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Abstract. Let f(x) = x
q−3
2 be a power mapping over Fq, where q is

an odd prime power. The differential uniformity of f was determined
by Helleseth and Sandberg [14] in 1997. In this paper, we study the
boomerang uniformity of f via its differential properties. It is shown
that f has low boomerang uniformity when q ≡ 3 (mod 4).
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1 Introduction

Substitution boxes (S-boxes for short) play a crucial role in the field of symmetric
block ciphers. Let Fq be the finite field with q elements. For a function f from
Fq to itself, the main tools to handle f regarding the differential attack are the
difference distribution table (DDT for short) introduced by Biham and Shamir
[2] and the differential uniformity which was introduced by Nyberg [21] in 1994.
For any a, b ∈ Fq, the DDT entry at point (a, b), denoted by δf (a, b), is defined
as

δf (a, b) =
∣
∣{x ∈ Fq : f(x + a) − f(x) = b}∣

∣,

where
∣
∣S

∣
∣ denotes the cardinality of the set S. The differential uniformity of the

function f , denoted by δf , is defined as

δf = max{δf (a, b) : a ∈ F
∗
q , b ∈ Fq},

where F
∗
q = Fq \ {0}. When f is used as an S-box inside a cryptosystem, the

smaller the value δf is, the better the contribution of f to the resistance against
differential attack. When δf = 1 (respectively, δf = 2), the function f is called a
perfect nonlinear (PN) function (respectively, an almost perfect nonlinear (APN)
function). The recent results on cryptographic functions with low differential
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uniformity can be found in [1,3,5,6,13,18,22,23,25,27,29,30,34] and their refer-
ences. More precisely, the readers can refer to a recent monograph [8], Chapter
11, which is written by Carlet.

Another important cryptanalytical technique on block ciphers is the
boomerang attack introduced by Wagner [28], which is a variant of differen-
tial cryptanalysis. In order to analyze the boomerang attack of block ciphers in
a better way, analogous to the DDT concerning differential attack, Cid et al. [9]
firstly proposed the boomerang connectivity table (BCT). Let f be a permuta-
tion from F2n to itself. For a, b ∈ F2n , the BCT entry at point (a, b), denoted by
βf (a, b), is defined as

βf (a, b) =
∣
∣{x ∈ F2n : f−1(f(x + a) + b) + f−1(f(x) + b) = a}∣

∣.

Further, to quantify the resistance of a function against the boomerang attack,
Boura and Canteaut [4] introduced the concept of boomerang uniformity, which
is the maximum value in the BCT excluding the first row and the first column.
That is, the boomerang uniformity of the permutation f , denoted by βf , is given
by

βf = max
{

βf (a, b) : a, b ∈ F
∗
q

}

.

Similarly, the smaller the value βf is, the better the contribution of f to the
resistance against boomerang attack. Recently, Li et al. in [16] generalized the
definition of βf (a, b) for any function f (not necessarily being a permutation)
over Fq. The BCT entry of f at point (a, b), denoted by βf (a, b), is the number
of solutions (x, y) ∈ Fq × Fq of the following system of equations

{
f(x) − f(y) = b,
f(x + a) − f(y + a) = b,

where a, b ∈ F
∗
q . The research on cryptographic functions with low boomerang

uniformity has been a hot issue in recent years, see for example [4,9,11,16,17,
20,26,33]. More precisely, for recent progress of cryptographic functions with
known boomerang uniformity, the readers can refer to the survey article [19],
which is written by Mesnager, Mandal and Msahli.

Power functions with low differential uniformity serve as good candidates for
the design of S-boxes not only because of their strong resistance to differential
attacks but also for the usually low implementation cost in hardware. The dif-
ferential properties of power functions can be studied more easily due to their
particular algebraic structures. Hence, the study on the boomerang uniformity
of power mappings attracts a lot of attention. More precisely, when f is a power
function, i.e., f(x) = xd for an integer d, one easily sees that βf (a, b) = βf (1, b

ad )
for any a, b ∈ F

∗
q . The boomerang properties of f are completely determined by

the values of βf (1, b) as b runs through F
∗
q . Equivalently, we need to consider the

number of solutions (x, y) ∈ Fq × Fq of the following equation system
{

xd − yd = b
(x + 1)d − (y + 1)d = b
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for b ∈ F
∗
q . Although the power functions have good algebraic structures, there

are only a few classes of power mappings with known boomerang uniformity in
the literature. We list them in Table 1.

