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Preface

These are the proceedings of the 9th edition of the International Workshop on the Arith-
metic of Finite Fields (WAIFI 2022). The conference should have taken place in the
beautiful city of Chengdu (China) from August 29 to September 2, 2022. However,
because of the COVID-19 pandemic and the related situation in China, it finally took
place online on the same dates.

We are very grateful to the Program Committee members and the external reviewers
for their hard and professional work! The conference received 25 submissions, of which
19 contributed papers were finally selected for presentation after a single-blind peer
review. Each paper was refereed by at least two reviewers. All final decisions were taken
only after a clear position could be clarified through additional reviews and comments.

The Organizing Committee also invited Lilya Budaghyan, Cunsheng Ding, and Syl-
vainDuquesne to speak on topics of their choice, andwe thank them for having accepted!
Each speaker submitted an invited paper, and these were handled by Sihem Mesnager.
Special compliments go out to the Chinese team, the local organizers of WAIFI 2022,
who brought the workshop much success. We also would like to thank José Luis Imaña
for his great help with publicity and guidance regarding the website. The submission
and selection of papers were made using the Easychair software. We also thank Avik
Adhikary for his precious help in this matter.

October 2022 Sihem Mesnager
Zhengchun Zhou
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On a Conjecture on Irreducible
Polynomials over Finite Fields
with Restricted Coefficients

Andrea Ferraguti1,2(B) and Giacomo Micheli3,4

1 Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
2 DICATAM, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy

andrea.ferraguti@unibs.it
3 University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620, USA

4 Center for Cryptographic Research at USF, Tampa, USA

gmicheli@usf.edu

Abstract. Let q be a prime power, Fq be the finite field of order q and
let n, d be positive integers. Munemasa and Nakamura conjectured at
WAIFI 2016 that there exist f ∈ Fq[x] of degree n and α ∈ Fqd not
lying in any proper subfield such that f − α is irreducible in Fqd [x].
In this paper, we prove that the conjecture holds true for every triple
(q, n, d) such that d is larger than a constant that depends only on n. As
a subproduct of our proofs we deduce that if F ∈ Fq[x] is a polynomial
such that F − t0 has a certain special factorization pattern for some
t0 ∈ Fq, then the statistics of all the factorization patterns of F − t1,
where t1 ranges in Fqd , are entirely determined up to an explicit error
term independent of the size of the base field. At the end of the paper
we provide some experimental results to show how sharp our statistics
are.

Keywords: Finite fields · Irreducible polynomials · Densities ·
Factorization patterns

1 Introduction

Let q be a prime power and Fq be the finite field of size q. In this paper we prove
an eventual version of the following conjecture by Munemasa and Nakamura [9,
Conjecture 1], that has been formulated at WAIFI 2016.

Conjecture 1. Let q be a prime power and n, d ∈ N. Let G be the set of elements
α ∈ Fqd such that Fq(α) = Fqd . Then there exists a polynomial f ∈ Fq[x] of
degree n and an element α ∈ G such that f − α ∈ Fqd [x] is irreducible.

Remark 1. By Capelli’s Lemma (see for example [3]), the above conjecture is
equivalent to the following statement: for every prime power q and any pair
of positive integers (m,n) there exist two polynomials f, g ∈ Fq[x] such that
deg f = n, deg g = m and g ◦ f is irreducible.

This work is supported by NSF grant 2127742.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Mesnager and Z. Zhou (Eds.): WAIFI 2022, LNCS 13638, pp. 3–13, 2023.
https://doi.org/10.1007/978-3-031-22944-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22944-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-22944-2_1


4 A. Ferraguti and G. Micheli

Our main result is the following.

Theorem 1. For every positive integer n, there exists an effective constant C(n)
such that Conjecture 1 holds true for any triple (q, n, d) with d ≥ C(n). Moreover,
for any such triple there is an explicit polynomial f ∈ Fq[x] of degree n such that
f − α is irreducible in Fqd [x] for some α generating Fqd .

Notice that this result gives also a direct method to verify the conjecture for
a fixed pair (q, n), since it leaves out only finitely many d’s to check.

Our arguments also allow us to deduce the following fact. If F ∈ Fq[x] and
there exists t0 ∈ Fq such that F − t0 has a certain specific factorization pattern,
then for every d ≥ 1 the entire statistics of the factorization patterns of F − t as
t ranges over Fqd are entirely determined (cf. Theorem 7).

The paper is organized as follows. In Sect. 2 we recall the basic number theo-
retical facts we need to prove our results and describe the strategy we employ to
tackle this type of problems. In Sect. 3 we state and prove the main results of the
paper. In Sect. 4 we provide experimental results to show how the asymptotics
we predict agree with the actual statistics.

Notation

Let q be a prime power and Fq be the finite field of order q. For n ∈ N, we
denote by Sn the symmetric group on n symbols. We say that σ ∈ Sn has cycle
decomposition Δ = (d1, . . . , dn) if, when one writes σ in disjoint cycles, there
are di cycles of length i for any i ∈ {1, . . . , n}. Analogously, for a polynomial
H ∈ Fq[x] we say that H splits according to Δ or H has factorization pattern
Δ if H has di distinct irreducible factors of degree i for every i ∈ {1, . . . , n}.

For a polynomial F ∈ Fq[x] we denote by MF the splitting field of the
polynomial F − t over Fq(t) and by kF its field of constants, where t is an
indeterminate over Fq. Moreover, we denote by GF and NF the Galois group of
the extensions MF : Fq(t) and MF : kF Fq(t), respectively. For a positive integer
d, we denote by GF,d and NF,d the analogous groups when F is thought of as
an element of Fqd [x].

