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Abstract. Linear complexity is a very important merit factor for measuring the
unpredictability of pseudo-random sequences for applications. The higher the lin-
ear complexity, the better the unpredictability of a sequence. In this paper, we
continue the investigation of generalized cyclotomic sequences constructed by
new generalized cyclotomy presented by Zeng et al. In detail, we consider the
new generalized cyclotomic sequence with period pnqm where p,q are odd dis-
tinct primes and n,m are natural numbers. It is shown that these sequences have
high linear complexity. Finally, we also give some examples to illustrate the cor-
rectness of our results.
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1 Introduction

Linear complexity is a very important merit factor for measuring the unpredictability of
pseudo-random sequences. The linear complexity of a sequence may be defined as the
length of the shortest linear feedback shift register which generates the sequence [1].
According to Berlekamp- Massey algorithm, if the linear complexity of the sequence is
l, then 2l consecutive terms of the sequence can be used to restore the whole sequence.
Hence, a “high” linear complexity should be no less than one-half of the length (or
minimum period) of the sequence [2]. For cryptographic applications, sequences with
high linear complexity are required.

An important method of designing sequences with high linear complexity uses clas-
sical cyclotomic classes and generalized cyclotomic classes to construct sequences.
Cyclotomy is related to difference sets, sequences, coding theory, and cryptography
[3]. Classical cyclotomy was first considered in detail by Gauss. Later, Whiteman pre-
sented the generalized cyclotomy of order d with respect to the product of two distinct

V. Edemskiy was supported by Russian Science Foundation according to the research project
No. 22-21-00516, https://rscf.ru/en/project/22-21-00516/. C. Wu was partially supported by the
Projects of International Cooperation and Exchange NSFC-RFBR No. 61911530130, by the Nat-
ural Science Foundation of Fujian Province No. 2020J01905.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Mesnager and Z. Zhou (Eds.): WAIFI 2022, LNCS 13638, pp. 320–333, 2023.
https://doi.org/10.1007/978-3-031-22944-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22944-2_21&domain=pdf
http://orcid.org/0000-0003-1368-3827
http://orcid.org/0000-0001-8002-7630
https://rscf.ru/en/project/22-21-00516/.
https://doi.org/10.1007/978-3-031-22944-2_21


Linear Complexity of Generalized Cyclotomic Sequences with Period pnqm 321

odd primes, which is not consistent with classical cyclotomy [4]. It was extended to odd
integers in [5]. Further, a new generalized cyclotomy that includes classical cyclotomy
as a special case was introduced by Ding and Helleseth [3]. Fan and Ge proposed a
unified approach that determines both Whiteman’s and Ding-Helleseth’s generalized
cyclotomy [6]. In the past decades, the linear complexity of binary and nonbinary
Whiteman’s and Ding-Helleseth’s generalized cyclotomic sequences has been exten-
sively studied [7–12] (see also references therein).

Zeng et al. in [13] presented a new approach and suggested a new generalized
cyclotomy. Further, this new generalized cyclotomy was discussed in [14]. Based on
the generalized cyclotomic classes from [13], Xiao et al.[15] presented a new fam-
ily of cyclotomic binary sequences of period pn and determined the linear complexity
of the sequences for the case when n = 2 and f = 2r. Later, these results were gen-
eralized in [16,17]. The use of new generalized cyclotomic classes for constructing
sequences with high linear complexity and even periods 2pn,2mpn was considered in
[18,19]. In this paper, we will study the linear complexity of new generalized cyclo-
tomic sequences with period pnqm. These sequences are defined using new generalized
cyclotomic classes from [13]. Thus, we continue the study of new generalized cyclo-
tomic sequences started in [15–17].

The rest of the paper is organized as follows. The definition of sequences and the
main result are introduced in Sect. 2. In Sect. 3 we discuss some subsidiary statements
about the sequence polynomial and in Sect. 4 we prove our main result. We conclude
the paper in Sect. 5.

2 Definitions of Sequences

First of all, we recall the definition of new generalized cyclotomic classes presented
in [13] for N = pnqm, where p and q are odd distinct primes, n > 0,m > 0. Suppose e
divides p−1 and q−1; then p−1= e f and q−1= eh. It is well known that there exists
primitive roots η and ξ modulo p2 and q2 respectively. In this case, η is the primitive
root modulo pk, k = 1,2, . . . ,n and ξ is the primitive root modulo ql , l = 1,2, . . . ,m
[20].

