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Abstract. For integers k P [2, q ´ 2] coprime to q ´ 1, we first bound
the number of zeroes of the family of polynomials xk ´ cx ´ d P Fq[x]
where q “ 2n such that q ´ 1 is a prime or q “ 3n such that (q ´ 1)/2
is a prime. This gives us bounds on cross-correlation of a subfamily of
Golomb Costas arrays.

Next, we show that the zero set of xk ´ cx ´ d over Fq is a planar
almost difference set in F∗

q and hence for some set of pairs (c, d), they
produce optical orthogonal codes with λ “ 1.

More generally, we give an algorithm to produce optical orthogonal
codes (OOCs) from P (x) “ x�1 ` c�2x�2 ` c�2´1x

�2´1 ` · · · ` c1x P Fq[x]
where interestingly �1 " �2. We focus on the case �2 P {2, 3} and provide
examples of (q ´ 1, w, λ)-OOCs with λ P {2, 3}.

Keywords: Golomb costas permutations · Planar cyclic almost
difference sets · Almost difference families · Optical orthogonal codes ·
Radar · Sonar · Optical CDMA

1 Introduction

Costas arrays have applications in sonar and radar systems as they have optimal
autocorrelation properties. Their study centres around two problems: searching
for methods to create Costas arrays and studying cross-correlation of families
of Costas arrays. The study of cross-correlation of Costas arrays boils down to
finding a suitable family with good cross-correlation properties. One such family
is considered by Gómez-Pérez and Winterhof in [8].

Optical orthogonal codes are primarily used in optical CDMA communication
systems. It is important to construct such codes with good parameters and large
size. There are constructions of optimal optical orthogonal codes with parameters
(n,w, λ) in case λ “ 1 in the literature ([2,11]), however either the number of
such codes (even if optimal) is limited or these codes have low weight. In [4],
Ding and Xing considers the next case where λ “ 2.

Freedman and Levanon proved in [7] that any two distinct Costas arrays
of the same size > 3 have cross-correlation of at least 2. In Subsect. 2.2, we
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show that there are � Golomb Costas arrays of size q ´ 2 whose maximal cross-
correlation achieves this lower bound where q “ 2� and � is a prime. More
generally, let p be a prime, n ě 2 a positive integer, and t denote the smallest
prime divisor of n. We show that there is a collection of t distinct Golomb Costas
arrays of size q ´ 2 whose maximal cross-correlation is at most p where q “ pn.

The maximal cross-correlation C(Gq) of the set Gq “ {πg1,g2 | g1 P
Fq is a primitive element} (considered first by Gómez-Pérez and Winterhof in
[8]) of Golomb Costas permutations where g2 P Fq is a fixed primitive element
is expressed as follows:

max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c �“0

|{x P Fq \ {0, 1} |xk ´ cx ´ d “ 0}|.

In [8], Gómez-Pérez and Winterhof showed that C(Gq) of the subfamily Gq of
Golomb Costas permutations of size q ´ 2 when q ´ 1 “ 2n ´ 1 is a Mersenne
prime is bounded above by �(1 ´ 1/(q ´ 1))(1 ` q1/2)�. We call this Case I. They
also show that in case q is an odd prime power and (q ´ 1)/2 is prime, C(Gq) is
bounded above by 1 ` �(1 ´ 2/(q ´ 1))q1/2�. We call this Case II, and it consists
of two subcases when

(a) q is a power of 3 and (q ´ 1)/2 is prime (see Lemma 1 in [6]), and
(b) q is a safe prime, that is, both q and (q ´ 1)/2 are prime.

In Part I, we focus on Case I and Case II(a). Using a combinatorial argu-
ment, we obtain two new bounds for each case: conditional bound (on computing
some values with the help of a computer) and unconditional bound. We prove
that our unconditional bounds (at worst) recover Gómez-Pérez and Winterhof’s
bounds while the numerics suggest a mild improvement. In either case, numerics
show that the conditional bounds (whenever computed) significantly improve
the bounds given by Gómez-Pérez and Winterhof.

The combinatorial nature of zero-sets of polynomials xk ´ cx ´ d led us to
produce optical orthogonal codes with λ “ 1. In [4], Ding and Xing construct
optical orthogonal codes with parameters (2m ´ 1, w, 2) where w P {5, 9, 11, 13}
using cyclotomy (also, for odd primes w ě 11 for which 2 is a primitive element in
the prime field Fw). Although these codes are non-optimal, they are of large size
and thus very promising for applications. Motivated by their work, we provide
the following examples:

(i) (221 ´ 1, 32, 2) optical orthogonal code with size 216 ´ 1, and
(ii) (313 ´ 1, 81, 3) optical orthogonal code with size 39´1

2 ,
(iii) (214 ´ 1, 16, 2) optical orthogonal code with size 2 · (210 ´ 1),
(iv) (37 ´ 1, 5, 2) optical orthogonal code with size 14329,
(v) (2110, 5, 2) optical orthogonal code with size 13600.

The first three codes are members of some infinite classes and they arise from
linearized polynomials while the last two arise from non-linearized polynomials.
We provide a general algorithm to construct such codes in Part III.
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The details of our results and the organization of the paper is as follows.
Our main results in Part I are Theorem 3 and Theorem 4 from which we derive
Corollary 1 and Corollary 2. The strength of the conditional bounds we obtain
is illustrated in Table 1 and Table 2. Moreover, in the appendix (Sect.A), the
unconditional bounds are proved to at worst recover the corresponding bounds
given by Gómez-Pérez and Winterhof.