2 Chebotarev Density Theorem for Function Fields

In this section we recall certain techniques that are also used in [8].

Theorem 2. Let L : K be a finite separable extension of global function fields
and let M be its Galois closure with Galois group G. Let P be a place of K and
Q be the set of places of L lying over P . Let R be a place of M lying over P .
There is a natural bijection between Q and the set of orbits of H = HomK(L,M)
under the action of the decomposition group D(R|P ) = {g ∈ G | g(R) = R}. In
addition, let Q ∈ Q and let HQ be the orbit corresponding to Q. Then |HQ| =
e(Q|P )f(Q|P ) where e(Q|P ) and f(Q|P ) are ramification index and relative
degree of Q over P , respectively.
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Remark 2. Throughout the whole paper, when we talk about cycles we are con-
sidering the action of the Galois group on HomFq(t)(L,M). If M is the splitting
field of a separable polynomial f − t ∈ Fq(t)[x], this is equivalent to looking at
the action of the Galois group of f − t on the set of its roots.

Let M : K be a finite Galois extension of global function fields with Galois
group G. Fix a place P of K of degree 1, and let R be a place of M lying above
P . Let h ∈ D(R|P ) be a Frobenius for the finite field extension OR/R : OP /P ,
i.e. an element which acts as φq : u �→ uq when restricted to OR/R.

The set Dφq
(R,P ) of all such elements coincides with the coset I(R|P )h in

D(R|P ), where I(R|P ) is the ramification group.
We define now the map

αP : G −→ [0, 1]

g �→ #Γ (g) ∩ Dφq
(R|P )

#Γ (g) · #I(R|P )
where Γ (g) is the conjugacy class of g in G.

The following version of Chebotarev density theorem is due to Kosters [7].

Theorem 3 (Chebotarev Density Theorem). Let M : K be a finite Galois
extension of function fields over a finite field k of cardinality q and let k̃ be the
constant field of M . Let G = Gal(M : K) and N = Gal(M : k̃K). Let γ ∈ G
such that γ acts as u �→ uq when restricted to k̃. Let g ∈ Nγ, Γ be the conjugacy
class of g in G and let P1 be the set of places of degree 1 of K. Let g be the
genus of M . Then we have

∣
∣
∣
∣
∣

∑

P∈P1

αP (g) − #Γ

#N
(q + 1)

∣
∣
∣
∣
∣
≤ 2

#Γ

#N
gq1/2.

Notice that, in contrast with the number field theoretic version, there is a
necessary condition for g to be a Frobenius, namely to lie in Nγ; this reflects
the fact that in order to be a Frobenius at some place it is necessary to be a
Frobenius for the field of constants.

Corollary 1. With the notation of Theorem 3, let P1
ur be the set of places of

degree 1 in K which are unramified in M . Set

T (g) = {P ∈ P1
ur|a conjugate of g is a Frobenius for R|P , for some R above P}.

Then we have

2
#Γ

#N
gq1/2 − #Ram1(M : K) ≤ #T (g) − #Γ

#N
(q + 1) ≤ 2

#Γ

#N
gq1/2 +#Ram1(M : K),

where Ram1(M : K) is the set of ramified places of degree 1 of K.

Proof. Simply write P1 = P1
ur 	 P1

ram, where P1
ram is the set of degree 1 places

of K that ramify in M . Then use Theorem 3 together with the fact that if g is
a Frobenius for R|P , then all of its conjugates are Frobeniuses for some R′|P .
Moreover, if P ∈ P1

ur then αP (g) ∈ {0, 1/#Γ}, while if P ∈ P1
ram we can only

say that 0 ≤ αP (g) ≤ 1.
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The Method. Let us briefly explain how to combine Theorem 3 (or Corollary
1) with Theorem 2 in the framework we are interested in, namely the one where
M is the splitting field of a polynomial of the form f(x) − t with f(x) ∈ Fq[x].

Fix a certain squarefree factorization pattern Δ and suppose we are interested
in the number N of t0 ∈ Fqd for which f − t0 splits exactly as Δ, for qd large
enough with respect to deg(f). We then proceed as follows:

– Compute the arithmetic and geometric monodromy groups Gf and Nf and
an element γ ∈ Gf as in Theorem 3.

– Write Gf as a permutation group acting on the set of roots of f − t, and find
all the elements in the coset Nfγ that have the cycle decomposition Δ.

– Partition these elements into conjugacy classes Γ1, . . . , Γs.
– Consider the set Ti of u’s in Fq such that Γi contains a Frobenius for u

(identifying u with the corresponding place of degree 1 of Fq(t)). Observe
that Ti ∩ Tj = ∅ and

∑

i #Ti = N .
– Estimate the size of each of the Ti’s with Theorem 3.
– Add up all the quantities obtained to get an estimate for N .

3 Proof of the Main Results

From now on, if F ∈ Fq[x] we will denote by GF and NF respectively the
arithmetic and geometric Galois groups of F −t, and by kF the field of constants
of the splitting field of F − t. The following lemma can be stated more generally,
but we will only need it in this form.