Let v= pkql ,v �= 1, where k = 0,1, . . . ,n; l = 0,1, . . . ,m.
According to the Chinese Remainder Theorem, there exists gv such that

gv ≡ η f pk−1
(mod pk) when k ≥ 1 and gv ≡ ξ hql−1

(mod ql) when l ≥ 1. (1)

Also there exist ζp, ζq such that

ζp ≡
{

η (mod pn),
1 (mod qm),

and ζq ≡
{

ξ (mod qm),
1 (mod pn).

(2)

Throughout this paper, we let Zv be the ring of integers modulo v for a positive integer
v, and Z

∗
v be the multiplicative group of Zv. According to [13] we know that D(v) =

{gsv | s= 0, . . . ,e−1} is the subgroup of Z∗
v .
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Define

Ψv =

⎧⎪⎨
⎪⎩
Z f pk−1 ×Z(q−1)ql−1 , if k ≥ 1, l ≥ 1,

Z f pk−1 ×{0}, if l = 0,

{0}×Zhql−1 , if k = 0.

Let I = (i1, i2) ∈ Ψv and D(v)
I = ζ i1

p ζ i2
q D(v).

By [13] we have the following partitions

Z
∗
v \{0} =

⋃
I∈Ψv

D(v)
I and ZN \{0} =

⋃
v|N,v>1

⋃
I∈Ψv

N
v
D(v)
I .

It is necessary to note that for v = pk (or v = ql) we obtain a partition of Z∗
pk

as in

[15] and in this case η tD(pk) is equal to D(pk)
t = {η t+ f pk−1i mod pk | i= 0,1, . . . ,e−1},

t = 0,1, . . . , f pk−1 −1. The properties of D(pk)
t were studied in [15,16].

Let f and h be even numbers and b,c be integers such that 0 ≤ b< f pn−1, 0 ≤ c<
hqm−1. Then define

Ψ (1)
v =

{
{(i1+b, i2) ∈ Ψv | 0 ≤ i1 < pk−1 f/2−1}, if k ≥ 1,

{(0, i2+ c) ∈ Ψv | 0 ≤ i2 < ql−1h/2−1}, if k = 0.

Let
C(v)
1 =

⋃
I∈Ψ (1)

v

D(v)
I and C(v)

0 =
⋃

I∈Ψv\Ψ (1)
v

D(v)
I .

Then we see that

|C(v)
j | =

⎧⎪⎨
⎪⎩
pk−1(p−1)ql−1(q−1)/2, if k ≥ 1, l ≥ 1,

pk−1(p−1)/2, if k ≥ 1, l = 0,

ql−1(q−1)/2, if k = 0, l ≥ 1.

(3)

for v= pkql , j = 0,1.
Define

Cj =
⋃

v|N,v>1

N
v
C(v)

j , j = 0,1

or, in more detail

Cj =
n⋃

k=1

m⋃
l=1

pn−kqm−lC(pkql)
j ∪

n⋃
k=1

pn−kqmC(pk)
j ∪

m⋃
l=1

pnqm−lC(ql)
j . (4)

By definition we get ZN \{0} =C0 ∪C1 and C0 ∩C1 = 
.
Then we can define a balanced binary sequence s∞ with period N as follows:

si =

{
1, if i mod N ∈C1 ∪{0},
0, if i mod N ∈C0.

(5)
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A sequence is called balanced if the numbers of 1’s and 0’s in one minimum period
differ by no more than one. Earlier, new generalized cyclotomic classes were used to
construct sequences with period pn. It is necessary to note that for N = p2 this sequence
is the same as in [15].

We conclude this section by recalling the notion of the linear complexity and one
method of studying the linear complexity. For a N-periodic sequence s∞ = {si}i≥0 over
the F2 (the finite field of two elements), we recall that the linear complexity over F2,
denoted by LC(s∞), is the least order L such that {si} satisfies

si+L = cL−1si+L−1+ . . .+ c1si+1+ c0si for i ≥ 0,

where c0 �= 0,c1, . . . ,cL−1 ∈ F2.
It is well known (see, for instance, [21]) that if S(x) = s0 + s1x+ · · ·+ sN−1xN−1

then the linear complexity of s∞ is given by

LC(s∞) = N−deg
(
gcd

(
xN −1,S(x)

))
.

Thus, if α is a primitive root of order N of unity in the extension of the field F2, then
in order to find the linear complexity of a sequence, it is sufficient to study the zeros of
S(x) in the set {α i | i= 0,1, . . . ,N−1}.

