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Abstract. Constacyclic codes over finite fields are a family of linear
codes and contain cyclic codes as a subclass. Constacyclic codes are
closely related to many areas of mathematics and outperform cyclic codes
in several aspects. Hence, constacyclic codes are of theoretical impor-
tance. On the other hand, constacyclic codes are important in practice,
as they have rich algebraic structures and may have efficient decoding
algorithms. In this extended abstract, two classes of constacyclic codes
are constructed using a general construction of constacyclic codes with
cyclic codes. The first class of constacyclic codes is motivated by the
punctured Dilix cyclic codes, and the second class is motivated by the
punctured generalised Reed-Muller codes. The two classes of constacyclic
codes contain optimal linear codes. The parameters of the two classes of
constacyclic codes are analysed, and some open problems are presented
in this extended abstract.
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1 Introduction and Motivations

1.1 Constacyclic Codes and Cyclic Codes

Let GF(q) be the finite field with q elements, and let GF(q)∗ denote the mul-
tiplicative group of GF(q). By an [n, k, d] code C over GF(q) we mean a k-
dimensional linear subspace of GF(q)n with minimum distance d. Let λ ∈
GF(q)∗. A linear code C of length n is said to be λ-constacyclic if (c0, c1, . . . , cn−1)
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∈ C implies (λcn−1, c0, c1, . . . , cn−2) ∈ C. Let Φ be the mapping from GF(q)n to
the quotient ring GF(q)[x]/〈xn − λ〉 defined by

Φ((c0, c1, . . . , cn−1)) =
n−1∑

i=0

cix
i.

It is well known that every ideal of the ring GF(q)[x]/〈xn − λ〉 is principal
and a linear code C ⊆ GF(q)n is λ-constacyclic if and only if Φ(C) is an ideal
of GF(q)[x]/〈xn − λ〉. Consequently, we will identify C with Φ(C) for any λ-
constacyclic code C. Let C = 〈g(x)〉 be a λ-constacyclic code over GF(q), where
g(x) is monic and has the smallest degree. Then g(x) is called the generator poly-
nomial and h(x) = (xn −λ)/g(x) is referred to as the check polynomial of C. The
dual code C⊥ of C is a λ−1-constacyclic code generated by the reciprocal polyno-
mial of the check polynomial h(x) of C. By definition, 1-constacyclic codes are the
classical cyclic codes. Hence, cyclic codes form a subclass of constacyclic codes.
In other words, constacyclic codes are a generalisation of the classical cyclic
codes. For more information on constacyclic codes over finite fields, the reader
is referred to [5–9,13,18,20,21,24,25,27,30–32,35] and the references therein.

1.2 Motivations and Objectives

By definition, cyclic codes are a proper subclass of constacyclic codes and con-
stacyclic codes are a proper subclass of linear codes. Clearly, cyclic codes have a
better algebraic structure than λ-constacyclic codes with λ �= 1 and constacyclic
codes have a better algebraic structure than other linear codes. A better alge-
braic structure may mean a better decoding algorithm. Then the following two
questions are interesting and good motivations for studying constacyclic codes.

Question 1. Is a given linear code over GF(q) monomially-equivalent to a cyclic
code over GF(q)?

Question 2. Is a given linear code over GF(q) monomially-equivalent to a λ-
constacyclic code over GF(q) with λ �= 1?

For example, the Hamming code of length (qm − 1)/(q − 1) over GF(q) is
monomially-equivalent to a cyclic code over GF(q) when gcd(m, q − 1) = 1, and
is always monomially-equivalent to a contacyclic code over GF(q). This shows
that the Hamming code is attractive. Notice that the two questions are open for
most linear codes.

Recall that cyclic codes have a better algebraic structure. Then one would
ask why we would study constacyclic codes. Below is a list of motivations for
studying λ-constacyclic codes with λ �= 1:

– There does not exist a cyclic code over GF(q) with parameters [n, k, d] for
certain q, n, k and d; but there is a λ-constacyclic codes over GF(q) with
parameters [n, k, d].
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– The best [n, k] constacyclic code over GF(q) has a better error-correcting
capability than the best [n, k] cyclic code over GF(q) for certain q, n and k.