Lemma 1. Let F ∈ Fq[x], t0 ∈ Fq, and g1, . . . , g� be the distinct irreducible
factors of F−t0. Suppose that kF = Fq2 . Then 2 | deg(gi) for some i ∈ {1, . . . , �}.
Proof. Suppose by contradiction that deg(gi) is odd for every i. Let Fqm be
the smallest extension of Fq where all the gi’s split. Since they all have odd
degree, then m is odd. Now observe that GF,m := Gal(F (x) − t | Fqm(t)) ∼= GF

and NF,m := Gal(F (x) − t | Fq2m(t)) ∼= NF , as we left the field of constant
untouched by the fact that m is odd (see for example [8, Lemma 9]). Since the
field of constants is non-trivial, NF � GF . By hypothesis, f −t0 splits into linear
factors in Fqm [x]. It follows that the identity in GF,m is a Frobenius for t0, but
the only case in which the identity can be a Frobenius is when GF,m = NF,m,
which is a contradiction.

Lemma 2. Let G ⊆ Sn be a transitive subgroup containing a cycle of prime
length r > n/2 and a transposition. Then G = Sn.

Proof. See [6].

Similary to [1,5], we deduce the structure of the Galois groups in terms of
factorization patterns.
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Theorem 4. Let F ∈ Fq[x], n = deg(F ) ≥ 8, and r be a prime in {
n/2� +
1, . . . , n − 3} (whose existence is guaranteed by Bertrand’s Postulate). Suppose
that there exists t0 ∈ Fq such that

F (x) − t0 =

⎧

⎪⎨

⎪⎩

(x − a)2 · g(x) · h(x) if n is even
(x2 + x + 1) · x2 · g(x) if n is odd, q = 2 and r = n − 4
(x − a)2 · (x − b) · g(x) · h(x) otherwise

,

where a, b ∈ Fq and a �= b in the third case, g(x), h(x) ∈ Fq[x] are irreducible
and deg g(x) = r. Then F is separable and GF = NF = Sn.

Remark 3. Of course there are other nice criterions to establish whether a poly-
nomial has full symmetric Galois group [2,11] but often they do not work in
characteristic 2 or they are not explicit enough. We prefer then to use a uniform
and simple approach which includes all degrees and characteristics, at least for
n ≥ 8.

Proof (Proof of Theorem 4). Separability follows immediately from the factor-
ization pattern of F (x) − t0.

First assume that q > 2 or r < n − 4, so that we are not in the second
case. The factorization pattern of F − t0 shows that GF contains an element δ
which is a product of three disjoint cycles of lenght 2, r, and n − r − 2 when n is
even, and a product of four disjoint cycles of length 2, 1, r, and n − r − 3 when
n is odd by Theorem 2. Notice that our choice of r ensures that (r, n − r − 2) =
(r, n−r−3) = 1. Thus there are appropriate powers of δ that are a cycle of order
r and a transposition, respectively. Then by Lemma 2 it follows that GF = Sn

and by Lemma 1 it follows that GF = NF , since NF � GF and all irreducible
factors of F (x) − t0 have odd degree.

When q = 2 and r = n − 4 then the factorization of F − t0 over Fq2 shows
that NF contains an element δ that is a product of a transposition and a cycle
of prime degree r. It follows by Lemma 2 that NF = Sn, and hence GF = Sn.

Theorem 5. Let k be a field of characteristic different from 2 and g ∈ k[X].
Suppose that the derivative g′ of g has at least a simple root and for any pair of
distinct roots α, β of g′ in k we have that g(α) �= g(β). In addition suppose that
char(k) � deg(g). Then the Galois group of g − t over k(t) is Sdeg(g).

Proof. See [11, Theorem 3.6].

Theorem 6. For any prime power q and any positive integer n, there exists an
effective constant C(n) and an explicit polynomial f ∈ Fq[x] of degree n such
that for every positive integer d ≥ C(n) there exists α ∈ Fqd with Fq(α) = Fqd

such that f − α ∈ Fqd [x] is irreducible.

Proof. Let us start by noticing that it is enough to prove the theorem for q
prime. In fact suppose we have proven it for q prime, let q = pr for some p prime
and let n ≥ 1. Let C(n) be the constant determined by the theorem for p. Then
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for every natural number k larger than C(n)/r we have that kr > C(n) and
hence there is some generator α ∈ Fpkr = Fqk such that f − α is irreducible in
Fqk , that is precisely the statement of the theorem.

The strategy is the following: first for every pair (q, n) we construct explicitly
a separable polynomial f ∈ Fq[x] of degree n which has the property that Gf =
Nf = Sn. Then we will use Corollary 1 to produce a constant C = C(n) such
that whenever d ≥ C, the set of places of degree 1 of Fqd(t) that do not come
from a proper subextension and whose Frobenius is a maximal cycle in Nf,d =
Gal(f − t|Fqd(t)) is non-empty. This allows to conclude thanks to Theorem 2.

Let us assume n ≥ 8, we will deal with the cases n < 8 separately. Let us fix
f = F as in the statement of Theorem 4 for t0 = 0, i.e.

F (x) =

⎧

⎪⎨

⎪⎩

(x − a)2 · g(x) · h(x) if n is even
(x2 + x + 1) · x2 · g(x) if n is odd, q = 2 and r = n − 4
(x − a)2 · (x − b) · g(x) · h(x) otherwise

,

where deg g(x) = r and both g(x), h(x) are irreducible. Then Gf = Nf = Sn.
When n ∈ {3, 5, 7} let fn(x) = (x − a)2 · gn(x), where a ∈ Fq and gn(x) is an

irreducible polynomial of degree n−2. Then Lemmas 1 and 2 show immediately
that Gf = Nf = Sn, as the factorization pattern of fn forces Gf to contain a
p-cycle for a prime p > n/2 and a transposition.