In this paper, we will study the linear complexity of s∞ defined by (5). The values
S(α i) we will consider in the following section.

2.1 Main Result

To begin with, we introduce some new notations. Let ordp(2) be the order1 of 2 modulo
p and

lk =

{
k, if qm ∈ D(pk) or qm ∈ η pk−1 f/2D(pk),

0, otherwise

for k = 1,2, . . . ,n. Let k0 = max
1�k�n

lk.

A prime p is called a Wieferich prime if 2p−1 ≡ 1 (mod p2). It is well known that
there are only two Wieferich primes, 1093 and 3511, up to 6× 1017. Bellow, we will
consider only non-Wieferich primes. Our main contribution is the following statement.

Theorem 1. Let 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1 (mod q2), gcd(p,q− 1) = gcd(p−
1,q) = 1 and let s∞ be a sequence defined by (5). Then

(i) LC(s∞) = N− rp ·ordp(2)− pk0rq ·ordq(2)−δ for k0 > 0,
where rp,rq are integers satisfying inequalities 0 ≤ rp ≤ p−1

2ordp(2)
, 0 ≤ rq ≤ q−1

2ordq(2)
and

δ =

{
1, if (pnqm+1)/2 is even,
0, if (pnqm+1)/2 is odd.

1 The order of 2 modulo p is the least positive integer T such that 2T ≡ 1 (mod p).
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(ii) LC(s∞) = N− rN ·ordpq(2)− rp ·ordp(2)− rq ·ordq(2)−δ for k0 = 0,

where rN is an integer satisfying inequality 0 ≤ rN ≤ (p−1)(q−1)
2ordpq(2)

.

According to Theorem 1 the considered sequences have high linear complexity.

Remark 1. We will show that the value rN also depends on n,m and is not defined only
by p,q.

3 Subsidiary Lemmas

In this section we prove a few lemmas and discuss the properties of the generating
polynomial of s∞.

Lemma 1. Let v= pkql , k = 1, . . . ,n; l = 1, . . . ,m. Then

(i) C(v)
1 mod pk =C(pk)

1 ;

(ii) C(v)
1 mod ql = Z

∗
ql
.

Proof. Suppose i ∈ C(v)
1 ; then there exist u, t,s such that i = ζ u+b

p ζ t+c
q gsv and 0 ≤ u <

pk−1 f/2,0 ≤ t < ql−1(q− 1), 0 ≤ s < e. So, by (1), (2) and the definition of C(v)
1 we

get that i mod pk = ηu+bηspk−1 f , i.e., i mod pk ∈ C(pk)
1 . Further, it is obvious that i

(mod ql) ∈ Z
∗
ql
. Moreover, it is clear that if j ∈C(v)

1 , j �= i then j �≡ i (mod pk) or j �≡ i

(mod ql). Since by (3) we have

|C(v)
1 | = pk−1(p−1)

2
·ql−1(q−1) = |C(pk)

1 | · |Z∗
ql |,

it follows that the conclusion of the lemma holds. ��
Let S(X) = ∑N−1

i=0 siXi be the generating polynomial of s∞. Define as in [15,16] the
subsidiary polynomials, i.e.,

T (pk)
b (X) = ∑

i∈C(pk)
1

Xi, k = 1,2, . . . ,n and T (ql)
c (X) = ∑

i∈C(ql )
1

Xi, l = 1,2, . . . ,m.

Define

S(p
n)

b (X) =
n

∑
k=1

T (pk)
b (X pn−k

) and S(q
m)

c (X) =
m

∑
l=1

T (ql)
c (Xqm−l

).

As noted before, the sequence s∞ defined by (5) for N = p2 is the same as in [15].

In this case, S(p
n)

b (X)+ 1 is the polynomial of generalized cyclotomic sequence with
period pn considered in [16]. The properties of this polynomial are studied in [15,16].

In the next lemma, we will recall the properties of this polynomial that are necessary
in what follows.

Let α be a primitive N-th root of unity in the extension of F2. Since gcd(pn,qm) = 1
then there exist integers x,y such that xpn+ yqm = 1. Define β = αyqm and γ = αxpn .
Then α = βγ , also β and γ are primitive pn-th and qm-th roots of unity, respectively.
Denote βk = β pn−k

, k = 1,2 . . . ,n and γl = γqm−l
, l = 1,2 . . . ,m.
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Lemma 2 [16]. For any a ∈ η tC(pk), we see that

(i) S(p
k)

i (β pda
k ) = S(p

k−d)
i+t (βk−d)+(pd −1)/2 mod 2 for 0 ≤ d < k.

