · , rt} ⊂ K, the matrix Ã{r1,r2,··· ,rt} is full rank. That is, when t ≤ 4,
the rank of Ã{r1,r2,··· ,rt} is 4t, otherwise the rank is 16.
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The Subtweakey Difference Cancellations. For a given active tweakey cell,
z − 1 subtweakey difference cancellation happens every 30 rounds for SKINNY-
n-zn [9] with z = 2, 3. However, for SKINNYe-64-256, although z = 4, we
have more cancellations than z − 1 = 3. Since the tweakey schedule is lin-
ear, the differences of subtweakeys can be computed by the differences injected
in the master tweakey with Eq. (4). Assume that there is at least one 1 ≤
m ≤ 4 that ΔTKm,i �= 0. Set A[{r1,r2,··· ,rt}] · [tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0,

which means the subtweakey difference cancellations happen at {STK
(2r1)

P̄ 2r1 [i]
· · · ,

STK
(2rt)

P̄ 2rt [i]
} if 0 ≤ i ≤ 7, or {STK

(2r1+1)

P̄ 2r1+1[i]
· · · , STK

(2rt+1)

P̄ 2rt+1[i]
} if 8 ≤ i ≤ 15.

When rank(A[{r1,r2,··· ,rt}]) = 16, the size of its kernel space is 1. Then
[tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ] has only one zero solution, which means ΔTKm,i = 0

for all m = 1, 2, 3, 4. When rank(A[{r1,r2,··· ,rt}]) < 16, we have non-zero solu-
tions for ΔTKm,i, i.e., the subtweakey difference cancellations happen. Obvi-
ously, when t ≤ 3, rank(A[{r1,r2,··· ,rt}]) = 4t ≤ 16. For t ≥ 4, we obtain all
rank-equivalence classes whose corresponding coefficient matrices are non-full
rank from Table 4. So each rank-equivalence class corresponds to a set of posi-
tions of the subtweakey difference cancellations. We find several properties of
the rank-equivalence classes:

– When t = 4, we find the matrix A{r1,r2,r3,r4} with arbitrary {r1, r2, r3, r4} ⊂
K is non-full rank. That is, for the given active nibbles in the master
key, the subtweakey difference cancellations can happen four times in arbi-
trary round for every 30 rounds. Especially for rank(A{0,1,2,3}) = 14 and
|Ker(A{0,1,2,3})| = 22, there are 3 non-zero solutions of the difference for the
active nibbles of the master tweakey. For SKINNYe-64-256, there can be nine
consecutive rounds with fully inactive internal states.

– When t ≥ 5, for all [{r1, r2, · · · , rt}] in Table 4, rank(A[{r1,r2,··· ,rt}]) = 15.
For A[{r1,r2,··· ,rt]} · [tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, there is only one nonzero
solution. We find that for some different rank-equivalence classes, the solu-
tions are the same. For example, for rank-equivalence classes [{0, 1, 2, 7, 10}]
and [{0, 1, 3, 11, 13}], when 0 ≤ i ≤ 7 we set

A[{0,1,2,7,10}] · [tk(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, (8)

A[{0,1,3,11,13}] · [tk(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, (9)

where the cancellations happen at {STK
(0)
i , STK

(2)

P̄ 2[i]
, STK

(4)

P̄ 4[i]
, STK

(14)

P̄ 14[i]
,

STK
(20)

P̄ 20[i]
} for Eq. (8) and {STK

(0)
i , STK

(2)

P̄ 2[i]
, STK

(6)

P̄ 6[i]
, STK

(22)

P̄ 22[i]
,

STK
(26)

P̄ 26[i]
} for Eq. (9). The non-zero solutions of both two linear equations

are tk
(0)
1,i = [0, 0, 0, 1]T , tk

(0)
2,i = [0, 1, 1, 1]T , tk

(0)
3,i = [0, 0, 0, 0]T , tk

(0)
4,i =

[0, 1, 1, 0]T . Namely, the cancellations happen at {STK
(0)
i , STK

(2)

P̄ 2[i]
,

STK
(4)

P̄ 4[i]
, STK

(6)

P̄ 6[i]
, STK

(14)

P̄ 14[i]
, STK

(20)

P̄ 20[i]
, STK

(22)

P̄ 22[i]
, STK

(26)

P̄ 26[i]
} at the

same time, which corresponds to the rank-equivalence class [{0, 1, 2, 3, 7, 10,
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11, 13}]. The situation for 8 ≤ i ≤ 15 is the same. Further, we find
that for arbitrary {r1, r2, · · · , rt} ⊂ {0, 1, 2, 3, 7, 10, 11, 13} (t ≥ 5), the
solution of A[{r1,r2,··· ,rt}] · [tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0 is the same to

A[{0,1,2,3,7,10,11,13}] · [tk(0)
1,i , tk

(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, which means that there is
only one difference cancellation behaviour for those rank-equivalence classes.

Remark. It is worth noting that there are some rank-equivalence classes
[{r1, r2, · · · , rt}] in Table 4, where {r1, r2, · · · , rt} is not directly the sub-
set of {0, 1, 2, 3, 7, 10, 11, 13} but corresponds to the same difference can-
cellation behaviour. Taking the rank-equivalence class [{0, 1, 2, 6, 9}] as
an example, we can assume A[{0,1,2,6,9}] · [t̄k(0)

1,i , t̄k
(0)
2,i , t̄k

(0)
3,i , t̄k

(0)
4,i ]

T = 0,

and obtain t̄k
(0)
1,i = [0, 0, 0, 1]T , t̄k

(0)
2,i = [1, 1, 1, 1]T , t̄k

(0)
3,i = [0, 0, 0, 0]T ,

t̄k
(0)
4,i = [1, 1, 1, 0]T . Applying the same solution, we can also deduce

A[{0,1,2,6,9,10,12,14}] · [t̄k(0)
1,i , t̄k

(0)
2,i , t̄k

(0)
3,i , t̄k

(0)
4,i ]

T = 0. Similarly, for arbitrary
{r1, r2, · · · , rt} ⊂ {0, 1, 2, 6, 9, 10, 12, 14} (t ≥ 5), we deduce that there is only
one difference cancellation behaviour. Further, due to rank-equivalence class
in Definition 1, there is [{0, 1, 2, 3, 7, 10, 11, 13}] = [{0, 1, 2, 6, 9, 10, 12, 14}].
The two sets {0, 1, 2, 3, 7, 10, 11, 13} and {0, 1, 2, 6, 9, 10, 12, 14} only represent
the difference cancellations starting from different rounds every 15 rounds for
TK-z, and actually show the same difference cancellation behaviour.
In summary, there are only two kinds of the difference cancellation behaviours:

• For rank-equivalence class [{0, 1, 2, 4, 5, 8, 10}], the subtweakey difference
cancellations happen 7 times in the fixed positions for the given active
nibble of the master key in every 30 rounds. Assuming A[{0,1,2,4,5,8,10}] ·
[tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, we can compute the only one nonzero solu-

tion, where tk
(0)
1,i = [0, 0, 0, 0]T , tk(0)

2,i = [1, 0, 0, 0]T , tk(0)
3,i = [0, 0, 0, 0]T ,

tk
(0)
4,i = [1, 0, 0, 0]T .

• For rank-equivalence class [{0, 1, 2, 3, 7, 10, 11, 13}], the subweakey differ-
ence cancellations happen 8 times in the fixed positions every 30 rounds.
Assuming A[{0,1,2,3,7,10,11,13}] · [tk(0)

1,i , tk
(0)
2,i , tk

(0)
3,i , tk

(0)
4,i ]

T = 0, the nonzero

solution is tk
(0)
1,i = [0, 0, 0, 1]T , tk

(0)
2,i = [0, 1, 1, 1]T , tk

(0)
3,i = [0, 0, 0, 0]T ,

tk
(0)
4,i = [0, 1, 1, 0]T .

For SKINNYe-64-256 v2, there is rank(Ã{r1,r2,r3,r4}) = 16 for arbitrary
{r1, r2, r3, r4} ⊂ K . That is, at most three difference cancellations can hap-
pen every 30 rounds for a given active tweakey nibble and there can be seven
rounds of fully inactive internal states at most.

Key Guessing Strategy Based on the Relations of Subtweakeys. In
key-recovery attacks, several rounds are added before and after the distin-
guisher and the involved subtweakeys should be guessed to recover the mas-
ter tweakey. We can use the relations of subtweakeys to get more accurate
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and efficient key guessing strategy following similar idea of the key-bridge
technique [26,33]. For example, assume that a set of subtweakeys {stk(2r1)

P̄ 2r1 [i]
,

stk
(2r2)

P̄ 2r2 [i]
· · · , stk

(2rt)

P̄ 2rt [i]
, stk

(2rt+1)

P̄ 2rt+1 [i]
} derived from the same i-th (0 ≤ i ≤ 7)

nibble of the master tweakey are involved in the key-recovery phase. Suppose
rank(A{r1,r2,··· ,rt}) = a and rank(A{r1,r2,··· ,rt+1}) = b (b > a). The number of
possible values for {stk(2r1)

P̄ 2r1 [i]
, stk

(2r2)

P̄ 2r2 [i]
· · · , stk

(2rt)

P̄ 2rt [i]
} is |Im(A{r1,r2,··· ,rt})| =

2a. After we guessed {stk(2r1)

P̄ 2r1 [i]
, stk

(2r2)

P̄ 2r2 [i]
· · · , stk

(2rt)

P̄ 2rt [i]
} ∈ Im(A{r1,r2,··· ,rt}),

the number of possible guesses for the last nibble stk
(2rt+1)

P̄ 2rt+1 [i]
will be 2b−a.

4 Rectangle Attacks on SKINNYe-64-256 and Its Version 2

4.1 Preliminary for Boomerang and Rectangle Attacks

The boomerang attack proposed by Wagner [63] is a differential-based attack,
which uses two short differential characteristics instead of one long character-
istic as shown in Fig. 3. The boomerang attack is developed into the ampli-
fied boomerang attack [44] and rectangle attack [17], which require only chosen
plaintext queries. To clarify the probability of boomerang, Biryukov et al. [19]
introduced the boomerang switch technique, which is generalized by Dunkelman
et al. [34] as the sandwich attack. In the attack, the cipher Ed is considered
as Ẽ1 ◦ Em ◦ Ẽ0, where p̃ and q̃ are the probability of the differentials used
for the r0-round Ẽ0 and r1-round Ẽ1. The middle part rm-round Em handles
the dependence of the two short differentials. If the probability of generating a
right quartet for Em is ξ, the probability of the whole rectangle distinguisher
is 2−np̃2q̃2ξ. Then, Cid et al. [23] introduced the boomerang connectivity table
(BCT) to clarify the probability around the boundary of boomerang and com-
pute its probability more accurately. Further, various studies or improvements
[21,24,61,64] on BCT technique enrich boomerang attacks.

Related-key boomerang and rectangle attacks were proposed by Biham et
al. [18]. As shown in Fig. 4, the cipher E is decomposed into Ef ◦ Ed ◦ Eb,
where Ed = E1 ◦ E0 is the related-key rectangle distinguisher and Eb and Ef

are the extended rounds before and after the distinguisher. Assuming we use a
related-key differential α → β over E0 under a key difference ΔK and δ → γ
over E1 under a key difference ∇K. If the master key K1 is known, the other
three keys are all determined, where K2 = K1 ⊕ ΔK, K3 = K1 ⊕ ∇K, and
K4 = K1⊕ΔK⊕∇K. Denote rb as the number of unknown bits in the difference
α′ of plaintexts. Let kb be the set of subkey bits that involved in Eb while
encrypting the plaintext to the known difference α and decrypting to get the
corresponding plaintext. Denote the number mb = |kb|. Similarly, we have rf

and mf = |kf | for Ef .
There are several key-recovery frameworks of rectangle attacks [15–17,46]

in both single-key setting and related-key setting. As shown by Biham et al.
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Fig. 3. Boomerang attack Fig. 4. Rectangle attack on E

[15], when the key schedule is linear (e.g. SKINNY), the differences between the
subkeys of K1, K2, K3 and K4 are all determined in each round. Exploring
this property, Dong et al. [30] proposed a new related-key rectangle attack for
ciphers with linear key schedule (see Supplementary Material B.1 in our full
version paper [53]). They try to guess all kb and part of kf , denoted as k′

f before
generating quartets. Then with partial decryption, they may gain hf inactive
bits (or bits with fixed differences) from the internal state as filters. They also
built a uniform automatic tool to search for the entire rectangle key-recovery
attack on SKINNY, which is based on a series of automatic tools [24,37,54].

4.2 Automatic Search for Related-Tweakey Rectangle Attacks for
SKINNYe-64-256 and Its Version 2

We apply Dong et al.’s automatic tool [30] by modifying the constraints of
the subtweakey to include more differential cancellation behaviours studied in
Sect. 3. For simplicity, we put Dong et al.’s automatic tool in Supplementary
Material B in our full version paper [53], and only list the differences of the
modelling here.

In previous automatic models [9,24,37] for SKINNY-n-zn (z = 1, 2, 3), for a
given cell position in the tweakey schedule, the number of cancellations can only
be z − 1 within 30 consecutive rounds. The constraints for the cancellations are
given by the designers of SKINNY [10, Page 52], e.g., for 0-th nibble of the master
tweakey within the 30 consecutive rounds:

LANE0 − stk
(0)
0 ≥ 0, LANE0 − stk

(2i)
P 2i[0] ≥ 0, 1 ≤ i ≤ 14,

stk
(0)
0 + stk

(2)
P 2[0] + · · · + stk

(28)
P 28[0] − 15 · LANE0 ≥ −(z − 1),

(10)
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where the binary variable LANE0 is 0 only if TKm,0 = 0 for all 1 ≤ m ≤ z, and
the binary variable stk

(r)
P r[0] is 0 if and only if the nibble STK

(r)
P r[0] is inactive.

Similar constraints are applied to other nibble positions.
However, for SKINNYe-64-256, although z = 4, we have more cancellations

than z − 1 = 3 according to Sect. 3. The possible number and positions of
cancellations are diverse, which needs to be modeled by new constraints for the
upper and lower differentials besides Constraint (10). According to Sect. 3, the
automatic models are divided into two cases according to different subtweakey
difference cancellation behaviours to search for the distinguisher suitable for
Dong et al.’s rectangle attack framework:

– t ≤ 4: When t ≤ 3, the rank of A{r1,··· ,rt} is 4t ≤ 16. When t = 4, the matrix
A{r1,r2,r3,r4} is non-full rank. That is, when t ≤ 4, rank(A{r1,··· ,rt}) < 16. For
a given active nibble in the master key, the subtweakey difference cancellations
can happen at most four times in arbitrary 30 rounds. In this case, we only
need to modify the last constraint of Eq. (10) to be (z = 4):

stk
(0)
0 + stk

(2)
P 2[0] + · · · + stk

(28)
P 28[0] − 15 · LANE0 ≥ −z.

– t > 4: There are only two kinds of the difference cancellation behaviours in
Sect. 3, i.e., [{0, 1, 2, 4, 5, 8, 10}] and [{0, 1, 2, 3, 7, 10, 11, 13}]. For the rank-
equivalence class [{0, 1, 2, 4, 5, 8, 10}], we fixed the positions of difference
cancellations for the i-th active nibble of the master tweakey to build the
model. For each 0 ≤ r′ ≤ 14, we set the subtweakey differences to 0
in {2r′, 2(r′ + 1) mod 30, 2(r′ + 2) mod 30, 2(r′ + 4) mod 30, 2(r′ + 5) mod
30, 2(r′ + 8) mod 30, 2(r′ + 10) mod 30} rounds when 0 ≤ i ≤ 7, and in
{2r′ + 1, (2(r′ + 1) + 1) mod 30, (2(r′ + 2) + 1) mod 30, (2(r′ + 4) + 1) mod
30, (2(r′+5)+1) mod 30, (2(r′+8)+1) mod 30, (2(r′+10)+1) mod 30} rounds
when 8 ≤ i ≤ 15 to run the model. Similar for case [{0, 1, 2, 3, 7, 10, 11, 13}].

Searching with different automatic models, we select a 30-round related-
tweakey (RTK) boomerang distinguisher for SKINNYe-64-256 in Table 5, where
the difference cancellation behaviour [{0, 1, 2, 3, 7, 10, 11, 13}] is used both in the
upper and lower differentials. We also experimentally verify the probabilities
of the middle part of the distinguishers, and list details of the distinguisher,
the experimental results and full figures in Table 12, Table 14 and Figure 12
in Supplementary Material C.1 and I in our full version paper [53]. Our source
codes are based on the open source in [24,30], which is provided in https://
github.com/skinny64/Skinny64-256.

For SKINNYe-64-256 v2, we find a 26-round related-tweakey boomerang dis-
tinguisher in Table 11 and 13 in Supplementary Material C.1 in our full version
paper [53].

4.3 Rectangle Attack on 41-round SKINNYe-64-256

We use the 30-round rectangle distinguisher for SKINNYe-64-256 in Table 5,
whose probability is 2−np̃2ξq̃2 = 2−64−56.47 = 2−120.47. The attack follows

https://github.com/skinny64/Skinny64-256
https://github.com/skinny64/Skinny64-256
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Table 5. The 30-round RTK boomerang distinguisher for SKINNYe-64-256.

r0 = 12, rm = 5, r1 = 13, p̃ = 2−3.46, ξ = 2−30.95, q̃ = 2−9.30, p̃2ξq̃2 = 2−56.47

ΔTK1 = 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

ΔTK2 = 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0

ΔTK3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

ΔTK4 = 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0

ΔX(0) = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4

∇TK1 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

∇TK2 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8

∇TK3 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

∇TK4 = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8

∇X(30) = 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1

the Dong et al.’s rectangle attack framework [30], which is also given in Algo-
rithm 2 in Supplementary Material B.1 in our full version paper [53]. Adding
4-round Eb and 7-round Ef , we attack 41-round SKINNYe-64-256, as illustrated
in Fig. 5. For simplicity, let STK

(i)
j1,j2

be the j1-th and j2-th nibble of the i-th
round STK. In the first round, we use subtweakey ETK(0) = MC ◦ SR(STK(0))
instead of STK(0), and there is ETK

(0)
i = ETK

(0)
i+4 = ETK

(0)
i+12 = STK

(0)
i for

0 ≤ i ≤ 3, and ETK
(0)
8 = STK

(0)
7 , ETK

(0)
9 = STK

(0)
4 , ETK

(0)
10 = STK

(0)
5 ,

ETK
(0)
11 = STK

(0)
6 . Construct the structures at W̄ (0) and rb = 12 · 4 = 48. The

cells need to be guessed in Eb are kb = {STK
(2)
0,2,4, STK

(1)
0−3,5−7, STK

(0)
0−7} and

mb = 18 · 4 = 72. In Ef , we have rf = 16 · 4 = 64 and mf = 45 · 4 = 180 where
kf = {STK

(34)
3,7 , STK

(35)
2−4,7, STK

(36)
1−7 , STK

(37)
0−7 , STK

(38)
0−7 , STK

(39)
0−7 , STK

(40)
0−7}.

The subtweakey cells guessed in advance are marked by red boxes, which are
k′

f = {STK
(37)
3,6,7, STK

(38)
0−2,4−7, STK

(39)
0−7 , STK

(40)
0−7}, and we have m′

f = 26 · 4 =
104. Then, we get 7 cells in the internal states (marked by red boxes in W (37)

and W (36)) as additional filters with the guessed m′
f -bit key, i.e., hf = 7 · 4 = 28

as {W
(36)
6,11,15,W

(37)
5,6,11,12}.

Key Bridges. To further accelerate our attack, we identify some tweakey rela-
tions in Eb and Ef according to the analysis in Sect. 3 . We list the sub-
tweakeys transformed from the i-th (0 ≤ i ≤ 15) nibble of the master key
TK

(0)
m (1 ≤ m ≤ 4) in Table 6. For example in line 0 of Table 6, there are 5

subtweakeys in kb and kf transformed from the 0-th nibbles of TK
(0)
m , where(

stk
(0)
0 , stk

(2)
2 , stk

(36)
4 , stk

(38)
6 , stk

(40)
5

)T

= A{0,1,3,4,5} ·
(
tk

(0)
1,0, tk

(0)
2,0, tk

(0)
3,0, tk

(0)
4,0

)T

.

Since rank(A{0,1,3,4,5}) = 16, the number of possible values of {ETK
(0)
0 =

STK
(0)
0 , STK

(2)
2 , STK

(36)
4 , STK

(38)
6 , STK

(40)
5 } is |Im(A{0,1,3,4,5})| = 216.
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Active cell Active cell with fixed difference 0aa Both the difference and the value are neededZero difference, but the value is needed Value is needed to fast filter quartets

STK(40) X(40) Y (40) Z(40) W (40)

⊕SC
AC

ART

SR MC

STK(39) X(39) Y (39) Z(39) W (39)

⊕SC
AC

ART

SR MC

STK(38) X(38) Y (38) Z(38) W (38)

1

⊕SC
AC

ART

SR MC

STK(37) X(37) Y (37) Z(37) W (37)

1 ⊕SC
AC

ART

SR MC

STK(36) X(36) Y (36) Z(36) W (36)

1

⊕SC
AC

ART

SR MC

STK(35) X(35) Y (35) Z(35) W (35)

1
⊕SC

AC
ART

SR MC

STK(34) X(34) Y (34) Z(34) W (34)

1
1

1
1 ⊕SC

AC
ART

SR MC

30-round rectangle distinguisher of SKINNYe-64-256

STK(3) X(3) Y (3) Z(3) W (3)

4
4

4
⊕

4
4

4

4
4
4SC

AC
ART

SR MC

STK(2) X(2) Y (2) Z(2) W (2)

1

⊕SC
AC

ART

SR MC

STK(1) X(1) Y (1) Z(1) W (1)

1 ⊕SC
AC

ART

SR MC

ETK(0) X(0) Y (0) Z̄(0) W̄ (0)

SC
AC

SR MC ⊕

Fig. 5. The 41-round attack against SKINNYe-64-256.

Similarly, the number of possible values of {ETK
(0)
0 , STK

(2)
2 , STK

(38)
6 ,

STK
(40)
5 } ∈ kb ∪ k′

f is |Im(A{0,1,4,5})| = 214. In total, the key size involved
in Eb and Ef is only 224-bit due to the key relations although mb + mf =
72 + 180 = 252, denoted as |kb ∪ kf | = 2224. Similarly, we have |kb ∪ k′

f | = 2170

although mb + m′
f = 72 + 104 = 176.

The details of our attack are given as follows:

1. Construct y =
√

s · 2n/2−rb/
√

p̃2ξq̃2 =
√

s · 212.24 structures of 2rb = 248

plaintexts each. For each structure, encrypt the 248 plaintexts under the four
related tweakeys K1, K2, K3 and K4 to get corresponding ciphertexts and
store the plaintext-ciphertext pairs in L1, L2, L3 and L4. The data and mem-
ory complexity here is both

√
s · 2n/2+2/

√
p̃2ξq̃2 =

√
s · 262.24.

2. Guess 2x possible values of kb ∪ k′
f (2x ≤ |kb ∪ k′

f |):
(a) Initialize |kb ∪ kf |/2x = 2224−x counters with memory cost 2224−x.
(b) Guess all the remaining |kb ∪ k′

f |/2x = 2170−x possible values in kb ∪ k′
f :

i. For each structure, partially encrypt each plaintext P1 under the
guessed values of kb to Y

(3)
6,9,12. After xoring the known difference α,

partially decrypt it to get the plaintext P2. Do the same for each P3 to
get P4. Store the pairs in S1 and S2, whose sizes are y·2rb =

√
s·260.24.

ii. For each element in S1, partially decrypt (C1, C2) under guessed k′
f to

get W
(36)
6,11,15‖W

(37)
5,6,11,12. Insert the element in S1 into a hash table H

indexed by the hf = 28-bit W
(36)
6,11,15‖W

(37)
5,6,11,12 of C1 and hf = 28-bit

W̃
(36)
6,11,15‖W̃

(37)
5,6,11,12 of C2. For each element in S2, partially decrypt

(C3, C4) under guessed k′
f to get the 2hf = 56 internal state bits,
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Table 6. Relations of the subtweakeys involved in the 41-round attack on
SKINNYe-64-256, where the subtweakeys marked in bold are among k′

f .

i kb kf

0 ETK
(0)
0 , STK

(2)
2 STK

(36)
4 ,STK

(38)
6 ,STK

(40)
5 |Im(A{0,1,3,4,5})| = 216 |Im(A{0,1,4,5})| = 214

1 ETK
(0)
1 , STK

(2)
0 STK

(36)
2 ,STK

(38)
4 ,STK

(40)
6 |Im(A{0,1,3,4,5})| = 216 |Im(A{0,1,4,5})| = 214

2 ETK
(0)
2 , STK

(2)
4 STK

(36)
6 ,STK

(38)
5 ,STK

(40)
3 |Im(A{0,1,3,4,5})| = 216 |Im(A{0,1,4,5})| = 214

3 ETK
(0)
3 STK

(34)
7 , STK

(36)
1 ,STK

(38)
0 ,STK

(40)
2 |Im(A{0,2,3,4,5})| = 215 |Im(A{0,4,5})| = 212

4 ETK
(0)
9 STK

(36)
5 , STK

(38)
3 ,STK

(40)
7 |Im(A{0,3,4,5})| = 215 |Im(A{0,5})| = 28

5 ETK
(0)
10 STK

(34)
3 , STK

(36)
7 ,STK

(38)
1 ,STK

(40)
0 |Im(A{0,2,3,4,5})| = 215 |Im(A{0,4,5})| = 212

6 ETK
(0)
11 STK

(36)
3 ,STK

(38)
7 ,STK

(40)
1 |Im(A{0,3,4,5})| = 215 |Im(A{0,4,5})| = 212

7 ETK
(0)
8 STK

(38)
2 ,STK

(40)
4 |Im(A{0,4,5})| = 212 |Im(A{0,4,5})| = 212

8 STK
(1)
2 STK

(35)
4 ,STK

(37)
6 ,STK

(39)
5 |Im(A{1,3,4,5})| = 215 |Im(A{1,4,5})| = 212

9 STK
(1)
0 STK

(35)
2 , STK

(37)
4 ,STK

(39)
6 |Im(A{1,3,4,5})| = 215 |Im(A{1,5})| = 28

10 STK
(37)
5 ,STK

(39)
3 |Im(A{4,5})| = 28 |Im(A{5})| = 24

11 STK
(1)
7 STK

(37)
0 ,STK

(39)
2 |Im(A{1,4,5})| = 212 |Im(A{1,5})| = 28

12 STK
(1)
6 STK

(37)
3 ,STK

(39)
7 |Im(A{1,4,5})| = 212 |Im(A{1,4,5})| = 212

13 STK
(1)
3 STK

(35)
7 , STK

(37)
1 ,STK

(39)
0 |Im(A{1,3,4,5})| = 215 |Im(A{1,5})| = 28

14 STK
(1)
5 STK

(35)
3 ,STK

(37)
7 ,STK

(39)
1 |Im(A{1,3,4,5})| = 215 |Im(A{1,4,5})| = 212

15 STK
(1)
1 STK

(37)
2 ,STK

(39)
4 |Im(A{1,4,5})| = 212 |Im(A{1,5})| = 28

|kb ∪ kf | = 2224 |kb ∪ k′
f | = 2170

and check against H to find the pairs (C1, C2), where (C1, C3) and
(C2, C4) collide at the 2hf = 56 bits. The time complexity here is T1 =√

s · 2|kb∪k′
f |+n/2+1/

√
p̃2ξq̃2 =

√
s · 2170+32+1+28.24 =

√
s · 2231.24. We

get s·2|kb∪k′
f |−2hf−n+2rf /(p̃2ξq̃2) = s·2170−56−64+128+56.47 = s·2234.47

quartets.
iii. For each of the s · 2234.47 quartets, determine the key candidates step

by step, whose time complexity is ε:
A: In round 38, guess 24 possible values of STK

(38)
3 . As shown in

Table 7, with other guessed k′
f together, we compute Z

(37)
0,12 and deduce

ΔY
(37)
0 and ΔX

(37)
12 . For the 1st column of X(37) of (C1, C3), we

obtain ΔX
(37)
0 = ΔX

(37)
12 by property of MC, and deduce STK

(37)
0 by

Lemma 1. Similarly, we deduce STK
′(37)
0 for (C2, C4). Then the fixed

ΔSTK
(37)
0 = STK

(37)
0 ⊕STK

′(37)
0 is a 4-bit filter. s ·2234.47 ·24 ·2−4 =

s · 2234.47 quartets remain.
B: In round 37, guessing 24 possible values of STK

(37)
2 , following

Table 7 we compute Z
(36)
3,15 and deduce ΔY

(36)
3 and ΔX

(36)
15 . For the

4-th column of X(36) of (C1, C3), we deduce ΔX
(36)
3 = ΔX

(36)
15 by MC

and deduce STK
(36)
3 . Since the number of possible values2 of STK

(36)
3

2 The number of possible values of STK
(36)
3 is computed via Table 6. For example,

in line 6 of Table 6, {ETK
(0)
11 , STK

(38)
7 , STK

(40)
1 } ∈ kb ∪ k′

f derived from the 6-th

nibble have already been guessed, so the number of possible values of STK
(36)
3 is

|Im(A{0,3,4,5})|/|Im(A{0,4,5})| = 215−12 = 23. Similarly, we compute all the number
of possible values for subtweakey cells involved in the guess and filter procedure,
which are listed in Table 7.



306 L. Qin et al.

is only 23 as shown in Table 7, which acts as a filter of 23/24 = 2−1.
Similarly, we deduce STK

′(36)
3 for (C2, C4). Then the fixed ΔSTK

(36)
3

is a 4-bit filter. s · 2234.47 · 24 · 2−1 · 2−4 = s · 2233.47 quartets remain.
C: Guessing 24 possible values of STK

(37)
4 , we compute Z

(36)
7 and

deduce ΔY
(36)
7 . For the 4-th column of X(36) of (C1, C3), we can

obtain ΔX36
7 = ΔX

(36)
15 by MC. With the known ΔX

(36)
15 in step B,

we deduce STK
(36)
7 . The number of possible values of STK

(36)
7 is

23, which can act as a filter of 23/24 = 2−1. Similarly, we deduce
STK

′(36)
7 for (C2, C4). Then the fixed ΔSTK

(36)
7 is a 4-bit filter.

s · 2233.47 · 24 · 2−1 · 2−4 = s · 2232.47 quartets remain.
D: Guessing 24 possible values of STK

(37)
1 , we compute Z

(36)
6,10,14.

Then ΔY
(36)
6 and ΔX

(36)
10,14 are deduced. For the 3rd column of X(36) of

(C1, C3), we can obtain ΔX
(36)
6 = ΔX

(36)
10 ⊕ΔX

(36)
14 by MC and deduce

STK
(36)
6 . The number of possible values of STK

(36)
6 is 22, which acts

as a filter of 22/24 = 2−2. Similarly, we deduce STK
′(36)
6 for (C2, C4)

and ΔSTK
(36)
6 can act as a 4-bit filter. s·2232.47·24·2−2·2−4 = s·2230.47

quartets remain.
E: In round 36, guessing 24 × 22 × 22 possible values for (STK

(37)
5 ,

STK
(36)
2 , STK

(36)
4 ), we compute Z

(35)
3,7,15 and deduce ΔY

(35)
3,7 and

ΔX
(35)
15 . For the 4-th column of X(35) of (C1, C3), we can obtain

ΔX
(35)
3 = ΔX

(35)
7 = ΔX

(35)
15 by MC and deduce STK

(35)
3 and

STK
(35)
7 . Both the numbers of possible values of STK

(35)
3 and

STK
(35)
7 are 23, which acts as two filters of 23/24 = 2−1. Simi-

larly, we deduce STK
′(35)
3 and STK

′(35)
7 for (C2, C4). Then the fixed

ΔSTK
(35)
3 and ΔSTK

(35)
7 can act as two 4-bit filters. Thereafter, in

round 34, we deduce Z
(34)
3 from Z

(35)
7 and STK

(35)
7 . Since STK

(34)
3

only has one possible value3, we deduce X
(34)
3 . So ΔX

(34)
3 = 0x1 acts

a 4-bit filter both for (C1, C3) and (C2, C4). s · 2230.47 · 28 · 2−1 · 2−1 ·
2−8 · 2−8 = s · 2220.47 quartets remain.
F: Guessing 23 ×23 ×23 ×23 possible values of (STK

(36)
1 , STK

(36)
5 ,

STK
(35)
2 , STK

(35)
4 ), compute Z

(34)
7,15 and deduce X

(34)
15 . Since STK

(34)
7

only has one possible value, we can deduce X
(34)
7 . ΔX

(34)
7 = 0x1 and

ΔX
(34)
15 = 0x1 are two 4-bit filters for both (C1, C3) and (C2, C4).

s · 2220.47 · 212 · 2−8 · 2−8 = s · 2216.47 quartets remain.
So for each quartet, ε = 24 · 4

41 + 24 · 4
41 + 2−1 · 24 · 4

41 + 2−2 · 24 · 4
41 +

2−4 · 28 · 4
41 + 2−14 · 212 · 4

41 ≈ 22.56 and T2 = s · 2234.47 · ε = s · 2237.03.

3 As shown in line 5 of Table 6, with STK
(36)
7 deduced in step C and other cells

guessed in kb ∪ k′
f , the number of possible values is only 1 for STK

(34)
3 .
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(c) (Exhaustive search) Select the top |kb ∪ kf | · 2−x−h = 2224−x−h hits in
the counter as the key candidates. Guess the remaining k − 224 = 32-bit
key to check the full key, and T3 = 2k−h.

Set s = 1, h = 32 and x = 168 (x ≤ 170, h ≤ 224 − x). We have T1 =
2231.24, T2 = 2237.03 and T3 = 2224. The memory complexity is 262.24 + 256 ≈
262.26. In total, for the 41-round attack on SKINNYe-64-256, the data complexity
is 262.24, the memory complexity is 262.26, and the time complexity is 2237.06.
The success probability is about 70.6%.

In addition, for SKINNYe-64-256 v2 we give a 37-round related-tweakey rect-
angle attack (given in the Supplementary Material C.2 in our full version paper
[53]) based on a 26-round related-tweakey boomerang distinguisher. The data
complexity is 262.8, the memory complexity is 262.8, and the time complexity is
2240.03. The success probability is about 66.3%.
Table 7. Tweakey recovery for 41-round SKINNYe-64-256. The red cells are among k′

f

or gained in the previous steps. D/G: deduced/guessed subtweakeys.

Step State Involved subtweakeys Number of values

A Z
(37)
0 STK

(38)
4 , STK

(39)
5 , STK

(40)
0,6,7 G: STK

(38)
3 : 24

Z
(37)
12 STK

(38)
3 , STK

(39)
2,7 , STK

(40)
1,4,6 D: STK

(37)
0 : 24

B Z
(36)
3 STK

(37)
7 , STK

(38)
4 , STK

(39)
3,5,6, STK

(40)
0−2,6,7 G: STK

(37)
2 : 24

Z
(36)
15 STK

(37)
2 , STK

(38)
1,6 , STK

(39)
0,5,7, STK

(40)
2−6 D: STK

(36)
3 : 23

C Z
(36)
7 STK

(37)
4 , STK

(38)
3,5,6, STK

(39)
0−2,6,7, STK

(40)
0−7 G: STK

(37)
4 : 24

D: STK
(36)
7 : 23

D Z
(36)
6 STK

(37)
7 , STK

(38)
2,4,5, STK

(39)
0,1,3,5,6, STK

(40)
0−7 G: STK

(37)
1 : 24

Z
(36)
10 STK

(37)
4 , STK

(38)
3,5 , STK

(39)
0,2,6,7, STK

(40)
1−4,6,7 D: STK

(36)
6 : 22

Z
(36)
14 STK

(37)
1 , STK

(38)
0,5 , STK

(39)
3,4,6, STK

(40)
1,2,4,5,7

E Z
(35)
3 STK

(36)
7 , STK

(37)
4 , STK

(38)
3,5,6, STK

(39)
0−2,6,7, STK

(40)
0−7 G: STK

(37)
5 : 24

Z
(35)
7 STK

(36)
4 , STK

(37)
3,5,6, STK

(38)
0−2,6,7, STK

(39)
0−7 , STK

(40)
0−7 G: STK

(36)
2 : 22

Z
(35)
15 STK

(36)
2 , STK

(37)
1,6 , STK

(38)
0,5,7, STK

(39)
2−6 , STK

(40)
0−7 G: STK

(36)
4 : 22

Z
(34)
3 STK

(35)
7 , STK

(36)
4 , STK

(37)
3,5,6, STK

(38)
0−2,6,7, STK

(39)
0−7 , STK

(40)
0−7 D: STK

(35)
3 : 23

D: STK
(35)
7 : 23

D: STK
(34)
3 : 20

F Z
(34)
7 STK

(35)
4 , STK

(36)
3,5,6, STK

(37)
0−2,6,7, STK

(38)
0−7 , STK

(39)
0−7 , STK

(40)
0−7 G: STK

(36)
1 : 23

Z
(34)
15 STK

(35)
2 , STK

(36)
1,6 , STK

(37)
0,5,7, STK

(38)
2−6 , STK

(39)
0−7 , STK

(40)
0−7 G: STK

(36)
5 : 23

G: STK
(35)
2 : 23

G: STK
(35)
4 : 23

D: STK
(34)
7 : 20

5 MITM and Impossible Differential Attacks on
SKINNYe-64-256 and Its Version 2

5.1 The Meet-in-the-Middle Attack

The three-subset meet-in-the-middle attack was proposed by Bogdanov and Rech-
berger [20] and was summarized by Isobe [41]. Several important techniques
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significantly enhance and enrich the MITM methodology, including the splice-
and-cut technique [5], initial structure [58,59], (indirect-)partial matching [58,
59], sieve-in-the-middle [22], match-box technique [35], and dissection [27], etc.
Recently, several automatic tools [7,8,25,38,57,60] on MITM attacks are pre-
sented. At CRYPTO 2021, Dong et al. [29] developed the MILP model for MITM
key-recovery attack on SKINNY. Combining Dong et al.’s model and our new dis-
coveries on tweakey schedule of SKINNYe-64-256, we develop MITM key-recovery
attacks on 31-round SKINNYe-64-256 and 27-round SKINNYe-64-256 v2 in Sup-
plementary Material D in our full version paper [53].

5.2 Related-Tweakey Impossible Differential

The impossible differential attack is proposed by Biham et al. [14] and Knudsen
[45] independently. It uses a differential with probability zero to act as a dis-
tinguisher, named as the impossible differential. With several rounds appended
before and after the impossible differential distinguisher, one partially encrypt-
s/decrypts a given pair by a candidate key to the input and output of the dis-
tinguisher. The key candidate that leads to the impossible differential will be
the wrong one and will be rejected. This technique provides a sieving of the key
space and the remaining candidates can be tested by exhaustive search. There
are several works analyzed the security of SKINNY family against the impos-
sible differential attacks [4,31,46,56,62], in both single-tweakey and related-
tweakey setting. We introduce related-tweakey impossible differentials on 21-
round SKINNYe-64-256 and 18-round SKINNYe-64-256 v2 in Supplementary
Material E in our full version paper [53].

6 A Proposal for Tweakey Schedule of SKINNY Family

At ASIACRYPT 2014, Jean et al. [42] introduced the STK construction as shown
in Fig. 1, which absorbs arbitrary length of tweakey. It updates each cell of the
tweakey states by multiplying a non-zero αj . For SKINNY-n-zn, the tweakey cells
are updated by dedicated chosen lightweight LFSRs, which guarantees at most
z−1 cancellations within 30 consecutive rounds. However, SKINNY family [9] only
gives instances for z = 1, 2, 3. SKINNYe-64-256 [48] extends z to 4, but fails to
satisfy its expected security claim4. In the updated version SKINNYe-64-256 v2
[50], the designers fixed the issue and claimed that the LFSR for TK4 is the only
one to ensure at most 3 cancellations after exhaustively testing 216 choices. It is
not trivial to extend SKINNY to support arbitrary length of tweakey with similar
subtweakey difference cancellation property to STK construction: for a given cell
position, z − 1 cancellations can only happen every 15 rounds for TK-z (or every
30 rounds for SKINNY-n-zn).
4 Similar issue happens to Lilliput-AE [1], one of the first-round candidates at the

NIST competition, specifies TBCs with up to z = 7. However, they also ignored the
rationale of the original tweakey framework to ensure the security, and were actually
attacked practically [32].
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As stated by Naito et al. [48, Page 5] that PFB Plus “... give new insight to
TBC designers considering that there is no consensus about the adequate tweak
size to support”. It is interesting to consider a uniformed tweakey schedule to
extend SKINNY to support larger tweakey size, while obeying the property of STK
construction, which may have potential application, such as SKINNYe-64-256 v2
in TI-friendly constructions.

For general z ≤ 14, the output nibbles can be represented by linear combi-
nations of the input nibbles as in Eq. (4), i.e.,

⎛
⎜⎜⎜⎜⎜⎜⎝

stk
(2×0)

P̄2×0[i]

stk
(2×1)

P̄2×1[i]

...

stk
(2×14)

P̄2×14[i]

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

I L0
2 · · · L0

z

I L1
2 · · · L1

z

...
...

. . .
...

I L14
2 · · · L14

z

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

tk
(0)
1,i

tk
(0)
2,i

...

tk
(0)
z,i

⎞
⎟⎟⎟⎟⎟⎠

, 0 ≤ i ≤ 7. (11)

To satisfy the subtweakey difference cancellation property, the coefficient matrix
in (11) must satisfy the ‘block-MDS’ property [42], i.e.,

det

⎛
⎜⎜⎜⎜⎝

I Lr1
2 · · · Lr1

z

I Lr2
2 · · · Lr2

z
...

...
...

...
I Lrz

2 · · · Lrz
z

⎞
⎟⎟⎟⎟⎠

�= 0 (12)

for all 0 ≤ r1 < r2 < · · · < rz ≤ 14. In other words, the goal of our design
is to choose Li’s such that the ‘block-MDS’ property is guaranteed. Although
the coefficient matrix in (11) has a block Vandermonde form, there is no simple
formula to compute the determinant of its squared sub-matrices for general Li’s.
When the Li’s are pairwise commutable, a formula can be deduced for squared
block Vandermonde matrices, which we refer to Supplementary Material F in
our full version paper [53].

6.1 The Choice of Li

Our construction can be viewed as an extension of the generator matrices of
Reed-Solomon codes to the block matrix form. Specifically, denoting L1 = I,
and we choose the Li’s to be consecutive powers of a matrix L, i.e.,

{Li}1≤i≤z = {Lα+1, · · · ,Lα+z} (13)

for some integer α ∈ [−z,−1]. Then we can show that the ‘block-MDS’ property
is guaranteed if the matrix L satisfies specific property.

Proposition 1. Suppose L is a 4 × 4 matrix over GF (2) such that the char-
acteristic polynomial pL (λ) is a primitive polynomial of degree 4 over GF (2).
Then L has cycle 15, and for any integer α,
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det

⎛
⎜⎜⎜⎜⎝

(Lα+1)r1 (Lα+2)r1 · · · (Lα+z)r1

(Lα+1)r2 (Lα+2)r2 · · · (Lα+z)r2

...
...

. . .
...

(Lα+1)rz (Lα+2)rz · · · (Lα+z)rz

⎞
⎟⎟⎟⎟⎠

�= 0 (14)

for all 0 ≤ r1 < r2 < · · · < rz ≤ 14.

Proof. Let λi, 1 ≤ i ≤ 4, be the eigenvalues of L, then λi is primitive in GF (24)
and Lr has eigenvalues λr

i , 1 ≤ i ≤ 4. For 1 ≤ r < 15, we have λr
i �= 1, 1 ≤ i ≤ 4,

and thus Lr �= I. For r = 15, note that pL (λ) | (λ15 − 1), and by the Cayley-
Hamilton theorem (see Section 9 of [55]) we have pL (L) = 0. Then it follows
that L15 − I = 0.

To show the determinant is nonzero, we observe that
⎛
⎜⎜⎜⎜⎝

(Lα+1)r1 · · · (Lα+z)r1

(Lα+1)r2 · · · (Lα+z)r2

...
. . .

...
(Lα+1)rz · · · (Lα+z)rz

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Lαr1

Lαr2

. . .

Lαrz

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

Lr1 · · · (Lr1)z

Lr2 · · · (Lr2)z

...
. . .

...
Lrz · · · (Lrz )z

⎞
⎟⎟⎟⎟⎠

. (15)

Then it suffices to show that det
(
(Lri)j

)
1≤i,j≤z

�= 0 for all 0 ≤ r1 < r2 < · · · <

rz ≤ 14, which we refer to Supplementary Material F in full version paper [53].
��

Construction of L. One simple way to construct L is to take L to be the
companion matrix of a primitive polynomial. For example, for the primitive
polynomial λ4 + λ + 1, we can take L to be the companion matrix

L =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎠ . (16)

It can be readily checked that the characteristic polynomial pL (λ) = λ4 + λ + 1
and thus the eigenvalues of L are distinct primitive elements in GF (24). On the
other hand, taking companion matrices of primitive polynomials is not the only
way to obtain L. In fact, we perform an exhaustive search of all binary 4 × 4
binary matrices, and find totally 1344 distinct L whose characteristic polynomial
is primitive over GF (2).
An Example for z = 4. Taking α = −2 and L equals to that in (16), then

{Li}1≤i≤4 = {L−1,L0,L1,L2}. (17)

Without loss of generality, let

L2 = L1 =

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎟⎠ ,L3 = L−1 =

⎛
⎜⎜⎜⎝

1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎠ ,L4 = L2 =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0

⎞
⎟⎟⎟⎠ . (18)
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Considering the LFSRs defined by (18), we found that the LFSRs for TK2

and TK3 coincide with the original LFSRs in SKINNY, and the LFSRs for TK4

coincides with that constructed in SKINNYe-64-256 v2. From this point of view,
our construction can be viewed as a natural extension of the original SKINNY-64
and SKINNYe-64-256 v2.

For general z ≤ 14, the ‘block-MDS’ property of our construction guarantees
there are at most z−1 difference cancellations every 15 rounds for TK-z (or every
30 rounds SKINNY-n-zn). We derive the lower bounds of the number of active
S-boxes for SKINNY-n-zn (z ≤ 14) with our construction of the tweakey schedule
(see Supplementary Material G in our full version paper [53]). The results (see
Table 17 in our full version paper [53]) show that our new tweakey schedule for
TK-z (z ≤ 14) leads to a natural increase of the bounds compared to TK-1, TK-2
and TK-3 in [9] and TK-4 in [50].

Efficiency Considerations. How to choose Li’s to optimize the implementa-
tion efficiency is also an important issue. As pointed in [48], one direction of
optimization is to minimize the total number of XORs required by the LFSRs.
For z = 4, the LFSRs constructed through (18) require only 4 XORs totally, i.e.,
L2 and L3 require only 1 XOR respectively, and L4 requires 2 XORs. Note that
in [48] it was proved that there is no secure LFSRs for TK4 with only a single
XOR, therefore the LFSRs constructed through (18) is optimal with respect to
the number of XORs. For all 4 ≤ z ≤ 7, we enumerate all possible L and α, and
give the optimal number of XORs required in our construction in Table 8.

Table 8. Optimal number of XORs required in our construction.

z L {Li}2≤i≤z Number of XORs Total XORs

4

(
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2} {1, 1, 2} 4

5

(
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2,L−2} {1, 1, 2, 3} 7

6

(
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2,L−2,L3} {1, 1, 2, 3, 3} 10

7

(
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

)
{L,L−1,L2,L−2,L3,L4} {1, 1, 2, 3, 3, 5} 15

Another direction of optimization is to minimize the circuit area of the
LFSRs. In our construction, all Li’s are powers of a matrix L, therefore a min-
imal area implementation can be supported by instantiating only one circuit of
L and computing each Li iteratively. For example, for z = 4 we take α = −1
and L2 = L,L3 = L2,L4 = L3. Then L2,L3 and L4 can be computed by
repeating L in 1, 2 and 3 times respectively, and the total latency is as 6 times
as that of a single L. On the other hand, we propose an area-latency trade-off
to reduce the latency by slightly increasing the area. Again we take z = 4 and
L2 = L,L3 = L2 and L4 = L3 for an example. In this case we instantiate a
circuit of L and a circuit of L2. Then taking x2,x3,x4 ∈ GF (2)4 as inputs,



312 L. Qin et al.

the output states L2x2,L3x3,L4x4 can be computed in two steps, i.e., firstly
compute Lx2 and L2x4, then compute L(L2x4) and L2x3. As a result, the total
latency is reduced by a third at the cost of double area5. In Table 9 we list the
area-latency trade-off for our construction for 4 ≤ z ≤ 7.

A More Scalable Construction. Our construction can be naturally extended
to choose c×c (c ≥ 4) matrices Li’s such that the ‘block-MDS’ property in (12) is
satisfied. The discussion is given in Supplementary Material H in our full version
paper [53], where possible ways to extend the tweakey size for SKINNY-128 are
introduced. Similar methods can also be applied to Deoxys-BC to extend its
tweakey size.

Table 9. The area-latency trade-off for our construction.

z {Li}2≤i≤z Instantiated circuit Area Latency

4 {L,L2,L3} {L} 1 6

{L,L2,L3} {L,L2} 2 2

5 {L,L2,L3,L4} {L} 1 10

{L,L−1,L2,L−2} {L,L−1} 2 3

{L,L2,L3,L4} {L,L2,L3} 3 2

6 {L,L2,L3,L4,L5} {L} 1 15

{L,L2,L3,L4,L5} {L,L2} 2 4

{L,L2,L3,L4,L5} {L,L2,L4} 3 3

{L,L2,L3,L4,L5} {L,L2,L3,L4} 4 2

7 {L,L2,L3,L4,L5,L6} {L} 1 21

{L,L−1,L2,L−2,L3,L−3} {L,L−1} 2 6

{L,L2,L3,L4,L5,L6} {L,L2,L4} 3 3

{L,L−1,L2,L−2,L3,L−3} {L,L−1,L2,L−2} 4 2

7 Conclusion

The unexpected cancellations in the new tweakey schedule of SKINNYe-64-256
significantly enhances several attacks on SKINNYe-64-256 when compared to
that on SKINNY-64-128 and SKINNY-64-192, and leaves a security margin of 3
rounds in related-tweakey setting. Moreover, we give some cryptanalysis results
on the updated version 2, which indicates that the current version satisfies the
security claims of the designers. At last, we introduce a uniformed design strategy
5 The area of the trade-off implementation mainly includes the circuit for L and L2

and two 4-bit registers. In area optimization implementation, the area is the circuit
of L and one 4-bit register. Assume the registers bound the area, we can say trade-off
method costs double area.
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for the tweakey schedule of SKINNY-n-zn (z ≤ 14), and prove that it satisfies the
security requirements of the STK construction.

At CRYPTO 2022, Naito, Sasaki, Sugawara further introduced a new tweak-
able block cipher SKINNYee [49] based on SKINNYe-64-256 version 2. It supports
128-bit key and a (256+3)-bit tweak with a 64-bit plaintext block. The method
to extend the tweakey size is different from what we suggest in Sect. 6. It is an
interesting open problem to explore its security margin.
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Abstract. In CRYPTO 2019, Gohr shows that well-trained neural net-
works can perform cryptanalytic distinguishing tasks superior to tradi-
tional differential distinguishers. Moreover, applying an unorthodox key
guessing strategy, an 11-round key-recovery attack on a modern block
cipher Speck32/64 improves upon the published state-of-the-art result.
This calls into the next questions. To what extent is the advantage
of machine learning (ML) over traditional methods, and whether the
advantage generally exists in the cryptanalysis of modern ciphers? To
answer the first question, we devised ML-based key-recovery attacks on
more extended round-reduced Speck32/64. We achieved an improved
12-round and the first practical 13-round attacks. The essential for the
new results is enhancing a classical component in the ML-based attacks,
that is, the neutral bits. To answer the second question, we produced var-
ious neural distinguishers on round-reduced Simon32/64 and provided
comparisons with their pure differential-based counterparts.

Keywords: Differential cryptanalysis · Machine learning · Speck ·
Simon · Neural distinguisher · Key recovery · Neutral bits

1 Introduction

Cryptography and machine learning (ML) share many concerns, e.g., distin-
guishing, classification, decision, searching, and optimization. It has been a long-
standing challenge to answer whether computers could “learn to perform crypt-
analytic tasks” [25]. These years, ML has made rapid progress in application
domains ranging from machine translation, visual recognition, and autonomous
vehicles to playing board games at superhuman levels [26]. ML has also been used
to construct new types of cryptographic schemes [1] or crack ancient ciphers [14].
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However, whether ML models can learn from scratch and then break mod-
ern ciphers at a superior level is still unpredictable. Nevertheless, one can still
look forward to the prospect that ML approaches become substantial positive
additions to the existing cryptanalysis toolkit, which has already been true in
side-channel cryptanalysis [24].

For using ML to assist classical cryptanalysis, there are several questions to
explore. That might include the follows:

– Can ML models learn new features with/without prior human cryptanalysis?
– Can ML provide more accurate and efficient measurements of known features?
– Can various ML approaches combined with various cryptanalysis techniques

perform cryptanalysis tasks at a superior level to orthodox techniques, then be
interpreted, and in turn, help to develop innovative and general cryptanalytic
techniques?

In CRYPTO 2019, a remarkable work by Gohr [13] shows that commonly
used neural networks could be trained to be superior cryptographic distinguish-
ers. The work shed light on positive answers to the first two questions. It showed
that deep neural-network distinguisher could exploit features that strong classi-
cal distinguishers fail to capture for Speck. In [13], neural networks were trained
with principles of differential cryptanalysis in mind. They show a remarkable
capability in distinguishing attacks. More importantly, combining them with
classical differentials and a highly selective key search policy forms a power-
ful key-recovery attack. Specifically, using the obtained neural distinguishers
(NDs) as the main engines, prepending them with a classical differential (CD),
applying basic reinforcement learning mechanisms, i.e., the Upper Confidence
Bounds (UCB) and Bayesian optimization, an 11-round key-recovery attack on
Speck32/64 can achieve an unparalleled speed. However, to attack more rounds,
one has to extend either the classical component, i.e., the prepended CD, or the
ND. Both are facing obstacles that have not been overcome since [13].

In EUROCRYPT 2021, Ghor’s ND got a deeper interpretation by Benamira
et al. [7]. They were found to have learned not only the differential distribution on
the output pairs but also the differential distribution in penultimate and ante-
penultimate rounds. Still, the other enhanced new component, i.e., the UCB
and Bayesian optimization-based key-recovery phase in the superior 11-round
attack in [13], has not been fully interpreted and theorized, thus still missing
necessary guidance on tuning various parameters and sound theoretical models
on analyzing data/time complexity and success probability.

Note that one of the main difficulties in evaluating the scope of applica-
bility of ML algorithms is the lack of a formally specified theoretical model.
Strong theoretical models for ML-based cryptanalysis are vital for generalizing
the techniques. However, in parallel or even before our community achieve sound
theoretical models, devising a sufficient number of successful attacks as positive
examples in this new setting is essential. Without providing the best attacks as
examples, it might be harder to obtain a theoretical model that produces the
most powerful attacks. This work provides strong positive examples and exten-
sive experimental data to support the first steps towards a realistic theoretical
model for effective ML-based cryptanalysis.
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Our Contribution. The contribution of this work includes the following.

– Practical attacks and rules of thumb
• The first practical 13-round and an improved 12-round ND-based key-

recovery attacks on Speck32/64 are devised. They have considerable
advantages in time complexity over attacks devised using orthodox crypt-
analysis. In addition, the first practical 16-round ND-based key-recovery
attack on Simon32/64 is devised, which has a considerable advantage in
data complexity. These results are summarized in Table 1.

• Substantial illustrations unveil previously hidden details of the unortho-
dox key-recovery phase. Furthermore, observations derived from the illus-
trations provide rules of thumb for tuning critical parameters.

– Applications of enhanced cryptanalytic techniques
The improved attacks are achieved by enhancing the classical components
in the differential-neural attack scheme in [13], which are the CD’s neutral
bits (NBs). NBs and NB sets were first introduced by Biham and Chen in
the cryptanalysis of hash function SHA-0 [8]. Later, many extensions and
related concepts were proposed and applied in classical cryptanalysis, includ-
ing message modification [29], tunnels [20], boomerangs [19], probabilistic
NBs [4], and free bits [21]. Flipping an NB of a differential’s conforming pair,
the resulting pair also conforms to the differential. Thus, NBs can be used
to derive a batch of data pairs from a single pair, and they conform or do
not conform to the differential simultaneously. Single-bit NBs are employed
in ML-based attacks in [13] to boost signals from NDs. However, NBs of long
CD are too scarce to boost signals from a weak but long ND, thus inhibiting
the ML-based attack from extending more rounds. In this work, we exploit
various generalized NBs to make weak ND usable again. Particularly, we
employed conditional simultaneous neutral bit-sets (CSNBS) and switching
bit for adjoining differentials (SBfAD), which are essential for achieving effi-
cient 12-round and practical 13-round attacks.

– New observations
• We note the output difference of the CD matters to ND, but not the input

difference. Hence, more than one CD can be prepended to ND, as long as
they share the same output difference. Some neutral bits can be shared
by multiple such differentials. Using such differentials might enable data
reuse, thus slightly reducing data complexity.

• We find that there are additional constraints on subkeys for some differen-
tial trails used in the presented attacks as well as the previous best attacks
on Speck32/64 [9,11,27]. Thus, the attacks only work for a subspace of
the keys, i.e., weak keys up to half of the keyspace.

– Various NDs and DDT-based distinguishers (DD) for Simon32/64
• Besides the Residual Network (ResNet) [16] considered by Gohr in

[13], other neural networks that have shown advantages on ResNet in
specific tasks, including Dense Network (DenseNet) [18] and the Squeeze-
and-Excitation Network (SENet) [17], are investigated. Additionally, vari-
ous training schemes, including direct training, key-averaging, and staged
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training, were attempted. This effort results in various NDs covering up to
11-round Simon32/64.

• The full distribution of differences induced by the input difference (0x0000,
0x0040) up to 11 rounds are computed for Simon32/64, which results in
various DDs. These DDs provide solid baselines for ND. We note that r-
round ND should be compared with (r − 1)-round DD for Simon (differ-
ent from Speck). The results show that r-round NDs achieve similar but
weaker classification accuracy than (r − 1)-round DDs (see Table 5). We
conjecture that r-round NDs can learn to “decrypt” one un-keyed round
and try to learn the distribution of the (r − 1)-round differential, but fails
to learn more features beyond the distribution of differences.

The source codes of the new attacks and the new NDs can be found via
https://github.com/differential-neural-cryptanalysis/speck32_simon32.

Table 1. Summary of key-recovery attacks on Speck32/64 and Simon32/64

Target #R Time
(#Enc)

Data
(#CP)

Succ.
Rate

Weak
keys

Configure Ref.

Speck32/64

11
246 214 – 264 1+6+4 [11]
238

�
213.6 0.52 264 1+2+7+1 [13]

12

251 219 – 264 1+7+4 [11]
243.40�

222.97 0.40 264 1+2+8+1 [13]
244.89�

222.00 0.86 264 1+2+8+1 Sect. 4.3
242.97

�
218.58 0.83 263 1+3+7+1 Sect. 4.3

13
257 225 – 264 1+8+4 [11]
248.67

�+r 229 0.82 263 1+3+8+1 Sect. 4.2

14 262.47 230.47 – 264 1+9+4 [27]

Simon32/64 16
226.48 229.48 0.62 264 2+12+2 [3]
241.81�+r 221 0.49 264 1+3+11+1 Sect. E.4 [5]

18 246.00 231.2 0.63 264 1+13+4 [2]
21 255.25 231.0 – 264 4+13+4 [28]

- Not available.
� Under the assumption that one second equals the time of 228 executions of
Speck32/64 or Simon32/64 on a CPU.
r : log2(cpu/gpu), where cpu and gpu are the CPU and GPU time running an attack,
respectively. In our computing systems, r = 2.4 (The worse case execution time of the
core of the 12-round attack on Speck32/64 (without guessing the one key bit of k0)
took 6637 and 1265 s on CPU and GPU, respectively).
In the column entitled “Configure”, the numbers colored in blue and red are the num-
bers of round covered by CDs and NDs, respectively.
Please see [5] for the full version of this article.

Organization. The rest of the paper is organized as follows. Section 2 gives
the preliminary on ML-based differential cryptanalysis and introduces the design

https://github.com/differential-neural-cryptanalysis/speck32_simon32
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of Speck and Simon. Section 3 introduces concepts of generalized neutral bits
and some new notice on differential trails of Speck32/64. The framework of the
enhanced differential-neural cryptanalysis and its applications to Speck32/64
and Simon32/64 are presented in Sect. 4 and Section E of the full version [5].
Section 5 exhibits details of important statistics during the key-recovery phase.
Rules of thumb are provided for tuning various parameters for the attacks.
Section 6 presents various of NDs and DDs on Simon32/64 reduced up to
11 rounds.

2 Preliminary

2.1 Brief Description of Speck32/64 and Simon32/64

Notations. Denote by n the word size in bits, 2n the state size in bits. Denote
by (xr, yr) the left and right branches of a state after the encryption of r rounds.
Denote by x[i] (resp. y[i]) the i-th bit of x (resp. y) counted starting from 0;
Denote by [j] the index of the j-th bit of the state, i.e., the concatenation of x
and y, where y[0] is the 0-th bit, and x[0] is the 16-th bit. Denote by ⊕ the bit-
wise XOR, � the addition modulo 2n, & the bit-wise AND, x≪s the bit-wise left
rotation by s positions, x≫s the bit-wise right rotation by s positions. Denote
by Fk (resp. F −1

k ) the round function (resp. inverse of the round function) using
subkey k of the encryption.

Brief Description of Speck32/64 and Simon32/64. Speck32/64 and
Simon32/64 are small members of the lightweight block cipher families Speck
and Simon [6] designed by researchers from the National Security Agency (NSA)
of the USA. Both Speck32/64 and Simon32/64 have a Feistel-like structure1, a
block size and a key size of 32 resp. 64 bits. The round functions use combinations
of rotation, XOR, and addition modulo 216 (Speck) or bit-wise AND (Simon).
Speck32/64 has 22 rounds, and Simon32/64 has 32 rounds. The encryption
algorithms of Speck32/64 and Simon32/64 are listed in Algorithms 1 and 2.
The subkeys of 16-bit for each round are generated from a master key of 64-bit
by the non-linear key schedule using the same round function (Speck32/64) or
linear functions of simple rotation and XOR (Simon32/64).

Algorithm 1: Encryption of
Speck32/64
Input: P = (x0, y0), {k0, · · · , k21}
Output: C = (x22, y22)
for r = 0 to 21 do

xr+1 ← x≫7
r � yr ⊕ kr

yr+1 ← y≪2
r ⊕ xr+1

end

Algorithm 2: Encryption of
Simon32/64
Input: P = (x0, y0), {k0, · · · , k31}
Output: C = (x32, y32)
for r = 0 to 31 do

xr+1 ←
(x≪1

r &x≪8
r ) ⊕ x≪2

r ⊕ yr ⊕ kr

yr+1 ← xr

end

1 Speck can be represented as a composition of two Feistel maps [6].
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2.2 Differential-Based Neural Distinguishers

The work in [13] shows that a neural network could be trained to capture the
non-randomness of the distribution of values of output pairs when the input
pairs to round-reduced Speck32/64 are of specific difference, and thus play
the role of distinguisher in cryptanalysis. This differential-based ND is the first
known machine learning model that successfully performed cryptanalysis tasks
on modern ciphers (beyond the applications on side-channel attacks).

In the following, the way of training the differential-based ND introduced
in [13] is briefly recalled.

The Training Data and Input Representation. For a target cipher, the
neural network is trained to distinguish between examples of ciphertext pairs cor-
responding to plaintext pairs with particular difference and those corresponding
to random plaintext pairs. Thus, each of the training data is a data pair of the
form (C, C ′) together with a label taking a value 0 or 1, where 0 means the corre-
sponding plaintext pair is generated randomly, and 1 from a particular plaintext
difference ΔI . For Speck32/64, the ΔI is chosen to be of a single active bit,
i.e., (0x0040, 0000), which is the intermediate difference lying in a known best
differential characteristic.

The state of Speck32/64 has left and right parts; thus, a pair of data is
transformed into a quadruple of words (x, y, x′, y′) where C = x‖y and C ′ =
x′‖y′. The word quadruple is then interpreted into a 4 × 16-matrix with each
word as a row-vector before being fed into the neural network with an input layer
consisting of 64 units. Among the training data (and verification data), half are
positive and half are negative examples, labeled by 1 and 0, respectively.

Training Schemes. The neural network structure used in [13] is a deep resid-
ual network. There are three training schemes proposed in [13]. The first is
a basic training scheme that is sufficient for successfully training short-round
distinguishers. The second is an improved training scheme for r-round distin-
guishers that simulate the output of the KeyAveraging algorithm used with
an (r−1)-round distinguisher. Using the second scheme, the best ND on 7-round
Speck32/64 was achieved in [13]. The third is a staged training method that
turns an already trained (r−1)-round distinguisher into an r-round distinguisher
in several stages. Using the third scheme, the longest ND on Speck32/64, which
is an 8-round one, was achieved.

2.3 Upper Confidence Bounds and Bayesian Optimization

Besides a basic key-recovery attack, an improved attack using specifics of the tar-
geted cipher (i.e., the wrong key randomization hypothesis does not hold when
only one round of trial decryption is performed) and elements from reinforce-
ment learning (i.e., automatic exploitation versus exploration trade-off based on
upper confidence bounds) was proposed in [13].

The improved key-recovery attack employs an r-round main and an (r − 1)-
round helper ND trained with data pairs corresponding to input pairs with
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difference ΔI ; a short s-round differential, ΔI′ → ΔI with probability denoted
by 2−p, is prepended on top of the NDs (refer to Fig. 1 for an illustration of the
components of the key-recovery attack.) About c·2p (denoted by ncts) data pairs
with difference ΔI′ are randomly generated, where c is a small constant; Neutral
bits of the s-round differential are used to expand each data pair to a structure
of nb data pairs. The resulting ncts structures of data pairs are decrypted by one
round with 0 as the subkey2 to get plaintext structures. All plaintext structures
are queried to obtain the corresponding ciphertext structures.

Each ciphertext structure is to be used to generate candidates of the last
subkey by the r-round main ND (and latter of the second to the last subkey by
the (r − 1)-round helper ND) with a highly selective key search policy based on
a variant of Bayesian optimization.

More specifically, the key search policy depends on an important observation
that the expected response of the distinguisher upon wrong-key decryption will
depend on the bit-wise difference between the trial key and the real key. This
wrong key response profile, which can be precomputed, is used to recommend
new candidate values for the key from previous candidate values by minimizing
the weighted Euclidean distance as the criteria in an BayesianKeySearch (see
Algorithm 4 in the full version [5].) It recommends a set of subkeys and provides
their scores without exhaustively performing trail decryptions.

The use of ciphertext structures is also highly selective using a standard
exploration-exploitation technique, namely Upper Confidence Bounds (UCB).
Each ciphertext structure is assigned a priority according to the scores of the
subkeys they recommended and how often they were visited.

An important detail in the BayesianKeySearch is that the responses vi,k

from the ND on ciphertext pairs in the ciphertext structure (of size nb) are
combined using the Formula 1 and used as the score sk of the recommended
subkey k (refer to Algorithm 4 in the full version [5]). This score is highly decisive
for the execution time and success rate of the attack. It will determine whether
the recommended subkey will be further treated as its score passes or fails to
pass the cutoff and also determine the priority of ciphertext structures to be
visited. The number of ciphertext pairs in each structure is decisive when the
ND has low accuracy.

sk :=
nb−1∑

i=0
log2( vi,k

1 − vi,k
) (1)

3 Deep Exploring of Neutral Bits
3.1 The Motivation of Neutral Bits
Typically, the more rounds a ND covers, the lower its accuracy. When the accu-
racy becomes marginally higher than 0.5, it is hard to be used in a practical key-
2 For Speck, there is no whitening key and the first subkey is XORed after the first

non-linear operation, which makes the first round free in differential attack (see the
top of Fig. 3 in [5]).
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Fig. 1. Components of the key-recovery attacks

recovery attack. Thus, Gohr in [13] used the combined response (Formula 1) of
the ND over large number of samples of the same distribution as a distinguisher
(named as combined-response-distinguisher, CRD). By doing so, the signal from
the ND is boosted, and the distinguishability is increased. For a CRD built on
top of a weak ND to reach its most potential with respect to distinguishability,
the number of samples of the same distribution should be sufficiently large (see
Sect. C of the full version [5] for a detailed experimental study on the relation
between the distinguishability of CRD and the number of combined samples).

For the hybrid differential distinguisher used in the key-recovery attack
in [13], it is not straightforward to aggregate enough samples of the same dis-
tribution fed to the ND due to the prepended CD. To overcome this problem,
Gohr in [13] used the neutral bits of the CD, which is a notion first introduced
by Biham and Chen for attacking SHA-0 [8]. The neutral bit has many exten-
sions and related concepts, including message modification [29], tunnels [20],
boomerangs [19], probabilistic neutral bits [4], and free bits [21]. Changing the
values at the neutral bits of an input pair does not change the conformability to
the differential. Thus, one can use m neutral bits to derive 2m data pairs from
a single pair such that they conform or do not conform to the differential simul-
taneously. The more neutral bits there are for the prepended CD, the more the
samples of the same distribution that could be generated for the ND. However,
generally, the longer the CD, the fewer the neutral bits.

Finding enough neutral bits for prepending a long CD over a weak ND
becomes a difficult problem for devising a key-recovery to cover more rounds.
Thus, the first part of this work focuses on finding various types of neutral bits.

3.2 Neutral Bits and Generalized Neutral Bits

Notations. Let δ := Δin → Δout be a differential of an r-round encryption F r.
Let (P, P ′) be the input pair and (C, C ′) be the output pair, where P ⊕P ′ = Δin,
C = F r(P ), and C ′ = F r(P ′). If C ⊕C ′ = Δout, (P, P ′) is said to conform to the
differential δ (conforming pairs, or correct pairs of the differential). The primary
notion of neutral bits can be interpreted as follows.
Definition 1 (Neutral bits of a differential, NBs [8]). Let e0, e1, . . . , en−1
be the standard basis of F

n
2 . Let i be an index of a bit (starting from 0). The

i-th bit is a neutral bit of the differential Δin →Δout, if for any conforming pair
(P, P ′), (P ⊕ ei, P ′ ⊕ ei) is also a conforming pair.
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Let {i1, i2, . . . , in} be the set of NBs of a differential Δin → Δout. Denote
the subspace of Fn

2 with basis {ei1 , ei2 , . . . , ein
} by S. Then, from one input pair

(P, P ′) where P ⊕ P ′ = Δin, one can generate a set {(Pi, P ′
i ) | Pi ∈ P ⊕ S, P ′

i =
Pi ⊕Δin} that forms a structure with the same conformability to the differential.

For a differential Δin → Δout of F r, in the view of a system of equations
defined on the derivative function of F r, i.e., DΔin

F r(P ) = Δout, a set of neutral
bits N B partitions the solution space of DΔin

F r(x) = Δout into equivalence
classes. It can be seen that the more neutral bits for a differential, the more
structured the solution space.

Generalization of Neutral Bits. In general, neutral bits of non-trivial differentials
are scarce. In [13], because of the lack of neutral bits for the 2-round differential
of Speck32/64, probabilistic neutral bits (PNBs for short) are exploited. This
notion of PNB has already been introduced by Aumasson et al. in previous
differential cryptanalysis of stream ciphers Salsa20 and Chacha, and compression
function Rumba [4]. Formally, it can be defined as follows.

Definition 2 (Probabilistic neutral bits, PNBs [4]). Let i be an index of
a bit. The i-th bit is a p-probabilistic neutral bit of the differential Δin → Δout,
if the event that when (P, P ′) conforms to the differential then (P ⊕ ei, P ′ ⊕ ei)
also conforms to the differential under the same key, has a probability p (over
the choice of P and the key).

In the sequel attacks, the higher the probability p is, the higher the neutrality
quality, and the more useful the neutral bit becomes. For convenience, when
p = 1, the neutral bits are said to be deterministic neutral bits.

In this work, two types of generalized neutral bits are considered beyond
the (probabilistic) neutral bits considered in [13]. The first type, named
simultaneous-neutral bit-set (SNBSs for short), has already been introduced
together with the notion of neutral bit in [8]. That is, for a differential, given
a conforming pair, complementing individual bits, the conformability might be
changed, but simultaneously complementing a set of bits does not change the
conformability of the resulted pair. Formally, it can be defined as follows.

Definition 3 (Simultaneous-neutral bit-sets, SNBSs [8]). Let Is = {i1,
i2, . . ., is} be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. The bit-set Is is a

simultaneous-neutral bit-set of the differential Δin →Δout, if for any conforming
pair (P, P ′), (P ⊕ fIs

, P ′ ⊕ fIs
) is also a conforming pair, while for any subsets

of Is, the conformability of the resulted pair does not always hold.

If we view that finding neutral bits is to form a subspace of F
n
2 in which the

corresponding data have the same conformability to the differential, the essence
of generalizing to SNBS is that, instead of only considering the standard basis
corresponding to single-bit NBs, we now consider arbitrary bases.

The second type, which is a natural generalization, is named in this work
as conditional (simultaneous-) neutral bit(-set)s (CSNBSs for short), that is, the
bits or bit-sets are neutral for input pairs fulfilling specific conditions. Formally,
it can be defined as follows.
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Definition 4 (Conditional (simultaneous-) neutral bit(-set)s, CSNBSs).
let Is = {i1, i2, . . . , is} be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. Let C be

a set of constraints on the value of an input P , and PC be the set of inputs that
fulfill the constraints C. The bit-set Is is a conditional simultaneous-neutral bit-set
of the differential Δin → Δout, if for any conforming pair (P, P ′) where P ∈ PC,
(P ⊕ fIs

, P ′ ⊕ fIs
) is also a conforming pair.

The most straightforward constraints can be that some bit values of P are
fixed. However, the constraints on the values of input P can be a more involved
system of linear or non-linear equations.

Remark 1. Interestingly, various ‘tunnels’ have been used in [20] to speed up
the search of MD5 collisions. They are essentially (generalized) neutral bits,
including PNBs and CNBs. For consistency, in this paper, we use the extended
names of the more well-known concept of ‘neutral bits’ instead of ‘tunnels’.

Remark 2. The neutrality of CSNBSs depends on the values of some particular
bits. The selected data is at an intermediate round in our attacks in this work,
although the difference does not depend on the round-key, the values do. Thus,
using CSNBSs, the attack requires guessing some key bits of the first round.

3.3 Automatic Procedure to Search for CSNBSs

To find CSNBSs, we use an automatic procedure to experimentally evaluate the
conditional neutral probability of candidate SNBSs. Concretely, we investigate
how the neutrality of each candidate SNBS is influenced by values of bits in
some involved and controllable variables (for Speck32/64, such variables are
supposed to be the variables involved in the first modular addition, particularly,
they are x1, y1, and x1

≫7 ⊕ y1
3), and search CSNBSs conditioned on bits of

these variables with the procedure in Algorithm 3.

3.4 Switching Bits for Adjoining Differentials

One knows that for a differential δ1 = Δin1 →Δout, flipping a non-neutral bit of
a conforming pair might make the resulting pair not conform to the differential.
However, it is interesting that the resulted pair might turn into a conforming pair
of another differential δ2 = Δin2 → Δout (after adjusting the input difference).
If flipping this bit turns all conforming pairs of δ1 into all conforming pairs
of δ2, then δ2 has the same probability as δ1. Since δ1 and δ2 have the same
probability and share the same output difference, which will be the connecting
difference in a hybrid distinguisher, the two differential are equally useful. In this
case, that non-neutral bit can play the same role as neutral bits for generating
structures of pairs simultaneously satisfying the connecting difference in a hybrid
distinguisher. Formally, we define such bits that relate two differential as follows.

3 In these considered variables, (x1, y1) = (x̃1 ⊕ k0, ỹ1 ⊕ k0) is the real input to the CD
(see Fig. 3 in [5]), where (x̃1, ỹ1) is the chosen data in the key-recovery attack (since,
in the key-recovery attack, the CD will be freely extended one round backward).
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Algorithm 3: An automatic procedure to search for CSNBSs
1. Generate N random conforming pairs of the differential, each with a different

random key.
2. For each candidate SNBS, denoted by I, for each bit b of a variable x possibly

influencing the neutrality, and for c ∈ {0, 1}, do the following.
3. Experimentally evaluate the following probabilities over the conforming pairs.

– Pr[I is neutral], i.e., the neutral probability of I;
– Pr[b = c], i.e., the probability of b taking value c;
– Pr[I is neutral and b = c], i.e., the probability of I is neutral and b taking

value c for a random conforming pair;
4. Compute Pr[I is neutral | b = c] as Pr[I is neutral and b=c]

Pr[b=c] (when Pr[b = c] = 0,
set Pr[I is neutral | b = c] as 0.

5. If Pr[I is neutral | b = c] − Pr[I is neutral] > τ and Pr[I is neutral | b = c] > ξ,
take I as a useful CSNBS and b = c as its condition, and store in a set CNB.

– In our experiments, N takes 1000. Statistics using 10, 100, 5000 conforming pairs were
also made as preliminary tests. The statistical results do not have obvious divergence
when using more than 100 conforming pairs, thus 1000 should be sufficient.

– In this procedure, τ and ξ are thresholds which can be adjusted to make trade-offs
between the cost of imposing the condition, the number of CNBs, and the quality of
CNBs. Typically, set τ be 0.2 and ξ be 0.8 will work well.

Definition 5 (Switching bits for adjoining differentials, SBfADs). Let i
be an index of a bit. The i-th bit is an switching bit of two differentials δ1 =
Δin1 → Δout and δ2 = Δin2 → Δout, if for any conforming pair (P, P ⊕ Δin1)
of δ1, flipping the i-th bit and adjusting the input difference, the resulted pair
(P ⊕ ei, P ⊕ ei ⊕ Δin2) conforms to δ2 under the same key. We call δ1 and δ2
adjoining differentials.

Conceivably, such adjoining differentials and switching bit should be rare.
However, they do exist. Currently, we found one type for XOR (⊕) differential
of addition modulo 2n (�), and the details can be found in Sect. A of the full
version [5]. A concrete example can be found in Sect. 4.1.

3.5 Paired Differentials Sharing the Same Neutral Bits

From the connecting difference between the CD and the ND propagating upward,
there might be multiple differentials similar to CD and have equally good prob-
ability. These similar differentials are likely to share many neutral bits. When
a shared neutral bit happens to be exactly the difference between input differ-
ences of two differentials, one can re-group ciphertext pairs within each cipher-
text structure corresponding to one differential, and obtain ciphertext structures
corresponding to the other differential without additional queries, i.e., doubling
the number of ciphertext structures for free. Formally, one has the following.

Definition 6 (Paired Differentials). Let δ1 = Δin1 →Δout and δ2 = Δin2 →
Δout be two differentials with the same output difference and with input differ-
ences satisfying Δin1 ⊕ Δin2 = Δnbi

. Suppose nbi is a NB/SNBS for both δ1 and
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δ2. Then, once a pair of input pair {(P, P ⊕ Δin1), (P ⊕ Δnbi
, P ⊕ Δin1 ⊕ Δnbi

)}
is generated for differential δ1, one can re-pair the inputs as {(P, P ⊕ Δin1 ⊕
Δnbi

), (P ⊕ Δnbi
, P ⊕ Δin1)} and obtain a pair of input pair for differential δ2.

Thus, by re-pairing the corresponding ciphertext pairs, the number of ciphertext
structures is doubled. Such two differentials are said to be paired differentials.

Exploiting paired differentials can reduce the data complexity by half, but
is only of interest when the two differentials are with almost equally good prob-
ability and share enough neutral bits to be used in key-recovery attacks. An
example can be found in Sect. 4.1.

Remark 3. Noticeably, the example of paired differentials is exactly the example
of adjoining differentials in Sect. 4.1. However, this same example plays different
roles when employed as paired differentials or as adjoining differentials. Employ-
ing as the former is to reuse data by re-pairing, employing as the latter is to
achieve the effect of neutral bits. If a single pair of differentials acts as paired
differentials and adjoining differentials simultaneously, the generated data pairs
will be all different. Thus, two differentials can play both roles at the same time.

Remark 4. Reusing data to form different pairs adds dependencies between the
chosen data pairs. However, the influence of such dependencies should not mat-
ter. We performed the attacks with and without reusing the data. The results
show that as long as the total number of ciphertext structures and their size are
the same, the success rates are roughly the same.

Remark 5. There is an implicit relation between neutral bits of a differential and
high-order differential. An SNBS Is of a differential Δin →Δout defines a special
high-order differential Δa1,a2 →0, where a1 = Δin and a2 =

⊕
i∈Is

ei.
Besides, there is an interesting relation between neutral bits and the mixture-

differential distinguisher of AES [15]. Some neutral bits found for Speck32/64
and Simon32/64 in this work can result in some bit-level mixture quadruples.

4 Key Recovery Attack on Round-Reduced Speck32/64

This section shows that the neural distinguishers have not reached their full poten-
tial in the key-recovery attacks in [13]. They could be harnessed to cooperate
with classical cryptanalytic tools and perform key-recovery attacks competitive
to the attacks devised by orthodox cryptanalysis. In the following, we present key-
recovery attacks employing the same neural distinguishers used in the 11-round
and 12-round attacks on Speck32/64 in [13]. The first neural distinguishers based
13-round attack and an improved 12-round attack were obtained.

The improved attacks follow the framework of the improved key-recovery
attacks in [13]. An r-round main and an (r−1)-round helper NDs are employed,
and an s-round CD is prepended. The key guessing procedure applies a simple
reinforcement learning procedure. The last subkey and the second to last sub-
key are to be recovered without exhaustively using all candidate values to do
one-round decryption. Instead, a Bayesian key search employing the wrong key
response profile is to be used.
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The prepended CDs to be used in the improved attacks include the same
2-round differential used in the attack in [13] and four new 3-round differentials.
The preliminary is to find enough NBs of these differentials to obtain enough
samples of the same distribution so that we can use the combined response from
the NDs. In the following, the SNBSs, CNBs, and SBfADs introduced in Sect. 3
are to be found and exploited.

4.1 Finding CSNBSs for Speck32/64

For finding NBs of the differential of round-reduced Speck32/64, we used an
exhaustive search for empirical results because of the complexity brought by the
carry of modular addition.

Finding SNBSs for 2-round Differential. For the prepended 2-round CD
on top of the NDs, one can experimentally obtain three deterministic NBs
and two SNBSs (simultaneously complementing up to 4 bits) using an exhaus-
tive search. Besides, bits and bit-sets that are (simultaneous-)neutral with
high probabilities are also detected. Concretely, for the 2-round differential
(0x0211, 0x0a04) → (0x0040, 0x0000), bits and bit-sets that are (probabilistic)
(simultaneous-)neutral are summarized in Table 2.

Table 2. (Probabilistic) SNBSs for 2-round differential (0x0211, 0x0a04) →
(0x0040, 0x0000) of Speck32/64. The statistics were performed on 1000 correct pairs,
each with a different random key. For comparison, one can find the NBs used by attacks
in [13] in Table 9 of the full version [5].

NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr.

[20] 1 [21] 1 [22] 1 [9, 16] 1 [2, 11, 25] 1 [14] 0.965 [15] 0.938
[6, 29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11, 27] 0.736 [8] 0.664

Finding SNBSs for 3-round Differential. The 2-round differential
(0x0211, 0x0a04) → (0x0040, 0x0000) can be extended to two optimal (prob.
≈ 2−11) 3-round differentials, i.e.,

(0x0a20, 0x4205)→(0x0040, 0x0000), (0x0a60, 0x4205)→(0x0040, 0x0000).
However, the NBs/SNBSs of these two optimal differentials are very scarce.

There are four sub-optimal 3-round differentials (prob. ≈ 2−12 when being esti-
mated following Markov model, but are actually 2−11 for 263 keys and 0 for
another 263 keys, see Sect. D of the full version [5] for more details), i.e.,

(0x8020, 0x4101)→(0x0040, 0x0000), (0x8060, 0x4101)→(0x0040, 0x0000),
(0x8021, 0x4101)→(0x0040, 0x0000), (0x8061, 0x4101)→(0x0040, 0x0000).

For these 3-round differentials, the hamming weights of the input differences
are low, and they have more NBs/SNBSs. Still, the numbers of NBs/SNBSs are
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not enough for appending a weak neural network distinguisher. Thus, condi-
tional ones were searched using the procedure in Algorithm 3. For ξ = 0.7, the
obtained CSNBSs and their conditions are summarized together with uncondi-
tional NBs/SNBSs in Table 4. In the table, the columns titled ‘Post.’ are finally
verified neutral probabilities of the (C)SNBSs when all four conditions are ful-
filled.

For each of the four differentials, there are three linear conditions (xy-type)
that are necessary for a pair ((x, y), (x′, y′)) to conform to it, which are listed in
Table 3 (without coloring in gray). For each linear condition, once it is fulfilled,
the probability of the differential increases by a factor of 21. In the following
key-recovery attacks, the linear conditions can be fulfilled by chosen data once
the corresponding bits of k0 are guessed.

Table 3. Necessary conditions to conform to the 3-round differentials (or the dominant
trail in the differential, intermediate differences in the dominant trail are colored in
gray, the condition for the trail instead of the differential is colored in gray, where
c = (x≫7 � y) ⊕ (x≫7 ⊕ y). Each column corresponds to one differential (trail).)

(0x8020, 0x4101) (0x8060, 0x4101) (0x8021, 0x4101) (0x8061, 0x4101)
(0x0201, 0x0604) (0x0201, 0x0604) (0x0201, 0x0604) (0x0201, 0x0604)
(0x1800, 0x0010) (0x1800, 0x0010) (0x1800, 0x0010) (0x1800, 0x0010)
(0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000)⎧

⎪⎨

⎪⎩

x[7] = 0,

x[5] ⊕ y[14] = 1,

x[15] ⊕ y[8] = 0,

x[0] ⊕ y[9] = 0.

⎧
⎪⎨

⎪⎩

x[7] = 0,

x[5] ⊕ y[14] = 0,

x[15] ⊕ y[8] = 0,

x[0] ⊕ y[9] = 0.

⎧
⎪⎨

⎪⎩

x[7] = 0,

x[5] ⊕ y[14] = 1,

x[15] ⊕ y[8] = 1,

y[9] ⊕ c[9] = 0.

⎧
⎪⎨

⎪⎩

x[7] = 0,

x[5] ⊕ y[14] = 0,

x[15] ⊕ y[8] = 1,

y[9] ⊕ c[9] = 0.

Table 4. (C)SNBSs for 3-round differential (0x8020, 0x4101) → (0x0040, 0x0000),
(0x8060, 0x4101) → (0x0040, 0x0000), (0x8021, 0x4101) → (0x0040, 0x0000), and
(0x8061, 0x4101)→(0x0040, 0x0000) of Speck32/64.
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Exploiting SBfADs. Among the four 3-round differentials, (0x8020, 0x4101)→
(0x0040, 0x0000) and (0x8060, 0x4101) → (0x0040, 0x0000) are adjoining dif-
ferentials, and (0x8021, 0x4101) → (0x0040, 0x0000) and (0x8061, 0x4101) →
(0x0040, 0x0000) are adjoining differentials (refer to Sect. 3.4). The bit 5 of x
(the bit 21 of x‖y) is the SBfAD of both pairs. An SBfAD plays the same role
as a deterministic unconditional NB, thus is better to be used than probabilis-
tic and conditional NBs. Specifically, employing SBfAD saves one guessed key
bit and reduces both time and data complexity by half compared to employing
the CSNBS. In the presented 13-round (resp. 12-round) attacks, this SBfAD is
employed, and one CSNBS (resp. PNBS) in Table 4 can be dismissed.

The reasoning on why one can switch between these differentials by bit 5 of
x can be found in Sect. A.2 of the full version [5]. Experiments were performed
and have verified that this SBfAD plays a better role than a CSNBS or a PNBS.
Exploiting Paired Differentials. The four 3-round differentials share
most of the high-probabilistic NBs and the conditions on the NBs.
Besides, the neutral bit [22] makes (0x8020, 0x4101) → (0x0040, 0x0000)
and (0x8060, 0x4101) → (0x0040, 0x0000) (resp. (0x8021, 0x4101) →
(0x0040, 0x0000) and (0x8061, 0x4101) → (0x0040, 0x0000)) be paired differ-
entials as introduced in Sect 3.5.

Specifically, take the first two differentials for example. They share the neutral
bit [22] and all other useful NB. Since (0x8020, 0x4101) ⊕ (0x8060, 0x4101) =
(0x0040, 0000), while bit [22] corresponds to difference Δ22 = (0x0040, 0000),
ciphertext structures for (0x8060, 0x4101) → (0x0040, 0x0000) can be directly
obtained from that of (0x8020, 0x4101) → (0x0040, 0x0000) (refer to Sect. 3.5).
Thus, using a paired differentials (as in the following attack ASpeck13R on the
13-round Speck32/64), one can generate half of the required data pairs for free.
Accordingly, the data complexity to get one pair of ciphertexts is one instead of
two.

Further, the data complexity can be slightly reduced by using both paired dif-
ferentials when the attack requires no more than six NBs (the number of shared
unconditional NBs). For the ease of notation, let us denote (0x8020, 0x4101)
as example difference Δ1

E , and (0x8021, 0x4101) as Δ2
E . Six queries of a plain-

text structure consisting of (P , P ⊕ Δ1
E , P ⊕ Δ22, P ⊕ Δ1

E ⊕ Δ22, P ⊕ Δ2
E ,

P ⊕Δ2
E ⊕Δ22) result in eight pairs to be used in the upcoming attack ASpeck12R

on the 12-round Speck32/64. The eight pairs are two pairs (P, P ⊕ Δ1
E) and

(P ⊕ Δ22, P ⊕ Δ1
E ⊕ Δ22) following input difference Δ1

E , two pairs (P, P ⊕
Δ1

E ⊕ Δ22), (P ⊕ Δ22, P ⊕ Δ1
E) following input difference Δ1

E ⊕ Δ22, two pairs
(P, P ⊕ Δ2

E), (P ⊕ Δ22, P ⊕ Δ2
E ⊕ Δ22) following input difference Δ2

E , and two
pairs (P, P ⊕Δ2

E ⊕Δ22), (P ⊕Δ22, P ⊕Δ2
E) following input difference Δ2

E ⊕Δ22.
In such a way, the average data complexity to get one pair of ciphertexts reduces
from 2 to 3/4.

4.2 Key Recovery Attack on 13-Round Speck32/64
Employing two classical differentials that can simultaneously act as adjoining dif-
ferentials and paired differentials, and combining them with neural distinguish-
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ers, we examine how far a practical attack can go on reduced-round Speck32/64.
A 13-round attack, denoted by ASpeck13R , is devised as follows.

The preliminary components that capture characteristics of Speck32/64 for
devising the attack ASpeck13R are as follows.

1. Two 3-round CDs (0x8020, 0x4101)→(0x0040, 0x0000), (0x8060, 0x4101)→
(0x0040, 0x0000) (refer to the rounds colored in blue in Fig. 3 in the full
version [5]), which act as both adjoining differentials and paired differen-
tials (refer to Remark 3), 11 common NBs (including single-bit NBs, SNBSs,
CSNBSs), i.e., N B: {[22], [13], [20], [5, 28], [15, 24], [12, 19], [6, 29], [4, 27, 29],
[14, 21], [0, 8, 31], [30]} (refer to the columns framed by blue lines in Table 4),
and a SBfAD [21];

2. An 8-round ND, named NDSpeck8R , trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck8R .μ and NDSpeck8R .σ;

3. A 7-round ND, named NDSpeck7R , trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .μ and NDSpeck7R .σ.

The parameters for recovering the last two subkeys are denoted as follows.

1. nkg: the number of possible values for the few guessed bits of k0.
2. ncts: the number of ciphertext structures.
3. nb: the number of ciphertext pairs in each ciphertext structure, i.e., 2|N B|+1.
4. nit: the total number of iterations on the ciphertext structures.
5. c1 and c2: the cutoffs with respect to the scores of the recommended last

subkey and second to last subkey, respectively.
6. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and number of key

candidates within each iteration in the BayesianKeySearch procedures
(refer to Algorithm 4 in the full version [5] for guessing each of the last and
second to last subkeys.

The attack procedure is as follows (refer to Figs. 2 and 3 in [5] ).

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.
2. For each of the nkg values of the 5 key bits k0[7], k0[15] ⊕ k0[8], k0[12] ⊕ k0[5],

k0[1], k0[11] ⊕ k0[4]4,
(a) Generate ncts/2 random data pairs, i.e., (x̃1||ỹ1, x̃′

1||ỹ′
1)’s, with differ-

ence (0x8020, 0x4101), and satisfying the conditions for conforming pairs,

i.e.,
{

x̃1[7] = k0[7],
x̃1[15] ⊕ ỹ1[8] = k0[15] ⊕ k0[8],

and the conditions for three CSNBSs

i.e.,

⎧
⎨

⎩

x̃1[12] ⊕ ỹ1[5] ⊕ 1 = k0[12] ⊕ k0[5],
ỹ1[1] = k0[1],
x̃1[11] ⊕ ỹ1[4] ⊕ 1 = k0[11] ⊕ k0[4],

(refer to Tables 3 and 4).

4 Since the first two 3-round CDs are used as paired differentials, the key bit k0[5] ⊕
k0[14] does not need to be guessed. Besides, since the CSNBS [6, 11, 12, 18] in Table 4
is not used in the attack, the key bit k0[2] ⊕ k0[11] does not need to be guessed. In
total only 5 bits of k0 are guessed.
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(b) From the ncts/2 random data pairs, generate ncts/2 structures using the
NBs in N B, marking the correspondence between old pairs and new pairs
that are generated using the NB [22].

(c) Use the SBfAD [21] to double the number of pairs in each of the ncts/2
structures. The new pairs are generated by flipping the [21] bit in the
original pairs and adjusting the difference to be (0x8060, 0x4101).

(d) Decrypt one round using zero as the subkey for all data in the structures
obtained above and obtain ncts/2 plaintext structures;

(e) Query for the ciphertexts under 13-round Speck32/64 of the ncts/2 ×
nb × 2 plaintexts, obtaining ncts/2 ciphertext structures.

(f) For each couple of ciphertext pairs, denoted by (c1, c′
1) and (c2, c′

2),
whose corresponding couple of data pairs are related by flipping the
neutral bit [22], that is the couple (x̃1||ỹ1, x̃1||ỹ1 ⊕ (0x8020, 0x4101))
and (x̃1||ỹ1 ⊕(0x0040, 0000), x̃1||ỹ1 ⊕(0x8020, 0x4101)⊕(0x0040, 0000)),
obtain a new couple of ciphertext pairs, that is (c1, c′

2) and (c2, c′
1). As

a result, the new couples generated in this way correspond to couples
of plaintext pairs for the second differential (0x8060, 0x4101) and its
neutral bit [22]. Thus, additional ncts/2 ciphertext structures can be
obtained without new queries. In total, ncts ciphertext structures, denoted
by {C1, . . . , Cncts

}, are obtained.
(g) Initialize an array wmax and an array nvisit to record the highest scores

and the numbers of visits obtained by ciphertext structures.
(h) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←

None to record the best score, the corresponding best-recommended val-
ues for the two subkeys obtained among all ciphertext structures and the
index of this ciphertext structure.

(i) For j from 1 to nit:
i. Compute the priority of each of the ciphertext structures as follows:

si = wmaxi + α · √
log2(j)/nvisiti, for i ∈ {1, . . . , ncts}, and α =√

ncts; This formula of priority is designed according to a general
method in reinforcement learning for achieving automatic exploitation
versus exploration trade-off based on Upper Confidence Bounds. It is
motivated to focus the key search on the most promising ciphertext
structures [13].

ii. Pick the ciphertext structure with the highest priority score for fur-
ther processing in this j-th iteration, denote it by C, and its index by
idx, nvisitidx ← nvisitidx + 1.

iii. Run BayesianKeySearch with C, the neural distinguisher
NDSpeck8R and its wrong key response profile NDSpeck8R .μ and
NDSpeck8R .σ, ncand1, and nbyit1 as input parameters; obtain the out-
put, that is a list L1 of nbyit1 × ncand1 candidate values for the last
subkey and their scores, i.e., L1 = {(g1i, v1i) : i ∈ {1, . . . , nbyit1 ×
ncand1}}.

iv. Find the maximum v1max among v1i in L1, if v1max > wmaxidx,
wmaxidx ← v1max.

v. For each recommended last subkey g1i ∈ L1, if the score v1i > c1,
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A. Decrypt the ciphertexts in C using the g1i by one round and obtain
the ciphertext structure C′ of 12-round Speck32/64.

B. Run BayesianKeySearch with C′, NDSpeck7R and its wrong
key response profile NDSpeck7R .μ and NDSpeck7R .σ, ncand2, and
nbyit2 as input parameters; obtain the output, that is a list L2 of
nbyit2 × ncand2 candidate values for the second to last subkey and
their scores, i.e., L2 = {(g2i, v2i) : i ∈ {1, . . . , nbyit2 × ncand2}}.

C. Find the maximum among v2i and the corresponding g2i in L2,
and denote them by v2max and g2max.

D. If v2max > bestscore, update
bestscore ← v2max, bestkey ← (g1i, g2max), bestpos ← idx.

vi. If bestscore > c2, go to Step 2j.
(j) Make a final improvement using VerifierSearch [12] on the value of

bestkey by examining whether the scores of a set of keys obtained by
changing at most 2 bits on top of the incrementally updated bestkey
could be improved recursively until no improvement is obtained, update
bestscore to the best score in the final improvement; If bestscore >
Gbestscore, update Gbestscore ← bestscore, Gbestkey ← bestkey.

3. Return Gbestkey, Gbestscore.

Remark 6. In Gohr’s implementations of the attack [12], two bits of g1 are
randomly assigned instead of being recommended by minimizing the weighted
euclidean distance. This is based on observation of the symmetry of the wrong
key response profiles, which indicates that values of the last two bits of the last
subkey have almost the same influence on the response, thus hard to be correctly
guessed. In our implementations, guessing these two bits in the last subkey is
integrated into guessing the second to the last subkey, which is done using the
stronger helper ND. The wrong key response profile with respect to the helper
ND are thus on 18 key bits. In doing so, these two key bits can be correctly
recommended with a higher probability.

In the experimental verification of the attack ASpeck13R , the 8-round and
7-round neural distinguishers provided in [12] were used. The accuracy of
NDSpeck8R (resp. NDSpeck7R) is about 0.514 (resp. 0.616). Concrete parameters
and the complexity of ASpeck13R are as follows (see Fig. 5 in the full version [5]).

nkg = 25, nb = 211+1, ncts = 212, nit = 4 × ncts

c1 = 18, c2 = −500, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg ×nb ×ncts, that is, 25+11+1+12, i.e., 229 plaintexts
(because of the use of two matched differentials, data complexity for getting each
ciphertext pair is 1 instead of 2.)

To make the experimental verification economic, we tested the core of the
attack with the five conditions being fulfilled only. That is, tested whether a par-
ticular one of 2nkg loops in Step 2 can successfully recover the last two subkeys.
In that particular loop, the trialed value of the 5 bits of k0 is correct. In the
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other loops, the trialed values deviate from the correct value by at least one bit.
The other loops can be expected to obtain worse scores and wrong key guesses
than that particular loop. Besides, since the prepended classical differentials are
valid to keys fulfilling k2[12] 
= k2[11], we tested for these valid keys only, and
the presented attack works for 263 keys (refer to Sect. D of the full version [5]).

The core of the attack was examined in 40 trials. We count a key guess
as successful if the returned last two subkeys and the real two subkeys have
a Hamming distance at most two in total. Among the 40 trials, there are 33
successful trials. Thus, the success rate is 33/40, which is 0.8250.

The trials were executed using a server with 8 GPUs5. The maximum execu-
tion time (worst-case run time) among the 40 runs is 14.5 h (which runs all the
nit, i.e., 214 iterations). For 25 loops in Step 2, the worst situation is that within
each loop, all nit iterations are executed. Accordingly, the full attack requires
about 25 × 14.5, i.e., 464 GPU hours, which is equivalent to 248.67+r executions
of Speck32/646.

Remark 7. For invalid guesses of the few bits of k0, worse scores and wrong key
guesses for the last two subkeys will be obtained. Invalided guesses of bits of
k0 directly cause all or most ciphertext pairs in all ciphertext structures to be
nonconforming pairs (wrong ciphertext structures). For wrong ciphertext struc-
tures, the scores of the recommended last and the second to last subkeys will be
very low such that fewer last subkeys will pass cutoff c1, and almost no second
to the last subkey will pass cutoff c2. Therefore, under invalid key guesses of k0,
all nit iterations will be used. Using nkg times the worst-case run-time (which is
taken by a failed trial using all the nit iterations) of an attack core provides a
conservative estimation of the time complexity of a full attack.

4.3 Key Recovery Attack on 12-Round Speck32/64

To devise key-recovery attack on 12-round Speck32/64, Gohr in [13] used the
2-round classical differential (0x0211, 0x0a04) → (0x0040, 0x0000) combined
with the 8-round and 7-round NDs. For amplifying the weak signal from the
8-round neural distinguisher, 13 single-bit NBs of the prepended 2-round CD
were exploited. However, many of the 13 NBs are neutral with probabilities that
are not high (refer to Table 9 in the full version [5]). Besides, 500 ciphertext
structures and 2000 iterations were used to achieve a success rate of 0.40. Thus,
the data complexity is 500 × 213 × 2, i.e., 222.97 plaintexts. The attack takes
roughly 12 h on a quad-core PC (as listed in Table 1).

From Table 2, one can see that there are many SNBSs being deterministically
neutral or neutral with relatively high probability. Using 13 SNBSs, cutting the
required data by nearly half, and using the following parameters, our experiments
5 Tesla V100-SXM2-32GB, computeCapability: 7.0; coreClock: 1.53 GHz; coreCount:

80; deviceMemorySize: 31.72 GB; deviceMemoryBandwidth: 836.37 GB/s).
6 Under the assumption that one second equals the time of 228 executions of
Speck32/64 on a CPU, and r = log2(cpu/gpu), where cpu is the CPU time and gpu
is the GPU time running an attack. In our computing systems, r = 2.4.
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show that the success rate of the resulting attack can be increased to 0.86 using
fewer data (see Fig. 6 in the full version [5]).

nkg = 0, nb = 213, ncts = 28, nit = 210

c1 = 15, c2 = 500, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

However, the data complexity is still bounded by the weakness of the 8-round
ND. To further reduce the data requirement, we employ the 3-round CDs and
combine them with the stronger 7-round (and 6-round) ND. In this case, uncon-
ditional SNBSs are enough for the 7-round ND. Thus, those conditional ones can
be dismissed in such a 12-round attack. Besides, since bit [21] is an SBfAD which
switches the first two and the last two differentials, it can be used to replace a
probabilistic NB. The four 3-round differentials share enough NBs, thus, all can
be employed, which makes it possible to obtain one plaintext pair with 3/4
instead of 2 queries (as discussed in Sect. 4.1).

Concretely, the components of the 12-round key-recovery attack, denoted by
ASpeck12R , are as follows.

1. Four 3-round CDs (0x8020, 0x4101) → (0x0040, 0x0000),
(0x8060, 0x4101)→(0x0040, 0x0000), (0x8021, 0x4101)→(0x0040, 0x0000),
(0x8061, 0x4101)→ (0x0040, 0x0000), five neutral bit(-set)s N B: {[22], [13],
[20], [12, 19], [14, 21]} (refer to the rows framed by green lines in Table 4),
one SBfAD [21];

2. A 7-round ND, named NDSpeck7R , trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .μ and NDSpeck7R .σ;

3. A 6-round ND, named NDSpeck6R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck6R .μ and NDSpeck6R .σ.

The framework of the 12-round attack ASpeck12R follows that of ASpeck13R .
The difference is that, in the beginning, we only guess one key bit of k0, that
is k0[7], because for all four 3-round differentials, there is only one common
condition for conforming pairs, i.e., x1[7] = 0 (refer to Table 3). Thus, nkg is 21,
and there are only 2 outermost loops.

The concrete parameters and complexity of ASpeck12R are as follows (see
Fig. 7 in [5] for details). The accuracy of NDSpeck7R (resp. NDSpeck6R) is about
0.616 (resp. 0.788).

nkg = 21, nb = 25+1, ncts = 212, nit = 213

c1 = 8, c2 = 10, nbyit1 = nbyit2 = 5, ncand1 = 2 × ncand2 = 64

The data complexity is nkg ×ncts×nb×3/4, that is, 218.58 plaintexts. To compare
with previous attacks, the experiments were done using CPUs. Concretely, 128
trials were done with 32 threads in a CPU server7. Within the 128 trials, 2 trials
have no correct ciphertext structures. In the remaining 126 trials, there are 107
successful trials (the returned last two subkeys have a Hamming distance to the
real subkeys at most two). The success rate is 107/128, i.e., 0.8359.
7 Equipped with a 32-core Intel Cascade-Lake Xeon(R) Platinum 9221 2.30 GHz, and

with 384 GB RAM, on CentOS 7.6.
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The maximum execution time among the trials is 4.4 h (which runs all the
nit, i.e., 8192 iterations). Repeating 21 times, the maximum run time should be
about 8.8 CPU hours, which is equivalent to 242.97 executions of Speck32/64.

Trade-off. If accepting a success rate of 0.6016, the data complexity can be
further reduced to 217.58 (by setting ncts = 211, c1 = 7, ncand1 = 32) (see Fig. 8
in [5] for details).

Comparison. Compared to classical attacks on Speck32/64 (refer to Table 1),
these new attacks commonly employ longer distinguishers consisting of short CDs
and NDs, and their key-guessing phase covers fewer rounds. As for complexity,
their advantage is considerable in terms of time. Compared to previous ML-based
results in [13], for attacking 12-round, the success rate improves considerably
using fewer data; most importantly, one more round is covered.

5 Tuning Parameters for the Key Recovery Attacks

The key-recovery attack with UCB and BayesianKeySearch has shown its
effectiveness in guessing keys in [13] and this work. However, the tuning of the
parameters, especially the cutoffs, which determine the execution time and the
success rate, is still missing theoretical guidance up to the time of this work.
Thus, in this section, we provide detailed experimental data and derived obser-
vations to bring some light on tuning important parameters and making better
trade-offs.

5.1 Exhibitions of Important Statistics in Various Attacks

It is noticed that v1max (i.e., max({v1i | v1i ∈ L1})) in the key-recovery
phase is an important variable determining the priority of each ciphertext struc-
ture and indicates whether promising sub-keys are discovered in each run of
BayesianKeySearch. Investigating the distributions of this variable corre-
sponding to correct ciphertext structures (denoted by Dv1max

r ) and wrong cipher-
text structures (denoted by Dv1max

w ) is helpful. These distributions can be used
to learn how to tune cutoff c1 to make trade-offs between time complexity and
success rate. Investigating the distributions of v2max (i.e., max({v2i | v2i ∈ L2}))
could be used to learn how to tune cutoff c2 (denoted by Dv2max

r and Dv2max
w for

correct ciphertext structures and wrong structures, respectively). Thus, together
with the information on attack configurations, attack complexity, and success
rate, histograms are given to show Dv1max

r , Dv1max
w , Dv2max

r , Dv2max
w for each pre-

sented attack (ASpeck13R and ASpeck12R). Concretely, for each attack, details of
the following statistics are illustrated in its corresponding figure (e.g., Figs. 5
to 8 in the full version [5]).

– Dv1max
w , Dv1max

r , Dv1max
s : indicated using rand, real, and succ in the his-

tograms, respectively; Dv1max
s is the distribution of v1max corresponding to

the successfully recovered subkeys.
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– qctw, qctr: percentage of v1max’s corresponding to wrong (resp. correct)
ciphertext structures passing cutoff c1;

– percentage of passing samples if different cutoffs are set, including both the
quantile plot with the samples and the plot with the best fitting generalized
logistic distribution on the samples;

– similar statistics for v2max (including Dv2max
r , Dv2max

w , Dv2max
s )8;

– distribution of Hamming distances between returned and the real subkeys;
– distribution of the used number of iterations in successful attacks.

5.2 Some Rules of Thumb

Apart from substantial illustrations of previously hidden details of the key-
recovery phase, the following observations are made to provide some rules of
thumb for deciding the number of data required and the cutoff c1. Before that,
we note that compared to c1, cutoff c2 is much easier to decide because a suc-
cessful attack requires the value of c2 to be ‘at the top rank’ (compared with a
‘threshold’ sense of cutoff c1). Thus, it is safe to select a value for c2 that is just
large enough to be uncovered by Dv2max

w .

Observation 1. Suppose in the above attack framework, the probability of the
prepended differential is p, the number of ciphertext structures is ncts. Denote
the attack success probability by Ps.

Note that Ps ≤ 1 − (1 − p · q)ncts , where q is the probability for the
response v1max from a correct ciphertext structure pass the cutoff c1, i.e.,
q = PrCr

[v1max ≥ c1], where Cr is space of correct ciphertext structures.
Thus, the following relation should be fulfilled:

ncts ≥ log2(1 − Ps)
log2(1 − p · q) .

For given ncts, p, and Ps, the cutoff c1 should be chosen such that

c1 ≤ Q(1 − 1 − (1 − Ps)
1

ncts

p
),

where Q(·) is the quantile function of the distribution of v1max corresponding to
correct ciphertext structures, i.e., Dv1max

r .

For example, in the attack configuration in Fig. 5 in the full version [5],
after correctly guessing the key bits in k0, the probability p of the prepended
differential is 2−9; suppose c1 is selected as 18 so that q is 0.31; then, to have a
success probability of 0.82, the required number of ciphertext structures, i.e., ncts

should satisfy ncts ≥ log 2(1−0.82)/ log 2(1−2−9 ·0.31) ≈ 2831.33 ≈ 211.4673. On
the other hand, suppose one selects ncts to be 212, and aims Ps to be 0.82; since p
is 2−9, this requires c1 ≤ Q(1−(1−(1−0.82)2−12)/2−9) = Q(1−0.2143) ≈ 20.5.
8 Some v2max’s corresponding to success cases are lower than cutoff c2; that is due to

the final improvement.
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Note that Observation 1 provides an upper bound on the value of the cutoff
c1. As for a lower bound on c1, we provide the following observations.

The cutoff c1 seems to be the smaller, the better for having a high success
probability. However, a smaller cutoff c1 is not a better choice for having a good
time complexity than a larger one. On the one hand, even using the correct
ciphertext structures, if a recommended subkey gets a small score v1, then,
typically, it also has a large Hamming distance towards the real subkeys; thus,
it is hard to produce good recommendations for the second to last subkeys. On
the other hand, too small cutoff c1 results in a high percentage of v1 from the
wrong ciphertext structures passing it. As a consequence, a lot of running time
will be wasted on the wrong ciphertext structures. Thus, the cutoff c1 is better
to be large enough such that a low percentage of v1 of bad recommendations of
last subkeys (e.g., with more than Hamming distance 3 to the real subkey) from
both correct and wrong ciphertext structures is passing it.

The preliminary to use these observations as guidance to tune the parameters
is to have a good knowledge of the distribution Dv1max

r and Dv1max
w . Experimental

investigations on Dv1max
r and Dv1max

w can be found in [5, Sect. B.3].

6 Neural Distinguishers on Round-Reduced Simon32/64

This section presents the neural distinguishers on Simon32/64 obtained in this
work, using which a key-recovery attack covering 16 rounds is devised and pre-
sented in [5, Sect. E]. Besides, DDT-based DDs are computed and provide base-
lines for NDs. Comparisons between DDs and NDs are made accordingly.

6.1 The Choice of the Network Architecture

Considering that several state-of-the-art neural network structures have been
developed, a preliminary search for a better network other than the Residual
Network (ResNet) [16] used in [13] was conducted. Specifically, Dense Network
(DenseNet) [18] shows advantages in parameter efficiency, implicit deep supervi-
sion, and feature reuse. Squeeze-and-Excitation Network (SENet) [17] won the
first place in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC
2017) for classification tasks. SENet can also be combined with existing deep
architectures to boost performance at a minimal additional computational cost.
One example is the SE-ResNeXt that employs squeeze-and-excitation blocks
and uses the ResNeXt as backbone. Thus, these two networks, together with
ResNet, were investigated. The results on the performance of distinguishers that
cover 7 to 9 rounds Simon32/64 under the three different network structures
are presented in Table 5. From the comparison, for longer rounds, SENet yields
distinguishers that are superior to that of the other two. In the following, we
only report essential details of the distinguishers trained using the SENet.
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6.2 The Training of Neural Distinguishers

The training schemes follow that in [13]. All three schemes are attempted. For
short rounds, the basic training scheme already works well. For longer rounds,
the KeyAverageing and Staged schemes are necessary to achieve distinguishers
with non-marginal advantage. Due to the specific round structure of Simon,
distinguishers fed with partial values combined with partial differences between
ciphertext pairs, instead of full values of ciphertext pairs, should be more useful
than their counterparts for carrying out key-recovery attacks. Thus, we trained
distinguishers accepting data composed partial values and partial differences.

The input difference is (0x0000, 0x0040). This choice takes into account both
the ND and the prepended CD, whose output difference is this input difference of
the ND. The goal is to obtain the best hybrid distinguisher to make the longest
key-recovery attack. Therefore, the firstly examined were the intermediate dif-
ferences in the best 13-round differential trail [9]. All intermediate differences
were examined by training NDs. This difference, (0x0000, 0x0040), yielded the
best 7, 8, and 9-round NDs and, at the same time, allows prepending a good CD,
thus resulting in the best hybrid distinguisher. Note that since the differentials
of Simon32/64 has a rotational equivalent property along with the 16-bit word,
all r-round NDs with input difference (0, ei) and (r − 1)-round NDs with input
difference (ei, 0) were found to have similar accuracy, for 0 ≤ i < 16.

Training Using the Basic Scheme. Using the basic training scheme and
adopting SENet (more precisely, the adopted is the SE-ResNeXt variant), neu-
ral distinguishers to recognize output pairs of 7-, 8-, 9-round Simon32/64 with
the input difference (0x0000, 0x0040) are obtained. That is, given an output pair
(x, y) and (x′, y′) and represented in the form of (x, y, x′, y′), they can predict
whether the data corresponds to input pairs with difference (0x0000, 0x0040)
of the 7-, 8-, 9-round Simon32/64. To make a distinction from their coun-
terparts accepting transformed data, i.e., (x, x′, y ⊕ y′), the 7-, 8-, 9-round
neural distinguishers presented here are named as NDSimon7R

VV , NDSimon8R

VV , and
NDSimon9R

VV , respectively. The 7-round NDSimon7R

VV achieves an accuracy as high
as 0.9825, which drops by 0.17 per round to 0.8151 and 0.6325 for NDSimon8R

VV
and NDSimon9R

VV , respectively.

Training to Simulate KeyAverageing Algorithm. Successful train-
ing of the 10-round distinguisher is achieved by adopting the training
scheme of simulating a KeyAverageing Algorithm [13] used with the 9-round
NDSimon9R

VV . Concretely, a size 220 sample set S of ciphertext pairs for 10-round
Simon32/64 is generated, one half corresponds to plaintext pairs with difference
(0x0000, 0x0040) and the other half corresponds to random plaintext pairs. The
labels of these samples are not assigned directly but using the KeyAverageing
Algorithm calling the 9-round NDSimon9R

VV . That is, each ciphertext pair ci in
the set S is decrypted by one-round using all possible values of the 10-th round
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subkey; thus 216 intermediate values c′
i,j ’s for j ∈ {0, 1}16 are generated; grad-

ing the c′
i,j ’s using the 9-round NDSimon9R

VV , and combining the 216 scores into a
score for the ciphertext pair ci by transforming the scores into real-vs-random
likelihood ratios and averaging. This combined score is then taken as the label
of ci in S. Using the sample set S with the labels so obtained, a training, which
follows the training of the best 7-round neural distinguisher in [13], is performed
from a randomly initialized network state. This training procedure results in a
10-round distinguisher, named NDSimon10R

VV , with an accuracy of 0.5551.

Training Using the Staged Training Method. The best 10-round and 11-
round distinguisher are trained using the staged training method, which was the
same method used to train the 8-round distinguisher of Speck32/64 in [13].
Concretely, for training an 11-round ND, in the first stage, the best 9-round
distinguisher NDSimon9R

VV is retained to recognize 8-round Simon32/64 with the
input difference (0x0440, 0x0100). Note that the most likely difference to appear
three rounds after the input difference (0x0000, 0x0040) is (0x0440, 0x0100),
and the probability is about 2−4. In this first stage, the number of examples
for training and for testing are 228 and 226, respectively. The number of epochs
is 10 and the learning rate is 10−4. In the second stage, the resulted network
of the first stage is retained to recognize 11-round Simon32/64 with the input
difference (0x0000, 0x0040). For this training, 230 examples are freshly generated
and fed, and 228 examples are for verification. One epoch with a learning rate
of 10−4 is done. In the last stage, the resulting network of the second stage is
retained in two epochs with 230 freshly generated data for training and 228 data
for verification. The learning rate is 10−5. The resulting distinguisher NDSimon11R

VV
achieves an accuracy of 0.5174.

Training using Data of Form (x,x′, y ⊕ y′). Notice that once the output of
the r-th round (xr, x′

r, yr, y′
r) is known, one can directly compute (xr−1, x′

r−1,
yr−1 ⊕ y′

r−1) without knowing the (r − 1)-th subkey. Thus, an (r − 1)-round
distinguisher accepting data of the form (x, x′, y ⊕ y′) can be used as an r-
round distinguisher in the key-recovery attack. With this consideration, (r − 1)-
round distinguishers accepting data of the form (x, x′, y ⊕ y′) are trained to see
whether they are superior to r-round distinguishers accepting data of the form
(x, x′, y, y′). To make a distinction, let us denote the former by NDSimon(r−1)R

VD
and the latter by NDSimonrR

VV .
The results show that NDSimon(r−1)R

VD could achieve slightly better accuracy
than NDSimonrR

VV . Besides, the wrong key response profiles of NDSimon8R

VD and
that of NDSimon9R

VV share observable pattern and symmetry. For key values that
have little different from the real value, responses from NDSimon8R

VD are higher
than responses from NDSimon9R

VV . Similar observations can be derived from a
comparison between that of NDSimon9R

VD and that of NDSimon10R

VV .
Summaries on various distinguishers are presented in Table 5 for detailed

accuracy and in Fig. 19 in [5] for their wrong key response profiles.
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Table 5. Summary of neural distinguishers on Simon32/64

#R Name Network Accuracy True Positive Rate True Negative Rate

6 DDSimon6R
DD

DDT 0.9918 0.9995 0.9841

7 ResNet 0.9823 ± 1.2 × 10−4 0.9996 ± 2.7 × 10−5 0.9650 ± 2.3 × 10−4

NDSimon7R
VV

SENet† 0.9802 ± 1.3 × 10−4 0.9987 ± 4.2 × 10−5 0.9617 ± 2.4 × 10−4

DenseNet 0.9244 ± 2.7 × 10−4 0.9670 ± 2.2 × 10−4 0.8818 ± 4.5 × 10−4

7 DDSimon7R
DD

DDT 0.8465 0.8641 0.8288

8 NDSimon8R
VV

SENet† 0.8150 ± 4.2 × 10−4 0.8418 ± 5.5 × 10−4 0.7882 ± 5.1 × 10−4

ResNet 0.7912 ± 4.2 × 10−4 0.8041 ± 5.5 × 10−4 0.7783 ± 6.2 × 10−4

DenseNet 0.7789 ± 4.4 × 10−4 0.7709 ± 6.8 × 10−4 0.7868 ± 5.6 × 10−4

8 DDSimon8R
DD

DDT 0.6628 0.5781 0.7476

8 NDSimon8R
VD

SENet† 0.6587 ± 4.8 × 10−4 0.5586 ± 7.4 × 10−4 0.7588 ± 5.6 × 10−4

9 NDSimon9R
VV

SENet† 0.6515 ± 5.3 × 10−4 0.5334 ± 7.0 × 10−4 0.7695 ± 5.7 × 10−4

ResNet 0.6296 ± 4.5 × 10−4 0.5164 ± 6.3 × 10−4 0.7429 ± 5.5 × 10−4

DenseNet 0.6443 ± 4.1 × 10−4 0.5337 ± 6.1 × 10−4 0.7550 ± 5.0 × 10−4

9 DDSimon9R
DD

DDT 0.5683 0.4691 0.6674

9 NDSimon9R
VD

SENet† 0.5657 ± 4.9 × 10−4 0.4748 ± 7.1 × 10−4 0.6565 ± 6.6 × 10−4

10 NDSimon10R
VV

+ SENet† 0.5610 ± 4.5 × 10−4 0.4761 ± 6.0 × 10−4 0.6460 ± 7.2 × 10−4

NDSimon10R
VV

∗ SENet† 0.5549 ± 4.6 × 10−4 0.4605 ± 6.5 × 10−4 0.6493 ± 7.7 × 10−4

10 DDSimon10R
DD

DDT 0.5203 0.5002 0.5404

11 NDSimon11R
VV

SENet† 0.5174 ± 5.3 × 10−4 0.5041 ± 7.1 × 10−4 0.5307 ± 7.9 × 10−4

11 DDSimon11R
DD

DDT 0.5044 0.4852 0.5236

† More precisely, the adopted is the SE-ResNeXt variant.
- The network structure and parameters for the ResNet follow exactly that used in [12]
for training the NDs on Speck32/64 except for the learning rate. Using a smaller
learning rate (i.e., cyclic_lr(10,0.001,0.00001)) instead of the original learning rate
(i.e., cyclic_lr(10,0.002,0.0001)) results in a better accuracy (e.g., 0.6296 vs 0.6110 for
9-round) for NDs on Simon32/64.
* This neural distinguisher is trained using the KeyAveraging algorithm.
+ This neural distinguisher is trained using the staged training method.

6.3 Computing DDs and Further Interpretations

To provide baselines for NDs, we calculate the full distribution of differences
for Simon32/64 induced by the input difference 0x0000/0040 up to 11 rounds
(see Table 5). This is done using the framework of Gohr’s implementation for
Speck32/64 and integrating the algorithm for computing one-round differential
probability for Simon offered by Kölbl et al. in [22]. Note that, the fed data to
r-round ND are values of ciphertexts, from which, for Simon, one can directly
compute the differences on (r − 1)-round outputs without knowing the subkey.
Thus, NDSimonrR

VV or NDSimon(r−1)R

VD should be compared with NDSimon(r−1)R

DD .
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Table 6. Comparing ND and DD on Simon32/64 using statistics in a simple key
recovery attack on 11-round Simon32/64. The configuration is 1+8+1+1, i.e., a free
prepended invert round, an 8-round distinguisher, a free inverting round, and a key-
guessing (last) round. All data are based on 1000 trials of the respective attacks, all
measurements of these statistics follow that in [13]: The rank of the real subkey is
in the range [0, 216); it is defined as the number of subkeys ranked higher, i.e., rank
0 corresponds to successful key recovery. When several keys were ranked equally, the
right key was assumed to be in a random position among the equally ranked keys.
The reported error bars around the mean are for a 2σ confidence interval, where σ is
calculated based on the observed standard deviation of the key rank. #D indicates the
number of chosen plaintexts.

#D Distinguisher Mean of key rank Median key rank Success rate

32 × 2 DDSimon8R
DD

11.8 ± 3.1 1.0 0.238
NDSimon8R

VD
43.9 ± 21.4 2.0 0.188

64 × 2 DDSimon8R
DD

0.9 ± 0.2 1.0 0.415
NDSimon8R

VD
1.3 ± 0.2 1.0 0.335

The results show that NDSimonrR

VV and NDSimon(r−1)R

VD achieve similar but
weaker classification accuracy than NDSimon(r−1)R

DD . To further evaluate the gaps
between the advantage of DD over ND, we devised a key ranking task, as done
by Gohr for comparing NDs and DDs on Speck32/64 in [13]. Specifically, a sim-
ple key ranking procedure to recover the last subkey on 11-round Simon32/64
can be performed both by DDSimon8R

DD or NDSimon8R

VD in a configuration of 1+8+2.
Table 6 shows the performance of DDSimon8R

DD and NDSimon8R

VD in the ranking for
real subkeys among 216 candidate subkeys. It can be seen that they both work
well in this task; the data requirement is 64 chosen plaintexts to achieve a success
rate of around 20%. However, NDSimon8R

VD is slightly inferior to DDSimon8R

DD . To
achieve the same success rate, NDSimon8R

VD requires more data than DDSimon8R

DD ,
but the difference is less than twice.

These comparisons suggest that r-round NDSimonrR

VV can “decrypt” one un-
keyed round to obtain the (r − 1)-round difference and learn the differential
distribution, which confirms the interpretation in [7], but fails to learn more
features beyond the distribution of differences.

Remark 8. This fact for Simon is different from the corresponding conclusion for
Speck. For Speck, knowing values of ciphertexts, without knowing the subkey,
one can only compute half but not full of the differences on (r − 1)-round out-
puts. Thus, the counterpart of r-round ND is r-round DD. From [13], r-round
ND learns additional features beyond differences and has better classification
accuracy than r-round DD. We conjecture that the mean reason is that, for
Speck, pure XOR-difference DDs cannot provide the best baselines for NDs.
On the one hand, they are not accurate because of being computed following the
Markov assumption. On the other hand, features related to generalized XOR-
difference through modular addition and multi-bit constraints [10,23] might be
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useful to capture the additional features in outputs of Speck32/64. For exam-
ples, Tables 7 and 8 in [5] present generalized constraints beyond XOR-differences
on some differential trails, considering which the probability of the trails could
be refined. In contrast, for Simon32/64, the XOR-differences distribution table
computed using the Markov model might already be an accurate approximation
for the actual differential distribution.

We note that the NDs on Speck32/64 might also “decrypt” half of the
“unkeyed” last round to retrieve the input values on the right branch yr−1. This
interesting fact that the NDs can “learn to decrypt up to the values not messed
up by outer subkey” might be due to the design by Gohr, as explained in [13]
as “the use of the initial width-1 convolutional layer is intended to make the
learning of simple bit-sliced functions such as bit-wise addition easier”. Remark-
ably, for Simon32/64, the NDs seems to have also successfully peeled off the
nonlinear bit-wise AND layer in the last round. For deeper look into the NDs
on Simon32/64, please refer to the full version [5, Sect. G].

7 Conclusions and Future Work

This paper shows practical key-recovery attacks up to 13 rounds of Speck32/64.
This advances state of the art on practical attacks by one round. It shows that the
way the underlying neural distinguishers were used in the previous differential-
neural attacks is not optimal. Accordingly, the differential-neural cryptanalysis
on Speck32/64 has more potential than it originally exhibited.

The methods developed, particularly those generalized neutral bits, are not
intrinsically linked to neural network-based cryptanalysis. They are expected
to be useful for the conversion of a wider range of deep weak distinguishers to
competitive key recovery attacks in general.

The experiments made on various distinguishers on round-reduced
Simon32/64 indicate that differential-based neural distinguishers should work
well in general on modern ciphers. Still, they may not always be superior to their
classical counterparts. Their advantages might be easier to show on ciphers whose
differential-like properties can not been accurately evaluated using existing tools.

The provided rules of thumb on turning parameters in the UCB and Bayesian
optimization-based key-recovery phase are helpful but far from perfect. For this
advanced key-recovery strategy to be widely applied, a rigorous theoretical model
on the relation between attack parameters, attack complexity, and success prob-
ability is missing, and the building of which is left as future work.
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Abstract. OMAC — a single-keyed variant of CBC-MAC by Iwata and
Kurosawa — is a widely used and standardized (NIST FIPS 800-38B,
ISO/IEC 29167-10:2017) message authentication code (MAC) algorithm.
The best security bound for OMAC is due to Nandi who proved that
OMAC’s pseudorandom function (PRF) advantage is upper bounded
by O(q2�/2n), where n, q, and �, denote the block size of the under-
lying block cipher, the number of queries, and the maximum permis-
sible query length (in terms of n-bit blocks), respectively. In contrast,
there is no attack with matching lower bound. Indeed, the best known
attack on OMAC is the folklore birthday attack achieving a lower bound
of Ω(q2/2n). In this work, we close this gap for a large range of mes-
sage lengths. Specifically, we show that OMAC’s PRF security is upper
bounded by O(q2/2n + q�2/2n). In practical terms, this means that for a
128-bit block cipher, and message lengths up to 64 GB, OMAC can pro-
cess up to 264 messages before rekeying (same as the birthday bound).
In comparison, the previous bound only allows 248 messages. As a side-
effect of our proof technique, we also derive similar tight security bounds
for XCBC (by Black and Rogaway) and TMAC (by Kurosawa and Iwata).
As a direct consequence of this work, we have established tight security
bounds (in a wide range of �) for all the CBC-MAC variants, except for
the original CBC-MAC.

Keywords: OMAC · CMAC · XCBC · TMAC · CBC-MAC · PRF ·
Tight security

1 Introduction

Message Authentication Code (or, MAC) algorithms are symmetric-key primi-
tives which are used for data authenticity and integrity. The sender generates
a short tag based on message and a secret key which can be recomputed by
any authorized receiver. MACs are commonly designed either based on a hash
function or a block cipher. CBC-MAC is a block cipher-based MAC (message
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authentication code) which is based on the CBC mode of operation invented by
Ehrsam et al. [11]. Given an n-bit block cipher E instantiated with a key K,
the CBC-MAC construction is defined recursively as follows: for any x ∈ {0, 1}n,
CBCEK

(x) := EK(x). For all m = (m[1], . . . ,m[�]) ∈ ({0, 1}n)� where � ≥ 2, we
define

CBCEK
(m) := EK(CBCEK

(m[1], . . . ,m[� − 1]) ⊕ m[�]) (1)

It was an international standard, and has been proven secure for fixed-length
messages or prefix-free message spaces (i.e., no message is a prefix to another
message). Simple length extension attacks prohibit its usage for arbitrary length
messages. However, appropriately chosen operations to process the last block
can resist these attacks. One such idea was first applied in EMAC [2,4], where
the CBC-MAC output was encrypted using an independently keyed block cipher.
It worked for all messages with lengths that are divisible by the block size of the
underlying block cipher. Black and Rogaway proposed [5] three-keyed construc-
tions, ECBC, FCBC, and XCBC, which are proven to be secure against adver-
saries querying arbitrary length messages. Later, in back-to-back works, Iwata
and Kurosawa proposed two improved constructions (in terms of the key size),
namely, TMAC [17] that uses two keys, and OMAC1 [12] that requires just a
single key. Nandi proposed [20] GCBC1 and GCBC2, a slight improvement over
OMAC in terms of the number of block cipher calls for multi-block messages.

1.1 Related Works and Motivation

It is well-established [1] that the security of any deterministic MAC can be quan-
tified via the pseudorandom function (or PRF2) security. Consequently, most of
the works on CBC-MAC variants analyze their PRF security. For constructions
like ECBC, FCBC and EMAC, Pietrzak [25] showed a PRF bound of O(q2/2n)
for � < 2n/8, where q and � denote the number of messages and the maximum
permissible length (no. of n-bit blocks) of the messages. Later, Jha and Nandi
[15] discovered a flaw in the proof of the earlier bound and showed a bound of
O(q/2n/2) up to � < 2n/4. However, in these constructions an extra (indepen-
dent) block cipher is called at the end. Considering the number of block cipher
calls, XCBC, TMAC and OMAC are better choices. XCBC uses two independent
masking keys for the last block which are used depending on whether the last
block is padded or not. In case of TMAC, the two masking keys are derived from
a single n-bit key. OMAC optimized the key derivation further. Here, both the
keys are derived using the underlying block cipher itself. Thus, it is much better
in this respect. Classical bound for these constructions was O(σ2/2n) [5,17], σ
being the total number blocks among all the messages. Later, in a series of work
[13,19,21,22], the improved bounds for XCBC, TMAC, and OMAC were shown to
be in the form of O(q2�/2n), O(σ2/2n) and O(σq/2n). Interestingly, it has also
1 This is same as CMAC [10] — a NIST recommended AES based MAC — for appro-

priate choice of constants.
2 A keyed construction is called a PRF if it is computationally infeasible to distinguish

it from a random function.
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been shown in [14] that if we use a PRF, instead of a block cipher in these con-
structions, there is an attack with roughly Ω(q2�/2n) advantage, which is tight.
No such attack is known in the presence of a block cipher. This gives an implicit
motivation to study the exact security of these constructions in the presence of
block ciphers. In this paper, we aim to show birthday-bound security for these
block cipher based MACs for a suitable range of message lengths.

In a different paradigm but with similar motivations, recently Chattopad-
hyay et al. [8] showed birthday-bound security for another standardized MAC
called LightMAC [18]. However, similar result for original PMAC [6] is still an
open problem (although a result is available for its variant in [7]). In addition
to the improved bound for LightMAC, Chattopadhyay et al. proposed a new
proof approach called the reset-sampling method. They also hinted (via a very
brief discussion) that this method could be useful for proving better security
for OMAC. However, the discussion in [8] is overly simplistic and contains no
formal analysis of bad events. Indeed, the reset-sampling is more involved than
anticipated in [8], giving rise to some crucial and tricky bad events (see Sect. 4).
To their credit, they do say that

A more formal and rigorous analysis of OMAC using reset-sampling will
most probably require handling of several other bad events, and could be
an interesting future research topic.

In this paper, we take up this topic and give a complete and rigorous analysis.

1.2 Our Contributions

In Sect. 3, we show that the PRF advantages for OMAC, XCBC and TMAC are
upper bounded by O

(
q2/2n

)
+ O

(
q�2/2n

)
, which is almost tight in terms of

the number of queries q while � � 2n/4. This bound is not exactly the birthday
bound O

(
q2/2n

)
, but for any fixed target advantage, in terms of the limit on q it

behaves almost like the birthday bound for a fairly good range of � (see the fol-
lowing discussion). The proof of our security bound is given in Sect. 4 and follows
the recently introduced reset-sampling approach [8]. These improved bounds, in
combination with previous results [15,16] for EMAC, ECBC and FCBC, com-
pletely characterize (see Table 1) the security landscape of CBC-MAC variants
for message lengths up to 2n/4 blocks.

A Note on the Tightness and Improvement in Bounds: In Fig. 1, we
present a graph3 comparing the best known bound for OMAC [21], i.e., B1(�, q) =
10q2�/2n, the ideal birthday bound, i.e., Bid = q2/2n, and the bound shown in
this paper (see Theorem 3.1), i.e., B2(�, q) ≈ 16q2

2n + 2q�2

2n (as the remaining terms
are dominated by these two terms). In the graph, we show the trade-off curve
for the parameters X = log � and Y = log q, where log denotes “log base 2”, for
a fixed choice of advantage value, say ε = 2−a for some a ∈ N. Let na := n − a.
Then, we have

3 Using GeoGebra Classic available at https://www.geogebra.org/classic.

https://www.geogebra.org/classic
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Table 1. Summary of security (PRF advantage) bounds for the CBC-MAC family. Here
n, q, �, and σ denote the block size, number of queries, maximum permissible message
length, and sum of message lengths of all q queries, respectively.

Scheme
State-of-the-art This paper

Bound Restriction Bound Restriction

CBC-MAC [11] O (σq/2n) [15,16] � = o
(
2n/3

)
- -

EMAC [2,4] O
(
q2/2n + q�2/2n

)
[15,16] - - -

ECBC,FCBC [5] O
(
q2/2n + q�2/2n

)
[15,16] - - -

XCBC [5], TMAC [17]
O

(
q2�/2n

)
[19]a � = o

(
2n/3

)
O

(
q2/2n + q�2/2n

)
-

O
(
σ2/2n

)
[13]a -

OMAC [12] O (σq/2n) [21] � = o
(
2n/3

)
O

(
q2/2n + q�2/2n

)
-

a σ2 and q2� are incomparable, as they depend on the query length distribution.

Bid : Y =
na

2
B1 : X + 2Y = na − log 10 B2 : log(16 · 22Y + 2 · 22X+Y ) = na.

Looking at the equation related to the bound B2 we can see that it is actually
a combination of two linear equations: 2Y = na − 4 and 2X + Y = na − 1, the
choice depending on whether 16q2/2n or 2q�2/2n dominates. Precisely, the curve
expressing the relation between log � and log q in B2 is {(X,Y ) : X ≤ n/4, Y =
min{(na − 4)/2, na − 1 − 2X}}. From the above linear equations two important
facts about the curve related to B2 can be noticed:

– It remains very close to the straight line corresponding to Bid from (0, na−4
2 )

to (na+2
4 , na−4

2 ) and then moves downward.
– At around (na+1

3 , na−5
3 ) it starts to degrade below the curve related to B1 .

For example, if we take (n, a) = (128, 32), the bound proved in this paper is very
close to the birthday bound for � ≤ 225 and even after degrading, it remains
better than the bound in [21] till � ≤ 232. Moreover, if we take (n, a) = (128, 64),
q remains 230 until � ≤ 216 and degrades below the existing bound only after
� ≥ 222. Thus, if we consider the advantage in general terms, we can always take
the minimum among the advantage proved in this paper and that proved in [21].

2 Preliminaries

For n ∈ N, [n] and (n] denote the sets {1, 2, . . . , n} and {0}∪[n], respectively. The
set of all bit strings (including the empty string ⊥) is denoted {0, 1}∗. The length
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1.1: For ε = 2−1 1.2:For ε = 2−64

Fig. 1. (log �, log q)-Trade-off Graph for the bounds of OMAC. For n = 128, and two
different choices of the target advantage, ε = 2−1 (on the left), and ε = 2−64 (on
the right), the above graphs show the relation between X = log � and Y = log q.
The dashed, dotted and continuous curves represent the equations Bid, B1, and B2,
respectively.

of any bit string x ∈ {0, 1}∗, denoted |x|, is the number of bits in x. For n ∈ N,
{0, 1}n denotes the set of all bit strings of length n, and {0, 1}≤n :=

⋃n
i=0{0, 1}i.

For x, y ∈ {0, 1}∗, z = x‖y denotes the concatenation of x and y. Additionally, x
(resp. y) is called the prefix (resp. suffix ) of z. For x, y ∈ {0, 1}∗, let Prefix(x, y)
denote the length of the largest possible common prefix of x and y. For 1 ≤ k ≤ n,
we define the falling factorial (n)k := n!/(n − k)! = n(n − 1) · · · (n − k + 1). Any
pair of q-tuples x̃ = (x1, . . . , xq) and ỹ = (y1, . . . , yq), are said to be permutation
compatible, denoted x̃ � ỹ, if (xi = xj) ⇐⇒ (yi = yj), for all i = j. By an
abuse of notation, we also use x̃ to denote the set {xi : i ∈ [q]} for any x̃.

2.1 Security Definitions

Distinguishers: A (q, T )-distinguisher A is an oracle Turing machine, that
makes at most q oracle queries, runs in time at most T , and outputs a
single bit. For any oracle O, we write A O to denote the output of A
after its interaction with O. By convention, T = ∞ denotes computation-
ally unbounded (information-theoretic) and deterministic distinguishers. In this
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paper, we assume that the distinguisher is non-trivial, i.e., it never makes a
duplicate query. Let A(q, T ) be the class of all non-trivial distinguishers limited
to q queries and T computations.

Primitives and Their Security: The set of all functions from X to Y is
denoted F(X ,Y), and the set of all permutations of X is denoted P(X ). We
simply write F(a, b) and P(a), whenever X = {0, 1}a and Y = {0, 1}b. For a
finite set X , X←$ X denotes the uniform at random sampling of X from X .

Pseudorandom Function: A (K,X ,Y)-keyed function F with key space K,
domain X , and range Y is a function F : K×X → Y. We write Fk(x) for F (k, x).

The pseudorandom function or PRF advantage of any distinguisher A
against a (K,X ,Y)-keyed function F is defined as

Advprf
F (A ) = AdvF ;Γ(A ) :=

∣
∣
∣
∣ Pr
K ←$K

(
A FK = 1

) − Pr
Γ ←$F(X ,Y)

(
A Γ = 1

)
∣
∣
∣
∣ . (2)

The PRF insecurity of F against A(q, T ) is defined as

Advprf
F (q, T ) := max

A ∈A(q,T )
Advprf

F (A ).

Pseudorandom Permutation: For some n ∈ N, a (K,B)-block cipher E with
key space K and block space B := {0, 1}n is a (K,B,B)-keyed function, such that
E(k, ·) is a permutation over B for any key k ∈ K. We write Ek(x) for E(k, x).

The pseudorandom permutation or PRP advantage of any distinguisher A
against a (K,B)-block cipher E is defined as

Advprp
E (A ) = AdvE;Π(A ) :=

∣
∣
∣
∣ Pr
K ←$K

(
A EK = 1

) − Pr
Π ←$P(n)

(
A Π = 1

)
∣
∣
∣
∣ . (3)

The PRP insecurity of E against A(q, T ) is defined as

Advprp
E (q, T ) := max

A ∈A(q,T )
Advprp

E (A ).

2.2 H-coefficient Technique

Let A be a computationally unbounded and deterministic distinguisher that’s
trying to distinguish the real oracle O1 from the ideal oracle O0. The collection
of all queries and responses that A made and received to and from the oracle,
is called the transcript of A , denoted as ν. Let V1 and V0 denote the transcript
random variable induced by A ’s interaction with O1 and O0, respectively. Let
V be the set of all transcripts. A transcript ν ∈ V is said to be attainable if
Pr (V0 = ν) > 0, i.e., it can be realized by A ’s interaction with O0.

Following these notations, we state the main result of the so-called H-
coefficient technique [23,24] in Theorem 2.1. A proof of this result is available
in [24].
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Theorem 2.1 [H-coefficient]. For ε1, ε2 ≥ 0, suppose there is a set Vbad ⊆ V,
referred as the set of all bad transcripts, such that the following conditions hold:

– Pr (V0 ∈ Vbad) ≤ ε1; and

– For any ν ∈ V \ Vbad, ν is attainable and
Pr (V1 = ν)
Pr (V0 = ν)

≥ 1 − ε2.

Then, for any computationally unbounded and deterministic distinguisher A , we
have

AdvO1;O0(A ) ≤ ε1 + ε2.

Reset-Sampling Method: In H-coefficient based proofs, often we release addi-
tional information to the adversary in order to make it easy to define the bad
transcripts. In such scenarios, one has to define how this additional informa-
tion is sampled, and naturally the sampling mechanism is construction spe-
cific. The reset-sampling method [8] is a sampling philosophy, within this highly
mechanized setup of H-coefficient technique, where some of the variables are
reset/resampled (hence the name) depending upon the consistency requirement
for the overall transcript. We employ this sampling approach in our proof.

3 The CBC-MAC Family

Throughout, n denotes the block size, B := {0, 1}n, and any x ∈ B is referred
as a block. For any non-empty m ∈ {0, 1}∗, (m[1], . . . , m[�m]) n←− m denotes the
block parsing of m, where |m[i]| = n for all 1 ≤ i ≤ �m − 1 and 1 ≤ |m[�m]| ≤ n.
In addition, we associate a boolean flag δm to each m ∈ {0, 1}∗, which is defined
as

δm :=

{
−1 if |m| = n�m,

0 otherwise.

For any m ∈ {0, 1}≤n, we define

m :=

{
m‖10n−|m|−1 if |m| < n,

m otherwise.

CBC Function: The CBC function, based on a permutation4 π ∈ P(n), takes
as input a non-empty message m ∈ B∗ and computes the output CBCπ(m) :=
yπ

m[�m] inductively as described below:

yπ
m[0] = 0n and for 1 ≤ i ≤ �m, we have

xπ
m[i] := yπ

m[i − 1] ⊕ m[i],
yπ

m[i] := π(xπ
m[i]),

(4)
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yπ
m[0] ⊕⊕⊕

m[1]

π ⊕⊕⊕

m[2]

π ⊕⊕⊕

m[3]

π ⊕⊕⊕

m[4]

π yπ
m[4]

xπ
m[1] yπ

m[1] xπ
m[2] yπ

m[2] xπ
m[3] yπ

m[3] xπ
m[4]

Fig. 2. Evaluation of CBC function over a 4-block message m.

where (m[1], . . . , m[�m]) n←− m. For empty message, we define the CBC output
as the constant 0n. Figure 2 illustrates the evaluation of CBC function over a
4-block message m.
Given the definition of CBCπ, one can easily define all the variants of CBC-MAC.
Here, we define XCBC, TMAC and OMAC— the three constructions that we
study in this paper.

XCBC: The XCBC algorithm is a three-key construction, based on a permutation
π ∈ P(n) and keys (L−1, L0) ∈ B2, that takes as input a non-empty message
m ∈ {0, 1}∗, and computes the output

XCBCπ,L−1,L0(m) := t = π
(
CBCπ (m∗) ⊕ m[�m] ⊕ Lδm

)
, (5)

where (m[1], . . . ,m[�m]) n←− m, and m∗ := m[1]‖ · · · ‖m[�m − 1].

TMAC: The TMAC algorithm is a two-key construction, based on a permutation
π ∈ P(n) and key L ∈ B, that takes as input a non-empty message m ∈ {0, 1}∗,
and computes the output

TMACπ,L(m) := t = π
(
CBCπ (m∗) ⊕ m[�m] ⊕ μδm � L

)
, (6)

where (m[1], . . . ,m[�m]) n←− m, m∗ := m[1]‖ · · · ‖m[�m − 1], μ−1 and μ0 are con-
stants chosen from GF(2n) (viewing B as GF(2n)), such that μ−1, μ0, 1⊕μ−1, 1⊕
μ0 are all distinct and not equal to either 0 or 1, and � denotes the field mul-
tiplication operation over GF(2n) with respect to a fixed primitive polynomial.
For the sake of uniformity, we define Lδm := μδm � L in context of TMAC.

OMAC: The OMAC algorithm is a single-keyed construction, based on a permu-
tation π ∈ P(n), that takes as input a non-empty message m ∈ {0, 1}∗, and
computes the output

OMACπ(m) := t = π
(
CBCπ (m∗) ⊕ m[�m] ⊕ μδm � π(0n)

)
, (7)

where (m[1], . . . ,m[�m]) n←− m, m∗ := m[1]‖ · · · ‖m[�m − 1], μ−1 and μ0 are
constants chosen analogously as in the case of TMAC. For the sake of uniformity,
we define Lδm := μδm � π(0n) in context of OMAC.

4 Instantiated with a block cipher in practical applications.
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Input and Output Tuples: In the context of CBC evaluation within OMAC, we
refer to xπ

m := (xπ
m[1], . . . , xπ

m[�m − 1]) and yπ
m := (yπ

m[0], . . . , yπ
m[�m − 1]) as the

intermediate input and output tuples, respectively, associated to π and m. We
define the final input variable as xπ

m[�m] := yπ
m[�m − 1] ⊕ m[�m] ⊕ μδm � π(0n).

Clearly, the input and output tuples (including the final input) are well defined
for OMAC. Analogous definitions are possible (and useful in proof) for XCBC
and TMAC as well. It is worth noting that the intermediate input tuple xπ

m is
uniquely determined by the intermediate output tuple yπ

m and the message m,
and it is independent of the permutation π. Going forward, we drop π from the
notations, whenever it is clear from the context.

3.1 Tight Security Bounds for OMAC, XCBC and TMAC

The main technical result of this paper, given in Theorem 3.1, is a tight security
bound for OMAC for a wide range of message lengths. The proof of this theorem
is postponed to Sect. 4. In addition, we also provide similar result for XCBC and
TMAC in Theorem 3.2. We skip the proof since it is almost identical to the one
for Theorem 3.1, and has slightly less relevance given that a more efficient and
standardized algorithm OMAC already achieves similar security. In what follows
we define

ε′(q, �) :=
16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
.

Theorem 3.1 (OMAC bound). Let q, �, σ, T > 0. For q + σ ≤ 2n−1, the PRF
insecurity of OMAC, based on block cipher EK, against A(q, T ) is given by

Advprf
OMACEK

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) +

4σ

2n
+ ε′(q, �), (8)

where q denotes the number of queries, � denotes an upper bound on the number
of blocks per query, σ denotes the total number of blocks present in all q queries,
T ′ = T + σO(TE) and TE denotes the runtime of E.

Theorem 3.2 (XCBC-TMAC bound). Let q, �, σ, T > 0. For q + σ ≤ 2n−1,
the PRF insecurity of XCBC and TMAC, based on block cipher EK and respective
masking keys (L, L−1, L0), against A(q, T ) is given by

Advprf
XCBCEK,L−1,L0

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) + ε′(q, �) (9)

Advprf
TMACEK,L

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) + ε′(q, �) (10)

where q denotes the number of queries, � denotes an upper bound on the number
of blocks per query, σ denotes the total number of blocks present in all q queries,
T ′ = T + σO(TE) and TE denotes the runtime of E.
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Proof of this theorem is almost same as that of Theorem 3.1. The bad event on
a collision on zero block input is redundant and hence dropped here. Rest of the
proof remains the same and so we skip the details.