When n = 2, let f = x(x + 1). It is immediate to see that there is some
t0 ∈ Fq such that f + t0 is irreducible (see for example [4, p. 9]). It follows
immediately that Gf = Nf = S2.

When n ∈ {4, 6} and (q, n) = (q, n − 1) = 1, let f = xn − n

n − 1
xn−1.

Then f ′ has only two roots, namely 0 and 1 (1 being a simple root). Clearly
f(0) �= f(1). Theorem 5 shows that Gf = Nf = Sn. The same theorem can
be used for (q, n) ∈ {(3, 4), (5, 6)}: when q = 3 and n = 4, use the polynomial
f = x4 − x2 + x, when q = 5 and n = 6, use f = x6 − x5 − 2x3.

This leaves out the pairs (q, n) = (2, 4), (2, 6), (3, 6).
When q = 3 and n = 6 let f = x5(x + 2). One checks that f + 1 = (x +

1)(x2 + 2x + 2)(x3 + 2x2 + 2x + 2), showing that Gf contains a 5-cycle and a
transposition. Hence Gf = S6.

Finally, let q = 2. When n = 4, let f = x3(x + 1). Then f + 1 is irreducible,
proving that Gf contains a cycle of order 4 and one of order 3. The only subgroup
of S4 containing two such elements is S4. When n = 6, let f = x(x5 + x3 + 1).
Then f + 1 = (x + 1)(x2 + x + 1)(x3 + x + 1). Thus Gf contains a cycle of order
5 and a transposition.

Thus for any pair (n, q) we have constructed f ∈ Fq[x] of degree n with
Gf = Nf = Sn. It follows immediately that for every d ∈ N we also have
Gf,d = Nf,d = Sn. Our purpose is now to show that any cycle of length n is
a Frobenius for some place t0 ∈ Fqd , when d is large enough compared with
a constant that depends only on n. For any d ∈ N, by Chebotarev Density
Theorem, the number I(n, d) of t0’s for which this happens satisfies the relation
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∣
∣
∣
∣
I(n, d) − #Γ

#Sn
qd

∣
∣
∣
∣
≤ 2

n
gq

d
2 + R,

where R is the number of ramified places of degree 1 and g is the genus of the
splitting field Mf of f − t. Now, since the place at infinity is ramified and the
number of finite, ramified places can be bounded by the number of zeroes of f ′

over the algebraic closure of Fq, this gives R ≤ n.
Moreover, the conjugacy class of a cycle of maximal length has size (n − 1)!,

and therefore we get:

I(n, d) ≥ 1
n

qd − 2
n
gq

d
2 − n.

Clearly, Mf = Fq(t, α1, . . . , αn) where the αi’s are all the roots of f − t in
an algebraic closure of Fq(t). It follows that the genus g can be bounded by
a constant g(n) which is independent of d and q via (for example) a recursive
application of Castelnuovo Inequality [10, Theorem 3.11.3], seeing Mf as the
compositum Fq(t, α1)Fq(t, α2) · · · Fq(t, αn). Therefore for any fixed n the func-
tion 1

nqd − 2
ng(n)q

d
2 − n is asymptotic to 1

nqd as d → ∞.
In order to get the final claim and produce the t0 not lying in any subexten-

sion and such that f − t0 is irreducible in Fqd , it is enough to have I(n, d) being
strictly bigger than

∑

i|d qi. The latter quantity is strictly less than dqd/2, and
therefore it is a sufficient condition that:

1
n

qd − 2
n

g(n)q
d
2 − n ≥ dqd/2. (1)

This holds whenever qd ≥ n
2 d+g(n)+ n

2

√

4
n2 g(n)2 + d2 − 4g(n)d

n + 4, and again,
for this to hold it is sufficient that:

d ≥ max

{

0, log2

(

n

2
d + g(n) +

n

2

√

4
n2

g(n)2 + d2 − 4g(n)d
n

+ 4

)}

.

Remark 4. From the proof above, the constant C(n) can be made explicit as all
the inequalities have effective constants.

Example 1. Whenever the characteristic is larger than the degree of f the con-
stant C(n) is much better than in the worst case scenario (i.e. when one can
use only Castelnuovo Inequality), so we explain how to produce it explicitly
here using Hurwitz formula. Since the constant field extension of Mf : Fq(t)
is trivial we can estimate the genus g of M ′

f = FqMf . Notice also that
Gal(M ′

f : Fq(t)) ∼= Sn. Using [10, Corollary 3.4.14.] on M ′
f : Fq(t) we get

2g − 2 = −2(n!) +
∑

P∈P1
Fq

∑

P ′∈M ′
f : P ′|P

d(P ′).
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Using the fact that in a Galois extension e(P ′|P ) divides the order of the Galois
group together with Hilbert’s Different Exponent Theorem [10, Theorem 3.5.1],
we get that

2g − 2 ≤ −2(n!) +
∑

P∈Ram(Mf :Fq(t))

∑

P ′∈M ′
f : P ′|P

e(P ′|P ).

The fundamental equality [10, Theorem 3.1.11] now ensures that:

2g − 2 ≤ −2(n!) +
∑

P∈Ram(Mf :Fq(t))

n!,

which in turn leads to
g ≤ n(n!)/2,

since #Ram(Mf : Fq(t)) ≤ n. Therefore we get that:

1
n

qd − 2
n
gq

d
2 − n ≥ 1

n
qd − n!q

d
2 − n.