– Constacyclic codes can do many things that cyclic codes cannot do. For exam-
ple, the Hamming code of length (qm − 1)/(q − 1) can always be constructed
as a constacyclic code, but cannot be constructed as a cyclic code when
gcd(q − 1,m) �= 1.

The original binary Reed-Muller codes were introduced by Reed and Muller
in 1954 [26,29]. They are called geometric codes, as all the minimum weight
codewords of the r-th order Reed-Muller code R2(r,m) are the incidence vectors
of all the (m − r)-flats in the affine geometry AG(m,GF(2)) and they generate
R2(r,m) [2]. The automorphism group of R2(r,m) is known to be the general
affine group GAm(GF(2)), which is triply transitive on GF(2)m. Hence, the
binary Reed-Muller codes support 3-designs. It was later discovered that the
binary Reed-Muller codes become cyclic codes if they are punctured in a special
coordinate position. These properties show that the original Reed-Muller codes
are very interesting in theory. Binary Reed-Muller codes are also interesting
in practice as they have efficient decoding algorithms [29]. The binary Reed-
Muller codes and their punctured codes were later generalised to codes over
GF(q) for general q. In 2018, the binary Reed-Muller codes were generalised
into another type of linear codes [10], which were called Dilix codes for the
purpose of distinguishing the two types of generalisations [11, Chapter 6]. The
Dilix codes have also interesting properties and are extended cyclic codes by
definition. In other words, if the Dilix codes are punctured in the last coordinate,
the punctured Dilix codes are cyclic. Motivated by the punctured generalized
Reed-Muller codes and punctured Dilix codes, the objective of this extended
abstract is to construct and analyse two classes of constacyclic codes.

2 Preliminaries

Throughout this extended abstract, we fix the following notation, unless it is
stated otherwise:

– q is a prime power.
– m ≥ 2 is an integer.
– r is a positive divisor of q − 1.
– N = qm − 1.

For a linear code C, we use dim(C) and d(C) to denote its dimension and
minimum Hamming distance, respectively. For a linear code C ⊂ GF(q)n, let
Ai denote the number of codewords with Hamming weight i in C. The weight
enumerator of C is defined as 1+A1z + · · ·+Anzn. The sequence (1, A1, . . . , An)
is called the weight distribution of C. If the number of nonzero Ai in the sequence
(A1, A2, . . . , An) equals t, then C is called a t-weight code.
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2.1 The Hamming Weight and q-weight of Nonnegative Integers

Let N = qm−1. For each i ∈ ZN , let the q-adic expansion of i be i =
∑m−1

j=0 ijq
j ,

where 0 ≤ ij ≤ q − 1. The Hamming weight of i, denoted by wt(i), is defined
to be the Hamming weight of the vector (i0, i1, . . . , im−1). The q-weight of i,
denoted by wtq(i), is defined to be

∑m−1
j=0 ij .

2.2 Cyclotomic Cosets

Let q be a prime power, n be a positive integer with gcd(q, n) = 1, r be a positive
divisor of q − 1, and let λ be an element of GF(q) with order r. To deal with
λ-constacyclic codes of length n over GF(q), we have to study the factorization
of xn − λ over GF(q). To this end, we need to introduce q-cyclotomic cosets
modulo rn.

Let Zrn = {0, 1, 2, · · · , rn − 1} be the ring of integers modulo rn. For any
i ∈ Zrn, the q-cyclotomic coset of i modulo rn is defined by

C
(q,rn)
i = {i, iq, iq2, · · · , iq�i−1} mod rn ⊆ Zrn,

where �i is the smallest positive integer such that i ≡ iq�i (mod rn), and is the
size of the q-cyclotomic coset C

(q,rn)
i . The smallest integer in C

(q,rn)
i is called

the coset leader of C
(q,rn)
i . Let Γ(q,rn) be the set of all the coset leaders. We have

then C
(q,rn)
i ∩ C

(q,rn)
j = ∅ for any two distinct elements i and j in Γ(q,rn), and

⋃

i∈Γ(q,rn)

C
(q,rn)
i = Zrn.