Remark 3.1. Note that the actual advantage cannot exceed 1. Let us denote
q2

2n = α and q�2

2n = β. Looking at ε(q, �) (where ε(q, �) = ε′(q, �) + 4σ
2n in case of

OMAC and ε(q, �) = ε′(q, �) in case of XCBC,TMAC), we see that any term in
the expression is upper bounded by c · αsβt for some constant c and s, t ≥ 0
such that at least one of s and t is at least 1. As we can assume both α, β to
be less than 1, each αsβt will be less than or equal to α or β. Thus, the above
PRF-advantage expressions for MAC ∈ {OMAC,XCBC,TMAC} can be written
as

Advprf
MAC(q, �, σ) = O

(
q2

2n

)
+ O

(
q�2

2n

)
.

Indeed, under the assumption that � ≤ 2n/4−0.5 and q ≤ 2n/2−1, one can simplify
the above bounds to 20q2/2n + 23q�2/2n.

A Note on The Proof Approach: In the analysis of OMAC, XCBC and
TMAC, we have to handle the case that the final input collides with some inter-
mediate input, the so-called full collision event. In earlier works the probability
of this event is shown to be q2�/2n (as there are less than q� many intermedi-
ate inputs and q final inputs and any such collision happens with roughly 1/2n

probability). So, in a way they avoid handling this tricky event by disallowing it
all together. In this work, we allow full collisions as long as the next intermedi-
ate input is not colliding with some other input (intermediate or final). Looking
ahead momentarily, this is captured in BadW3. We can do this via the application
of reset-sampling, resulting in a more amenable (q2/2n + q�2/2n) bound.

4 Proof of Theorem 3.1

First, using the standard hybrid argument, we get

Advprf
OMACEK

(q, �, σ, T ) ≤ Advprp
E (q + σ, T ′) + Advprf

OMACΠ
(q, �, σ,∞). (11)

Now, it is sufficient to bound Advprf
OMACΠ

(q, �, σ,∞), where the corresponding
distinguisher A is computationally unbounded and deterministic. To bound this
term, we employ the H-coefficient technique (see Sect. 2.2), and the recently
introduced reset-sampling method [8]. The remaining steps of the proof are given
in the remainder of this section.

4.1 Oracle Description and Corresponding Transcripts

Real Oracle: The real oracle corresponds to OMACΠ. It responds faithfully to
all the queries made by A . Once the query-response phase is over, it releases all
the intermediate inputs and outputs, as well as the masking keys L−1 and L0 to
A . We write L = Π(0n).
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In addition, the real oracle releases three binary variables, namely, FlagT,
FlagW and FlagX, all of which are degenerately set to 0. These flags are more of
a technical requirement, and their utility will become apparent from the descrip-
tion of ideal oracle. For now, it is sufficient to note that these flags are degenerate
in the real world.

Formally, we have V1 := (M̃, T̃, X̃, X̃∗, Ỹ, L−1, L0,FlagT,FlagW,FlagX), where

– M̃ = (M1, . . . ,Mq), the q-tuple of queries made by A , where Mi ∈ {0, 1}∗ for

all i ∈ [q]. In addition, for all i ∈ [q], let �i :=
⌈

|Mi|
n

⌉
.

– T̃ = (T1, . . . ,Tq), the q-tuple of final outputs received by A , where Ti ∈ B.
– X̃ = (X1, . . . ,Xq), where Xi denotes the intermediate input tuple for the i-th

query.
– X̃∗ = (X1[�1], . . . ,Xq[�q]), where Xi[�i] denotes the final input for the i-th

query.
– Ỹ = (Y1, . . . ,Yq), where Yi denotes the intermediate output tuple for the i-th

query.
– L−1 and L0 denote the two masking keys. Note that L−1 and L0 are easily

derivable from L. So we could have simply released L. The added redundancy
is to aid the readers in establishing an analogous connection between this
proof and the proof for XCBC and TMAC.

– FlagT = FlagW = FlagX = 0.

From the definition of OMAC, we know that Π(Xi[a]) = Yi[a] for all (i, a) ∈
[q] × [�i]. So, in the real world we always have (0n, X̃, X̃∗) � (L, Ỹ, T̃), i.e.,
(0n, X̃, X̃∗) is permutation compatible with (L, Ỹ, T̃). We keep this observation in
our mind when we simulate the ideal oracle.

Ideal Oracle: By reusing notations from the real world, we represent the ideal
oracle transcript as V0 := (M̃, T̃, X̃, X̃∗, Ỹ, L−1, L0,FlagT,FlagW,FlagX). This
should not cause any confusion, as we never consider the random variables V1

and V0 jointly, whence the probability distributions of the constituent variables
will always be clear from the context.

The ideal oracle transcript is described in three phases, each contingent on
some predicates defined over the previous stages. Specifically, the ideal oracle
first initializes FlagT = FlagW = FlagX = 0, and then follows the sampling
mechanism given below:
Phase I (Query-Response Phase): In the query-response phase, the ideal
oracle faithfully simulates Γ ←$ F({0, 1}∗,B). Formally, for i ∈ [q], at the i-th
query Mi ∈ {0, 1}∗, the ideal oracle outputs Ti ←$ B. The partial transcript
generated at the end of the query-response phase is given by (M̃, T̃), where

– M̃ = (M1, . . . ,Mq) and T̃ = (T1, . . . ,Tq).

Now, we define a predicate on T̃:

BadT : ∃i = j ∈ [q], such that Ti = Tj .
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If BadT is true, then FlagT is set to 1, and X̃, X̃∗, and Ỹ are defined degenerately:
Xi[a] = Yi[b] = 0n for all i ∈ [q], a ∈ [�i], b ∈ (�i − 1]. Otherwise, the ideal oracle
proceeds to the next phase.
Phase II (Offline Initial Sampling Phase):Onward, we must have Ti =
Tj whenever i = j, and FlagT = 0, since this phase is only executed when BadT
is false. In the offline phase, the ideal oracle’s initial goal is to sample the input
and output tuples in such a way that the intermediate input and output tuples
are permutation compatible. For now we use notations W and Z, respectively,
instead of X and Y, to denote the input and output tuples. This is done to
avoid any confusions in the next step where we may have to reset some of these
variables. To make it explicit, W and Z respectively denote the input and output
tuples before resetting, and X and Y denote the input and output tuples after
resetting.

Let P be a key-value table representing a partial permutation of B, which
is initialized to empty, i.e., the corresponding permutation is undefined on all
points. We write P.domain and P.range to denote the set of all keys and values
utilized till this point, respectively. The ideal oracle uses this partial permutation
P to maintain permutation compatibility between intermediate input and output
tuples, in the following manner:

Initial sampling

L ←$ B \ ˜T

L−1 ← μ−1 � L

L0 ← μ0 � L

P(0n) ← L

for i = 1 to q do

Zi[0] ← 0n

for a = 1 to �i − 1 do

Wi[a] ← Zi[a − 1] ⊕ Mi[a]

if Wi[a] ∈ P.domain

Zi[a] ← P(Wi[a])

else

Zi[a] ←$ B \
(

˜T ∪ P.range
)

P(Wi[a]) ← Zi[a]

Wi[�i] ← Zi[�i − 1] ⊕ Mi[�i] ⊕ LδMi

At this stage we have Zi[a] = Zj [b] if and only if Wi[a] = Wj [b] for all (i, a) ∈
[q]× [�i −1] and (j, b) ∈ [q]× [�j −1]. In other words, (0n, W̃) � (L, Z̃). But it is
obvious to see that the same might not hold between (0n, W̃, W̃∗) and (L, Z̃, T̃).
In the next stage our goal will be to reset some of the Z variables in such a
way that the resulting input tuple is compatible with the resulting output tuple.
However, in order to reset, we have to identify and avoid certain contentious
input-output tuples.
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Identifying Contentious Input-Outptut Tuples: We define several pred-
icates on (W̃, W̃∗), each of which represents some undesirable property of the
sampled input and output tuples.

First, observe that L is chosen outside the set T̃. This leads to the first
predicate:

BadW1 : ∃(i, a) ∈ [q] × [�i], such that (Wi[a] = 0n) and (�i > 1 =⇒ a > 1).

since, if BadW1 is true, then (0n, W̃∗) is not compatible with (L, T̃). In fact,
¬BadW1 implies that none of the inputs, except the first input which is fully in
adversary’s control, can possibly be 0n. This stronger condition will simplify the
analysis greatly. The second predicate simply states that the final input tuple is
not permutation compatible with the tag tuple, i.e., we have

BadW2 : ∃i = j ∈ [q], such that Wi[�i] = Wj [�j ].

At this point, assuming ¬(BadW1 ∨ BadW2) holds true, the only way we can
have permutation incompatibility is if Wi[a] = Wj [�j ], for some i, j ∈ [q] and
a ∈ [�i − 1]. A simple solution will be to reset Zi[a] to Tj , for all such (i, a, j).
In order to do this, we need that the following predicates must be false:

BadW3 : ∃i, j, k ∈ [q], a ∈ [�i − 1], b ∈ [�k], such that

(Wi[a] = Wj [�j ]) ∧ (Wi[a + 1] = Wk[b]) ∧ Prefix(Mi,Mk) < max{a + 1, b}.

BadW4 : ∃i, j, k ∈ [q], a = b ∈ [�i − 1], such that

(Wi[a] = Wj [�j ]) ∧ (Wi[b] = Wk[�k]).

BadW5 : ∃i, j, k ∈ [q], a ∈ [�i − 1], b ∈ [�j − 1], such that

(Wi[a] = Wj [�j ]) ∧ (Wj [b] = Wk[�k]).

If BadW3 is true, then once Zi[a] is reset, we lose the permutation compatibility
since, the reset next input, i.e., Xi[a+1] = Wi[a+1]⊕Zi[a]⊕Tj = Mi[a+1]⊕Tj =
Wk[b] with high probability, whereas Zi[a + 1] = Zk[b] with certainty. BadW4
simply represents the scenario where we may have to apply the initial resetting
to two indices in a single message. Looking ahead momentarily, this may lead
to contradictory induced resettings. Avoiding this predicate makes the resetting
operation much more manageable. Similarly, avoiding BadW5, is just proactive
prevention of contradictory resetting at Zi[a], since if BadW5 occurs, then we may
have a case where Xj [�j ] is reset due to induced resetting, leading to the case,
Xi[a] = Xj [�j ] and Yi[a] = Tj , where recall that Yi[a] is the resetting value of
Zi[a]. We write

BadW := BadW1 ∨ BadW2 ∨ BadW3 ∨ BadW4 ∨ BadW5.

If BadW is true, then FlagW is set to 1, and (X̃, X̃∗, Ỹ) is again defined degen-
erately, as in the case of BadT. Otherwise, the ideal oracle proceeds to the next
and the final phase, i.e., the resetting phase.
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Phase III.a Initial Resetting Phase: At this stage we must have ¬(BadT∨
BadW), i.e., FlagW = FlagT = 0. We describe the resetting phase in two sub-
stages. First, we identify the indices affected by the initial resetting operation.

Definition 4.1 [full collision index]. Any (i, a, j) ∈ [q]× [�i −1]× [q] is called
a full collision index (FCI) if Wi[a] = Wj [�j ]. Additionally, let

FCI := {(i, a, j) : i, j ∈ [q], a ∈ [�i − 1], such that (i, a, j) is an FCI}
F̃CI := {(i, a) ∈ [q] × [�i − 1] : ∃j ∈ [q], such that (i, a, j) is an FCI}

The first sub-stage, executes a resetting for full collision indices in the following
manner:

1. For all (i, a, j) ∈ FCI, define Yi[a] := Tj ;
2. For all (i, a, j) ∈ FCI, define

Xi[a + 1] := Wi[a + 1] ⊕ Zi[a] ⊕ Yi[a] = Mi[a + 1] ⊕ Tj ⊕ 1a=�i−1 � LδMi
,

where 1a=�i−1 is an indicator variable that evaluates to 1 when a = �i − 1,
and 0 otherwise.

Once the initial resetting is executed, it may result in new permutation incom-
patibilities. This necessitates further resettings, referred as induced resettings,
which require that the following predicates are false:

BadX1 : ∃(i, a, j) ∈ FCI, k ∈ [q], b ∈ [�k] \ {1}, such that

( Xi[a + 1] = Wk[b]) ∨ ( Xi[a + 1] = 0n).

BadX2 : ∃(i, a, j) ∈ FCI, k ∈ [q], such that

( Xi[a + 1] = Mk[1]) ∧ (Mi[a + 2, . . . , �i] = Mk[2, . . . , �k]).

BadX3 : ∃(i, a, j), (k, b, l) ∈ FCI, such that ( Xi[a + 1] = Mk[1]).
BadX4 : ∃(i, a, k), (j, b, l) ∈ FCI, such that

( Xi[a + 1] = Xj [b + 1] ) ∧ (Prefix(Mi,Mj) < max{a + 1, b + 1}).

Here, the variable highlighted in red denotes the update after initial resetting.
Let’s review these predicates in slightly more details. First, BadX1, represents
the situation where after resetting the next input (highlighted text) collides
with some intermediate input or 0n. This would necessitate induced resetting at
Zi[a+1]. In other words, if BadX1 is false then no induced resettings occur, unless
the next input collides with some first block input. This case is handled in the
next two predicates. BadX2 represents the situation when the next input collides
with a first block and the subsequent message blocks are all same. This would
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induce a chain of resetting going all the way to the final input. As BadT is false,
this would immediately result in a permutation incompatibility since tags are
distinct. If BadX2 is false, then the chain of induced resetting must end at some
point. BadX3 is used to avoid circular or contradictory resettings. It is analogous
to BadW5 defined earlier. If it is false, then we know that the k-th message is
free from resetting, so the induced resetting will be manageable. Finally, BadX4
represents the situation when two newly reset variables collide. We write

BadX1234 := BadX1 ∨ BadX2 ∨ BadX3 ∨ BadX4

If BadX1234 is true, then FlagX is set to 1, and (X̃, X̃∗, Ỹ) is again defined degen-
erately, as in the cases of BadT and BadW. Otherwise, the ideal oracle proceeds
to the second and the final sub-stage of resetting.
Phase III.b Induced Resetting Phase: Here, the goal is to execute the
induced resettings necessitated by the initial resetting operation.

First, we define the index of induced resetting for each (i, a) ∈ F̃CI, as the
smallest index j such that Xi[a + 1] = Mj [1] and

Prefix(Mi[a+2, . . . , �i], Mj [2, . . . , �j ]) = max{Prefix(Mi[a+2, . . . , �i], Mj′ [2, . . . , �j′ ]) : j′ ∈ [q]},

i.e., Prefix(Mi[a + 2, . . . , �i],Mj [2, . . . , �j ]) maximizes.

Definition 4.2 [induced collision sequence]. A sequence of tuples ((i, a +
1, j, 1), . . . , (i, a + p + 1, j, p + 1)) is called an induced collision sequence (ICS),
if (i, a) ∈ F̃CI, and j is the index of induced resetting for (i, a), where p :=
Prefix(Mi[a + 2, . . . , �i],Mj [2, . . . , �j ]). The individual elements of an ICS are
referred as induced collision index (ICI). Additionally, we let

ICI := {(i, a, j, b) : i, j ∈ [q], a ∈ [�i − 1], b ∈ [�j − 1], and (i, a, j, b) is an ICI.}
ĨCI := {(i, a) ∈ [q] × [�i − 1] : ∃(j, b) ∈ [q] × [�j − 1], and (i, a, j, b) is an ICI.}

Now, as anticipated, in the second sub-stage of resetting, we reset the induced
collision indices in the following manner:

1. For all (i, a, j, b) ∈ ICI, define Yi[a] := Zj [b];
2. For all (i, a, j, b) ∈ ICI, define

Xi[a + 1] := Wi[a + 1] ⊕ Zi[a] ⊕ Yi[a] = Mi[a + 1] ⊕ Zj [b] ⊕ 1a=�i−1 � LδMi
,

where 1a=�i−1 is an indicator variable that evaluates to 1 when a = �i − 1,
and 0 otherwise.

Given ¬BadX1234, we know that the induced resetting must stop at some point
before the final input. Now, it might happen that once the first chain of induced
resetting stops, the next input again collides which may result in nested resetting
or permutation incompatibility. The predicates BadX5, BadX6, and BadX7 below
represent these scenarios.
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– BadX5 : ∃(i, a, k, b) ∈ ICI, l ∈ [q], b ∈ [�l − 1], such that

( Xi[a + 2 + p] = Wl[b]) ∨ ( Xi[a + 2 + p] = 0n),

where p := Prefix(Mi[a + 2, . . . , �i],Mk[2, . . . , �k]).

– BadX6 : ∃(i, a) ∈ F̃CI, (j, b, k, c) ∈ ICI, such that ( Xi[a + 1] =

Xj [b + 2 + p] ), where p := Prefix(Mj [b + 2, . . . , �j ],Mk[2, . . . , �k]).

– BadX7 : ∃(i, a, k, c), (j, b, l, d) ∈ ICI, such that

( Xi[a + 2 + p] = Xj [b + 2 + p′] )∧(Prefix(Mi,Mj) < max{a+2+p, b+2+p′}),

where p := Prefix(Mi[a + 2, . . . , �i],Mk[2, . . . , �k]), and p′ := Prefix(Mj [b +
2, . . . , �j ],Ml[2, . . . , �l]).

Here, the variables highlighted in red and blue denote the update after initial
resetting and induced resetting, respectively. These predicates are fairly self-
explanatory. First BadX5 represents the situation that the immediate input after
induced resetting collides with some intermediate input or 0n. This may cause
permutation incompatibility and would lead to nested induced resetting at Zi[a+
2 + p]. BadX6 handles a similar collision with a full collision resetted variable,
and BadX7 handles the only remaining case where the immediate inputs after
two different induced resetting collides. Note that, ¬(BadX5 ∨ BadX6 ∨ BadX7)
would imply that for each message resetting stops at some point before the final
input, and the next input is fresh.5 We write

BadX := BadX1 ∨ BadX2 ∨ BadX3 ∨ BadX4 ∨ BadX5 ∨ BadX6 ∨ BadX7.

If BadX is true, then FlagX is set to 1, and (X̃, X̃∗, Ỹ) is again defined degenerately,
as in the case of BadT and BadW. Otherwise, for any remaining index (i, a) ∈
[q] × (�i − 1] \ (F̃CI ∪ ĨCI), the ideal oracle resets as follows:

1. define Yi[a] := Zi[a];
2. define Xi[a + 1] := Wi[a + 1].

At this point, the ideal oracle transcript is completely defined. Intuitively, if the
ideal oracle is not sampling (X̃, X̃∗, Ỹ) degenerately at any stage, then we must
have (0n, X̃, X̃∗) � (L, Ỹ, T̃). The following proposition justifies this intuition.

Proposition 4.1. For ¬(BadT ∨ BadW ∨ BadX), we must have (0n, X̃, X̃∗) �
(L, Ỹ, T̃).

Proof. Let ¬(BadT ∨ BadW ∨ BadX) hold. Recall that (0n, W̃, W̃∗) may not be
permutation compatible with (L, Z̃, T̃). For any (i, a) ∈ F̃CI, there exists i′ ∈ [q]

5 Does not collide with any other input.
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such that Wi[a] = Wi′ [�i′ ] but Zi[a] = Ti′ . We apply the initial resetting to solve
this issue. However, as a result of initial resetting, induced resetting takes place.
Our goal is to show that the non-occurrence of the bad events assures that the
compatibility is attained in the final reset tuples (0n, X̃, X̃∗) and (L, Ỹ, T̃). We
prove all possible cases as follows:

– Xi[a] = 0n ⇐⇒ Yi[a] = L: If a = 1 and Xi[a] = 0, then (i, a) /∈ F̃CI due
to ¬BadW1. Also, (i, 1) /∈ ĨCI. Thus, Yi[a] = Zi[a] = L and the converse also
holds. Otherwise, due to ¬BadX1, Xi[a] can not be equal to 0. Also, due to
¬BadW1, Yi[a] can not be equal to L.

– Xi[a] = Xi′ [�i′ ] ⇐⇒ Yi[a] = Ti′ : For (i, a) ∈ F̃CI, this equivalence holds.
Otherwise, Xi[a] = Xi′ [�i′ ] can not hold due to ¬(BadX1∨BadX5). Also Yi[a] =
Ti′ can not hold due to definition of T̃ and ¬BadX2.

– Xi[a] = Xj [b] ⇐⇒ Yi[a] = Yj [b]: To prove this part we divide it in the
following subcases:

• (i, a), (i, b) /∈ F̃CI ∪ ĨCI : Since in this case the variables are simply
renamed due to definitions of resetting and ¬BadW3, the result follows
from W̃ � Z̃.

• (i, a), (j, b) ∈ F̃CI : Since (i, a), (j, b) ∈ F̃CI, there exists unique i′, j′ ∈ [q],
such that Wi[a] = Wi′ [�i′ ] and Wj [b] = Wj′ [�j′ ]. Now, note that Xi[a] =
Wi[a] and Xj [b] = Wj [b] since F̃CI ∩ ĨCI = ∅ due to ¬BadW4; Wi′ [�i′ ] =
Xi′ [�i′ ] and Wj′ [�j′ ] = Xj′ [�j′ ] due to ¬BadW5. Therefore, we must have
Xj′ [�j′ ] = Wj′ [�j′ ] = Wj [b] = Xj [b] = Xi[a] = Wi[a] = Wi′ [�i′ ] = Xi′ [�i′ ],
which is possible if and only if i′ = j′ (since ¬BadW2 holds).

• (i, a), (j, b) ∈ ĨCI : Since (i, a), (j, b) ∈ ĨCI, there exists i′, j′ ∈ [q] and
a′ ∈ [�i′ − 1], b′ ∈ [�j′ − 1], such that Xi[a] = Wi′ [a′] and Xj [b] = Wj′ [b′].
Further, (i′, a′), (j′, b′) /∈ F̃CI ∪ ĨCI (due to ¬BadX3). If Xj [b] = Xi[a], then
we have Wj′ [b′] = Wi′ [a′]. This gives us Yj [b] = Zj′ [b′] = Zi′ [a′] = Yi[a]
(due to W̃ � Z̃). Similarly, Xi[a] = Xj [b] implies Yi[a] = Yj [b].

• (i, a) ∈ F̃CI and (j, b) ∈ ĨCI : Since (i, a) ∈ F̃CI, there exists a unique i′ ∈
[q], such that Xi[a] = Wi[a] = Wi′ [�i′ ] = Xi′ [�i′ ] (the first equality is due
to ¬BadW4, the second equality is due to the definition of full collision,
the third equality is due to ¬BadW5). Since (j, b) ∈ ĨCI, we also have
Xj [b] = Wj′ [b′]. If Xi[a] = Xj [b], then Wj′ [b′] = Wi′ [�i′ ]. Thus, (j′, b′) =
(i′, �i′) due to ¬BadX3. Now, we have Yi[a] = Ti′ . Also, Yj [b] = Yj′ [b′] =
Yi′ [�i′ ] = Ti′ . Therefore, Yi[a] = Yj [b]. Moreover, Xi[a] = Xj [b] implies
that Yi[a] = Yj [b] due to similar arguments as above and also ¬BadT.

• (i, a) ∈ ĨCI and (j, b) ∈ F̃CI : Similar as the above case.
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• (i, a) ∈ F̃CI ∪ ĨCI and (j, b) /∈ F̃CI ∪ ĨCI : Since (j, b) /∈ F̃CI ∪ ĨCI, we have

Xj [b] = Wj [b] and Yj [b] = Zj [b]. Suppose, (i, a) ∈ F̃CI. Then Xi[a] = Xj [b]
is not possible since it would imply that (j, b) ∈ F̃CI. Also, Yi[a] = Yj [b] is
not possible since it would contradict the definition of T̃. Now, suppose,
(i, a) ∈ ĨCI. Therefore, Xi[a] = Wi′ [a′] for some i′ ∈ [q] and a′ ∈ [�i′ − 1].
If Xi[a] = Xj [b], then Wj [b] = Xj [b] = Xi[a] = Wi′ [a′]. So, Yj [b] = Zj [b] =
Zi′ [a′] = Yi[a]. Similarly, Xi[a] = Xj [b] implies Yi[a] = Yj [b].

• (i, a) /∈ F̃CI ∪ ĨCI and (j, b) ∈ F̃CI ∪ ĨCI : Similar as the above case.

4.2 Transcript Analysis

Set of Transcripts: Given the description of transcript random variable cor-
responding to the ideal oracle, we can now define the set of transcripts V as the
set of all tuples ν = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0,flagT,flagW,flagX), where

– m̃ = (m1, . . . , mq), where mi ∈ {0, 1}∗ for i ∈ [q]. Let �i =
⌈

|mi|
n

⌉
for i ∈ [q].

– t̃ = (t1, . . . , tq), where ti ∈ B for i ∈ [q].
– x̃ = (x1, . . . , xq), where xi = (xi[1], . . . , xi[�i − 1]) for i ∈ [q].
– x̃∗ = (x1[�1], . . . , xq[�q]).
– ỹ = (y1, . . . , yq), where yi = (yi[0] = 0n, yi[1], . . . , yi[�i − 1]) for i ∈ [q].
– l−1 = μ−1 � l, l0 = μ0 � l where l ∈ B and μ−1, μ0 are constants chosen from

GF(2n) as defined before.
– flagT,flagW,flagX ∈ {0, 1}.

Furthermore, the following must always hold:

1. if flagI = 1 for some I ∈ {T,W}, then xi[a] = yj [b] = 0n for all i, j ∈ [q],
a ∈ [�i], and b ∈ [�j − 1].

2. if flagT = 0, then ti’s are all distinct.
3. if flagI = 0 for all I ∈ {T,W,X}, then xi[a] = yi[a − 1] ⊕ mi[a] and

(0n, x̃, ỹ⊕) � (L, ỹ, t̃).

The first two conditions are obvious from the ideal oracle sampling mechanism.
The last condition follows from Proposition 4.1 and the observation that in ideal
oracle sampling for any I ∈ {T,Z,X}, FlagI = 1 if and only if BadI is true. Note
that, condition 3 is vacuously true for real oracle transcripts.

Bad Transcript: A transcript ν ∈ V is called bad if and only if the following
predicate is true:

(FlagT = 1) ∨ (FlagW = 1) ∨ (FlagX = 1).

In other words, we term a transcript bad if the ideal oracle sets (X̃, X̃∗, Ỹ) degen-
erately. Let

Vbad := {ν ∈ V : ν is bad.}.
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All other transcript ν′ = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0,flagT,flagW,flagX) ∈ V \ Vbad are
called good. From the preceding characterization of the set of transcripts, we
conclude that for any good transcript ν′, we must have (0n, x̃, x̃∗) � (L, ỹ, t̃).
Henceforth, we drop flagT, flagW, and flagX for any good transcript with an
implicit understanding that flagT = flagW = flagX = 0.

Following the H-coefficient mechanism, we have to upper bound the proba-
bility Pr (V0 ∈ Vbad) and lower bound the ratio Pr (V1 = ν)/Pr (V0 = ν) for any
ν ∈ V \ Vbad.

Lemma 4.1 (bad transcript analysis). For q + σ ≤ 2n−1, we have

Pr (V0 ∈ Vbad) ≤4σ

2n
+

16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
.

The proof of this lemma is postponed to Sect. 5.

Good Transcript: Now, fix a good transcript ν = (m̃, t̃, x̃, x̃∗, ỹ, l−1, l0). Let
σ be the total number of blocks (and one additional for 0n) and σ′ := |x̃∪{0n}|.
Since, ν is good, we have (0n, x̃, x̃∗) � (L, ỹ, t̃). Then, we must have |x̃∗| = q.
Further, let |x̃ ∩ x̃∗| = r. Thus, |{0n} ∪ x̃ ∪ x̃∗| = q + σ′ − r.
Real world: In the real world, the random permutation Π is sampled on exactly
q + σ′ − r distinct points. Thus, we have

Pr (V1 = ν) =
1

(2n)q+σ′−r
. (12)

Ideal World: In the ideal world, we employed a two stage sampling. First of all,
we have

Pr
(
T̃ = t̃,P(0n) = L

)
≤ 1

2nq
, (13)

since each Ti is sampled uniformly from the set B independent of others.
Now, observe that all the full collision and induced collision indices are fully
determined from the transcript ν itself. In other words, we can enumerate
the set C̃I := F̃CI ∪ ĨCI. Now, since the transcript is good, we must have
|C̃I| = σ − σ′ + |x̃ ∩ x̃∗| = σ − σ′ + r, and for all indices (i, a) /∈ C̃I, we have
Yi[a] = Zi[a]. Thus, we have

Pr
(
Yi[a] = yi

a ∧ (i, a) /∈ C̃I | T̃ = t̃
)

= Pr
(
Zi[a] = yi

a ∧ (i, a) /∈ C̃I | T̃ = t̃
)

=
1

(2n − q)σ′−r
, (14)
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where the second equality follows from the fact that truncation6 of a without
replacement sample from a set of size (2n − q) is still a without replacement
sample from the same set. We have

Pr (V0 = ω) = Pr
(
T̃ = t̃

)
× Pr

(
Ỹ = ỹ | T̃ = t̃

)

≤ 1
2nq

× Pr
(
Yi[a] = yi[a] ∧ (i, a) /∈ C̃I | T̃ = t̃

)
=

1
2nq(2n − q)σ′−r

.

(15)

The above discussion on good transcripts can be summarized in shape of the
following lemma.

Lemma 4.2 For any ν ∈ V \ Vbad, we have
Pr (V1 = ν)
Pr (V0 = ν)

≥ 1.

Proof The proof follows from dividing (12) by (15).

Using Theorem 2.1, and Lemma 4.1 and 4.2, we get

Advprf
OMACΠ

(q, �, σ,∞) ≤ 4σ

2n
+

16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
.

(16)

Theorem 3.1 follows from (11) and (16).

5 Proof of Lemma 4.1

Our proof relies on a graph-based combinatorial tool, called structure graphs
[3,15]. A concise and complete description of this tool and relevant results are
available in the full version of this paper [9, Appendix A]. Our aim will be to
bound the probability of bad events only when they occur in conjunction with
some “manageable” structure graphs. In all other cases, we upper bound the
probability by the probability of realizing an unmanageable structure graph.
Formally, we say that the structure graph GP(M̃) is manageable if and only if:

1. for all i ∈ [q], we have Acc(GP(Mi)) = 0, i.e., each Mi-walk is a path.
2. for all distinct i, j ∈ [q], we have Acc(GP(Mi,Mj)) ≤ 1.
3. for all distinct i, j, k ∈ [q], we have Acc(GP(Mi,Mj ,Mk)) ≤ 2.
4. for all distinct i, j, k, l ∈ [q], we have Acc(GP(Mi,Mj ,Mk,Ml)) ≤ 3.

6 Removing some elements from the tuple.
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Let unman denote the event that GP(M̃) is unmanageable. Then, using [9, Corol-
lary A.1], we have

Pr (unman) ≤ Pr (∃i ∈ [q] : Acc(GP(Mi)) ≥ 1) + Pr (∃i < j ∈ [q] : Acc(GP(Mi,Mj)) ≥ 2)

+ Pr (∃i < j < k ∈ [q] : Acc(GP(Mi,Mj ,Mk)) ≥ 3)

+ Pr (∃i < j < k < l ∈ [q] : Acc(GP(Mi,Mj ,Mk,Ml)) ≥ 4)

≤
∑

i∈[q]

(�i − 1)2

2n
+

∑

i<j∈[q]

(�i + �j − 2)4

22n
+

∑

i<j<k∈[q]

(�i + �j + �k − 3)6

23n

+
∑

i<j<k<l∈[q]

(�i + �j + �k + �l − 4)8

24n

≤ q�2

2n
+

8q2�4

22n
+

121.5q3�6

23n
+

5461.34q4�8

24n
. (17)

From now on we only consider manageable graphs. Observe that apart from the
fact that a manageable graph is just a union of Mi-paths, there is an added
benefit that it has no zero collision. Let TU := ¬(BadT ∨ unman) and TUW :=
¬(BadT ∨ unman ∨ BadW). Now, we have

Pr (V0 ∈ Vbad) = Pr ((FlagT = 1) ∨ (FlagW = 1) ∨ (FlagX = 1))

1≤ Pr (BadT ∨ BadW ∨ BadX)

≤ Pr (BadT) + Pr (BadW|¬BadT) + Pr (BadX|¬(BadT ∨ BadW))

2≤ Pr (∃i �= j : Ti = Tj) + Pr (BadW|¬BadT) + Pr (BadX|¬(BadT ∨ BadW))

3≤ q2

2n+1
+ Pr (unman) + Pr (BadW|TU) + Pr (BadX|TUW)

4≤ 0.5q2 + q�2

2n
+

8q2�4

22n
+

122q3�6

23n
+

5462q4�8

24n

+ Pr (BadW|TU) + Pr (BadX|TUW) (18)

Here, inequalities 1 and 2 follow by definition; 3 follows from the fact that Ti is
chosen uniformly at random from B for each i; and 4 follows from (17).

Bounding Pr (BadW|¬(BadT ∨ unman)): Let Ei = ¬(TU ∨ BadW1 ∨ · · · ∨ BadWi).
We have

Pr (BadW|TU) ≤ Pr (BadW1|TU) + Pr (BadW2|E1) + Pr (BadW3|E2)
+ Pr (BadW4|E3) + Pr (BadW5|E4) (19)

We bound the individual terms on the right hand side as follows:
Bounding Pr (BadW1|TU): Fix some (i, a) ∈ [q] × [�i]. The only way we can have
Wi[a] = 0n, for 1 < a < �i, is if Zi[a− 1] = Mi[a]. This happens with probability
at most (2n − q)−1. For a = �i, the equation

μδMi
� L ⊕ Zi[�i − 1] ⊕ Mi[�i] = 0n
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must hold non-trivially. The probability that this equation holds is bounded by
at most (2n − q − 1)−1. Assuming q + 1 ≤ 2n−1, and using the fact that there
can be at most σ choices for (i, a), we have

Pr (BadW1|TU) ≤ 2σ

2n
. (20)

Bounding Pr (BadW2|E1): Fix some i = j ∈ [q]. Since ¬unman holds, we know
that Acc(GP(Mi,Mj)) ≤ 1. We handle the two resulting cases separately:

(A) Acc(GP(Mi,Mj)) = 1: Suppose the collision source of the only accident are
(i, a) and (j, b). Then, we have the following system of two equations

Zi[a] ⊕ Zj [b] = Mi[a + 1] ⊕ Mj [b + 1]

(μδMi
⊕ μδMj

) � L ⊕ Zi[�i − 1] ⊕ Zj [�j − 1] = Mi[�i] ⊕ Mj [�j ]

Suppose δMi
= δMj

, i.e. μδMi
⊕μδMj

= 0n. Using the fact that ¬BadW1 holds,
we infer that L /∈ {Zi[a],Zj [b],Zi[�i − 1],Zj [�j − 1]}. So, the two equations
are linearly independent, whence the rank is 2 in this case. Again, using [9,
Lemma A.4], and the fact that there are at most q2/2 choices for i and j,
and �2 choices for a and b, we get

Pr
(
BadW2 ∧ Case A ∧ δMi

= δMj
|E1) ≤ q2�2

2(2n − q − σ + 2)2
.

Now, suppose δMi
= δMj

, i.e. μδMi
⊕ μδMj

= 0n. Then, we can rewrite the
system as

Zi[a] ⊕ Zj [b] = Mi[a + 1] ⊕ Mj [b + 1]

Zi[�i − 1] ⊕ Zj [�j − 1] = Mi[�i] ⊕ Mj [�j ]

We can have two types of structure graphs relevant to this case, as illustrated
in Fig. 3. For type 1 all variables are distinct. So, the two equations are
linearly independent, whence the rank is 2 in this case. Again, using [9,
Lemma A.4], we get

Pr
(
BadW2 ∧ Case A ∧ δMi

= δMj
∧ Type 1|E1) ≤ q2�2

2(2n − q − σ + 2)2
.

Type (1)

∗ ∗

Type (2)

∗ ∗

Fig. 3. Accident-1 manageable graphs for two messages. The solid and dashed lines
correspond to edges in Wi and Wj , respectively. ∗ denotes optional parts in the walk.
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For type 2, it is clear that Zj [�j − 1] = Zi[�i − 1]. So, we can assume that
the second equation holds trivially, thereby deriving a system in Zi[a] and
Zj [b], with rank 1. Further, a and b are uniquely determined as �i − p and
�j − p, where p is the longest common suffix of Mi and Mj . So we have

Pr
(
BadW2 ∧ Case A ∧ δMi

= δMj
∧ Type 2|E1) ≤ q2

2(2n − q − σ + 1)
.

(B) Acc(GP(Mi,Mj)) = 0: In this case, we only have one equation of the form

(μδMi
⊕ μδMj

) � L ⊕ Zi[�i − 1] ⊕ Zj [�j − 1] = Mi[�i] ⊕ Mj [�j ]

If δMi
= δMj

, we have an equation in three variables, namely L, Zi[�i − 1],
and Zj [�j − 1]; and if δMi

= δMj
, we have an equation in two variables,

namely Zi[�i − 1], and Zj [�j − 1]. In both the cases, the equation can only
hold non-trivially, i.e., rank is 1. Using [9, Lemma A.4], we get

Pr (BadW2 ∧ Case B|E1) ≤ q2

2(2n − q − σ + 1)
.

On combining the three cases, we get

Pr (BadW2|E1) ≤ q2

2n − q − σ + 1
+

q2�2

(2n − q − σ + 2)2
. (21)

Bounding Pr (BadW3|E2): Fix some i, j, k ∈ [q]. Since ¬unman holds, we must
have Acc(GP(Mi,Mj ,Mk)) ≤ 2. Accordingly, we have the following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: Suppose (α1, β1) and (α2, β2) are collision source
leading to one of the accident, and (α3, β3) and (α4, β4) are collision source
leading to the other accident. Then, considering Wi[a] = Wj [�j ], we have
the following system of equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]
Zα3 [β3] ⊕ Zα4 [β4] = Mα3 [β3 + 1] ⊕ Mα4 [β4 + 1]

Zj [a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

The first two equations are independent by definition. Further, using
¬BadW1, we can infer that the last equation is also independent of the first
two equations. Thus the system has rank 3. There are at most q3/6 choices
for (i, j, k), and for each such choice we have 3 choices for (α1, α2, α3, α4)
and at most �5 choices for (β1, β2, β3, β4, a). Using [9, Lemma A.4], we have

Pr (BadW3 ∧ Case A|E2) ≤ q3�5

2(2n − q − σ + 3)3
.
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(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source
leading to the accident. First consider the case a < �i − 1 and b < �k. In
this case, we have the following system of equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[a] ⊕ Zk[b − 1] = Mi[a + 1] ⊕ Mk[b]

The first two equations are clearly independent. Further, since Mi = Mk,
the last equation must correspond to a true collision as a consequence of
the accident. So, the rank of the above system is 2. Once we fix (i, j, k) and
(a, b), we have at most 3 choices for (α1, α2), and β1 and β2 are uniquely
determined as a + 1 − p and b − p, where p is the largest common suffix of
Mi[1, . . . , a + 1] and Mk[1, . . . , b]. So, we have

Pr (BadW3 ∧ Case B ∧ a < �i − 1 ∧ b < �k|E2) ≤ q3�2

2(2n − q − σ + 2)2
.

Now, suppose a = �i−1. Then we can simply consider the first two equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zj [�i − 2] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[�i − 1]

Clearly, the two equations are independent. We have at most q3 choices for
(i, j, k), 3 choices for (α1, α2), and �2 choices for (β1, β2). So we have

Pr (BadW3 ∧ Case B ∧ a = �i − 1|E2) ≤ q3�2

2(2n − q − σ + 2)2
.

The case where a < �i−1 and b = �k can be handled similarly by considering
the first and the third equations.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: In this case, we know that the three paths, Wi,
Wj , and Wk do not collide. This implies that we must have a = �i − 1, or
b = �k or both, in order for Wi[a + 1] = Wk[b] to hold. First, suppose both
a = �i − 1 and b = �k. Then, we have the following system of equations:

Zj [�i − 2] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[�i − 2]

(μδMi
⊕ μδMk

) � L ⊕ Zi[�i − 1] ⊕ Zk[�k − 1] = Mi[�i] ⊕ Mk[�k]

Using the properties of μ−1 and μ0, and ¬BadW1, we can conclude that the
above system has rank 2. There are at most q3/6 choices for (i, j, k), and at
most �2 choices for (a, b). So, we have

Pr (BadW3 ∧ Case C ∧ a = �i − 1 ∧ b = �k|E2) ≤ q3�2

6(2n − q − σ + 2)2
.
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The remaining two cases are similar. We handle the case a = �i − 1 and
b < �k, and the other case can be handled similarly. We have the following
system of equations

Zj [�i − 2] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[�i − 2]

μδMi
� L ⊕ Zi[�i − 1] ⊕ Zk[b − 1] = Mi[�i] ⊕ Mk[b]

If δMi
= δMj

, then using the same argument as above, we can conclude that
the system has rank 2, and we get

Pr
(

BadW3 ∧ Case C ∧ a = �i − 1 ∧ b < �k ∧ δMi �= δMj |E2
) ≤ q3�2

6(2n − q − σ + 2)2
.

So, suppose δMi
= δMj

. Now, in order for the second equation to be a
consequence of the first equation, we must have Zi[�i − 2] = Zj [�j − 1] and
Zi[�i − 1] = Zk[b]. The only we way this happens trivially is if Mi[1, . . . , �i −
1] = Mj [1, . . . , �j − 1] and Mi[1, . . . , �i − 1] = Mk[1, . . . , b]. But, then we
have b = �i − 1, and once we fix (i, k) there’s a unique choice for j, since
Mj [1, . . . , �j −1] = Mi[1, . . . , �i −1] and Mj [�j ] = Mi[�i]⊕Mi[�i −2]⊕Mk[b].
So, we get

Pr
(

BadW3 ∧ Case C ∧ a = �i − 1 ∧ b < �k ∧ δMi = δMj |E2
) ≤ q2

2(2n − q − σ + 1)
.

By combining all three cases, we have

Pr (BadW3|E2) ≤ q3�5

2(2n − q − σ + 3)3
+

2q3�2

(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

(22)

Type (1)

a − 1

�k − 1 b − 1

�j − 1

Type (2)

b − 1

�j − 1
a − 1

�k − 1

Fig. 4. Manageable graphs for case B.1. The solid, dashed and dotted lines correspond
to edges in Wi, Wj , and Wk, respectively.

Bounding Pr (BadW4|E3): Fix some i, j, k ∈ [q]. The analysis in this case is very
similar to the one in case of BadW3|E2. So we will skip detailed argumentation
whenever possible. Since ¬unman holds, we must have Acc(GP(Mi,Mj ,Mk)) ≤ 2.
Accordingly, we have the following three cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same
argument as used in Case A for BadW3|E2. So, we have

Pr (BadW4 ∧ Case A|E3) ≤ q3�5

2(2n − q − σ + 3)3
.
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(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source
leading to the accident. Without loss of generality we assume a < b. Specif-
ically, b ≤ �i − 1 and a ≤ b − 2 due to ¬(BadW2 ∧ BadW3). First consider
the case b = �i − 1. In this case, considering Wi[b] = Wk[�k], we have the
following system of equations

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mi[b]

Using a similar argument as used in previous such cases, we establish that
the two equations are independent. Now, once we fix (i, j, k), we have exactly
one choice for b, at most 3 choices for (α1, α2), and �2 choices for (β1, β2).
So, we have

Pr (BadW4 ∧ Case B ∧ b = �i − 1|E3) ≤ q3�2

2(2n − q − σ + 2)2
.

Now, suppose b < �i − 1. Here we can have two cases:
(B.1) Wi is involved in the accident : Without loss of generality assume that

α1 = i and β1 ∈ [�i−1]. Then, we have the following system of equations:

Zi[β1] ⊕ Zα2 [β2] = Mi[β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mi[b]

Suppose Zi[β1] = Zi[a−1]. Then, we must have β1 = a−1 as the graph
is manageable.In this case, we consider the first two equations. It is easy
to see that the two equations are independent, and once we fix i, j, k,
there are at most 2 choices for α2 and �2 choices for (β1, β2), which gives
a unique choice for a. So, we have

Pr (BadW4 ∧ Case B.1 ∧ β1 = a − 1|E3) ≤ q3�2

2(2n − q − σ + 2)2
.

We get identical bound for the case when Zi[β1] = Zi[b − 1]. Suppose
Zi[β1] /∈ {Zi[a−1],Zi[b−1]}. Then, using the fact that there is only one
accident in the graph and that accident is due to (i, β1) and (α2, β2),
we infer that Zα2 [β2] /∈ {Zi[a − 1],Zi[b − 1]}. Now, the only way rank of
the above system reduces to 2, is if Zi[a−1] = Zk[�k −1] and Zi[b−1] =
Zj [�j − 1] trivially. However, if this happens then a and b are uniquely
determined by our choice of (i, j, k, β1, α2, β2). See Fig. 4 for the two
possible structure graphs depending upon the value of α2. Basically,
based on the choice of α2, a ∈ {�k, �k −β2 +β1}. Similarly, b ∈ {�j , �j −
β2 + β1}. So, using [9, Lemma A.4], we get

Pr (BadW4 ∧ Case B.1 ∧ β1 /∈ {a − 1, b − 1}|E3) ≤ 2q3�2

3(2n − q − σ + 2)2
.
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(B.2) Wi is not involved in the accident : Without loss of generality assume
α1 = j and α2 = k. Then, we have the following system of equations:

Zj [β1] ⊕ Zk[β2] = Mj [β1 + 1] ⊕ Mk[β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mi[b]

Since the graph is manageable, {Zi[a−1],Zi[b−1]}∩{Zj [�j −1],Zk[�k −
1]} = ∅. Suppose {Zi[a−1],Zi[b−1]} = {Zj [�j −1],Zk[�k −1]}. Without
loss of generality, assume Zi[a−1] = Zk[�k −1] and Zi[b−1] = Zj [�j −1].
This can only happen if the resulting graph is of Type 2 form in Fig. 4,
which clearly shows that we have unique choices for a and b when we
fix the other indices. Now, suppose |{Zi[a − 1],Zi[b − 1]} ∩ {Zj [�j −
1],Zk[�k −1]}| = 1. Then, we must have Zi[a−1] ∈ {Zj [β1],Zk[β2]} since
a < b. Without loss of generality we assume that Zi[a− 1] = Zk[β2] and
Zi[b − 1] = Zj [�j − 1]. Using similar argument as before, we conclude
that a and b are fixed once we fix all other indices. So using [9, Lemma
A.4], we get

Pr (BadW4 ∧ Case B.2|E3) ≤ 2q3�2

3(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: In this case, we know that the three paths, Wi,
Wj , and Wk do not collide. We have the following system of equations:

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
) � L ⊕ Zk[�k − 1] = Mi[�k] ⊕ Mi[b]

Using a similar analysis as in case C of BadW3|E2, we get

Pr (BadW4 ∧ Case C|E3) ≤ q3�2

6(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

By combining all three cases, we have

Pr (BadW4|E3) ≤ q3�5

2(2n − q − σ + 3)3
+

3q3�2

(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

(23)
Bounding Pr (BadW5|E4): Fix some i, j, k ∈ [q]. The analysis in this case is again
similar to the analysis of BadW3|E2 and BadW4|E3. We have the following three
cases:

(A) Acc(GP(Mi,Mj ,Mk)) = 2: This can be bounded by using exactly the same
argument as used in Case A for BadW3|E2. So, we have

Pr (BadW5 ∧ Case A|E4) ≤ q3�5

2(2n − q − σ + 3)3
.
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(B) Acc(GP(Mi,Mj ,Mk)) = 1: Suppose (α1, β1) and (α2, β2) are collision source
leading to the accident. In this case, we have the following system of equa-
tions

Zα1 [β1] ⊕ Zα2 [β2] = Mα1 [β1 + 1] ⊕ Mα2 [β2 + 1]

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zj [b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mk[�k] ⊕ Mj [b]

We can have two sub-cases:
(B.1) Suppose the third equation is simply a consequence of the second equa-

tion. Then, we must have δMi
= δMj

and Zi[a − 1] = Zj [b − 1] and
Zj [�j − 1] = Zk[�k − 1] must hold trivially, since the graph is man-
ageable. We claim that a = b = Prefix(Mi[1],Mj [1]) + 1. If not, then
Mi[�i] = Mj [�j ] which in conjunction with Zj [�j −1] = Zk[�k −1] implies
that Wi[�i] = Wj [�j ] which contradicts BadW2. So, using [9, Lemma A.4],
we get

Pr (BadW5 ∧ Case B.1|E4) ≤ q3�2

2(2n − q − σ + 2)2
.

(B.2) The second and third equation are independent. Considering the sub-
system consisting of these two equations, and using [9, Lemma A.4], we
get

Pr (BadW5 ∧ Case B.2|E4) ≤ q3�2

6(2n − q − σ + 2)2
.

(C) Acc(GP(Mi,Mj ,Mk)) = 0: We have the following system of equations:

Zi[a − 1] ⊕ μδMj
� L ⊕ Zj [�j − 1] = Mj [�j ] ⊕ Mi[a]

Zi[b − 1] ⊕ μδMk
� L ⊕ Zk[�k − 1] = Mi[�k] ⊕ Mi[b]

Let r denote the rank of the above system. Using a similar analysis as in
case B.1 above, we conclude that a = b = Prefix(Mi[1],Mj [1]) + 1 if r = 1.
Using [9, Lemma A.4], we get

Pr (BadW5 ∧ Case C ∧ r = 1|E4) ≤ q2

2(2n − q − σ + 1)
.

Pr (BadW5 ∧ Case C ∧ r = 2|E4) ≤ q3�2

6(2n − q − σ + 2)2
.

By combining all three cases, we have

Pr (BadW5|E4) ≤ q3�5

2(2n − q − σ + 3)3
+

5q3�2

6(2n − q − σ + 2)2
+

q2

2(2n − q − σ + 1)
.

(24)
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Further, from Eqs. (19)–(24), we have

Pr (BadW|TU) ≤ 2σ

2n
+

5q2

2(2n − q − σ + 1)
+

7q3�2

(2n − q − σ + 2)2
+

3q3�5

2(2n − q − σ + 3)3
.

(25)

Bounding Pr (BadX|TUW): In the full version [9, Appendix B] of this paper, we
show that

Pr (BadX|TUW) ≤ 2σ

2n
+

10q2

2n − q − σ + 1
+

15q3�2 + q2�3

(2n − q − σ + 2)2

+
12q3�6 + 6q4�3

(2n − q − σ + 3)3
+

8q4�6

(2n − q − σ + 4)4
(26)

Combining Eqs. (18), (25), and (26), we have

Pr (V0 ∈ Vbad) ≤ 4σ

2n
+

16q2 + q�2

2n
+

8q2�4 + 32q3�2 + 2q2�3

22n

+
3q3�5 + 143q3�6 + 11q4�3

23n
+

17q4�6 + 5462q4�8

24n
. (27)

6 Conclusion

In this paper we proved that OMAC, XCBC and TMAC are secure up to q ≤ 2n/2

queries, while the message length � ≤ 2n/4. As a consequence, we have proved
that OMAC – a single-keyed CBC-MAC variant – achieves the same security level
as some of the more elaborate CBC-MAC variants like EMAC and ECBC. This, in
combination with the existing results [15,16], shows that the security is tight up
to � ≤ 2n/4 for all CBC-MAC variants except for the original CBC-MAC. It could
be an interesting future problem to extend our analysis and derive similar bounds
for CBC-MAC over prefix-free message space. In order to prove our claims, we
employed reset-sampling method by Chattopadhyay et al. [8], which seems to
be a promising tool in reducing the length-dependency in single-keyed iterated
constructions. Indeed, we believe that this tool might even be useful in obtaining
better security bounds for single-keyed variants of many beyond-the-birthday-
bound constructions.
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Abstract. Constructions based on two public permutation calls are very
common in today’s cryptographic community. However, each time a new
construction is introduced, a dedicated proof must be carried out to study
the security of the construction. In this work, we propose a new tool to
analyze the security of these constructions in a modular way. This tool
is built on the idea of the classical mirror theory for block cipher based
constructions, such that it can be used for security proofs in the ideal
permutation model. We present different variants of this public permu-
tation mirror theory such that it is suitable for different security notions.

We also present a framework to use the new techniques, which pro-
vides the bad events that need to be excluded in order to apply the
public permutation mirror theory. Furthermore, we showcase the new
technique on three examples: the Tweakable Even-Mansour cipher by
Cogliati et al. (CRYPTO ’15), the two permutation variant of the pEDM
PRF by Dutta et al. (ToSC ’21(2)), and the two permutation variant of
the nEHtMp MAC algorithm by Dutta and Nandi (AFRICACRYPT
’20). With this new tool we prove the multi-user security of these con-
structions in a considerably simplified way.

Keywords: Mirror theory · Two permutation calls constructions ·
Multi-user security · Modular framework

1 Introduction

Permutation-Based Crypto. Following the selection of Keccak as the winner
of the SHA-3 competition [2], cryptographic schemes based on public permuta-
tions gained a lot of traction in the research community. Nowadays, permutation-
based constructions have become a trend in cryptography, and form a successful
and full-fledged alternative to block-cipher based designs. Recently, in the first
round of the ongoing NIST lightweight competition [1], 24 out of 57 submissions
are based on public permutations, and 16 out of 24 permutation-based designs
have been selected for the second round. These statistics show without a doubt
the wide acceptance of permutation based designs in the community. The long
line of research on the design of secret key constructions using public permu-
tations originates with Even and Mansour [23], who designed a secret random
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13791, pp. 379–409, 2022.
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permutation using a public permutation by xoring random keys to the input
and output of this permutation. Later, their work was generalized to the Iter-
ated Even-Mansour construction or the Key Alternating Cipher by [6,9,17,26],
which is the backbone of today’s block ciphers.

Constructions Based on Two Permutation Calls. In recent years,
beyond birthday bound security has become a very popular topic in the field
of symmetric key cryptography due to the rise of lightweight primitives. Admit-
tedly, the state size of a permutation is typically very large: for example the
SHA-3 permutation is of size 1600 bits, and a simple birthday bound secure
construction built on SHA-3 would be secure up to an attack complexity of 2800.
However, this example permutation is on the extreme end: a big drawback of
these big permutations is that they were not designed with lightweight applica-
tions in mind, the state of lightweight permutations such as SPONGENT [5] and
PHOTON [25] can be as small as 88 and 100 bits, respectively. Hence, birthday
bound secure constructions using these types of permutations are inadequate.

Due to the above-mentioned reason, beyond birthday-bound constructions
based on two permutations are interesting to investigate. Indeed, it is possible
to break any single-permutation construction by finding a collision between the
input of the underlying permutation of the given construction and an input to
the oracle of the public primitive, which happens with probability Ω(qp/2n),
where q is the number of queries to the construction and p is the number of
queries to the underlying permutation. Constructions using more than two per-
mutation calls can achieve even better security, however these are less efficient
and difficult to analyze. On the other hand, constructions based on two per-
mutation calls can achieve a resulting security bound of the form O(qp2/22n),
which is usually sufficient for most practical applications. In the last years, sev-
eral types of constructions based on two permutation calls were proposed and
analyzed. The most notable examples are the 2-round Even-Mansour cipher by
Bogdanov et al. [6] and Chen et al. [8], the tweakable block cipher TEM by
Cogliati et al. [15] and Dutta [19], the pseudorandom function SoEM by Chen
et al. [11] and pEDM by Dutta et al. [22], the FPTP hash function by Chen
and Tessaro [12], and the nonce-based MAC algorithm nEHtMp by Dutta and
Nandi [20]. Due to the similarity in the structures, the security proofs of these
construction all share some relevance.

Single vs Multi-user Security. The security of most of the above con-
structions has been proven in the single-user setting. In practice, however, com-
monly used cryptographic constructions are usually deployed in contexts with
a large number of users. An obvious question is to what extent the number of
users will affect the security bound of these permutation-based constructions,
or more specifically, can these constructions still have a security bound of the
form O(qp2/22n) in the multi-user setting? The concept of multi-user security
was first introduced by Bellare, Boldyreva and Micali [3] in the context of pub-
lic key cryptography, and was later extended by Biham [4] to symmetric key
cryptanalysis. In the multi-user setting, attackers can adaptively distribute their
q construction queries across multiple users with independent keys, and the
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attackers succeed as long as they can compromise one user key. Unfortunately,
research on provable multi-user security for permutation-based constructions has
been missing until now. The notable exceptions are the work of key-alternating
ciphers by Mouha and Luykx for a single round [31], and Hoang and Tessaro for
multiple rounds [26]. These works show that evaluating how security degrades
as the number of users grows is a challenging technical problem, even when the
security is known in the single-user setting. The generic reduction [7], however,
does not help the constructions to maintain beyond birthday-bound security in
the multi-user setting. For example, suppose the number of users is u, then sim-
ply applying the generic reduction to obtain multi-user security from single-user
security introduces an extra factor u in the security bound. If the attacker only
asks one query per user, then the security bound becomes

uqp2

22n
≤ q2p2

22n
,

which is only comparable to the O(qp/2n) security of one-call constructions.
Therefore, it appears that a dedicated analysis of the multi-user security is

needed. Most security proofs in symmetric key cryptography today are based on
the H-coefficients technique [9,33]. The idea behind this technique is that only a
smaller number of transcripts are significantly more likely to appear in the ideal
world than in the real world, namely: the bad transcripts. Usually, such proofs
are performed as follows: (1) we first define a set of bad transcripts, (2) then the
probability of observing bad transcripts in the ideal world is upper bounded, (3)
and finally the ratio of observing good transcripts in the real and the ideal world
is lower bounded. Note that points (1) and (3) are completely different problems
than point (2). Since upper bounding the probability of the bad transcripts is
a purely combinatorial problem and has little to do with cryptography, it relies
heavily on the randomness of the generated keys. Defining the bad transcripts
and lower bounding the ratio of the good transcripts depend, however, strongly
on the way a particular construction is built. Unlike the case of block cipher-
based constructions, where single-user security is usually proven in the standard
model and multi-user security in the ideal-cipher model. For permutation-based
constructions, ideal-permutation model analysis is used for both the single and
multi-user settings. This raises the question whether or not it is possible to
derive a modular approach that can be applied to constructions based on two
permutation calls, which generically find the set of bad transcripts and a tight
lower bound for the ratio of the corresponding good transcripts in both the single
and multi -user settings, avoiding the long and involved dedicated analysis.

Patarin’s Mirror Theory. Before we give an answer to this question, we
recall Patarin’s mirror theory [34], which is a very powerful but currently still
unverified technique. Mirror theory is concerned with systems of qm ≥ 1 equa-
tions with r ≥ qm unknowns of the form v ⊕ y = λ, where v and y are two
unknowns, and λ is a known value. The goal is to determine a lower bound
on the number of possible solutions to the unknowns such that the solution
does not contain collisions. Originally, Patarin derived mirror theory in order
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to prove the optimal n-bits security of the Xor of two secret Permutations con-
struction (XoP). After the modernization by Mennink and Neves [30], who used
mirror theory to prove the pseudorandom function security of EDM, EDMD and
EWCDM, the applications of mirror theory seem to be increasing. For example,
mirror theory was used to prove the security of the 2-round CLRW tweakable
block cipher by Jha and Nandi [27], and to prove the security of the nonce-less
MAC algorithms PolyMAC, SUM-ECBC, PMAC-Plus, 3kf9, and LightMAC-
Plus by Kim et al. [28]. Datta et al. [18] were first to extend the mirror theory
by including a system of qa ≥ 1 non-equations of the form v ⊕y �= λ, and used it
to prove the security of the nonce-based MAC algorithm DWCDM. Later, Dutta
et al. [21], and Kim et al. [14] used it to prove the security of the nonce-based
MAC algorithm nHEtM.

The New Idea. The reason why we can apply mirror theory to the above men-
tioned block cipher based constructions is because all these constructions can
be viewed as the xor of two secret permutations. Note that when the permu-
tations become public, the constructions have a structure that follows the Sum
of Even-Mansour (SoEM) construction of Chen et al. [11]. Since the proofs of
public permutation based constructions are all performed in the ideal permuta-
tion model, the attacker also gets access to the underlying permutations. Hence
it is necessary to have an xor before the input and after the output of each
of the permutation evaluations. Due to this important observation, almost all
constructions based on two permutation calls can be viewed as the xor of two
public permutations in the middle. This observation leads to the answer to the
previous question, and the goal of this paper is to use the idea of mirror theory
to build a modular technique that can be applied to all of the above mentioned
permutation-based constructions.

1.1 Our Contribution

The goal of this paper is to derive a generic tool that can be used for the security
analysis of constructions based on two public permutation calls and for different
security notions. In order to do that, there are a few difficulties that we need
to resolve. First of all, the traditional mirror theory is only suitable for the prf
security, and we cannot simply apply it to the other settings. The second problem
is that mirror theory does not consider primitive queries, and we need to include
these queries in order to apply the theory for ideal permutation model proofs.

We solve the first problem using the approach proposed by Jha and Nandi [27]
(see full version of the paper), and we derive different versions of public permuta-
tion mirror theory that are suitable for almost all popular security notions in sym-
metric key cryptography. On the other hand, since each primitive query defines
exactly the input and the output of one permutation evaluation, we can solve the
second problem by including a set of uni-variant affine equations of the form v = λ
and y = λ. Each uni-variate affine equation defines exactly one primitive query
(where the input and output values of these queries are well defined).

With all these in mind, we derive two new theorems for the ideal public per-
mutation model proofs. In Sect. 3.1, we explain the general setting for traditional
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mirror theory, and our new technique for the ideal permutation model is defined
and given in Sect. 3.2. We provide four theorems for different type of settings.
Theorem 1 (a) is suitable for security notions such as sprp and tsprp, Theorem1
(b) is suitable for security notions such as prf, weak prf, and (t)ccr [24], and
Theorem 2 (b) is suitable for notions such as mac security (prf with non-
equations). Since these three theorems already cover all currently know security
notions, Theorem2 (a) (sprp or tsprp with non-equations) has been added for
the sake of completeness, as we are not aware of any notions on which it can be
applied and will leave this for future research. We want to emphasize that our
aim here is not to fix the proofs in the traditional mirror theory, but rather to
focus on a new modular technique for permutation-based constructions. Hence,
our technique focuses only on 2n/3-bit security, since this is a tight security
bound (as we will see from the three examples) for constructions based on two
permutations due to the presence of the primitive queries.

Another important contribution in this work is to provide a general frame-
work to use the new techniques for the (multi-user) security analysis of construc-
tions based on two independent permutation calls. The framework is given in
Sect. 4. In general, to prove the security of constructions based on two permuta-
tion calls, one should first turn the query transcript into a system of bi-variate
(non-)equations and uni-variate equations. This system of (non-)equations can
be used to define the transcript graph (see Sect. 4.2). In our case, we decompose
our graph into four subgraphs - the union of the components containing one
“colliding vertex” (defined by an uni-variate affine equation), the union of “star”
components, the set of isolated edges, and the set of isolated vertices. However,
the graph may contain other types of components that prevent us from using the
new technique, these components need to be excluded in our analysis. A very
important part about this framework is that it provides a set of bad events that
need to be considered in the security analysis to exclude these components. It
seems, especially when non-equations also need to be considered, the analysis
becomes very complex, which increases the chance to miss some bad events (see
Sect. 4.3). The probability of these bad events must be upper bounded based on
the randomness of the generated keys, sometimes difficult combinatorial tech-
niques are required in the case of limited randomness. After these bad events
are excluded, our new theory can be applied to the given system to determine
a lower bound on the number of possible solutions to the unknowns, which in
its turn defines the ratio of observing good transcripts in the real and the ideal
world (see Sect. 4.4). This framework is useful for future designs, such that the
future analysis will not miss any necessary bad events.

Applications. We illustrate the new techniques by applying them to prove
the multi-user security of Tweakable Even Mansour (TEM), permutation-based
Encrypted Davies-Mayer (pEDM), and permutation-based version of nonce-
based Enhance Hash-then-Mask (nEHtMp). These three constructions are cho-
sen because they use three important security notions in symmetric-key cryp-
tography, namely tsprp, prf and mac, allowing us to demonstrate the new tech-
nique on different notions. On the other hand, the three constructions are the
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permutation-based variants of important block cipher-based schemes LRW2 [27],
EDM [16], nEHtM [21], which have already received much attention in the field.

Firstly, we consider the 2-round TEM construction that was proposed by
Cogliati et al. [15]. They showed that 2-round TEM achieves 2n/3-bit security
in the single-user setting. In Sect. 5, we apply the public permutation mirror
theory suitable for tsprp (Theorem1 (a)) to the TEM construction, and show
that TEM also achieves 2n/3-bit security in the multi-user setting.

Secondly, we consider the pEDM construction that was proposed by Dutta et
al. [22]. Again, pEDM was showed to achieve 2n/3-bit security in the single-user
setting. In Sect. 6, we apply the public permutation mirror theory suitable for
prf (Theorem 1 (b)) to pEDM construction, and show that pEDM also achieves
2n/3-bit security in the multi-user setting. In this example we can clearly see
that the analysis in the multi-user setting is more complex than the one in the
single-user setting.

Thirdly, we consider the nEHtMp MAC algorithm, proposed by Dutta and
Nandi [20]. They showed that nEHtMp based on a single permutation (using
domain separation) achieves 2n/3-bit security. We first note that the proof of [20]
is incomplete since, according to our framework for MAC designs, the authors
missed some bad events in their analysis. This observation was also verified by
the authors [10]. Some of these additional bad events, however, require involved
arguments to bound. In order to solve this problem, we modify the nEHtMp

construction by adding an extra universal hash function call. This modified con-
struction uses more randomness, which in turn enables us to bound the addi-
tional bad events easily. We would like to note that our analysis does not imply
infeasibility in fixing the proof of nEHtMp. In Sect. 7, we will prove the multi-
user security of this modified variant nEHtMp using our public permutation
extended mirror theory (Theorem 2 (b)), and we show that it achieves 2n/3-bit
security in the multi-user setting.

We believe that the techniques have a wide range of applications in the
future design of public permutation based schemes. For example, when building
nonce-less MAC algorithms and (authenticated) encryption schemes with beyond
birthday bound security using public permutations, as done in the case of block
cipher-based mirror theory [13,28].

2 Preliminaries

For n ∈ N, we denote by [n] the shorthand notation for {1, . . . , n}, and by
{0, 1}n the set of bit strings of length n. For two bit strings X,Y ∈ {0, 1}n, we
denote their bitwise addition as X ⊕ Y . For a value Z, we denote by A ← Z the
assignment of Z to the variable A. For a finite set S, we denote by S

$←− S the
uniformly random selection of S from S. We denote by Func(m,n) the set of all
functions that map {0, 1}m to {0, 1}n, and by Func(n) the set of all functions that
maps {0, 1}n to {0, 1}n. We denote by Perm(n) the set of all permutations on
{0, 1}n, and by P̃erm(t, n) the set of all functions π̃ : {0, 1}t × {0, 1}n → {0, 1}n
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such that π̃(T, ·) is in Perm(n) for all T ∈ {0, 1}t. For any integers a, b such that
1 ≤ b ≤ a, we have (a)b = a · (a − 1) . . . (a − b + 1) and (a)0 = 1.

For q ∈ N, we denote by x∗q the q-tuple (x1, . . . , xq), and by x̂∗q the set
{xi : i ∈ [q]}. By an abuse of notation we also use x∗q to denote the multiset
{xi : i ∈ [q]}, and we denote by μ(x∗q, x′) the multiplicity of x′ ∈ x∗q. For two
disjoint sets P and Q, we denote their (disjoint) union as P 	 Q.

2.1 Tweakable Block Ciphers Based on Public Permutations

For k, n, r, t, u ∈ N, consider a tweakable block cipher Ẽ : {0, 1}k × {0, 1}t ×
{0, 1}n → {0, 1}n that is based on π1, . . . , πr

$←− Perm(n), such that for
fixed key K ∈ {0, 1}k, the function ẼK(T, ·) = Ẽ(K,T, ·) is a permutation
on {0, 1}n. We denote its inverse (for fixed key and tweak) by Ẽ−1

K (T, ·) =
Ẽ−1(K,T, ·), and Ẽ−1

K should behave independently for different tweaks. We
will consider the multi-user tweakable strong pseudorandom permutation (mu-
tsprp) security of Ẽ, where the distinguisher D is given two-directional access
to either (Ẽ±

K1
, . . . , Ẽ±

Ku
, π±

1 , . . . , π±
r ) for secret keys K1, . . . ,Ku

$←− {0, 1}k, or

(π̃±
1 , . . . , π̃±

u , π±
1 , . . . , π±

r ) for π̃1, . . . , π̃u
$←− P̃erm(t, n). The goal is to determine

which world it interacted with:

Advmu-tsprp

Ẽ
(D) =

∣
∣
∣Pr

[

DẼ±
K1

,...,Ẽ±
Ku

,π±
1 ,...,π±

r = 1
]

− Pr
[

Dπ̃±
1 ,...,π̃±

u π±
1 ,...,π±

r = 1
]∣
∣
∣ .

Here the superscript ± indicates that the distinguisher has bi-directional access.
When u = 1, we consider the single-user security of Ẽ, and we simply denote
D’s advantage in distinguishing the real world from random by Advtsprp

Ẽ
(D).

2.2 Pseudorandom Functions Based on Public Permutations

For k,m, n, r, u ∈ N, consider a pseudorandom function F : {0, 1}k × {0, 1}m →
{0, 1}n that is based on π1, . . . , πr

$←− Perm(n), such that for fixed key K ∈
{0, 1}k, FK(·) = F (K, ·) is a function that maps {0, 1}m to {0, 1}n. We will
consider the multi-user pseudorandom function (mu-prf) security of F , where
the distinguisher D is given access to either (FK1 , . . . , FKu

, π±
1 , . . . , π±

r ) for
secret keys K1, . . . ,Ku

$←− {0, 1}k, or (ϕ1, . . . , ϕu, π±
1 , . . . , π±

r ) for ϕ1, . . . , ϕu
$←−

Func(n). The goal is to determine which world it interacted with:

Advmu-prf
F (D) =

∣
∣
∣Pr

[

DFK1 ,...,FKu ,π±
1 ,...,π±

r = 1
]

− Pr
[

Dϕ1,...,ϕu,π±
1 ,...,π±

r = 1
]∣
∣
∣ .

Here the superscript ± for π’s indicates that the distinguisher has bi-directional
access. When u = 1, we consider the single-user security of F , and we sim-
ply denote D’s advantage in distinguishing the real world from random by
Advprf

F (D).
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2.3 Nonce-Based MAC Algorithms Based on Public Permutations

For k, n, r, t ∈ N, consider a nonce-based message authentication code (MAC)
algorithm F : {0, 1}k × {0, 1}n × {0, 1}∗ → {0, 1}t that is based on π1, . . . , πr

$←−
Perm(n). For any fixed key K ∈ {0, 1}k, we write FK(·, ·) = F (K, ·, ·). We denote
by Ver : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}t → 1/0 the verification oracle that is
based on π1, . . . , πr, which takes as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}n,
a message M ∈ {0, 1}∗, and tag T ∈ {0, 1}t, and outputs 1 if the tag T is correct
and 0 otherwise.

For u ∈ N, the multi-user message authentication code (mu-mac) secu-
rity of F is measured by considering a distinguisher D that is given access to
(FK1 ,VerK1), . . . , (FKu

,VerKu
) for secret keys K1, . . . ,Ku

$←− {0, 1}k, and the
primitive oracles π1, . . . , πr. For any j = 1, . . . , u, the goal of D is to fool the ver-
ification oracle with a valid but new (j,N,M, T ), and its advantage with respect
to this task is defined as

Advmu-mac
F (D) = Pr

[

K1, . . . ,Ku
$←− {0, 1}k :

D(FK1 ,VerK1 ),...,(FKu ,VerKu ),π±
1 ,...,π±

r forges
]

,

where “forges” means that the distinguisher enters a tuple (j,N,M, T ) such that
VerKj

(N,M, T ) returns 1 and FKj
(N,M) has never been queried.

We call a MAC query to the j-th user (j,N,M) a faulty query if the dis-
tinguisher D has already queried FKj

with the same nonce N and a different
message M . The distinguisher D is allowed to make at most μ faulty MAC
queries over u users. We call D a nonce-respecting adversary if μ = 0, and
nonce-misusing if μ ≥ 1. We stress that D may always repeat nonces in its
verification queries.

It will be more convenient to express Advmu-mac
F (D) as a distinguisher’s

advantage. For j = 1, . . . , u, we define perfectly random oracles Randj : {0, 1}n ×
{0, 1}∗ → {0, 1}t, and rejection oracles Rejj : {0, 1}n × {0, 1}∗ × {0, 1}t → 0.

To obtain an upper bound for the forging advantage of a message authenti-
cation code F with respect to the distinguisher D, we consider another distin-
guisher D′, that is given access to either the real world oracles O, π±

1 , . . . , π±
r , or

the ideal world oracles P, π±
1 , . . . , π±

r . Then, D′’s advantage is upper bounded
by:

Advmu-mac
F (D′) ≤

∣
∣
∣Pr

[

D′O,π±
1 ,...,π±

r = 1
]

− Pr
[

D′P,π±
1 ,...,π±

r = 1
]∣
∣
∣ ,

with O =
(

(FK1 ,VerK1), . . . , (FKu
,VerKu

)
)

for secret keys K1, . . . ,Ku
$←−

{0, 1}k, and P =
(

(Rand1,Rej1), . . . , (Randu,Reju)
)

.
Here the superscript ± for the πi’s indicates that the distinguisher has bi-

directional access. We call a distinguisher D′ non-trivial if it never makes a query
(j,N,M, T ) to its j-th verification oracle when a previous query (j,N,M) to its
j-th MAC oracle returned T . When u = 1, we consider the single-user security
of F , and we simply denote D′’s advantage in distinguishing the real world from
random by Advmac

F (D′).
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2.4 Universal Hash Functions

For n ∈ N, let H : Kh ×M → {0, 1}n such that for Kh ∈ Kh, HKh
(·) = H(Kh, ·)

is called an ε-almost XOR universal (ε-AXU) hash function [29] if for all distinct
M,M ′ ∈ M and all C ∈ {0, 1}n, we have

Pr
[

Kh
$←− Kh : HKh

(M) ⊕ HKh
(M ′) = C

]

≤ ε.

For q ∈ N, fix M1, . . . ,Mq ∈ M. For Kh ∈ Kh, let Xi = HKh
(Mi) for i = 1, . . . , q.

We define an equivalence relation ∼ on [q] as: α ∼ β if and only if Xα = Xβ ,
for α, β ∈ [q]. For r ∈ N, we denote by P1, . . . ,Pr the non-trivial equivalence
classes of [q] with respect to ∼, and we define νi = |Pi| ≥ 2 for i = 1, . . . , r. Jha
and Nandi [27] proved the following lemmas, that will be useful in our security
proof.

Lemma 1. Let νi, i = 1, . . . , r, be the random variables as defined above. Then,
we have

E
[ r∑

i=1

νi

]

≤ q2ε/2, E
[ r∑

i=1

ν2
i

]

≤ 2q2ε.

Lemma 2. Let νmax = max{νi : i ∈ [r]}. Then, for some a ≥ 2, we have

Pr[νmax ≥ a] ≤ 2q2ε

a2
.

2.5 Expectation Method

In this work, we use the expectation method by Hoang and Tessaro [26], a
generalization of Patarin’s H-coefficient technique [9,33].

Consider two oracles O and P, and a deterministic distinguisher D that has
query access to either of these oracles. The distinguisher’s goal is to distinguish
both worlds, and we denote by

Adv(D) =
∣
∣Pr

[

DO = 1
]

− Pr
[

DP = 1
]∣
∣

its advantage. We define a transcript τ which summarizes all query-response
tuples learned by D during its interaction with its oracle O or P. We denote by
XO and XP the random variables equal to transcript produced when interacting
with O and P, respectively. We call a transcript τ ∈ T attainable if Pr[XP =
τ ] > 0, or in other words if the transcript τ can be obtained from an interaction
with P.

Lemma 3 (expectation method [26]). Consider a deterministic distin-
guisher D. Define a partition T = Tgood 	 Tbad, where Tgood is the subset of
T which contains all the “good” transcripts and Tbad is the subset with all the
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“bad” transcripts. Let φ : T → [0,∞) be a non-negative function mapping any
attainable transcript to a non-negative real value, such that for all τ ∈ Tgood:

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − φ(τ). (1)

Then, we have Adv(D) ≤ E[φ(XP)] + Pr[XP ∈ Tbad].

The H-coefficients technique can be seen as a simple corollary of the expectation
method when φ is equal to a constant function. Preliminary Observations.

For π
$←− Perm(n) and a permutation queries transcript τπ, we say that π extends

τπ, denoted π � τπ, if π(u) = v for all (u, v) ∈ τπ. By extension, for π =

(π1, . . . , πr)
$←−

(

Perm(n)
)r

and a tuple of permutation queries transcript τπ =
(τπ1 , . . . , τπr

), we say that π extends τπ , denoted π � τπ , if πi � τπi
for i =

1, . . . , r.
Consider an attainable transcript τ ∈ Tgood, and let P be an uniformly chosen

random oracle. For permutation based constructions, let τ = (τ0, τπ ), where τ0
contains queries to the construction oracle O or P, and τπ contains the queries to
the primitive oracles π = (π1, . . . , πr). To compute Pr[XO = τ ] and Pr[XP = τ ],
it suffices to compute the probability of oracles that could result in view τ . We
first consider the ideal world oracle P, and obtain

Pr[XP = τ ] =
1

|K|r ·
( 1

(2n)p

)r

· Pr[P : P � τ0].

The first term corresponds to the number of dummy keys that are drawn uni-
formly at random; the second term is the probability that π extends τπ ; and the
last term is the probability that P extends τ0.

Similarly we say that a real world oracle O extends τ if it extends τ0 and τπ .
For K

$←− Kr, we have

Pr[XO = τ ] =
1

|K|r ·
( 1

(2n)p

)r

· Pr
[

π
$←−

(

Perm(n)
)r

: Oπ
K � τ0 | π � τπ

]

.

The first term corresponds to the number of randomly drawn keys that are used
in the construction; the second term is the probability that π extends τπ ; and
the last term is the probability that Oπ

K extends τ0, given that π extends τπ .

Let ρ(τ) = Pr
[

π
$←−

(

Perm(n)
)r

: Oπ
K � τ0 | π � τπ

]

. Take for instance
r = 2, and assume that each primitive query transcript contains p queries to
the given permutation. Suppose we sample distinct outputs of π1 (resp., π2)
over for example qV (resp., qY ) distinct inputs. Then, it is easy to see that
ρ(τ) = hq/(2n − p)qV −p(2n − p)qY −p, where hq is the number of solutions of
distinct outputs of π1 and π2. Then we have

Pr[XO = τ ]
Pr[XP = τ ]

= ρ(τ)/Pr[P : P � τ0] ≥ 1 − ε1. (2)
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3 (Extended) Mirror Theory in Ideal Permutation Model

We explain the general settings behind the traditional (extended) mirror theory
in Sect. 3.1, which involves only bi-variate affine equations and possible non-
equations. In Sect. 3.2, we introduce the new public permutation mirror theory,
that takes primitive queries into account by including uni-variate affine equa-
tions.

3.1 System of Bi-variate Affine Equations and Non-equations

Let qm, qa, qV , qY ≥ 1. Let V = {v1, . . . , vqV
} be a set of qV unknowns and

Y = {y1, . . . , yqY
} be a set of qY unknowns. We consider a system Em of qm

bi-variate affine equations

Em = {vI1 ⊕ yI1 = λ1, . . . , vIqm
⊕ yIqm

= λqm
}.

In some cases (for example mac security), we also need to consider a system Ea

of qa bi-variate affine non-equations

Ea = {v′
J1

⊕ y′
J1

�= λ′
1, . . . , v

′
Jqa

⊕ y′
Jqa

�= λ′
qa

},

where vIi
’s, yIi

’s, v′
Jj

’s, and y′
Jj

’s are unknowns, and λi’s and λ′
j ’s are knowns,

for i = 1, . . . , qm and j = 1, . . . , qa. We want to state that the sets V and Y are
disjoint.

We define two surjective index mappings:

ϕV : {I1, . . . , Iqm
, J1, . . . , Jqa

} → {1, . . . , qV },

ϕY : {I1, . . . , Iqm
, J1, . . . , Jqa

} → {1, . . . , qY }.

such that qV , qY ≤ qm + qa. Note that Ii and Jj are respectively the indices
of the unknowns in Em and Ea. However, multiple unknowns with different
indices can be the same. In that case, these unknown are all mapped to the
same value using ϕV or ϕY . The system E = Em 	 Ea is uniquely determined by
(ϕ′

V , ϕ′
Y , λ∗qm , λ′∗qa).

Consider a graph G(E) = (V,Y,S 	 S ′), where the edge set is partitioned
into two disjoint sets S and S ′. Here S and S ′ denote the set of λ-labeled edges
and the set of λ′-labeled edges, respectively. The graph G(E) can be seen as a
superposition of two subgraphs G(Em) = (V,Y,S) and G(Ea) = (V,Y,S ′). Let
vsyt ∈ S be an edge for vs ∈ V and yt ∈ Y, then vsyt is labeled with an element
in λ∗qm . If the given edge is labeled with λi (for i = 1, . . . , qm), then this edge
and the connected vertices vs and yt represent the equation vs ⊕ yt = λi, where
s = ϕV (Ii) and t = ϕY (Ii). Similarly, let vsyt ∈ S ′ be an edge for vs ∈ V and
yt ∈ Y, then vsyt is labeled with an element in λ′∗qa . If the given edge is labeled
with λ′

j (for j = 1, . . . , qa), then this edge and the connected vertices vs and yt

represent the non-equation vs ⊕ yt �= λ′
j , where s = ϕV (Jj) and t = ϕY (Jj).

Here, each equation in Em corresponds to a unique λ-labeled edge in G(Em),
and each non-equation in Ea corresponds to a unique λ′-labeled edge in G(Ea).
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Note that when the system of non-equations Ea is empty, then the graph G(E)
does not contain isolated vertices, every vertex is incident with at least one λ-
labeled edge. Otherwise, the subgraph G(Em) may contain isolated vertices, and
these vertices are connected with a λ′-labeled edge in G(Ea).

We say two distinct equations in Em are in the same component if and only if
the corresponding edges (or vertices) in G(Em) are in the same component. Let
� > 0 and a path

L : a0

λ1− a1

λ2− . . .
λ�− a�

in G(Em), for some vertices a0, a1, . . . , a� ∈ V 	 Y that are in the same compo-
nent. The label of L is defined as

λ(L) = λ1 ⊕ λ2 ⊕ . . . ⊕ λ�.

In case Ea is empty, a graph G(E) is called a good graph if its subgraph G(Em)
satisfies the following properties.

Definition 1 (acyclic). There is an unique path L in the subgraph G(Em)
between any two vertices a and b in the same connected component, for a, b ∈
V 	 Y.

Definition 2 (non-degeneracy). For all paths L of even length at least 2 in
the subgraph G(Em), we have λ(L) �= 0.

Definition 3. (ξ-block-maximality). For a component I, we denote its size
by ξ(I), which is the number of vertices in I. We denote the maximum compo-
nent size by ξmax such that ξ(I) ≤ ξmax for all I in G(Em).

In case the system Ea contains at least one non-equation, a graph G(E) is called
a good graph if its subgraph G(Em) satisfies the above three properties, and if
G(E) also satisfies the following property.

Definition 4 (non-zero cycle label (NCL)). If vertices v and y are con-
nected with a λ′-labeled edge, then they are not connected by a λ(L)-labeled path
in G(Em) such that λ(L) = λ′, for v ∈ V ′ and y ∈ Y ′.

In an edge-labeled bipartite graph G, we call a component I of G an isolated
component if I only contains a path of length one. So I only contains an edge
(v, y, λ) where both v and y have degree 1. We call a component I of G a star
component if ξ(I) ≥ 3, and if there is an unique vertex in I with degree ξ(I)−1.
We call this vertex the center of I. Further, we call I a v-� (resp., y-�) component
if its center lies in v (resp., y).

3.2 System of Bi-variate and Uni-variate Affine Equations
and Bi-variate Affine Non-equations

In order to handle the primitive queries, we extend the system of bi-variate
affine equations and non-equations with 2p uni-variate affine equations. Each
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uni-variate affine equation defines one primitive queries. Let qm, qa, qp
V , qp

Y , p ≥ 1.
Let Vp = {v1, . . . , vqp

V
} be a set of qp

V unknowns and Yp = {y1, . . . , yqp
Y
} be a

set of qp
Y unknowns. The new systems are Ep

m, that contains qm bi-variate affine
equations and 2p uni-variate affine equations

Ep
m = {vI1 ⊕ yI1 = λ1, . . . , vIqm

⊕ yIqm
= λqm

,

vIqm+1 = λqm+1, . . . , vIqm+p
= λqm+p,

yIqm+1 = λqm+p+1, . . . , yIqm+p
= λqm+2p}.

In some cases (for example mac security), we also need to consider a system Ea

of qa bi-variate affine non-equations

Ea = {v′
J1

⊕ y′
J1

�= λ′
1, . . . , v

′
Jqa

⊕ y′
Jqa

�= λ′
qa

},

where vIi
’s, yIi

’s, v′
Jj

’s, and y′
Jj

’s are unknowns, and λk’s and λ′
j ’s are knowns,

for i = 1, . . . , qm + p, j = 1, . . . , qa, and k = 1, . . . , qm + 2p, such that λqm+1 �=
· · · �= λqm+p and λqm+p+1 �= · · · �= λqm+2p. We want to state that the sets Vp

and Yp are disjoint.
We define two surjective index mappings:

ϕp
V : {I1, . . . , Iqm+p, J1, . . . , Jqa

} → {1, . . . , qp
V },

ϕp
Y : {I1, . . . , Iqm+p, J1, . . . , Jqa

} → {1, . . . , qp
Y },

such that qV , qY ≤ qm +qa +p. The system Ep = Ep
m 	Ea is uniquely determined

by (ϕp
V , ϕp

Y , λ∗qm+2p, λ′∗qa).
Since the last 2p uni-variate affine equations define the values of the 2p

unknowns vIi
’s and yIi

’s exactly, for i = qm + 1, . . . , qm + p. Hence, we know
that exactly p unknowns in Vp and p unknowns in Yp are already well defined
by the system Ep

m. We define

V0 = {vϕp
V (Iqm+1), . . . , vϕp

V (Iqm+p)}, Y0 = {yϕp
Y (Iqm+1), . . . , yϕp

Y (Iqm+p)},

as the sets that contain these 2p unknowns such that |V0| = p and |Y0| = p. We
are particularly interested in the unknowns from the sets Vp \ V0 and Yp \ Y0,
since these are the unknowns that appear in the qm bi-variate affine equations
and qa bi-variate affine non-equations.

Consider a bipartite edge-labeled graph G(Ep) = (Vp,Yp,S 	 S ′), the edge
set is partitioned into two disjoint sets S and S ′ as before. The graph G(Ep)
can be seen as a superposition of two subgraphs G(Ep

m) = (Vp,Yp,S) and
G(Ea) = (Vp,Yp,S ′). Here, each of the qm bi-variate affine equations in Ep

m

corresponds to a unique λ-labeled edge in G(Ep
m), each non-equation in Ea cor-

responds to a unique λ′-labeled edge in G(Ea), and each of the 2p uni-variate
affine equations in Ep

m corresponds to a vertex with well defined value in G(Ep).
Note that the subgraph G(Ep

m) may contain isolated vertices, and these ver-
tices are either connected with a λ′-labeled edge in G(Ea) or they are isolated
colliding vertices in G(Ep) with a well-defined value. The subgraph G(Ep

m) may
also contain components that contain vertices with well defined value. We call
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these components the “colliding components”, and the vertices with well defined
values the “colliding vertices”.

We distinguish two different cases. In the first case, assume that Ea is empty,
hence we will focus on a graph G(Ep) where its subgraph G(Ep

m) satisfies the
(i) acyclic, (ii) non-degeneracy, and (iii) ξ-block-maximality properties (Defini-
tion 1–3). In addition, G(Ep

m) also needs to satisfy the following property.

Definition 5 (single colliding vertex (SCV)). Each component in the
graph G(Ep

m) contains at most one colliding vertex.

Note that Definition 5 is necessary in order to give a unique assignment to
every vertex in the graph, since if a vertex is assigned with any value, then
the labeled edges determine the values of all other vertices in the component
containing this vertex. We call any graph that satisfies these four properties a
good graph. Given a good graph G(Ep

m) = (Vp,Yp,S), a solution to G(Ep
m) is an

assignment of distinct values to the v vertices in Vp and distinct values to the y
vertices in Yp satisfying all λ-labeled equations.

We consider a system of bi-variate and uni-variate affine equations Ep
m, such

that each component in G(Ep
m) is either an isolated edge, a star, or isolated

colliding vertex. In order to find the number of solutions to G(Ep
m), we first

decompose the graph G(Ep
m) into its connected components such that G(Ep

m) =
I 	 A 	 B 	 C, where

A = A1 	 · · · 	 Ac1 	 Ac1+1 	 · · · 	 Ac1+c2 ,

B = B1 	 · · · 	 Bc3 	 Bc3+1 	 · · · 	 Bc3+c4 ,

C = C1 	 · · · 	 Cc5 ,

for some c1, c2, c3, c4, c5 ≥ 0. Here I is the union of isolated colliding vertices. A
is the union of colliding components, where A1	· · ·	Ac1 is the union of colliding
components with a colliding v vertex; and Ac1+1 	 · · · 	 Ac1+c2 is the union of
colliding components with a colliding y vertex. B is the union of the remaining
star components (that are not colliding components), where B1 	 · · · 	Bc3 is the
union of v-� components, and Bc3+1	· · ·	Bc3+c4 is the union of y-� components.
C is the union of the remaining isolated components (that are not colliding
components).

Let q1, q2, q3, q4, and q5 denote the number of equations (edges) in A1 	· · ·	
Ac1 , Ac1+1 	· · ·	Ac1+c2 , B1 	· · ·	Bc3 , Bc3+1 	· · ·	Bc3+c4 , and C, respectively.
Therefore, we have c5 = q5. Note that the equations in Ep

m can be arranged
in any arbitrary order without affecting the number of solutions. For the sake
of simplicity, we fix the ordering in such a way that the union I comes first,
followed by A, B, and C. Now, our goal is to give a lower bound on the number
of solutions of Ep

m.

Theorem 1. For positive integers qm and p, let G(Ep
m) = (Vp,Yp,S) be a good

graph as described above such that |S| = qm. Assume that p + qm ≤ 2n−2 and
ξmax · (p + qm) ≤ 2n−1, let h(G(Ep

m)) denote the number of solutions to G(Ep
m).
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(a) For settings such as (t)sprp, we have

h(G(Ep
m))

∏

λ′∈λ̂qm (2n)μ(λ∗qm ,λ′)

(2n − p)q2+c3+q4+q5(2n − p)q1+q3+c4+q5

≥ 1 −
∑c1+c2

i=1 qm

2n
− 3q3m

22n

−2(p + qm)2

22n

(

η + qm

)

.

(b) For settings such as prf, weak prf, (t)ccr, we have

h(G(Ep
m))2nqm

(2n − p)q2+c3+q4+q5(2n − p)q1+q3+c4+q5

≥ 1 − 2(p + qm)2

22n

(

η + qm

)

.

where η =
∑c1+c2+c3+c4−1

i=c1+c2
(η2

i+1 + ηi+1), ηj = ξj − 1 and ξj denotes the size
(number of vertices) of the j-th component, for all j ∈ [c1 + c2 + c3 + c4 + c5].

Proof. The proof is given in the full version of the paper. 	

We will illustrate Theorem 1 (a) to tweakable block ciphers in Sect. 5, and The-
orem 1 (b) to PRFs in Sect. 6. Looking back at the discussion given towards the
end of Sect. 2.5, one can see the motivation behind the difference between the
expressions given in Theorem 1 (a) and Theorem 1 (b).

For the second case, the system Ea contains at least one non-equation. Here
we will focus on a graph G(Ep) such that its subgraph G(Ep

m) satisfies the (i)
acyclic, (ii) non-degeneracy, (iii) ξ-block-maximality, (v) NCL, and (iv) SCV
properties (Definition 1–5). In addition, G(E) also need to satisfy the following
property.

Definition 6 (non-zero distance label (NDL)). There are no λ′-labeled
edges that connect two vertices v and y from two colliding components I1 and
I2, where the distance between v and y (defined as v ⊕ y) is λ′, for v ∈ V ′p and
y ∈ Y ′p.

Note that if there is a λ′-labeled non-equations between vertices v and y of
two different colliding components, then it means v ⊕ y �= λ′. However, for any
colliding component, the values of all vertices in this component are uniquely
defined. If the distance v⊕y is equal to λ′, then we will have a contradiction with
the non-equation. Definition 6 actually excludes this situation. We call any graph
that satisfies these six properties a good graph. Given a good graph G(Ep) =
(Vp,Yp,S 	 S ′), a solution to G(Ep) is an assignment of distinct values to the v
vertices in Vp and distinct values to the y vertices in Yp satisfying all λ-labeled
equations and λ′-labeled non-equations.

We consider a system Ep with its corresponding graph G(Ep) such that each
component in the subgraph G(Ep

m) is a star, an isolated edge, or an isolated
vertex. In order to find the number of solutions to G(Ep), we first decompose the
subgraph G(Ep

m) into its connected components such that G(Ep
m) = I 	 A 	 B 	

C	D, with I,A,B, and C the union of components defined before. Here, D is the
union of isolated vertices in the subgraph G(Ep

m) that are not colliding vertices,



394 Y. L. Chen

note that these vertices are connected with λ′-labeled edges in the subgraph
G(Ea). Let c6 be the number of such isolated v vertices, and c7 be the number of
such isolated y vertices. Again, we fix the ordering in such a way that the union
I comes first, followed by A, B, C, and D. Now, our goal is to give a lower bound
on the number of solutions of Ep.

Theorem 2. For positive integers qm, qa and p, let G(Ep) = (V ′p,Y ′p,S 	 S ′)
be a good graph as described above such that |S| = qm, |S ′| = qa. Assume that
p + qm ≤ 2n−2 and ξmax · (p + qm) ≤ 2n−1, let h(G(Ep)) denote the number of
solutions to G(Ep).

(a) For settings such as (t)sprp with non-equations, we have

h(G(Ep))
∏

λ′∈λ̂qm (2n)μ(λ∗qm ,λ′)

(2n − p)q2+c3+q4+q5+c6(2n − p)q1+q3+c4+q5+c7

≥ 1 −
∑c1+c2

i=1 qm

2n
− 3q3m

22n

− 2(p + qm)2

22n

(

η + qm

)

− 2qa

2n
.

(b) For settings such as mac (prf with non-equations), we have

h(G(Ep))2nqm

(2n − p)q2+c3+q4+q5+c6(2
n − p)q1+q3+c4+q5+c7

≥ 1 − 2(p + qm)2

22n

(

η + qm

)

− 2qa

2n
.

where η =
∑c1+c2+c3+c4−1

i=c1+c2
(η2

i+1 + ηi+1), ηj = ξj − 1 and ξj denotes the size
(number of vertices) of the j-th component, for all j ∈ [c1 + c2 + c3 + c4 + c5].

Proof. The proof is given in the full version of the paper. 	

We will illustrate Theorem 2 (b) to nonce-based MAC algorithms in Sect. 7.

4 A Framework for Security Proof Using Public
Permutation Mirror Theory

The goal of this section is to establish a general framework for (multi-user) secu-
rity proof using Theorem1–2. Note that a framework for specific security notions
such as sprp, tsprp, prf, mac, . . . can be derived directly from this framework. We
consider an algorithm F which is built on two independent public permutations
with the following special structure.

Let n, s, t ∈ N, and let π1, π2
$←− Perm(n). One can consider the generic

construction Fπ1,π2 : K × I1 × · · · × Is → R1 × · · · × Rt based on π1 and π2,
where K is the key space, I1×· · ·×Is are the input spaces, and R1×· · ·×Rt are
the output spaces. Note that here F can be a tweakable block cipher, a PRF,
a MAC algorithm, etc. In this work, we will focus on algorithms that can be
viewed as the xor of the public permutations

Z = π1(A) ⊕ π2(B),
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for π1, π2
$←− Perm(n). Here A, B, and Z are functions of the secret key K,

the inputs I1, . . . , Is, and the outputs R1, . . . , Rt. Although there are no strict
restrictions for Z, we do require that the equality patterns of A and B satisfy
certain conditions. More precisely, equality pattern of B should not depend on
the value of π1(A) and vice versa. This is the condition to use the mirror theory
based lower bound as formalized in [32].

4.1 General Setting and Transcripts

Let u ∈ N, K1, . . . ,Ku
$←− K, and π1, π2

$←− Perm(n). Consider any distin-
guisher D that has access to the oracles: (Om,Oa, π±

1 , π±
2 ) in the real world or

(Pm,Pa, π±
1 , π±

2 ) in the ideal world. Here we have Om = (Fπ1,π2
K1

, . . . , Fπ1,π2
Ku

),
and Oa is the possible set of verification oracles (for example the case of mac
notion in Sect. 2.3). The oracle Pm is the idealized version of (Fπ1,π2

K1
, . . . , Fπ1,π2

Ku
),

which these idealized oracles are depend on the considered security notion (see
Sects. 2.1–2.3 for more details), and Pa is the possible set of rejection oracles. We
require that D is computationally unbounded and deterministic. For user index
j ∈ {1, . . . , u}, D makes qm queries to Om or Pm, and these are summarized in
a transcript

τm = {(j(1), I(1)1 , . . . , I(1)s , R
(1)
1 , . . . , R

(1)
t ), . . . ,

(j(qm), I
(qm)
1 , . . . , I(qm)

s , R
(qm)
1 , . . . , R

(qm)
t )},

and qa queries to Oa or Pa, these are summarized in a transcript

τa = {(j′(1), I ′(1)
1 , . . . , I ′(1)

s , R
′(1)
1 , . . . , R

′(1)
t , b′(1)), . . . ,

(j′(qa), I
′(qa)
1 , . . . , I ′(qa)

s , R
′(qa)
1 , . . . , R

′(qa)
t , b′(qa))}.

Note that τa is empty for notions where no verification oracles are considered
(such as sprp, tsprp, prf, tccr, etc.). D also makes p primitive queries to π±

1 and
p primitive queries to π±

2 , and like before, these are respectively summarized
in transcripts τ1 and τ2. We assume that τm, τa, τ1, and τ2 do not contain
duplicate elements. After D’s interaction with the oracles, but before it outputs
its decision, we disclose the keys K1, . . . ,Ku to the distinguisher. In the real
world, these are the keys used in the construction. In the ideal world, K1, . . . ,Ku

are dummy keys that are drawn uniformly at random. The complete view is
denoted τ = (τm, τa, τ1, τ2,K1, . . . ,Ku).

4.2 Attainable Index Mappings

In the real world, each query (j(i), I(i)1 , . . . , I
(i)
s , R

(i)
1 , . . . , R

(i)
t ) ∈ τm corre-

sponds to an evaluation of the j(i)-th oracle in Om, each query (j′(a), I ′(a)
1 , . . . ,

I
′(a)
s , R

′(a)
1 , . . . , R

′(a)
t , b′(a)) ∈ τa corresponds to an evaluation of the j′(a)-th ora-

cle in Oa, and each primitive query (u, v) ∈ τ1 (resp., (x, y) ∈ τ2) corresponds
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to an evaluation of the primitive oracle π±
1 (resp., π±

2 ). Note that each algo-
rithm F consists of an evaluation of π1 and an evaluation of π2. For the queries
in τm, these are of the form A(i) �→ π1(A(i)) and B(i) �→ π2(B(i)) such that
π1(A(i)) ⊕ π2(B(i)) = Z(i). Likewise, for the queries in τa, there are evaluations
A′(a) �→ π1(A′(a)) and B′(a) �→ π2(B′(a)), such that π1(A′(a))⊕π2(B′(a)) �= Z ′(a).
The values of A(i), B(i), Z(i) and A′(a), B′(a), Z ′(a) are specific for the particular
construction, and can be deduced from τ . Without loss of generality, we assume
that all primitive queries are made in the forward direction, then these are of
the form u �→ π1(u) or x �→ π2(x) such that π1(u) = v and π2(x) = y. The
transcript τ defines qm + 2p equations and qa non-equations on the unknowns,
and these (non)-equations are

Ep
m =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

π1(A
(1)) ⊕ π2(B

(1)) = Z(1),
...

π1(A
(qm)) ⊕ π2(B

(qm)) = Z(qm),

π1(u) = v for (u, v) ∈ τ1,

π2(x) = y for (x, y) ∈ τ2,

Ea =

⎧

⎪⎪⎨

⎪⎪⎩

π1(A
′(1)) ⊕ π2(B

′(1)) �= Z′(1),
...

π1(A
′(qa)) ⊕ π2(B

′(qa)) �= Z′(qa).

(3)

In the above qm + 2p equations, some of the unknowns may be equal to each
other. We have that π1(A(i)) �= π1(A(k)) if and only if A(i) �= A(k), and
π2(B(i)) �= π2(B(k)) if and only if B(i) �= B(k). No condition holds for π1(A(i))
versus π2(B(i)), as these are defined by independent permutations. The same
holds for verification queries and primitive queries. However, no a priori con-
dition holds for (non-)equality between values π1(A(i)) versus π1(A′(a)) versus
π1(u), and π2(B(i)) versus π2(B′(a)) versus π2(x).

Thus,

{π1(A(i))}1≤i≤qm
∪ {π1(A′(a))}1≤a≤qa

∪ {π1(u)}(u,v)∈τ1 ,

{π2(B(i))}1≤i≤qm
∪ {π2(B′(a))}1≤a≤qa

∪ {π2(x)}(x,y)∈τ2 ,

are identified with two sets of unknowns V ′p = {v1, . . . , vqp

V ′ } and Y ′p =
{y1, . . . , yqp

Y ′ }, with qp
V ′ , q

p
Y ′ ≤ qm + qa + p. Since V ′p and Y ′p are defined by

independent permutations, we know that V ′p and Y ′p are disjoint. We also know
that

V0 = {π1(u) | (u, v) ∈ τ1}, Y0 = {π2(x) | (x, y) ∈ τ2}.

are already well defined by the system. Hence the only unknowns that are left
are in the sets V ′p \ V0 and Y ′p \ Y0. For vs ∈ V ′p and yt ∈ Y ′p, we connect vs

and yt with a λ-labeled edge of label Z(i) if π1(A(i)) = vs and π2(B(i)) = yt for
some i ∈ [qm]. Similarly, we connect vs and yt with a λ′-labeled edge of label
Z ′(a) if π1(A′(a)) = vs and π2(B′(a)) = yt for some a ∈ [qa]. Finally, vs (resp.,
yt) represents an isolated colliding vertex if it is not connected with an edge,
for these vertices we have π1(u) = vs (resp., π2(v) = yt) for (u, vs) ∈ τ1 and
(x, yt) ∈ τ2. In this way, we obtain a graph on V ′p 	 Y ′p, called the transcript
graph of τ , and we denote it by Gτ (Ep).
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4.3 Bad Transcripts

Informally, bad events are the properties which would make the public permuta-
tion extended mirror theory inapplicable. One can only apply the mirror theory
if Gτ (Ep) is (1). acyclic, (2). satisfies the non-degeneracy condition, (3). satis-
fies the NCL condition, (4). satisfies the SCV condition, (5). satisfies the NDL
condition, and (6). is (ξ + 1)-block-maximal. For some parameter ξ that will
be defined later on, we say a system of equations is (ξ + 1)-block-maximal if it
does not contain a (ξ + 1)-block-collision, which means that neither of the two
permutations evaluates the same input more than ξ times. As our security anal-
ysis will cap on 2n/3-bit security only, we can keep it simple by introducing an
event that excludes all alternating paths of length 3, and events that exclude all
v-� component with a y-colliding vertex and y-� component with a v-colliding
vertex. Below, we will give a formal description of the bad events.

For simplicity, we denote by A(i) the i-th input to π1, B(i) the i-th input to
π2, and Z(i) = π1(A(i))⊕π2(B(i)) for the MAC queries. Similarly we have A′(a),
B′(a) and Z ′(a) for the verification queries. Given a parameter ξ ∈ N, we say
that τ ∈ Tbad if and only if one of the following conditions holds:

(i) A component with two colliding vertices.

∃i ∈ [qm], (u, v) ∈ τ1, (x, y) ∈ τ2 such that A(i) = u ∧ B(i) = x,

∃i ∈ [qm], (u, v) ∈ τ1, (x, y) ∈ τ2 such that A(i) = u ∧ Z(i) = v ⊕ y,

∃i ∈ [qm], (u, v) ∈ τ1, (x, y) ∈ τ2 such that Z(i) = v ⊕ y ∧ B(i) = x.

(ii) An alternating path of length 3.

∃i �= k, k �= l ∈ [qm] such that A(i) = A(k) ∧ B(k) = B(l).

(iii) An alternating path of length 2 such that λ(L) = 0.

∃i �= k ∈ [qm] such that A(i) = A(k) ∧ Z(i) = Z(k),

∃i �= k ∈ [qm] such that Z(i) = Z(k) ∧ B(i) = B(k).

(iv) A v-� colliding component with y-colliding vertices, or a y-� colliding com-
ponent with v-colliding vertices.

∃i �= k ∈ [qm], (u, v) ∈ τ1 such that A(i) = u ∧ B(i) = B(k),

∃i �= k ∈ [qm], (x, y) ∈ τ2 such that B(i) = x ∧ A(i) = A(k),

∃i �= k ∈ [qm], (u, v), (u′, v′) ∈ τ1 such that

A(i) = u ∧ A(k) = u′ ∧ v ⊕ Z(i) = v′ ⊕ Z(k),

∃i �= k ∈ [qm], (x, y), (x′, y′) ∈ τ2 such that

B(i) = x ∧ B(k) = x′ ∧ y ⊕ Z(i) = y′ ⊕ Z(k).
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(v) A (ξ + 1)-block-collision.

∃i1, . . . , iξ+1 ∈ {1, . . . , qm} such that A(1) = · · · = A(ξ+1),

∃i1, . . . , iξ+1 ∈ {1, . . . , qm} such that B(1) = · · · = B(ξ+1).

(vi) An alternating circle of length 2 with a λ′-labeled edge.

∃i ∈ [qm], a ∈ [qa] such that A(i) = A′(a) ∧ B(i) = B′(a) ∧ Z(i) = Z ′(a).

(vii) A λ′-labeled edge between two vertices with distance λ′.

∃a ∈ [qa], (u, v) ∈ τ1, (x, y) ∈ τ2 such that

A′(a) = u ∧ B′(a) = x ∧ Z ′(a) = v ⊕ y,

∃i ∈ [qm], a ∈ [qa], (u, v), (u′v′) ∈ τ1 such that

A(i) = u ∧ B(i) = B′(a) ∧ A′(a) = u′ ∧ Z ′(a) = v ⊕ Z(i) ⊕ v′,
∃i ∈ [qm], a ∈ [qa], (x, y), (x′, y′) ∈ τ2 such that

B(i) = x ∧ A(i) = A′(a) ∧ B′(a) = x′ ∧ Z ′(a) = y ⊕ Z(i) ⊕ y′,

∃i �= k ∈ [qm], a ∈ [qa], (u, v) ∈ τ1, (x, y) ∈ τ2 such that A(i) = u

∧ B(k) = x ∧ B(i) = B′(a) ∧ A(k) = A′(a) ∧ Z ′(a) = v ⊕ Z(i) ⊕ y ⊕ Z(k).

Note that by (ii) and (iv), we will end up with a graph that contains only isolated
and v-� colliding components with a v-colliding vertex, isolated and y-� colliding
components with a y-colliding vertex, v-� components, y-� components, isolated
components, and isolated vertices. The resulting graph is good since it

1. satisfies the SCV condition by conditions (i), (ii), and (iv),
2. acyclic by conditions (ii),
3. satisfies the non-degeneracy condition by conditions (ii) and (iii),
4. is (ξ + 1)-block-maximal by conditions (ii) and (v),
5. satisfies the NCL condition by conditions (ii) and (vi),
6. satisfies the NDL condition by conditions (ii), (iv), and (vii).

The probability that τ ∈ Tbad happens, is given by the sum of the probabilities
that each of the above mentioned bad events happens. When the above men-
tioned events can be excluded in the transcript, then Gτ forms a good transcript
graph for τ ∈ Tgood.

4.4 Ratio for Good Transcripts

Once bad transcripts have been defined, we will show that

Pr[XP ∈ Tbad] ≤ εbad,

for a small εbad > 0. Next, we fix a good transcript τ . According to (2), we only
have to consider ρ(τ)/Pr[Pm : Pm � τm ∧ Pa � τa], with

ρ(τ) = Pr
[

π1, π2
$←− Perm(n) : Om � τm ∧ Oa � τa | π1 � τ1 ∧ π2 � τ2

]

.
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This is exactly the ratio given by Theorem1 and 2. From (2), we obtain

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − εratio,

and by Lemma 3, we have

Advmac
MAC(D) ≤ E[εratio] + εbad.

5 Multi-user Security of Tweakable Even-Mansour
Cipher

In this section we consider the 2-round Tweakable Even-Mansour (TEM) con-
struction that was proposed by Cogliati et al. [15]. They showed that 2-round
TEM achieves 2n/3-bit security in the single-user setting. Here we show that
same level of security can be achieved in the multi-user setting using the tech-
nique proposed in this work.

Let n ∈ N, let π1, π2
$←− Perm(n), and let H be an ε-AXU function family.

One can consider a generic construction TEM: H2 × T × {0, 1}n → {0, 1}n as

TEM(h1, h2, T,M) = π2(π1(M ⊕ h1(T )) ⊕ h1(T ) ⊕ h2(T )) ⊕ h2(T ). (4)

The security of TEM based on π1 and π2 is given in the following Theorem.

Theorem 3. Let n ∈ N and let H be a uniform ε-AXU family of functions
from T to {0, 1}n. We consider TEM: H2 × T × {0, 1}n → {0, 1}n based on
two permutations π1, π2

$←− Perm(n) and u pairs of uniform user hash keys
(h1

1, h
1
2), . . . , (h

u
1 , hu

2 ) $←− H2. For any distinguisher D making at most q con-
struction queries distributed over its u construction oracles, at most p primitive
queries to π±

1 and p primitive queries to π±
2 , we have

Advmu-tsprp
TEM (D) ≤ 3q3ε2 + q2pε2 + 6

√
qpε +

6q3/2

2n
+

2q(p + q)2

22n

(

1 + 13qε
)

.

Proof. Let (h1
1, h

1
2), . . . , (h

u
1 , hu

2 ) $←− H2, π1, π2
$←− Perm(n), and π̃1, . . . , π̃u

$←−
P̃erm(t, n). Here, we consider any distinguisher D that has access to either

(TEMπ1,π−1
2

h1
1,h1

2
, . . . ,TEMπ1,π−1

2
hu
1 ,hu

2
, π1, π2) in the real world, or (π̃1, . . . , π̃u, π1, π2) in

the ideal world. The security proof relies on Theorem 1 (a), although this appli-

cation is not straightforward. Most importantly, we consider (TEMπ1,π−1
2

hj
1,hj

2
)u
j=1

instead of (TEMπ1,π2

hj
1,hj

2
)u
j=1. As π1, π2 are drawn independently, these two con-

structions are provably equally secure. We can view an evaluation C =
TEMπ1,π−1

2

hj
1,hj

2
(T,M) as the xor of two public permutations in the middle of the

function, π1(M ⊕hj
1(T ))⊕π2(M ⊕hj

2(T )) = hj
1(T )⊕hj

2(T ). Therefore, q evalua-

tions of TEMπ1,π−1
2

hj
1,hj

2
can be translated to a system of q bi-variate affine equations.

Including 2p uni-variate affine equations that are defined by the primitive queries,
these equations can be written in the form (3).
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Pr[XP ∈ Tbad]. Following the framework given in Sect. 4, we first perform
the bad transcripts analysis. By replacing A = M ⊕ hj

1(T ), B = M ⊕ hj
2(T ),

and Z = hj
1(T ) ⊕ hj

2(T ) in the framework of Sect. 4.3, we get the following
bad events. Given a parameter ξ ∈ N, we say that τ ∈ Tbad if and only if
there exist construction queries (j, T,M,C), (j′, T ′,M ′, C ′), (j′′, T ′′,M ′′, C ′′) ∈
τm, primitive queries (u, v), (u′, v′) ∈ τ1 and (x, y), (x′, y′) ∈ τ2 such that one of
the following conditions holds:

(i) A component with two colliding vertices.

bad1 : M ⊕ u = hj
1(T ) ∧ C ⊕ x = hj

2(T ),

bad2 : M ⊕ u = hj
1(T ) ∧ v ⊕ y = hj

1(T ) ⊕ hj
2(T ),

bad3 : v ⊕ y = hj
1(T ) ⊕ hj

2(T ) ∧ C ⊕ x = hj
2(T ).

(ii) An alternating path of length 3.

bad4 : M ⊕ hj
1(T ) = M ′ ⊕ hj′

1 (T ′) ∧ C ′ ⊕ hj′
2 (T ′) = C ′′ ⊕ hj′′

2 (T ′′).

(iii) An alternating path of length 2 such that λ(L) = 0.

bad5 : M ⊕ hj
1(T ) = M ′ ⊕ hj′

1 (T ′) ∧ hj
1(T ) ⊕ hj

2(T ) = hj′
1 (T ′) ⊕ hj′

2 (T ′),

bad6 : hj
1(T ) ⊕ hj

2(T ) = hj′
1 (T ′) ⊕ hj′

2 (T ′) ∧ C ⊕ hj
2(T ) = C ′ ⊕ hj′

2 (T ′).

(iv) A v-� colliding component with y-colliding vertices, or a y-� colliding com-
ponent with v-colliding vertices .

bad7 : M ⊕ u = hj
1(T ) ∧ C ⊕ hj

2(T ) = C ′ ⊕ hj′
2 (T ),

bad8 : C ⊕ x = hj
2(T ) ∧ M ⊕ hj

1(T ) = M ′ ⊕ hj′
1 (T ′),

bad9 : M ⊕ u = hj
1(T ) ∧ M ′ ⊕ u′ = hj′

1 (T ′)

∧ v ⊕ hj
1(T ) ⊕ hj

2(T ) = v′ ⊕ hj′
1 (T ′) ⊕ hj′

2 (T ′),

bad10 : C ⊕ x = hj
2(T ) ∧ C ′ ⊕ x′ = hj′

2 (T )

∧ y ⊕ hj
1(T ) ⊕ hj

2(T ) = y′ ⊕ hj′
1 (T ′) ⊕ hj′

2 (T ′).

(v) A (ξ + 1)-block-collision.

bad11 : {i1, . . . , iξ+1} ∈ [q] such that Mi1 ⊕ h
ji1
1 (Ti1) = · · · = Miξ+1 ⊕ h

jξ+1
1 (Tiξ+1),

bad12 : {i1, . . . , iξ+1} ∈ [q] such that Ci1 ⊕ h
ji1
2 (Ti1) = · · · = Ciξ+1 ⊕ h

jξ+1
2 (Tiξ+1).

Since there is a
∑c1+c2

i=1 q/2n term in Theorem 1 (a), and we want to get 2n/3-bits
security, we also need the following two bad events

badc1 : c1 = |(j, T,M,C) ∈ τm : M ⊕ hj
1(T ) ∈ τ1| ≥ √

q,

badc2 : c2 = |(j, T,M,C) ∈ τm : C ⊕ hj
2(T ) ∈ τ2| ≥ √

q.



A Modular Approach to the Security Analysis 401

Lemma 4. For any integers q and p, one has

Pr[τ ∈ Tbad] ≤ 4qp2ε2 + 3q3ε2 + q2pε2 +
q3

22n
+ 2

√
qpε +

16q2(p + q)2ε
22n

.

The proof of the lemma is given in the full version of the paper.

Pr[XO = τ ]/ Pr[XP = τ ]. The next step is the calculate the ratio for good
transcripts. Note that by ¬badc1 and ¬badc2 , we have

∑c1+c2
i=1 q ≤ 2q3/2. We use

Theorem 1 (a) to get

εratio ≤ 2q3/2

2n
+

3q3

22n
+

2(p + q)2
∑c1+c2+c3+c4−1

i=c1+c2
(η2

i+1 + ηi+1)
22n

+
2q(p + q)2

22n
.

Let ∼1 (resp., ∼2) be an equivalence relation on [q] as α ∼1 β (resp., α ∼2 β) if
and only if Aα = Aβ (resp. Bα = Bβ). Now, each ηi random variable denotes the
cardinality of some non-singleton equivalence class of [q] with respect to either
∼1 or ∼2. For r, s ∈ N, we denote by P1

1 , . . . ,P1
r and P2

1 , . . . ,P2
s the non-singleton

equivalence classes of [q] with respect to ∼1 and ∼2, respectively. Further, for
k ∈ [r] and l ∈ [s], let νk = |P1

k | and ν′
l = |P2

l |. Then, we have

E

[
c1+c2+c3+c4−1∑

i=c1+c2

(η2
i+1 + ηi+1)

]

≤ E

[
r∑

k=1

ν2
k + νk

]

+ E

[
s∑

l=1

ν′2
l + ν′

l

]

≤ 5q2ε,

using Lemma 1 and the fact that (h1
1, h

1
2), . . . , (h

u
1 , hu

2 ) $←− H2.
Finally, Theorem 3 is proven by combining Lemma 4 and εratio with

Lemma 3. 	

6 Multi-user Security of pEDM PRF

In this section we consider the permutation based version of Encrypted Davies-
Mayer (pEDM) construction, that was proposed by Dutta et al. [22]. They
showed that pEDM based on a single permutation achieves 2n/3-bit security.
Here we will prove the multi-user security of pEDM based on two independent
permutations, and we show that same level of security can be achieved using the
technique proposed in this work. In this case, the multi-user security analysis is
more complex than the single-user analysis, since the inputs to π1 do not need
to be fresh, this leads to more bad events and a more complex good transcripts
ratio analysis when a dedicated proof need to be performed.

Let n ∈ N, let π1, π2
$←− Perm(n). One can consider a generic construction

pEDM: {0, 1}2n × {0, 1}n → {0, 1}n as

pEDM(K1,K2,M) = π2(π1(M ⊕ K1) ⊕ M ⊕ K1 ⊕ K2) ⊕ K1. (5)

The security of pEDM based on π1 and π2 is given in the following Theorem.
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Theorem 4. Let n ∈ N and 1 ≤ ξ ≤ 2n−1/(p + q). We consider
pEDM: {0, 1}2n × {0, 1}n → {0, 1}n based on two permutations π1, π2

$←−
Perm(n), and u pairs of uniform user keys (K1

1 ,K1
2 ), . . . , (Ku

1 ,Ku
2 ) $←− {0, 1}2n.

For any distinguisher D making at most q construction queries distributed over
its u construction oracles, at most p primitive queries to π±

1 and p primitive
queries to π±

2 , we have

Advmu-prf
pEDM (D) ≤ 2

2n
+

4qp2

22n
+

3q2p

22n
+

3p
√

nq

2n
+

2q3

22n

+
p3/2

2n
+

(p + q)2

22n

(

7q +
5u(u − 1)

2n

)

+

(
q

ξ+1

)

2nξ
.

Proof. Let (K1
1 ,K1

2 ), . . . , (Ku
1 ,Ku

2 ) $←− {0, 1}2n, π1, π2
$←− Perm(n), and

ϕ1, . . . , ϕu
$←− Func(n). Here, we consider any distinguisher D that has

access to either (pEDMπ1,π−1
2

K1
1 ,K1

2
, . . . ,pEDMπ1,π−1

2
Ku

1 ,Ku
2
, π1, π2) in the real world, or

(ϕ1, . . . , ϕu, π1, π2) in the ideal world. The security proof relies on Theorem 1

(b). As before, we consider (pEDMπ1,π−1
2

Kj
1 ,Kj

2
)u
j=1 instead of (pEDMπ1,π2

Kj
1 ,Kj

2
)u
j=1. We

can view an evaluation C = pEDMπ1,π−1
2

Kj
1 ,Kj

2
(M) as the xor of two public permuta-

tions in the middle of the function, π1(M ⊕ Kj
1) ⊕ π2(C ⊕ Kj

1) = M ⊕ Kj
1 ⊕ Kj

2 .

Therefore, q evaluations of pEDMπ1,π−1
2

Kj
1 ,Kj

2
can be translated to a system of q bi-

variate affine equations. Including 2p uni-variate affine equations that are defined
by the primitive queries.

Pr[XP ∈ Tbad]. Following the framework given in Sect. 4, we first perform
the bad transcripts analysis. By replacing A = M ⊕ Kj

1 , B = C ⊕ Kj
1 , and

Z = M ⊕Kj
1 ⊕Kj

2 in the framework of Sect. 4.3, we get the following bad events.
Given a parameter ξ ∈ N, we say that τ ∈ Tbad if and only if there exist con-
struction queries (j,M,C), (j′,M ′, C ′), (j′′,M ′′, C ′′) ∈ τm, and primitive queries
(u, v), (u′, v′) ∈ τ1 and (x, y), (x′, y′) ∈ τ2 such that one of the following condi-
tions holds:

(i) A component with two colliding vertices.

bad1 : M ⊕ u = Kj
1 ∧ C ⊕ x = Kj

1 ,

bad2 : M ⊕ u = Kj
1 ∧ v ⊕ y = M ⊕ Kj

1 ⊕ Kj
2 ,

bad3 : v ⊕ y = M ⊕ Kj
1 ⊕ Kj

2 ∧ C ⊕ x = Kj
1 .

(ii) Alternating paths of length 3 across different users.

bad4 : M ⊕ Kj
1 = M ′ ⊕ Kj′

1 ∧ C ′ ⊕ Kj′
1 = C ′′ ⊕ Kj′′

1 .

(iii) Alternating paths of length 2 such that λ(L) = 0 across different users.

bad5 : M ⊕ Kj
1 = M ′ ⊕ Kj′

1 ∧ M ⊕ Kj
1 ⊕ Kj

2 = M ′ ⊕ Kj′
1 ⊕ Kj′

2 ,

bad6 : M ⊕ Kj
1 ⊕ Kj

2 = M ′ ⊕ Kj′
1 ⊕ Kj′

2 ∧ C ⊕ Kj
1 = C ′ ⊕ Kj′

1 .
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(iv) A v-� colliding component with y-colliding vertices, or a y-� colliding com-
ponent with v-colliding vertices.

bad7 : M ⊕ u = Kj
1 ∧ C ⊕ Kj

1 = C ′ ⊕ Kj′
1 ,

bad8 : C ⊕ x = Kj
1 ∧ M ⊕ Kj

1 = M ′ ⊕ Kj′
1 ,

bad9 : M ⊕ u = Kj
1 ∧ M ′ ⊕ u′ = Kj′

1

∧ v ⊕ M ⊕ Kj
1 ⊕ Kj

2 = v′ ⊕ M ′ ⊕ Kj′
1 ⊕ Kj′

2 ,

bad10 : C ⊕ x = Kj
1 ∧ C ′ ⊕ x′ = Kj′

1

∧ y ⊕ M ⊕ Kj
1 ⊕ Kj′

2 = y′ ⊕ M ′ ⊕ Kj
1 ⊕ Kj′

2 .

(v) A (ξ + 1)-block-collision.

bad11 : {i1, . . . , iξ+1} ∈ [q] such that Ci1 ⊕ K
ji1
1 = · · · = Ciξ+1 ⊕ K

jξ+1
1 .

Note that the events bad4-bad6 and bad8 will not appear when the single user
setting is considered, since in that case the distinguisher is not allow to query
the same M to the construction oracle.

Lemma 5. Let 1 ≤ ξ ≤ 2n−1/(p + q). For any integers q and p, one has

Pr[τ ∈ Tbad] ≤ 2
2n

+
4qp2

22n
+

3q2p

22n
+

3p
√

nq

2n
+

2q3

22n
+

p3/2

2n
+

(
q

ξ+1

)

2nξ
.

The proof of the lemma is given in the full version of the paper.

Pr[XO = τ ]/ Pr[XP = τ ]. The next step is the calculate the ratio for good
transcripts. We use Theorem 1 (b) to get

εratio ≤
2(p + q)2

∑c1+c2+c3+c4−1
i=c1+c2

(η2
i+1 + ηi+1)

22n
+

2q(p + q)2

22n
.

As before, for r, s ∈ N, we denote by P1
1 , . . . ,P1

r and P2
1 , . . . ,P2

s the non-singleton
equivalence classes of [q] with respect to ∼1 and ∼2, respectively. Further, for
k ∈ [r] and l ∈ [s], let νk = |P1

k | and ν′
l = |P2

l |. Then, we have

E

[
c1+c2+c3+c4−1∑

i=c1+c2

(η2
i+1 + ηi+1)

]

≤ E

[
r∑

k=1

ν2
k + νk

]

+ E

[
s∑

l=1

ν′2
l + ν′

l

]

≤ 5u(u − 1)
2n−1

+
5q2

2n−1
.

The non-freshness of π1 in the multi-user setting leads to the existence of v-�
components (c3 �= 0). The difficulty introduced by this can easily be handled
by our new technique without performing a long and complicated analysis. Note
that when u = 1, we are back to the single user setting, then there are no v-�
components (c3 = 0), since M is always different. Finally, Theorem 4 is proven
by combining Lemma 5 and εratio with Lemma 3. 	
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7 Multi-user Security of nEHtMp MAC Algorithm

In this section we consider the public permutation based nonce-based Enhance
Hash-then-Mask (nEHtMp) MAC algorithm, that was proposed by Dutta and
Nandi [20]. They showed that nEHtMp based on a single permutation (using
domain separation) achieves 2n/3-bit security when the number of faulty nonces
μ is sufficiently smaller than 2n/3. However, according to the framework given
in Sect. 4.3, the authors missed some bad events in their analysis, namely the
two last events of (iv) and the three last events of (vii) of Sect. 4.3. Taking into
account these missing bad events, the extended mirror theory used in [20] is
not sufficient for the good transcripts ratio analysis of nEHtMp. As a result,
their ratio analysis of the construction is also incomplete. More precisely, non-
equations between a colliding component and a normal component were not
considered in the ratio analysis of [20]. This observation was also verified by the
authors [10].

In this section, we will fix this problem using the techniques proposed in this
work without performing a new complicated analysis, since these non-equations
are already covered in our public permutation extended mirror theory (Theo-
rem 2). Some of these additional bad events, however, require involved arguments
to bound. Since the goal of this work is to illustrate the power of our new mod-
ular proof approaches, rather than presenting strong combinatorial results to
bound these events. We will modify the design of nEHtMp by xoring an uni-
versal hash evaluation of the input message M using an extra hash key h∗ to
the output tag. This modified m-nEHtMp construction uses more randomness,
which in turn enables us to bound the additional bad events easily. We would like
to note that our analysis of m-nEHtMp does not imply infeasibility in fixing the
proof of nEHtMp. In fact, we believe that the security of the original nEHtMp

construction can also be proven with our new approaches in combination with
some strong techniques to bound these bad events. Here we will prove that this
m-nEHtMp construction based on two independent permutations achieves 2n/3-
bit security in the multi-user setting using the technique proposed in this work.

Let n ∈ N, let π1, π2
$←− Perm(n), and let H be an ε-AXU function family. One

can consider a generic construction m-nEHtMp : {0, 1}n × H2 × {0, 1}n × M →
{0, 1}n as

m-nEHtMp(K,h, h∗N,M) = π1(N ⊕ K) ⊕ π2(N ⊕ h(M)) ⊕ h∗(M). (6)

The security of m-nEHtMp based on π1 and π2 is given in the following Theorem.

Theorem 5. Let n ∈ N, and let H be a uniform ε-AXU family of functions from
M to {0, 1}n. We consider m-nEHtMp : {0, 1}n × H2 × {0, 1}n × M → {0, 1}n

based on two permutations π1, π2
$←− Perm(n), u uniform user keys K1, . . . ,Ku

$←−
{0, 1}n and u pairs of uniform user hash keys (h1, h

∗
1), . . . , (hu, h∗

u) $←− H2. Let μ
be a fixed parameter. For any distinguisher D making at most qm queries with at
most μ faulty nonces distributed over its u construction MAC oracles, qa queries



A Modular Approach to the Security Analysis 405

distributed over its u construction verification oracles, at most p primitive queries
to π±

1 and p primitive queries to π±
2 , we have

Advmu-mac
m-nEHtMp

(D) ≤ 7
√

qmpε + 2μ2ε + 4q3mε2 +
q2mpε

2n
+ 2μpε + q2mqaε2 +

qap2ε

2n

+
3qmqapε

2n
+ p

√
qmqaε

3
2 +

(p + qm)2

22n

(

5μ2 + 7qm +
5u(u − 1)

2n

)

+
qa

2n
.

Proof. Let K1, . . . ,Ku
$←− {0, 1}n, (h1, h

∗
1), . . . , (hu, h∗

u) $←− H2, and π1, π2
$←−

Perm(n). Here, we consider any distinguisher D that has access to either
(O, π1, π2) in the real world or (P, π1, π2) in the ideal world, with O =
(

(m-nEHtMπ1,π2
p(K1,h1,h∗

1)
,Verπ1,π2

(K1,h1,h∗
1)

), . . . , (m-nEHtMπ1,π2
p(Ku,hu,h∗

u)
,Verπ1,π2

(Ku,hu,h∗
u)

)
)

and P =
(

(Rand1,Rej1), . . . , (Randu,Reju)
)

. The security proof relies on The-
orem 2 (b).

Pr[XP ∈ Tbad]. Following the framework given in Sect. 4, we first perform the
bad transcripts analysis. For the notational simplicity, we denote Hj = hj(M),
and By replacing A = N ⊕ Kj , B = N ⊕ hj(M), and Z = T ⊕ h∗

j (M)
in Sect. 4.3, we get the following bad events. Given a parameter ξ ∈ N,
we say that τ ∈ Tbad if and only if there exist construction MAC queries
(j,N,M, T ), (j′, N ′,M ′, T ′), (j′′, N ′′,M ′′, T ′′) ∈ τm, a construction verification
query (j(a), N (a),M (a), T (a), b(a)) ∈ τa and primitive queries (u, v), (u′, v′) ∈ τ1
and (x, y), (x′, y′) ∈ τ2 such that one of the following conditions holds:

(i) A component with two colliding vertices.

bad1 : N ⊕ u = Kj ∧ N ⊕ x = Hj ,

bad2 : N ⊕ u = Kj ∧ v ⊕ y = T ⊕ H∗
j ,

bad3 : v ⊕ y = T ⊕ H∗
j ∧ N ⊕ x = Hj .

(ii) An alternating path of length 3.

bad4 : N ⊕ Kj = N ′ ⊕ Kj′ ∧ N ′ ⊕ Hj′ = N ′′ ⊕ Hj′′ .

(iii) An alternating path of length 2 such that λ(L) = 0.

bad5 : N ⊕ Kj = N ′ ⊕ Kj′ ∧ T ⊕ H∗
j = T ′ ⊕ H∗

j′ ,

bad6 : T ⊕ H∗
j = T ′ ⊕ H∗

j′ ∧ N ⊕ Hj′ = N ′ ⊕ Hj′ .

(iv) A v-� colliding component with y-colliding vertices, or a y-� colliding com-
ponent with v-colliding vertices.

bad7 : N ⊕ u = Kj ∧ N ⊕ Hj = N ′ ⊕ Hj′ ,

bad8 : N ⊕ x = Hj ∧ N ⊕ Kj = N ′ ⊕ Kj′ ,

bad9 : N ⊕ u = Kj ∧ N ′ ⊕ u′ = Kj′ ∧ v ⊕ T ⊕ H∗
j = v′ ⊕ T ′ ⊕ H∗

j′ ,

bad10 : N ⊕ x = Hj ∧ N ′ ⊕ x′ = Hj′ ∧ y ⊕ T ⊕ H∗
j = y′ ⊕ T ′ ⊕ H∗

j′ .
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(v) A (ξ + 1)-block-collision.

bad11 : {i1, . . . , iξ+1} ∈ [qm] such that Ni1 ⊕ Hji1
= · · · = Niξ+1 ⊕ Hjiξ+1

.

(vi) An alternating circle of length 2 with a λ′-labeled edge.

bad12 : N ⊕ Kj = N (a) ⊕ Kj(a) ∧ N ⊕ Hj = N (a) ⊕ Hj(a)

∧ T ⊕ H∗
j = T (a) ⊕ H∗

j(a) .

(vii) A λ′-labeled edge between two vertices with distance λ′.

bad13 : N (a) ⊕ u = Kj(a) ∧ N (a) ⊕ x = Hj(a) ∧ T (a) ⊕ H∗
j(a) = v ⊕ y,

bad14 : N ⊕ u = Kj ∧ N ⊕ Hj = N (a) ⊕ Hj(a) ∧ N (a) ⊕ u′ = Kj(a)

∧ T (a) ⊕ H∗
j(a) = v ⊕ T ⊕ H∗

j ⊕ v′,

bad15 : N ⊕ x = Hj ∧ N ⊕ Kj = N (a) ⊕ Kj(a) ∧ N (a) ⊕ x′ = Hj(a)

∧ T (a) ⊕ H∗
j(a) = y ⊕ T ⊕ H∗

j ⊕ y′,

bad16 : N ⊕ u = Kj ∧ N ′ ⊕ x = Hj′ ∧ N ⊕ Hj = N (a) ⊕ Hj(a) ∧
N ′ ⊕ Kj′ = N (a) ⊕ Kj(a) ∧ T (a) ⊕ H∗

j(a) = v ⊕ T ⊕ H∗
j ⊕ y ⊕ T ′ ⊕ H∗

j′ .

Note that the events bad9-bad10 and bad14-bad16 are the missing events that
were not considered by the authors of [20].

Lemma 6. For any integers qm, qa and p, then one has

Pr[τ ∈ Tbad] ≤ 7
√

qmpε + 2μ2ε + 4q3mε2 +
q2mpε

2n
+ 2μpε

+
8q2m(p + qm)2ε

22n
+ q2mqaε2 +

qap2ε

2n
+

3qmqapε

2n
+ p

√
qmqaε3/2.

The proof of this Lemma is given in the full version of the paper.

Pr[XO = τ ]/ Pr[XP = τ ]. The next step is the calculate the ratio for good
transcripts. We use Theorem 2 (b) to get

εratio ≤
2(p + qm)2

∑c1+c2+c3+c4−1
i=c1+c2

(η2
i+1 + ηi+1)

22n
+

2qm(p + qm)2

22n
+

2qa

2n
.

As before, for r, s ∈ N, we denote by P1
1 , . . . ,P1

r and P2
1 , . . . ,P2

s the non-singleton
equivalence classes of [qm] with respect to ∼1 and ∼2, respectively. For k ∈ [r]
and l ∈ [s], let νk = |P1

k | and ν′
l = |P2

l |. Then, we have

E

[
c1+c2+c3+c4−1∑

i=c1+c2

(η2
i+1 + ηi+1)

]

≤ E

[
r∑

k=1

ν2
k + νk

]

+ E

[
s∑

l=1

ν′2
l + ν′

l

]

≤ 5μ2

2
+

5u(u − 1)
2n−1

+
5q2mε

2
,
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using Lemma 1 and the fact that K1, . . . ,Ku
$←− {0, 1}n and (h1, h

∗
1), . . . ,

(hu, h∗
u) $←− H2. Note that when u = 1, we are back to the single-user setting, in

this case the v-� components (collision in the inputs of π1) can only be formed
by queries with repeated nonces, hereby the 5μ2/2 term in the bound. Finally,
Theorem 5 is proven by combining Lemma6 and εratio with Lemma 3. 	
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Abstract. The rectangle attack has shown to be a very powerful form
of cryptanalysis against block ciphers. Given a rectangle distinguisher,
one expects to mount key recovery attacks as efficiently as possible. In
the literature, there have been four algorithms for rectangle key recov-
ery attacks. However, their performance vary from case to case. Besides,
numerous are the applications where the attacks lack optimality. In this
paper, we investigate the rectangle key recovery in depth and propose
a unified and generic key recovery algorithm, which supports any possi-
ble attacking parameters. Notably, it not only covers the four previous
rectangle key recovery algorithms, but also unveils five types of new
attacks which were missed previously. Along with the new key recovery
algorithm, we propose a framework for automatically finding the best
attacking parameters, with which the time complexity of the rectangle
attack will be minimized using the new algorithm. To demonstrate the
efficiency of the new key recovery algorithm, we apply it to Serpent,
CRAFT, SKINNY and Deoxys-BC-256 based on existing distinguishers and
obtain a series of improved rectangle attacks.

Keywords: Boomerang attack · Rectangle attack · Key recovery
algorithm · Serpent · CRAFT · SKINNY · Deoxys-BC

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS91],
is one of the most powerful cryptanalytic approaches for assessing the security
of block ciphers. The basic idea is to exploit non-random propagation of input
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Fig. 1. Basic boomerang attack (left) and the schematic view of the key recovery (right)

difference to output difference, i.e., high-probability differentials. In many cases,
it is may be hard to find a long differential of high probability. In 1999, Wagner
proposed the boomerang attack [Wag99], which divides a cipher E into two sub-
ciphers and utilizes two short differentials of high probability to construct a long
one.

Suppose E = E1 ◦ E0, where there are two short differentials α → β and
γ → δ with probability p and q for E0 and E1, respectively. The boomerang
attack, as depicted in Fig. 1 (left), exploits the high probability of the following
differential property:

Pr
[
E−1

(
E(x) ⊕ δ

) ⊕ E−1
(
E(x ⊕ α) ⊕ δ

)
= α

]
= p2q2. (1)

The basic boomerang attack requires adaptive chosen plaintexts and cipher-
texts. Later, Kelsey et al. developed a chosen-plaintext variant, named the ampli-
fied boomerang attack [KKS00]. However, this transition reduced the probability
of the distinguisher to 2−np2q2. In [BDK01], Biham et al. further converted the
amplified boomerang attack into the rectangle attack by considering as many
differences as possible in the middle to estimate the probability more accurately.
As a result, the probability of a rectangle distinguisher becomes 2−np̂2q̂2, where

p̂ =
√

ΣiPr2(α −→ βi) and q̂ =
√

ΣjPr2(γj −→ δ). The boomerang and rectan-
gle attack then have been applied to numerous block ciphers, such as Serpent
[BDK01], AES [BK09], KASUMI [DKS10b,DKS14], etc.

Since the boomerang attack was proposed, there has been a line of research on
estimating the probability of boomerang distinguishers more accurately so as to
find better distinguishers. At first, the probability of a boomerang distinguisher
was considered as p2q2 by simply assuming the two differentials are indepen-
dent until the dependency issue between the two differentials came into view.
In boomerang or rectangle attacks on concrete ciphers, observations were made
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that the probability computed via p2q2 may be inaccurate in some cases from
[BK09,Mur11], where the probability can be higher by using tricks or the two
chosen differentials may be even incompatible. Taking the dependency between
the two differentials into account, Dunkelman et al. suggested the sandwich
attack [DKS10b,DKS14] which estimates the probability by p2q2r, where r is
the exact probability for a middle part. Later, a new tool named boomerang
connectivity table (BCT) was proposed to estimate the probability r theoreti-
cally [CHP+18,SQH19].

Another line of research on the boomerang and rectangle attack is to
mount key recovery attacks as efficiently as possible. Figure 1 (right) displays
a schematic view of key recovery attacks based on a distinguisher over the mid-
dle part Ed. The first rectangle key recovery algorithm was proposed by Biham et
al. in [BDK01] along with the proposal of the rectangle attack. This algorithm
was applied to 10-round Serpent [ABK98] with an 8-round rectangle distin-
guisher. Shortly after that, in [BDK02] the same authors introduced the second
rectangle key recovery algorithm which can improve the result on Serpent by
reducing the time complexity. There was no improvement until Zhao et al. pro-
posed a new rectangle key recovery algorithm in [ZDM+20] which originally
works for ciphers with a linear key schedule in the related-key setting, but it can
be converted to the single-key setting trivially. Such an algorithm, when applied
to SKINNY [BJK+16a] outperforms the two previous key recovery algorithms.
However, the algorithm presented in a very recent work [DQSW22] makes a step
further on improving rectangle attacks on SKINNY and some other ciphers.

Motivation. Even though the two recent rectangle key recovery algorithms
provide surprisingly good results on SKINNY, we carefully check that they do not
beat the algorithm in [BDK02] when applied to Serpent. On the other hand,
the algorithm in [BDK02] is not efficient on SKINNY when compared with the
two recent ones. Then, the following questions arise.

– Given a rectangle distinguisher of a block cipher, how efficient the key recovery
can be?

– Are there any other ways to mount key recovery attacks?

Not only would answers to these questions be of great significance to the crypt-
analysis of block ciphers, but also provide a deeper understanding of the key
recovery of the rectangle attack.

Our Contributions. In this paper, we investigate the rectangle key recovery in
depth and completely answer the above questions. In the previous key recovery
algorithms, the involved subkey bits in the rounds added around the distinguisher
may or may not be guessed. The four previous algorithms use four different
kinds of subkey guessing strategies. Our basic idea is that any possible guessing
strategy should be allowed and that there must be a guessing strategy leading
to optimal complexities of the key recovery attack. To achieve these, we have to
solve two problems. The first is that how the attack proceeds when partial key
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bits (the extreme cases are full/none of subkey bits) are guessed on both sides of
the distinguisher. Note such generalized cases have never been considered before.
The second problem is how the attack proceeds so that the time complexity is
low.

The starting point of our work is some new insights that the key recovery
of the rectangle attack always includes steps of constructing pairs from single
messages and quartets from pairs, whereas the number of pairs or quartets that
will be constructed is affected by guessed subkey bits. Unlike in the previous
works, we do not have to restrain ourselves to only one side and can generate
pairs on either side. With this in mind, we come up with a unified and generic
rectangle key recovery algorithm which supports any possible attacking parame-
ters, together with a framework to find the best attacking parameters, including
the subkey bits to be guessed. Our contributions on the key recovery algorithm
are summarized as follows.

– Based on a deeper understanding of the rectangle key recovery, a unified and
generic key recovery algorithm is proposed. It supports any number of guessed
key bits and covers the four previous rectangle key recovery algorithms, i.e.,
any of the previous four algorithms is a special case of our algorithm. What’s
more, it unveils five types of new attacks which were missed previously (see
Fig. 4 in Sect. 4 for more information).

– Although our new algorithm supports any set of attacking parameters, it
does not tell which is the best on its own. As a complement, we propose a
framework for automatically finding the best parameters for the new algo-
rithm. When we feed the parameters returned by this framework to our new
key recovery algorithm, the time complexity of the rectangle attack will be
minimized.

– We also develop variants of the new key recovery algorithm for related attacks,
including the rectangle attack in the related-key setting for ciphers with a
linear key schedule and boomerang attacks in both single-key and related-
key setting, etc.

Previously, the four mentioned key recovery algorithms are treated as sepa-
rate ones. Given a rectangle distinguisher, one can compute the complexities for
all algorithms and pick the algorithm with the lowest complexity. Now, we can
work with the new algorithm only. To demonstrate the efficiency of the new key
recovery algorithm, we apply it to four block ciphers using existing distinguishers
and obtain a series of improved results.

– We revisit the attack on 10-round Serpent and find better attacks than the
one given in [BDK02].

– We revisit the rectangle attacks on round-reduced SKINNY in [DQSW22],
which are the best existing attacks on SKINNY in the related-tweakey set-
ting. For the four distinguishers of SKINNY, we find better attacks for three of
them, despite the fact that these distinguishers were searched dedicated for
the key recovery algorithm in [DQSW22].
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– We extend the rectangle attack on CRAFT by one round and give the first 19-
round attack, which is the best attack on this cipher so far in the single-key
setting.

– On Deoxys-BC-256, we improved the 11-round rectangle attack and extend
the boomerang attack by one round in the related-tweakey setting. These are
the best attacks on Deoxys-BC-256 so far in terms of time complexity.

These results are summarized in Table 1. According to these applications, we find
that the best attacking parameters differ significantly from those which were used
in previous works and even the number rounds added around the distinguisher
is different. Notably, these new attacking parameters are not covered by the
previous key recovery algorithms in many cases. Thus, it is likely that previous
rectangle attacks can be improved to some extent using the new key recovery
algorithm.

Table 1. Summary of the cryptanalytic results.

Cipher Rounds Data Memory Time Approach Setting Ref.

Serpent 10 2126.8 2192 2217 Rectangle SK [BDK01]
2126.3 2126.3 2173.8 Rectangle SK [BDK02]
2126.3 2126.3 2159.11 Rectangle SK Section 5.1
2124.15 2124.15 2155.67 Rectangle SK Section 5.1

CRAFT 18 260.92 284 2101.7 Rectangle SK [HBS21]
19 260.92 272 2112.61 Rectangle SK Section 5.2

SKINNY-64-128 25 261.67 264.26 2118.43 Rectangle RK [DQSW22]
261.67 263.67 2110.03 Rectangle RK Section 5.3

SKINNY-128-384 32 2123.54 2123.54 2354.99 Rectangle RK [DQSW22]
2123.54 2129.54 2344.78 Rectangle RK Full version

SKINNY-128-256 26 2126.53 2136 2254.4 Rectangle RK [DQSW22]
2126.53 2136 2241.38 Rectangle RK Full version

Deoxys-BC-256 10 2127.58 2127.58 2204 Rectangle RK [CHP+17]
11 2122.1 2128.2 2249.9 Rectangle RK [ZDJ19]
11 2126.78 2128 2222.49 Rectangle RK Full version
10 298.4 288 2249.9 Boomerang RK [ZDJ19]
11 2122.4 2128 2218.65 Boomerang RK Section 5.4

Organization. The rest of the paper is organized as follows. In Sect. 2, we
give notations which will be used throughout the paper. In Sect. 3, the new
rectangle key recovery algorithm will be introduced as well as the framework
for automatically finding the best attacking parameters and extensions of the
new algorithm. In Sect. 4, we compare our new rectangle key recovery algorithm
with the four previous ones in detail. Section 5 presents applications of the new
algorithm to four block ciphers. We conclude this paper in Sect. 6.
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2 Notations

In this paper, we focus on the key recovery for a given boomerang distinguisher.
For simplicity, we treat a target cipher E : {0, 1}n × {0, 1}k → {0, 1}n as E =
Ef ◦ Ed ◦ Eb, where there is a boomerang distinguisher over Ed of probability
P 2, i.e.,

Pr
[
E−1

d (Ed(P1) ⊕ δ) ⊕ E−1
d (Ed(P1 ⊕ α) ⊕ δ) = α

]
= P 2. (2)

That is, we take the probability of the boomerang distinguisher for P 2 and do
not pay attention to whether it is evaluated with p2q2r or q̂2q̂2. Figure 1 (right)
depicts the framework of E, where Eb and Ef are added around Ed. The aim of
the key recovery is to identify partial subkeys used in Eb and Ef by utilizing the
distinguisher over Ed and further to find the master key more efficiently than
the exhaustive search.

Fig. 2. Outline of rectangle key recovery attack

To describe the key recovery, a series of notations are used through out the
paper. For convenience, we borrow some notations which are frequently used
in the previous works on rectangle attacks, such as [BDK02,LGS17,ZDM+20,
DQSW22]. As shown in Fig. 2, the input difference of the distinguisher α propa-
gates back over E−1

b to α′. Let Vb be the space spanned by all possible α′ where
rb = log2 |Vb|. The output difference of the distinguisher δ propagates forward
over Ef to δ

′
. Let Vf be the space spanned by all possible δ′ where rf = log2 |Vf |.

Let kb be the subset of subkey bits which are employed in Eb and affect the prop-
agation α′ → α. Similarly, let kf be the subset of subkey bits which are used in
Eb and affect the propagation δ ← δ′. Then let mb = |kb| and mf = |kf | be the
number of bits in kb and kf , respectively.

In a specific key recovery algorithm, a part of kb and kf , denoted by k′
b, k

′
f ,

may be guessed at first. Let m′
b = |k′

b| and m′
f = |k′

f |. With the guessed subkey
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bits, the differential propagations α′ → α and δ ← δ′ can be partially verified.
Suppose under the guessed subkey bits a r′

b-bit condition on the top and a r′
f -bit

condition on the bottom can be verified. Finally, let r∗
b = rb−r′

b and r∗
f = rf −r′

f .
In this paper, we mainly focus on the rectangle key recovery algorithms in the

single-key setting and these can be easily converted into the related-key setting
for ciphers with linear key schedule.

3 A Unified and Generic Key Recovery Algorithm

In this section, we present our unified and generic key recovery algorithm for
the rectangle attack. Before specifying our algorithm, we recall basics of the
rectangle attack and provide new insights into the key recovery, which will be
the base of our algorithm. Our algorithm is generic and supports any possible
key guessing strategy. However, given a specific rectangle distinguisher, which
parameters are the best for our algorithm? A framework for automatically finding
the best parameters is then introduced afterwards. Finally, we discuss extensions
of our algorithm to related cases.