Thus, in order to get a t0 not lying in a subextension and such that f − t0 is
irreducible we again require that (in the notation of Theorem 6) I(n, d) ≥ dqd/2.
This leads to

1
n

qd − n!q
d
2 − n > dqd/2,

which holds whenever d ≥ 2 log(n!).

We now want to emphasize how, using our arguments, one can show that the
existence of a certain factorization pattern for a polynomial f ∈ Fq[x] determines
the statistics of all factorization patterns of f − t0 where t0 ranges over Fqd .

Theorem 7. Let F ∈ Fq[x] have degree n and suppose that there exists t0 such
that

F (x) − t0 =

⎧

⎪⎨

⎪⎩

(x − a)2 · g(x) · h(x) if n is even
(x2 + x + 1) · x2 · g(x) if n is odd, q = 2 and r = n − 4
(x − a)2 · (x − b) · g(x) · h(x) otherwise

,

where a, b ∈ Fq and a �= b in the third case, g(x), h(x) ∈ Fq[x] are irreducible
and deg g(x) is a prime larger than n/2. Then for any i ∈ N we have that
the number of t1 ∈ Fqi such that F − t1 has squarefree factorization pattern
Δ = (d1, d2, . . . , dn) is

1
∏n

j=1 jdj (dj !)
qi + O(qi/2), (2)
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where the implied constant can be made explicit and dependent only on n. More-
over, the number of t1’s such that F − t1 is not squarefree is bounded by an
absolute constant depending only on the degree of F .

Proof. The second part of the statement comes immediately from the fact that
the t0’s in Fq such that F − t0 has a factorization pattern that is not squarefree
are zeroes of the discriminant d(t) ∈ Fq[t] of F − t ∈ Fq(t)[x] over Fq(t), whose
degree is independent of q.

Let us prove the rest of the statement. Using Theorem 4 we immediately get
that NF = GF = Sn for any base field Fqi (i.e. Gal(FqMF : Fq)) = Sn. To show
the rest of the statement, it is sufficient to apply Corollary 1 to any element
g ∈ GF having the disjoint cycle decomposition prescribed by Δ

(−)(−) · · · (−)
︸ ︷︷ ︸

d1

(−−)(−−) · · · (−−))
︸ ︷︷ ︸

d2

· · · (− − · · · − −)
︸ ︷︷ ︸

n

· · · (− − · · · − −)
︸ ︷︷ ︸

n
︸ ︷︷ ︸

dn

as its conjugacy class has
n!

∏n
j=1 jdj (dj !)

elements.

4 Experimental Results

In this section we provide experimental results to show how close the statistics
predicted by Theorems 6 and 7 are to the actual statistics of polynomial.

In Table 1a we fix the polynomial x2(x5 + 4x2 + 2)(x − 3) (which verifies
the hypotheses of Theorem 7) and then we let t0 range over Fqd for q = 11
and d ∈ {1, 2, 3, 4, 5} to see how many times F − t0 ∈ Fqd [x] is an irreducible
polynomial. Using formula (2), in this case the predicted statistic is given by
11d/4!.

In Table 1b we fix the polynomial F = x2(x5 + 4x + 11)(x − 3) verifying
the hypothesis of Theorem 7 and then we let t0 range over Fqd for q = 13 and
d ∈ {1, 2, 3, 4, 5} to see the number of occurrences of the factorization pattern of
the form F −t0 = ut0(x)vt0(x) ∈ Fqd [x] where ut0(x) is an irreducible polynomial
of degree 6 and vt0(x) is an irreducible polynomial of degree 2. Using formula
(2), in this case the predicted statistic is given by 13d/12.
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Table 1. .

d # of t0’s for which
f − t0 is irreducible

Expected # of t0’s
for which f − t0 is
irreducible

Agreement (column
2/column 1)

1 2 1 0.5

2 14 17 1.21

3 143 190 1.32

4 1764 2091 1.18

5 19967 23007 1.15

(a) Statistics of the number of t0’s such that
x2(x5 + 4x2 + 2)(x − 3) − t0 ∈ F11d [x] is irreducible.

d # of t0’s with fact.
pattern ut0(x)vt0(x)

Expected # of t0’s
with fact. pattern
ut0(x)vt0(x)

Agreement (column
2/column 1)

1 1 1 1

2 10 14 1.4

3 255 183 0.717

4 2300 2380 1.03

5 30366 30941 1.01

(b) Statistics of the number of t0’s for which the polynomial
x2(x5 + 4x + 11)(x − 3) − t0 ∈ F13d [x] has factorization pattern
ut0(x)vt0(x) with ut0(x) irreducible of degree 6 and vt0(x)
irreducible of degree 2.
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Abstract. For integers k P [2, q ´ 2] coprime to q ´ 1, we first bound
the number of zeroes of the family of polynomials xk ´ cx ´ d P Fq[x]
where q “ 2n such that q ´ 1 is a prime or q “ 3n such that (q ´ 1)/2
is a prime. This gives us bounds on cross-correlation of a subfamily of
Golomb Costas arrays.

Next, we show that the zero set of xk ´ cx ´ d over Fq is a planar
almost difference set in F∗

q and hence for some set of pairs (c, d), they
produce optical orthogonal codes with λ “ 1.