Let m = ordrn(q). It is easily seen that there is a primitive element α of
GF(qm) such that β = α(qm−1)/rn and βn = λ. Then β is a primitive rn-th
root of unity in GF(qm). The minimal polynomial Mβi(x) of βi over GF(q) is
the monic polynomial of the smallest degree over GF(q) with βi as a zero. We
have Mβi(x) =

∏
j∈C

(q,rn)
i

(x − βj) ∈ GF(q)[x], which is irreducible over GF(q).
It then follows that xrn − 1 = xrn − λr =

∏
i∈Γ(q,rn)

Mβi(x). Define

Γ
(1)
(q,rn,r) = {i : i ∈ Γ(q,rn), i ≡ 1 (mod r)}.

Then xn − λ =
∏

i∈Γ
(1)
(q,rn,r)

Mβi(x).

2.3 Automorphism Groups and Equivalence of Linear Codes

Two linear codes C1 and C2 are said to be permutation-equivalent if there is a
permutation of coordinates which sends C1 to C2. This permutation could be
described by employing a permutation matrix, which is a square matrix with
exactly one 1 in each row and column and 0s elsewhere. The set of coordinate
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permutations that map a code C to itself forms a group, which is referred to as
the permutation automorphism group of C and denoted by PAut(C).

A monomial matrix over GF(q) is a square matrix having exactly one nonzero
element of GF(q) in each row and column. A monomial matrix M can be written
either in the form DP or the form PD1, where D and D1 are diagonal matrices
and P is a permutation matrix.

Let C1 and C2 be two linear codes of the same length over GF(q). Then C1

and C2 are said to be monomially-equivalent if there is a monomial matrix over
GF(q) such that C2 = C1M . Monomial equivalence and permutation equivalence
are precisely the same for binary codes. If C1 and C2 are monomially-equivalent,
then they have the same weight distribution. The set of monomial matrices
that map C to itself forms the group MAut(C), which is called the monomial
automorphism group of C. By definition, we have PAut(C) ⊆ MAut(C). Two
linear codes C1 and C2 of the same length over GF(q) are said to be scalar-
equivalent if there is an invertible diagonal matrix D over GF(q) such that
C2 = C1D.

Two codes C1 and C2 are said to be equivalent if there is a monomial matrix
M and an automorphism γ of GF(q) such that C1 = C2Mγ. All three are the
same if the codes are binary; monomial equivalence and equivalence are the same
if the field considered has a prime number of elements.

The automorphism group of C, denoted by Aut(C), is the set of maps of the
form Mγ, where M is a monomial matrix and γ is a field automorphism, that
map C to itself. In the binary case, PAut(C), MAut(C) and Aut(C) are the same.
If q is a prime, MAut(C) and Aut(C) are identical. In general, we have

PAut(C) ⊆ MAut(C) ⊆ Aut(C).

In this extended abstract, we consider the monomial equivalence of linear codes.
Two monomially-equivalent codes have the same parameters and weight distri-
bution. If a linear code C is monomially-equivalent to a constacyclic code C1,
we prefer C1 to C as constacyclic codes have a better algebraic structure than
general linear codes.

2.4 The Projective Reed-Muller Codes

Let q be a power of a prime p and let m ≥ 2. A point of the projective geometry
PG(m−1,GF(q)) is given in homogeneous coordinates by (x1, x2, . . . , xm) where
all xi are in GF(q) and are not all zero. Each point of PG(m−1,GF(q)) has q−1
coordinate representations, as (ax1, x2, ..., axm) and (x1, x2, ..., xm) generate the
same 1-dimensional subspace of GF(q)m for any nonzero a ∈ GF(q).