3.1 Basic Ideas and Intuitions

In this subsection, we recall the principles of the rectangle attack and give some
new insights on the key recovery which are core ideas behind our new algorithm.

As can be seen from Fig. 1 and Eq. (2), the boomerang distinguisher is built
on a nonrandom property of quartets. The rectangle distinguisher is its chosen-
plaintext variant. This nonrandom property is then used to extract subkey infor-
mation in Eb and Ef . As in standard differential cryptanalysis, candidates for
subkey kb and kf are identified if they are suggested by a sufficiently large num-
ber of quartets. Here, kb and kf are suggested by a quartet (Pi, Ci), i = 1, 2, 3, 4,
if

Eb(kb, P1) ⊕ Eb(kb, P2) = Eb(kb, P3) ⊕ Eb(kb, P4) = α,

E−1
f (kf , C1) ⊕ E−1

f (kf , C3) = E−1
f (kf , C2) ⊕ E−1

f (kf , C4) = δ

holds. As shown in Fig. 2, the α difference propagates to α′ via E−1
b and α′ ∈ Vb.

It does not mean every element of Vb is a possible α′, whereas any difference
outside Vb is impossible for α. The same applies for the bottom side. This means,
quartets with plaintext difference outside Vb or ciphertext difference outside Vf

will not suggest any subkeys. Therefore, an important step in rectangle key
recovery algorithms is to construct quartets which are possible to suggest subkeys
and at least satisfy P1 ⊕ P2, P3 ⊕ P4 ∈ Vb and C1 ⊕ C3, C2 ⊕ C4 ∈ Vf .

Data Complexity. A commonly-used idea to improve differential cryptanalysis
is to employ plaintext structures. A plaintext structure takes all possible values
for the rb bits and chooses a constant for the remaining n − rb bits. It allows to
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enjoy the birthday effect. For each structure, there are 22rb−1 pairs of plaintext
with difference in Vb and 2rb−1 of them satisfy α difference by meeting the rb-bit
condition.

Given a boomerang distinguisher with probability P 2, the number of quartets
satisfying the input difference α of the distinguisher should be at least sP−22n

for a rectangle attack, where s is the expected number of right quartets (say
s = 4). These quartets can be formed from plaintext pairs taken in structures.
Suppose the number of structures needed is y. Note y structures can constitute
2 · (

y2rb−1

2

)
1 quartets that satisfy α difference. Then y =

√
s2n/2−rb+1/P and

the data complexity is D = y · 2rb =
√

s2n/2+1/P. This infers that the data
complexity is the same with different key recovery algorithms.

Time Complexity. Next, let us investigate the time complexity from a high-
level perspective. We stress that the key recovery of the rectangle attack always
includes steps of constructing pairs from single messages and quartets from pairs.
Therefore, the whole key recovery can be split into the following phases: (1) data
collection, (2) pair construction, (3) constructing quartets and processing them
to extract subkeys, and last (4) a brute force search for the unique right master
key among key candidates. The time complexities of the first and the last phases
are easy to estimate, so let us focus on the time complexities of the middle two
phases, which we denote by T2 and T3, respectively.

T3 is mainly affected by the number of quartet candidates. From D plaintexts,
we can construct N = D2 · 22rb+2rf −2n−2 quartet candidates with plaintext
difference in Vb and ciphertext difference in Vf . This seems to be a fixed term
like the data complexity. However, the number of quartets to be processed may
be reduced when some subkey bits are guessed. Recall that mb-bit kb and mf -
bit kf are involved for the propagation α′ ← α and δ → δ′ and verifying α
difference and δ difference for such a quartet takes 2rb-bit and 2rf -bit conditions
(as there are two pairs), respectively. Thus, there will be N · 2mb+mf −2rb−2rf =
D2 · 2mb+mf −2n−2 suggestions for kb and kf in total. On average, the number
of suggestions for a wrong subkey is less than 1 as D2 · 2−2n−2 < 1, while it is
s for the right subkey. On the one hand, this confirms that the rectangle attack
works; on the other hand, it means when the subkey is fixed, most quartets are
wrong and thus may likely be filtered out before being constructed. This is what
has been done in the first rectangle key recovery algorithm proposed in [BDK01],
which guesses the whole kb and kf .

However, a full guess of kb and kf is not necessary to reduce the number of
quartet candidates, as studied in [ZDM+20,DQSW22]. In this paper, we consider
the most general situation where a part of kb, i.e., k′

b, and a part of kf , i.e., k′
f

are guessed, with m′
b = |k′

b|, m′
f = |k′

f |, 0 ≤ m′
b ≤ mb and 0 ≤ m′

f ≤ mf . To have
a better view of this situation, we present a toy example in Fig. 3 to illustrate
the parameters. Assume under the guess a r′

b-bit (resp. r′
f -bit) condition can

1 If both (P1, P2) and (P3, P4) satisfy α difference, then we can form two quartets:
(P1, P2, P3, P4) and (P1, P2, P4, P3).
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Fig. 3. A toy example to illustrate the parameters of the rectangle key recovery. Both
Eb and Ef contain one round. Bold lines stand for active bits, so rb = 12, rf = 8 and
the number of involved subkey bits in Eb and Ef are mb = 12 and mf = 8, respectively.
The subkey bits corresponding to blue lines are guessed. With the guessed subkey bits,
r′
b = 4 out of rb = 12 bits of conditions can be ensured. Likewise, r′

f = 4 out of rf = 8
bits of conditions can be ensured. (Color figure online)

be verified for a plaintext (resp. ciphertext) pair. Then the number of quartets
to be processed is 2m

′
b+m′

f · D2 · 22r∗
b+2r∗

f −2n−2, where r∗
b = rb − r′

b and r∗
f =

rf − r′
f . We point out the number of quartet candidates gets smaller as long as

m′
b + m′

f < 2r′
b + 2r′

f .
Let us come to the time complexity of constructing pairs, i.e., T2. Note that

T2 is determined by the number of pairs that are used to construct quartets.
We emphasize that pairs can be constructed either on the top for plaintexts
or on the bottom for ciphertexts. Still assume partial subkey bits are guessed.
Then the number of filters for plaintext pairs is n − r∗

b while it is roughly n − r∗
f

for ciphertext pairs (we will present the exact number of filters in the next
subsection). Since filters for plaintext pairs and filters for ciphertext pairs work
on different faces, they can not be taken into account simultaneously in the phase
of constructing pairs. The key principle is to form pairs on the side with more
filters so that T2 is lower.

Questions. Then, there come two questions:

Question 1: How does the key recovery algorithm proceed when k′
b and k′

f are
guessed, where m′

b = |k′
b|, m′

f = |k′
f |, 0 ≤ m′

b ≤ mb and 0 ≤ m′
f ≤ mf?

Question 2: What is the best choice for (k′
b, k

′
f ) so that the overall time com-

plexity is minimized?

To answer the first question, we propose a detailed algorithm for the rectangle
key recovery in the next subsection. Because this algorithm supports any possible
(k′

b, k
′
f ) and covers all previous key recovery algorithms, we call it a generic

and unified algorithm for the rectangle key recovery. For the second question,
we present a framework for automatically finding the best (k′

b, k
′
f ) in Sect. 3.3.

Combining both, we are able to find the most efficient rectangle key recovery
attack.
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3.2 Generic and Unified Algorithm for the Rectangle Key Recovery
Attack

In the following, we describe our algorithm for the rectangle key recovery attack
which works for any number of guessed key bits. Like the most key recovery
algorithm, our new algorithm also employs the counting method. Namely, we
set counters for the involved subkey bits and search for the correct one among
the subkey candidates with a large number of suggestions. Suppose m′

b-bit k′
b

and m′
f -bit k′

f are to be guessed. For these guessed subkey bits, we may or may
not set counters for them. To enjoy such flexibility, we set counters for t bits of
the guessed subkey bits, 0 ≤ t ≤ m′

b + m′
f .

Then the specific steps of our algorithm are as follows. Note the toy example
in Fig. 3 would be helpful for understanding the algorithm.

1. Collect and store y structures of 2rb plaintexts. Hence, the data complexity
is D = y · 2rb . The time and memory complexities of this step are also D.

2. Split (m′
b + m′

f )-bit k′
b‖k′

f into two parts: GL‖GR where GL has t bits.
3. Guess GR:

(a) Initialized a list of key counters for GL and the unguessed key bits of
kb, kf . The memory complexity in this step is 2t+mb+mf −m′

b−m′
f .

(b) Guess the t-bit GL:
i. For each data (P1, C1), partially encrypt P1 and partially decrypt

C1 under the guessed subkey bits. Let P ∗
1 = Enck′

b
(P1) and C∗

1 =
Deck′

f
(C1). For each structure, we will get 2r

′
b sub-structures, each of

which includes 2rb−r′
b = 2r

∗
b plaintexts which take all possible values

for the active bits. In other words, there are y∗ = y · 2r′
b structures of

2r
∗
b plaintexts. The time complexity of this step is D.

ii. Let 2−µ = D · 2−n. If r∗
b ≤ r∗

f − μ2, it turns to step (A); else if
r∗
b > r∗

f − μ, it turns to step (D).
A. Insert all the obtained (P ∗

1 , C∗
1 ) into a hash table according to

n− r∗
b bits of P ∗

1 . Then construct a set as S = {(P ∗
1 , C∗

1 , P ∗
2 , C∗

2 ) :
P ∗
1 and P ∗

2 have difference only in r∗
b bits}. The size of S is y ·2r′

b ·
22(rb−r′

b)−1 = D ·2r∗
b −1. Hence, the time and memory complexities

of this step are both D · 2r∗
b −1.

B. Insert S into a hash table by n − (rf − r′
f ) = n − r∗

f inactive bits
of C∗

1 and n − (rf − r′
f ) = n − r∗

f inactive bits of C∗
2 .

C. For each 2(n−r∗
f )-bit index, we pick two distinct (P ∗

1 , C∗
1 , P ∗

2 , C∗
2 ),

(P ∗
3 , C∗

3 , P ∗
4 , C∗

4 ) to generate the quartet. We will get

2 ·
( |S|

2
2(n−r∗

f
)

2

)
· 22(n−r∗

f ) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets. Then go to step (iii).

2 The number of filters for plaintext pairs is n− r∗
b while it is n− r∗

f +μ for ciphertext
pairs.
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D. Insert all the obtained (P ∗
1 , C∗

1 ) into a hash table according to
n− r∗

f bits of C∗
1 . Then construct a set as S = {(P ∗

1 , C∗
1 , P ∗

3 , C∗
3 ) :

C∗
1 and C∗

3 are colliding in n − r∗
f bits}. The size of S is

D2 · 2rf −r′
f −n−1 = D · 2r∗

f −1−µ. Hence, the time and memory
complexities of this step are both D · 2r∗

f −1−µ.
E. Insert S into a hash table by n− r∗

b inactive bits of P ∗
1 and n− r∗

b

inactive bits of P ∗
3 .

F. There are at most 22(n−r∗
b −µ) possible values for the 2(n −

r∗
b )-bit index. For each index, we pick two distinct entries
(P ∗

1 , C∗
1 , P ∗

3 , C∗
3 ), (P ∗

2 , C∗
2 , P ∗

4 , C∗
4 ) to generate the quartet. We

will get

2 ·
( |S|

22(n−r∗
b

−μ)

2

)
· 22(n−r∗

b −µ) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets.
iii. Determine the key candidates involved in Eb and Ef and increase the

corresponding counters. Denote the time complexity for processing
one quartet as ε. Then the time complexity in this step is D2 · 22r∗

b ·
22r

∗
f · 2−2n−2 · ε.

(c) Select the top 2t+mb+mf −m′
b−m′

f −h hits in the counters to be the can-
didates, which delivers a h-bit or higher advantage, where 0 < h ≤
t + mb + mf − m′

b − m′
f .

(d) Guess the remaining k − mb − mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key. The time complexity of this step is 2k+t−m′

b−m′
f −h.

Data Complexity. The data complexity is D = y · 2rb =
√

s2n/2+1/P.

Memory Complexity. The memory complexity is M = D+min{D ·2r∗
b −1,D ·

2r
∗
f −1−µ}+ 2t+mb+mf −m′

b−m′
f for storing the data, the set S, and the key coun-

ters.

Time Complexity. The time complexity of collecting data is T0 = D, the time
complexity of doing partial encryption and decryption under guessed key bits is

T1 = 2m
′
b+m′

f · D = 2m
′
b+m′

f · y · 2rb =
√

s · 2m′
b+m′

f+
n
2 +1/P,

the time complexity of generating set S is

T2 = 2m
′
b+m′

f · D · min{2r∗
b −1, 2r

∗
f −1−µ}

= min{√s · 2m′
b+m′

f+rb−r′
b+

n
2 /P, s · 2m′

b+m′
f+rf −r′

f+1/P 2},

the time complexity of generating and processing quartet candidates is

T3 = 2m
′
b+m′

f ·D2 ·22r∗
b ·22r∗

f ·2−2n−2 ·ε = (s·2m′
b+m′

f −n+2rb+2rf −2r′
b−2r′

f+1/P 2)·ε,
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and the time complexity of exhaustive search is T4 = 2m
′
b+m′

f −t ·
2k+t−m′

b−m′
f −h = 2k−h, where h ≤ 2t+mb+mf −m′

b−m′
f . The overall time com-

plexity is the sum of Ti, i ∈ [0, 4].

On h. According to [Sel08], the success probability of differential analysis is

Ps =
∫ ∞

√
sSN −Φ−1(1−2−h)√

SN +1

φ(x)dx,

where SN is the signal-to-noise ratio and SN = 2−nP 2

2−2n in rectangle attacks as
well as in boomerang attacks. In the algorithm, the parameter t not only gives
much greater flexibility in choosing h, but also allows the previous rectangle key
recovery algorithm to fit in easily regarding setting the key counters. We will
discuss more about the relation with the previous algorithms in Sect. 4.

On ε. In the algorithm, m′
b bits of kb and m′

f bits of kf are guessed, respectively.
With the guessed subkey bits, partial differential propagation over Eb (resp. Ef )
can be ensured by properly selecting pairs. Now suppose input difference (resp.
output difference) fall in a smaller space V ∗

b (resp. V ∗
f ) where r∗

b = |V ∗
b | (resp.

r∗
f = |V ∗

f |). In step 3(d) of the algorithm, the subkey information is extracted
from quartets with input difference in V ∗

b and output difference in V ∗
f . Then, ε

is defined to be the time to process one such quartet.
Recall that a right quartet satisfies Eb(P1)⊕Eb(P2) = α = Eb(P3)⊕Eb(P4).

Both pairs are encrypted by the same subkey, so a right quartet must agree on the
remaining m∗

b bits of kb. Under the guess of m′
b bits of kb, there are 2r

∗
b possible

input differences that lead to α difference after Eb. Since each pair suggests
2m

∗
b −r∗

b subkeys on average, both pairs agree on 22(m
∗
b −r∗

b )/2m
∗
b = 2m

∗
b −2r∗

b for
Eb. Similarly, for Ef we get 2m

∗
f −2r∗

f suggestions for the remaining m∗
f bits of

kf . Consequently, each quartet suggests 2m
∗
b+m∗

f −2r∗
b −2r∗

f possible subkeys.
There are different methods to deduce the remaining m∗

b bits of kb suggested
by these quartets. A recommended method is to precompute a hash table for all
possible input pairs and the value of m∗

b -bit kb that can lead to α difference. This
table can be built with time complexity 2r

∗
b+m∗

b and indexed by the values of the
pairs. The memory cost of this table is 2r

∗
b+m∗

b (rather than 2r
∗
b in [BDK01]).

When processing a quartet, we can extract the subkey candidates suggested by
both pairs by looking up the table twice. Do the same thing for Ef . Therefore,
ε will be no more than max{4, 2m∗

b −r∗
b + 2m

∗
f −r∗

f } memory accesses, provided
that two lookup tables have been built with time and memory complexity of
2r

∗
b+m∗

b + 2r
∗
f+m∗

f . If 2m
∗
b −r∗

b + 2m
∗
f −r∗

f is relatively large, ε can be lowered to
no more than max{2, 2m∗

b −2r∗
b + 2m

∗
f −2r∗

f } by using tables built for quartets. In
this case, the memory cost increases to 22r

∗
b+m∗

b + 22r
∗
f+m∗

f , which also means
achieving the smallest ε at the cost of memory. This is specially profitable when
22r

∗
b+m∗

b + 22r
∗
f+m∗

f is not dominant for memory cost.
Note that sometimes the above method of processing quartets may not be

applied directly. In certain cases, besides the r∗
b bits, some other non-active bits

of pairs are needed to verify α difference after Eb, resulting in a larger time
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complexity for building a precomputation table as well as a larger memory cost.
For the bottom part Ef , it is similar. As an example, this can be seen from
rectangle attacks on SKINNY (e.g., Fig. 7). In such cases, we suggest building
lookup tables for smaller local operations. Consequently, ε can be equivalent to
a few memory accesses.

Another method to determine the remaining subkey bits suggested by a quar-
tet candidate is to guess and check. One can guess the remaining subkey bits
and check if the quartet is a right one under the guess. Such a method does
not require additional memory, whereas ε is an amount of partial encryptions or
decrytions.

Minimizing the Time Complexity. As can be seen from the formulas of
Ti, i ∈ [0, 4], the overall time complexity depends on the number of guessed
subkey bits m′

b + m′
f and the number of filters r′

b + r′
f obtained under these

guessed subkey bits. In order to reduce the time complexity, a natural strategy
is to guess those subkey bits which can lead to a large filter. If each subkey cell
is equally profitable (e.g., the attack on Serpent in Sect. 5.1), one can find by
hand the subkey k′

b and k′
f to be guessed in the key recovery, so that the time

complexity is minimized. However, it is not the case for many ciphers. For certain
ciphers, not only the subkey cells are not equally profitable, but also the subkey
cells are closely related through the key schedule. Finding the best parameters by
hand is challenging. Moreover, given a set of parameters that permit an efficient
key recovery, one may wonder whether it is optimal or not. Therefore, optimal
rectangle attacks are possible only when the above key recovery algorithm is fed
with a set of proper parameters.

3.3 Framework for Finding the Best Attacking Parameters

In this subsection, we present a framework which acts as a complement of our new
key recovery algorithm. This framework finds the best attacking parameters for
the rectangle attack. When we apply the parameters returned by this framework
to our key recovery algorithm, the time complexity of the attack will be minimal.

Specifically, the framework takes as input a boomerang distinguisher with
(α, δ, P 2), i.e., the input difference and output difference, and its probability, and
extended rounds (Ed, Ef ), and returns (k′

b, k
′
f ) and the minimal time complex-

ity. In essence, this is a optimization problem which can be solved with various
tools. A similarity can be observed in finding optimal differential/linear trails
[SHW+14,SWW21,KLT15], division property [HLM+20], meet-in-the-middle
attack [SSD+18], etc. Therefore, tools like Mixed-Integer Linear Programming
(MILP) and SAT which are widely used for solving these previously mentioned
problems can be applied as well in this framework. Since we want to keep our
framework generic and flexible, we will describe it as a template in a high level
language. When it comes to a specific cipher, one can instantiate it and solve it
with MILP solvers or SAT solvers.

Our framework has five modules:
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Difference propagation. Model the differentials α′ E−1
b←−−− α and δ

Ef−−→ δ′, both
of which propagate difference with probability 1. Compute rb and rf . Mark
the state cell if its difference is fixed.

Value path. Mark the state cells whose values are needed for verifying α dif-
ference and δ difference. Alongside, mark the subkey kb and kf which are
needed for the verification.

Guess-and-determine. Model the relation between the subkey bits and the
internal state cells, i.e., when certain subkey bits are guessed, the correspond-
ing internal state cell can be determined. When a internal state cell resulting
from some active cells is determined and should have a fixed difference, then
a filter is reached. Model the number of filters r′

b + r′
f .

Key bridging.3 Model the relation between subkey bits according to the key
schedule algorithm. Model the number of independent guessed subkey bits
m′

b + m′
f .

Objective function. Compute Ti, i ∈ [0, 4] from P, n, rb, rf , r′
b, r

′
f ,m′

b and m′
f .

Set the objective function to min
∑4

0 Ti.

Other constraints can be imposed alongside, such as constraints on memory.
Given a rectangle distinguisher of a certain cipher, one can follow this framework
to build a concrete model dedicated to this cipher and try different Eb and Ef

to find a set of best parameters. Key information that can be extracted from
these parameters include

– Subkey k′
b and k′

f which will be guessed;
– The number of independent key bits in k′

b and k′
f , i.e., m′

b + m′
f ;

– The overall time complexity.

Feed these parameter to our key recovery algorithm, the rectangle key recovery
will be optimized. For more details, one can refer to our source codes4 which
showcase the implementation of this framework for the attack on Serpent.

3.4 Extensions

In this subsection, we discuss possible extensions of our rectangle key recovery
algorithm presented in Sect. 3.2. Details about the extensions listed below can
be found in the full version of this paper [SZY+22].

When rb = n. The algorithm in Sect. 3.2 applies only when rb < n. However,
it can be extended to the case when rb = n by changing the way of choosing
plaintexts.

3 “Key bridging” is borrowed from [DKS10a,DKS15] which originally connects two
subkeys separated by several key mixing steps.

4 https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?
usp=sharing.

https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?usp=sharing
https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?usp=sharing
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The Related-Key Setting. The algorithm in Sect. 3.2 is specifically targeted
at the rectangle attack in the single-key setting. With small modifications, it
can be adapted to the related-key setting for ciphers with a linear key sched-
ule. This extension is particularly useful as many block ciphers, especially
lightweight ones, employ a linear key schedule, e.g., SKINNY [BJK+16a] and
Deoxys-BC [JNPS16].

Boomerang Attack. An attacker can only choose plaintexts in rectangle
attacks. However, in boomerang attacks, the attacker is allowed to choose
plaintexts and ciphertexts adaptively. With this in mind, we also propose
variants of our algorithm dedicated for boomerang attacks. We specifically
consider the key recovery for E = Ed ◦ Eb and E = Ef ◦ Ed. The algorithm
for the latter case is presented as follows.

Boomerang Key Recovery for E = Ef ◦Ed. Similarly, we assume there exists
a distinguisher of Ed, whose probability is P 2, input difference is α and output
difference is δ. Ef is appended to Ed and partial subkey k′

f will be guessed.

1. Construct a set S0 which is made up of y structures, each of 2rf ciphertexts.
Let D = y · 2rf . Query and collect two sets of data:

S1 = {(P1, C1)|P1 = E−1(C1), C1 ∈ S0},

S2 = {(P2, C2)|P2 = P1 ⊕ α,C2 = E(P2), P1 ∈ S1}.

2. Split m′
f -bit k′

f into two parts: GL‖GR where GL has t bits, 0 ≤ t ≤ m′
f .

3. Guess GR:
(a) Initialized a list of key counters for GL and unguessed key bits of kf .
(b) Guess the t-bit GL:

i. For each data in S1, S2, do partial decryptions under k′
f . Let C∗

1 =
Deck′

f
(C1) and C∗

2 = Deck′
f
(C2). Then the set of obtained C∗

1 con-

tains y · 2r′
f sub-structures, each of 2r

∗
f ciphertexts.

ii. Construct a set as

S1,2 = {(P1, C
∗
1 , P2, C

∗
2 )|P2 = P1 ⊕ α,C∗

2 = Deck′
f
(Enc(P2))}.

Insert S1,2 into a hash table by n − r∗
f inactive bits of C∗

1 and n − r∗
f

inactive bits of C∗
2 .

iii. There are y · 2r′
f possible values for the n − r∗

f bits of C∗
1 and 2n−r∗

f

possible values for the n − r∗
f bits of C∗

2 . For each index, we pick two
distinct entries (P1, C

∗
1 , P2, C

∗
2 ) and (P3, C

∗
3 , P4, C

∗
4 ) to generate the

quartet. The number of quartet we will get is

( |S1,2|
2

n−r∗
f ·y·2r′

f

2

)
· 2n−r∗

f · y · 2r′
f = D · 22r∗

f −n−1.

iv. Determine the key candidates involved in Ef and increase the cor-
responding counters. Denote the time complexity for processing one
quartet as ε.
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(c) Select the top 2t+mf −m′
f −h hits in the counters to be the candidates,

0 < h ≤ t + mf − m′
f , which delivers a h-bit or higher advantage.

(d) Guess the remaining k−mf unknown key bits according to the key sched-
ule algorithm and exhaustively search over them to recover the correct
key, where k is the key size.

Data Complexity. From y structures, we can form y · 22rf −1 plaintext pairs.
Among them, y ·2rf −1 pairs satisfy δ difference on average. Let s be the expected
number of right quartets, so we have y · 2rf −1 · P 2 = s, y = s · 21−rf /P 2 and
D = y · 2rf = 2s/P 2. Therefore, the data complexity is DB = 2D = 4s/P 2.

Memory Complexity. The memory complexity is M = DB + D + 2t+mf −m′
f

to store the data, the set S1,2 and the counters.

Time Complexity. The time complexity of collecting data is T0 = DB , the
time complexity of doing partial encryption and decryption under guessed key
bits is

T1 = 2m
′
f · DB = 2m

′
f · 2 · y · 2rf = s · 2m′

f+2/P 2,

the time complexity of generating set S is

T2 = 2m
′
f · D = s · 2m′

f+1/P 2,

the time complexity of generating and processing quartet candidates is

T3 = 2m
′
f · D · 22r∗

f · 2−n−1 · ε = s · 2m′
f+2rf −2r′

f −n/P 2,

and the time complexity of exhaustive search is T4 = 2m
′
f −t ·2k+t−m′

f −h = 2k−h,
where h ≤ t + mf − m′

f .

4 Comparison with Related Works

Rectangle Key Recovery Algorithms in Previous Works. The rectangle
attack was proposed by Biham, Dunkelman, and Keller in [BDK01] and has been
applied to Serpent [ABK98]. Later, the same authors introduced a new rectan-
gle key recovery algorithm in [BDK02] which improves the result on Serpent by
reducing the time complexity. Since then, no much progress has been made until
Zhao et al. proposed a new key recovery algorithm in [ZDM+20] which originally
works for ciphers with a linear key schedule in the related-key setting, but it can
be converted to the single-key setting trivially. Such an algorithm, when applied
to SKINNY, outperforms the two previous key recovery algorithms. However, the
algorithm presented in a very recent work [DQSW22] makes a step further on
improving rectangle attacks on SKINNY. For convenience, we call these four rect-
angle key recovery algorithm in a chronological order by Algorithm 1, Algorithm
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2, Algorithm 3, and Algorithm 4, respectively. As concluded in [DQSW22], these
algorithms seem independent and perform differently for different parameters.
Given a rectangle distinguisher, one can pick the algorithm with lowest com-
plexity among them.

Similarities Between Our Algorithm and the Previous Algorithms. Our
new algorithm reuses some techniques of the previous algorithms.

– Like Algorithm 2, we recommend using hash tables when generating pairs
and quartets. It costs a certain amount of memory (not necessarily increases
the overall memory complexity), but the time complexity is lowered.

– When constructing quartets, we apply the filters on both pairs simultaneously
with the help of hash tables. This is also a strategy to trade memory with
time which has been used in Algorithm 3 and 4.

– When processing a quartet, we make use of pre-computated tables so that the
term ε appearing in the time complexity is as small as possible. This has been
suggested in Algorithm 2 and we develop this technique in a more practical
way.

Our New Algorithm Unifies All the Previous Rectangle Key Recovery
Algorithms. All the previous four algorithms are distinct from each other by the
number of guessed key bits. Figure 4 illustrates the comparison of our algorithm
with the four previous algorithms.

Fig. 4. Diagram of guessed key for different algorithms

Specifically, Algorithm 1 guesses the full (mb + mf )-bit subkey; the main
refinement of Algorithm 2 is to generate quartets with birthday paradox without
guessing key bits involved in Eb and Ef ; Algorithm 3 guesses the mb-bit key
bits involved in Eb to generate quartets; Algorithm 4 extended Algorithm 3 by
guessing additional key bits in Ef and exploiting the inner state bits as fast
filters.
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Our new algorithm supports any number of guessed key bits. Hence, it not
only covers all the cases considered by the four previous algorithms, but also
includes five types of new cases (see Fig. 4).

Any of the Previous Four Algorithms is a Special Case of Our Algo-
rithm. We summarize the complexities of different algorithms in Table 2 using
notations in this paper. Note the data complexity D remains the same and all
the algorithms have to store the data and the subkey counters5. Some algorithm
may need some extra memory. Therefore, we mainly focus on the comparison of
the time complexity and the extra memory complexity.

From complexities listed in Table 2, we can see that Algorithm 1 to 4 are
special cases of our algorithm by substituting the corresponding parameters–
the exact number of guessed subkey bits and the number of resulted filters–for
m′

b + m′
f and r′

b, r
′
f in our formulas shown in the last big row of Table 2. Note

r∗
b = rb − r′

b, r
∗
f = rf − r′

f . More specifically,

1. When replacing m′
b = mb,m

′
f = mf and setting t = mb + mf , we have

Algorithm 1. Since r∗
b = r∗

f = 0, the time complexities T2, T3 disappear or
can be neglected.

2. Algorithm 2 is the case of our algorithm with m′
b = m′

f = 0, t = 0 which
constructs pairs on the bottom side for ciphertexts.

3. Algorithm 3 is the case of our algorithm with m′
b = mb,m

′
f = 0 which

constructs pairs on the top side for plaintexts.
4. Algorithm 4 is the case of our algorithm with mb+m′

f guessed key bits which
constructs pairs on the top side for plaintexts.

Table 2. Comparisons of different rectangle key recovery algorithms

Alg. #Guessed bits Extra memory Time

1 mb + mf 0 T1 = 2mb+mf · D
2 0 0 T2 = D2 · 2rf −n−1 = D

2
· 2rf −µ

T3 = D2 · 22rb+2rf −2n−2 · ε2
3 mb

D
2

T1 = 2mb · D
T2 = 2mb · D

2

T2 = 2mb · D2 · 22rf −2n−2 · ε3
4 mb + m′

f
D
2

T1 = 2mb+m′
f · D

T2 = 2mb+m′
f · D

2

T2 = 2mb+m′
f · D2 · 22r∗

f −2n−2 · ε4
This m′

b + m′
f

D
2
· min{2r∗

b , 2r
∗
f −µ} T1 = 2m

′
b+m′

f · D
T2 = 2m

′
b+m′

f · D
2
· min{2r∗

b , 2r
∗
f −µ}

T3 = 2m
′
b+m′

f · D2 · 22r∗
b +2r∗

f −2n−2 · ε

5 The key counters can be set flexibly. Thus the memory cost for them is elastic.
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Application to Concrete Ciphers. Previously, the four previous key recovery
algorithms are treated as separate ones. Given a rectangle distinguisher, one can
compute the complexities for different algorithms and pick the algorithm with
the lowest complexity. Now, with the new algorithm, we can work with this one
only and the best parameters that allow to minimize the time complexity may
likely lie outside the cases covered by the four previous algorithms. Section 5
includes a series of such examples.

5 Applications

In this section, we apply our new key recovery algorithm to four block ciphers
using existing distinguishers: Serpent, CRAFT, SKINNY, and Deoxys-BC-256. We
find that the best attacking parameters differ significantly from those which
were used in previous works and even the number rounds in outer part Eb or Ef

is different. Moreover, these new attacking parameters are not covered by the
previous key recovery algorithms in many cases. Consequently, improved results
on these ciphers are obtained.

5.1 Application to Serpent

We apply our new rectangle key recovery algorithm to Serpent [ABK98], which
was the first target when the rectangle attack was proposed in 2001 [BDK01].
Serpent is a block cipher which ranked the second in the Advanced Encryption
Standard (AES) finalist. It was an SP-network designed by Ross Anderson, Eli
Biham, and Lars Knudsen, which has a block size of 128 bits and supports a
key size of 128, 192 or 256 bits. Serpent iterates 32 rounds, and each round
i ∈ {0, 1, ..., 31} consists of three operations: key mixing, S-boxes and linear
transformation. Suppose Bi represents the internal state before round i, Ki is
the 128-bit subkey, and Si denotes the application of S-box in round i. Let L be
the linear transformation. Then the Serpent round function is defined as follows.

Xi = Bi ⊕ Ki

Yi = Si(Xi)
Bi+1 = L(Yi), i = 0, · · · , 30
Bi+1 = Yi ⊕ Ki+1, i = 31

The internal state of Serpent can be seen as a 4 × 32 array, where each
row is a 32-bit word. The S-boxes is applied to 4-bit columns. Serpent applies
eight different 4-bit S-boxes, and these eight S-boxes are used four times. As our
attack does not depend on the order of S-boxes, we omit the details here.

Distinguisher. We use the 8-round rectangle distinguisher of Serpent pro-
posed by Biham et al. in [BDK01] to attack 10-round Serpent with Eb and
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Ef consisting of round 0 and round 9 respectively. The probability of the dis-
tinguisher is 2−nP 2 = 2−128−120.6, and other parameters of the attack are:
n = 128,mb = rb = 76,mf = rf = 20.

Recently in [KT22], this distinguisher has been re-evaluated and a more accu-
rate probability of 2−128−116.3 is reported. For a better comparison, we will
mount key recovery attack with both probabilities of the distinguisher.

In the case of Serpent, a 4-bit key guess for an active S-box will lead to a 4-bit
inner state filter for a pair of messages. That is, all the key nibbles corresponding
to the active S-boxes of the first round and the last round are equivalently good
for filtering data.

Parameters and Complexities. When we take the old probability, the best
guessing parameters are m′

f = r′
f = 20,m′

b = r′
b = 8, which means guessing all

the kf and two nibbles of kb. Note that, this type of guessing strategy is not
covered in previous rectangle key recovery algorithms. The complexities are as
follows.

– The data complexity is D = y · 2rb =
√

s · 2n/2+1/P =
√

s · 2125.3.
– The memory complexity is M = D + D2 · 2r∗

f −n−1 + 2t+mb+mf −m′
b−m′

f =√
s · 2125.3 + s · 2121.6 + 2t+68.

– The time complexity T1 = 2m
′
b+m′

f · D =
√

s · 2153.3;
– T2 = 2m

′
b+m′

f · D2 · 2r∗
f −n−1 = s · 2149.6;

– T3 = 2m
′
b+m′

f · D2 · 22r∗
b+2r∗

f −2n−2 · ε = s · 228+250.6+2×68+0−2×128−2 · ε =
s · 2156.6 · ε;

– T4 = 2k−h, h < 68 + t.

For each of the remaining quartets, it can be processed S-box by S-box,
so ε takes about 1 + 2−4 + 2−8 + · · · + 2−16∗4 = 20.09 memory accesses.
Set s = 4, then the data, and memory complexities of our attack are both
2126.3. The time complexity besides the brute forcing part includes 2154.3 partial
encryptions/decryptions and 2158.69 memory accesses. Assume a partial encryp-
tions/decryptions is equivalent to 7 memory accesses as 7 S-boxes are involved.
Then it needs 2159.11 memory accesses in total.

When we take the new probability, the guessing parameters m′
f = r′

f =
20,m′

b = r′
b = 8 are still the best. Another choice for these parameters is

m′
f = r′

f = 16,m′
b = r′

b = 12 which leads to the same time complexity but
a slightly higher memory complexity. Thus we choose the former one. Set s = 4,
then the data, and memory complexities of our attack are both 2124.15. The
time complexity besides the brute forcing part include 2152.15 partial encryp-
tions/decryptions and 2154.39 memory accesses, which is about 2155.67 memory
accesses in total.

The comparison with the previous rectangle attacks6 based on the same
distinguisher is presented in Table 3.
6 In [DQSW22], a rectangle attack on 10-round Serpent was also given. However,

the authors seem to mistake mf , rf for mb, rb. So we do not include their result in
Table 3.
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Table 3. Comparisons of key recovery attacks on 10-round Serpent where the time is
measured by the number of memory accesses.

P 2 mb, mf m′
b, m

′
f Data Memory Time Reference

2−120.6 76, 20 76,20 2126.8 2192 2217 [BDK01]
0,0 2126.3 2126.3 2173.8 [BDK02]
8,20 2126.3 2126.3 2159.11 This

2−116.3 76, 20 8,20 2124.15 2124.15 2155.67 This

5.2 Application to CRAFT

We apply our new rectangle key recovery algorithm to CRAFT in the single-key
setting and obtain the first 19-round rectangle attack, which is one round more
than the previous work in [HBS21].

Specification. CRAFT is a lightweight tweakable block cipher which was intro-
duced by Beierle et al. [BLMR19]. It supports 64-bit plaintext, 128-bit key,
and 64-bit tweak. Its round function is composed of involutory building blocks.
The 64-bit input is arranged as a state of 4 × 4 nibbles. The state is then
going through 32 rounds Ri, i ∈ 0, · · · , 31, to generate a 64-bit ciphertext.
As depicted in Fig. 5, each round, excluding the last round, has five func-
tions, i.e., MixColumn (MC), AddRoundConstants (ARC), AddTweakey (ATK),
PermuteNibbles (PN), and S-box (SB). The last round only includes MC, ARC
and ATK, i.e., R31 = ATK31 ◦ ARC31 ◦ MC, while for any 0 ≤ i ≤ 30,
Ri = SB ◦ PN ◦ ATKi ◦ ARCi ◦ MC.

The tweakey schedule of CRAFT is rather simple. Given the secret key K =
K0‖K1 and the tweak T ∈ {0, 1}64, where Ki ∈ {0, 1}64, four round tweakeys
TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕ Q(T ) and TK3 = K1 ⊕ Q(T ) are
generated, where Q is a nibble-wise permutation. Then at the round Ri, TKi%4

is used as the subtweakey.

Fig. 5. A round of CRAFT
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Fig. 6. A 19-round key recovery attack against CRAFT

Distinguisher. We use the 14-round rectangle distinguisher of CRAFT proposed
by Hadipour et al. in [HBS21] to attack 19-round CRAFT with 3-round Eb and
2-round Ef , as shown in Fig. 6. The probability of the distinguisher is 2−nP 2 =
2−64−55.85, and other parameters of the attack are: n = 64, k = 128,mb =
112, rb = 60,mf = rf = 24. The first three subtweakeys are TK0, TK1, and
TK2, respectively. The last subtweakey is TK2. Note TK2 shares the same key
information with TK0, and kb ∪ kf only contains (16 + 12 + 6 − 6) × 4 = 112
information bits.

Parameters and Complexities. The best guessing parameters are m′
b =

32, r′
b = 16,mf = r′

f = 24, and |k′
b ∪ k′

f | = 40, which means guessing 10 cells of
kf and kb to get 10 cells filters. The key cells to be guessed and the corresponding
filters are highlighted with red squares in Fig. 6. Note that this type of guessing
is not covered in previous rectangle key recovery attacks. The complexities of
our new attack are as follows.
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– The data complexity is D = y · 2rb =
√

s · 2n/2+1/P =
√

s · 260.92.
– The memory complexity is M = D + D2 · 2r∗

f −n−1 + 2mb+mf −m′
b−m′

f =
√

s ·
260.92 + s · 256.85 + 2t+72

– The time complexity T1 = 2m
′
b+m′

f · D =
√

s · 2100.92;
– T2 = 2m

′
b+m′

f · D2 · 2r∗
f −n−1 = s · 296.85;

– T3 = 2m
′
b+m′

f · D2 · 22r∗
b+2r∗

f −2n−2 · ε = s · 240+121.85+2×44+0−2×64−2 · ε =
s · 2119.85 · ε;

– T4 = 2k−h, h < t + 72.

Processing a candidate quartet to retrieve the rest of kb and can be realized by
looking up tables. The time unit ε can be equivalent to about 2 memory accesses
which is around 2 × 1

16 × 1
19 = 2−7.24 encryption. The memory complexity for

the look-up tables is about 252 (For more details, see the full version [SZY+22]).
If we set s = 1, h = 28 and t = 0, then the data, memory and time complexities
of our attack are 260.92, 272, and 2112.61, respectively. The success probability is
about 74.59% which is computed by Selçuk’s formula [Sel08].

The comparison with the previous rectangle attacks based on the same dis-
tinguisher is presented in Table 4.

Table 4. Comparisons of key recovery attacks on CRAFT

P 2 Rounds mb, mf m′
b, m

′
f Data Memory Time Reference

2−55.85 1 + 14 + 3 24, 84 24, 0 260.92 284 2101.7 [HBS21]
2−55.85 3 + 14 + 2 112, 24 32, 24 260.92 272 2112.61 This

5.3 Application to SKINNY

When we apply our new rectangle key recovery algorithm to SKINNY’s distin-
guishers from [DQSW22], better attacks are obtained for three out of four dis-
tinguishers, and for the rest one, our attack matches with the one in [DQSW22].
Even though these distinguishers were searched dedicated for the key recovery
algorithm in [DQSW22] (named Algorithm 4 in Sect. 4), we found that the best
attacking parameters may be not covered by that key recovery algorithm.

Next, we give the detailed attack on 25-round SKINNY-64-128 and the attacks
on 32-round SKINNY-128-384 and 26-round SKINNY-128-256 can be found in the
full version [SZY+22].

Specification. SKINNY [BJK+16a] is a family of lightweight block ciphers which
adopt the substitution-permutation network and elements of the TWEAKEY
framework [JNP14]. Members of SKINNY are denoted by SKINNY-n-tk, where
n ∈ {64, 128} is the block size and tk ∈ {n, 2n, 3n} is the tweakey size. The
internal states of SKINNY are represented as 4 × 4 arrays of cells with each cell
being a nibble in case of n = 64 bits and a byte in case of n = 128 bits. The
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tweakey state is seen as a group of z 4×4 arrays, where, z = tk/n. The arrays are
marked as TK1, (TK1, TK2) and (TK1, TK2, TK3) for z = 1, 2, 3 respectively.

SKINNY iterates a round function for Nr rounds and each round consists of
the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by matrix

M whose branch number is only 2.

The tweakey schedule of SKINNY is a linear algorithm. The tk-bit tweakey
is first loaded into z 4 × 4 tweakey states. After each ART step, a cell-wised
permutation P is applied to each tweakey state, where P is defined as: P =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Then cells in the first two rows of all
tweakey states but TK1 are individually updated using LFSRs. For complete
details of the tweakeys scheduling algorithm, one can refer to [BJK+16a].

Distinguisher of SKINNY-64-128. We reuse the 18-round rectangle distin-
guisher of SKINNY-64-128 from [QDW+21,DQSW21] and apply our new rectan-
gle key recovery algorithm to it. As a result, we obtain a new 25-round rectangle
attack. The probability of the distinguisher is 2−nP 2 = 2−64−55.34 = 2−119.34.
Our key recovery extends the distinguisher by three rounds at the top and four
rounds at the bottom, as shown in Fig. 7. The parameters for this attack are:
rb = 8× 4 = 32, rf = 12× 4 = 48,mb = 10× 4 = 40 and mf = 21× 4 = 84. Due
to the tweakey schedule, we can deduce SKT22[6, 1, 7, 2] from STK0[0, 5, 6, 7]
and STK24[5, 0, 1, 4], and deduce STK21[6] from STK1[2] and STK23[5]. Such
that kb ∪ kf only contain (31 − 5) × 4 = 104 information bits.

Parameters and Complexities. We apply the related-key version of our new
algorithm to the above distinguisher. The best guessing parameters are m′

b =
32, r′

b = 28 and m′
f = r′

f = 16, which means guessing partial bits of kb and
kf . This guessing strategy is not covered in previous rectangle key recovery
algorithms. The complexities of our new attack are as follows.

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 261.67.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =
√

s ·
261.67 +

√
s · 263.67 + 256+t

– The time complexity T1 = 2m
′
b+m′

f · DR =
√

s · 212×4+61.67 =
√

s · 2109.67;
– T2 = 2m

′
b+m′

f · D · 2rb−r′
b =

√
s · 212×4+59.67+4 =

√
s · 2111.67;

– T3 = 2m
′
b+m′

f · D2 · 22r∗
b+2r∗

f −2n · ε = s · 212×8+119.34+2×4+2×32−2×64 · ε =
s · 2111.34 · ε;

– T4 = 2128−h, h < 56 + t.
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Fig. 7. A 25-round key recovery attack against SKINNY-64-128

Processing a candidate quartet to retrieve the rest of kb and kf can be realized
by looking up tables about 35 times, which is around 35 × 1

16 × 1
25 = 2−3.51

encryption. The memory complexity of the looking-up tables is about 248 (see the
full version [SZY+22]). If we set s = 1, h = 30 and t = 0, then the data, memory
and time complexities of our attack are 261.67, 263.67, and 2110.03, respectively.
The success probability is about 75.81%.

The comparison with the previous rectangle attacks based on the same dis-
tinguisher is presented in Table 5.
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Table 5. Comparisons of key recovery attacks on SKINNY-64-128

P 2 Rounds mb, mf m′
b, m

′
f Data Memory Time Reference

2−55.34 2 + 18 + 5 12, 116 12, 40 261.67 264.26 2118.43 [DQSW22]
2−55.34 3 + 18 + 4 40, 84 32, 16 261.67 263.67 2110.03 This

5.4 Application to Deoxys-BC-256

We apply a variant of our new algorithm dedicated to boomerang attacks to
Deoxys-BC-256 and obtain the first 11-round boomerang attack and also obtain
an improved 11-round rectangle attack using the original algorithm. Next, we
give details about the 11-round boomerang attack. For the 11-round rectangle
attack, please refer to the full version [SZY+22].

Specification. Deoxys-BC is an AES-based tweakable block cipher [JNPS16],
based on the tweakey framework [JNP14]. The Deoxys authenticated encryp-
tion scheme makes use of two versions of the cipher as its internal primitive:
Deoxys-BC-256 and Deoxys-BC-384. Both versions are ad-hoc 128-bit tweak-
able block ciphers which besides the two standard inputs, a plaintext P (or
a ciphertext C) and a key K, also take an additional input called a tweak T .
The concatenation of the key and tweak states is called the tweakey state. For
Deoxys-BC-256 the tweakey size is 256 bits.

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-
permutation network (SPN) that transforms the initial plaintext (viewed as a
4 × 4 matrix of bytes) using the AES round function, with the main differences
with AES being the number of rounds and the round subkeys that are used every
round. Deoxys-BC-256 has 14 rounds.

Similarly to the AES, one round of Deoxys-BC has the following four trans-
formations applied to the internal state in the order specified below:

– AddRoundTweakey – XOR the 128-bit round subtweakey to the internal state.
– SubBytes – Apply the 8-bit AES S-box to each of the 16 bytes of the internal

state.
– ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ =
(0, 1, 2, 3).

– MixColumns – Multiply the internal state by the 4 × 4 constant MDS matrix
of AES.

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

We denote the concatenation of the key K and the tweak T as KT , i.e.
KT = K||T . The tweakey state is then divided into 128-bit words. More precisely,
in Deoxys-BC-256 the size of KT is 256 bits with the first (most significant) 128
bits of KT being denoted W2; the second word is denoted by W1. Finally, we
denote by STKi the 128-bit subtweakey that is added to the state at round
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i during the AddRoundTweakey operation. For Deoxys-BC-256, a subtweakey is
defined as STKi = TK1

i ⊕TK2
i ⊕RCi. The 128-bit words TK1

i , TK2
i are outputs

produced by a special tweakey schedule algorithm, initialised with TK1
0 = W1

and TK2
0 = W2 for Deoxys-BC-256. The tweakey schedule algorithm is defined

as TK1
i+1 = h(TK1

i ), TK2
i+1 = h(LFSR2(TK2

i )), where the byte permutation
h is defined as

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes of a 128-bit tweakey word numbered by the usual AES byte
ordering.

Boomerang Attack. We reuse the 9-round boomerang distinguisher of
Deoxys-BC-256 proposed by Cid et al. [CHP+17,WP19] to attack 11-round
boomerang Deoxys-BC-256 with 2-round Ef , as shown in Fig. 8. The probability
of the distinguisher is P 2 = 2−120.4, and other parameteres are: n = 128, k =
256,mb = rb = 0,mf = (16 + 10) × 8 = 208, rf = 16 × 8 = 128.

Fig. 8. Rectangle/Boomerang attack on 11-round reduced Deoxys-BC-256

The best guessing parameters are m′
f = 12 × 8 = 96 and r′

f = 8 × 8 = 64,
which means guessing 8 bytes of kf . The complexities of our new attack are as
follows.

– The data complexity is DRB = 4s/P 2 = s · 2122.4.
– The memory complexity is MRB = DRB + D + 2mf −m′

f+t = s · 2122.4 + s ·
2120.4 + 2112+t.

– The time complexity T1 = 2m
′
f · DRB = 296 · s · 2122.4 = s · 2218.4;
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– T2 = 2m
′
f · D = s · 2216.4;

– T3 = 2m
′
f · D · 22(rf −r′

f ) · 2−n · ε = s · 296+120.4+2×64−128 · ε = 2212.4 · ε;
– T4 = 2256−h, h < 112 + t.

We consider the equivalent subtweakey MTKi = SR−1 ◦ MC−1(STKi). To
process a candidate quartet to retrieve the rest of kf , we prepare some tables,
which takes a memory complexity 2128, so that ε is equivalent to about 1 memory
accesses, equivalent to around 1× 1

16× 1
11 = 2−7.45 encryption. If we set s = 1, h =

40 and t = 0, then the data, memory and time complexities of our attack are
2122.4, 2128, 2218.65, respectively. The comparison with the previous boomerang
attacks is presented in Table 6.

Table 6. Comparisons of key recovery attacks on Deoxys-BC-256

P 2 Rounds mb, mf m′
b, m

′
f Data Memory Time Reference

2−96.4 10 0,88 0,0 298.4 288 2249.9 [ZDJ19]
2−120.4 11 0,208 0,96 2122.4 2128 2218.65 This

6 Concluding Remarks

In this paper, we propose a unified and generic rectangle key recovery algorithm
as well as a framework for automatically finding the best attacking parameters.
Combining both, we can find the optimal rectangle attack in terms of time
complexity for a given distinguisher. We also extend the new algorithm to other
related attacks, such as rectangle attacks in the related-key setting for ciphers
with a linear key schedule and boomerang attacks in both the single-key and
related-key setting. Applications to block ciphers Serpent, CRAFT, SKINNY and
Deoxys-BC-256 show that the best rectangle or boomerang attacks are missed
by the previous key recovery algorithms in many cases. Thus, better attacks can
be obtained. Also, it is likely that previous rectangle attacks can be improved
to some extent using the new key recovery algorithm.

Future Works. In this paper, we only apply the new rectangle key recovery
algorithm to SPN ciphers. However, it should be noted that it is also applicable
to Feistel ciphers. Our new key recovery algorithm is generic and does not exploit
any property of the S-box as studied in [BCF+21]. It would be a potential future
work to exploit properties of the S-box and find more fine-grained parameters for
the new algorithm. To search rectangle distinguishers with the new key recovery
algorithm taken into account is another topic of interest.
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Abstract. We consider multi-party information-theoretic private com-
putation. Such computation inherently requires the use of local random-
ness by the parties, and the question of minimizing the total number of
random bits used for given private computations has received consider-
able attention in the literature, see, e.g., [5,9,14,16,17,19,21,26].

In this work we are interested in another question: given a private
computation, we ask how many of the players need to have access to
a random source, and how many of them can be deterministic parties.
We are further interested in the possible interplay between the number
of random sources in the system and the total number of random bits
necessary for the computation.

We give a number of results. We first show that, perhaps surprisingly,
t players (rather than t+1) with access to a random source are sufficient
for the information-theoretic t-private computation of any deterministic
functionality over n players for any t < n/2; by a result of [16], this is best
possible. This means that, counter intuitively, while private computation
is impossible without randomness, it is possible to have a private compu-
tation even when the adversary can control all parties who can toss coins
(and therefore sees all random coins). For randomized functionalities we
show that t + 1 random sources are necessary (and sufficient).

We then turn to the question of the possible interplay between the
number of random sources and the necessary number of random bits.
Since for only very few settings in private computation meaningful
bounds on the number of necessary random bits are known, we consider
the AND function, for which some such bounds are known. We give a
new protocol to 1-privately compute the n-player AND function, which
uses a single random source and 6 random bits tossed by that source.
This improves, upon the currently best known results [18], at the same
time the number of sources and the number of random bits ([18] gives
a 2-source, 8-bits protocol). This result gives maybe some evidence that
for 1-privacy, using the minimum necessary number of sources one can
also achieve the necessary minimum number of random bits. We believe
however that our protocol is of independent interest for the study of
randomness in private computation.
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1 Introduction

A multi-party t-private protocol for computing a function f is a distributed
protocol that allows n ≥ 3 players Pi, for 1 ≤ i ≤ n, each possessing an individual
secret input xi, to jointly compute the value of f(x) in a way that conceals,
with respect to any coalition of at most t players, all information beyond what
can be deduced from the value of f and their own inputs. Secure multi-party
computation is a fundamental problem in cryptography. It has received intense
attention, both in the computational and in the information-theoretic setting,
starting with its introduction in the seminal works of Yao [27], and Goldreich,
Micali, and Wigderson [12,13] (GMW). This is due to both its theoretical interest
and its many applications (including, but not limited to, e-voting, auctions,
private set intersections, privacy-preserving machine learning, and many more).

Information-Theoretic Secure Computation. In this work, we focus specif-
ically on information-theoretic secure (private) computation, introduced in the
seminal works of [4] and [7]. In this model, the protocol proceeds in rounds,
where in each round each player sends a message to each other player, over a
secure and authenticated point-to-point channel. The privacy property of such
a protocol means, informally, that no coalition of at most t players can learn
anything (in the information-theoretic sense) from the execution of the protocol,
except what is implied by the value of f(x) and the inputs of the player in the
coalition. Private computation in this setting was the subject of considerable
research, see e.g., [1,4,7,8,10,16,19,21] and references therein. In addition to
its theoretical interest, this setting (and its variants) constitutes the foundation
of many cryptographic applications, due (in part) to the existence of (efficient)
compilers that can transform a generic representation of any function f (e.g.,
as a boolean circuit) into a secure protocol computing the same function f [4,7]
with complexity proportional to the size of the representation.

Randomness in Secure Computation. It is a folklore result that the ability
to sample random coins is necessary in order to perform private computations
involving more than two players (except for the computation of very degen-
erate functions).1 That is, the players must have access to (private) sources
of unbiased, untemperable, independent random coins. Randomness is typically
regarded as a scarce resource in the design of algorithms, and methods for saving
random bits in various contexts have been the focus of a wide number of works
(see, e.g., [23] and its many follow-ups, or [11,25] for surveys). In the context of
information theoretic secure computation, a problem of fundamental interest is
to understand how much randomness is required to securely compute a function.
The design of randomness-efficient private protocols, and the quantification of
the amount of randomness necessary to perform private computations of various
functions and under various constraints has received considerable attention in
the literature, see, e.g., [5,9,14,16,17,19,21,26].
1 We remark that the two-party case, n = 2, is known to be qualitatively different [8].
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On Random Sources in Secure Computation. In this work, we tackle the
problem of randomness in secure computation from a new angle, which, to the
best of our knowledge, was not investiagted in the past. The main motivation
for reducing the randomness complexity of secure computation protocols is that
producing high quality, unbiased, untemperable independent random coins is
expensive: it requires an appropriate, well-calibrated device which can extract
this randomness from well-chosen noisy sources. In addition, it is unfortunately
common to generate randomness in a poor way, by reusing random strings sev-
eral times, poorly seeding a pseudorandom generator, using an inappropriate
randomness-generating functionalities in some computer languages or softwares
etc. This is, of course, an extremely well understood issue in the cryptographic
community: poor randomness generations has led to a number of broken imple-
mentations of cryptographic primitives, or insecure generations of cryptographic
keys (e.g., [24] showed that the bad quality of the randomness used by major
manufacturers of cryptographic hardware caused tens of millions of devices to
use broken RSA keys. See also [22] for even more striking examples).

However, once a participant in a cryptographic protocol does have the means
to generate randomness properly, then asking this participant to generate a lot
of random coins does not necessarily incur a major additional cost. This suggests
a natural, different question: rather than looking for bounds on the number of
random bits that are necessary to privately compute given functions, or the inter-
play between the amount of randomness used and other complexity measures, is
it possible to bound how many of the n players in a cryptographic protocol must
have access to private random sources? While this question was, to the best of
our knowledge, never studied before, we believe that it is of fundamental interest.
From a theoretical point of view, given that secure computation is impossible
with deterministic parties alone, it is a very natural question to understand how
many of the parties must actually have the ability to generate unbiased random
coins (we call such parties sources).

From a practical point of view, the question is also well motivated: if a secure
computation protocol requires only a small number of (random) sources, then
many other (cheaper) individuals that do not have the means or the capacity to
produce high quality randomness can still be added to the system and participate
in the secure computation.

1.1 Our Contributions

In this work, we seek to characterize the number k of players that must have
access to a random source in a system of n players so that one can t-privately
compute a (deterministic or randomized) functionality. Further, we are also inter-
ested in the question of the existence of a tradeoff between the number of players
that have access to random sources, and the total number of random bits nec-
essary for the private computation. Our main results are twofold.

A Full Characterization. We precisely characterize how many random sources
are necessary and sufficient to t-privately compute an n-party functionality F .
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For the general case of randomized functionalities, we prove a simple lower
bound: t + 1 sources are necessary. We also provide a matching upper bound,
which follows from a simple tweak of the seminal BGW protocol [4]. Then, we
turn our attention to the case of deterministic functionalities. Here, it follows
from a lower bound of [16] that t random sources are necessary in general for
t-private computation.

At first glance, it seems natural to believe that the lower bound of [16] is
not tight in general. Indeed, if there are only t (fixed) parties that can generate
randomness among all participants, and if the adversary can corrupt up to t
parties, then the adversary can corrupt all participants which can generate ran-
domness, and the protocol becomes entirely deterministic from the viewpoint of
the adversary. Since secure computation is impossible with deterministic parties,
we are tempted to conclude that such a protocol cannot be secure in general.

Our main technical result in this full characterization shows that, surprisingly,
this intuition is flawed, and the lower bound of [16] is tight. Namely, we prove
the following:

Theorem 1 (Informal). For every deterministic n-party functionality F , and
every t < n/2, there exists a t-private protocol that securely computes F between
n parties P1, · · · , Pn, if there is a size-t subset of the parties which have the
ability to toss random coins.

In other words: while secure computation is impossible without randomness,
we show that secure computation is always possible using randomness, even if
the adversary is allowed to corrupt all parties that can produce randomness. The
proof of Theorem 1 is non-trivial; it relies on a careful combination of the GMW
protocol (used as an outer protocol) and the BGW protocol (used as an inner
protocol). At a very high level, the key idea is to isolate the t random sources, and
to involve them solely in sub-computations that do not involve any actual input,
letting the remaining parties perform the bulk of the sensitive computation,
using random coins sent by these sources. Intuitively, we achieve the following
dichotomy: either the adversary corrupts all sources, but in this case it cannot
corrupt any of the parties that actually take part in the “sensitive part” of the
computation; or the adversary corrupts at least one deterministic party, but then
there is at least one uncorrupted source, which we leverage to generate random
coins for all parties. The above intuition is relatively easy to instantiate when
t < n/3; most of the complexity of our result stems from instantiating it for
the optimal bound of t < n/2. Our complete characterization is summarized in
Table 1.

Extension to UC Security and Statistical Security. For simplicity, all our proto-
cols and lower bounds are discussed in the stand alone model, and with perfect
security. However, all our constructions are proven secure using a black-box
non-rewinding simulator. By a known result of [15], this implies that our proto-
cols also enjoy perfect universal composability. Second, our lower bounds extend
directly to the setting of statistically secure protocols; we actually directly prove
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Table 1. Lower and upper bounds on the number of sources necessary for t-private
computation of n-party functionalities. See Sect. 3 for discussions on defining the notion
of the necessary number random sources.

Deterministic functionalities Randomized functionalities
Lower bound t sources [16] t + 1 sources (Sect. 3.1)
Upper bound t sources (Sect. 4) t + 1 sources (Sect. 3.2)

our lower bound with respect to statistical security in our proof of Theorem 7,
and the proof of Theorem 6 in [16] extends also immediately to the setting of
statistical privacy.

Extension to Adaptive Security. Our protocols achieve perfect selective security
with straight-line black-box simulators. Therefore, it follows by known results [1,
Section 8] that the protocols also enjoy adaptive simulation with respect to an
inefficient simulator. Whether we can achieve the stronger notion of adaptive
corruption with efficient simulation is an interesting open question.

Randomness Complexity of AND. In our second contribution, we turn to
the question whether there is a tradeoff between the number of players that
have access to a random source and the total number of random bits necessary
for the private computation. The motivation for this question is that, in the
constructions of our positive results, secure computation using an optimally small
number of sources seems to require up to Θ(t) times more randomness compared
to secure computation where all parties can toss coins (this is particularly visible
in our simple upper bound for randomized functionalities). It is natural to wonder
whether this is inherent: in order to reduce the number of sources, do we have to
pay a price in randomness complexity? We put forward a conjecture stating that
this is indeed the case for complex functionalities, i.e., n-party functionalities that
do not have information-theoretic t-private protocols for t ≥ n/2. Our conjecture
states that, for such functionalities, a Θ(t) blowup in randomness complexity is
necessary and sufficient to minimize the number of random sources. We view
this conjecture as an interesting open question.

Then, in the course of getting a better understanding of the relation between
randomness complexity and random sources, we turn our attention to a simple,
yet very basic, concrete functionality: the n-party AND (it is very common in the
literature on randomness complexity of secure computation to study the case of
simple functionalities such as XOR [10,16,19,21] or AND [17], as they are basic
functions). Here, the state of the art is the recent work of [17], that showed that
8 bits are sufficient to 1-privately compute the n-party AND functionality (the
paper also shows that more than 1 bit is necessary). The upper bound of [17]
uses two sources, and our question is whether we can match this upper bound
using a single source or whether a private protocol with a single source will
require more random bits.
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Here, we again achieve a somewhat surprising result: we improve over the
result of [17] in the two aspects at the time, i.e., we reduce both the number of
sources and the number of random bits. Using a completely different protocol,
we show that 6 bits tossed by a single source are sufficient to 1-privately compute
the n-party AND functionality, for any n ≥ 3.

2 Preliminaries

In this work, we consider perfectly secure protocols in the presence of semi-
honest adversaries. More precisely, we focus on the stand-alone setting (security
is argued for a single execution of the protocol in isolation), with semi-honest
(perfect) security (the adversary sees the view of all corrupted parties, but all
parties follow the specifications of the protocol) in a static corruption model (the
adversary specifies the set of corrupted parties ahead of time).

Network Model. The parties interact over a synchronous network: the com-
putation takes place in clearly defined rounds. All pairs of parties are connected
via perfectly private and authenticated channels.

Notations. We let n denote the number of parties, and t denote the (maxi-
mum) number of corrupted parties. Let [n] denote the set {1, · · · , n}. We use
the following notation for vectors, e.g., x = (x1, · · · , xn); for any subset C ⊆ [n],
we write xC for (xi)i∈C . Given a set S, we write s

$← S to denote that s is sam-
pled uniformly at random from S. Given a vector x, we let |x| denote its length.
An n-party deterministic functionality is a function f : ({0, 1}∗)n �→ ({0, 1}∗)n;
we write fi(x1, · · · , xn) to denote the i-th output of f on inputs (x1, · · · , xn),
and fC(x1, · · · , xn) to denote (f(x1, · · · , xn))C for any C ⊆ [n]. For randomized
functionality, every input vector (x1, · · · , xn) defines a distribution f(x1, · · · , xn)
over the output space ({0, 1}∗)n. We say that the protocol computes the deter-
ministic functionality f : ({0, 1}∗)n �→ ({0, 1}∗)n (with perfect correctness) if, for
every input x = (x1, · · · , xn) ∈ ({0, 1}∗)n, and for any outcome of all coin tosses,
the output produced by each party Pi is always fi(x). When f is a randomized
functionality, we say that a protocol computes f (with perfect correctness) if for
every input x = (x1, · · · , xn) ∈ ({0, 1}∗)n, the distribution (over the random-
ness of the parties) of the joint outputs of the parties is exactly f(x1, · · · , xn).
We write D ≡ D′ to denote that two distributions D and D′ are identical. We
sometime write distributions as {(a, b) : sampling process} to denote a distri-
bution over pairs (a, b) sampled according to the given sampling process. Given
a probabilistic algorithm A, we slightly abuse notation and usually view A(x) as
the distribution corresponding to the output of A on input x.

2.1 Perfect Privacy

We first define the notion of a view of a player. The sets, functions, and random
variables in the following definition are implicitly parametrized by a protocol π.
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Definition 2 (View). The view of party Pi (on a joint input x from all parties)
at round r ≥ 1, denoted V r

i (x), is the (joint) distribution of the sequence of
messages received by Pi in rounds 1 to r − 1, and the sequence of the results of
the coin tosses performed by Pi in rounds 1 to r.

All the protocols we consider in this paper have deterministic upper bounds on
the number of rounds. Hence we can also define the “final view” of the players
after that upper bound is attained. We denote those without superscripts, i.e.,
Vi(x).

Definition 3 (Output Distribution). We let Oi(x) denote the distribution
of the output of Pi after an execution of the protocol with a joint input x.

Given a subset C of [n], we write VC(x) to denote (Vi(x))i∈C and OC(x) to
denote (Oi(x))i∈C ; we use O(x) as a shorthand for O[n](x).

Definition 4 (t-Privacy for deterministic functionalities [1]). Let f :
({0, 1}∗)n �→ ({0, 1}∗)n be an n-party deterministic functionality and let π be
a protocol. We say that π is (perfectly) t-private if (1) π computes f with perfect
correctness, and (2) there exists a probabilistic polynomial-time algorithm Sim
such that for every C ⊂ [n] of cardinality at most t and every x ∈ ({0, 1}∗)n

where |x1| = · · · = |xn|, it holds that Sim(C,xC , fC(x)) ≡ VC(x).

While the above definition considers separately (with (1) and (2)) the issues
of correctness and privacy, in the general case of randomized functionalities, the
two notions are intertwined:

Definition 5 (t-Privacy for randomized functionalities ([1], def. 2.2)).
Let f : ({0, 1}∗)n �→ ({0, 1}∗)n be an n-party randomized functionality and let
π be a protocol. We say that π is (perfectly) t-private if (1) π computes f with
perfect correctness, and (2) there exists a probabilistic polynomial-time algorithm
Sim such that for every C ⊂ [n] of cardinality at most t and every x ∈ ({0, 1}∗)n

where |x1| = · · · = |xn|, it holds that

{(v, y) : y ← f(x), v ← Sim(C,xC , yC)} ≡ (VC(x), O(x)),

where (VC(x), O(x)) denotes the joint distribution of the corrupted parties’
(final) views and the outputs of all parties in a run of the protocol on common
input x.

A simulator according to the above definitions is simply a machine that
produces emulated views for all corrupted parties. However, it will be convenient
when analyzing the security of our protocols to view the simulator Sim as an
interactive machine, which pretends to play the role of the honest parties during
an execution of the protocol, and interacts with the corrupted parties. Under
this viewpoint, Sim receives as input (C,xC , fC(x)), but also the random tapes
of all corrupted parties; this is w.l.o.g. since in the above definition, Sim will
anyway sample these random coins itself when emulating the views.
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3 On the Number of Random Sources in Private
Computation

Parties participating in a private computation protocol may or may not have
access to a random source. We call a party that has access to a random source
a source, and assume that this party is given access to an arbitrarily long tape
of independent unbiased random bits. Note that what we call a source is exactly
the standard definition of a player in standard secure computation protocols. In
contrast, players which do not have access to such a tape are called deterministic
parties: the behavior of deterministic parties at any given time is entirely deter-
mined by a deterministic function of their input and the messages they received
up to that time.

Static Versus Dynamic Measures. Note that our notions of source and
deterministic parties is static: which parties can or cannot sample random bits
is a priori fixed before the start of the protocol. In other words, if in at least
one execution of a protocol π a given party has to sample a random coin, then
that party is a source. Even if (say) only 10 distinct parties have to sample coins
during any given execution of the protocol, but which of the parties sample coins
vary over different executions, then we cannot say that π uses only 10 sources
– it might be that all parties have to be sources. This static notion captures
in a more realistic way the setting where some parties in a system have access
to a high-quality random number generator, while others do not; the real-world
meaning of the dynamic variant of the notion is less clear.

When one considers the static measure, another distinction is called for,

Universal Versus Non-universal Setting. Before we establish our main
theorems, we formally define what we mean by a statement of the form “all
n-party functionalities can be privately computed with s sources”. This can be
interpreted in two ways:

1. Fix s sources (P1, · · · , Ps), and n−s deterministic parties (Ps+1, · · · , Pn). For
any n-party functionality F there is a protocol that uses the above parties
and privately computes F .

2. Fix an n-party functionality F . Then there exists a choice of a subset S,
s = |S|, of parties among (P1, · · · , Pn) such that if (Pi)i∈S are sources, and
the other parties are deterministic, then there exists a protocol that uses the
above parties and privately computes F .

We call a protocol of the first type universal, and a protocol of the second type
non-universal. Universal protocols are more desirable, since we would like to
capture settings where sources are defined by the availability of a good random
number generator, and then one can privately compute any functionality in that
system; we typically do not want the choice of the sources to depend on the
specific functionality at hand. Looking ahead, our results will consider the static
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measure (as it better captures the situation in “realistic” systems), and will be
proved with the best flavor: our upper bounds will be universal protocols, while
our lower bounds hold even for non-universal protocols.

3.1 Lower Bounds

Theorem 6 (deterministic functionalities, lower bound). For any num-
ber of parties n, there exists a deterministic n-party functionality F such that
for any t ≤ n−2, any t-private n-party protocol computing F must have at least
s ≥ t sources.

The theorem follows directly from a result of Mansour and Kushilevitz [16]
who showed that in order to t-privately compute the function xor, t ≤ n − 2,
at least t players with access to a local random source are necessary. Note that
Mansour and Kushilevitz did not focus on the number of random sources in
their work: their goal was to show that the randomness complexity of t-private
computation of xor is at least t (that is, in any given execution of a t-private
protocol computing xor, at least t random coins must be sampled). However,
their proof proceeds by showing that in any given execution at least t different
parties must sample at least one random bit, hence, as they note, their proof
proves also that at least t players with access to a local random source are
necessary to t-privately compute xor.

Theorem 7 (randomized functionalities, lower bound). For any number
of parties n, there exists a randomized n-party functionality F such that for any
t ≤ n−1, any t-private n-party protocol computing F must have at least s ≥ t+1
sources.

The proof follows the (natural) intuition that if all sources can be corrupted
and the outputs of the honest parties depend on independent random coins, these
random coins will not be independent of the view of the sources. In fact, the proof
below also rules out any statistically private protocol for such functionalities,
by showing that the statistical distance between the ideal distribution and the
simulated distribution cannot be sub-constant.

Proof. Consider the following simple randomized functionality F : on joint input
x, the output of each player is x together with a single bit chosen uniformly
and independently at random. Assume that the number s of sources is at most
t; since the functionality is symmetrical, let us, without loss of generality, call
P1, · · · , Ps the s sources, and Ps+1, · · · , Pn the remaining deterministic parties.

Let π be an arbitrary protocol computing F in the above setting, and Sim be
any simulator. Let C ← {1, · · · , s}; that is, the adversary corrupts exactly all the
sources. Since all honest parties are deterministic, the only coins tossed during
the entire protocol are tossed by corrupted parties. Since the entire joint input
x is part of the output of each party (hence part of the view of the corrupted
parties), there necessarily exists a deterministic function g such that {g(V ) :
V ← VC(x)} ≡ O(x). Now, given y ← f(x), the input (C,xC , yC) to Sim depends
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solely on x and the independent random output bits defining the outputs of the
corrupted parties, as defined by the functionality. Writing ((x, b1), · · · , (x, bn)) ←
f(x), the bits (bs+1, · · · , bn) are n − s random bits independent of (C,x, yC).
Therefore,

Pr[g(Sim(C,xC , yC)) = f(x)] ≤ 1
2n−s

≤ 1
2
,

for any choice of randomness done by Sim. Therefore, the function g provides
a simple distinguisher showing that the distributions {(v, y) : y ← f(x), v ←
Sim(C,xC , yC)} and (VC(x), O(x)) have (at least) a constant statistical distance.
this concludes the proof.

3.2 Upper Bounds

In this section, we give the matching upper bounds for both deterministic and
randomized functionalities. The upper bound for randomized functionalities fol-
lows from a simple and natural protocol; the protocol for deterministic function-
alities is considerably more involved, and is the focus of Sect. 4.

Theorem 8 (deterministic functionalities, upper bound). For any num-
ber of parties n and any t < n/2, there is a choice of t sources among the n play-
ers such that for any deterministic n-party functionality F there is a t-private
protocol for F that works with those parties.

Section 4 below is dedicated to the proof of Theorem 8.

Theorem 9 (randomized functionalities, upper bound). For any number
of parties n and any t < n/2, there is a choice of t + 1 sources among the n
players such that for any (randomized) n-party functionality F there is a t-
private protocol for F that works with those parties.

The protocol for randomized functionalities captures the (correct, straight-
forward) intuition that if not all sources can be corrupted, then there is always at
least one uncorrupted source which can distribute random coins to the determin-
istic parties. To formalize this intuition, we recall the seminal result of Ben-Or,
Goldwasser, and Wigderson [4]:

Theorem 10 (BGW). For any t < n/2 and any n-party (possibly randomized)
functionality F , there is a perfect t-private protocol for F (with communication
and randomness proportional to the circuit size of F).

In the protocol guaranteed by the above theorem, all parties have access to
their own random tape, and the size of the random tape is bounded by an a priori
known polynomial in the circuit size of F . Note that the BGW protocol also
extends to securely computing randomized functionalities, and functionalities
that provide different outputs to all parties [1]. In our case we have a fixed set
of t + 1 parties which can toss random coins: they are called the sources, and
are denoted S1, · · · , St+1; the remaining n− t−1 parties, denoted Pt+2, · · · , Pn,
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are deterministic. Given the functionality F , let BF be an upper bound on
the maximum number of random coins tossed by any single party in the BGW
protocol for computing F t-privately. The protocol to t-privately compute F as
guaranteed by the theorem works as follows:

1. Each source Si samples, for j = t + 2 to n, a random string ri,j
$← {0, 1}BF

and sends it to Pj . Each party Pj sets rj =
⊕t+1

i=1 ri,j . In addition, each source
Si samples a random string ri

$← {0, 1}BF .
2. All n parties run the BGW protocol for t-privately computing F , where each

player Pi, i = 1 to n, uses the tape ri as their random source.
3. All parties output their output from the BGW protocol.

Correctness is straightforward, and t-privacy follows directly from the fact
that from the viewpoint of any subset of t parties (random sources or determin-
istic), the random tape rj used by any honest party Pj is perfectly distributed
as a real random tape, since it is the XOR of t+1 strings, at least one of which
is guaranteed to be (random and) unknown to the corrupted parties.

4 Private Computation of Deterministic Functionalities

In this section, we prove that for every deterministic functionality F :
({0, 1}∗)n �→ ({0, 1}∗)n, there exists a t-private n-party protocol which requires
exactly t sources; these sources can be arbitrary players. Hence we show that for
any deterministic functionality F there is a t-source uniform t-private protocol.

4.1 The GMW Protocol with Beaver Triples

To start we recall the seminal GMW protocol of Goldreich, Micali, and Wigder-
son [12], which we use in our construction. For our purpose, it will be more
convenient to view GMW as an information-theoretic protocol in the correlated
randomness model of Beaver [2,3], in which the parties have access to a trusted
source of correlated random coins, in the form of random Beaver triples. Below,
whenever we refer to random (n out of n) shares of a bit x, we mean the follow-
ing: a string of n bits x1, . . . , xn sampled randomly conditioned on

⊕n
i=1 xi = x.

Given a value x, we write 〈x〉 as a more compact representation of the n-tuple
(x1, . . . , xn) of shares of x.

Definition 11 (Beaver triple). We say that n parties (P1, . . . , Pn) receive a
(random, n-party) Beaver triple if the parties receive random n out of n shares
of a, b, and a · b, where a and b are two independent random bits. That is,
each party Pi receives a triple (ai, bi, ci), where all triples are jointly sampled at
random conditioned on (

⊕n
i=1 ai) · (⊕n

i=1 bi) =
⊕n

i=1 ci.

Theorem 12 (GMW + Beaver). For any t < n, there exists a t-private
information-theoretic secure n-party protocol in the correlated randomness model
for computing any deterministic functionality F : ({0, 1}∗)n �→ ({0, 1}∗)n where,
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prior to the execution of the protocol, the parties can ask a trusted dealer for
any number of random Beaver triples. Furthermore, no party needs to toss any
additional random coin.

The GMW Protocol. Let P1, . . . , Pn be n parties with respective inputs
(x1, . . . , xn), and let CF be a boolean circuit with XOR and AND gates of fan-in
2 computing the functionality F .2 The parties will evaluate the circuit gate by
gate, starting from the inputs and computing the value of a gate when the values
of its two parent nodes (which are either input nodes or gates themselves) have
been computed. The protocol maintains the following invariant: after evaluating
a gate, each party Pi will hold an additive share vi of the value v on this gate
(i.e., v =

⊕n
i=1 vi). Without loss of generality, we assume that the parties always

hold shares of the inputs to a gate when evaluating it: if an input to the gate is
an input bit b belonging to party Pi, we define the shares of (P1, . . . , Pi, . . . , Pn)
to be (0, . . . , b, . . . , 0).

– Evaluating an XOR gate XOR(u, v): the parties locally XOR their shares of
u and v. No communication is required.

– Evaluating an AND gate AND(u, v): given 〈u〉 and 〈v〉 the parties must com-
pute additive shares 〈uv〉 of u · v. This is done using one invocation of the
secure multiplication protocol defined below.

– Output: after evaluating an output gate whose output is assigned to a party
Pi, all parties send their share of the output to Pi, who reconstructs the
output.

Secure Multiplication. Let u, v be the inputs to the AND gate, and let (ui, vi)
be Pi’s share of the inputs, 1 ≤ i ≤ n.

– Beaver triple request. All parties receive from the trusted dealer a random
Beaver triple. Let (ai, bi, ci) denote Pi’s share of the triple.

– Broadcast. Each party Pi broadcasts αi = ui ⊕ ai and βi = vi ⊕ bi; all parties
reconstruct α =

⊕n
i=1 αi = u ⊕ a and β =

⊕n
i=1 β = v ⊕ b.

– Output. Each party Pi outputs α · vi ⊕ β · ai ⊕ ci.

Security follows from the fact that the pairs ui, vi are uniformly random;
correctness follows from the relation 〈u · v〉 = (u ⊕ a) · 〈v〉 + 〈a〉 · (v ⊕ b) + 〈ab〉.

In our main protocol, we will rely on the above version of the GMW pro-
tocol. It will be convenient to view it as follows: the GMW protocol involves
deterministic parties in a model where all parties can request, upon need, a
random Beaver triple in order to execute a secure multiplication.

2 To be completely formal, since F can take inputs from ({0, 1}∗)n, the circuit CF
must also depend on the input sizes |x1|, . . . , |xn|, which means the parties have to
reveal their input sizes to each other before the actual protocol starts. This does not
contradict security, as privacy is only required to hold when |x1| = . . . = |xn|; we
ignore this technicality in the remainder of this paper.
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4.2 Intuition Behind Our Protocol: Two Complementary Scenarios

We consider n parties wishing to t-privately compute a deterministic n-party
functionality F : ({0, 1}∗)n �→ ({0, 1}∗)n on their private inputs, with exactly t
sources (S1, . . . , St), and n − t deterministic parties, (Pt+1, . . . , Pn). We assume
t < n/2. The first important observation is that the following two scenarios are
mutually exclusive and cover all possible situations:

1. There is an honest majority among the n − t the deterministic parties.
2. A majority of the n − t deterministic parties is corrupted (i.e., there are

at least �(n − t)/2� corrupted deterministic parties). But in that case there
is an honest majority among the t sources and there is at least one honest
deterministic party.

Obviously the two scenarios are mutually exclusive and cover all possible
situations. To see that in the second scenario there is still at least one honest
deterministic party and there is an honest majority among the t sources, observe
that 2t < n and hence (n− t)− t > 0. At the same time the number of corrupted
sources is at most t − (n − t)/2 < t/2, hence there is an honest majority among
the t sources.

Now, assume for a moment that the parties could somehow know in which
scenario they are. In what follows we assume for simplicity that the functionality
delivers the same output to all parties (the general case can be handled with
standard techniques, as we will show in our full construction).

A Protocol for Scenario 1. If the parties know that the corruption pattern
follows scenario 1 above, then we can isolate the sources and let the deterministic
parties alone perform the computation as they have an honest majority among
them. For simplicity, assume for now that the functionality output the same value
to everyone. Since there is an honest majority among the deterministic parties,
they can execute an appropriate BGW protocol among themselves, using random
tapes sent by the sources (after the sources share their own inputs among the
deterministic parties). During the entire protocol, the deterministic parties never
send anything to the sources, except for the final output. Then, security follows
from a simple case disjunction:

– If at least one source is honest, then the random tapes of the deterministic
parties (obtained by XORing independent tapes received from each of the
sources) are guaranteed to be uncorrupted, and security follows via the same
argument as for the simple protocol from Sect. 3.2.

– Else, if all t sources are corrupted, then all deterministic parties are honest.
In this case, security follows trivially from the fact that no corrupted party
ever receives any message whatsoever, except the output itself.

More formally,

1. Each source Si (for i = 1 to t) with input xi computes n − t random additive
shares (yi,j)t+1≤j≤n of xi, and sends yi,j to party Pj for j = t + 1 to n.
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Let F ′ be the following (n− t)-party functionality: on input (xj , y1,j , . . . , yt,j)
of each party Pj , F ′ outputs F(

⊕n−t
j=1 x1,j , . . . ,

⊕n−t
j=1 yt,j , xt+1, . . . , xn).

2. Each source Si samples a random string ri,j
$← {0, 1}BF′ and sends it to Pj

for i = 1 to t and j = t + 1 to n; Each party Pj sets rj ← ⊕t+1
i=1 ri,j .

3. The n− t deterministic parties run the BGW protocol for securely computing
F ′, where Pj uses rj as its random tape to emulate the coin tosses in the
BGW protocol.

4. The deterministic parties send the output of the BGW protocol to the t
sources. All parties output this result.

Correctness follows from the fact that
⊕n−t

j=1 yi,j = xi, hence the output of
F ′ is indeed F(x1, . . . , xn). t-privacy follows immediately from the simple case
disjunction outlined above. The general case, where different parties can receive
different outputs, is easily handled with the standard reduction of multi-output
secure computation to single-output secure computation: each party samples a
random mask to mask its own output, and the parties jointly evaluate the single-
output functionality that outputs (to everyone) the string of all outputs, each
masked by the random mask of the corresponding party. Then, each party gets
their own output (and nothing more) by removing their own mask.

A Protocol for Scenario 2. In scenario 2, we do not have anymore an honest
majority among the n − t deterministic parties (but there is still at least one
honest party among the deterministic parties). However, this guarantees that
there is now an honest majority among the sources. There are several solutions
in this setting. We sketch one such solution: the deterministic parties can use the
GMW protocol from Sect. 4.1, which tolerates up to all-but-one corruptions. The
GMW protocol, in its version as described in Sect. 4.1, is deterministic, but the
parties must request random Beaver triples from a trusted dealer. Here, we let the
sources jointly emulate the trusted dealer: each time the deterministic parties
ask for a random Beaver triple, the sources distributively generate and send
to the parties (shares of) this triple. This distributed generation is performed
among the sources using the BGW protocol. Since in this scenario a majority of
the sources are honest, the Beaver triples are guaranteed to remain uncorrupted,
and security follows from the security of the GMW protocol.

Our Goal: A Best of Both Worlds Protocol. In each of the two scenarios
above, there is a secure protocol for computing F ; the trouble is, of course, that
the parties do not know in which scenario they are. To solve this issue, our aim
is, at a high level, to combine the two protocols above into a single best of both
worlds protocol: a combined protocol which is guaranteed to be secure if at least
one of the protocols is secure, which is always the case (as the two scenarios cover
all possible situations). The idea of reconciling protocols with different security
guarantees is not new: it originates in the work of Chaum [6]. Chaum’s original
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motivation was the following: some protocols achieve computational security
against n−1 corruptions, while others achieve unconditional security against t <
n/2 corruptions (assuming secure point-to-point channels); however, no protocol
achieves both at the same time. To overcome this limitation, Chaum introduced
the idea of combining an outer protocol, computing the target functionality and
an inner protocol, used by the parties to emulate some key sub-functionality
required by the outer protocol. Crucially, the inner protocol is never invoked
directly on private values held by the parties.

4.3 The Protocol

We represent in Fig. 1 and Fig. 2 a protocol which allows n players (S1, . . . ,
St, Pt+1, . . . , Pn), where only (S1, . . . , St) can toss coins, to jointly and t-privately
compute an arbitrary n-party deterministic functionality of their joint input.
The protocol combines a GMW-based outer protocol with a BGW-based inner
protocol. More precisely,

The Outer Protocol (Fig. 1). The outer protocol is essentially the protocol for
scenario 2 above: the sources (S1, . . . , St) additively share their inputs among
the deterministic parties (Pt+1, . . . , Pn), and the latter jointly run an instance of
the GMW protocol to evaluate the original functionality to be computed, where
the inputs are the inputs of the deterministic parties, and the shares of the
inputs of the sources (now known to the deterministic parties). Each time the
deterministic players need to receive a random Beaver triple, all players (sources
and deterministic parties together) run the inner protocol in order to compute
the shares of this triple to be given to the deterministic parties.

The Inner Protocol (Fig. 2). The inner protocol is the simple protocol of Sect. 3.2
(which is, in spirit, essentially the same as the protocol of scenario 1), applied
to the specific functionality that distributes random shares of a random Beaver
triple to the deterministic parties.

A Note on Input and Output Size. In the protocol, we assume that the
length of the output of any participant is a priori known to all parties. This is
without loss of generality since in the semi-honest model, we can always add
a pre-initialization phase where all parties announce their input length to each
other. Since t-privacy is only required to hold when all inputs are of the same
length, this does not harm privacy. Then, all parties can compute an upper
bound on the length of any output by computing κ = maxi∈[n] maxx |Fi(x)|,
where the second maximum is taken over all possible inputs of the appropriate
length. Finally, all outputs can be interpreted as elements of {0, 1}κ, by padding
them with zeroes.
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Fig. 1. A t-private, t-sources, n-party protocol ΠF for any n-party deterministic func-
tionality F
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Fig. 2. The inner protocol Πin

Security Analysis. The intuitive idea behind the security guarantee of our
protocol is as follows. Observe that only the deterministic players receive mes-
sages that depend on the input of the functionality to be computed. Therefore,
if the adversary does not corrupt any deterministic party then security is guar-
anteed. If, however, there are corrupted deterministic parties, then at least one
source is uncorrupted. It follows that from the point of view of the adversary
the randomness used in the BGW, inner, protocol is real randomness (provided
by the at least one uncorrupted source), and the inner BGW protocol that is
run on all players (to compute the Beaver triples) is secure since there is always
an honest majority among all players. Since there is always at least one uncor-
rupted deterministic player (given the relation between n and t) we have that
in this case (i.e., when there are corrupted deterministic players) the GMW +
Beaver protocol is secure too. We note in passing that the correctness of our
protocol is guaranteed since both the outer and the inner protocol are run on
“honest-but-curious” players.

We now formally prove the security property of the protocol. Fix a func-
tionality F : ({0, 1}�)n �→ ({0, 1}κ)n (F is deterministic). Let CS ⊂ [t] and
CP ⊂ [n−t] denote the subsets of corrupted sources and corrupted deterministic
parties, respectively. Since we consider a static corruption model, C = (CS , CP )



460 G. Couteau and A. Rosén

is known to the simulator. Let x be the joint input vector of the players. We
describe a simulator Sim for the protocol defined above.

If no party is corrupted (i.e., CS = CP = {∅}), the simulation is triv-
ial. We assume now that at least one party is corrupted. On input (C =
(CS , CP ),xC ,FC(x)), Sim distinguishes between two cases: either CS �= [t] (there
is at least one uncorrupted source, some deterministic parties can be corrupted)
or CS = [t] and CP = {∅} (all sources are corrupted, and only them).

Case 1: CS �= [t]. Let t′ = |CS | + |CP | ≤ t denote the number of corrupted
parties. In the initialization phase, for every i ∈ [t]\CS and every j ∈ CP , Sim
sends a uniformly random �-bit string yi,j and a uniformly random κ-bit string
mi,j to Pj on behalf of Si. Sim also stores the input shares (yi,j)t+1≤j≤n and
the outputs masks mi of each corrupted source Si (they can be computed from
their inputs and random tapes, which Sim knows). Then, for every j ∈ CP , Sim
computes and stores the outer input zj = (x1,j , . . . , xt,j ,m1,j , . . . ,mt,j) of Pj .
Throughout the protocol, Sim maintains a local simulation of the shares held by
each corrupted deterministic participant Pj for j ∈ CP of the value carried by
each wire in the circuit.

When the parties evaluate an XOR gate, Sim simply updates its local simula-
tion of the output wire shares of the corrupted parties, by locally XORing their
shares of the input wires. Each time the n − t deterministic parties evaluate an
AND gate, Sim behaves as follows:

– (Tape sharing phase) For every k ∈ [t]\CS and any � ∈ CP , Sim samples a
random string rk,� on behalf of Sk and sends it to P�.

– Emulation of FBT. Sim locally emulates FBT as follows: it samples uniformly
random triples (aj , bj , cj) for every j ∈ CP , and sets (aj , bj , cj) to be the
emulated output of FBT to Pj (note that the (aj , bj , cj) are perfectly dis-
tributed as in the real execution from the viewpoint of all corrupted Pj ,
because |CP | ≤ t < n − t: there is at least one uncorrupted deterministic
party). Then, Sim runs SimBGW(C,0t′

, outC), where SimBGW is the perfect
simulator for the BGW protocol, and outC is equal to ⊥ for all indices in CS ,
and to (aj , bj , cj) for each j ∈ CP .

– Secure multiplication. Sim emulates the broadcast message of each honest
deterministic party Pj by broadcasting two uniformly random bits (αj , βj)
on their behalf.

Output Phase. At the end of the outer protocol, each party Pi, t+1 ≤ i ≤ n holds
a share si,j of the output of Pj , and all shares held by corrupted deterministic
parties are known to Sim. For every j ∈ CP \{t+1}, Sim sends n − t − |CP | uni-
formly random shares of Fj(x)⊕

⊕
i∈Cp

si,j to Pj on behalf of each uncorrupted
party Pk. Finally,

– If Pt+1 is corrupted, Sim sends n − t − |CP | uniformly random shares of

(Ft+1(x),F1(x) ⊕ m1, . . . ,Ft(x) ⊕ mt) ⊕
⊕

i∈Cp

si,1

to P1, on behalf of each uncorrupted party Pk.
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– If Pt+1 is honest, Sim sends Fi(x) ⊕ mi to each corrupted source Si on Pt+1

behalf.

We now argue that Sim’s emulation is perfect in Case 1. First, the simulation
of the input sharing, mask sharing, and tape sharing phases are perfectly identi-
cal to an honest execution of the protocol. Second, since CS �= [t], there exists at
least one uncorrupted source. This guarantees that the string r�, used by each
party P� as its random tape in (any given instance of) the BGW protocol, is a uni-
formly random string unknown to any corrupted party. Therefore, we can treat
each participant in the BGW protocol as a probabilistic player in the analysis.
Now, let (u, v) be the inputs to an AND gate, of which the deterministic parties
hold shares; the shares of the corrupted parties are known to Sim. Let (uj , vj)
denote Pj ’s share, for j = t + 1 to n. Recall that the (aj , bj) part of the output
of FBT are uniformly random independent bits. Since Sim’s messages (αj , βj)
are uniformly random, so are αj ⊕ uj and βj ⊕ vj . By the t-privacy of BGW for
randomized functionalities, the joint distribution of SimBGW(C,0t′

, outC) and
all pairs (αj ⊕ uj , βj ⊕ vj) for each uncorrupted Pj are distributed perfectly as
the joint distribution of the views of the corrupted parties in a real execution,
together with the random outputs (aj , bj) of FBT to all honest deterministic
parties. Therefore, SimBGW(C,0t′

, outC) together with the simulated messages
(αj , βj) is perfectly distributed as the corrupted parties’ views together with the
real messages (αj , βj) = (uj ⊕ aj , vj ⊕ bj).

It remains to argue that the simulation is perfect for the output phase as well.
Consider a given output wire where Pj should receive the output, and assume
without loss of generality that this wire goes out of an AND gate (since the parties
can always add a dummy multiplication by 1 to any output gate). For simplicity,
let us assume for now that j �= t+1 (the case j = t+1 can be handled similarly).
Let u, v be the inputs to this AND gate: it holds that u · v = Fj(x,y) (the case
where j = t + 1 is identical, except that Ft+1(x,y) must be replaced by the
longer output of Pt+1, which also includes the masked output of other players).
Therefore, by the definition of FBT, the triples (ak, bk, ck) are uniformly random
triples conditioned on the ck being random shares of Fj+t(x,y) ⊕ α · v ⊕ β · u,
where α, β are the XOR of the messages αk, βk broadcast by all deterministic
parties.

For each k ∈ [t + 1, n]\CP , let us call γk the simulated random share of
Fj(x) ⊕ ⊕

i∈CP
si,j sent by Sim on behalf of Pk. By construction, the sequence

(γk)k and the sequence (si,j)i jointly constitute uniformly random shares of
Fj(x) = u · v. Let us rewrite wk the share of each party Pk for notational
convenience (each wk is either sk,j or γk, depending on whether Pk is corrupted
or not). Then the (αk, βk, wk) and the input shares (uk, vk) virtually define triples
(ak, bk, ck) as (αk ⊕ uk, βk ⊕ vk, wk ⊕ α·vk ⊕ β·(αk ⊕ uk)) which, by construction,
are uniformly distributed as random Beaver triples. By the t-privacy of BGW
for randomized functionalities, the joint distribution of SimBGW(C,0t′

, outC)
together with all triples (αk ⊕ uk, βk ⊕ vk, wk ⊕ α · vk ⊕ β · (αk ⊕ uk)) is
perfectly indistinguishable from the views of the corrupted parties in a real
execution together with random Beaver triples (ak, bk, ck). This implies that the
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joint distribution of SimBGW(C,0t′
, outC) together with the simulated messages

(αk, βk, γk) are perfectly distributed as in a real execution (with random Beaver
triples (ak, bk, ck) equal to (αk ⊕ uk, βk ⊕ vk, wk ⊕ α · vk ⊕ β · (αk ⊕ uk))). This
concludes the analysis for Case 1.

Case 2: CS = [t]. In this case, the adversary corrupted all sources, and only
them. Observe that all messages seen by the sources during the entire execution
of the protocol are of two types:

– Messages exchanged during an execution of a BGW protocol for a secure
multiplication. In all such instances, the inputs of the honest parties are never
involved, since the BGW instances evaluate an input-independent randomized
functionality.

– The output message, where each source Si receives wi ⊕ mi from P1, where
mi is a mask chosen by Si and wi is Si’s output in the protocol.

The simulation is therefore straightforward: during the entire execution of the
protocol, Sim will just play honestly on behalf of the (deterministic) Pi’s, and
using inputs 0. Since the Pi only interact with the sources in input-independent
protocols, this simulation is perfectly indistinguishable from the honest execu-
tion. Finally, Sim sends wi ⊕ mi to each source Si at the end of the protocol
on behalf of P1, where wi is Fi(x,y) and mi can be deterministically computed
from the random tape of Si (hence both are known to Sim). This concludes the
analysis for Case 2.

5 On the Relation Between Randomness Complexity
and the Number of Random Sources

In this section, we are interested in the relation between the randomness com-
plexity of a perfect secure protocol for a given functionality, and the number of
random sources that this protocol uses. The main question we ask is:

Does keeping the number of random sources to a minimum come at the cost
of increasing the number of random bits necessary for the perfect secure compu-
tation?

To illustrate the question, consider the t-source protocol we described in
Sect. 4. There is a natural variant of the protocol that uses n sources, but Ω(t)
times less randomness: each time the parties jointly generate a Beaver triple
using BGW (which are essentially the only steps that use randomness, besides
the input sharing and output masking), the parties use their own random tape,
instead of letting each of the n − t deterministic parties aggregate (i.e., XOR) t
random tapes sent by each of the t sources. Ignoring the input sharing and output
masking (for large enough functions, the Beaver triple generation dominates the
cost), if the circuit has nAND AND gates, this reduces the randomness complexity
from t ·(n − t + 1) ·BBT ·nAND bits to n ·BBT ·nAND bits: a Ω(t) reduction. In the
following, we put forth a conjecture stating that this factor t cost is essentially
inherent.
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5.1 A Preliminary Investigation

The randomness complexity of t-private n-party computation for the XOR func-
tionality was studied in the work of [16]. Interestingly, this work achieves in par-
ticular the best known upper bound on the randomness complexity of t-private
n-party XOR, and this upper bound is achieved using a minimal number of
sources: exactly t. This seemingly contradicts the intuition that t-source private
computation should require more randomness than private computation without
limitations on the number of sources.

A Conjecture on Sources Versus Randomness. We warn the reader that what fol-
lows is a purely intuitive reasoning: our goal here is to develop an intuition about
which conjecture can reasonably be expected. Intuitively, all known private com-
putation protocols proceed, one way or another, by operating on random shares
– this is how multiple parties can jointly manipulate private values. These shares
do typically enjoy linear homomorphism: all linear functions can be computed
on the shares, without any communication. This creates a crucial distinction
between linear functions and nonlinear functions in secure computation: in the
former, following an input-sharing phase, the protocol involves only local compu-
tation followed by a reconstruction of the final output. In contrast, for nonlinear
function, there will necessarily be interactions where intermediate values of the
computation are jointly manipulated and used to communicate.

Now, consider any t-source protocol for t-privately computing a nonlinear
function. In this protocol, there necessarily exist parties that will be involved
(i.e., receive messages) in exchanges involving intermediate values of the com-
putation – we call them sensitive parties, in the sense that they see messages
where random coins are used to hide sensitive intermediate values. Assume that
the adversary simultaneously corrupts some sources and one (or more) of the
sensitive parties. Then, when a deterministic party sends a sensitive message to
one of the sensitive parties, the randomness used to generate this message must
be uncorrupted, and can only come from the sources. But the deterministic party
cannot possibly know which of the sources are uncorrupted: it appears unavoid-
able, then, that the party must aggregate randomness for all t sources to obtain
uncorrupted coins in this situation. Therefore, we expect that there should exists
nonlinear functions where the n − t deterministic parties will necessarily have
to receive t coins from the sources for each coin they would have tossed them-
selves if they had the ability to. The above (informal) discussion clearly breaks
down when we consider solely linear functions; for sufficiently complex functions,
however, the t factor appears inherent.

Above, we did not precisely define what are linear and nonlinear functionali-
ties. The informal conditions we stated, however, corresponds to the feature that
partitions all Boolean functions into two classes: those that can be n-privately
computed, and those that can only be t-privately computed for t < n/2 [8]. It also
corresponds to the feature that typically distinguishes functionalities that admit
n-party t-private protocols for t ≥ n/2. For example, the subprotocol computing
the AND gates in a circuit is the only component in the BGW protocol [4] that
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requires an honest majority, i.e., t < n/2; all other components handle linear
parts of the circuit, and can have t ≥ n/2 (this is discussed in details in [1]).
Similarly, the (BGW-based) protocol used in our work to handle the AND gates
is also precisely what requires a t-times randomness blowup. Hence, it seems
plausible to expect that the functionalities for which the factor-t randomness
blowup is inherent are the same functionalities for which private computation
requires an honest majority. We state this in Conjecture 13. We view the proof
of Conjecture 13 an interesting open question.

Conjecture 13. Let F be an n-party functionality that cannot be t-privately
computed for t ≥ n/2. For any t < n/2, let Rt be the randomness complexity
of t-privately computing F (with any number of sources). Then the t-source
randomness complexity of F is Θ(t · Rt).

Results for the AND Functionality. Characterizing the minimal amount of ran-
domness required for securely computing a functionality is non-trivial in general,
and indeed, no such general characterization is known. We expect that relating
the randomness complexity to the number of sources might be of comparable
difficulty in general. Most previous works on randomness complexity focused
on simple functionalities such as n-party XOR and n-party AND, as these are
simple building blocks in other computations, and in order to make the prob-
lem tractable. Even for these simple functionalities randomness lower bounds
are difficult to obtain, and in almost all known cases (with the exception of the
1-private computation of XOR, which can be done using a single random bit,
and which is tight since private computation of XOR without randomness is
impossible), the known upper bounds do not match the known lower bounds.
Therefore, we focus on the following simpler question:

When t is a constant, is it possible to match the best known upper bound on
the randomness complexity of simple functionalities such as n-party AND, using
an optimally small number of random sources?

Note that t being a constant captures a setting where matching the best
known randomness complexity would not contradict Conjecture 13. In particu-
lar, when t = 1, we ask: is it possible to 1-privately compute a functionality, using
a single source, with a randomness complexity matching the best known multi-
source randomness complexity for this functionality? The randomness complex-
ity of the 1-private computation of the n-party AND functionality was investi-
gated in a recent work [17]. Their upper bound uses 8 random bits to 1-privately
compute AND (for any number of parties), and uses two random sources; they
also give a lower bound stating that more than a single random bit is necessary
to 1-privately compute AND. We obtain a non-trivial, and perhaps surprising
result: we give a 6-bit 1-private protocol to compute AND (for any number of
parties), which uses a single random source, thus improving the result of [17]
both in the number of random bits and the number of sources. While this result
is interesting in the context of understanding the relation between the number
of sources and the randomness complexity, we view it as being mainly a result
of independent interest on the randomness complexity of AND.
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5.2 Randomness Upper Bound for Secure Computation of AND

For the n-party AND functionality, not much is known in the general case of
t-privacy. A longstanding open question exists even in the case of 1-privacy,
where there is still a considerable gap between the best known upper and lower
bounds on the number of random bits required for the 1-private computation of
AND. Here, the only known non-trivial lower bound was recently proven in [17]:
More than one random bits are required for the 1-private computation of n-party
AND. In the same work, the authors also improved the previously best known
upper bound from 73 bits (implicit in [20]) to 8 bits.

The protocol of [17] requires two sources. In contrast, the 73-bit protocol
of [20] requires a single source (which is optimal). It is therefore natural to wonder
whether two sources are necessary to achieve a very low randomness complexity.
Perhaps surprisingly, our result in this section indicates that it might not be the
case: We give a 1-private protocol for n-party AND which uses 6 random bits,
and a single source. Our result also tightens the gap between the best known
lower and upper bounds on the randomness of AND in general, which is of
independent interest.

Theorem 14. For any n ≥ 3, let FANDn be the following n-party functionality:
on input of a single bit xi to each party Pi, FANDn outputs

∧n
i=1 xi to all parties.

There exists an n-party perfect 1-private protocol for FANDn that uses a single
source, and where that source tosses exactly 6 random coins.

A pictural representation of the full protocol is given on Fig. 3 (initialization
phase and main phase) and Fig. 4 (output phase). Before we proceed with the
formal proof, we explain the intuition underlying the protocol. At its heart is a
“transition protocol” (the main phase) which transitions from parties Pi−1 and
Pi having shares of

∧i−1
j=0 xj to Pi and Pi+1 having shares of

∧i
j=0 xj , while

maintaining a carefully chosen invariant (described in the main phase below),
and using exactly four random bits. Crucially, these four random bits can be
reused for each step, with a cyclic shift of their roles (this will become clearer in
the sequel). The output phase requires a final oblivious transfer to reconstruct
the output, which requires 3 bits. One of the four bits of the main phase can
actually be recycled for this purpose, hence only two “fresh” bits are required,
leading to the 6 bits total cost.

The Main Phase. To simplify the exposition, we consider here n + 1 (and
not n) parties, (P0, · · · , Pn) (starting with index 0) each holding an input bit
xi. We will further assign a color code to the four random bits used during the
main phase. During the main phase, the parties are placed on a line; for each
i ≥ 1 each party Pi−1 will send messages solely to Pi and Pi+1. Fix three parties
(Pi−1, Pi, Pi+1). The protocol will have in sequence the following invariant for
all i between 1 and n − 2 (all sums are over F2):

– Pi−1 and Pi hold a mask αi−1, which is a random bit (from the viewpoint of
Pj for j ≥ i); let us call it the blue bit.
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Fig. 3. Initialization phase and main phase of the 1-private protocol for the (n + 1)-
AND functionality. Each party Pi has an input bit xi. Pn receives the output

∏n
j=1 xj .

The protocol uses six random bits in total (α0, R1, 〈x0〉0, 〈α0x0〉0, m0, r), which are all
generated by the single random source P0. The color of a value indicates which of the
six random bits masks it additively. All operations are over F2. (Color figure online)

– Pi and Pi+1 hold a rerandomizer Ri, which is also a random bit (from the
viewpoint of Pj for j ≥ i), and which we call the red bit.

– Pi−1 and Pi hold random additive shares of
∏i−1

j=0 xj (the AND of all inputs
up to Pi−1). That is, Pi−1 holds a random bit ui−1, and Pi holds u′

i−1 =
ui−1+

∏i−1
j=0 xj . We call ui−1 and u′

i−1 the green bit of Pi−1 and Pi respectively.
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Fig. 4. Output phase of the 1-private protocol for the (n+1)-AND functionality. Each
party Pi has an input bit xi. Pn receives the output

∏n
j=1 xj . The protocol uses six

random bits in total (α0, R1, 〈x0〉0, 〈α0x0〉0, m0, r), which are all generated by the single
random source P0. The color of a value indicates which of the six random bits masks
it additively. All operations are over F2. (Color figure online)

– In addition, Pi−1 and Pi hold random additive shares of αi−1 ·∏i−1
j=0 xj . That

is, Pi−1 holds a random bit vi−1, and Pi holds v′
i−1 = vi−1+αi−1 ·

∏i−1
j=0 xj . We

call vi−1 and v′
i−1 the orange bit of Pi−1 and Pi respectively. We use these

notations and definitions to clarify that each share is a uniformly random
bit from the viewpoint of the party that holds it, but the joint distribution
(ui−1, vi−1) has a single bit of entropy.

It remains to explain how the parties communicate in order to transform the
above situation to the corresponding situation (invariant) relative to Pi, Pi+1

and Pi+2. Throughout this transition, the role of the blue bit remains identical,
while the roles of the last three random bits will undergo a cyclic shift. The
transition proceeds as follows:

– Pi defines the new mask αi to be αi−1 + xi, and sends it to Pi+1. Observe
that from the viewpoint of all parties j ≥ i + 2 (which we call “remaining
parties” with respect to i), αi is a uniform random bit (since xi is masked by
the uniform random “blue” bit αi−1, about which they have no information).
The bit αi is defined as the new blue bit.
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– Pi−1 sends its two shares (that is, the green random bit ui−1 and the orange
random bit vi−1) to Pi+1.

– Pi computes ui = αi · u′
i−1 + v′

i−1 and Pi+1 computes u′
i = αi · ui−1 + vi−1.

Observe that

ui + u′
i = αi(ui−1 + u′

i−1) + vi−1 + v′
i−1

= (αi−1 + xi) ·
i−1∏

j=0

xj + αi−1 ·
i−1∏

j=0

xj =
i∏

j=0

xj ,

hence ui and u′
i do indeed form shares of

∏i
j=0 xj . Furthermore, from the

view point of the remaining parties with respect to i, these shares are indeed
random, because ui is additively masked with v′

i−1 – that is, the orange bit
of Pi. Therefore, we view the bits ui and u′

i as the new orange bit of Pi and
Pi+1 respectively.

– Pi computes vi = αi · (u′
i−1 + v′

i−1) +Ri and Pi+1 computes v′
i = αi · (ui−1 +

vi−1) + Ri. Observe that

vi + v′
i = αi(ui−1 + u′

i−1 + vi−1 + v′
i−1)

= (αi−1 + xi) · (
i−1∏

j=0

xj + αi−1 ·
i−1∏

j=0

xj)

= (αi−1 + xi) ·
i∏

j=0

xj = αi ·
i∏

j=0

xj ,

hence vi and v′
i do indeed form shares of αi · ∏i

j=0 xj . Furthermore, from
the view point of the remaining parties with respect to i, these shares are
indeed random, because vi is additively masked with Ri – that is, the red
bit of Pi (without Ri−1, which both parties add to their shares, the shares
would be biased towards 0; the purpose of the rerandomizer Ri is precisely
to rerandomize these shares). Therefore, we view vi and v′

i as the new red bit
of Pi and Pi+1 respectively.

– It remains to set a new rerandomizer Ri+1 bit to be used by Pi+1 and Pi+2.
Above, the blue, orange, and red bits have already been “used”, hence we
will recycle the green bit. Recall that Pi+1 received Pi−1’s green random bit
ui−1, which is a uniformly random bit from the viewpoint of Pi+1 and Pi+2.
Therefore, Pi+1 sets Ri+1 ← ui−1 and sends Ri+1 to Pi+2.

The transition, and the invariant it maintains, are represented in Fig. 5.

Initialization Phase. The initialization phase sets up the invariant, for i = 1,
in a relatively straightforward way. The source, P0, samples the four random bits
(the blue, green, orange, and red bits). It sets the first mask α0 to be the blue
bit, the first rerandomizer R1 to be the red bit, and uses the green and orange
bits to share its input x0 as well as the value α0x0; that is, it sets the green bit
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Fig. 5. Pictural representation of the transition during the main phase. The color of a
rectangle indicates which random bit has been used to randomize the value. Straight
corners indicate values known to both parties, rounded corners indicate values shared
between the parties. The transition shows the colors of the bottom three values being
cycled upward, while the top color remains the same. (Color figure online)

to be 〈x0〉0 and the red bit to be 〈α0x0〉0, and defines 〈x0〉1 ← x0 + 〈x0〉0 and
〈α0x0〉1 ← α0x0+ 〈α0x0〉0. It sends (〈x0〉1, 〈α0x0〉1) to P1, together with α0 and
R1. P1 sends R1 to P2, and the first transition phase can begin (where P0 will
send the remaining shares (〈x0〉0, 〈α0x0〉0) to P2; observe that those are exactly
the green and the orange random bits).

Output Phase. It remains to describe how the parties obtain the final output.
Towards the end of the protocol, we slightly change the last (the n − 1’th)
transition. Let us assume without loss of generality that the rerandomization bit
Rn−1 is the green bit; Pn−1 does not send this rerandomization bit Rn−1 (which
Pn−1 received from Pn−3) to Pn. Otherwise the n − 1’th transition remains the
same and after its execution Pn−1 and Pn hold random shares of

∏n−1
j=0 xj .

The players Pn−1 and Pn will then execute an information theoretic oblivious
transfer protocol with the help of P0 and Pn−3, where Pn−1 will be the sender
with inputs s0 = 0 and its share of

∏n−1
j=0 xj (denoted s1), and Pn will be the

receiver, with input xn. This way, Pn receives 0 if xn = 0 and
∏n−1

j=0 xj otherwise;
that is, Pn learns exactly

∏n
j=0 xj .

The oblivious transfer proceeds as follows: the source P0 generates two addi-
tional random bits (r,m0). The bit r will be used to mask the selection bit xn,
and the two bits (m0, Rn−1) will be used to mask the sender inputs (this is where
we recycle Rn−1). P0 sends (r, r · m0) to Pn, and m0 to Pn−1. Additionally, it
sends r to Pn−3, who sends Rn−1 ·(1+r) to Pn. This way, Pn knows r and either
Rn−1 (if r = 0) or m0 (if r = 1); this is exactly a random oblivious transfer
correlation.

The actual oblivious transfer follows the standard information-theoretic
oblivious transfer using a random oblivious transfer: Pn sends b = xn + r (its
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masked selection bit), and Pn−1 replies with (sb + Rn−1, s1−b + m0). If r = 0,
this pair is (sxn

+Rn−1, s1+xn
+m0) and Pn knows the mask Rn−1; otherwise, if

r = 1, this pair is (s1+xn
+Rn−1, sxn

+m0) and Pn knows the mask m0. Either
way, Pn can extract and output sxn

=
∏n

j=0 xj . In total, two additional random
bits were generated by P0, bringing the total randomness complexity to six bits.

The Three-Party Case. Reading the above, it seems that the protocol requires
at least four parties, since Pn−3 to Pn are involved. However, Pn−3 is involved
solely because Pn should receive Rn−1 · (1 + r), but P0 might not know the
value Rn−1. In the three party case, where P0 = Pn−2, this is actually not an
issue, because R1 = Rn−1 is the first rerandomizer, generated by P0 during the
initialization. Therefore, in the three party case, we only need to slightly change
the output phase by letting P0 send Rn−1 · (1 + r) directly to Pn, without
involving Pn−3 (who does not exist).

5.3 Security Analysis

Consider a static adversary corrupting a party Pi. We exhibit a simulator Sim
which emulates the view of this corrupted party given i, xi, and the output of the
function,

∏n
j=0 xj . First, if

∏n
j=0 xj = 1, then the simulation is trivial, since Sim

knows all inputs: Sim can simply honestly emulate the role of all honest parties.
Therefore, we assume without loss of generality that

∏n
j=0 xj = 0. The proof is

somewhat different depending on which is the corrupted player, whether it is a
“middle” player, one of the “end” players, or one of the two “starting” players.

Case 1: i /∈ {0, 1, n − 1, n}. This case corresponds to parties Pi which partic-
ipate only in the main phase, except for n − 3, which receives an additional bit
from P0 in the output phase. We first prove the simulation of the views at the
end of the main phase.

In the real protocol, each Pi receives exactly four bits by the end of the main
phase:

– From player Pi−1: a mask αi−1 and a rerandomizer Ri−1; and
– From player Pi−2: Pi−2’s random share of

∏i−2
j=0 xj and of αi−2 · ∏i−2

j=0 xj .

The simulation is straightforward: Sim samples and sends to Pi two random
bits on behalf of Pi−1 and two other random bits on behalf of Pi−2. It remains
to show that this simulation is perfectly indistinguishable from a real protocol
execution. For αi−1, observe that by construction, αi−1 = α0+

∑i−1
j=1 xj , where α0

is a uniform random bit sampled by (the honest party) P0; hence, the simulated
αi−1 is distributed exactly as in the real protocol.

For the three remaining bits, the proof proceeds by induction on i, i = 2
being the base case. For i = 2, P2 receives in the real protocol the red random
bit from P1 and the green and the orange random bits from P0; i.e., in the real
protocol, P2 receives three independent random bits, as in the simulation.

Assume now that it has already been established that the simulation is correct
for all players P2 to Pi−1. Let (u, u′) denote the two values sent by Pi−3 to Pi−1
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in the protocol, and let (v, v′) be the two corresponding shares held by Pi−2.
Let αi−3 be the mask received by Pi−2, and let (αi−2, Ri−2) be the two bits
sent by Pi−2 to Pi−1. By the induction hypothesis, it holds that both the joint
distribution of (αi−3, u, v′, Ri−2) and the joint distribution of (αi−3, v, v′, Ri−2)
are each exactly the uniform distribution over {0, 1}4. Then, observe that Pi

receives in the real protocol the following:

– From Pi−2: αi−3v + v′ and αi−3(v + v′) + Ri−2; and
– From Pi−1: αi−1 and Ri−1 = u.

By the induction hypothesis, the joint distribution of (αi−3v+ v′, αi−3(v+ v′)+
Ri−2, u, αi−1) is the uniform distribution over {0, 1}3, which completes the induc-
tion step.

As to player number n − 3, in addition to the messages received during the
main phase it receives a single additional independent (from all other messages)
random bit from P0. The simulation is trivial by sending on behalf of P0 a fresh
random bit.

Case 2: i ∈ {n − 1, n}. We now look at the parties that are involved in the
output phase. The view of Pn−1 in the protocol consists of (m0, b), where m0 is
an independent random bit, and b = xn + r, where r is an independent random
bit. This is again perfectly simulated by sending a random bit m0 on behalf of
P0 and a random bit b on behalf of Pn. Finally, the view of Pn is the following:

– Pn knows αn−1 and the two shares (u, u′) of Pn−2 (u, u′ are Pn−2’s shares of
∏n−2

i=0 xi and αn−2 · ∏n−2
i=0 xi with Pn−1);

– Pn receives (r, r · m0, Rn−1 · (1 + r)) from P0 and Pn−3;
– P0 receives the two OT messages of Pn−1.

The two OT messages of Pn−1 are equal to (sb+Rn−1, s1−b+m0), where s0 = 0,
and s1 is Pn−1’s share of

∏n−1
i=0 xi, the other share being, by construction, αn−1 ·

u+u′. We can open up the terms using b = r+xn and s1 =
∏n−1

i=0 xi+αn−1·u+u′.
Then, two cases can happen: (1) r = 0 or (2) r = 1.

Suppose that r = 0; then Pn got (0, 0, Rn−1) from P0 and Pn−3. By con-
struction, we have

sb +Rn−1 = bs1 +Rn−1 = xn·(
n−1∏

i=0

xi +αn−1u+u′) +Rn−1 = xn·(αn−1u+u′) +Rn−1,

where we use that
∏n

i=0 xi = 0 by assumption. On the other hand, if r = 1, then
Pn got (1,m0, 0) from P0 and Pn−3, and by construction, we have

s1−b +m0 = (1+ b)s1 +m0 = xn ·(
n−1∏

i=0

xi + αn−1u+u′) +m0 = xn ·(αn−1u+ u′) +m0,

using again the assumption. Now, to simulate, Sim will sample five random bits
(u, u′, r,m0, Rn−1)

$← {0, 1}5 and send (u, u′) on behalf of P2 and (r, r·m0, Rn−1 ·
(1 + r)) on behalf of P0 and Pn−3. It remains to simulate the two OT messages.



472 G. Couteau and A. Rosén

If r = 0, then Sim will construct the sb+Rn−1 term as xn ·(αn−1u + u′) + Rn−1,
which is distributed exactly as in the protocol (recall that Sim knows the input
xn of the corrupted party). The remaining term, s1−b + m0, is simulated by
sampling a uniformly random independent bit, which is a perfect simulation since
Pn never received any information about m0 (since it received (0, 0, Rn−1)). If
r = 1, Sim will construct the sb + m0 term as xn · (αn−1u + u′) + m0, which is
distributed exactly as in the protocol, and simulate the s1−b + Rn−1 term by a
uniform random bit, which is a perfect simulation since Pn−1 never received any
information about the random masking bit Rn−1.

Case 3: i ∈ {0, 1}. It remains to deal with the first two parties, which is
straightforward: in the real protocol P1 receives four bits from P0, two of which
are truly random, and two of which are (x0, α0x0) masked by two more inde-
pendent random bits. Sim can perfectly simulate this message by sending four
random bits on behalf of P0. P0 never receives any message throughout the pro-
tocol (except the value of the function), hence privacy against P0 holds trivially.
This concludes the proof.
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Abstract. We put forth a new cryptographic primitive for securely com-
puting inner-products in a scalable, non-interactive fashion: any party
can broadcast a public (computationally hiding) encoding of its input,
and store a secret state. Given their secret state and the other party’s
public encoding, any pair of parties can non-interactively compute addi-
tive shares of the inner-product between the encoded vectors.

We give constructions of this primitive from a common template,
which can be instantiated under either the LPN (with non-negligible
correctness error) or the LWE (with negligible correctness error) assump-
tions. Our construction uses a novel twist on the standard non-interactive
key exchange based on the Alekhnovich cryptosystem, which upgrades it
to a non-interactive inner product protocol almost for free. In addition
to being non-interactive, our constructions have linear communication
(with constants smaller than all known alternatives) and small compu-
tation: using LPN or LWE with quasi-cyclic codes, we estimate that
encoding a length-220 vector over a 32-bit field takes less that 2 s on a
standard laptop; decoding amounts to a single cheap inner-product.

We show how to remove the non-negligible error in our LPN instanti-
ation using a one-time, logarithmic-communication preprocessing. Even-
tually, we show to upgrade its security to the malicious model using
new sublinear-communication zero-knowledge proofs for low-noise LPN
samples, which might be of independent interest.

1 Introduction

In this work, we put forth a new approach for non-interactive secure computa-
tion of inner products, one of the most basic and fundamental functionalities in
secure computation. Our approach can be instantiated under either the learn-
ing parity with noise (LPN) or the learning with error (LWE) assumptions, two
of the most important post-quantum assumptions. It builds upon a simple but
powerful observation: a well-chosen tweak of the Alekhnovich key exchange [4]
turns it into a non-interactive secure protocol for approximately computing inner
products. Borrowing tools from the recent line of work on pseudorandom corre-
lation generators [16–18], we show how to turn this into full fledged secure pro-
tocols for inner product, using a small preprocessing phase with communication
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13791, pp. 474–503, 2022.
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much smaller than the length of the vectors, both in the semi-honest and in the
malicious setting.

1.1 Secure Inner-Product Made as Easy as Non-interactive Key
Exchange

To better capture the attractive efficiency features of our protocols, we introduce
the notion of non-interactive inner product (NIIP) protocols. At a high level, a
NIIP specifies a pair of algorithm, Encode and Decode, where:

– Encode takes an input vector x ∈ F
n over some field F, and produces a pair

(pkx, skx). pkx is the public encoding, and skx is the secret state. All parties
can publicly reveal the encodings pkx, since they computationally hide their
vectors x.

– Decode takes as input a public encoding pkx, and a secret state sky, and
outputs a value z, such that the following holds: z = Decode(pkx, sky) and
z′ = Decode(pky, skx) form additive shares of the inner product xᵀ ·y = z+z′

over F.

Therefore, an NIIP provides a very appealing way to compute inner products
with a minimalistic interaction pattern: multiple parties can compute and pub-
lish encodings of their input ahead of time, locally keeping the secret state. Then,
whenever two parties want to securely compute the inner product between their
inputs, they can locally and non-interactively decode the other party’s public
encoding with their own secret state, and obtain additive shares of the output.
One can compare this interaction pattern to the interaction pattern of non-
interactive key exchange: after broadcasting their public keys, any two individu-
als from a network can locally compute a shared secret key. We achieve exactly
the same interaction pattern, but for the significantly more “advanced” func-
tionality of securely computing (shares of) inner products. We believe that this
minimalistic interaction pattern makes our construction very appealing in many
natural scenarios, and allow them to scale more efficiently to large networks of
users (which is typically a bottleneck for secure computation).

LPN-Based Instantiation. Our primary instantiation of this approach relies
on the learning parity with noise assumption. There, we only achieve correctness
up to a vanishing (but non-negligible) error term ε, which is of the order of λ2/n,
where λ is a security parameter, and n is the vector dimension. Therefore, our
protocol provides non-trivial correctness only for values of n > λ2. We note that
this is likely to be optimal: an NIIP with a much smaller correctness error would
imply an LPN-based key exchange under LPN with noise rate higher than

√
n,

which is a famous and long-standing open problem. Furthermore, we improve
the protocol in two ways:

– Using an input-independent preprocessing phase with sublinear communi-
cation O(log n) (where the O(·) hides poly(λ) factors), the protocol can be
made perfectly correct. This construction builds upon the recently introduced
notion of pseudorandom correlation generators.
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– By developing new types of zero-knowledge proofs with sublinear commu-
nication tailored to our protocol, we show how the security of our protocol
can be enhanced from semi-honest to malicious, at a small cost. Our new
zero-knowledge proofs, which demonstrate knowledge of a sparse vector in
the kernel of a matrix with communication sublinear in the dimension (but
linear in the sparsity), are of independent interest.

LWE-Based Instantiation. Our second instantiation is based on the learning
with error assumption. There, we focus on the semi-honest setting, and directly
achieve a full-fledged (negligible error) NIIP, without any preprocessing. This
makes our protocol highly versatile in environments where it is desirable to
minimize interactions. Furthermore, our LWE-based instantiation can be shown
to provide information-theoretic security for one of the two parties.

1.2 Efficiency, Discussions and an Open Question

In addition to their optimal interaction pattern, our protocols have linear com-
munication O(n), with concrete small constants. Specifically, the constant is
always smaller than 6, and can be asymptotically reduced to 2 + ε for arbitrar-
ily small ε when n grows (approaching the – optimal – cost of just exchanging
the two vectors in the clear). In terms of computation, using relatively stan-
dard variants of LPN (or LWE) with a quasi-cyclic matrix, our protocols have
O(n · log n) computational complexity, where the cost is dominated by that of
doing a matrix-vector multiplication with a quasi-cyclic matrix (this boils down
to computing FFT’s in dimension n). For n ≈ 107, using the library of [24], the
full matrix multiplication can be executed in less than 2 seconds on a personal
laptop, according to the implementation of [17].

The LPN assumption with quasi-cyclic codes is relatively well studied [1,3,
17], and has been used in recent submissions to the post-quantum NIST compe-
tition [3,6,45]. There exist other candidate codes which lead to a much greater
efficiency and are believed to provide secure variants of LPN; one standard such
example is Alekhnovich assumption [4], which states that LPN remains hard
when instantiated with a sparse code. However, our constructions require LPN
to be simultaneously hard with respect to the code and its dual code. Intrigu-
ingly, to our knowledge, no code with fast encoding and fast dual encoding is
known to provide (plausibly) secure LPN variants with respect to the code and
its dual (for example, LPN with respect to the dual of sparse codes, which are
LDPC codes, is easy due to the existence of efficient algorithms for LDPC codes).
Hence, this raises an intriguing open question: Are there linear-time encodable
codes whose dual is also linear time encodable, such that both the code and its
dual lead to hard LPN variants? As we will discuss, this question is strongly
related to the question of finding linear-time encodable codes where both the
code and its dual are good codes (i.e., have linear minimum distance), a prob-
lem which seems to be still open in coding theory (but does not seem to have
been studied much). A positive answer would provide a linear-time variant of
the Alekhnovich cryptosystem, which would lead to significant improvements
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in LPN-based encryption. Furthermore, it would make our protocol strictly lin-
ear time as well. We believe that this question is therefore an important open
question, whose study could open the road to strong efficiency improvements in
LPN-based public-key cryptography.

1.3 Comparison to the State of the Art

Many methods from the literature can be used to securely compute inner prod-
ucts. We go through the main options here, and compare them to our result.

From OT/OLE. A first option is to use generic oblivious-transfer-based secure
computation for inner product. This works especially well over F2, since the
inner product between n bit vectors can be reduced to n oblivious transfers
(OT). Using recent advances in silent OT extension [16–18], this can be done
with asymptotic communication approaching three bits per oblivious transfer.

However, things become significantly more complicated over larger fields. To
handle multiplications over a larger field F, the standard OT-based method [36]
induces a log |F| overhead in the total number of OTs, which can quickly get
prohibitive. A more efficient alternative is to build on recent advances in batch
oblivious linear evaluation (OLE) over general fields, since an inner-product
between length-n vectors over F can be reduced to a batch of n OLEs over F.
To our knowledge, the most efficient protocols for generating many OLEs are
the work of [20], which constructs a “silent OLE extension” protocol assuming
the hardness of ring-LPN over a fully-splitting ring, and the result of [10]. Being
silent, the protocol of [20] achieves an asymptotically optimal communication of
2n + o(n) elements of F, for a computational cost of Õ(n) operations.

Our protocol achieves essentially the same asymptotic communication, and
our computational complexity is also essentially on par with theirs. However, we
improve on three core aspects:

– Communication Pattern. The protocol of [20] requires running a generic,
interactive secure computation protocol to generate the seeds for the silent
OLE extension, before running a local expansion and “derandomizing” the
pseudorandom OLEs with additional interaction. In contrast, we achieve a
minimal interaction pattern, where a single encoding of the input is broad-
cast simultaneously by all parties.

– Underlying Assumption. The protocol of [20] inherently requires a new “ring-
LPN with fully splitting ring” assumption. In fact, their starting point is
a construction based on a standard variant of LPN (LPN with quasi-cyclic
codes, which we use here), which has superquadratic computational complex-
ity Õ(n2). Then, their new assumption is introduced as a way to overcome
this quadratic overhead. In contrast, we directly achieve quasilinear overhead,
under the standard LPN assumption over quasi-cyclic codes.

– Concrete Efficiency. Measuring the concrete efficiency of [20] is relatively
complex, but working out the parameters in the paper, the communication
complexity of setting up the correlation is around 40 ·n for n = 220. For lower
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values of n, it is much higher, and it drops quickly for higher values of n (e.g.
around 3 ·n for n = 224). In contrast, our setup costs are minimal (e.g. around
0.7 · n for n = 220) In practice, this means that this approach will start to
outperform our protocol communication-wise only for n > 224.

As for the protocol of [10], their communication overhead is ∼33% larger
than ours for short-ish vectors (from 6n to 8n elements of F), and up to 4 times
larger asymptotically (from (2 + ε)n to 8n elements of F). In addition, their
construction requires a dedicated setup phase (while we only need a common
random string). Their dedicated setup can be replaced with a PKI setup, at
the cost of sacrificing further some efficiency. Other low-communication OLE
protocols have been described in [47], but their concrete computational efficiency
is significantly lower than that of [20].

From Homomorphic Encryption. Another standard solution is to rely on
linearly homomorphic encryption, such as Paillier encryption [49]. In these solu-
tions, one party encrypts its vector x and sends it to the other party, who
homomorphically computes and sends back a rerandomized encryption of xᵀ ·y,
which the first party decrypts. For extremely large fields (log |F| � 2048), one
can achieve the smallest communication across all known alternatives, with a
communication of only (n + o(n)) log |F| bits (i.e., essentially the cost of send-
ing one of the two vectors in the clear), using a rate-1 homomorphic encryption
scheme such as Damg̊ard-Jurik [29]. However, this solution is not competitive
with the previous approaches for any reasonable field sizes, communication-wise
and computation-wise.

Using Ring-LWE-based linearly homomorphic encryption, a recent unpub-
lished work [22] devised a carefully optimized semi-honest OLE protocol. By
tailoring their protocol to inner products, we estimate that their protocol can
achieve a communication comparable to our semi-honest protocol. This comes
at the cost of using PKI setup and not having a non-interactive communication
pattern as we do (furthermore, our protocol can be based on LWE rather than
Ring-LWE).

1.4 Applications

Inner products are a fundamental operation in many standard privacy-preserving
applications. In many of these applications, the non-interactive structure of our
new protocol enables a very appealing realization of these applications in a multi-
party setting. This includes for example biometric authentication [48] or pattern
matching [38] (computing the Hamming distance between two strings can be
non-interactively reduced to computing an inner product, since the Hamming
distance between x and y is HW(x) + HW(y) − 2 · xᵀ · y, where HW denotes
the Hamming weight). With our non-interactive protocol, each user could pub-
lish a compact encoding associated to its fingerprint, and each authority could
also have a list of public encodings of authorized fingerprints. Then, a user can
authenticate himself with an authority with almost zero communication: the
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authority and the user locally compute shares of the Hamming distance, and
the user reveal his share to the authority (a single field element). If the shares
reconstruct to a value below the threshold, the authentication is successful.

Other applications can include distributed data mining and machine learning
applications such as finding k-nearest neighbors (KNN) [55], rule mining [32],
decision trees [52], support vector machine (SVM) classification [57], or privacy
preserving neural network learning [8,25].

Inner products are also used in secure similarity measure protocols such as
secure multi-keyword searchable schemes [42], secure keyword similarity [43],
similar document detection for plagiarism prevention, copyright protection and
duplicate submission detection (where similar documents between two entities
should be detected while keeping documents confidential [40,46]), or secure pro-
file proximity matching in social networks (e.g. in some applications, a user
profile is defined as a vector of integers where attributes correspond to an inter-
est; social proximity is defined as dot product of two user’s vectors [26]. Similar
methods are used in secure protocols for friend discovery in mobile social net-
works [33]). In many of these applications, the non-interactive nature of our
protocols can allow to design scalable, multi-user variants.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We use upper-
case letters like M to denote matrices, bold lower-case letters like v to denote row
vectors, and for column vectors we use the transpose vᵀ. We write uᵀ||vᵀ two
denote the horizontal concatenations of (horizontal) vectors, and u//v to denote

vertical concatenation. Eventually, we write x
$← X (resp. x

$← D) to denote
that x is uniformly sampled from the set X (resp. randomly sampled according
to distribution D). For a finite set S, we denote the uniform distribution on S
by U(S). We denote by Berτ the Bernoulli distribution with parameter τ , i.e.,
e ∼ Berτ means that the random variable e evaluates to 1 with probability τ
and to 0 with probability 1 − τ . More generally, we write Berτ (F) to denote the
distribution that outputs a uniformly random element of F with probability τ ,
and 0 otherwise (note that with this definition, Berτ (F2) = Ber(1+τ)/2; we ignore

this slight discrepancy). We write D0
c≈ D1 to denote that two (families of)

distributions D0 and D1 are computationally indistinguishable. Eventually, we
recall a standard lemma known in the LPN literature as the piling-up lemma:

Lemma 1 (Piling-up Lemma). For any 0 < τ < 1/2 and random variables
(X1, · · · ,Xn) i.i.d. to Berτ , it holds that Pr [

⊕n
i=1 Xi = 0] = (1 + (1 − 2τ)n) /2.

2.1 Learning Parity with Noise

The learning parity with noise (LPN) assumption with dimension k, m noisy
samples, and noise rate τ states that it is infeasible to distinguish (A,A · s + e)
from random, where A is a random matrix in F

m×k
2 , s is a random length-k
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vector, and e is a length-m vector whose entries are sampled from Berτ . More
generally, the LPN assumption can be formulated with respect to a family of
linear codes over an arbitrary field F, in which case it states that it is hard to
distinguish a noisy codeword A·s+e from random (where A is a generator matrix
for a random code from the family). Formally, given a dimension k, number of
samples m, and field F, let Code(m, k,F) be a probabilistic code generation
algorithm that outputs a matrix A ∈ F

m×k (A is viewed as the generator matrix
of a linear code). Furthermore, we let Code⊥(m,m−k,F) be a probabilistic code
generation algorithm for the dual of Code, which outputs random parity-check
matrices B ∈ F

m×m−k for a random code A ∈ Code(m, k,F) (i.e., a full-rank
matrix B such that Bᵀ ·A = 0; B is a generator for the dual of the code generated
by A). We define the LPN assumption over F with respect to a code Code below.

Definition 2 (Learning Parity with Noise). Fix a field F = F(λ), dimen-
sion k = k(λ), number of samples m = m(λ), and noise rate τ = τ(λ). The
LPNm

k,τ assumption with respect to Code states that

{(A,b) | A
$← Code(m, k,F), e $← Berτ (F)m, s $← F

k,b ← A · s + e} c≈
{(A,b) | A

$← Code(m, k,F),b $← F
m}

The above LPN assumption has an equivalent dual formulation:

Definition 3 (Dual Learning Parity with Noise). Fix a field F = F(λ),
dimension k = k(λ), number of samples m = m(λ), and noise rate τ = τ(λ).
The dual-LPNm

k,τ assumption with respect to Code⊥ states that

{(H,b) | H
$← Code⊥(m,m − k,F), e $← Berτ (F)m,b ← Hᵀ · e} c≈

{(H,b) | H
$← Code⊥(m,m − k,F),b $← F

m−k}
The following is standard:

Lemma 4. For any F, k,m, τ and code generation algorithm Code, the
LPNm

k,τ (F) assumption with respect to Code and the dual-LPNm
k,τ (F) assumption

with respect to Code⊥ are equivalent.

Standard Codes and Noise Distributions. The classical LPN assumption
is recovered by setting F = F2 and Code to be the uniform distribution over
F

m×k
2 . However, the hardness of LPN is commonly assumed for other families of

codes in the literature, such as sparse codes [4] (often called the “Alekhnovich
assumption”), quasi-cyclic codes (used in several recent submissions to the NIST
post-quantum competition [3,6,45]), Toeplitz matrices [35,44] and many more.
All these variants of LPN generalize naturally to larger fields (and LPN is typi-
cally believed to be at least as hard, if not harder, over larger fields).

In addition, it is also relatively common to consider alternative noise distri-
butions beyond the Bernoulli noise. The two most standard choices are exact
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noise (where the noise is sampled uniformly from the set of all τ · m-sparse vec-
tors of Fm) and regular noise (where the noise is a concatenation of τ ·m random
unit vectors of length 1/τ). See [16,18] for discussions about these alternative
noise distributions. We will denote by XNτ,m(F) (for eXact Noise) the exact noise
distribution, and by RNτ,m(F) (for Regular Noise) the regular noise distribution.

Security of LPN and Its Variants. Numerous attacks on LPN have been
devised. Among the most standard attacks are Gaussian elimination, which
solves LPN in time and sample complexity Θ(1/(1 − τ)k) using Θ(k2) memory,
and its variants (e.g. pooled Gauss [34], and BKW [14]), and the Information
Set Decoding attacks (introduced by Prange [50] and further improved in a long
sequence of papers, see e.g. [12,13]). In this work, we will be interested in vari-
ants of LPN with a very low number of samples (linear in the dimension) and
a very low noise rate. This has several consequences: first, algorithms such as
BKW (which require a very large number of samples) do not apply, and using
a regular noise distribution has no known effect on security (in contrast, if the
number of samples is at least quadratic in the dimension, attacks such as the
Arora-Ge attack [7] can take advantage of the noise structure). Second, in the
very low-noise regime, all improved variants of ISD become equivalent to the
original (much simpler) algorithm of Prange.

We point out that increasing the field size beyond 2 is not known to reduce
security (and actually seems to slightly improve security with respect to known
attacks), and neither does using a different family of linear code, as long as
they are good codes (i.e. a random code from the family has a linear minimum
distance with high probability). A small exception to that are quasi-cyclic codes,
where the strong structure allows for the DOOM attack [51], which slightly
reduces security (but can be easily compensated by a small increase in the noise
rate). We refer the reader to [16–18,20] for more detailed discussions on the
security of LPN with various types of noise distributions and code ensembles.
As a rule of thumb, though: in our parameter setting, all known attacks will
have a complexity of the form 2O(τ ·m). Hence, fixing the noise rate τ to λ/m for
some fixed security parameter λ suffices to achieve exponential security (in λ)
against all known attacks.

2.2 Learning with Errors

The learning with errors (LWE) assumption is a close variant of the LPN assump-
tion. In essence, and using our generalized definition of LPN, the LWE assump-
tion with dimension k, and m samples, is simply the LPN assumption over Zq

(for some large enough prime q) with respect to a different noise distribution,
which trades sparsity for small magnitude – i.e., instead of being a distribution
over vectors whose entries are mostly zero, the noise distribution samples vectors
whose entries are small in magnitude. Multiple choices of such noise distribu-
tions are standard in the literature, including discrete Gaussian noise, or noise
sampled uniformly from [−B,B], where B � q is a bound on the magnitude. We
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call ‘LWEm
k (Zq, χ) with respect to Code’ the LWE assumption with dimension

k, m samples, over Zq, with noise vector sampled from χm and matrix sampled
from Code.

Rounding Lemma. Let 	x
 denotes the rounding of x ∈ R to the nearest
integer. We recall the rounding lemma, from [21]:

Lemma 5 (Rounding of noisy shares). Let (p, q) be two integers with q/p ∈
N. Fix any z ∈ Zp, and (t0, t1) be two random elements of Zq subject to t0+ t1 =
(q/p) · z + e mod q, where e is such that q/(p · |e|) ≥ λω(1) (λ is a security
parameter). Then with probability at least 1− (|e|+1) ·p/q ≥ 1−λ−ω(1), it holds
that R(t0) + R(t1) = z mod p, where R is the deterministic rounding function
R : x → 	(p/q)·z
 mod p and the probability is over the random choice of (t0, t1).

3 Non-interactive Approximate Inner Product from LPN
and LWE

In this section, we describe a general non-interactive protocol for securely com-
puting the inner product between two vectors over F

n, with ε correctness error
(independent of the value of the inputs). Our general protocol can be instanti-
ated either under the LPN assumption, in which case the error will be noticeable
(but arbitrarily small), or under the LWE assumption (in which case the error
can be made negligible). Our protocol enjoys an attractive key exchange struc-
ture: consider two parties Alice and Bob with respective inputs (u,v) ∈ F

n ×F
n.

The protocol has the following interaction pattern:

– First, Alice and Bob broadcast encodings of their respective vectors (u,v),
denoted pku and pkv, and locally keep a private state, which we denote by
sku and skv respectively. The encodings have length O(n) (the O(·) hides a
small constant) and computationally hide the vector they encode.

– Second, Alice (resp. Bob) can locally compute α ← Decode(pkv, sku) (resp.
β ← Decode(pku, skv)), where Decode is some deterministic decoding algo-
rithm. The values α and β form additive shares of a value w ∈ F, where it
holds that w = uᵀ · v with probability at least ε (over the random coins of
the encoding procedure).

We call a protocol with the above interaction pattern a non-interactive
approximate inner-product protocol (NIAIP). We formalize this notion below.

3.1 Non-interactive Approximate Inner Product

Definition 6. A non-interactive ε-approximate inner-product protocol (ε-
NIAIP) over a field F is a tuple of probabilistic polynomial-time algorithms
(Setup,Encode,Decode) such that Decode is deterministic, and

– Setup(1λ) : on input the security parameter 1λ in unary, outputs a common
reference string (CRS) crs.
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– Encode(crs, b,u) : on input the CRS crs, a bit b, u ∈ F
n, outputs a pair

(pkb, skb);
– Decode(crs, pk, sk′) : on input the CRS crs, a public encoding pk and a secret

state sk′, outputs a value γ ∈ F.

Furthermore, an NIAIP must satisfy two properties:

– ε-Correctness. For every common reference string crs in the domain of
Setup(1λ) and every pair (u0,u1) ∈ F

n × F
n of vectors, it holds that

Pr[Decode(crs, pk0, sk1) + Decode(crs, pk1, sk0) = uᵀ
0 · u1] ≥ ε(λ, n),

where the probability is taken over the joint random coins of both instances
of Encode, ((pkb, skb)

$← Encode(crs, b,ub))b∈{0,1}.
– Indistinguishability. For every b ∈ {0, 1}, the advantage of any (stateful)

probabilistic polynomial-time (PPT) adversary A in distinguishing the follow-
ing two experiments, parametrized by a bit σ, is negligible:

• A receives crs
$← Setup(1λ) and outputs u ∈ F

n.

• The challenger samples a pair (pkb, skb)
$← Encode(crs, b,v), where v is

0n if σ = 0, and v = u otherwise. The challenger sends pkb to A.

A Note on Syntax. We note that in the above definition, the parties have
fixed roles. In a multiparty setting, if all pairs of parties want to compute inner
products, this means that they must publish two encodings of their input, one
with role 0, and one with role 1. In many applications, however, it is natural to
have “type-0” and “type-1” parties (e.g. clients and servers), such that secure
computations tasks are only carried between a type-0 and a type-1 party.

3.2 A (1 − τ2m)-NIAIP from LPN

We now proceed with the construction of an ε-NIAIP, from the learning parity
with noise assumption. The construction is relatively simple in hindsight, and
quite elegant; it is a natural twist on the Alekhnovich cryptosystem. The con-
struction is parametrized by a field F, and a vector length n. We let k(n),m(n)
denote respectively a dimension parameter and a number of samples, both to be
specified later (but the reader can think of k and m as linear in n, e.g. k = 2n
and m = 4n), and t = t(λ, n) denote a noise parameter (the reader can consider
t = λ to be a reasonable choice). Let Code be a probabilistic code generation
algorithm. The construction is represented on Fig. 1.

Before we state the theorem, we introduce some notation: let Code⊥
right be the

code generator that samples a random matrix H
$← Code⊥(m, k + n,F) (hence

H ∈ F
m×k+n) and outputs the matrix Hright ∈ F

m×k which contains the last k

columns of H. Furthermore, we say that Code⊥ is a nice code if given Hright, there
is an efficient algorithm to sample a random matrix H from Code⊥(m, k + n,F)
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Fig. 1. A non-interactive approximate inner-product over F for vectors of length n

whose last k columns are exactly Hright
1. We denote H

$← Code⊥|Hright
(m, k+n,F)

this process.

Theorem 7. Let Code⊥ be a nice code. Assume that the dual-LPNm
m−(k+n),τ (F)

assumption with respect to Code⊥, and the (primal) LPNm
k,τ (F) assumption with

respect to Code⊥
right both hold. Then the construction (Setup,Encode,Decode) on

Fig. 1 is an ε-NIAIP, with ε ≥ 1 − mτ2.

Proof. We first prove ε-correctness. Observe that for any pair of inputs (u0,u1) ∈
Fn × F

n and every matrix H ∈ F
m×k+n, it holds that

Decode(crs, pk0, sk1) + Decode(crs, pk1, sk0)
= pkᵀ

0 · sk1 + pkᵀ
1 · sk0

= ((u0//0) − Hᵀ · r0)ᵀ · (u1//s) + (H · (u1//s) + r1)ᵀ · r0
= (uᵀ

0 ||0ᵀ) · (u1//s) − rᵀ
0 · H · (u1//s) + (u1//s)ᵀ · Hᵀ · r0 + rᵀ

1 · r0
= uᵀ

0 · u1 − rᵀ
0 · H · (u1//s) + (rᵀ

0 · H · (u1//s))ᵀ + rᵀ
1 · r0

= uᵀ
0 · u1 + rᵀ

1 · r0 (since the transpose of a single field element is itself).

Now, since r0 and r1 are random Bernoulli noise vectors with rate τ , we have

Pr[rᵀ
1 · r0 = 0] ≥ 1 − m · τ2,

since Pr[rᵀ
1 · r0 = 0] ≥ Pr[r(i)0 · r

(i)
1 = 0∀i ≤ m], which equal to 1 − Pr[∃i, r

(i)
0 ·

r
(i)
1 = 1] ≥ 1 − mτ2, using a straightforward union bound and the fact that

Pr[r(i)0 · r
(i)
1 = 1] = τ2 for any i.

We now prove indistinguishability, for b = 0 and b = 1. We proceed in a
sequence of games of the form Gi

b,σ:

– Game G0
0,0 is the initial game, with bits b = 0 and σ = 0. The challenger

samples H
$← Code⊥(m, k + n,F). Upon receiving u ∈ F

n from A(crs), the
challenger returns pk0 ← 0k+n−Hᵀ ·r0, where r0 is a random Bernoulli noise.

– Game G1
0,0 : the challenger first receives a challenge, denoted (H, c), for the

dual-LPNm
m−(k+n),τ assumption with respect to Code⊥, where c is Hᵀ · e for

1 All known LPN-friendly codes satisfy this property.
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some noise vector e. Upon receiving u ∈ F
n from A(crs), the challenger

returns pk0 ← 0k+n − c. This game is perfectly indistinguishable from the
previous one.

– Game G2
0,0 is exactly as Game G1

0,0, except that c is now a random vector
from F

m. Observe that distinguishing between G1
0,0 and G2

0,0 is exactly solving
the dual-LPNm

m−(k+n),τ assumption with respect to Code⊥.
– Game G3

0,0 : the challenger proceeds as in Game G2
0,0, except that it outputs

pk0
$← (u//0)−c. Since c is a uniformly random vector, this game is perfectly

indistinguishable from the previous one.
– Game G4

0,0 : as the previous one, except that c is back to being of the form
Hᵀ · e for some noise vector e. Distinguishing this game from G3

0,0 is exactly
solving the dual-LPNm

m−(k+n),τ assumption with respect to Code⊥.
– Game G0

0,1 : this game is simply the initial game with bits b = 0 and σ = 1.
Game G0

0,1 is perfectly indistinguishable from G4
0,0.

From the above, we conclude that the advantage of any polynomial time
adversary in the indistinguishability experiment with b = 0 is at most twice its
advantage against the dual-LPNm

m−(k+n),τ (F) assumption with respect to Code⊥.
We now address the case b = 1.

– Game G0
1,0 is the initial game, with bits b = 1 and σ = 0. The challenger

samples H
$← Code(m, k + n,F). Upon receiving u ∈ F

n from A(crs), the
challenger returns pk1 ← H · (0n//s) + r1, where r1 is a random Bernoulli
noise and s is a random vector from F

k.
– Game G1

1,0 : the challenger first receives a challenge, denoted (Hright, c), for
the LPNm

k,τ assumption with respect to Code⊥
right, where c is Hright · s + e

for some random vector s and some noise vector e. The challenger samples
H as H

$← Code⊥|Hright
(m, k + n,F) (which is possible by definition since

Code⊥ is a nice code). Let Hleft be such that H = Hleft||Hright. Upon receiving
u ∈ F

n from A(H), the challenger returns pk1 ← c. By construction of c,
since H · (0n//s) = Hright · s, this game is perfectly indistinguishable from the
previous one.

– Game G2
1,0 is exactly as Game G1

0,0, except that c is now a random vector
from F

m. Observe that distinguishing between G1
0,0 and G2

0,0 is exactly solving
the LPNm

k,τ assumption with respect to Code⊥
right.