More generally, we give an algorithm to produce optical orthogonal
codes (OOCs) from P (x) “ x�1 ` c�2x�2 ` c�2´1x

�2´1 ` · · · ` c1x P Fq[x]
where interestingly �1 " �2. We focus on the case �2 P {2, 3} and provide
examples of (q ´ 1, w, λ)-OOCs with λ P {2, 3}.

Keywords: Golomb costas permutations · Planar cyclic almost
difference sets · Almost difference families · Optical orthogonal codes ·
Radar · Sonar · Optical CDMA

1 Introduction

Costas arrays have applications in sonar and radar systems as they have optimal
autocorrelation properties. Their study centres around two problems: searching
for methods to create Costas arrays and studying cross-correlation of families
of Costas arrays. The study of cross-correlation of Costas arrays boils down to
finding a suitable family with good cross-correlation properties. One such family
is considered by Gómez-Pérez and Winterhof in [8].

Optical orthogonal codes are primarily used in optical CDMA communication
systems. It is important to construct such codes with good parameters and large
size. There are constructions of optimal optical orthogonal codes with parameters
(n,w, λ) in case λ “ 1 in the literature ([2,11]), however either the number of
such codes (even if optimal) is limited or these codes have low weight. In [4],
Ding and Xing considers the next case where λ “ 2.

Freedman and Levanon proved in [7] that any two distinct Costas arrays
of the same size > 3 have cross-correlation of at least 2. In Subsect. 2.2, we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Mesnager and Z. Zhou (Eds.): WAIFI 2022, LNCS 13638, pp. 14–32, 2023.
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show that there are � Golomb Costas arrays of size q ´ 2 whose maximal cross-
correlation achieves this lower bound where q “ 2� and � is a prime. More
generally, let p be a prime, n ě 2 a positive integer, and t denote the smallest
prime divisor of n. We show that there is a collection of t distinct Golomb Costas
arrays of size q ´ 2 whose maximal cross-correlation is at most p where q “ pn.

The maximal cross-correlation C(Gq) of the set Gq “ {πg1,g2 | g1 P
Fq is a primitive element} (considered first by Gómez-Pérez and Winterhof in
[8]) of Golomb Costas permutations where g2 P Fq is a fixed primitive element
is expressed as follows:

max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c �“0

|{x P Fq \ {0, 1} |xk ´ cx ´ d “ 0}|.

In [8], Gómez-Pérez and Winterhof showed that C(Gq) of the subfamily Gq of
Golomb Costas permutations of size q ´ 2 when q ´ 1 “ 2n ´ 1 is a Mersenne
prime is bounded above by �(1 ´ 1/(q ´ 1))(1 ` q1/2)�. We call this Case I. They
also show that in case q is an odd prime power and (q ´ 1)/2 is prime, C(Gq) is
bounded above by 1 ` �(1 ´ 2/(q ´ 1))q1/2�. We call this Case II, and it consists
of two subcases when

(a) q is a power of 3 and (q ´ 1)/2 is prime (see Lemma 1 in [6]), and
(b) q is a safe prime, that is, both q and (q ´ 1)/2 are prime.

In Part I, we focus on Case I and Case II(a). Using a combinatorial argu-
ment, we obtain two new bounds for each case: conditional bound (on computing
some values with the help of a computer) and unconditional bound. We prove
that our unconditional bounds (at worst) recover Gómez-Pérez and Winterhof’s
bounds while the numerics suggest a mild improvement. In either case, numerics
show that the conditional bounds (whenever computed) significantly improve
the bounds given by Gómez-Pérez and Winterhof.

The combinatorial nature of zero-sets of polynomials xk ´ cx ´ d led us to
produce optical orthogonal codes with λ “ 1. In [4], Ding and Xing construct
optical orthogonal codes with parameters (2m ´ 1, w, 2) where w P {5, 9, 11, 13}
using cyclotomy (also, for odd primes w ě 11 for which 2 is a primitive element in
the prime field Fw). Although these codes are non-optimal, they are of large size
and thus very promising for applications. Motivated by their work, we provide
the following examples:

(i) (221 ´ 1, 32, 2) optical orthogonal code with size 216 ´ 1, and
(ii) (313 ´ 1, 81, 3) optical orthogonal code with size 39´1

2 ,
(iii) (214 ´ 1, 16, 2) optical orthogonal code with size 2 · (210 ´ 1),
(iv) (37 ´ 1, 5, 2) optical orthogonal code with size 14329,
(v) (2110, 5, 2) optical orthogonal code with size 13600.

The first three codes are members of some infinite classes and they arise from
linearized polynomials while the last two arise from non-linearized polynomials.
We provide a general algorithm to construct such codes in Part III.
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The details of our results and the organization of the paper is as follows.
Our main results in Part I are Theorem 3 and Theorem 4 from which we derive
Corollary 1 and Corollary 2. The strength of the conditional bounds we obtain
is illustrated in Table 1 and Table 2. Moreover, in the appendix (Sect.A), the
unconditional bounds are proved to at worst recover the corresponding bounds
given by Gómez-Pérez and Winterhof.

The elementary proof of Theorem 3 and Theorem 4 led us to investigate
further to uncover the mathematical reason behind the picture and thus in Part
II, we study the combinatorial nature of the zero sets of the polynomials xk´cx´
d. Our main results of Part II are Theorem 6 and Theorem 7. We discover that
the zero sets of the polynomials xk ´ cxpi ´ d are planar almost difference sets
in F∗

q . Some collections of these zero sets in fact form almost difference families
yielding optical orthogonal codes. Corollary 3 turns out to be a result of Moreno
et al. [11]. We end this section by discussing the importance of computing the
multiplicity distribution of low-degree monomials (see Remark 17).