In this paper, we mainly study the boomerang uniformity of the power map-
ping x

q−3
2 over Fq via its differential properties, where q ≡ 3 (mod 4) is an odd

prime power. The rest of this paper is organized as follows. Section 2 first intro-
duces some frequently-used notation, and then gives some lemmas which will be
used later. Section 3 investigates the boomerang uniformity of x

q−3
2 . Section 4

concludes this paper.

Table 1. Power functions with known boomerang uniformity over Fpn

p d Conditions βf Reference

2 2n − 2 n ≡ 2 (mod 4) 4 [4]
2 2n − 2 n ≡ 0 (mod 4) 6 [4]
2 2k + 1 e = gcd(n, k), n/e is odd 2e [10,12]
2 2k − 1 gcd(n, k) = 1,

δf is not a power of 2
δf ≤ βf ≤ 2δf − 2 [33]

2 2m − 1 n = 2m, m be odd (resp.
even)

2 (resp. 4) [11]

2 2m+1 − 1 n = 2m, m ≥ 2 2m + 2 [32]
2 22k + 2k + 1 n = 4k, k is odd ≤24 [7]
3 3n+3

2
n is odd 3 [15]

odd pn − 2 any n ≤5 [15]
odd pk + 1 e = gcd(n, k), n/e is odd pe [24]
odd pk + 1 e = gcd(n, k), n/e is even pe(pe − 1) [24]
odd pm − 1 n = 2m, pm �≡ 2 (mod 3) 2 [31]
odd (pm−1)(pm+3)

2
n = 2m, pm �≡ 2 (mod 3),
pm ≡ 3 (mod 4)

2 [31]

odd pn−3
2

pn ≡ 3 (mod 4), 5 is a
nonsquare

≤4 This paper

odd pn−3
2

pn ≡ 3 (mod 4), 5 is a square ≤6 This paper

2 Preliminaries

In this section, we introduce some frequently-used notation in this paper and
give some lemmas which will be used in the following.

– q is an odd prime power.
– Fq is the finite field with q elements.
– Let f(x) = x

q−3
2 be a power mapping over Fq.

– Δ(x) = f(x + 1) − f(x) = (x + 1)
q−3
2 − x

q−3
2 .
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– For any b ∈ Fq, let Δ−1(b) = {x : Δ(x) = b} and δ(b) = |Δ−1(b)|.
– Let χ(·) be the quadratic multiplicative character over F∗

q , i.e., for any x ∈ F
∗
q ,

χ(x) = x
q−1
2 =

{

1, if x is a square element,
−1, if x is a nonsquare element.

– For i, j ∈ {1,−1}, we define

Ci,j = {x ∈ Fq\{0,−1} : χ(x) = i and χ(x + 1) = j}.

The differential uniformity of f was determined by Helleseth and Sandberg
in [14]. We have the following theorem.

Theorem 1. Let q ≡ 3 (mod 4) be a prime power. For q > 7, the differential
uniformity of f(x) = x

q−3
2 is given by

δf =

⎧

⎪⎨

⎪⎩

1, if q = 27,
2, if χ(5) = −1,
3, if χ(5) = 1.

Moreover, the following lemma was shown in the proof of Theorem 1 in [14].

Lemma 1. Let q ≡ 3 (mod 4) be a prime power. With the notation introduced
as above, we have

– (i) Δ−1(0) = {− 1
2} and δ(0) = 1.

– (ii) If χ(5) = −1, then Δ−1(1) = {0}, Δ−1(−1) = {−1} and δ(1) = δ(−1) =
1.