– Game G3
1,0 : the challenger proceeds as in Game G2

0,0, except that it outputs

pk0
$← Hleft ·u+c. Since c is a uniformly random vector, this game is perfectly

indistinguishable from the previous one.
– Game G4

1,0 : as the previous one, except that c is back to being of the form
Hright ·s+e. Distinguishing this game from G3

0,0 is exactly solving the LPNm
k,τ

assumption with respect to Code.
– Game G0

1,1 : this game is simply the initial game with bits b = 1 and σ = 1.
Since H · (u//s) = Hleft ·u+Hright · s, Game G0

0,1 is perfectly indistinguishable
from G4

0,0.
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From the above, we conclude that the advantage of any polynomial time adver-
sary in the indistinguishability experiment with b = 1 is at most twice its advan-
tage against the LPNm

k,τ (F) assumption with respect to Code⊥
right. This concludes

the proof.

3.3 Non-interactive Inner Product from LWE

A simple variant of our construction of non-interactive approximate inner-
product leads to a construction under the learning with error (LWE) assumption.
Unlike its LPN-based counterpart, this variant can actually achieve correctness
exponentially close to 1.

Let Fp be the prime-order field over which we want to compute a non-
interactive inner-product. Fix a bound B on the magnitude of the noise. Let
Zq be a ring, for some multiple q of p of size q > (m · B2 + 1) · p · λω(1). The
variant is described on Fig. 2. Eventually, we let χ denote a noise distribution.
The exact choice of χ does not matter much, but we assume that all entries
in a random sample from χm belong to [−B,B] with overwhelming probabil-
ity. Note that we follow an LPN-style description, by viewing the matrix of the
LWE assumption as the generator matrix of some linear code over the ring Zq.
While this is not so common in the LWE literature, this viewpoint allows for
considerations on the choice of better codes to improve efficiency.

Fig. 2. An LWE-based non-interactive inner-product over Fp for vectors of length n

Theorem 8. Assuming the LWEm
k (Zq, χ) with respect to Code, the construction

of Fig. 2 is an ε-NIAIP, with correctness ε negligibly close to 1.

Proof. The protocol of Fig. 2 is identical to the LPN-based protocol of Fig. 1, up
to two differences:

– Hᵀ · r0 is used to mask (q/p) · (u//0) instead of (u//0), and
– the output of Decode is fed to the rounding procedure R of the rounding

lemma (Lemma 5) which, on input x ∈ Zq, outputs R(x) = 	(p/q) ·x
 mod p.

Using the same analysis as for the correctness of the LPN-based protocol, if
(pk0, sk0) and (pk1, sk1) are encodings of two inputs (u0,u1) ∈ Fp ×Fp, we have

pkᵀ
0 · sk1 + pkᵀ

1 · sk0 = (q/p) · uᵀ
0 · u1 + rᵀ

1 · r0,
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where |rᵀ
1 · r0| ≤ m · B2. Let e ← rᵀ

1 · r0 denote the output noise and z ←
uᵀ
0 · u1 denote the target output. The values pkᵀ

0 · sk1 and pkᵀ
1 · sk0 form random

shares of (q/p) · z + e over Zq with |e| ≤ m · B2. Therefore, by the rounding
lemma (Lemma 5), the outputs of Decode form additive shares of z ∈ Zp with
overwhelming probability. This concludes the proof of overwhelming correctness.

For security, the second part of the analysis is identical to the security analy-
sis of the LPN-based protocol, and reduces to the LWEm

k (Zq, χ) assumption with
respect to Code. The first part of the analysis, however, differs in a crucial way:
a standard application of the leftover hash lemma shows that Hᵀ · r0 is statisti-
cally close to a random vector. Therefore, the NIAIP actually enjoys statistical
security for one of the two parties in the LWE setting. The rest of the game hops
are identical – one must simply replace invocations of the dual LPN assumption
by the statistical argument.

Like its LPN-based counterpart, this protocol leads to an NIAIP over an
arbitrary prime order field (and can even be modified to give an inner product
protocol over Z); furthermore, it enjoys overwhelming correctness. However, as
we will see later, it is possible to upgrade the correctness of the LPN-based NIAIP
to perfect correctness, and its security to security against malicious adversaries,
at a cost sublinear in n; this means that, asymptotically, the LPN-based proto-
col can be made perfectly correct and maliciously secure at negligible cost. In
contrast, making the LWE-based protocol secure against malicious adversaries
is more challenging, and we leave it to future work.

3.4 From NIAIP to Secure Computation of Inner Product

The natural usecase for NIAIP is to securely compute inner products: two parties
P0, P1 publish encodings of their respective inputs u and v, locally compute
shares of the inner product, and exchange their shares to reconstruct the output.
An important technicality here is that the NIAIP indistinguishability notion does
not directly imply security when revealing the share of P0 to its opponent P1.
When correctness is overwhelming (as with our LWE-based instantiation), this
is not an issue: given the output uᵀ · v and the randomness of P1, the simulator
can compute P1’s share γ1, and simulate the missing share as uᵀ · v − γ1. Due
to the overwhelming correctness, the simulation is indistinguishable from the
honest protocol.

When using ε-NIAIP with non-negligible correctness error (as with our LPN-
based instantiation), however, the correctness error translates to a security loss
for the protocol: the simulation fails with probability 1 − ε. Yet, this does not
directly imply an attack on the protocol. In fact, for our LPN-based instantiation,
we can get perfect simulation by giving the simulator the error term rᵀ

1 · r0.
Concretely, this corresponds to allowing the adversary to learn a single sparse
linear equation (given by r1) in the LPN noise vector r0. In turn, this means
that the security reduces to an appropriate LPN with leakage assumption. Such
variants of LPN are relatively standard, and can in particular be reduced to the
standard LPN assumption, albeit with some loss [17,20].
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In an multiparty setting, where P0 wants to compute the inner product of
u with many other vectors, the leakage can be accumulated across corrupted
parties. This translates to a larger loss for the assumption, and the LPN param-
eters must be adjusted to compensate, as a function of the maximum number
of corrupted parties. An alternative solution is to first remove the error instead,
using the sublinear-communication preprocessing phase described in Sect. 4.

3.5 Choosing the Parameters and the Code

Our non-interactive inner-product communicates k + n + m bits (k + n for pk0
and m for pk1). The security of our protocol relies on a relatively unusual set
of parameters: we need to assume dual LPN with dimension m − (k + n), m
samples, noise rate τ with respect to the matrix Hᵀ, as well as primal LPN with
dimension k, m samples, noise rate τ with respect to the “right half” of H. We
will discuss candidate choices for the underlying code afterwards. Regarding the
parameters, we set m − (k + n) = k to ensure that both assumptions achieve
the same dimension and number of samples, in order to balance security. This
implies m = 2k + n. From there, the choice of k induces a tradeoff between the
noise rate (which must be kept low as the error probability of the protocol is
τ2 · m) and the communication of the protocol (which grows with k): picking
a very large k � n increase communication but achieves asymptotically a rate
1/2 (as m approaches 2k).

Concrete Parameters. For concrete instantiations, we consider a reasonable
middle ground and set k = n (hence m = 3k), leading to codes of rate 1/3.
This leads to a protocol with total communication 5n bits, only 2.5 times more
than the communication of exchanging u0 and u1 in the clear. To estimate
the concrete noise rate, we rely on the analysis of [16] which provides various
formulas to compute lower bounds on the bit complexity of the most standard
attacks on LPN. With a rate 1/3 and using their formulas for the cost of ISD,
Gaussian elimination, and low-weight parity-check attacks, we get the following
(very close) approximation of the security level: choosing τ = λ/m provides
λ−20 bits of security (independently of the vector length n). Hence, for example,
setting λ = 100 gives 80 bits of security, and an error probability of λ2/m = 0.3%
for vectors of length n = 220 (for smaller vectors, the error probability increases
rapidly: e.g. around 10% for n = 215).

Asymptotic Parameters. Asymptotically, letting m = 2k + n as before, the
code rate is k/m for both codes. Let ε be an arbitrarily small constant, and set
k = ε ·n and τ = λ/m for a security parameter λ. The best known attack against
LPN with code rate k/m = O(1) and noise rate λ/m run in time 2O(λ) (where
the O(·) hides a 1/ε factor). With these parameters, the protocol communicates
3k+2n = (2+3ε)n bits, which is arbitrarily close to the optimal communication
of an insecure NIAIP that simply reveals the inputs in the clear. Settling for
subexponential security in λ can further reduce communication to 2n + o(n).
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Choosing the Code. It remains to discuss how to choose an appropriate code
to instantiate the NIAIP. While the code has no impact on communication, it
represents a tradeoff between computation and security. For example, using a
uniformly random code leads to a security reduction to the most standard flavor
of LPN, but comes at a huge computational cost: the computation scales as
O(n2).

Some variants of LPN are conjectured to be secure with respect to linear
time encodable codes, where the mapping x → H · x can be computed in linear
time (by the transposition principle [15,39], this also implies that the mapping
y → Hᵀ · y can be computed in linear time). This is for example the case of
primal LPN instantiated with a sparse matrix H, with a constant number of
nonzero entry per row, which corresponds to the Alekhnovich assumption [4].
Unfortunately, to our knowledge, for all known linear-time encodable code such
that primal LPN is conjectured to hold with respect to H, the dual assumption
with respect to Hᵀ turns out to be insecure. For sparse codes, typically, this is
equivalent to the well-known fact that LDPC codes admit an efficient decoding
algorithm.

Fortunately, if we settle for quasi-linear time encodable codes, we can circum-
vent the issue. For example, quasi-cyclic codes can be encoded in time O(n·log n)
using Fast Fourier Transform, and given a generator matrix H for a quasi-cyclic
code, LPN is widely conjectured to hold both with respect to Hright in its primal
form, and with respect to Hᵀ in its dual form. Quasi-cyclic codes have been used
in numerous recent works [1,3,17] as well as in submissions to the NIST post-
quantum competition [3,6,45]. We note that, when using quasi-cyclic codes, one
must account for the speedup given by the DOOM attack [51], which gives a

√
k

speedup for the attacker. To compensate for this attack, we must therefore aim
at λ + log2 k “pre-DOOM” bits of security, which can be done by increasing the
noise rate from (λ + 20)/m to (λ + 20 + log2 k)/m with our concrete choice of
parameters.

3.6 Open Problem: Finding a “Doubly Good” Linear Time
Encodable Code

While the above provides a relatively satisfying solution, it remains an intriguing
open question whether an appropriate choice of codes could possibly allow to
achieve NIAIP with strictly linear computation. Following the recent analysis of
LPN variants in [19,28], a core necessary requirement to achieve this is to find
a linear-time encodable code such that both the code and its dual have linear
minimum distance (in the dimension). Indeed, there exists efficient attacks on
LPN with codes whose dual have low minimum dimension [5], and furthermore
having linear minimum distance suffices to circumvent all known attacks against
LPN [19,28]. However, although the question appears to be very natural, linear-
time encodable code where both the code and its dual are good codes (i.e. exhibit
linear minimum distance) have never been exhibited in the literature, and we
raise their existence as an interesting theoretical (but also possibly practical, in
light of our construction) open question.
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4 Removing Correctness Errors via Sublinear
Preprocessing

In this section, we show how to convert the LPN-based ε-NIAIP from the previ-
ous section into a two-party secure computation protocol for inner product,
without correctness error. While the protocol is not an NIAIP anymore, all
additional interactions take place during an input-independent preprocessing
phase. Furthermore, the amount of computation and communication during this
preprocessing phase is sublinear in n (more precisely, it will be of the form
poly(λ) · log n).

The ideal functionality FIP for secure computation of (shares of) an inner
product over a field F is described on Fig. 4 (setting ε = 1). The intuition behind
the protocol of this section is natural: the correctness error in the protocol of
Fig. 1 is due to an additive term rᵀ

1 · r0 in the shares locally decoded by the
parties. Since the rb are sparse vectors, their inner product is zero with high
probability ≈ 1 − λ2/m. To correct the error, the parties will distributively
generate noise vectors (r0, r1) together with additive shares of rᵀ

1 · r0. Crucially,
this entire preprocessing requires communication and computation sublinear in
the vector length n.

4.1 Picking the Right Noise Distribution

While the high level intuition is simple, the (asymptotic and concrete) efficiency
of this approach turns out to be extremely sensitive to the noise distribution. In
the previous section, we described the protocol using the standard Bernoulli noise
distribution, since it allows for a reduction to the most common flavor of LPN.
However, Bernoulli noise is a poor choice for allowing efficient preprocessing;
using a regular noise distribution insteads allows for a considerably more efficient
preprocessing, without harming security.

In a bit more details, setting τ = λ/m, a vector rb
$← Berτ (F)m can be

written as the sum of ≈ λ unit vectors. Therefore, securely computing (shares
of) the inner product between two such vectors reduces to securely computing
λ2 products of elements of F, and λ2 secure equality tests between log m-size
bitstrings. This is already sublinear in m = O(n), but the λ2 overhead can incur
a significant slowdown.

Instead, we sample r0 and r1 from the regular noise distribution: r0 and
r1 are concatenations of λ random unit vectors. The corresponding variant of
LPN, regular LPN, is not known to be any weaker than LPN in our regime of
parameters. Let us introduce a few notations: we denote rb = (r(1)b // · · · //r(λ)b )
for b = 0, 1, where the r(i)b are unit vectors. Furthermore, we denote by jb,i and
rb,i the position and the value of the nonzero entry in r(i)b . then, we have

rᵀ
1 · r0 =

λ∑

i=1

(r(i)1 )ᵀ · r(i)0 =
λ∑

i=1

EQ(j0,i, j1,i) · (r0,ir1,i),
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where EQ(x, y) returns 1 if x = y and 0 otherwise. Therefore, securely distribut-
ing shares of rᵀ

1 · r0 reduces (mostly) to performing λ secure equality tests (for
the EQ(j0,i, j1,i) terms) between log(m/λ)-bit strings, and secure products over
F (for the r0,ir1,i terms), which is quadratically reduced compared to the cost
for Bernoulli noise.

4.2 The Protocol

We describe below a protocol for inner product, following our previous discussion.
We use the following building blocks:

– FEQ is an ideal functionality parametrized by a domain [k] which, given
two inputs (x, y) ∈ [k]2, outputs random shares bA, bB to Alice and Bob
of EQ(x, y);

– FOLE is an ideal functionality parametrized by a field F which, given two
inputs (x, y) ∈ F

2, outputs random shares zA, zB of x · y to Alice and Bob.

The protocol in the (FEQ,FOLE)-hybrid model is given on Fig. 3.

Fig. 3. A non-interactive inner-product protocol with semi-honest security Πsh
IP over F

for vectors of length n
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Theorem 9. Let F be a prime order field and Code⊥ be a nice code. Assume
that the regular dual-LPNm

m−(k+n),τ (F) assumption with respect to Code⊥, and
the (primal) regular LPNm

k,τ (F) assumption with respect to Code⊥
right both hold.

Then protocol on Fig. 3 securely realizes the inner product functionality FIP(F, n)
from Fig. 4 in the (FEQ,FOLE)-hybrid model with semi-honest security and static
corruption.

Fig. 4. Ideal functionality FIP for inner product between vectors over F
n.

Proof. Case 0: both parties are honest. We first consider the case where
no party is corrupted. Then, it follows by construction that z0 + z1 = rᵀ

0 · r1.
Furthermore, we established previously in the proof of Theorem7 that pkᵀ

1 ·
sk0 + pkᵀ

0 · sk1 = uᵀ
0 · u1 + rᵀ

0 · r1 (the online phase of the protocol is identical to
an execution of Encode and Decode; only the distribution of r0, r1 changes). It
follows that the outputs of Alice and Bob form additive shares of uᵀ

0 · u1 (with
probability 1).

Case 1: Alice is Corrupted. Assume now that Alice is corrupted, with input
u0. The simulator Sim activates FIP(F, n) on behalf of Alice in the ideal world
by sending (Input,u0). In the real world, it plays honestly the role of Bob in the
preprocessing phase, emulates the answer of the functionalities FEQ and FOLE by
returning either a random bit or a random element of F, and stores the queries
of Alice to the functionalities and the output z0 that she computes from the
answers to her queries. Sim extracts the j0,i from Alice’s calls to FEQ and the
r0,i from her calls to FOLE, and reconstructs r0 = sk0. Sim emulates Bob in the

online phase by sending pk1
$← F

m, and sets x0 ← pkᵀ
1 · sk0 − z0. Eventually, Sim

sends (Output, x0) to FIP(F, n).
It remains to argue why the simulation is indistinguishable from an hon-

est execution of the protocol. Observe that the behavior of Sim is perfectly
indistinguishable to that of Bob, except that it sends pk1

$← F
m instead of

pk1 ← H · (u1//s)+r1. Since the preprocessing phase does not leak any informa-
tion about r1 (the answers of FEQ and FOLE to Alice being uniformly random by
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definition) and Sim does not need r1 to emulate these functionalities, the same
sequence of games as in the proof of Theorem 7 shows that the advantage in
distinguishing pk1 from a uniformly random element in F

m is negligible under
the (regular, primal) LPNm

k,λ/m assumption with respect to Code.

Case 2: Bob is Corrupted. Assume now that Bob is corrupted, with input
u1. Sim plays in the preprocessing phase and interacts with FIP(F, n) in a sym-
metrical way, extracting the (j1,i, r1,i) and reconstructing the vector r1 and the

value z1. Sim emulates Alice in the online phase by sending pk0
$← F

m. Upon
receiving pk1 from Bob, Sim extracts sk1 = (u1//s) by solving pk1 − r1 = H · X
and parsing the solution X as sk1 = (u1//s) (which is guaranteed to be well-
formed since Bob is semi honest). Eventually, Sim sets x1 ← pkᵀ

0 · sk1 − z1 and
sends (Output, x1) to FIP(F, n).

As above, proving indistinguishability from an honest execution reduces to
proving that pk0

$← F
m is indistinguishable from setting pk0 ← (u0//0)−Hᵀ ·r0,

which can be shown (since r0 is perfectly hidden from Bob), using the same
sequence of games as in the proof of Theorem 7, to follow from the (regular)
dual-LPNm

m−(k+n),λ/m assumption with respect to Code.

4.3 Variant: Replacing λ Calls to FOLE by 2λ Calls to FOT

Let FOT(F) be the oblivious transfer functionality over F: on input (s0, s1) ∈ F
2

from the sender and a bit b from the receiver, it outputs sb to the receiver and
nothing to the sender.

In the protocol of Fig. 3, the parties with shares (b0,i, b1,i) of EQ(j0,i, j1,i)
and values (r0,i, r1,i) ∈ F

2 must compute additive shares of (b0,i ⊕ b1,i) · r0,ir1,i,
which they do using two calls to FOLE. We provide an alternative instantiation,
which uses one call to FOLE, and two additional calls to FOT:

– Alice and Bob call FOLE on inputs (r0,i, r1,i) ∈ F
2 and obtain additive shares

(α0,i, α1,i) of their product.
– Alice and Bob perform two oblivious transfers in parallel. In the first OT,

Alice plays the sender with inputs (b0,i · α0,i + rA, (1 − b0,i) · α0,i + rA) for a
random mask rA, and Bob plays the receiver with input b1,i. Concretely, Alice
and Bob obtain this way shares of (b0,i ⊕b1,i) ·α0,i (where Alice’s share is rA).
In the other direction, Bob plays the role of the sender, using a random mask
rB , and Alice of the receiver with input b0,i; Alice and Bob obtain additive
shares of (b0,i ⊕ b1,i) · α1,i. Summing their shares, Alice and Bob do indeed
obtain shares of (b0,i ⊕ b1,i) · r0,ir1,i.

4.4 Instantiating FEQ and FOLE

With the above variant, the preprocessing boils down to λ invocations of FEQ on
log(m/λ)-bit strings, λ invocations of FOLE over F, and 2λ invocations of FOT

on log |F|-bit strings. There exists numerous options to implement the FEQ func-
tionality. In our range of parameters, we estimate that the most efficient solution
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is the protocol of [27]. For equality test over �-bit strings, it requires � + o(�)
oblivious transfers of log �-bit strings, and O(log∗ �) rounds of communication.
Concretely, setting for example λ = 120 and m = 3n, for an inner product
between string of length at most n = 220, the protocol of [27] can be instan-
tiated either with 15 OTs of 16-bit strings and 14 OTs of bits in two rounds,
or with 15 OTs of 16-bit strings, 4 OTs of 4-bit strings, and 2 OTs of bits, in
three rounds (and no additional communication beyond the OTs). For FOLE, the
protocol of [36] requires log |F| OTs per OLE over F (while recent OLE proto-
cols such as [20] are much more efficient, their efficiency improvement “kicks in”
only for a large enough number of OLE). With these choices of protocol, the full
preprocessing boils down to λ · (log(m/λ) + log |F| + 2) oblivious transfers.

Overall, setting m = O(n), the communication of the preprocessing phase
boils down to O(λ · (log n+log |F|)) oblivious transfer of small strings (O(log n)-
bit or log |F|-bit strings), which leads to a logarithmic communication in the
vector length n. For example, using the standard instantiation for short string
oblivious transfer [41], computing the inner product between two strings of length
220 over a 32-bit field requires about 5 · 105 ≈ 0.5 · n bits of communication,
adding only a small overhead to the entire communication of the protocol. Using
recent advances in silent OT extension [17,28], this overhead can be further
reduced by a factor four.

5 Malicious Security

In this section, we enhance our protocol from Sect. 4 to withstand attacks from
malicious adversaries.

5.1 Guaranteeing the Success of Extraction

In the malicious model, the parties may not follow the specifications of the
protocol; in particular, they may not use their prescribed input. Therefore, to
make the protocol from Fig. 3 secure against malicious behavior, the simulator
must have a mean to extract the input of the corrupted party. When Alice
is corrupted, since Sim emulates the preprocessing and stores her noise vector
r0, the effective input u0 used by Alice can be extracted by computing pk0 +
Hᵀ · r0, and parsing it as (u0//0). However, the success of this extraction is only
guaranteed if we can ensure that pk0 will always be well-formed (i.e. the “bottom
half” of pk0 is of the form M · r0 for a sparse r0, where M is the bottom half of
Hᵀ). Similarly, if Bob is corrupted, Sim extracts u1 by solving the linear system
H · X = pk1 − r1 to get (u1//s). However, this is an overdetermined system of
equations which is not guaranteed to have a solution, and extraction will again
succeed only if we can guarantee that pk0 is well-formed (i.e., this system has a
solution).

To guarantee the success of extraction, we let Alice and Bob add zero-
knowledge proofs that their public keys pk0, pk1 are well-formed. With simple
manipulations, it is easy to show that in both cases, this reduces to proving that
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a vector v is of the form M · e, where M is a public compressive matrix, and
e is a secret sparse noise vector – i.e., this reduces to proving knowledge of a
preimage in an instance of the syndrome decoding problem for the code with
parity-check matrix M , which is a well-studied problem [2,23,53]. Unfortunately,
existing solutions are prohibitively expensive in our setting: they require O(κ·m)
communication, where κ is a statistical security parameter (which stems from
parallel repetitions of an underlying zero-knowledge proof with constant sound-
ness error, e.g. 2/3 in Stern’s scheme [53]) and m is the code dimension. Since
our protocol operates in the high-dimension, low-noise setting, this causes a huge
blowup to the total communication and computation.

5.2 A New Almost-Zero-Knowledge Proof for Low-Noise Syndrome
Decoding

As a contribution of independent interest, we therefore design a new zero-
knowledge proof system for the syndrome decoding problem, which is especially
suited for instances with large dimension and low noise. For a syndrome decod-
ing instance of dimension � and a noise rate of λ/�, our protocol boils down
essentially to O(λ · log �) actively secure oblivious transfers and λ OLE. On the
downside, unlike Stern’s protocol, our zero-knowledge proof is not an identifi-
cation scheme: it is private coin and cannot be made non-interactive using the
Fiat-Shamir heuristic.

Our approach follows the intuition underlying a recent line of work [9,11,
30,56] on efficient zero-knowledge proofs from pseudorandom correlation gen-
erators [16–18]. However, our goal is fundamentally different, since these works
target linear communication zero-knowledge proofs for general (arithmetic) cir-
cuits; on the other hand, we construct a sublinear communication zero-knowledge
proof for a specific problem.

Intuition. A recent line of work initiated in [16] has developed pseudorandom
correlation generators (PCG) for the vector-OLE (VOLE) correlation. At a high
level, a PCG for a VOLE correlation allows to distributively generate additive
shares of Δ · v, where Δ is a (chosen) element of F known to one of the parties,
and v is a (long) pseudorandom vector over F, known to the other party. We
do not directly build on PCG, but observe that the main component in their
construction is a protocol that relies on puncturable pseudorandom functions
(PPRF) to distributively generate, with low communication, additive shares of
Δ · e for a sparse, regular noise vector e.

We rely on this PPRF-based protocol to authenticate the regular noise vector
e (i.e., the witness of the prover) with low communication overhead, using an
information-theoretic MAC Δ known to the verifier. Due to the regular structure
of e, this boils down to distributively generating and locally concatenating shares
of Δ · ei for i = 1 to λ, where the ei are unit vectors (let ji be the index of their
nonzero entry, and ei be the corresponding value). Such a protocol is called a
single point vector OLE. We briefly recall how such shares are generated with
sublinear communication:
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– The verifier samples Δ, and a PRF key K for a PRF {PRFK : [�/λ] �→ F}K .
– The parties execute an interactive protocol to securely generate K{ji} (the

key K punctured at ji). Using variants of the Doerner-shelat protocol [31] on
top of the GGM puncturable PRF [37], this requires O(log �) invocations of
an oblivious transfer protocol.

– The prover obliviously receive the value PRFK(ji)+Δ ·ei, using a single OLE
over F.

– In the malicious setting, when several instances are executed, additional con-
sistency checks are required to guarantee that Δ remains the same across all
executions. An efficient protocol for this task was given in [54], with minimal
overhead compared to the semi-honest protocol.

Let (q0,q1) denote the additive shares of Δ · e generated using the above
protocol. To check that v is indeed of the form M ·e, the verifier sends a random
vector ρ to the prover, who replies with the value ver0 = −ρᵀ · (M · q0) ∈ F.
Then, the verifier sets ver1 ← ρᵀ · (M · q1 − Δ · v) and check that ver0 = ver1.

Observe that ver1−ver0 = ρᵀ·(M ·q1−Δ·v+M ·q0) = ρᵀ·(M ·(Δ·e)−Δ·v) = 0
if M ·e = v. Soundness will rely on the Schwarz-Zippel lemma to show that when
M · e �= v, causing ver0 = ver1 is as hard as guessing Δ, which can happen only
with probability 1/|F| since Δ is perfectly hidden from the prover. This readily
suffices when F is exponentially large. For smaller fields, we simply sample Δ
from an appropriate extension field F

′ of F such that |F′| ≥ 2κ for some statistical
security parameter κ; the rest of the protocol is identical, except that the parties
must use a PRF from [�/λ] to F

′, and execute the OLE’s over F
′.

Zero-Knowledge Versus Almost-Zero-Knowledge. The above blueprint
actually leads to a true zero-knowledge proof system with sublinear communi-
cation, when instantiated with a maliciously secure sublinear protocol for sin-
gle point vector OLE. While it is possible to construct such protocols, recent
works [17,54] have observed that one can achieve a much greater efficiency by
slightly relaxing the single point VOLE functionality. In this relaxation, the
verifier is allowed to learn roughly one bit of leakage about the noise vector
e. When instantiating our construction with the protocol of [54] (the state-of-
the-art protocol of this line of work), the protocol we get is therefore not truly
zero-knowledge. Nevertheless, it still suffices to construct a maliciously secure
inner product protocol, which is our end goal, at the cost of relying on the LPN
with static leakage assumption (first put forth in [17]), which states (informally)
that LPN remains secure given one bit of leakage about the noise vector.

The Zero-Knowledge Proof. Since, for better efficiency, we do not achieve
full-fledged zero-knowledge but only a relaxed version which suffices in our spe-
cific context, we do not provide here an isolated description of the zero-knowledge
proof, and directly integrate it into our maliciously secure protocol. However, for
the sake of completeness, we provide a description of the proof system in isolation
(with and without the relaxation) in the full version of this paper.
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5.3 Maliciously Secure Inner Product from LPN with Static
Leakage

The full protocol, integrating the procedure for checking that pk0 and pk1 are
well-formed, is described on Fig. 6, in the Fmal

pre -hybrid model. These checks
require the parties to have access to authenticated versions of the noise vec-
tors r0, r1; this authentication procedure is executed in a preprocessing phase.
The ideal functionality Fmal

pre describing the preprocessing phase is represented
on Fig. 5. It follows closely the single-point vector-OLE functionality from [54],
but enhances it to also distribute the inner product between pairs of single-
point VOLEs. Similarly, our instantiation of this functionality will build upon
the protocol of [54].

Fig. 5. Ideal Functionality for the preprocessing step of maliciously secure inner prod-
uct, parametrized by a field F with extension field F

′
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Fig. 6. A non-interactive inner-product protocol with malicious security Πmap
IP over F

for vectors of length n
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5.4 Security Analysis

We first recall the LPN with static leakage assumption from [17,54]:

Definition 10 (Regular LPN with static leakage). Fix a field F = F(λ),
dimension k = k(λ), number of samples m = m(λ), and noise rate τ = τ(λ).
The regular LPNm

k,τ assumption with static leakage with respect to Code holds if
for every PPT algorithm A, it holds that

∣
∣
∣
∣Pr[LPN-SuccA(λ) = 1] − 1

2

∣
∣
∣
∣ ≤ negl(λ),

where the experiment LPN-SuccA(λ) is defined as follows:

1. Sample A
$← Code(m, k,F), s $← F

k, e $← RNτ,m(F), and let (α1, · · · , ατm) ∈
[1/τ ]τm denote the location of the nonzero entries of e. Send A to A.

2. A outputs τm subsets (I1, · · · , Iτm) of [1/τ ]. If αi ∈ Ii for every i ≤ τm,
output success to A; otherwise, abort the experiment and set the output to 0.

3. If the experiment did not abort, pick a random bit b
$← {0, 1}. If b = 0, set

u ← A · s + e; else, set u $← F
m. Send u to A. Output 1 if A answers with b,

and 0 otherwise.

We note that LPN with static leakage reduces to standard LPN assump-
tion [17], but the reduction is not tight. Intuitively, the assumption allows the
adversary to obtain one bit of leakage on e on average, which should reduce bit
security by one bit at most. Since the reduction to LPN induces a much larger
loss, we define this assumption as an independent assumption and use it with
the same concrete parameter as for LPN.

On the Use of a PRF. The checks in the online phase require the par-
ties to exchange long random strings ρ0, ρ1. To reduce communication, this
is done by exchanging short keys, which the parties locally stretch into long
pseudorandom strings by evaluating a PRF on a priori fixed inputs: ρb ←
(PRFKb

(0), · · · ,PRFKb
(k/λ)), assuming that PRF has λ-bit outputs. It is a well-

known result that any statistical test that succeeds with high probability for
a random string, such as our application of the Schwarz-Zippel lemma, must
succeed with comparable probability when evaluating a PRF on inputs fixed
before the key was sampled, since any noticeable difference can be turned into
an efficient distinguisher against the PRF.

Theorem 11. Let Code⊥ be a nice code. Assume that the dual-LPNm
m−(k+n),τ (F)

assumption with static leakage with respect to Code⊥, and the (primal) LPNm
k,τ (F)

assumption with static leakage with respect to Code⊥
right both hold. Then the pro-

tocol πmal
IP securely computes the inner product functionality FIP with security

against malicious adversaries in the Fmal
pre -hybrid model.

Due to lack of space, we defer the proof of Theorem11 to the full version of
this paper.
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Efficiency. Compared to the semi-honest protocol, the online phase of Fig. 6
adds two rounds of interaction to the protocol, as well as 2λ bits (for exchanging
the seeds) and two elements of F′ (hence, the overall increase in communication
is essentially negligible). Regarding computation, the cost of the check that pk0
is well-formed is dominated by a multiplication by the matrix M · Fk×m, which
(setting k = n for concreteness) is about twice faster than a multiplication by
H. The cost of checking that pk1 is well-formed is dominated by a multiplication
by the parity-check matrix G of H for Bob (resp. two multiplications by G for
Alice), which is about the same cost as a multiplication by H. Therefore, the
computational cost of the maliciously secure protocol is about twice that of the
semi-honest protocol.

Implementing the Malicious Preprocessing Functionality. Due to lack of
space, we defer the discussion on how to implement the malicious preprocessing
functionality to the full version of this paper.
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Abstract. We investigate the communication complexity of Byzantine
agreement protocols for long messages against an adaptive adversary.
In this setting, prior n-party protocols either achieved a communication
complexity of O(nl ·poly(κ)) or O(nl+n2 ·poly(κ)) for l-bit long messages
and security parameter κ. We improve the state of the art by presenting
protocols with communication complexity O(nl+n ·poly(κ)) in both the
synchronous and asynchronous communication models. The synchronous
protocol tolerates t ≤ (1 − ε)n

2
corruptions and assumes a VRF setup,

while the asynchronous protocol tolerates t ≤ (1−ε)n
3

corruptions under
further cryptographic assumptions. Our protocols are very simple and
combine subcommittee election with the recent approach of Nayak et al.
(DISC ‘20). Surprisingly, the analysis of our protocols is all but simple
and involves an interesting new application of Mc Diarmid’s inequality
to obtain almost optimal corruption thresholds.
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1 Introduction

Byzantine agreement (BA) is a fundamental problem in distributed computing.
In a Byzantine agreement protocol consisting of n parties, each party starts with
an input value, and at the end of the protocol, all honest (non-faulty) parties
output a value. Byzantine agreement protocols guarantee that if all honest par-
ties input the same value v, then they must output v; otherwise, they output
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any agreed upon value. Moreover, this holds even if some threshold t out of n
parties are Byzantine (arbitrarily malicious).

Byzantine agreement and other consensus primitives form a core abstraction
for many blockchains where consensus is required on large values among a large
number of parties [6,21]. Moreover, due to the value of the transactions contained
in these blockchains, they need to tolerate strong adaptive adversaries who are
capable of corrupting any party based on the state of the protocols subject to the
Byzantine threshold constraint. These requirements lead to the following natural
question: What is the lowest communication complexity possible for Byzantine
agreement protocols on large values tolerating an adaptive adversary?

This question has been partially answered in the literature. For instance, it
has been shown that BA can be solved with o(n2) communication complexity
against an adaptive adversary [1,6,11]. At a high level, these protocols take the
approach of electing committees of size κ (where κ is a security parameter) and
only the committee members send messages to all parties. This allows achiev-
ing a communication complexity of O(n · poly(κ)). However, this computation
implicitly assumes inputs with a constant number of bits. If the inputs are of
size l bits, the communication complexity is O(nl · poly(κ)).

A different line of work on extension protocols seeks to achieve the optimal
communication complexity of O(nl) for long messages. Currently, these works are
only capable of considering messages that are very long, i.e., l � n [9,10,16,19,
22]. The best known protocols in this area achieve a communication complexity
of O(nl+κn2) [19] and the main goal of these works is to further reduce the latter
term as much as possible. At a high level, these protocols take the approach of
agreeing on the hash of an input value with O(κn2) communication (κ is the size
of a hash) assuming appropriate BA protocols for κ-sized inputs and then use
erasure coding techniques to distribute the l-bit long blocks with communication
O(nl + κn2). In this work, we ask whether we can achieve the best of both
approaches. In particular,

Does there exist a Byzantine agreement protocol for l bit values tolerating
an adaptive adversary with O(nl +n ·poly(κ)) communication complexity?

We answer this question positively. Surprisingly, the techniques from the
two lines of work do not compose in a straightforward manner to achieve the
desired communication complexity. In fact, Nayak et al. [19] present a lower
bound of Ω(nl + A(κ) + n2) where A(κ) is the communication complexity of
Byzantine agreement on κ bit inputs. However, the bound holds only for deter-
ministic protocols. For the first time, we use randomization in the extension
part (as well as the underlying protocol) to circumvent the lower bound and
achieve O(nl + n · poly(κ)) complexity. We present two protocols one assuming
synchronous network and another assuming asynchronous network, that achieve
these guarantees.

In the following table, we show our improvements on both communication
complexity and input range of l to reach optimality, with respect to the previous
most efficient l-bit Byzantine agreement protocol due work by Nayak et al. [19]
(Table 1).
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Table 1. Comparison with state-of-the-art Byzantine agreement for l-bit messages.

Threshold Model
Communication Input range l

Reference
complexity to reach optimality

t < n/2 sync.
O(nl + n2κ) Ω(κn) [19]

O(nl + n · κ3) Ω(κ3) This work

t < n/3 async.
O(nl + n2κ) Ω(κn) [19]

O(nl + n · κ6) Ω(κ6) This work

1.1 Simple Adaptively Secure BA Protocols for Long Messages

Our first result is a synchronous, adaptively secure BA protocol tolerating t ≤
(1 − ε) · n

2 Byzantine parties, for some arbitrary constant ε > 0. The second
result is asynchronous and tolerates t ≤ (1 − ε) · n

3 corruptions.

Theorem (informal). For all constants ε > 0, assuming appropriate crypto-
graphic setup assumptions, there exists an adaptively secure synchronous Byzan-
tine agreement protocol achieving a communication complexity of O(nl + n ·
poly(κ)) for l-bit values for

1. t ≤ (1 − ε) · n
2 Byzantine parties under a synchronous network, and

2. t ≤ (1 − ε) · n
3 Byzantine parties under an asynchronous network.

We describe a very high-level intuition behind the synchronous protocol.
Using an adaptively-secure subquadratic 1-bit BA protocol from [1], all parties
can agree on a κ-bit accumulator value corresponding to one of the inputs with a
communication of O(κ3n). Thus the key challenge is to distribute the l-bit value
to all parties with linear communication while tolerating an adaptive adversary.
Typically, distributing a large value to n parties using erasure codes is performed
in two steps. First, create n encoded shares of the value, one for each party, of
size O( l

n ), and send the shares to the respective parties. Then, each party sends
its own share to all other parties. If every party receives sufficiently many shares
(Byzantine parties may not send shares), they can reconstruct the l-bit value.
Observe that the latter step incurs Ω(n2) communication, thus dominating the
n ·poly(κ) term of the desired communication complexity. To make this approach
efficient, we have to find the right amount of shares to create and the right parties
to share them with. If we näıvely create one share per party, we will need all
parties to speak so that we can reconstruct the long message. Clearly, this results
in poor communication complexity. On the other hand, if we share the messages
with only a small committee C, an adaptive adversary can corrupt all the parties
in C and prevent reconstruction of the long message.

To address these concerns, our solution relies on a “public” partition of par-
ties into one of κ buckets such that each bucket holds n/κ parties. We then elect
κ-sized committees at random (using the standard VRF approach for crypto-
graphic sortition) to perform each of the two steps described earlier. In the first
step, the value is encoded into κ shares of size O( l

κ ) and the j-th share is sent to
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parties in bucket j. In the second step, the elected committee members from each
of the κ buckets send their share to all parties. This incurs an O(κn · l

κ ) = O(ln)
bits of communication. The crux of our argument lies in showing that when
t ≤ (1 − ε) · n

2 , sufficiently many buckets contain an honest party who is also
elected as a committee member. Thus, the shares that these honest parties send
are sufficient to reconstruct the initial value. If we elect parties to the committee
C using the common approach of verifiable random functions, it is not possi-
ble to argue via standard Chernoff-type bounds that sufficiently many of the
buckets will be covered by members of C. This is because the number of com-
mittee members across buckets are correlated and a rushing adaptive adversary
can observe the number of committee members for any subset of the buckets
before corrupting others. Instead, our argument relies on a subtle application
of McDiarmid’s inequality, which, to the best of our knowledge, has not been
explored in this type of protocol. Our analysis shows that choosing a committee
of (expected) size O(κ) is enough for our purposes.

Using our insights from the synchronous setting, we also obtain a protocol
for the asynchronous setting by substituting the 1-bit agreement protocol with
the recent (asynchronous) BA construction of Blum et al. [3].

1.2 Related Work

Work Related to Extension Protocols. In the following, we denote as
A(1),A(κ) the communication complexity of a BA protocol with input domain
of size 1 and κ bits, respectively. The problem of extending the domain of Byzan-
tine agreement protocols is a well-studied one in the literature. To the best of
our knowledge, the first work that considered this problem is that of Turpin
and Coan [22] who showed how to reach agreement on messages from arbitrary
domains given agreement on binary values in the corruption regime t < n/3
with synchrony. The problem has also been considered for other related prim-
itives such as Byzantine broadcast [7,12] or reliable broadcast [4,19]. Previous
works that focus on this problem are the works by Fitzi and Hirt [9], and that
of Liang and Vaidya [16]. In the synchronous setting with t < n/3 and error-
freeness, the protocol of Ganesh and Patra [10] previously provided the best
known protocol which achieves O(nl+n2 ·A(1)) communication complexity. For
the computational setting with t < n/2, the protocols of Ganesh and Patra [10]
previously provided the best known solution achieving O(nl + nA(κ) + κn3).
These complexities were recently further improved by the protocols of Nayak
et al. [19] who gave protocols that achieve O(nl + A(κ) + n2κ) communication
complexity for the computational setting when t < n/3 or t < n/2. Nayak et al.
also improved on error-free protocols in the t < n/3 setting, giving a protocol
that achieves O(nl + nA(1) + n3) communication complexity.

Our work improves over previous works on Byzantine agreement for long mes-
sages, both in the communication complexity as well as the input range of l to
reach optimality for both the synchronous and asynchronous setting. However,
our protocols require further tools. Compared to the protocol of Nayak et al.
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[19], our synchronous protocol requires an additional setup for verifiable ran-
dom functions [17], and our asynchronous protocol also requires several crypto-
graphic assumptions, including non-interactive zero-knowledge, threshold fully-
homomorphic encryption and anonymous public-key encryption.

Work Related to Adaptively Secure Sub-quadratic Communication
Protocols. Dolev and Reischuk [8] first showed that deterministic Byzantine
agreement protocols incur Ω(t2) communication complexity when tolerating
t < n Byzantine faults. King et al. [13–15] presented the first Byzantine agree-
ment protocols that can be solved with subquadratic communication complexity
under inverse polynomial in n error probability. More recently, Algorand [6,11]
showed constructions with O(n · poly(κ)) communication complexity for adap-
tively secure Byzantine agreement tolerating t < (1−ε)n/3 Byzantine parties in
the synchronous setting assuming memory erasures. This was further improved
by Abraham et al. [1] in the synchronous and partially synchronous network set-
ting tolerating t < (1 − ε)n/2 and t < (1 − ε)n/3 respectively without assuming
memory erasures. Finally, Blum et al. [3] presented a subquadratic communica-
tion protocol in the asynchronous setting tolerating t < (1 − ε)n/3 faults. As
discussed above, these protocols achieve subquadratic communication complex-
ity, but fail to provide the asymptotically optimal complexity O(nl) when l grows
beyond n. Nonetheless, these protocols do serve as important building blocks in
extension protocols such as the ones presented here (i.e., to agree efficiently on
the short message shares).

2 Model and Preliminaries

We consider a setting with n parties P1, . . . , Pn that have access to a complete
network of pairwise authenticated channels. The adversary is adaptive, and can
corrupt up to t parties at any point of the protocol execution in an arbitrary
manner. However, we make two standard assumptions on the capability of the
adversary (see, e.g., [3,5]). First, parties can perform an atomic send opera-
tion, i.e., they can send a message to any number of parties simultaneously and
without the adversary corrupting them in between (different) sends. Second,
the adversary cannot perform after-the-fact removal, i.e., cannot take back mes-
sages sent by parties while they were still honest.1 We consider protocols in the
synchronous and asynchronous network settings. In a synchronous network, we
assume communication in lock-step rounds where messages sent by a party at
the start of a round arrives at its destination by the end of that round. On the
other hand, in an asynchronous network, messages are assumed to arrive at their
destination eventually.

2.1 Definitions

Let us recap the definition of Byzantine agreement.
1 In the absence of this assumption, no protocol (deterministic or randomized) can

achieve o(t2) communication complexity as shown in Abraham et al. [1].
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Definition 1 (Byzantine Agreement). Let Π be a protocol executed by par-
ties P1, . . . , Pn, where each party Pi starts with an input xi and parties terminate
upon generating output. We say that Π is an t-secure Byzantine agreement pro-
tocol if the following properties hold when up to t parties are corrupted:

– Validity: If all honest parties start with the same input x, then every honest
party outputs x.

– Consistency: All honest parties output the same value.

2.2 Primitives

Our protocols will make use of standard linear error correcting codes and cryp-
tographic accumulators.

Linear Error Correcting Code. We use standard Reed-Solomon (RS) codes
with parameters (κ, b). The codewords are elements in a Galois Field GF (2a)
with κ ≤ 2a − 1. There are two algorithms:

– Encoding. Given inputs m1, . . . ,mb, the encoding function outputs κ code-
words (a.k.a. shares) (s1, . . . , sκ) of length κ, such that any b codewords
uniquely determine the input message and the other codewords.

– Decoding. Given κ codewords (s1, . . . , sκ), one can reconstruct the original
message (m1, . . . ,mb) even when κ − b values are erased.

Looking ahead in our protocols, we will choose random committee subsets
of κ parties out of the n parties, and we will set the parameter to b, to a lower
bound on the number of honest parties in a committee.

Cryptographic Accumulators. We recall the definition of cryptographic accu-
mulators [2]. Given a set of values, the primitive can produce an accumulated
value and a witness for each element in the set. Then, given the accumulated
value and a witness, one can verify that a particular element is in the set.

Definition 2. A cryptographic accumulator consists of a tuple of algorithms
(Gen,Eval,CreateWit,Verify), where:

– Gen(1κ, T ): It takes a parameter κ and an accumulation threshold T and
returns an accumulator key ak.

– Eval(ak,D): It takes an accumulator key ak and a set of values to accumulate
D and returns an accumulated value z for D.

– CreateWit(ak, z, di): It takes an accumulator key ak, an accumulated value z
for D and a value di, and returns ⊥ if di /∈ D or a witness wi otherwise.

– Verify(ak, z, wi, di): It takes an accumulator key, accumulated value z for D,
witness wi, value di, and returns 1 if wi is a witness for di ∈ D and 0
otherwise.

We require our accumulator to satisfy standard collision-free properties [20].
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2.3 Concentration Bounds I

We recall the Chernoff concentration bound.

Lemma 1 (Homogenous Chernoff Bound). Let X1, ...,Xn be i.i.d.
Bernoulli random variables with parameter p. Let X :=

∑
i Xi, so μ := E[X] =

p · n. Then, for δ ∈ [0, 1],

Pr[X ≥ (1 + δ) · μ] ≤ e−δ2μ/(2+δ) and Pr[X ≤ (1 − δ) · μ] ≤ e−δ2μ/2.

Let χs,n denote the distribution that samples a subset of the n parties, where
each party is included independently with probability s/n. The following lemma
will be useful in our analysis.

Corollary 1. Fix κ ≤ s ≤ n and ε > 0, and let t = (1− ε)n/2 be the number of
corrupted parties. If C ← χs,n, then C contains less than (1 − 2

3ε)s/2 corrupted
parties except with negligible probability.

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the
Bernoulli random variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define
Z :=

∑
j �∈H Xj . Then, since E[Z] = t · s/n = (1 − ε)s/2, setting δ = ε

3(1−ε) in
Lemma 1 yields

Pr
[

Z ≥ (1 − 2
3
ε)s/2

]

≤ neg(κ).

(Almost) the same proof yields:

Corollary 2. Fix κ ≤ s ≤ n and ε > 0, and let t = (1− ε)n/3 be the number of
corrupted parties. If C ← χs,n, then C contains less than (1 − 2

3ε)s/3 corrupted
parties except with negligible probability.

Corollary 3. Fix s ≤ n and 0 < ε < 1. If C ← χs,n, then C contains more
than (1 − ε) · s many parties except with probability at most O(e−ε2s).

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the
Bernoulli random variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define
Z :=

∑
j �∈H Xj . Then, since E[Z] = s, setting δ = ε in Lemma 1 yields

Pr [Z ≤ (1 − ε) · s] ≤ eε2·s/2.

3 Balls and Buckets Analysis for Throwing ck Balls in k
Buckets

Our protocols in subsequent sections rely on publicly partitioning n parties in κ
distinct buckets and then electing cκ out of the n parties uniformly at random.
Some of the elected parties can be Byzantine; and our protocols require some
properties on the number of distinct buckets containing honest elected parties. In
this section, we present the technical inequality that will be used in our protocols
in subsequent sections. We use the notation [k] to denote the set {1, 2, . . . , k}.
We will start with the following concentration bound:
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Theorem 1. (McDiarmid’s Inequality) Let X1,X2, . . . , Xn be independent ran-
dom variables such that Xj ∈ Kj, for some measurable set Kj. Suppose f :∏n

j=1 Kj → R is ‘Lipschitz’ in the following sense: there exist σ1, σ2 . . . , σn ≥ 0
such that for each 1 ≤ k ≤ n and any two input sequences x, x′ ∈ ∏

j Kj, that
differ only in the kth coordinate,

|f(x) − f(x′)| ≤ σk.

Let Y = f(X1,X2, . . . , Xn). Then for any α > 0,

Pr[|Y − E[Y]| ≥ α] ≤ 2 · exp

(

− 2α2

∑n
j=1 σ2

j

)

.

The binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent exper-
iments, each asking a yes-no question, and each with its own Boolean-valued
outcome: success (with probability p) or failure (with probability 1 − p).

Let c ≥ 1 and k ≥ 5 be the parameters where k is the number of buckets and
ck is the number of balls (committee members). Consider the following random
experiment: We throw ck balls in k buckets independently and uniformly at
random. Let bi be the expected number of buckets with exactly i balls.

Let Xi
j be the indicator random variable that the jth bucket has exactly i

balls. Thus, using linearity of expectation, we can write bi as:

bi =
k∑

j=1

E[Xi
j ].

We also have,

E[Xi
j ] =

(
ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

.

By linearity of expectation,

bi =
k∑

j=1

(
ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

= k ·
(

ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

.

The following lemma shows that the number of buckets with exactly i balls
is concentrated around bi.
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Lemma 2. For k ≥ 2 and 0 ≤ i ≤ c, Pr
[∣
∣
∣
number of buckets
with exactly i balls − bi

∣
∣
∣ ≥ ε · bi

]
≤

2 exp(− ε2

e5c · k).

Proof. Suppose the k buckets are labeled with (distinct) numbers from [k]. Let
m = ck and define a function f : [k]ck → R as follows.

f(a1, a2, . . . , am) = |{
 ∈ [k] | 
 appears exactly i times in (a1, a2, . . . , am)}| .

We are interested in the random variable Y = f(x1, x2, . . . , xm) where each xj is
distributed independently and uniformly in [k]. This is because we can think of
xj as the bucket number in which the jth ball lands. Therefore, f(a1, a2, . . . , am)
is precisely the number of buckets that contain exactly i balls, when the jth ball
goes into the bucket aj for all j ∈ [m].

It is clear that f is Lipschitz with a Lipschitz constant of 1, i.e., if you change
only one input coordinate, then the function value changes by at most 1. Towards
applying Theorem1, we have σj = 1 for all j ∈ [m] and hence

∑
j σ2

j = m. Note
that

bi = k ·
(

ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

≥ k ·
(

ck

i

)i

·
(

1
k

)i (

1 − 1
k

)ck

≥ k · ci

ii

(

1 − 1
k

)ck

≥ k · ci

ii

(
e−2 1

k

)ck

(Using 1 − x ≥ e−2x for x ∈ [0, 1
2 ])

≥ ci

iie2c
k.

Using McDiarmid’s inequality 1,

Pr[|Y − bi| ≥ ε · bi] ≤ 2 exp
(

−2ε2b2i
m

)

≤ 2 exp
(

−2ε2b2i
ck

)

≤ 2 exp
(

− 2ε2c2i

i2ie4c · c
· k

)

(Using bi ≥ ci

iie2c k)

≤ 2 exp
(

− ε2

e5c
· k

)

. (Using i ≤ c and c ≤ ec)

We only need concentration for i = 0, 1, . . . , c − 1 for the overall argument
that follows next. Since each holds with probability 1 − exp(−ε2k/eO(c)), by
union bound, we have that the number of buckets with i balls is concentrated
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around its expectation for i = 0, 1, . . . , c − 1 happens with probability at least
1 − c · exp(−ε2k/eO(c)).

Claim. Let k ≥ 5 and τ ∈ (0, 1/2] be any constant. There exists a constant
0 ≤ cτ ≤ c such that the following two inequalities hold simultaneously. We
have,

cτ∑

i=0

bi ≤ τk (1)

and
cτ∑

i=1

i · bi ≥ (τ − oc(1)) · ck. (2)

Proof. Let cτ be the largest constant such that (1) holds. The sum
∑cτ

i=0 bi/k is
the cumulative density of the binomial distribution with parameters ck and 1

k
at cτ . As the median of the binomial distribution with parameters ck and 1

k is
c, we have cτ ≤ c for τ ∈ (0, 1/2]. We will show that, for this constant cτ , the
inequality (2) holds.

cτ∑

i=1

i · bi =
cτ∑

i=0

i · k

(
ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

= k ·
cτ∑

i=0

i ·
(

ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

= k ·
cτ∑

i=1

ck ·
(

ck − 1
i − 1

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i (
k
(
n
k

)
= n

(
n−1
k−1

))

= k · ck · 1
k

·
cτ∑

i=1

(
ck − 1
i − 1

)

·
(

1
k

)i−1

·
(

1 − 1
k

)(ck−1)−(i−1)

= ck ·
cτ −1∑

i=0

(
ck − 1

i

)

·
(

1
k

)i

·
(

1 − 1
k

)(ck−1)−i

. (Setting i ← i − 1)

Now, the summation is precisely the cumulative density of the binomial dis-
tribution with parameters ck − 1 and 1

k at cτ − 1. We now rearrange the terms
to get the cumulative density of the binomial distribution with parameters ck
and 1

k at cτ + 1 in the summation. This way we can relate it to the constant τ .
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cτ∑

i=1

i · bi = ck ·
cτ −1∑

i=0

(
ck − 1

i

)

·
(

1
k

)i

·
(

1 − 1
k

)(ck−1)−i

= ck ·
cτ −1∑

i=0

ck−i
ck

(1 − 1/k)

(
ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

≥ ck ·
cτ −1∑

i=0

(
ck

i

)

·
(

1
k

)i

·
(

1 − 1
k

)ck−i

= ck ·
cτ −1∑

i=0

bi

k

= ck ·
((

cτ+1∑

i=0

bi

k

)

− bcτ

k
− bcτ+1

k

)

≥ ck ·
(

τ − bcτ

k
− bcτ+1

k

)

= ck (τ − oc(1)) .

Here, in the first inequality, we used the fact that cτ is at most c. The second
inequality uses the fact that the constant cτ is the largest constant that satisfies
inequality (1) from the claim. Therefore,

∑cτ+1
i=0

bi

k ≥ τ .
For the final asymptotic, bcτ

k + bcτ +1
k = oc(1), using the fact that the mode

of a binomial distribution with parameters ck and 1/k is c, for any 0 ≤ i ≤ ck

bi

k
≤ bc

k
=

(
ck

c

)(
1
k

)c (

1 − 1
k

)ck−c

≤ 2ckH(1/k)

√
2πck(1/k)(1 − 1/k)

(
1
k

)c (

1 − 1
k

)ck−c

.

Here, H(p) := p log2(1/p)+(1−p) log2(1/(1−p)) is the binary entropy function
and the last inequality uses Stirling’s approximation. Using the bound H(1/k) ≤
(1/k) log2(2k) and the fact that k ≥ 5,

bi

k
≤ 2c log2(2k)

√
πc

(
1
k

)c (

1 − 1
k

)ck−c

≤ 2c

√
πc

(

1 − 1
k

)ck−c

≤ 2c

√
πc

e−c(1− 1
k ). (Using 1 − x ≤ e−x)

When k ≥ 5, ec(1− 1
k ) > 2c and hence bi

k ≤ 1√
πc

= oc(1).

Now, cτ ≤ c for every τ ∈ (0, 1/2]. Using this, we combine Lemma 2 and
Claim 3 along with a simple application of union bound and the fact that the
sums are natural numbers, to get the following Corollary.
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Corollary 4. For all ε > 0, c ≥ 1, k ≥ 5 and τ ∈ (0, 1/2] there exists a constant
cτ ≤ c such that the following holds. Suppose we throw ck balls in k buckets,
each uniformly and independently at random. Let b′

i be the number of buckets
with exactly i balls. Then the following two inequalities hold with probability at
least 1 − 2 · c · exp(− ε2

e5c · k).

1.
∑cτ

i=0 b′
i ≤ �(1 + ε)τk�.

2.
∑cτ

i=1 i · b′
i ≥ (1 − ε) (τ − oc(1)) · ck.

4 Adaptively Secure Synchronous Communication-
Efficient Protocol for Long Messages

In this section, we describe an adaptively-secure communication-efficient proto-
cols for long messages of size l = O(κ). In particular, we will achieve a commu-
nication complexity of ln + n · poly(κ) under the synchrony assumption while
tolerating t ≤ (1 − ε)n

2 faults.

4.1 Intuition

The O(ln + κn2) Approach [19]. Let us start by recalling the extension pro-
tocol proposed by Nayak et al. [19] which achieves a communication complexity
of ln + κn2 when l � n. The protocol splits the l-bit agreement task into two
sub-goals. The first sub-goal is to identify whether all honest parties can agree
on one of the honest inputs. The second sub-goal ensures parties share the l-bit
value efficiently if they have decided to agree upon an honest input in the first
sub-goal.

To achieve the first sub-goal, the protocol requires every party to create a
cryptographic accumulator corresponding to their input values and run a κ-bit
Byzantine agreement (BA) protocol to agree on the accumulated value. If the
κ-bit BA protocol outputs the same value as their input, they engage in another
1-bit BA protocol with input 1. Otherwise, they input 0 to the 1-bit BA protocol.
Finally, if the 1-bit BA protocol outputs 1, the parties proceed with the second
sub-goal related to sharing the long inputs (described in the next paragraph). If
the 1-bit BA protocol outputs 0, parties output ⊥ and end the protocol. Observe
that the κ-bit BA protocol ensures that parties have the same accumulated value
as their output; however, the 1-bit BA protocol is the one which puts all parties in
agreement on whether to engage in the “sharing” phase or not. If yes, it ensures
that some honest party does have the input corresponding to the agreed-upon
value (since otherwise, the 1-bit BA would output 0).

The second sub-goal relates to sharing the l-bit long input (for l � n) with
every other party with communication complexity O(ln). Observe that if all hon-
est parties share this value with every party, trivially, we have a communication
complexity of O(ln2). Moreover, we cannot rely on a single honest party (say a
chosen leader) to share this value directly with other parties either. For one, we
do not know which honest party has the input to be shared. Even if we did, a
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Byzantine party can always claim to not have received this value from the honest
leader. This cannot be distinguished from an honest party legitimately claiming
to not receive the value from a Byzantine leader. To address this concern, Nayak
et al. [19] rely on using erasure coding techniques instead. Each party that inputs
1 to the 1-bit BA protocol must have the same l-bit value (corresponding to the
agreed-upon accumulated value). Thus, each such party can create appropriate
(deterministic) n shares (using RS codes) with appropriate witnesses (cf. Defini-
tion 2) such that each share is of size O( l

n ). We call this the distribute step of the
protocol. The l-bit value can be reconstructed if a party receives a majority of
distinct shares. Thus, when a party receives a share in the distribute step, using
the witness, it verifies whether the share matches the agreed upon accumulated
value. If yes, it shares this value with all other parties. This step is called the
reshare step of the protocol. On receiving a majority of the shares, every party
can reconstruct the l-bit value. The honest majority assumption ensures that
all parties will be able to reconstruct the value; thus, no (Byzantine) party can
claim to not have received it.

Observe that the BA protocol used in the first sub-goal requires a communi-
cation complexity of κn2, which can be achieved using [18]. The communication
complexity to achieve the second sub-goal is O( l

n · n2) = O(ln) (sharing the
witnesses along with the share to verify the correctness of shares incurs and
additional O(κn2) term, not described here in this intuition).

Towards O(ln + n · poly(κ)) Communication Complexity with Adaptive
Security. We now describe our approach. At a high level, we maintain a similar
structure and have similar sub-goals as that of Nayak et al. [19]. However, we
need to achieve a better communication complexity while being adaptively secure
which brings in several subtleties.

To achieve the first sub-goal, we rely on an underlying adaptively-secure BA
protocol that has a communication complexity of O(n · poly(κ)) for κ and 1-bit
inputs [1]. At a high-level, this protocol achieves a 1-bit sub-quadratic BA by
selecting uniformly random and verifiable committees of size κ for each round of
the execution. The parties in the committees send protocol messages to all other
parties, who update their state based on the messages received. The committees
are elected using verifiable random functions [17] which depends on the party’s
secret key; thus, adversary cannot predict whether a given party would be elected
until the party sends a message to all other parties. Since this is a 1-bit BA
protocol, for κ-bit BA we use κ independent instances of this protocol.

To achieve the second sub-goal of sharing the l-bit inputs, observe that the
solution by [19] does not work in our scenario. In particular, in the reshare
step, even if each party sends a 1-bit value to every other party, this trivially
incurs a communication complexity of O(n2). When l is large, this is bounded
by O(ln); however, when l is small, e.g., l < n, this term is still quadratic. Thus,
our goal is to achieve a communication complexity of O(ln + n · poly(κ)) even
when κ ≤ l < n while achieving adaptive security. We take inspiration from the
sharing technique used in [19] but attempt to constrain the number of parties



Efficient Adaptively-Secure Byzantine Agreement for Long Messages 517

Fig. 1. Graphical representation of the distribute and reshare steps in our
approach. The figure assumes party Pi is the only party engaging in the distribute
step. In the distribute step, share sj is shared with each of the parties in bucket Bj .
In the reshare phase, a party in committee C∗ and in bucket Bj shares share sj with
all the n parties. The figure does not show the process involved in the agreement of
accumulated value and additional information such as witnesses shared by parties in
the distribute and reshare step.

that can send messages in the distribute and reshare steps of the protocol using
committee-based election techniques.

However, achieving this goal is riddled with challenges. First, in the distribute
step, due to the adaptive security requirement, a party does not know which
party will be in the committee in the reshare step. Second, in the distribute step,
to respect the communication complexity requirement, parties can only share l

κ -
sized shares with other parties, and not the entire l-bit message. Finally, the
sharing must happen in such a way that sufficiently many honest parties in the
reshare committee must have distinct shares so that the value can eventually be
reconstructed by all parties.

Our solution relies on publicly partitioning the parties into κ different buckets
B1, . . . , Bκ, e.g., based on their IDs. A visual sketch is depicted in Fig. 1. The
input would be split into κ different shares s1, . . . , sκ of size l

κ such that (1−ε)κ
2

distinct shares are sufficient to reconstruct the block (ε > 0, ε slack relates to
the committee election in the reshare step).

During the distribute step, parties in bucket Bj would receive share sj . In
the reshare step, we elect an independent reshare committee C∗ of size O(κ).
Thus, if a party belongs to C∗ and is from bucket Bj , then this party shares
sj with all the parties. Note that due to the use of an accumulator, parties can
verify the correctness of the shares relative to the (agreed-upon) accumulated
value, and thus would ignore incorrect shares. If we can ensure that all parties
receive (1 − ε)κ

2 distinct shares to reconstruct the l-bit input, then we would
achieve the goal with the desirable communication complexity.
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The crux of the concern is that, there are only O(κ) parties in C∗. Thus, in
expectation, each bucket Bj has O(1) parties who can potentially share sj . Due
to the stochasticity, some buckets may not have any parties elected. Moreover, in
a round, we cannot expect parties in the committee C∗ to send reshare messages
at exactly the same instant. This difference in times can potentially be used by
an adaptive adversary to adaptively corrupt parties such that sufficiently many
distinct shares are not shared. In particular, based on the number parties elected
in the first few buckets, the adversary can decide its corruption strategy for the
remaining buckets. This disallows the use of standard Chernoff-type bounds
which requires independence across buckets.

To address this, we instead rely on the balls and buckets analysis described
in Sect. 3. In particular, we can present this abstraction as throwing cκ balls
(elected committee members in C∗) into κ buckets uniformly at random. The
adversary has a corruption quota of slightly less than cκ

2 among the committee
members. The goal is then to ensure that there exists a constant c such that
(1 − ε)κ

2 distinct buckets have at least one honest committee member in C∗, so
that these members are guaranteed to send the corresponding messages during
the reshare step of the protocol. This is ensured in Corollary 4, which requires a
careful analysis on the balls and buckets process via McDiarmid’s inequality.

A final subtlety relates to the committee that should perform the distribute
step. It turns out that due to the adaptive security and communication com-
plexity requirement, the committee for the distribute step is the same as the
parties that input 1 and participate in the first step of the 1-bit BA protocol (to
achieve the first sub-goal). Intuitively, these are the parties which have access
to the l-bit value corresponding to the agreed-upon accumulated value and are
thus championing for all parties to agree upon the l-bit value. Thus, these par-
ties need to send both these messages (the one in distribute step and the other
in the first message for the 1-bit BA protocol) as a part of the same message;
otherwise, the adaptive adversary can corrupt the parties after sending one of
the two messages.

This completes the key intuition behind our protocol.

4.2 Protocol Description

As sketched above, our protocol makes use of several building blocks and setup.

Accumulator Setup. We assume a setup that chooses and distributes the
accumulator keys.

Protocol Setup for ΠsprBA

Accumulators

Generate the accumulator key ak = Gen(1κ, κ) and give it to all parties.
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Verifiable Random Functions. When describing our protocol, we assume
that parties have available via a trusted setup efficient algorithms ComProve
and ComVer that allow them to prove and verify membership of a committee,
and we do not make this explicit in our protocol (this can typically be achieved
via a VRF setup).

Short BA Protocols. We make use of the adaptively-secure sub-quadratic BA
protocol of Abraham et al. [1] as a building block. for both the κ-valued BA,
denoted as BA(κ), and the binary-valued BA, denoted BA(1). (Note that the
protocol in [1] is binary, but one can simply run it κ many times in parallel to
agree on a κ bit message.)

In the protocol [1], all parties participate in the protocol, and different sub-
sets of parties speak at different rounds. More concretely, at each round i, a
committee is chosen uniformly at random for each b ∈ {0, 1}. Here, the com-
mittee is tied to the round number as well as the value b. Then, the committee
members reveal themselves only when it is their turn to speak in the protocol.
Intuitively, once members of the committee send their messages for round i, it is
too late for the adversary to corrupt them, as they can not take back messages
that were previously sent by honest parties.2

Finally, we would like to remark that the protocol in [1] has the property that
if all honest parties in the first chosen committee have the same input value b,
all honest parties output b. This property is in contrast to the standard notion of
validity, which requires all honest parties to have the same input. Our protocol
will make use of this in an essential way.

Reed-Solomon Codes. We will use two sub-protocols, Encode and Reconstruct,
which are based on RS codes. We specify them relative to tκ which in our protocol
is set as tκ = (1 + ε)κ

2 .

– Encode(m). Given a message of size l, it divides the message into b blocks,
and computes κ codewords (s1, . . . , sκ) using RS codes, such that even when
tκ values are erased, one can recover the original message.

– Reconstruct(Si, ak, z, tκ) removes incorrect values sj for each pair (sj , wj) ∈ Si

that cannot be verified by the witness wj and accumulation value z. And then
reconstructs the message using RS code, where at most tκ values are removed.

Our protocol starts from a fixed (arbitrary) partition of the n parties into κ
buckets B1, . . . , Bκ of n/κ parties each. When describing our protocol, we will
refer to Cb

i as the committee for the i-th round of an execution of BA(1) for
the bit b. In our protocol specification, we make explicit the input value of first
committee in BA(1), whereas the rest of the committees are implicit inside the
protocol BA(1) and do not show up in the specification. Finally, we denote as C∗

a special committee (also selected at random using ComProve) whose members
are designated to perform the re-sharing step in our protocol.

2 Observe that, since committee members are tied to the bit b, the newly corrupted
members cannot equivocate unless they are in both committees. The likelihood of
that event is negligible.
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Protocol ΠsprBA

Let tκ = �(1 + ε)κ
2
�. The protocol is described from the point of view of party Pi

who holds an l-bit input message mi.

1: Compute Di := (s1, . . . , sκ) = Encode(mi), the accumulation value zi =
Eval(ak, Di). Input zi to BA(κ).

2: When the above BA outputs z, if z = zi and Pi ∈ C1
1 , input 1 to

BA(1). Moreover, distribute the long block as follows. Compute a witness
wj = CreateWit(ak, z, sj) for each share sj in Step 1 and send the tuple
(sj , wj) to each party Pk ∈ Bj . Otherwise, if z �= zi and Pi ∈ C0

1 , input 0 to
BA(1).

3: If the output of the above BA is 0, output ⊥ and abort. Otherwise, if Pi ∈
C∗ ∩ Bj : For the set of tuples {(sj , wj)} received in the previous step from
parties in C1

1 , if there exists an (sj , wj) such that Verify(ak, z, wj , sj) = 1,
then send (sj , wj) to all parties.

4: Let Si := {(sj , wj)} be the set of messages received from the previ-
ous step from parties in C∗. If there are messages from parties belong-
ing to at least (1 − ε)κ

2
different buckets, output the reconstructed value

Reconstruct(Si, ak, z, tκ). Otherwise, output ⊥.

The following theorem is proven via a sequence of lemmas.

Theorem 2. Let 0 < ε < 1/6. Assuming a setup for VRFs and accumulators,
ΠsprBA is a synchronous Byzantine agreement protocol secure up to t < (1 −
6ε)n/2 adaptive corruptions. The communication complexity is O(nl + κ3n) for
l-bit input values.

In the proofs, we will need that the sub-protocol BA(1) satisfies the following
somewhat stronger committee-based notion of validity described in the lemma
below.

Lemma 3. If all honest parties in Cb
1 input b to BA(1), and no honest party in

C1−b
1 inputs 1 − b to BA(1), then the output of BA(1) is b.

Proof. This follows from the fact that in protocol BA(1) only parties in the
committee for the first round, which is Cb

1 or C1−b
1 , speak and send their input

to all other parties. Hence, if only honest parties in Cb
1 input to BA(1) and no

honest party from C1−b
1 inputs to BA(1), then it follows immediately from the

validity proof given in [1] that the protocol should output b.

Lemma 4. ΠsprBA satisfies validity for t < (1 − 6ε)n/2.

Proof. If all honest parties have the same input message mi = m, then all honest
parties input the same accumulated value z = zi to BA(κ) in Step 1. By validity
of BA(κ), all honest parties receive z as output. Hence, all honest parties in C1

1

input 1 to BA(1) in Step 2 and distribute the shares of m. By Lemma 3, they
receive 1 as output from BA(1).

Each honest party Pj ∈ C∗ ∩ Bj receives a valid share si
j from each honest

party Pi ∈ C1
1 , and forwards one of these shares to all parties. Parties are added
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to C∗ uniformly at random, each with probability cκ/n, for constant c. Denote
E0 the event that fewer than (1−ε)cκ parties are in C∗ for ε > 0. By Corollary 3,
we have that Pr[E0] is negligible.

Whenever E0 does not occur, we can map the process of distributing parties
from C∗ into buckets to the process of throwing cκ or more balls at κ buckets.
Moreover, the optimal strategy for the adversary to minimize the number of
buckets in which an honest party sends a share is clearly to corrupt the buckets
that contain smaller amount of parties from C∗.

Let us denote E1 the event that cκ
2 (1−4ε) or more parties in C∗ are corrupted.

When t < (1−6ε)n/2, by Corollary 1, Pr[E1] is negligible. Therefore, by a union
bound, Pr[E0 ∪ E1] is also negligible.

In the following, we condition on the event ¬E0 ∧ ¬E1 (which by the above
occurs with overwhelming probability).

Let c′ = (1 − ε)c. By Corollary 4, and choosing τ = 1/2, there is a constant

c′
1/2 such that

∑c′
1/2

i=1 i ·bi ≥ (1−ε) (1/2 − oc(1)) ·c′κ ≥ c′κ
2 (1−2ε), where the last

inequality holds as long as oc(1) ≤ ε
2(1−ε) . Substituting, c′ = (1 − ε)c, we have

∑c′
1/2

i=1 i · bi ≥ cκ
2 (1− 3ε). Therefore, the adversary can not corrupt all committee

members in the buckets that contain up to c′
1/2 or less committee members.

These amounts of buckets, tκ, correspond to at most �(1 + ε)κ/2� buckets, by
Corollary 4.

Putting things together, at Step 4, at least honest parties from κ − tκ ≥
(1− ε)κ

2 buckets send a share, and thus every honest party receives at least that
many valid shares. This way, all honest parties can reconstruct and output the
long message m.

Lemma 5. ΠsprBA satisfies consistency for t < (1 − 6ε)n/2.

Proof. If BA(1) outputs 0, all honest parties output ⊥. If BA(1) outputs 1,
then by Lemma 3, there must exist an honest party Pi ∈ C1

1 that input 1 to
BA(1). First, this party Pi distributes its long messages mi. Second, by Step 2
of the protocol, it must be the case that this honest party has received z = zi.
Using the consistency property of BA(κ), all honest parties must have delivered
z = zi. Thus, every honest party Pj ∈ C∗ obtains a valid tuple (sj , wj) from
Pi and can verify its correctness using the accumulator value z and forward
it. Hence, in Step 4, we can use the same argumentation as in the previous
lemma to establish that at least κ − tκ honest parties in C∗ send a share and
every honest party can subsequently reconstruct mi. Note that no other value
can be reconstructed, because security of the accumulator and consistency of
BA(κ) ensures that all honest parties share the same long message, and dishonest
parties cannot compute valid pairs of share-witness different from those received
by honest parties.

Communication Complexity. The most expensive steps in the protocol are
the run of BA(κ) in Step 1 (which itself consists of κ parallel runs of BA(1)) and
the distribution of the long blocks in Step 2. The costs for Step 1 are bounded
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as O(κ3 · n) since every run of BA(1) costs O(κ2 · n). The costs for Step 2 are
bounded by O(l · n + κ2n), given that each of O(κ) parties send a message of
length 
/κ + κ to all parties. Overall, we obtain a complexity of O(n · l + κ3 · n).

5 Adaptively Secure Asynchronous Communication-
Efficient Protocol for Long Messages

We briefly recall the asynchronous adaptively-secure BA protocol of Blum et
al. [3]. As for the previous protocol, the step of each round i is performed by
a randomly chosen committee Ci, who reveals itself only when it is their turn
to speak in the protocol. Again, we assume that parties are endowed (via some
trusted setup) with efficient routines ComProve and ComVer that allow to prove
and verify committee membership. The remaining accumulator setup is as for
ΠsprABA and we also reuse the routines Encode and Reconstruct introduced in the
previous section.

Again, we run two versions of the protocol, the first is for κ-valued messages
and denoted as ABA(κ), the other for binary-valued messages, and denoted as
ABA(1). Since the protocol in [3] is binary, we simply run it κ many times in
parallel to agree on a κ bit message. As before, we choose the committees with
expected size cκ. Note that in protocol [3], contrary to the synchronous case, the
committees are not tied to a specific value.

Protocol ΠsprABA

Let tκ = �(1 + ε) · κ
3
�. The protocol is described from the point of view of party

Pi who holds an l-bit input message mi.

1: Compute Di := (s1, . . . , sκ) = Encode(mi), the accumulation value zi =
Eval(ak, Di). Input zi to ABA(κ).

2: When the above BA outputs z, if z = zi and Pi ∈ C1, input 1 to
ABA(1). Moreover, distribute the long block as follows. Compute a witness
wj = CreateWit(ak, z, sj) for each share sj in Step 1 and send the tuple
(sj , wj) to each party Pk ∈ Bj . Otherwise, if z �= zi and Pi ∈ C1, input 0 to
ABA(1).

3: If the output of the above BA is 0, output ⊥ and abort. Otherwise, if Pi ∈
C∗ ∩ Bj : For the set of tuples {(sj , wj)} received in the previous step from
parties in C1, if there exists an (sj , wj) such that Verify(ak, z, wj , sj) = 1,
then send (sj , wj) to all parties.

4: Let Si := {(sj , wj)} be the set of messages received from the previ-
ous step from parties in C∗. If there are messages from parties belonging
to at least 2κ

3
· (1 − ε) different buckets, output the reconstructed value

Reconstruct(Si, ak, z, tκ). Otherwise, output ⊥.

We follow a very similar strategy as in the previous section. In our main the-
orem statement, we include the cryptographic setup required to run the protocol
of Blum et al. [3] without going in to much details as to how they work. Roughly
speaking, their protocol starts from an initial setup provided by a trusted dealer.
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This initial setup allows parties to run a fixed number of multi-party computa-
tions (MPCs) and BAs with subquadratic communication complexity. The par-
ties use these cheap (in terms of communication) MPCs to emulate the trusted
dealer and refresh the setup for future cheap MPCs and BAs for any number of
times. To run MPC with these complexities, their protocol requires strong setup
assumptions including threshold fully homomorphic encryption, non-interactive
zero knowledge, and anonymous public key encryption (where a ciphertext can
not be linked to a public key without knowing the secret key).

Theorem 3. Let 0 < ε < 1/4. Assuming a setup for non-interactive zero-
knowledge, threshold fully homomorphic encryption, and anonymous public key
encryptions, ΠsprABA is an asynchronous Byzantine agreement protocol secure
up to t ≤ (1 − 6ε)n/3 adaptive corruptions. The communication complexity is
O(nl + κ6n) for l-bit values.

The proof of the following lemma is almost identical to that of Lemma 3.

Lemma 6. If all honest parties in C1 input b to ABA(1) then the output of
ABA(1) is b.

Lemma 7. ΠsprABA satisfies validity if t ≤ (1 − 6ε)n/3 parties are corrupted.

Proof. If all honest parties have the same input message mi = m, then all honest
parties input the same accumulated value z = zi to ABA(κ) in Step 1. By validity
of ABA(κ), all honest parties receive z as output. Hence, all honest parties in C1

input 1 to ABA(1) in Step 2 and distribute the shares of m. By Lemma 6, they
receive 1 as output from ABA(1).

Each honest party Pj ∈ C∗ ∩ Bj receives a valid share si
j from each honest

party Pi ∈ C1, and forwards one of these shares to all parties. Parties are added
to C∗ uniformly at random via ComProve with probability cκ/n. Denote E0 the
event that fewer than (1 − ε)cκ parties are in C∗, for ε > 0.

Whenever E0 does not occur, we can map the process of adding parties to
C∗ (via ComProve) to the process of throwing cκ or more balls at κ buckets. By
Corollary 3, we have that Pr[E0] is negligible. Moreover, the optimal strategy for
the adversary to minimize the number of buckets in which an honest party sends
a share is clearly to corrupt the buckets that contain smaller amount of parties
from C∗.

Let us denote E1 the event that cκ
3 (1−4ε) or more parties in C∗ are corrupted.

By Corollary 2, Pr[E1] is negligible. Therefore, by a union bound, Pr[E0 ∪ E1] is
also negligible.

In the following, we condition on the event ¬E0 ∧ ¬E1 (which by the above
occurs with overwhelming probability).

Let c′ = (1 − ε)c. By Corollary 4, and choosing τ = 1/3, there is a constant

c′
1/3 such that

∑c′
1/3

i=1 i · bi ≥ (1 − ε) · (1/3 − oc(1)) · c′κ ≥ c′κ
3 (1 − 2ε), where

the last inequality holds as long as oc(1) ≤ ε
3(1−ε) . Therefore, the adversary

can not corrupt all committee members in the buckets that contain up to c′
1/3
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many committee members. These amounts of buckets correspond to at most
�(1 + ε)κ/3� buckets, by Corollary 4.

Putting things together, at Step 4, at least κ − tκ ≥ (1 − ε) 2κ
3 honest parties

in C∗ send a share, and thus every honest party receives at least that many valid
shares. This way, all honest parties can reconstruct and output the long message
m.

The proof of the following lemma is identical as for the synchronous case.

Lemma 8. ΠsprABA satisfies consistency if t ≤ (1−6ε)n/3 parties are corrupted.

Communication Complexity. The most expensive steps in the protocol are
the run of BA(κ) in Step 1 (which itself consists of κ parallel runs of BA(1)) and
the distribution of the long blocks in Step 2. The costs for Step 1 are bounded
as O(κ6 · n) since every run of BA(1) costs O(κ5 · n). The costs for Step 2 are
bounded by O(l · n). Overall, we obtain a complexity of O(n · l + κ6 · n).
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2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

3. Blum, E., Katz, J., Liu-Zhang, C.-D., Loss, J.: Asynchronous Byzantine agreement
with subquadratic communication. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12550, pp. 353–380. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64375-1 13

4. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: IEEE
Symposium on Reliable Distributed Systems (SRDS 2005), pp. 191–201. IEEE
(2005)

5. Chan, T.-H.H., Pass, R., Shi, E.: Sublinear-round byzantine agreement under cor-
rupt majority. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC
2020. LNCS, vol. 12111, pp. 246–265. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45388-6 9

6. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT:
super fast and partition resilient byzantine agreement. Cryptology ePrint Archive,
Report 2018/377 (2018). https://eprint.iacr.org/2018/377

7. Chongchitmate, W., Ostrovsky, R.: Information-theoretic broadcast with dishonest
majority for long messages. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018.
LNCS, vol. 11239, pp. 370–388. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 14

8. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
In: Probert, R.L., Fischer, M.J., Santoro, N. (eds.) 1st ACM PODC, pp. 132–140.
ACM, August 1982

9. Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In: Rup-
pert, E., Malkhi, D. (eds.) 25th ACM PODC, pp. 163–168. ACM, July 2006

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/978-3-030-45388-6_9
https://doi.org/10.1007/978-3-030-45388-6_9
https://eprint.iacr.org/2018/377
https://doi.org/10.1007/978-3-030-03807-6_14
https://doi.org/10.1007/978-3-030-03807-6_14


Efficient Adaptively-Secure Byzantine Agreement for Long Messages 525

10. Ganesh, C., Patra, A.: Broadcast extensions with optimal communication and
round complexity. In: Giakkoupis, G. (ed.) 35th ACM PODC, pp. 371–380. ACM,
July 2016

11. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454
(2017). http://eprint.iacr.org/2017/454

12. Hirt, M., Raykov, P.: Multi-valued byzantine broadcast: the t < n case. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, pp. 448–465. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 24

13. King, V., Saia, J.: From almost everywhere to everywhere. In: DISC (2009)
14. King, V., Saia, J.: Breaking the O(n2) bit barrier: scalable byzantine agreement

with an adaptive adversary. In: Richa, A.W., Guerraoui, R. (eds.) 29th ACM
PODC, pp. 420–429. ACM, July 2010

15. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: 17th SODA,
pp. 990–999. ACM-SIAM, January 2006

16. Liang, G., Vaidya, N.: Error-free multi-valued consensus with byzantine failures. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (2011)

17. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press, October 1999

18. Momose, A., Ren, L.: Optimal communication complexity of authenticated byzan-
tine agreement. In: 35th International Symposium on Distributed Computing
(2021)

19. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols
for byzantine broadcast and agreement. In: DISC (2020)

20. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

21. The DFINITY Team: The internet computer for geeks. Cryptology ePrint Archive,
Report 2022/087 (2022). https://ia.cr/2022/087

22. Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multivalued
byzantine agreement. Inf. Process. Lett. 18(2), 73–76 (1984)

http://eprint.iacr.org/2017/454
https://doi.org/10.1007/978-3-662-45608-8_24
https://doi.org/10.1007/978-3-540-30574-3_19
https://ia.cr/2022/087


Concurrently Composable
Non-interactive Secure Computation

Andrew Morgan1(B) and Rafael Pass2

1 Cornell University, Ithaca, USA
asmorgan@cs.cornell.edu

2 Cornell Tech, New York, USA

rafael@cs.cornell.edu

Abstract. We consider the feasibility of non-interactive secure two-
party computation (NISC) in the plain model satisfying the notion of
superpolynomial-time simulation (SPS). While stand-alone secure SPS-
NISC protocols are known from standard assumptions (Badrinarayanan
et al., Asiacrypt 2017), it has remained an open problem to construct a
concurrently composable SPS-NISC. Prior to our work, the best proto-
cols require 5 rounds (Garg et al., Eurocrypt 2017), or 3 simultaneous-
message rounds (Badrinarayanan et al., TCC 2017).

In this work, we demonstrate the first concurrently composable SPS-
NISC. Our construction assumes the existence of:

– a non-interactive (weakly) CCA-secure commitment,
– a stand-alone secure SPS-NISC with subexponential security,

and satisfies the notion of “angel-based” UC security (i.e., UC with a
superpolynomial-time helper) with perfect correctness.

We additionally demonstrate that both of the primitives we use (albeit
only with polynomial security) are necessary for such concurrently com-
posable SPS-NISC with perfect correctness. As such, our work identifies
essentially necessary and sufficient primitives for concurrently compos-
able SPS-NISC with perfect correctness in the plain model.

1 Introduction

Secure two-party computation is a primitive that allows two parties to compute
the result f(x, y) of a function f on their respective inputs x,y, while ensuring
that nothing else is leaked. In this paper, we focus on secure two-party compu-
tation in the setting of minimal communication, where both players send just
a single message. The first player, called the receiver, speaks first, and next
the second player, called the sender, responds; finally, only the receiver recovers
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the output f(x, y) of the function. Such 2-round protocols are referred to as
non-interactive secure computation protocols (NISC)1.

Security of secure computation protocols is traditionally defined using the
simulation paradigm, first introduced in [30] and extended in several later works
[6,12,29,40]. Roughly speaking, security is defined by requiring that the “view”
of any polynomial-time attacker can be simulated by a polynomial-time attacker
that participates in an “idealized” version of the protocol where the parties
only interact with a trusted party computing f . While this notion of “basic”
simulation-based security is often adequate in cases where a protocol is run in
isolation, there are several important properties of real-world security that are
not considered by this definition. For instance, many protocols interact with
other protocols, either through using them as components or sub-protocols or
through existing in the same setting; intuitively, it is desirable that a definition of
security should provide a guarantee that such a composition of multiple provably
secure protocols is still secure. Some of the classical definitions of simulation-
based security (e.g., [12,40]) in fact did guarantee such a notion of composability.

Concurrently Composable Secure Computation. All of the early definitions of
simulation-based security, however, had a caveat; security was only considered
when the protocol was executed in a stand-alone setting where only a single
instance could be executed at a time. Realistically, protocols are often executed
in a concurrent setting (originally formalized in [17,19,20]) where many instances
of a protocol are executed, potentially simultaneously, between many different
parties. An adversary in this model may control a large subset of the players,
and furthermore is able to observe the results of ongoing interactions in order
to adaptively influence future interactions by either reordering communication
or changing the behavior of the corrupted parties. Ideally, we would want to be
able to show that a protocol is concurrently secure, or that a notion analogous to
simulation-based security holds even against a more powerful adversary in this
multi-instance setting. As with composability, though, concurrent security is not
implied by basic definitions of simulation-based security; while definitions such
as those of [12,40] guaranteed composable security in a non-concurrent setting,
the first definition to achieve both properties was that of universally composable
(UC) security, first proposed in [13]. At a high level, UC security expands further
on the simulation paradigm by considering an “external observer”, or environ-
ment, which runs and observes interactions between an adversary and potentially
many concurrent instances of a protocol Π. We say that Π UC-realizes some
functionality f if the environment cannot distinguish between the “real” inter-
action and an “ideal” interaction between a polynomial-time simulator and the
perfectly secure “idealized” version of the functionality f . Furthermore, if a pro-
tocol π UC-realizes some functionality g and Π uses π as a sub-protocol, the
composability of UC guarantees that, since the environment cannot distinguish

1 As is well-known, in this non-interactive setting, it is inherent that only one of the
players can receive the output.
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interactions with π from simulated interactions with the idealized g, we can
effectively replace π with the idealized g when proving Π secure.

While UC security provides extremely strong guarantees, it also has corre-
spondingly restrictive limitations on what can be proven secure. Even in the case
of two-party computation, impossibility results exist showing that very few func-
tionalities f(x, y) can be computed UC-securely [15]—or, disregarding compos-
ability, even concurrently securely [38]—without introducing additional trusted
setup assumptions.

The notion of superpolynomial-time simulation (SPS) [43], a relaxation of
UC security which allows the simulator to run in superpolynomial time, has
allowed for the construction of several protocols, both for two-party computa-
tion [3,41,43,47] and the more general case of multi-party computation [5,23,37],
which are able to securely realize virtually all functionalities. While some defini-
tions of SPS security provide the same concurrency guarantees as UC security,
SPS security fails to uphold many of the desirable composability properties: the
problem is that SPS security only requires that any polynomial time attacker
can be simulated (in superpolynomial time), but to perform composition, we also
need to simulate “simulated attackers”, which run in superpolynomial time. The
notion of “angel-based” UC security [45] and its generalization of “UC-security
with a superpolynomial-time helper” [16] remedy this issue and provide for a
composable notion of concurrent SPS-security: in these models, the simulation
is polynomial-time but both the adversary and the simulator have access to a
“helper” oracle (an “angel”) which implements some specific superpolynomial-
time functionality. Angel-based security is a strictly stronger notion than SPS
security, and it retains all of the composability properties of standard UC secu-
rity, with the important caveat that composability only holds with protocols
that are secure with respect to the same oracle. Furthermore, secure computa-
tion protocols are feasible in the angel-based security model [16,31–33,39,45];
the most recent constructions have been based on the notion of “CCA-secure”
commitments [16], which are commitment schemes that satisfy hiding in the
presence of an adversaries that is given access to a “decommitment oracle”.

On the Existence of Concurrently-Composable NISC. In this work, we consider
the feasibility of concurently composable non-interactive (i.e., 2-round) secure
computation protocols, NISCs. As is well known, even if we do not care about
concurrency or composability, NISC protocols are not possible in the plain model
(i.e., without any trusted set-up assumptions) using the standard notion of
polynomial-time simulation [28]. On the other hand, if we consider the relaxed
notion of SPS security, NISC protocols have been shown to be feasible based
on standard assumptions in recent works [3,41,43]. (Indeed, enabling secure 2-
round protocols was one of the original motivations behind the notion of SPS
security [43].) These works, however, only consider stand-alone SPS security.

In fact, even if we require just concurrent SPS security (let alone both con-
current and composable), the question of what we can achieved remains open.
The state of the art can be summarized as follows:
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– [23] proposed the first concurrently secure constant-round protocol based on
standard assumptions, and this bound was later reduced to 5 [24].

– [4] presented a three-round concurrently SPS-secure multi-party computa-
tion protocol for general functionalities, which can be reduced to two rounds
for specific subclasses of functionalities; however, their protocol relies on the
simultaneous-message model, and so it still requires five (or, for restricted
functionalities, three) messages for two-party computation in the standard
(synchronous) model.

– Other general two-round concurrently secure multi-party computation proto-
cols (e.g., [7,8,25]) exist which require a common reference string (CRS) as
“trusted setup”.

– Two recent works (concurrent with and independent from this result) con-
structed two-round concurrently SPS-secure protocols without trusted setup
in the simultaneous-message model (where all participants send a message at
the same time in each round). [1] presented a two-round protocol for two-sided
two-party computation (where both parties receive the output) satisfying con-
current SPS security, and [21] presented a two-round MPC protocol satisfying
both concurrent and self-composable SPS security. In contrast to these works,
we consider a synchronous model where only one participant may send a sin-
gle message per round (i.e., non-interactive protocols), but we only consider
one-sided functionalities.

– For the special case of zero-knowledge arguments of knowledge, [43] presented
a 2-round protocol that satisfies concurrent SPS-security; but concurrent
security only holds in the setting of “fixed”, as opposed to “interchangeable”,
roles—that is, the attacker can corrupt either all provers, or all verifiers. (On
a technical level, this notion of concurrency with “fixed roles” does not deal
with non-malleability [17].)

Hence, prior work leaves open the question of whether, in the plain model, we can
achieve a concurrently secure protocol even for specific two-party functionalities,
such as zero-knowledge arguments of knowledge, in two synchronous (rather than
simultaneous-message) rounds.

Meanwhile, for composable “angel-based” security in the plain model, the
situation is even worse; the protocol proposed by [16] requires nε rounds, while
[32] reduced this to logarithmic round complexity and [33] further reduced this to
a constant. Thus, the literature leaves open the following fundamental problem:

Is concurrently composable NISC possible in the plain model, and if so,
under what assumptions?

In fact, we are not aware of NISC protocols even for specific functionalities (e.g.,
zero-knowledge arguments of knowledge) that satisfy any “meaningful notion” of
concurrent security with “interchangeable roles” (i.e., the adversary can corrupt
the sender in some sessions and the receiver in others) even with respect to just
2 concurrent sessions!2

2 In particular, as far as we are aware, even getting a 2-round non-malleble SPS-zero-
knowledge argument of knowledge was open.
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1.1 Our Results

We solve both of the above questions by demonstrating the existence of a NISC
protocol for general functionalities satisfying not only concurrent SPS security
but also UC security with a superpolynomial-time helper. Our construction relies
on the following building blocks:

– A non-interactive CCA-secure commitment scheme [9,16,35,42].
– A stand-alone secure SPS-NISC with subexponential security [3].

In fact, as we show, a relaxed version of CCA-secure commitments—which
we refer to as weakly CCA-secure commitments—suffices; this notion differs from
the standard notion of CCA security only in that the CCA oracle, given a com-
mitment c, rather than returning both the value v committed to and the ran-
domness r used in the commitment, instead returns just the value v (analogous
to the definition of CCA security for encryption schemes [46]). Our main result,
then, is as follows:

Theorem 1 (Informal). Assume there exist a non-interactive weakly CCA-
secure commitment scheme and a stand-alone subexponentially SPS-secure NISC
protocol for general functionalities. Then there exists a NISC protocol for gen-
eral functionalities (with perfect correctness) which achieves UC security with a
superpolynomial-time helper (i.e., achieves angel-based security).

We emphasize that before our result, it was not known how to even construct
non-malleable 2-round protocols in the plain model (i.e., protocols secure under
just two different executions where the adversary may play different roles) for
any non-trivial functionality. Furthermore, we demonstrate that the two building
blocks we rely on are also necessary for concurrently composable SPS-NISC with
perfect correctness3:

Theorem 2 (Informal). Assume the existence of a non-interactive NISC for
general functionalities (with perfect correctness) satisfying UC security with a
superpolynomial-time helper. Then, there exist both a non-interactive weakly
CCA secure commitment scheme and a stand-alone secure SPS-NISC for general
functionalities.

Note that the only gap between the assumptions is that our feasibility result
(Theorem 1) relies on the existence of a subexponentially-secure SPS-NISC,
whereas Theorem 2 only shows that a polynomially-secure SPS-NISC is needed.
But except for this (minor) gap, our work provides a full characterization of the
necessary and sufficient primitives for NISC (with perfect correctness) satisfying
UC security with a superpolynomial-time helper.

Thus, our work should be interpreted as showing that to upgrade a stand-
alone secure NISC to become concurrently composable, the existence of weakly

3 As usual, perfect correctness means that if both parties act honestly, then the pro-
tocol will output the correct result of the computation with probability 1.
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CCA-secure commitments is both necessary and sufficient. Our work thus further
motivates the importance of studying non-interactive CCA-secure commitments;
furthermore, it highlights that perhaps the weaker notion of “weak” CCA secu-
rity, introduced here, may be more natural than the stronger version used in
earlier works.

On the Realizability of the Building Blocks. As just mentioned, our main results
demonstrate that the two building blocks—non-interactive weakly CCA-secure
commitments and stand-alone SPS-NISC—are both necessary and sufficient for
constructing concurrently composable SPS-NISC. SPS-NISC with subexponen-
tial security can be constructed based on a variety of standard assumptions, such
as subexponential hardness of the Decisional Diffie-Hellman, Quadratic Resid-
uosity, or N th Residuosity assumptions [3] or subexponential hardness of the
Learning With Errors assumption [10].

Non-interactive CCA secure commitments, however, require more complex
assumptions. They were first constructed in [42] based on adaptive one-way per-
mutations; later, [35] presented such a scheme, albeit with only uniform security
(i.e., security against uniform attackers) based on keyless collision-resistant hash
functions, injective one-way functions, non-interactive witness-indistinguish-able
arguments (NIWIs), and subexponentially-secure time-lock puzzles. Even more
recently, [9] presented a scheme also satisfying non-uniform security by replac-
ing the keyless collision-resistant hash function with a multi-collision-resistant
keyless hash function; while their construction is only claimed to achieve “con-
current non-malleability” [36,44] (and not the stronger notion of CCA security),
it seems that a relatively minor modification of their analysis (similar to the
analysis in [35]) would show that their construction also achieves CCA security
when all the underlying primitives satisfy subexponential security.

Overview. We give a technical overview of our main result in Sect. 2, provide def-
initions in Sect. 3, formally state Theorem 1 in Sect. 4. Due to space limitations,
we have deferred the formal proof to the full version of our paper. In addition, we
formalize and prove Theorem 2 in Sect. 5 (again, missing proofs for this section
are provided in the full version.)

2 Technical Overview

In this section, we provide a high-level discussion of our security definition and
our protocol. At a high level, UC security expands on the simulation paradigm
by considering an “external observer”, or environment, which runs and observes
interactions between an adversary and potentially many concurrent instances of a
protocol Π. We say that Π UC-realizes some functionality f if the environment
cannot distinguish between the “real” interaction and an “ideal” interaction
between a polynomial-time simulator and the perfectly secure “idealized” ver-
sion of the functionality f . We will demonstrate a strong and composable notion
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of concurrent security using the externalized UC model [12,14], where we assume
the adversary, the environment, and the simulator are strictly polynomial-time
but have access to an “imaginary angel”, or a global “helper” entity H that
implements some superpolynomial-time functionality. (This notion was first con-
sidered in [45] for the case of non-interactive, stateless, angels) In our case (as
in [16]) H will implement the CCA decommitment oracle O for a CCA secure
commitment; while interacting with a party P , H will send a valid decommit-
ment in response to any commitments made using that party’s identity as the
tag. (Since the adversary controls corrupted parties, this effectively means that
H will decommit any commitments with a corrupted party’s identifier, but none
with an honest party’s identifier). CCA security guarantees, then, that an adver-
sary will never be able to break an honest party’s commitment; on the other
hand, the presence of the helper H makes it relatively easy for the simulator S
we construct for the definition of UC security to extract information necessary
for simulation from corrupted parties’ commitments.

Aside from the commitment scheme, our protocol consists of two major sub-
components. First, in order to evaluate the functionality f(x, y), we begin with a
NISC protocol that satisfies stand-alone security with superpolynomial-time sim-
ulation. In order to build this into a protocol satisfying full UC security, however,
we will need to leverage the CCA-secure commitment scheme in order to allow
the simulator to extract the malicious party’s input from their message; since the
simulator is restricted to polynomial time (with access to the CCA helper H), this
cannot be done by simply leveraging the superpolynomial-time simulator of the
underlying NISC. Instead, if both parties commit to their respective inputs and
send the commitments alongside the messages of the underlying NISC, the simu-
lator can easily use the CCA helper to extract the inputs from the commitments.
This, however, presents another issue: namely, there must be a way to verify that a
potentially malicious party commits to the correct input (i.e., the same one they
provided to the NISC). For the case of a corrupted sender, this will require the
other major component of our protocol: a 2-round zero-knowledge (ZK) interac-
tive argument with SPS security; unsurprisingly, we remark that an appropriate
such SPS-ZK protocol can be obtained from an SPS-NISC.

Towards intuitively describing our protocol, we now briefly describe how we
deal with extracting from a malicious receiver and sender before presenting the
complete protocol.

Dealing with a Malicious Receiver: Using “Interactive Witness Encryption”. As
suggested above, the first step towards extracting a malicious receiver’s input x
is to have the receiver commit to their input x and send the commitment cx with
their first-round message. This way, when the receiver is corrupted, the simulator
can extract x using the decommitment helper H. Of course, we require a way
to verify that the commitment sent by the receiver is indeed a commitment
to the correct value of x (i.e., the same as the receiver’s input to the NISC
which computes f(x, y)). We deal with this using a technique reminiscent of
the recent non-concurrent NISC protocol of [41], by using the underlying NISC
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to implement an “interactive witness encryption scheme”4. The receiver will, in
addition to their input x for f , input the randomness rx used to generate the
commitment cx, as well as the corresponding decommitment dx, to the NISC;
the sender will input cx in addition to y, and the NISC will return f(x, y) if and
only if (cx, dx) is a valid commitment of x using randomness rx. Hence, if the
receiver sends an invalid commitment to x to the sender, they receive ⊥ from
the NISC instead of the correct output; otherwise, if it is valid, the simulator
can always extract the correct value of x from the commitment using H.

Simulation with a Malicious Receiver: Using a “Two-Track” Functionality. The
second key challenge in the corrupted-receiver case is to ensure that we can
simulate the sender message of the underlying NISC protocol, since the simulator
in this case does not know the sender’s input y. To deal with this, we use an SPS-
ZK argument to prove that the sender’s NISC message is correctly generated,
and we additionally add a two-track functionality for the underlying NISC and
ZK argument to preserve simulatability. First, we add a trapdoor t, chosen at
random and committed to by the receiver simultaneously with x. To ensure that
the corrupted-receiver simulator can properly simulate the output of the NISC,
we “fix” the output when the trapdoor is used; that is, we augment the NISC’s
functionality yet again to take inputs t′ and z∗ from the sender and output z∗ if
the sender provides t′ which matches the receiver’s trapdoor t. More explicitly,
the sender can program the output of the computation in case it can recover the
trapdoor t selected by the receiver.

The ZK argument will then prove that either (1) there exists a witness
w1 demonstrating that the sender’s NISC message is correctly generated (with
respect to their input y) given the receiver’s first message, OR (2) there exists a
witness w2 which demonstrates that the sender’s NISC message was generated
using the trapdoor t and no input y (which, in particular, means that the NISC
will output ⊥ if the trapdoor is incorrect). The honest sender can provide a witness
for statement (1), while the simulator in the malicious receiver case can decommit
t using H to obtain the trapdoor and generate a witness for statement (2).

Dealing with a Malicious Sender: Using an “Argument of Knowledge”. The
above, however, is not quite sufficient to simulate for a corrupted sender as
well; we furthermore need an extractability, or “argument of knowledge”, prop-
erty such that the sender not only proves that there exists such a witness but
also demonstrates that it knows such a witness—in other words, such a witness
should be extractable from the prover’s message in superpolynomial time. This
will be necessary to show that a corrupted sender cannot provide a valid witness

4 Recall that witness encryption [22] is a primitive where a message m can be encrypted
with a statement x so that anyone with a witness w to x can decrypt m, but m
cannot be recovered if x is false. Here, we would like cx to be the “statement” that
the commitment is correctly generated, and the randomness rx and decommitment
dx the “witness”.
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w2 to the trapdoor without having recovered the correct trapdoor t and thus
broken the security of the commitment scheme.

In our case, since the only extractor available to us is the decommitment ora-
cle H, we implement extractability by using a technique from [43] which adds a
commitment to the witness to the statement of the proof. The sender provides a
witness (w1, w2) and two commitments c1 and c2, and the proof accepts either if
c1 is a valid commitment to w1 and w1 is a valid witness to statement (1) above,
or if the respective statement holds for c2, w2, and statement (2). This way, a
corrupted sender must with overwhelming probability use a witness for state-
ment (1) in its proof (implying that its NISC messages and commitment to y are
correctly generated), as, otherwise, a commitment of a correct witness for state-
ment (2) would reveal the trapdoor t when decommitted and thus clearly break
CCA security of the commitment scheme. Finally, as w1 includes y, the com-
mitment c1 also provides the necessary extractability for the corrupted sender’s
input y via the decommitment helper H in the corrupted-sender case.

2.1 Protocol Summary

With the intuition and components described above, we can summarize our full
protocol Π for secure two-party computation of a functionality f(·, ·):

– The receiver, given input x, generates a random “trapdoor” t and does as
follows:

• Generates commitment cx for x||t (respectively), using randomness rx.
• Generates the first-round message zk1 of a two-round SPS-ZK argument.
• Generates the first-round message msg1 of the underlying NISC protocol

π, which will securely compute the functionality h described below, using
(x, rx, t) as its input.

It sends (msg1, zk1, cx) to the sender.
– The sender, given input y and the receiver’s first-round message

(msg1, zk1, cx), does as follows:
• Generates the second-round message msg2 of the underlying NISC π,

using (cx, y,⊥,⊥) as its input and rNISC for randomness.
• Using witness w1 = (rNISC, y) and letting c1 and c2 be commitments to

w1 and 0, respectively, generates the second-round message zk2 of the ZK
argument for statement (msg1,msg2, cx, c1, c2) proving that either:
(1) there exists a witness w1 = (rNISC, y) that demonstrates that msg2 was

correctly and consistently generated with respect to the receiver’s first
message, the sender’s input y, and the randomness rNISC, and c1 is a
valid commitment to w1, OR:

(2) there exists a witness w2 = (rNISC, t, z∗) that demonstrates that
msg2 was generated using input (cx,⊥, t, z∗) (i.e., using the trapdoor
instead of y), and c2 is a valid commitment to w2.

It sends (msg2, zk2, c1, c2) to the receiver.
– The receiver, given the sender’s message (msg2, zk2, c1, c2), does as follows:



Concurrently Composable Non-interactive Secure Computation 535

• Verifies that zk2 is an accepting proof with respect to the statement
(msg1,msg2, cx, c1, c2). Terminates with output ⊥ if not.

• Evaluates and returns the output z from the NISC π.

The functionality h for the inner NISC, on input (x, rx, t) from the receiver
and (cx, y, t′, z∗) from the sender, does the following:

– Verifies that cx is correctly generated from x||t and the randomness rx. Out-
puts ⊥ if not.

– If the trapdoor t′ given by the sender matches the receiver’s trapdoor t,
bypasses the computation of f and outputs the sender’s input z∗.

– Otherwise, returns f(x, y).

Correctness will follow from correctness of the underlying primitives and the
fact that an honest sender and receiver will always generate cx, msg2, and zk2
according to the protocol above; thus, if both parties are honest, the SPS-ZK
proof from the sender will always accept and the receiver will always obtain
f(x, y) from evaluating GC.

In order to prove that Π H-EUC-securely realizes the ideal two-party compu-
tation functionality Tf , we need to prove that, for every polynomial-time envi-
ronment Z and adversary A in the “real” execution of the protocol Π, there
exists a polynomial-time simulator S in the “ideal” execution of the protocol
Π(Tf ) (where, instead of following the protocol, the receiver and sender send
their respective inputs x and y to an instance of Tf and the receiver gets the
output f(x, y)) such that Z’s view is indistinguishable between the “real” exe-
cution using A and the “ideal” execution using S. This property needs to hold
even when the environment and adversary have access to a superpolynomial-
time “helper” H implementing the CCA decommitment oracle. (Recall from
above that the helper will provide a decommitment of any commitment whose
tag corresponds to a corrupted party). Below, we provide a high-level sketch of
the cases for simulating a corrupted sender and receiver.

2.2 Simulating for a Corrupted Receiver

When the receiver is corrupted, S first needs to extract the receiver’s input x
from their first message and send it to the ideal functionality; this is straight-
forward to do, since both x and the trapdoor t can be retrieved by running the
decommitment helper H on the receiver’s input cx (and the committed values
must be the same as the ones given to the NISC in order for the receiver to
receive an output). However, S also needs to simulate the NISC message msg2,
the SPS-ZK proof zk2, and the commitments c1 and c2 to send to the receiver
without knowing the corresponding input y.

While one might be tempted to simply use the respective simulators from the
definitions of security to simulate the messages for the SPS-ZK argument and
the internal NISC, we cannot in fact run either of these simulators inside S, since
S is restricted to (helper-aided) polynomial time whereas, these simulators run
in superpolynomial time. So, instead of using the simulators, these messages will
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be simulated by running the honest protocols using the trapdoor recovered from
cx. S can generate the NISC message msg2 using the input (cx,⊥, t, z), where
z is the output f(x, y) returned from the ideal functionality Tf . In addition, S
can use the second track of the ZK argument with witness w2 = (rNISC, t, z),
ensuring that it can generate both an accepting proof zk2 and a NISC message
that ensures the correct output (z = f(x, y), contingent on the malicious receiver
generating cx correctly) without knowing the sender’s input y.

In a sense, this alternative method of simulating the underlying NISC and
ZK argument has interesting parallels to techniques in the context of obfuscation,
where such two-track approaches are often used to go from indistinguishability-
based security to simulation-based security; see e.g. [2,34]. We also note that a
technique similar to ours (albeit implemented with garbled circuits rather than
a NISC) was used in a very recent work to construct oblivious transfer from new
assumptions [18].

Proving that these simulated messages are indistinguishable from the real
ones follows through a series of hybrids and relies on complexity leveraging along
with the simulation-based security of both primitives. First, in order to switch to
the second track of the ZK argument, we need to ensure that the commitment c2
commits to the trapdoor witness (rNISC, t, z) rather than to 0. By CCA security
of the commitment scheme, commitments of the two values are indistinguishable
even by a party (the environment) with access to a decommitment oracle (in this
case, the helper H). Notice that, since the sender is honest, H will not provide the
environment with decommitments to commitments generated with the sender’s
tag, which is precisely the property required of the oracle in the CCA security
definition.

Next, we deal with switching to the second track of the SPS-ZK and, respec-
tively, to inputting the trapdoor t to the NISC; we first switch the real proof zk2
using w1 to a simulated proof using the simulator for the ZK argument. Next,
leveraging the fact that the simulated proof is indistinguishable for any msg2
satisfying either condition of the ZK language (irrespective of which condition)
and the fact that the simulator S ′

R for the underlying NISC depends only on the
adversary (and not on the specific inputs to the NISC), we can indistinguish-
ably switch from the real NISC message using input (cx, y,⊥,⊥) to a simulated
NISC message using S ′

R, and then from there to a real NISC message using the
trapdoor input (cx,⊥, t, z). We then switch the simulated ZK proof back to a
real ZK proof, this time using the trapdoor witness w2; lastly, since the witness
w1 depends on y, we must switch the commitment c1 for the (now unused) first
track of the ZK to commit to 0, which will again follow from CCA security.

Complexity leveraging is required to prove indistinguishability between our
hybrids, since we require a NISC secure against adversaries able to run the
(superpolynomial-time) simulator of the ZK argument, and in turn a ZK argu-
ment secure against adversaries able to internally run the decommitment helper
H. Furthermore, while the intermediate hybrids clearly run in superpolynomial
time, we note that the final simulator S will still run in polynomial time (with
H) and is hence still sufficient to prove the notion of “angel-based” UC security.
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To summarize, the corrupted-receiver simulator SR proceeds as follows:

– Receives the receiver’s first-round message (msg1, zk1, cx).
– Uses the helper H to decommit cx, receiving x∗ and t.
– Sends x∗ to the ideal functionality Tf and receives the output z.
– Generates the second-round message msg2 of the underlying NISC π, using

(cx,⊥, t, z) as its input and rNISC for randomness.
– Using witness w2 = (rNISC, t, z) and letting c1 and c2 be commitments to 0 and

w2, respectively, generates the second-round message zk2 of the ZK argument
for the language described above and statement (msg1,msg2, cx, c1, c2).

– Sends (msg2, zk2, c1, c2) to the receiver.

2.3 Simulating for a Corrupted Sender

When the sender is corrupted, S first needs to simulate the receiver’s message
(msg1, zk1, cx) to send to the sender; then, on receiving the sender’s message
(msg2, zk2, c1, c2), S needs to either output ⊥ (if the sender’s message does not
verify) or extract the sender’s input y to send to the ideal functionality so that
the honest receiver gets the correct output f(x, y).

Simulating the first message without knowledge of x will require two changes:
making cx commit to 0||t rather than to x||t, and respectively changing the first
NISC message to use 0 in place of the input x (since, as before, we cannot use
a simulated NISC message due to simulation being superpolynomial-time).

We show indistinguishability through a series of hybrids similar to the cor-
rupted receiver case. First, we can use simulation-based security to switch the
real NISC message (with input x) to a simulated NISC message using the sim-
ulator S ′

S for π. Next, the first message no longer depends on x, so we can
leverage CCA security to indistinguishably switch cx to commit to 0 instead.
A minor subtlety with this step is that the polynomial-time adversary for CCA
security cannot run the superpolynomial-time simulator S ′

S , so instead we lever-
age non-uniformity and provide the simulated first message of the NISC to the
CCA security adversary as non-uniform advice. Finally, we can again leverage
simulation-based security (and the input-independence of the simulator S ′

S) to
switch from the simulated message to another real message using the input 0.

It remains to consider the receiver’s output; the honest receiver will output
the result from the ideal functionality in the ideal experiment, but we need to
ensure that the receiver correctly outputs ⊥ when the malicious sender provides
invalid inputs in its second-round message. On receiving the sender’s message
(msg2, zk2, c1, c2), the simulator will extract the malicious party’s input by using
the helper H to decommit c1 (a commitment to the witness w1, which contains
y) and then verify the sender’s message. If verification is successful, S will send
the resulting value y∗ to the ideal functionality (which will return the result to
the honest receiver); if not, it will terminate with output ⊥.

By soundness of the ZK argument, if S does not output ⊥, then the sender
is overwhelmingly likely to have provided a proof in zk2 corresponding to a valid
witness; furthermore, we can assert that this witness is overwhelmingly likely
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to be a witness w1 = (rNISC, y) to part (1) of the ZK argument, since, if the
sender could figure out an accepting witness w2 = (rNISC, t, z∗) for part (2) with
non-negligible probability, this would imply that an adversary could recover this
by running a decommitment oracle on the commitment c2 and subsequently use
it to break CCA security of the commitment cx (which contains t) sent by the
receiver in the first round5.

Given a valid witness to part (1), then, it must be the case that c1 is a valid
commitment to w1 and that msg2 is correctly generated with respect to the y
given in w1—so, on inputs corresponding to a valid commitment cx of x||t, the
internal NISC π will output f(x, y) for the same y the simulator receives by
decommitting c1. Hence, we can simulate the output by, if verification passes,
having the receiver return the output from the ideal functionality (exactly as
in the ideal interaction), which will always be f(x, y) given the y extracted
from c1; the above argument shows that this strategy will produce an output
identical to that of the internal NISC with overwhelming probability. Notably,
this simulated output is now independent of the value of x used to generate the
first-round message (and instead relies on the x sent to the ideal functionality
by the honest receiver).

This gives us the completed corrupted-sender simulator SS , which proceeds
as follows:

– Generates a random “trapdoor” t.
– Generates commitment cx for 0||t (respectively), using randomness rx.
– Generates the first-round message zk1 of a two-round ZK argument.
– Generates the first-round message msg1 of the underlying NISC protocol

π, which will securely compute the functionality h described below, using
(0, rx, t) as its input.

– Sends (msg1, zk1, cx) to the sender.

– Receives the sender’s message (msg2, zk2, c1, c2).
– Verifies that zk2 is an accepting proof with respect to the statement

(msg1,msg2, cx, c1, c2). Terminates with output ⊥ if not.
– Uses the helper H to recover w1 (including y∗) from the commitment c1.
– Verifies that w1 is a valid witness for the statement (msg1,msg2, cx, c1, c2). If

not, returns ⊥.
– Sends y∗ to the ideal functionality Tf , which will return the output f(x, y∗)

to the receiver.

3 Definitions

3.1 Non-interactive Secure Computation

We start by defining non-interactive secure computation (NISC).
5 In particular, notice that the commitments c2 and cx are generated by different

parties and hence using different tags—hence, an adversary breaking CCA security
with respect to cx’s tag is allowed to decommit c2.
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Definition 1 ([41], based on [3,27,48]). A non-interactive two-party
computation protocol for computing some functionality f(·, ·) (where f is com-
putable by a polynomial-time Turing machine) is given by three PPT algorithms
(NISC1,NISC2,NISC3) defining an interaction between a sender S and a receiver
R, where only R will receive the final output. The protocol will have common
input 1n (the security parameter); the receiver R will have input x, and the
sender will have input y. The algorithms (NISC1,NISC2,NISC3) are such that:

– (msg1, σ) ← NISC1(1n, x) generates R’s message msg1 and persistent state σ
(which is not sent to S) given the security parameter n and R’s input x.

– msg2 ← NISC2(msg1, y) generates S’s message msg2 given S’s input y and
R’s message msg1.

– out ← NISC3(σ,msg2) generates R’s output out given the state σ and S’s
message msg2.

We restrict our attentions to protocols satisfying perfect correctness:

– Correctness. For any parameter n ∈ N and inputs x, y:

Pr [(msg1, σ) ← NISC1(1n, x) : NISC3(σ,NISC2(msg1, y)) = f(x, y)] = 1

Externalized Universally Composable Security. To define the notion of security
proven in our main theorem, we use the framework of universally composable
security [12,13], extended to include access to superpolynomial “helper function-
alities” [14,16]. Specifically, we prove UC security in the presence of an external
helper which allows the adversary to break the commitments of corrupted par-
ties.

Model of Execution. We recall the discussion of UC security with external helper
functionalities provided in [16]. Consider parties represented by polynomial-time
interactive Turing machines [30]; the model contains a number of parties running
instances of the protocol Π, as well as an adversary A and an environment Z.
The environment begins by invoking the adversary on an arbitrary input, and
afterwards can proceed by invoking parties which participate in single instances
of the protocol Π by providing them with their respective inputs, as well as a
session identifier (which is unique for each instance of the protocol Π) and a
party identifier (which is unique among the participants in each session). The
environment can furthermore read the output of any party involved in some
execution of Π, as well as any output provided by the adversary.

For the purposes of UC security, we will restrict our attention to environ-
ments which may only invoke a single session of the protocol Π—that is, any
instances invoked must have the same session identifier. Concurrent and com-
posable security (i.e., against more generalized environments) will follow from
this via a universal composition theorem, which we will state later in this section.

The adversary, on the other hand, is able to control all communication
between the various parties involved in executions of Π, and to furthermore mod-
ify the outputs of certain corrupted parties (which we here assume are decided
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non-adaptively, i.e., every party is either invoked as permanently corrupted or
permanently uncorrupted). Uncorrupted parties will always act according to
the protocol Π, and we assume that the adversary only delivers messages from
uncorrupted parties that were actually intended to be sent (i.e., authenticated
communication); the adversary can, on the other hand, deliver any message on
behalf of a corrupted party. The adversary can also send messages to and receive
them from the environment at any point.

We will furthermore assume a notion of security using an “imaginary angel”
[45], which can be formalized in the externalized UC (EUC) setting [14]; both
the corrupted parties and environment will have access to an external helper
functionality H, also defined as an interactive Turing machine—unlike the par-
ticipants, adversary, or environment, however, H is not restricted to polyno-
mial running time. H is persistent throughout the execution and is invoked by
the environment immediately after the adversary is; furthermore, H must be
immediately informed of the identity of all corrupted parties when parties are
determined by the environment to be corrupted.

Finally, while honest players can only be invoked on a single session identifier,
we allow the adversary to invoke H on behalf of corrupt parties using potentially
arbitrary session identifiers; this is needed to prove the composition theorem.

The execution ends when the environment halts, and we assume the output
to be the output of the environment. We let ExecΠ,A,Z(1n, z) denote the distri-
bution of the environment’s output, taken over the random tape given to A, Z,
and all participants, in the execution above (with a single session of Π), where
the environment originally gets as input security parameter 1n and auxiliary
input z. We say that Π securely emulates some other protocol Π ′ if, for any
adversary A, there exists a simulator S such that the environment Z is unable
to tell the difference between the execution of Π with A and the execution of
Π ′ with S—that is, intuitively, the environment gains the same information in
each of the two executions. Formally:

Definition 2 (based on [16]). For some (superpolynomial-time) interactive
Turing machine H, we say a protocol Π H-EUC-emulates some protocol Π ′

if, for any polynomial-time adversary A, there exists some simulated polynomial-
time adversary S such that, for any non-uniform polynomial-time environment
Z and polynomial-time distinguisher D, there exists negligible ν(·) such that, for
any n ∈ N and z ∈ {0, 1}∗:

|Pr [D(ExecΠ,A,Z(1n, z)) = 1] − Pr [D(ExecΠ′,S,Z(1n, z)) = 1] | ≤ ν(n)

To prove that a protocol Π securely realizes an ideal functionality T , we wish
to show that it securely emulates an “ideal” protocol Π(T ) in which all parties
send their respective inputs to an instance of T with the same session identifier
and receive the respective output; note that the adversary does not receive the
messages to or from each instance of T .

Definition 3 (based on [16]). For some (superpolynomial-time) interactive
Turing machine H, we say a protocol Π H-EUC-realizes some functionality
T if it H-EUC-emulates the protocol Π(T ) given above.
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In the case of two-party computation for functionality f , T will simply receive
inputs x from the receiver and y from the sender and return f(x, y) to the
receiver:

Definition 4. For some (superpolynomial-time) interactive Turing machine H,
we refer to a non-interactive two-party computation protocol Π for some func-
tionality f(·, ·) as H-EUC-secure if it H-EUC-realizes the functionality Tf ,
which, on input x from a receiver R and input y from a sender S, returns f(x, y)
to R.

Remarks. Notice that, since Z’s output is a (randomized) function of its view, it
suffices to show that Z’s view cannot be distinguished by any polynomial-time
distinguisher D between the respective experiments. We can also without loss of
generality assume that the environment Z in the real execution effectively runs
the adversary A internally and forwards all of A’s messages to and from other
parties by using a “dummy adversary” D which simply forwards communication
from Z to the respective party. This allows us to effectively view the environment
Z and adversary A as a single entity.

Furthermore, observe that we use a polynomial-time simulator S in our defi-
nition of security. [28] shows that two-round secure computation protocols can-
not be proven secure with standard polynomial-time simulation; hence, many
protocols are proven secure using superpolynomial-time simulators (a technique
originally proposed by [43,45]). Indeed, we note that, if H runs in time T (·), then
a protocol that H-EUC-realizes some functionality T with polynomial-time sim-
ulation will also UC-realize T with poly(T (·))-time simulation; hence, in a way,
the simulator S we propose in our security definition can still be considered to
do a superpolynomial-time amount of “work”.

Universal Composition. The chief advantage of the UC security paradigm is
the notion of universal composition; intuitively, if a protocol ρ UC-realizes (or,
respectively, H-EUC-realizes) an ideal functionality T , then it is “composable”
in the sense that any protocol that uses the functionality T as a primitive derives
the same security guarantees from the protocol ρ as they would the ideal func-
tionality.

More formally, given an ideal functionality T , let us define a T -hybrid protocol
as one where the participating parties have access to an unbounded number of
copies of the functionality T and may communicate directly with these copies
as in an “ideal” execution (i.e., without communication being intercepted by the
adversary). Each copy of T will have a unique session identifier, and their inputs
and outputs are required to contain the respective identifier.

Then, if Π is a T -hybrid protocol, and ρ is a protocol which realizes T , then
we can define a composed protocol Πρ by modifying Π so that the first message
sent to T is instead an invocation of a new instance of ρ with the same session
identifier and the respective message as input, and so that further messages are
likewise relayed to the same instance of ρ instead, again with their contents as
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the respective input. Any output from an instance of ρ is substituted for the
respective output of the corresponding instance of T . The following powerful
theorem, then, states the notion of composability intuitively described above.

Theorem 3 (Relativized Universal Composition [12,16]). For some ideal
functionality T and helper functionality H, if Π is a T -hybrid protocol, and ρ is
a protocol that H-EUC-realizes T , then Πρ H-EUC-emulates Π.

Stand-Alone Security. As one of the key building blocks of our UC-secure pro-
tocol, we use a non-interactive secure computation protocol which satisfies the
strictly weaker notion of stand-alone security with superpolynomial-time simula-
tion. We recall the definition (as given in [41]) below:

– Consider a real experiment defined by an interaction between a sender S with
input y and a receiver R with input x as follows:

• R computes (msg1, σ) ← NISC1(1n, x), stores σ, and sends msg1 to S.
• S, on receiving msg1, computes msg2 ← NISC2(msg1, y) and sends msg2

to R.
• R, on receiving msg2 computes out ← NISC3(σ,msg2) and outputs out.

In this interaction, one party I ∈ {S,R} is defined as the corrupted party;
we additionally define an adversary, or a polynomial-time machine A, which
receives the security parameter 1n, an auxiliary input z, and the inputs of the
corrupted party I, and sends messages (which it may determine arbitrarily)
in place of I.
Letting Π denote the protocol to be proven secure, we shall denote by
OutΠ,A,I(1n, x, y, z) the random variable, taken over all randomness used by
the honest party and the adversary, whose output is given by the outputs
of the honest receiver (if I = S) and the adversary (which may output an
arbitrary function of its view).

– Consider also an ideal experiment defined by an interaction between a sender
S, a receiver R, and a trusted party Tf , as follows:

• R sends x to Tf , and S sends y to Tf .
• Tf , on receiving x and y, computes out = f(x, y) and returns it to R.
• R, on receiving out, outputs it.

As with the real experiment, we say that one party I ∈ {S,R} is corrupted
in that, as before, their behavior is controlled by an adversary A. We shall
denote by Out

Tf

Πf ,A,I(1
n, x, y, z) the random variable, once again taken over

all randomness used by the honest party and the adversary, whose output is
again given by the outputs of the honest receiver (if I = S) and the adversary.

Definition 5 ([41], based on [3,27,43,45,48]). Given a function T (·), a non-
interactive two-party protocol Π = (NISC1,NISC2,NISC3) between a sender S
and a receiver R, and functionality f(·, ·) computable by a polynomial-time Tur-
ing machine, we say that Π securely computes f with T (·)-time simulation,
or that Π is a non-interactive (stand-alone) secure computation protocol
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(with T (·)-time simulation) for computing f , if Π is a non-interactive two-
party computation protocol for computing f and, for any polynomial-time adver-
sary A corrupting party I ∈ {S,R}, there exists a T (n)·poly(n)-time simulator S
such that, for any T (n) ·poly(n)-time algorithm D : {0, 1}∗ → {0, 1}, there exists
negligible ε(·) such that for any n ∈ N and any inputs x, y ∈ {0, 1}n, z ∈ {0, 1}∗,
we have:
∣
∣
∣Pr [D(OutΠ,A,I(1n, x, y, z)) = 1] − Pr

[

D(OutTf

Πf ,S,I(1
n, x, y, z)) = 1

]∣
∣
∣ < ε(n)

where the experiments and distributions Out are as defined above.
Furthermore, if Π securely computes f with T (·)-time simulation for T (n) =

nlogc(n) for some constant c, we say that Π is stand-alone secure with quasi-
polynomial simulation.

Badrinarayanan et al. [3] demonstrates that stand-alone secure NISC proto-
cols with quasi-polynomial simulation exist assuming the existence of a notion of
“weak OT”, which in turn can be based on subexponential versions of standard
assumptions [3,10]:

Theorem 4 ([3,10]). Assuming subexponential hardness of any one of the Deci-
sional Diffie-Hellman, Quadratic Residuosity, N th Residuosity, or Learning
With Errors assumptions, then for any constants c < c′ and any polynomial-time
Turing-computable functionality f(·, ·) there exists a (subexponentially) stand-
alone secure non-interactive two-party computation protocol with T (·)-time secu-
rity and T ′(·)-time simulation for T (n) = nlogc(n) and T ′(n) = nlogc′

(n).

3.2 SPS-ZK Arguments

We proceed to recalling the definition of interactive arguments.

Definition 6 ([11,26,30]). We refer to an interactive protocol (P, V ) between a
probabilistic prover P and a verifier V as an interactive argument for some
language L ⊆ {0, 1}∗ if the following conditions hold:

1. Completeness. There exists a negligible function ν(·) such that, for any
x ∈ L:

Pr [〈P, V 〉(x) = Accept] ≥ 1 − ν(|x|)
2. T (·)-time soundness. For any non-uniform probabilistic T (·)-time prover

P ∗ (not necessarily honest), there exists a negligible function ν(·) such that,
for any x �∈ L:

Pr [〈P ∗, V 〉(x) = Accept] ≤ ν(|x|)
Furthermore, if the above holds even if the statement x �∈ L can be adaptively
chosen by the cheating prover anytime prior to sending its last message, we
call such a protocol (T (·)-time) adaptively sound.
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We also require a notion of zero-knowledge [30] with superpolynomial simula-
tion (SPS-ZK) [43], which states that the prover’s witness w should be “hidden”
from the verifier in the sense that proofs of a particular statement x ∈ L should
be simulatable in a manner independent of w:

Definition 7 ([43]). We refer to an interactive argument for some NP lan-
guage L (with witness relation RL) as T ′(·)-time simulatable zero-knowledge
with T (·)-time security (or (T (·), T ′(·))-simulatable zero-knowledge) if, for
any T (·)-time cheating verifier V ∗ (which can output an arbitrary function of its
view), there exists a T ′(·)-time simulator Sim and negligible function ν(·) such
that, for any T (·)-time non-uniform distinguisher D, given any statement x ∈ L,
any witness w ∈ RL(x), and any auxiliary input z ∈ {0, 1}∗, it holds that:

|Pr [D(x, 〈P (w), V ∗(z)〉(x)) = 1] − Pr [D(x,Sim(x, z)) = 1] | ≤ ν(|x|)

Our construction will use a two-round adaptively sound zero-knowledge argu-
ment consisting of three polynomial-time algorithms, (ZK1,ZK2,ZK3), defining
the following interaction 〈P, V 〉:

– V runs (zk1, σ) ← ZK1(1n), which takes as input the security parameter n
and generates a first message zk1 and persistent state σ.

– P runs zk2 ← ZK2(wi1, x, w), which takes as input the first message wi1, a
statement x, and a witness w, and returns a second message zk2.

– V runs {Accept,Reject} ← ZK3(zk2, x, σ), which takes as input a second mes-
sage zk2, a statement x, and the persistent state σ, and returns Accept if zk2
contains an accepting proof that x ∈ L and Reject otherwise.

We observe that, in fact, this primitive is implied by the existence of a stand-
alone secure NISC (see Definition 5).

Theorem 5. For any constants c < c′, letting subexponential functions T (n) =
nlogc(n) and T ′(n) = nlogc′

(n), then, if there exists a subexponentially stand-
alone secure non-interactive two-party computation protocol for any polynomial-
time Turing-computable functionality f(·, ·) with T (·)-time security and T ′(·)-
time simulation, then there exists a two-round interactive argument with T (·)-
time adaptive soundness and (T (·), T ′(·))-simulatable zero-knowledge.

The construction and its proof of security is straightforward, but for complete-
ness we provide it in the full version.

3.3 Non-interactive CCA-Secure Commitments

Our construction will rely on non-interactive (single-message) tag-based com-
mitment schemes satisfying the notion of CCA security [16,35,42].

Definition 8 (based on [35]). A non-interactive tag-based commitment
scheme (with t(·)-bit tags) consists of a pair of polynomial-time algorithms
(Com,Open) such that:
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– c ← Com(1n, id, v; r) (alternately denoted Comid(1n, v; r)) takes as input an
identifier (tag) id ∈ {0, 1}t(n), a value v, randomness r, and a security param-
eter n, and outputs a commitment c. We assume without loss of generality
that the commitment c includes the respective tag id.

– {Accept,Reject} ← Open(c, v, r) takes as input a commitment c, a value v,
and randomness r, and returns either Accept (if c is a valid commitment for
v under randomness r) or Reject (if not).

We consider commitment schemes having the following properties:

1. Correctness: For any security parameter n ∈ N, any v, r ∈ {0, 1}∗, and any
id ∈ {0, 1}t(n):

Pr[c ← Com(1n, id, v; r) : Open(c, v, r) = Accept] = 1

2. Perfect binding (for sufficiently large inputs): There exists n ∈ N such
that, for any commitment string c, values v, v′ with |v| ≥ n or |v′| ≥ n, and
randomness r, r′, if it is true that Open(c, v, r) = Accept and Open(c, v′, r′) =
Accept, then v = v′.6

3. T (·)-time hiding: For any T (·)-time non-uniform distinguisher D and fixed
polynomial p(·), there exists a negligible function ν(·) such that, for any n ∈ N,
any id ∈ {0, 1}t(n) and any values v, v′ ∈ {0, 1}p(n):

|Pr[D(Com(1n, id, v)) = 1] − Pr[D(Com(1n, id, v′)) = 1]| ≤ ν(n)

For our construction, we require a strictly stronger property than just hiding:
hiding should hold even against an adversary with access to a “decommitment
oracle”. This property is known as CCA security due to its similarity to the
analogous notion for encryption schemes [46]. We introduce a weakening of CCA
security, to which we shall refer as “weak CCA security”, which is nonetheless
sufficient for our proof of security, and, as we shall prove in Sect. 5, is necessary
for our proof of security as well. We define this as follows:

Definition 9. Let O∗ be an oracle which, given a commitment c, returns a valid
committed value v—that is, such that there exists some randomness r for which
Open(c, v, r) = Accept.

A tag-based commitment scheme (Com,Open) is T (·)-time weakly CCA-
secure with respect to O∗ if, for any polynomial-time adversary A, letting
Expb(O∗,A, n, z) (for b ∈ {0, 1}) denote A’s output in the following interactive
experiment:

– A, on input (1n, z), is given oracle access to O∗, and adaptively chooses values
v0, v1 and tag id.

– A receives Com(1n, id, vb) and returns an arbitrary output; however, A’s out-
put is replaced with ⊥ if O∗ was ever queried on any commitment c with tag
id.

6 We remark that this property is stronger than statistical binding but weaker than
fully perfect binding.
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then, for any T (·)-time distinguisher D, there exists negligible ν(·) such that, for
any n ∈ N and any z ∈ {0, 1}∗, it holds that:

|Pr[D(Exp0(O∗,A, n, z)) = 1] − Pr[D(Exp1(O∗,A, n, z)) = 1]| ≤ ν(n)

We remark that the only difference from the “standard” notion of CCA security is
that the CCA oracle, given a commitment c, rather than returning both the value
v committed to and the randomness r used in the commitment, instead returns
just the value v. This is similar to the definition of CCA security commonly used
for encryption schemes [46].

4 Results

We state our main theorem and the respective protocol in this section.

Fig. 1. Decommitment helper H for a weakly CCA-secure commitment scheme
(Com,Open).)

Theorem 6. If there exist superpolynomial-time functions TCom(·) = nlogc0 (n),
TZK(·) = nlogc1 (n), TSim(·) = nlogc2 (n), and Tπ(·) = nlogc3 (n) for constants
0 < c0 < c1 < c2 < c3 so that there exist (1) a non-interactive weakly CCA-
secure commitment scheme with respect to a TCom(n)-time oracle O, (2) a non-
interactive computation protocol for general polynomial-time Turing-computable
functionalities satisfying TZK(·)-time stand-alone security and TSim(·)-time sim-
ulation, and (3) a non-interactive computation protocol for general polynomial-
time Turing-computable functionalities satisfying Tπ(·)-time stand-alone security
(and T ′(·)-time simulation for some T ′(·) � Tπ(·)), then, for any polynomial-
time Turing-computable functionality f(·, ·), the protocol Π given in Fig. 2 for
computing f is an H-EUC-secure non-interactive secure computation protocol
with respect to the helper H in Fig. 1.
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Let TCom(·), TZK(·), TSim(·), Tπ(·) be as given in the theorem. Π will use the
following primitives:

– (Com,Open), a secure commitment scheme satisfying weak CCA security with
respect to some oracle O having running time TCom(n). This is primitive (1)
given in the theorem.

– (ZK1,ZK2,ZK3), a two-message interactive argument which satisfies TZK(n)-
time adaptive soundness and (TZK(·), TSim(·))-simulatable zero-knowledge
(with respective TSim(·)-time simulator SimZK). By Theorem 5, this can be
constructed from the primitive (2) given in the theorem.

– π = (NISC1,NISC2,NISC3), a stand-alone secure non-interactive two-party
computation protocol for the functionality h given in Fig. 3 satisfying Tπ(·)-
time security and T ′(·)-time simulation for some T ′(n) � Tπ(n). This is
implied by primitive (3) in the theorem.

We provide the complete proof, which constructs the polynomial-time simu-
lator S (aided by H) required for the definition of H-EUC-security, in the full
version.

5 Minimality of Assumptions

In this section, we prove that the protocol we construct in Theorem 6 can be
constructed using nearly minimal assumptions—that is, that a NISC protocol
satisfying externalized UC security implies both a (polynomial-time) stand-alone
secure NISC protocol with superpolynomial-time simulation and weakly CCA-
secure commitments. Thus, these primitives are not only sufficient but also neces-
sary for the existence of an externalized UC-secure NISC. The only gap between
the sufficient and necessary conditions is that Theorem 6 requires a stand-alone
NISC having simulation-based security with respect to subexponential-time dis-
tinguishers, whereas one can only construct a polynomial-time secure stand-alone
NISC from our definition of UC security.

Theorem 7. Assume the existence of a protocol Π = (π1, π2, π3) for non-
interactive computation of any polynomial-time Turing-computable functionality
f(·, ·); further assume that Π satisfies the notion of UC security with respect
to some superpolynomial-time helper H. Then there exist both a stand-alone
secure non-interactive two-party computation protocol (for any polynomial-time
Turing-computable functionality h(·, ·)) with superpolynomial-time simulation
and a non-interactive weakly CCA-secure commitment scheme.

Proof. The first implication is immediate; since stand-alone SPS security is
strictly weaker than externalized UC security, any NISC protocol satisfying
externalized UC security is already stand-alone secure with SPS.

So, it suffices to prove that externalized UC-secure NISC implies weakly
CCA-secure commitments; formally, we prove the following:
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Fig. 2. Protocol Π for non-interactive secure computation.
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Fig. 3. Functionality h used for the underlying 2PC protocol π.

Lemma 1. Assume a protocol Π = (π1, π2, π3) for non-interactive computation
of the functionality which, on inputs x and y, returns f(x, y) = 1 if x = y
and f(x, y) = 0 otherwise; further assume that Π satisfies the notion of UC
security with a superpolynomial-time helper. Then there exists a commitment
scheme (Com,Open) which satisfies correctness, perfect binding for sufficiently
large inputs, and weak CCA security.

Proof. We define the weakly CCA secure commitment scheme (Com,Open) as
follows:

– Com(1n, id, x) generates random padding p ← {0, 1}n and outputs c ←
π1(1n, (id, 1), x||p) as well as the session identifier id.
That is, c is the first (receiver’s) message of a new instance of Π with receiver
input x, padded by the random p, and session identifier id.
Note: We shall assume throughout that the player identifiers in any instance
of Π are equal to 1 for the sender and 2 for the receiver.

– Open(c, x, (p, r)) outputs Reject if c �= π1(1n, (id, 1), x||p; r), and otherwise
recovers the receiver’s state σ after π1 and outputs b ← π3(π2(c, x), σ).
That is, Open first verifies that the commitment c is validly generated with
respect to the value x and the receiver’s randomness; if not, it returns Reject.
Otherwise, it returns the result (Accept if 1, Reject if 0) of running the sender
of Π given the initial message c and sender’s input x to produce a message
m, and finally running the receiver of Π given m as the sender’s message.

Correctness of (Com,Open) will follow directly from the correctness of Π.
For the other two properties, we prove the following claims:

Claim 1. For all sufficiently large input sizes |x|, (Com,Open) satisfies perfect
binding.

We defer some details to the full version, but provide a high-level summary
of the argument here.

Essentially, perfect binding will follow from the correctness and security of Π.
Fix the simulator S (and superpolynomial-time helper H) given by the definition
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of H-EUC security for Π as a secure implementation of the equality functionality,
and assume for the sake of contradiction that there exists an infinite sequence
of tuples (c, x, x′) such that, for each such pair, x �= x′ but there exist (p, r) and
(p′, r′) for which Open(c, x, (p, r)) = Accept and Open(c, x′, (p′, r′)) = Accept
both with non-zero probability.

Then consider an environment Z which, on input x∗, will do as follows:

– Start an instance of Π with a corrupted receiver, session identifier id (and
player identifiers 1 for the receiver and 2 for the sender), and input x||p for
the receiver and x∗ for the sender.

– Substitute c for the receiver’s first message to the honest sender, and receive
the sender’s response m.

– Run the standard final round π3 of the receiver’s protocol using m as the
sender’s message and r as the randomness to produce an output π3(m)|r.

If x∗ = x||p, the output must be 1 by perfect correctness of Π in the real
execution of this environment, so the same must hold with overwhelming proba-
bility in the ideal execution using Tf . This in turn indicates that the simulator S,
when given c as the receiver’s first message, extracts the output x||p to send to
the ideal functionality with overwhelming probability, as the ideal functionality
must return 1 when comparing that output to the sender’s input x||p.

However, if we consider a similar experiment to the above but using x′||p′ as
the receiver’s input rather than x||p (and r′ as the respective randomness), we
can use the same logic to arrive at the conclusion that the input extracted by the
simulator S from c and sent to the ideal functionality on behalf of the corrupted
receiver is x′||p′ with overwhelming probability. Clearly, for sufficiently large n ∈
N (i.e., sufficiently large inputs x, x′ in our infinite sequence of tuples (c, x, x′)),
this cannot be true simultaneously with the above fact; thus, by contradiction,
(Com,Open) must satisfy perfect binding.

Claim 2. (Com,Open) satisfies weak CCA security.

Proof. Fix the simulator S and superpolynomial-time helper H implied by the
definition of H-EUC security of the protocol Π. Assume for the sake of contra-
diction that there exists an adversary A which can contradict the definition of
weak CCA security (Definition 9). We first show that A, which is by definition
polynomial-time with oracle access to a weak CCA decommitment oracle O∗,
can also be effectively implemented in polynomial time with oracle access to the
helper functionality H.

Subclaim 1. Any polynomial-time adversary A against weak CCA security with
oracle access to the oracle O∗ defined in Definition 9 can also be implemented
in polynomial time using oracle access to the helper functionality H instead,
with error at most negligible in the security parameter n of Π7, and with the
7 We comment that, while the implementation of O∗ does not decommit successfully

with probability 1, decommitting with overwhelming probability is sufficient as it
creates at most a negligible error in the adversary’s output in the CCA security
game.
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additional property that H will never be queried using a session identifier sid
that is the same as the identifier used in A’s challenge commitment.

Proof. Consider replacing each of A’s queries to O∗ by the following process,
which runs in polynomial time given oracle access to H:

– Receive a commitment c to decommit, with tag id.
– Start a new instance of Π with a corrupted receiver and session identifier id

(and player identifiers 1 for the receiver and 2 for the sender).
– Run the simulator S (which uses the helper H) on the respective instance

of Π, substituting c for the corrupted receiver’s message. S will generate an
input x∗||p to send to the ideal functionality; return x∗ to A.

We claim that, if the above process does not generate correct responses to all
oracle queries with overwhelming probability (i.e., 1 − ν(n) for some negligible
ν(·)), then there exists an environment Z able to distinguish between the real
and simulated executions with non-negligible probability.

First, we consider a number of “hybrid” oracles O0,O1, . . ., where in Oi

the first i queries are answered by the true oracle O∗ and all other queries are
answered by the procedure above. Assume then for the sake of contradiction that
there exists some fixed randomness r for the CCA security adversary such that, in
the respective instance of the security game, the poly-time implementation of O∗

gives at least one incorrect decommitment with some non-negligible probability
1/p(n). Then there necessarily exists some i ∈ N such that the oracle’s outputs
in Oi and Oi−1 differ with non-negligible probability 1/q(n) (since the adversary
in the CCA security game is restricted to at most a polynomial number of oracle
queries).

We use this fact to construct our distinguishing environment Z. Specifically,
because of the above, there must exist j ≥ i for which the oracle’s responses to
the jth query differ between Oi and Oi−1 with some non-negligible probability
1/q′(n); let Z receive as non-uniform advice the first such j, the jth query c, and
the (padded) decommitment x||p (which can be ⊥ if c is an invalid commitment),
which are determined by fixed randomness r and the responses from the true
CCA oracle to the first j − 1 queries, and let it proceed as follows:

– Start a single instance of Π with a corrupted receiver, session identifier given
by the tag of c (and player identifiers 1 for the receiver and 2 for the sender),
and receiver and sender input both equal to x||p.

– Replace the receiver’s first message with c, and return the output of the
protocol.

By perfect correctness of Π, and the assumption that c is a valid first-round
messages on input x||p, Z outputs 1 in the real interaction with probability 1;
however, by our assumption that the responses to the jth oracle query in Oi and
Oi−1 differ with non-negligible probability 1/q′(n), we know that in the ideal
interaction S must send some x′||p′ �= x||p to the ideal functionality on behalf
of the corrupted receiver with at least probability 1/q′(n). Therefore, since the
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honest sender’s input to the ideal functionality is always x||p, we observe that
Z outputs 0 in the ideal interaction with probability 1/q′(n), thus contradicting
security of Π by distinguishing the real and ideal interactions and completing
our argument.

Lastly, we note that, during the H-aided reimplementation of the adversary
A, H will never be queried using a session identifier sid that is the same as the
identifier used in the challenge commitment. This follows from the restriction
that the simulator S may never query H using an honest party’s identifiers
(sid, pid): the only corrupted parties are those with sid equal to the tags of the
queried commitments, which by the definition of weak CCA security may never
be identical to the tag of the challenge. �

In the full version, we also show the following, which together with the previous
claim will provide a contradiction:

Subclaim 2. (Com,Open) satisfies hiding against any polynomial-time adver-
sary A, even if the adversary is given oracle access to the helper functionality
H, as long as A never queries H using a session identifier sid that is the same
as the identifier used in the challenge commitment.

So, given an adversary A that contradicts weak CCA security using polynomial
time and oracle access to the CCA oracle O∗, Subclaim 1 implies that there
is a reimplemented adversary A′ that likewise contradicts weak CCA security
and uses polynomial time and oracle access to the superpolynomial-time helper
functionality H without invoking the helper using a session identifier equal to the
tag of the challenge commitment. But this directly contradicts Subclaim 2, since
weak CCA security without access to the CCA oracle is equivalent to hiding, and
the subclaim shows that A′ cannot break the hiding property of (Com,Open)
without invoking H using the challenge commitment’s tag. Therefore, by this
contradiction, (Com,Open) satisfies weak CCA security, as desired.

�
�
�
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Abstract. In the classical notion of multiparty computation (MPC), an
honest party learning private inputs of others, either as a part of protocol
specification or due to a malicious party’s unspecified messages, is not
considered a potential breach. Several works in the literature exploit this
seemingly minor loophole to achieve the strongest security of guaranteed
output delivery via a trusted third party, which nullifies the purpose of
MPC. Alon et al. (CRYPTO 2020) presented the notion of Friends and
Foes (FaF) security, which accounts for such undesired leakage towards
honest parties by modelling them as semi-honest (friends) who do not
collude with malicious parties (foes). With real-world applications in
mind, it’s more realistic to assume parties are semi-honest rather than
completely honest, hence it is imperative to design efficient protocols
conforming to the FaF security model.

Our contributions are not only motivated by the practical viewpoint,
but also consider the theoretical aspects of FaF security. We prove the
necessity of semi-honest oblivious transfer for FaF-secure protocols with
optimal resiliency. On the practical side, we present QuadSquad, a ring-
based 4PC protocol, which achieves fairness and GOD in the FaF model,
with an optimal corruption of 1 malicious and 1 semi-honest party. Quad-
Squad is, to the best of our knowledge, the first practically efficient FaF

secure protocol with optimal resiliency. Its performance is comparable
to the state-of-the-art dishonest majority protocols while improving the
security guarantee from abort to fairness and GOD. Further, QuadSquad
elevates the security by tackling a stronger adversarial model over the
state-of-the-art honest-majority protocols, while offering a comparable
performance for the input-dependent computation. We corroborate these
claims by benchmarking the performance of QuadSquad. We consider
the application of liquidity matching that deals with sensitive financial
transaction data, where FaF security is apt. We design a range of FaF

secure building blocks to securely realize liquidity matching as well as
other popular applications such as privacy-preserving machine learning.
Inclusion of these blocks makes QuadSquad a comprehensive framework.
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1 Introduction

The classical notion of multiparty computation (MPC) enables n mutually dis-
trusting parties to compute a function over their private inputs, such that an
adversary controlling up to t parties does not learn anything other than the out-
put. Depending on its behaviour, the adversary can be categorized as semi-honest
or malicious. A maliciously-secure MPC protocol may offer security guarantee
with abort, fairness or guaranteed output delivery (GOD). While security with
abort may allow the adversary alone to receive the output (leaving out the honest
parties), fairness makes sure either all or none receive the output. The strongest
guarantee of GOD ensures that all honest participants receive the output irre-
spective of the adversarial behaviour. It is well known that honest majority is
necessary to achieve GOD, whereas a dishonest majority setting can at best offer
security with abort for general functionalities [28]. GOD is undoubtedly one of
the most attractive features of an MPC protocol. Preventing repeated failures,
it upholds the trust and interest of participants in the deployed protocol and
saves a participant’s valuable time and resources. Moreover, it also captures
unforeseeable scenarios such as machine crashes and network delay.