The elementary proof of Theorem 3 and Theorem 4 led us to investigate
further to uncover the mathematical reason behind the picture and thus in Part
II, we study the combinatorial nature of the zero sets of the polynomials xk´cx´
d. Our main results of Part II are Theorem 6 and Theorem 7. We discover that
the zero sets of the polynomials xk ´ cxpi ´ d are planar almost difference sets
in F∗

q . Some collections of these zero sets in fact form almost difference families
yielding optical orthogonal codes. Corollary 3 turns out to be a result of Moreno
et al. [11]. We end this section by discussing the importance of computing the
multiplicity distribution of low-degree monomials (see Remark 17).

Our efforts culminate in Part III and we present an algorithm to construct
optical orthogonal codes from polynomials and provide examples.

2 Part I: Cross-Correlation of Golomb Costas Arrays

2.1 Golomb Costas Arrays

Let q ě 4 be a prime power and Fq denote the finite field of q elements and with
characteristic p. For an integer m ě 1, let [m] denote the set {1, 2, . . . ,m}.

Definition 1 (Definition 3, [6]). Fix two primitive elements g1, g2 of the field
Fq. Define a permutation πg1,g2 : [q ´ 2] → [q ´ 2] by

πg1,g2(i) “ j if and only if gi
1 ` gj

2 “ 1.

Such a permutation is called Golomb Costas permutation. Note that πg,h “ πg1,g2

if g “ σ(g1) and h “ σ(g2) where σ P Gal(Fq/Fp), so the cardinality of the set
of all Golomb Costas permutations is ϕ(q ´ 1)2/n. Here, ϕ denotes Euler’s phi
function.

Definition 2 (Definition 4, [6]). Let f, g : [n] → [n] be two maps. The cross-
correlation between f and g at (u, v) P Z2 is

Cf,g(u, v) :“ |{(i ` u, f(i) ` v) | i P [n]} X {(i, g(i)) | i P [n]}|.

Note that Cf,g(u, v) “ 0 for pairs (u, v) such that |u|, |v| ě n. The maxi-
mal cross-correlation C(F) of a family F of maps (of cardinality at least 2)
is max

f,gPF
f �“g

max
(u,v)PZ2

Cf,g(u, v).



On Two Applications of Polynomials 17

2.2 A Small Family of Golomb Costas Permutations with Low
Cross-Correlation

Let n denote the degree of the extension field Fq over the prime field Fp. Let t
denote the smallest prime divisor of n.

Proposition 1. Let us fix two primitive elements g1, g2 of the field Fq and
σ P Gal(Fq/Fp) denote the Frobenius automorphism. Then, the maximal cross-
correlation of the subfamily

G “ {πg,h | g “ σr(g1), h “ g2 where 0 ď r < t}
(where t is the smallest prime divisor of n) of Golomb Costas permutations is
at most p.

Proof. Let π1 :“ πσr1 (g1),g2 and π2 :“ πσr2 (g1),g2 be distinct permutations in
G. Here, r1 �“ r2 and without loss of generality we may assume r1 > r2. Then,
Cπ1,π2(u, v) is the number of solutions of the equation

gv
2(1 ´ gpr1x

1 ) “ (1 ´ g
pr2 (x`u)
1 )

where x, x ` u P [q ´ 2]. This number is bounded above by the number of Fq-
solutions of the polynomial

b(1 ´ y)pr1 “ (1 ´ ay)pr2
,

or equivalently
bp´r2

ypr1´r2 ´ ay ` 1 ´ bp´r2 “ 0.

If we denote one of its zeroes by c, then all of its zeroes are of the form c`dz where
c, d P Fq are fixed and z P Fpk where k “ r1 ´ r2. Suppose it has three zeroes
c, c`dz1, c`dz2 in Fq, then z2/z1 P Fq XF∗

pk “ F∗
p (note that 0 < k “ r1´r2 < t

and gcd(k, n) “ 1. ). This forces that there are at most p zeroes in Fq and this
completes the proof.

Remark 1. Let 0 < d1 < d2 be two consecutive divisors of n. One can more
generally prove that the maximal cross-correlation of the subfamily

G “ {πg,h | g “ σr(g1), h “ g2 where 0 ď r < d2}
of Golomb Costas permutations is at most pd1 .

2.3 Cross-Correlation of a Subfamily of Golomb Costas Arrays

Notations 1. For a fixed primitive element g2 P Fq, let Gq denote the set

{πg1,g2 | g1 is a primitive element of Fq}
of Golomb Costas permutations. The maximal cross-correlation of this subfamily
is studied in [8].
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Let π1 “ πgr
1 ,g2 and π2 “ πgs

1,g2 be two distinct Golomb Costas permutations
where 1 ď r, s ď q ´ 2 coprime to q ´ 1 and r �“ s. Then, Cπ1,π2(u, v) is the
number of nonzero solutions to the equation

gv
2(1 ´ grx

1 ) “ (1 ´ g
s(x`u)
1 )

where x, x ` u P [q ´ 2] so that max
(u,v)PZ2

Cπ1,π2(u, v) is the number of Fq-solutions

other than 0 and 1 of the polynomial

b(1 ´ yr) “ 1 ´ ays

where a, b P F∗
q are arbitrary. Composing this polynomial with the permutation

polynomial x1/r where 1/r denotes the multiplicative inverse of r modulo q ´ 1,
we get the polynomial

ays/r ´ by ` b ´ 1.

Hence, C(Gq) is equal to

max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c �“0

|{x P Fq \ {0, 1} |xk ´ cx ´ d “ 0}|. (�)

2.4 Golomb Costas Arrays of Size q ´ 2 Where q ´ 1 Is a Mersenne
Prime

Throughout Sect. 2.4, let q denote a power of 2 such that q ´ 1 is a prime, i.e.,
q ´ 1 “ 2n ´ 1 is a Mersenne prime. In [8], Gómez-Pérez and Winterhof showed
that the maximal cross-correlation C(Gq) of the subfamily Gq of Golomb Costas
permutations of size q ´ 2 when q ´ 1 is a Mersenne prime is bounded above by
�(1 ´ 1/(q ´ 1))(1 ` q1/2)�.
Lemma 1. Suppose n > 2 is a positive integer such that q ´ 1 “ 2n ´ 1 is a
(Mersenne) prime. Then, we have

C(Gq) “ max
2ďkďq´2

max
c,dPFq
c�“0

|{x P Fq \ {0, 1} | x
k ´ cx ´ d “ 0}| “ max

2ďkďq´2
max
dPF∗

q

|{x P Fq | x
k ´ x ´ d “ 0}|.