– (iii) If χ(5) = 1, then δ(b) = 3 if and only if b = ±1. More-
over, Δ−1(1) = {0,

√
5−1
2 ,

√
5+1
2 }, Δ−1(−1) = {−1, −√

5−1
2 , −√

5−3
2 } with

χ(−1+
√
5

2 ) = −1, Δ−1(1) = {0, −√
5−1
2 , 1−√

5
2 }, Δ−1(−1) = {−1,

√
5−1
2 ,

√
5−3
2 }

with χ(−1+
√
5

2 ) = 1.
– (iv) For b �= ±1, we have δ(b) ≤ 2. More precisely, if δ(b) = 2, i.e., the

equation Δ(x) = b has two distinct solutions, namely x1 and x2, then one of
x1 and x2 is in C1,1 ∪ C−1,−1, and the other is in C1,−1 ∪ C−1,1.

3 The Boomerang Uniformity of the Power Function
x

q−3
2 Over Fq

In this section, we investigate the boomerang uniformity of the power mapping
f via its differential properties. We denote by βf the boomerang uniformity of
f . Our main result is shown as follows.

Theorem 2. Let q be an odd prime power with q ≡ 3 (mod 4). For q �= 7 and
q �= 27, we have,

βf ≤
{

4, if χ(5) = −1,
6, if χ(5) = 1.
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Proof. For any b ∈ F
∗
q , we consider the number of solutions (x, y) ∈ Fq × Fq of

the following equation system
{

x
q−3
2 − y

q−3
2 = b,

(x + 1)
q−3
2 − (y + 1)

q−3
2 = b.

(1)

If (x, y) is a solution of (1), we have x �= y since b �= 0. Moreover, we have
Δ(x) = Δ(y) from (1).We assert that δ(Δ(x)) = 2 or 3 by Lemma 1 and x �= y.
We discuss in the following two cases.

Case 1. δ(Δ(x)) = 2. It is clear that Δ(x) �= ±1 by Lemma 1, then we have
x, y �= 0,−1. The equation system (1) becomes

{
χ(x)x−1 − χ(y)y−1 = b,
χ(x + 1)(x + 1)−1 − χ(y + 1)(y + 1)−1 = b. (2)

By Lemma 1 (iv), for each x ∈ Ci,j , i, j ∈ {1,−1}, there are two possible sets of
y. We have the following 8 subcases, which we summarize in Table 2.

Table 2. Eight subcases from equation system (2)

(x, y) Equation system

I (x, y) ∈ C1,1 × C1,−1

{
x−1 − y−1 = b,

(x + 1)−1 + (y + 1)−1 = b.

II (x, y) ∈ C1,1 × C−1,1

{
x−1 + y−1 = b,

(x + 1)−1 − (y + 1)−1 = b.

III (x, y) ∈ C1,−1 × C1,1

{
x−1 − y−1 = b,

−(x + 1)−1 − (y + 1)−1 = b.

IV (x, y) ∈ C1,−1 × C−1,−1

{
x−1 + y−1 = b,

−(x + 1)−1 + (y + 1)−1 = b.

V (x, y) ∈ C−1,1 × C1,1

{
−x−1 − y−1 = b,

(x + 1)−1 − (y + 1)−1 = b.

VI (x, y) ∈ C−1,1 × C−1,−1

{
−x−1 + y−1 = b,

(x + 1)−1 + (y + 1)−1 = b.

VII (x, y) ∈ C−1,−1 × C1,−1

{
−x−1 − y−1 = b,

−(x + 1)−1 + (y + 1)−1 = b.

VIII (x, y) ∈ C−1,−1 × C−1,1

{
−x−1 + y−1 = b,

−(x + 1)−1 − (y + 1)−1 = b.

Subcase I. (x, y) ∈ C1,1 × C1,−1. After a simple calculation, we obtain two
quadratic equations as follows.