It is well-known that the honest majority setting lends itself well for con-
structing efficient protocols for a large number of parties [1,2,18,33,45] and has
been shown to be practical [6,64]. In this setting, MPC for a small number of par-
ties [4,5,22,27,40,49,58,61,63,63] has gained popularity over the last few years
due to applications such as financial data analysis [17] and privacy-preserving
statistical studies [15] which typically involve 3 parties. This is corroborated by
the popularity of MPC framework such as Sharemind [16] which works over 3
parties. In the literature, of all MPC protocols for a small population, several
achieve the highest security guarantee of GOD [20,21,23,44,49,55,56]. In most
of these protocols, when any malicious behaviour is detected, parties identify an
honest party, referred to as Trusted Third Party (TTP) and make their inputs
available to it in clear. Thereafter, TTP computes the desired function on parties’
private inputs and returns the respective outputs. Such learning of inputs by an
honest party is allowed in the traditional definition of security, although it nul-
lifies the main purpose of MPC. In many real-world applications that deal with
highly sensitive data, such as those in financial and healthcare sectors, infor-
mation leak, even to an honest party, is unacceptable. Further, in the secure
outsourced computation setting, where servers (typically run by reputed com-
panies such as Amazon, Google, etc.) are hired to carry out the computation, it
may be unacceptable to reveal private inputs to the server identified as a TTP.

Another issue that persists in traditionally secure MPC protocols is the fol-
lowing. The malicious adversary can potentially breach privacy of protocols by
sending its view to some of the honest parties. However, traditional definitions
do not acknowledge this view-leakage as an attack as honest parties are assumed
to discard any non-protocol messages. In this way, traditional definition fails to
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account for the possibly curious nature of honest parties, which is a given in real-
world scenarios. Consequently, many well-known protocols relying on threshold
secret sharing (such as BGW [14]), satisfying traditional security against t mali-
cious corruptions, immediately fall prey to this view-leakage attack. Indeed, an
honest party on receiving the view of any t corrupt parties can learn the inputs
of all the parties. Note that the traditional MPC protocols are vulnerable to
this view-leakage attack which are not just restricted to GOD protocols but
also protocols with weaker security notion of fairness. We emphasize that such
a view-leakage attack is not irrational on the part of adversary’s behaviour as it
can be motivated by monetary incentives.

We showcase how reliance on a TTP and the view-leakage attack inherent in
traditionally secure MPC is detrimental to data privacy in real-world applica-
tions via the example of liquidity matching. Consider a set of banks that have
outstanding transactions that need to be settled among themselves. Liquidity
matching enables settlement of inter-bank transactions while ensuring that each
bank has sufficient liquidity. Here, liquidity means the balance of a bank, and
matching requires that each bank, upon processing of the outstanding transac-
tions, has non-negative balance. Since transactions comprise sensitive financial
data, it is required to perform liquidity matching in a privacy-preserving man-
ner. Hence, when designing MPC protocols for the same. It is imperative for the
protocol to provide GOD, owing to the real-time nature of such transactions.
That is, aborting the execution is not an acceptable option as it may lead to an
indefinite delay in processing the transactions. The work of [7] has explored this
application in the traditionally secure MPC setting. However, given the sensitive
nature of the application, reliance on a TTP to attain GOD, and the view-leakage
attack, render the traditionally secure MPC solution futile.

Inspired by the above compelling concerns of reliance on a TTP and view-
leakage, [3] proposed a new MPC security definition, Friends & Foes (FaF). In this
definition, an honest party’s input is required to be safeguarded from quorums of
other honest parties, in addition to the standard security against an adversary.
This dual need is modelled through a decentralized adversary. Specifically, there
is one malicious adversary that corrupts at most t out of n parties (Foes) and
another semi-honest adversary, controlling at most h∗ parties (Friends) out of
the remaining n− t parties. A protocol secure against such adversaries is said to
be (t, h∗)-FaF secure. Technically, in the FaF model, not only should the views of
t malicious parties, but also the views of every (disjoint) subset of h∗ semi-honest
parties, be simulatable separately. Moreover, FaF requires security to hold even
when the malicious adversary sends its view to some of the other parties (semi-
honest). Thus, FaF-security is a better fit for applications that deal with highly
sensitive data, as in the case of liquidity matching.

Alon et al. showed in [3] that any functionality can be computed with fairness
and GOD in the (t, h∗)-FaF model, iff 2t + h∗ < n holds. Since protocols with a
small number of parties are pragmatic, from the above condition it is evident that
a minimum of 4 parties is necessary to achieve the desired level of FaF-security.
This implies that t = 1, h∗ = 1. While the sufficiency of t = 1 is well established
in the literature [20,21,23,31,44,55,56,59,67], we trust that h∗ = 1 also suffices
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for most practical purposes, assuming honest parties do not collude. Thus, we
design protocols in the 4PC setting providing (1, 1)-FaF security. It is worth
noting that relying on a 4PC protocol with 2 malicious corruptions to achieve
this goal is insufficient, since GOD is known to be impossible in this setting. On
the other hand, although the 4 party honest-majority setting tackling a single
corruption can offer GOD security, it is susceptible to the view-leakage attack.

Keeping practicality in mind, for the optimal 4PC setting considered, we
describe the design choices made to attain an efficient protocol. To obtain a fast-
response time as required for real-time applications, we operate in the prepro-
cessing paradigm which has been extensively explored [9,34,35,54–56]. Here, the
protocols are partitioned into two phases, a function dependent (input indepen-
dent) preprocessing phase and an input dependent online phase. Following recent
works [16,32,34,36] we build our protocols over 32 or 64 bit rings to leverage
CPU optimizations. Further, to aid resource constrained clients in performing
computationally intensive tasks, the paradigm of secure outsourced computation
(SOC) has gained popularity. In this setting, clients can avail computationally
powerful servers on a ‘pay-per-use’ basis from Cloud service providers. In this
work, we provide secure protocols for performing computations in the 4-server
SOC setting. The servers here are mapped to the parties of our 4PC.

When designing FaF-secure protocols in a given setting, it is both theoretically
profound and practically important to know, whether information-theoretic secu-
rity is possible to be achieved. If not, it is important to identify what cryptographic
assumption is required. [3] shows impossibility of information-theoretic FaF-secure
MPC with less than 2t+2h∗ parties and presents a protocol relying on semi-honest
oblivious transfer (OT) with at least 2t+h∗ +1 parties. However, the necessity of
OT in the latter setting was not known. We settle this question, showing the neces-
sity of semi-honest OT. This proves the tightness of the protocol of [3] in terms of
assumption, and implies that any 4PC in (1, 1)-FaF setting requires semi-honest
OT. This requirement puts FaF security closer to the dishonest majority setting
where the same necessity holds [43,50], than the honest majority setting which is
known to offer even the strongest security of GOD information-theoretically.

1.1 Related Work

We restrict the discussion to practically-efficient secret-sharing based (high
throughput regime) MPC protocols over small population for arithmetic and
Boolean world, since this is the regime of focus in this work.

In the honest-majority setting, we restrict to protocols achieving fairness and
GOD over rings. The GOD protocol offering the best overall communication cost
is that of [20]. [24,55,67], present 3PC protocols in the preprocessing paradigm,
and thus have faster online phase than [20]. Of these, [55] elevates the security
of the former two, from fairness to GOD. In the 4PC regime, [56] presents the
best GOD protocol improving over the previously best-known fair protocol of
[25] and GOD protocol of [21,55].

The work that comes closest to ours in terms of security achieved is that
of Fantastic Four [31] which is devoid of function dependent preprocessing.
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It attempts to offer a variant of GOD, referred to as private robustness without
the honest party learning other parties’ inputs. However, this work does not cap-
ture the behaviour of a malicious adversary which allows it to send its complete
view to an honest party, thus falling short of satisfying the FaF security notion.

In the dishonest-majority setting, the study of practically-efficient protocols
started with the work of [35] which was followed by [53,54]. This line of work
culminated with [13] which has the fastest online phase. However, these proto-
cols work over fields. The works that extend over rings are [30,65] and of these
the latter is a better performer. In this regime, all the protocols work in prepro-
cessing paradigm, where the common trend had been to generate Beaver multi-
plication triples [11] in the preprocessing and consume them in the online phase
for multiplication. The majority of the works focus on bettering the preprocess-
ing and choose either Oblivious Transfer (OT) [53] or Somewhat Homomorphic
Encryption (SHE) [30,35,65] to enable triple generation.

1.2 Our Contribution

QuadSquad: A (1, 1)-FaF Secure 4PC. We propose the first, efficient,
(1, 1)-FaF secure, 4PC protocol in the preprocessing paradigm, over rings (both
Z2λ and Z2), that achieves fairness and GOD. Casting our protocol in the prepro-
cessing paradigm allows us to obtain a fast online phase, with a cost comparable to
the best-known dishonest as well as honest majority protocols. Furthermore, we
achieve GOD, without incurring any additional overhead in the online phase, in
comparison to our fair protocol. This is depicted in Table 1.

Table 1. Comparison of mult of MAS-
COT, Fantastic Four and Tetrad with
QuadSquad

Ref. Preproc. Online Model Security

Comm. Rounds Comm.

Tetrad (Z2λ) 2 1 3 HM GOD

Fantastic Four (Z2λ) NA 1 6 HM GOD

MASCOT (F) 7713 2 12 DM abort

QuadSquad (Z2λ) 1558 3 7 FaF Fair

QuadSquad (Z2λ) 3110 3 7 FaF GOD

– The comm. complexity is given in
terms of elements from Z2λ/F (of
size 264), as applicable. HM: Honest
majority; DM: Dishonest majority.

Here, with respect to honest-
majority protocols, we compare Quad-
Squad’s multiplication with the best-
known 4PC of Tetrad [56] which relies
on a TTP, and the protocol of Fantas-
tic Four [31] which offers private robust-
ness without relying on a TTP. With
respect to dishonest-majority proto-
cols, we compare with the best-known
OT-based protocol of MASCOT [53]
since our protocol also relies on OTs in
the preprocessing. While QuadSquad,
[31] and [56] work over ring, [53]
exploits field (F) structure. Further, the
protocol in [31] does not have a sepa-
rate preprocessing phase. We indicate this in Table 1 by “NA” (Not Applicable).
As per the table, QuadSquad is comparable to both the honest-majority and
dishonest-majority protocols in the online phase and outperforms [53] in the
preprocessing. Our offer over [56], [31] is stronger security against an additional
semi-honest corruption, with a comparable online cost. Our offer over [53] is the
stronger guarantee of fairness/GOD with comparable online cost (and better
preprocessing cost).
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Necessity of OT. FaF is closer to dishonest majority (with 2 corruptions out of
4), and hence, public-key primitives are inevitable. We back this up by proving
the necessity of OT. We prove the necessity of semi-honest OT for (t, h∗)-FaF
(abort) secure protocol with n ≤ 2t + 2h∗ (by constructing the former from the
latter). The goal of this result is to justify that a protocol, including ours, in
FaF-model will require public-key primitives. Given this, we use semi-honest OT,
but restrict its use to preprocessing alone1.

Building Blocks and Applications. We consider the application of liquid-
ity matching where FaF security is more apt. We design a range of FaF secure
building blocks to securely realize liquidity matching, as well as other popular
applications such as privacy-preserving machine learning (PPML). The descrip-
tion of the building blocks appears in Table 2. Although these can be naively
obtained by extending techniques from the literature, the resultant building
blocks have a heavy communication overhead. We therefore go one step ahead
and design customised building blocks which are efficient and help in improving
the response time of these applications.

Table 2. Build blocks for various applications

Protocol Input Output Description

�·�-ShSOC v �v� User �·�-shares input v with the servers

�·�-RecSOC �v� v Servers reconstruct v to U

BitExt �v� �msb(v)�B Extracts most significant bit of an arithmetic shared value v

Bit2A �b�B �b� Converts boolean sharing of a bit b to arithmetic sharing

BitInj �b�B, �v� �b · v� Outputs �·�-shares of b · v, where bit b is �·�B-shared and v is �·�-shared

DotPTr {�xs�, �ys�}s∈[n] �
∑

s∈[n] x
s · ys� Outputs �·�-shares of dot product of �·�-shared vectors {xs}s∈n, {ys}s∈n

Benchmarks. We showcase the practicality of QuadSquad by benchmarking
its MPC, as well as the performance of secure liquidity matching and PPML
inference for two Neural Networks (NN). We implement and benchmark our
4PC protocol over a WAN network using the ring Z264 , and report the latency,
throughput and communication costs in the preprocessing and online phase. We
observe that the throughput of our GOD protocol is comparable to that of the
fair protocol, and has an overhead of up to 4.5× in the online phase over [56]
and [31]. This overhead indicates the cost to achieve the stronger notion of FaF-
security. On the other hand, QuadSquad outperforms [53] by a factor of up to
4.5× in the online phase. With respect to the applications, we observe a runtime
of 6 and 10 s for the two NNs, and a runtime of 15 s for liquidity matching. The
reported runtime for both applications is practical.
1 As mentioned in Sect. 1.1, SHE offers an alternative to OT. However, relying on the

heels of recent interesting work on OT [72] and the huge effort on improving OT in
the last decade [19,52], we opt for OT based approach. Translating our approach in
the SHE regime is left for future exploration.
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1.3 Technical Highlights

In this section, we elaborate on the design choices of our protocol, the challenges
involved and the approach taken to tackle them. One approach to achieving
(1, 1)-FaF security in the 4PC setting is via a 4-party identifiable abort (IA)
protocol, where upon detecting misbehaviour, the protocol can be re-run with
a default input for the identified corrupt party. However, we deviate from this
approach and choose dispute pair identification for achieving the desired security
due to the following reasons. First, note that there is no customised 4PC IA pro-
tocol in the literature. Moreover, since the threshold of corruption in (1, 1)-FaF
considering malicious as well as semi-honest parties corresponds to a dishonest
majority, we have to consider IA protocols in the same setting to prevent sus-
ceptibility to view-leakage attack. This would inherently require us to consider
generic n-party dishonest majority IA protocols, instantiated for the specific case
of n = 4 and t = 2, which do not offer a practically efficient solution. Specifically,
the state-of-the-art protocol in this setting [10] requires online communication of
24 elements per multiplication-gate, which is significantly higher than the online
communication cost of our protocol. Designing a customised 4PC IA protocol is
an orthogonal question which is left as an open problem.

Necessity of OT. To prove the necessity of semi-honest OT for a generic n-party
(t, h∗)-FaF secure (abort) protocol with t + h∗ < n ≤ 2t + 2h∗, we construct the
former from the latter. Recall that the necessity of n > t + h∗ for abort security
and n > 2t+h∗ for GOD in the FaF model is known from [3]. Note that our proof
holds up to n ≤ 2t + 2h∗, which subsumes the optimal bound on n for the GOD
setting. We show that an n-party (t, h∗)-FaF secure protocol πf for computing
the function f((m0,m1),⊥, . . . ,⊥, b) = (⊥,⊥, . . . ,⊥,mb), where n ≤ 2t + 2h∗,
can be used to construct a semi-honest OT. We give the formal proof in Sect. 3.

QuadSquad: Robust (1, 1)-FaF Secure 4PC. The core idea of our 4PC pro-
tocol lies in designing the sharing, reconstruction and multiplication primitives.

Sharing: To facilitate operating over rings and ensure privacy in FaF model
with 1 malicious and 1 semi-honest party, we rely on Replicated Secret Sharing
(RSS) with a threshold of 2. This requires 6 components where each pair of
parties holds a common component. This is higher than the 4 components in
RSS with threshold 1 and 3 which are typically used in honest and dishonest
majority settings respectively. In QuadSquad, each party has only 3 components
of a sharing which poses the challenge in ensuring an efficient reconstruction.

Reconstruction: Although a naive reconstruction towards all would require a
communication of 12 elements, our protocol reduces this to an amortized cost
of 7 elements. Both our sharing and reconstruction protocols extensively rely on
primitives which leverage the honest behaviour of at least 3 parties to ensure
dispute pair (DP) identification.

Multiplication: The higher number of components in our sharing semantics makes
our multiplication protocol non-trivial. At a high level, the multiplication of
2 shared values results in 36 summands, which we broadly categorize into 3
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types based on the number of parties which can locally compute each summand.
We give separate treatment to each category, of which the summands that can
be computed by a single party and those which cannot be computed by any
party are of particular interest. The main challenge in the former is ensuring the
correctness of a party’s computation, for which we build upon the distributed
Zero-Knowledge (ZK) protocol of [20]. The latter requires a new distributed
multiplication protocol where two distinct pairs of parties hold the inputs to the
multiplication and the goal is to additively share the product between the pairs.
This primitive relies on OT. Here, the main challenge is ensuring the correctness
of inputs to OT, for which we leverage the (semi) honest behaviour of at least 3
parties and the fact that every pair of parties holds a common component. Apart
from several optimization techniques, the primary technical highlight in this part
includes the new batch reconstruction and the distributed multiplication, both
of which contribute to a highly efficient multiplication protocol.

Online: For efficiency, we follow the masked evaluation paradigm by tweaking
RSS as follows. We share a value using a mask which is RSS shared and a masked
value which is public. Circuit evaluation is then performed on the public masked
values which are required to be reconstructed in the online phase [13,44,66].

Fair to GOD: In the optimistic run (where all parties behave honestly) of our
4PC protocol the function output is computed correctly. However, in case any
malicious behaviour is detected during protocol execution, a dispute pair (DP) is
identified which is assured to include the malicious party. The protocol that we
obtain by terminating at the earliest point of dispute discovery, offers fairness.
Note that the fair protocols existing in the literature [55,56,67] are susceptible to
the view-leakage attack and thus are not FaF secure. Further, to extend the secu-
rity guarantee to GOD without incurring additional communication overhead in
the online phase, we follow the commonly used approach of segmented evaluation
of a circuit. Specifically, we segment the circuit and execute the above protocol
in a segment-by-segment manner. In case malicious behaviour is detected in any
segment, as in our fair protocol, we identify a DP. Following this, for computa-
tion of the remaining segments, we resort to a single instance of a semi-honest
2PC which is executed by parties outside DP, which we refer to as the trusted
pair (TP). We use the semi-honest 2PC in a black-box manner, and this can
be instantiated with the state-of-the-art protocol. We use ABY2.0 [66], for this
purpose, which is also designed in the preprocessing paradigm. To extend sup-
port for the online phase of [66], each pair of parties executes an instance of the
preprocessing of [66], along with the preprocessing of QuadSquad. This ensures
that in case DP is identified during the online phase, parties have the necessary
preprocessed data for the 2PC.

Key Differences from Tetrad, Fantastic Four and MASCOT. The best
known honest-majority 4PC given in Tetrad differs from our construction in
many aspects starting with reliance on RSS with threshold 1. This ensures every
party misses a single (as opposed to 3 for us) component, offering a very efficient
reconstruction. They further utilize high redundancy (every component is held
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by 3 parties) and heavily rely on isolating one of the parties from most of the
computation. This, together with the threshold of 1 guarantees that, in case
malicious behaviour is detected during the computation, the isolated party is
honest. This honest party is then elevated to a TTP. The protocol of [55] follows
a similar approach for efficiency. In FaF-model, we fall short of the first and
the latter paradigm fails due to the presence of an additional semi-honest party.
Thus, our multiplication protocol involves all four parties and enforces different
mechanisms to detect and handle malicious behaviour compared to the Tetrad
protocol. Similar to [55,56], the efficiency of Fantastic Four can be attributed to
the benefits of redundancy offered by RSS with threshold 1. Their work achieves
a variant of GOD referred to as private robustness by first identifying a dispute
pair in the execution involving all 4 parties, followed by reducing the computation
to a 3-party malicious protocol. For this, their work eliminates one party from the
dispute pair arbitrarily. Any malicious behaviour hereafter, asserts that the party
from the dispute pair included in the 3PC is malicious. To achieve robustness,
they execute a semi-honest 2-party protocol using the parties guaranteed to be
honest. Although their approach circumvents revealing private inputs to a TTP
for achieving robustness, it falls short of offering FaF-security. In particular, it
is susceptible to the view-leakage attack in all the instances of its sub-protocols
involving 2, 3 and 4 parties. Moreover, in [31], the switch from 4PC to 3PC
upon identifying malicious behaviour is non-interactive. This can be attributed
to the threshold of 1 which ensures that any three parties together possess all
the components of the sharing. However, in our case, if any malicious behaviour
is detected we fall back on a semi-honest 2PC. The sharing semantics of our
protocol (required to prevent view-leakage attack) are such that a pair of parties
does not hold all the shares. Hence we need additional interaction for converting
from 4PC sharing to a 2PC sharing.

On the other hand, MASCOT [53] relies on RSS with threshold 3 (same as
additive sharing). Though every party misses 3 shares like our case, riding on the
advantage of shooting for a weaker guarantee of abort, they are able to leverage
king-based approach [33] for reconstruction (only one party/king is enabled to
reconstruct, which later sends the value to the rest) which only ensures detection,
but falls short of recovery, from a malicious behaviour. [53] delegates checks to
detect malicious behaviour to the end of the protocol whereas we need to verify
correct behaviour at each step to ensure fairness/GOD.

Our work leaves open several interesting questions. We elaborate on these
and the challenges involved therein in the full version of the paper.

2 Preliminaries

Setting and Security. We consider a set of four parties P = {P1, P2, P3, P4}
which are connected by pair-wise private and authenticated channels in a syn-
chronous network. The function to be computed is expressed as a circuit whose
topology is public and is evaluated over a ring Z2λ of size 2λ. Our protocols are
designed in the FaF model with a static malicious adversary and a (different)
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semi-honest adversary each corrupting at most one (distinct) party. We make
use of broadcast channel for simplicity of presentation, which can be instantiated
using any protocol such as [38]. Our constructions achieve the strongest security
guarantee of GOD, wherein parties receive the protocol output irrespective of
the malicious adversary’s strategy. We prove the security of our protocols in the
ideal world/real world simulation paradigm. The security definitions and proofs
appear in the full version of the paper.

In the SOC setting, the four servers execute our protocol. For client-server
based computation, a client secret-shares its data with the servers. Servers per-
form the required operations on secret-shared data and obtain the secret-shared
output. Finally, to provide the client’s output, servers reconstruct the output
towards it. The underlying assumption here is that the corrupt server can col-
lude with a corrupt client. We consider computation over Z2λ and Z21 . To deal
with decimal values, we use Fixed-Point Arithmetic (FPA) [24,60,62,67] in which
a value is represented as a λ-bit integer in signed 2’s complement representation.
The most significant bit (msb) denotes the sign bit, and d least significant bits
are reserved for the fractional part. The λ-bit integer is then viewed as an ele-
ment of Z2λ , and operations are performed modulo 2λ. We set λ = 64, d = 13,
leaving λ − d − 1 bits for the integer part. Our protocols are cast in the pre-
processing paradigm, wherein a protocol is divided into (a) function dependent
(input independent) preprocessing phase and (b) input dependent online phase.

Notation 1. Wherever necessary, we denote P by the unordered set {Pi, Pj , Pk,
Pm} and {Pi, Pi+1, Pi+2, Pi+3}. Note that i, j, k,m ∈ [4] do not correspond to any
fixed ordering, only constraint being i �= j �= k �= m. Similarly for i, i + 1, i +
2, i + 3, corresponding to a Pi, say P2, Pi+1 = P3, Pi+2 = P4, Pi+3 = P1.

Standard Building Blocks. Parties make use of a one-time key setup captured by
functionality Fsetup, to establish pre-shared random keys for pseudo-random func-
tions (PRF) among them. This functionality incurs a one-time cost, and thus can
be instantiated using any FaF-secure protocol such as that of [3]. We make use of
a collision-resistant hash function H and a commitment scheme Com.

Advanced Building Blocks. Here we discuss 4 primitives at a high-level: (a) 3-
party joint message passing (jmp) from [55], with minor modifications (b) a
related 4-party jmp primitive, (c) oblivious product evaluation (OPE) and (d)
distributed zero-knowledge protocol.

3-Party Joint Message Passing (jmp3). The jmp primitive from [55] allows two
parties Pi, Pj holding a common value v, to send it to a party Pk such that either
Pk receives the correct v, or TTP is identified. For our purpose, we trivially mod-
ify their protocol to give out a dispute pair (DP) instead of a TTP to all the 4
parties. In [55], the jmp primitive is invoked for sending each value indepen-
dently and the verification is amortized over many sends. Their protocol allows
for such a decoupling due to its asymmetry and a pre-specified order of verifi-
cation. For our protocol however, postponing verification causes security issues.
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Specifically, batching the verification of different layers of the circuit together
allows an adversary to follow a strategy which ensures that DP comprises of two
(semi) honest parties. This is contrary to the requirement that DP must include
the malicious party. To avoid this problem, we compress the send and verifi-
cation of jmp so that an optimistic (no error) run takes one round and batch
them together for many instances corresponding to a pair of senders. That is, a
pair of parties, say Pi, Pj invoke jmp to send a vector −→v to Pk, and in parallel
verification of correctness takes place. We call the modified variant as jmp3. It
requires an amortized communication of 1 element.

4-Party Joint Message Passing (jmp4). jmp4 allows two parties Pi, Pj holding
a common value v, to send it to the other two parties Pk, Pm such that, either
both the parties receive the correct v or all the parties identify DP.

Notation 2. We refer to the invocation of jmp3(Pi, Pj , v, Pk) as “Pi, Pj

jmp3-send v to Pk” and jmp4(Pi, Pj , v, Pk, Pm) as “Pi, Pj jmp4-send v to Pk, Pm”.

Oblivious Product Evaluation (OPE). OPE (adapted from [53]) allows two parties
holding x ∈ Z2λ and y, z ∈ Z2λ respectively, to compute an additive sharing of
the product xy, such that one party holds xy + z ∈ Z2λ and the other holds z ∈
Z2λ . We rely on techniques from [42,53] to obtain an OPE for λ-bit strings by
running a total of λ 1-out-of-2 OTs on λ bits strings. In this work, we instantiate
OTs using the protocol from Ferret [72], which incurs an (amortized) cost of 0.44
bits for generating one random correlated OT (amortized over batch generation
of 107 correlated OTs). We can obtain an input-dependent OT (using techniques
from [12,48]) at an additional cost of 2 elements and 1 bit. This results in a cost
of 2λ+1.44 bits per OT. So an instantiation of OPE requires an amortised cost of
λ(2λ+1.44) bits and 4 rounds. Note that we use OT in a black-box manner; thus,
any improvement in OT, will improve the efficiency of our construction. Further,
although OPE can be realised with oblivious linear evaluation (OLE), we opt for
the approach of [53] due to better efficiency of OT. Hence, any improvements in
OLE that surpasses OT can be translated to improving our protocol by replacing
OPE with OLE.

Distributed Zero-knowledge (ZK). To verify a party Pi’s correct behaviour, we
extend the distributed zero-knowledge proofs introduced first in [18] offering
abort security, and further optimized by Boyle et al. [20] to provide robust veri-
fication of degree-two relations. Such proofs involve a single prover and multiple
verifiers, where the prover intends to prove the correctness of its (degree-two)
computation over data which is additively distributed among the verifiers. In
[20], the authors provide a distributed ZK protocol with sub-linear proof size,
which is adapted for the verification of messages sent in a 3PC protocol with
one corruption. Their ZK protocol extends in a straightforward manner to the
4-party case with one malicious corruption and one semi-honest corruption in
the FaF model where a dispute pair is identified in case the verification fails. This
is identical to extending the distributed ZK protocol to the case of 4 parties with
1 malicious corruption in the classical model and does not incur any overhead in
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our setting. Since the protocol in [20], and correspondingly ours, is constructed
over fields, to support verification over rings, as in [20] verification operations
are carried out on the extended ring Z2λ/f(x), which is the ring of all polyno-
mials with coefficients in Z2λ modulo a polynomial f , of degree η, irreducible
over Z21 . Each element in Z2λ is lifted to a η-degree polynomial in Z2λ [x]/f(x)
(which results in blowing up the communication by a factor η).

The details of the building blocks, including functionalities, protocols and
proofs appear in the full version.

3 Necessity of Oblivious Transfer

Here, we show that semi-honest OT is necessary for a FaF-secure protocol. Our
claim holds for n ≤ 2t + 2h∗ which subsumes the case of n-party (t, h∗)-FaF
security with optimal threshold of t + h∗ + 1 and 2t + h∗ + 1 for abort and
GOD [3] respectively, and the special case of 4-party (1, 1)-FaF security. The
theorem and proof sketch are given below.

Theorem 3. An n-party (t, h∗)-FaF secure (abort) protocol with n ≤ 2t + 2h∗

implies 2-party semi-honest OT.

Proof. Without loss of generality, we consider n = 2t+2h∗. Let πf be an n-party
(t, h∗)-FaF secure abort protocol for computing the function f((m0,m1),⊥, . . . ,
⊥, b) = (⊥,⊥, . . . ,⊥,mb). We construct a 2-party semi-honest OT protocol πOT

between a sender PS with inputs (m0,m1) and a receiver PR with input b using
πf . In πOT, PS emulates the role of QS = {P1, P2, . . . Pt+h∗} while PR emulates
the role of QR = {Pt+h∗+1, . . . , Pn} to run πf . PR outputs the same mb as
output by party Pn which it emulates while PS outputs ⊥. To prove the security
of πOT, we construct simulators SS and SR that generate the view of PS and PR

respectively from their inputs.
Let PS be corrupted by the semi-honest adversary AOT and let H = {P1,

. . . , Ph∗} and I = QS\H. We now map AOT to an adversarial strategy against πf

as follows. Consider a malicious adversary A for πf that corrupts parties in I but
does not deviate from the protocol (since AOT is semi-honest). However, it sends
the random tape, inputs and messages of all parties in I to every other party in
H at the end of the protocol execution. Note that such an attack of leaking the
view of the maliciously corrupted parties to the semi-honest adversary is valid in
the FaF model. The semi-honest adversary AH for πf runs AOT on the joint view
of the parties in I ∪H (AH receives the view of parties in I from A) and outputs
the same value as AOT. Since |I| = t and |H| = h∗, the security of πf ensures
that there exist simulators SA and SAH corresponding to the adversaries A and
AH. We construct the simulator SS to run SA followed by SAH on PS ’s input
(m0,m1) and output the view generated by SAH . Since AH receives the view of
parties in I, the view generated by SAH includes the view of parties in I ∪ H.
Note that although A considered is malicious in πf , it is emulated by a semi-
honest adversary in the outer πOT protocol and hence does not deviate from the
protocol. Corresponding to such adversarial strategy of A, the simulator SA may
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need to choose the input on behalf of A. A simulator for a semi-honest adversary
is not allowed to choose the input on behalf of the adversary, as discussed in [46].
However, since the parties in I controlled by the adversary A do not have inputs
for f , this does not pose a problem in the proof and SS can thus use SA.

This proves the necessity of semi-honest-OT for (t, h∗)-FaF secure protocol
where t+h∗ < n ≤ 2t+2h∗. Moreover, the sufficiency of OT for the same is given
in [3, Theorem 4.1]. The detailed constructions of the OT protocol, simulators
and the corresponding indistinguishabilty argument appears in the full version.

Corollary 1. An n-party (t, h∗)-FaF secure abort protocol with n = t + h∗ + 1
implies 2-party semi-honest OT.

Corollary 2. An n-party (t, h∗)-FaF secure GOD protocol with n = 2t + h∗ + 1
implies 2-party semi-honest OT.

Both Corollary 1 and 2 follow directly from Theorem 3. For Corollary 1, the
sender emulates t+h∗ parties and the receiver emulates 1 party. For the corrupt
receiver we consider I = φ and H = {Pn}. For Corollary 2, the sender emulates
t + h∗ parties and the receiver emulates t + 1 parties. For the corrupt receiver
we consider I = {Pt+h∗+1, . . . , P2t+h∗} and H = {Pn}.

4 Input Sharing and Reconstruction

To enforce security, we perform computation on secret-shared data. This section
starts with the various sharing semantics we use, followed by a sharing and
a reconstruction protocol for secret-shared computation. We further present an
efficient batch reconstruction for a second type of sharing, which in turn, will act
as the primary building block for our efficient (batch) multiplication protocol.

We begin with the motivation for the choice of our sharing semantics. As
explained earlier, we rely on RSS with threshold 2 to tackle view-leakage attack
where the semi-honest adversary may receive the view of the malicious adversary.
Instead of using RSS directly, we slightly augment our sharing to RSS-share a
random mask and make the masked secret available to all. This sharing style
makes the online cost of a multiplication one reconstruction instead of two. If we
use RSS directly for sharing a secret, then relying on the Beaver’s multiplication
triple technique [11], we would need reconstructing x+αx and y+αy, where x, y
are the inputs and αx, αy are the corresponding random masks. However, as per
the latter sharing, we include the masked values βx = x + αx, βy = y + αy along
with RSS shares of αx and αy respectively in our sharing semantics. So the only
reconstruction needed now is that of the masked valued of xy. This idea goes
back to [66]. We now describe the sharing semantics.

1. [·]-sharing: A value v ∈ Z2λ is said to be [·]-shared (additively shared) among
parties Pi, Pj , if Pi holds [v]i ∈ Z2λ and Pj holds [v]j ∈ Z2λ such that v =
[v]i + [v]j .

2. 〈·〉-sharing: A value v ∈ Z2λ is said to be 〈·〉-shared among P if, each pair
of parties (Pi, Pj), where 1 ≤ i < j ≤ 4, holds 〈v〉ij ∈ Z2λ such that
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v =
∑

(i,j)〈v〉ij . This is equivalent to RSS of a value among 4 parties with
threshold 2. Note that since 〈v〉ij represents the common share held by Pi, Pj ,
throughout the protocol we assume the invariant that 〈v〉ij = 〈v〉ji, for all
1 ≤ i < j ≤ 4. 〈v〉i denotes Pi’s share in the 〈·〉-sharing of v.

3. �·�-sharing: A value v ∈ Z2λ is �·�-shared if
– there exists αv ∈ Z2λ that is 〈·〉-shared amongst P and
– each Pi ∈ P holds βv = v + αv.

Note that the value αv acts as the mask for v. We denote by �v�i, Pi’s share
in the �·�-sharing of v.

Note that all these sharings are linear i.e. given sharings of values a1, . . . , am

and public constants c1, . . . , cm, sharing of
∑m

i=1 ciai can be computed non-
interactively for an integer m.

4.1 �·�-sharing: Sharing and Reconstruction

Sharing. Protocol �·�-Sh either allows a party Ps to share a value v or ensures
dispute pair (DP) detection. To generate �v�, in the preprocessing phase, Ps

together with every other party Pi, samples a random 〈αv〉si ∈ Z2λ , while Ps

samples a random 〈αv〉ij ∈ Z2λ with every pair of parties Pi, Pj . This allows Ps

to learn αv in clear. In the online phase, Ps computes βv = v + αv and sends it
to Pt. Parties Ps, Pt then jmp4-send βv to the rest. This step either allows the
sharing to complete or identifies a DP. The protocol appears in Fig. 1.

Fig. 1. �·�-sharing a value

Reconstruction. Protocol �·�-Rec allows parties to reconstruct v from �v� such
that either v is obtained by all the parties or a DP is identified. As observed, a
party misses three shares of 〈αv〉, which are needed for reconstructing v, each
of which is held by two other parties. To reconstruct v towards a party Ps, in
the preprocessing each pair (Pi, Pj) jmp3-send a commitment of their common
share Com(〈αv〉ij) to Ps. The common source of randomness (generated via
the shared key setup) can be used for generating the commitments, so that it
is identically generated by both the senders. Then in the online phase all the
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parties open the commitments sent during preprocessing. Ps first reconstructs
αv from consistent openings and then computes v = βv − αv. Due to the use of
jmp3, the preprocessing may fail, however once it is successful the online phase is
robust. Hence, this reconstruction ensures fairness i.e. either all or none receive
the output (in the latter case DP has been identified). In case the reconstruction
protocol terminates with a dispute pair, to extend security to GOD, parties
perform the circuit evaluation using a semi-honest 2PC protocol (Fig. 2).

Fig. 2. Reconstructing a �·�-shared value

4.2 〈·〉-sharing: Reconstruction

In our MPC protocol, for each multiplication gate we require to reconstruct a
〈·〉-shared value in the online phase. Note that a party misses three shares of
〈v〉 needed for reconstruction, each of which is held by two other parties. For
reconstructing v towards all the parties, naively, each pair can jmp4-send their
common share to the other two parties. This requires 6 invocations of jmp4, thus
a communication of 12 elements. Since reconstructing 〈·〉-shared value is the only
communication bottleneck in the online phase of our multiplication protocol, it
is imperative to improve its efficiency.

Taking a step towards this, we allow two parties, say P3, P4 (w.l.o.g) to first
reconstruct v and use jmp4-send to send it to the other two parties. Naively,
the reconstruction towards P3, P4 requires 6 instances of jmp3-send, three per
party to send its missing shares. To improve the communication cost further,
we improve the cost of the second instance of the reconstruction of v (towards
P4 in our case), to 2 jmp3-send instances, leveraging the communication already
done for the reconstruction towards P3. This reduces the communication cost to
7 elements. Our protocol appears in Fig. 3.

Since jmp3 is defined for a vector of values, in 〈·〉-Rec, parties execute recon-
struction of multiple values together. The protocol is described for a single value.
Extending it to a vector is straightforward. In our multiplication protocol, this
translates to reconstruction of the output of all multiplication gates in a level of
the circuit simultaneously.
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Note that we can reconstruct v from �v� using 〈·〉-Rec to reconstruct αv.
However, while �·�-Rec offers fairness, 〈·〉-Rec does not. This implies if we use
〈·〉-Rec for the final output, it is possible that the adversary gets the output
while the honest parties do not. Further, when the computation is rerun in 2PC
mode, the adversary can use a different input and obtain another evaluation,
thus breaching security.

Fig. 3. Reconstructing a 〈·〉-shared value

5 Multiplication

In this section, we present a multiplication protocol. Taking a top-down app-
roach, we first present our multiplication protocol relying on a triple generation
protocol in a black-box way. We then conclude with a triple generation protocol.
To gain efficiency, several layers of amortisation are used. We mention them on
the go and summarise at the end of the section.

5.1 Multiplication Protocol

The multiplication protocol (Fig. 4) allows parties to compute �z�, given �x� and
�y�, where z = x ·y. We reduce this problem to that of reconstructing a 〈·〉-shared
value, assuming that parties have access to (a) 〈·〉-sharing of a multiplication
triple (αx, αy, αxαy) for random αx, αy and (b) 〈·〉-sharing of a random αz. Both
the requirements are input (i.e. x, y) independent and can be fulfilled during the
preprocessing phase. The former requirement is obtained via a triple generation
protocol tripGen (Fig. 6), discussed subsequently. The latter requirement can be
achieved non-interactively using the shared key setup. The reduction works as
follows. The random and independent secret αz is taken as the mask for the �·�-
sharing of product z. Since αz is already 〈·〉-shared, to complete �z�, parties only
need to obtain the masked value βz = z + αz. Since βz takes the following form
βz = z+αz = xy+αz = (βx−αx)(βy−αy)+αz = βxβy−βxαy−βyαx+αxαy+αz and
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the parties hold 〈αx〉, 〈αy〉, 〈αxαy〉, 〈αz〉, and βx, βy in clear, the parties hold 〈βz〉.
Parties thus need to reconstruct βz. To leverage the amortised cost of 〈·〉-Rec,
we batch many multiplications together. While for simplicity, we present the
protocol in Fig. 4 for a single multiplication, our complexity analysis accounts
for amortization.

Fig. 4. Multiplication protocol

5.2 Triple Generation Protocol

As a building block to our triple generation protocol, we first present a dis-
tributed multiplication protocol, where two distinct pairs of parties hold inputs
to the multiplication and the goal is to additively share the product between the
pairs. We build on this protocol to complete our triple generation.

Distributed Multiplication Protocol. Let Pi, Pj hold a and Pk, Pm hold b.
The goal of a distributed multiplication is to allow Pi, Pj compute c1 and Pk, Pm

to compute c2 such that c1 + c2 = ab. To achieve this, Pk and Pm locally sample
c2 (using one-time key setup) then parties engage in an instance of OPE (Sect. 2)
where Pi, Pj and respectively Pk, Pm enact the receiver’s and sender’s role.

– Pi, Pj as the receivers input a and output either c1 or DP.
– Pk, Pm as the senders input b, −c2 and output either ⊥ or DP.

Since the pair of receivers {Pi, Pj} hold identical inputs and use a shared
source of randomness, their corresponding messages in the underlying protocol
for OPE realisation will be identical. They send their messages to the senders via
an instance of jmp4. Recall that the jmp4 primitive ensures that a message com-
monly known to two sender parties is either communicated correctly to both the
receiving parties, or a dispute pair DP is identified. In the former case, the pair
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of senders {Pk, Pm}, having the same input and receiver’s message, will prepare
identical sender messages as a part of OPE and communicate to the receivers
via another instance of jmp4 primitive, resulting in either a successful commu-
nication of the sender message to the receivers {Pi, Pj} or identification of DP.
In the former case, OPE is concluded successfully. Note that the verification of
jmp4 tackles any malicious behaviour, thus relying on semi-honest OPE suffices.
Otherwise, DP is identified and the pair is guaranteed to include the malicious
party. If fairness is the end goal, the protocol can terminate at this stage. Oth-
erwise, it switches to an execution of a semi-honest 2PC (such as ABY2.0 [66])
with the parties outside DP to achieve the stronger guarantee of GOD.

Fig. 5. Distributed multiplication protocol

Triple Generation Protocol. The triple generation protocol allows parties
holding 〈αx〉, 〈αy〉 to generate 〈αxαy〉. We write the product αxαy as below, con-
sisting of 36 summands, categorizing them into three types as below and as
shown in Table 3.

For the summands in type S0, no single party holds the two constituent shares
of αx, αy. For the summands in S1, exactly one party holds the two constituent
shares, and lastly for the summands in S2, exactly two parties hold the two
constituent shares. Note that there are 6 summands each, of the types S0 and
S2 and 24 summands of type S1. To generate 〈αxαy〉, we generate 〈·〉-sharing
of each summand of αxαy and then sum them up to obtain 〈αxαy〉. The task of
generating 〈·〉-sharing for an individual summand differs based on the class it
belongs to.

αx · αy =
∑

(i,j)
1≤i<j≤4

〈αx〉ij ·
∑

(k,m)
1≤k<m≤4

〈αy〉km

=
∑

(i,j)
1≤i<j≤4

〈αx〉ij〈αy〉ij

︸ ︷︷ ︸
S2

+
∑

(i,j,k)
i,j,k∈[4]

〈αx〉ij〈αy〉ik

︸ ︷︷ ︸
S1

+
∑

(i,j),(k,m)
1≤i,k<j,m≤4

〈αx〉ij〈αy〉km

︸ ︷︷ ︸
S0

(1)

Summands of S2. Each summand in this type can be computed locally by
2 parties. For instance, 〈αx〉ij〈αy〉ij can be computed by Pi and Pj . Denoting
〈αx〉ij〈αy〉ij as τij , 〈τij〉 is computed as follows:
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Pi, Pj set 〈τij〉ij = 〈αx〉ij〈αy〉ij and
Pu, Pv set 〈τij〉uv = 0,∀(u, v) �= (i, j)

(2)

Summands of S1. Each summand here can be computed locally by a single
party. For instance, 〈αx〉ij〈αy〉ik can be computed by Pi alone. Then Pi’s goal is
to share this amongst the four parties so that one share is held by both Pi, Pk

and the other by Pj , Pm. That is, for δi, δ
1
i , δ2i with δi = δ1i + δ2i = 〈αx〉ij〈αy〉ik,

Pi, Pk intend to obtain δ1i and Pj , Pm intend to obtain δ2i . The pairings {Pi, Pk}
and {Pj , Pm} for various parties are done to balance the share count across the
parties. We say that {Pi, Pk} and respectively {Pj , Pm} pair up for Pi’s instance.
Given this, 〈δi〉 can be computed as (we set k = i + 3):

Pi, Pk set 〈δi〉ik = δ1i , Pj , Pm set 〈δi〉jm = δ2i

Pu, Pv set 〈δi〉uv = 0, for all (u, v) �= (i, k), (j,m)
(3)

Table 3. The summands of αx · αy with
category {S0, S1, S2}

〈αx〉12 〈αx〉13 〈αx〉14 〈αx〉23 〈αx〉24 〈αx〉34
〈αy〉12 S2 S1 S1 S1 S1 S0

〈αy〉13 S1 S2 S1 S1 S0 S1

〈αy〉14 S1 S1 S2 S0 S1 S1

〈αy〉23 S1 S1 S0 S2 S1 S1

〈αy〉24 S1 S0 S1 S1 S2 S1

〈αy〉34 S0 S1 S1 S1 S1 S2

Now to achieve the above dis-
tribution of additive shares (δ1i , δ2i ),
Pi, Pj , Pm first locally sample δ2i
(using the shared key setup) and fur-
ther, Pi computes and sends δ1i to Pk.
To keep Pi’s misbehaviour in check,
Pi is made to prove in zero-knowledge
the correctness of its computation.
With this high-level idea, we intro-
duce two cost-cutting techniques.

First, recall that there are 24 summands in S1 and every Pi is capable of locally
computing 6 of them. We combine the above procedure for 6 summands together.
That is, δ1i , δ2i are additive shares of δi =

∑
(j,k)〈αx〉ij〈αy〉ik. This cuts our cost by

1/6th. Next, leveraging the malicious-minority and non-collusion of the malicious
and semi-honest adversaries (implied by FaF model), we customise disZK (Sect. 2)
of [20] to prove that

∑
(j,k)〈αx〉ij〈αy〉ik − δ1i − δ2i = 0. As per the need of such

ZK, each term in the statement is additively shared amongst Pj , Pk, Pm and is
possessed in entirety by the prover Pi. For instance, 〈αx〉ij is additively shared
amongst Pj , Pk, Pm with Pj ’s share as 〈αx〉ij and the shares of the rest set to 0.
Similarly for other shares of αx and αy. δ2i is additively shared amongst Pj , Pk, Pm

with Pj ’s share as δ2i and the shares of the rest set to 0. Lastly, δ1i is additively
shared amongst Pj , Pk, Pm with Pk’s share as δ1i and the shares of the rest set to
0. If the disZK is successful, then Pi, Pk output δ1i and Pj , Pm output δ2i , using
which 〈δi〉 an be computed as above. Otherwise, the disZK returns a dispute pair.
This is executed for every party’s collection of S1 summands.

Summands of S0. No single party can compute the summands in this category.
For instance, 〈αx〉ij〈αy〉km cannot be computed by any of the parties locally.
We invoke the distributed multiplication protocol disMult (Fig. 5) for each such
term, where the common input of {Pi, Pj} and {Pk, Pm} are 〈αx〉ij and 〈αy〉km

respectively and their respective outputs are γ1
ij,km, γ2

ij,km, in case of success, or
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a dispute pair. Denoting γij,km = γ1
ij,km +γ2

ij,km = 〈αx〉ij〈αy〉km, the parties can
now generate 〈γij,km〉 as:

Pi, Pj set 〈γij,km〉ij = γ1
ij,km, Pk, Pm set 〈γij,km〉km = γ2

ij,km

Pu, Pv set 〈γij,km〉uv = 0, for all (u, v) �= (i, j), (k,m)
(4)

Fig. 6. Triple generation protocol

5.3 Summary

Amortizations. We summarise the various layers of amortization we use to get
the best efficiency of our protocols. First, given a circuit with � multiplication
gates, the triple generation protocol creates 〈·〉-sharing of � triples at one go.
All the summands of the form 〈αx〉ij〈αy〉km from S0 category across all the �
instances use jmp4 for communication, whose verification is inherently batched
for amortization. Next, the distributed ZK used for tackling the summands in S1

can be used in an amortized sense as well. Recall that corresponding to a single
triple generation, every Pi runs a single instance of distributed ZK to tackle 6
summands in its possession. However, we can extend this to accommodate 6�
summands across all the � triples to achieve 40 bits of statistical security while
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working over a ring, by performing verification on the extended ring [1,20]. This
means that we need to run overall 4 distributed ZK, one for every party. These
cover all the amortizations done in the triple sharing protocol which consti-
tutes the preprocessing of the multiplication protocol. The online phase of the
multiplication protocol too exploits amortization of the batch 〈·〉-reconstruction
protocol. In the MPC protocol, we thus proceed level by level and execute all
the multiplications placed in a level at one go.

Achieving Fairness. To obtain fairness, we can stop immediately after sensing
a dispute. This means, in some cases, the effort needed for identifying a dispute
pair, beyond sensing a dispute (which only says something is wrong and nothing
beyond), can be slashed. For instance, in jmp4 parties can terminate immediately
upon detecting conflict without identifying a dispute pair.

6 (1, 1)-FaF Secure 4PC Protocol

Our complete protocol (4PC) realising the 4PC functionality (F4PC-FaF) for evalu-
ating a circuit in the (1, 1)-FaF security model with fairness and GOD is described
here as a composition of the protocols discussed so far. Formal details appear in
the full version of the paper. Recall that our protocol is cast in the preprocess-
ing paradigm. In the preprocessing phase, for each input gate u, parties execute
the preprocessing of �·�-Sh to precompute 〈αu〉. Further, for each multiplication
gate with input wires u, v and output wire w, parties obtain 〈αw〉 and 〈αuαv〉
by running the preprocessing of mult. This computation is done in parallel for
all the multiplication gates. Finally, for each output gate of the circuit, parties
execute the preprocessing phase of �·�-Rec. This completes the preprocessing.

In the online phase, parties evaluate the circuit gate-by-gate in a predeter-
mined topological order. For each input gate u, they execute the online phase of
�·�-Sh to obtain βu. Addition gates are handled locally. For each multiplication
gate with input wires u, v and output wire w, parties perform the online phase of
mult to compute βw. Finally, they reconstruct the value of an output wire w, using
the online phase of �·�-Rec. As mentioned in Sect. 2, we batch the verification of
all the parallel instances of jmp3 and jmp4 respectively for every pair of parties,
and perform it with the send in the same round. In case of malicious behaviour in
these instances, additionally at most 2 rounds are required to identify a dispute
pair. The above protocol either succeeds or a dispute pair is identified, which
includes the malicious party. This construction achieves fairness.

To attain GOD without incurring additional overhead in the online phase,
we follow the approach of segmented evaluation described in [31]. Specifically,
we divide the circuit into segments, and the protocol proceeds as described in
a segment-by-segment manner with topological order. As in the case of our fair
protocol, either the execution of a segment completes successfully, or a dispute
pair is identified. In the latter case, the segment where the fault occurs and
all the segments following it are evaluated using a semi-honest 2PC, which is
executed by the parties outside the dispute pair. Using this approach, only the
segment where the fault occurs incurs the cost of 2PC in addition to the cost
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of our fair protocol. Hence, this overhead which is limited to a single segment
is insignificant. The cost of evaluating the subsequent segments is solely that
of the semi-honest 2PC which we instantiate with [66]. Note that in segmented
evaluation of the circuit, the output of a segment acts as the input to the fol-
lowing segment. Hence, rerunning the segment where malicious behaviour was
detected requires the outputs from the prior segment with 4PC sharing seman-
tics to be translated to 2PC sharing semantics. However, due to a threshold of 2
in the 4PC, no pair of parties hold all the components of sharing corresponding
to any secret. This necessitates interaction among parties. Suppose Sm is the
segment where malicious activity is detected and w.l.o.g. {P3, P4} is identified
as the dispute pair, which means the evaluation till segment Sm−1 happened
correctly. W.l.o.g let z be the output of the segment Sm−1 which is also an input
to the segment Sm. Since the evaluation of Sm−1 was correct, all 4 parties have
the correct �·� sharing of z, which comprises of βz and 〈αz〉. But to rerun Sm

with {P1, P2}, they need the 2PC sharing of z. However, {P1, P2} miss the 〈αz〉34
component which is common to P3, P4 and hence cannot obtain the 2PC sharing
of z locally. Making P3, P4 send this value to P1 or P2 or both does not suffice.
Since either P3 or P4 is malicious, the malicious party can send a wrong value
which will lead to an inconclusive state for {P1, P2}, failing to achieve the end
goal of 2PC sharing. To address this problem, we resort to the same idea as that
of �·�-Rec. That is, for each output wire z of all the segments, all pairs of par-
ties Pi, Pj commit to their common share 〈αz〉ij in the preprocessing phase and
jmp4-send the commitment to the other two parties. Now with the commitments
established, parties in the dispute pair can send the opening corresponding to
their respective commitments to the remaining two parties. In the above exam-
ple, this corresponds to P3, P4 sending the opening of their commitments which
contains 〈αz〉34 to P1, P2. Following this, P1, P2 can decide the correct value of
〈αz〉34 based on a valid opening, which is guaranteed to exist since one of P3, P4

is honest. Note that sending 〈αz〉34 does not breach privacy since the malicious
party can anyway send this value to other parties as a part of view-leakage,
which is handled by our sharing semantics. Now P1 sets its 2PC additive share
[αz]1 = 〈αz〉12+〈αz〉13+〈αz〉14 and P2 sets [αz]2 = 〈αz〉23+〈αz〉24+〈αz〉34, where
αz = [αz]1 +[αz]2. Note that (βz, [αz]1) and (βz, [αz]2) is a valid 2PC sharing of z
as per the semantics of [66]. However, as we describe below, this does not suffice.

Observe that the preprocessing of 2PC is performed along with the prepro-
cessing of our 4PC protocol. Therefore, the value of mask corresponding to a wire
z may differ in these two scenarios. To perform the 2PC execution of the circuit,
we need to use the mask values selected during preprocessing for the 2PC. Let
α′
z be the mask corresponding to wire z in the 2PC and [α′

z]1 and [α′
z]2 be the

shares corresponding to P1, P2 respectively. Thus, the sharing of z requires to be
updated according to α′

z, which essentially means updating the corresponding
masked value, say β′

z such that β′
z = z + α′

z = (βz − αz) + α′
z. Towards this,

P1 computes v1 = βz − [αz]1 + [α′
z]1 and sends it to P2. Similarly, P2 computes

v2 = [α′
z]2 − [αz]2 and sends it to P1. Then P1, P2 locally obtain β′

z = v1 + v2 to
complete the required 2PC sharing of z. Note that since both P1, P2 are (semi)
honest, they send the correct values. Further, sending v1 or v2 does not breach
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privacy since they can learn these values from their own shares (for example, P1

can compute v2 given its shares βz, β
′
z, [αz]1 , [α′

z]1). The security of protocol 4PC
as per the functionality F4PC-FaF is stated below.

Theorem 4. Assuming collision resistant hash functions and semi-honest OT
exists, protocol 4PC realizes F4PC-FaF with computational (1, 1)-FaF security.

Security Against a Mixed Adversary. A closely related notion of security is
that of a mixed adversary [8,26,37,39,41,47] which can simultaneously corrupt
a subset of t parties maliciously and a disjoint subset of h∗ parties in a semi-
honest manner. In contrast to the FaF model, the adversary here is centralized.
Consequently, the mixed security model allows the view of semi-honest parties
to be available to the adversary while determining a strategy for the malicious
parties. Although the mixed adversarial model might seem to subsume FaF,
Alon et al. [3] showed that (t, h∗) mixed security does not necessarily imply
(t, h∗)-FaF security. Given this, we constructed a 4PC protocol which is secure
in the FaF model. However, we go a step beyond and show that our protocol
is also secure against a (1, 1)-mixed adversary. For this, the crucial observation
is that our protocol can withstand the scenario where the malicious adversary
is provided with the view of semi-honest parties, which essentially captures the
mixed adversarial model. Refer to the full version for details.

7 Applications and Benchmarks

This section focuses on evaluating the performance of QuadSquad. We first eval-
uate the performance of MPC and draw comparisons to concretely efficient tra-
ditional MPC protocols that come closest to our setting. We then establish the
practicality of QuadSquad via the application of secure liquidity matching and
PPML for neural network inference. We refer the readers to the full version
for a detailed discussion on the benchmarking environment, secure protocols for
the applications considered and analysis of performance bottlenecks. The source
code of our implementation is available at quadsquad.

Environment. Benchmarks are performed over WAN using n1-standard-32
instances of Google Cloud, with machines located in East Australia (M0), South
Asia (M1), South East Asia (M2), and West Europe (M3). The machines are
equipped with 2.2 GHz Intel Xeon processors supporting hyper-threading and
128 GB RAM. Average bandwidth and round-trip time (rtt) between pair of
machines was observed to be 180 Mbps and 158.31 ms respectively; though these
values vary depending on the regions where the machines are located.

Software. We implement our protocol in C++17 using EMP toolkit [71]. Since we
useOT as a black-box, it can be instantiated with any state-of-the-artOT protocol
such as [29]. Since the public implementation of [29] is not available, we use EMP
toolkit’s Ferret OT [72]. We use the NTL library [68] for computation over ring
extensions for disZK protocol. [53] and [31] are benchmarked in the MP-SPDZ [51]
framework. Due to the unavailability of implementation of [56], we estimate its

https://github.com/cris-iisc/quadsquad
https://cloud.google.com/
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performance from microbenchmarks. We instantiate the collision resistant hash
function with SHA256 and the PRF with AES-128 in counter mode. Computation
is performed over Z264 for [31,56] and QuadSquad, and over Zp for [53] where p
is a 64-bit prime. We set the computational security parameter to κ = 128 and
ensure statistical security of at least 2−40 for all the protocols. In particular, we
set the degree of the polynomial modulus of the extended ring η = 47. We report
the average value over 20 runs for each experiment.

Benchmarking Parameters. As a measure of performance, we report the online
and overall (preprocessing + online) communication per party and latency for
a single execution. To capture the combined effect of communication and round
complexity, we additionally use throughput (tp) as a benchmark parameter, fol-
lowing prior works [56,60,67]. Here, tp denotes the number of operations (triples
for 4PC preprocessing and multiplications for 4PC online protocol) that can be
performed in one second.

7.1 Performance of 4PC QuadSquad

Table 4. Online costs for evaluating cir-
cuits with 106 mult gates over various
depths. (QS denotes QuadSquad.)

Depth Ref. Online

Latency(s) Comm. (MB) tp

1
Fantastic Four 2.86 12.00 350066.51

Tetrad 1.44 6.00 692947.87
MASCOT 13.88 24.00 72023.80

QS 2.94 14.00 340506.67

20
Fantastic Four 4.04 12.00 247286.04

Tetrad 2.95 6.00 339321.22
MASCOT 25.94 24.00 38554.22

QS 7.42 14.00 134752.73

100
Fantastic Four 11.26 12.00 88771.32

Tetrad 9.28 6.00 107764.43
MASCOT 74.48 24.00 13425.63

QS 30.92 14.00 32337.66

1000
Fantastic Four 87.82 12.00 11387.21

Tetrad 80.52 6.00 12419.36
MASCOT 289.69 24.00 3451.94

QS 287.71 14.06 3475.69

We compare the performance of
our 4PC to Fantastic Four [31],
Tetrad [56] and MASCOT [53]. We
evaluate a circuit comprising 106 mul-
tiplication gates distributed over dif-
ferent depths. Recall that the online
communication cost of our GOD pro-
tocol is similar to the fair protocol due
to segment-wise evaluation. Hence, we
only report the cost of the fair proto-
col for online comparison.

The performance of the online
phase appears in Table 4. The latency
of our protocol (fair and GOD) is
up to 3.5× higher compared to hon-
est majority protocol of [56] and the
abort variant of [31]. This captures
the overhead required to achieve the
stronger notion of FaF-security. On
the other hand, the dishonest majority protocol of [53] bears an overhead of
4.5× to 1.01× compared to ours.

The performance of the preprocessing depends only on the number of mul-
tiplication gates, not on the circuit depth. Hence, only the communication cost
and throughput are reported in Table 5. [31] does not have preprocessing and is
thus, not included. Further, unlike the online phase, Table 5 reports results for
both fair and GOD variants independently since their performance in the prepro-
cessing phase is different. The communication bottleneck in the preprocessing
of QuadSquad is due to computing summands of S0 which involves running six
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instances of disMult, while the computational bottleneck is due to computing the
summands of S1 which involves running four instances of disZK. We implement
disZK using recursion as in [20] which ensures lower communication and compu-
tation costs at the expense of higher round complexity. Our benchmarks show
that disMult always tends to have a higher latency than disZK and constitutes
the performance bottleneck. Detailed discussion is provided in the full version.

Table 5. Preprocessing phase
cost for generating a triple.

Ref. Comm. (KB) tp

Tetrad 0.004 958918.39

MASCOT 67.6 4548.64

QS (Fair) 3.115 8051.27

QS (GOD) 6.22 3934.01

The GOD variant requires running the pre-
processing of [66] for every pair of parties which
has an overhead of around 3 KB per multipli-
cation gate per party. This approximately halves
the throughput in the preprocessing phase when
compared to the fair variant since the combined
preprocessing across all [66] instances is akin to
running six instances of disMult which in turn is
the main bottleneck in fair preprocessing. With
respect to throughput, [56] has the highest tp
owing to its low communication costs while the tp of QuadSquad Fair is around
1.8× that of [53]. The tp of QuadSquad GOD is comparable to that of [53]
despite a significantly lower communication cost because the implementation of
[53] distributes the evaluation of OT instances across the available threads while
our implementation runs it in a single thread to allow running the disZK protocol
in parallel.

7.2 Applications

We consider applications of secure liquidity matching and PPML inference.
Before describing these and evaluating their performance via QuadSquad, we
describe the building blocks designed for the same.

Building Blocks. Each of these applications requires designing new build-
ing blocks, as described in Table 2. Specifically, we develop the following build-
ing blocks: sharing and reconstruction for SOC setting, dot product (DotP),
dot product with truncation (DotPTr), conversion to arithmetic sharing from
a Boolean shared bit (Bit2A), bit extraction to obtain Boolean sharing of the
most significant bit (msb) from an arithmetic shared value (BitExt), bit injection
to obtain arithmetic sharing of b · v from a Boolean sharing of a bit b and the
arithmetic sharing of v (BitInj). Inclusion of these blocks makes QuadSquad a
comprehensive framework. The details of the constructions and the complexity
analysis are discussed in the full version.

Liquidity Matching. Secure liquidity matching involves executing a privacy-
preserving variant of the gridlock algorithm. This algorithm identifies a set of
transactions among banks which can be executed while ensuring that all the
banks possess sufficient liquidity to process them. The gridlock algorithm can be
considered for the following scenarios (i) the source and the destination banks of
the transactions are open (non-private) (sodoGR), (ii) the source is open, but the
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Table 6. Liquidity matching

#banks #transactions
Online Fair Total∗ GOD Total∗

Latency(s) Comm. (KB) Latency(s) Comm. (MB) Latency(s) Comm. (MB)

256
50 5.23 21.28 9.46 4.75 10.35 14.56
100 5.46 23.71 10.22 5.53 10.64 16.11
250 5.70 32.04 10.56 7.87 11.06 20.77
500 5.94 47.97 10.95 11.77 11.61 28.53
1000 6.18 81.76 11.49 19.56 12.45 44.07

1024
50 5.70 74.41 10.72 7.98 12.17 44.91
100 5.94 76.59 10.99 8.76 12.47 46.46
250 6.18 83.36 11.32 11.10 12.89 51.13
500 6.42 96.13 11.71 15.0 13.43 58.88
1000 6.66 124.36 12.26 22.79 14.28 74.41

destination is hidden (secret) (sodsGR), and (iii) the source and the destination
are hidden (ssdsGR). A secure realization for liquidity matching was provided in
[7], albeit via traditionally secure MPC. Given the sensitive nature of financial
data involved in liquidity matching, clearly, FaF-security is more apt. Hence, we
focus on designing FaF-secure protocols for the same. Further, with respect to
the three scenarios described above, note that in most practical cases hiding the
transaction amount is sufficient. Hence, we consider only the sodoGR instance
(details in the full version). However, we note that extending our techniques to
the other two scenarios is also possible.

At a high level, the protocol is iterative where each iteration checks the
feasibility of clearing a subset of transactions. The protocol terminates with a
feasible set or reports a deadlock when no transactions can be cleared. Since
the communication and computation costs are identical across all iterations,
we benchmark the performance for a single iteration and report the costs in
Table 6. We see similar trends as observed while evaluating the performance of
MPC, where the GOD variant is on par with the fair variant with respect to
the overall latency. Further, we observe that the latency of an iteration for both
variants is within 15s even for a large number of banks and set of transactions.

PPML. For the application of PPML inference, we consider the popularly
used [55,56,67,70] Neural Network (NN) architectures, given below.

• FCNN: Fully-Connected NN consists of two hidden layers, each with 128
nodes followed by an output layer of 10 nodes. ReLU is applied after each
layer.

• LeNet: This NN consists of 2 convolutional layers and 2 fully connected layers,
each followed by ReLU activation function. Moreover, the convolutional layers
are followed by an average-pooling layer.

The inference task is performed over the publicly available MNIST [57] dataset
which is a collection of 28 × 28 pixel, handwritten digit images with a label
between 0 and 9 for each. We note that our techniques easily extend to securely
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Table 7. NN inference where QS denotes QuadSquad.

Network Ref. Online Total∗

Latency (s) Comm. (MB) tp (queries/min) Latency (s) Comm. (MB)

FCN Fantastic Four 48.06 27.71 43.75 48.06 27.71
FCN Tetrad 1.66 0.006 47099.05 2.38 0.02
FCN QS Fair 6.00 0.022 3176.65 29.77 371.15
FCN QS GOD 6.00 0.022 3176.65 44.49 746.46

LeNet Fantastic Four 220.17 134.28 84.22 220.17 134.28
LeNet Tetrad 2.45 0.36 787.09 3.25 0.91
LeNet QS Fair 10.36 1.27 64.24 308.89 7251.73
LeNet QS GOD 10.36 1.27 64.24 607.53 14868.07

evaluating other NN architectures such as convolutional neural network (CNN)
and VGG16 [69] used in other MPC-based PPML frameworks of [55,56,70].

We compare the performance of PPML inference via QuadSquad for the above
mentioned NN with the honest majority protocols of [56] and [31]. PPML in
the 4PC dishonest majority (malicious) setting has not been explored so far.
The results of our experiments are summarised in Table 7. Note that the latency
reported is obtained via a single instance of circuit evaluation, whereas the
throughput is computed by running the inference on larger batches. Here, tp is
the number of queries evaluated in a minute since inference over WAN requires
more than a second to complete. Our fair and GOD variants have an overhead
of 3x–4x in performance respectively. However we provide a stronger adversarial
model compared to [56]. The numbers in Table 7 for [31] from MP-SPDZ [51] are
unexpectedly high. We suspect that this anomaly is due to the preprocessing cost
of [31]. However, the benchmarks seem consistent with those reported in [31] and
pinpointing the exact cause is challenging due to the vast MP-SPDZ codebase.
It is worth noting that the communication cost of [31] per query for larger batch
sizes decreases to 0.93 MB per party for FCN and 0.46 MB per party for LeNet.
The QuadSquad protocols have higher cost in the preprocessing phase from using
more expensive primitives like OT and the feature dependent preprocessing phase
for dot-product. However, the comparable online performance to [56] and [31] and
the stronger security model make it a viable practical option despite the overhead
in preprocessing.
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Abstract. Topology-hiding computation (THC) enables n parties to
perform a secure multiparty computation (MPC) protocol in an incom-
plete communication graph while keeping the communication graph hid-
den. The work of Akavia et al. (CRYPTO 2017 and JoC 2020) shown that
THC is feasible for any graph. In this work, we focus on the efficiency
of THC and give improvements for various tasks including broadcast,
sum and general computation. We mainly consider THC on undirected
cycles, but we also give two results for THC on general graphs. All of
our results are derived in the presence of a passive adversary statically
corrupting any number of parties.

In the undirected cycles, the state-of-the-art topology-hiding broad-
cast (THB) protocol is the Akavia-Moran (AM) protocol of Akavia et
al. (EUROCRYPT 2017). We give an optimization for the AM pro-
tocol such that the communication cost of broadcasting O(κ) bits is
reduced from O(n2κ2) bits to O(n2κ) bits. We also consider the sum
and general computation functionalities. Previous to our work, the only
THC protocols realizing the sum and general computation functionalities
are constructed by using THB to simulate point-to-point channels in an
MPC protocol realizing the sum and general computation functionalities,
respectively. By allowing the parties to know the exact value of the num-
ber of the parties (the AM protocol and our optimization only assume
the parties know an upper bound of the number of the parties), we can
derive more efficient THC protocols realizing these two functionalities.
As a result, comparing with previous works, we reduce the communica-
tion cost by a factor of O(nκ) for both the sum and general computation
functionalities.

As we have mentioned, we also get two results for THC on gen-
eral graphs. The state-of-the-art THB protocol for general graphs is the
Akavia-LaVigne-Moran (ALM) protocol of Akavia et al. (CRYPTO 2017
and JoC 2020). Our result is that our optimization for the AM proto-
col also applies to the ALM protocol and can reduce its communication
cost by a factor of O(κ). Moreover, we optimize the fully-homomorphic
encryption (FHE) based GTHC protocol of LaVigne et al. (TCC 2018)
and reduce its communication cost from O(n8κ2) FHE ciphertexts and
O(n5κ) FHE public keys to O(n6κ) FHE ciphertexts and O(n5κ) FHE
public keys.
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1 Introduction

The theory of secure multiparty computation (MPC) has drawn a great deal of
attention since introduced by Yao [28] in 1982. In MPC, n parties P1, . . . , Pn

seek to compute some public function on their private inputs while keeping
their inputs secret. There have been a great body of works to make MPC more
and more general and efficient. However, most of these works assume that the
communication graph is complete, meaning that every two parties can communi-
cate directly, which is not always the case in real-world situations. For example,
two parties may can not directly communicate with each other due to their long
physical distance or other confidentiality reasons. For this reason, a line of works
[8,9,17–19] considered designing MPC protocols over incomplete communication
graph.

Moran et al. [25] considered a more complicated situation, where the com-
munication graph is not only incomplete but also sensitive. They formalized
the concept of topology-hiding computation (THC), which aims to design MPC
protocols while keeping the graph topology hidden. There are many scenes, such
as social networks, ISP networks, vehicle-to-vehicle communications, and other
Internet of Things networks, where keeping the graph topology hidden is of great
importance.

Motivated by building more efficient THC protocols, we consider the setting
where the adversary may statically, passively corrupt up to at most n−1 parties
(only computational security is possible in such a setting). A series of works
have resolved the feasibility question of THC in this setting. More concretely,
the works of [21,25] built THC for graphs with logarithmic diameter1. Later,
based on a special public-key encryption (PKE) scheme (aka PKCR encryp-
tion), the work of [3] built THC for several special graph classes that may have
super-logarithmic diameter such as cycles, trees, and graphs with logarithmic
circumference2. The feasibility of THC on any graph is established in the work
of [1], which presented a construction of THC for all graphs by combining PKCR
encryption and another novel technique called correlated random walks.

In this work, we focus on the efficiency of THC. In the undirected cycles, we
follow the work of [3] and derive more efficient THC protocols for various tasks
such as broadcast, sum and general computation (computing any circuit consists
of addition and multiplication gates). We also extend some of our results and give
several improvements for existing THC protocols on general graphs, including
the topology-hiding broadcast (THB) protocol of [1] and the fully-homomorphic
encryption (FHE) based general topology-hiding computation (GTHC) protocol
of [22].

Other Related Works. There are also several works studying the feasibility
of (computationally secure) THC in the fail-stop setting, where the adversary
may instruct the corrupt parties to abort the protocol. The works of [6,22]

1 The diameter of a graph is the greatest distance between two nodes in the graph.
2 The circumference of a graph is the maximum length of a cycle in the graph.
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showed how to construct THC protocols with small leakage. Some works stud-
ied the possibility of information-theoretic THC. [20] showed that information-
theoretically secure MPC inherently leaks information about the graph topol-
ogy to the adversary, which implies that information-theoretic THC on general
graphs is impossible. A natural question is whether information-theoretic THC
is possible for some subclasses of graphs, which is the main topic of [5]. More-
over, the work of [4] studied the feasibility of THC in different cryptographic
setting: information-theoretic, given other cryptographic primitives such as key
agreement and oblivious transfer. Finally, the work of [23] studied the feasibility
of THC when assuming the network delay is not known (all other THC works
assume the network delay has a known upper bound).

1.1 Our Contribution

As our first result, we give an optimization for the Akavia-Moran (AM) protocol
(the state-of-the-art THB protocol for undirected cycles3) proposed by [3] and
reduce its communication cost by a factor of O(κ) in the amortized sense. Con-
cretely, if one party wants to broadcast O(κ) bits, the communication cost will
be O(n2κ2) bits using the AM protocol. Our optimization for the AM protocol
can reduce the communication cost to O(n2κ) bits.

We then consider the sum and general computation functionalities. Before
showing our results4, we first clarify the state-of-the-art asymptotic communi-
cation complexity required for realizing these two functionalities, respectively.
As noted in [3,21,25], given THB for some graph class and a PKE scheme, any
functionality F can be topology-hidingly realized for the same graph class by
using THB and PKE to simulate point-to-point channels in an MPC protocol
realizing F . Concretely, point-to-point channels are simulated as follows.

1. Each party uses THB to broadcast its public key in a setup phase.
2. To send a message x to Pj , Pi encrypts x using the public key of Pj and then

uses THB to broadcast the resulting ciphertext.
3. Upon receiving the ciphertext, Pj can decrypt it to get x. Other parties know

nothing about x because they do not know the decrypt key.

If the underlying PKE scheme satisfies that the ciphertext length is of the
same order as the plaintext length (i.e., the ciphertext length is at most a positive
constant multiple of the plaintext length)5 and the underlying THB protocol is
3 The original AM protocol is designed for directed cycles, and in particular, it assumes

that all parties only know an upper-bound on n rather than the exact value of n.
In this work, we extend this protocol to undirected cycles (which is direct) and
moreover, we assume that all parties know the exact value of n. We remark that our
optimization also works for the original AM protocol.

4 Unlike the AM protocol and our optimization for the AM protocol, our THC proto-
cols realizing sum and general computation functionalities rely on that the parties
know the exact value of n.

5 In fact, there are many PKE schemes, including the ElGamal [16] scheme and the
Paillier [26] scheme, satisfy this property.
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instantiated with the AM protocol, we can conclude that the state-of-the-art
asymptotic communication complexity of topology-hidingly sending O(κ) bits
on a cycle is O(n2κ2) bits (we do not count in the communication cost of step 1
because it can be executed once for all).

As we have said, the only topology-hiding protocols realizing the sum and
general computation functionalities are constructed by using THB to simulate
point-to-point channels in an MPC protocol realizing these two functionalities.
We have clarified the state-of-the-art asymptotic communication complexity of
simulating point-to-point channels, hence the left problem is to clarify the state-
of-the-art asymptotic communication complexity6 of realizing these two func-
tionalities (without hiding the topology).

For the sum functionality, to the best of our knowledge, the state-of-the-art
asymptotic communication complexity is O(nκ) bits, which can be constructed
from additively homomorphic encryption (which can be instantiated with the
Paillier scheme [26]) as follows.

1. In the setup phase, each party samples a public key and broadcasts it. Let
pk be the product of all the public keys.

2. P1 encrypts its input x1 with pk and sends the resulting ciphertext c1 to P2.
3. For t = 2 to n − 1, upon receiving the ciphertext ct−1, Pt computes an

encryption ct of
∑t

j=1 xj by homomorphically adding xt to ct−1 using the
additive homomorphism. Pt sends ct to Pt+1.

4. Upon receiving the ciphertext cn−1 from Pn−1, Pn computes an encryption
cn of

∑n
j=1 xj by homomorphically adding xn to cn−1 using the additive

homomorphism.
5. Finally, the parties execute a distributed decryption protocol to securely

decrypt cn.

The security of the above scheme is guaranteed by the semantic security of
the underlying encryption scheme. If instantiating the additively homomorphic
encryption scheme with the Paillier scheme, we argue that the communication
cost of the above protocol will be O(nκ) bits (we do not count in the commu-
nication cost of step 1 because it can be executed once for all), which can be
derived from the following two points. Firstly, the ciphertext length of the Pail-
lier scheme is of the same order as its plaintext length, which implies that the
communication cost of step 2-4 is O(nκ) bits. Secondly, we can find a distributed
decryption protocol in [7] for Paillier ciphertexts with communication complexity
O(nκ) bits, which implies that the communication cost of step 5 can be O(nκ)
bits. Therefore, we conclude that the total communication cost is O(nκ) bits.

Note that the state-of-the-art asymptotic communication complexity of send-
ing or broadcasting O(κ) bits is O(n2κ2) bits, hence the state-of-the-art asymp-
totic communication complexity of topology-hidingly realizing the sum func-
tionality is O(n3κ2) bits. Our optimization for the AM protocol can reduce the
6 Because the communication cost of sending a bitstring m is of the same order as

that of broadcasting m, we refer to the communication complexity as the number of
bits that are sent or broadcast.
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communication cost to O(n3κ) bits. In this work, we give a new topology-hiding
sum (THS) protocol which further reduces the communication cost to O(n2κ)
bits.

Now we consider the general computation functionality which computes any
circuit consisting of addition and multiplication gates. A THC protocol realizing
the general computation functionality is called a GTHC protocol. To the best of
our knowledge, in the presence of a passive adversary statically corrupting any
number of parties, the state-of-the-art asymptotic communication complexity
of MPC realizing the general computation functionality is O((m + c)nκ) bits7
where m and c are the number of inputs and multiplication gates in the circuit,
which implies that the state-of-the-art asymptotic communication complexity
of GTHC is O((m + c)n3κ2) bits. Our optimization for the AM protocol can
reduce the communication cost to O((m + c)n3κ) bits. In this work, we give a
new GTHC protocol with communication complexity O((m + c)n2κ) bits.

Finally, we note that our optimization for the AM protocol also applies to
the Akavia-LaVigne-Moran (ALM) protocol (the state-of-the-art THB protocol
for general graphs) proposed by [1] and reduces its communication cost from
O(n5κ3) bits to O(n5κ2) when the broadcast value is of length O(κ) bits. More-
over, we consider the FHE-based GTHC protocol proposed by [22], which require
the parties to communicate O(n8κ2) FHE ciphertexts and O(n5κ) FHE public
keys. We optimize this protocol such that the communication cost is reduced to
O(n6κ) FHE ciphertexts and O(n5κ) FHE public keys.

We summarize our results by the following theorem.

Theorem 1. There exist the following THC protocols in the presence of a pas-
sive adversary statically corrupting any number of parties:

– A THB protocol for undirected cycles with communication cost O(n2κ) bits
while the broadcast value is of length O(κ) bits.

– A THS protocol for undirected cycles with communication cost O(n2κ) bits
while each input is of length O(κ) bits.

– A GTHC protocol for undirected cycles with communication cost O((m +
c)n2κ) bits while the underlying ring is of size 2O(κ).

– A THB protocol for general graphs with communication cost O(n5κ2) bits
while the broadcast value is of length O(κ) bits.

– A GTHC protocol for general graphs with communication cost O(n6κ) FHE
ciphertexts and O(n5κ) FHE public keys.

A comparison of our results to previous works is presented in Table 1.

1.2 Technical Overview

Before showing how to derive our protocols, we first revisit the AM and ALM
protocols. Both of these two THB protocols are only for broadcasting a bit (a

7 Both the arithmetic version of the protocol from [15] and the passive version of the
protocol from [14] has communication complexity O((m + c)nκ) bits.
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Table 1. For all the THC protocols on undirected cycles and the THB protocol for
general graphs, we always assume the input size is O(κ) bits. The communication
costs of the work of [3] for realizing the sum and general computation functionalities
are computed as the communication costs of the constructions of THS and GTHC
compiled black-box from the AM protocol (assume the parties know the exact value
of n in the AM protocol). Additionally, we abbreviate ‘FHE ciphertexts’ by ‘hcts’ and
‘FHE public keys’ by ‘hpks’.

Topology-hiding protocols Communication complexity References
THB for cycles O(n2κ2) bits [3]

O(n2κ) bits Sect. 3
THS for cycles O(n3κ2) bits [3]

O(n2κ) bits Sect. 4
GTHC for cycles O((m + c)n3κ2) bits [3]

O((m + c)n2κ) bits Sect. 5
THB for general graphs O(n5κ3) bits [1]

O(n5κ2) bits Sect. 6
FHE-based GTHC for
general graphs

O(n8κ2) hcts+O(n5κ) hpks [22]

O(n6κ) hcts+O(n5κ) hpks Sect. 6

bitstring can be broadcast bit-by-bit) and built by first presenting a topology-
hiding OR protocol and then letting the broadcaster take the broadcast bit
as input and each other party take 0 as input. We present them in the same
framework, but with different parameters. The framework consists of two phases:
an aggregate phase and a decrypt phase.

At the beginning of the aggregate phase, for each party Pi and each of its
neighbor d, Pi samples a fresh public key and encrypts its input bit under this
key, and sends the resulting ciphertext (together with the public key) to its
neighbor d. At each following round, for each i ∈ [n], Pi chooses a permutation
σ of the set of its neighbors8 and then for each of its neighbor d, Pi, upon
receiving a ciphertext (together with a public key) from its neighbor d at the
previous round, homomorphically OR’s its own bit and adds a new public key
layer to this ciphertext, and then sends the resulting ciphertext to its neighbor
σ(d). After T rounds9, the parties execute the decrypt phase to decrypt the
final ciphertexts. Concretely, each ciphertext is sent back through the same walk
it traversed during the aggregate phase, and each party deletes its own public
key layer in the reversed walk. Finally, each party derives a bit from each walk
starting from itself and outputs the OR of these bits.

8 The AM protocol uses the only non-identity permutation (i.e., each neighbor is
mapped to the other neighbor). The ALM protocol uses a fresh random permutation.

9 T equals n − 1 in the AM protocol and 8n3κ in the ALM protocol.
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We can conclude that the communication cost is 4n(n − 1) = O(n2) cipher-
texts and 2n(n − 1) = O(n2) public keys in the AM protocol and 4|E| · 8n3κ =
O(n5κ)10 ciphertexts and 2|E| · 8n3κ = O(n5κ) public keys in the ALM proto-
col. The results of [1,3,22] showed that the underlying encryption scheme can be
instantiated with the ElGamal scheme [16], the Cock scheme [13] or the Regev
scheme [27]. The ciphertext length will be at least O(κ) bits if using the ElGa-
mal or Cock scheme and O(κ log κ) bits if using the Regev scheme. Moreover,
the public key length will be at least O(κ) bits if using the ElGamal or Cock
scheme and O(κ log2 κ) bits if using the Regev scheme. Therefore, we know that
the state-of-the-art communication complexity of the AM and ALM protocols
are O(n2κ) and O(n5κ2) bits, respectively. Note that both of these two protocols
can only be used to broadcast a bit, and if we want to broadcast O(κ) bits, then
the communication cost of the AM and ALM protocols will be O(n2κ2) and
O(n5κ3) bits, respectively.

THB for Undirected Cycles and General Graphs. The original AM pro-
tocol [3] and ALM protocol [1] require the underlying PKE scheme to be OR-
homomorphic. In the work of [2], the journal version of [1], the authors observe
that designing topology-hiding OR protocol in fact does not require any homo-
morphic property of the underlying encryption scheme. We restate this observa-
tion:

To compute OR, upon receiving an encryption of a bit c, the computing
party holding a bit b outputs an encryption of c if b = 0 and an encryption
of 1 otherwise.

In this observation, whether the computing party changes the encrypted bit
depends on what its input is. Our novel idea is that if we only consider broadcast
(instead of OR), then we can further extend this observation as follows:

To design broadcast, upon receiving an encryption of a bit c, the computing
party holding a bit b outputs an encryption of c if the computing party is
not the broadcaster (which guarantees that the bit encrypted will not be
changed if it has been the broadcast bit) and an encryption of b otherwise
(which guarantees that the bit encrypted will be the broadcast bit if it is not
yet the broadcast bit).

The main difference between our observation and the original observation is
that in our observation, whether the computing party changes the encrypted bit
depends on whether it is the broadcaster rather than what its input is. If the
parties act as in our observation, then it is obvious that they can also get the
broadcast value even if the broadcast value is not a bit value.

Let us explain how to drive our optimization for the AM and ALM protocols
from our observation. In the original AM and ALM protocols, the underlying
encryption scheme can be instantiated with the ElGamal scheme. However, to

10 |E| is the number of edges in the communication graph, which is no more than
C2

n = n(n − 1)/2.
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encrypt bits, the actual ElGamal plaintext space is mapped to the set {0, 1}
while the ciphertext length is still O(κ) bits. Note that the ciphertext length of
the ElGamal scheme is of the same order as its plaintext length (more precisely,
an ElGamal ciphertext is twice the length of the corresponding plaintext), and
with our novel observation, any value in the ElGamal plaintext space (instead
of {0, 1} in the original AM and ALM protocols) can be the broadcast value,
which can reduce the communication cost of the AM and ALM protocols by a
factor of O(κ) in the amortized sense.

THS for Undirected Cycles. Our THS protocol is based on a simple observa-
tion that each walk in the AM protocol passes through each party exactly once
during the aggregate phase (which is not right in the original AM protocol where
the parties only know an upper bound of n). If we let each party homomorphi-
cally add its input to each received ciphertext (assume the underlying encryption
is additively homomorphic), then the final ciphertext of each walk is indeed an
encryption of the sum of all the inputs. Because the standard ElGamal scheme
does not have additive homomorphism, we instantiate the underlying encryption
scheme with the scheme from [10] or [12]. Moreover, the ciphertext and public
key lengths of both of these two schemes can be O(κ) bits when the plaintext
length is O(κ) bits. Notice that the parties communicate O(n2) ciphertexts and
O(n2) public keys as in the AM protocol, which leads to the claimed communi-
cation cost, i.e., O(n2κ) bits.

GTHC for Undirected Cycles. Our GTHC protocol also requires that the
parties know the exact value of n. Concretely, we consider designing a GTHC
protocol within the popular framework based on additive secret sharing. This
framework consists of three phases: the input sharing phase, the circuit eval-
uation phase and the output recovery phase. In the input sharing phase, the
parties generate additive sharings for the inputs. In the circuit evaluation phase,
the parties perform a protocol to compute an additive sharing of the value of the
computed function f (which is represented by an arithmetic circuit consisting
of addition and multiplication gates) at the inputs. Finally, in the output recov-
ery phase, the parties recover the output to the parties who are supposed to
obtain the output. Because additive secret sharing is linearly homomorphic, the
addition gates can be computed locally. Therefore, the key point for designing
a GTHC protocol is how to compute a multiplication gate, i.e. how to securely
compute an additive sharing of xy with x, y additively shared among the par-
ties. Our starting point is that an additive sharing of xy can be computed by
locally adding a public value xy − r to an additive sharing of r where r is a
random value. The additive sharing of r can be generated by letting each party
Pi locally sample a random value ri (set r =

∑
i∈[n] ri). Now the goal is to pub-

lish the value xy − r. We present a topology-hiding protocol to achieve this goal
in Sect. 5. We remark that the communication cost of this protocol is O(n2κ)
bits, which implies the communication cost of computing a multiplication gate
is O(n2κ) bits. Moreover, we use our THS protocol to execute the input shar-
ing and output recovery phases such that the communication cost of sharing an



596 S. Li

input or recovering the output is O(n2κ) bits. Assume f has m inputs and c
multiplication gates, then the total communication cost is O((m + c)n2κ) bits.

FHE-Based GTHC for General Graphs. The work of [22] gave a GTHC
protocol based on FHE. We call this protocol the LZM3T protocol. The main
advantage of the LZM3T protocol is its low round complexity, which amounts
to the round complexity of the ALM protocol. However, if designing a GTHC
protocol by compiling an MPC protocol π which realizes the general computation
functionality from THB, then the round complexity of the resulting protocol will
be k times that of the ALM protocol where k is the round complexity of π.

The LZM3T protocol11 is constructed by modifying the aggregate phase of
the ALM protocol as follows. In the aggregate phase of the LZM3T protocol,
each party Pi appends the ciphertexts of its input xi and its ID idi to each
received ciphertext. In such a way, at the end of the aggregate phase, each party
Pi will receive T = 8n3κ pairs of ciphertexts {ct,b}t∈[T ],b∈{0,1} (together with
the corresponding public key). Let mt,b be the decryption of ct,b, then for each
t ∈ [T ], there exists it ∈ [n] such that (mt,0,mt,1) = (xit

, idit
). To compute a

given function f , Pi compute an encryption of f ◦parse on ({mt,b}t∈[T ],b∈{0,1}),
where parse({mt,b}t∈[T ],b∈{0,1}) = (x1, . . . , xn)12, using the full homomorphism
of the underlying encryption. Finally, the parties execute the decrypt phase to
decrypt the resulting ciphertexts. The LZM3T has high communication cost
because each party sends a ciphertext vector of length O(t) at round t and the
total rounds is T = O(n3κ), which yields at least O((1 + 2 + · · · + T ) · |E|) =
O(T 2n2) = O(n8κ2) ciphertexts communication during the aggregate phase. We
optimize the aggregate phase such that O(n6κ) ciphertexts are sufficient13.

Our idea is that in the aggregate phase, instead of appending an encryption
of the input (together with an encryption of the ID) to each received ciphertext
vector at each round, each party sends ciphertext vectors of length n at each
round and for the i-th entry of the ciphertext vectors, the parties act exactly as
in the optimized ALM protocol with Pi being the broadcaster and the input xi

of Pi being the broadcast value. This way, at the end of the aggregate phase,
the last party in each walk will get a ciphertext vector of length n where the
i-th entry is exactly an encryption of xi. In particular, the ciphertexts in the
same ciphertext vector are under the same public key, which allows the last

11 The original protocol works in the fail-stop model where the adversary may instruct
any party to abort the execution at any time, but we consider the passive version of
this protocol.

12 The function parse may be derived as follows. For each i ∈ [n], define the piecewise
function hi such that hi(a, b) = a if b = idi and hi(a, b) = 0 if b �= idi. Then we set
yi = (

∑
t∈[T ] hi(mt,0, mt,1))(

∑
t∈[T ] m

−1
t,0hi(mt,0, mt,1))

−1 and parse = (y1, . . . , yn).
Assume (xi, idi) appears in the multiset {(mt,0, mt,1)}t∈[T ] k times (the protocol
guarantees that k ≥ 1 with overwhelming probability), then yi = kxi · k−1 = xi.
Therefore, parse({mt,b}t∈[T ],b∈{0,1}) equals (x1, . . . , xn) with overwhelming proba-
bility.

13 More precisely, we reduce the communication cost from O(n8κ2) ciphertexts and
O(n5κ) public keys to O(n6κ) ciphertexts and O(n5κ) public keys.
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party in each walk to compute an encryption of the given function using the
full homomorphism of the underlying encryption. Finally, the decrypt phase is
executed. It is obvious that our optimized aggregate phase only requires the
parties to send O(nT · |E|) = O(n6κ) ciphertexts.

2 Preliminaries

Full Version of this Paper. Due to space constraints, we defer details like
instantiation details, omitted proofs and functionalities, and some omitted pro-
tocols to the full version of this paper [24].

Notations. Let κ be the security parameter. For any positive integer m, [m]
denotes the set {1, · · · ,m}. We say a function ε(κ) is negligible, denoted ε(κ) =
neg(κ), if ε(κ) = κ−ω(1). We say a function η(κ) is overwhelming if 1 − η(κ) is
negligible.

For any set A, let |A| be the cardinality of A and U(A) the uniform distribu-
tion over A. For a distribution D, let x ← D denote the process of sampling x
from D. For any two distributions X,Y , denote SD(X,Y ) the statistical distance
of X and Y . We say X and Y are identical, denoted X ≡ Y , if SD(X,Y ) = 0. We
say X and Y are statistically indistinguishable, denoted X ≈s Y , if SD(X,Y )
is negligible. Finally, we say X and Y are computationally indistinguishable,
denoted X ≈c Y , if no efficient algorithm can distinguish them.

For any plaintext x and a public key pk, we denote �x�pk an encryption of x
under pk. If the public key is clear from the context, we will omit the public key
and use �x� to represent an encryption of x under some public key.

2.1 Security Model

For all of our protocols, there are n parties P1, . . . , Pn and the communication
graph is modelled as an undirected graph G = (V,E) where V = [n] and (i, j) ∈
E if and only if Pi and Pj can communicate with each other directly (we assume
(i, i) �∈ E for every i ∈ V ). We do not distinguish (i, j) and (j, i) because G is
undirected. For any i ∈ V , the set Ni = {j|(i, j) ∈ E} represents the neighbors
of Pi.

Adversarial Model. The adversary we consider in this work can statically
corrupt any number of parties and moreover, it is passive and computationally
bounded (PPT).

Communication Model. The concept of THC is formalized by [25], which gave
the first (simulation-based) definition for topology hiding in the UC framework
[11]. In the work of [1], a stronger variant of this definition is considered. In this
work, we adopt this variant in our protocols.

In traditional UC model for MPC, the communication graph is assumed to be
complete, i.e. each party can communicate directly with other parties. However,
in the setting of THC, the communication graph is incomplete and private. To
capture this, an ideal functionality Fgraph is defined to describe what the parties



598 S. Li

can do in the communication graph and a special party Pgraph is assumed to
hold the communication graph. Concretely, Fgraph consists of an initialization
phase and a communication phase. In the initialization phase, Fgraph receives the
communication graph G = (V,E) from Pgraph and samples a label for each edge
e ∈ E, and then send the labels of the edges in Ni to Pi for each i ∈ [n]14. We
note that in such a way, any two parties can tell whether they share an edge, but
can not tell whether they share a neighbor. The communication phase provides
secure communication between any party and its neighbors, which receives a
message and an edge label from some party and sends the message to the other
party holding this edge label. The formal description of Fgraph is shown in Fig. 1.

Fig. 1. The graph functionality Fgraph

Note that in the ideal world, the adversary has the information that Pgraph

sent the corrupted parties because the initialization phase is executed whenever
a functionality F is realized. To capture this, the functionality Fneigh containing
only the initialization phase of Fgraph is defined. For any functionality F , we
use Fneigh||F to represent composing F with Fneigh. Now we give the security
definition of THC in the UC model.

Definition 2. We say that a protocol topology-hidingly realizes a functionality
F if it UC-realizes Fneigh||F in the Fgraph-hybrid model.

14 In the definition of [25], Fgraph gives Ni to Pi, which gives any two parties the ability
to tell whether they share a neighbor.
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2.2 Privately Key-Commutative and Rerandomizable Encryption

The concept of privately key-commutative and rerandomizable (PKCR) encryp-
tion is introduced by [3]. Concretely, a PKCR encryption is a semantically secure
PKE scheme (Keygen, Enc, Dec) with several additional properties. Denote M
the plaintext space, C the ciphertext space, PK the public key space which forms
an abelian group under the operation � and SK the secret key space. PKCR
encryption requires the following properties.

– Public-key rerandomizable: For any k ∈ PK, it holds that

{k � pk|(pk, sk) ← Keygen(1κ)} ≈s {pk|(pk, sk) ← Keygen(1κ)}.

– Ciphertext rerandomizable: There exists an efficient algorithm Rand : C ×
PK → C such that for any key pair (pk, sk) and any ciphertext c = �x�pk, it
holds that

(x, pk, c, Rand(c, pk)) ≈s (x, pk, c, Enc(x, pk))

and
Dec(Rand(c, pk), sk) = x.

– Privately key-commutative: There exist two efficient algorithms AddLayer :
C × PK × SK → C and DelLayer : C × PK × SK → C such that for any two
key pairs (pk1, sk1), (pk2, sk2) and any ciphertext c = �x�pk1 , it holds that

AddLayer(c, pk1, sk2) ≈s Enc(x, pk1 � pk2)

and
DelLayer(c, pk1, sk2) ≈s Enc(x, pk1 � pk−1

2 ).

For the special case that (pk, sk) is a pair of keys, we let DelLayer(c, pk, sk)
output Dec(c, sk) instead of Enc(x, 1).

In this work, some of our protocols require the PKCR to be homomorphic,
hence we introduce the following additional properties for PKCR.

Equipping PKCR with Homomorphism. Our THS protocol requires a
PKCR with two additional properties.

– Plaintext space forms a ring: The plaintext space M is a ring Mr with the
operations + (addition) and · (multiplication).

– Additively homomorphic: There exists an efficient algorithm Add : Mr ×C ×
PK → C such that for any plaintext y ∈ Mr and any ciphertext c = �x�pk,
it holds that

Add(y, c, pk) ≈s Enc(x + y, pk).
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We call PKCR encryption with the above two properties additively homomorphic
PKCR (ahPKCR) encryption.

Our GTHC protocol (for cycles) requires a stronger variant of ahPKCR,
and we call this variant linearly homomorphic PKCR (lhPKCR) encryption.
Concretely, lhPKCR requires a linear homomorphism described as follows.

– Linearly homomorphic: There exists an efficient algorithm Linear : Mr ×
C2 × PK → C such that for any plaintext a ∈ Mr and any two ciphertexts
c1 = �x�pk, c2 = �y�pk, it holds that

Linear(a, c1, c2, pk) ≈s Enc(ax + y, pk).

Remark. The work of [3] has proved that the standard ElGamal scheme is a
PKCR encryption. In the full version, we prove that both schemes from [10,12]
are lhPKCR encryption. In this work, we also instantiate ahPKCR with one of
these two schemes (lhPKCR encryption is also ahPKCR encryption).

3 Topology-Hiding Broadcast for Undirected Cycles

The AM protocol [3] is designed for broadcasting a bit, which we abbreviate
by bit-THB. We seek to design a THB protocol which directly broadcasts a
bitstring instead of a bit, we abbreviate this by string-THB. Notice that string-
THB protocol can be simply constructed by just calling the AM protocol bit-
by-bit. However, we seek to derive more efficient constructions than this naive
way.

In this section, our main result is an optimization for the AM protocol, which
will reduce its communication complexity by a factor of O(κ) in the amortized
sense. Throughout this section, we use the following public parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer) is a PKCR encryption scheme.
– M is the plaintext space and α ∈ M is a dummy value known by all parties

(e.g., α is the identity element if M is a group).

We aim to design a topology-hiding protocol to realize the broadcast func-
tionality Fbc which receives a private input x ∈ M from one party and sends x
to all parties. The formal description of Fbc can be seen in the full version.

3.1 The Protocol

Similar to the AM protocol, our protocol πbc consists of an aggregate phase and
a decrypt phase. In our protocol, each party names its two neighbors 0 and 1. At
the beginning of the aggregate phase, for each party Pi and each of its neighbor
b, Pi samples a fresh public key and encrypts α with this key, and sends the
resulting ciphertext (together with the public key) to its neighbor b. At each
following round, for each i ∈ [n] and b ∈ {0, 1}, upon receiving a ciphertext
(together with a public key k) from the neighbor b at the previous round, Pi
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samples a fresh public key pk and then encrypts the broadcast value with the
key k�pk if it is the broadcaster and adds the public key layer pk to the received
ciphertext otherwise. Let c be the resulting ciphertext, then Pi sends c and k�pk
to its neighbor b̄ = 1− b. After n−1 rounds, the parties execute a decrypt phase
to decrypt the final ciphertexts (the decrypt phase is the same as in the AM
protocol). Finally, the broadcaster outputs the broadcast value x and each other
party outputs one of the decrypted values.

Protocol πbc

Input: The broadcaster takes x as input. α is a dummy value known by all
parties.
Output: All parties get x as output.

For each i ∈ [n], Pi does the following.

1: Sample (pk
(t)
i→b, sk

(t)
i→b) ← Keygen(1κ) for each t ∈ [n − 1], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(α, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n − 2 do
6: For each b ∈ {0, 1}, let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
7: Compute k

(t+1)
i→b = k

(t)
i←b̄

� pk
(t+1)
i→b for each b ∈ {0, 1}.

8: if Pi is the broadcaster then
9: Compute c

(t+1)
i→b ← Enc(x, k

(t+1)
i→b ) for each b ∈ {0, 1}.

10: else
11: Compute c

(t+1)
i→b ← AddLayer(c

(t)
i←b̄

, k
(t)
i←b̄

, sk
(t+1)
i→b ) for each b ∈ {0, 1}.

12: end if
13: Send c

(t+1)
i→b , k

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

14: end for
15: For each b ∈ {0, 1}, let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
16: if Pi is the broadcaster then
17: Compute e

(n−1)
i→b ← Enc(x, k

(n−1)
i←b ) for each b ∈ {0, 1}.

18: else
19: Compute e

(n−1)
i→b ← Rand(c

(n−1)
i←b , k

(n−1)
i←b ) for each b ∈ {0, 1}.

20: end if
21: % Decrypt Phase
22: for t = n − 1 to 1 do
23: Send e

(t)
i→b to neighbor b for each b ∈ {0, 1}.

24: for b = 0 to 1 do
25: Let e

(t)
i←b be the ciphertext received from neighbor b at the previous round.

26: Compute e
(t−1)
i→b̄

← DelLayer(e
(t)
i←b, k

(t)
i→b, sk

(t)
i→b).

27: end for
28: end for
29: if Pi is the broadcaster then
30: return x.
31: else
32: return e

(0)
i→0.

33: end if

Remark. In the full version of this paper, we discuss a naive idea to halve the
round complexity of πbc, which evidences that hiding the topology is a non-trivial
cryptographic task.
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3.2 Complexity Analysis

Claim 3. If the underlying PKCR encryption scheme is instantiated with the
ElGamal scheme [16], then the communication cost of πbc is O(n2κ) bits while
the broadcast value is of length O(κ) bits.

Proof. In the protocol πbc, each party sends each of its two neighbors a single
ciphertext and a public key at each round of the aggregate phase and a single
ciphertext at each round of the decrypt phase. Let l1 be the plaintext length
of the underlying encryption scheme, l2 the ciphertext length and l3 the public
key length. Because both the aggregate phase and the decrypt phase takes n −
1 rounds, the communication complexity of πbc is 2n(n − 1)(2l2 + l3) bits. If
instantiating the underlying PKCR encryption scheme with the ElGamal scheme
[16] and setting l1 = O(κ), then we have l2 = 2l1 = O(κ), l3 = l1 = O(κ).
Namely, the communication cost of πbc is O(n2κ) bits. 	


3.3 Security Proof

The following theorem states the security of the protocol πbc, and we defer the
formal proof to the full version.

Theorem 4. If the underlying PKCR encryption scheme is semantically secure,
then πbc topology-hidingly realizes the functionality Fbc with passive security
against any static adversary corrupting any number of parties.

4 Topology-Hiding Sum for Undirected Cycles

In this section, we consider the sum functionality. As we have said, previous to
this work, the only topology-hiding protocol realizing the sum functionality is
constructed by using the AM protocol to simulate the pairwise channels in an
MPC protocol realizing the sum functionality, which yields the state-of-the-art
asymptotic communication complexity O(n3κ2) bits. Our optimization for the
AM protocol can reduce this communication cost to O(n3κ) bits. We give a new
THS protocol which further reduces the communication cost to O(n2κ) bits.

Our starting point is to design THS without compiling black-box from THB,
for which we need a PKCR encryption scheme with an additive homomorphism,
i.e., an ahPKCR encryption scheme introduced in Sect. 2.2 (see the full version
for more details about the instantiations of ahPKCR). Throughout this section,
we use the following parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer, Add) is an ahPKCR encryption
scheme.

– Mr is the plaintext space, which is a ring15.

15 Mr is ZN for an RSA modulus N if using the scheme from [10] or Zp for a large
prime p if using the scheme from [12].
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We aim to design a topology-hiding protocol to realize the sum functionality
Fsum which receives a private input xi ∈ Mr from Pi for each i ∈ [n] and returns
the sum

∑
i∈[n] xi to all parties. The formal description of Fsum can be seen in

the full version.

4.1 The Protocol

Our protocol πsum consists of an aggregate phase and a decrypt phase. In our
protocol, each party names its two neighbors 0 and 1. At the beginning of the
aggregate phase, for each party Pi and each of its neighbor b, Pi samples a
fresh public key and encrypts its input xi with this key, and sends the resulting
ciphertext (together with the public key) to its neighbor b. At each following
round, for each i ∈ [n] and b ∈ {0, 1}, upon receiving a ciphertext (together with
a public key k) from its neighbor b at the previous round, Pi homomorphically
adds its input to the received ciphertext using the additive homomorphism of
ahPKCR. Let c be the resulting ciphertext, then Pi adds a fresh public key layer
pk to c and sends the resulting (layered) ciphertext and k � pk to its neighbor
b̄ = 1 − b. After n − 1 rounds, the parties execute the decrypt phase to decrypt
the final ciphertexts. Finally, each party outputs one of the decrypted values.

Protocol πsum

Input: Each party Pi takes xi ∈ Mr as input.
Output: All parties get x =

∑
i∈[n] xi.

For each i ∈ [n], Pi does the following.

1: Sample (pk
(t)
i→b, sk

(t)
i→b) ← Keygen(1κ) for each t ∈ [n − 1], b ∈ {0, 1}.

2: % Aggregate Phase
3: Compute c

(1)
i→b ← Enc(xi, pk

(1)
i→b) and set k

(1)
i→b = pk

(1)
i→b for each b ∈ {0, 1}.

4: Send c
(1)
i→b and k

(1)
i→b to neighbor b for each b ∈ {0, 1}.

5: for t = 1 to n − 2 do
6: For each b ∈ {0, 1}, let c

(t)
i←b and k

(t)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
7: Compute k

(t+1)
i→b = k

(t)
i←b̄

� pk
(t+1)
i→b for each b ∈ {0, 1}.

8: Compute cb ← AddLayer(c
(t)
i←b̄

, k
(t)
i←b̄

, sk
(t+1)
i→b ) for each b ∈ {0, 1}.

9: Compute c
(t+1)
i→b ← Add(xi, cb, k

(t+1)
i→b ) for each b ∈ {0, 1}.

10: Send c
(t+1)
i→b , k

(t+1)
i→b to neighbor b for each b ∈ {0, 1}.

11: end for
12: For each b ∈ {0, 1}, let c

(n−1)
i←b and k

(n−1)
i←b be the ciphertext and public key received

from neighbor b at the previous round.
13: Compute e

(n−1)
i→b ← Add(xi, c

(n−1)
i←b , k

(n−1)
i←b ) for each b ∈ {0, 1}.

14: % Decrypt Phase
15: for t = n − 1 to 1 do
16: Send e

(t)
i→b to neighbor b for each b ∈ {0, 1}.

17: for b = 0 to 1 do
18: Let e

(t)
i←b be the ciphertext received from neighbor b at the previous round.

19: Compute e
(t−1)
i→b̄

← DelLayer(e
(t)
i←b, k

(t)
i→b, sk

(t)
i→b).

20: end for
21: end for
22: return e

(0)
i→0.
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4.2 Complexity Analysis

Claim 5. If the underlying ahPKCR encryption scheme is instantiated with the
scheme from [10] or [12], then the communication cost of πsum is O(n2κ) bits
while each input is of length O(κ) bits.

Proof. In the protocol πsum, each party sends each of its two neighbors a single
ciphertext and a public key at each round of the aggregate phase and a single
ciphertext at each round of the decrypt phase. Let l1 be the plaintext length
of the underlying encryption scheme, l2 the ciphertext length and l3 the public
key length. Because both the aggregate phase and the decrypt phase takes n−1
rounds, the communication complexity of πsum is 2n(n − 1)(2l2 + l3) bits. If the
underlying ahPKCR encryption scheme is instantiated with the scheme from
[10] or [12], then we can set l1 = O(κ), l2 = O(κ) and l3 = O(κ). Namely, the
communication cost of πsum is O(n2κ) bits while each input is of length O(κ)
bits. 	


4.3 Security Proof

Theorem 6. If the underlying ahPKCR encryption scheme is semantically
secure, then πsum topology-hidingly realizes the functionality Fsum with passive
security against any static adversary corrupting any number of parties.

We defer the proof to the full version.

5 General Topology-Hiding Computation for Undirected
Cycles

In this section, we consider the general computation functionality which can
compute any arithmetic circuit16 consisting of addition and multiplication gates.
As we have said, previous to this work, the only topology-hiding protocol real-
izing the general computation functionality is constructed by simulating the
pairwise channels in an MPC protocol realizing the general computation func-
tionality, which yields the state-of-the-art asymptotic communication complexity
O((m + c)n3κ2) bits where m and c are the number of inputs and multiplica-
tion gates in the circuit, respectively. Our optimization for the AM protocol can
reduce the communication cost to O((m+ c)n3κ) bits. We present a new GTHC
protocol which further reduces the communication cost to O((m + c)n2κ) bits.
Our GTHC protocol is designed in the popular MPC framework based on addi-
tive secret sharing. There are three phases in this framework: the input sharing
phase, the circuit evaluation phase and the output recovery phase.

In the input sharing phase, the parties generate additive sharings for the
inputs. In the circuit evaluation phase, the parties evaluate the circuit gate-by-
gate. Throughout this phase, the parties maintain the invariant that for every

16 In this work, we consider circuits over a ring of size 2O(κ).
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gate, the parties hold additive sharings of the values on the two input wires and
get an additive sharing of the value on the output wire. Finally, in the output
recovery phase, the parties recover the value on the output wire of the final gate.

We show how to use our THS protocol to deal with the input sharing and
output recovery phases in Sect. 5.2. For the circuit evaluation phase, we know
that addition gates can be done locally, so the only left problem is how to
topology-hidingly (and efficiently) compute the multiplication gates. In Sect. 5.1,
we give an efficient topology-hiding protocol to securely compute the multipli-
cation gates.

Throughout this section, we need a lhPKCR encryption scheme introduced
in Sect. 2.2 (see the full version for more details about the instantiations of
lhPKCR) and use the following notations.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer, Linear) is a lhPKCR encryp-
tion scheme.

– Mr is the plaintext space of the lhPKCR scheme.
– For any plaintext y ∈ Mr and any ciphertext c = �x�pk, we define the function

Add(y, c, pk) which outputs Linear(1, c, �y�pk, pk).

Additive Secret Sharing. An additive sharing of a secret value x is a vector
〈x〉 = (x1, . . . , xn) where each party Pi holds a share xi satisfying that any n−1
shares leak nothing about x. Additive secret sharing is linearly homomorphic,
which means that for any public value c and any two additive sharings 〈x〉 =
(x1, . . . , xn), 〈y〉 = (y1, . . . , yn), we have

〈x〉 + 〈y〉 = 〈x + y〉, c〈x〉 = 〈cx〉, c + 〈x〉 = 〈c + x〉
where c + 〈x〉 = (c + x1, x2, . . . , xn).

5.1 Computing Multiplication Gates

In this section, we give a topology-hiding protocol to securely compute the mul-
tiplication gates. Concretely, we realize the functionality Fmult which receives
additive sharings of x and y from the parties and sends an additive sharing of
xy to the parties. We defer the formal description of Fmult to the full version.

Our starting point is that an additive sharing of xy can be computed as
follows.

1. The parties generate an additive sharing 〈r〉 for a random value r where the
share of Pi is ri.

2. The parties execute a protocol to let all parties securely get the value xy − r.
3. The parties locally compute 〈xy〉 = xy − r + 〈r〉.

It is easy to see that the above construction generates an additive sharing of
xy. Notice that the generation of 〈r〉 can be done locally by letting each party
sample a random value ri and setting r =

∑
i∈[n] ri. The left problem is how to

securely publish the value xy − r. To solve this, we define and realize the mask
functionality Fmask which receives private inputs xi, yi, ri ∈ Mr from Pi for
each i ∈ [n] and returns the value

∑
i∈[n] xi

∑
i∈[n] yi − ∑

i∈[n] ri to all parties.
The formal description of Fmask can be found in the full version.
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5.1.1 The Protocol
Now we give a topology-hiding protocol πmask which realizes the functionality
Fmask. This protocol consists of an aggregate phase and a decrypt phase. The
aggregate phase can be viewed as two subphases and each takes n − 1 rounds.
In the first subphase, the parties act exactly as in the aggregate phase of our
THS protocol: each party homomorphically adds its share of x to each received
ciphertext using the homomorphism of lhPKCR. At the end of the first subphase,
every party will get �x�, an encryption of x, from each walk. Then the parties can
execute the second subphase to compute encryptions of xy−r, which is based on
two observations. The first observation is that xy − r =

∑
i∈[n](yix − ri), which

means that �xy − r� can be computed from �y1x − r1�, . . . , �ynx − rn� (under
the same key) using the homomorphism of lhPKCR. The second observation is
that every party Pi can compute �yix − ri� from �x� using the homomorphism
of lhPKCR.

We note that throughout the aggregate phase, each party adds a fresh public
key layer to each received ciphertext at each round, which implies that each final
ciphertext includes 2n − 2 public key layers (because the aggregate phase takes
2n − 2 rounds). Therefore, the parties execute the decrypt phase, which takes
2n − 2 rounds, to decrypt the final ciphertexts. Due to lack of space, the formal
description of πmask is deferred to the full version.

Now we can present our protocol πmult which realizes the functionality Fmult

in the Fmask-hybrid model.

Protocol πmult

Input: The parties hold additive sharings 〈x〉, 〈y〉.
Output: The parties output 〈xy〉.

1. Each party Pi samples a random value ri ← U(Mr).
2. The parties invoke the functionality Fmask where each party Pi takes

xi, yi and ri as inputs. Let z be the output.
3. P1 outputs z + r1 and each other party Pi outputs ri.

5.1.2 Complexity Analysis

Claim 7. If the underlying lhPKCR encryption scheme is instantiated with the
scheme from [10] or [12] and the functionality Fmask is realized by the protocol
πmask, then the communication cost of πmult is O(n2κ) bits while each input is
of length O(κ) bits.

Proof. It is obvious that the communication complexity of πmult is the same as
that of πmask. In the protocol πmask, the aggregate phase takes 2n−2 rounds, and
where each party sends each of its two neighbors a ciphertext and a public key at
each round of the first n−1 rounds and two ciphertexts and a public key at each
round of the last n−1 rounds. The decrypt phase takes 2n−2 rounds, and where
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each party sends each of its two neighbors a single ciphertext at each round. Let
l1 be the plaintext length of the underlying encryption scheme, l2 the ciphertext
length and l3 the public key length, then the communication complexity is 2n(n−
1)(5l2 + 2l3) bits. If instantiating the underlying lhPKCR encryption with the
scheme from [10] or [12], we can set l1 = O(κ), l2 = O(κ), l3 = O(κ). Namely,
the protocol πmult has communication complexity O(n2κ) bits while each input
is of length O(κ) bits. 	


5.1.3 Security Proof
In this section, we first show that πmult securely realizes the functionality Fmult

in the Fmask-hybrid model and then we show that πmask securely realizes the
functionality Fmask.

Theorem 8. Protocol πmult topology-hidingly realizes the functionality Fmult

in the Fmask-hybrid model with passive security against any static adversary
corrupting any number of parties.

Proof. Correctness. The correctness of πmult is guaranteed by the functionality
Fmask. Let r =

∑
i∈[n] ri. The functionality Fmask guarantees that z = xy − r.

At the end of πmult, P1 outputs z1 = z + r1 and each other party Pi outputs
zi = ri. It holds that

∑

i∈[n]

zi = z + r1 + (r2 + · · · + rn) = xy − r + r = xy.

Moreover, all ris are random values, hence {zi}i∈[n] is an additive sharing of xy.

Security. The security is obvious because the parties do not communicate with
each other outside the invoking of Fmask. 	

Theorem 9. If the underlying lhPKCR encryption scheme is semantically
secure, then πmask topology-hidingly realizes the functionality Fmask with passive
security against any static adversary corrupting any number of parties.

Due to lack of space, we defer the proof to the full version.

5.2 General Topology-Hiding Computation

In this section, we present our GTHC protocol πmpc, which consists of three
phases: the input sharing phase, the circuit evaluation phase and the output
recovery phase.

Input Sharing. The goal of input sharing is to generate additive sharings for
the inputs. A subtle point is that we require that for any sharing 〈x〉 (assume
x is the input of Pi), the adversary cannot know anything about the share of
some party Pj if Pi and Pj are honest17. Now we consider a naive way with low
17 If Pi is corrupt, we allow the adversary to know all the shares.



608 S. Li

communication cost to share an input x: the input holder Pi shares x among its
closed neighborhood (including itself and its two neighbors) and each other party
shares 0 among its closed neighborhood, and then each party takes the sum of
the share it kept and the shares received from each of their neighbors as its final
share. In this process, for any party Pj who is not in the closed neighborhood of
the input holder Pi (i.e., Pj is neither Pi nor a neighbor of Pi), if the adversary
corrupts the two neighbors of Pj , then the adversary knows the share of Pj

18.
A simple way to share an input x is that the holder of x samples an additive

sharing of x and then sends the shares to the parties by using THB to simulate
the point-to-point communication, which yields O(mn3κ) bits communication
because there are O(mn) shares (n−1 shares should be sent for each input) and
sending a share (of length κ bits) costs O(n2κ) bits communication. We adopt
a more efficient way to share an input. Assume Pi wants to additively share its
input x, then if we let each party Pj sample a share xj , then the share of Pi

is xi = x − ∑
j �=i xj . Our goal is to let Pi get the value xi while other parties

know nothing about xi. To do this, we let Pi sample a random value r and
the parties execute the protocol πsum where Pi takes x + r as input and each
other party Pj takes −xj as input. At the end of the protocol, the parties will
get y = x + r − ∑

j �=i xj = xi + r. It is obvious that the parties know nothing
about xi because r is uniformly random. On the other hand, Pi can compute
xi = y−r. Moreover, the communication cost equals exactly the communication
cost of πsum, i.e., O(n2κ) bits. Therefore, the communication cost of sharing m
inputs will be O(mn2κ) bits.

Circuit Evaluation. Let f : Mm
r → Mr be the circuit to be computed and

s1, . . . , sm are the inputs. The parties compute the circuit in a precomputed
topological order. After the input sharing phase, the parties have gotten the
additive sharings of the inputs. For each gate g with inputs x and y, the parties
have additive sharings 〈x〉 and 〈y〉. If g is an addition gate, the parties locally
compute 〈x+y〉 = 〈x〉+ 〈y〉. If g is a multiplication gate, the parties execute the
protocol πmult and our protocol guarantees that the outputs of the parties form
an additive sharing of 〈xy〉. At the end of the computation, the parties output
〈f(s1, . . . , sm)〉, an additive sharing of f(s1, . . . , sm). Because the communication
cost of computing a multiplication gate is O(n2κ) bits, the total communication
cost of this phase is O(cn2κ) bits where c is the number of the multiplication
gates.

Output Recovery. Let fi be the final share of Pi. Our protocol guarantees
that f(s1, . . . , sm) =

∑
i∈[n] fi. If all parties want to get the value f(s1, . . . , sm),

then a simple but inefficient way is that each party Pi uses our THB protocol to
broadcast fi, which will yield O(n3κ) bits communication. A more efficient way

18 The share of Pj is of the form xj = a+ b+ c where a, b are two shares received from
its two (corrupted) neighbors (hence the adversary knows a, b) and c is the share it
kept. Note that Pj share 0 among its closed neighborhood, which means that the
sum of the two shares it sent its two neighbors is −c, and hence the adversary knows
the value of c. Finally, the adversary can get the share of Pj by computing a+ b+ c.
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is that the parties execute our sum protocol πsum where each party Pi takes fi

as input and the communication cost of this way is O(n2κ) bits.
If we only want one party Pj to get the output, then it can be realized by

letting Pj add a random value r to its input and then subtract r from its output
after the execution of the protocol πsum.

The formal description of our GTHC protocol πmpc is in the following.

Protocol πmpc

Public parameters: f : Mm
r → Mr is a poly-size circuit over Mr.

Input: The parties hold inputs s1, . . . , sm.
Output: The parties output f(s1, . . . , sm).

Input sharing. For each input si, the parties do the followings.
1. Let Pj be the input holder of si. To share si, Pj samples a random value

r ∈ Mr and each other party Pk samples a random value si,k ∈ Mr.
2. The parties execute πsum where Pj takes si+r as input and each other party

Pk takes −si,k as input. Let y be the output.
3. Pj computes si,j = y − r. The sharing of si is 〈si〉 = (si,1, . . . , si,n).
Circuit evaluation. For each gate g, the parties do the followings.
1. Let 〈a〉 = (a1, . . . , an), 〈b〉 = (b1, . . . , bn) be the two sharings on the input

wires of g.
2. If g is an addition gate, the parties locally compute 〈a + b〉 = 〈a〉 + 〈b〉.
3. If g is a multiplication gate, the parties execute the protocol πmult where

each party Pi takes ai, bi as inputs. Let ci be the output of Pi. The result is
〈ab〉 = (c1, . . . , cn), an additive sharing of ab.

Output recovery. The parties do the followings.
1. Let 〈f(s1, . . . , sm)〉 = (f1, . . . , fn) be the final sharing.
2. If all parties wants to get the value f(s1, . . . , sm), the parties execute πsum

where each party Pi takes fi as input.
3. If only one party Pj wants to get the output, then Pj samples a random value

r ∈ Mr. The parties execute πsum where Pj takes fj + r as input and each
other party Pi takes fi as input. Let y be the output. Pj outputs f = y − r.

Complexity Analysis. We state the communication cost of πmpc by the fol-
lowing claim.

Claim 10. The communication complexity of πmpc is O((m + c)n2κ) bits.

Proof. Note that the communication costs of the input sharing, circuit evaluation
and output recovery phases are O(mn2κ), O(cn2κ) and O(n2κ) bits, respectively.
Therefore, the total communication cost of πmpc is O((m + c)n2κ) bits. 	


Security Proof. The security of πmpc is guaranteed by the security of πsum

and πmult and we omit the details.
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6 Topology-Hiding Computation on General Graphs

In this section, we give optimizations for two existing topology-hiding protocols
on general graphs. Both of these two protocols rely on the random walk approach
[1]. This approach relies on the following lemma [1], which states that in an
undirected connected graph G, the probability that a random walk of length
8|V |3τ covers G is at least 1 − 2−τ .

Lemma 11 ([1]). Let G = (V,E) be an undirected connected graph. Further-
more, let W(u, τ) be a random variable whose value is the set of vertices covered
by a random walk starting from u and taking 8|V |3τ steps. It holds that

PrW [W(u, τ) = V ] ≥ 1 − 2−τ .

6.1 Topology-Hiding Broadcast for General Graphs

As we have said, our optimization for the AM protocol also applies to the ALM
protocol [1]. We know the ALM protocol is the state-of-the-art THB protocol for
general graphs. Our optimization reduces the communication cost of the ALM
protocol by a factor of O(κ) in the amortized sense. If the broadcast value is
of length O(κ) bits, then the communication cost of the ALM protocol will be
O(n5κ3) bits. With our optimization, the communication cost can be reduced to
O(n5κ2) bits. Throughout this section, we use the following public parameters.

– (Keygen, Enc, Dec, Rand, AddLayer, DelLayer) is a PKCR encryption scheme.
– M is the plaintext space and α ∈ M is a dummy value known by all parties

(e.g., α is the identity element if M is a group).

The Protocol. Our protocol πggbc consists of an aggregate phase and a decrypt
phase. At the beginning of the aggregate phase, for each party Pi and each of
its neighbor d, Pi samples a fresh public key and encrypts α under this key, and
then sends the resulting ciphertext (together with the public key) to neighbor
d. At each following round, for each i ∈ [n] and each of its neighbor d, Pi, upon
receiving a ciphertext c (together with a public key k) from its neighbor d at the
previous round, samples a fresh public key pk and encrypts the broadcast value
with the key k � pk if it is the broadcaster and adds the public key layer pk to
the received ciphertext c otherwise, and then sends the resulting ciphertext to
its neighbor σ(d) (σ is a fresh random permutation of the set of the neighbors
of Pi). After T = 8n3κ rounds, the parties execute a decrypt phase as in the
ALM protocol to decrypt the final ciphertexts. Finally, the broadcaster outputs
the broadcast value x and each other party outputs one of the decrypted values.
Due to lack of space, we defer the formal description of πggbc to the full version.

Complexity Analysis. The following lemma states the communication cost of
our protocol πggbc.

Claim 12. If the underlying PKCR encryption scheme is instantiated with the
ElGamal scheme, then the communication cost of πggbc is O(n5κ2) bits while the
broadcast value is of length O(κ) bits.
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Proof. In the protocol πggbc, each party sends each of its neighbors a single
ciphertext and a public key at each round of the aggregate phase and a single
ciphertext at each round of the decrypt phase. Let l1 be the plaintext length of
the underlying encryption scheme, l2 the ciphertext length and l3 the public key
length. Because both the aggregate phase and the decrypt phase takes T = 8n3κ
rounds, the communication cost of πggbc is T · 2|E| · (l2 + l3) + T · 2|E| · l2 =
O(n5κ · (l2 + l3)) bits. If instantiating the underlying PKCR encryption scheme
with the ElGamal scheme and setting l1 = O(κ), then we have l2 = 2l1 =
O(κ), l3 = l1 = O(κ). Namely, the communication cost of πggbc is O(n5κ2) bits
while the broadcast value is of length O(κ) bits. 	


Security Proof. We state the security of πggbc by the following theorem and
defer the proof to the full version.

Theorem 13. If the underlying PKCR encryption scheme is semantically
secure, then πggbc topology-hidingly realizes the functionality Fbc with passive
security against any static adversary corrupting any number of parties.

6.2 General Topology-Hiding Computation for General Graphs

In [22], a GTHC protocol (we call it the LZM3T protocol) based on FHE is
presented. The main advantage of the LZM3T protocol is its low round com-
plexity, which amounts to the round complexity of the ALM protocol. However,
if designing a GTHC protocol by compiling an MPC protocol π, which realizes
the general computation functionality, from THB, then the round complexity of
the resulting protocol will be k times that of the ALM protocol where k is the
round complexity of π.

We first recall the LZM3T protocol, which consists of an aggregate phase
and a decrypt phase. At each round of the aggregate phase, each party appends
encryptions of its input and ID to each of the received ciphertext vectors (hence
each ciphertext vector in round t is of length O(t)) and sends each neighbor
one of the resulting ciphertext vector (together with the corresponding public
key). At the end of the aggregate phase, each party receives ciphertext vectors
containing encryptions of the inputs and then computes encryptions of the given
function f . Finally, the party execute the decrypt phase, where each party sends
each of its neighbors a single ciphertext, to decrypt the ciphertexts. We remark
that the original LZM3T protocol is designed in the fail-stop model where the
adversary may abort the protocol, but we consider its passive version in this
work.

To clarify the communication cost of the LZM3T protocol, we note that the
underlying encryption scheme of the LZM3T protocol is a so-called deeply fully-
homomorphic public-key encryption (DFH-PKE) scheme (which can be viewed
as an analogue of PKCR but offers full homomorphism). In the LZM3T protocol,
DFH-PKE is instantiated with an FHE scheme and the public keys in different
rounds of the LZM3T protocol are of different forms. Concretely, let C and PK
be the ciphertext space and public key space of the FHE scheme, respectively,
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then during the aggregate phase of the LZM3T protocol, the public keys sent
at the first round are in PK and the public keys sent at each following round
are in PK × C (the ciphertext space of DFH-PKE is always C)19. Therefore,
the communication cost of the LZM3T protocol is O(|E|+∑T

t=2(O(t)+ 1)|E|+
T |E|) = O(T 2|E|) = O(n8κ2) FHE ciphertexts and T |E| = O(n5κ) FHE public
keys.

In this section, we give an optimization for the LZM3T protocol such that
the communication cost is reduced to O(n6κ) FHE ciphertexts and O(n5κ) FHE
public keys. The goal of the aggregate phase of the LZM3T protocol is to collect
encryptions of all the inputs. We give an optimized aggregate phase to achieve
this goal. Concretely, instead of appending an encryption of the input (together
with the ID) to each received ciphertext vector at each round, each party send
ciphertext vectors of length n at each round and for the i-th entry of the cipher-
text vectors, the parties act exactly as in our optimized THB protocol πggbc with
Pi being the broadcaster and the input xi of Pi being the broadcast value.

Complexity Analysis. Each party sends each of its neighbors n ciphertexts and
a public key at each round of the aggregate phase, and a single ciphertext at each
round of the decrypt phase. Recall that the public keys sent at the first round
belong to PK and the public keys sent at each following round belong to PK×C.
Therefore, the total communication cost is n|E| + (T − 1)(n + 1)|E| + T |E| =
O(nT |E|) = O(n6κ) FHE ciphertexts and T |E| = O(n5κ) FHE public keys.

Security Proof. The correctness of πggbc guarantees that the probability p0
that the i-th entry of a final ciphertext vector at the end of the aggregate phase
is an encryption of xi is overwhelming. Hence, the probability p that for each
i ∈ [n], the i-th entry of a final ciphertext vector is an encryption of xi satisfies
that

p = pn
0 = (1 − neg(κ))n ≥ 1 − n · neg(κ),

which is overwhelming because n = poly(κ). Furthermore, the full homomor-
phism of the underlying DFH-PKE scheme guarantees each ciphertext at the
beginning of the decrypt phase is an encryption of f(x1, . . . , xn) with over-
whelming probability. Therefore, at the end of the decrypt phase, each party
get the value f(x1, . . . , xn) with overwhelming probability.

As for the security, the simulator just sends encryptions of 0 during the
aggregate phase and encryptions of f(x1, . . . , xn) during the decrypt phase (the
public keys are simulated with fresh public keys). The semantic security of the
underlying DFH-PKE scheme guarantees that the ciphertexts and public keys
in the real world are indistinguishable from the simulated ciphertexts and public
keys, respectively.

We omit the details of the security proof because the proof will be much like
the proof of Theorem 13 (DFH-PKE provides the required properties for the
security proof similar to PKCR).

19 We refer to [22, Appendix C] for more details about DFH-PKE and its instantiation.
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Remark. Another advantage of our optimized protocol is that we only require
the underlying scheme to homomorphically compute the given function, which
means that if the given function contains only linear gates (addition, addition-by-
constant and multiply-by-constant gates), then we only require the underlying
scheme has linear homomorphism, i.e. a lhPKCR scheme is sufficient. However,
the LZM3T protocol requires the underlying scheme to homomorphically com-
pute a much more complicated function than the given function (as we explained
in Sect. 1.2), which makes it impossible to just use a lhPKCR scheme even the
given function contains only linear gates.

7 Optimizations

In this section, we give several optimizations to obtain better concrete efficiency.

Improving the Concrete Efficiency Using Multi-ElGamal. All of our pro-
tocols use ElGamal-like schemes as the underlying PKCR schemes (the cipher-
texts are of form (gr, xhr) or (gr, fxhr)). We can extend the plaintext space of
ElGamal-like schemes as follows to obtain better concrete efficiency. Concretely,
to encrypt l messages x1, . . . , xl, one samples l key pairs (sk1, pk1), . . . , (skl, pkl)
and random value r, and then compute the ciphertext as (gr, x1pkr

1, . . . , xlpkr
l )

or (gr, fx1pkr
1, . . . , f

xlpkr
l ). The ciphertext length of l messages is l + 1 group

elements. However, if encrypting the l messages independently, then the total
length of the resulting ciphertext is 2l group elements. The semantic security
of such a multi-ElGamal scheme is also based on the DDH assumption in the
underlying group.

Better Topology-Hiding Communication on Cycles. We give a more effi-
cient topology-hiding realization for point-to-point communication on undirected
cycles with knowing n. As we have said, point-to-point communication can be
realized by compiling black-box from THB as follows.

1. Each party uses THB to broadcast its public key in a setup phase.
2. To send a message m to Pj , Pi encrypts m with the public key of Pj and then

uses THB to broadcast the resulting ciphertext.
3. Upon receiving the ciphertext, Pj can decrypt it to get m. Other parties know

nothing about m because they do not know the decrypt key.

If simulating point-to-point communication as above, then the communica-
tion cost of topology-hidingly sending a message m will equal the communication
cost of topology-hidingly broadcasting a public key and a ciphertext of m (under
some PKE scheme). Now we present a better way to realize point-to-point com-
munication such that the communication cost of topology-hidingly sending a
message m equals the communication cost of using our optimized THB protocol
to broadcast m (rather than a public key and a ciphertext of m), which achieves
better concrete efficiency.

Recall that our optimized THB protocol instantiates the underlying PKCR
scheme with the ElGamal scheme. The plaintext space of the ElGamal scheme
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is a group and the ElGamal scheme is homomorphic under the group operation
(the group operation is called multiplication), i.e., for any group elements x and
y, �xy�pk can be efficiently computed given �x�pk, y and pk. Now we modify our
THS protocol as follows. The underlying scheme is replaced with the ElGamal
scheme (instead of the scheme from [10] or [12]); each party homomorphically
multiplies (instead of adds) its input to each received ciphertext using the homo-
morphism of ElGamal. It can be easily seen that at the end of the resulting
protocol (we call the resulting protocol the product protocol), all parties get the
product of all the inputs, and moreover, the communication cost of this resulting
protocol equals the communication cost of our optimized THB protocol because
both of these two protocols instantiate the underlying encryption scheme with
the ElGamal scheme.

Now we show how to use the product protocol to realize point-to-point com-
munication without additional communication cost.

1. To send a message x to Pj , the parties execute this product protocol, and
where Pi takes x as input and Pj takes a random group element r as input,
and each other party takes the identity group element as input.

2. At the end of the protocol, all parties get the value y = xr. Pj computes yr−1

as output.

The above execution is a secure realization for point-to-point communication
because no parties know the value of x except Pi and Pj , which is guaranteed
by the fact that only Pi and Pj know r and other parties know nothing about r
(Pi can infer r from x and y).

8 Conclusion and Open Problem

In this work, we give efficient topology-hiding protocols realizing various func-
tionalities, including the broadcast, sum and general computation functionalities.
Our results show that when realizing these functionalities in undirected cycles,
hiding the topology introduces at most multiplicative overhead of O(n) in the
asymptotic communication complexity. An open problem is that whether O(n)
is the optimal overhead.

Another direction is to extend our results to the fail-stop setting where the
adversary may instruct the corrupted parties to abort the protocol. One of our
results is an optimization for the ALM protocol. The work of [22] extended
the ALM protocol to the fail-stop setting. A natural question is whether their
method also applies to our optimized ALM protocol.
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Abstract. Transport Layer Security (TLS) is the cryptographic back-
bone of secure communication on the Internet. In its latest version 1.3,
the standardization process has taken formal analysis into account both
due to the importance of the protocol and the experience with concep-
tual attacks against previous versions. To manage the complexity of TLS
(the specification exceeds 100 pages), prior reduction-based analyses have
focused on some protocol features and omitted others, e.g., included ses-
sion resumption and omitted agile algorithms or vice versa.

This article is a major step towards analysing the TLS 1.3 key estab-
lishment protocol as specified at the end of its rigorous standardization
process. Namely, we provide a full proof of the TLS key schedule, a core
protocol component which produces output keys and internal keys of
the key exchange protocol. In particular, our model supports all key
derivations featured in the standard, including its negotiated modes and
algorithms that combine an optional Diffie-Hellman exchange for for-
ward secrecy with optional pre-shared keys supplied by the application
or recursively established in prior sessions.

Technically, we rely on state-separating proofs (Asiacrypt ’18) and
introduce techniques to model large and complex derivation graphs. Our
key schedule analysis techniques have been used subsequently to anal-
yse the key schedule of Draft 11 of the MLS protocol (S&P ’22) and to
propose improvements.

Keywords: TLS 1.3 · Key schedule · Protocol analysis ·
State-separating proofs

1 Introduction

Transport Layer Security (TLS) is the most widely used authenticated secure
channel protocol on the Internet, protecting the communications of billions of
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users. Previous versions of TLS have suffered from impactful attacks against
weaknesses in their design, including legacy algorithms (e.g. FREAK for export
RSA [9], LogJam [2] for export Diffie-Hellman, WeakDH for ill-chosen groups,
and exploits against Mantin biases of RC4 [21]); the RSA key encapsulation
(e.g. the ROBOT [19] variant of Bleichenbacher’s PKCS1 padding oracle); the
fragile MAC-encode-encrypt construction leading to many variants of Vaude-
nay’s padding oracles against CBC cipher suites (e.g. BEAST [38], Lucky13 [3]);
the weak signature over nonces allowing protocol version downgrades (e.g.
DROWN [5] and POODLE); attacks on other negotiated parameters [11], the
key exchange logic (e.g. the cross-protocol attack of [49] and 3SHAKE [12]);
exploitations of collisions on the hash transcript (e.g. SLOTH [15]). TLS 1.3
intends both to fix the weaknesses of previous versions and to improve the pro-
tocol performance, notably by lowering the latency of connection establishment
from two roundtrips down to one, or even zero when resuming a connection.

Historically, the IETF process to adopt a standard involves an open consor-
tium of contributors mostly coming from industry, with a bias towards early
implementers. The TLS working group at the IETF acknowledged that this
process puts too much emphasis on deployment and implementation concerns,
and tends to address security issues reactively [51]. For TLS 1.3, it decided
to address security upfront by welcoming feedback from various cryptographic
efforts, including symbolic [29,30] and computational protocol models [34,35,48],
both on paper and implemented in tools such as Tamarin or CryptoVerif. Early
drafts of TLS 1.3 also drew much inspiration from Krawczyk’s OPTLS pro-
tocol [47], which comes with a detailed security proof, although later versions
diverged from it (in particular in the design of resumption). This proactive app-
roach has certainly improved the overall design of TLS 1.3, and uncovered flaws
along its 28 intermediate drafts. However, many of these efforts are incomplete
(focusing, e.g., on fixed protocol configurations) or do not account for the final
version published in RFC 8446, see Sect. 6 for a more detailed discussion of
related work. Since final adoption, further questions have been raised about
pre-shared keys, potential reflection attacks [37], and difficulties in separating
resumption PSKs (produced internally by the key exchange) from external ones
installed by the application. In short: we still miss provable security for the final
Internet standard.

TLS can be decomposed into sub-protocols: the record layer manages the
multiplexing, fragmentation, padding and encryption of data into packets (also
called records) from three separate streams of handshake, alert, and application
data. Incoming handshake messages are passed to the handshake sub-protocol,
which in turn produces fresh record keys and outgoing handshake messages. Tak-
ing advantage of this well-understood modularity, other protocols re-use the TLS
1.3 handshake with different record layers: for instance, DTLS 1.3 is a variant
based on UDP datagrams instead of TCP streams, while the IETF version of
QUIC replaces the record layer with a much extended transport [42], adding fea-
tures such as dynamic application streams and fine-grained flow control. Detailed
security proofs for the TLS 1.3 record layer have been proposed by Patton et
al. [52] (extending the work of Fischlin et al. [40] on stream-based channels),



Key-Schedule Security for the TLS 1.3 Standard 623

Fig. 1. Overview over the TLS 1.3 Handshake (left) and its key schedule (right). [m]k
denotes encryption of message m under key k. kae1 and τc are derived from kcht , kae2

and τs are derived from ksht , and kae3 is derived from ksat . We color digests and keys
in alternating pink and blue to clarify digest-key dependency. E.g., label c e traffic

and digest das is used to derive kcet . (Color figure online)

Badertscher et al. [6], and Bhargavan et al. [32], who also provide a verified ref-
erence implementation. Therefore, we defer to these works for the record layer,
and focus on the handshake protocol.

1.1 TLS 1.3 Handshake and Key Schedule

The top of Fig. 1 gives an abstract view of the TLS 1.3 protocol message flow.
In the client hello message, the client sends a nonce nc, its Diffie-Hellman (DH)
share gx, a PSK label and a binder value for domain separation and session
resumption. As a means of negotiation, the client may offer shares for different
groups and different PSK options (thus the indices i, j in gxi

i , label j , binder j).
The server communicates its choice of the DH group and the PSK when send-
ing the server hello message which contains the server nonce ns, its share gy

i0
(including the group description) and the label label j0 of the chosen PSK. The
remaining messages consist of server certificate, signature (C(pk),CV(σ)), key
confirmation messages in the forms of messages authentication codes (MACs)
τs and τc computed over the transcript, and a ticket which is used on the client
side to store a resumption key (later referred to as resumption PSK ) derived
from the key material of the current key exchange session.

The key schedule is the core part of the handshake that performs all key
computations. It takes as main input PSK and DH key materials and, at each
phase of the handshake, it derives keys, e.g., to encrypt client early traffic (kcet ),
to compute the binder value (kbinder ), to encrypt server handshake traffic (ksht)
and to encrypt client handshake traffic (kcht).

The key schedule relies on the hashed key derivation function (HKDF) stan-
dard [45], which uses HMAC [7] to implement extract (xtr) and expand (xpd)
operations. In addition, the key schedule makes calls to xpd to expand keys into
further subkeys. The key schedule thus consists of a collection of xtr an xpd oper-
ations, organized in a graph. Each of the operations takes as input a chaining
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key and/or new key material, (kpsk in the xtr in the early phase and kdh in the
xtr in the in the handshake phase), together with the latest digest and auxiliary
inputs such as a resumption status r and a ticket nonce tn.

In this article, we consider eight output keys of the TLS key schedule: kcet ,
keem , kbinder , kcht , ksht , kcat , ksat , keam . They constitute a natural boundary,
inasmuch as all other TLS keys and IVs are further derived from them in a
transcript-independent manner.

1.2 Key Schedule Model and Key Exchange Model

We model the security of the key schedule as an indistinguishability game
between a real and an ideal game. The real game allows the adversary to use
their own dishonest application PSKs and Diffie-Hellman shares. In addition,
it allows the adversary to instruct the game to sample honest PSKs and Diffie-
Hellman shares. From these base keys, the adversary can then instruct the model
to derive further keys. The adversary cannot see internal keys, but it can obtain
the 8 output keys from the model. In turn, in the ideal game, the output keys
are replaced by unique, random keys which are sampled independently from the
input key material.

The interface of this model captures how the key exchange protocol uses the
key schedule. The key exchange protocol should, indeed, not use the internal
keys, but instead only use the output keys. Moreover, the final session keys
are to be used only by the Record Layer to implement a secure channel. In
a companion paper [25], we show that key exchange security of the TLS 1.3
handshake protocol reduces to the key schedule security established in this paper.
Note that authentication is proved based on keys and does not capture binding
between keys and identities, as needed, e.g., for reflection attacks [29].

Outline. We introduce our overall technical approach in Sect. 2. We define our
assumptions for collision-resistance, pseudorandomness and pre-image resistance
in Sect. 3. Section 4 defines syntax and security of the TLS key schedule. Section 5
states the main key schedule theorem and provides its proof. This article gives
proof sketches of all lemmata, highlighting their conceptual insights. The com-
plete proofs are provided in the full version [23]. Finally, Sect. 7 includes propos-
als for (late) changes to the TLS 1.3 standard.

2 Technical Approach

2.1 Handles

Complex derivation steps make it crucial to maintain administrative handles in
the model state, both for internal bookkeeping and security modeling as well as
for communication with the adversary. Namely, to instruct the model to perform
further computations on keys, the adversary can point to the keys to be used
via handles. Such handles are particularly important for honest keys, i.e., honest
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psks, honest Diffie-Hellman shares and honest internal keys derived via xtr and
xpd from honest base keys, because the model cannot provide the adversary with
the actual values of these secrets.

Our model constructs handles as nested data records where each nesting step
keeps track of the inputs which were used to compute the associated key. We
have base handles for PSKs and DH secrets, including handles for dummy zero
values to be used in noDH and noPSK mode as well as base handles for a fixed
0salt and fixed 0ikm.

dh〈sort(X,Y )〉 Diffie-Hellman secret
h = psk〈ctr , alg〉 application PSK
noDH〈alg〉 fixed 0len(alg) Diffie-Hellman secret
noPSK〈alg〉 fixed 0len(alg) PSK
0salt fixed 0 salt
0ikm〈alg〉 fixed 0len(alg) initial key material (IKM)

The model then inductively applies the following constructors to build all
other handles from the base handles:

xtr〈name, left parent handle, right parent handle〉.
xpd〈name, label, parent handle, other arguments〉.

For example, given a handle to the early master secret hes , the handle hcet to
the client early transport secret is defined as

hcet = xpd〈cet, c e traffic, hes , tes〉
where tes is the transcript of the protocol messages exchanged so far, and
‘c e traffic’ is the constant byte string label prescribed in the RFC [53] for
this derivation step.

Agility. Our model is agile, i.e., it supports multiple algorithms. Thus, we tag
the handles h = psk〈ctr , alg〉, noPSK〈alg〉 and 0ikm〈alg〉 with the algorithm alg
for which the keys are intended. Jumping ahead, we note that we also tag keys
with their intended algorithm so that in the key derivation

kcet = xpd(kes , c e traffic, des),

the agile xpd function can retrieve the correct hash algorithm alg to use
within hmac from the key’s tag. We write alg(hcet) for the algorithm descriptor
of hcet and tagh(k) for key k tagged with this algorithm.

Length. The handle determines the algorithm, and the algorithm determines the
length of keys and outputs of a hash-algorithm alg . For convenience, we write
len(hcet) as an alias for len(alg(hcet)).

Note that we introduced handles 0ikm〈alg〉 for the dummy key value 0len(alg)

as well as 0salt for the 1-bit-long 0-key. This is because hmac pads keys with
zeroes up to their block length and thus, storing multiple zero values would
introduce redundancy in the model without a correspondence in real-life.
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Name and Level. In addition to the algorithm and its key length, the handle
determines the key name (cet) and a level. The level is the number of resump-
tions the handle records, counting from 0 and adding one for each node with a
resumption label. We write level(hcet) for this level. We will often need to refer to
the parent names of a particular key (name) n, and write the pair of parent names
as prntn(n). In the case of xpd, the key is only derived from one key and thus, in
this case, prntn(n) = (n1,⊥). Conversely, we refer by chldrnn(n1) to the set of all
key names which are derived from n1. In particular, if prntn(n) = (n1,⊥), then
n ∈ chldrnn(n1). We refer to all names which share a parent with n as sblngn(n).

Handshake Mode. Jumping ahead, we note that we use handle data also to com-
municate the handshake mode to the key schedule model. A noDH〈alg〉 Diffie-
Hellman handle signals a psk ke mode, while a noPSK〈alg〉 PSK handle signals
a dh ke mode.

2.2 Application Key Registration and Honesty

Honesty of a handle is a crucial concept to model that the key associated with
the handle, when returned to the adversary, looks pseudorandom. Honesty is
inductively computed, starting from the base keys: All zero keys have dishonest
handles. Handles of application PSKs are honest if their key was sampled by the
security model and dishonest if their key was sampled by the security model.
Diffie-Hellman handles are honest if both shares are honest. Derived handles are
honest if and only if at least one of their input handles are honest. Considering
the derivation graph (cf. right side of Fig, 1), we obtain that the hesalt handles
and the handles which appear before have the same honesty as the last PSK
handle, while the handles after hesalt are honest if the last PSK handle was
honest or the last Diffie-Hellman handle was honest.

2.3 State-Separating Proofs (SSPs)

Fig. 2. Game Gxpdb
n,� for b ∈ {0, 1}

In the following we use
the the pseudorandom-
ness game Gxpd0n,� for the
xpd function (depicted in
Fig. 2) as a running exam-
ple to introduce core con-
cepts. As is common in
cryptography, security is
modeled as an interaction
between an adversary A
(which can be thought of
as sitting left of the picture) and a program which we call the game. This
interaction happens via so-called oracles—which we describe in pseudo-code—
corresponding to the arrows from the left side of the picture. The task of the
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adversary consists in distinguishing two variants of the game G0 and G1 with iden-
tical interfaces and we measure the success probability of any such adversary A
and call it advantage.

Definition 1 (Advantage). For adversary A, we define the advantage

Adv(A; G0, G1) :=
∣
∣Pr

[

1 = A → G0
] − Pr

[

1 = A → G1
]∣
∣ .

In particular, for the pseudorandomness game Gxpdb
n,� for xpd, the analogous

definition is as follows.

Definition 2 (XPD). For adversary A, we define the xpd pseudorandomness
advantage Adv(A, Gxpd0n,�, Gxpd

1
n,�) as

∣
∣Pr

[

1 = A → Gxpd0n,�

] − Pr
[

1 = A → Gxpd1n,�

]∣
∣ ,

where Fig. 2 defines Gxpd0n,�.

The graphs specifying such a security game suggest a natural flow downwards.
While we discuss the details of the game later in this section, one can extract
a conceptual picture already from the graph alone. Concretely the intended
usage (by the adversary) of Gxpdb

n,� consists on first registering input values
using the SETn1,� oracle, executing key derivation using the XPDCN ,� oracle and
finally retrieving and testing the output using the GETn,� oracle. In addition, the
adversary gets access to auxiliary oracles, namely the HASH oracle modeling a
cryptographic hash function as well as the Q and UNQ oracles.1 Finally, Gxpdb

n,�

is structured in individual components which we call packages.

Definition 3 (Package). A package M consists of a set of oracles [→ M] =
{O1, ..,Ot}, specified by pseudo-code and operating on a set of state variables
Σ, specified on the top of each package description. All other variables used by
oracles are temporary and their values are forgotten after each call. The oracles
of M may depend on oracles [M →] = {O′1, ..,O′t′}, i.e., make calls to oracles in
[M →]. We say that a package M is stateless if Σ = ∅. We say that a package M
is a game if [M →] = ∅.