Let GF(q)[x1, x2, . . . , xm] be the set of polynomials in m indeterminates over
GF(q), which is a linear space over GF(q). Let A(q,m, h) be the subspace of
GF(q)[x1, x2, . . . , xm] generated by all the homogeneous polynomials of degree h.
Let {x1,x2, · · · ,xn} be a set of projective points in PG(m−1,GF(q)), where n =
(qm −1)/(q−1). Then, the h-th order projective Reed-Muller code PRM(q,m, h)
of length n is defined by

PRM(q,m, h) =
{(

f(x1), f(x2), . . . , f(xn)
)

: f ∈ A(q,m, h)
}

.
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The code PRM(q,m, h) depends on the choice of the set {x1,x2, · · · ,xn} of
coordinate representatives of the point set in PG(m − 1,GF(q)), but is unique
up to monomial equivalence (in fact, up to scalar equivalence). The parameters
of PRM(q,m, h) are known and documented in the following theorem [3,19,34].

Theorem 1. Let m ≥ 2 and 1 ≤ h ≤ (m − 1)(q − 1). Then the linear code
PRM(q,m, h) has length n = (qm − 1)/(q − 1) and minimum distance (q −
v)qm−2−u, where h − 1 = u(q − 1) + v and 0 ≤ v < q − 1. Furthermore,

dim(PRM(q,m, h)) =
∑

t≡h (mod q−1)
0<t≤h

⎛

⎝
m∑

j=0

(−1)j

(
m

j

)(
t − jq + m − 1

t − jq

)⎞

⎠ .

By Theorem 1 and definition, PRM(q,m, 1) is monomially-equivalent to the
Simplex code. The weight distribution of PRM(q,m, 2) was settled in [22]. It
was pointed out in [4] that the code PRM(q,m, h) is not cyclic in general, but
could be cyclic or quasi-cyclic under special conditions. Later in this extended
abstract, we will compare some newly constructed constacyclic codes with the
projective Reed-Muller codes. This explains why we introduced the projective
Reed-Muller codes here.

2.5 Projective Generalized Reed-Muller Codes

For an integer h ≥ 0, let PP(q,m, h) be the linear subspace of GF(q)[x1, x2, . . . ,
xm], which is spanned by all monomials xi1

1 xi2
2 · · · xim

m satisfying the following
two conditions:

1.
∑m

j=1 ij ≡ 0 (mod q − 1),
2.

∑m
j=1 ij ≤ h(q − 1).

Each a ∈ GF(q) is viewed as the constant function fa(x1, x2, . . . , xm) ≡ a.
Let {x1,x2, . . . ,xn} be the set of projective points in PG(m − 1,GF(q)),

where n = qm−1
q−1 . Then, the h-th order projective generalized Reed-Muller code

PGRM(q,m, h) of length n is defined by

PGRM(q,m, h) =
{(

f(x1), f(x2), . . . , f(xn)
)

: f ∈ PP(q,m, h)
}

.

Theorem 2. Let 0 ≤ h ≤ m−1. Then, the minimum weight of PGRM(q,m, h)
is qm−h−1

q−1 and

dim(PGRM(q,m, h)) =
∣∣∣∣

{
0 ≤ j ≤ qm − 1

q − 1
: wtq(j(q − 1)) ≤ h(q − 1)

}∣∣∣∣ . (1)

Note that the minimum distance of PGRM(q,m, h) is known to be qm−h−1
q−1 .

But the expression in (1) is not specific, and there is no known specific formula for
dim(PGRM(q,m, h)). Later, we will compare the codes PGRM(q,m, h) with the
constacyclic codes presented in this extended abstract. To this end, we present
the following example.
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Example 1. The parameters of the codes PGRM(3, 4, h) for 0 ≤ h ≤ 3 are given
below.

[40, 1, 40], [40, 11, 13], [40, 30, 4], [40, 40, 1].

2.6 The Punctured Dilix Codes

In this subsection, we outline a type of cyclic codes, called punctured Dilix codes
[10]. Let m be a positive integer and let N = qm − 1, where q is a prime power.
Let β be a primitive element of GF(qm). For any 1 ≤ h ≤ m, we define a
polynomial

ω(q,m,h)(x) =
∏

1≤i≤N−1
1≤wt(i)≤h

(x − βi).

Since wt(i) is a constant function on each q-cyclotomic coset modulo N ,
ω(q,m,h)(x) is a polynomial over GF(q). By definition, ω(q,m,h)(x) is a divisor
of xN − 1. Let Ω(q,m, h) denote the cyclic code over GF(q) with length N and
generator polynomial ω(m,q,h)(x).