Proof. Note that the polynomials xk´cx´d and (x/α)k´c/αk´1x/α´d/αk have
the same number of distinct zeroes where α P F∗

q . Setting α “ c
1

1´k , we prove the
statement. (Here, 1

1´k denotes the multiplicative inverse of 1 ´ k modulo q ´ 1.)

Remark 2. With the help of Lemma 1, we were able to compute that C(Gq) “ 13
for n “ 13 using Magma [1] within two days.

Remark 3. For a Mersenne prime q ´ 1 “ 2n ´ 1, let α P F∗
q be a fixed element

other than 1. Since the multiplicative group F∗
q is generated by any element

other than 1, both α and α ` 1 are primitive elements. As α is primitive, we
have αk “ α ` 1 for some 2 ď k ď q ´ 2, i.e., α is a zero of the polynomial
xk ´ x ´ 1 P Fp[x]. As α is primitive, it has n distinct Galois conjugates over Fp

so that C(Gq) ě n.
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Definition 3 (Definition 1.1, [10]). Let f P Fq[x] be a nonzero polynomial.
Throughout this definition, Fq denotes any finite field. Let νi(f) denote the car-
dinality of the set

{(c, d) P F2
q | the polynomial f(x) ´ cx ´ d has i distinct zeroes in Fq}.

The sequence (νi(f))q
i“0 is called the intersection distribution of f .

For c P Fq, let Mi(f, c) denote the set {d P Fq | f(x) ´
cx ´ d has i solutions in Fq} and Mi(f, c) be its cardinality. The sequence
(Mi(f, c))q

i“0 is called the multiplicity distribution of f at c. We will use the
multiplicity distribution in Part II.

Notations 2. Fix a polynomial f P Fq[x]. For c, d P Fq, let Sc,d(f) denote the
set {x P Fq | f(x)´cx´d “ 0}. Note that for an automorphism σ P Gal(Fq/Fp),
we have |Sc,d(f)| “ |Sσ(c),σ(d)(f)|. If f is clear from the context, we will simply
write Sc,d in place of Sc,d(f).

Theorem 3. Suppose n > 2 is a positive integer such that q ´ 1 “ 2n ´ 1 is a
(Mersenne) prime. Let f : F2n → F2n be defined by f(x) “ xk where for some

2 ď k ď q ´ 2. Then, νi(f) “ 0 for i > max
{⌊√

q´2
n ` 1

4 ` 1
2

⌋
,S1,1

}
where

S1,1 “ max
2ďkďq´2

|S1,1(xk)|.

Proof. Consider the polynomial f(x) ´ cx ´ d. By Lemma 1, we may assume
that c “ 1 and d P F∗

q . Moreover, it suffices to show that the number of zeroes

of f(x) ´ x ´ d in Fq is bounded above by
⌊√

q´2
n ` 1

4 ` 1
2

⌋
whenever d �“ 1. In

other words, we may assume that d is a primitive element.

Let β, β ` α P F2n be two distinct zeroes of the polynomial f(x) ´ x ´ d
where d P F2n \ F2 (so, α �“ 0). Then,

f(β) ´ β ´ d “ 0
f(β ` α) ´ (β ` α) ´ d “ 0

This implies that β and β `α are solutions to the equation f(x`α)`f(x) “ α.
Dividing both sides by αk, we observe that

D1f(β/α) “ α1´k

where D1f(x) “ (x ` 1)k ` xk is the derivative of f at 1. In other words, α1´k is
in the image of D1f(x) and β/α and β/α ` 1 are in the corresponding preimage
set. Now, let us denote by Δ the set {(x1, x2) P S1,d ˆ S1,d |x1 “ x2} and define
a map Φ from the set

(S1,d ˆ S1,d) \ Δ “ {(x1, x2) P F2
q | f(x1) ´ x1 ´ d “ 0, f(x2) ´ x2 ´ d “ 0 and x1 �“ x2}

to the graph
{(y, z) P F2

q |D1f(y) “ z, and y �“ 0, 1}
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of the derivative of f at 1 by (x1, x2) �→ (x1/(x1 ´ x2), (x1 ´ x2)1´k).
Note that this map is injective as gcd(1 ´ k, q ´ 1) “ 1. Let

(1, b) „ (1, d)

if b “ σr(d) for some 0 ď r < n. If x P S1,d, then xpr P S1,σr(d) and since d �P F2,
we have S1,d X S1,σr(d) “ H for any r �“ 0. Note that Φ injectively extends to
the domain

⊔
(1,b)„(1,d)

((S1,b ˆS1,b)\Δ). Here, |S1,b| “ |S1,d| for any (1, b) „ (1, d)

and there are n such pairs (1, b) as d is primitive. The target has cardinality
q ´ 2 and the domain has n�(� ´ 1) elements where � is the number of distinct
zeroes of the polynomial f(x) ´ x ´ d. This implies that

n�(� ´ 1) ď q ´ 2

so that

� ď
√

q ´ 2
n

` 1
4

` 1
2
.

and this finishes the proof.

Remark 4. Note that since S1,1 is divisible by n, the proof in fact shows that

S1,1 ď
⌊√

q ´ 2 ` 1
4 ` 1

2

⌋
n

where �x�n denotes the largest integer divisible by n

which is less than or equal to x.