While some oracles of a package are exposed to the adversary, others are
used only internally within the game. A monolithic version of a game such as
Gxpdb

n,� can be obtained by inlining all internal oracle calls. With the concept
of packages we can now discuss the individual parts of Gxpdb

n,�. XpdCN ,� is a
parallel composition of Xpdn,� for all children of n1 exposing the oracles XPDn,�

for n ∈ CN , we write XPDCN ,� as shorthand for these oracles. The XpdCN ,�

packages are the only stateless packages in the game, indicated by the white
color as opposed to the gray of stateful packages (Fig. 2).
1 These two oracles in particular are necessary for composition: Note that the main

oracles the adversary interacts with are subscripted by a name n and a level � while
the Q and UNQ oracles only take the name n as subscript. We will share the same
Q and UNQ oracles between many instances of Gxpdb

n,� and therefore need to allow
reductions access to these oracles.
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Fig. 3. Xpd package

The XPDn,� oracle of package Xpdn,� (Fig. 3)
computes a new handle h ← xpd〈n, label , h1, args〉
alongside a new key k ← xpd(k1, (label , d)) based
on the parent handle h1, the arguments (e.g. tran-
script) and the bit r indicating whether this is a
resumption session. The evaluation also includes
a label which depends on the name of the package
as well as the resumption bit. Note that the oracle
only receives the handle of the input key from the
adversary and only returns the newly constructed
handle of the newly derived key. Concrete secrets
are passed to Keyb

n,� packages using the GET and
SET oracles. Here we can distinguish the upper
Key1n1,� package and the lower Keyb

CN ,� packages
(for all n in CN ). We defer discussion about the
Q and UNQ oracle calls to the description of the
Log package.

The upper Key1n1,� package offers oracle
SETn1,�(h, hon, k) to the adversary which allows it
to register a key. The oracle first verifies that the
handle h matches the name n and level � of this
key package and—modeling algorithmic agility—
verifies that the algorithm tag matches the value
of the key, and else, assert throws an abort . As
this is an ideal key package (indicated by super-
script b=1) for honest keys, instead of using the
value provided by the adversary a fresh value is
sampled—as indicated by using ←$ in contrast to
← used for assignments. Finally the key is stored
in this package’s state and the handle returned to
the caller. The GET oracle simply restores algo-
rithm tagging on the key value and returns it to
the caller (in this case the Xpd package). The lower
Keyb

CN ,� packages work the other way round in that they expose the GET oracle
to the adversary while the SET oracle is used by Xpd. We encode the distinguish-
ing task for the adversary in the Keyb

CN ,� package: In Gxpd0n,� (b = 0), the keys
returned from the GET oracle of the Key0CN ,� is honestly computed based on the
input keys while in the ideal game Gxpd1n,� the values of honest keys are sampled
in the Key package ignoring the value computed by Xpd.

Finally, queries Qn and UNQn to the Logn package (Fig. 4) model collisions.
The Q query simply returns if a handle is re-used while UNQ concerns itself with
collisions between keys via an abort pattern and a mapping method. In slightly
nonstandard notation, we use existential quantors here to express searching for
indices into tables. The pattern models conditions on states where the game
aborts (i.e. terminates and outputs a special symbol), cf. Sect. 5.3 for their use.
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Fig. 4. Code for the Key and Log. In addition we use Nkey for a single key package that
answers queries for all levels from the same table and 0key for a NKey package which
consistently answers with the constant all-zeros key.
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We use the throw notation here to allow special symbols in addition to abort
which is also used by assert. In the game Gxpdb

n,�, the D pattern aborts on
collisions between dishonest keys. The F and R pattern abort if there is a collision
between key values, regardless of their honesty, and they return different abort
messages. Z does not abort at all, and A aborts upon a collision of two dishonest
level 0 keys (which we use to constrain the adversary’s psk registrations in the
key schedule model).

Mapping methods filter certain collisions (preventing an abort event. ∞
allows collisions between Diffie-Hellman secrets (the adversary can construct
colliding values via XzY = XY z) and the 1 method allows the adversary to reg-
ister a dishonest application PSK colliding with an dishonest resumption PSK.
The mapping methods are only used in the proof and not in the security model.

3 Assumptions

3.1 Collision-Resistance

Fig. 5. Gcrf-alg,b code.

Figure 5 defines the collision-resistance game Gcrf-alg,b

for a given function f-alg , where f ∈ {hash, xtr, xpd}
and alg ∈ H which TLS 1.3 currently defines as

H = {sha256, sha384, sha512}

(see FIPS 180-2). The HASH oracle takes as input a
text t from the domain of f-alg and returns its digest d.
If that text t has not been queried before, the digest is
stored in table H at index t. In the ideal game (b = 1),
the oracle first checks whether d already occurs in H ,
and if so, throws an abort. Hence, the adversary can
distinguish between the real and the ideal game if and only if it can submit two
different texts with the same digest. Our definition generalizes to n-ary functions
by letting the text t be the tuple of their arguments.

Definition 4 (Collision-Resistance). For an adversary A, a function f ∈
{hash, xtr, xpd} and algorithm alg ∈ H, define collision-resistance advantage
Adv(A, Gcrf-alg,0, Gcrf-alg,1) is

∣
∣Pr

[

1 = A → Gcrf-alg,0
] − Pr

[

1 = A → Gcrf-alg,1
]∣
∣ .

Agile Collision-Resistance. It is convenient to define the agile collision-resistance
game Gacrf,b as well, where f ∈ {hash, xtr, xpd} takes tagged inputs, i.e., hash
takes a single input, tagged with the algorithm to use, xpd takes three inputs
(k, label , args), where k is tagged, and xtr takes inputs (k1, k2) where one is
tagged, and if both are tagged, they are tagged consistently. The adversary can
then make queries to HASH with values in the domain of the agile functions. We
write Hashb := Gacrhash,b. See Sect. 2.1 for further discussion of tagging.
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3.2 Pseudorandomness of xpd

For most key names n, Definition 2 already captures pseudorandomness of xpd.
We now cover two special cases.

XPD to Derive PSK. For n = psk (cf. Fig. 6a), the layer index increases from
� to � + 1. Thus, the XPDpsk ,� oracle reads keys via GETrm,� queries, but writes
keys using the level � + 1 query SETpsk ,�+1. Another difference in Gxpdb

psk ,�

compared to the general Gxpdb
n,� is that the lower LogD1

psk package uses a D1
pattern for logging which ignores level 0 UNQpsk (h, hon, k) queries with hon = 0
whenever there already exists a dishonest handle h′ for key value k at level 0.
Since XPDpsk ,� writes only on level � + 1 > 0, this difference in logging does
not affect the strength of the assumption, but it makes the assumption code
align with the key schedule game, cf. Sect. 4.1. Finally, for deriving the psk, no
hash-operation is performed.

Definition 5 (XPD for psk). For an adversary A, we define the xpd pseudo-
randomness advantage for psk derivation Adv(A, Gxpd0psk ,�, Gxpd

1
psk ,�) as

∣
∣Pr

[

1 = A → Gxpd0psk ,�

] − Pr
[

1 = A → Gxpd1psk ,�

]∣
∣

XPD to Derive Esalt. For n = esalt , the lower LogR
esalt package uses an R

pattern instead of a D pattern, sending abort messages whenever the same key
value k is registered as an esalt under two distinct handles h and h′ (across all
levels and regardless of honesty). Note that the adversary could simulate the R
pattern itself (by retrieving all keys and checking for equality) and thus, the R
pattern only weakens the adversary since it can no longer query the game after
triggering an R abort and since the adversary does not learn the value of the
collision which caused the abort.

Definition 6 (XPD for esalt). For an adversary A, we define the xpd pseu-
dorandomness advantage for esalt derivation Adv(A, Gxpd0esalt,�, Gxpd

1
esalt,�) as

∣
∣Pr

[

1 = A → Gxpd0esalt,�
] − Pr

[

1 = A → Gxpd1esalt,�
]∣
∣ .

Fig. 6. xpd assumptions
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Fig. 7. xtr Pseudorandomness Assumption

3.3 Pseudorandomness of xtr

The TLS 1.3 key schedule performs three xtr operations (cf. Fig. 1), and the
modeling is analogous to the XPD assumptions, except that for the early secret
es, xtr security relies on the psk which is the right input to xtr, and for the
application secret as, xtr security relies on esalt which is the left input to xtr.
The derivation of the handshake secret hs is a special case, because its security
is an OR of the honesty of its left and right input. We here state the xtr security
assumption required for hs security based on its left input esalt and turn to the
security based in its right input (the Diffie-Hellman (DH) secret) shortly. Note
that the security of esalt will be applied after the security of the DH secret
and thus, the bit b in the Xtrb

hs,� is already set to 1 and samples output keys
uniformly at random whenever the Diffe-Hellman secret is honest. The security
of esalt thus only increases security for those keys where the Diffie-Hellman
secret is dishonest.
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Definition 7 (XTR advantages). For adversary A, level � ∈ N0, we define
the xtr pseudorandomness advantage for es as Adv(A, Gxtr10es,�, Gxtr1

1
es,�),

the pseudorandomness advantage for hs as Adv(A, Gxtr20hs,�, Gxtr2
1
hs,�) and

the pseudorandomness advantage for as as Adv(A, Gxtr30as,�, Gxtr3
1
as,�), where

Fig. 7b–7d define the games Gxtr1b
es , Gxtr2b

hs and Gxtrb
as and Definition 1

defines advantage.

3.4 Salted ODH

Fig. 8. Game Gsodhb (top), package Dh (bottom)

Our salted oracle Diffie-
Hellman assumption (SODH)
is a stronger variant of
the oracle Diffie-Hellman
assumption introduced by
Abdalla et al. [1] and
the PRF oracle Diffie-
Hellman assumption stud-
ied by Brendel et al. [20].
Most importantly, SODH
is an agile, i.e., it requires
pseudorandomness of the
derived keys even when
the adversary can see
hash-values of the same
Diffie-Hellman secret under
different hash-functions and
different, possibly adver-
sarially chosen salts. In
practice, different salts can
emerge from disagreement
between server and client
about the PSK to use since the early salt esalt (and possibly also the alg) changes
when the PSK changes (see Fig. 1). The Gsodhb game (cf. Fig. 8) allows the adver-
sary to generate honest Diffie-Hellman shares via DHGEN, to combine them (or
an honest and a dishonest share) into a Diffie-Hellman secret via DHEXP and
to derive keys from them via XTRn,� for an arbitrary level � ∈ {0, .., d}. Oracle
GETn,� then allows to retrieve the derived keys. Note that pseudorandomness is
modeled, this time, by a bit in the Xtrb

n,� package (Fig. 7a).

Definition 8 (SODH). For an adversary A, we define the Salted Oracle Diffie
Hellman (SODH) advantage Adv(A, Gsodh0, Gsodh1) :=

∣
∣Pr

[

1 = A → Gsodh0
] − Pr

[

1 = A → Gsodh1
]∣
∣ ,

3.5 Pre-image Resistance for xpd

Pseudorandomness and collision resistance of xpd also imply that it is hard to
find pre-images for honest output keys. We prove this implication in the full
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version of this article [23, Lemma E.7] and in this conference version rely on
pre-image resistance as a separate assumption for convenience.

Fig. 9. Pre-image resistance assumptions

Definition 9 (Pre-image resistance advantages). For an adversary A and
level � ∈ N0 we define the pre-image resistance advantage for deriving keys in
O∗ (a set to be specified later) Adv(A, GpiD

O∗ , GpiF
O∗) :=

∣
∣Pr

[

1 = A → GpiD
O∗

] − Pr
[

1 = A → GpiF
O∗

]∣
∣ ,

the pre-image resistance advantage for deriving keys with the same parent as
esalt by Adv(A, GpiD

esalt , Gpi
F
esalt) :=

∣
∣Pr

[

1 = A → GpiD
esalt

] − Pr
[

1 = A → GpiF
esalt

]∣
∣ .

Figure 9b and Fig. 9b define GpiP
O∗ and GpiP

esalt .

Our modular assumptions for xpd and xtr are agile, multi-instance security
assumptions with registration of dishonest keys. They reduce to their non-agile,
single-instance, monolithically written counterparts with a security loss equal
to the number of honest keys. Since TLS 1.3 currently only supports hash-
algorithms of different length, indeed, our agile assumptions for xtr and xpd
reduce to non-agile assumptions. In turn, we can only reduce our modular agile
SODH assumption to an agile monolithic SODH assumption, because TLS 1.3
indeed requires such a strong, agile SODH assumption (cf. Sect. 3.4 and Sect. 7)
for further discussion. See full version [23, Appendix E] for the reduction proofs.
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Fig. 10. Parent names prntn in TLS 1.3

4 Key Schedule

We reason about the TLS 1.3 key schedule in terms of its three elementary
operations extract (xtr), expand (xpd) and computation of Diffie-Hellman secrets.
This section first introduces an abstract key schedule syntax and refines it to
capture TLS 1.3 as part of a bigger class of TLS-like key schedules. We then
define key schedule security and state our theorem for all TLS-like key schedules.

4.1 Key Schedule Syntax

Our formalization interprets the key schedule as a directed graph where nodes
describe key names (cf. Fig. 10 for the case of TLS 1.3). In addition to the set
of names N and the graph description (encoded as prntn function, cf. Sect. 2.1),
a key schedule has a function label which maps the name and a resumption bit
to a derivation label. We conveniently model hmac operations by using xpd with
empty label as an alias for hmac. By sound cryptographic practice, a key should
be either used for xpd or for hmac but not both, so if a node has an empty label, it
is not allowed to have siblings. Similarly, xtr operations only yield a single child,
and the multiple children of xpd operations are derived using distinct labels.

Definition 10 (Key Schedule Syntax). A key schedule ks = (N, label, prntn)
consists of a set of names N and two functions

label : N × {0, 1} → {0, 1}96 ∪ {⊥}
prntn : N → (N ∪ ⊥) × (N ∪ ⊥)

with the previously described restrictions.

Figure 10 describes the prntn function of the TLS 1.3 key schedule as a graph.
Stating and proving our theorem in terms of the concrete TLS key schedule
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would require listing and treating each xpd operation individually. Instead, we
prove our theorem for all TLS-like key schedules (of which the TLS key schedule
is an instance). We consider a key schedule as TLS-like if it aligns with TLS in
terms of base keys and xtr operations and treats the psk name as the main root
from which all keys except for the base keys can be reached. Moreover, a TLS-
like key schedule only has a single loop. This loop contains the edge from rm to
psk and models resumptions. This edge has the special property of increasing
the associated level as the psk is computed in an earlier session to be used in a
later key schedule session. As such the cycle does not contradict an ordering on
key computations.

Definition 11 (TLS-like Key Schedule Syntax). A key sched-
ule ks = (N, label, prntn) is TLS-like if its prntn graph satisfies the
above restrictions, its set of names N contains at least the names
0salt , psk , es, esalt , dh, hs, hsalt , 0ikm, as, rm and the prntn function maps 0salt,
dh and 0ikm to (⊥,⊥), maps es, hs and as according to Fig. 10, maps psk to
(rm,⊥) and each of the remaining names n to some pair (n1,⊥) with n1 �= ⊥.

We use several subsets of N which we summarize in Table 1.

4.2 Key Schedule Security Model

Our key schedule security model captures that the key schedule produces keys
which are pseudorandom and unique. We formulate security as indistinguishabil-
ity between a real and an ideal game where the real game implements the actual
key schedule derivations, while in the ideal game, output keys are unique, and
honest keys are sampled uniformly at random. Concretely, we follow a simula-
tion approach (somewhat similar to the Canetti and Krawczyk [26] approach to
key exchange), where the ideal game is defined as a composition of a simulator
S and an ideal functionality. The simulator instructs the ideal functionality to
produce output keys of certain length, however the value of the output keys is
sampled independently from the simulator. As we require that no adversary can
distinguish these two settings this captures security: The protocol determines
when an output key becomes available and which type of key but no informa-
tion about the concrete value is disclosed in the protocol (as the simulator does
not have such information).

Concretely, in our ideal game Gks1(S) (Fig. 11b), the simulator S is a param-
eter and the Key1O∗,0..d and LogO∗ packages (cf. Sect. 2.3) constitute the ideal
functionality. Namely, the Key1O∗,0..d package samples a uniformly random key
for handles which correspond to honest keys with a name n ∈ O∗ and some level
0 ≤ � ≤ d. The LogO∗ package, in turn, ensures that each handle corresponds to
a different key, modeling key uniqueness for both honest and dishonest keys.

Similarly, we describe the real execution of the key schedule as a game Gks0,
written in pseudocode. Following the SSP methodology outlined in Sect. 2.3, we
split the pseudocode of the game Gks0 into several packages most of which (Xpd,
Xtr, DH, Key, and Log) have been introduced before and Check is described in
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Fig. 11. Key schedule security games with internal keys I∗, output keys O∗ and XPN ,
the set of key names produced by xpd. We write 0Kn as an abbreviation for Nkn → LZ

n .
We initialize K and Nkn with suitable 0 values (cf. Sect. 2.1).

Table 1. Notation

N The set of all (key) names

N∗ N \{psk , dh }
I∗ The set of internal keys {n ∈ N∗ | chldrnn(n) = ∅}
O∗: The set of output keys {n ∈ N∗ | chldrnn(n) = ∅}
O: O∗ ∪{psk }
S: The set of separation points (Definition 13)

XPN : The set of expand names {n ∈ N : prntn(n) = ( , ⊥)}
XPR: The set of representatives (Sect. 4.3)
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Sect. 4.3. Figure 11a depicts the composed game Gks0—recall that this graph is
not merely an illustration, it is part of the formal definition of Gks0.

The game Gks0 exposes SETpsk ,0 and DHGEN oracles which sample honest
Diffie-Hellman shares, honest application PSKs and enable the adversary to reg-
ister dishonest application PSKs with a chosen value. The XTR and XPD oracles
trigger key derivations. Finally, the adversary can access output keys via the
GET oracle on the (real) key package Key0O∗,0..d.

Definition 12 (Key Schedule Advantage). For a key schedule ks =
(N, label, prntn), a natural number d, a simulator S and an adversary
A which makes queries for at most d levels we define the advantage
Adv(A, Gks0, Gks1(S)) :=

∣
∣ Pr

[

1 = A → Gks0
] − Pr

[

1 = A → Gks1(S)
] ∣
∣,

where Fig. 11b defines Gks1(S) and Fig. 11a defines Gks0.

4.3 Front-End Checks

Fig. 12. Code of Check

The Check package acts as a restriction on the
adversary since the assert conditions in the
Check code force the adversary to use the cor-
rect Diffie-Hellman shares and binder value in
its transcript when the transcript is included
in a derivation step. In terms of composability,
the assert conditions in Check force the key
exchange to call the key schedule with con-
sistent values, i.e., derive the Diffie-Hellman
secret from a pair of shares that is included in
the transcript and not from an unrelated pair
of shares. The TLS 1.3 specification ensures
these innocent conditions, and requiring them
formally means that the proof breaks down
when session memory in TLS 1.3 is unsafely
implemented.

In addition to enforcing the use of consis-
tent shares in the transcript, the XPD oracle of
the Check package (Fig. 12) ensures that the
resumption flag is consistent with the level of
the PSK; and that the binder tag included in
the transcript of later stages (at the end of the
last ClientHello message) is the same that was
computed and checked in the early stage. The
transcript is not included into all xpd deriva-
tions, but only once on the path from psk to
output key, and Check only filters queries on these particular derivation steps.
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Since including the transcript ensures domain separation between different pro-
tocol runs and derivation pathes, we refer to the derivation steps which include
the transcript as a separation point.

Definition 13 (Separation Points). For a key schedule ks = (N, label,
prntn), we call S ⊆ N a set of separation points, if it satisfies the following
two requirements:

– ∀ n ∈ O: the path from psk to n contains an n′ ∈ S.
– If there exists a path from dh to an n ∈ O, then it contains an n′ ∈ S.

In addition, for each xpd operation, we choose one representative child. I.e.,
XPR ⊆ N is a representative set for ks if psk , esalt ∈ XPR and for each name
n ∈ N with only a single parent (these are the xpd nodes), either n or exactly
one sibling of n is contained in XPR.

5 Key Schedule Theorem

Theorem 1. Let ks be a TLS-like key schedule with representative set XPR and
separation points S. Let d ∈ N. There is an efficient simulator S such that for
all adversaries A which make queries for at most d resumption levels,

Adv(A, Gks0, Gks1(S)) ≤ Adv(A → Rmain
cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}
Adv(A → Rmain

j,f , Gacrf,b)

+ max
i∈{0,1}

[

Adv(Ai → Rmain
sodh , Gsodhb)

d−1∑

�=0

(

Adv(Ai → Rmain
es,� , Gxtrb

es,�)

+Adv(Ai → Rmain
hs,� , Gxtrb

hs,�)

+Adv(Ai → Rmain
as,� , Gxtrb

as,�)

+
∑

n∈XPR

(

Adv(Ai → Rmain
n,� , Gxpdb

n,�)
))

+Adv(Ai → Rmain
esalt,pi , Gpi

b
esalt)

+Adv(Ai → Rmain
O∗,pi , Gpi

b
O∗)

]

,

where Ai behaves as A except that it returns bit i on a so-called win abort (cf.
[23, Lemma D.4]); Rmain

∗ := Rch-map → R∗ when replacing ∗ by cr, (Z, f),
(D, f), sodh, es, hs, as, n, O∗, pi or esalt , pi, the simulator S is marked in grey
in [23, Fig. 26b], [23, Fig. 32a] defines Rsodh, [23, Fig. 34a] defines Res,�, Rhs,�

and Ras,� are defined analogously, and [23, Fig. 34b] defines Rn,� for n ∈ XPR,
0 ≤ � ≤ d, [23, Fig. 32c] defines Resalt,pi and [23, Fig. 32d] defines RO∗,pi .
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Fig. 13. Proof structure

5.1 Proof Technique

A recurrent proof technique which we use are reductions, written in SSP style.
As usually, we want to show that if there is an adversary A which successfully
distinguishes between two games G0big and G1big, then based on A, we can con-
struct an adversary B of similar complexity as A which successfully distinguishes
between two games G0sml and G1sml. Our reductions will have the following form.

Lemma 1 (Reduction Technique). If we can define a reduction R such that

G0big
code≡ R → G0sml (1) and G1big

code≡ R → G1sml (2)

then
Adv(A; G0big, G

1
big) = Adv(B; G0sml, G

1
sml), (3)

where
B := A → R. (4)

Proof. Assuming Eq. 1, 2 and 4, we deduce Eq. 3 as follows:

Adv(A,G0big , G
1
big)

def.=
∣
∣Pr

[

1 = A → G0big
] − Pr

[

1 = A → R → G1big
]∣
∣

Eq.1&2
=

∣
∣Pr

[

1 = A → (R → G0sml)
] − Pr

[

1 = A → (R → G1sml)
]∣
∣

=
∣
∣Pr

[

1 = (A → R) → G0sml)
] − Pr

[

1 = (A → R) → G1sml

]∣
∣

def.= Adv(A → R, G0sml , G
1
sml)

Eq. 4
= Adv(B, G0sml , G

1
sml)
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Fig. 14. Oracles of Map. Here, � ∈ {0 . . . d}. �′ choose← level(Mn1 [h1]), level(Mn2 [h2])
assigns to �′ the value level(Mn1 [h1]) if it is not ⊥ and level(Mn2 [h2]), else.

Importantly, throughout this article, we define reductions graphically as com-
position of previously defined packages so that the reduction re-uses code, as
opposed to the usual technique which introduces new code for a reduction. As a
result, we can argue Eqs. 1 and 2 graphically. E.g., in [23, Fig. 31a] we highlight
the reduction in gray and observe that the only change from Fig. 15a is the col-
lision resistance assumption—the Gb

sml in this case. Observing the graph of Gks0

(cf. Fig. 11a) closely and comparing it with the graphs of the assumptions intro-
duced in Sect. 3, one can identify that the assumptions are almost sub-graphs
of Gks0, and by an appropriately chosen sequence of reduction arguments, the
graphs of the assumptions will appear as actual subgraphs.

5.2 Proof of Theorem 1

We need to show the indistinguishability of the real game Gks0 and the ideal game
Gks1(S). [23, Fig. 25a] depicts the real game Gks0 (cf. Fig. 11a), with slightly dif-
ferent graph layouting. [23, Fig. 26b] depicts the ideal game Gks1(S) (cf. Fig. 11b)
where the simulator S is described in concrete code. To show the indistinguisha-
bility between Gks0 ([23, Fig. 25a]) and Gks1(S) ([23, Fig. 26b]), we make 4 game
hops, depicted as the sequence of the five games depicted in [23, Fig. 25a], [23,
Fig. 25b], [23, Fig. 25c], [23, Fig. 26a] and [23, Fig. 26b]. We now describe each
of the game hops and state the corresponding lemma, see Fig. 13 for a proof
overview.

First, recall that the key schedule security model stores keys in a redundant
fashion (a) due to possible equal values of a dishonest resumption psk (level(h) >
0) and an adversarially registered application psk (level(h) = 0) and (b) due to
the equal values of the (dishonest) DH keys corresponding to (Xa, Y ) and (X,Y a).

Lemma 2 introduces a Map package (see [23, Fig. 25b] for the game and the
left column of Fig. 14 for the code of Map) to remove the redundantly stored
keys—note that the LogA1

psk and the LogZ∞
dh package now use the map = 1 and

the map = ∞ code of Log (see Fig. 4 for its code). As a result, any adversary
playing against Gcore0 (defined in [23, Fig. 25b]) cannot create (this particular)
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redundancy anymore since the Keypsk ,� and DHKeydh packages do not store the
key again when the mapping code is triggered. We defer the proof of code equality
proof of Lemma 2 to the full version [23]. It relies on proving the invariant that
whenever Gks0 stores key k with honesty hon under handle h, then game Gks0Map

stores key k with honesty hon under the mapped handle h′ = M [h]. The proof
proceeds by induction over the oracle calls.

Lemma 2 (Map-Intro). For all adversaries A which make queries for at most
d resumption levels,

Pr
[

1 = A → Gks0
]

= Pr
[

1 = A → Gks0Map
]

.

In particular Gks0
func≡ Gks0Map.

Lemma 3 then reduces the indistinguishability of Gks0Map ([23, Fig. 25b]) and
Gks1Map ([23, Fig. 25c]) to the indistinguishability of Gcore0 and Gcore1(Score)
using reduction Rcore. The indistinguishability of Gcore0 and Gcore1(Score) will
be established in Theorem 2 in Appendix 5.3 and contains the main technical
argument of this article.

Lemma 3 (Main). For all PPT adversaries A which make queries for at most
d resumption levels,

Adv(A, Gks0Map, Gks1Map)

=Adv(A → Rch-map, Gcore0, Gcore1(Score)),

where [23, Fig. 25b] defines Gks0Map, [23, Fig. 25c] defines Gks1Map, Rch-map

and Score are marked in grey in [23, Fig. 25c], and Fig. 15a and Fig. 15b define
Gcore0 and Gcore1(Score), respectively.

Proof. The proof of Lemma 3 is an instance of Lemma 1 with G0big = Gks0Map,
G1big = Gks1Map, G0sml = Gcore0, G1sml = Gcore1(Score) and R = Rch-map.

By Lemma 1, it suffices to show that

Gks0Map code≡ Rch-map → Gcore0 (5)

Gks1Map code≡ Rch-map → Gcore1(Score) (6)

Equation 5 follows by definition, since [23, Fig. 25b] defines Gks0Map as the com-
position of Rch-map and Gcore0. Similarly, for Eq. 6, [23, Fig. 25c]

In Lemma 4, we inline the Xpdn,0..d code into Map for n ∈ O∗ and call the result
Map-Xpd (see [23, Fig. 25c] and [23, Fig. 26a] for the two games). The proof is a
simple inlining argument and included into the full version [23] for completeness.

Lemma 4 (Xpd-Inlining). For all PPT adversaries A which make queries
for at most d resumption levels,

Pr
[

1 = A → Gks1Map
]

= Pr
[

1 = A → GksMapxpd
]

.

In particular Gks1Map code≡ GksMapxpd.
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Finally, Lemma 5 establishes the (perfect) indistinguishability of GksMap-Xpd

and Gks1(S). The proof of Lemma 5, essentially, removes or rather inverts the
mapping on the output keys in order to recover the ideal functionality. Inverting
the handle mapping, however, requires that it is injective. Conceptually, it is
also clear that injectivity of the handle mapping needs to play a role in the
proof: We prove uniqueness of output keys which means that equal keys imply
equal handles. The injectivity proof ensures that the mapping did not introduce
additional collisions and that the proof of Theorem 2 indeed suffices to establish
the uniqueness of output keys in Gks1(S).

Lemma 5 (Map-Outro). For all PPT adversaries A which make queries for
at most d resumption levels,

Pr
[

1 = A → GksMapxpd
]

= Pr
[

1 = A → Gks1(S)
]

.

In particular, GksMapxpd func≡ Gks1(S).

In summary, Lemma 3 is the core argument, Lemma 2 is proven via a mechan-
ical invariant proof, Lemma 5 is proven via a conceptually interesting invariant
proof and Lemma 4 is a straightforward inlining argument.

Theorem 1 directly follows from Lemma 2–Lemma 5 and Theorem 2 (stated
in Sect. 5.3).

Adv(A, Gks0, Gks1(S)) Lm. 2= Adv(A, Gks0Map, Gks1(S))
Lm. 5= Adv(A, Gks0Map, GksMapxpd)
Lm. 4= Adv(A, Gks0Map, Gks1Map)

Lm. 3= Adv(A → Rch-map, Gks0core, Gks1core(Score))
Th. 2≤ Adv(A → Rmain

cr , Gacrhash,b)

+
∑

j∈{Z,D},f∈{xtr,xpd}
Adv(A → Rmain

j,f , Gacrhash,b)

+ max
i∈{0,1}

Adv(Ai → Rmain
sodh , Gsodhb)

+ Adv(Ai → Rmain
esalt,pi , Gpi

b
esalt)

+ Adv(Ai → Rmain
O∗,pi , Gpi

b
O∗)

+
d−1∑

�=0

(

Adv(Ai → Rmain
es,� , Gxtrb

es,�)

+ Adv(Ai → Rmain
hs,� , Gxtrb

hs,�)

+ Adv(Ai → Rmain
as , Gxtrb

as,�)

+
∑

n∈XPR

(

Adv(Ai → Rmain
n,� , Gxpdb

n,�)
))

,
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Fig. 15. Games for Theorem 2

where XPR is the representative set required by the theorem, Rmain
∗ :=

Rch-map → R∗ when replacing ∗ by cr, (Z, f), (D, f) sodh, es, hs, as, n, O∗, pi or
esalt , pi .

5.3 Core Key Schedule Theorem

It remains to show that the core key schedule game Gcore0 without the Map
and Check package in front (Fig. 15a is indistinguishable from an ideal game
Gcore1(Score) which consists of an ideal functionality with a simulator Score

(Fig. 15b). The proof of Theorem 2 can be found in the full version [23, Appendix
D]

Theorem 2 (Core). Let ks be a TLS-like key schedule with XPR. Let d be an
integer. Let Score be the efficient simulator defined in [23, Fig. 26b]. Then, for
all adversaries A which make queries for at most d resumption levels, we have
that

Adv(A, Gcore0, Gcore1(Score))

≤
∑

R∈{Rcr,RZ ,RD}
Adv(A → R, Gacrb)

+ max
i∈{0,1}

Adv(Ai → Rsodh, Gsodh
b)

+ Adv(Ai → Resalt,pi , Gpi
b
esalt)

+ Adv(Ai → RO∗,pi , Gpi
b
O∗)

+
d−1∑

�=0

(

Adv(Ai → Res,�, Gxtr
b
es,�)

+ Adv(Ai → Rhs,�, Gxtr
b
hs,�)

+ Adv(Ai → Ras, Gxtr
b
as,�)

+
∑

n∈XPR

(

Adv(Ai → Rn,�, Gxpd
b
n,�)

))

,
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where XPR is the required representation set (cf. Table 1), Fig. 15a defines
Gcore0 and Fig. 15b defines Gcore1(Score), [23, Fig. 31a] defines Rcr, [23,
Fig. 32a] defines Rsodh, [23, Fig. 34a] defines Res,�, Rhs,� and Ras,� are defined
analogously, and Rn,� for n ∈ XPR and 0 ≤ � ≤ d is defined in [23, Fig. 34b],
Resalt,pi is defined in [23, Fig. 32c] and RO∗,pi is defined in [23, Fig. 32d].

6 Related Work

The following discussion focuses on attacker capabilities and security guarantees,
and glosses over the exact encoding into security games and the use of multiple
keys and stages.

Dowling et al. [34–36] present a multi-stage security model of draft-05,
draft-10, and the final version of the standard. Their multi-stage model con-
siders psk ke, dh ke, and psk dhe ke modes in isolation. Li et al. [48] adapt the
multi-stage security model to also capture the recursive nature of the TLS 1.3
key schedule, by accounting for the re-use of resumption secrets between different
modes (psk ke, psk dhe ke, and the now removed semi-static share 0-RTT).

Cremers et al. [29,30] investigate the security of draft-10 and draft-21,
using the automated Tamarin prover (in the symbolic model). Their work inves-
tigates the proposed post-handshake client authentication and finds an attack
that exploited a missing binding between PSKs and transcripts that led to the
addition of binders to the standard. To our knowledge ours is the first reduction
proof that models the additional security afforded by binder values.

Bhargavan et al. [10] also model TLS 1.3, decomposed into 3 separate pieces:
dh ke 1-RTT handshake, the 0-RTT handshake, and the record protocol. They
verify these models using both ProVerif [18] and CryptoVerif [16]. A limitation
of their model is the informal way in which the separate guarantees for the three
components are combined to justify the overall security of the protocol.

Blanchet [17] introduces a new proof modularization framework in Cryp-
toVerif, which bears significant similarities with the state-separating proof frame-
work [24] that our work is based on. The work also updates some of the model
from draft-18 to draft-28; however, the model still assumes that all pre-
shared keys are derived from resumption secrets and does not capture adaptively-
created dishonest application PSKs, or the security of PSK binders.

Many other works focus on analysing certain properties of the TLS 1.3 hand-
shake protocol. For instance, Arfaou et al. [4] specifically analyse the privacy of
the TLS 1.3 psk ke, dh ke, and psk dhe ke handshakes. Fischlin et. al. [41]
analyse the draft-06 TLS 1.3 handshake, and show that its modes achieve key
confirmation in isolation. Fischlin et. al. [39] considers replay attacks against
various drafts of TLS 1.3 0-RTT handshakes such as draft-14’s psk ke mode,
similarly considering versions and modes in isolation. Other relevant papers on
TLS handshake analysis are [27,37,46].

The idea of analyzing a key schedule (rather than a key exchange protocol)
is conceptually similar to the SIGMA-I pattern of Krawczyk [44] and Krawczyk
and Wee [47]. These works prove a reduction from key exchange security to key
schedule security analogously to our companion paper [25].
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Recent work also looked at the tightness of TLS 1.3 security proofs [31,33].
Besides natural birthday bounds for collision resistance, our reductions avoid
the common quadratic loss in the number of sessions. We remark however, that
tightness was not the principal focus of our analysis.

Subsequent work to the present article [22] uses our methodology, e.g., our
recursive handle structure and the style of encoding security guarantees in Log
packages to analyse the key schedule security of the Messaging Layer Secu-
rity (MLS) protocol whose conclusions were integrated into the IETF standard,
e.g., [28]. In the present paper, in addition to key techniques which were picked
up by [22], we introduce a plethora of techniques to tackle indirect domain sepa-
ration by late hashing of Diffie-Hellman shares and binders such as the notion of
separation points and the Check component introduced in Sect. 4.3. In a similar
way, the additional mapping step (Lemma 2, 4 and 5) handle redundancy not
present in MLS. See Sect. 7 for simplifications of the TLS protocol which would
allow for a much simpler analysis than the one presented in this article.

7 Lessons Learned and Afterthoughts on the Key
Schedule

We now discuss changes to the key schedule that would improve its security and
simplify its analysis and may be of independent interest for other protocols.

Simplify SODH. The salted Diffie-Hellman computation extracts entropy from
the DH secret and mixes it with the PSK-derived salt (which is under adversarial
influence). A separate DH extraction, preferably hashing the (sorted) public
shares together with the secret, followed by a dual PRF, would enable a proof
based on the simpler and better understood Oracle Diffie-Hellman assumption.
The hashing of shares would also remove the need to map DH secrets (currently
computable from multiple pairs of shares), and would enable the use of a more
abstract functionality such as a CCA-secure KEM (as in TLS 1.2 [14]). These
changes would thus also ease the integration of post-quantum secure primitives.

Eliminate PSK Mapping. Similarly, directly applying domain-separation for
computations based on application and resumption PSKs via distinct labels
would remove the need to map PSKs and argue via inclusion of binders at
separation points indirectly. Both proposals follow the same design pattern: first
sanitize input key materials to prevent malleability (DH secrets) and collisions
(dishonest resumption PSKs and adversarially-chosen application PSKs).

Avoid Agile Assumptions. Our development supports multiple hash algo-
rithms without requiring any hash-agile assumptions, by observing that the hash
functions currently used by TLS 1.3 have pairwise-distinct digest lengths. This
is brittle, e.g. adding support for SHA3 with the same lengths as SHA2 would
require to formally account for cross-algorithm collisions. This may be prevented
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by tagging the outputs of all extractors and KDFs with hash algorithms. Simi-
larly, we may avoid the current need for agile (S)ODH assumptions by tagging
group elements with both a group descriptor and a single extraction algorithm.

Prevent PSK Reflections. Drucker and Gueron note that TLS 1.3 is subject
to reflection attacks due to its symmetric use of PSKs [37]. Hence, in our model,
the same PSK handle may either be used by two parties, as intended, or by
the same party acting both as a client and as a server. This is a security risk,
inasmuch as applications may embed identity information in PSK identifiers to
benefit from their early authentication. It may also enable key synchronization
attacks and other variants of key compromise impersonation [13] when identities
are also symmetrical. When using PSKs, the standard unfortunately forbids
certificate-based authentication, which would otherwise provide more detailed,
role-specific identity information. At the key schedule level, it may be possible
to enforce better separation by tagging PSK identifiers with roles.

Enforce Stronger Modularity. Applied cryptographers often complain that,
in TLS 1.2, the subtle interleaving of the handshake with the record layer hinders
its analysis based on the well-established Bellare-Rogaway [8] security model [43].
While TLS 1.3 tries to enforce cleaner separation between handshake and record
keys, it still fails in some important places. Notably, the handshake traffic secrets,
meant to be released to the record layer (be it TLS, DTLS, or QUIC) are also
used by the handshake to derive finished keys. Similarly, some handshake mes-
sages are encrypted under keys derived from application traffic secrets (e.g. New
Session Ticket, carrying resumption PSKs, late client authentication, and key
updates). This complicates the modeling of data stream security, as application
data may be interleaved with handshake messages (e.g. the same QUIC packet
may contain both data and session tickets). To prevent such issues, and many
others, we suggest the RFC documents more explicitly its application interface
and, in particular, recommends not to derive keys from keys released to the
record layer.
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Abstract. Achieving adaptive (or proactive) security in cryptographic
protocols is notoriously difficult due to the adversary’s power to dynam-
ically corrupt parties as the execution progresses. Inspired by the work
of Benhamouda et al. in TCC 2020, Gentry et al. in CRYPTO 2021
introduced the YOSO (You Only Speak Once) model for construct-
ing adaptively (or proactively) secure protocols in massively distributed
settings (e.g. blockchains). In this model, instead of having all par-
ties execute an entire protocol, smaller anonymous committees are ran-
domly chosen to execute each individual round of the protocol. After
playing their role, parties encrypt protocol messages towards the next
anonymous committee and erase their internal state before publishing
their ciphertexts. However, a big challenge remains in realizing YOSO
protocols: efficiently encrypting messages towards anonymous parties
selected at random without learning their identities, while proving the
encrypted messages are valid with respect to the protocol. In particular,
the protocols of Benhamouda et al. and of Gentry et al. require show-
ing ciphertexts contain valid shares of secret states. We propose con-
cretely efficient methods for encrypting a protocol’s secret state towards
a random anonymous committee. We start by proposing a very sim-
ple and efficient scheme for encrypting messages towards randomly and
anonymously selected parties. We then show constructions of publicly
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verifiable secret (re-)sharing (PVSS) schemes with concretely efficient
proofs of (re-)share validity that can be generically instantiated from
encryption schemes with certain linear homomorphic properties. In addi-
tion, we introduce a new PVSS with proof of sharing consisting of just
two field elements, which as far as we know is the first achieving this,
and may be of independent interest. Finally, we show that our PVSS
schemes can be efficiently realized from our encryption scheme.

1 Introduction

Cryptographic protocols traditionally rely on secure channels among parties
whose identities are publicly known. However, while knowing parties’ identities
makes it easy to construct secure channels, it also makes it easy for an adap-
tive (or mobile) adversary to corrupt parties as a protocol execution proceeds.
Recently, an elegant solution for this problem has been suggested [1,12]: instead
of keeping secret state throughout the execution, parties periodically transfer
their state to randomly selected anonymous parties, potentially after computing
on this state (as is the case of MPC).

YOSO Model: We say protocols with the aforementioned property are in the
YOSO (i.e. You Only Speak Once) model, since parties are only required to act
in a protocol execution when selected at random, which potentially only happens
once. The YOSO model is especially interesting in massively distributed settings
(e.g. blockchains), where a huge number of parties are potentially involved but
it is desirable to have only smaller committees execute a protocol for the sake of
efficiency. Using small committees saves computation and communication, and
since the identity of parties in the committee currently holding secret states is
not known, an adversary cannot do better than corrupt random parties. Recent
work [17] improves the work of [12] by achieving guaranteed output delivery in
a constant number of rounds without relying on trusted setup.

Role Assignment: At the core of protocols in the YOSO model is a scheme
for encrypting messages towards roles rather than parties. A party randomly
selected to perform a role can decrypt the messages sent to that role. This
allows for executing traditional secret sharing [1] or MPC [12] protocols among
roles that are performed by different parties as the execution proceeds. Besides
passing confidential messages among parties assigned to certain roles, it is also
paramount to allow parties to authenticate outgoing messages on behalf of the
role they have just performed. This task has been modeled [12] and realized [1,14]
as a functionality that outputs public keys for a random subset of anonymous
parties in such a way that these parties can both decrypt messages encrypted
under these keys and prove they were the rightful receivers. However, existing
methods for role assignment [1,5,14] are still based on powerful primitives (e.g.
FHE), incur too high costs and, most importantly, are incompatible with efficient
techniques for publicly proving that encrypted secret shares are valid.

In this work we design schemes for role assignment that are not only efficient
in sending messages to parties selected in the future but also amenable to the



Fast and Simple Encryption and Secret Sharing in the YOSO Model 653

currently best techniques for publicly proving that encrypted messages are valid
shares of a secret state, which is central to protocols in the YOSO model.

1.1 Related Works

Keeping Secrets: The seminal solution of [1] starts by selecting an auxiliary
committee via an anonymous lottery (e.g. based on a VRF). Each party in this
committee generates an ephemeral key pair and publishes the ephemeral public
key and an encryption of the ephemeral secret key under the long-term public key
of a party they choose at random. Encrypting towards an anonymous party can
be done by encrypting under its ephemeral public key. However, since corrupted
parties in the auxiliary committee will always choose other corrupted parties
while the honest parties choose at random, this method needs a corruption ratio
of 1/4 of the parties in order to arrive at an honest majority committee.

RPIR: The constraint on corruption ratio of [1] was subsequently solved in [14]
via random-index private information retrieval (RPIR). RPIR allows a client to
retrieve a random index from a database in such a way that the servers holding
the database do not learn what index was retrieved. The solution of [14] consists
in running a RPIR protocol with a database holding the public keys of all parties
and having parties in a committee execute the client using MPC, outputting
re-randomized versions of the public keys output by RPIR. While this solution
allows for working in an honest majority scenario and achieves better asymptotic
efficiency than [1], the concrete complexity is still quite high.

Encryption to the Future: A different approach is taken in [5], which con-
structs a primitive called Encryption to the Future (ETF). Instead of having
committees actively participate in selecting future committees and help them
receive their messages, ETF allows for non-interactively encrypting towards
the winner of a lottery that is executed as part of an underlying blockchain
ledger. Also, it allows for a party to prove it was the winner of this lottery (i.e.
the receiver of a ciphertext) without exposing whether it won future lotteries.
Although this solution can be constructed from simple tools like garbled cir-
cuits and oblivious transfer (after a setup phase), each encryption still requires
communication and computational complexities linear in the total number of
parties.

The ETF construction of [5] relies on a relaxation of Witness Encryption
called Witness Encryption over Commitments (cWE), where one can encrypt a
message towards the holder of an opening of a commitment to a valid witness
of an NP relation. More specifically, we are interested in the case of Encryption
to the Current Winner (ECW), where the data needed to determine the party
selected to perform a role is already in the underlying blockchain (but still does
not reveal who the party is). In order to realize ECW, each party commits to
a witness of a predicate showing they win a lottery for the current parameter.
A party encrypting towards a role simply encrypts the message towards the
party who has such a committed witness to winning the lottery for a current
parameter. A party who wins can decrypt the message encrypted towards the
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role using their witness. They can perform Authentication from the Past (AfP)
on a message by doing a signature of knowledge on that message using their
lottery winning witness.

The ETF constructions of [5] suffer from a major drawback: every encryption
towards an anonymously selected party has communication complexity O(nκ)
where n is the total number of parties and κ is the security parameter. Even if
preprocessing is allowed, these constructions still require the sender to publish n
cWE ciphertexts or to have the eligible receivers perform a round of anonymous
broadcast that is only usable for a single encryption. On the other hand, the
AfP constructions only have O(κ) communication complexity.

PVSS Compatibility: A drawback in current role assignment [1,5,14] is that
they are not amenable to publicly verifiable secret (re)sharing. Both in YOSO
proactive secret sharing [1] and YOSO MPC [12], the committees executing each
round of the protocol do not simply send unstructured messages but shares of a
secret that must be verified. While this can be done via generic non-interactive
zero knowledge proofs of encrypted shares validity, such a solution incurs very
high computational and communication costs.

Publicly Verifiable Secret Sharing (PVSS): An integral part of YOSO
protocols is having each committee perform PVSS towards the next committee.
A PVSS scheme allows for any party to check that an encrypted share vector is
valid. A number of PVSS constructions are known [2,11,16,20–22] that different
techniques for proving that a vector of encrypted shares are valid shares of a
given secret. Recently, the SCRAPE [6] and ALBATROSS [7] PVSS schemes
have significantly improved on the complexity of such schemes by making the
share validity check and reconstructions procedures cheaper than previous works.
While these works are based on number theoretical assumptions, a recent work
has shown how to efficiently build PVSS from lattice based assumptions [13].
These works are not fit for the YOSO model because they require the parties
to know the identities (or rather the public keys) of the parties receiving the
shares when checking share validity, precluding (re)sharing towards anonymous
parties. A key part of this work is that we explore the fact that the share validity
check of SCRAPE can be modified to work regardless of the public keys used to
encrypt the shares.

1.2 Our Contributions

In this work we address the issue of constructing simple ECW schemes amenable
to efficient publicly verifiable secret (re)sharing (PVSS) protocols. Our contri-
butions are summarized as follows:

Simple Encryption to Future (ECW): We construct a simple ECW scheme
based on a mixnet and an additively homomorphic public key encryption
scheme. Our scheme requires a setup phase where a mixnet is used but
this setup can be either done once and reused for multiple times (using our
reusable AFP) or preprocessed so that future encryptions can be done non-
interactively. Our ECW ciphertexts have size linear only in the number of
parties who open them.
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Reusable Private Authentication from the Past (AFP): We show how
to reuse our ECW setup even when a party performs multiple rounds of
AFP, i.e. proving that it was selected to decrypt a given ECW ciphertext.
This scheme guarantees that the adversary cannot predict which parties can
decrypt future ECW ciphertexts while keeping the setup constant size.

Generic Efficient PVSS: We construct a generic PVSS protocol with efficient
proofs of encrypted shares validity from any IND-CPA additively homomor-
phic encryption scheme with an efficient proof of decryption correctness with-
out any generic zero knowledge proofs, which we call HEPVSS. This general
result sheds new light on the construction on efficient PVSS schemes.

New PVSS with Minimal Overhead: Moreover, we introduce a new PVSS
construction named DHPVSS with constant-size proof of sharing correctness
which, as far as we know, is the first PVSS to achieve this. More precisely, the
PVSS communicates only the n encrypted shares (which are one group ele-
ment each) and two field elements for the proof. This may be of independent
interest for other applications, such as randomness beacons.

Efficient PVSS for Anonymous Committees based on ECW: We instan-
tiate our PVSS constructions based on our ECW and AFP schemes along
with a protocol for resharing a secret towards a future random anonymous
committee. This allows for parties to keep a secret alive, which is a core
component of YOSO MPC.

1.3 Our Techniques

In this section we highlight the main technical components of our contributions.
We remark that our main goal is providing simple constructions that yield effi-
cient instantiations of PVSS towards anonymous committees along with efficient
AfP schemes allowing parties to prove they received shares sent to a given role.

Encryption to the Future. We introduce a simple ECW protocol where each
party chooses a key pair in the system and then a mixnet is used to anonymize
them. We can then define a simple lottery predicate that selects one of these keys.
The winner of the lottery can trivially know that they have won this lottery. By
combining this with an IND-CPA encryption scheme that encrypts a message
under that key, we can obtain IND-CPA ECW. Using a homomorphic encryption
scheme we can also encrypt to multiple lottery winners and prove that the same
message is received by all of them.

Authentication from the Past

The Easy Way: An easy way of obtaining reusable ECW setup is to repeat the
lottery setup and obtain multiple anonymized keys for each party. Then, any
party can use a new anonymized public key for each AFP tag. This ensures
that the AFP scheme can be executed a bounded number times before lottery
winners can be linked to specific public keys in the setup and ciphertexts starts
betraying their receivers.
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The Reusable Way: In the full version of this paper [8], we show that a party can
prove membership in a given committee without needing to reveal its role in this
committee. This is done by signing a message with a ring signature [19] where the
secret key corresponds to a public key in the committee. These signatures hide
the identity of the party. Moreover, we require the signature to be linkable [18], so
that no two parties can claim the same secret key. Using this and an anonymous
channel, we can construct an AfP that can be used multiple times without linking
a party Pi to its setup public key. More interestingly, we also present a protocol
that leverages the presence of a dealer (which could be a party that encrypted the
message to that committee) to reduce the size of these proofs of membership to
constant (for the parties making the claims). This uses Camenisch-Lysyanskaya
signatures [4], where the dealer signs the public keys of the committee, and the
parties can then “complete” one of these signatures without revealing which one.
We introduce a simple linkable version of these signatures.

PVSS. We introduce two constructions for PVSS. The first, HEPVSS, is based
on a generic encryption scheme which enjoys certain linearity properties with
respect to encryption and decryption, and has the advantage that the security
of the PVSS can be based on IND-CPA security of the scheme. The homo-
morphic properties of the scheme allow for simple proofs of sharing correctness
and reconstruction. While we are only aware of El Gamal scheme satisfying the
notion of the homomorphic properties we need, we hope that a relaxed version of
this abstraction allows to capture other encryption schemes with homomorphic
properties such as latticed-based assumptions or Paillier in future work. In our
second scheme DHPVSS, we introduce the idea of providing the dealer with an
additional key pair for share distribution. This idea is powerful in combination
with a technique used in SCRAPE to prove that encrypted shares lie on a poly-
nomial of the right degree. The novelty is that, while in SCRAPE this needed
an additional discrete logarithm equality (DLEQ) proof for each share, our new
scheme requires a single DLEQ proof. This reduces the sharing correctness proof
to only two Zp-elements while each encrypted shares is still one group element.

We also introduce PVSS resharing protocols for both constructions, where
a committee, among which a secret is PVSSed, can create shares of the same
secret for the next committee, in a publicly verifiable way.

PVSS Towards Anonymous Committees. Finally, we show that we can
replace standard encryption and authentication in our PVSS protocols by ECW
and AFP and thereby obtain PVSS toward anonymous committees.

2 Preliminaries

2.1 Sigma-Protocols

At several points of this paper we will require non-interactive zero knowledge
arguments of knowledge, where most of our statements are instances of a general
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structure where we want to prove knowledge of preimage of some element via
a vector-space homomorphism f : that is, let F be a finite field, W and X be
F-vector spaces, and f : W → X be a vector space homomorphism. Let

RPre = {(w, x) ∈ W × X : x = f(w)}.

The standard (Schnorr-like) Σ-protocol ΠPre for RPre is in Fig. 1. It is easy
to see it is a zero knowledge proof of knowledge with soundness error 1/|F|.

Generic Σ-protocol ΠPre(w; x, f)

Proof of knowledge of witness w for x with respect to the relation RPre = {(w, x) ∈
W × X : x = f(w)}.
Public parameters: Finite field F, vector spaces W, X over F, vector space ho-
momorphism f : W → X , x ∈ X .
Protocol:
1. The prover samples r ←$ W, sends a = f(r) to the verifier.
2. The verifier samples e ←$F, sends it to the sender.
3. The prover sends z ← r + e · w to the verifier.
4. The verifier accepts if z ∈ W and f(z) = a + e · x.

Fig. 1. Generic Σ-protocol for knowledge of homomorphism-preimage

A non-interactive zero-knowledge (NIZK) proof of knowledge in the random
oracle model is obtained by applying the Fiat-Shamir transform (Fig. 2).

Generic non-interactive argument of knowledge ΠNI−Pre(w; x, f)

Non-interactive argument of knowledge of witness for x for the relation RPre =
{(w, x) ∈ W × X : x = f(w)} in the random oracle model.
Public parameters: Finite field F, vector spaces W, X over F, vector space
homomorphism f : W → X , x ∈ X , random oracle H : {0, 1}∗ → F. Let
pp = (F, W, X , H).
ΠNI−Pre.Prove(w; pp, x, f):

r ←$ W, a ← f(r), e ← H(x, a), z ← r + e · w, return π ← (e, z)

ΠNI−Pre.Verify(pp, x, f, π):

Parse π = (e, z) and return accept if and only if z ∈ W and e = H(x, f(z)−e·x).

Fig. 2. Generic non-interactive argument of knowledge of homomorphism-preimage

Cyclic Group Homomorphism Preimage, DL Knowledge and DLEQ
Knowledge Proofs. Some useful examples of homomorphism-preimage rela-
tions RPre are given by discrete logarithm and discrete logarithm equality. Indeed,
a cyclic group G of prime order p has a vector space structure over the field Zp,
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and a group homomorphism f : G → G
′ between groups of order p is also a

Zp-vector homomorphism.1 Let G be a generator of G. Given X ∈ G, a discrete
logarithm DL proof of knowledge DL(w;G,X) asserts knowledge of w ∈ Zp with
X = w · G (we denote this as w = DLG(X)). In the language above this is
provided by ΠNI−Pre(w; (X), fG) with fG(w) = w ·G. This is the non-interactive
version of the well known Schnorr proof.

Similarly, let G, H be elements in G. Given X,Y ∈ G the discrete loga-
rithm equality proof DLEQ(w;G,X,H, Y ) is a non-interactive proof of knowl-
edge of w ∈ Zp with w = DLG(X) = DLH(Y ), which can be obtained by using
ΠNI−Pre(w; (X,Y ), f(G,H)), where fG,H(w) := (w · G,w · H).

2.2 Zp-linear Homomorphic Encryption

The results in this paper require encryption schemes with certain homomorphic
properties, that allow for simple proofs of plaintext knowledge. These properties
are attained by El Gamal encryption scheme.

Definition 1 (Zp-linearly homomorphic encryption scheme). Let E =
(E .Gen, E .Enc, E .Dec) be a public key encryption scheme, and let p be a prime
number. We say E is Zp-linearly homomorphic (Zp-LHE) if the plaintext space
(P,�P), randomness space (R,�R), ciphertext space (C,�C) each have a Zp-
vector space structure and for all public keys pk output by E .Gen, E .Encpk : P ×
R → C is a Zp-vector space homomorphism, i.e. for all m1,m2 ∈ C, ρ1, ρ2 ∈ R,

E .Encpk(m1; ρ1) �C E .Encpk(m2; ρ2) = E .Encpk(m1 �P m2; ρ1 �R ρ2).

Remark 1. Zp-linear homomorphic encryption schemes have simple NIZK of
plaintext (and randomness) knowledge, implied by Fig. 2 by taking W = P×R,
X = C and the proof ΠNI−Pre((m, ρ); c, E .Encpk) for the relation REnc =
{((m, ρ), c) ∈ W × X : c = E .Encpk(m; ρ)}.

Proofs of Decryption Correctness. We also need proofs of decryption cor-
rectness which keep the secret key hidden, i.e. NIZK proofs for the relation

RE,Dec = {(sk; (pk, m, c)) : (pk, sk) is a valid key-pair for E and m = E .Decsk(c)}.

If the prover knows the randomness under which the message was encrypted,
the proving algorithm E .ProveDec(sk; (pk,m, c)) can simply output that random-
ness π ∈ R; the verification E .VerifyDec(pk,m, c, π) accepts if Encpk(m;π) = c.

Unfortunately El Gamal encryption scheme does not allow a decryptor to
retrieve the randomness under which a message has been encrypted. Instead,
a proof of correctness of decryption for El Gamal can be constructed from the
following property of this scheme, which we call Zp-linear decryption.

1 This extends to direct products of groups of order p, i.e. W = G1 × · · · × Gm,
X = G

′
1 × · · · × G

′
n and f = (f1, . . . , fm) : W → X where fi : Gi → X are all group

homomorphisms.
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Definition 2. Let E = (Gen,Enc,Dec) be a Zp-linearly homomorphic encryption
scheme and denote PK and SK the sets of public and secret keys respectively. E
has Zp-linear decryption if:

– PK and SK are Zp-vector spaces.
– There exists a Zp-linear homomorphism F : SK → PK such that pk = F (sk)

for all (pk, sk) outputted by Gen.
– For all c ∈ C, the function Dc(sk) := Decsk(c) is Zp-linear in sk, i.e. for all

sk1, sk2 ∈ SK, it holds that Dc(sk1 �SK sk2) = Dc(sk1) �P Dc(sk2).

In this case we have the algorithms (E .ProveDec, E .VerifyDec) that constitute
a NIZK proof for RE,Dec :

Algorithm 1. E .ProveDec(sk, (pk, m, c))

W ← SK, X ← PK × P × C,
pp ← (Zp, W, X , H)
w ← sk, x ← (pk, m), f(·) ← (F (·), Dc(·))
return π ← ΠNI−Pre.Prove(w; pp, x, f)

Algorithm 2. E .VerifyDec(pk, m, c, π)

W ← SK, X ← PK × P × C

pp ← (Zp, W, X , H)
x ← (pk, m), f(·) ← (F (·), Dc(·))
return ΠNI−Pre.Verify(pp, x, f)

The El Gamal decryption function as usually described is not linear but
affine, but we can easily fix this by e.g. defining sk∗ = (sk∗

1, sk
∗
2) = (1, sk) ∈ Z

2
p

and letting Decsk∗(C1, C2) := C2 · sk∗
1 − C1 · sk∗

2. Then DC(sk∗) is clearly a
Zp-linear function.

2.3 Shamir Secret Sharing on Groups of Order p

The well known degree-t Shamir scheme allows to split a secret s ∈ Zp in n
shares (where 0 ≤ t < n < p) in such a way that any set of t + 1 shares give full
information about the secret s while any set of t give no information on s.

Here we will consider situations where the secret is an element S = sG of
a group G of order p with generator G, but the dealer does not know s (and
hence cannot apply the usual Shamir sharing using s as secret). On the other
hand, it is enough that the shares allow to reconstruct S and not s. We define
Shamir secret sharing in a group of order p as shown in Fig. 3. (Shamir secret
sharing scheme over Zp is retrieved by setting G = (Zp,+), G = 1). We denote
by Zp[X]≤t the set of polynomials in Zp[X] of degree at most t.

2.4 The SCRAPE Test

In SCRAPE [6], a technique for checking correctness of Shamir sharing in pub-
licly verifiable secret sharing was introduced. Letting aside the details on how
the technique works there, we are interested in the following fact, which in turn
comes from well known results in coding theory2.
2 Specifically from the fact that the dual of a Reed-Solomon code is a generalized

Reed-Solomon code of a certain form.



660 I. Cascudo et al.

Shamir secret sharing on a group G of order p

Public parameters: Let pp = (G, G, p, t, n, {αi : i ∈ [0, n]}), where G is a group of
prime order p with generator G, 0 ≤ t < n < p are integers, and α0, α1, . . . , αn ∈ Zp

are pairwise distinct.
GShamir.Share(pp, S), where pp as above, and S ∈ G:

m(X) ←$ {m(X) ∈ Zp[X]≤t : m(α0) = 0}
for i ∈ [n], Ai ← S + m(αi) · G
return (A1, . . . , An)

GShamir.Rec(pp, I, (Ai)i∈I), where I ⊆ [n], |I| = t + 1 and (Ai)i∈I ∈ G
t+1:

return S′ ←
∑

i∈I λi,IAi, where, for i ∈ I, λi,I :=
∏

j∈I,j �=i

α0−αj

αi−αj

Fig. 3. Shamir sharing on a group of order p

Theorem 1 (SCRAPE dual-code test). Let 1 ≤ t < n be integers. Let p be
a prime number with p ≥ n. Let α1, . . . , αn be pairwise different points in Zp.
Define the coefficients vi =

∏
j∈[n]\{i}(αi − αj)−1. Let

C = {(m(α1), . . . , m(αn)) : m(X) ∈ Zp[X]≤t}.

Then for every vector (σ1, . . . , σn) in Z
n
p ,

(σ1, . . . , σn) ∈ C ⇔
n∑

i=1

vi · m∗(αi) · σi = 0, ∀m∗ ∈ Zp[X]≤n−t−2.

2.5 Mix Networks (Mixnets)

In this paper we use a mixnet to anonymize a set of public encryption keys,
each generated (with their corresponding secret keys) by a party in the system.
Let P be the set of all parties generating these keys. In the coming sections we
will assume such a mixnet and that the output is subsequently be written to
a blockchain. The output is a set of shuffled keys pkAnon,j : j ∈ [n], for which
each party knows the index that corresponds to their public key, but nothing
else about the permutation. Denote this permutation ψ : P → [n], i.e. party IDi

knows j = ψ(i) and the corresponding key-pair.
We will use the fact that a party can encrypt a message under the public key

pkAnon,j . It is clear that party IDψ−1(j) can decrypt the message, while the rest of
the parties (even the sender) remain oblivious about the identity of the receiver.
Notice that this setup can be instantiated via a verifiable mixnet (e.g. [3]).

2.6 Encryption to the Future

We use the model for Encryption to the Future (EtF) from [5], which defines
this primitive with respect to a blockchain ledger that has an built-in lottery
mechanism. Before presenting the definition of EtF and related concepts, we
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recall the model for blockchain ledgers from [15], which is used to state the
definitions of [5] and that captures properties of natural Proof-of-Stake (PoS)
based protocols such as [10]. We present a summary of the framework in the full
version of the paper [8] and discuss below the main properties we will use in the
EtF definitions.

Blockchain Structure. A genesis block B0 = (Sig.pk1, aux1, stake1), . . . ,
Sig.pkn, auxn, staken), aux associates each party Pi to a signature scheme public
key Sig.pki, an amount of stake stakei and auxiliary information auxi (i.e. any
other relevant information required by the blockchain protocol). As in [10], we
assume that the genesis block is generated by an initialization functionality FINIT

that registers all parties’ Sig.pki, auxi when the execution starts and assigns stakei

for Pi. Within the execution model of [15], FINIT is executed by the environment
(as defined in the full version of the paper [8]). A blockchain B relative to a
genesis block B0 is a sequence of blocks B1, . . . , Bn associated with a strictly
increasing sequence of slots sl1, . . . , slm such that Bi = (slj ,H(Bi−1), d, aux),
where slj indicates the time slot that Bi occupies, H(Bi−1) is a collision resistant
hash of the previous block, d is data and aux is auxiliary information required
by the blockchain protocol (e.g. a proof that the block is valid for slot slj). We
denote by B�� the chain (sequence of blocks) B where the last 
 blocks have
been removed and if 
 ≥ |B| then B�� = ε. Also, if B1 is a prefix of B2 we write
B1 � B2. For the sake of simplicity, we identify each party Pi participating in
the protocol by its public key Sig.pki.

Evolving Blockchains. In an EtF scheme, the future is defined with respect
to a future state of the underlying blockchain. In particular, we want to make
sure that the initial chain B has “correctly” evolved into the final chain B̃.
Otherwise, the adversary can easily simulate a blockchain where it wins a
future lottery and finds itself with the ability to decrypt. Fortunately, the Dis-
tinguishable Forking property from [15] allows us to distinguish a sufficiently
long chain in an honest execution from a fork generated by the adversary
by looking at the combined amount of stake proven in such a sequence of
blocks. This property is used to construct a predicate called evolved(·, ·). First,
let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with
validity predicate V and where the (α, β, 
1, 
2)-distinguishable forking property
holds. And let B ← GetRecords(1λ, st) and B̃ ← GetRecords(1λ, s̃t).

Definition 3 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}.

It outputs 1 if and only if B = B̃ or the following holds (i) V (B) = V (B̃) = 1;
(ii) B and B̃ are consistent i.e. B�κ � B̃ where κ is the common pre-
fix parameter; (iii) Let 
′ = |B̃| − |B| then it holds that 
′ ≥ 
1 + 
2 and
u-stakefrac(B̃, 
′ − 
1) > β.
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Blockchain Lotteries. The vast majority of PoS-based blockchain protocols
has an inbuilt lottery scheme for selecting parties to generate blocks. In this
lottery any party can win the right to generate a block for a certain slot with a
probability proportional to its relative stake in the system. In the model from [5],
a party can decrypt an EtF ciphertext if it wins this lottery. It can be useful to
conduct multiple independent lotteries for the same slot sl, which is associated to
a set of roles P1, . . . ,Pn. Depending on the lottery mechanism, each pair (sl,Pi)
may yield zero, one or multiple winners. A party with access to the blockchain
can locally determine whether it is the lottery winner for a given role by executing
a procedure using its lottery witness skL,i related to (Sig.pki, auxi, stakei), which
may also give the party a proof of winning for others to verify. The definition
below from [5] details what it means for a party to win a lottery.

Definition 4 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role P and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
lottery for the role P in slot sl with respect to the blockchain B.

Formally, we write lottery(B, sl,P, skL,i) ∈ {0, 1}.
It is natural to establish the set of lottery winning keys WB,sl,P for parameters
(B, sl,P). This is the set of eligible keys satisfying the lottery predicate.

Modelling EtF. We are now ready to present the model of [5] for encryption to
the future winner of a lottery (i.e. EtF). The blocks of an underlying blockchain
ledger and their relative positions in the chain are used to specify points in time.
Intuitively, this notion allows for creating ciphertexts that can only be decrypted
by a party that is selected to perform a certain role R at a future slot sl according
to a lottery scheme associated with a blockchain protocol (i.e. a party that has
a lottery secret key skL,i such that lottery(B̃, sl,P, skL,i) = 1).

Definition 5 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the context of a blockchain ΓV is an EtF-scheme with evolved
predicate evolved and a lottery predicate lottery. The algorithms work as follows

Encryption. ct ← Enc(B, sl,P,m) takes as input an initial blockchain B, a slot
sl, a role P and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a
ciphertext ct and a secret key sk and outputs the original message m or ⊥.

Correctness. An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function μ such that
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Security. Security is defined with a game GameIND-CPA
Γ,A,Z,E described in Algorithm 3,

where a challenger C and an adversary A execute an underlying blockchain
protocol with an environment Z as described in the full version of the paper
[8]. In this game, A chooses a blockchain B, a role P for the slot sl and two
messages m0 and m1 and sends it all to C, who chooses a random bit b and
encrypts the message mb with the parameters it received and sends ct to A. A
continues to execute the blockchain until an evolved blockchain B̃ is obtained
and outputs a bit b′. If the adversary is a lottery winner for the challenge role
P in slot sl, the game outputs a random bit. If the adversary is not a lottery
winner for the challenge role P in slot sl, the game outputs b⊕ b′. The reason for
outputting a random guess in the game when the challenge role is corrupted is
as follows. Normally the output of the IND-CPA game is b ⊕ b′ and we require
it to be 1 with probability 1/2. This models that the guess b′ is independent
of b. This, of course, cannot be the case when the challenge role is corrupted.
We therefore output a random guess in these cases. After this, any bias of the
output away from 1/2 still comes from b′ being dependent on b.

Algorithm 3. GameIND-CPA
Γ,A,Z,E

viewr ← EXECΓ
r (A, Z, 1λ) � A executes Γ with Z until round r

(B, sl,P, m0, m1) ← A(viewr
A) � A outputs challenge parameters

b ←$ {0, 1}
ct ← Enc(B, sl,P, mb)
st ← A(viewr

A, ct) � A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(A, Z, 1λ) � Execute from viewr until round r̃

(B̃, b′) ← A(viewr̃
A, st)

if evolved(B, B̃) = 1 then � B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,sl,P then � A does not win role P
return b ⊕ b′

end if
end if
return b̂ ←$ {0, 1}

Definition 6 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said
to be IND-CPA secure if, for any A and Z, there exists a negligible function μ
such that for λ ∈ N:

∣
∣
∣2 · Pr

[
GameIND-CPA

Γ,A,Z,E = 1
]

− 1
∣
∣
∣ ≤ μ(λ).

ECW as a Special Case of EtF. In this work, we focus on a special class of
EtF called ECW where the underlying lottery is always conducted with respect
to the current blockchain state. This has the following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role P in slot sl is already defined in B.
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Notice that in ECW there is no need for checking if the blockchain has ‘cor-
rectly’ evolved and all lottery parameters (e.g. stake distribution and randomness
extracted from the blockchain) are static. Hence, when constructing an ECW
scheme, the lottery winner is already decided at encryption time. While an ECW
is simpler to realize than a more general EtF, it is shown in [5] that ECW can
be used to instantiate YOSO MPC and then be transformed into EtF given an
identity based encryption scheme.

Authentication from the Past (AfP). When the winner of a role S sends a
message m to a future role R then it is typically also needed that R can be sure
that the message m came from a party P which, indeed, won the role S. This
concept is formalized as an AfP scheme as follows.

Definition 7 (Authentication from the Past). A pair of PPT algorithms
U = (Sign,Ver) is a scheme for authenticating messages as a winner of a lottery
in the past in the context of blockchain Γ with lottery predicate lottery such that:

Authenticate. σ ← AfP.Sign(B, sl,S, sk,m) Takes As Input A Blockchain B, a
slot sl, a role S and a message m. It outputs a signature σ that authenticates
the message m.

Verify. {0, 1} ← AfP.Ver(B̃, sl,S, σ,m) uses the blockchain B̃ to ensure that σ
is a signature on m produced by the secret key winning the lottery for slot sl
and role S.

Furthermore, an AfP-scheme has the following properties:

Correctness.
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

view ← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)
B̃ = GetRecords(viewj)

σ ← AfP.Sign(B, sl,S, sk,m)
lottery(B, sl,S, sk) = 1
lottery(B̃, sl,S, sk) = 1

: AfP.Ver(B̃, sl,S, σ,m) = 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ μ(λ)

In other words, an AfP on a message from an honest party with a view of
the blockchain B can attest to the fact that the sender won the role S in slot
sl. If another party, with blockchain B̃ agrees, then the verification algorithm
will output 1.

Security. The EUF-CMA game detailed in 4 is used to define the security of
an AfP scheme. In this game, the adversary has access to a signing oracle
OAfP which it can query with a slot sl, a role S and a message mi, obtain-
ing AfP signatures σi = AfP.Sign(B, sl,S, skj ,mi) where skj ∈ WB,sl,S i.e.
lottery(B, sl,S, skj) = 1. The oracle maintains the list of queries QAfP. For-
mally, an AfP-scheme U is said to be EUF-CMA secure in the context of a
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blockchain protocol Γ executed by PPT machines A and Z if there exists a
negligible function μ such that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]

≤ μ(λ)

Algorithm 4. GameEUF-CMA
Γ,A,Z,U

view ← EXECΓ (A, Z, 1λ) � A executes Γ with Z
(B, sl, S, m′, σ′) ← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skA

L,j ∈ WB,sl,S) then � AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ

(viewr,r̃)(A, Z, 1λ) � Execute from viewr until round r̃

B̃ ← GetRecords(viewr̃
i )

if evolved(B, B̃) = 1 then
if Ver(B, sl, S, σ′, m′) = 1 then � A successfully forged an AfP

return 1
end if

end if
return 0

AfP Privacy. The specific privacy property we seek is that an adversary,
observing AfP tags from honest parties, cannot use this information to enhance
its chances in predicting the winners of lotteries for roles for which an AfP tag
has not been published.

Definition 8 (AfP Privacy). An AfP scheme U with corresponding lottery
predicate lottery is private if a PPT adversary is unable to distinguish between the
scenarios defined in 5 and 6 with more than negligible probability in the security
parameter.

Scenario 0 (b = 0) In this scenario (5) the adversary is first running the
blockchain Γ together with the environment Z. At round r the adversary is
allowed to interact with the oracle OAfP as described in 7. The adversary then
continues the execution until round r̃ where it outputs a bit b′.

Scenario 1 (b = 1) This scenario (6) is identical to scenario 0 but instead of
interacting with OAfP, the adversary interacts with a simulator S.

Algorithm 5. b = 0

viewr ← EXECΓ
r (A, Z, 1λ)

AOAfP(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A, Z, 1λ)

return b′ ← AOAfP(viewr̃
A)

Algorithm 6. b = 1

viewr ← EXECΓ
r (A, Z, 1λ)

AS(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A, Z, 1λ)

return b′ ← AS(viewr̃
A)
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We let GameID-PRIV
Γ,A,Z,U,E denote the game where a coinflip decides whether the

adversary is executed in scenario 0 or scenario 1. We say that the adversary
wins the game (i.e. GameID-PRIV

Γ,A,Z,U,E = 1) iff b′ = b. Finally, an AfP scheme U is
called private in the context of the blockchain Γ and underlying lottery predicate
lottery if the following holds for a negligible function μ.

Pr
[
GameID-PRIV

Γ,A,Z,U,E = 1
]

≤ 1/2 + μ(λ)

3 ECW Based on Zp-Linearly Homomorphic Encryption

This section presents an ECW protocol based on a Zp-linearly homomorphic
encryption scheme described in Sect. 2.2 and a mixnet (Sect. 2.5). Together with
the ECW, we introduce an AfP scheme - a mechanism that allows a committee
member to authenticate messages. The two schemes will be the backbone of the
anonymous PVSS presented in Sect. 6. Before presenting the actual ECW and
AfP protocols, we introduce the underlying lottery predicate that will be the
cornerstone in our two schemes.

3.1 Lottery Predicate

We assume a running blockchain (we give a precise description in the full version)
and a function param that has access to the blockchain state. During the setup,
each party samples an encryption key pair (skE,i, pkE,i) and inputs pkE,i to the
mixnet (Sect. 2.5). The output of the mixnet is a tuple {(j, pkAnon,j) : j ∈ [n]}
which is written on the blockchain and accessible to every party through param
function. The function param takes as input the blockchain B and the slot sl
and outputs a tuple ({(j, pkAnon,j)}j∈[n], η) ← param(B, sl). Here, (j, pkAnon,j) is
equal to (ψ(i), pkE,i) for the permutation ψ defined by the mixnet. Finally, η is
the public randomness from the blockchain corresponding to B and sl. Not, that
only the owner of skE,i knows j such that pkAnon,j = pkE,i. Let H : {0, 1}∗ → [n]
be a hash function that outputs a number that points to a specific index in the
list of public keys. The lottery predicate lottery is detailed below.

Algorithm 7. lottery(B, sl,P, skL,i)

({(j, pkAnon,j)}j∈[n], η) ← param(B, sl)
(pkE,i, skE,i) ← skL,i

k ← H(sl||P||η)
return 1 iff pkE,i = pkAnon,k

It is easy to see that the lottery described above associates a single party
(from the set of eligible parties) with the role P. Furthermore, the party can
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locally check if it won the lottery by checking that the output of the hash function
points to its own public key in the permuted set. Crucially, the party winning
the lottery can stay covert since no other party can link the winning lottery key
to the owner of the corresponding secret key. These properties will be useful
when we want to encrypt shares towards an anonymous committee.

3.2 ECW Protocol

This section introduces a ECW protocol (Fig. 4) based on the lottery predicate
presented in Sect. 3.1. We note that ECW is just a restricted version of EtF
where the lottery is conducted wrt. the current blockchain B and slot sl. Thus,
all definitions in Sect. 2.6 applies to ECW schemes too.

ECW Protocol

Public parameters: A prime p, a Zp-linearly homomorphic encryption scheme
E = (E .Gen, E .Enc, E .Dec) with notation as in Section 2.2 and a lottery as described
in Section 3.1.
Set-up:
1. Every party runs E .Gen() obtaining a key pair (skE,i, pkE,i).
2. Each party inputs pkE,i to the mixnet. The output of the mixnet is a tuple

{(j, pkAnon,j) : j ∈ [n]} which is written on the blockchain and accessible to
every party when using the param function.

Encryption protocol: Input (B, sl,P) and m ∈ P.
1. Run param(B, sl) and obtain ({(l, pkAnon,l)}l∈[n], η).
2. Obtain random index by k ← H(sl||P||η).
3. Choose ρ in R and set c = E .EncpkAnon,k

(m, ρ).
4. Sender outputs c.

Decryption protocol: Input for party i is B, skL,i and c.
1. Checks that lottery(B, sl,P, skL,i) = 1.
2. Outputs m = E .DecskAnon,i(c).

Fig. 4. ECW protocol

Theorem 2 (IND-CPA ECW). Let E be an IND-CPA secure Zp-linearly
homomorphic encryption scheme. The construction in Fig. 4 with lottery predi-
cate as in Sect. 3.1 is an IND-CPA secure ECW (as in Definition 6).

(See proof sketch in full version [8])

3.3 AfP Protocol

In this section we present our AfP protocol. It is described in Fig. 5 and is based
on a Signature of Knowledge (SoK) [9]. A SoK scheme is a pair of algorithms
(SoK.sign,SoK.verify) and is defined in context of a relation R. We consider
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statements of the form x = (B, sl,P) and witnesses w = sk. We say that R(x =
(B, sl,P), w = sk) = 1 iff lottery(B, sl,P, sk) = 1. A signature is produced by
running σ ← SoK.sign(x,w,m). And it can be verified by checking that the
output of SoK.verify(x, σ,m) is 1. Our AfP uses the SoK to sign m under the
knowledge of skL,i such that lottery(B, sl,P, skL,i) = 1. This will exactly attest
that the message m was sent by the winner of the lottery for P. An instantiation
of this AfP protocol could use DL proofs (Sect. 2.1).

AfP Protocol

Public parameters and Set-up as described in Figure 4 plus additional setup for
the SoK scheme SoK = (SoK.sign, SoK.verify).
Authentication protocol: Input for party i is (B, sl,P) and m ∈ P.
1. Checks that lottery(B, sl,P, skL,i) = 1.
2. Constructs an SoK on the message m of knowledge of skL,i such that

lottery(B, sl,P, skL,i) = 1 resulting in σ ← SoK.sign((B, sl,P), skL,i).
3. Sender outputs σ ← σSoK.

Verification protocol: Input is (B, sl,P, σ, m)
1. Parses σ as the SoK signature σSoK.
2. Verifies that σSoK is a valid SoK on the message m proving knowledge of skL,i.

I.e. it runs b ← SoK.verify((B, sl,P), σSoK, m).
3. Verifier outputs b.

Fig. 5. AfP protocol

Theorem 3 (EUF-CMA AfP). Let E be an IND-CPA secure and Zp-linearly
homomorphic encryption scheme and let SoK be a simulatable and extractable
SoK scheme. The construction in Fig. 5 with lottery predicate as in Sect. 3.1 is
EUF-CMA AfP as defined in Definition 7.

(See proof sketch in full version [8])

AfP Privacy. The privacy property of an AfP scheme says that no adversary
can distinguish between interacting with an AfP oracle OAfP and a simulator
S during a blockchain execution. Intuitively, this provides the guarantee that
observing other AfP tags does not enhance an adversary’s chance of guessing
future lottery winners.

Theorem 4 (AfP Privacy). Assume E, lottery and SoK scheme as in 3. The
construction in Fig. 5 has AfP privacy as in Definition 8.

(See proof sketch in full version [8])
An AfP based on the setup presented in Fig. 4 will not provide a good foundation
for YOSO-MPC or even just a proactive secret sharing scheme. The reason is,
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that as soon as a party IDi publishes an AfP tag, any other party can verify
that IDi won the lottery and, thus, link the identity of IDi to the public key
pkAnon,ψ(i) from the output of the mixnet. This will ruin the setup for this party
when future lotteries are conducted. More importantly, a powerful adversary is
able to identify any subsequent ECW ciphertexts towards this party and can
design its corruption strategy accordingly. What we want is a new ephemeral
public key pkAnon,ψ(i) for each party and for each slot sl in the blockchain exe-
cution where an AfP is produced. Note that a new lottery setup is necessary for
each slot sl even though different parties are producing AfP tags in different slots.
The reason is that observing any AfP tag, inadvertently, skews the probability
distribution and helps the adversary in guessing future lottery winner.

A simple way to solve the above issue is to repeat the lottery setup and obtain
multiple vectors of the format {(j, pkAnon,j) : j ∈ [n]}. Then, any party can use
a new anonymized public key for each AfP tag. We describe this property as
bounded AfP privacy. Bounded AfP privacy ensures that the AfP scheme can
be executed a bounded number times before lottery winners can be linked to
specific public keys in the setup and ECW ciphertexts starts betraying their
receivers. Note that the idea of generating multiple lottery setups in batches
(preprocessing) can result in more efficient protocols. But it has the downside
that, while using the preprocessed public keys, the number of parties in the
system is static. In Sect. 6 we look at how to use the ECW and AfP in an
anonymous PVSS protocol where we want encrypt towards multiple parties. In
such a setting we can use linkable ring signatures (see full version [8]) to prove
membership in a committee without directly revealing our public key in the
setup.

3.4 AfP with Reusable Setup

In the full version [8], we describe an efficient NIZK that allows for a party IDi to
prove knowledge of a lottery secret key skL,i such that lottery(B, sl,Pj , skL,i) = 1
for Pj ∈ {P1, . . . ,Pn} without revealing Pj . Using this NIZK and an anony-
mous channel, we can construct an AfP that can be used multiple times
without linking a party Pi to its setup public key. In order to generate an
AfP on message m on behalf of role P in slot sl, Pi with skL,i such that
lottery(B, sl,P, skL,i) = 1 first generates a NIZK π proving knowledge of skL,i

such that lottery(B, sl,Pj , skL,i) = 1 for Pj ∈ {P1, . . . ,Pn}. Now Pi generates an
SoK σ on the message m of knowledge of a valid proof π for the aforementioned
statement. IDi publishes σ through an anonymous channel, avoiding its identity
to be linked to the set {P1, . . . ,Pn}. The security and privacy guarantees for this
AfP follow in a straightforward way from our previous analysis. While using this
construction has a clear extra cost in relation to our simple AfP, we show in the
full version [8] how to efficiently perform such a reusable setup AfP on a set of
ciphertexts, which is useful for our resharing application.
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4 Publicly Verifiable Secret Sharing

4.1 Model

We define a publicly verifiable secret sharing (PVSS) scheme with t privacy and
t+1-reconstruction, based on the models provided in [6,16,20,21]. The goal is for
a dealer to share a secret S ∈ G to a set of n parties P = {P1, · · · , Pn}, so that
t + 1 shares will be needed to reconstruct the secret and no information will be
revealed from t shares. We require public verifiability for correctness of sharing
by the dealer, and for reconstruction of the secret by a set of t + 1 parties. Due
to this requirement, the protocol is entirely carried out using a public ledger.

We provide the syntax below. A modification we introduce with respect to
the usual model is that we include asymmetric key pairs for dealers and an
additional initial round where the parties can broadcast an ephemeral public
key. This will allow for more efficient constructions as we will see in Sect. 4.3.

Setup

– Setup(1λ) outputs public parameters pp.
– DKeyGen(pp), performed by the dealer, outputs a key pair (pkD, skD).
– KeyGen(pp, idi), performed by i-th share receiver, outputs a key-pair (pki, ski).
– VerifyKey(pp, id, pk), performed by a public verifier, outputs 0/1 (as a verdict

on whether pk is valid).

Distribution

– Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer, and where S ∈ G

is a secret, outputs encrypted shares Ci : i ∈ [n] and a proof PfSh of sharing
correctness.

Verification

– Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh) performed by the public verifier
outputs 0/1 (as a verdict on whether the sharing is valid).

Reconstruction

– DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver, outputs a
decrypted share Ai and a proof PfDeci of correct decryption.

– VerifyDec(pp, pkD, Ci, Ai,PfDeci
) outputs 0/1 (as a verdict on whether Ai is

a valid decryption of Ci).
– Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a secret S. We

will only apply this algorithm to inputs where T is of size t+1 and such that
all Ai have passed the verification check.

We let PKD and PK contain all key pairs output by DKeyGen and KeyGen
respectively. For non–deterministic algorithms we sometimes explicitly reference
the randomness r input. For example, Dist(pp, pkD, skD, {pki : i ∈ [n]}, S; r).
One of our constructions will not require pkD, skD and consequently DKeyGen.
In that case we omit these arguments from the inputs to the other algorithms.

We require a PVSS to satisfy correctness, verifiability and IND1-secrecy. We
give these definitions in the full version of this paper.
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4.2 HEPVSS: Generic PVSS from Zp-LHE Scheme

We present in Fig. 6 our construction for a PVSS scheme HEPVSS based on
a Zp-LHE scheme with proof of correct decryption. This construction does not
require the dealer to hold a key pair or parties to prove honest generation of keys
and therefore we remove this from the syntax. Moreover, because the dealer does
not have a key pair, here we do not require the public keys pki to be ephemeral.

The construction is relatively straightforward: the dealer construct the
(group) Shamir sharing of the secret, and encrypts the shares using the Zp-
LHE scheme, resulting in ciphertexts Ci. The sharing correctness proof needs
to assert, not only that each Ci is individually a correct encryption, but also
that the underlying plaintext messages are evaluations of a polynomial of degree
at most t. Here we use the fact that the set of polynomials of degree at most
t is a vector space, and the map that sends a polynomial to its evaluation in
some point is linear, so we can capture the above statement in terms of knowl-
edge of preimage of a certain linear map. For the proofs of security (correctness,
indistinguishability of secrets and verifiability) we refer to the full version.

4.3 DHPVSS: A PVSS with Constant-Size Sharing Correctness
Proof

We now give an optimized construction of a PVSS with a proof of sharing cor-
rectness consisting of just two field elements. The PVSS scheme, which we call
DHPVSS, has IND1-secrecy under the DDH assumption.

We explain the idea of the construction next: Let Ai = ai ·G be (purportedly)
group Shamir shares for a secret S ∈ G. A SCRAPE check (Theorem 1) consists
on the verification

∑n
i=1 vi · m∗(αi) · ai

?= 0, or alternatively

n∑

i=1

vi · m∗(αi) · Ai
?= O,

for O the identity element of G. Here vi are fixed coefficients dependent on the
αi and m∗(X) is sampled uniformly at random from Zp[X]≤n−t−2. If it is not
true that all ai are of the form m(αi) for some polynomial m(X) ∈ Zp[X]≤t,
then the check succeeds with probability at most 1/p.

In [6], the encrypted shares were Ci = ai · pki. Because these are in different
bases the check above cannot be directly applied on the Ci, and then the strategy
consisted on sending additional elements ai · H (for some group generator H),
proving that the underlying ai’s are the same, and carrying out the check on
these ai · H. All this introduces overhead which is linear in n.

Instead, in DHPVSS, the dealer has a key-pair (skD, pkD), with pkD = skD ·G,
and encrypts Ai as Ci = Ai + skD ·Ei, where Ei = ski ·G is an ephemeral public
key of the i-th party. Note that skD · Ei can be seen as a shared Diffie-Hellman
key between dealer and the i-th party or, alternatively, Ci can be seen as an
El-Gamal encryption of Ai under Ei with randomness skD.
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Algorithms for Public Verifiable Secret Sharing Scheme HEPVSS

HEPVSS.Setup(1λ, t, n):

(G, G, p, E) ←$ G(1λ). Choose pairwise distinct α0, α1, · · · αn ∈ Zp

return pp = (G, G, p, t, n, {αi : i ∈ [0, n]}, E)

HEPVSS.KeyGen(pp, id):

return (sk, pk) ←$ E .Gen(1λ)

HEPVSS.Dist(pp, {pki : i ∈ [n]}, S):

Parse pp as (G, G, p, n, {αi : i ∈ [0, n]}, E) := (ppSh, E)
({Ai : i ∈ [n]}, m(X)) ← GShamir(ppSh, S)
for i ∈ [n] do

ρi ←$R, Ci ← E .Encpki
(Ai, ρi)

end for
W ← G × Zp[X]≤t × Rn, X ← {0} × Cn, ppπ ← (Zp, W, X , H)
w ← (S, m(X), ρ1, . . . , ρn), x ← (0, C1, . . . , Cn)
Let f given by

f(w) := (m(α0), E .Encpk1(S + m(α1) · G; ρ1), . . . , E .Encpkn
(S + m(αn) · G; ρn))

PfSh ← ΠNI−Pre.Prove(w; ppπ, x, f)
return ({Ci : i ∈ [n]},PfSh)

HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh):

return ΠNI−Pre.Verify(ppπ, x, f,PfSh), with W, X , ppπ, x, f as in HEPVSS.Dist

HEPVSS.DecShare(pp, pk, sk, C):

A ← Decsk(C), PfDec ← E .ProveDec(A, C, pk)
return (A,PfDec)

HEPVSS.VerifyDec(pp, pki, Ai, Ci,PfDeci):

return E .VerifyDec(Ai, Ci, pki,PfDeci)

HEPVSS.Rec(pp, {Ai : i ∈ T }):

return GShamir.Rec(pp, {Ai : i ∈ T })

Fig. 6. Algorithms for HEPVSS

The advantage is that now
∑n

i=1 vi · m∗(αi) · Ai
?= O is equivalent to

n∑

i=1

vi · m∗(αi) · Ci
?= skD ·

(
n∑

i=1

vi · m∗(αi) · Ei

)

,

which is one single DLEQ proof DLEQ(skD;G, pkD, U, V ) for publicly computable

U =
n∑

i=1

vi · m∗(αi) · Ei, V =
n∑

i=1

vi · m∗(αi) · Ci.

One detail is that, as opposed to the PVSS in [6] (where m∗(X) was locally
sampled by the verifier), the prover needs to know m∗(X) so this is sampled via
a random oracle. The algorithms can be found in Fig. 7 and Fig. 8.
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Algorithms for PVSS scheme DHPVSS, Setup and Distribution

DHPVSS.Setup(1λ, t, n):

(G, G, p) ←$ G(1λ). Choose pairwise distinct α0, α1, · · · αn ∈ Zp

∀i ∈ [n] vi ←
∏

j∈[n]\{i}(αi − αj)
−1

return pp = (G, G, p, t, n, α0, {(αi, vi) : i ∈ [n]})

DHPVSS.DKeyGen(pp):

skD ←$Z
∗
p, pkD ← skD · G

return (pkD, skD)

DHPVSS.KeyGen(pp, id):

sk ←$Z
∗
p, E ← sk · G, Ω ← DL(sk; G, E, id), pk ← (E, Ω)

return (pk, sk)

DHPVSS.VerifyKey(pp, id, pk):

parse pk as (E, Ω)
return accept iff Ω is valid w.r.t G, E, id

DHPVSS.Dist(pp, pkD, skD, {pki : i ∈ [n]}, S):

parse pki as (Ei, Ωi), pp as (G, G, p, t, n, α0, {(αi, vi) : i ∈ [n]})
ppSh ← (G, G, p, t, n, {αi : i ∈ [0, n]})
({Ai}i∈[n], m(X)) ← GShamir.Share(ppSh, S)
∀i ∈ [n], Ci ← skD · Ei + Ai

m∗ ← H(pkD, {(pki, Ci) : i ∈ [n]}) (for a RO H : {0, 1}∗ → Zp[X]≤n−t−2)
V ←

∑n
i=1 vi · m∗(αi) · Ci, U ←

∑n
i=1 vi · m∗(αi) · Ei

PfSh ← DLEQ(skD; G, pkD, U, V )
return ({Ci : i ∈ [n]},PfSh)

Fig. 7. Algorithms for PVSS scheme DHPVSS, setup and distribution

Security. We prove that DHPVSS satisfies correctness, indistinguishability of
secrets and verifiability in the full version.

Communication Complexity Comparison. The communication complexity
of DHPVSS.Dist is (n + 2) log p bits. In contrast, HEPVSS.Dist instantiated with
El Gamal is of (3n + 3) log p bits. Secret distribution in SCRAPE [6] requires
(3n+1) log p bits, which was reduced to (n+t+2) log p bits in ALBATROSS [7].
Therefore DHPVSS.Dist obtains an additive saving of t log p bits with respect to
the best previous alternative. The communication of both DHPVSS.DecShare
and HEPVSS.DecShare is 3 log p bits. The share decryption complexities in [6]
and [7] are similar to ours. More details can be found in the full version of this
paper.

5 PVSS Resharing

In this section we introduce protocols that allow a committee Cr of size nr, among
which a secret has been PVSSed with an underlying tr-threshold Shamir scheme,
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Algorithms for PVSS scheme DHPVSS, Verification and Reconstruction

DHPVSS.Verify(pp, pkD, {(pki, Ci) : i ∈ [n]},PfSh):

parse pki as (Ei, Ωi), pp as (G, G, p, t, n, {(αi, vi) : i ∈ [n]})
m∗ ← H(pkD, {(pki, Ci) : i ∈ [n]})
V ←

∑n
i=1 vim

∗(αi) · Ci, U ←
∑n

i=1 vim
∗(αi) · Ei

return accept iff PfSh is valid w.r.t G, pkD, U, V

DHPVSS.DecShare(pp, pkD, pk, sk, C):

parse pk as (E, Ω)
A′ ← C − sk · pkD

PfDec ← DLEQ(sk; G, E, pkD, C − A′)
return (A′,PfDec)

DHPVSS.VerifyDec(pp, pkD, pki, Ci, Ai,PfDeci):

parse pki as (Ei, Ωi)
return accept iff PfDeci is valid w.r.t G, Ei, pkD, Ci − Ai

DHPVSS.Rec(pp, {Ai : i ∈ T }):

return GShamir.Rec(pp, {Ai : i ∈ T })

Fig. 8. Algorithms for PVSS scheme DHPVSS, verification and reconstruction

to create a PVSS of the same secret for the next committee Cr+1 of size nr+1 and
with threshold tr+1. By design, the protocols will keep the secret hidden from
any adversary corrupting at most tr parties from Cr and tr+1 from Cr+1, and will
be correct as long as there are tr + 1 honest parties in Cr. In particular, this can
be used by a party P to transmit a message to a committee in the future, by
keeping this secret being reshared among successive committees and setting the
last Shamir threshold to be 0.

Suppose for now that the secret sharing scheme were for secrets over Zp.
Each party in Cr would hold σ� = mr(α�) where mr is the sharing polynomial
for that round, of degree tr. A subcommittee Lr of tr + 1 parties in Cr can then
reshare the secret by PVSSing their shares among Cr+1 with Shamir scheme of
degree tr+1. The parties in Cr+1 then compute the sum of the received shares
weighted by coefficients λ�,Lr :=

∏
j∈Lr,j �=�

α0−αj

α�−αj
. Indeed, if we denote [σ�] the

vector of shares sent by P� in Lr, then
∑

�∈Lr
λ�,Lr [σ�] =

∑
�∈Lr

λ�,Lr [m(α�)] =
[
∑

�∈Lr
λ�,Lrm(α�)] = [m(α0)].

In our situation, each party Pr,i in Cr has instead a group element as share,
and needs to PVSS it among Cr+1 using the algorithm Dist from previous section.
However, the proof in Dist only guarantees that the distributed shares are consis-
tent with some secret. Here we require in addition that this secret is the shared
that the party has received previously.

To be more precise, in round r, each party Pr,i in committee Cr has Ar,i as
share and in addition the encryption Cr,i = E .Encpkr,i(Ar,i) of Ar,i is public. Pr,i

now needs to create shares of Ar,i for the committee Cr+1. Let Ai→j be the share
that will be sent to Pr+1,j . This will be encrypted as Ci→j = E .Encpkr+1,j

(Ai→j)
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and Pr,i must prove that Ci→j are encryptions of a correct sharing whose secret
is indeed the plaintext of Cr,i.

When a subset Lr of Cr of tr+1 parties have correctly reshared, each Pr+1,j sets
Ar+1,j =

∑
�∈Lr

λ�,LrA�→j as their share and the corresponding public ciphertext
Cr+1,j =

∑
�∈Lr

λ�,LrC�→j can be locally computed by everyone.

5.1 Resharing for HEPVSS

In the case of HEPVSS, the additional proof that the reshared value is the one
corresponding to the public ciphertext can be integrated easily in HEPVSS.Dist
if the encryption scheme has Zp-linear decryption. We give the construction and
more details in the full version [8].

5.2 Resharing for DHPVSS

In the case of DHPVSS, the situation is slightly more complicated due to the
fact that the encryption of shares involves a key from the dealer. Here there are
different dealers, i.e. the final share of each party in Cr+1 is a linear combination
of shares sent by the parties in Lr. Thanks to the fact that the encryption is
also a linear operation with respect to the public key of the sender, we can
define a public key for committee Lr. Indeed, if we call pkD�

the public key of
Pr,� when acting as sender, then pkD,Lr

:=
∑

�∈Lr
λ�,Lr · pkD�

. Then we want to
make sure that the output encryption for Pr+1,j is Cr+1,j = skr+1,j · pkD,Lr

+∑
�∈Lr

λ�,LrA�→j .
At the beginning of the resharing, each party Pr,i in committee Cr has as

share Ar,i = Cr,i − ski ·pkD,Lr−1
where ski is the secret key for decrypting shares,

and needs to create shares Ai→j of Ar,i and encrypt them using the public
keys pk[nr+1] = {pkj : j ∈ [nr+1]} of the parties of the next round and its own
secret key skDi

(i.e. this party will create C[nr+1] = {Ci→j : j ∈ [nr+1]} with
Ci→j = skDi

·pkj +Ai→j) and prove their validity. In conclusion we need a proof
for the following relation

RDHPVSS,Reshare ={(m(X), ski, skDi); (pp, pki, pkDi
, pkD,Lr−1

, pk[nr+1]
, Cr,i, C[nr+1]) :

pki = ski · G, pkDi
= skDi · G, m(X) ∈ Zp[X]≤t, m(β0) = 0,

and ∀j ∈ [nr+1], Ci→j = skDi · pkj + Ai→j ,

where Ai→j = (Cr,i − ski · pkD,Lr−1
) + m(βj) · G}

However, we also want to use the SCRAPE technique to reduce the size of
the witness and hence of the proof. Note that if we set Uj = Ci→j − skDi

· pkj −
Cr,i + ski · pkD,Lr−1

for all j ∈ [nr+1] and U0 = O, we want to make sure that for
all j ∈ [0, nr+1], Uj = m(βj) · G for a polynomial of degree ≤ t (in addition to
the conditions pki = ski · G and pkDi

= skDi
· G).

For j ∈ [0, n], let v′
j =

∏
k∈[0,n]\{j}(βj −βk)−1. Observe these are not exactly

the same coefficients as in the description of DHPVSS in Sect. 4.3 because they
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include the evaluation point β0. By Theorem 1, we want to prove
∑n

j=0 v′
i·m∗(βj)·

Uj = O, for a random polynomial m∗ of degree n − t − 1 (note here we apply
Theorem 1 to a code of length n + 1, rather than n).

Observe
∑n

j=0 v′
j ·m∗(βj)·Uj = U ′−skDi

·V ′+ski ·W ′ for publicly computable

U ′ :=
n∑

j=1

v′
j · m∗(βj) · (Ci→j − Cr,i), V ′ :=

n∑

j=1

v′
j · m∗(βj) · pkj , and

W ′ :=
n∑

j=1

v′
j · m∗(βj) · pkD,Lr−1

,

and therefore Pr,i needs a proof of knowledge for

R′
DHPVSS,Reshare,m∗ ={(ski, skDi

); (pki, pkDi
, U ′, V ′,W ′) :

pki = ski · G, pkDi
= skDi

· G, U ′ = skDi
· V ′ − ski · W ′}

where we remark that now the witness only contains two elements but on the
other hand relation depends on a polynomial m∗(X) that has been sampled
uniformly at random among polynomials of degree at most n − t − 1. This leads
to the protocol for PVSS resharing in Fig. 9.

6 Anonymous PVSS via ECW and AfP

In this section, we show how to construct PVSS (and re-sharing) for anony-
mous committees by instantiating our previous PVSS constructions using our
ECW and AfP schemes. We start by showing how our previous protocols can be
adapted to work with ECW and AfP instead of standard encryption and authen-
tication. We then show how the optimizations in the DDH based constructions
via the SCRAPE trick carry over to our anonymous setting if we instantiate our
ECW and AfP schemes from similar assumptions. The protocols we construct
in this section work in the YOSO model supporting up to t < n/2 corrupted
parties and can be used as efficient building blocks for the protocols of [1,12].

In the previous sections, we have constructed both a PVSS scheme (Sect. 4.2)
and a PVSS re-sharing scheme (Sect. 5.1) based on Zp-linear encryption schemes
(as defined in Sect. 2.2). Despite being efficient, these constructions are not fit for
the YOSO model because they require the dealer to know the public keys of the
parties who will receive shares, consequently revealing their identities. In order
to solve this issue, we show that these protocols can also be instantiated with
the ECW scheme of Sect. 3 even though they were designed to be instantiated
with a Zp-linear encryption scheme. The core idea is that our ECW preserves all
the properties of the underlying Zp-linear encryption scheme while adding the
ability to encrypt towards a role rather than towards a party who owns a public
key.
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Protocol for DHPVSS resharing

Participants: Cr = {Pr,1, . . . , Pr,nr} and Cr+1 = {Pr+1,1, . . . , Pr+1,nr+1}.

Public information: A group G of prime order p, with generator G. “Sender”
key pairs (skDi , pkDi

= skDi · G) for every party Pr,i ∈ Cr, a “sender committee”
public key pkD,Lr−1

, and “receiver” key pairs (skr,i, pkr,i = skr,i · G) for Pr,i, where

r = r, r + 1, and 1 ≤ i ≤ nr; thresholds tr, tr+1. Evaluation points (α0, α1, . . . , αnr),
(β0, β1, . . . , βnr+1). Random oracles H : {0, 1}∗ → Zp[X]≤n−t−1, H′ : {0, 1}∗ → Zp.
Let W ← Z

2
p, X ← G

3, and ppπ ← (Zp, W, X , H′).

Input: Public ciphertexts Cr,i = skr,i · pkD,Lr−1
+ Ar,i such that Ar,i = hr(αi) · G

for some polynomial hr of degree ≤ tr.

Output: A public key pkD,Lr
for a subset Lr of Cr, of size tr + 1. Public output

ciphertexts (Cr+1,1, . . . , Cr+1,nr+1) and a proof π that, for all j = 1, . . . , nr+1,
Cr+1,j = skr+1,jpkD,Lr

+Ar+1,j such that Ar+1,j = hr+1(βj) ·G for some polynomial
hr+1 of degree ≤ tr+1 and hr+1(β0) = hr(α0).

Protocol:
1. Let ppSh,r+1 = (G, G, p, tr+1, nr+1, {βj : j ∈ [0, nr+1]}).
2. Resharing: For i = 1, ..., nr, Pr,i does the following:

(a) Ar,i ← Cr,i − skr,i · pkD,Lr−1
.

(b) ({Ai→j : j ∈ [nr+1]}, mi(X)) ← GShamir.Share(ppSh,r+1, Ar,i).
(c) For j ∈ [nr+1], Ci→j ← skDi · pkr+1,j + Ai→j .
(d) m∗

i (X) ← H({Cr,i : i ∈ [nr]}, pkD,Lr−1
).

(e) U ′
i ←

∑n
j=1 v′

j · m∗
i (βj) · (Ci→j − Cr,i), V ′

i ←
∑n

j=1 v′
j · m∗

i (βj) · pkr+1,j ,

W ′
i ← (

∑n
j=1 v′

j · m∗
i (βj)) · pkD,Lr−1

.

(f) πr,i ← ΠNI−Pre.Prove((skr,i, skDi); ppπ, (pkr,i, pkDi
, U ′

i), fi),
where fi(skr,i, skDi) := (skr,i · G, skDi · G, skDi · V ′

i − skr,i · W ′
i ).

(g) Output {Ci→j : j ∈ [nr+1]}, πr,i.
3. Reconstruction of next share encryptions: each party in P locally constructs

the encryptions of the shares for the following round as follows:
(a) For each i ∈ Cr:

i. Compute U ′
i and fi as above (from public information and Pr,i’s output

{Ci→j : j ∈ [nr+1]}).
ii. Compute ΠNI−Pre.Verify(ppπ, (pkr,i, pkDi

, U ′
i), fi, πr,i).

(b) Define Lr the set of t + 1 first indices for which the above proofs accept.
(c) For j ∈ [nr+1], Cr+1,j ←

∑
�∈Lr

λ�,L · C�→j .
(d) pkD,Lr

←
∑

�∈Lr
λ�,Lr · pkD�

.
(e) Output ({Cr+1,j : j ∈ [nr+1]}, (πr,�)�∈Lr , pkD,Lr

).

Fig. 9. Protocol for DHPVSS resharing
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6.1 Constructing HEPVSS with ECW

We modify HEPVSS to use our ECW scheme E = (Enc,Dec) for lottery predicate
lottery(B, sl,P, skL,i) from Sect. 3 instead of a Zp-linear encryption scheme. We
make the following modifications to the HEPVSS algorithms in Fig. 6, :

– Communication: All messages are posted to the underlying blockchain
ledger used by the ECW scheme E .

– HEPVSS.Setup(1λ, t, n): Besides the original setup parameters, we assume
that n distinct role identifiers P1, . . . ,Pn are available and that an underlying
blockchain protocol Γ is executed.

– HEPVSS.KeyGen(pp, id): Instead of publishing pki, each party Pi provides
pki as input to the mixnet assumed as setup for lottery(B, sl,P, skL,i) and
associated ECW scheme E . The mixnet output {(j, pkAnon,j)}j∈[n] is assumed
to be available on the underlying blockchain and accessible as

({(j, pkAnon,j)}j∈[n], η) ← param(B, sl).

Party Pi sets skL,i ← (pkE,i, skE,i).
– HEPVSS.Dist(pp, {pki : i ∈ [n]}, S): Instead of computing Ci ←

E .Encpki
(Ai, ρi), the dealer computes Ci ← Enc(B, sl,Pi, Ai) using random-

ness ρi . Notice that this is equivalent to computing Ci ← E .EncpkAnon,j
(Ai, ρi)

for a j such that lottery(B, sl,Pi, skL,j) = 1. Hence, PfSh can still be computed
via the same procedure. The dealer publishes

({Ci : i ∈ [n]}, {pkAnon,j : i ∈ [n]},PfSh).

Notice that the public key pkAnon,j used to generate each Ci is publicly known
due to the structure of the lottery scheme.

– HEPVSS.Verify(pp, {(pki, Ci) : i ∈ [n]},PfSh): No modification is needed, since
({Ci : i ∈ [n]}, {pkAnon,j : i ∈ [n]},PfSh) has the same structure as in the
original protocol.

– HEPVSS.DecShare(pp, pkj , skL,j , Ci): Party Pj checks that its lottery wit-
ness skL,j is such that lottery(B, sl,Pi, skL,j) = 1 and, if yes, computes
Ai ← Dec(B̃, Ci, skL,j). Proof PfDec is generated as in the original pro-
tocol. Notice that this procedure is also equivalent to generating an AfP
PfDec ← AfP.Sign(B̃, sl,Pi, skL,j , Ai).

– HEPVSS.VerifyDec(pp, pki, Ai, Ci,PfDeci): Proof PfDec is checked as in the
original protocol. Notice that this procedure is also equivalent to generat-
ing an AfP {0, 1} ← AfP.Ver(B̃, sl,Pi,PfDec, Ai).

– HEPVSS.Rec(pp, {Ai : i ∈ T }: No modification is needed.

Due to the properties of the ECW scheme and the underlying lottery scheme,
shares are encrypted towards parties randomly chosen to perform each role Pi

whose identity remains unknown during the share distribution and verification
phases. In case a reconstruction happens, parties executing each role reveal them-
selves by proving correctness of decrypted shares, which constitutes an AfP since
it involved proving knowledge of skL,j such that lottery(B, sl,Pi, skL,j) = 1.
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6.2 Constructing Resharing for HEPVSS with ECW

In the context of resharing, the parties selected to execute roles P1, . . . ,Pn in
slot slr wish to publicly verifiable reshare the secret whose shares they received
towards roles P′

1, . . . ,P
′
n′ in a future slot slr+1. In practice, this means that the

resharing information will be received by a new randomly selected set of anony-
mous parties performing these roles in the future. Once again we explore the
fact that our ECW inherits the properties of the underlying Zp-linear encryp-
tion scheme to modify the resharing protocol for HEPVSS (Sect. 5.1) to work with
ECW. We show how to obtain an ECW based (and thus anonymous) resharing
protocol in the full version of the paper [8].

6.3 Efficient DDH-Based Instantiation via DHPVSS

The most efficient instantiations of our techniques are obtained when using a
variant of the El Gamal encryption scheme together with the SCRAPE share
validity check. In order to enjoy the efficiency improvement, we show our ECW
is also compatible with these optimizations in the full version of the paper [8].
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2. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with fast
or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol.
1726, pp. 87–102. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-
47942-0 8

3. Boyle, E., Klein, S., Rosen, A., Segev, G.: Securing Abe’s mix-net against malicious
verifiers via witness indistinguishability. In: Catalano, D., De Prisco, R. (eds.) SCN
2018. LNCS, vol. 11035, pp. 274–291. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98113-0 15

4. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

5. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryp-
tion to the future: a paradigm for sending secret messages to future (anonymous)
committees. Cryptology ePrint Archive, Report 2021/1423 (2021). https://eprint.
iacr.org/2021/1423

6. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 27

7. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness
based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4 11

8. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: fast and simple
encryption and secret sharing in the YOSO model. Cryptology ePrint, Report
2022/242 (2022). https://eprint.iacr.org/2022/242

https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-540-47942-0_8
https://doi.org/10.1007/978-3-540-47942-0_8
https://doi.org/10.1007/978-3-319-98113-0_15
https://doi.org/10.1007/978-3-319-98113-0_15
https://doi.org/10.1007/978-3-540-28628-8_4
https://eprint.iacr.org/2021/1423
https://eprint.iacr.org/2021/1423
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://eprint.iacr.org/2022/242


680 I. Cascudo et al.

9. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5
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Abstract. Protocols for state machine replication (SMR) are typically
designed for synchronous or asynchronous networks, with a lower corrup-
tion threshold in the latter case. Recent network-agnostic protocols are
secure when run in either a synchronous or an asynchronous network. We
propose two new constructions of network-agnostic SMR protocols that
improve on existing protocols in terms of either the adversarial model or
communication complexity:
1. an adaptively secure protocol with optimal corruption thresholds and

quadratic amortized communication complexity per transaction;
2. a statically secure protocol with near-optimal corruption thresholds

and linear amortized communication complexity per transaction.
We further explore SMR protocols run in a network that may change
between synchronous and asynchronous arbitrarily often; parties can be
uncorrupted (as in the proactive model), and the protocol should remain
secure as long as the appropriate corruption thresholds are maintained.
We show that purely asynchronous proactive secret sharing is impossible
without some form of synchronization between the parties, ruling out
a natural approach to proactively secure network-agnostic SMR proto-
cols. Motivated by this negative result, we consider a model where the
adversary is limited in the total number of parties it can corrupt over the
duration of the protocol and show, in this setting, that our SMR proto-
cols remain secure even under arbitrarily changing network conditions.
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enable the evolving state of a distributed system to be replicated across multiple
parties, even when some of them are malicious. SMR lies at the core of many
distributed applications and has recently received considerable attention in the
context of blockchain protocols. Most of the literature focuses on protocols that
are secure in either the synchronous or the asynchronous model. SMR protocols
in the synchronous model can tolerate t < n/2 corrupted parties (or t < n
corrupted parties if external validity is not required [34]), but may fail if the
synchrony assumption is violated. On the other hand, asynchronous protocols
are secure under arbitrary network conditions, but do not exist when t ≥ n/3.

Recent work of Blum, Katz, and Loss [7] introduced the network-agnostic
model in which a single protocol is required to be secure regardless of whether
it is run in a synchronous or an asynchronous network, for different corruption
thresholds. In subsequent work [8], they show that for any thresholds ta ≤ ts
with 2ts + ta < n, there is an SMR protocol that tolerates ta corrupted parties if
the network is asynchronous and simultaneously tolerates ts corrupted parties if
the network is synchronous. A major benefit of network-agnostic protocols over
classical ones is that ta, ts can be chosen arbitrarily subject to the above con-
straints. This allows a protocol designer to flexibly choose ta, ts so as to minimize
the probability of failure based on assumed properties of the environment.

Although network-agnostic protocols have recently received significant atten-
tion [5,7–9,17,29], several open questions regarding network-agnostic SMR
remain. For one, existing results are primarily concerned with feasibility rather
than efficiency; this is especially true when considering protocols secure against
an adaptive adversary who can choose which parties to corrupt during the execu-
tion of the protocol. Perhaps the most significant limitation of prior work is that
it either requires the network to be synchronous for the lifetime of the proto-
col, or else guarantees security only if the attacker never exceeds the corruption
threshold of ta. Providing a more elegant treatment of networks that can change
arbitrarily often between synchronous and asynchronous was left as an explicit
open question in prior work.

1.1 Challenges and State-of-the-Art

We begin with a brief overview of network-agnostic SMR, and then explain how
existing solutions (do not) deal with the issues raised above.

Network-Agnostic SMR. The goal of an SMR protocol is to impose order
on transactions that arrive in parties’ buffers in an arbitrary fashion. An SMR
protocol must ensure consistency, which means that all parties agree on the order
in which transactions are committed to some log, and liveness, which means that
any transactions in the buffers of honest parties are eventually appended to the
log. SMR is significantly more challenging than the related problem of Byzantine
agreement, where parties agree on only a single value.

A network-agnostic SMR protocol must remain secure if the network is syn-
chronous and there are at most ts corruptions, or if the network is asynchronous
and there are at most ta corruptions. As a key building block for SMR in this
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setting, Blum et al. [8] introduced a novel protocol for asynchronous common
subset (ACS) that allows parties to agree on a subset of n − ta inputs in the
presence of ta corrupted parties in an asynchronous network. Their protocol has
the property that if all honest parties supply the same input B to the protocol,
then honest parties include B in their output even when ts parties are corrupted.
This facilitates the following strategy: parties first attempt to agree on an input
B using a synchronous protocol. If the network is synchronous, this step will suc-
ceed even in the presence of ts corrupted parties; thus, parties all use the same
input B to ACS which outputs this block even if there are ts corrupted parties.
On the other hand, if the network is asynchronous, ta-security of ACS ensures
that all parties can agree on B without relying on the synchronous protocol.

Problems with Existing Solutions. Blum et al. [8] present two SMR proto-
cols, Tardigrade and Upgrade. Tardigrade is secure against an adaptive adversary
and requires O(n4) bits of communication for n transactions. Upgrade gives a
more efficient alternative against a static adversary that requires only O(n3)
bits of communication for n2 transactions. However, Upgrade relies on random
subcommittees to execute the most expensive steps of the protocol. Such pro-
tocols are not adaptively secure and require very large committees in order to
provide meaningful corruption bounds. This arguably offsets the communication
improvements made by Upgrade, as it only offers an asymptotic improvement if
the total number of parties in the system is in the order of hundreds of thousands.

Moreover, their work only considers non-switching networks, i.e., the network
is either synchronous or asynchronous for the entire duration of the protocol.
Thus, if at any point in the lifetime of the protocol the adversary surpasses
ta corrupted parties, their protocols might be insecure if the network is ever
asynchronous. We are interested in a more flexible model that tolerates repeated
transitions of the network between synchronous and asynchronous behavior, and
even in the presence of an adaptive, mobile adversary.

1.2 Our Contributions

We study protocols in a more realistic model where network conditions can arbi-
trarily change over time, and parties can also recover from corruptions. Such
recovery is necessary if we want to allow more than ta corruptions when the net-
work is synchronous, but then restrict the adversary to fewer than ta corruptions
when the network becomes asynchronous.

Modeling Recovery from Key Exposure. Modeling parties that are tem-
porarily corrupted (sometimes referred to in the literature as transient faults) is
non-trivial when parties have long-term keys. To model the process of uncorrup-
tion, we endow parties with a mechanism to forcibly “flush out” the adversary.
(This could be achieved, for example, by having parties restart their computer
in safe mode at the onset of a new protocol epoch.) The adaptive adversary can
then choose to re-corrupt those parties or new ones. However, without additional
measures in place, the internal state of the previously corrupted parties (includ-
ing their long-term secret keys) remains known to the adversary. Proactive secret
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sharing is the main technique to refresh parties’ keys for threshold signatures and
related primitives commonly used in communication-efficient randomized SMR
protocols. We prove that without further restrictions, secure proactive secret
sharing protocols in the pure asynchronous and network-agnostic setting are
impossible. While this may seem to be a folklore result, modeling and proving
such a result is non-trivial. One of our contributions is to formalize this result
and provide a rigorous proof.

To address the above impossibility in the context of SMR protocols, we con-
sider a model in which the attacker is limited to corrupting a set S of at most ts
parties for the lifetime of the protocol. (It may corrupt this entire set of parties
when the network is synchronous, and must uncorrupt at least ts − ta of them
when the network becomes asynchronous.) Since transient corruptions are rarely
considered in the context of SMR, limiting the total number of faults to ts seems
like a reasonable assumption which is in line with most of the existing literature.

Practical Network-Agnostic SMR. We propose two new efficient protocols
for SMR, Update and Upstate.

Update is adaptively secure for optimal corruption thresholds and has O(n3)
communication complexity for committing a block of O(n). This is an O(n)
improvement over Tardigrade [8], which requires O(n4) communication to commit
blocks of O(n) transactions. We obtain the improvement by carefully applying
error-correcting codes in a new ACS protocol.

Upstate is statically secure for near-optimal corruption thresholds and has
O(n2) communication complexity to commit blocks of O(n) transactions. Upstate
achieves its improved communication complexity by using committees. Upstate
compares favorably to Upgrade [8]: while Upgrade requires O(n3) communica-
tion to commit blocks of O(n2) transactions, Upstate commits blocks of O(n)
transactions and requires O(n2) communication.

SMR Tolerating Key Exposure. We show that our protocols are also secure
when the network can transition between synchronous and asynchronous behav-
ior and the adversary can be mobile across epochs, but is limited to corrupting at
most ts unique parties. Adding reboots at the beginning of each protocol epoch
to flush the adversary out helps Update and Upstate to withstand the key expo-
sures caused by the adversary’s mobility. Security in this case follows naturally
from the structure of network-agnostic protocols. In order to be secure under a
higher number of corruptions during the synchronous phase, some parts of the
protocol have to use high thresholds for message collection. Although the adver-
sary can know up to ts keys/key shares during an asynchronous phase following
a transition from a synchronous phase, it can only actively corrupt ta parties
and is not able to break security even if it forges or erases keys.

Open Questions. We leave open the question of designing an adaptively secure
SMR protocol in our setting with quadratic communication complexity per com-
mitted block. We also leave open to explore communication-efficient proactive
network-agnostic SMR protocols that bypass the impossibility result of network-
agnostic proactive secret sharing. We remark that although our protocols use
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threshold cryptosystems to boost efficiency and censorship resilience, these may
not be necessary. Thus, it is plausible that a solution for key refresh could be
achieved without limiting the adversary to corrupting a set of ts parties. One
could then hope to use a network-agnostic ACS protocol to agree on a new list
of valid public keys obtained from distributed key generation.

1.3 Related Work

Network-agnostic protocols were introduced by Blum et al. in the context of
Byzantine agreement [7], and were later extended to multi-party computation [9]
and SMR [8]. The latter presents two network-agnostic SMR protocols. Tardi-
grade achieves total communication O(n4+n3�) against adaptive adversaries, for
n the number of parties and � the block size. Upgrade uses committees to achieve
total communication O(n3 + n�) against static adversaries (but tolerates fewer
corruptions). Appan et al. [5] proposed a protocol for network-agnostic perfectly
secure multi-party computation; their protocol uses a novel network-agnostic
perfectly secure verifiable secret sharing protocol.

Since our protocols need to support both synchronous and asynchronous net-
works, and asynchronous SMR protocols are less communication efficient com-
pared to their synchronous counterparts [2,3], we focus here on asynchronous
SMR protocols tolerating t < n/3 corruptions. Canonical constructions for SMR
and atomic broadcast are based on multi-value validated asynchronous Byzantine
agreement or asynchronous common subset [11,15,21,24,28] with cubic commu-
nication complexity for input sizes linear in n. Only a few existing protocols
in the asynchronous setting tolerate adaptive corruptions. EPIC [25] and DAG-
Rider [23] achieve adaptive security with cubic total communication complexity;
Dumbo2 [21] can be modified to achieve adaptive security by using the MVBA
from [26]. Neither can be easily adapted to the network-agnostic setting.

A final group of related works concerns secret sharing and distributed key
generation (DKG) where parties may crash and then recover or where the set
of participants may change. In the proactive model [31], the adversary can be
mobile across the corrupted parties over time. Proactive secret sharing (PSS) was
introduced by Herzberg et al. [22]. Canetti et al. [12] and Frankel et al. [16] gave
solutions for synchronous DKG against adaptive proactive adversaries using ver-
ifiable secret sharing schemes. Benhamouda et al. [6] introduced a secret-sharing
protocol for passing secrets from one anonymous committee to another, while
Groth [20] proposed a DKG scheme based on publicly verifiable secret sharing
that allows refreshing key shares to a new committee. In the asynchronous case,
Cachin et al. [10] presented a proactive refresh protocol assuming clock ticks that
define epochs, based on [13] which recovers state in an SMR protocol. Schulze et
al. [33] proposed a mobile PSS protocol in a partially synchronous network.
Recently, several works [27,32,35] have proposed more efficient dynamic/mobile
PSS protocols assuming eventual synchrony, short periods of synchrony at the
end of an epoch, or synchronized epochs. Subsequent to our work, Yurek et
al. [36] constructed an asynchronous dynamic PSS protocol (circumventing our
impossibility result) but with respect to different definitions than ours.
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A related notion of security in the presence of exposed parties was considered
in [19], which studied synchronous authenticated broadcast with both corrupted
parties and parties who are honest but whose keys have been exposed.

Paper Organization. We describe our model in Sect. 2, and provide defini-
tions in Sect. 3. In Sect. 4, we present an ACS protocol that uses error-correcting
codes in order to achieve O(n3) communication against an adaptive adversary,
and prove its special properties. This ACS protocol is used as a building block in
the Update SMR protocol presented in Sect. 5, which achieves optimal corruption
thresholds in a network-agnostic setting. In Sect. 6, we describe an asymptoti-
cally more efficient SMR protocol, Upstate, that is secure under near optimal
thresholds against a static adversary. In Sect. 7, we prove that under a restricted
adversarial model, the SMR protocols discussed so far remain secure under arbi-
trary network transitions. In Sect. 8, we model and provide an impossibility proof
for proactive asynchronous verifiable secret sharing. This result motivates our
restricted mobile adversarial model.

2 Model

Network. We consider n parties P1, . . . , Pn that are connected via pairwise
authenticated channels and have access to a public key infrastructure. During
the protocol’s execution, transactions are delivered to parties’ local buffers. We
are not concerned with how these transactions originate; in practice, there is an
external mechanism where clients gossip these transactions in the network.

When the network is synchronous, messages between parties are delivered with
a finite, known delay Δ, and the local clocks of the parties are synchronized. When
the network is asynchronous, messages between parties are eventually delivered
to their intended recipient, but may be adversarially delayed or reordered. The
local clocks of parties are only assumed to be monotonically increasing and are
not necessarily synchronized anymore. If an asynchronous phase is followed by a
synchronous phase, all messages sent during the asynchronous phase of the net-
work are delivered by the beginning of the synchronous phase. Transitions between
synchronous and asynchronous behaviors can happen arbitrarily.

An SMR protocol operates in logical intervals called epochs, which are mea-
sured and incremented locally. Another concept is that of a round of communi-
cation. In the synchronous setting, a round r refers to the time between (r−1)Δ
and rΔ. In the asynchronous case, the round number will describe some partic-
ular send actions that are performed by a party.

We assume that parties perform atomic send operations, i.e., parties can send
a message to multiple parties simultaneously in such a way that the adversary
cannot corrupt them in between individual sends. Moreover, we assume that
the adversary cannot perform after the fact removal, i.e., the adversary cannot
indefinitely prevent a message from being delivered once it is sent by an honest
party, even if the adversary corrupts it at some point after the send action.

Threat Model. We consider a Byzantine fault model, in which some fraction
of the parties may be corrupted by an adversary. The adversary controls the
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local computations, messages, and current state of any corrupted party, and can
coordinate the actions of all corrupted parties. Uncorrupted parties are called
honest. For any honestly-initiated communication, the adversary receives the
epoch τ , the sender identity S, the receiver identity R and the message m (which
can be encrypted, in which case the adversary does not see its contents). The
adversary determines when to deliver each message.

We assume that the adversary is (ta, ts)-limited, i.e., for some fixed thresh-
olds ts, ta (ta ≤ ts), up to ts < n/2 parties may be corrupted if the network is
synchronous and up to ta < n/3 parties may be corrupted if the network is asyn-
chronous. (The optimal trade-off between ts, ta is known to be 2ts + ta < n [8]).
In Sects. 4–5 we consider an adaptive and rushing adversary that adaptively cor-
rupts parties over the course of a protocol execution; in Sect. 6, we consider a
static adversary who corrupts parties prior to the start of an epoch.

Further, we address a mobile adversary. In Sect. 8, we consider an epoch-
wise mobile adaptive adversary that can move freely between parties from epoch
to epoch as long as it does not exceed more than ts adaptive corruptions in
the synchronous case and ta adaptive corruptions in the asynchronous case at
a given moment in time or in a given epoch. In Sect. 7, we consider a slightly
different adversary who adaptively corrupts at most ts parties over the lifetime
of the protocol, and is only permitted to move between those ts parties between
epochs. We will explicitly mention the adversary’s capabilities in each section.

Reboot. To enable protocols to withstand network changes, we assume a reboot
mechanism that causes a party to restart its device, thereby flushing out the
adversary. Reboots occur at specified times during the protocols, not necessarily
simultaneously. The adversary can immediately corrupt a party after rebooting,
as long as it does not exceed the allowed threshold at that time. The restart
is performed via code written in untamperable memory. Importantly, rebooting
does not remove the previous state of a corrupted party from the adversary’s
view; in particular, the adversary still knows the secret state of a party, including
any secret keys that were held by that party during corruption. Furthermore, the
internal state of a corrupted party that has restarted may have been arbitrarily
modified by the adversary. For clarity, we call a party actively corrupted when
the adversary actively controls that party’s behavior and passively corrupted or
exposed if the party was uncorrupted either by the adversary or by reboot.

Keys. Every party Pi holds a private key ski of a threshold signature scheme with
individual public signature key pki and public key pk. Further, every party Pi

holds a private key dki of a threshold encryption scheme with individual public
verification key vki and public key ek. The threshold for both schemes is ts+1. We
assume a trusted dealer that generates PK = (pk1, . . . , pkn, pk, vk1, . . . , vkn, ek)
and sk1, . . . , skn, dk1, . . . , dkn and outputs a signature and encryption private
keys ski, dki and the public key PK to each party Pi.

A party Pi can use its signature key ski to generate a signature share σi on
a message m. The signature share σi can be verified using the message m and
the public verification key pki, and is called valid if the verification is successful.
As a shorthand notation for legibility, we use 〈m〉i for a threshold signature σi
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of message m under secret key ski. A set of ts + 1 valid signature shares on the
same message m can be used to compute a signature σ for that message, which
can be verified using the public key pk and m.

A party Pi can encrypt a message m using the public encryption key ek to
generate a ciphertext c, and can use its decryption key dki to obtain a decryption
share ci of c. A decryption share ci can be verified with respect to c, ek and vki

and is called correct if the verification is successful. A set of ts + 1 correct
decryption shares can be used to obtain the decryption m of the ciphertext c.

We assume adaptively secure idealized threshold signature scheme and thresh-
old encryption scheme. For a parameter κ, a signature share and a full signature
have length O(κ). We implicitly assume that parties use domain separation when
constructing signatures to ensure only local context validity. An encryption of a
message m of length |m| has length |m|+O(κ), and a decryption share has length
O(κ); these criteria can be met using standard KEM/DEM mechanisms.

3 Preliminaries

State machine replication protocols enable a set of parties to emulate a sin-
gle server by agreeing on an ever-growing, ordered log of transactions.1 Given
that SMR protocols usually continue indefinitely, we opt for a definition that
clearly states how the logs are constructed and committed, and their relation
order depending on epochs. A party maintains an ever-growing append-only log
consisting of blocks of transactions: blocksi = (blocki[1], blocki[2], . . .), where the
notation blocki[e] refers to the block output by party Pi in epoch e. Each blocki[e]
is initialized with a special character ⊥ and populated by a set of transactions by
Pi in epoch e. A party’s epoch number is incremented after it outputs a block.

Definition 1 (State Machine Replication (SMR)). Let Π be a protocol exe-
cuted by n parties P1, . . . , Pn. Let pp be some public parameters (e.g., PKI).
Parties receive transactions as input, locally maintain arrays blocks, and output
blocks and a publicly verifiable proof πi[e] for each blocki[e] in blocks. Π is a
secure SMR protocol tolerating t corruptions if the following properties hold:

– (t-Consistency) If an honest party outputs a block B in epoch e then all honest
parties output B in epoch e.

– (t-Completeness) Every honest party outputs a block in all epochs.
– (t-Liveness) If a transaction tx is input to at least n − t honest parties, then

all honest parties eventually output a block containing tx.
– (t-External validity) If an honest party outputs (B, π), then for a fixed public

Boolean function Verify it holds that Verify(pp, B, π) = 1.

Definition 2 (Binary Byzantine Agreement (BA)). Let Π be a protocol
executed by n parties P1, . . . , Pn, where each party Pi begins holding input xi ∈
{0, 1} and parties terminate upon generating output. Π is a secure BA protocol
tolerating t corruptions if the following properties hold:
1 Following [29], we distinguish between SMR and atomic broadcast in that the former

explicitly requires an externally verifiable proof of output validity.
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– (t-Validity) If every honest party’s input is equal to the same value x, then
every honest party outputs x.

– (t-Consistency) All honest parties output the same message x.
– (t-Termination) Every honest party eventually terminates with output x.

Definition 3 (Asynchronous Common Subset (ACS)). Let Π be a protocol
executed by n parties P1, . . . , Pn, where each party Pi begins holding input xi ∈
{0, 1}∗ and parties output sets of cardinality at most n. Π is a secure ACS
protocol tolerating t corruptions if the following properties hold:

– (t-Validity) If every honest party’s input is equal to the same value x, then
every honest party outputs the value {x}.

– (t-Validity with termination) If every honest party’s input is equal to the same
value x, then every honest party outputs the value {x} and terminates.

– (t-Consistency) If an honest party outputs S, all honest parties output S.
– (t-Set quality) If an honest party outputs a set S, then S contains the input

of at least one honest party.
– (t-Termination) Every honest party generates output and terminates.

Block agreement (introduced in [8]) is a validated agreement on objects called
pre-blocks. A pre-block is a vector of length n where the ith entry is either ⊥ or a
message with a valid signature attached. The quality of a pre-block is defined as
the number of entries that are not ⊥; a k-quality pre-block has quality at least k.

Definition 4 (Block Agreement (BLA)). Let Π be a protocol executed by
n parties P1, . . . , Pn, where each party Pi begins holding input xi ∈ {0, 1}∗ and
terminates upon generating output. Π is a secure BLA protocol tolerating t cor-
ruptions if the following properties hold:

– (t-Validity) If every honest party has input an (n − t)-quality pre-block, then
every honest party outputs an (n − t)-quality pre-block.

– (t-Consistency) Every honest party outputs the same pre-block B.

Next, we briefly introduce some standard cryptographic primitives we use.

Threshold Signature Schemes. A (t, n)-threshold signature scheme is a sig-
nature scheme allowing t + 1 parties out of n to compute a signature on a mes-
sage, with up to t < n corruptions. It is non-interactive if parties can non-
interactively compute signature shares that can be combined in the signature on
a message, using protocols TS.Setup,TS.KeyGen,TS.Sign,TS.ShVer,TS.Verify for
setup, key generation, partial signing, share verification and signature verifica-
tion. The desired properties are correctness, security (unforgeability under chosen-
message attack) and robustness (any number ≥ t + 1 of signature shares can be
combined to yield a signature) against a probabilistic polynomial-time adversary.

Linear Error Correcting Codes. We adopt from [30] the description of error
correcting codes, in particular, the Reed-Solomon (RS) code. An (n, b)-RS code
encodes b data symbols into codewords of n symbols, and can decode the code-
words to recover the original data.
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Given inputs m1, . . . , mb, the encoding function ENC computes codewords
s1, . . . , sn. Knowledge of any b elements of the codeword uniquely determines
the input message and the remaining of the codeword.

The decoding function DEC computes (m1, . . . , mb), and is capable of tol-
erating up to c errors and d erasures in codewords (s1, . . . , sn), if and only if
n − b ≥ 2c + d.

Committee Election. A first method to elect a committee uses threshold sig-
natures to produce an unpredictable coin. The coin is used to determine an
ordering of parties by computing the hash H(coin, i) and to order the parties
accordingly. To elect a size κ committee, one simply takes the first κ parties in
the ordering. The second method, known as cryptographic sortition, uses ver-
ifiable random functions (VRF) to allow each party to individually determine
whether they are part of a committee, and then prove their membership to oth-
ers [1,18]. During the protocol, parties are elected to a committee if and only if
the output of the VRF on a specific string is less than a parameter b.

Throughout the paper, we deal with several security parameters. The sig-
nature size and the hash output size depend on a parameter that ensures com-
putational security. The committee sizes depend on a parameter that ensures a
negligible failure probability. To streamline notation, we denote all these by κ.

4 Asynchronous Common Subset

The flow of the ACS protocol is outlined in Fig. 1 and its concrete steps are
shown in Fig. 3. Each party P1, . . . , Pn, starts with an input of size � and splits
it into b blocks. These b blocks are then encoded into n codewords of size �/b
using a linear error correcting code. Each party Pi forms a message containing
the j-th codeword and a hash of the input, signs it and sends it to party Pj .
Upon receiving a validly signed message, each party multicasts it, along with
the associated signature which will serve as a proof of the codeword validity. We
refer to this procedure of input distribution as INDI, and present it in Fig. 2. INDI
is performed before the agreement on whose messages to output, and ensures
that all parties are eventually able to reconstruct the selected inputs despite an
adaptive adversary.

Upon receiving n − ts messages containing codewords, parties attempt to
reconstruct the input. Instructions related to reconstruction (referred to as
RECON) are shown in Fig. 2. Upon reconstructing a valid input from some party
Pj , parties multicast a signed vote message. Upon receiving ts + 1 votes for Pj ,
parties assemble a certificate of validity for the reconstructed value of Pj , which
consists of ts + 1 signatures on hj , used to form a full signature. The parties
multicast a commit message carrying this certificate and the combined signa-
ture. We note that recently, Das et al. [14] proposed an asynchronous reliable
broadcast protocol using error correcting codes (but without digital signatures)
that is related to this step. Finally, upon receiving a unique commit message
for party Pj , parties input 1 to the corresponding BAj instance. We implicitly
assume that if honest parties receive conflicting commit messages, they do not
input 1 to the respective BA.
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Fig. 1. Diagram of the steps in the ΠACS protocol. BA stands for Byzantine Agreement.
Ii is the set of indices j for which party Pi reconstructed the initial message of party Pj .

Fig. 2. Input distribution and reconstruction from the perspective of party Pi∈{1,...,n}.

Protocol ΠTerm (Fig. 4) assembles an output certificate that allows parties to
output and terminate (OC 0), ensuring no honest parties are “left behind”.

Across the protocols, we use PK as the public keys output by TS.KeyGen and
ski the secret key associated to Pi. For simplicity, in ΠACS and the corresponding
functionalities, we use ϕi,j as both the signature of Pi over si,j , and over hi, sent
to party Pj . In this section (and all sections but Sect. 7), we use a binary BA
protocol with ta-validity, ta-consistency, and ta-termination in the presence of
ta < n/3 adaptive corruptions, and communication complexity of O(n2).

Encoding and Reconstruction. ENC and DEC are associated to a (n, b)-RS
code (Sect. 3). In the reconstruct procedure RECON, before feeding the code-
words into the DEC algorithm, parties first check that the corresponding signa-
tures are correct. Then, parties check whether at least n − ts of the messages
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Fig. 3. ACS protocol from the perspective of party Pi∈{1,...,n}.

Fig. 4. Termination helper protocol from the perspective of party Pi∈{1,...,n}.

have the same associated hash value. If an honest party has not managed to
reconstruct an input yet, it waits for more messages, then calls RECON again.
Thus, each party feeds at least n−ts valid codewords in DEC. The (n, b)-RS code
allows a party to split an input in b blocks and encode them into n codewords.
In order to tolerate d erasures, it must be possible to reconstruct the b blocks
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from n − d correct codewords. Furthermore, to tolerate c errors among n − d
codewords, it must hold that n − b ≥ 2c + d.

If we let b be equal to ts, we can tolerate either ts + ta erasures, or tolerate ta
errors along with ts−ta erasures (since n > 2ts+ta). This means we need to wait
for n− ts + ta codewords in total in order to guarantee correct reconstruction in
the asynchronous case when ta parties are corrupted. Thus, a gain in communi-
cation efficiency, obtained from using codewords to achieve agreement on length
κ hashes instead of length � inputs and from not multicasting the reconstructed
output, leads to potentially having to wait for n − ts + ta messages in order to
reconstruct the correct output if the adversary delivered ta bad codewords.

If we let b be equal to ta, we can tolerate either ts errors and no erasures,
or 2ts erasures. This corresponds to the synchronous case when ts parties are
corrupted, and honest parties receive all messages that were sent after at most
Δ time. Therefore, if an honest party only receives n − ts codewords, they are
all correct. However, we will show below that there is no need to tolerate ts
errors in the synchronous case. Briefly, we can use extra information—the hash
value—in order to detect an incorrect reconstruction, and there will be suffi-
ciently many inputs of the honest parties correctly reconstructed in order to
achieve termination. Therefore it suffices to let b = ts throughout.

Lemma 1. Suppose there are at most ta corruptions. Given a certificate
(commit, 〈h〉) for a party P , all honest parties can eventually reconstruct the
same output in a run of ΠACS.

Proof. If P is honest, then all honest parties will eventually receive n − ts valid
codewords of the true input (since we assume unforgeable signatures), allowing
them to correctly reconstruct x.

Assume P is dishonest. To obtain a valid commit certificate on P ’s hash 〈h〉,
ts − ta + 1 honest parties need to have seen n − ts valid messages, all with the
same h = H(x). Of these n − ts messages, ta could have been sent by corrupted
parties in the multicast round. In the worst case, in the first round when P sent
codewords, it could have sent only n−ts−ta codewords (but all valid) to distinct
honest parties. Eventually, all honest parties receive the n − ts − ta codewords
and can reconstruct the same input x if the code tolerates ts + ta erasures.

On the other hand, the adversary might send ta malicious codewords which
will prevent correct reconstruction from n − ts codewords. However, assuming
H is a collision-resistant hash function, except with negligible probability, there
do not exist inputs x �= x′ reconstructed by different sets of codewords such that
h = H(x) = H(x′). Therefore, if after inputting n − ts codewords to RECON
and not obtaining a valid output with respect to h, the honest parties wait until
they receive sufficient codewords in order to be able to correctly reconstruct.

As stated above, each input of size � is split into to b = ts blocks: n − ts >
ta + ts = 2ta + ts − ta. This means that the code can tolerate either ta + ts
erasures, or ts − ta erasures and ta errors if parties wait for n − ts + ta messages
to honest parties. 	
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Lemma 2. If there are at most ta corruptions, there cannot be two valid cer-
tificates (commit, 〈h〉), (commit, 〈h′〉), associated with P , and h �= h′.

Proof. If P is honest, then all honest parties eventually receive n − ts valid
messages containing codewords and the same hash h of the true input, so they
can correctly reconstruct x. Therefore, assuming unforgeable signatures, no valid
commit message (commit, 〈h′〉) for h′ �= h can exist.

Now suppose P is dishonest. Since there is a certificate (commit, 〈h〉) con-
structed from at least ts + 1 signatures, and ts + 1 > ta, at least one honest
party Pj signed h. This implies Pj reconstructed an input x such that h = H(x)
and saw n− ts distinct valid messages v∗,l = (s∗,l, h). At most ta messages could
have originated from malicious parties, so n − ts − ta > ts + 1 were messages
that honest parties relayed honestly. Assume there is a different honest party
Pi that participated in a different commit certificate on h′ for P . Then that
party also saw n − ts distinct valid messages v∗,l′ = (s∗,l′ , h

′), out of which
n − ts − ta > ts + 1 were messages that honest parties relayed honestly. These
sets of honest parties should not intersect, so 2(n − ts − ta) < n − ta, but this
contradicts our assumption that n > 2ts + ta. 	


Note that if the network is synchronous and ts = �n/2�, ta = 0, different
honest parties could receive commit certificates on different hashes of the same
malicious party (honest parties always multicast the received certificates). In
such a case, honest parties detect equivocation and do not input 1 in the associ-
ated BA. However, if the network is asynchronous equivocation is not necessarily
detected. Nevertheless, as we see below, validity will still hold.

Lemma 3. ΠACS satisfies ts-validity with termination.

Proof. Suppose all honest parties have the same input x and up to ts parties are
corrupted. At most ts <

⌊
n−ta

2

⌋
+1 < n−ts reconstructed values can be different

than x, so there cannot exist an output certificate on a value x′ �= x even if two
honest parties accept different commit certificates for the same corrupted party.

Honest parties will eventually be able to obtain valid commit certificates
for the inputs of at least n − ts honest parties, and therefore (by assumption)
eventually obtain at least n−ts valid certificates for x. At this point, if an honest
party has not yet output, it will input {x} to ΠTerm (in OC 1). If at least ts + 1
parties call ΠTerm via OC 1, then eventually, each party will receive an honest
output certificate on {x}, output and terminate. Below we handle the case in
which some honest parties output before the above conditions were satisfied.

Assume party P output before the above could occur. If P called ΠTerm via
OC 2, then despite ts corruptions that could break security of the ta-secure
BA, it saw x′ reconstructed in a strict majority of valid values associated with
n − ta BA terminated instances. Any set of BA instances constituting a strict
majority must contain at least one instance corresponding to honest party, since⌊

n−ta
2

⌋
+ 1 > ts + 1, and so {x′} = {x} by assumption. Furthermore, in this

case P would have input (x, h) to ΠTerm, and so all parties eventually receive an
output certificate on {x}. Since n − ts >

⌊
n−ta

2

⌋
+ 1, and honest parties’ inputs
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can always eventually be reconstructed, each honest party will be eventually able
to output due to OC 0, even if it was not able to finish the reconstruction of the
corrupted parties’ inputs.

Finally, if P output S as a result of OC 3, then P did not observe a strict
majority of BA instances in S corresponding to the same value. By assumption,
the honest parties have the same input x, so this implies a strict majority of
values S correspond to corrupted parties. However, this contradicts the assump-
tion that only ts parties are corrupted, because � |S|

2 � ≥ ts. Therefore, no honest
party outputs via OC 3 when all honest parties have the same input. 	

Lemma 4. ΠACS satisfies ta-set quality.

Proof. Suppose an honest party Pi output a set S.
If Pi output S = {x} due to OC 0, then Pi must have obtained a valid output

certificate of at least ts+1 signatures on x, which requires that at least one honest
party (call it Pj) input (x, h) to ΠTerm(x, h) in OC 1 or OC 2. Consider each
case. If Pj input (x, h) due to OC 1, then it gathered a valid certificate on at
least n−ts values equal to x. At least n−ts −ta ≥ ts +1 of the parties associated
to these values are honest, so RECON returns their correct original input value.
Otherwise, if Pj input (x, h) due to OC 2, then it output 1 in at least n − ta BA
instances and it saw a strict majority of the reconstructed corresponding inputs
reconstruct to the value x. Because n ≥ n − ts +

⌊
n−ta

2

⌋
+ 1, x was input by

some honest party. Thus, in either case some honest party input x.
If P output S due to OC 3, then it output 1 in at least n − ta BA instances

but without the majority condition satisfied. At least one of these instances
corresponds to an honest party, so S contains some honest party’s input. 	

Lemma 5. ΠACS is ta-terminating.

Proof. Assume no honest party has output yet. Eventually, all honest parties
will obtain at least n− ta valid commit certificates, since there are at least n− ta
honest parties. Moreover, by Lemma 2, even on malicious inputs, honest parties
cannot obtain multiple valid certificates. By the ta-terminating property of BA,
all parties terminate all n BA instances eventually. By the ta-consistency of BA,
all honest parties will agree on the set S of BA instances that output 1. Finally,
by Lemma 1, all honest parties reconstruct the same inputs associated to S. This
allows some honest party to output and terminate.

It remains to show that once some honest party Pi has terminated, all honest
parties eventually terminate. If Pi output due to OC 0 (implying it received a
valid output certificate from OC 1 or OC 2), then eventually all honest parties
receive the certificate multicast by Pi and terminate (if they have not already).

If Pi output due to condition OC 3, then it must have terminated all BA
instances, obtained commit certificates and reconstructed all inputs correspond-
ing to S = {i|BAi output 1} for some |S| ≥ n − ta. Then, ta-termination and
consistency of BA ensure that each other honest party Pj eventually observes
parts (i) and (ii) of OC 3 to be true. Furthermore, each honest party eventu-
ally reconstructs each {xj}j∈S and receives the certificates needed to terminate,
since Pi must have sent these certificates to all other parties during ACS. 	
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Lemma 6. ΠACS satisfies ta-consistency.

Proof. Assume an honest party Pi has output S. By Lemma 5, each other honest
party eventually outputs some set S′. It remains to show that for each possible
combination of output conditions, S = S′.

Suppose S = {x} was output via OC 0, i.e., upon receiving a valid output
certificate. There are two subcases.

First, suppose Pj output S′ = {x′} via OC 0. The existence of an output
certificate for x implies that there exists an honest party P who contributed
a share via either OC 1 or OC 2; likewise, some honest party P ′ contributed
a share for x′. If both P and P ′ contributed shares via OC 1, then quorum
intersection among the two sets of n − ts certificates implies x = x′. If (say) P
and P ′ contributed shares by OC 1 and OC 2, respectively, then any set of n− ts
BA instances and any set of

⌊
n−ta

2

⌋
+1 BA instances must intersect at an honest

party, and so x = x′. Finally, if both P and P ′ contributed shares via OC 2,
then they agree on S, and once again x = x′.

Second, suppose towards a contradiction that Pj output S = ∪j∈Sxj for
reconstructed values xj via OC 3. Of those n − ta values, at most ts can have a
value x′ �= x. But this means that Pj saw at least n−ta−ts ≥ ts+1 reconstructed
values equal to x, in which case the order of else-if clauses would have caused
Pj to output via OC 2, a contradiction.

Third, say Pi outputs S as a result of OC 3. The case in which Pj output {x′}
via OC 0 is equivalent to the second subcase above. Suppose Pj also output
a set S′ via OC 3. Both Pi and Pj must have seen all BA instances terminate
and agree on the set of BA instances S that output 1. By Lemma 1, we have
S′ = S. 	

Communication Complexity. The ΠACS protocol has a communication com-
plexity of O(n2� + κn3) per input of size �.

5 The Update SMR Protocol

In this section, we consider an adaptive adversary without mobility, which can
actively corrupt at most ts parties if the network is synchronous, and can corrupt
at most ta parties if the network is asynchronous, in any given epoch. Protocol 5
describes our construction for a network-agnostic SMR protocol.

Apart from the ACS protocol described in Sect. 4, we also use a block agree-
ment protocol (BLA), whose role is to make parties agree on the input to ACS if
the network is synchronous. Honest parties input (n − ts)-quality pre-blocks of
length L to the BLA and ignore any pre-blocks with quality less than n − ts.