Theorem 3. [10] Let m ≥ 2 and 1 ≤ h ≤ m−1. Then Ω(q,m, h) has parameters
[N, k, d ≥ (qh+1 − 1)/(q − 1)], where

k = qm −
h∑

i=0

(
m

i

)
(q − 1)i.

Later, we will use the codes Ω(q,m, h) to construct some constacyclic codes.
This explains why we introduced the punctured Dilix codes Ω(q,m, h) here.

3 A General Construction of Constacyclic Codes
of Length qm −1

r
with Cyclic Codes of Length qm − 1

In this section, we present a general construction of constacyclic codes of length
qm−1

r with cyclic codes of length qm −1 over GF(q), where r is a positive divisor
of q − 1. Throughout this section, let n = qm−1

r , where m is an integer with
m ≥ 2. Define N = rn = qm − 1. Let β be a primitive element of GF(qm) and
λ = βn. Then λ is an element of GF(q)∗ with order r.

Let C be a cyclic code of length N over GF(q) with generator polynomial

g(x) =
∏

i∈D(C)
(x − βi),

where D(C) is the union of some q-cyclotomic cosets modulo N and is called the
defining set of C with respect to the primitive element β of GF(qm). Put

D(C) = {i ∈ D(C) : i ≡ 1 (mod r)}.
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If D(C) = ∅, then define g(x) = 1. If D(C) �= ∅, then define

g(x) =
∏

i∈D(C)
(x − βi).

Then the following hold:

1. g(x) is a polynomial over GF(q).
2. g(x) = gcd(g(x), xn − λ).

Let C denote the λ-constacyclic code of length n over GF(q) with generator
polynomial g(x). By definition, C is constructed from the given cyclic code C.

By definition,
dim(C) = N − deg(g) = N − |D(C)|

and
dim(C) = n − deg(g) = n − |D(C)|.

Hence, it may not be easy to determine dim(C) even if dim(C) is known. How-
ever, this may be possible in some special cases. By definition, there is no clear
connection between d(C) and d(C) in general.

Later in this extended abstract, we will use this general construction to obtain
two classes of λ-constacyclic codes of length (qm −1)/(q −1) over GF(q). Specif-
ically, we will consider only the special case r = q − 1 in this extended abstract.

Example 2. Let q > 2 be a prime power and let m ≥ 2 and r = q − 1. Let β be
a primitive element of GF(qm) and λ = β(qm−1)/(q−1). Let C denote the cyclic
code of length N = qm − 1 with generator polynomial g(x) = Mβ(x)Mβq+1(x).
It is easily seen that D(C) = C

(q,N)
1 and g(x) = Mβ(x). Then the λ-constacyclic

code C is the Hamming code and C⊥ is the Simplex code.

4 The First Class of Constacyclic Codes

We follow the previous notation. Throughout this section, let n = qm−1
q−1 , where

m is an integer with m ≥ 2. Define N = rn = qm − 1, where r = q − 1. Then it
is easily seen that ordn(q) = ordN (q) = m. Let Γ(q,N) be the set of q-cyclotomic
coset leaders modulo N and let

Γ
(1)
(q,N,q−1) = {i : i ∈ Γ(q,N), i ≡ 1 (mod q − 1)}.

Let β be a primitive element of GF(qm) and let λ = β(qm−1)/(q−1). Then λ is a
primitive element of GF(q). Let � be a positive integer with 1 ≤ � ≤ m. Define

g′
(q,m,�)(x) =

∏

i∈Γ
(1)
(q,N,q−1)

1≤wt(i)≤�

Mβi(x).
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Let

D′
(q,m,�) =

⋃

i∈Γ
(1)
(q,N,q−1)

1≤wt(i)≤�

C
(q,N)
i .

Then {βi : i ∈ D′
(q,m,�)} is the set of all zeros of g′

(q,m,�)(x). It is easily verified
that D′

(q,m,�) is invariant under the permutation qy mod N of ZN . Consequently,
g′
(q,m,�)(x) is over GF(q) and is a divisor of xn − λ. Let C′(q,m, �) denote the λ-

constacyclic code of length n over GF(q) with generator polynomial g′
(q,m,�)(x).