{
b(b − 2)x2 + (b2 − 4b + 2)x − (b − 2) = 0, (3)
b2(y + 1)2 − (b2 + 2)(y + 1) + b = 0. (4)
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It is easy to see that b �= 2 and b �= 0, otherwise, we have x = 0 or y = −1,
a contradiction. If (3) has two solutions, namely x1 and x2, then x1x2 = − 1

b .
We mention that −1 is a nonsquare element. When b is a square element, then
χ(x1x2) = −1, and at most one of x1 and x2 satisfies x ∈ C1,1. Similarly, if (4)
has two solutions, namely y1 and y2, then (y1 + 1)(y2 + 1) = 1

b . When b is a
nonsquare element, then χ((y1 +1)(y2 +1)) = −1, and at most one of y1 and y2
satisfies y ∈ C1,−1. By a discussion as above, we conclude that for any b ∈ F

∗
q ,

this subcase contributes at most 1 solution.
Subcase II. (x, y) ∈ C1,1 × C−1,1. In this subcase, we obtain two quadratic

equations as follows.

{
b(b + 2)(x + 1)2 − (b2 + 4b + 2)(x + 1) + b + 2 = 0, (5)
b2y2 + (b2 + 2)y − b = 0. (6)

It is easy to see that b �= −2 and b �= 0. If (5) (respectively, (6)) has two
solutions, namely x1 and x2 (respectively, y1 and y2), then (x1 +1)(x2 +1) = 1

b
(respectively, y1y2 = − 1

b ). By a similar proof as for subcase I, we conclude that
for any b ∈ F

∗
q , this subcase contributes at most 1 solution.

Subcase III. (x, y) ∈ C1,−1 × C1,1. We obtain two quadratic equations as
follows. {

b2(x + 1)2 − (b2 + 2)(x + 1) − b = 0,
b(b + 2)y2 + (b2 + 4b + 2)y + b + 2 = 0.

Similar to the proof of subase I, this subcase contributes at most 1 solution.
Subcase IV. (x, y) ∈ C1,−1×C−1,−1. Since q−3

2 is even, then (x, y) is a solution
of (1) if and only if (−x−1,−y−1) is a solution of (1). For any y ∈ Fq \{0,−1},
y ∈ C1,1 if and only if −y − 1 ∈ C−1,−1, y ∈ C1,−1 (respectively, C−1,1) if and
only if −y − 1 ∈ C1,−1 (respectively, C−1,1). We conclude that the number of
the solutions in this subcase is the same to that of subcase III.

Subcase V. (x, y) ∈ C−1,1 × C1,1. We obtain two quadratic equations as
follows.

{
b2x2 + (b2 + 2)x + b = 0, (7)
b(b − 2)(y + 1)2 − (b2 − 4b + 2)(y + 1) − (b − 2) = 0. (8)

Similar to the proof of subcase I, this subcase contributes at most 1 solution.
For subcases VI, VII and VIII, we assert that the numbers of solutions in

subcases VI and V (respectively, subcases VII and I, subcases VIII and II) are
the same, similar to subcases IV and III. We conclude that the equation system
(2) has at most one solution in each subcase.

Next we show that the equation system (2) cannot have solutions in subcase
I and subcase V simultaneously. Otherwise, let (x1, y1) ∈ C1,1 × C1,−1 be a
solution of (2) in subcase I and (u1, v1) ∈ C−1,1 × C1,1 be a solution of (2) in
subcase V. Then

χ(x1) = 1, χ(x1 + 1) = 1, χ(y1) = 1, χ(y1 + 1) = −1,
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and
χ(u1) = −1, χ(u1 + 1) = 1, χ(v1) = 1, χ(v1 + 1) = 1.

When we discard the condition on the values of the quadratic character, there
is the other solution (x2, y2) (respectively, (u2, v2)) of equations (3) and (4)
(respectively, (7) and (8)). Considering quadratic equations (3) and (8), only
one of their coefficients has a different sign. More precisely, we have

x1 + x2 = −b2 − 4b + 2
b(b − 2)

= −((v1 + 1) + (v2 + 1))

and
x1x2 = −1

b
= (v1 + 1)(v2 + 1).