We use the adaptively secure BLA protocol from [8], which we call ΠBLA. The
protocol has a total complexity of O(κn3 + κn2L) per pre-block of size L. ΠBLA

has R inner rounds and guarantees ts-validity, ts-consistency and ts-termination
in a synchronous network when up to ts parties are corrupted. We cannot guar-
antee these in an asynchronous network. However, even if the network is asyn-
chronous, any honest party who terminates ΠBLA does so with output that is a
valid n − ts-quality pre-block.
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The logical flow of the network-agnostic SMR is the following. In every epoch,
each honest party first selects a random sample of L/n transactions from its
buffer of transactions. The selected transactions are then threshold encrypted.
Next, the parties multicast their encrypted samples and start to assemble a
(n − ts)-quality pre-block. If an honest party succeeds in assembling such a
pre-block within the allotted time, it inputs it to ΠBLA, which is guaranteed to
terminate with consistent output B∗ if the network is synchronous. Regardless,
honest parties will then input either B∗ if obtained from ΠBLA or a (n − ts)-
quality pre-block to ΠACS. Recall that ΠACS is guaranteed to terminate regardless
of the network condition. Lastly, honest parties participate in constructing the
final block: they jointly decrypt the output value of ΠACS, populate the block
with the unique transactions, assemble a validity certificate on the hash of the
obtained block, and remove the posted transactions from their buffer.

We consider that epoch e starts for a party at time Te = μ(e−1) as measured
by the local clock. The parameter μ is a spacing parameter that should be heuris-
tically tuned by the network designers to improve throughput, i.e., not have too
much overlap or separation between epochs. If the network is synchronous, then
epochs start at the same time for all parties. If the network is asynchronous, par-
ties might start the epochs at different times and might not output a block until
they have to start the next epoch. We implicitly assume parties can distinguish
between messages from different epochs, e.g. by tagging messages with e.

Below we give our main results on Update. The proofs use the results on
ΠACS and ΠBLA discussed so far, and are provided in the full version [4].

Condition (∗). Assume ta ≤ ts, 2ts + ta < n, and ta ≤ n/3, ts ≤ n/2.

Theorem 1. Under condition (∗), ΠSMR is (1) ts-consistent and ts-complete if
the network is synchronous and (2) ta-consistent and ta-complete if the network
is asynchronous.

Theorem 2. Under condition (∗), ΠSMR is (1) ts-externally valid if the network
is synchronous and (2) ta-externally valid if the network is asynchronous.

Theorem 3. Under condition (∗), ΠSMR is (1) ts-live if the network is syn-
chronous and (2) ta-live if the network is asynchronous.

Communication Complexity. In ΠSMR, the parties select a batch of L/n
transactions, construct a pre-block of size O(L|tx|), and input the pre-block to
ΠBLA. If ΠBLA outputs, it also outputs a pre-block of size O(L|tx|). The input
to ΠACS is of size O(L|tx|), and if the network is synchronous, the output is of
size O(L|tx|). Conversely, if the network is asynchronous, the output is of size
O(nL|tx|). Since the transactions were randomly selected from honest parties’
buffers, with high probability there will be O(nL) transactions in the output
block after decryption, assuming that throughput is not limited by a lack of
transactions.

Step 1 of ΠSMR incurs O(nL|tx|+n2κ) total communication. In step 2, ΠBLA

incurs O(κn3+κn2L|tx|) total communication and ΠACS incurs O(κn3+n2L|tx|)
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Fig. 5. Update SMR protocol with adaptive security for party Pi∈{1,...,n}.

total communication. Finally, in step 3, the parties assemble an output block
and then multicast the signatures of the hash of the block to construct a proof,
incurring O(κn2) communication.

Summing over all steps, we see that Update incurs a total communication
of O(κn3 + κn2L|tx|). Choosing a proposal sample size L that is O(n) yields
an asymptotic total communication of O(κn3) per block of transactions and an
amortized communication complexity of O(κn2) per transaction.

6 The Upstate SMR Protocol

We consider a static adversary that is able to corrupt up to t̂a = (1−ε)ta parties
in the asynchronous case and up to t̂s = (1−ε)ts parties in the synchronous case,
for a small ε > 0. Informally, the ε slack in the corruption thresholds ensures
that with high probability the fraction of corruptions in a smaller committee
chosen at random is close to the fraction of corruptions in the pool of n parties.

Figure 6 describes the input selection mechanism INSEκ that handles input
encoding and primary committee election. The input of size � = L/κ is split as
before into b blocks, which are then encoded into n codewords of size �/b (Sect. 3).
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Fig. 6. Input selection—input encoding and primary committee election—from the
perspective of party Pi∈{1,...,n} in epoch e.

Each party sends the i-th codeword with a hash and a threshold signature over
the epoch number to party Pi. Combining t̂s + 1 threshold signatures yields an
unpredictable value that is used to select a committee of κ parties whose inputs
will form the output.

Protocol 7 describes our construction for a network-agnostic committee-based
SMR protocol. At the start of each epoch, parties choose a random sample of
L/κ transactions from their buffers. The parties then run an input selection
procedure, called INSE, to select κ committee members. Inputs from committee
members are gathered into pre-blocks, which are passed to committee-based
versions of BLA and ACS in the same way as in Update. Because the committee
is of size κ, the pre-blocks are (1−ts/n)κ-quality. The committee-based ACS and
BLA protocols are described at the end of the section, with additional details
in the full version of the paper [4]. After running BLA and ACS, the parties
construct the final block by jointly decrypting the output value of Πκ

ACS.

Condition (∗∗). Assume ta ≤ ts, 2ts + ta < n, ta ≤ n/3, ts ≤ n/2 and t̂a :=
(1 − ε)ta, t̂s := (1 − ε)ts for ε > 0.

Theorem 4. Under condition (∗∗) except with negligible probability, Πκ
SMR is

(1) t̂s-consistent, t̂s-complete, t̂s-externally valid and t̂s-live if the network is
synchronous and (2) t̂a-consistent, t̂a-complete, t̂a-externally valid and t̂a-live if
the network is asynchronous.

The proof follows along the same lines as the proofs of Theorems 1–3, using
the properties of the committee-based protocols Πκ

ACS and Πκ
BLA.

Committee-Based Asynchronous Common Subset. We now present an
ACS protocol Πκ

ACS in a network-agnostic setting with static corruptions.
An overview of the protocol appears in Fig. 8 and the concrete steps are

shown in Fig. 9. Inputs of size � are passed to the input selection procedure INSE
(Fig. 6), which determines the primary committee C. Next, each party multicasts
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Fig. 7. SMR protocol with adaptive security for party Pi∈{1,...,n}.

the codewords they received from the members of the primary committee. To
reduce communication, one secondary committee is elected for each member of
the primary committee. The secondary committee is responsible for constructing
certificates of correctness for the reconstructed values of the primary committee.
The secondary committees are self-elected as described in Sect. 3. Finally, parties
agree on which primary committee members’ values to output by running κ
parallel BA instances.

Inputs are split into b = t̂s blocks using an error correcting code that tolerates
either t̂s erasures or t̂a errors and t̂s − t̂a erasures. For simplicity, in Πκ

ACS, we
use ϕi,j as both the signature of Pi over si,j and over hi, sent to Pj . Across the
protocols, H denotes a collision-resistant hash function and b a bound ensuring
committees of size κ in expectation.

Lemma 7. Πκ
ACS is t̂a-consistent, t̂a-terminating, has t̂s-validity with termina-

tion and t̂a-set quality except with negligible probability.

Committee-Based Block Agreement Protocol. Throughout the remainder
of the section, we consider a network that is synchronous with up to t̂s = (1−ε)ts
corruptions, such that with high probability a committee of size κ will have up
to tsκ/n corrupted members. Honest parties are assumed to input (1 − ts/n)κ-
quality pre-blocks of total length κ to the block agreement protocol.

We construct a protocol BLAκ, based on the BA protocol from [1,2] and
the block agreement protocol from [8], with several changes to achieve security
against adaptive adversaries at a quadratic communication per pre-block. The
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Fig. 8. Diagram of the steps in the Πκ
ACS protocol. CE stands for committee election

and BA for Byzantine Agreement.

Fig. 9. ACS protocol from the perspective of party Pi∈{1,...,n} in epoch e.

high-level idea is to elect a leader who proposes an input among the ones sent
by the parties, such that honest parties will commit on the same value. In our
protocol, the proposal of inputs is performed before the leader election. Due to
the forward secure signatures, the adversary cannot later corrupt the leader and
cause them to equivocate. The construction is given in the full version [4].

Parties encode their pre-blocks into codewords and distribute them, along
with the hash, for future reconstruction and verification. The protocol is run
for multiple rounds, and a leader is elected at each round. The parties commit
on a value when they receive sufficient votes on that value, prioritizing votes
with higher round numbers. In each round, a different committee is tasked with
assembling a certificate. In a given round, only votes from the current committee
are considered valid. Πκ

BLA makes calls to a graded consensus protocol Πκ
GC, which

makes a call to a Propose protocol Πκ
Propose.
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Communication Complexity. Πκ
ACS has communication complexity O(κn� +

κ2n2) communication and Πκ
BLA has communication complexity O(Rκ2n2+κn�),

per input of size �. In Πκ
SMR, Πκ

BLA and Πκ
ACS are run on pre-blocks of size

O(L|tx|). If the network is synchronous, the output is of size O(L|tx|), while if
the network is asynchronous, the output is of size O(κL|tx|). After decryption,
since the transactions were randomly selected from honest parties buffers, with
high probability, there will be O(κL) transactions in the output block.

For simplicity, we omit the |tx| factor in the following paragraph. Πκ
SMR incurs

O(n2L/(κb)+n2κ) total communication for step 1.3 and O(n2κL/b+n2κ2) total
communication in step 1.4. In step 2, Πκ

BLA incurs O(Rκ2n2+κn2L/b+κnL) total
communication and Πκ

ACS incurs O(κn2L/b+κnL+κ2n2) total communication.
Since b = t̂s = O(n), Upstate incurs a total communication of O(Rκ2n2 +

κnL|tx|). This allows us to select a proposal sample size of L = O(Rκn) and
obtain a total communication of O(Rκ2n2) per transaction and an amortized
communication complexity of O(κn) per block L.

7 SMR Under Arbitrary Network Changes

We now consider a network that can arbitrarily transition between synchronous
and asynchronous behaviors and a constrained epoch-mobile adaptive adversary,
who can corrupt at most ts unique parties over the duration of the protocol, and
can move between those ts parties from epoch to epoch, as long as it does not
exceed the ta or ts limit in any epoch or at any moment in time. In this model,
parties’ local machines may reboot to flush the adversary out. Importantly, the
state of the parties is not removed from the adversary’s view after uncorruptions.

Adding a reboot step at the beginning of each epoch to the network-agnostic
protocols discussed so far, Update and Upstate, as well as Tardigrade, results in
protocols that are secure under arbitrary network changes, as long as rebooting
ensures that n > 2ts + ta, ta ≤ ts, with at most ts − ta exposed keys in the asyn-
chronous case, in the restricted epoch-mobile model. For simplicity, we assume
the reboot is instantaneous; otherwise we can adjust the timings of the steps.

Theorem 5. Protocols Update, Upstate, and Tardigrade [8] with reboots are
secure under arbitrary network changes against a constrained epoch-mobile adap-
tive adversary, where n > 2ts + ta, ta ≤ ts.

We prove the first part of Theorem 5 below, after some technical observations.
Proofs of the rest of Theorem 5 and of the Lemmata are given the full version [4].

Throughout, we use threshold cryptographic primitives with a threshold of
ts + 1. Although the adversary has access to up to ts keys/key shares, it cannot
create full signatures or certificates on its own because these require at least
ts+1 valid contributions; likewise, it cannot decrypt independently of the honest
parties. Moreover, while forming commit or output certificates, honest parties
only sign messages that they locally verified, such as a hash value whose associate
input was correctly reconstructed, or the output of the ΠACS protocol.
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In all protocols in this section, we use the binary BA protocol from [7], which
is also designed for a network-agnostic setting with n > 2ts + ta. It is signature-
free, apart from a threshold cryptosystem with high threshold of ts+1 to compute
the common coin and ensure termination. This ensures that even with ts key
exposures (but only ta active corruptions), the protocol remains ta-valid, ta-
consistent and ta-terminating against an adaptive adversary.

Lemma 8. In a ΠACSexecution, if there are at most ta corruptions and ts − ta
exposed parties, then at least n − ta BA instances will terminate with output 1.

Lemma 9. Suppose there are at most ta corruptions and ts − ta exposed parties
during an execution of ΠACS. Given a certificate for a party P , (commit, 〈h〉),
all honest parties eventually reconstruct the same output.

Lemma 10. If there are at most ta corruptions, there cannot be two valid cer-
tificates (commit, 〈h〉), (commit, 〈h′〉) associated with P such that h �= h′.

Proof. (Theorem 5, Update) When the network is only synchronous or only asyn-
chronous, or there is a single asynchronous to synchronous transition, the proof
follows directly from the security proof of Update in Sect. 5.

Suppose the network has undergone a transition from synchronous to asyn-
chronous. The adversary actively controls at most ta parties, but may have
exposed up to ts parties. This means that each pre-block created by an actively
corrupted party may contain up to ts validly signed adversarial ciphertexts. How-
ever, exposed parties still act honestly, so each pre-block created by an honest
party contains at most ta malicious ciphertexts. Because pre-block entries are
received directly from the corresponding party, an honest party’s (n−ts)-quality
pre-block will have at least n − ts − ta honestly created and signed ciphertexts.

In the following, we first examine the security of the building blocks and then
the security of the overall protocol.

ACS. In ΠACS, parties need to be able to reconstruct all values corresponding
to the at least n − ta BA instances that terminated with output 1. The use of
codewords makes the analysis slightly subtler, since the adversary can forge valid
but bad codewords and distribute them in the multicast round of INDI as if they
originated from the exposed parties. By Lemma 8, at least n − ta BA instances
will still terminate, despite exposures. Coupled with Lemmata 9 and 10, which
show there cannot be conflicting certificates and all honest parties are able to
eventually correctly reconstruct the same input, it follows that ΠACS achieves
ta-termination, ta-set quality and ta-consistency. Finally, ts-validity with termi-
nation has the same proof as in Lemma 3.

BLA. There is a Leader mechanism in ΠBLA [8], that is obtained using a strict
majority of parties. Hence it is still unpredictable in the presence of ts exposed
parties. The property required of ΠBLA in the asynchronous case is the following:
if an honest party does output in ΠBLA, its output is a (n− ts)-quality pre-block.
Honest parties only validate and multicast (n−ts)-quality blocks, so this property
still holds.
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SMR. A corrupted party can forge the signature of an exposed party when
assembling its own (n − ts)-quality pre-block. Therefore, up to ta pre-blocks
input to ΠBLA could have only n − 2ts entries originating from honest parties. If
such a block is output by ΠBLA, then the same holds for the output of ΠACS.

By ta-consistency and ta-validity with termination of ΠACS, all honest parties
output the same set of pre-blocks. As a result, at least n − ta > ts parties con-
tribute valid decryption shares, and so every honest party is able to reconstruct
the same block. Therefore, Update SMR is ta-consistent and ta-complete.

Next, we argue that ta-liveness holds. If an adversarial pre-block is output
by ACS, only n − 2ts honest parties are guaranteed to remove L/n transactions
in a given epoch. Thus, the presence of key exposures increases the number of
epochs needed for tx to move to the front of sufficiently many honest parties’
buffers (see [4]). However, this still happens and ensures that tx is eventually
output, but the probability increases with the number of epochs.

External validity follows from consistency of ΠACS, since a threshold of ts +1
is used in the validity certificates over the block hashes.

Finally, the adversary cannot break the liveness of the protocol by erasing
threshold key shares of the corrupted parties: any ts + 1 shares can be used to
reconstruct, so in order to prevent reconstruction, the adversary would need to
erase at least n− ts − ta shares. But this would require the adversary to corrupt
more than ts parties over the duration of the protocol, since 2ts + ta < n. We
conclude that security is preserved even across multiple network transitions. 	


8 Asynchronous Proactive Secret Sharing

We first consider an asynchronous network in the presence of a mobile adaptive
adversary. At the end, we extend the analysis to changing network conditions.

In each epoch, the adversary is limited to ta corruptions, but those ta corrup-
tions need not target the same parties in each epoch. Thus, over multiple epochs,
the adversary could have controlled more than ta + 1 different parties. While a
party is corrupted, its current epoch is considered to be undefined, since it can
behave arbitrarily. Upon becoming uncorrupted, a party’s local epoch number
is considered to be the epoch in which it was originally corrupted. We refer to
the parties that are not corrupted as honest (in that epoch).

Here, we use an additional assumption of secure (authenticated private) chan-
nels, implemented using a pairwise shared key inaccessible to the adversary, e.g.,
stored in secure hardware. We show that even with secure channels, it is impos-
sible to have a proactive asynchronous protocol without making any assumption
on epoch length (as in [10] where epochs are defined to take place between clock
ticks) but with epochs determined by a successful reshare of the secret (as in [33]
but where the network is partially synchronous). While Cachin et al. [10] briefly
remark upon this impossibility before making the assumption of clock ticks and
“asynchronous proactive channels”, we fully model and prove this result.



State Machine Replication Under Changing Network Conditions 705

Definition 5. A (ta+1)-out-of-n proactive verifiable secret sharing scheme with
reshare is defined by an algorithm Share and protocols Reshare,Reconstruct that
satisfy the following:

– Share takes as input a secret s ∈ F and outputs shares (s(0)1 , . . . , s
(0)
n ). Party

Pi, i = 1, . . . , n is given s
(0)
i and sets its epoch number to 0.

– Reshare is an interactive protocol run by a subset of parties S of size at least
n − ta that takes as input an epoch number τ , a set of shares associated
to that epoch number consisting of the share of each of the parties in S:
(s(τ)i1

, . . . , s
(τ)
i|S|) and outputs to every party Pi, i ∈ [n] a new share s

(τ+1)
i or an

error symbol ⊥. A party Pi that receives output from Reshare with associated
epoch τ sets its epoch number to τ + 1.

– Reconstruct is an interactive protocol run by a subset of parties S of size
at least n − ta, that takes as input a epoch number τ , a set of shares
(s(τ)i1

, . . . , s
(τ)
i|S|) and outputs to all parties either a value s′ ∈ F or an error

symbol ⊥.

An honest party is said to complete Share,Reshare, or Reconstruct in epoch τ
when they generate the corresponding output from the algorithm in epoch τ .

We give a standard privacy game between a challenger and an adversary A
where the goal of the adversary is to learn the secret in the full version of the
paper [4]. The advantage of the adversary is denoted by Adv(A).

Definition 6. A proactive verifiable secret sharing scheme with reshare is secure
against a ta-limited adversary if it satisfies the following:

– (Privacy): Adv(A) is negligible.
– (Correctness): For any s ∈ F, conditioned on the adversary eventually deliv-

ering all messages between honest parties, it holds that: if during any epoch τ ,
a set S of least n − ta honest parties locally call Reconstruct on epoch num-
ber τ and local shares associated with τ , they obtain the initially shared secret:
Reconstruct(τ, {s

(τ)
i }i∈S) = Reconstruct(Share(s)). Furthermore, all parties in

S proceed to epoch τ + 1.
– (Liveness): For any epoch number τ ≥ 0, if an honest party has reached

epoch τ , i.e., has obtained output from the Reshare protocol associated to epoch
τ − 1, then all honest parties will eventually reach a epoch number τ ′ ≥ τ ,
provided the adversary delivers all messages sent between honest parties so
far and the responses triggered by these messages.

In verifiable secret sharing, in order to achieve correctness, Share,Reshare
and Reconstruct need to implicitly have validation procedures of the inputs. We
asked for at least n − ta instead of ta + 1 parties to participate in Reconstruct
to guarantee success against ta malicious parties who could submit ta invalid
shares. Nevertheless, ta + 1 valid shares are sufficient to reconstruct the secret.

Theorem 6. There does not exist a secure asynchronous (ta+1)-out-of-n proac-
tive verifiable secret sharing scheme with reshare.
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Fig. 10. We denote by s
(τ)
j,i the intermediate share obtained by party Pi from party Pj

in epoch τ . Pj can construct its share for the next epoch s
(τ+1)
j from n− ta values s

(τ)
j,i .

The red quantities are in the view of the adversary. The red edges represent delayed
messages from epoch 1 delivered in epoch 3. (Color figure online)

Proof. We show that an adversary can break privacy by amassing shares corre-
sponding to ta +1 parties in a single epoch. Then, we prove that protocols which
avoid the prior attack do not satisfy liveness. For simplicity we first consider the
case of non-interactive reshare protocols, and then handle the general case.

Non-interactive Reshare Protocol. Consider n = 4 and ta = 1. This coun-
terexample is depicted in Fig. 10 and can be extended to arbitrary n and cor-
ruption threshold ta < n/3.

The adversary corrupts party P1 in epoch 1. At this point in time, the adver-
sary knows the state of P1, which includes the share s

(1)
1 . Each honest party

locally initiates the Reshare protocol at the onset of epoch 1. The adversary
instructs P1 not to deliver any message and delivers all the following messages:
from P2 to all other parties, from P3 only to P1 and P4, and from P4 only to P1

and P3. The parties P3, P4 thus obtain sufficient information to construct their
shares s

(2)
1 , s

(2)
3 , s

(2)
4 and advance to epoch 2. However, P2 remains in epoch 1.

The adversary uncorrupts party P1 after Reshare was completed. At this point in
time, the view of the adversary includes s

(1)
1 and the intermediate shares for s

(2)
1 .

The adversary allows P1 to also advance to epoch 2.
At the onset of epoch 2, each honest party locally initiates the Reshare proto-

col. The adversary delivers all messages between parties. This enables all parties
to obtain their corresponding share s

(3)
1 , s

(3)
2 , s

(3)
3 , s

(3)
4 , and advance to epoch 3.

At the onset of epoch 3, the adversary corrupts party P2 and delivers the
messages originated in epoch 1 from P3 and P4 destined to P2. The adversary now
has 3 messages, counting s

(1)
1 , and is able to obtain s

(2)
2 . Hence, it reconstructs s

from two correct shares in epoch 2: s
(2)
1 , s

(2)
2 , without corrupting more than

ta = 1 party per epoch.
Restarting and flushing the adversary out does not prevent this attack, since

there is no synchronizing signal instructing a corrupted party to restart before
the first Reshare is completed. This could be addressed using erasures and/or
interaction; however, we show that protocols that avoid this attack are not live.
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Interactive Reshare Protocols. Consider a generic interactive Reshare protocol
where two parties, Pi and Pj , start an epoch with s

(τ)
i and s

(τ)
j , respectively. After

r rounds of communication, Pi obtains s
(τ)
j,i and Pj obtains s

(τ)
i,j .

If only one of the r messages is useful for computing the new share, then
the previous attack still applies. If more than one of the r messages are needed
for computing the new share, and honest parties erase their previous state when
transitioning to a new epoch (implying they do not respond to messages origi-
nated from previous epochs), then the above attack does not break privacy. But
such an interactive asynchronous protocol where parties can only advance to the
next epoch after repeated interactions does not achieve liveness, as shown next.

Consider now that the adversary delays all messages destined to P1, hence
keeping it in epoch 1, while allowing the rest of the parties to progress an arbitrar-
ily large number of epochs τ . At this point, the adversary delivers all messages
that were sent so far, including the messages originated at P1 as response to the
received messages. However, since obtaining the output of any Reshare requires
interaction and the other honest parties do not respond to messages originated
in previous epochs in order to preserve privacy, a party P1 cannot reach a sub-
sequent epoch based only on the messages sent so far, breaking liveness. 	


The attack above hinges on the fact that a party can still retrieve in epoch
τ ′ > τ the contents of a message sent to it in epoch τ . Both privacy and liveness
would be maintained if parties had access to “setup-free asynchronous forward-
secure channels” with the following properties: (1) A message sent in epoch τ can
only be read in epoch τ ; (2) At the onset of epoch τ +1, the sender and receiver
on that channel have access to the new secret and public key, respectively, i.e.,
the adversary does not control the delivery of this information (it should not be
interactive); (3) Messages in different epochs are encrypted with different keys.

Secure co-processors using forward secure encryption are not sufficient to
implement this kind of channel. Say a party P1 was delayed and is still in epoch τ ,
and all other parties advanced to epoch τ ′ > τ , updating their channel keys. But
when honest parties start a new Reshare, they cannot use the key associated to
P1’s epoch τ , because an adversary corrupting P1 in epoch τ would learn shares
from epoch τ ′ and break privacy. These are points (1) and (3). So until the
adversary delivers the messages from epoch τ , P1 is stuck, but this does not
break liveness if the protocol is non-interactive. If point (2) is satisfied, the other
parties need to already have the public key in the channel for epoch τ + 1,
otherwise the impossibility proof for interactive protocols would apply. But a
forward secure with unique public key allows a ciphertext encrypted at epoch
τ + 1 to be decrypted at epoch τ , so privacy is broken.

Note that in [10], the transition between epochs is external, triggered by a
clock tick, and can happen even if a party did not complete the Reshare protocol
in the current epoch. This allows parties to rely on the clock tick event to set
new channel keys in a synchronized way.

To circumvent the result in Theorem 6, Yurek et al. [36] considered high
reconstruction thresholds and defined local epochs such that a party can decide
to not pass to a subsequent epoch even if it has all shares to do so, unlike our
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definition based on completing a Reshare. Briefly, the impossibility does not hold
because (i) a party decides to progress to the next epoch after receiving at least
n − ta epoch τ messages (while in epoch τ), forcing the adversary to deliver
at least these many messages to every party per epoch; (ii) combined with a
high reconstruction threshold of n − ta, the ta shares held by the adversary in
epoch τ and the at most ta messages it could have delayed are not sufficient to
reconstruct s(τ), as n − ta > 2ta. We also mention that the constructions in [36]
assume every party has Paillier key pairs that are not refreshed after corruptions.

Proactive Secret Sharing Under Network Changes. We again consider a
network that can arbitrarily switch between synchronous and asynchronous cases
and n > 2ts + ta, ta ≤ n/3, ts ≤ n/2. Note that in this setting, the Reconstruct
threshold is at least ts + 1 and the Reshare threshold is n − ts in order to satisfy
privacy in case the network is synchronous.

Corollary 1. There does not exist a secure (ts, ta)-proactive verifiable secret
sharing scheme with reshare under arbitrary network transitions.

Proof. Assume the network is in an asynchronous state, so the adversary can
corrupt up to ta parties in the same local epoch. The arguments in the proof of
Theorem 6 still hold. For the privacy attack, the adversary delays the messages
in epoch τ towards ts − ta +1 honest parties, until the epoch(s) it corrupts these
parties (if ts ≥ 2ta, it needs more epochs to corrupt all ts − ta +1 parties), while
allowing the rest of the parties to complete the refresh in all epochs, i.e., deliver
and receive at least n − ts share messages. For the interactive liveness attack,
the adversary can still cause the parties to be arbitrarily far apart. 	


We remark that the clock ticks used in ΠSMR (Sect. 5) to start an epoch are
not the same as the ones assumed in [10]. In our model, the epoch started at
Te does not necessarily finish by Te+1, and can continue in the background, so
liveness could be lost if all parties would erase their key shares at Te+1.
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Abstract. Mimblewimble is a cryptocurrency protocol that promises
to overcome notorious blockchain scalability issues and provides user
privacy. For a long time its wider adoption has been hindered by the
lack of non-interactive transactions, that is, payments for which only the
sender needs to be online. Yu proposed a way of adding non-interactive
transactions to stealth addresses to Mimblewimble, but this turned out
to be flawed. Building on Yu and integrating ideas from Burkett, we give
a fixed scheme and provide a rigorous security analysis strenghtening the
previous security model from Eurocrypt’19. Our protocol is considered
for implementation by MimbleWimbleCoin and a variant is now deployed
as MimbleWimble Extension Blocks (MWEB) in Litecoin.

1 Introduction

Mimblewimble (MW) is a cryptocurrency protocol that addresses the problem of
ever-growing blockchain data that needs to be stored by full nodes in the system.
While in all other cryptocurrencies, such as Bitcoin, the full transaction history
must be kept for ever,1 in MW, coins can be deleted after having been spent while
maintaining public verifiability of the ledger. Instead of growing linearly (like
Bitcoin [Nak08], whose blockchain is now > 400 GB)2, MW-based currencies
only need to store the currently existing coins (the UTXO set) plus some small
data per transaction.

Mimblewimble achieves this by cleverly combining three ideas that were
initially envisioned for Bitcoin: (1) Confidential transactions [Max15] hide the
transacted amount by only including commitments to the amounts of the inputs
and outputs and giving proofs that the sum of the input values equals that
of the output values, showing the transaction is “balanced”. Thus, no transac-
tion creates fresh money (apart from coinbase transactions, which create money
explicitly). Confidential transactions are now implemented e.g. in Monero.3

1 An exception are recent proposals building on more speculative technology such as
recursive zk-SNARKs; cf. https://minaprotocol.com/lightweight-blockchain.

2 https://www.blockchain.com/charts/blocks-size.
3 https://www.getmonero.org/resources/moneropedia/stealthaddress.html.
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(2) CoinJoin [Max13a] is the idea of merging (or aggregating) several trans-
actions into one big transaction, in a way that makes it impossible to associate
the inputs and outputs of the original transactions. In Bitcoin, this can only
be done by having the creators of the transactions interact in order to merge
them before being included in the blockchain. In contrast, in MW merging can
be done a posteriori without involving the original creators. The result is that
in a MW blockchain all transactions are merged into one huge transaction, and
there is no information about which inputs led to which outputs.

(3) Transaction cut-through [Max13b] is the idea that if a transaction spends
an output (which corresponds to a “coin” in the system) txo1 and creates txo2,
which is then spent by another transaction creating txo3, then this should be
equivalent to a “cut-through” transaction spending txo1 and creating txo3. While
in Bitcoin this could only be done for “unconfirmed transactions”, i.e., ones not
yet included in any block, MW allows cut-through to be done after confirmation,
which is what enables MW’s space-efficiency improvements. As every spent coin
is removed, the result is that the huge transaction representing a MW ledger only
has inputs that are the coinbase transactions and outputs that are the unspent
coins. In addition, this greatly improves user privacy, as the blockchain reveals
neither the transacted amounts nor the transaction graph defining how coins are
being transferred (in Bitcoin all this can be inferred from the blockchain).

The main shortcoming of Mimblewimble is that the sender and the receiver(s)
of a transaction need to compute the transaction in an interactive protocol. It is
thus not possible for a sender to simply transfer money to a destination address
without any involvement of the owner of that address, which is the standard
setting in all major cryptocurrencies.

Mimblewimble (MW) was first proposed by an anonymous author in 2016
[Jed16]. After being initially investigated by Poelstra [Poe16], a formal model and
an analysis of MW were provided by Fuchsbauer, Orrù and Seurin (FOS) [FOS19]
in 2019. In 2020, Burkett [Bur20] proposed an extension of Mimblewimble sup-
porting non-interactive transactions, later refined by Yu [Yu20]. We will refer
to this extension as MW-Yu. In this work, we first asses the security of MW-
Yu [Yu20, §2.1] and describe discovered vulnerabilities. We then fix the scheme,
also integrating an idea from a more recent proposal from Burkett [Bur21] and
give security proofs that our scheme satisfies (an appropriate adaptation of) the
rigorous FOS [FOS19] security model for aggregate cash systems.

MimbleWimbleCoin plans to implement the protocol by year-end 2022.4 A
variant of our protocol is used in the MimbleWimble Extension Blocks (MWEB),
which are now supported by Litecoin (one of the top cryptocurrencies with a
market capitalization of > 4 billion USD).5

The Mimblewimble Protocol. MW uses a group G (which we denote addi-
tively) of prime order p with two generators G and H. As with confidential

4 https://www.mwc.mw/mimble-wimble-coin-articles/mimblewimble-non-
interactive-transactions-review.

5 https://blog.litecoin.org/litecoin-core-v0-212-release-282f5405aa11 and
https://twitter.com/DavidBurkett38/status/1555100039822954496.

https://www.mwc.mw/mimble-wimble-coin-articles/mimblewimble-non-interactive-transactions-review
https://www.mwc.mw/mimble-wimble-coin-articles/mimblewimble-non-interactive-transactions-review
https://blog.litecoin.org/litecoin-core-v0-212-release-282f5405aa11
https://twitter.com/DavidBurkett38/status/1555100039822954496
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transactions [Max15], a coin is a Pedersen commitment C = Cmt(v, q) :=
vH + qG to its value v using some randomness q ∈ Zp, together with a so-called
range proof π guaranteeing that v is contained in some interval of admissible
values. In MW, knowledge of the opening q of the commitment enables spending
the coin. Similarly to Bitcoin, a transaction in MW contains a list of input coins
C ∈ G

n and output coins Ĉ ∈ G
n̂, where

Ci = viH + qiG for i ∈ [n] and Ĉi = v̂iH + q̂iG for i ∈ [n̂] .

Leaving fees and coinbase (a.k.a. minting) transactions aside, a transaction is
balanced if and only if

∑
v̂ − ∑

v = 0 (where for a vector v = (v1, . . . , vn), we
let

∑
v :=

∑n
i=1 vi). For coins as defined above, this is equivalent to

∑
Ĉ − ∑

C = (
∑

q̂ − ∑
q) G ,

a quantity called the kernel excess E ∈ G in MW. If the transaction is balanced,
then knowledge of the openings q̂ and q of all involved coins implies knowl-
edge of the discrete logarithm log E (to base G) of the excess E. Intuitively, if
the producer of the transaction proves knowledge of log E then, together with
the binding property of Pedersen commitments, this should guarantee that the
transaction is balanced. In MW this is done by generating a signature σ under
public key E, using its discrete logarithm

∑
q̂ − ∑

q as the signing key.
FOS [FOS19] prove that when using Schnorr signatures (and assuming the

range proofs are simulation-extractable; cf. Sect. 5), balancedness follows from
the hardness of computing discrete logarithms in G in the random-oracle model.
They also show that as long as a user owning a coin C in the ledger keeps the
opening private, no one can steal C (i.e., create a transaction that spends C).

Transactions in Mimblewimble can easily be merged non-interactively, in a
similar way to CoinJoin [Max13a]. Consider two transactions tx1 = (Ĉ1,C1,π1,

E1, σ1) and tx2 = (Ĉ2,C2,π2, E2, σ2). The aggregate transaction tx is defined as
the concatenation of inputs and outputs, that is, (letting “‖” concatenation)

tx =
(
Ĉ1‖Ĉ2,C1‖C2,π1‖π2, E1‖E2, σ1‖σ2

)
.

A transaction tx = (C, Ĉ,π,E,σ) is valid if all π’s and σ’s verify and if
∑

Ĉ − ∑
C =

∑
E . (0)

As outputs in one transaction that also appear as inputs in the other cancel out
in Eq. (0) for tx, they can simply be removed from the input and output list
(together with their range proofs), while validity of tx will be maintained. This
has been called transaction cut-through in the literature [Max13b]. In MW, the
ledger is defined as the cut-through of the aggregation of all transactions. Since
every spent coin (a.k.a. “transaction output”, TXO) is removed by cut-through,
the outputs in the ledger are precisely the unspent TXOs (UTXO), representing
the current state of the ledger. FOS [FOS19] further remarked that if the used
signature scheme supports aggregation, then σ1‖σ2 can be replaced by their
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aggregation to save further space. Then the only trace of a transaction whose
outputs have been spent in the ledger is the value E.

Even if the lists of inputs and outputs in an aggregate transaction tx are shuf-
fled, one can still link inputs and outputs come from the same component trans-
action, as tx will contain an excess value E that equals the difference between the
sum of the outputs and inputs of the original transaction. This can be prevented
by using kernel offsets [Dev20b], where E is replaced by E + tG for a random
t ←$Zp and t is included in the transaction; the aggregate of two transactions
with (E1, t1) and (E2, t2) will then contain (E1‖E2, t1 + t2). A consequence of
kernel offsets is that, given an aggregated transaction, nothing can be deduced
about which inputs and outputs belonged to the same original transaction. This
is implied by our notion of transaction privacy (Sect. 6.6), which we prove our
scheme to satisfy.

Our analysis concerns the application layer, and we do not provide network-
level privacy guarantees. Network adversaries that observe transactions being
broadcast, or traffic analysis in general, constitute an entirely different problem
that we consider outside the security of the Mimblewimble protocol per se. In
practice, protocols like Dandelion [VFV17] and Tor6 can help mitigating attacks
at the network level. See for instance their adoption in Grin7.

Non-interactive Transactions. Most implementations of MW create new
transactions via an interactive protocol between sender and receiver in order to
produce the Schnorr signature σ under a secret key that depends on the openings
of the sender’s and the receiver’s coins.8 FOS [FOS19] proposed a transaction
protocol, where the sender creates all output coins, so that she can compute σ
on her own. She then sends the receiver (through a separate private channel)
the transaction along with the secret key associated to one of the output coins.
The latter creates a transaction spending this coin, merges it with the received
transaction and broadcasts the aggregate transaction to the miners. The down-
side of this approach is that there is a window of time in which both sender and
receiver can spend a coin, which can lead to deniability issues for payments.

In 2020, Yu [Yu20] posted on ePrint an extension of MW for achieving non-
interactive transactions by adding stealth addresses [vS13,Tod14]. Each user has
a wallet (or stealth address) (A,B) ∈ G

2. Given a destination wallet, a sender
can derive a one-time address, unique for every transaction, to which she sends
the money. These one-time addresses are unlinkable to the wallet they correspond
to, yet the owner of the wallet is (the only one) able to derive the secret key
for it. In detail, the sender chooses a uniform element r ←$Zp and defines the
one-time key for stealth address (A = aG,B = bG) as P = H(rA) ·G+B, where

6 https://www.torproject.org/.
7 https://docs.grin.mw/wiki/miscellaneous/dandelion/.
8 In Grin this is documented in the grin-wallet documentation: https://raw.

githubusercontent.com/mimblewimble/grin-wallet/master/doc/transaction/basic-
transaction-wf.png.
In Beam, this is documented in the developer documentation: https://github.com/
BeamMW/beam/wiki/Cryptographic-primitives.

https://www.torproject.org/
https://docs.grin.mw/wiki/miscellaneous/dandelion/
https://raw.githubusercontent.com/mimblewimble/grin-wallet/master/doc/transaction/basic-transaction-wf.png
https://raw.githubusercontent.com/mimblewimble/grin-wallet/master/doc/transaction/basic-transaction-wf.png
https://raw.githubusercontent.com/mimblewimble/grin-wallet/master/doc/transaction/basic-transaction-wf.png
https://github.com/BeamMW/beam/wiki/Cryptographic-primitives
https://github.com/BeamMW/beam/wiki/Cryptographic-primitives
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H is a cryptographic hash function. Being provided R := rG, the owner of (A,B)
can derive the secret key log P as H(aR) + b.

Integrating stealth addresses into MW is not straightforward, as the currency
does not provide addresses for sending money. Yu’s proposal [Yu20], built on top
of Burkett’s [Bur20], received multiple feedbacks from the community, and was
further updated with notes describing possible attacks and countermeasures. In
essence, the idea is to extend an output (C, π) in MW by a one-time key P chosen
by the sender for a destination address, as well as an ephemeral key R that allows
the receiver to compute the secret key for P . To prevent the value P from being
modified (which would mean stealing it from the receiver), a signature ρ on P
under signature-verification key R (of which the sender knows the logarithm) is
added. An output is thus of the form (C, π,R, ρ, P, χ).

Moreover, the mechanism for letting the receiver derive the secret key for P
can also be used to let the receiver obtain the opening of the commitment C
(Yu [Yu20, §2.1.1] does this by setting q = H(H(rA)G+B)). Note that knowing
the so-called “view key” (a,B) of stealth address (aG,B), one can derive from
R both P (and thus check if the payment is for that address) and q (and thus
check if C commits to a given amount).

Usually in cryptocurrencies, when spending an output linked to a key P ,
the transaction is signed with the secret key of P . In Mimblewimble however,
aggregation of transactions should hide which inputs and outputs come from
the same component transaction. Yu therefore proposes to use logarithms of
the values P in the inputs and the values R̂ in the outputs to “authenticate”
the spending, similarly to how the openings of the input coins authenticate the
output coins via Eq. (0) in MW. Namely by proving knowledge of the logarithm
of

∑
R̂ − ∑

P .
Yu proposes to simply arrange the R̂ values so that the above results in the

excess E (defined as
∑

Ĉ − ∑
C). However, this is only possible if one of the

outputs Ĉi goes back to the sender (who can choose the corresponding value q̂i

arbitrarily); for all other coins, R̂j (together with the stealth address) defines
q̂j , which defines E, for which R̂j has to be chosen, which is infeasible. We
therefore modify the scheme and introduce a stealth excess X :=

∑
R̂ − ∑

P ,
under which we add (as for E) a signature to the transaction. Our scheme then
supports transactions for which all outputs are sent to destination addresses. At
the time of writing, the core proposal in [Yu20, §2.1] is still affected by further
issues. The ones known before our analysis are the following:

– As illustrated in [Yu20, §2.9.1], MW-Yu is susceptible to a rogue-key attack
[Yu20, §2.9.3]. A fix was also proposed, which requires the addition of one
signature per transaction input, namely a signature proving knowledge of the
logarithm of P . The security and correctness analysis of this proposed change
are not detailed further.

– Mixing NIT with non-NIT transactions, as envisaged in [Yu20], leads to
correctness issues within the balance equations.9 No argument for why the

9 https://forum.mwc.mw/t/non-interactive-transaction-and-stealth-address/32.

https://forum.mwc.mw/t/non-interactive-transaction-and-stealth-address/32
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security is preserved is given, especially w.r.t. [Yu20, Eq. 2 ]. (We do not
considered “mixed transactions” in our scheme.)

A major drawback of Yu’s and our scheme (and MWEB) is the lack of support
for transaction cut-through. Since an output is associated with a value R̂i and
an input is associated with a value Pj , if an output is spent via an input in an
aggregated transaction, these values do not cancel out, and removing them would
thus change the stealth excess

∑
R̂−∑

P (we discuss this in detail in Sect. 4.3).
We note that in practice, nodes would only store and check validity of the most
recent excesses and perform cut-trough for coins that have been spent in the
past beyond a so-called horizon (cf. [Bur21, §4]). Cut-through enables attacks
by miners who could change outputs of transactions (and violate transaction-
binding, see below), which is only relevant for recent transactions; once they are
in a block beyond the horizon, they are “protected” by the consensus mechanism
(a security layer that is outside of our model).

Differences to MWEB. The variant used by Litecoin [Bur21] differs in how
exactly the secrets for an output are derived from a stealth address (A,B): In our
scheme, from a Diffie-Hellman (DH) share R = rG, we derive (k, q) := H(rA),
which defines the one-time address as P := kG+B and the coin as C := vH+qG.
Outputs in [Bur21] have an additional element Ke (in addition to Ks, which
corresponds to our R) used as the Diffie-Hellman share (deriving its randomness
from log Ks). A symmetric key, derived from the DH-shared key, is then used
to encrypt v and derive q. Our variant is arguably simpler, which facilitates our
formal analysis.

Our Contributions

Scheme. We propose a new protocol for non-interactive transactions, greatly
inspired by Yu [Yu20] and using an idea by Burkett [Bur21] to overcome one of
the found issues. Our protocol is a variant of what is now already being used
by Litecoin in its MimbleWimble Extension Blocks. In Sect. 4 we discuss further
issues that emerged after the publication of [Yu20].

Model. We then analyze our protocol in a strengthening of the model pro-
posed in [FOS19], which did not protect against a malleability attack by miners
(discussed below). We only consider non-interactive transactions, which greatly
simplifies the security notions. We define security experiments that capture the
following attacks:

(i) creating money other than via coinbase transactions (inflation resistance)
(ii) spending someone else’s output in the ledger (theft prevention)
(iii) stealing money from a transaction not yet merged with the ledger (trans-

action-binding)
(iv) breaking privacy by learning anything about the transacted amounts, the

destination addresses or the relations of the inputs and outputs in an aggre-
gated transaction (transaction privacy)
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Inflation resistance and theft prevention are straightforward adaptations of the
notions from [FOS19, Def. 10 and 11]. Transaction privacy is stronger than FOS’s
privacy notion [FOS19, Def. 12], which only guarantees that amounts are hidden
(FOS’s scheme does not use kernel offsets, which means one can “disaggregate”
transactions). To concisely capture all anonymity, privacy and confidentiality
guarantees, we define a simulation-based notion requiring that a transaction
can be simulated without knowledge of any information that transactions are
supposed to hide.

We introduce transaction-binding, a notion that protects users against mali-
cious miners by guaranteeing that no outputs can be removed from a transaction.
In particular, after a transaction tx that spends some output txo was broadcast,
no one can create a transaction tx′ that spends txo but does not include all
outputs of tx. We note that theft resistance [FOS19, Def. 11] (which deals with
interactive transactions) only guarantees the following: a user that engages in
a protocol with the adversary spending value in C and creating change C′ for
herself is guaranteed that C′ are included in the ledger as soon as any of C is
spent.

Proof. We prove the security of our protocol by following the provable-security
methodology and giving security reductions of the different security notions to
standard computational hardness assumptions in idealized models.

In our security proofs, we assume that the discrete logarithm problem is hard
in the underlying group G and for transaction privacy we additionally make
the decisional Diffie-Hellman (DDH) assumption. Our main building block is a
zero-knowledge proof system for proving knowledge of discrete logarithms that
satisfies strong simulation-extractability (defined in Sect. 5).

We show that the Schnorr signature scheme, and a variant thereof, which
we use to improve efficiency of our scheme, satisfy these notions in an idealized
model, namely the combination of the algebraic group model [FKL18] and the
random oracle model without making any computational assumptions. Finally,
we assume that the used range proofs are merely proofs of knowledge10 and do
not require that they are simulation-extractable as in previous analyses [FOS19].

2 Preliminaries

Let ε denote the empty string, and [a] the set {1, . . . , a} (for some a ∈ N). We
assume the existence of a group G of prime order p and two “nothing-up-my-
sleeve” generators G,H ∈ G (that is, the discrete logarithm of H to base G is
not known to anyone). The length of the prime p is the security parameter λ. (A
typical choice could be the group Secp256k1 and hence λ = 256.) For X ∈ G,
we let log X denote the discrete logarithm of X to base G, that is log X = x
with X = xG.

10 This is in some sense minimal, since for Pedersen commitments the language (see
Sect. 2) is trivial; cf. Sect. 6.1.
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Proofs of Possession. We consider a cryptographic hash function which we
model as a random oracle and denote by H(·). We use (key-prefixed) Schnorr
signatures, which are unforgeable under the DL assumption in the random oracle
model (ROM), and whose security has been extensively studied in the past lit-
erature [PS00,Seu12]. Here we interpret Schnorr signatures as (zero-knowledge)
proofs of knowledge of the secret key, that is, if X = xG ∈ G is the public key
then a Schnorr signature is a proof of knowledge of x = log X.

We generalize this to a proof of knowledge of two logarithms that has the
same size as a Schnorr signature. Interpreting knowledge of log X as “possessing”
X, we call the proof system PoP for “proof of possession”. More formally, PoP is
a proof system for the following NP-relation (whose statements contains a part
m, sometimes called a “tag”), defined w.r.t. a group description (p,G, G):

{(
(X,Y,m), (x, y)

)
: X = xG ∧ Y = yG ∧ m ∈ {0, 1}∗} .

A proof for a statement (X,Y,m) ∈ G
2 × {0, 1}∗ is computed via PoP.P using

the witness (x, y) by picking a uniform r ←$Zp, defining R := rG, computing
(c, d) := H(X,Y,m,R) and returning a proof (R, s) ∈ G × Zp with s := r +
c · x + d · y mod p. The verification algorithm PoP.V((X,Y,m), (R, s)) computes
(c, d) := H(X,Y,m,R) and checks whether sG = R+c ·X +d ·Y (see also Fig. 2,
page 18).

The system PoP can also be used to prove knowledge of a witness x ∈ Zp

for statements (X = xG,m) by using Schnorr signing and verification (defined
like above but setting y := 0). A proof of possession of X with tag m is thus
a Schnorr signature on m under public key X. We use PoP proofs for different
types of values (proofs ψ for (P,D), proofs σ for excesses (E,X) and proofs
ρ for R). We assume that these are “domain-separated”, which can easily be
achieved by including the type in the tag of the statement. We also assume that
random oracles H used elsewhere in the scheme (e.g. to derive the value q) are
domain-separated from H used for PoP.

In the full version we show that in the algebraic group model [FKL18] com-
bined with the ROM, the proof system PoP is a strongly simulation-sound zero-
knowledge proof of knowledge of logarithms, a property that will be central in
the security analysis of our protocol. Zero-knowledge means that there exists a
simulator (which here controls the random oracle) that can simulate proofs for
any statements without being given a witness that are indistinguishable from
honestly generated proofs. Proof of knowledge (PoK) means that there exists
an extractor that from any prover (which here is assumed to be algebraic; see
Sect. 5) that produces a valid proof ψ for a statement (X,m) (or (X,Y,m))
can extract the witness log X (or (log X, log Y )). Proofs are simulation-sound
(also called simulation-extractable (SE) for PoKs) if a witness can be extracted
from a prover even if the prover can obtain simulated proofs ψi for statements
(Xi,mi) of its choice (except the one it is proving). For strong SE the only
restriction is that the pair ((X,m), ψ) must be different from all query/response
pairs ((Xi,mi), ψi).
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Pedersen Commitments. We employ Pedersen commitments, which are
homomorphic w.r.t. the committed values and the used randomness. A value
v ∈ Zp is committed by sampling q ←$Zp and setting

C = Cmt(v, r) := vH + qG .

A commitment is opened by sending (v and) q and testing C
?= vH + qG.

Pedersen commitments are perfectly hiding (i.e., no information about the value
is leaked) and computationally binding (i.e., under the discrete logarithm (DL)
assumption, no adversary can change their mind about a committed value, that
is, find a commitment and two openings v �= v′ to it).

Range Proofs. We require a proof system for statements on commitments, in
particular for the NP language defined by the following relation asserting that
a committed value is contained in an admissible interval:

{(
C, (v, r)

)
: C = Cmt(v, r) ∧ v ∈ [0, vmax]

}

We assume a zero-knowledge proof system RaP for proofs of knowledge of a
witness (v, r) for a statement C such that 0 ≤ v ≤ vmax. (Note that we do
not assume RaP to be simulation-sound [FOS19, Def. 8], whereas FOS required
this in their proof of theft prevention. Our scheme could thus be potentially
instantiated with a more efficient range proof system than theirs.) We denote the
prover algorithm by π ← RaP.P(C, (v, r)) and the verifier by b ← RaP.V(C, π).
A typical choice of proof system for RaP are Bulletproofs [BBB+18], which do
not introduce any new trust assumption (as its parameters are random group
elements, as for Pedersen commitments).

3 Proposal for MW with Non-interactive Transactions

We start with presenting the scheme and then discuss the reason for our design
choices, such as adding stealth excesses (Sect. 4.1) and doubling keys (which
prevent a sub-exponential-time attack; Sect. 4.2).

3.1 Data Structures

A stealth address is a pair (A = aG,B = bG) ∈ G
2, for which we call (a,B) ∈

Zp × G the view key and (a, b) ∈ Z
2
p the spend key.

A transaction in MW-NIT is composed of (see also Fig. 1):

– A list of outputs: tuples of the form txo = (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), each implicitly
associated to an output address (A,B), composed of:

• an ephemeral key R̂ = r̂G ∈ G, chosen by the sender, which defines
two keys as:

(k̂, q̂) := H(r̂A)

(note that (k̂, q̂) can be computed from the view key and R̂, as r̂A = aR̂)
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inputs outputs

txo1 ← P1, D1, ψ1 Ĉ1, π̂1, R̂1, ρ̂1, P̂1, χ1

txo2 ← P2, D2, ψ2 Ĉ2, π̂2, R̂2, ρ̂2, P̂2, χ2

...
...

s, f, t, y, E, X, σ

inputs outputs

txo1 ← P1, D1, ψ1 Ĉ1, π̂1, R̂1, ρ̂1, P̂1, χ1

txo2 ← P2, D2, ψ2 Ĉ2, π̂2, R̂2, ρ̂2, P̂2, χ2

...
...

ct, s, f, t, y, E, X, σ

Fig. 1. Left: Visualization of a (simple) MW-NIT transaction. Inputs consist of a
value Pi contained in a previous transaction output, a “doubling key” Di and a proof
of possession (PoP) ψi of Pi and Di. Outputs consist of a commitment Ĉi to their value,
an associated range proof π̂i, an ephemeral key R̂i, a signature (or PoP) ρ̂i under R̂i,
the one-time address P̂i and an epoch χi. The kernel consists of the supply s, the fee f ,
the offsets t and y and the PoP σ of E and X. The excess E and the stealth excess X
can be computed as in (1) and (2). Right: Visualization of an aggregated MW-NIT
transaction. It additionally contains a cut-through list ct, and lists of excesses, stealth
excesses and corresponding PoPs.

• a commitment Ĉ := ˆvH + ˆqG to the coin value v̂, using randomness q̂
• a range proof π̂ proving knowledge of an opening (v, q) of Ĉ, with

v ∈ [0, vmax]
• a one-time output public key P̂ ∈ G, computed from k̂ as P̂ := B̂+kG

(note that the spend key is required to compute log P̂ )
• a proof of possession ρ̂ of R̂ with tag Ĉ‖π̂‖P̂‖χ̂
• an epoch χ̂ in which the output was created

– A list of inputs of the form (P,D,ψ) where
• P ∈ G is the one-time public key of the transaction output being spent

(each value P is only allowed once in the ledger)
• D ∈ G is the one-time doubling key, chosen by the sender, that “dou-

bles” P
• ψ is a proof of possession of P and D with tag the transaction output

being spent
– The kernel, which is composed of:

• the supply s ∈ [0, vmax], indicating the amount of money created in the
transaction

• the fee f ∈ [0, vmax], indicating the fee paid for the current transaction
• the offset t ∈ Zp

• the excess E ∈ G, defined as the difference between the commitments
in the outputs (including the fee) and the inputs (including the supply),
shifted by the offset. If Ci is the i-th input commitment, that is, the value
contained in the output in which Pi appears, then

E :=
∑

Ĉ + fH − ∑
C − sH − tG , (1)

which can be seen as E := E′ − tG in terms of the true excess E′ :=∑
Ĉ + fH − ∑

C − sH
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• the stealth offset y ∈ Zp

• the stealth excess X ∈ G, defined as the difference between the
ephemeral keys R̂i from the outputs and the doubling one-time keys Di

from the inputs, shifted by the stealth offset y

X :=
∑

R̂ − ∑
D − yG (2)

• a proof of possession σ of E and X (with empty tag ε)

A (simple, i.e., non-aggregated; see below) transaction is thus of the form:

tx =
(
(P ,D,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), (s, f, t, y, σ)

)

3.2 Transaction Creation

Consider a transaction output txo = (C, π,R, ρ, P, χ) spent to an address
(A′, B′).

– Given the corresponding view key (a′, B′), one can compute the shared keys
k and q (the opening for the commitment C) as:

(k, q) := H(a′R) .

– Given the corresponding spend key (a′, b′), one can compute the secret key
for P as log P = b′ + k.

To create a transaction that, in an epoch χ̂, spends transaction outputs txoi

of values vi from one-time keys Pi, for i ∈ [n], and creates outputs of values
{v̂i}i∈[n̂] for destination addresses {(Ai, Bi)}i∈[n̂], creating an amount s of new
money and paying f in fees so that v̂ ∈ [0, vmax]n̂ and

∑
v̂ + f =

∑
v + s, do

the following:

– for each input index i ∈ [n]:
• compute all values qi and pi := log Pi, for i ∈ [n], as described above
• select a random di ←$Zp and set Di := diG
• compute a proof of possession

ψi ← PoP.P((Pi,Di, txoi), (pi, di))

– for each output index i ∈ [n̂]:
• select a random ephemeral key r̂i ←$Zp and set R̂i := r̂iG
• compute the shared secrets for the destination address (Ai, Bi)

(k̂i, q̂i) := H(r̂iAi) (3)

and from them compute the output commitment and the one-time key

Ĉi := v̂iH + q̂iG (4)

P̂i := B̂i + k̂iG (5)
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• compute a range proof π̂i ← RaP.P(Ĉi, (v̂i, q̂i))
• compute a proof of possession of the output ephemeral key

ρ̂i ← PoP.P((R̂i, Ĉi‖π̂i‖P̂i‖χ̂), r̂i) (6)

– sample uniformly at random t ←$Zp and compute (where E is as in (1))

e :=
∑

q̂ − ∑
q − t = log E

– sample uniformly at random y ←$Zp and compute (where X is as in (2))

x :=
∑

r̂ − ∑
d − y = log X

– compute a proof of possession of E and X with empty tag:

σ ← PoP.P((E,X, ε), (e, x))

The final transaction is

tx :=
(
(Pi,Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂)i∈[n̂], (s, f, t, y, σ)

)
. (7)

3.3 Transaction Aggregation

Aggregate transactions are essentially concatenations of the composing transac-
tions. In contrast to Jedusor’s [Jed16] and FOS’ [FOS19] protocols, MW-NIT
does not perform any cut-through, as this is insecure, as we show in Sect. 4.3.
Outputs of one transaction that are spent as inputs of another one in the aggre-
gation are therefore kept in a cut-through list ct, which stores the concatenation
of the output and the input spending the latter.

While simple transactions do not (need to) contain the (stealth) excesses
(displayed in light gray in Fig. 1), aggregate transactions (also displayed in Fig. 1)
contain lists of excesses E, stealth excesses X and associated proofs σ. An
aggregated transaction is thus of the form

(
(Pi,Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂], (ct, s, f, t, y, (Ei,Xi, σi)i∈[n̄])

)
(8)

where ct :=
(
C ′

i, π
′
i, R

′
i, ρ

′
i, P

′
i , χ

′
i, P

′
i ,D

′
i, ψ

′
i

)
i∈[n′]. A simple transaction (7) can

be cast as (8) by setting ct := (), n̄ = 1 and computing E and X as in Eqs.
(1) and 2. Given transactions tx1 and tx2, assuming w.l.o.g. that they are of the
form (8), compute their aggregation tx as follows:

– define txi as the concatenation of the inputs of tx1 and tx2, and txo as the
concatenation of their outputs, ct as the concatenation of their cut-through
lists and and ker as the concatenation of lists of excesses, stealth excesses
and associated signatures σ.

– if the same value P appears in two entries of txi, or if the same value P
appears in two entries of txo, then abort

– if a value P appears in an entry of txi and in an entry of txo, remove the
two entries from their resp. lists, concatenate the entries and add them to ct
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– sort each list txi, txo and ct (lexicographically) and sort ker by the E values
(required to hide which inputs and outputs comes from which transaction)

– compute the aggregated supply, fee, offset, and stealth offset (from the sup-
plies si, etc., of txi):

s := s1 + s2 f := f1 + f2 t := t1 + t2 y := y1 + y2

– return tx := (txi, txo, (ct, s, f, t, y,ker)).

3.4 Output Verification

We define when a view key (a,B) accepts a transaction output. Given an
amount v and an output txo = (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), compute (k, q) := H(aR̂),
and accept the output if txo has never been previously received in epoch χ̂
Ĉ = vH + qG and P̂ = B + kG.

3.5 Transaction Verification

Simple Transactions. A transaction

tx =
(
(Pi,Di, ψi)i∈[n], (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂], (s, f, t, y, σ)

)
,

is valid w.r.t. a list of (previous) outputs txo with txoi = (Ci, πi, Ri, ρi, Pi, χi)
if the Pi values in the inputs of tx and txo coincide and if the following hold:

(i) all input proofs are valid: for all i ∈ [n] : PoP.V((Pi,Di, txoi), ψi) = true
(ii) all range proofs are valid: for all i ∈ [n̂] : RaP.V(Ĉi, π̂) = true
(iii) all PoPs of R̂ are valid: for all i ∈ [n̂] : PoP.V(R̂i, Ĉi‖π̂i‖P̂i‖χ̂i, ρ̂i) = true
(iv) the excess proof of possession is valid: PoP.V((E,X, ε), σ) = true, for

E :=
∑

Ĉ − ∑
C + (f − s)H − tG (9)

X :=
∑

R̂ − ∑
D − yG (10)

Aggregate Transactions. An aggregate transaction as in (8)

tx =
(
txi, tx̂o, (ct, s, f, t, y,E,X,σ)

)

with txi = (Pi,Di, ψi)i∈[n], tx̂o = (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i∈[n̂], ct := (txo‖txi) =
(txoi‖txii)i∈[n̄] is verified w.r.t. previous outputs txo as follows:

Check that in, tx̂o and ct are sorted lexicographically, then re-arrange the
cut-through terms: set the outputs being spent and the inputs spending them,
as well as the freshly created outputs, as

txo∗ := txo ‖ txo = (Ci, πi, Ri, ρi, Pi, χi)i

txi∗ := txi ‖ txi = (Pi,Di, ψi)i

tx̂o∗ := tx̂o ‖ txo = (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i)i
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(Note that the last n′ elements of txo∗ and tx̂o∗ are equal but denoted differ-
ently). Verify the transaction (in∗, tx̂o∗

, (s, f, t, y,E,X,σ)) w.r.t. txo∗: check
(i)–(iii) as for simple transactions, and the following instead of (iv):
(iv′) for all i ∈ [n̄] : PoP.V((Ei,Xi, ε), σi) = true
(v′) additionally, the following “balance equations” are checked:

∑
E =

∑
Ĉ − ∑

C + (f − s)H − tG (11)
∑

X =
∑

R̂ − ∑
D − yG (12)

(Note that in (11) it suffices to sum the Ĉ up to n̂ and the C up to n, as the
remaining terms from ct cancel out.)

3.6 Inclusion of Transactions in the Ledger

A ledger Λ is simply an aggregated transaction of the form (8) without any
inputs (as the inputs of any transaction added Λ must spend existing outputs,
these are thus moved to the cut-through list.

A transaction tx of the form (7) or (8) is included in Λ by aggregating Λ and
tx to Λ′, checking that Λ′ has no inputs (thus all inputs of tx were spent/cut-
through) and checking validity of Λ′ w.r.t. an empty list txo, as defined in
Sect. 3.5. If any of the checks fail, return ⊥, otherwise Λ′. (If Λ is known to be
valid, it suffices to identify, for every transaction input (Pj ,Dj , ψj), the ledger
output txoij containing Pj , and check validity of tx is w.r.t. txoi1 , . . . , txo

∗
in

.)

4 Fallacies in the Initial Proposal

We list below the main attacks found in Yu’s scheme, and which motivated the
design choices for our scheme in Sect. 3. Originally [Yu20, §2.2.2], transactions
did not include the values Di, nor the stealth excess X with the respective
offset y. Instead, a valid transaction had to satisfy

E + tG =
∑

R̂ − ∑
P , (13)

(in our notation) [Yu20, Eq. 2 ] instead of Eq. (10), and ψ and σ only proved
knowledge of the discrete logarithms of P and E, respectively.

4.1 Correctness

Equation (13) can be achieved if one of the outputs, say the i-th, goes back to
the creator of the transaction (e.g., because it is a “change output”). She can just
set R̂i := E+tG+

∑
P −∑

j �=i R̂j (for which she knows log R̂i) and then sample
qi uniformly. However, it is infeasible to create a transaction whose outputs are
all linked to destination addresses, e.g., a transaction with a single output: R̂
(together with the address) determines the coin opening q, which defines the
value E; but (re-)defining R̂ so that (13) holds would lead to a new value E.
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(In Yu’s notation [Yu20, Eq. 2 ], the value ro depends on q, which in turn is
computed from ro.)

In order not to restrict the format of transactions (and because it allows us
to prove the scheme secure), we introduced stealth excesses X, which along with
the proof of possession σ accounts for the “excess” in stealth addresses. We also
introduce a stealth offset to preserve privacy of aggregated transactions.

4.2 The Feed-Me Attack

It turns out that merely adding a stealth excess leads to an attack (against
transaction-binding, see Sect. 6.5), which was first found by @south lagoon77,
alias kurt.11 Consider the scheme in Sect. 3 but without any D values, which
are replaced by the corresponding P values in the equations; in particular, the
balance equation for one-time keys Eq. (10) is replaced by:

X =
∑

R̂ − ∑
P − y∗G. (10∗)

To explain the attack, it suffices to focus on non-aggregated transactions.
Consider Alice, an honest user with address (aG,B), that creates two transac-
tions tx1 and tx2, both with one input and one output, transferring respectively
v1 to Bob and v2 > v1 to Charlie:

(C1, . . . ) = txo1 ← P1, ψ1 | . . . , R̂1, ρ̂1, . . .
t1,y1,E1,X1,...

(tx1)

(C2, . . . ) = txo2 ← P2, ψ2 | . . . , R̂2, ρ̂2, . . .
t2,y2,E2,X2,...

(tx2)

Both transaction are broadcast to the miners. A malicious miner can now
forge a new transaction, transferring the amount v2 − v1 to himself, as follows:

txo2 ← P2, ψ2 | . . . , R̂1, ρ̂1, . . . ‖ . . . R∗, ρ∗, . . .
t1,y∗,E1,X1,...

(tx∗)

It combines the input of tx2 and the output and the excesses from tx1. A
second output is computed “honestly”, choosing r∗ ←$Zp, setting R∗ = r∗G
and signing any P value (knowing log P ) via ρ∗. The miner also creates the
corresponding coin C∗, so tx∗ satisfies Eq. (9), by setting C∗ := Cmt(v2−v1, q2−
q1), where q1 and q2 are the openings of C1 and C2 (which the miner can either
obtain by knowing Alice’s view key, or by having sent the outputs that are now
being spent by tx1 and tx2 to Alice in the first place.) Finally, the miner needs
to compute y∗ so that tx∗ satisfies Eq. (10∗), that is, y∗G = R∗ + R̂1 − P2 − X1.
By validity of tx1, again from (10∗), we get 0 = −R̂1 + P1 + y1G + X1 and by
adding the two equations:

y∗G = R∗ + P1 − P2 + y1G . (14)
11 See: https://twitter.com/davidburkett38/status/1466460568525713413.

https://twitter.com/davidburkett38/status/1466460568525713413
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The crucial observation now is that if the miner knows the values k1 and k2 that
define P1 and P2, resp. (which it can either obtain by knowing Alice’s view key
or by being the creator of the outputs spent by tx1 and tx2), then it knows the
discrete logarithm of P1 − P2 = (k1 − k2)G, as the value B from Alice’s address
cancels out. The miner can thus compute y∗ satisfying (14), thus completing the
forged transaction tx∗ that transfers the value v2 − v1 to the miner’s address.

Fixes. To prevent this attack, our first fix was to derive the one-time key multi-
plicatively, as Pi = kiB in Eq. (5). The term P1 − P2 then becomes (k1 − k2)B,
which is non-zero with overwhelming probability and therefore it becomes hard
to compute y∗. More generally, as long as the adversary cannot find distinct hash
function outputs k1,1, . . . , k1,n0 , k2,1, . . . , k2,n1 in Eq. (3) so that

∑
k1 − ∑

k2 = 0 , (15)

this variant of the scheme (without the D values) satisfies transaction binding.
However, Wagner’s k-list tree algorithm [Wag02] can be used to find such

values in sub-exponential time. In order to be protected against active adver-
saries ready to invest substantial computing power, a user therefore would need
to limit the number of its pending transactions at any point in time (which could
degrade scalability of the system). To overcome this downside, we follow Bur-
kett’s approach [Bur21] and introduce an additional group element D in every
transaction input which replaces P in the balance equation (10∗), yielding (12).
Since the Di’s are chosen by the creator of the transaction (whereas the Pi’s are
chosen by the previous spender, who in Feed-Me types of attacks is malicious),
the values corresponding to the ki,j above are random, and thus the probability
that (15) holds is negligible.

Since the D values are chosen by the honest user, the adversary in the Feed-
Me attack does not know log(D1 − D2) (after replacing P values by D values in
(14)), so we just reverted to the original format P := B + kG for one-time keys
and prove this variant secure.

4.3 On Transaction Cut-Through

Suppose that, in an aggregate transaction, an output (C, π,R, ρ, P, χ) of one
transaction is spent as input (P,D,ψ) of another transaction. One may wonder
if, as with original MW, cut-through can be applied, that is, remove the spent
output and the input referring to it from the aggregate transaction.

While validity of the coin-balance equation (11) would be maintained, this
is not the case for the “address equation” (12). One may thus consider (as Yu
does [Yu20, §2.1.1] for (sufficiently old parts of) the ledger) adding a value Z
defined as the difference of the sum of all removed R̂ values and all removed D̂
values to the aggregated transaction. The check in Eq. 12 would be replaced by∑

R̂ − ∑
D + Z =

∑
X + yG, where the sums are only over the indices that

have not been removed in the outputs (
∑

R̂) and the inputs (
∑

D).
However, since Z is not bound to anything, this scheme would be insecure.

Consider a miner that collects transactions and aggregates them. Then she sim-
ply replaces one of the remaining R̂ values by a value of which she knows the
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discrete logarithm, puts a new P̂ value, produces a corresponding proof ρ̂ and
defines Z as

∑
X + yG +

∑
D minus the sum of the R̂ values including her

own. This results in a valid transaction of which the miner now owns one of the
outputs (assuming the miner knows the view key of the stealth address it stole
the coin from; otherwise it made the coin unspendable by its owner).

We suspect that Yu assumed all R and P values remain for each (possibly
aggregated) transaction when included in the blockchain, since in [Yu20, Eq. 3 ],
it says “SUM(R − P ′)spent at height”, which suggests that all these values need
to be present. In addition, we note that simply removing cut-through inputs or
outputs would make Equations 3 and 4 incorrect.

Example. Consider two 1-input/1-output transactions tx1 and tx2 (assume that
all supplies and fees are 0).

txo1 ← P1,D1, ψ1 | C2, π2, R2, ρ2, P2, χ2
t2,y2,E2,X2,σ2

(tx2)

← P2,D2, ψ2 | C3, π3, R3, ρ3, P3, χ3
t3,y3,E3,X3,σ3

(tx3)

where tx2 spends some output txo1, creating one output, which is then spent
by tx3 (in particular, we have PoP.V((P2,D2, tx2.out), ψ2) = true). Suppose tx2
and tx3 could be merged as

txo1 ← P1,D1, ψ1 | C3, π3, R3, ρ3, P3, χ3
t2+t3,y2+y3,(E2,E3),(X2,X3),(σ2,σ3),Z

which is valid if ψ1 and ρ3 (and π3), as well as σ2, σ3, are valid on their respective
messages, and the following holds:

C3 − C1 = E2 + E3 + (t2 + t3)G
R3 − D1 + Z = X2 + X1 + (y2 + y3)G

Then a miner could simply choose r∗, p∗, χ∗
3 set R∗

3 := r∗G, P ∗
3 := p∗G, create ρ∗

3

honestly, define Z∗ := X2 + X3 + (y2 + y3)G − R∗
3 + P1 and create the following

(valid!) transaction, for which she knows the temporary spending key p∗:

txo1 ← P1, D1, ψ1 | C3, π3, R
∗
3, ρ3, P

∗
3 , χ∗

3
t2+t3,y2+y3,(E2,E3),(X2,X3),(σ2,σ3),Z∗

In the full version we also show that in addition to R and D, also both values
ρ and ψ of spent transaction must be kept, as each removal leads to an attack.

4.4 Replay Attacks

Yu [Yu20, §2.9.2] explains a replay attack for MW that is a result of non-
interactive transactions: the adversary pays Alice via some output txo, which
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Fig. 2. Batch Schnorr zero-knowledge simulation-extractable proof of knowledge of two
logarithms PoP[GrGen] w.r.t. a group generator GrGen.

Alice later spends. Then the adversary pays her again, creating the exact same
output; if Alice accepts it, the adversary can replay Alice’s previous spend, mak-
ing her lose the money.

A simple fix for replay attacks is requiring users to store all outputs ever
received and never accept the same output a second time. A more viable method
is using time stamps (named epochs and denoted χ in our notation), which Yu
introduces in order to prevent rogue-key attacks. “Each Input must attach its
own proof for [Pi], as a second proof for the coin ownership” [Yu20, §2.9.3].

While it is not specified which message is signed, it is crucial that the entire
output specifically including the time stamp (and not just C) is signed. Other-
wise, the above attack still works, as the adversary can change the time stamp
in the replayed transaction (so the user accepts it) and recompute ρ, and send it
to the user again. If the proof contained in the user’s spendings did not authen-
ticate the time stamp (or ρ), then the previous spend would still be valid on
the replayed transaction. This is why in MW-NIT we define ψ as a proof that
involves the entire output.

Epochs. If the user only accepts outputs that correspond to the current epoch,
she only needs to compare a new output to those received in the same epoch; she
can therefore delete all outputs from previous epochs. The duration of an epoch
is a global parameter of the system, where short time intervals minimizes data
storage, while larger intervals yield better privacy (as there are more transactions
per epoch).

5 Simulation-Extractability of Schnorr Signatures

Before analyzing our scheme, we introduce and analyze its main building block.
Key-prefixed Schnorr signatures can be reinterpreted as zero-knowledge proofs of
knowledge of the secret key, with the statement also containing the message. To
improve efficiency, we generalize this to a “batch” version that enables proving
knowledge of the logarithms of two group elements, that is, proofs for the NP
language defined w.r.t. a group description (p,G, G) by the following relation:

{(
(X,Y,m), (x, y)

)
: X = xG ∧ Y = yG ∧ m ∈ {0, 1}∗} . (16)
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The proof system PoP is defined in Fig. 2. We also use it to prove statements
(X,m) with witness x by using standard Schnorr signatures, that is, PoP.P runs
Sch.Sign and PoP.V runs Sch.Ver. The witness relation for PoP is thus the union
of (16) and {((X,m), x) : X = xG}.

We show that PoP satisfies strong simulation extractability in the algebraic
group model [FKL18] (see below) and the random oracle model (a tion of models
also used in [FPS20] to show tight security of Schnorr signatures under the
discrete-logarithm assumption).

Simulation-Extractability. Strong simulation extractability for the above lan-
guage means that from any adversary that returns a proof ψ∗ for a statement
(X∗, Y ∗,m∗), the witness (log X∗, log Y ∗) can be extracted; and this holds even
if the adversary gets access to an oracle that on inputs (Xi, Yi,mi) returns simu-
lated proofs ψi for these statements. The only restriction is that the returned pair
((X∗, Y ∗,m∗), ψ∗) must be different from all query/response pairs ((Xi, Yi,mi),
ψi). Thus, forging a fresh proof ψ∗ on a queried statement is considered a break
of strong simulation-extractability if the extractor fails to extract a witness from
ψ∗. (Note that this notion is stronger than forms of related-key-attack security
for signature schemes (like UNF-CRO as defined and used in [FOS19]), where the
adversary can only query signatures under keys for which it knows the difference
in secret keys w.r.t. the challenge key.)

The Algebraic Group Model. In the algebraic group model (AGM) [FKL18],
adversaries are assumed to return a representation of any group element that
they return. This means that, after having received input group elements Z1, . . . ,
Zn, whenever the adversary returns a group element X, it must also return
coefficients ζ1, . . . , ζn so that X =

∑
ζiZi.

All our security proofs (except for the privacy notion) are reductions of
solving the discrete logarithm (DL) problem to breaking the analyzed security
notion of our scheme MW-NIT, assuming that PoP satisfies (strong) simulation-
extractability (SE) in the AGM. The reduction thus receives a DL challenge Z
and simulates the security game to an adversary A, which we assume is algebraic.
To leverage SE of PoP in the AGM, the reduction must construct an algebraic
SE adversary, that is, one that accompanies each group-element output by their
representations. However, the reduction can only return representations in basis
(G,Z), its own group-element inputs. In particular, the reduction will run the
adversary on some group elements X1, . . . , Xn, which it produces from its inputs
G and Z in an “algebraic” way (i.e., knowing representations in basis (G,Z)).
The adversary’s group-element outputs will thus be in basis X1, . . . , Xn, which
the reduction can then translate into the basis (G,Z).

For our reductions make use of simulation extractability, we must there-
fore strengthen the notion and consider auxiliary inputs. In the SE game, the
adversary receives, besides a description of the underlying group, with gener-
ator G, and possible proof system parameters, an “auxiliary” uniform group
element Z. At the end of its execution, the algebraic adversary must accompany
each group element queried to the simulation oracle and output to the challenger
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(in particular, group elements in the statements (Xi, Yi,m) for which the extrac-
tor must extract the witness) by a representation in basis (G,Z).

Security of PoP. Extending the techniques for showing tight security of Schnorr
signatures in the AGM+ROM [FPS20], we show that in this model our proof
system PoP is SE with auxiliary inputs, which also extends to standard Schnorr
signatures. The proof can be found in the full version.

Claim 1. In the AGM and the ROM, the proof system PoP in Fig. 2 is strongly
simulation-extractable with auxiliary group-element input.

Corollary 1. In the AGM and the ROM, Schnorr signatures are proofs of secret
keys that are strongly simulation-extractable with auxiliary group-element input.

6 Security Analysis of MW-NIT

6.1 Assumptions

In our security analysis of the protocol from Sect. 3, we assume that range proofs
in RaP prove knowledge of the committed value v and the opening q. (Note that
for the employed Pedersen commitment, a proof of language membership, that
is not “of knowledge” is vacuous, as for any C there always exists an opening
e.g. (v = 0, q = log C).) We thus assume that there exists an extractor that from
(an adversary outputting) a range proof π for C ∈ G can extract the values
v ∈ [0, vmax] and q ∈ Zp.

We assume the existence of strongly simulation-sound (sSS) zero-knowledge
(zk) proofs of knowledge (PoK) of the discrete logarithm of group elements with
tags. In the full version, we show that in the combination of the random-oracle
model and the algebraic group model [FKL18], Schnorr signatures are adaptive
sSS zk-PoKs of the logarithm of the public key, for which the message acts as a
tag. We furthermore extended this to proofs of knowledge of two logarithms, so
that the proofs are of the same size as Schnorr signatures.

Finally, we assume that the discrete logarithm (DL) problem is hard in the
group underlying the system, and for transaction privacy that the decisional
Diffie-Hellman (DDH) assumption holds.

6.2 Syntax

We briefly review the syntax of an aggregate cash system [FOS19] and describe
the adaptations required to capture addresses and non-interactive transactions.

Running (pp,Λ) ← Setup(1λ, vmax) on input the security parameter λ in
unary and a maximal coin value vmax creates the public parameters and an
empty ledger. A ledger Λ specifies a supply Λ.sply (also denoted s ) representing
the value stored in Λ and a list of transaction outputs (TXOs) Λ.out. Users create
addresses (or “wallets”) by running (pk, vk, sk) ← KeyGen(pp), which returns a
public key (address), a view key and a spending key sk.
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A transaction tx has three attributes: a supply tx.sply specifying the amount
of money it creates, a list tx.in of inputs and a list tx.out of outputs txoi. A
transaction is created by running tx ← Send(pp, (txo,v, sk), (v̂,pk,χ), s, f) on
vectors of transaction outputs txo = (txoi)i, corresponding values v = (vi)i

and spending keys sk = (ski)i, and vectors of output values v̂, destination
addresses pk, and epochs χ, as well as a supply s and a fee f . To aggregate
transactions tx1, . . . , txn, run tx ← Agg(pp, (tx1, . . . , txn)) (which returns ⊥ if
they are incompatible, e.g. having an input in common).

Using a vector of view keys vk and a list of values v̂, one obtains the
list of outputs of a transaction tx belonging to these keys by running txo ←
Rcv(pp, tx, v̂,vk). If tx does not spend v̂i ∈ v̂ to vki ∈ vk, then txoi ∈ txo is set
to ⊥. Finally, Λ′ ← Ldgr(pp,Λ, tx) returns an updated ledger Λ′ including tx if it
is valid and spends outputs present in the ledger, otherwise Λ′ := ⊥;

Correctness. We require the following straightforward correctness condition.
Let (pkj , vkj , skj)j be key triples generated by KeyGen, and for k ∈ [n] let tx′

k

be a transaction, v′
k a vector of elements in [0, vmax], vk′

k ⊆ (vkj)j and let sk′
k

be the corresponding spending keys (that is, if vk′
k = (vkji)i for some ji, then

sk′
k = (skji)i). For all k ∈ [n], define txok ← Rcv(pp, tx′

k,v′
k,vk′

k).
Let indices ij be so that txoij �= ⊥ (where we let (txoι)ι := txo1 ‖ . . . ‖ txon),

let v̂ ∈ [0, vmax]∗, p̂k ⊆ (pkj)j , and s and f such that
∑

v′
ij

=
∑

v̂i + f −
s. Then for tx ← Send(pp, ((txoij )j , (v′

ij
)j , (sk′

ij )j), (v̂, p̂k,χ), s, f) and txo ←
Rcv(pp, tx, v̂, v̂k) where v̂k corresponds to p̂k, we have ⊥ /∈ txo, that is, all
outputs are accepted.

Comparison to FOS. The syntax of Send and Rcv differs from the one in
[FOS19] due to the inclusion of addresses (as well as fees and epochs) and
transactions being non-interactive. We moreover simplified notation by merg-
ing their algorithm Mint, used for creating money, with Send (which is now
non-interactive and takes a supply as input). That is, Mint(pp, v̂,pk,χ) is an
alias for Send(pp, (), (v̂,pk,χ),

∑
v̂, 0).

6.3 Inflation Resistance

Definition. Informally, inflation resistance guarantees that the only way to cre-
ate money in an aggregate cash system, such as Mimblewimble, is explicitly via
the supply contained in transactions. The notion is defined by the following
game, adapted from [FOS19, Def. 10] and formalized in Fig. 3.

The adversary is given the system parameters (for MW-NIT they contain the
elements G and H and potential parameters for the range proof), and its task is
to produce a (valid) ledger and a transaction tx∗ (accepted by the ledger) that
spends an amount that exceeds the supply of the ledger (plus its own supply).



734 G. Fuchsbauer and M. Orrù

Fig. 3. Game for inflation resistance INFLCASH,A(λ, vmax).

In addition to the output amounts v̂ of tx∗, the adversary must also return
view keys, which accept the outputs of tx∗. Letting s denote the ledger supply,
s∗ the supply and f∗ the fee of tx∗, the adversary wins if

s <
∑

v̂ + f∗ − s∗ . (17)

In the full version we give a proof of the following theorem. It follows closely
that of [FOS19, Theorem 13] for MW-FOS, since a ledger (or transaction) in
MW-NIT contains an MW-FOS ledger (or transaction). While FOS did not
consider fees and kernel offsets, these can be added to the argument.

Theorem 1. If the range-proof system RaP and the proof-of-possession system
PoP are extractable and if the discrete-logarithm assumption holds in the under-
lying group, then MW-NIT satisfies inflation resistance.

6.4 Theft Resistance

We define two notions that protect users from losing money. The first one is
an adaptation of the notion from [FOS19] to a scheme with non-interactive
transactions. It guarantees that outputs in the ledger belonging to a user can
only be spent by that user.

The main difference between MW-FOS and MW-NIT is that the former relies
on the coin keys (the opening of the commitments) being kept secret, while
in MW-NIT, the spender knows (and defines) the openings of the receivers’
commitments.12 In MW-NIT, the security relies on the secrecy of the “spend
key” for the user’s stealth address. We assume that the view key is known to
the adversary (as delegating scanning for transactions should not endanger the
security of these transactions).

Definition. Resistance to theft means that for any output belonging to a user
in the ledger (that is, it was accepted by the user’s view key), no matter how
it was received (e.g., sent by the adversary), as long as the output has never

12 Note that this is unavoidable for non-interactive transactions: knowing the (sum of)
the receivers’ keys is necessary to compute the excess proof σ.
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Fig. 4. Game for theft resistance STEALCASH,A(λ, vmax)

been spent before and the user keeps her spend key safe, no one except her can
spend it (even if her view key is publicly known). This is formalized via the game
in Fig. 4, which is an adaptation of [FOS19, Fig. 8]. Honest users are simulated
by the experiment and the adversary can create new users by calling Keygen;
the adversary can make users spend outputs they own (stored in the list Hon)
by calling Send; moreover it can submit any transactions to the ledger using it
oracle Ledger. If the transaction contains outputs that are accepted by honest
users, it adds these to Hon. As users are not supposed to accept outputs they
have already owned (cf. Sect. 4.4), the experiment stores all outputs ever received
in a list Archv. The adversary wins the game if it spends any of the honest user’s
outputs, that is, if some output in Hon is not in the ledger.

Remark. Note that the game in Fig. 4 for a scheme with non-interactive trans-
actions is a lot simpler than [FOS19, Fig. 8], which had to take care of the
interactive spending protocol. In particular, the definition of the coins an honest
user owns in [FOS19] is cumbersome, whereas for non-interactive transactions,
anything accepted by the honest user’s view key (and not previously owned) is
considered belonging to her. Note also that we do not require an oracle Mint,
since the adversary can run Send with an empty input list.

Theorem 2. If PoP is a simulation-sound proof of knowledge of discrete loga-
rithms (cf. Sect. 5) and the DL assumption holds in the underlying group, then
MW-NIT satisfies theft-resistance.



736 G. Fuchsbauer and M. Orrù

Proof. Consider a user owning an output txo = (C, π,R, ρ, P, χ) with amount
v in the ledger, that is, txo is accepted (see Sect. 3.4) by her stealth address
(A = aG,B), meaning P = B + kG where (k, q) = H(aR). Spending this coin
requires proving possession of P with tag txo, but an honest user, unless she
spends that output, never proves possession of P with tag txo.

We formally use a theft to break the DL assumption assuming simulation-
extractability of PoP. The reduction receives a DL challenge B∗ ∈ G, chooses
a∗ ←$Zp, sets a random honest user’s stealth address to (A∗ := a∗G,B∗) and
gives the adversary the view key (a∗, B∗).

Whenever the user is asked to spend an output txo′ = (C ′, π′, R′, ρ′, P ′, χ′)
belonging to the user, the reduction computes the transaction as specified, choos-
ing a doubling key D′ := d′G for a d′ ←$Zp. As it does not know the logarithm of
P ′ (since this requires knowledge of log B∗), it runs the zero-knowledge simulator
for a proof of possession ψ for (P ′,D′) with tag txo′. (Note that the reduction
is algebraic w.r.t. its DL challenge B∗, in that it can give representations of all
queried elements in basis (G,B∗), in particular P ′ = B∗ + k′G, D′ = d′G.)

Assume an output txo = (C, π,R, ρ, P, χ) belonging to the user is spent by
the adversary. (If the adversary attacked a different user, the reduction aborts.)
Then the corresponding transaction input must contain a proof ψ∗ of possession
of (P,D∗) with tag txo for some D∗ (for which the reduction can derive a repre-
sentation in basis (G,B∗) from the algebraic adversary’s representation). By the
definition of the security game, the honest user has never spent txo before. This
means that the reduction has never queried a simulated proof for (P,D∗, txo).
Therefore, by simulation-extractability in the AGM, the reduction can extract
p = log P , and since P = B∗ + kG, for a value k known to the reduction, it can
compute the solution p − k to its DL challenge B∗. 
�

6.5 Transaction-Binding

While the previous notion states that once a user owns an output in the ledger
it cannot be purloined, we also need to guarantee that nothing can be “stolen”
from a transaction before it is even added to the ledger (this protects against
malicious miners, for example). In particular, if a user produces a transaction tx
then no one should be able to create a transaction that contains one of the inputs
of tx while not containing all its outputs (since transactions can be aggregated,
further inputs and outputs could have been added to the original transaction).
Thus, while theft-resistance protects the outputs of a transaction, transaction-
binding in some sense protects the inputs.

Definition. We define transaction-binding via the following game, formalized
in Fig. 5. The experiment simulates all honest users, which the adversary can
create by calling Keygen, which creates a new address, for which the adver-
sary receives the view key. The adversary can instruct honest users to spend
outputs to addresses of the adversary’s choice, and the experiment computes
the corresponding transaction using the users’ spending keys and gives it to the
adversary. The adversary’s goal is to create a transaction tx∗ which spends the
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Fig. 5. Game for transaction-binding TXBNDCASH,A(λ, vmax).

same input as an honest transaction tx, but does not contain all the outputs of
tx that belong to honest users.

We formalize this by having the adversary return a ledger Λ that must accept
the attacked honest transaction tx, but after tx∗ is included in Λ, the latter does
not accept tx anymore (thus tx and tx∗ have an input in common); the adversary
also returns values and indices of honest users, so that their view keys accept tx
but do not accept tx∗ (thus one of the outputs of tx is missing in tx∗).

Remark. While it might seem restrictive that only stealing outputs of honest
users is considered a break of the notion, it is not. In aggregate cash systems
like Mimblewimble (with cut-through), an adversary can always “steal” outputs
it owns from any transaction tx: simply create a transaction that spends these
outputs and then merge it with tx; the result is a transaction in which some of
the outputs have been replaced by new ones. We do thus not consider this an
attack and transaction-binding gives no guarantees against it.

The following is proved in the full version; we give proof intuition below.

Theorem 3. If PoP is a strongly simulation-sound proof of knowledge of dis-
crete logarithms (cf. Sect. 5) and the DL assumption holds in the underlying
group, then MW-NIT satisfies transaction-binding.
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Proof Intuition. As this is the most complex notion to analyze, we start with
some intuition in a simplified scenario. Consider an adversary that sends Alice
a transaction with one output txo = (C, π,R, ρ, P, χ) and that Alice creates a
transaction

tx =
(
(P,D,ψ), (Ĉ, π̂, R̂, ρ̂, P̂ , χ̂), (s, f, t, y, σ)

)

that spends txo to Bob. Moreover, assume this is the only transaction Alice
makes. The adversary’s goal is now to create a “forged” transaction tx∗ =
((P,D∗, ψ∗), txo∗, (s∗, f∗, t∗, y∗, σ∗)) that has P as its input, but with a dif-
ferent (single) output txo∗ = (C∗, π∗, R∗, ρ∗, P ∗, χ∗). We show that conditions
(I)–(III) must hold with overwhelming probability, by reducing the DL problem
to it, assuming strong simulation-extractability (SE) of the proofs of posses-
sion. In (IV) we show that even then the game can only be won with negligible
probability.

(I) D = D∗. Assume this is not the case. Under SE of PoP, this can be used
to break DL by simulating the game as in the proof of theft-resistance.
Given a DL challenge B, the reduction embeds it into Alice’s wallet (aG,B)
for a ←$Zp. It computes tx as prescribed, except that it simulates the
proof ψ (as its witness depends on log B). When the adversary outputs a
transaction with input (P,D∗, ψ∗), it can extract the witness (p, d∗) from
ψ∗, as the only simulated proof was for a different statement (P,D). Since
P = B + kG, where k is computed from (aG,B) according to (3), the
reduction can return log B = p − k.

(II) R∗ �= R̂. Assume R∗ = R̂. Since txo∗ must be different, either the tag
C∗‖π∗‖P ∗‖χ∗ for ρ∗, or ρ∗ itself is different. As the statement/proof pair
is different from the one created by Alice, one can extract log R∗ by strong
simulation extractability (“strong”, since possibly only the proof differs).
Given a DL challenge R̂, the reduction embeds it in the output of tx.
Not knowing log R̂, the reduction can still compute (k̂, q̂) = H(a′R̂) using
Bob’s view key (a′, B′) (recall that Bob must be honest). From this, the
reduction computes Ĉ, π̂ and P̂ . The proofs ρ̂ and σ, whose witnesses
depend on log R̂, are simulated. If the adversary returns a transaction tx∗

with R∗ = R̂, then from ρ∗ the reduction can extract log R̂ (since the tag
or ρ∗ must be different), solving the DL challenge.

(III) X∗ �= X, that is, the stealth excess of tx∗ is different from that of tx.
Assume X∗ = X. Then from their definitions in (2) we get R∗−D−y∗G =
R̂ − D − yG, where we used D∗ = D from (I). Thus R̂ = R∗ + (y − y∗)G.
Since ρ∗ proves knowledge of log R∗, this means the adversary must also
know log R̂.
Formally, as in case (II), the reduction embeds a DL challenge as R̂ and
simulates the proofs ρ̂ and σ̂ to compute tx. If the adversary’s forgery
violates (III), then from ρ∗ the reduction can extract r∗ = log R∗ (since,
by (II), ρ∗ is for R∗ �= R̂, and the simulated proof ρ̂ was for R̂) and thus
compute the solution r∗ + y − y∗.

(IV) Finally, we show that the adversary cannot win the game when (I)–(III)
hold either. From (I) and (2), we have X∗ := R∗ − D − y∗G. Since σ∗



Non-interactive Mimblewimble Transactions, Revisited 739

contained in tx∗ proves knowledge of x∗ := log X∗ (since X∗ �= X by (III))
and ρ∗ proves knowledge of r∗ := log R∗ (since R∗ �= R̂ by (II)), this means
that the adversary must know log D = r∗ − y∗ − x∗.
The reduction embeds its DL challenge as D, the value in the input of tx,
and simulates proofs ψ and σ (whose DL depend on log D). The rest of
tx is computed as prescribed. If the adversary is successful, then from ρ∗

the reduction extracts r∗ (no ρ proofs were ever simulated), and from σ∗

the reduction extracts x∗ (the simulated proof σ was under X �= X∗) and
computes d := r∗ − y∗ − x∗ as above.

While the above provides some intuition, the actual proof which can be found
in the full version, is more complex by considering the “complete” scenario:

– Alice may create other transactions, of which parts may be reused in tx∗.
– The transaction tx∗ could be an aggregated transaction, and in its stealth-

excess list, parts can be reused from transactions by Alice.

6.6 Transaction Privacy

This section considers an attacker that passively observes blocks and attempts
to recover information about the transaction graph or the transacted amounts.
In Jedusor’s original proposal [Jed16], no guarantee of privacy was given besides
hiding transaction amounts, and this was reflected in prior definitions [FOS19,
Def. 12]. In particular, in the initial version of Mimblewimble one can “disag-
gregate” transactions [Dev20a], that is, link inputs and outputs that come from
the same original transaction. As a consequence, one could infer how money was
being spent across the network.

Grin introduced transaction offsets, which enable stronger anonymity guar-
antees by preventing disaggregation. To reflect this, we present a stronger privacy
notion than the one provided in [FOS19], which is tailored to non-interactive
transactions. We stress that our analysis is limited to the cryptographic proper-
ties of the scheme and it does not provide network-level privacy guarantees.

Definition. Our scheme provides three basic anonymity guarantees:

– a transaction hides the amounts in its inputs and outputs, as well as
– the destination addresses of the outputs (and inputs), except to the receivers

of the transaction;
– in an aggregated transaction, it is not possible to tell which inputs and outputs

belonged to the same component transaction except for what can be deduced
via the receiver’s keys and the epochs of the outputs.

The above are implied by the following simulation-based definition, formalized
in Fig. 6. The adversary has access to an oracle that creates honest users and a
challenge oracle that produces and aggregates transactions, taking input:

– lists refi = (ref i,j)j , for i ∈ [
], where ref i,j is either a tuple (txoi,j , vi,j , ski,j)
or an identifier idi,j of a previously generated output, within the same or a
previous oracle call (refi thus specifies the inputs of the i-th transaction)
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Fig. 6. Game for transaction privacy TXPRVCASH,A(λ, vmax)

– lists (idi, (v̂i, p̂ki, χ̂i)), where idi,j serves as the unique identifier of the cor-
responding triple value/address/epoch (this specifies the outputs of the i-th
transaction)

– supplies si and fees fi
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Consider transactions txi produced by Send on input the i-th elements of the
above lists, and tx, produced by Agg on the txi’s. Transaction privacy requires
that tx is indistinguishable from a transaction created by a simulator Sim, which
is only given:

– a list in of length the total number of inputs, whose elements are either an
output txoi or an identifier idi where idi ∈ îd from îd below (that is, it points
to an output of a component transaction); in particular, it does not receive
values nor keys

– a list (îd, (v̂, p̂k, χ̂)) of output identifiers and triples which are either for
adversarial keys or which are (⊥,⊥, χ̂i) if the output is for an honest user

– the total supply and fee s, f ∈ [0, vmax] and the number of transactions 
.

Theorem 4. If the proof systems RaP and PoP are zero-knowledge and if DDH
is hard in G, then MW-NIT satisfies transaction privacy in the random oracle
model.

Proof. We first define the simulator. The simulator Sim takes as input: a list in
of length n, whose elements are of the form txoi or idi; an n̂-element list for
the outputs with identifiers îd and elements the form (v̂i, pki), χ̂i) or (⊥,⊥, χi)
together with their identifiers; total supply and fees s, f and the number of
transactions 
.

Let Iid ⊆ n denote the set of indices for which ini = idi, that is, the references
to outputs of the transaction to be simulated (which will thus be cut through);
for i ∈ [n] \ Iid, the entries ini are explicit output.

– for each output index i ∈ [n̂] for which (v̂i, p̂ki) �= (⊥,⊥), sample r̂i ←$Zp and
from them compute R̂i = r̂iG and P̂i (using p̂ki = (Âi, B̂i)) and Ĉi (using
v̂i) as prescribed in Send.

– for each i ∈ [n̂] with (v̂i, p̂ki) = (⊥,⊥), pick random values Ĉi, R̂i, P̂i ←$G

– for each i ∈ [n̂], simulate the range proofs π̂i for statements Ĉi, and the proofs
ρi for R̂i with tag Ĉi‖π̂i‖P̂i‖χi. Let txoi := (Ĉi, π̂i, R̂i, ρ̂i, P̂i, χ̂i).

– for each input index i ∈ [n], pick a random value Di ←$G

– for each i ∈ Iid, let ki be such that ini = idki
∈ îd (if there is none, abort);

simulate ψi for the statement (P̂ki
,Di, txoki

) where P̂ki
, txoki

are defined
above; let Ict := {ki}i∈Iid be the indices of the cut-through outputs

– for each i ∈ [n] \ Iid, with ini =: (Ci, πi, Ri, ρi, Pi, χi), simulate the proof ψi

for the statement (Pi,Di, ini)
– the input list of tx is (Pi,Di, ψi)i∈[n]\Iid , ordered lexicographically
– the output list of tx is txo = (txoi)i∈[n̂]\Ict , ordered lexicographically
– the cut-through list ct are the (ordered) elements (txoki

, P̂ki
,Di, ψi)i∈Iid

– pick random values E2, . . . , E�,X2, . . . , X� ←$G, as well as t, y ←$Zp

– set E1 :=
∑

Ĉ − ∑
C + (f − s)H − tG − ∑�

i=2 Ei

and X1 :=
∑

R̂ − ∑
D − yG − ∑�

i=2 Xi (note that we could have 
 = 1)
For i ∈ [
]: simulate σi for (Ei,Xi) with tag ε

– set tx.sply := s and tx.fees = f
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We start with a real transaction and consider a sequence of hybrid games
that turns it into a simulated transaction.

H0 In the “real” game, the component transactions are created as described (in
Sect. 3.2) using the spending keys; they are then aggregated (Sect. 3.3).

H1 In the first hybrid, all RaP proofs π and PoP proofs (cf. Sect. 5) ψ, ρ and
σi are simulated. By the zero-knowledge property of both primitives, this
change is indistinguishable from the honest computation of the range proofs
and the proofs of possession.

H2 For every output for an address that was generated by the address oracle, in
the generation of the key shares in Eq. (3), the argument r̂i,jAi,j of the hash
function is replaced by a random value Zi,j ←$G. This is indistinguishable
by the DDH assumption, noting that all R̂i,j and Ai,j for such outputs are
created by the reduction and their logarithms are never used in the simulation
of the game (the former because ρi,j and σi are simulated; the latter because
ψi,j is simulated and the address oracle does not reveal any secret keys).

H3 The game aborts if the adversary at some point queries Zi,j for some i, j
to the random oracle. Since the adversary has no information on Zi,j , the
probability of aborting is negligible. Note that in H3, the values k̂i,j and q̂i,j

are uniformly random and independent.

Now that we have showed that the adversary’s return value can only change
negligibly between H0 and H3, it remains to argue that a transaction generated
in H3 is distributed equivalently to a transaction computed by the simulator.

In a call to Tx0, let Iex be the set of indices (i, j) for which refi,j is an
explicit input (and not an id) and let Iadv be the set of indices (i, j) for which
p̂ki,j was not generated by the oracle Keygen. In a transaction produced in
H3, for honest outputs, the coin openings q̂i,j , for (i, j) /∈ Iadv, are uniformly
random and independent. Thus, by the definition of E1, . . . , E�, we have that
for fixed values (Ci,j)(i,j)∈Iex (i.e., the inputs defined by the adversary) and
(Ĉi,j)(i,j)∈Iadv (i.e., outputs for adversarial addresses), and s :=

∑
si and f :=

∑
fi, the tuple

(
(Ĉi,j)(i,j)/∈Iadv , (Ei)�

i=1,
∑

ti
)

is uniformly random conditioned
on

∑
Ei =

∑ ∑
Ĉi,j − ∑ ∑

Ci,j + (f − s)H − (
∑

ti)G. This is exactly how the
simulator produces these values.

Since for honest outputs the values k̂i,j , for (i, j) /∈ Iadv, are uniformly ran-
dom and independent, the corresponding values P̂i,j are uniform and indepen-
dent, as the simulator produces them. Finally, by the definition of the values
Di,j , R̂i,j and Xi, the tuple

(
(Di)n

i=1, (R̂i)n̂
i=n∗+1, (Xi)�

i=1,
∑

yi

)
is uniformly

random conditioned on
∑

Xi =
∑ ∑

R̂i,j − ∑ ∑
Di,j − (

∑
yi)G. Again, this is

how the simulator generates these values. Finally, in a transaction produced in
H3, all RaP and PoP proofs are simulated, which is how the simulator generates
them, and the outputs/input pairs in the cut-through list of the simulator are
those that Agg would put there. 
�
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Abstract. Mimblewimble is a privacy-preserving cryptocurrency, pro-
viding the functionality of transaction aggregation. Once certain coins
have been spent in Mimblewimble, they can be deleted from the UTXO
set. This is desirable: now storage can be saved and computation cost
can be reduced. Fuchsbauer et al. (EUROCRYPT 2019) abstracted Mim-
blewimble as an Aggregate Cash System (ACS) and provided security
analysis via game-based definitions.

In this paper, we revisit the ACS, and focus on Non-interactive ACS,
denoted as NiACS. We for the first time propose a simulation-based
security definition and formalize an ideal functionality for NiACS. Then,
we construct a NiACS protocol in a hybrid model which can securely
realize the ideal NiACS functionality in the Universal Composition (UC)
framework. In addition, we propose a building block, which is a variant
of the ElGamal encryption scheme that may be of independent interest.
Finally, we show how to instantiate our protocol, and obtain the first
NiACS system with UC security.

1 Introduction

Decentralized cryptocurrencies like Bitcoin have attracted huge attention in the
past decade. While these cryptocurrencies have multiple advantages over the
traditional electronic payment systems, we must note that these benefits are at
the expense of transaction-privacy or user-anonymity [6,32]: users’ transaction
data in the distributed ledgers of the cryptocurrency systems are public, and
thus can be traced. Many strategies have been taken to improve the privacy
(e.g., using a fresh pseudonymous address for each payment). Unfortunately, it
has been demonstrated that the expected user-anonymity can still be lost: an
attacker could deanonymize the transactions on the ledger by clustering and
analyzing the transaction graph [36,40].

Motivated by these security concerns, extensive efforts have been devoted to
develop privacy-preserving techniques for improving the amount confidentiality
and user anonymity of cryptocurrencies. Typically, homomorphic commitments
are used to ensure the confidentiality of the amounts in transactions. To enable
user anonymity, there exist two design paradigms:
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(i) First, anonymity sets are introduced to hide the identities of the users. Good
examples include Monero [37], Zcash [8] and Quisquis [19]. Unfortunately,
as mentioned in [19], the information that which coins have been spent in
Monero/Zcash is not allowed to be revealed, and thus the already spent
coins cannot be eliminated from the cryptocurrency systems; as a conse-
quence, the size of UTXO sets in these systems will grow constantly. Then
Quisquis [19] was proposed to solve this problem but at the price of intro-
ducing a complicated mechanism: the users have to have their wallets to
“watch on” the blockchain so that certain information (e.g., wallet address
or public key) in their wallets can be properly updated. Moreover, Quisquis
suffers from the so-called “front-running” attacks as pointed out in [11].

(ii) To achieve anonymity, coins of a transaction can be mixed with those of
other transactions; this is called CoinJoin. Now, the coins that have been
spent can be deleted from the UTXO set; In this way, the size of UTXO set
will be significantly reduced. We note that, many systems (e.g., CoinShuf-
fle [41] and Mixcoin [10]) under this design paradigm focus on anonymity
but not considering the confidentiality of the amounts in transactions. It is
worth mentioning that the anonymity of cryptocurrencies under this design
paradigm may be weakened, when some parties are designated for receiving
and mixing transactions. Still, it has attracted much attention thanks to its
potential for high performance.

Mimblewimble. A new cryptocurrency dubbed Mimblewimble, which follows
the second paradigm and considers confidentiality, was proposed by an anony-
mous author in [26] and further improved by Poelstra [39]. A nice feature Mim-
blewimble additionally enjoys is that, when multiple transactions are aggregated
and the corresponding coins are mixed, it allows cut-through1 while maintaining
the verifiability of the aggregate transaction. This feature can reduce storage
and benefit new users to verify the system. To formally analyze the security
of Mimblewimble, Fuchsbauer et al. [21] abstracted it as an Aggregate Cash
System (ACS) and formalized its security via a series of games. Specifically,
they proposed three game-based security properties: inflation-resistance ensures
that coins can only be supplied by legitimate ways (e.g., coinbase transactions),
theft-resistance guarantees that no one can spend coins without the correspond-
ing spending keys, and transaction indistinguishability requires that the amount
should be hidden and change coins and output coins be indistinguishable. The
work [21] by Fuchsbauer et al. is significant for the formal security analysis of
Mimblewimble, but their definition is still subject to the following limitations:

– First, we point out that the security games proposed in [21] are not “succinct”
enough. For example the theft-resistance property definition is strongly cor-
related with their construction. More concretely, to define theft-resistance

1 A basic property of the UTXO model is that a sequence of two transactions, the first
one spending an output out1 and creating out2, followed by the second one spending
out2 and creating out3, is equivalent to a single cut-through transaction spending
out1 and creating out3.
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property, a notion of pre-transaction has been introduced. However, this pre-
transaction is part of their protocol construction. This indicates that their
theft-resistance property definition is not general enough: their definition only
allows pre-transaction dependent protocols, and does not allow other natural
constructions.

– Second, Fuchsbauer et al. [21] did not define the unlinkability of inputs and
outputs, which is an important security property of ACS. More specifically,
this property means that, when a transaction is mixed with others, anyone not
involved in these transactions cannot identify which inputs and/or outputs
belong to the same transaction. Note that if a party can obtain the individual
transactions before aggregation, then she/he must be aware of the linkability
of the inputs and outputs; we thus do not consider the unlinkability2 against
the parties who are continuously monitoring the network, or parties who are
responsible for aggregating transactions.

– While game-based definitions are useful for capturing the security properties
of ACS as in [21], it is more desirable to investigate the security properties
in the real/ideal simulation paradigm: First, following the game-based defi-
nition approach, typically we are not clear if the list of security properties
that we formalized are sufficient; often certain natural security properties are
missed. Second, following the real/ideal simulation paradigm, “The security
guarantees achieved are easily understood (because the ideal model is easily
understood) [34].” In addition, simulation-based definitions allow sequential
or even universal composability, enabling modular design and analysis. Please
see Lindell’s tutorials [34,35] for a more careful elaboration.

In addition, a transaction in ACS has to be generated jointly by the sender
and receiver (see Sect. 2.2 for more details). In practice, however, it is not easy
to guarantee that both the sender and receiver are always online at the same
time. For example, it may be difficult for an online retailer to keep his wallet
online all the time to receive irregular payments. A better way is that the retailer
publishes an account for receiving payments on the sales website, and the buyers
can complete payments at any time without the retailer’s cooperation. Beam [1]
and MWC [3], the two representative projects based on ACS, have made efforts
to mitigate the problem to some extent, but do not solve it completely.

1.1 Contributions

In this work, we focus on mitigating the above limitations by proposing an Aggre-
gate Cash System supporting non-interactive payments, denoted as NiACS, and
defining its security in the real/ideal simulation paradigm. Our contributions are
summarized below:

2 In practice, Grin and Beam enhance unlinkability by leveraging Dandelion relay
protocol [18] that aggregates transactions during the propagation. However, their
approach still cannot realize complete unlinkability, since someone on the network
will always be able to see an unaggregated transaction.
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We first define an ideal functionality FNiACS, which captures the core fea-
tures of NiACS but does not depend on the concrete design of NiACS. Our
ideal functionality FNiACS captures the inflation-resistance, theft-resistance, and
transaction indistinguishability properties in [21]; in addition our functionality
FNiACS captures unlinkability, which is a very important security property for
privacy-preserving cryptocurrencies. We remark that, the unlinkability has not
been formalized in [21].

Our ideal functionality FNiACS is not introduced for formalizing security prop-
erties for interactive ACS. However, to capture interactive payments, we can
redefine the ideal functionality; for example, we can let the functionality inform
the receiver before dealing with a transaction, and this is missing in the current
functionality FNiACS.

Furthermore, we propose a NiACS protocol ΠNiACS that UC-realizes FNiACS

in a hybrid model. In contrast to Mimblewimble, our design can support non-
interactive payments. That is, the sender is able to generate a valid transaction
by himself, and the receiver can directly obtain private information of output
coins from the transaction without out-of-band communication over a private
channel. Particularly, to avoid the out-of-band communication, we propose a
new variant of ElGamal encryption, the ciphertext of which includes a Peder-
sen commitment and its openings (i.e., randomness and value) can be obtained
readily by the holder of the decryption key. Moreover, we present a concrete
instantiation of our NiACS protocol, thus obtaining the first NiACS with UC
security.

1.2 Related Work

Over the past decade, extensive efforts have been made to achieve provably
secure privacy-preserving cryptocurrencies [8,10,19,26,37]. For example, Ring
Confidential Transaction (RingCT), the core protocol of Monero, was first for-
mally analyzed by Sun et al. [42], which was further refined by subsequent works
[17,33,45]. In addition, Zcash was proposed along with formal security proper-
ties by Ben-Sasson et al. [8]. However, Garman et al. [23] pointed out that the
security properties defined in [8] is incomplete and complex, and adversary can
leverage these weaknesses to break the security. Moreover, Garman et al. [23]
gave a simulation-based definition to avoid the weaknesses. More recently, more
and more works have focused on the simulation-based definitions for Blockchain
protocols. Badertscher et al. abstracted Bitcoin as a ledger functionality in [7].
Kerber et al. [28] gave a private ledger functionality and designed a privacy-
preserving proof-of-stake (PoS) blockchain protocol that can securely realize the
private ledger functionality in the UC setting.

Mimblewimble was first proposed by [26] and then improved further by Poel-
stra [39]. Mimblewimble is simple to implement and has been used in three
open-source cryptocurrency projects, i.e., Beam [1], Grin [2], and MWC [3].
However, no formal security analysis has been given for these works until the
work by Fuchsbauer et al. [21]. In particular, Fuchsbauer et al. [21] abstracted
Mimblewimble as ACS and defined its security properties for the first time.
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However, these security properties are incomplete and complex. In particular,
unlinkability is an important property of Mimblewimble, but not formally defined
in [21]. Besides, they proposed a new one-round interactive ACS that has been
implemented in MWC [3]. Later, Yu [44] leveraged one-time addresses to achieve
non-interactive payments for Mimblewimble, but without formal analysis.

In a concurrent and independent work, Fuchsbauer et al. [22] pointed out
and fixed the flaws in the proposal by [44], and formally analyzed their own
modified scheme based on game-based definitions. Fuchsbauer et al. [22] and Yu
[44] share the same initial idea of achieving non-interactive transactions with us,
but there are many differences between their construction and ours. In particular,
Fuchsbauer et al. [22] added a new type of excess X :=

∏
R̂i/

∏
Di, called

“stealth excess”, where R̂i is used to “transmit” the secret key of a one-time
address and Di is a one-time doubling key used to prevent feed-me attack. For
a coin, when it is in an output list, it will be associated with R̂i; when it is in an
input list, it will be associated with Di. Since R̂i �= Di, if the coin is cut through,
the stealth excess cannot be verified. Therefore, their scheme cannot support cut-
through. In contrast, our transactions only include one type of excess, namely
the original excess in Mimblewimble, and thus our construction still supports
cut-through. Note that cut-through is an important feature of Mimblewimble as
it can save the on-chain storage cost. In addition, we for the first time define
a simulation-based security model for NiACS, while Fuchsbauer et al. [22] still
follows a game-based security model, which is not suitable for complex execution
environments.

2 Technical Overview

To overcome the security and practicality issues mentioned before, we first define
an ideal functionality for ACS supporting non-interactive payments, denoted
by FNiACS. Compared to the game-based security definition proposed in [21],
FNiACS is more general and comprehensive. Furthermore, we propose a new non-
interactive payment system, dubbed ΠNiACS, that securely realizes FNiACS. Before
showing the high-level idea of our design, we first briefly introduce how to define
an ideal functionality that captures the desirable security of NiACS.

2.1 Non-interactive Aggregate Cash System Functionality

As ACS is essentially a privacy-preserving ledger, we attempt to define its ideal
functionality with the abstraction FLedger of the most basic ledger Bitcoin [7,29]
as the starting point. At a high level, the ledger functionality defined in [29] is
the same as that defined in [7]. More concretely, anyone can submit a transaction
to FLedger, then FLedger will validate the transaction by a predicate Validate. If the
transaction is valid, it will be added into a buffer. Periodically, the transactions
in the buffer will be moved to state in the form of a block, where the state refers to
the ledger state and the transactions in the state cannot be changed. Moreover,
anyone is allowed to read the content of state. In a nutshell, FLedger defines
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the basic interfaces of a ledger, including submitting transactions, maintaining
ledger, and reading ledger.

Compared to the basic ledger, ACS additionally protects privacy (payment
amount confidentiality, sender anonymity and receiver anonymity) and allows
aggregation of transactions before packing. Therefore, to define the ideal func-
tionality of ACS, we need to further specify the content of a transaction and add
interfaces for aggregation. In addition, in this work, we focus on ACS supporting
non-interactive payments, and thus we denote the ideal functionality as FNiACS.

To preserve privacy, a transaction cannot contain the identifiers of relevant
parties and the amount of each coin, but a transaction needs to specify which
coins are spent or created. Therefore, for each coin, we define an identifier cid that
is pseudorandom and does not reveal its amount and owner, and for each party,
FNiACS maintains a list of coins that are possessed by the party. When a party
called user wants to transfer some coins, he inputs ({cidi}, {P̂j , v̂j}) to FNiACS

where {cidi} is an identifier list of the coins to be spent, P̂j is a receiver who will
receive a coin of amount v̂j . If all the coins identified by {cidi} are owned by the
party, and the sum of the amounts is enough, FNiACS will notify the adversary
(namely, simulator) S to generate a coin identifier ĉidj for each output coin
whose owner is P̂j and amount is v̂j . At this point, FNiACS generates a transaction
TX := ({cidi}, {ĉidj}) according to the party’s payment request. We can see that
FNiACS generates the transaction without the participation of any receiver, which
means that the functionality captures the non-interactive payments. Moreover, it
is the transaction that will be added to state, not the payment request. Therefore,
when other parties obtain state by reading the ledger, regarding the transaction,
they can only see the identifiers in {cidi} and {ĉidj} but learn nothing about the
owners and the amounts. However, if parties can get the individual transaction,
they can learn the linkability of the coins in it, which will weaken the sender
anonymity. The aggregation explained below helps to break the linkability.

As mentioned before, unlike in Bitcoin, a transaction in NiACS will be aggre-
gated with other transactions before being packed into a block. Thus, the coins of
a transaction are mixed with coins in other transactions such that the linkability
of input and output coins is broken. More specifically, in FNiACS, we add a role
called aggregator who is responsible for aggregating transactions. Once a transac-
tion TX is generated, FNiACS sends it to the parties who act as aggregators. Then,
an aggregator will aggregate the transactions to a “large” transaction, which will
be added to buffer and eventually moved to state. For example, given two trans-
actions TX1 := ({cid1i }, {ĉid

1

j}) and TX2 := ({cid2i }, {ĉid
2

j}), an aggregator can

generate an aggregate transaction TX1+TX2 := ({cid1i }∪{cid2i }, {ĉid
1

j}∪{ĉid
2

j})
and submit it to FNiACS. When others get the aggregate transaction, they cannot
identify which coins belong to a transaction as the coin identifiers are indepen-
dent and pseudorandom. In addition, a user is allowed to spend the output coins
of an unconfirmed transaction with an elevated fee, as described in [4]. Therefore,
cut-through can occur when the transactions are aggregated.

To sum up, we define FNiACS by adding privacy protection and aggregation
features to the basic ledger functionality FLedger. In FNiACS, a transaction only
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contains pseudorandom and independent coin identifiers, and thus anyone cannot
learn the amounts and participants. In addition, there are aggregators responsi-
ble for aggregating transactions and submitting the aggregate transactions to the
ledger. Through aggregation, some coins can be cut through, which can reduce
the storage of the ledger. Moreover, a transaction is stored in the ledger after
being mixed with other transactions such that the linkability of the input coins
and output coins is hidden, which further enhances sender anonymity.

Next we proceed to introduce the high-level idea of our design ΠNiACS. Since
our design is inspired by Mimblewimble [21,39], before continuing we first briefly
recall the main idea of Mimblewimble.

2.2 Recall Mimblewimble

Mimblewimble [21,39] is an interactive payment system with support for trans-
action aggregation. Briefly, a coin in Mimblewimble is a Pedersen commitment
cm := grhv, where v is the amount of this coin, and it is spent with only the
randomness r (usually called spending key)3. A transaction here consists of an
input list, an output list, and a kernel, as shown in Fig. 1; the concept of kernel
is firstly introduced in Mimblewimble, which plays a crucial role in guaranteeing
the validity of the transaction. Particularly, the input (resp. output) list includes
the spent (resp. newly created) coins, and the kernel contains the contents used
for proving the balance of the transaction and the ownership of the spent coins.
To illustrate how the validity of transactions is guaranteed, we take a concrete
example as below.

Let TX1 be a transaction including 2 input coins {cm1
1, cm

1
2} and

3 output coins {ĉm1
1, ĉm

1
2, ĉm

1
3}4. Besides, an item called excess E1 :=

∏3
j=1 ĉm1

j/
∏2

i=1 cm1
i is contained in its kernel. Obviously, if the transaction is

balanced, E1 is a commitment to 0. To show the balance of this transaction, the
sender generates a proof that E1 is a commitment to 0 as shown in Fig. 1; essen-
tially, this is realized by invoking a zero-knowledge ideal functionality F zero

NIZK, and
the witness is the randomness of E1. However, the randomness of E1 is derived
from the randomnesses of both the input commitments {cm1

i }i∈[2] and output
commitments {ĉm1

j}j∈[3], and the randomnesses of output commitments are only
known to the receiver, so the sender has to generate the proof interactively with
the receiver. Moreover, since the ownership of the coin in Mimblewimble is equiv-
alent to the knowledge of the opening of the commitment, the proof also implies
that the input coins are indeed spent by the owner.

Further to break the linkability of inputs and outputs in a transaction, Mim-
blewimble adopts the idea of CoinJoin, that is, to aggregate different transactions
into a “large” one. As indicated in [21], however, it is not hard to find out the
input and output coins of a transaction from the aggregate transaction by solving

3 In contrast, the coin in other cryptocurrencies like Zcash is spent with the opening
of the commitment and a secret key associated with the address recording the coin.

4 Note that for each output coin ĉm1
i , there is also a range proof to guarantee that the

committed value is valid (i.e., v ∈ [0, vmax]), but we ignore it here for simplicity.
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Fig. 1. The transaction and aggregation process of Mimblewimble (ĉm1
2 = cm2

1).

a simple subset sum problem based on the excess. To solve this problem, an offset
is added to blind the excess, e.g., the final excess in the kernel of TX1 becomes
Ẽ1 := E1 · gδ. Next we take the example given in Fig. 1 to explain the aggre-
gation process: The initial input (resp. output) list of the aggregate transaction
TX1 + TX2 is the union of input (resp. output) lists of TX1 and TX2 in random
order. If some coins in TX2’s input list are also in TX1’s output list, then the coins
(together with the associated range proofs) are removed from the input and out-
put lists of TX1 + TX2, which is the so-called cut-through. More concretely, ĉm1

2

in TX1 is equal to cm2
1 in TX2, so in TX1 + TX2, cm2

1 and ĉm1
2 are removed from

input list and output list of the aggregate transaction, respectively. The kernel of
TX1+TX2 is the union of the TX1’s kernel and TX2’s kernel, except that the offset
of TX1 + TX2 is δ1 + δ2.

From the above, we can see that proving the excess being a commitment to 0
is the main reason of making Mimblewimble interactive. Next, we show how to
surround this obstacle and design a NiACS that securely realizes the proposed
ideal functionality FNiACS.

2.3 Our Non-interactive Aggregate Cash System ΠNiACS

Recall that in Mimblewimble each coin is spent with the randomness of its com-
mitment as the spending key, and the output coins of each transaction have to be
created by the receiver. Therefore, the sender knows nothing about the random-
ness of each output coin, and he has to interact with the receiver for proving that
the excess is a commitment to 0. To realize non-interactive payments, a natural
choice is to let the sender create the output coins. Using this approach, the sender
can generate the proof of balance by himself, but the associated randomness can
never be used as the spending key of the coin. Hence, our essential idea is to verify
the balance of the transaction and the ownership of the input coins separately. To
this end, we introduce an address for each coin in our ΠNiACS, then the secret key
corresponding to the address is used to spend the associated coin while the ran-
domness of the associated commitment is used only to prove balance. Following
this way, the interaction between the sender and receiver can be avoided, but the
first challenging task we face is to bind a coin and an address.

In fact, the combination of commitments and addresses have been employed
previously to achieve privacy-preserving cryptocurrencies (e.g., Monero [37] and
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Zcash [8]). Among them, a signature for each transaction is usually generated
for preventing it from being tampered with. In our design, however, distinct
transactions will be mixed or aggregated to hide the relations of input coins
and output coins (namely, linkability). Then when verifying the aggregate trans-
action, the verifiers need to pick out the individual transaction to verify the
signature, which will break the unlinkability. Therefore, it is not easy to bind a
coin and an address while supporting transaction aggregation.
Bind an Address and a Coin. As discussed before, binding a coin to an
address through a signature on the whole transaction will break the unlinkability.
Therefore, a natural idea is to bind each coin and the associated address through
a separate signature. However,the question is how to generate such a signature?

Fortunately, we observe that in our ΠNiACS, the randomnesses of commit-
ments do not act as the spending keys anymore, and the sender knows the ran-
domnesses of all output coins as they are generated by the sender himself rather
than the receiver. Moreover, the proof of the excess being a commitment to 0
leaks nothing about the randomnesses of the coins, due to the zero-knowledge
property. Hence, our idea is to use the randomness of each commitment as the
signing key to sign the corresponding address, which can be achieved by lever-
aging the primitive named signature of knowledge [15].

More specifically, signature of knowledge extends the traditional notion of
digital signature to the notion that allows one to issue signatures on behalf of
any NP statement, which can be interpreted as follows: “A person in possession
of a witness w to the statement x ∈ L has signed message m." An instance of sig-
nature of knowledge can be related to a language. In the confidential transaction,
for each commitment, a range proof is generated to prove that the committed
value is within a specific range [0, vmax]. Therefore, we can define the language
Lrange := {cm | ∃ r, v s.t. cm = grhv ∧ v ∈ [0, vmax]}, and only the one knowing
the opening (r, v) of cm can sign an address by invoking F range

SoK .
To guarantee the validity of transactions, the second challenge is to prove the

balance of each transaction as well as the knowledge of spending keys (i.e., the
ownership of input coins). Regarding the former, it can be proved in the same
way as Mimblewimble. Therefore, the main challenge is to prove the ownership
of the input coins.
Prove the Ownership of Input Coins. A natural solution is to provide a
zero-knowledge proof that the sender knows the corresponding secret key of the
address. However, an independent proof can be stolen and used in other transac-
tions. A common approach for avoiding this problem is to bind the address and
the transaction through a signature of knowledge (i.e., sign the transaction using
the secret key), but as discussed before, signing the whole transaction will break
the unlinkability. Therefore, what we essentially need is to bind the address to
an “abstract” of the transaction that does not reveal the relation of the inputs
and outputs. We observe that an excess in Mimblewimble is abstracted from
all input and output coins of a transaction, and that it reveals nothing about
the relation between the inputs and outputs, due to the added offset. Thus, we
bind the address of each coin to the transaction via signing its excess with the
associated spending key. Then the same excess will be signed n times if the



754 Y. Jia et al.

transaction includes n input coins. In this case, when the transaction is aggre-
gated with others, any party can learn that these input coins belong to the same
transaction, which may reveal partial information about the linkability. To avoid
this leakage, our key idea is to randomly split the excess into n parts, and then
to sign each part with a separate spending key. Using this approach, the sender
can prove the knowledge of spending keys while preventing the proofs from being
stolen and used in other transactions. Similarly, this can be realized through the
signature of knowledge functionality, where the witness is the spending key and
the message is a part of the excess.

Following the above way, the sender can generate a valid transaction in a non-
interactive way, but the receiver cannot spend the received coins as she does not
know the private information (i.e., openings of commitments). Therefore, the
third challenge is how to send the private information to the receiver.
Send Private Information to Receiver. A natural approach is to send the
value and randomness to the receiver through a private communication channel.
In this way, the sender and receiver must interact at least once per transaction,
which defeats our purpose of achieving non-interactive payments. Another way
is to encrypt the private information with the receiver’s public key and send the
ciphertext along with each output coin. This will avoid the interaction between
the sender and receiver, but results in a significant increase of transaction size.
Inspired by the recent work due to Chen et al. [16], we propose a novel way of
encrypting the private information while mitigating the transaction expansion.

In particular, Chen et al. [16] proposed a twisted ElGamal encryption to
transfer values privately (from sender to receiver) as follows. Roughly, the sender
encrypts a value v into a ciphertext in the form of (pkr, grhv), where pk = gsk and
sk is known by the receiver and r is randomly chosen by the sender, and includes
the ciphertext in the transaction; as grhv is in fact a Pedersen commitment, we
write the ciphertext as (X, cm) for simplicity. After receiving the ciphertext, the
receiver can then recover v by computing cm/X

1
sk . Note that the value is in

a certain range, and thus the receiver can get v from hv. Unfortunately, the
receiver cannot get the randomness r, so she cannot spend the coin cm. To
overcome this problem, they proposed to spend the coin in an alternative way.
More specifically, after recovering the amount v from C := (X, cm), the receiver
generates a new coin C ′ := (X ′, cm′) with the equivalent amount as C. Further,
the receiver provides a proof through a Σ-protocol to prove that the messages
in cm and cm′ are identical.

At the first glance, their approach works in our design as well. Unfortunately,
we find it does not support cut-through. Particularly, we assume that a coin
cm created in transaction TXc is spent in transaction TXs through a new coin
cm′ with the equivalent amount. Note that in TXc, it is cm that is used to
generate the excess Ec := cm · E∗

c · gδc , where E∗
c denotes the excess of other

coins excluding cm and δc denotes the offset. In contrast, it is cm′ that is used
to generate the excess Es := E∗

s/cm′ · gδs of TXs, where E∗
s is the excess of

other commitments than cm′ and δs is the offset. Now we can see that if the
two transactions are aggregated and the coin is cut through, then the excess
of the aggregate transaction should be E∗

s · E∗
c · gδs+δc according to our design.
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Fig. 2. The transaction and aggregation process of ΠNiACS (ĉm1
2 = cm2

1).

Following the above approach, however, Es · Ec = E∗
s · E∗

c · cm
cm′ · gδs+δc , which is

not equal to E∗
s · E∗

c · gδs+δc as cm
cm′ �= 1. Therefore, the approach by Chen et al.

fails to work in our design.
To tackle the above problem, our essential idea is to enable the receiver

to recover both the value and the randomness directly from the coin cm. To
this end, we propose a new variant of ElGamal by generating the ciphertext as
(pkr, gH(gr)hv), where the randomness of the commitment is chosen through a
random oracle H(·). In this way, the receiver holding sk can easily recover gr

and thus get H(gr).
To this point, we obtain our NiACS protocol ΠNiACS. Following the above

ideas, the transaction and aggregation process in our design are as shown in
Fig. 2. More details are shown in Sect. 4.

3 Simulation-Based Security for NiACS

In this section, we propose a simulation-based security definition for NiACS
through an ideal functionality FNiACS.

As FNiACS is essentially a ledger that records aggregate transactions rather
than individual ones. Therefore, we define FNiACS starting from the basic ledger

Algorithm 1. State Update
1: procedure ExtendState(, , buffer, T, counter)
2: Send 〈ClockRead, sid〉 to GClock and receive 〈ClockRead, sid, τ〉 from GClock;
3: if |τ − T · counter| > T then
4: := ||Blockify(τ, buffer);
5: buffer := ε;
6: counter := counter + 1;
7: Send 〈ClockUpdate, sid〉 to GClock.
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Fig. 3. Overview of ideal functionality FNiACS.

functionality FLedger formalized by Kiayias et al. [29] and follow their parameters.
Prior to introducing our functionality FNiACS, we first recall the parameters used
later: buffer is to contain the valid transactions that have not been confirmed,
state is the state of ledger containing confirmed transactions, the constant T
denotes the time interval between generating blocks, and counter is to keep track
of the number of state updates. In addition, the state is updated by Extend-
State shown in Algorithm 1, where the function Blockify(τ, buffer) is used to
organize the transactions in buffer into a block and τ is a time obtained from a
global clock ideal functionality GClock.

Now we proceed to introduce our functionality FNiACS as shown in Fig. 3.
Roughly speaking, FNiACS consists of four parts: Initialization, Users’ trans-
actions, Aggregation, and Ledger. In initialization part, parties register on the
ledger while stating their roles (user/aggregator), and users need to state their
initial amounts. The registration information will be recorded into the genesis
block. After the system is bootstrapped, the parties can also register. Here, for
simplicity, we assume that parties only register at the beginning. In users’ trans-
actions part, users can submit payment requests to FNiACS, and if a payment
request is valid, FNiACS will generate the corresponding transaction and send
it to the aggregators. In aggregation part, aggregators can send aggregation
requests to FNiACS, and if an aggregation request is valid, FNiACS will aggregate
corresponding transactions and return the aggregate transaction to the aggrega-
tor. In ledger part, any party can read the ledger. Moreover, the adversary can
(1) directly submit transactions without being aggregated to ledger, and (2) per-
mute the buffer, which reflects his influence on the delivery. Next, we introduce
each part of FNiACS in detail.
Initialization. In Fig. 4, we describe the initialization process. FNiACS first ini-
tializes state := ε, buffer := ε and counter := 0. Besides, FNiACS initializes
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Fig. 4. Ideal functionality of NiACS (Initialization).

three lists, Lcoin, LTX and LA for recording coins, transactions and corrupted
parties, respectively. At the beginning, FNiACS will be notified which parties
are corrupted by receiving the message 〈Corrupt, sid, Pt〉 from adversary S.
Then Pt will be recorded in LA. For registration, a party Pk will send the reg-
istration information to FNiACS. In the registration information, Pk needs to
declare his role. If Pk acts as a user, he needs to declare his initial amount.
Once receiving a registration message 〈Registration, sid, Inforreg, Pk〉 from Pk,
FNiACS first checks if the party has registered before. If so, FNiACS ignores the
message. Note that a party can only register as one role. If the party wants
to register as a user and the corresponding initial amount vk is in a valid
range, FNiACS sends 〈Registration, sid,user, vk, Pk〉 to adversary S. Then S
will generate a coin identifier cidk for the initial coin, and send a message
〈Registrated, sid, (Pk,user), cidk〉 to FNiACS. At this point, the initial coin
of Pk is created, and FNiACS will add the coin (cidk, vk, Pk, Pk) into Lcoin in
the format of (identifier, value, owner, creator) and adds (Pk,user, (cidk, vk)) into
buffer. If Pk is registered as an aggregator, after receiving the agreement from S,
FNiACS adds (Pk, aggregator,⊥) into buffer. We allow the adversary to decide
when the registration is finished, and thus once receiving 〈Initialized, sid〉
from S, FNiACS executes ExtendState to get the genesis state. FNiACS returns
〈Initialized, sid, cidk〉 to inform Pk of successful registration.
Users’ Transactions. In Fig. 5, we describe the process of a user
submitting a transaction. A user Pk forwards a payment request
〈Submit, sid, Pk,LAgg, {cidi}, {(P̂j , v̂j)}〉 to FNiACS to initiate the process of gen-
erating a transaction. In the payment request, LAgg

5 is a list of aggregators who

5 Environment Z can abstract the situation that a party can send a transaction to
different aggregator sets at different times, by assigning different aggregator lists for
a transaction.
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Fig. 5. Ideal functionality of NiACS (Users’ transactions).

can receive the transaction and aggregate it, {cidi} is the set of coins to be
spent, and {(P̂j , v̂j)} is the set of receivers and the corresponding values. Upon
receiving a payment request, FNiACS will perform the following three steps:

– Transaction validation: FNiACS first needs to get the current state and check
if Pk can spend all the coins in {cidi}. More specifically, for each cidi, FNiACS

retrieves (cidi, vi, Pi, ·) from Lcoin and checks if Pi = Pk. If so, Pk can spend
this coin. Note that it is possible that Pi =⊥, which means that the coin is
generated by a corrupted party and has no designated owner. In this case,
any corrupted party in LA can spend this coin. For all i, if Pk can indeed
spend coin cidi and all these coins are in state, FNiACS further checks if all
the output values are valid (i.e., v̂j ∈ [0, vmax] for all j) and the transaction
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is balanced (i.e.,
∑

i vi =
∑

j v̂j). If all above verifications pass, FNiACS will
generate new coins for the receivers as below.

– Creating new coins: FNiACS sends a message to request S to generate the iden-
tifiers of new coins. Since the adversary S knows the values/amounts of coins
generated or received by corrupted parties, FNiACS will send 〈RequestID, sid,
(P̂j , v̂j)〉 to the adversary if the sender Pk or a receiver P̂j is corrupted. Other-
wise, FNiACS will send 〈RequestID, sid,⊥〉 to capture that both the receiver
and the amount of the coin are hidden from S. Upon receiving the response
〈ResponseID, sid, ĉidj〉 from S, where ĉidj is the identifier of the new coin,
FNiACS records (ĉidj , v̂j , P̂j , Pk) in Lcoin. After getting the identifiers of all the
new coins, FNiACS represents the transaction as TX := ({cidi}, {ĉidj}), which
will be sent to the designated aggregators in LAgg as below.

– Sending TX to aggregators: Although an aggregator list LAgg for a transac-
tion TX is assigned in the input message, whether or not an aggregator can
receive the transaction TX is eventually determined by the adversary S, so
the set of aggregators who indeed receive the transaction is a subset of the
assigned aggregators. When receiving a transaction for the first time, FNiACS

initializes a list L∗
Agg to record the aggregators who will finally receive the

transaction. For each aggregator Aggt in LAgg, FNiACS will ask S if Aggt can
receive the transaction through a message 〈SendTX, sid,TX, Pk,Aggt〉. Note
that if the sender Pk is corrupted, S can know which transaction is required to
be sent to an aggregator, so TX �=⊥. But when the sender is honest, S cannot
know the information about the transaction, and thus TX =⊥. Upon receiv-
ing 〈SendTX, sid, Pk,Aggt,OK〉, FNiACS will send 〈ReceivedTX, sid,TX〉 to
Aggt and add Aggt to L∗

Agg. After sending the transaction to the allowed
aggregators, FNiACS needs to record the transaction into LTX, including its
transaction identifier TX, aggregators receiving the transaction L∗

Agg and its
details ({cidi}, {(P̂j , v̂j)}). In addition, Pk can repeatedly input the same
transaction, but with different aggregator lists. In this case, FNiACS only sends
the transaction to the new aggregators in LAgg/L∗

Agg.

Aggregation. In Fig. 6, we show how FNiACS aggregates certain transactions and
puts the aggregate transactions into buffer. An aggregator Aggk can ask FNiACS

to aggregate the transactions in {TXt} and put the aggregate transaction into
the ledger by submitting an aggregation request 〈Aggregate, sid, {TXt}〉. Upon
receiving the request, FNiACS initializes three empty lists Linp, Loutp and Lcut. Linp

and Loutp are used to record the identifiers of spent coins and created coins in the
aggregate transaction, respectively. For each transaction TXt in {TXt}, FNiACS

first checks if the aggregator Aggk indeed received the transaction according to
the records in LTX. If not, FNiACS will ignore the transaction TXt, otherwise
parses TXt as ({cidi}, {ĉidj}) and adds all identifiers in {cidi} and {ĉidj} to
Linp and Loutp respectively. At this point, the transactions in {TXt} received by
the aggregator Aggk have been aggregated into (Linp,Loutp). Then cut-through
proceeds as follows: For each spent coin cidi ∈ Linp, FNiACS checks if it belongs to
Loutp, if so, cidi will be removed from Linp and Loutp. Obviously, if a cut happens
on a coin that is created or received by a corrupted party, the adversary S will
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Fig. 6. Ideal functionality of NiACS (Aggregation).

Fig. 7. Ideal functionality of NiACS (Ledger).

be aware of it. Thus, FNiACS uses Lcut to record these coins. We allow S to know
how many coins (related to honest parties and corrupted parties) are cut, and
denotes the number as a variable c. After executing the above process, Linp and
Loutp constitute the aggregate transaction aTX. Finally, if all the input coins of
aTX are in state, FNiACS adds aTX into buffer and sends 〈AggTX, sid, aTX〉 and
〈AggTX, sid,Aggk, aTX, c,Lcut〉 to Aggk and S, respectively.
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Ledger. For the basic interfaces of a ledger, we follow the ledger functionality
defined in [29]. To be self-contained, we show the ledger functionality in Fig. 7.
More specifically, we follow their definition in the following three aspects: (1) The
abstraction of consensus layer: FNiACS executes the procedure ExtendState
shown in Algorithm 1 to extend the state, which is an abstract of consensus
layer; (2) The way of parties and adversary reading the ledger: for an honest
party, FNiACS only provides state, but for a corrupted party, FNiACS give state
and buffer; (3) Allowing adversary to permute buffer: to abstract the case where
adversary can delay the delivery of transactions in the network, FNiACS receives
a permutation π from the adversary, and apply the permutation on buffer.

In addition, we allow the adversary S to directly submit transactions to the
ledger. Note that in the ledger functionality defined in [29], both honest and
corrupted parties can directly submit transactions to the ledger. Whereas, in
our NiACS, each honest sender’s transaction first needs to be aggregated and
then submitted to the ledger by the designated aggregators. Therefore, honest
parties who intend to protect privacy will not directly submit transactions to
the ledger.

Security Properties Captured By our Definition. Informally, our ideal
functionality FNiACS captures the following security properties: inflation-
resistance, theft-resistance, transaction indistinguishability, and unlinkability.
More specifically, FNiACS requires parties to register the initial amounts and
spend the coins with enough value, which implies inflation-resistance. For each
coin, FNiACS records its owner and only allows the owner to spend the coin, which
means theft-resistance. A transaction consists of an input list and an output list,
each containing multiple coin identifiers cid. Since the coin identifiers are pseu-
dorandom, the transaction amount is hidden and change coins and output coins
are indistinguishable obviously, which provides transaction indistinguishability.
Moreover, the transactions contained in the state of the ledger is in an aggre-
gate form, so the irrelevant parties cannot learn which coins belong to the same
transaction, i.e., unlinkability.

4 Our Non-interactive Aggregate Cash System

In this section, we present the details of our protocol ΠNiACS. First, we propose a
new variant of ElGamal encryption that is important for realizing non-interactive
payments. Then, we introduce the ideal functionalities and auxiliary algorithms
used through our design. At last, we present our protocol based on these func-
tionalities, auxiliary algorithms, and the variant of ElGamal encryption.

4.1 New Variant of ElGamal Encryption

Inspired by the twisted ElGamal encryption [16], we propose a new variant
of ElGamal encryption scheme shown in Fig. 8. The ciphertext is of the form(
pkr, gH(gr)hm

)
for a message m ∈ Zp. Therefore, the receiver can recover both

the randomness H(gr) and the message m by using the secret key sk, which
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plays a crucial role for our design. We remark that, as shown in [11,16,19], the
encrypted message m can be efficiently recovered from hm when the message
space is small, e.g., by brute-force enumeration as in [11,19], or Shanks’s algo-
rithm as in [16]. We show the security of our new variant of ElGamal encryption
by Theorem 1, and please find the proof in the full version.

Fig. 8. New variant of ElGamal.

Theorem 1. Assuming that the Divisible Computational Diffie-Hellman
(DCDH) problem is hard6, the proposed encryption scheme is IND-CPA secure
in the random oracle model.

4.2 Ideal Functionalities and Auxiliary Algorithms

We design our protocol in a hybrid model. To ease the understanding of our
protocol, we first recall the subroutine ideal functionalities invoked in our design
and represent some specific processes as auxiliary algorithms. We give the details
of these functionalities and auxiliary algorithms in the full version.
Ideal Functionalities. The ideal functionalities used throughout our design can
be divided into two categories; the first is used for transaction layer, while the
second is for consensus layer. For the former, it is summarized in Table 1. For the
latter, we note that the functionality FNiACS defined in Sect. 3 is a private ledger,
and thus can be seen as a “private” version of FLedger defined in [29]. Therefore, we
focus on designing privacy-preserving transaction layer while assuming there is a
secure consensus layer. In this work, we design our protocol ΠNiACS by leveraging
the functionality FLedger.
Auxiliary Algorithms. For the auxiliary algorithms, we divide them into two
categories: one-time addresses and construction of transactions.
One-Time Addresses. In our system, each user has a permanent address Addr :=
gKey, where Key

$←− Zp is the associated secret key and g is a generator of the
cyclic group G with order p. We use one-time address to hide the identity of a
user in the real world. One-time addresses/secret keys are generated as follows:
6 Informally, the DCDH assumption means that, given a tuple (g, ga, gb), where g is

a generator of a cyclic group G with prime order p and a, b
$←− Zp, the probability

of computing ga/b is negligible.
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– GenOTAddr is to generate a one-time address and its auxiliary string for
a user with permanent address Addr. It takes Addr as input, and outputs a
one-time address pk and corresponding auxiliary string R.

– GenOTKey is to generate a one-time spending key. It takes a permanent
address/key pair (Addr,Key) and a one-time address/auxiliary string (pk,R)
as input, if (pk,R) is derived from (Addr,Key), outputs the one-time secret
key sk, otherwise outputs ⊥.

Table 1. Ideal functionalities and descriptions

Faddr
NIZK Non-interactive zero-knowledge for language Laddr := {(pk,R) | ∃ (Addr, r),

s.t. pk = AddrH(Addrr), R = gr}, which is used to prove that the one-time address
pk and its auxiliary string R are correctly generated

Fzero
NIZK Non-interactive zero-knowledge for language Lzero := {cm | ∃ r, s.t. cm = grh0},

which is used to prove that each excess part is a commitment to 0

Fenc
NIZK Non-interactive zero-knowledge for language Lenc := {(pk, (X, cm)) | ∃ (r, v),

s.t. X = pkr, cm = gH(gr)hv}, which is used to prove that the amount v is
correctly encrypted

F range
SoK Signature of knowledge for language Lrange := {cm | ∃ (r, v), s.t. cm = grhv ∧ v ∈

[0, vmax]}, which is used to prove that the amount of each coin is within a valid
range and to sign an address

Fkey
SoK Signature of knowledge for language Lkey := {pk | ∃ sk, s.t. pk = gsk}, which is

used to prove the knowledge of a spending key and to sign an excess part

FSMT Secure message transmission is for users to send transactions to aggregators

Construction of Transactions. The remaining algorithms are used to generate
and verify transactions as follows:

– GenExcess is to generate the excess and offset. It takes as input all the
commitments and their openings in both the input and output lists (i.e.,
{cmi, (αi, vi)} and {ĉmj , (α̂j , v̂j)}), then chooses an offset δ and computes
the final excess Ẽ and its randomness ẽ. After that, it splits the excess Ẽ into
n parts, s.t., Ẽ = Ẽ1 · Ẽ2 · · · Ẽn, and outputs ({Ẽi, ẽi}, δ).

– GenOutput and VerOutput are to generate and verify the output coins,
respectively. For each output, GenOutput takes (v̂j , ˆAddrj) as input, then
generates and outputs a one-time address ĉidj := (p̂kj , R̂j), a proof π̂addr

j

that the one-time address is correctly generated, a ciphertext (X̂j , ĉmj) of
vj , a proof π̂enc

j that (X̂j , ĉmj) is correctly generated, a signature σ̂range
j on

(p̂kj , R̂j) and the randomness α̂j of ĉmj . VerOutput takes (ĉidj , π̂
addr
j , (X̂j ,

ĉmj), π̂enc
j , σ̂range

j ) as input, then outputs 1 if π̂addr
j , π̂enc

j and σ̂range
j are valid,

and 0 otherwise.
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– GenInput and VerInput are used to generate and verify the proof of spend-
ing key for each input coin, respectively. GenInput takes as inputs a partial
excess Ẽi and the associated randomness ẽi, a coin identifier cidi (i.e., one-
time address) and the corresponding one-time spending key ski, then out-
puts a proof π̃zero

i that Ẽi is a commitment to 0 and a signature σkey
i that

proves the knowledge of ski and binds the input coin to Ẽi. VerInput takes
(cidi, (Ẽi, π̃

zero
i ), σkey

i ) as input, and outputs 1 if both π̃zero
i and σkey

i are valid,
otherwise returns 0.

– Aggregate is to aggregate a valid individual transaction TX with an (aggre-
gate) transaction (LI ,LO,LK ,Δ). It takes as input a transaction TX, an
input list LI , an output list LO, a kernel list LK and Δ, then outputs a new
aggregate transaction (LI ,LO,LK ,Δ).

4.3 Description of ΠNiACS

Given the above ideal functionalities and auxiliary algorithms, we show the spec-
ification of our ΠNiACS in Fig. 9, Fig. 10, Fig. 11 and Fig. 12. Please refer to the
full version for the detailed description.

Fig. 9. Our ΠNiACS supporting non-interactive payments (Initialization).
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Fig. 10. Our ΠNiACS supporting non-interactive payments (Users’ transactions).

Initialization. Figure 9 shows the initialization process of ΠNiACS. Steps 1–
6 show the initialization process of a user, including generating permanent
address/key and initial coin, and submitting the initial information to FLedger.
Steps 7–8 show the initialization process of an aggregator, i.e., registering the
role to FLedger.
Users’ Transactions. In Fig. 10, we describe how a user constructs a transfer
transaction. In steps 3–13, the user checks if the transfer request from Z is valid.
If so, the user generates the transaction by invoking GenOutput, GenExcess
and GenInput as shown in steps 14–20. At last, the user sends the transaction
to the designated aggregators through FSMT as shown in steps 21–22.
Aggregation. Figure 11 shows the process of aggregation. In steps 2–14, the
aggregator checks if the transactions received from FSMT are valid by verify-
ing the kernel and invoking VerInput and VerOutput, and records the valid
transactions. Then the aggregator aggregates the valid transactions specified
by Z through executing Aggregate and submits the aggregate transaction to
FLedger, as shown in steps 16–21. Note that the aggregator just outputs the coin
identifiers in (aggregate) transactions to Z, rather than the real-world (aggre-
gate) transactions. Therefore, the aggregator executes Clean to extract the coin
identifiers from (aggregate) transactions.
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Fig. 11. Our ΠNiACS supporting non-interactive payments (Aggregation).

Fig. 12. Our ΠNiACS supporting non-interactive payments (Ledger).

Ledger. In Fig. 12, we describe the part related to reading and maintaining
ledger. Steps 2–5 show how the honest party obtains state. Besides state, a cor-
rupted party can also obtain buffer and permute it as shown in steps 7–10. Like-
wise, the party just outputs the coin identifiers in state or buffer to Z. Therefore,
the aggregator executes Clean to extract the coin identifiers from state or buffer.
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4.4 Security

Next we show the security of ΠNiACS against the static adversaries by Theorem 2.
Please refer to the full version for the proof.

Theorem 2. Assuming that DCDH problem is hard, the protocol ΠNiACS UC-
realizes FNiACS in the {FNIZK,FSoK,FSMT,FLedger,FRO}-hybrid model, in the pres-
ence of static malicious adversaries.