Our efforts culminate in Part III and we present an algorithm to construct
optical orthogonal codes from polynomials and provide examples.

2 Part I: Cross-Correlation of Golomb Costas Arrays

2.1 Golomb Costas Arrays

Let q ě 4 be a prime power and Fq denote the finite field of q elements and with
characteristic p. For an integer m ě 1, let [m] denote the set {1, 2, . . . ,m}.

Definition 1 (Definition 3, [6]). Fix two primitive elements g1, g2 of the field
Fq. Define a permutation πg1,g2 : [q ´ 2] → [q ´ 2] by

πg1,g2(i) “ j if and only if gi
1 ` gj

2 “ 1.

Such a permutation is called Golomb Costas permutation. Note that πg,h “ πg1,g2

if g “ σ(g1) and h “ σ(g2) where σ P Gal(Fq/Fp), so the cardinality of the set
of all Golomb Costas permutations is ϕ(q ´ 1)2/n. Here, ϕ denotes Euler’s phi
function.

Definition 2 (Definition 4, [6]). Let f, g : [n] → [n] be two maps. The cross-
correlation between f and g at (u, v) P Z2 is

Cf,g(u, v) :“ |{(i ` u, f(i) ` v) | i P [n]} X {(i, g(i)) | i P [n]}|.

Note that Cf,g(u, v) “ 0 for pairs (u, v) such that |u|, |v| ě n. The maxi-
mal cross-correlation C(F) of a family F of maps (of cardinality at least 2)
is max

f,gPF
f �“g

max
(u,v)PZ2

Cf,g(u, v).
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2.2 A Small Family of Golomb Costas Permutations with Low
Cross-Correlation

Let n denote the degree of the extension field Fq over the prime field Fp. Let t
denote the smallest prime divisor of n.

Proposition 1. Let us fix two primitive elements g1, g2 of the field Fq and
σ P Gal(Fq/Fp) denote the Frobenius automorphism. Then, the maximal cross-
correlation of the subfamily

G “ {πg,h | g “ σr(g1), h “ g2 where 0 ď r < t}
(where t is the smallest prime divisor of n) of Golomb Costas permutations is
at most p.

Proof. Let π1 :“ πσr1 (g1),g2 and π2 :“ πσr2 (g1),g2 be distinct permutations in
G. Here, r1 �“ r2 and without loss of generality we may assume r1 > r2. Then,
Cπ1,π2(u, v) is the number of solutions of the equation

gv
2(1 ´ gpr1x

1 ) “ (1 ´ g
pr2 (x`u)
1 )

where x, x ` u P [q ´ 2]. This number is bounded above by the number of Fq-
solutions of the polynomial

b(1 ´ y)pr1 “ (1 ´ ay)pr2
,

or equivalently
bp´r2

ypr1´r2 ´ ay ` 1 ´ bp´r2 “ 0.

If we denote one of its zeroes by c, then all of its zeroes are of the form c`dz where
c, d P Fq are fixed and z P Fpk where k “ r1 ´ r2. Suppose it has three zeroes
c, c`dz1, c`dz2 in Fq, then z2/z1 P Fq XF∗

pk “ F∗
p (note that 0 < k “ r1´r2 < t

and gcd(k, n) “ 1. ). This forces that there are at most p zeroes in Fq and this
completes the proof.

Remark 1. Let 0 < d1 < d2 be two consecutive divisors of n. One can more
generally prove that the maximal cross-correlation of the subfamily

G “ {πg,h | g “ σr(g1), h “ g2 where 0 ď r < d2}
of Golomb Costas permutations is at most pd1 .

2.3 Cross-Correlation of a Subfamily of Golomb Costas Arrays

Notations 1. For a fixed primitive element g2 P Fq, let Gq denote the set

{πg1,g2 | g1 is a primitive element of Fq}
of Golomb Costas permutations. The maximal cross-correlation of this subfamily
is studied in [8].
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Let π1 “ πgr
1 ,g2 and π2 “ πgs

1,g2 be two distinct Golomb Costas permutations
where 1 ď r, s ď q ´ 2 coprime to q ´ 1 and r �“ s. Then, Cπ1,π2(u, v) is the
number of nonzero solutions to the equation

gv
2(1 ´ grx

1 ) “ (1 ´ g
s(x`u)
1 )

where x, x ` u P [q ´ 2] so that max
(u,v)PZ2

Cπ1,π2(u, v) is the number of Fq-solutions

other than 0 and 1 of the polynomial

b(1 ´ yr) “ 1 ´ ays

where a, b P F∗
q are arbitrary. Composing this polynomial with the permutation

polynomial x1/r where 1/r denotes the multiplicative inverse of r modulo q ´ 1,
we get the polynomial

ays/r ´ by ` b ´ 1.