(ii) S(p
k)

i (β a
k )+S(p

k)
i+dk/2

(β a
k ) = 1, where dk = pk−1 f/2.

(iii) Let p be a non-Wieferich prime. Then S(p
k)

i (βk) �∈ {0,1} for k > 1.

(iv) Let p be a non-Wieferich prime. Then S(p
k)

i (βk)+S(p
k)

i+ f/2(βk) �= 1 for k > 1.
(v)

|{ j | S(pk)i (βk) = 0 ( or 1), j = 1,2, . . . , pk −1)}|
= |{ j | S(p)i (β j

1 ) = 0 ( or 1), j = 1,2, . . . , p−1}| = rp ·ordp(2),
where rp is an integer satisfying inequality 0 ≤ rp ≤ p−1

2ordp(2)
.

Similarly, S(q
m)

c (X) + 1 is the generating polynomial of sequence defined by (5) for

v= qm. Hence, the properties of S(q
m)

c (X) are the same as those of S(p
n)

b (X) (of course,
we need to use qm instead of pn).

3.1 The Values of Subsidiary Polynomials

In this subsection we will show that the values of subsidiary polynomials define the
values of S(α j). Here and further we always suppose that gcd(p,q− 1) = gcd(p−
1,q) = 1.

Lemma 3. Let v= pkql ,k = 1,2, . . . ,n; l = 1,2, . . . ,m and j ∈ ZN , j �= 0. Then

∑
i∈N

v C
(v)
1

α i j =

{
T (pk)
b (β jpn−kqm−l

), if j ≡ 0 (mod ql−1) and j �≡ 0 (mod ql),
0, otherwise.

Proof. According to the choice of α,β ,γ we obtain that

∑
i∈pn−kqm−lC(v)

1

α i j = ∑
u∈C(v)

1

β u jpn−kqm−l
γu jp

n−kqm−l
.

Since by Lemma 1 C(v)
1 mod pk =C(pk)

1 and C(v)
1 mod ql = Z

∗
ql
, it follows that

∑
i∈pn−kqm−lC(v)

1

α i j = ∑
u∈C(pk)

1

β u jpn−kqm−l · ∑
u∈Z∗

ql

γu jp
n−kqm−l

.

Denote γ pn−kqm−l
by γ̃l . Then γ̃l is a primitive ql-th root of unity since gcd(p−1,q) = 1.

Let Al = ∑u∈Z∗
ql

γ̃u jl . It is clear

A1 (mod 2) =

{
1, if j �≡ 0 (mod q),
0, if j ≡ 0 (mod q).
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Suppose l > 1; then

Al = ∑
u∈Z

ql

γ̃u jl − ∑
u∈qZ

ql−1

γ̃u jl = ∑
u∈Z

ql

γ̃u jl − ∑
u∈Z

ql−1

γ̃u jql .

We consider the following three cases.

(i) Let j �≡ 0 (mod ql−1). Obviously here Al = 0.
(ii) Let j≡ 0 (mod ql−1) and j �≡ 0 (mod ql). In this case Al ≡ 0−ql−1 ≡ 1 (mod 2).
(iii) Suppose j ≡ 0 (mod ql); then Al = ql −ql−1 and Al mod 2= 0.

This completes the proof of this lemma.

��
Lemma 4. Let j = qa j0 and gcd( j0,q) = 1, 0 ≤ a ≤ m. Then

n

∑
k=1

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j =

{
S(p

n)
b (β jqm−a−1

), if a< m,

0, if a= m.

Proof. If a = m then j ≡ 0 (mod ql) for l = 1,2, . . . ,m and by Lemma 3 we observe
that ∑m

l=1 ∑
i∈pn−kqm−lC(pkql )

1

α i j = 0.

Let a < m. In this case j ≡ 0 (mod qa) and j �≡ 0 (mod qa+1). Then again by
Lemma 3 we have

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j = ∑
i∈pn−kqm−a−1C(pkqa+1)

1

α i j = T (pk)
b (β jpn−kqm−a−1

).

Thus, by definitions of T (pk)
b (X) and S(p

n)
b (X) we see that

n

∑
k=1

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j =
n

∑
k=1

T (pk)
b (β jpn−kqm−a−1

) = S(p
n)

b (β jqm−a−1
).