Corollary 1. Suppose n > 2 is a positive integer such that q ´ 1 “ 2n ´ 1 is a
(Mersenne) prime. Then, we have

S1,1 ď C(Gq) ď max
{⌊√

q ´ 2
n

` 1
4

` 1
2

⌋
,S1,1

}
.

Moreover,

S1,1 ď
⌊√

q ´ 2 ` 1
4

` 1
2

⌋
n

.

Proof. It follows from Lemma 1, Theorem 3 and Remark 4.

Remark 5. We denote max
{⌊√

q´2
n ` 1

4 ` 1
2

⌋
,S1,1

}
by Bound A, and⌊√

q ´ 2 ` 1
4 ` 1

2

⌋
n

by Bound B.

Remark 6. In the appendix, we prove that Bound B is at worst recovers Gómez-
Pérez and Winterhof’s bound. Numerics suggest that although Bound B is only
slightly better than that of Gómez-Pérez and Winterhof, Bound A gives a sig-
nificant improvement.

Remark 7. Computation of C(Gq) for n ě 17 is beyond our reach even with the
help of Lemma 1. It would be interesting to tackle the first instance (if any) of
n for which S1,1 �“ C(Gq).
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Table 1. Comparison of our bounds and that of Gómez-Pérez and Winterhof’s in Case
I.

n S1,1 C(Gq) Bound A Bound B Gómez-Pérez and Winterhof’s bound

3 3 3 3 3 3

5 5 5 5 5 6

7 7 7 7 7 12

13 13 13 25 91 91

17 51 * 88 357 363

19 57 * 166 722 725

2.5 Golomb Costas Arrays of Size 3n ´ 2 Where (3n ´ 1)/2 Is
a Prime

Throughout Sect. 2.5, let q be a power of 3 such that (q ´ 1)/2 “ (3n ´ 1)/2 is a
prime, i.e. q is a strict safe prime power as defined in [6]. Such n is necessarily an
odd prime and first few values for it are 3, 7, 13, 71. Recall that C(Gq) is equal
to

max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c �“0

|{x P Fq \ {0, 1} |xk ´ cx ´ d “ 0}|.

Lemma 2. Suppose n ě 3 is a positive integer such that (q ´ 1)/2 “ (3n ´ 1)/2
is a prime. Then, we have

C(Gq) “ max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c�“0
|{x P Fq \ {0, 1} | xk ´ cx ´ d “ 0}| “ max

2ďkďq´2
gcd(k,q´1)“1

max
dPF∗

q
cP{1,´1}

|{x P Fq | xk ´ cx ´ d “ 0}|.

Proof. Note that the polynomials xk ´ cx ´ d and (x/α)k ´ c/αk´1x/α ´ d/αk

have the same number of distinct zeroes where α P F∗
q . Either c or ´c is a square

in Fq and gcd(k ´ 1, q ´ 1) “ 2 so that

αk´1 “ c or

αk´1 “ ´c

has a zero in Fq. Therefore, we may assume that c P {1, ´1}.
Let us now argue why 0 and 1 can be excluded: First note that polynomials
xk ´ cx can be excluded from the list as we already know that C(Gq) ě n ě 3.
Moreover, 0 is not a zero of any xk ´cx´d where d P F∗

q . Clearly, 1 �P S1,d where
d P F∗

q and even if 1 P S´1,´1, we have S´1,´1 “ S´1,1 and 1 �P S´1,1.

Remark 8. With the help of Lemma 2, we were able to compute that C(Gq) “ 14
for n “ 7 using Magma [1] within minutes.

Theorem 4. Suppose n ě 3 is a positive integer such that (q´1)/2 “ (3n´1)/2
is a prime. Let f : F2n → F2n be the (permutation) polynomial defined by
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f(x) “ xk where for some 2 ď k ď q ´ 2 and gcd(k, q ´ 1) “ 1. Then, νi(f) “ 0
for

i > max
{√

q ´ 3
n

` 1
4

` 1
2
, S1,1, S´1,1

}

where Su,v “ max
2ďkďq´2

gcd(k,q´1)“1

|Su,v(xk)| and u, v P {1, ´1}.

Proof. Consider the polynomial f(x) ´ cx ´ d. Note that S1,1 “ S1,´1 and
S´1,1 “ S´1,´1, so by Lemma 2 we may assume c P {1, ´1} and d P Fq \ Fp.
Now, we imitate the proof of Theorem 3 by first considering the map Φ from the
set (Sc,dˆSc,d)\Δ to the graph {(y, z) P F2

q |D1f(y) “ z and y �“ 0, 1} defined by
(x1, x2) �→ (x1/(x1´x2), (x1´x2)1´k) where D1f(x) “ f(x`1)´f(x). Note that
now we have gcd(1´k, q´1) “ 2, so the injectivity of Φ requires a new argument:
Suppose Φ(β1, β2) “ Φ(β3, β4). This implies that (β2 ´ β1)1´k “ (β4 ´ β3)1´k,
i.e.,

β4 ´ β3 “ ξ(β2 ´ β1)

for some ξ P Fq such that ξ1´k “ 1. Since gcd(k ´ 1, q ´ 1) “ 2, we must have
ξ “ ±1.
Note that Φ(β1, β2) “ Φ(β3, β4) also forces that β3 “ ξβ1. However, we have

βk
3 ´ cβ3 ´ d “ (ξβ1)k ´ cξβ1 ´ d “ ξ(βk

1 ´ cβ1) ´ d “ 0

as ξ1´k “ 1. This implies that d “ ξd, so we must have ξ “ 1. This implies that
(β1, β2) “ (β3, β4) proving the injectivity.