5 Instantiations

In the previous section, we describe our protocol ΠNiACS and prove it can UC-
realize FNiACS in a hybrid model. In this section, we describe how to realize
the subroutine ideal functionalities FNIZK and FSoK used in our ΠNiACS, which
dominate the cost of our protocol. Next, we will describe the sub-protocols to
achieve FNIZK and FSoK in the stand-alone setting and the UC setting.
Stand-Alone Setting. Recall our ΠNiACS, F zero

NIZK is used to prove that an excess
part Ẽi is a commitment to 0, namely Ei := gei , and Fkey

SoK is used to prove the
knowledge of secret key sk to a public key pk := gsk while signing an address.
We can see that the languages in the two functionalities can be summarized as
LDLOG := {X | ∃ x, s.t. X = gx}. Therefore, F zero

NIZK and Fkey
SoK can be securely

realized based on the Σ-protocol for proving knowledge of a discrete logarithm
shown in Fig. 13. More specifically, for F zero

NIZK, X is the excess part, and x is
the corresponding discrete logarithm. By using Fiat-Shamir transform [20], the
interactive protocol in Fig. 13 can be converted into a non-interactive one where
the challenge c is generated by a random oracle with (X,R) as the input. In
practice, the random oracle will be instantiated by a hash function. Obviously,
when X is pk and x is sk, the protocol in Fig. 13 can be used to prove the
knowledge of a spending key, and can also be transformed to a non-interactive
protocol by using Fiat-Shamir transform. At this point, we obtain a protocol
for zero-knowledge proof of spending key. Next, we need to transform it into a
protocol for signature of knowledge. Much work (e.g., [5,14]) has proved that
the Fiat-Shamir transform can also be used to convert a public-coin proof of

Fig. 13. Interactive Zero-knowledge proof of a discrete logarithm.
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knowledge into a signature scheme by taking the message to be signed as the
part of input to random oracle. More concretely, in our protocol, the excess part
Ẽi will be input to the random oracle along with (X,R). Therefore, we obtain
the protocol that can securely realize Fkey

SoK.
Like other privacy-preserving cryptocurrencies, we also leverage Bulletproof

[12] to generate range proofs. As mentioned in [12], Bulletproof is a public-coin
proof of knowledge, and thus Bulletproof can also be converted into a non-
interactive scheme by using Fiat-Shamir transform. Similarly, based on Bullet-
proof, we can obtain the protocol to securely realize F range

SoK by taking the message
to be signed (i.e., the address of each output coin in our ΠNiACS) as the part of
input to random oracle.

The new variant of ElGamal proposed in this work can allow the receiver
to obtain the value and randomness of a commitment by decryption, but the
ciphertext needs to be generated using a hash function. Likewise, the one-time
address and its auxiliary string are generated by using hash function. Hence, we
cannot use Σ-protocol to realize F enc

NIZK and Faddr
NIZK. We need to use the general-

purpose zk-SNARK [9,25,38,43].
UC Setting. The above protocols only securely realize the corresponding ideal
functionalities in the stand-alone setting. Next, we discuss how to transform the
above protocols to achieve UC security.

As for the Σ-protocol, we can use the compiler proposed by Camenisch et al.
[13] to transform them to realize UC-security. The known practical instantiations
(e.g., [9,25,38,43]) for SNARK also do not UC-realize FNIZK as they cannot
satisfy Black-Box Simulation Extractability. Like other works, e.g. Hawk [31],
Gyges [27], Ouroboros Crypsinous [28], we can also leverage the C∅C∅ framework
proposed by Kosba et al. [30] to achieve Black-Box Simulation Extractability
(namely, SSE-NIZK) in the standard CRS model.

6 Performance Analysis

In this section, we first give a performance estimation of our ΠNiACS where FNIZK

and FSoK are achieved in the stand-alone setting. Then, we compare our ΠNiACS

with Mimblewimble [39] and the work by Fuchsbauer et al. [22].
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Table 2. Performance estimation and comparison.

Spending time Verifying time TX size

[39] (2m + 2) · exp + H + m · T P
range 3 · exp + H + m · T V

range
(m + n + 2) · |G| + 2 · |Zp|
+m · |πrange|

[22]
(4n + 6m + 3) · exp

+(2n + 3m + 1) · H+

m · (T P
range+ T P

addr + T P
enc )

(3n + 5) · exp + (n + 1) · H+

m · (T V
range+ T V

addr + T V
enc )

(3n + 4m + 3) · |G|
+(n + m + 3) · |Zp|
+m · (|πrange|+ |πaddr| + |πenc| )

ΠNiACS

(4n + 7m + 1) · exp

+(3n + 2m) · H+

m · (T P
range+ T P

addr +T P
enc )

(4n + 1) · exp + 2n · H+

m · (T V
range+ T V

addr + T V
enc )

(5n + 4m) · |G|
+(2n + 1) · |Zp|
+m · (|πrange|+ |πaddr| + |πenc| )

n: the number of input coins; m: the number of output coins; exp: an exponentiation
operation in group G with prime order p; H: a hash function; |G|: the length of element
in group G; |Zp|: the length of element in Zp; T

P/V
x : the time to generate/verify a proof

for language Lx (x ∈ {range, addr, enc}); |πx|: the length of proof for language Lx

(x ∈ {range, addr, enc}); The costs marked in blue are not necessary against rational
adversaries; The costs marked in gray are not actually mentioned in [22], but they
are necessary against malicious adversaries.

6.1 Performance Estimation

According to the instantiations described above, we give a performance esti-
mation in Table 2. More specifically, according to the results shown in [12],
the proving time TP

range for range [0, 264] is 29ms while the verification time
TV

range is 3.9ms. The range proof size πrange is 675 bytes. For the languages
Laddr := {(pk,R) | ∃ (Addr, r) and Lenc := {(pk, (X, cm)) | ∃ (r, v), s.t. X =
pkr, cm = gH(gr)hv}, we use the scheme in [25], a general-purpose zk-SNARK, to
generate the proofs, and thus the proof sizes |πaddr| and |πenc| are both 2G1+G2.
The corresponding proving time (TP

addr and TP
enc) and verification time (TV

addr and
TV

enc) mainly depend on the number of constraints. Concretely, we implement the
hash function in Laddr and Lenc by using MiMCHash-256. The number of con-
straints required by Laddr and Lenc is 11, 742 and 14, 799, respectively7. Moreover,
in practice, the proofs for Laddr and Lenc are not necessary as explained below,
and we mark the corresponding costs in blue.

In the security analysis in Sect. 4.4, we assume that the adversary will have
malicious behaviors arbitrarily. However, it is reasonable to assume that the
adversary is rational in practice. As mentioned in [24], a rational adversary
is expected to act in a utility-maximizing way. The costs marked in blue are
related to Faddr

NIZK and F enc
NIZK, which are used to ensure that the one-time address

and ciphertext are correctly generated for the receiver, respectively. The receiver
in practice can identify if the one-time address and ciphertext are valid without
the proofs, and if not, the receiver can abort the deal (e.g., refuse to send the
goods), and thus can not be harmed. Moreover, the sender cannot benefit from
it. Therefore, a rational adversary will not carry out this malicious behavior.
Obviously, the receiver can identify if a one-time address is valid by invoking
7 If zk-SNARK is transformed to SSE-NIZK by using the framework in [30], the num-

ber of constraints required by Laddr and Lenc will increase to about 71, 742 and 74, 799,
respectively.
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GenOTKey. Next, we will explain how the receiver identifies whether a cipher-
text is generated correctly.

If a transaction containing ciphertext (X∗, Y ) can be confirmed, Y must
be a valid commitment due to our design, i.e., Y = gαhv. If X∗ associated
with Y is generated correctly, denoted as X, the receiver can recover (α, v) by
computing α := H(X

1
sk ), hv := Y/gα and recovering v from hv where v ∈ [0, 264].

Otherwise, i.e., X∗ = X ′ �= X, the receiver will obtain α′ = H(X ′ 1
sk ) �= α and

hv′
= Y/gα′

= gα−α′
hv. Due to the random oracle, hv′

is randomly distributed
and so the probability of v′ ∈ [0, 264] is 264

2256 , which is negligible. Therefore, the
receiver can recognize the invalid ciphertext by checking if v ∈ [0, 264].

6.2 Comparison

We also give the performance estimations of Mimblewimble [39] and the non-
interactive solution proposed independently and concurrently by Fuchsbauer et
al. [22] in Table 2. It can be seen that both our work and Fuchsbauer et al. [22]
degrade performance to achieve non-interaction, and the performances of the two
non-interactive solutions are comparable. As for our work, besides introducing
addresses and related proofs, the main reason leading to a higher cost is that our
protocol needs to split the excess into multiple parts. Similarly, Fuchsbauer et
al. [22] also introduce addresses and related proofs. Although they do not split
the excess, they add a doubling key for each one-time address, thus resulting in
the comparable additional cost. In a nutshell, the two non-interactive solutions
are more suitable for the scenarios where non-interaction is strongly desirable.
Nevertheless, designing a non-interaction version without degrading performance
is still a challenging problem.
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Abstract. In recent years, permisionless blockchains have received a lot
of attention both from industry and academia, where substantial effort
has been spent to develop consensus protocols that are secure under the
assumption that less than half (or a third) of a given resource (e.g.,
stake or computing power) is controlled by corrupted parties. The secu-
rity proofs of these consensus protocols usually assume the availability of
a network functionality guaranteeing that a block sent by an honest party
is received by all honest parties within some bounded time. To obtain
an overall protocol that is secure under the same corruption assump-
tion, it is therefore necessary to combine the consensus protocol with a
network protocol that achieves this property under that assumption. In
practice, however, the underlying network is typically implemented by
flooding protocols that are not proven to be secure in the setting where
a fraction of the considered total weight can be corrupted. This has led
to many so-called eclipse attacks on existing protocols and tailor-made
fixes against specific attacks.

To close this apparent gap, we present the first practical flooding pro-
tocol that provably delivers sent messages to all honest parties after a
logarithmic number of steps. We prove security in the setting where all
parties are publicly assigned a positive weight and the adversary can cor-
rupt parties accumulating up to a constant fraction of the total weight.
This can directly be used in the proof-of-stake setting, but is not limited
to it. To prove the security of our protocol, we combine known results
about the diameter of Erdős–Rényi graphs with reductions between dif-
ferent types of random graphs. We further show that the efficiency of
our protocol is asymptotically optimal.

The practicality of our protocol is supported by extensive simula-
tions for different numbers of parties, weight distributions, and corrup-
tion strategies. The simulations confirm our theoretical results and show
that messages are delivered quickly regardless of the weight distribution,
whereas protocols that are oblivious of the parties’ weights completely
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fail if the weights are unevenly distributed. Furthermore, the average
message complexity per party of our protocol is within a small constant
factor of such a protocol.

Keywords: Flooding networks · Peer-to-peer networks · Blockchain ·
Network layer · Multicast

1 Introduction

1.1 Motivation

Since Nakamoto proposed the first decentralized permisionless blockchain proto-
col [32], a significant line of works has been done. In such protocols, one considers
a setting where different parties are weighted according to how much of a resource
they own (mining power, stake, space, etc.), and security relies on the fact that
a certain fraction of the total weight (typically more than the majority, or two
thirds) is owned by the honest parties.

Current blockchain protocols typically are proven secure assuming the avail-
ability of a multicast network, which allows each party to distribute a value
among the parties within some delivery time Δ (see e.g. [3,12,14–16,20,34,36]).
However, very little attention has been devoted to the construction of provably
secure multicast networks themselves.

In practice, the multicast network is typically implemented via a message-
diffusion mechanism, where in order for a party P to distribute a message, P
sends the message to a subset of its neighbors, who then forward the message
to their neighbors and so on. The idea is that if the graph induced by the
honest parties is connected, the message will reach all the honest parties, and
if the graph has low diameter, it will reach all honest parties after only a few
iterations. Indeed, there have been works that study how to randomly select
the neighbors so that the induced graph remains connected with small diameter
after removing corrupted nodes (see e.g. [24,30,37]).

Unfortunately, to the best of our knowledge, currently analyzed diffusion
mechanisms do not consider weighted parties, and therefore can only be proven
secure when a certain constant fraction of the parties is honest (in particular it is
not enough to assume a fraction of the total weight is owned by honest parties).
This means that when such a message diffusion mechanism is used to build a
blockchain, the overall protocol relies on both the constant-honest-fraction-of-
weight assumption and the constant-honest-fraction-of-parties assumption.

Note that for a fixed weight distribution, a bound on the corrupted weight
also implies a bound on the number of parties that can be corrupted, where
this maximum is achieved by greedily corrupting parties with the least weight
first. Hence, current multicast protocols could in principle also be used assuming
only a bound on the corrupted weight. However, the message complexity of such
protocols is inversely proportional to the guaranteed honesty ratio. That is, to
still guarantee security under more corrupted parties, the remaining parties have
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Fig. 1. Comparison of our WFF protocol with a weight oblivious protocol WOF that
chooses a fix number of random neighbors independently of their weight. The simula-
tions are for n = 1024 parties with exponential weight distributions Exp(r) where the
heaviest party’s weight is r times the lightest party’s weight. Note that for Exp(1), WFF
and WOF are identical. For each setting, we consider a 50% corruption threshold, and
a greedy corruption strategy where lighter parties are corrupted first. Each simulation
was repeated 10 000 times and the success rate measures how often all parties received
a single sent message.

to send to more neighbors. In particular, this means that in many of the current
weight distributions where there are very few people owning a large fraction
of the total weight, but thousands of parties owning a tiny little fraction of the
weight, the incurred concrete message complexity to achieve security significantly
blows up (see an example in Fig. 1, where even for large sizes of neighborhood
sizes, the protocol fails).

The need for a practically efficient multicast network secure solely relying on
the constant-honest-fraction-of-weight assumption is therefore apparent.

1.2 Our Contributions

In this work, we investigate provably secure protocols that implement a mul-
ticast network for the weighted setting, relying solely on the constant-honest-
fraction-of-weight assumption. Additionally, we are interested in protocols that
are concretely efficient. In short, we explore the following natural questions:

Is there a provably secure multicast protocol in the weighted setting, assum-
ing only a constant fraction of honest weight? And if so, is there a practi-
cally efficient one?

We answer both of these questions in the affirmative by presenting the first
multicast protocol WFF (weighted fan-out flooding) that relies solely on the
constant-honest-fraction-of-weight assumption, and evaluate its practical effi-
ciency by performing various simulations. More concretely, we prove the follow-
ing theorem:
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Theorem 1 (Informal). Let κ be a security parameter, n be the number of
parties, and γ ∈ [0, 1] be the fraction of the total weight that is guaranteed to
belong to honest parties. Further, let δChannel be an upper bound on the delays of
the underlying point-to-point channels. Then, WFF is a secure flooding protocol
with maximal delay Δ :=

(
7·log

(
6n

log(n)+κ

)
+2

)
·δChannel and message complexity

2n · log(n)+κ
γ .

Note that the maximum delay and the message complexity in the theorem
are independent of the weight distribution. By naturally assigning the weights to
corresponding stake quantities, the achieved guarantees match those required in
previous proof-of-stake blockchain protocols (see e.g. [12,15,16]), and therefore
our protocol can be used to build a blockchain protocol from point-to-point
channels without the need for any additional assumption apart from those needed
in the blockchain protocol itself.

Asymptotic Optimality and Practicality. Our protocol has the property that
1) parties accumulating large amounts of weight need to send to more parties,
and 2) the number of parties that each party sends to increases logarithmically
in the total number of parties. We prove that both properties are inherent for
secure flooding protocols, meaning that Theorem 1 is asymptotically optimal.
Concretely, for the first point, if a small set S (say, of constant size) accumulates
more than a γ-fraction of the weight, then this set necessarily needs to send at
least to a linear number Θ(n) of parties.

This means it is undesirable to have parties with very small weight and also
to have parties with a huge weight. A simple way to mitigate this in practice is
to exclude parties with less than Wmin weight and cap the maximal weight to
Wmax. This means if we use the flooding for a proof-of-stake blockchain, that
parties with a huge amount of stake need to split their stake over several nodes
such that none has more than Wmax weight. Parties with very little stake can
still obtain data from other nodes by requesting data from them periodically.
We discuss this further below.

Simulations. We use simulations to evaluate the practicality of our provably
secure protocol. The simulations confirm our theoretical results and also show
that our protocol is practical: Messages are diffused quickly to all parties with
high success probability even when weights are unevenly distributed. On the
other hand, as our simulations also show, prior protocols—oblivious of the par-
ties’ weights—fail completely for neighborhood sizes for which our provably
secure protocol succeeds (see Fig. 1). This in particular means that our pro-
tocol achieves the necessary security guarantees considerably fewer number of
messages than current (weight-oblivious) protocols.

1.3 Model and Assumptions

Network and Corruption Model. We assume all parties have access to an under-
lying network that allows them to establish point-to-point channels to other
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parties. We further assume each party p is publicly assigned a weight Wp > 0
and an adversary can corrupt parties accumulating at most a constant frac-
tion 1 − γ of the total weight. For simplicity, we consider static corruptions in
our proofs, but using the techniques from [30], all our results can be extended
to security against delayed adaptive adversaries (adversaries for which there is a
delay from the time they decide to corrupt a party until the party is effectively
controlled by the adversary). Intuitively, if a corruption takes longer than the
duration from the earliest point in time an adversary can learn the neighbors
of a party till the neighbors are guaranteed to have resent the message to other
parties, then adaptivity does not help the adversary prevent delivery of any mes-
sages. However, there is significant overhead involved in proving this because the
adversary can still dynamically decide how many parties are left to guarantee
delivery for. This is why we only present proofs for a static adversary and refer
to [30] for techniques for how to prove such statement.

Realising Public Weights from Resource Assumptions. Proof-of-stake blockchains
rely on a constant fraction of the stake being honest (typically more than 1/2
[14,15] or more than 2/3 [12]). Furthermore, a blockchain itself provides a ledger
accessible by all parties describing how much stake each party owns. Hence, it
is immediate how to assign weights to parties by simply accessing the ledger in
order to instantiate the weights for our protocols.

To achieve a weight distribution for blockchain protocols that rely on a con-
stant fraction of the computational resources being honest [20,34–36] one can
make use of the techniques for committee selection for such setting [35,36]. The
idea behind this is that for long fragments of a chain with high chain-quality,
the distribution of block creators is similar to the distribution of computational
resources among parties. Hence, this distribution translates directly to a weight
distribution publicly available to all parties. For techniques to achieve a high
chain-quality, see [34].

Delivery to Zero-Weight Parties. While we assume that all parties have positive
weight and parties with zero weight cannot contribute to the security of the
protocol, it is still desirable in practice to allow such parties to obtain the state of
the system. This can be achieved, e.g., by letting such parties fetch missing data
from other nodes. We discuss some options in the full version of this work [26].

Static Versus Dynamic Weight. For simplicity, we consider for this paper the
static-weight setting, in which the weight of all parties remains fixed. When
weight is instantiated with the stake in a proof-of-stake, this might appear unre-
alistic. This is, however, not a real limitation of our protocol when combined
with such a blockchain. For example in [15], to prove their protocol secure for
a dynamic stake, the authors divide time into epochs where the stake used for
producing blocks remains unchanged and additionally make assumptions on the
speed that stake can between epochs. In their proofs, they note that all parties
agree on the stake distribution in a previous epoch. We note that our proofs only
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rely on the weight being static for the propagation of a single message, and the
time it takes to propagate a message is very small compared to such epochs.

Practicality of Complete Network. We note that the assumption that any two
parties can establish a point-to-point connection between each other is indeed
a reasonable assumption, e.g., in the proof-of-stake setting: Parties who want
to participate in the protocol first need to register their node, see, e.g., [6].
This registration process can include the node’s IP address and further required
information that allows other nodes to establish a connection with that node.

1.4 Technical Overview

Flooding Protocol Skeleton. Our protocol follows the basic structure of previous
flooding protocols: When a party p receive a message m for the first time, p
samples a set of neighbors N from the party set P, according to some probability
distribution Np. The party then forwards the message m to all parties in N . The
crucial variable of this protocol is the distribution Np, i.e., how parties select their
peers.

Remark 1. In most practical blockchain implementations, parties do not resam-
ple their peers for every message, but keep the connections over an extended
period of time [22,29]. We note that our protocol can also be used in such a
fashion and all our results can be translated to such a setting. The reason for
resampling peers often is that against a delayed adaptive adversary [30], secu-
rity can only be guaranteed if the corruption delay is longer than the time peers
keep their connections. Hence, resampling more often provides better security
guarantees.

Dependency of Neighborhood Selection on Weight Distribution. It is clear that to
achieve efficient results, one must make use of the overall weight distribution to
decide whether a party pi forwards the message to party pj . What is perhaps less
clear, is what the required amount of dependency is. We here argue intuitively
that the neighborhood selection must depend (at least) on both the weights of
pi and pj : Consider a weight distribution where pi’s weight is overwhelming,
and there are many parties with very little weight (including pj). In this case,
the adversary has corruption budget to corrupt all parties except for pi and
pj . Therefore, in order to guarantee that an honest pj receives the message,
pi must send to that party with probability 1. Consequently, the neighborhood
selection distribution Npi

must depend on pi’s weight. It follows via an analogous
argument that pi must send to pj if the latter’s weight is overwhelming. Hence,
the probability to choose pj in Np must also depend on pj ’s weight.

A Simple Inefficient Solution. From the above observations, we see that the
neighborhood distribution must depend on both the weights Wi of pi and Wj of
pj . A simple idea is to let each party pi internally emulate Wpi

parties, and then
run a traditional unweighted flooding protocol among W =

∑
p Wp nodes, where
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two nodes are connected with some probability ρ. By properties of Erdős–Rényi
graphs, this leads to a secure flooding protocol [30]. Note that the probability
that a node from pi is connected to a node from pj depends on both weights
Wpi

and Wpj
, namely 1 − (1 − ρ)Wpi

·Wpj .
However, the resulting protocol is highly inefficient, since it has a message

complexity that depends on the total sum of the weights W , rather than the
number of parties. Note that in current proof-of-stake systems, the total stake
is in the order of billions, so any dependency on the total weight is highly unde-
sirable.

Scaling Invariance. The simple protocol from above not only is inefficient if
the total weight is large, it also has the undesirable property that the efficiency
depends on the “unit” of the weight: If we multiply everybody’s weight by 100, the
overall number of messages increases substantially, even though this scaling has
no effect on the possible corruptions. We thus postulate that practical protocols
should be invariant under such weight scalings.

A simple fix seems to be to normalize the weight distribution by dividing
every party’s weight by the weight of the lightest party. This, however, introduces
two issues: First, since the number of internally emulated nodes must be an
integer, this division leads to rounding issues, with implications for the security
argument. Secondly, introducing an additional extremely light party now has
a massive impact on the efficiency, even though this additional party does not
substantially change the possible corruptions.

A First Theoretical Protocol. Our first technical theoretical contribution is a new
simple way to choose the neighbors in the flooding protocol. More precisely, we
generalize the approach above and show that it is actually enough to emulate a
number of nodes that is proportional to the total number of parties (rather than
the total weight).

For that, we introduce the notion of an emulation-function E : P → N\ {0}.
According to the emulation function, we let each party p internally emulate
E(p) ≥ 1 different nodes, in a graph consisting of nE :=

∑
p E(p) nodes. As

explained above, the basic idea is to create an Erdős–Rényi graph on the emu-
lated graph with nE nodes and edge-probability ρ. Then, we say that a party pi

forwards the message to pj if any of the emulated nodes from pi is connected
to any of the emulated nodes from pj . This means that the probability that pi

forwards the message to pj is 1 − (1 − ρ)E(pi)·E(pj).
We then consider the emulation function E(p) = �αp · n�, where αp is p’s

fraction of the total weight. That is, we let each party emulate a number of nodes
proportional to the number of parties scaled by the party’s relative weight. Note
that the ceiling ensure that each party emulates at least one node. We then prove
that by choosing ρ appropriately such that the unweighted subgraph emulated
by honest parties remains connected with low diameter, we obtain a flooding
protocol with message complexity O((log(n) + κ) · n · γ−1) and time complexity
O(log(n) · δChannel).
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A Practical Protocol. Although the method described above is intuitive and
gives us asymptotically good complexities, it is very far from being practical. In
particular, the protocol requires every party to locally flip Ω(n) coins for each
message. Similar to current protocols deployed in practice, we would like to have
a protocol that instead chooses a fixed set of neighbors (possibly dependent on
the weight distribution, but nothing else), and provide provable security for it.

We propose a protocol where each party p chooses to send to K = k · E(p) =
k · �αp ·n� distinct parties (for a parameter k), according to a weighted sampling
without replacement [7]. More precisely, p chooses K parties, where the proba-
bility to choose a certain tuple1 of parties (q1, . . . , qK) (among the set of parties
P\{p}) is

Pr[(q1, . . . , qK)] =
K∏

i=1

E(qi)
nE − E(p) − E(q1) − · · · − E(qi−1)

.

We show that this practical protocol has the same asymptotic guarantees as the
first protocol above.

Importance of Emulation Function. Even though that this protocol is so simple
that it can be described in a few lines, it is by no means trivial. In fact, it is
crucial for the correctness of the protocol that the emulation function is used to
determine both the number of neighbors and the distribution of these neighbors.

To see that it is crucial to use the emulation function to decide how many
neighbors each party should choose, consider a small change to the protocol,
namely send to K = k · αp · n parties (instead of K = k · E(p)). Now, consider
a sender p with a small fraction of the total weight αp, and let us estimate the
parameter k to ensure that this p sends to at least one honest party. As any
party potentially could be corrupt it must be that p sends to more than just
one neighbor. Hence, it must be that k > 1

αp·n , just to ensure this very minimal
requirement. A rough bound on the message complexity of such protocol would
be

∑
p′ k · αp′ · n > 1

αp
, which is impractical if αp is small.

To see that it is crucial to weigh the selection of neighbors with the emulation
function, we consider another small change to the protocol, namely to select
parties weighted by their weight instead of the emulation function. Now, consider
a weight distribution where just one party p has a very small fraction of the total
weight and all others having roughly equal weight. Note, that for any party
choosing less than n neighbors the probability that p is chosen as a neighbor
becomes arbitrarily small for a decreasing αp. Hence, to ensure that p receives a
message this would induce a quadratic message complexity which is impractical.

Security Proof. Proving security of such a protocol in the weighted setting
directly is non-trivial for two reasons: First, the choices of whether to send to
a neighbor or not are not independent. Secondly, the fact that the choices are
1 The probability to choose the unordered neighborhood set N = {q1, . . . , qK} is the

sum over the probabilities of all permuted tuples.
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according to an arbitrary weight distribution makes the analysis considerably
harder than traditional graph-theoretic results that consider the non-weighted
setting. Instead of providing a direct graph-theoretic analysis, we give a security
proof via a sequence of intermediate protocols, essentially relating the success
probability of the first protocol above based on Erdős–Rényi graphs to the prac-
tical protocol. This leads to Theorem 1. Due to space constraints, many proofs
are left out of this version. We refer to the full version of this paper [26] for
these.

1.5 Current State of the Art and Related Work

Flooding Networks in a Byzantine Setting. [24] was the first to relate probabilistic
gossiping to the connectivity of the induced graph. They considered (1 − γ) · n
out of n parties failing and showed that each party needs to forward a message
with probability ρ > log(n)+κ

γ·n to any other party to ensure that messages are
delivered to all non-failing parties with a probability overwhelming in κ.

[30] observed that against an adversary capable of adaptively corrupting
up to t parties, any flooding network where each party sends to less than t
neighbors is inherently insecure (an adversary can simply corrupt all neighbors
of a sender). To mitigate this problem and achieve a protocol secure against a
Byzantine adaptive adversary, [30] formalized the notion of a delayed adversary
(informally introduced by [35]) for which there is a delay from the time the
adversary decides to corrupt a party until the party is effectively controlled by
the adversary. In this setting, they showed that against an adversary delayed for
the time it takes to send a message plus the time it takes to resend a message,
it is sufficient to on average send to Ω((log(n) + κ) · γ−1) neighbors to achieve
a flooding protocol that with an overwhelming probability in κ has O(log(n))
round complexity for n parties with at most (1 − γ) · n of the parties being
corrupted. In this work, we match the theoretical performance of their flooding
protocol with a practical protocol that only relies a γ fraction of the weight
remaining honest, which is more relevant in the blockchain setting.

Kadcast [37] is a recent flooding protocol specifically designed for blockchains.
Interestingly, they claim that structured networks are inherently more efficient
than unstructured networks and propose a structured protocol with O(log n)
neighbors and O(log n) steps to propagate a message, which is similar to what
we achieve using an unstructured network. It is unclear how their protocol per-
forms under Byzantine failures. Further, we note that structured networks are
inherently vulnerable to attacks by adaptive adversaries.

A different line of work [27,28,31] considers how to propagate updates in
a database using gossip where at most t of the processors may be corrupted.
The setting is however different from ours as they assume that at least t honest
parties get the update as input initially, and only updates input to some honest
processor can be accepted by the other processors.

Probabilistic communication have also been used to improve the communi-
cation complexity for both multi-party-computation (MPC) [9] and Byzantine
broadcast [39]. In [9], communication between honest parties is assumed to be
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hidden from the adversary. This is exploited by constructing a random commu-
nication network with an average polylogarithmic degree based on Erdős–Rényi
graphs. They thereby achieve a MPC protocol with low communication locality
that is secure against a fully adaptive adversary. [39] combines the classic broad-
cast protocol by Dolev and Strong [17] with gossiping based upon Erdős–Rényi-
graphs to obtain the first broadcast algorithm with a sub-cubic communication
complexity for a dishonest majority. Using similar techniques and assuming a
trusted setup they also achieve an asymptotically optimal communication com-
plexity for parallel broadcast.

A different line of work considers the problems of MPC and Agreement on
incomplete communication networks [10,11,18,21,23,25,40]. To circumvent com-
plexity bounds for fully adaptive adversaries, the seminal work of [18] introduced
the problem of almost-everywhere agreement as a relaxation of agreement where
not all nodes are required to be consistent, but a small number of nodes are
allowed to be inconsistent. Since then, the relaxation has also been extended to
MPC [21], and different aspects of solutions to this problem have been continu-
ously improved [10,11,23,25,40]. Notably, [25] used probabilistic communication
to increase the number of consistent parties, and [11] used Erdős–Rényi graphs
with a diameter of 2 to obtain a construction secure not only against adaptive
corruptions but also an adversary allowed to adaptively remove some communi-
cation links. In our work nodes are also of bounded degree, but contrary to this
line of work we work in a slightly weaker adversarial model which allows us to
ensure correctness for all parties.

Attacks on the Network Layers of Blockchains. Attacks on network layers of
blockchains are not only a theoretical concern. In fact, several works [5,22,29,38]
have shown that it has been possible to launch eclipsing attacks2 against nodes
in the Bitcoin network and the Ethereum network.

Bitcoin’s peer-to-peer network works by letting each node in the network
maintain 8 outgoing connections and up to 117 incoming connections. This is
clearly insecure when considering a resource-constrained adversary instead of a
traditional adversary (as the probability of only connecting to adversarial nodes
can be arbitrarily high). Additional to this inherent insecurity, [22] showed how
to eclipse a node that is already a part of an existing honest network by exploiting
a bias in the way a peer selects its outgoing connections. They launched such
an attack with only 4600 bots and achieved 85% success probability to actually
eclipse a targeted node.

By default, a node in the Ethereum peer-to-peer network selects 13 outgoing
connections contrary to the 8 that is the default in Bitcoin. Hence, one might
be led to believe that it is more difficult to eclipse an Ethereum node than a
Bitcoin node. However, in a Ethereum neighbors are selected using a distance
measure that is based on nodes’ public keys. Exploiting that in a prior version

2 An attack where an adversary tricks an honest party into talking only with adver-
sarial parties. It is thereby possible for the adversary to manipulate the honest node
in various ways.
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of the Ethereum client a single computer was allowed to run several nodes, [29]
showed that just a single computer can be used to mount an attack by creating
multiple carefully selected public keys.

[5] showed that BGP-Hijacking can also be used to eclipse Bitcoin nodes.
However, we note that such attack is immediately observable as an adversary
will need to announce a false BGP prefix publicly. In [38], it was shown that a
stealthier version of such an attack in can also be launched against a Bitcoin node
by additionally influencing how a bitcoin node selects its outgoing connections.
We note that such attacks are attacks on the infrastructure of the internet, and
therefore fall outside the scope of our model.

We note that the attacks presented in [22,29,38] all rely on exploiting the
heuristics used to select outgoing connections for nodes in the peer-to-peer net-
work. Hence, such attacks would not have been possible if, instead of heuristics
a provably secure protocol (such as the one presented in this work) had been
deployed.

Detecting Eclipse Attacks. As a way of mitigating attacks on the network layer
a line of work considers the possibility of detecting eclipse attacks [4,41,44]. [41]
provide a method for using supervised learning to detect eclipsing attacks based
on the metadata in packages. We note that this method is only as good as its
data set for training, and hence cannot be used to detect attacks in general.
A different approach is to try to detect eclipse attacks based on the absence
of new blocks [4,44]. However, this method has the drawback that it becomes
arbitrarily slow as the fraction of resources controlled by an adversary approaches
50%, and even for small values, it takes upwards of 3 hours to detect. Finally, it
has been considered to detect eclipse attacks using an additional overlay gossip
protocol [4]. However, contrary to this work this is not proven to work but rather
demonstrated to work empirically.

Consequences of Eclipse Attacks. If a party is eclipsed it is immediate that
security proofs that rely on guaranteed message delivery no longer apply. Several
works have shown that eclipse attacks do not only invalidate the security proofs
but actually invalidate the actual security of blockchain protocols [22,33,43].
Eclipsing can be used to invalidate the total order that blockchain provides
and thereby allow double-spend attacks [22], amplify the rewards from selfish
mining [33], and dramatically speed up “stake-bleeding”-attacks [43].

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols [13]. Concurrent
with and independent of our work, [13] considered the problem of designing a
message diffusion mechanism based on the majority of honest stake assumption.
The main focus of that paper is to design a network protocol specifically for
the Ouroboros Praos consensus protocol [15]. To mitigate a specific denial-of-
service attack possible in that protocol (and related proof-of-stake protocols),
the authors propose a mechanism that relies on long-lived connections between
parties to synchronize chains instead of generically diffusing messages. A con-
sequence of these long-lived connections between parties is that an adaptive
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adversary can eclipse a set of honest parties. Because their ideal functionality
allows such eclipsing, the functionality is different from the assumed functionality
of [15] (and thereby the functionality implemented in this work), and the authors
argue in [13] that security of [15] can be proven using this new functionality. In
contrast to that, the focus of our work is to realize the flooding functionality
without eclipsing assumed by most existing blockchain protocols. Hence, while
some techniques are similar, the results of [13] are mostly orthogonal to our
work.

2 Notation and Model

2.1 Notation

We will use κ to denote the security parameter of our protocols. We will write
A

$← D to sample the value A from the distribution D and use the infix notation
∼ to denote that two random variables are distributed identically. We will let
B(n, ρ) denote the binomial distribution with parameters n and ρ, and U(A)
denote the uniform distribution on a set A. We denote by log x the natural
logarithm of x. In our proofs we will write RHS and LHS to refer to respectively
the right hand side and left hand side of (in)equalities.

Graphs. We use standard notation for graphs and let G = (V, E) be a graph
with nodes V and edges E. An edge can be either directed in which case we
will write (v, z) to denote the edge from v to z, or undirected in which case we
will write {v, z} to denote the edge between the two nodes. We write dist(v, z)
to denote the shortest distance between two nodes v and z. Further, we use
the shorthand notation MaxDist(G, v) � maxz∈V dist(v, z) for the maximum
distance from v to any node in a graph G = (V, E), and the following notation
Diam(G) � maxv∈V MaxDist(G, v) for the diameter of a graph G.

We also define Erdős–Rényi graphs and digraphs.

Definition 1 (Erdős–Rényi (di)graphs). An Erdős–Rényi (di)graph is an
(di)graph G = (V, E) where all possible edges are present with an independent
probability ρ. That is for any v, z ∈ V, we have Pr[{v, z} ∈ E] = ρ for Erdős–
Rényi graphs and Pr[(v, z) ∈ E] = ρ for digraphs. To sample such a graph G

with |V| = η, we write G
$← GER(η, ρ) and for the directed case G

$← G →
ER

(η, ρ).

2.2 Parties, Weight, Adversary and Communication Network

We let P denote the static set of parties for which our protocols will work. For
convenience we let n := |P| and let H ⊆ P be the set of parties that are honest.

We assume that a public weight is assigned to each party. We let Wp denote
the weight assigned to party p, and let αp := Wp∑

p∈P Wp
i.e., the fraction of the

total weight assigned to party p.
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We allow an adversary to corrupt any subset of the parties such that the
remaining set of honest parties together constitutes more than a γ ∈ (0, 1] frac-
tion of the total weight. Formally, we assume that

∑
p∈H αp ≥ γ, and that all

parties have a non-zero positive weight i.e. ∀p ∈ P,Wp > 0.3 We will refer to this
assumption as the honest weight assumption. For simplicity, we consider a static
adversary, although our results also hold against a so-called delayed-adaptive
adversary [30], where the corruptions can be adaptively chosen but only happen
after a certain amount of time.

Parties P have access to a complete network of point-to-point authenticated
channels that guarantee delivery within a bounded delay. Concretely, we assume
that all channels ensure delivery within δChannel time.

3 Weighted Flooding

In this section we present a practical and provably secure flooding protocol WFF
(weighted fan-out flooding) that only relies on the honest weight assumption.
Before doing so we first present our definition of a flooding protocol in Sect. 3.1.
Then, in Sect. 3.2 we present a generic skeleton for flooding protocols that is
parameterized by the way parties selects their neighbors, instantiate this skeleton
in order to obtain our practical protocol (WFF), and prove that it is sufficient to
consider the way neighbors are selected in order to derive security of a protocol.
We use this skeleton to define our theoretical flooding protocol that is secure
based upon each party emulating a number of nodes proportional to their weight
in an Erdős–Rényi graph (Sect. 3.3). Finally, in Sect. 3.4 we use two intermediary
protocols in order to derive the security of WFF from our theoretical protocol.
All proofs can be found in the full version [26].

3.1 Properties of Flooding Protocols

Below we give our property based definition of a flooding protocol.4

Definition 2. Let Π be a protocol executed by parties P, where each party p ∈ P
can input a message at any time, and as a consequence all parties get a message
as output. We say that Π is a Δ-flooding protocol if the two properties hold with
a probability overwhelming in the security parameter κ for each message m:

1) If m is input by an honest party for the first time at time τ , then by time
τ + Δ it is ensured that all other honest parties output m.

3 For a discussion of the necessity of the zero-weight requirement see Sect. 4 and for
methods to anyway achieve delivery to such zero-weight parties we refer to the full
version of this work [26].

4 Note that for protocols with no secrecy (each event is leaked to the adversary),
and for functionalities that give the adversary full control while respecting these
properties a simulation-based security notion is directly implied by the property-
based definition. For flooding networks, this technique is used in the proofs in [30].
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2) If m is output by an honest party at time τ , then by time τ +Δ it is ensured
that all honest parties output m.

Note that this definition subsumes the assumptions that many blockchain
protocols rely on [12,15,16,20,34,36]. To the best of our knowledge only [16]
relies on both Properties 1) and 2), whereas the other works only rely solely
on Property 1). However, as Property 2) essentially comes for free for the type
of protocols we consider (each party will forward everything they receive and
thereby act as if they themselves send the message) we have chosen to include
it in our definition. Furthermore, because of this structure of our protocols, it
is sufficient to bound the probability of Property 1) in order to show that our
protocols are in fact flooding protocols according to the definition. For our proofs
and lemma statements, it is, therefore, useful to define notation for the predicate
that a message input to an honest party for the first time is delivered respecting
the delivery bound for a flooding protocol, which is what we encapsulate in the
predicate below.

Definition 3 (Timely delivery). For a message m that is input for the first
time at an honest party at time τ we say that m is Δ-timely-delivered if all
honest parties have output m no later than time τ + Δ. We let Timelym(Δ)
denote the induced predicate.

Similarly, for a message m that is input for the first time at an honest party,
we define the message complexity as the number of messages sent by honest
parties until all honest parties output m. Looking ahead, since our protocols
only consist of forwarding the initial message m, the total message complexity
is simply |m| times the message complexity.

Mitigating Denial-of-Service Attacks. It is immediate that any protocol that
lives up to the definition of a flooding protocol, as given above, is open to denial-
of-service attacks. An adversary can simply flood arbitrary messages until the
bandwidth is exceeded. This is possible because the definition requires all mes-
sages to be forwarded. To prevent such attacks, it is natural to consider a notion
of validity and only require the delivery guarantees to apply for “valid” messages.
Concretely, one could let each party p ∈ P have an updatable local predicate
Validp and only require that messages that are considered valid by all parties
for Δ after being input/output for the first time should be propagated.

For clarity of presentation, we have left this out of our definition and pro-
tocols. However, we note that it is easy to accommodate our protocols to such
notion by letting each party check if a message is valid before propagating it.
We note that with such modification, all our proofs and lemmas still hold for
messages that are considered valid by all parties for at least Δ after they are
input/output.

3.2 A Skeleton for Flooding Protocols

We now present a skeleton for our flooding algorithm. The structure of the
protocol is very similar to the protocols proposed in [30], but contrary to their
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protocols our protocol takes an additional parameter N , which is an algorithm
that allows each party to sample a set of neighbors. We refer to this parameter
as the neighborhood selection algorithm.

The protocol accepts two commands: One for sending and one for checking
which messages have been received. Once a send command is issued to a party,
the party will forward the message to a set of neighbors that are determined using
the neighborhood selection algorithm. Furthermore, once a message is received
on a point-to-point channel the receiver checks if the message has already been
relayed and if not it forwards the message to a set of neighbors that is again
selected using the neighborhood selection algorithm.

Looking ahead and as an example of a neighborhood selection algorithm we
present our practical and provably secure neighborhood selection algorithm.

A Practical Neighborhood Selection Algorithm. Our algorithm WFS(E, k)
(abbreviation for “Weighted Fan-out Selection”) takes two parameters: a function
E : P → N that allows to take stake into account when deciding how many
neighbors each party should select and a parameter k that scales this number.

The idea of the algorithm is that each party p chooses K := k · E(p) num-
ber of neighbors (excluding themselves). The neighbors are chosen according
to weighted sampling without replacement [7] where each party again is being
weighted with E. More precisely, party p chooses K neighbors from P\ {p}, and
the probability to choose the tuple of neighbors (q1, . . . , qK) is defined as:

Pr [(q1, . . . , qK)] =
K∏

i=1

E(qi)∑
q∈P\{p,q1,...,qi−1} E(q)

.

The probability to choose a certain neighborhood set {q1, . . . , qK} is then the
sum over the probabilities over all the permuted tuples. We denote by W(K, E, p)
the resulting distribution.
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Our final protocol is the protocol obtained by instantiating the flooding
skeleton πFlood with the neighborhood selection algorithm WFS that again is
to be instantiated with the function E(p) := �αp · n�. We name this proto-
col the weighted fan-out flooding protocol and use the abbreviation WFF(k) :=
πFlood(WFS(E, k)) for E(p) := �αp ·n�. In Sects. 3.3 and 3.4 it will become appar-
ent why this exact choice of function is advantageous and ensures a secure pro-
tocol, but for now we simply state our final theorem which states that WFF is in
fact a flooding protocol with a logarithmic round complexity and a low message
complexity.

Theorem 2. Let Δ :=
(
7 · log

(
6n

log(n)+κ

)
+ 2

)
· δChannel. Then WFF

(
log(n)+κ

γ

)

is a Δ-flooding protocol with message complexity less than 2n · log(n)+κ
γ .

The Honest Sending Process. To prove security of WFF we will relate the
security of WFF to a series of other protocol which will all take the structure
of πFlood but use different neighborhood selection algorithms. Hence, we would
like to be able to relate the security of the overall flooding protocol to just
the neighborhood selection algorithm used. To do so we first define a random
process for creating a graph where each honest party is a node, given a family of
neighborhood selection algorithms N , a starting party p, and a distance λ. The
intuition is that this process mimics the worst-case behavior of the adversary
during a sending process starting from party p. However, separating this into a
process without adversarial influence allows us to relate probabilistic experiments
without taking into account the choices of an adversary which could have a
strategy that depends on parts of the outcome of the experiments.

Definition 4. Let N be a family of neighborhood selection algorithms, let p ∈ H,
and let λ ∈ N be a distance. We let the honest sending process, HSP(p,N , λ),
be a random process that returns a directed graph G = (V, E) defined by the
following random procedure:

1. Initially, E := ∅. Furthermore, we keep track of set Flipped := ∅ that
consists of nodes that have already had their outgoing edges decided, and a
first-in-first-out queue ToBeFlipped := {(p, 0)} of nodes and their distance
from p that are to have their edges decided.

2. The process proceeds with the following until ToBeFlipped == ∅.
(a) Take out the first element of ToBeFlipped and let it be denoted by (p′, i).
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(b) Let N
$← Np′ and set N := N ∩ H.

(c) Update the set of edges E := E ∪ {(p′, p′′) | p′′ ∈ N} and let Flipped :=
Flipped ∪ {p′}.

(d) If i + 1 < λ, for all p′′ ∈ N\Flipped add (p′′, i + 1) to ToBeFlipped.
3. Finally, return G = (H, E).

Next, we are interested in bounding the probability that a message is deliv-
ered within the time guaranteed by the flooding algorithm in terms of the proba-
bility that there is a low distance to all parties from the sender. We show that the
probability that πFlood ensures timely delivery for a message is lower-bounded
by the probability that the honest sending process results in a graph where the
sender can reach all other honest nodes within a certain number of steps.

Lemma 1. Let N be a family of neighborhood selection algorithms, let p ∈ H,
and let λ ∈ N be a distance. Further, let m be a message that is input to p for the
first time during the execution of πFlood(N ) and let G

$← HSP(p,N , λ). Then,

Pr[MaxDist(G, p) ≤ λ] ≤ Pr[Timelym(λ · δChannel)]. (1)

Proof Idea. We observe the random experiment arising from delivering the mes-
sage m in the protocol and construct a new graph where each honest party
corresponds to a node and we include a directed edge from one party to another
if a message is sent and delivered before time λ·δChannel. In this graph, we observe
that if the distance is at most λ from the sender to any party then the message
was delivered timely. We then define how to use this experiment to define the
HSP experiment by copying a subset of the edges from this new graph to the
honest sending graph and thereby ensuring that any path in the graph from the
honest sending process will also be in this new graph. �

Lemma 1 ensures that it is sufficient to consider neighborhood selection algo-
rithms and prove that graphs constructed via the honest sending process has a
low distance from the sender to all other parties.

3.3 A Theoretical Protocol: Emulating Nodes in Erdős–Rényi
Graphs

Our central idea for achieving a flooding network that relies on the honest weight
assumption is to let each party emulate a number of nodes proportional to their
weight in a hypothetical Erdős–Rényi graph. We will refer to this hypothetical
graph as the emulated graph. Now, our idea is that if there is an edge between
an emulated node v and another emulated node z corresponds to that the party
emulating node v should forward the message to the party emulating z. Our
goal is now to ensure each honest party emulates at least one node and that the
emulated graph has a low diameter, as this will result in that all parties will
receive the message quickly.

Concretely, we introduce a function E : P → N\ {0} which for each party
determines how many nodes this party should act as in the emulated graph.
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We refer to this function as the emulation function.5 For such emulation function
we define notation for the number of emulated nodes nE �

∑
p∈P E(p) and the

number of honest nodes that are emulated hE �
∑

p∈H E(p).
Before looking at how to choose an emulation function, let us present how

the idea leads to a very simple algorithm for selecting neighbors by letting the
emulated graph take the form of an Erdős–Rényi graph. We let ρ denote the
probability that there should be an edge between any two nodes in the emulated
graph. The probability that party pi should forward a message to party pj is:

Pr[pi should forward a message to pj ]
:= Pr[exists edge from any of pi’s emulated nodes to any of pj ’s]
= 1 − Pr[there are no edges between any of pi and pj ’s emulated nodes]

= 1 − (1 − Pr[there is an edge between any two emulated nodes)E(pi)·E(pj)

= 1 − (1 − ρ)E(pi)·E(pj).

(2)

This gives rise to the following family of neighbor selection algorithms indexed
by a party p ∈ P and parameterized by an emulation function E and an edge
probability ρ.

Relating Erdős–Rényi Graphs and the Honest Sending Process. We now formalize
the intuition that given that an emulated graph is “well connected” then the
graph from the honest sending process is also “well connected”. In particular,
we relate the probability that the distance in a directed Erdős–Rényi graph is
large to the probability that the distance from the sender is large in the honest
sending process.

Lemma 2. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N\ {0} be
an emulation function. Further, let G1

$← HSP(p,ER-Emulation(E, ρ), λ) and let
G2

$← G →
ER

(hE, ρ). Then for any node v ∈ V we have,

5 For a function to be an emulation function, we require that all parties should emulate
at least 1 node, which is why the codomain of the function is defined to be N\ {0}.
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Pr[MaxDist(G2, v) ≤ λ] ≤ Pr[MaxDist(G1, p) ≤ λ]. (3)

Proof Idea. We use Eq. (2) and a mapping between the nodes of G2 and the
honest parties to define both graph distributions in terms of the same random
experiment. We then observe that the edges that are relevant for the distance
from v in G2 are also included in G1. �

Next, we show that the probability that a particular node can reach all other
nodes within a certain distance in a directed Erdős–Rényi graph is lower-bounded
by the probability that an undirected Erdős–Rényi graph has a high diameter.

Lemma 3. Let ρ ∈ [0, 1], let λ ∈ N and let η ∈ N. Further, let G1 = (V1, E1)
$←

G →
ER

(η, ρ) and let G2 = (V2, E2)
$← GER(η, ρ). Then for any node v ∈ V1 we

have,
Pr[Diam(G2) ≤ λ] ≤ Pr[MaxDist(G1, v) ≤ λ]. (4)

Proof Idea. We define a coupling between the two graphs such that the edges
that are relevant for the distance from v in G1 are ensured to have undirected
counterparts included in G2. Hence, any path starting from v in G2 translates
to a similar path in G1. �

Choosing a Good Emulation Function. Let us now turn our attention to how
to select a good emulation function. Before looking at a concrete function, let
us consider what properties constitute a good emulation function. The only
property of the emulation function that we have used so far is that all parties
should emulate at least 1 node.6 However, there are additional things that we
want from a useful emulation function:

1. It should ensure a low distance from any sender in the graph resulting from
the honest sending process.

2. The message complexity of the protocol should be as small as possible.

Lemmas 2 and 3 bounds the probability that the honest sending process
results in a graph with some nodes not reachable within the sender in terms of
the probability that an Erdős–Rényi graph (of size identical to the number of
honest emulated nodes) has a large diameter. Furthermore, looking ahead we will
instantiate ρ ≈ log(hE)+κ

hE
to obtain an Erdős–Rényi graph that has a diameter

logarithmic in hE unless with a probability that is negligible in κ. Unfortunately,
hE will not be known at the time of instantiation, so we will have to instantiate
ρ with a lower bound on hE in the denominator and similarly an upper bound
in the denominator. For this discussion, let us use nE as an upper bound.

The expected number of neighbors for a party is linear in ρ. To see this
let N

$← ER-Emulationp(E, ρ) and let us estimate the expected size of N using
Bernoulli’s inequality:

6 This property was used in the proof of Lemma 2.
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E[|N |] =
∑

r∈P\{p}
1 − (1 − ρ)E(p)·E(r) ≤

∑
r∈P\{p}

ρ · E(p) · E(r) ≤ ρ · E(p) · nE. (5)

Hence, for ρ chosen according to the above, a bound on the expected message
complexity will be

O

(
(log(nE) + κ) · n2

E

hE

)
. (6)

Our approach for finding a good emulation function has thus been to search for
an emulation function which makes this value as small as possible. As result
of this approach we choose the emulation function to be E(p) := �αp · n�. For
this emulation function above we can derive the following bounds using only the
honest weight assumption:

hE =
∑
p∈H

E(p) ≥
∑
p∈H

αp · n ≥ γ · n, (7)

and
nE =

∑
p∈P

E(p) ≤
∑
p∈P

(αp · n + 1) = 2 · n. (8)

By plugging the bounds from Eqs. (7) and (8) into Eq. (6) we acquire an expected
message complexity that is upper bounded by O

(
(log(n)+κ) · n

γ

)
when parame-

ters are instantiated to obtain a logarithmic diameter of the graph. If we instead
of assuming a constant fraction of honest weight assumed a constant fraction
of honest parties, we could let E(p) := 1, which would result in nE := 1 and
thereby a protocol identical to the one proposed in [30]. By using the same anal-
ysis as above we would then be able to bound the expected message complexity
by O

(
(log(n) + κ) · n

γ

)
. Interestingly, the bound on the message complexity for

the weighted section would only be a factor of ≈4 larger than the corresponding
bound for the non-weighted setting.

Proving Security of Our Theoretical Flooding Protocol. We now state and prove
that the probability that πFlood(ER-Emulation(E, ρ)) protocol does not ensure
timely delivery is negligible for certain choices of E and ρ. To prove this, we
make use of probabilistic bounds on the diameter of undirected Erdős–Rényi
graphs from the full version of [30]. As a first step, we bound the probability
that the distance of the honest sending process using the neighborhood selection
algorithm ER-Emulation(E, ρ) has a large distance from the sender.

Lemma 4. Let E(p) := �αp · n�, let d ∈ [7,∞], and let ρ := d
γ·n . Further, let

p ∈ H and G
$← HSP(p,ER-Emulation(E, ρ), (

(
7 · log (

n
d

)
+ 2

)
). Then

Pr
[
MaxDist(G, p) ≤

(
7 · log

(n

d

)
+ 2

)]

≥ 1 −
(
2 · n ·

(
e− d

18 +
(
6 · log

(n

d

)
+ 1

)
· e− 7·d

108

)
+ e−γ·n·( d

9 −2)
)

.
(9)
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Proof Idea. We use Eqs.(7) and (8) to bound the size of the emulated graph in
the honest sending process and apply Lemmas 2 and 3 to reduce the probability
to the probability that an Erdős–Rényi graph has a low diameter. The bound
then follows by instantiating Lemma 3 in the full version of [30]. �

A direct corollary of Lemmas 1 and 4 is that the probability that the protocol
πFlood(ER-Emulation(E, ρ)) ensures timely delivery is lower bounded by Eq. (9)
when choosing E and ρ as discussed above.

3.4 Security of WFF

In the previous section we proved that ER-Emulation induces a secure proto-
col. Unfortunately, it is not a practical neighborhood selection algorithm, as it
requires each party to do n coin-flips per message that is sent and forwarded.
In this section, we introduce two intermediate algorithms in order to prove WFF
secure (Fast-ER-Emulation and Practical-ER-Emulation) by doing gradual changes
to ER-Emulation, until we finally arrive at the algorithm WFS which is both
practical, simple, and similar to algorithms deployed in practice (except that
this algorithm maintains its complexity even for weighted corruptions).

Intermediary Neighborhood Selection Algorithms. We first introduce the
algorithm Fast-ER-Emulation, which is distributed identically to ER-Emulation,
but is more practical. The algorithm exploits that another way of creating an
Erdős–Rényi graph is to first decide how many edges each node should have
using the binomial distribution and then select these neighbors at random.

Below we will abuse notation slightly and write E(P ) to denote the set of
emulated nodes for a set of parties P ⊆ P and an emulation function E,7

E(P ) � {pi | p ∈ P ∧ i ∈ {1, 2, . . . , E(p)}} .

We now show Fast-ER-Emulation and ER-Emulation are identically dis-
tributed.

7 This set may be different from the actual set of nodes that will be emulated in
an execution of the protocol as dishonest parties might choose to deviate from the
protocol. However, it is still useful to define the set in order to define honest behavior.
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Lemma 5. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N\ {0}
be an emulation function. If G1

$← HSP(p,ER-Emulation(E, ρ), λ) and G2
$←

HSP(p,Fast-ER-Emulation(E, ρ), λ) then G1 ∼ G2.

Proof Idea. We show that the graphs are distributed identically by showing that
their respective neighborhood selection algorithms are distributed identically.
This is shown by showing that for both distributions each edge between emulated
nodes appears with independent probability ρ. �

A problem of Fast-ER-Emulation is that each party p needs to make E(p)
number of draws from the binomial distribution. One way to avoid this is to make
a single random draw for the number of nodes all emulated nodes should send to
and then afterward choose this number of nodes uniformly without replacement.
Below we present the algorithm Practical-ER-Emulation, which does exactly that.

Practical-ER-Emulation is not distributed identically to Fast-ER-Emulation,
as there is a smaller expected overlap between the selected emulated nodes.
However, it still holds that the graph resulting from the honest sending process
based upon Practical-ER-Emulation has a higher chance of having a low distance
from the sender than the graph resulting from the honest sending process based
upon Fast-ER-Emulation. We make this intuition formal in the lemma below.

Lemma 6. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N\ {0} be
an emulation function. If G1

$← HSP(p,Fast-ER-Emulation(E, ρ), λ) and G2
$←

HSP(p,Practical-ER-Emulation(E, ρ), λ) then

Pr[MaxDist(G1, p) ≤ λ] ≤ Pr[MaxDist(G2, p) ≤ λ]. (10)

Proof Idea. We define a coupling between the two graphs by defining a cou-
pling between their respective neighborhood selection algorithms and ensuring
that the set of neighbors sampled by Practical-ER-Emulation is a superset of the
neighbors of those sampled by Fast-ER-Emulation. We define the coupling using
rejection sampling and ensure that any neighbor that is rejected when sampling
neighbors for Fast-ER-Emulation will also be rejected when sampling neighbors
for Practical-ER-Emulation. �

Note that Lemmas 1 and 4 to 6 together imply that the probability that
πFlood(Fast-ER-Emulation(E, ρ)) and πFlood(Practical-ER-Emulation(E, ρ)) do not
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ensure timely delivery is negligible for a certain choice of E and ρ. Note that
Practical-ER-Emulation is very similar to WFS. The main difference is that in
Practical-ER-Emulation the number of neighbors is sampled according to the bino-
mial distribution whereas WFS chooses a fixed number of neighbors. We use this
observation to relate the probability that the graph constructed by the honest
sending process of Practical-ER-Emulation has a low distance from the sender to
the probability that the honest sending process of WFS has a low distance from
the sender.

Lemma 7. Let ρ ∈ [0, 1], let ε ∈ [0, 1] let λ ∈ N, let p ∈ H, let k ≥
�(1 + ε) · nE · ρ�, and let E : P → N\ {0} be an emulation function. If
G1

$← HSP(p,Practical-ER-Emulation(E, ρ), λ) and G2
$← HSP(p,WFS(E, k), λ)

then

Pr[MaxDist(G1, p) ≤ λ] − |H| · e− ε2·(n−1)·ρ
3 ≤ Pr[MaxDist(G2, p) ≤ λ]. (11)

Proof Idea. Similarly to the proof of Lemma 6, we define a coupling between the
two graphs by defining a coupling between their neighborhood selection algo-
rithms using rejection sampling. However, in this coupling the invariant that
the edges sampled by WFS are a superset of those of Practical-ER-Emulation
is only maintained when no party samples more than k neighbors in
Practical-ER-Emulation. We bound the probability that this happens using a
Chernoff bound. �

We now provide a corollary that bounds the concrete probability that a
message that is input via WFF is delivered timely.

Corollary 1. Let k ∈ N such that k ≥ 42
γ . If m is a message that is input to

some honest party in WFF(k) then

Pr
[
Timelym

((
7 · log

(
n · 6
k · γ

)
+ 2

)
· δChannel

)]
≥ 1 − n · e− (n−1)·k

n·24

− e−γ·n·( k·γ
54 −2) −

(
2 · n ·

(
e− k·γ

108 +
(
6 · log

(
n · 6
k · γ

)
+ 1

)
· e− 7·k·γ

648

))
.

(12)

Proof Idea. We bound the size of the emulated graph and apply Lemmas 1 and
4 to 7. �

As observed earlier, it is sufficient to bound the probability that a message is
timely delivered in order to bound the probability that any of the two properties
of a flooding protocol is achieved. Further, note that a party p sends at most
k · E(p) messages when a message is forwarded. Hence, the message complexity
is bounded by

∑
p∈H k · E(p) ≤ 2 · k · n. Therefore, the security of WFF (and

thereby Theorem 2) follows directly from this corollary.

4 Asymptotic Optimality and Practical Considerations

Our results from Sect. 3.2 show that the protocol WFF(k) provides provably
secure flooding. With respect to efficiency, the results show that there are two
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possible drawbacks: First, the emulation function E(p) = �αp · n� forces parties
with very high weight to send to many parties, which lead to bandwidth issues.
Secondly, Theorem 2 shows that in our protocol, the number of parties each
node has to send to increases logarithmically in the total number of nodes. In
this section, we show that both properties are inherent for “flooding protocols”.

4.1 Workload of Heavy Parties

It is easy to see that in at least in extreme cases, very heavy parties have to
send to a lot of other parties: If there is a single party that has the majority
of the total weight, it could be that only this party and an additional one are
honest. Since the heavy party is the only one that can be relied upon for message
delivery, it needs to send to all other parties. The following lemma generalizes
this idea to less extreme settings.

Lemma 8. For any protocol Π that guarantees delivery to all honest parties,
and for any subset S ⊆ P such that

∑
p∈S αp ≥ γ, we have with overwhelming

probability that ∑
p∈S

degreeΠ(p) ≥ |P\S|. (13)

Proof. Let S be any such set. By the honesty assumption it could be that there
is exactly one honest party in P\S. To guarantee delivery to this party, some
party in S must send to it. Since it cannot be distinguished which party in P\S
is honest, the parties in S must send to all parties in P\S. �

Another consequence of Lemma 8 is that having a huge number of nodes
with very little weight also increases the workload for all other nodes, as shown
below.

Corollary 2. Assume there is a large set T ⊆ P of parties with combined rela-
tive weight ≤ 1−γ and |T | ≥ n−ε for some constant ε > 0, and define S := P\T .
Then, the average degree of the parties in S must be at least n−ε

ε ∈ Ω(n) with
overwhelming probability.

Proof. Since
∑

p∈S αp = 1 − ∑
p∈T αp ≥ γ, Lemma 8 implies that the average

degree of the parties in S is at least |P\S|
|S| with overwhelming probability. By

assumption, we have |P\S|
|S| = |T |

n−|T | ≥ n−ε
ε ∈ Ω(n). �

Limiting the Workload. As we have seen above, having very heavy or many very
light parties necessarily yields a large number of outgoing connections for some
of the nodes. This is not only undesirable but may also become prohibitive in
practice due to limited network bandwidth. If the flooding is deployed, say for a
proof-of-stake blockchain, this can be mitigated by putting a lower and an upper
limit on the amount of stake for actively participating nodes. This implies that
people holding a lot of stake need to split their stake over several nodes (which
is anyway beneficial for decentralization if they are run in different locations),
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and people with too little stake need to, e.g., delegate their stake to another
node if supported by the blockchain. The latter can still passively participate by
fetching data from other nodes. We discuss how zero-weight parties can fetch in
the full version of this work [26].

4.2 Logarithmic Growth of Message Complexity

It is well known that Erdős–Rényi graphs are connected with high probability if
and only if edges are included with probability larger than log n

n [8, Theorem 7.3].
This means the expected degree of a node must be larger than log n to obtain
a connected graph, even without considering corruptions. Since our proofs in
Sect. 3 depart from Erdős–Rényi graphs, one cannot hope to prove a better
message complexity with our proof techniques.

On the other hand, our final protocol WFF(k) does not choose neighbors in
the way Erdős–Rényi graphs are constructed, but more closely correspond to so-
called directed k-out graphs, which have also been considered in the literature.
Those are directed graphs where for each node v independently, k uniformly
random other nodes are sampled and directed edges from v to the k sampled
nodes are added. It is known that such graphs are connected with probability
approaching 1 for n → ∞ already for constant k = 2 [19]. Hence, at least without
corruptions, O(n) overall message complexity should be enough for our protocol.
When considering corruptions, however, a result by Yagan and Makowski [42]
implies that log n connections for each node are necessary, as we show below.
This shows that WFF(k) and Theorem 2 are asymptotically optimal, at least for
the special case in which all parties have the same weight.

Lemma 9. For any flooding protocol in which all honest parties send to k uni-
formly chosen nodes and delivery to all honest nodes is guaranteed with proba-
bility ≥ 1/2 where up to a (1 − γ) fraction of nodes can be corrupted, we have
for sufficiently large n that

k ≥ log n

γ + 1/n − log(1 − γ − 1/n)
.

Proof. Yagan and Makowski [42] have considered the setting in which for each of
the n nodes pi, k distinct random other nodes are sampled and undirected edges
between pi and all k sampled nodes are added to a graph. They then consider
the subgraph H consisting of the first �γ′n� nodes for some constant γ′ ∈ (0, 1)
and show in [42, Theorem 3.2] that

k <
log n

γ′ − log(1 − γ′)
=⇒ lim

n→∞Pr[H contains isolated node] = 1.

To translate this to our setting, first note that corrupting at most �(1− γ)n�
nodes from the end to leave the first �γn+1� parties honest is a valid adversarial
strategy. To be compatible with the result above, we can set γ′ := γ+1/n. Further
note that a node p being isolated in H has the same probability as an honest
node not sending to any other honest node and no honest node sending to that



Practical Provably Secure Flooding for Blockchains 799

one in a flooding protocol. In that case, if p is the sender in the flooding protocol,
no honest node will receive the message, and if some other node is the sender,
p will not receive the message. Hence, the flooding protocol will fail to deliver
the message to all honest nodes in both cases. This implies that, for sufficiently
large n, flooding protocols with k < log n

γ+1/n−log(1−γ−1/n) fail to deliver messages
with high probability. �

5 Performance Evaluation via Simulations

In order to show that our protocol WFF performs well in practice, we perform
various benchmarks with varying weight distributions and adversarial strategies.
The source code, and a description of how to run the benchmarks, can be found
at https://github.com/guilhermemtr/Weighted-Flooding-Simulator.8

5.1 Scope of Simulations

Weight Distributions. We consider weight distributions covering scenarios where
parties have similar weights as well as scenarios with different weights. More
concretely, we consider:

– The constant distribution (Const), characterized by the number of parties n.
In this distribution all parties have equal weights and is therefore equal to
the non-weighted setting. This serves as a baseline for our simulations.

– The exponential distribution (Exp), characterized by the number of parties
n and the weight ratio r between the heaviest party and the lightest party. It
corresponds to the (perhaps more realistic) exponential weight distribution—
wherein the weights of parties form an exponential curve. More concretely,
for i ∈ {1, . . . , n − 1}, the weight of pi+1 is r−(n−1) times the weight of pi.

– The few heavy distribution (FH), characterized by the number of parties n,
the weight ratio r between the heaviest and lightest party, and the number
of heavy parties c. It corresponds to the distribution where n − c parties
have constant weight, and the other c parties have r times more weight. This
weight distribution is meant to capture extreme scenarios.

Sender. In order to ensure that our protocol performs well independently of the
weight of the sender, for the exponential distribution, we consider three choices
for the sender: heaviest, lightest and median-weight party, and for the few heavy
weight distribution, we consider both a heavy and a light party as the sender.

Corruption Strategies. Given that parties in our protocol simply forward a mes-
sage to their neighbors, we consider the worst behavior that prevents message
propagation, i.e. corrupted parties simply do not send. We consider adversaries

8 All simulations were performed on the ETH Zurich Euler cluster, but there are no
hindrances to running them on less powerful computers.

https://github.com/guilhermemtr/Weighted-Flooding-Simulator
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that can corrupt up to 50% of the total weight. To ensure that our protocol per-
forms well independently of how adversaries spend their corruption budget, we
consider adversaries that greedily corrupt as many parties as possible, following
one of the strategies below:

– Random corruption (Rand) where the adversary corrupts parties uniformly
at random.

– Light-First corruption (Light) where the adversary corrupts parties by their
weight in increasing order, starting by the lighter ones.

– Heavy-First corruption (Heavy) where the adversary corrupts parties by their
weight in decreasing order, starting from the heavier ones.

As one might note, for the constant weight distribution the corruption strat-
egy is irrelevant. For this reason, for the constant weight distribution we only
consider the random corruption strategy.

5.2 Methodology

To obtain statistical confidence, we make 10 000 runs for each parameter config-
uration (e.g. weight distribution, adversary strategy, choice of sender, number of
parties, etc.). All runs are executed independently.

In the evaluations, a run is considered successful if the sender’s message is
delivered to all (honest and dishonest) parties. As one might note, this contrasts
with the timely predicate (see Definition 3), which only requires a message to be
delivered to all honest parties. Thus, the success rate metric we consider for the
evaluations is actually a lower bound on the real success rate of our protocol.
The rationale behind this definition is as follows: consider an adversary that
corrupts a set C of parties; if the adversary would alternatively pick some party
p ∈ C, and corrupt C\ {p}, then the protocol would have to guarantee that every
honest party, including p still gets the message. Since p is now honest, it seems
a harder requirement to make p now also receive the message. This justifies our
choice of making adversaries corrupt as many parties as possible.

When counting successful runs, we do not take latency into account. The
reason for this is that all our simulations have in common that once they succeed,
they have a very low latency.9 Further details on this and plots of the actual
latency can be found in the full version of this paper [26].

To ensure our protocol performs well independently of the sender’s weight,
we take the worst result among the sender choices (for each weight distribution).

5.3 Simulations and Results

Comparison Against Weight-Oblivious Protocols. To compare the performance of
WFF and a weight oblivious protocol, we measured the success rate for WFF(k)

9 The maximum latency observed in any of our simulations is 9 · δChannel for any
succeeding run.
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Fig. 2. Success rate of WFF protocol for different weight distributions and corruption
strategies, depending on the average number of messages sent per party, for n = 1024
parties, a 50% corruption threshold, a ratio of 106 between heaviest and lightest parties
and c = 10 heavy parties for FH.

and a weight oblivious protocol WOF := πFlood(WFS(E, k)) with E(p) := 1 for dif-
ferent exponential weight distribution (with changing ratios between the heaviest
and lightest party).10 The results can be found in Fig. 1. The plot shows that our
protocol (WFF) achieves 100% success rate at a much lower number of transmit-
ted messages than the weight-oblivious one (WOF). Only exception is when the
weight ratio between the heaviest and the lightest parties is 1, the exponential
weight distribution is the same as the constant weight distribution, and hence
the protocols become identical. Note, that while the WFF protocol achieves prac-
tical security with low message complexity regardless of the ratio between the
heaviest and lightest party, the message complexity of WOF in order to achieve
a 100% success rate, increases drastically as the ratio increases.

Performance for Changing Weight Distributions. In Sect. 3.2, we bounded the
message complexity of WFF by 2·n·(log(n)+κ)

γ (see Theorem 2), and in Sect. 4.2
we showed that this number of messages is inherent for the constant weight
distribution (see Lemma 9), implying that WFF is optimal up to a constant
factor for this distribution. Although the obtained upper-bound is independent
of the weight, since it is tight only for the constant weight distribution, it could
be that WFF performs poorly for other distributions. To show this is not the
case, we measured the success rate for sending a single message in WFF(k) as a
function of the message complexity (induced by adjusting k) for different weight
distributions and corruption strategies. See Fig. 2.

Unsurprisingly, the adversarial strategy inducing the highest cost is corrupt-
ing as many light nodes as possible. This fits the intuition from Sect. 3.3: By
corrupting as many light nodes as possible, an adversary can get a slight advan-
tage in terms of the number of emulated nodes that they control because the
10 The protocol WOF := πFlood(WFS(E, k)) for E(p) := 1 corresponds to the protocol

where each party simply selects k parties uniformly at random as their neighbors
without taking weight into account.
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Fig. 3. Scalability of WFF protocol. We consider the constant weight distribution, and
the random corruption strategy, with a 50% corruption threshold.

ceiling embedded in the emulation function has a proportionally larger effect on
such nodes. Furthermore, note that for the constant weight distribution WFF(k)
simply selects k neighbors uniformly at random and at least �γ · n� of the par-
ties remains honest. Hence, this corresponds to the performance that can be
expected by additionally assuming that a certain fraction of the parties remains
honest and use flooding protocols tailored to this setting. We emphasize that our
protocol only induces marginally larger (within a small constant factor) message
complexity for all the considered weight distributions and corruption strategies.
This aligns with Sect. 3.3, where our bound on the message complexity for the
weighted setting was only worse by a factor of 4 compared to the bound that
relied on a constant fraction of honest parties. Therefore, security for our proto-
col in the weighted setting comes at a much lower cost comparatively.

Scalability. A key feature of flooding protocols is their scalability. To benchmark
the scalability of our proposed protocol WFF, we measured, for different numbers
of parties, the success rate of the protocol depending on the average number of
messages each party sends (again induced by varying k). For simplicity, we chose
to only include the constant weight distribution (the performance for varying
weight distributions is plotted in Fig. 2). The results can be found in Fig. 3. From
the plot, it is clear that the message complexity (normalized by the number of
parties) of our protocol only increases logarithmically in the number of parties,
and hence this once again confirms our theory from Sect. 3.4.

By the time of writing, there are around 12k running Bitcoin nodes [1] and
roughly 8k nodes in the Ethereum network [2]. Extrapolating from Figs. 2 and 3,
it seems that independently of the stake distribution, WFF can realize a secure
flooding network with an average number of connections per message of just
∼55 for such number of nodes. We conclude that this is within the realm of
the number of connections existing widely used implementations maintain by
default. Note, however, that the workload is not distributed evenly among nodes
in WFF, as heavier nodes need to maintain more connections. In Sect. 4, we
showed that this is inherent for this type of protocol in the weighted setting.
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1 IMDEA Software Institute, Madrid, Spain
hamza.abusalah@imdea.org
2 TU Wien, Vienna, Austria

georg.fuchsbauer@tuwien.ac.at
3 IOG, Chennai, India
peter.gazi@iohk.io
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Abstract. The success of blockchains has led to ever-growing ledgers
that are stored by all participating full nodes. In contrast, light clients
only store small amounts of blockchain-related data and rely on the medi-
ation of full nodes when interacting with the ledger. A broader adoption
of blockchains calls for protocols that make this interaction trustless.

We revisit the design of light-client blockchain protocols from the
perspective of classical proof-system theory, and explain the role that
proofs of sequential work (PoSWs) can play in it. To this end, we
define a new primitive called succinct non-interactive argument of chain
knowledge (SNACK), a non-interactive proof system that provides clear
security guarantees to a verifier (a light client) even when interact-
ing only with a single dishonest prover (a full node). We show how
augmenting any blockchain with any graph-labeling PoSW (GL-PoSW)
enables SNACK proofs for this blockchain. We also provide a unified
and extended definition of GL-PoSWs covering all existing construc-
tions, and describe two new variants. We then show how SNACKs can be
used to construct light-client protocols, and highlight some deficiencies of
existing designs, along with mitigations. Finally, we introduce incremen-
tal SNACKs which could potentially provide a new approach to light
mining.

Keywords: Blockchains · Light clients · Proofs of sequential work

1 Introduction

Since the appearance of the seminal Bitcoin whitepaper [Nak08] and the subse-
quent launch of its implementation maintaining the Bitcoin ledger, blockchain
technology has witnessed enormous growth in adoption.

However, this remarkable success also uncovered some of the deficiencies of
the original Bitcoin protocol and its derivatives. Their objective is to maintain
c© International Association for Cryptologic Research 2022
S. Agrawal and D. Lin (Eds.): ASIACRYPT 2022, LNCS 13791, pp. 806–836, 2022.
https://doi.org/10.1007/978-3-031-22963-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22963-3_27&domain=pdf
http://orcid.org/0000-0003-1572-3255
https://doi.org/10.1007/978-3-031-22963-3_27


SNACKs: Leveraging Proofs of Sequential Work for Blockchain Light Clients 807

an append-only ledger of transactions that records the full financial (or com-
putational) history of the system, and the size of this ledger therefore grows
with speed proportional to the use of the system. For example, the Bitcoin and
Ethereum blockchains both consist of hundreds of gigabytes. This makes main-
tain the full blockchain unattractive for ordinary users, and the requirement to
do so would be prohibitive to a wider adoption of these systems.

Light-Client Blockchain Protocols. The above development results in an
urgent need for solutions that enable interaction with the blockchain for so-
called light clients1 that do not store the entire blockchain. This interaction is
typically mediated by so-called full nodes that store the full blockchain state.
This mediation should be trustless in that the light client is provided security
guarantees without having to assume the honesty of the full node(s) it interacts
with.

Trustless light-client protocols can power a variety of applications within the
blockchain ecosystem. The basic one is bootstrapping, where a light client, hold-
ing only an authentic copy of the genesis block, tries to obtain a reliable picture
of the current ledger state (or a commitment to it), that would then enable fur-
ther interaction with the ledger such as verifying transaction inclusion or even
contributing to extending the chain (called light mining [KLZ21]). Interestingly,
light-client techniques also find applications in cross-chain communication proto-
cols [BCD+14,GKZ19,KZ19], where the goal is to communicate the occurrence
of an event on a source chain to an independent target chain: here the (validator
of the) target chain plays the role of a light client for the source chain, seeking
to verify the occurrence of that event without validating the entire source chain.

The need for light-client protocols was already predicted in the Bitcoin
whitepaper, where so-called simplified payment verification (SPV) is proposed:
the light client downloads only the block headers (which contain the proof-of-
work solutions) from a full node; these suffice to trustlessly verify the amount
of work invested to produce that chain; inclusion of individual transactions can
then be verified by specifically asking for the openings of the respective Merkle-
tree commitments contained in the block headers. Alas, while practically help-
ful, SPV still requires storage and communication linear in the length of the
blockchain and hence provides no asymptotic improvement. On the other end
of the spectrum are solutions based on succinct non-interactive arguments of
knowledge (SNARKs) [GGPR13] that provide impressive asymptotic improve-
ments, but often suffer from unfavorable concrete efficiency, reliance on a trusted
setup, or on novel hardness assumptions.

NIPoPoWs. Given the initial success of proof-of-work (PoW) blockchains, there
has been significant effort towards developing practical light-client protocols for
PoW, aiming at sublinear (in the length of the blockchain) communication, while
relying only on basic and efficient cryptographic building blocks, and requir-
ing no additional trust assumptions. This has led to two main constructions:

1 The term light node or light client is sometimes used solely to refer to nodes adopting
SPV (see below); we mean by it any node that does not store the full blockchain.
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superblock-based non-interactive proofs of proof-of-work (NIPoPoWs) [KMZ20]
and FlyClient [BKLZ20]. In greater detail, [KMZ20] provides a definition of the
NIPoPoW primitive and an instantiation based on so-called superblocks: blocks
that contain a PoW that is “stronger than needed”, as it would remain valid
also against a more restrictive difficulty threshold. Their technique is leveraged
to enable light mining [KLZ21]; unfortunately, the approach only guarantees
succinctness of the provided proofs if the adversary is limited to 1/3 of the total
hash rate in the system and is only analyzed in the static-difficulty setting. On
the other hand, FlyClient also instantiates the NIPoPoW primitive, is proven
secure for any sub-1/2 adversary, provides significantly better efficiency, and is
analyzed also in the variable-difficulty setting.

It appears natural that underlying any of these light-client protocols must
be a classical two-party proof system which allows a prover, representing a full
node, to convince a verifier, the light client, of its knowledge of a blockchain that
it commits to. However, the protocols [KMZ20,BKLZ20] are not interpreted in
this way: they were designed in a model where a light client is assumed to be
connected to multiple provers, and the soundness guarantees are formulated only
under the assumption that at least one of them is honest. This might appear
unsatisfying, given that an inspection of the actual protocols would suggest that
a modular interpretation with the above-discussed two-party building block play-
ing the central role would be possible.

Proofs of Sequential Work. The incompleteness of the provided picture is
further underscored by the structure of the FlyClient protocol, which is strongly
reminiscent (as the authors themselves observe) to a seemingly unrelated prim-
itive, a proof of sequential work (PoSW) [MMV13]. A PoSW is a proof system
in which a prover, given a statement χ and a parameter n, computes a proof
that convinces the verifier that n sequential computational steps have been per-
formed since χ was received. The authors of [BKLZ20] indeed remark that their
construction resembles the PoSW of Cohen and Pietrzak [CP18], but the exact
relationship, as well as potential opportunities for further generalizations and
alternative constructions, remain—to the best of our knowledge—unstudied.

Our Contributions. In this paper, we set out to fill the above-described gaps in
the theory underlying light-client protocols. Our main goals are to allow basing
the development of these protocols on the classical theory of proof systems, and
to explain the role that proofs of sequential work can play in their design. Our
contributions can be summarized as follows:

1. We define a new general primitive called succinct non-interactive argument
of chain knowledge (SNACK), which is a non-interactive proof system for a
specific NP language, formally capturing the above intuition.

2. To construct SNACKs from so-called graph-labeling proofs of sequential work
(GL-PoSW), we unify existing definitions, add knowledge-soundness as a new
property, and give two constructions rooted in previous work achieving it.

3. We show how to augment any blockchain with any knowledge-sound GL-
PoSW and construct a SNACK system for the augmented chain.
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4. We show how SNACKs can be used to construct light-client blockchain pro-
tocols, and compare them to existing solutions.

5. We present a novel void-commitment attack against a naive class of designs
of bootstrapping protocols, and show how to mitigate this attack.

6. We define incremental SNACKs, which could allow for constructions of light
miners with better resilience than existing proposals.

1. Defining SNACKs. Consider a family Γ = (Γn)n∈N of weighted directed
acyclic graphs (DAGs), that is, the vertices of each DAG are attributed non-
negative weights summing to 1. Consider labels associated to the vertices
and let R be a relation defined on the labels of the vertices, which formal-
izes some “validity” requirement. (The DAG will represent a blockchain, with
edges capturing validation dependencies.) Let Com be a commitment scheme.
We define a chain commitment language LΓ,R,Com that consists of pairs (φ, n)
where φ is a Com-commitment to the labels of Γn that are valid with respect
to R.

We then consider an interactive proof system for LΓ,R,Com called an argument
of chain knowledge (ACK), which satisfies a relaxation of knowledge soundness
called α-knowledge soundness: any prover that convinces a verifier of a statement
(φ, n) must know a path in Γn of weight at least α and being valid w.r.t. R. We
focus on succinct and non-interactive arguments, i.e., SNACKs.

2. Knowledge-sound PoSW schemes. All known PoSW constructions [MMV13,
CP18,AKK+19,DLM19] (except for the subclass of the much stronger and
less efficient verifiable delay functions [BBBF18]) are based on a random-
oracle-induced labeling of a particular DAG G. We provide a unifying defini-
tion capturing all existing such graph-labeling PoSWs, for which we consider
an arbitrary weight distribution on the vertices of G, which will define the
distribution for challenge sampling (while prior constructions always sample
uniformly). Furthermore, we define a notion of knowledge soundness for GL-
PoSW, which will prove useful for constructing SNACKs from GL-PoSWs:
knowledge soundness of the SNACK will follow from that of the underlying
GL-PoSW.

We propose two knowledge-sound GL-PoSW schemes: The first is based on
the PoSW scheme from [AKK+19], the second is a slight modification of the
PoSW scheme from [CP18] which is better suited to our SNACK applications
(by allowing weight on all vertices as opposed to only the leaves as in [CP18]).

3. Constructing SNACKs for blockchains. A blockchain can be viewed as a path
with potential extra edges representing additional validation dependencies
between blocks, so that block validity can be determined by a relation R
applied to the block and its parents in this DAG. By adding extra (short)
fixed-size data to each block, we show how to bind this blockchain DAG to the
DAG of a GL-PoSW whose sequential computation can be efficiently verified
(see Fig. 1).



810 H. Abusalah et al.

0

PoSW graph G8

1 2 3 4 5 6 7 8

0

Blockchain H8

1 2 3 4 5 6 7 8

g0
h0

Super-graph K8

g1
h1

g2
h2

g3
h3

g4
h4

g5
h5

g6
h6

g7
h7

g8
h8

Fig. 1. Graph H8 represents the dependency relations in the blockchain, G8 is the
chain graph underlying our PoSW scheme based on [AKK+19]; K8 represents the
graph structure underlying the augmented blockchain. A label ki = (gi, hi) of K8

consists of a blockchain block hi and a PoSW-related label gi, which is typically small,
e.g. 256 bits, and consists of a hash the labels of the parents of vertex i in K8. The
“proof” in hi, e.g. PoW in Bitcoin, must depend on all parent labels in K8 as well
as gi.

The augmented blockchain then gives rise to a SNACK system for a validity
relation R̃, which beyond checking the original block validity via R, also veri-
fies the consistency of the added PoSW data. A proof in this SNACK scheme
convinces the verifier that the prover knows blocks of a certain weight in a
blockchain that are (i) valid and (ii) have been mined sequentially (since they
lie on a path)—a crucial guarantee in light-client protocols, as discussed next.

4. SNACKS in the real world. Our treatment so far has been fully independent
of the actual Sybil-protection mechanism (e.g., proofs of work/stake/space)
of the underlying blockchain. However, the implications and usefulness of the
sequentiality guaranteed by a SNACK highly depend on this mechanism. For
example, in a proof-of-work (PoW) blockchain, it is costly to generate blocks
and thus the guarantee of a sequentially-generated set of blocks is valuable,
because an adversary controlling only a minority of the computational power
cannot generate the longest such sequence. In contrast, in the proof-of-stake
setting, sequentiality is a weak guarantee, as generating a block requires a
mere digital signature and long sequences can be readily created. Hence,
our main focus is on applying SNACKs in the PoW setting, which was the
only setting considered in [KMZ20,BKLZ20]. Nonetheless, we believe that our
approach has much wider applicability, for instance, to blockchains combining
proofs of space [DFKP15,AAC+17] with verifiable delay functions [BBBF18]
such as Chia [CP19]. We leave this question to follow-up work.

SNACKs can be employed for bootstrapping in the presence of at least one
honest prover: the light client simply obtains proofs from all provers and picks
the heaviest successful one. However, SNACKs also allow for applications where
there is only a single prover. For instance, if a verifier V knows, for application-



SNACKs: Leveraging Proofs of Sequential Work for Blockchain Light Clients 811

specific reasons, (an estimate of) the current length of a blockchain, then V only
has to check a single SNACK proof evidencing that the prover knows a path
of roughly the correct length satisfying the SNACK guarantees of validity and
sequentiality. This proof is then enough to convince the verifier that the prover
holds the right blockchain (maybe up to a short suffix).

5. The Void-Commitment Attack and preventing it. Surprisingly, however, we
observe that the above approach turns out insufficient for a typical boot-
strapping scenario where the obtained chain commitment is meant to serve
as a self-sufficient, universal anchor of trust in future interactions with other
full nodes. We describe a simple attack, called the void-commitment attack,
that allows the attacker to trick the light client into accepting a chain com-
mitment that will turn out completely useless in future interactions with any
honest full node. To the best of our knowledge, this attack has not been
observed before.

We show how to remedy the attack by instead letting the prover establish a
commitment to some stable common prefix of all honestly held chains, one that is
then universally understood by all honest full nodes, which appears significantly
more desirable in practice. Towards formalizing this, we introduce a security
definition of secure common-prefix bootstrapping and prove that our final protocol
achieves this notion. Our proof is based on an adversary-limiting assumption in
the spirit of (c, L)-adversaries assumed in [BKLZ20]. However, we observe that
their original (somewhat informal) assumption is insufficient for formal reasoning
in any convincingly general model, and we hence present its formalization that
addresses several of the original deficiencies (e.g., assuming that all competing
chains—“forks”—must be of the same length).

6. Incremental SNACKs. A powerful extension of PoSWs, called incremental
PoSWs [DLM19], allows to extend an existing PoSW by additional sequen-
tial computation into a new PoSW covering the full computation. We add
this property to our formalism of GL-PoSWs and SNACKs. We observe that
using an incremental GL-PoSW to construct a SNACK system on top of
a blockchain whose underlying chain graph is simple (i.e., corresponds to a
path) leads to an incremental SNACK. To date, the only existing construction
of an incremental GL-PoSW [DLM19] is defined for a uniform challenge dis-
tribution, while our applications of SNACKs require different distributions.
We leave it as an exciting open problem to construct incremental GL-PoSW
for arbitrary weight functions.

This approach could allow for constructing light miners in the sense
of [KLZ21] without having to assume a sub-1/3-adversary—a clear improve-
ment over [KLZ21]. Pursuing this idea is outside of our current scope and we
leave it to future work.

Further Notes on Related Work. The superblock-based approach to light
clients [KMZ20,KLZ21] draws inspiration from the interactive protocol of
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[KLS16], and has led to an exciting line of follow-up work [KKZ19,KPZ20,
DKKZ20].

FlyClient [BKLZ20] is closely related to our generic SNACK construction
when instantiated with the PoSW from [CP18]; we conjecture that FlyClient
satisfies the guarantees of a SNACK, and discuss the relationship further in
Sect. 6. It employs an elegant technique (variable-difficulty Merkle mountain
ranges) to cope with the variable-difficulty setting. This is a strong indication
that our generic design can also be tweaked to handle variable difficulty. We
leave this as an interesting open problem, remarking that the possibility of using
general weight functions could prove useful here. However, FlyClient does not
support incremental proofs (and hence cannot be used for light mining).

While our concrete constructions do not outperform FlyClient efficiency-
wise, we put some of the intuitions of FlyClient on more solid formal footing,
generalize their construction, and propose extensions (such as incrementality).
In particular, we formalize the concept and the security of light-client protocols,
which we believe is lacking in FlyClient, as well as the concept of a commitment
to the chain serving as anchor of trust for verifiers. While FlyClient leaves some
room for interpretation (particularly relevant for the void commitment attack),
we clearly specify our protocol and give a rigorous security analysis.

Regarding SNARK-based constructions, the light-client protocol Plumo
[VGS+21] is designed for the BFT-based consensus of the Celo blockchain. While
it achieves impressive concrete succinctness among SNARK-based proposals, it is
still best suited for incremental proofs and requires heavier cryptographic tools,
most importantly, a trusted setup. Mina (formerly Coda) [BMRS20] employs
SNARKs for a significantly more ambitious goal of providing a constant-size
blockchain.

2 Notation and Basic Definitions

General. We let N denote the set {1, 2, . . .} and set N0 := N∪ {0}. For integers
i, j such that i ≤ j, we let [i : j] := {i, i + 1, . . . , j}, [n] := [1 : n], and [n]0 :=
[0 : n]. We let ε denote the empty string; for strings a and b we denote their
concatenation by a‖b. For a distribution D, we denote by d

$← D sampling d
according to D (for a set D, the uniform distribution is implied).

DAGs and Chain Graphs. For a directed acyclic graph (DAG) G = (V,E) on
n + 1 vertices, we always number its vertices V = [n]0 in topological order and
often write Gn to make this explicit. For v ∈ [n]0, we denote the parent vertices
of v in G by parentsG(v), and their number (i.e., the indegree of v) by degG(v);
thus, parentsG(v) = (v1, . . . , vdegG(v)). We also let deg(G) := maxv∈V {degG(v)}.
We drop the subscript G when G is clear from the context. For convenience , we
assume that the tuple parents(v) is given in reverse topological order.

Let (Gn = ([n]0, En))n≥0 be a family of DAGs. We make the assumption
that for each n ≥ 0, Gn is obtained from Gn+1 by removing the vertex n + 1
and its adjacent edges. We also assume that deg(Gn) ∈ polylog(n).
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Definition 1 (Chain graph). Let Gn = ([n]0, En) be a DAG. We call Gn a
chain graph if En ⊇ {(i− 1, i) : i ∈ [n]}. A chain graph Gn = ([n]0, En) is called
simple if En = {(i − 1, i) : i ∈ [n]}, i.e., it forms a path.

Graph Labeling and Weighted DAGs. The following notion of weighted
DAGs will be convenient when we define proof of sequential work (PoSW)
schemes with arbitrary, not just uniform, sampling distributions.

Definition 2 (Weighted DAGs). We call Γn = (Gn, Ωn) a weighted DAG
if Gn = ([n]0, En) is a DAG and Ωn : [n]0 → [0, 1] is a function such that
Ωn([n]0) = 1, where for S ⊆ [n]0 we let Ωn(S) =

∑
s∈S Ωn(s).

In this work, we leverage the fact that the validity of (the headers of) a
blockchain can be checked “locally”, e.g., in Bitcoin, assuming fixed difficulty,
(the header of) the i-th block hi is valid if it contains the hash of the previous
block hi−1 and a valid proof of work. We represent these dependencies by a chain
graph which contains an edge i → j if block hi is required to check the validity
of hj (in fixed-difficulty Bitcoin the graph is thus a simple chain graph).

Validity is captured by a relation Rψ, where ψ is the genesis block of the
blockchain, and hi is valid if Rψ(i, hi, (hι1 , . . . , hιq

)) = 1, where hι1 , . . . , hιq
are

hi’s parent blocks. We emphasize that we consider “SPV” or “header” validity,
which is the standard desideratum for blockchains adopted by light clients, and
in particular does not verify the validity of contained transactions.

Definition 3 (Labeled DAGs and blockchain validity). Let Gn =
([n]0, En) be a DAG. A (graph) labeling of Gn is a mapping L : [n]0 →
{0, 1}∗. (This naturally extends to labelings of subgraphs of Gn.) A (block-
)chain is a labeled chain graph.2 For a polynomial-time (PT) relation Rψ, a
blockchain (Gn, L) with genesis block L(0) = ψ is Rψ-valid if for all i ∈ [n]:
Rψ

(
i, L(i), (L(j))j∈parentsG(i)

)
= 1.

We define the notion of oracle-based graph labelings, which will later be
used by graph-labeling proof of sequential work (GL-PoSW) schemes, where the
prover computes the labels of a given graph, sends a commitment to them to the
verifier and is then challenged to open some of them. An oracle-based labeling of
a graph G defines the labels of the sources of G as the oracle evaluation on the
empty string; the label of any other vertex is defined as the evaluation on the
labels of the parents of the vertex. In our applications to blockchains the vertices
are the blocks and their labels represent blockchain data. We therefore consider
an “augmented” definition allowing to include arbitrary data in the labels.

Definition 4 (Oracle-based graph labeling). Let Gn = ([n]0, En) be a DAG
and τ = (τi)i∈[n]0 be a tuple of oracles, with each τi : {0, 1}∗ → {0, 1}λ. For any
X = (x0, . . . , xn) ∈ ({0, 1}∗)n+1 the X-augmented τ -labeling Lτ : [n]0 → {0, 1}∗

of Gn is recursively defined as

2 We use the words chain and blockchain as synonyms throughout the paper.
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Lτ (i) :=

{
τi(ε)‖xi if parents(i) = ∅,
τi

(
Lτ (parents(i))

)‖xi otherwise,
(1)

where Lτ (parents(i)) := Lτ (i1)‖ · · · ‖Lτ (ik) for (i1, . . . , ik) := parents(i). If X =
(ε, . . . , ε), we call Lτ the τ -labeling of Gn.

Vector Commitment (VC) Schemes. A VC scheme Com lets one commit-
ment to message vectors m and give short openings for (subsets of) components
of m. It has four algorithms: The parameters cp are computed via setup; a vec-
tor is committed to via (φ, aux) ← commit(cp, (m1, . . . ,mn)), which returns
a commitment φ and aux. To give an opening ρ of φ to mi at position i,
run open(cp, φ, aux,mi, i). The opening is verified by running ver(cp, φ,mi, i, ρ),
which returns a bit. (We generalize this to opening a set I of indices via ver(cp, φ,
(mi)i∈I , I, ρ).) The scheme must be position-binding, meaning no adversary can
compute a commitment φ and two openings ρ, ρ′ for mi �= m′

i that both verify
at position i. (See the full version [AFGK22] for a formal definition.)

3 Defining SNACKs

In this section we introduce our main primitive of a succinct non-interactive
argument of chain knowledge (SNACK). Intuitively, it is an argument system
for an NP language LΓ,R,Com that is parameterized by a family of weighted
DAGs Γ = (Γn)n≥0 with Γn = (Gn = ([n]0, En), Ωn), a polynomial-time relation
R ⊆ N0 × ({0, 1}∗)2, and a vector commitment scheme Com.

An element (φ, n) ∈ LΓ,R,Com consists of a Com commitment φ to a labeling
of Gn that is valid as defined by R, which checks every label w.r.t. the labels
of its parents (Definition 3). Looking ahead, R will serve two purposes: in GL-
PoSW schemes, R checks the validity of an oracle-based graph labeling, and in
our SNACK systems for augmented blockchains, whose vertex labels include a
GL-PoSW label, R additionally verifies blockchain validity.

A SNACK proof for a statement (φ, n) proves knowledge of an R-valid label-
ing of Γn as well as an opening of φ to this labeling. This is formalized by requir-
ing that from a prover computing a valid proof such a labeling and an opening
can be extracted. To enable more efficient schemes, we only require extraction of
labels that lie on a path P that has a certain weight, as measured by Ωn. We
call SNACK system α-knowledge-sound3, if it guarantees that from a valid proof
for (φ, n) a labeled path of weight at least α ∈ (0, 1] can be extracted, Setting
α = 1 recovers standard knowledge soundness.

Analogously to SNARKs, we require succinctness of SNACKs, that is, proofs
are of size poly-logarithmic in n and efficient to generate and verify.

Valid Paths in a Weighted DAG. To make the above formal, we need to
adapt the definition of a valid labeling of a graph G to paths P in G. In a path,
3 This is akin to f -extractability [BCKL08] of proof systems, which relaxes knowledge

soundness by only requiring extraction of a partial witness (or a function thereof).
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a vertex might have a parent in G that is not part of P , still the relation R
expects a label for it. We therefore define a valid path as containing, for every
v ∈ P , a “witness” pv, which is the set of purported parent labels, which must
be accepted by R. We require pv to be in accord with the labeling of P , that is,
if a parent u of v lies on P then pv must contain the label of u.

Definition 5 (Valid paths). Let Gn = ([n]0, En) be a DAG, and R ⊆ N0 ×
({0, 1}∗)2 a relation. Furthermore, let P be a path in Gn , LP a labeling of P , and
(pv)v∈P ∈ ({0, 1}∗)|P | a |P |-tuple of bitstrings with pv = (pv[1], . . . , pv[deg(v)]).
We say that (P,LP , (pv)v∈P ) is an R-valid path in Gn if for all v ∈ P with
(v1, . . . , vdeg(v)) := parents(v), we have

R
(
v, LP (v), pv

)
= 1 and ∀i ∈ [deg(v)] if vi ∈ P then pv[i] = LP (vi) . (2)

For a weighted DAG Γn = (Gn = ([n]0, En), Ωn), we say that (P,LP , (pv)v∈P )
is (α,R)-valid in Γn if in addition Ωn(P ) ≥ α.

For blockchains we typically require 0 ∈ P , so Rψ verifies the genesis block.

Chain Commitment Languages. We formally define the language LΓ,R,Com

for a SNACK proof system, where a statement η = (φ, n) consists of a Com
commitment φ to an R-valid labeling of the graph Gn. The labeling together
with an opening of φ constitutes a witness w for η. We parameterize the language
(akin to languages parameterized by a group [GS08]), where parameters prm are
generated (formally by an algorithm G) during a setup phase. This allows us to
capture SNACKs with instantiations of Com for which (position-)binding only
holds under honestly generated parameters cp; it also allows us to include the
salt χ defining a random oracle τ for τ -labelings in PoSW schemes, and to
include the genesis block ψ of a blockchain, both of which are assumed to have
been generated independently of the adversary. (Below these are subsumed into
parameters σ on which the relation R can depend.)

Formally, LΓ,R,Com is defined via a parameter-dependent ternary polynomial-
time (PT) relation R over tuples (prm, η, w) as the statements η for which there
exists a witness such that R(prm, η, w) = 1. For standard NP relations, prm = ε.

Definition 6 (Chain commitment language). Let Γ = (Γn)n≥0 be a family
of weighted DAGs and Com a vector commitment scheme. We define

R(α)
Γ,R,Com :=

{(
prm=(σ, cp), η=(φ, n),
w=(P,LP , (pv)v∈P , ρ)

) :
(P,LP , (pv)v∈P ) is (α,R)-valid

∧ Com.ver(cp, φ, LP , P, ρ) = 1

}

(3)

where R ⊆ N0×({0, 1}∗)2 is a PT relation that depends on σ. We let RΓ,R,Com :=
R(1)

Γ,R,Com and LΓ,R,Com denote the language defined by RΓ,R,Com.

We now define the SNACK system which is the central primitive we are
interested in. The generality of the SNACK definition stems from leaving the
specification of both the underlying relation R and Com open.
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Definition 7 (SNACK). A tuple of PPT algorithms (P,V) is a succinct non-
interactive argument of chain knowledge (SNACK) for the language LΓ,R,Com

with parameter generator G from Definition 6 if the following properties hold:

Completeness: For all λ ∈ N, prm ← G(1λ), η, w ∈ {0, 1}∗ with (prm, η, w) ∈
RΓ,R,Com: Pr

[
π ← P(prm, η, w) : V(prm, η, π) = 1

]
= 1 .

(α, ε)-Knowledge soundness: For every PPT prover P̃ there exists a PPT
extractor E such that

Pr

⎡

⎣
prm ← G(1λ); r $← {0, 1}poly(λ)(
η, π

)
:= P̃(prm; r);

w′ ← E(prm, r)
:

V(prm, η, π) = 1 ∧
R(α)

Γ,R,Com

(
prm, η, w′) = 0

⎤

⎦ ≤ ε(λ) ,

(4)
with R(α)

Γ,R,Com from (3). We say that (P,V) has universal (α, ε)-knowledge

soundness if there exists a single extractor EP̃ with oracle access to P̃ that
satisfies (4) for all PPT provers P̃.

Succinctness: For all prm ← G(1λ), (prm, η, w) ∈ RΓ,R,Com and π ← P(n, t
η, w), we have |π| ≤ poly(λ, log n), P runs in time poly(λ, n), and V runs in
time poly(λ, log n).

We remark that the SNACKs we construct in Sect. 5 have universal extractors in
the random oracle model. Note that we could have first defined an (interactive)
argument of chain knowledge (ACK) without requiring succinctness. A SNACK
(as required for our applications) then is any succinct non-interactive ACK.

4 Graph-Labeling Proofs of Sequential Work

Intuitively, proofs of sequential work (PoSW) are proof systems in which a
prover, upon receiving a statement χ and a parameter n, convinces a verifier
that n sequential computational steps have passed since χ was received. We
define augmented graph-labeling PoSWs, a special class of PoSWs that covers all
recent and efficient constructions [MMV13,CP18,AKK+19,DLM19]. Our defi-
nition does however not cover the number-theoretic constructions of verifiable
delay functions [BBBF18,Pie19,Wes19], which are PoSWs in which statements
have unique proofs. This is not required for our applications; moreover, known
constructions are far less efficient than graph-labeling (GL) PoSWs.

4.1 Defining Graph-Labeling PoSW

All random-oracle-aided PoSW constructions [MMV13,CP18,AKK+19,DLM19]
follow the same blueprint; they are defined and constructed interactively and
then turned non-interactive using the Fiat-Shamir transformation [FS87].4 A
graph-labeling PoSW scheme is parameterized by a family of weighted DAGs
4 The PoSW of [DLM19] is defined and constructed non-interactively by employing

an on-the-fly sampling technique.
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Γ = (Γn)n∈N. Let Γn = (Gn = ([n]0, En), Ωn) be a DAG from this family with
weight distribution Ωn : [n]0 → [0, 1] with Ω([n]0) = 1. The prover P, upon
receiving a statement χ from the verifier V, uses χ to instantiate a sequence of
oracles τ = (τi)i∈[n]0 . In all constructions except [AKK+19], τi is defined by
salting a random oracle O as τi(·) := O(χ, i, ·); the construction from [AKK+19]
uses χ to sample random permutations. Next, P computes a τ -labeling L (Defi-
nition 4) of Γn and produces a commitment φL to L using a vector commitment
scheme. Finally, P and V run an interactive protocol in which V essentially checks
that the responses of P to a challenge set S ⊂ [n]0 sampled according to Ωn are in
accord with φ. See Fig. 2 for the syntax to formally define PoSW in Definition 9.

Our definition of graph-labeling PoSW generalizes existing definitions in sev-
eral ways, which are particularly useful for constructing SNACKs from PoSWs:
First, while previous work only considered challenges sampled uniformly at ran-
dom, we allow for arbitrary sampling distributions Ωn. Second, we extend the
security guarantees of PoSW by requiring knowledge soundness, which will be
necessary when constructing SNACKs from PoSW. Existing PoSW schemes
implicitly satisfy a form of knowledge soundness, and we make this explicit.
Finally, we allow the prover to embed arbitrary additional data, as augmentation,
into the computation. While this doesn’t seem useful for classical applications
of PoSW, it will be a crucial property for our later application to SNACKs.

In defining graph-labeling PoSW, we require proofs to be short and veri-
fication to be fast, as for SNARK systems. Unlike general-purpose SNARKs
however, we require practically efficient provers and no setup assumptions.

Towards generalizing PoSW to arbitrary weight functions, we define the
weight of a sequence of parallel oracle queries to τ = (τi)i∈[n]0 . A parallel query
is a set of simultaneous queries to oracles τi, i.e. a tuple ((x1, i1), . . . , (xm, im))
which is answered by (τi1(x1), . . . , τim

(xm)). The weight of a sequence of parallel
queries is the sum of the respective “heaviest” nodes in each parallel query.

Definition 8 (Sequential weight). Let Q = (Q1, . . . , Q�) be a sequence of
parallel queries to an oracle τ = (τi)i∈[n]0 . We define the sequential weight of Q
with respect to a weight function Ωn : [n]0 → [0, 1] as

Ωseq(Q) :=
�∑

i=1

max
{
Ωn(j) : Qi contains a query to τj

}
.

Note that if Ωn is uniform, i.e., ∀i ∈ [n]0 : Ωn(i) = 1
n+1 , then Ωseq(Q) = �

n+1 .
We write (outA, outB) ← 〈A(inA) ↔ B(inB)〉 to denote an execution of inter-

active algorithms A, taking input inA and outputting outA, and B, taking input
inB and outputting outB. We write A(inA; r) to make A’s randomness explicit.
We now define augmented graph-labeling PoSW.

Definition 9 (Augmented GL-PoSW). Let Γ = (Γn = (Gn, Ωn))n∈N be
a family of weighted DAGs such that for all n, Gn has a unique sink n. A pair
of PPT algorithms (P := (P0,P1),V := (V0,V1,V2)), with access to an oracle
τ = (τi)i∈N0 is an augmented (oracle-based) graph-labeling proof of sequential
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work (GL-PoSW) if it instantiates the template described in Fig. 2 by specifying a
vector commitment scheme Com = (setup, commit, open, ver) and the subroutines
PoSW.label, PoSW.open and PoSW.ver; and it satisfies the following properties:

Completeness: For all n, λ ∈ N it holds that

Pr
[
(outP, outV) ← 〈P(1n) ↔ V(1λ, n)〉 : outV = 1

]
= 1 .

(α, ε)-Soundness: For all λ ∈ N and every PPT adversary (P̃′, P̃ = (P̃0, P̃1))
s.t. P̃ makes a sequence Q of parallel queries to τ = (τj(·))j∈[n]0 of sequential
weight Ωseq(Q) < α, it holds that

Pr

[
(n, st) ← P̃′(1λ)

(outP̃, outV) ← 〈P̃(st) ↔ V(1λ, n)〉 : outV = 1

]

≤ ε(λ) .

Succinctness: The size of the transcript |〈P(1n) ↔ V(1λ, n)〉| as a function of λ
and n is upper-bounded by poly(λ, log n). The running time of P is poly(λ, n)
and that of V is poly(λ, log n).

We say that (P,V) is (α, ε)-knowledge-sound we additionally have:

(α, ε)-Knowledge soundness: There exists a PPT extractor E such that for
every PPT adversary (P̃′, P̃ = (P̃0, P̃1)) we have

Pr

⎡
⎢⎣

r
$← {0, 1}poly(λ) ; (n, st) := P̃′(1λ; r)

(outP̃, outV)←〈
P̃(st; r) ↔ V(1λ, n)

〉
w′ ← EP̃(1λ, r)

:

outV = 1 ∧
R(α)

Γ,R,Com

(
prm, (outP̃0

, n),

w′) = 0

⎤
⎥⎦ ≤ ε(λ) ,

where prm is as sampled by V0, outP̃0
is the output φL of P̃0 and relation

R(α)
Γ,R,Com is as in (3) with R := Rχ defined as

R
(
i, L(i), pi

)
= 1 iff L(i) = τi(pi)‖xi for some xi ∈ {0, 1}∗ . (5)

In the full version [AFGK22] we prove that every knowledge-sound GL-PoSW
is indeed a sound PoSW.

Theorem 1. Every (α, ε)-knowledge-sound graph-labeling PoSW is (α, ε′)-
sound (cf. Definition 9) with ε′ := ε+(q2 +1)/2λ, where q is an upper bound on
the number of the adversary’s oracle queries.

The following lemma now directly follows from the respective definitions.

Lemma 1. Let (P,V) be an (interactive) (α, ε)-knowledge-sound graph-labeling
PoSW based on a family of weighted DAGs Γ and a commitment scheme Com.
Then applying the Fiat-Shamir transformation [FS87] to (P,V) results in a
SNACK system for the language LΓ,R,Com, when R is defined as in (5).
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Fig. 2. The template of a GL-PoSW, parametrized by (Γn)n∈N, a VC scheme Com
and the number of challenges t. Note that explicitly requiring P1 to compute ρi doesn’t
prevent P1 from opening the commitment also at other indices as part of PoSW.open.

All the constructions of graph-labeling PoSWs we consider here use the fol-
lowing very simple commitment scheme for the graph labeling L: The prover
commits to the labels of a graph which were derived through a graph-labeling
computation (cf. Definition 4). While the verifier could simply recompute the
labels to check consistency of a label L(i), for certain graph structures the fol-
lowing scheme will allow for much more efficient verification. Intuitively, the idea
is to check consistency of the labels of a randomly sampled subgraph.

To formalize consistency of labels in this context, we need the following defi-
nition of consistent strings, which is stronger than prior definitions in the litera-
ture [MMV13,CP18,AKK+19]. We associate to each vertex i a value yi := pi‖xi,
where pi represents the (augmented) labels of the parents of i and xi some poten-
tial augmentation of i. In order to also reason about the label of the last node,
we introduce a dummy child, that is, we add vertex n+1 and an edge (n, n+1).

Definition 10 (Consistent strings). Let τ = (τi)i∈[n]0 be a tuple of oracles,
with τi : {0, 1}∗ → {0, 1}λ. For a DAG Gn = ([n]0, En), let G+

n = ([n + 1]0, E+
n )

with E+
n = En ∪{(n, n + 1)}. Furthermore, ∀i ∈ [n+1]0 let deg(i) be the number

of parents of i in G+
n and yi := pi‖xi ∈ {0, 1}∗ where pi := pi[1]‖ . . . ‖pi[deg(i)].

We say yi is consistent with yi′ w.r.t. Gn , and denote it by yi ≺ yi′ if (i, i′) ∈ E+
n

and if i is the j-th parent of i′ in G+
n (in reverse topological order), then the j-th

block in the decomposition of yi′ is equal to τi(pi)‖xi, i.e., pi′ [j] = τi(pi)‖xi.

Below we give a specific vector commitment scheme called SPC, which will
also be used in our constructions of graph-labeling PoSW.
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Construction 1 (Shortest Path Commitment). Let G = (Gn =
([n]0, En))n∈N be a DAG family such that for all n, Gn has a unique sink n,
and let τ := (τi)i∈N0 be a tuple of oracles with τi : {0, 1}∗ → {0, 1}λ. We con-
struct a τ -based vector commitment SPC = (setup, commit, open, ver) for universe
U = {0, 1}∗ and message space M = (Mn)n∈N where Mn ⊆ Un consists of the
labels of nodes [n−1]0 of all valid X-augmented τ -labelings of Gn using L := Lτ

as per Definition 4.

– cp ← setup(1λ): On input 1λ, output empty public parameters cp := ε.
– (φL, aux) ← commit(cp, L): On input L ∈ Mn , output the commitment

φL := τn(L(parents(n))) (i.e. the first part of the label L(n)) and auxiliary
information aux := L.

– ρ ← open(cp, φL, aux, L(i), i): Let path(i) ⊆ Gn be the first shortest
path from i to n in Gn with respect to the lexicographical ordering.5 For
all nodes j in path(i) output the labels of all parents of j, i.e., ρ :=(
L(parents(j)), xj

)
j∈path(i)

.
– ver(cp, φL, L(i), i, ρ) ∈ {0, 1}: For path(i) = (i0, . . . , il = n) parse ρ =

(ρi0 , . . . , ρil
) and ρij

as (pij
, xij

), and check for all j ∈ [l] whether ρij−1 ≺ ρij

according to Definition 10; output 1 iff all these checks pass and τn(pil
) = φL.

4.2 Constructing Graph-Labeling PoSWs

In this section we construct a GL-PoSW scheme, which can be seen as a variant
of the skiplist-based PoSW construction [AKK+19], where for efficiency reasons
we replace random permutations by a hash function modeled as a random oracle.
In the full version [AFGK22] we give a new knowledge-sound GL-PoSW scheme,
which is an adaptation of the scheme from [CP18].

For simplicity of exposition, we consider the PoSW construction with empty
augmentation. The augmented counterpart appears in the SNACK construction
in Sect. 5, where the blockchain data is the augmentation data.

A Graph-Labeling PoSW Based on Skiplists. To define the PoSW con-
struction we specify the unspecified parts in the blueprint in Fig. 2, namely
a weighted DAG family (Gn, Ωn)n∈N and algorithms PoSW.label,PoSW.open,
PoSW.ver,Com.

Construction 2. Let Gn = ([n]0, En) be a DAG with edge set

En =
{
(i, j) ∈ [n]20 : ∃ k ≥ 0 s.t. (j − i) = 2k ∧ 2k|i}

(cf. Fig. 3). Let Ωn : [n]0 → [0, 1] be an arbitrary weight function, and let H :
{0, 1}∗ → {0, 1}λ be a hash function which we model as a random oracle.

– L := PoSW.label(χ): Sample oracles τi(·) := H(χ, i, ·) and output an aug-
mented τ -based labeling L := Lτ of Gn as per Definition 4.

5 Note that such a path exists since Gn has a unique sink.
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Fig. 3. Illustration of Construction 2. The label of the last node (green) serves as
the commitment. On input a challenge (red node), P opens all the nodes (blue) that
are required to verify the shortest path (red edges) from source to sink which passes
through the challenge node. To verify, V evaulates the opening (red and orange edges).
(Color figure online)

– Com is defined by SPC (Construction 1). Hence (φL, aux) ← SPC.commit
(cp, L) where cp := ε is empty.

– oi ← PoSW.open(χ, cp, φL, aux, L, ιi): For each challenge ιi, send the labels
of all parents of the (unique) shortest path from 0 to ιi in Gn: Let path′(ιi)
denote the shortest path in G which starts at 0 , ends at n and goes through
ιi . For each node in path′(ιi) output the labels of all its parents, i.e. oi :=(
L(parents(j))

)
j∈path′(ιi)

.

– b
(1)
i ← PoSW.ver(χ, ιi, oi): Check the consistency of path′(ιi): For path′(ιi) =

(i0 = 0, . . . , il = n) parse oi = (νi0 , . . . , νil
) and check for all i, j ∈ [l] with

(i, j) ∈ En whether νi ≺ νj according to Definition 10; output 1 iff all checks
pass.

We remark that we could optimize PoSW.open and PoSW.ver in Construc-
tion 2 by removing the redundant output/checks that are already done by
Com.open and Com.ver, but for readability’s sake, we keep the current expo-
sition.

In the full version [AFGK22] we prove that Construction 2 is a knowledge-
sound GL-PoSW as per Definition 9 for arbitrary weight function Ωn. The proof
closely resembles that of [AKK+19] by replacing the random permutations by
random oracles and additionally taking into account non-uniform weights.

Theorem 2. Let α ∈ (0, 1]. The scheme from Construction 2 with parameter t
and arbitrary Ωn is an (α, ε)-knowledge-sound augmented GL-PoSW with ε :=
αt + 3 · q2/2λ, where q is an upper bound on the adversary’s oracle queries.

5 Constructing SNACKs from GL-PoSWs

We now show how to augment any blockchain with the computation of any
(knowledge-sound) GL-PoSW scheme. This will then allow us to build a SNACK
system for an augmented chain commitment language LΓ,Rσ,Com, where Rσ is
a PT relation that checks the validity of blocks in the (augmented) blockchain,
whose genesis block is σ, as well as the consistency of the infused PoSW-related
data. An accepting proof for a statement (φ, n) convinces a verifier that the
prover knows a certain number of blocks (committed to by φ), in an augmented
blockchain of length n with genesis block σ, and furthermore these blocks are
(1) valid and (2) mined sequentially.
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Augmented Blockchains. We augment an existing blockchain by intertwining
the computation of the PoSW and the mining of the blockchain. More concretely,
let Γn = (Gn = ([n]0, EG), Ωn) be the underlying weighted DAG of a graph-
labeling PoSW scheme (PoSW.P,PoSW.V) adhering to Fig. 2 with Ωn : [n]0 →
[0, 1] s.t. Ωn([n]0) = 1. We furthermore assume that Gn is a chain graph as
per Definition 1. Recall that the PoSW computation mainly involves computing
labels of vertices by using an oracle τ := (τi(·))i∈[n]0 .

Now consider a blockchain with underlying chain graph Hn = ([n]0, EH)
and associated validity relation Rψ. Recall (Definition 3) that a blockchain with
genesis block h0 := ψ and a PT relation Rψ is valid if and only if for every vertex
i ∈ [n], its label hi, and its parents’ labels hi1 , . . . , hip

, it holds

Rψ(i, hi, (hi1 , . . . , hip
)) = 1 . (6)

For example, in fixed-difficulty Bitcoin, the i-th block hi has a single parent hi−1

and Rψ checks whether hi contains a valid proof of work w.r.t. hi and hi−1.
We combine the respective chain graphs Gn and Hn underlying the PoSW

scheme and the blockchain to an augmented chain graph Kn (see Fig. 1):

Kn := ([n]0, EK) with EK := EG ∪ EH . (7)

We obtain an augmented blockchain by labeling the chain graph Kn using algo-
rithms Init and Mine, as formalized in Fig. 4. In particular, from an initial genesis
block ψ, we define in Init, an augmented genesis block σ := LK(0) which con-
tains, in addition to ψ, PoSW-related data such as χ and cp. For a vertex i ∈ [n],
algorithm Mine computes LK(i) by alternating in computing PoSW labels �i and
blockchain-specific labels hi. The computation of �i is defined as for the under-
lying PoSW scheme, except that the extra incoming edges inherited from the
graph Hn are considered in the computation of �i. Additionally, the label �i is
extended to gi := (�i, φi) by a commitment φi to all labels ((gj , hj))j∈[i−1]0 ||�i.
The label hi is computed the way miners in the original blockchain protocol
generate blocks. Finally, the augmented label of the ith vertex is defined as
LK(i) := ki = (gi, hi).

In Line 4, Mine computes a proof πi for the block, which is inherited
from the underlying blockchain, for which a block hi := (i, di, πi) was valid
if Rψ

(
i, hi, LH(parentsH(i))

)
= 1. For example, in Bitcoin, πi is a PoW, com-

puted based on (i, di) as well as the LH -label (i.e., the corresponding block)
of the single H-parent vertex in Bitcoin’s chain graph Hn. In the augmented
blockchain, we augment the validity relation Rψ and define R̃ψ which still con-
siders the same graph structure H but takes augmented labels as input; hence
(6) becomes:

R̃ψ

(
i, LK(i), LK(parentsH(i))

)
= 1 . (8)

For example, for the augmented Bitcoin, the PoW πi is now computed based on
(i, di, gi) as well as the single parent block LK(parentsH(i)).

This overriding allows us to include PoSW labels gi into the relation and
make blockchain-specific labels hi, or in particular the proofs πi they contain,
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Fig. 4. The mining algorithm Mine for augmented blockchains.

depend on the PoSW labels gi’s in a way that allows us to translate the PoSW
sequentiality guarantees on gi’s to hi’s, or in particular πi’s. We elaborate more
on the sequentiality guarantees towards the end of this section.

As the ith augmented block contains both blockchain-specific data hi and
PoSW-specific data gi, we define an augmented validity relation that checks the
validity of (a) the blockchain-specific data using R̃ψ and (b) the PoSW data as
defined in (5), more concretely we define

Rσ(i, LK(i), LK(parentsK(i))) = 1 ⇔ (9)

R̃ψ(i, LK(i), LK(parentsH(i))) = 1 ∧ ∃ xi s.t. LK(i) = τi(LK(parentsK(i)))‖xi .

In order to verify that LK(0) indeed contains the blockchain genesis block ψ on
which Rσ depends, we include 0 in the sequence of challenges ι.

Arguments of Knowledge for Augmented Blockchains. We construct
a SNACK system Π = (SNACK.P,SNACK.V) for the language LΓ,Rσ,Com as in
Definition 6 with Rσ being as in (9). In our construction, the parameter generator
G would simply output prm := σ that defines Rσ.

As a first step in constructing a SNACK for LΓ,Rσ,Com, we construct a suc-
cinct interactive argument system of chain knowledge (ACK) (P,V) for the lan-
guage LΓ,Rσ,Com, which is formally depicted in Fig. 6. The idea is to use the
challenge/response phase of the underlying PoSW scheme, still with respect
to the family (Gn, Ωn)n∈N, but with respect to the labeling LK . Recall that
in a PoSW scheme (PoSW.P,PoSW.V), the verifier PoSW.V runs Com.ver and
PoSW.ver, where the latter operates w.r.t. the graph structure of G. However, in
our augmentation, we added edges from H to this graph (resulting in K), which
is why we extend PoSW.ver to PoSW.verK to take this into account. Analo-
gously, we define PoSW.openK . Both algorithms are given in Fig. 5 and are used
as subroutines in Fig. 6. Similarly, if Com.ver is defined w.r.t. some graph struc-
ture (e.g. shortest path in case of SPC or Merkle commitment), then this graph
structure stays unchanged, but we require augmented labels and potentially also
additional labels of H-parents (of the path).
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Fig. 5. PoSW.openK and PoSW.verK defined based on PoSW.open and PoSW.ver.

Remark 1 (On cp, φi and auxi). All known GL-PoSW (see Sect. 4), including
ours use the SPC commitment from Construction 1 with cp = ε. Moreover, if
(PoSW.P,PoSW.V) is instantiated with say Construction 2, then cp = ε, φi = �i

and auxi = ε. This means that the only additional data stored in each block of
the blockchain due to our augmentation is a label �i .

In the following theorem we show that the Fiat-Shamir transform of this
argument system is a SNACK system. As the underlying PoSW schemes support
arbitrary weight functions Ωn, so does our SNACK system.

Theorem 3. Let (SNACK.P,SNACK.V) be the non-interactive version of
(ACK.P,ACK.V) from Fig. 6, then in the random oracle model, (SNACK.P,
SNACK.V) is an (α, ε)-knowledge-sound SNACK for LΓ,Rσ,Com, as in Defini-
tion 6 and Rσ as in (9), if (PoSW.P,PoSW.V) is an (α, ε)-knowledge-sound
τ -based graph-labeling PoSW as in Definition 9 with Com being its underlying
commitment scheme, (Gn = ([n]0, EG), Ωn)n∈N its weighted graph family, and τ
modeled as a random oracle.

Fig. 6. The interactive proof system ACK which underlies our SNACK construction.
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To prove the theorem, we use Π := (ACK.P,ACK.V) and Alg. Mine (Fig. 4)
to build an augmented PoSW whose knowledge-soundness implies that of the
SNACK. We obtain a (non-interactive) (SNACK.P,SNACK.V) by applying the
Fiat-Shamir transform [FS87] to Π. The proof is in the full version [AFGK22].

Sequentiality of πi’s. By (α, ε)-knowledge soundness of (SNACK.P,SNACK.V)
from Theorem 3, with probability at least 1 − ε, we can extract from any
prover P̃ that convinces SNACK.V of the validity of (φ, n), an (α,R)-valid
path (P,LP , (pv)v∈P ) in Γn and an opening ρ of LP w.r.t. φ. For concrete-
ness, let LP = (kij

= (gij
, hij

))j∈[m]. By sequentiality of the underlying
(PoSW.P,PoSW.V), it follows that (gij

)j∈[m] was computed sequentially. How-
ever, for the corresponding proofs (πij

)j∈[m] in (hij
)j∈[m], it was not explicitly

required by Mine (see Fig. 4) that πij
is computed after its corresponding, and

sequentially computed, gij
. Therefore, in principle, all of these (πij

)j∈[m] could
have been computed in parallel by P̃ before P̃ started the sequential computation
of (gij

)j∈[m]. This shows that while a SNACK system guarantees sequentiality
on the augmented graph Kn via the sequentiality on Gn, this sequentiality does
not necessarily translate to sequentiality on Hn, and guaranteeing sequentiality
on Hn is what most applications of a SNACK system rely on (see Sect. 6).

This issue is however easy to resolve in any blockchain: To ensure that the
proofs (πij

)j∈[m] in (hij
)j∈[m] were computed sequentially, it suffices for the

blockchain mining protocol Mine to ensure the following:

Assumption: For all j ∈ [n] it holds that πj must have been computed after gj .

Then the sequentiality of (πij
)j∈[m] directly follows from the sequentiality of

(gij
)j∈[m]: now that πij

is computed after gij
, one could think of this as an

edge from gij
to πij

, and as gij
is computed after kij−1 = (gij−1 , hij−1), a

path that goes through (gi1 , . . . , gim
) translates to a path that goes through

(gi1 , πi1 , . . . , gim
, πim

), hence ensuring sequentiality of the proofs.
The above assumption is trivially satisfied by any blockchain which has

immutability as one of its defining properties: a block in the chain cannot be
modified without modifying all subsequent blocks. For example, in Bitcoin, where
hj = (j, dj , πj), as assumed in Mine, contains a valid PoW πj with respect to dj

where dj is implicitly assumed to contain the hash of the previous block. Simply
including gj in dj ensures that πj is computed after gj .

6 Applications to Blockchain Light Clients

We now describe how SNACKs can be applied in the design of light-client
blockchain protocols. Informally speaking, the goal of such protocols is to allow
a light client, who only knows the genesis block, to bootstrap by obtaining a
commitment to a chain that is, except for some unreliable suffix, matching the
chains being held by honest full nodes. Others can then prove statements about
the honest chain w.r.t. this commitment, and the light client does not need to
trust the provers. The commitment thus serves as an anchor of trust.



826 H. Abusalah et al.

We start by defining some vocabulary that allows us to make this intuition
precise. We consider a long-term execution of a blockchain ledger protocol Π by
a set of parties called full nodes. At a particular time t, we call a party honest if
it is uncorrupted by the adversary (and hence follows Π), it is online and fully
synchronized with the state of the protocol Π.6 A chain is called honest at time t
if it is held by some honest party executing the full protocol, i.e., a full node. We
call an honest chain maximal if it has maximal length among all honest chains.
Note that several different maximal chains might exist for any t, but they share
the same length which we call the honest length at time t. We call an honest
party synchronized at time t if it is holding a maximal chain.

General Assumptions. The κ-common-prefix property [GKL15,PSs17] man-
dates that any two chains C1, C2 that are honest at times t1 ≤ t2 satisfy
C

�κ
1 � C2, where (·)�κ denotes removing the last κ blocks of a chain and �

is the prefix relation. (This property has become a standard requirement for
Nakamoto-style blockchain protocols: together with chain growth and chain qual-
ity, it implies consistency and liveness of the produced ledger [GKL15,PSs17].)
It has been shown to be achieved, except with an error negligible in κ, by
Nakamoto-style protocols across various Sybil-protection mechanisms: proof
of work [GKL15,PSs17,BMTZ17], proof of stake [KRDO17,DPS19,DGKR18,
BGK+18], and proof of space [CP19]. We will assume that the considered block-
chain protocol Π satisfies κ-common prefix for some κ so that the probability of
this assumption being violated is acceptably small. We refrain from mentioning
this error explicitly in our statements to maintain readability.

We assume that the execution of the protocol Π results in a family of chain
graphs {Kn = ([n]0, En)}n≥0, meaning that at any point in the execution of Π,
any blockchain with n blocks produced by Π has its chain-graph structure deter-
mined by Kn (cf. Definition 1). (Thus the chain-graph structure is independent
of the data contained in the blocks.) Recall that for every n ≥ 0, Kn is assumed
to be obtained from Kn+1 by removing vertex n + 1 and adjacent edges.

Forking Adversaries. In our analysis we need to assume some limitation on
an adversary’s ability to create an alternative chain that “forks away” from
any currently honest chain at some significant depth and achieve (at least) the
honest length, even if it contains some fraction of invalid blocks. This type of
assumption was first described in [BKLZ20], who explicitly allow the adversary
to include (a limited fraction of) invalid blocks in its fork. Below we discuss how
we formalize the spirit of their assumption for our setting in Definition 11, while
overcoming some shortcomings of the original formulation.

First, in their context of a PoW chain, an invalid block may contain an
incorrect proof of work, but every block must still contain a correct hash of
its predecessor. (If this was not required, the assumption would be false, as the
adversary could simply glue parts of the honest blockchain together.) We capture
validity of blocks by an abstract relation R, without assuming anything about

6 Such honest parties are called alert in [PS17,BGK+18]; we will not maintain this
distinction and will always assume honest parties to be alert.



SNACKs: Leveraging Proofs of Sequential Work for Blockchain Light Clients 827

“invalid” blocks. As we consider blockchains whose underlying graph structure
is an arbitrary (rather than simple) chain graph, we employ the notion of R-
valid paths as per Definition 5 to formally define forks. Our assumption requires
that an adversary that creates a (valid) path that forks away from the honest
blockchain sufficiently deep (as specified by a parameter �) can only include in
its path a c-fraction of blocks after the forking point. Note that in a typical PoW
blockchain, any such adversary could also create the blocks not lying on its path
by ignoring the PoW but including a correct hash; this would then also violate
the assumption in [BKLZ20]. From this perspective, our assumption is weaker
than that of [BKLZ20], as the adversary has to achieve a c-fraction of valid
blocks along a path, but it is stronger in that the adversary need not produce
blocks (with valid hashes) outside of its path.

Furthermore, the original assumption [BKLZ20] does not consider adversaries
that create a fork (potentially containing invalid blocks) whose length exceeds
the honest length nh. As we show, such adversaries can be used to break light-
client protocols in the sense of the precise security definition (Definition 12) we
give. Our assumption will thus also contain a limit on the adversary’s power
of extending chains. Intuitively, this does not make the assumption stronger,
since if the last block of the adversary’s fork is at position n∗ > nh, then the
adversary’s task is harder, as it needs to include more blocks in its path so a
c-fraction of its (now longer) fork is valid. A definitional subtlety arises when
n∗ ≥ nh + � − κ, meaning that a fork of length � could start beyond the stable
prefix of the honest chains, which ends at sh := nh − κ. If the adversary’s chain
agrees with the honest prefix, then “forking from the honest chains” is not well-
defined, as honest chains can differ after sh. In this case we consider the forking
point f to be the adversary’s last block before sh. (This is captured by Case (2)
in Definition 11 below.)

One might wonder if forking from an honest chain at some point f ′ > sh

could give the adversary an advantage, as the c-fraction is now measured between
f < f ′ and n∗. However, a similar situation could also arise before sh, in which
case it is subject to Case (1) in Definition 11 (which corresponds to the origi-
nal assumption [BKLZ20]): there might be an (honest) orphaned fork of length
κ′ ≤ κ (these are not excluded by κ-common-prefix) forking at nh − � and the
adversary can try to extend it. To achieve a c-fraction in [nh − � + 1 : nh],
the adversary thus needs to mine c� − κ′ blocks while the honest miners only
mine � − κ′ blocks. Arguably, a Case (2) fork is harder to compute: consider an
adversary that extends an instable honest chain after sh + κ′. Then to achieve a
c-fraction of blocks in [sh + 1, nh + � − κ] (the optimal choices of forking point
f in Definition 11 and n∗), the adversary has to mine c� − κ′ while the honest
miners only mine κ − κ′ blocks (thus in less time than in the Case (1) example
before).

Definition 11 ((c, �)-forks and (c, �, εF )-adversaries). Let Π be a blockchain
protocol with validity relation R and chain graph (Kn)n≥0, satisfying κ-common
prefix. Let c ∈ (0, 1], � ∈ N with � > κ. Fix some time t in the execution of Π
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and let nh be the honest length at time t and Lh : [sh]0 → {0, 1}∗ be the labeling
of the honest stable prefix, with sh := nh − κ.

– An �-fork is an R-valid (Definition 5) path
(
P = (i0 = 0, . . . , iq =

n∗), L, (pv)v∈P

)
in Kn∗ , such that n∗ ≥ nh and either

(1) for some j ∈ [q]: ij ≤ sh and n∗ ≥ ij + � − 1, and we have:
L(ij−1) = Lh(ij−1) and L(ij) �= Lh(ij).

(2) or n∗ ≥ sh + � and for all ij ≤ sh: L(ij) = Lh(ij).
– A (c, �)-fork is an �-fork (P,LP , (pv)v∈P ) for which P contains at least a

c-fraction of the blocks after the forking point f , i.e.,
∣
∣P ∩ [f + 1 : n∗]

∣
∣ ≥ c · (n∗ − f) ,

where f := ij−1 in Case (1) and f := max{ij : ij ≤ sh} in Case (2).
– A (c, �, εF )-adversary against Π is an adversary whose probability of produc-

ing a (c, �)-fork at any point throughout the execution of Π is at most εF .

Observe that for c = 1, the adversary’s goal collapses to an �-common-prefix
violation. For PoW, one can rely on existing bounds such as [GRR21]. For general
c, the connection between the assumption of (c, �, εF )-adversaries (or the original
assumption in [BKLZ20]) and more basic blockchain assumptions remains open.

Our Results. The high-level idea of our protocols is that any blockchain com-
mitment suggested by a prover for adoption by a light client needs to be accom-
panied by a SNACK proof parametrized in such a way that no (c, �, εF )-adversary
would be able to produce this SNACK for a chain that does not share the nec-
essary common prefix with honest chains, as this would require the prover (by
SNACK knowledge soundness) to construct a valid path that is beyond the
capabilities of any such restricted adversary.

As a warm-up, in Sect. 6.1 we present a naive SNACK-based protocol for
light-client bootstrapping in the multi-prover setting. The light client obtains
(concise) information from several full nodes, and, informally speaking, if at least
one of them is (honest and) synchronized then the light client will end up holding
a commitment to a chain of honest length. (If all provers are malicious, the
client might adopt a commitment to a chain arbitrarily violating the common-
prefix property or the maximal-length requirement.) This is analogous to the
guarantees provided by the FlyClient protocol [BKLZ20].

We also present a simple variant of our first protocol for settings where the
light client can be assumed to know an approximation of the current honest
length (e.g. derived from the time passed since the client’s previous bootstrap-
ping). This protocol provides meaningful guarantees even when run with a single
(potentially malicious) prover.

We don’t formally analyze these two protocols, as their security guarantees
described informally above turn out to be insufficient for the most common
practical setting. To illustrate this, in Sect. 6.2 we describe an attack against the
bootstrapping approach taken by both our proposals as well as a naive use of
previous work, the void-commitment attack. It consists of an adversary producing
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On input tuples (φi, ni, πi)i∈[N ] the light client does the following:

1. For all tuples, ordered by decreasing values of ni:

(a) let αi and Ωi be as discussed in the text

(b) check if πi is a valid proof for the statement (φi, ni) for an (αi, ε)-knowledge-sound

SNACK system for LΓ,R,Com with weight function Ωi

(c) if πi verifies then stop and return (φ, n) := (φi, ni)

2. Return ⊥.

Fig. 7. Protocol 1: A Naive Light-Client Bootstrapping Protocol (informal).

a private chain almost identical to some maximal honest chain, and luring the
light client into accepting a commitment to his chain. The obtained commitment
is then useless in future interactions if the adversary keeps the opening secret.

Motivated by this attack, in Sect. 6.3 we first define secure bootstrapping
(Definition 12): a light client is guaranteed to obtain a commitment to a stable
common prefix of all honest chains, which can serve as an anchor of trust. Anyone
holding an honest chain can then prove properties about its stable prefix to the
light client. We then propose our final SNACK-based protocol (Fig. 9) and prove
that it satisfies secure bootstrapping. We do so via a technical result (Theorem 4)
that allows us to reason about the limitations of (c, �, εF )-adversaries in creating
forks with (α,R)-valid paths and hence producing valid SNACKs.

SNACK-Compatible Blockchains and Commitments. As our protocols
rely on a SNACK system, we assume the blockchain in question admits such a
system. GL-PoSW-augmented blockchains as presented in Sect. 5 are one exam-
ple. We let Kn for n ∈ N denote the DAG (technically a chain graph as in
Definition 1) of such a blockchain of length n and let R be the relation that
defines validity of its blocks. (In the construction in Sect. 5 this corresponds to
Rσ from Eq. (9).) We let Com be the commitment scheme for which the light
client should obtain a commitment to the chain. Together, these define the lan-
guage LΓ,R,Com for the SNACK system, where Γ := (Kn, Ωn)n≥0 and Ωn which
we will define. In addition, we assume the following:

Assumption: Every block (header) of the blockchain contains a Com-commit-
ment to all the previous blocks.

When considering the SPC commitment (Construction 1) in GL-PoSW-aug-
mented blockchains, this assumption trivially holds: the commitment contained
in a block is simply the τ -evaluation (the “hash”) of the parent labels (blocks).
The assumption is also true for “FlyClient-compatible” blockchains, whose block
headers need to contain Merkle mountain range commitments [BKLZ20].

Further note that in our (and [BKLZ20]) approaches to light-client protocols
the commitment provided by a prover cannot be independent of the blockchain:
otherwise, a malicious prover could modify (and thereby invalidate) a single block
in (the stable prefix of) an honest chain, commit to the altered chain and later
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prove properties of the modified block to any verifier holding the commitment.
As this modified blockchain does not constitute a (c, �)-fork (neither w.r.t. Defi-
nition 11 nor the original assumption [BKLZ20]), the light-client protocol cannot
protect against it. (In particular, the adversary can still compute a SNACK by
proving knowledge of a (heavy) path that does not go through the node.)

6.1 Naive Bootstrapping Protocols

In Protocol 1, the “naive” protocol, the light client receives from each of N full
nodes a commitment φi to a purported blockchain of length ni and a SNACK
proof πi for the statement (φi, ni). It outputs (one of) the commitment(s) for
the maximal value n that is accompanied by a valid SNACK proof (see Fig. 7).

The SNACK proofs are parametrized (via αi and Ωi) based on the proclaimed
value of ni so that they prove knowledge of a path which, assuming (c, �, εF )-
adversaries (Definition 11), must share the necessary common prefix with the
honest blockchain. This can be quantified precisely, and we provide parameters
for our final protocol in Theorem 4. The intuition behind the design of Protocol 1
is not flawed, and in fact, the same reasoning (expressed more concretely and
implicitly using a specific SNACK) lies behind FlyClient. We omit the detailed
treatment for Protocol 1 as its main purpose is to motivate the subsequent
attack.

Protocol 1 does have some use cases, for example if the prover convincing
the light client is the entity that later proves statements about the honest chain.
Another application is obtaining an estimate of the honest length in the multi-
prover setting (by simply outputting the length ni of the accepted tuple).

Assuming the light client knows the current honest length nh, a simple vari-
ant of Protocol 1, presented in Fig. 8, can then be run with a single prover.
It guarantees that either the client again obtains a commitment to an honest-
length chain or she learns that the prover is malicious or lagging behind and
hence should not be trusted. In fact, also imprecise estimates of nh (such as
those obtained from Protocol 1) can be leveraged in a similar way.

6.2 The Void-Commitment Attack

The following attack applies to Protocols 1 and 2, as well as a naive use of
the FlyClient protocol. We stress that the attack does not contradict security
claims in previous work (or the informal argument given in Sect. 6.1), but rather
highlights that despite these claims, protocols following the structure described
in Sect. 6.1 fall short of solving a class of important practical use cases.

The attack works as follows: an adversary A first obtains from an honest
full node some maximal honest chain; let h be (the header of) its terminating
block. A then mines a new block h′ on top of h, which it will however keep
secret. It then participates as prover in one of the mentioned protocols following
its specification, but using its chain terminating with h′. If A’s commitment is
adopted by the light client then the latter will hold a commitment to a chain
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to which only A knows an opening, which will be of no use for “bootstrapping”
applications that would involve interactions with other full nodes.

Note that even if the protocol is run with honest full nodes only, the light
client may still end up with a similarly unusable commitment if the prover’s
chain will eventually lose the “longest-chain race” and not become part of the
prefix of future honest chains. This observation extends to the FlyClient protocol
if used naively: if the light client only keeps the last block and the contained
commitment as its output from the bootstrapping (rather than the full �-suffix),
further interactions with other full nodes would suffer from the above attack.

6.3 A Light-Client Protocol for Common-Prefix Commitment

We now show that, using SNACKs, the original intuitive goal can still be
achieved: (a) obtain a commitment guaranteed to be to (a relevant part of) an
honest-length chain; (b) anyone, not only the commitment provider, can use it
to prove statements about the ledger state. While it would be desirable to guar-
antee a commitment to the stable prefix [sh]0 with sh = nh − κ of the honest
chain, this cannot be achieved when only making the assumption of (c, �, εF )-
adversaries: the latter only precludes forks of length �, so a (c, �, εF )-adversary
could create a differing block at position sh + 1. But then it could also insert
a “malicious” commitment there (cf. our discussion before Sect. 6.1). In order
to fix the commitment to the honest chain, we therefore place it at latest at
position nh − � + 1.

Definition 12 (Secure common-prefix bootstrapping). For κ, � ∈ N, let
Π be a blockchain protocol satisfying κ-common prefix for κ < � for which each
block contains a commitment to its predecessors. Fix some time t and let nh be
the honest length at time t and (h0, . . . , hsh

) be the (headers of the) stable prefix
of the honest chain. A light client securely �-common-prefix bootstraps (�-CP
bootstraps) at time t if for some m ∈ [nh − � : sh − 1] it ends up holding the
commitment φ to (h0, . . . , hm) contained in hm+1.

In Protocol 3 in Fig. 9, instead of committing to the entire chain, the full
nodes commit to the (stable) prefix of the honest chain of length n−�, and use a
SNACK to prove knowledge of a heavy chain contained in the commitment. Now
to ensure that the commitment is actually to the stable prefix, we require the
provers to show that they know an extension by � blocks of what was committed.

On input the honest length nh and a tuple (φ, n, π), if n < nh, return ⊥. Else:

1. let αn and Ωn be as discussed in the text;

2. if π is valid for (φ, n) for an (αn, ε)-knowledge-sound SNACK system for LΓ,R,Com

with weight function Ωn then return φ;

3. else return ⊥.

Fig. 8. Protocol 2: Single-Prover Bootstrapping with Length (informal).
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Let Π be blockchain protocol with validity relation R, chain graph (Kn)n≥0 and parameters

prm. On input N tuples of the form φ, n, π, (ki)
n
i=n−�+1, (ιj , kιj , ριj )

q
j=1

)
for some q ≤


 · deg(Kn), ordered by decreasing values of n, check for each tuple the following:

(a) Let m := n − 
; check whether φ is contained in km+1

(b) SNACK.V prm, (φ, m), π
) ?

= 1, where SNACK is (αm, ε)-knowledge-sound for

L(Km,Ωm)m≥0,R,Com with αm and Ωm as in Theorem 4

(c) For all i ∈ [m + 1 : n] : R(i, ki, (kj)j∈parents(i))
?
= 1

(d) For all j ∈ [1 : q] : Com.ver(cp, φ, kιj , ιj , ριj )
?
= 1

(e) If all checks verify, return (φ, n)

Return ⊥

Fig. 9. Light-Client Protocol 3: Multi-Prover Bootstrapping Common Commitment

For simplicity, the provers simply send (the headers of) these blocks and give
commitment openings to the blocks that are necessary to check their validity.
(To further optimize we could only check samples from the last � blocks.)

We next define appropriate values αm, Ωm for the SNACK scheme used in
our light-client Protocol 3, which will guarantee secure �-CP bootstrapping.

Theorem 4. Let Π be a blockchain protocol with underlying graph (Kn)n≥0

satisfying κ-common prefix. Let c ∈ (0, 1] and � ∈ N with � > κ. For m ∈ N

define αm and Ωm : [m]0 → [0, 1] as

αm := 1 − (
logc

(
�−1
m+�

))−1

Ωm(i) := S · 1
m+�−i for 0 ≤ i ≤ m where S :=

( ∑m
j=0

1
m+�−j

)−1
. (10)

Then, except with probability at most εF , no (c, �, εF )-adversary can create an
�-fork (P,LP , (pv)v∈P ) in Kn∗ where P starts at 0 and ends at n∗, such that,
with m∗ := n∗ − �:

– P contains the last � blocks, i.e., [m∗ + 1 : n∗] ⊆ P , and
– P has weight at least αm∗ w.r.t. Ωm∗ , i.e., Ωm∗(P ∩ [m∗]0) ≥ αm∗ .

We give a proof overview and defer the proof to the full version [AFGK22]. Let
Kn be the blockchain graph and m := n− �. Initially, we keep αm indeterminate
and define a weight function Ωm on Km, which is inspired by the sampling
distribution of the FlyClient protocol [BKLZ20]. We then give the adversary’s
optimal strategy, which, given the constraints on its resources, maximizes the
weight of its chain. Finally, we set αm large enough, so that the optimal (and
thus every) chain produced by a (c, �, εF )-adversary has weight less than αm.

A (c, �, εF )-adversary, whose goal is to produce an �-fork at time t that con-
tains all the last � blocks, is limited to choosing a point f (see Definition 11),
after which it forks from some existing chain, and some length n∗ ≥ nh, where
nh denotes the honest length at time t, and deciding which blocks after f to
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include in its path. (We do not make any assumptions on the blockchain graph
and assume any sequence of blocks is a path.) By assumption, after the forking
point there can be at most c(n∗ − f) valid blocks.

We will use an increasing weight distribution Ωm, that is, later blocks in
Km weigh more. So to maximize the weight of its path, the adversary must
put all its blocks just preceding the last � blocks. Specifically, we adopt the
hyperbolically increasing function from [BKLZ20], which assigns to the i-th block
weight proportional to 1

m+�−i . For any forking point f , the weight of the (1− c)-
fraction of the blocks after f (which the adversary must skip) is the same, so all
forking points are “equally bad”.

Theorem 4 now allows us to prove that Protocol 3 provides a light client for
�-CP bootstrapping secure against (c, �, εF )-adversaries.

Corollary 1 (Security of Protocol 3). Let κ, � ∈ N with � > κ and let Π
be a blockchain protocol with validity relation R and graph family (Kn)n≥0 that
satisfies κ-common prefix. Assume the honest length nh > � and consider a light
client running Protocol 3 (Fig. 9) with N full nodes, at least one of which is
(honest and) synchronized and all others are controlled by a (c, �, εF )-adversary.
Let (φ∗, n∗) be the output of the light client. For m ≥ 0, let αm and Ωm be as in
Theorem 4. If Com is εC-position-binding and SNACK an (αn∗−�, ε)-knowledge-
sound for language LΓ,R,Com where Γ := (Γm = (Km, Ωm))m≥0, then the client
securely �-CP-bootstraps except with probability ε + εC + εF .

We give a proof sketch and defer the formal proof to the full version. Assume
a (c, �, εF )-adversary that prevents the light client from bootstrapping and let
(φ, n) be its output. We have n ≥ nh, the maximum honest length, since other-
wise an honest miner would have convinced the light client.

By (αm, ε)-knowledge soundness, for m := n − �, of the SNACK sent by the
adversary, we can extract an R-valid path in Km of weight at least αm. We extend
it by the sent blocks km+1, . . . , kn to a path P in Kn, which satisfies the two
requirements at the end of Theorem 4. Moreover, P is R-valid, since position-
binding of Com guarantees that the sent parent labels kι1 , . . . , kιq

conform to
those of the extracted path.

Let sh := nh − κ denote the length of the honest stable prefix. Finally, P
is an �-fork, since either n ≥ sh + � and it agrees with the stable prefix of the
honest chain (fork of Type (2) in Definition 11), or it forks off earlier, at latest at
m+1 (since φ contained in block m+1 must be different from the commitment
contained in the honest prefix for the client not to bootstrap), meaning it is a
fork of Type (1). By Theorem 4, no (c, �, εF )-adversary can create such a fork,
which proves Corollary 1.

In the full version [AFGK22], we show that when using the SNACK based on
(our variant of) the PoSW from [CP18], Protocol 3 achieves virtually the same
efficiency as FlyClient [BKLZ20].
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[DGKR18] David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an
adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 3

[DKKZ20] Daveas, S., Karantias, K., Kiayias, A., Zindros, D.: A gas-efficient superlight
bitcoin client in solidity. Cryptology ePrint Archive, Report 2020/927
(2020). https://eprint.iacr.org/2020/927
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