��
Lemma 5. Let j = qa j0 and gcd( j0,q) = 1, 0 ≤ a ≤ m. Then

(i) S(α j) = S(p
n)

b (β jqm−a−1
)+S(p

n)
b (β jqm)+S(q

m)
c (γ jpn)+1 for a< m,

(ii) S(α j) = S(p
n)

b (β jqm)+(qm+1)/2 for a= m.

Proof. By (4) and (5) we see that

S(α j) =
n

∑
k=1

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j+
n

∑
k=1

∑
i∈pn−kqmC(pk)

1

α i j+
m

∑
l=1

∑
i∈pnqm−lC(ql )

1

α i j+1.
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The first sum in the last relation is studied in Lemma 4. Using the definition of sub-
sidiary polynomials and equality α = βγ we get that

n

∑
k=1

∑
i∈pn−kqmC(pk)

1

α i j =
n

∑
k=1

∑
j∈C(pk)

1

β jpn−kqmγ jpn−kqm =
n

∑
k=1

∑
i∈C(pk)

k

β ipn−kqm = S(p
n)

b (β jqm).

and

m

∑
l=1

∑
i∈pnqm−lC(ql )

1

α i j =
m

∑
l=1

∑
j∈C(ql )

1

β jpnqm−l
γ jpnqm−l

=
m

∑
l=1

∑
i∈C(ql )

1

γ ip
nqm−l

= S(q
m)

c (γ jpn).

Then the statement of this lemma follows from Lemma 4. ��

3.2 The Values of Generating Polynomial

Here and further we will always suppose that 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1 (mod q2)
and gcd(p,q−1) = gcd(p−1,q) = 1.

As usual, we denote by F2(βk) a simple extension of F2 obtained by adjoining an
algebraic element βk and by [F2(βk) : F2] the dimension of the vector space F2(βk)
over F2 [2]. Here βk = β pn−k

,k = 1, . . . ,n and γl = γqm−l
, l = 1, . . . ,m, as before. It is

well known that if r1 = [F2(β1) : F2] then r1 divides p−1 and if t1 = [F2(γ1) : F2] then
t1 divides q− 1 [2]. Let K = F2(β1)∩F2(γ1). Then K is a finite field and [K : F2] =
gcd(r1, t1).

Lemma 6. With notations as above, we have F2(βk)∩F2(γl) =K for k = 1, . . . ,n; l =
1, . . . ,m.

Proof. Let F = F2(βk)∩F2(γl). Then [F : F2] divides [F2(βk) : F2] and [F2(γl) : F2].
According to [16] we know that [F2(βk) : F2] = pk−1r1 and [F2(γl) : F2] = ql−1t1
for p,q such that 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1 (mod q2). Hence [F : F2] divides
gcd(pk−1r1,qm−1t1). By the condition gcd(p,q− 1) = gcd(p− 1,q) = 1, then [F : F2]
divides gcd(r1, t1). Thus, we get [F : F2] divides [K : F2]. Since K ⊂ F, this completes
the proof of this lemma.

��
Lemma 7. Let notations be as above and S(q

m)
c (γ j) ∈ K for m > 1. Then j ≡ 0

(mod qm−1).

Proof. By Lemma 2 (i) it is clear that without loss of generality it is enough to consider
the case c = 0. Let u be an integer such that 2 ≡ gu (mod qm). Denote by r degree

[K : F2]. Since S(q
m)

c (γ j) ∈ K, it follows that S(q
m)

0 (γ j) = S(q
m)

0 (γ j)2
r
. Then again by

Lemma 2 (i) we get

S(q
m)

0 (γ j) = S(q
m)

0 (γ j)2
ir
= S(q

m)
0 (γ j2ir) = S(q

m)
iur (γ j) for i= 0,1, . . . (6)
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Let w = gcd(qm−1h,ur), where h = (q− 1)/e as before. There exist integers x,y such
that xqm−1h+yur=w. Then we see from (6) and Lemma 2 (i) that S(q

m)
0 (γ j) = S(q

m)
iw (γ j)

for i = 0,1, . . . . By [16] gcd(u,q) = 1 for 2q−1 �≡ 1 (mod q2) and gcd(q,r) = 1 here.

Hence w = gcd(h,ur) and w divides h. So, we observe that S(q
m)

0 (γ j) = S(q
m)

ih (γ j) for
i= 0,1, . . . .