Next, we consider the equivalence relation defined in Theorem 3:

(1, b) „ (1, d)

if b “ σr(d) for some 0 ď r < n where σ denotes the Frobenius automorphism.
Note that we have |S1,b| “ |S1,d| for any (1, b) „ (1, d) and moreover these
S1,b’s are all pairwise disjoint. Note that Φ injectively extends to the domain⊔
(1,b)„(1,d)

((S1,b ˆ S1,b) \ Δ) because ´d cannot be a Galois conjugate of d as the

extension degree of Fq over Fp is necessarily an odd prime. There are n such
pairs (1, b) since d P Fq \ Fp and n is prime. The target has cardinality q ´ 2
and the domain has n�(� ´ 1) elements where � is the number of distinct zeroes
of the polynomial f(x) ´ cx ´ d. This implies that n�(� ´ 1) ď �q ´ 2�n “ q ´ 3
so that

� ď
√

q ´ 3
n

` 1
4

` 1
2

and this finishes the proof.

Remark 9. Note that since S´1,1 “ 1 (mod n) and S1,1 is divisible by n, the

proof shows that S1,1 ď
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n

and S´1,1 ď
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n,1

.

Here, �x�n,1 denotes the maximum of the two integers that are not exceeding x
and equal to 0 or 1 modulo n.
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Corollary 2. Suppose n ě 3 is a positive integer such that (q´1)/2 “ (3n´1)/2
is prime. Then, we have

max{S1,1,S´1,1} ď C(Gq) ď max
{⌊√

q ´ 3
n

` 1
4

` 1
2

⌋
, S1,1, S´1,1

}
.

Moreover,

max{S1,1,S´1,1} ď
⌊√

q ´ 3 ` 1
4

` 1
2

⌋
n,1

.

Proof. Immediate.

Remark 10. We call the expression max
{⌊√

q´3
n ` 1

4 ` 1
2

⌋
, S1,1, S´1,1

}
Bound

A, and
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n,1

is called Bound B.

Remark 11. We prove in the appendix that Bound B is at worst recovers Gómez-
Pérez and Winterhof’s bound.

Table 2. Comparison of our bounds and that of Gómez-Pérez and Winterhof’s in Case
II(a).

n S1,1 S´1,1 C(Gq) Bound A Bound B Gómez-Pérez and Winterhof’s bound

3 3 4 4 4 4 5

7 14 8 14 18 43 47

13 * * * * 1262 1263

Remark 12. Computation of C(Gq) for n ě 13 is beyond our reach even with
the help of Lemma 2. It would be interesting to tackle the first instance (if any)
of n for which max{S1,1, S´1,1} �“ C(Gq).

Remark 13. Using the idea in Theorem 3 and Theorem 4, one can obtain an
analogue of Bound B for the subfamily Gp of Golomb Costas permutations and
the family Wp of Welch Costas permutations where p is a safe prime. However,
there is no analogue of Bound A in these cases due to the lack of nontrivial
automorphisms.

3 Part II: Almost Difference Families Arising
from xk ´ cx ´ d

3.1 Planar Almost Difference Sets Arising from the Polynomials
xk ´ cxpi ´ d

Definition 4 ([3]). Let (A, `) be an abelian group of order n. A subset of D ⊂ A
of cardinality w is an (n,w, λ, t) almost difference set in A if, for t times, the
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difference function diff : A\{0} → Zě0 takes the value λ and, for n´1´t times,
it takes the value λ ` 1 where

diff(α) “ |(D ` α) X D|.
Notations 5. Let Fq be a finite field where q ě 4 and for fixed c, d P F∗

q

and 0 ď i < n, consider the set Si,c,d(k) “ {x P Fq |xk ´ cxpi ´ d “ 0}. Let
2 ď k ď q ´ 2 be an integer such that � :“ |Si,c,d(k)| ě 2. For brevity, we write
Si,c,d in place of Si,c,d(k) if k is clear from the context. Moreover, if i “ 0, we
write Sc,d in place of S0,c,d (see Notation 2).

Lemma 3. The map G : (Si,c,d ˆ Si,c,d) \ Δ → Fq defined by G(β1, β2) “ β1

β2
is

injective.

Proof. Let us first consider the map Φ : (Si,c,d ˆ Si,c,d) \ Δ → F2
q defined by

Φ(x1, x2) “
(

x1

x1 ´ x2
, c(x1 ´ x2)pi´k

)
.

This map is injective: For if Φ(β1, β2) “ Φ(β3, β4), then

c(β1 ´ β2)pi´k “ c(β3 ´ β4)pi´k

implies that β1 ´ β2 “ ξ(β3 ´ β4) for some ξ P Fq such that ξpi´k “ 1. This
implies that β1 “ ξβ3, but then

βk
1 ´ cβpi

1 ´ d “ (ξβ3)k ´ cξpi

βpi

3 ´ d “ ξpi

(β3 ´ cβpi

3 ) ´ d “ 0

as ξpi´k “ 1. This implies that d “ ξpi

d, so ξpi “ 1 and we conclude that ξ “ 1.
Hence, (β1, β2) “ (β3, β4). Moreover, the image of Φ is contained(!) in the graph
{(x, y) P F2

q | y “ (x`1)k ´xk} (see the proof of Theorem 3 for how we construct
Φ) so that the map F :“ π1 ◦ Φ is also injective where π1 : F2

q → Fq is the first
projection. Note that 1 �P Im(F ), so we may consider the composition r◦F where
r : Fq \ {1} → Fq is the rational map r(x) “ x

x ´ 1
. Observe that the map r ◦ F

is the map G given in the statement above. The injectivity of r implies that G
is injective, and we are done.

Theorem 6. Si,c,d(k) is a (q ´ 1, �, 0, q ´ 2 ´ �(� ´ 1)) almost difference set in
the group F∗

q .