Then x1 = −(v2 + 1) and x2 = −(v1 + 1) since x1, v1 ∈ C1,1. Consequently,

χ(b) = χ(
1
b
) = χ(−(v1 + 1)(v2 + 1)) = χ(v1 + 1)χ(x1) = χ(x1) = 1.

Similarly, considering quadratic equations (4) and (7), we have

u1 + u2 = −b2 + 2
b2

= −((y1 + 1) + (y2 + 1))

and
u1u2 =

1
b
= (y1 + 1)(y2 + 1).

Then u1 = −(y2+1) and u2 = −(y1+1) since u1 ∈ C−1,1 and y1 ∈ C1,−1. Hence

χ(b) = χ(
1
b
) = χ((y1 + 1)(y2 + 1)) = χ(−(y1 + 1)u1) = −χ(y1 + 1)χ(u1) = −1,

which is a contradiction. Therefore, for any b ∈ F
∗
q , subcase I and subcase V

cannot give solutions simultaneously, so they contribute at most one solution
altogether. Similarly, subcases II and III contribute at most one solution alto-
gether. That is to say, for any b ∈ F

∗
q , there are at most four solutions of (1) in

this case.

Case 2. δ(Δ(x)) = 3. By Lemma 1, we know that this case only occurs when
χ(5) = 1 and Δ(x) = ±1. Note that −1+

√
5

2 · −1−√
5

2 = −1, without loss of
generality, we assume that χ(−1+

√
5

2 ) = −1. Then we can obtain Δ−1(1) =
{0,

√
5−1
2 ,

√
5+1
2 } and Δ−1(−1) = {−1,−

√
5+1
2 ,−

√
5+3
2 } by Lemma 1 (iii).

We can list all possible pairs (x, y) with Δ(x) = Δ(y) = ±1. Plugging all
pairs (x, y) into the first equation of the system (1), the corresponding b’s are
obtained. We have the following table (Table 3).
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Table 3. The Solutions of Δ(x) = Δ(y) = ±1 and Corresponding b

(x, y) with Δ(x) = Δ(y) = ±1 The Corresponding b

(0,

√
5 − 1

2
), (−1,

−√
5 − 1

2
) b =

√
5 + 1

2

(

√
5 − 1

2
, 0), (

−√
5 − 1

2
, −1) b = −

√
5 + 1

2

(0,

√
5 + 1

2
), (−1,

−√
5 − 3

2
) b =

√
5 − 1

2

(

√
5 + 1

2
, 0), (

−√
5 − 3

2
, −1) b = −

√
5 − 1

2

(

√
5 − 1

2
,

√
5 + 1

2
), (

−√
5 − 1

2
,
−√

5 − 3

2
) b = 1

(

√
5 + 1

2
,

√
5 − 1

2
), (

−√
5 − 3

2
,
−√

5 − 1

2
) b = −1

It is obvious that, for each b ∈ {±1, ±
√
5+1
2 , ±

√
5−1
2 }, the equation system

(1) has two solutions in this case. For b ∈ F
∗
q\{±1, ±

√
5+1
2 , ±

√
5−1
2 } the

equation system (1) has no solution in this case. Note that Case 2 only occurs
when χ(5) = 1, the desired results follow.

Remark 1. By making a computer investigation, we have the boomerang unifor-
mity of f is equal to 4 with q = 35. In addition, the boomerang uniformity of f
is equal to 6 with q = 131. Therefore, we can conclude that our bound is tight.

4 Conclusion

In this paper, we mainly study the boomerang uniformity of the power function
x

q−3
2 over Fq via their differential properties, where q ≡ 3 (mod 4) is an odd

prime power. It is shown that the power function has low boomerang uniformity.
We mention that our approach may be used in determining the boomerang
uniformity of other power mappings. It is worthy finding applications of power
mappings with low boomerang uniformity in sequence designs, coding theory
and combinatorial designs.
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