Further, S(q
m)

t (γ j)+S(q
m)

t+qm−1h/2
(γ j) = 1 for t = 0,1, . . . by Lemma 2 (ii). Thus,

S(q
m)

qm−1h/2
(γ j) = S(q

m)
qm−1h/2+ih

(γ j)

for i= 0,1, . . . . Since

S(q
m)

qm−1h/2+(qm−1+1)h/2·(γ
j) = S(q

m)
qm−1h+h/2

(γ j) = S(q
m)

h/2 (γ j),

it follows that S(q
m)

0 (γ j)+S(q
m)

h/2 (γ j) = 1. According to Lemma 2 (iii), in this case j ≡ 0

(mod qm−1).

��
Let k0 be the same as before, i.e., k0 = 0 or k0 > 0 is the largest integer such that

qm ∈ D(pk0 ) or qm ∈ η pk0−1 f/2D(pk0 ).

Lemma 8. Let j ∈ pn−kqm−1
Z

∗
pkqm−1 ,1 ≤ k ≤ n and S(p

n)
b (β j)+ S(p

n)
b (β jqm) ∈ K for

n> 1. Then j ≡ 0 (mod pn−1) or k ≤ k0.

Proof. Without loss of generality it is enough to consider the case b = 0. Let j =
pn−kqm−1t, where gcd(t, pq) = 1. If k = 1 then j ≡ 0 (mod pn−1). So, this lemma
is right for k = 1.

Let k> 1 and denote β pn−kqm−1t by β̃k. Then β̃k is a primitive pk-th root of unity and

S(p
k)

0 (β̃k)+S(p
k)

0 (β̃ qm

k ) ∈ K by Lemma 2 (i).

Suppose k > k0; then qm ∈ ηzD(pk) for z �= 0 and z �= pk−1 f/2. By Lemma 2 (i) we

get that S(p
k)

0 (β̃k)+S(p
k)

z (β̃k) ∈ K.
We can show in the same way as in Lemma 7 that

S(p
k)

0 (β̃k)+S(p
k)

z (β̃k) = S(p
k)

f/2 (β̃k)+S(p
k)

z+ f/2(β̃k).

Using the definitions of S(p
k)

i (X) and T (pk)
i (X) we obtain that

T (pk)
0 (β̃k)+T (pk)

f/2 (β̃k)+T (pk)
z (β̃k)+T (pk)

z+ f/2(β̃k) ∈ F2(βk−1).

LetD =D(pk)∪·· ·∪η f/2−1D(pk)∪η pk−1 f/2D(pk)∪·· ·∪η pk−1 f/2+ f/2−1D(pk) and C =
ηzD . Then

T (pk)
0 (β̃k)+T (pk)

f/2 (β̃k) = ∑
i∈D

β̃ i
k
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and
T (pk)
z (β̃k)+T (pk)

z+ f/2(β̃k) = ∑
i∈C

β̃ i
k.

It is clear that |D | = |C | = p−1 and D (mod p) = C (mod p) = Z
∗
p.

Denote by xi ∈ D and yi ∈ C , respectively, such that xi mod p = yi mod p = i,
i= 1, . . . , p−1. Then

∑
i∈D

β̃ i
k =

p−1

∑
i=1

β̃ (xi−i)/p
k−1 · β̃ i

k and ∑
i∈C

β̃ i
k =

p−1

∑
i=1

β̃ (yi−i)/p
k−1 · β̃ i

k.

Suppose that for any i we have β̃ (xi−i)/p
k−1 = β̃ (yi−i)/p

k−1 . Then xi ≡ yi (mod pk) for i =
1,2, . . . , p− 1. Hence D = C . Then z = 0 or z = pk−1 f/2. This is impossible because

k > k0. Thus, we have that the polynomial f (X) = ∑p−1
i=0 (β̃

(xi−i)/p
k−1 + β̃ (yi−i)/p

k−1 )Xi has at

least one nonzero coefficient and f (β̃k)∈F2(βk−1). This is impossible since deg f (X)<
p and [F2(βk) : F2(βk−1)] = p for k > 1. So, k ≤ k0. ��

4 The Proof of Main Theorem

In this section we finish the proof of Theorem 1 in the following two Lemmas.

Lemma 9. Let notation be as above and k0 > 0. Let 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1
(mod q2), gcd(p,q−1) = gcd(p−1,q) = 1 and let s∞ be defined by (5). Then

LC(s∞) = N− rp ·ordp(2)− pk0rq ·ordq(2)−δ ,

where

δ =

{
1, if (pnqm+1)/2 is even ,

0, if (pnqm+1)/2 is odd

and 0 ≤ rp ≤ p−1
2ordp(2)

, 0 ≤ rq ≤ q−1
2ordq(2)

.