Proof. For simplicity, we denote Si,c,d by D. Let a P Im(G) (so, a �“ 1), then
there exist distinct elements β1, β2 P D such that a “ β1/β2. I.e. β1 P aD X D
so that diff(a) ě 1. Let us now show that in fact diff(a) “ 1 in this case. Let
β1, β

′
1 P aD X D, then there exist β2, β

′
2 P D such that

β1 “ aβ2

β′
1 “ aβ′

2,



On Two Applications of Polynomials 25

i.e., β1
β2

“ β′
1

β′
2
. This implies that G(β1, β2) “ G(β′

1, β
′
2), so by the injectivity of G,

we conclude that β1 “ β2. Thus, diff(a) “ 1.

Now, suppose a �P Im(G) and a �“ 1. We claim that aD X D “ H, for if
β1 P aD X D, then there would exist β2 P D (with β2 �“ β1 as a �“ 1) such
that aβ2 “ β1. This contradicts with our assumption that a �P Im(G). Hence, D
is a (q ´ 1, �, 0, q ´ 2 ´ �(� ´ 1)) almost difference set of the group F∗

q .

3.2 Almost Difference Families Arising from the Polynomials
xk ´ cx ´ d

Definition 5 ([5]). Let F “ {D1,D2, . . . , Dm} be a family of w-subsets of a
finite abelian group G of cardinality n. For 1 ď j ď m, let ΔDj denote the
multiset

{a ´ b | a, b P Dj , a �“ b}.

Let ΔF denote the formal sum of ΔDj’s. F is called an (n,w, λ, t) almost dif-
ference family of size m if some t nonzero elements of G occur in the multiset
ΔF with multiplicity λ, and the remaining n´1´ t nonzero elements of G occur
in ΔF with multiplicity λ ` 1.

The setup of the next theorem is as follows:

Let Fq be a finite field. Let c P F∗
q , d P Fq and 2 ď k ď q ´ 2 be an inte-

ger. Let r :“ gcd(k ´ 1, q ´ 1) and we denote the subgroup of F∗
q consisting

elements of order dividing r by Hr. Note that there is a (faithful) group action

Hr ˆ Ms(xk, c) \ {0} → Ms(xk, c) \ {0}
(h, x) �→ hx

where s :“ |Sc,d| by multiplication (see Definition 3).

Theorem 7. Let R be a set of representatives of the orbit space (Ms(xk, c) \
{0})/Hr. Then, {Sc,d(k) | d P R} is an (q ´ 1, s, 0) almost difference family in

F∗
q of size

⌊
Ms(x

k,c)
r

⌋
.

The proof of this theorem will be given after Remark 15.

Remark 14. Note that if xk ´ cx has s distinct zeroes in Fq, then
⌊

Ms(x
k,c)

r

⌋
“

Ms(x
k,c)´1
r , and otherwise

⌊
Ms(x

k,c)
r

⌋
“ Ms(x

k,c)
r .

Note that Mq(xq, 1) “ qn´1 ([10, Proposition B.1]) in Fqn and this gives us the
next immediate corollary known as the generalized Bose-Chowla construction of
OOCs.
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Corollary 3 (Generalized Bose-Chowla construction, [11]). There is an almost
difference family in F∗

qn with parameters (qn ´ 1, q, 0) of size qn´1´1
q´1 .

Proof. It immediately follows from Theorem 7 and the remark above.

Remark 15. Note that after choosing an isomorphism F∗
qn 	 Zqn´1, associated

to the family in the corollary above, there is an optimal optical orthogonal code
(OOC for short) with parameters (qn ´ 1, q, 1) for every prime power q and an
integer n ě 2 (see Definition 6 below). One may more generally consider the
zero set of the polynomials xq ´ cx where c is a nonzero (q ´ 1)th power, i.e.
c “ αq´1 for some α P F∗

qn . However, in the case, the two codewords (of weight q)
associated to the zero sets of xq´x´d (where d P R is fixed) and xq´cx´αqd are
cyclic shifts of each other. Hence, two relevant optical orthogonal codes would be
related to each other by an already-known operation of replacing any codeword
by a cyclic shift of itself (see Remark 18 below).

Proof (Proof of Theorem 7). Let us first consider the map

Φ :
⊔
dPR

((Sc,d ˆ Sc,d) \ Δ) → F2
q

defined by

Φ(x1, x2) “
(

x1

x1 ´ x2
, c(x1 ´ x2)1´k

)
.

This map is injective: For if Φ(β1, β2) “ Φ(β3, β4) where β1, β2 P Sc,d1 and
β3, β4 P Sc,d2 , then we have β3 ´ β4 “ ξ(β1 ´ β2) for some ξ P Fq such that
ξ1´k “ 1. This implies that β3 “ ξβ1 but note that

βk
3 ´ cβ3 ´ d2 “ ξ(βk

1 ´ cβ1) ´ d2 “ 0.

Therefore, ξd1 “ d2 and this forces that ξ “ 1 since d1, d2 P R, proving the
injectivity of Φ.

The rest is identical to the arguments given in Lemma 3 and Theorem 6.

Remark 16. For r as above, let C
(r,q)
0 is the set of r´th powers in F∗

q and C
(r,q)
i “

{αix |, C(r,q)
0 } where α P Fq is a fixed primitive element and 0 ď i ď r ´ 1. Note

that the almost difference family in Theorem 7 can in fact be extended to the
union

⋃r´1
i“1 {Sci,d(k) | d P Ri} where ci P C

(r,q)
i are fixed elements and Ri’s are

fixed sets of representatives of the orbit spaces (Ms(xk, ci) \ {0})/Hr. In this

way, the size of the extended family increases to
⌊∑r´1

i“0 Ms(x
k,ci)

r

⌋
.

Remark 17. In [9], Kyureghyan-Li-Pott computed the multiplicity distribution
of x3 over arbitrary finite fields. Using their result and Remark 16 above one
can isolate the prime powers q such that there exist (q ´ 1, 3, 1) optimal optical
orthogonal codes arising from the zero sets of polynomials x3 ´ cx ´ d. Note
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however that the existence problem of optimal OOCs of weight 3 is already
settled (see Theorem 5, [2]).