By definition, g′
(q,m,m)(x) = xn −λ and the code C(q,m,m) is the zero code and

C′(q,m,m)⊥ is the [n, n, 1] code GF(q)n over GF(q). Hence, we will consider the
code C′(q,m, �) only for 1 ≤ � ≤ m − 1, and call D′

(q,m,�) the defining set of
C′(q,m, �) with respect to the primitive element β of GF(qm).

Theorem 4. Let 1 ≤ � ≤ m − 1. Then

dim(C′(q,m, �)) =
qm − ∑�

i=0

(
m
i

)
(q − 1)i

q − 1

and

d(C′(q,m, �)) ≥
⌊

q�+1 − 1 − 2(q − 1)
(q − 1)2

⌋
+ 2. (2)

Theorem 5. Let 1 ≤ � ≤ m − 1 and q ≥ 3. Then

dim(C′(q,m, �)⊥) =
�∑

i=1

(
m

i

)
(q − 1)i−1

and

d(C′(q,m, �)⊥) ≥ qm−�. (3)

Corollary 1. Let m ≥ 2. Then the constacyclic code C′(q,m, 1) has parameters

[(qm − 1)/(q − 1), (qm − 1)/(q − 1) − m, 3]

and is monomially-equivalent to the Hamming code. In addition, C′(q,m, 1)⊥

has parameters [(qm − 1)/(q − 1),m, qm−1] and is monomially-equivalent to the
Simplex code.

Let Ω(q,m, �) denote the punctured Dilix code constructed in [10] (see also
Sect. 2.6). Theorem 4 tells us that

dim(Ω(q,m, �)) = (q − 1) dim(C′(q,m, �)).

Experimental data indicates that the lower bound in (2) is good in general. But
the following problem is worth of investigation.
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Open Problem 6. Determine the minimum distance of C′(q,m, �) or improve
the lower in (2) for 2 ≤ � ≤ m − 1.

Experimental data shows that the lower bound in (3) is quite away from the
true minimum distance.

Open Problem 7. Determine the minimum distance of C′(q,m, �)⊥ or improve
the lower bound in (3) for 2 ≤ � ≤ m − 1.

Example 3. Let (q,m, �) = (3, 4, 1). Let β be the primitive element of GF(34)
with β4 + 2β3 + 2 = 0. Then the code C′(q,m, �) has parameters [40, 36, 3] and
C′(q,m, �)⊥ has parameters [40, 4, 27]. The former is a perfect code and the latter
meets the Griesmer bound.

Example 4. Let (q,m, �) = (3, 4, 2). Let β be the primitive element of GF(34)
with β4 + 2β3 + 2 = 0. Then the code C′(q,m, �) has parameters [40, 24, 8] and
C′(q,m, �)⊥ has parameters [40, 16, 12]. The best ternary code known of length
40 and dimension 24 has minimum distance 9 [16].

Example 5. Let (q,m, �) = (3, 4, 3). Let β be the primitive element of GF(34)
with β4 + 2β3 + 2 = 0. Then the code C′(q,m, �) has parameters [40, 8, 21] and
has the best parameters known [16], and C′(q,m, �)⊥ has parameters [40, 32, 4].

The forgoing examples demonstrate that the code C′(q,m, �) and its dual
C′(q,m, �)⊥ may be optimal or have the best parameters known some times.
Below we explain some connection and difference among the code C′(q,m, �),
the projective Reed-Muller codes and the projective generalised Reed-Muller
codes.

By Corollary 1, C′(q,m, 1)⊥ is monomially-equivalent to PRM(q,m, 1), as
both codes are monomially-equivalent to the Simplex code. This is one connec-
tion between the codes C′(q,m, �) and the projective Reed-Muller codes. Consider
now all the projective codes PRM(3, 4, �) for all � with 1 ≤ � ≤ 6. It follows from
Theorem 1 that

d(PRM(3, 4, 1)) = 27,
d(PRM(3, 4, 2)) = 18,
d(PRM(3, 4, 3)) = 9,
d(PRM(3, 4, 4)) = 6,
d(PRM(3, 4, 5)) = 3,
d(PRM(3, 4, 6)) = 2.