Proof. As noted before we have

LC(s∞) = N−
∣∣∣{ j | S(α j) = 0, j = 0,1, . . . ,N−1}

∣∣∣.
First of all we note that by definition S(1) = (pnqm+1)/2. Further, according to Lemma
5 we have

S(α j) = S(p
n)

b (β jqm−a−1
)+S(p

n)
b (β jqm)+S(q

m)
c (γ jpn)+1 (7)

for j = qa j0, a< m, gcd( j0,q) = 1 and

S(α j) = S(p
n)

b (β jqm)+(qm+1)/2

for j = qm j0.
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Let S(α j) = 0, 1 ≤ j ≤ N−1. We consider a few cases.

(i) Suppose j ≡ 0 (mod qm); then S(α j) = S(p
n)

b (β jqm) for even (qm + 1)/2 and

S(α j) = S(p
n)

b (β jqm)+1 for odd (qm+1)/2. By Lemma 2 (v) we get

|{ j| S(α j) = 0, j = qm, . . . ,(pn −1)qm}| =
|{ j| S(p)b (β j

1 ) = 0, ( or 1), j = 1,2, . . . , p−1}| = rp ·ordp(2).

(ii) Let j �≡ 0 (mod qm). According to (7) we see that

S(p
n)

b (β jqm−a−1
)+S(p

n)
b (β jqm) = −S(q)c (γ jpn)−1.

Hence S(q
m)

c (γ jpn) ∈ F2(β ). Then by Lemma 6 we get

S(q
m)

c (γ jpn) ∈ K= F2(β1)∩F2(γ1).

In this case, by Lemma 7 we have j ≡ 0 (mod qm−1). Hence j ∈ pn−kqm−1
Z

∗
pkq

for

k : 1≤ k ≤ n and the sum S(p
n)

b (β j)+S(p
n)

b (β jqm) also belongs toK. Further by Lemma
8 we get k ≤ k0 or j ≡ 0 (mod pn−1). If j ≡ 0 (mod pn−1) then k= 1 and since k0 > 0,
it follows that k ≤ k0 in any case.

By choosing k0 we see that qm ∈ D(pk0) or qm ∈ η pk0−1 f/2D(pk0). Hence for any j :
j ≡ 0 (mod pn−k0) we have

S(p
n)

b (β jqm) =

{
S(p

n)
b (β j), if qm ∈ D(pk0),

S(p
n)

b+pk−1 f/2
(β j), if qm ∈ η pk0−1 f/2D(pk0).

In any case, by Lemma 2 (ii) S(p
n)

b (β j) + S(p
n)

b (β jqm) is equal to 0 or 1 for all j ∈
pn−k0qm−1

Zpk0q and j �≡ 0 (mod qm).

Then, according to (7) we obtain S(q
m)

c (γ jpn) = S(q)c (γ j0p
n

1 ) ∈ {0,1} where j =
qm−1 j0, gcd( j0,q) = 1. In this case, by Lemma 2 (v) we have

|{ j| S(p)b (β j0
1 ) = 0, ( or 1), j0 = 1,2, . . . , p−1}| = rp ·ordp(2).

For fixed j0 we have pk0 numbers from Zpk0q with the same residue modulo q. Thus,
we get

|{ j | S(α j) = 0, j = 1,2, . . . ,N, j �≡ 0 (mod qm)}| = pk0rq · ordq(2),

where 0 ≤ rq ≤ q−1
2ordq(2)

.

Finally, we get |{ j | S(α j) = 0, j = 1,2, . . . ,N,}| = rp ·ordp(2)+ pk0rq ·ordq(2).
��

We consider a few examples with different values rp,rq and k0 = 1.
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Example 1. (i) p = 19,q = 7,e = 3, in this case 7 ∈ D(19) and rp = 0,rq ·ord7(2) = 3.
Hence LC(s∞) = N−19 ·3 for n= 1,2;m= 1,2.

(ii) p= 7,q= 43,e= 3, here 43 ∈ D(7), but rp = 1,rq = 0. Hence LC(s∞) = 301−
1 ·3= 298.

(iii) p = 43,q = 7,e = 3, here f = 14, 7 ∈ η7D(43) and rp = 0,rq · ord7(2) = 3.
Hence LC(s∞) = 301−43 ·3= 172. Similarly, for n= 1,2;m= 1,2.