If the multiplicity distribution of x4 is studied, this might lead to a partial
progress towards the open problem of existence of optimal OOCs of weight 4
and it might even be possible to formulate a conjecture about an exhaustive list
of lengths for which such OOCs exist. We expect that such a task boils down to
cyclotomy but we do not tackle this problem here.

4 Part III: An Algorithm to Produce OOCs

Definition 6. An optical orthogonal code (OOC for short) C with parameters
(n,w, λ) is a collection of sequences consisting 0s and 1s of length n and weight
w such that

(i)
n´1∑
i“0

cici`j ď λ for any c P C and j �≡ 0 (modn), and

(ii)
n´1∑
i“0

cidi`j ď λ for any distinct c,d P C.

Remark 18. For a codeword c “ (c1, c2, . . . , cn), let T (c) denote the cyclic shift
(cn, c1, c2, . . . , cn´1). Then, for an optical orthogonal codes C, the collection (C \
{c}) ∪ {Tm(c)} is an OOC as well for any 0 ď m ď n. That is, we can replace
any codeword with some cyclic shift of itself.

This section is motivated by the work [4] of Ding-Xing (though we do not use
cyclotomy). Here is our algorithm:

Step 1: Fix a polynomial of the form P (x) “ x�1 ` c�2x
�2 ` c�2´1x

�2´1 ` · · · `
c1x P Fq[x] where c1 and c2 are nonzero (or more generally, where ci

and cj are nonzero for some 1 ď i < j ď �2 so that gcd(�1 ´i, �1 ´j) “
1).

Step 2: Fix an extension F∗
qn of Fq and element d P F∗

qn such that P (x) ´ d
has � zeroes F∗

qn where � > �2. (Note that one can always let d be any
nonzero element of Fq and set Fqn as the splitting field of P (x) ´ d.)

Step 3: Find all elements d P Fqn such that P (x) ´ d has � non-zero zeroes in
Fqn .

Output: Associated to the family

{{x P F∗
qn |P (x) ´ d “ 0} | d is nonzero and P (x) ´ d has � zeroes in F∗

qn}

of sets (of cardinality �), we have optical orthogonal codes with param-
eters (qn ´ 1, �, �2) whose supports are obtained by taking discrete
logarithm with respect to some primitive element of Fqn .

This algorithm will be extended in a way that the size of the code is as large
as possible (yet likely still non-optimal) but we first provide some examples by
considering linearized polynomials:
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Proposition 2. For any integer f ě 1, there exists an (221f ´ 1, 32, 2) optical
orthogonal code with size 221f´5 ´ 1.

Proof. It has been checked with Magma that the additive polynomial L(x) “
x32 ´ x2 ´ x splits over F221 . For nonzero elements d1, d2 P F221f , denote by
Di ⊂ F∗

221f the zero set of x32 ´ x2 ´ x ´ di in F221f for i “ 1, 2. Note that for
nonzero α P F221f ,

|α´1D1 X D2| “ deg gcd(α32x32 ´ α2x2 ´ αx ´ d1, x32 ´ x2 ´ x ´ d2)

“ deg gcd((α32 ´ α2)x2 ` (α32 ´ α)x ` α32d2 ´ d1, x32 ´ x2 ´ x ´ d2)

ď 2

since (α32 ´ α2)x2 ` (α32 ´ α)x ` α32d2 ´ d1 is a nonzero polynomial (of degree
at most 2) where d1 “ d2 and α �“ 1, or d1 �“ d2.

Then, associated to the set of 32-subsets

{{x P F∗
221f | x32´x2´x´d “ 0} | d is nonzero and in the image of L : F221f → F221f },

we have an OOC with the desired properties.

Proposition 3. For any integer f ě 1, there exists an (313f ´ 1, 81, 3) optical
orthogonal code with size 313f´4´1

2 .

Proof. It has been checked with Magma that the F3-linear polynomial L(x) “
x81 ` x3 ` x splits over F313 . As for a nonzero element α P F∗

313f , that α81 “ α3

and α81 “ α implies α2 “ 1, therefore associated to the set of 81-subsets

{{x P F
∗
313f | x

81 ` x
3 ` x ´ d “ 0} | d is a non-square element in the image of L : F313f → F313f },

we have an OOC with the desired properties.

We will now give an example that will motivate the next subsection:

Proposition 4. For an integer f ě 1, there exists an (214f ´ 1, w(f), 2) optical
orthogonal code with size

⎧⎨
⎩

2 ·
(

214f

w(f) ´ 1
)

if f is not divisible by 5,

214f

w(f) ´ 1 if f is divisible by 5

where

w(f) “
⎧⎪⎨
⎪⎩

16 if f is odd
32 if f is even but not divisible by 4,

64 if f is divisible by 4.
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Proof. Let θ P F214 be a primitive third root of unity. It has been checked with
Magma that the additive polynomial Lθ(x) “ x64 ´ x2 ´ θx factorizes over F214

as a product of 16 linear factors, 8 quadratic factors and 8 quartic factors (so
does Lθ2(x) “ x64 ´ x2 ´ θ2x).

If f is not divisible by 5, then 62 is coprime to 214f ´ 1 and associated to the
union of the set of w(f)-subsets

{{x P F∗
214f

| x64 ´ x2 ´ θx ´ d “ 0} | d is nonzero and in the image of Lθ : F214f → F214f }

with the set of w(f)-subsets

{{x P F∗
214f

| x64 ´ x2 ´ θ2x ´ d “ 0} | d is nonzero and in the image of Lθ2 : F214f → F214f }

we have an OOC with the desired properties. In case f is divisible by 5, only
one of these sets yields an OOC (and has the desired properties).