By Example 4, d(C′(3, 4, 2)) = 8 and d(C′(3, 4, 2)⊥) = 12. This means that both
C′(3, 4, 2) and C(3, 4, 2)⊥ cannot be monomially-equivalent to a code PRM(3, 4, �)
for all � with 1 ≤ � ≤ 6. Hence, the two families of codes C′(q,m, �) and
PRM(q,m, �) are different in general. Notice that C′(2,m, �) and the punctured
Dilix code Ω(2,m, �) are identical. But C′(q,m, �) and the punctured Dilix code
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Ω(q,m, �) are not monomially-equivalent when q > 2, as they have different
lengths.

Compared with parameters of the codes PGRM(3, 4, �) in Example 1,
both C′(3, 4, 2) and C′(3, 4, 2)⊥ cannot be monomially-equivalent to a code
PGRM(3, 4, �) for all � with 0 ≤ � ≤ 3. Hence, the class of codes C′(q,m, �)
and the class of codes PGRM(q,m, �) are different.

5 The Second Class of Constacyclic Codes

We follow the previous notation. Throughout this section, let n = qm−1
q−1 , where

m is an integer with m ≥ 2. Define N = rn = qm − 1, where r = q − 1. Then it
is easily seen that ordn(q) = ordN (q) = m. Let Γ(q,N) be the set of q-cyclotomic
coset leaders modulo N and let

Γ
(1)
(q,N,q−1) = {i : i ∈ Γ(q,N), i ≡ 1 (mod q − 1)}.

5.1 Definition and Basic Properties of the Constacyclic Codes

Let β be a primitive element of GF(qm) and let λ = β(qm−1)/(q−1). Then λ is a
primitive element of GF(q). Let � be a positive integer with 0 ≤ � < (q−1)m−1.
Define

g(q,m,�)(x) =
∏

i∈Γ
(1)
(q,N,q−1)

wtq(i)<(q−1)m−�

Mβi(x).

Let

D(q,m,�) =
⋃

i∈Γ
(1)
(q,N,q−1)

wtq(i)<(q−1)m−�

C
(q,N)
i .

Then {βi : i ∈ D(q,m,�)} is the set of all zeros of g(q,m,�)(x). It is easily verified
that D(q,m,�) is invariant under the permutation qy mod N of ZN . Consequently,
g(q,m,�)(x) is over GF(q) and is a divisor of xn − λ. Let C(q,m, �) denote the λ-
constacyclic code of length n over GF(q) with generator polynomial g(q,m,�)(x).
We call D(q,m,�) the defining set of C(q,m, �) with respect to the primitive ele-
ment β of GF(qm).

Lemma 1. Let m ≥ 2 and q ≥ 3. Then C(q,m, �) = {0} for all � with 1 ≤ � ≤
q − 3. Furthermore, C(q,m, (q − 1)u + q − 2) = C(q,m, (q − 1)(u + 1) + v) for all
0 ≤ u ≤ m − 2 and 0 ≤ v ≤ q − 3.

This lemma shows that this class of constacyclic codes C(q,m, �) contain only
the following distinct nonzero codes:

C(q,m, (q − 1)u + q − 2), 0 ≤ u ≤ m − 2.



138 C. Ding et al.

Theorem 8. Let m ≥ 2, q ≥ 3 and 0 ≤ u ≤ m−2. Then C(q,m, (q−1)u+q−2)
is monomially-equivalent to PRM(q,m, (q − 1)u + q − 2). Consequently,

dim(C(q, m, (q − 1)u + q − 2)) =
∑

t≡q−2 (mod q−1)
0<t≤(q−1)u+q−2

(
m∑

j=0

(−1)j
(

m

j

)(
t − jq + m − 1

t − jq

))
,

and
d(C(q,m, (q − 1)u + q − 2)) = 3qm−2−u.

The main contribution of this section is Theorem 8, which shows that the
projective Reed-Muller code PRM(q,m, �) has a constacyclic code construction
when � = (q − 1)u + q − 2 for any u with 0 ≤ u ≤ m − 2 up to monomial
equivalence. However, the following question is still open.