(iv) p = 41,q = 31,e = 5, f = 8, 31 ∈ η4D(41), rp = 0,rq ·ord3 1(2) = 15. Finally,
LC(s∞) = 1271−41 ·15−1= 655.

(v) p = 7,q = 73,e = 3, here f = 2, 73 ∈ ηD(7) and rp = 1,rq · ord73(2) = 7 · 18.
Hence LC(s∞) = 511−7 ·18−3−1= 381.

Lemma 10. Let notation be as above and k0 = 0. Let 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1
(mod q2), gcd(p,q−1) = gcd(p−1,q) = 1 and let s∞ be defined by (5). Then

LC(s∞) = N− rN ·ordpq(2)− rp ·ordp(2)− rq ·ordq(2)−δ ,

where 0 ≤ rN ≤ (p−1)(q−1)
2ordpq(2)

and

δ =

{
1, if (pnqm+1)/2 is even ,

0, if (pnqm+1)/2 is odd .

Proof. Let S(α j) = 0, j �= 0. As in Lemma 9 we obtain that |{ j | S(α j) = 0, j =
qm, . . . ,(pn − 1)qm}| = rp · ordp(2) and if j �≡ 0 (mod qm) then S(q

m)
c (γ jpn) ∈ K and

S(p
n)

b (β j)+S(p
n)

b (β jqm) ∈ K.
In the last case, according to Lemma 7 and 8 we get that j ≡ 0 (mod qm−1) and

j ≡ 0 (mod pn−1). Further, if j ≡ 0 (mod pn) then by Lemma 5 we have S(α j) =
S(q)c (γ jpn) + 1 and in this case we observe that |{ j | S(α j) = 0, j = pn, . . . ,(qm −
1)pn}| = rq ·ordq(2) by Lemma 2 (v).

Suppose j = pn−1qm−1t and gcd(t, pq) = 1. Then by Lemma 7 and Lemma 2 (i)

S(α j) = S(p)b (β tqm−1

1 )+S(p)b (β tq2m−1

1 )+S(q)c (γ t p
2n−1

1 )+1.

It is clear that if S(α j) = 0 then S(α j)2
u
= 0 for u = 0,1, . . . ,ordpq(2). Hence, |{ j :

S(α j) = 0, j ∈ Zpq| = rN ·ordpq(2) for the some rN .

Let w= ζ f/2
p ζ h/2

q . Then w ≡ η f/2 (mod p) and w ≡ ξ h/2 (mod q). So, by Lemma
2 (i) we obtain

S(αw j) = S(p)b+ f/2(β
tqm−1

1 )+S(p)b+ f/2(β
tq2m−1

1 )+S(q)c+h/2(γ
t p2n−1

1 )+1.

Hence, by Lemma 2 (ii) we see that S(αw j) = S(α j)+ 1. Thus, 0 ≤ rN ≤ (p−1)(q−1)
2ordpq(2)

.
This completes the proof of this lemma. ��
The statement of Theorem 1 follows from Lemmas 9 and 10.

The following examples show that in this case the value r depends on N, so we are
using a denotation rN .
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Example 2. (i) Let p = 73,q = 7,e = 3,b = 0,c = 0. Here 7 ∈ η9D(73), rp ·ordp(2) =
18,rq ·ordq(2) = 3 and ord511(2) = 9.

For n= m= 1 we get LC(s∞) = 435= 511−76, in this case rN = 5.
For n= 1,m= 2 we have LC(s∞) = 3577−18−3= 3556, i.e., rN = 0.
(ii) Let p= 41,q= 11,e= 5,n= 2,m= 1,b= 0,c= 0.
Here ordpq(2) = 20. For n= 1,2;m= 1,3 we get LC(s∞) = N−101 (rN = 5), and

LC(s∞) = N−200 (rN = 10) if n= 1,2;m= 2.

5 Conclusions

Pseudorandom sequences are widely used in communication, radar navigation, cryp-
tography and some other scenarios. By using the new generalized cyclotomy presented
by Zeng et al., we constructed a new kind of generalized cyclotomic sequences with
period pnqm where p,q are odd distinct primes and n,m are natural numbers. Thus, we
generalized the results obtained in [15–17].

Our results show that such sequences have high linear complexity and are suit-
able for applications. To illustrate the results, some examples are presented. For further
study, the k-error linear complexity, autocorrelation, 2-adic complexity and some other
cryptographic properties of these sequences may be interesting topics.
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