4.1 Algorithm Continued: How to Extend the Size of the OOC

Note that the algorithm in the previous section does not guarantee that the
OOC produced will be optimal, so it is important to extend the algorithm in a
way that we get as many codes as possible as an output. Here are the remaining
steps of the algorithm:

Step 4: Set S “ {P (x)} and W be the complement of S in the set of polyno-
mials in Fq which are of the form specified in Step 1.

Step 5: Let Q(x) “ x�1 ` c�2x
�2 ` c�2´1x

�2´1 ` · · · ` c1x be in W . If
(i) Q(x) ´ eFqn has � zeroes in F∗

qn for any e P F∗
qn , and

(ii) Q(x) �“ α´�1P (αx) for any α P F∗
qn and any P (x) P S,

then add Q(x) to the list S.
Step 6: Remove Q(x) from the set W and return Step 5 until S stabilizes.

Output: Associated to the family

{{x P F∗
qn | P (x)´d “ 0} | P (x) P S, d is nonzero and P (x)´d has � zeroes in F∗

qn}

of sets (of cardinality �), we have optical orthogonal codes with param-
eters (qn ´ 1, �, �2) whose supports are obtained by taking discrete
logarithm with respect to some primitive element of Fqn .

The proofs of the propositions in previous subsection illustrate the idea
behind our algorithm. Nevertheless, we provide an argument to show that the
algorithm works:

(Proof of the validity of the algorithm:) Note that by Step 2 and Step 5, the
family

{{x P F∗
qn | P (x) ´ d “ 0} | P (x) P S, d is nonzero and P (x) ´ d has � zeroes in F∗

qn}
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contains only subsets of cardinality �. Let D1 “ {x P F∗
qn |P (x) ´ d1 “ 0} and

D2 “ {x P F∗
qn |Q(x) ´ d2 “ 0} and α P F∗

qn , then

|α´1D1 X D2| “ deg gcd(P (αx) ´ d1, Q(x) ´ d2)

“ deg gcd(Q(x) ´ α´�1P (αx) ` d2 ´ α´�1d1, Q(x) ´ d2)

If P (x) “ Q(x) and d1 �“ d2, the polynomial Q(x) ´ α´�1P (αx) ` d2 ´ α´�1d1
is a nonzero polynomial of degree at most �2 by Step 1. If P (x) �“ Q(x), then
Q(x) ´ α´�1P (αx) ` d2 ´ α´�1d1 is a nonzero polynomial of degree at most �2
by Step 5.

We end by providing examples of OOCs arising from non-additive polyno-
mials.

Example 1. Associated to the family

{{x P F
∗
37 | x

59 ´ x
2 ´ cx ´ d “ 0} | d is nonzero and x

59 ´ x
2 ´ cx ´ d has at least 5 zeroes in F

∗
37},

we have a variable-weight OOC with parameters (2186, {5, 6, 7, 8, 9}, 2) of size
17143 (14329 of them have weight 5). Note that the assumption in Step 5 of our
algorithm is satisfied as gcd(57, 2186) “ 1.

Example 2. Associated to the family

{{x P F
∗
2111 | x

59 ´x
2 ´cx´d “ 0} | d is nonzero and x

59 ´x
2 ´cx´d has at least 5 zeroes in F

∗
2111},

we have a variable-weight OOC with parameters (2110, {5, 6, 7, 8, 9}, 2) of size
16263 (13600 of them have weight 5).

Acknowledgement. We would like to thank the anonymous referees for their valuable
suggestions and comments.

A Appendix

Proposition 5. Bound B recovers Gómez-Pérez and Winterhof’s bound when
q “ 2n and q ´ 1 is a prime for n ě 3.

Proof. For n “ 3, we have an equality (see Table 1), so may assume n ě 5. Then,
we have
(

1 ´ 1
q ´ 1

)
(1 ` √

q) ´
(

1
2

`
√

q ´ 7
4

)
“ 1

2
´ 1

q ´ 1
` √

q ´
√

q

q ´ 1
´

√
q ´ 7

4

ě 1
2

´ 1
q ´ 1

´
√

q

q ´ 1
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Note also that
(

1
2

´ 1
q ´ 1

)2

´
( √

q

q ´ 1

)2

ě 1
4

´ 1
q ´ 1

` 1
(q ´ 1)2

´ q

(q ´ 1)2

ě q2 ´ 10q ` 9
4(q ´ 1)2

.

As q ě 32, we have q2 ´ 10q ` 9 ě 0. Hence,
⌊

1
2 `

√
q ´ 7

4

⌋
n

ď
⌊(

1 ´ 1
q´1

)
(1 `

√
q)

⌋
.

Proposition 6. Bound B recovers Gómez-Pérez and Winterhof’s bound when
q “ 3n and (q ´ 1)/2 is a prime.

Proof. Assume the hypothesis on q. Then, we have
(
1 `

(
1 ´ 2

q ´ 1

)√
q

)2

´
(√

q ´ 3 ` 1

4
` 1

2

)2

“
(
1 ` 2

√
q
q ´ 3

q ´ 1
`

(
1 ´ 4

q ´ 1
` 4

(q ´ 1)2

)
q

)
´

(
q ´ 3 ` 1

4
`

√
q ´ 3 ` 1

4
` 1

4

)

“
(
1 ` q ´ 4q

q ´ 1
` 4q

(q ´ 1)2
` 2

√
q
q ´ 3

q ´ 1

)
´

(
´ 5

2
` q `

√
q ´ 11

4

)

“ ´1

2
` 4

q ´ 1
` 4q

(q ´ 1)2
` √

q

(
2(q ´ 3)

q ´ 1
´

√
1 ´ 11

4q

)

ě ´1

2
` √

q

(
1 ´ 4

q ´ 1

)

ě ´1

2
`

√
q

2

Hence,
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n,1

ď
⌊
1 `

(
1 ´ 2

q´1

)√
q

⌋
“ 1 `

⌊(
1 ´ 2

q´1

)√
q

⌋
.
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