Open Problem 9. Is PRM(q,m, �) monomially-equivalent to a constacyclic
code when � �≡ q − 2 (mod q − 1) and q − 2 ≤ � ≤ (m − 1)(q − 1)?

5.2 Some Special Cases of the Code C(q, m, �)

In this subsection, we study the code C(q,m, �) in some special cases. The code
is very interesting in some special cases.

Corollary 2. Let q ≥ 3 and m ≥ 2. Then C(q,m, (q − 1)(m − 2) + q − 2) has
parameters [

qm − 1
q − 1

,
qm − 1
q − 1

− m, 3
]

and is monomially-equivalent to the Hamming code. Hence, C(q,m, (q − 1)(m −
2) + q − 2)⊥ has parameters

[
qm − 1
q − 1

,m, qm−1

]

and is monomially-equivalent to the Simplex code.

Corollary 3. Let m ≥ 2. Then C(4,m, 2) has parameters
[
4m − 1

3
,

m(m + 1)
2

, 3 × 4m−2

]

and C(4,m, 2)⊥ has parameters
[
4m − 1

3
,

4m − 1
3

− m(m + 1)
2

, 4
]

.

The following four examples show that C(4,m, 2) is a (m + 1)-weight code
for even m and m-weight code for odd m.
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Example 6. Let (q,m, �) = (4, 2, 2). Let β be the primitive element of GF(42)
with β4+β+1 = 0. Then C(4, 2, 2) has parameters [5, 3, 3] and weight enumerator
1 + 30z3 + 15z4 + 18z5. Furthermore, C(4, 2, 2)⊥ has parameters [5, 2, 4]. Both
codes are MDS and optimal.

Example 7. Let (q,m, �) = (4, 3, 2). Let β be the primitive element of GF(43)
with β6 + β4 + β3 + β + 1 = 0. Then C(4, 3, 2) has parameters [21, 6, 12] and
weight enumerator

1 + 630z12 + 3087z16 + 378z20.

Notice that the code C(4, 3, 2) is distance-optimal [16]. Furthermore, C(4, 3, 2)⊥

has parameters [21, 15, 4] and is almost-distance optimal [16].

Example 8. Let (q,m, �) = (4, 3, 5). Let β be the primitive element of GF(43)
with β6 +β4 +β3 +β +1 = 0. Then the code C(q,m, �) has parameters [21, 18, 3]
and is distance-optimal [16], and C(q,m, �)⊥ has parameters [21, 3, 16] and is
distance-optimal [16].

Example 9. Let (q,m, �) = (4, 3, 4). Let β be the primitive element of GF(43)
with β6 +β4 +β3 +β +1 = 0. Then the code C(q,m, �) has parameters [21, 6, 12]
and is distance-optimal [16], and C(q,m, �)⊥ has parameters [21, 15, 4].

These examples above show that the code C(q,m, �) could be optimal in some
cases. Thus, the code C(q,m, �) is interesting in terms of its error-correcting
capability.

5.3 The Difference Between the Codes C(q, m, �) and the Codes
PGRM(q, m, h)

According to Theorem 2, C(3, 4, 5) has minimum distance 3. By Example 1, none
of the codes PGRM(3, 4, h) for 0 ≤ h ≤ 3 has minimum distance 3. Consequently,
the class of codes C(q,m, �) and the class of codes PGRM(q,m, h) are different.

6 Summary and Concluding Remarks

The main contributions of this extended abstract are the constructions and anal-
yses of the two classes of constacyclic codes C′(q,m, �) and C(q,m, �). The codes
are interesting in theory as they contain optimal codes and codes with best-
known parameters and they are constacyclic. In addition, the codes C′(q,m, �)
are new, and the codes C(q,m, �) give a costacyclic-code construction of some
projective Reed-Muller codes. It would be very interesting to settle the open
problems presented in this extended abstract and determine the automorphism
groups of the first class of constacyclic codes C′(q,m, �).

Acknowledgements. The first author thanks Sihem Mesnager and Zhengchun Zhou
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