Hence, C(Gq) is equal to

max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c �“0

|{x P Fq \ {0, 1} |xk ´ cx ´ d “ 0}|. (�)

2.4 Golomb Costas Arrays of Size q ´ 2 Where q ´ 1 Is a Mersenne
Prime

Throughout Sect. 2.4, let q denote a power of 2 such that q ´ 1 is a prime, i.e.,
q ´ 1 “ 2n ´ 1 is a Mersenne prime. In [8], Gómez-Pérez and Winterhof showed
that the maximal cross-correlation C(Gq) of the subfamily Gq of Golomb Costas
permutations of size q ´ 2 when q ´ 1 is a Mersenne prime is bounded above by
�(1 ´ 1/(q ´ 1))(1 ` q1/2)�.
Lemma 1. Suppose n > 2 is a positive integer such that q ´ 1 “ 2n ´ 1 is a
(Mersenne) prime. Then, we have

C(Gq) “ max
2ďkďq´2

max
c,dPFq
c�“0

|{x P Fq \ {0, 1} | x
k ´ cx ´ d “ 0}| “ max

2ďkďq´2
max
dPF∗

q

|{x P Fq | x
k ´ x ´ d “ 0}|.

Proof. Note that the polynomials xk´cx´d and (x/α)k´c/αk´1x/α´d/αk have
the same number of distinct zeroes where α P F∗

q . Setting α “ c
1

1´k , we prove the
statement. (Here, 1

1´k denotes the multiplicative inverse of 1 ´ k modulo q ´ 1.)

Remark 2. With the help of Lemma 1, we were able to compute that C(Gq) “ 13
for n “ 13 using Magma [1] within two days.

Remark 3. For a Mersenne prime q ´ 1 “ 2n ´ 1, let α P F∗
q be a fixed element

other than 1. Since the multiplicative group F∗
q is generated by any element

other than 1, both α and α ` 1 are primitive elements. As α is primitive, we
have αk “ α ` 1 for some 2 ď k ď q ´ 2, i.e., α is a zero of the polynomial
xk ´ x ´ 1 P Fp[x]. As α is primitive, it has n distinct Galois conjugates over Fp

so that C(Gq) ě n.
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Definition 3 (Definition 1.1, [10]). Let f P Fq[x] be a nonzero polynomial.
Throughout this definition, Fq denotes any finite field. Let νi(f) denote the car-
dinality of the set

{(c, d) P F2
q | the polynomial f(x) ´ cx ´ d has i distinct zeroes in Fq}.

The sequence (νi(f))q
i“0 is called the intersection distribution of f .

For c P Fq, let Mi(f, c) denote the set {d P Fq | f(x) ´
cx ´ d has i solutions in Fq} and Mi(f, c) be its cardinality. The sequence
(Mi(f, c))q

i“0 is called the multiplicity distribution of f at c. We will use the
multiplicity distribution in Part II.

Notations 2. Fix a polynomial f P Fq[x]. For c, d P Fq, let Sc,d(f) denote the
set {x P Fq | f(x)´cx´d “ 0}. Note that for an automorphism σ P Gal(Fq/Fp),
we have |Sc,d(f)| “ |Sσ(c),σ(d)(f)|. If f is clear from the context, we will simply
write Sc,d in place of Sc,d(f).

Theorem 3. Suppose n > 2 is a positive integer such that q ´ 1 “ 2n ´ 1 is a
(Mersenne) prime. Let f : F2n → F2n be defined by f(x) “ xk where for some

2 ď k ď q ´ 2. Then, νi(f) “ 0 for i > max
{⌊√

q´2
n ` 1

4 ` 1
2

⌋
,S1,1

}
where

S1,1 “ max
2ďkďq´2

|S1,1(xk)|.

Proof. Consider the polynomial f(x) ´ cx ´ d. By Lemma 1, we may assume
that c “ 1 and d P F∗

q . Moreover, it suffices to show that the number of zeroes

of f(x) ´ x ´ d in Fq is bounded above by
⌊√

q´2
n ` 1

4 ` 1
2

⌋
whenever d �“ 1. In

other words, we may assume that d is a primitive element.

Let β, β ` α P F2n be two distinct zeroes of the polynomial f(x) ´ x ´ d
where d P F2n \ F2 (so, α �“ 0). Then,

f(β) ´ β ´ d “ 0
f(β ` α) ´ (β ` α) ´ d “ 0

This implies that β and β `α are solutions to the equation f(x`α)`f(x) “ α.
Dividing both sides by αk, we observe that

D1f(β/α) “ α1´k

where D1f(x) “ (x ` 1)k ` xk is the derivative of f at 1. In other words, α1´k is
in the image of D1f(x) and β/α and β/α ` 1 are in the corresponding preimage
set. Now, let us denote by Δ the set {(x1, x2) P S1,d ˆ S1,d |x1 “ x2} and define
a map Φ from the set

(S1,d ˆ S1,d) \ Δ “ {(x1, x2) P F2
q | f(x1) ´ x1 ´ d “ 0, f(x2) ´ x2 ´ d “ 0 and x1 �“ x2}

to the graph
{(y, z) P F2

q |D1f(y) “ z, and y �“ 0, 1}
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of the derivative of f at 1 by (x1, x2) �→ (x1/(x1 ´ x2), (x1 ´ x2)1´k).
Note that this map is injective as gcd(1 ´ k, q ´ 1) “ 1. Let

(1, b) „ (1, d)

if b “ σr(d) for some 0 ď r < n. If x P S1,d, then xpr P S1,σr(d) and since d �P F2,
we have S1,d X S1,σr(d) “ H for any r �“ 0. Note that Φ injectively extends to
the domain

⊔
(1,b)„(1,d)

((S1,b ˆS1,b)\Δ). Here, |S1,b| “ |S1,d| for any (1, b) „ (1, d)

and there are n such pairs (1, b) as d is primitive. The target has cardinality
q ´ 2 and the domain has n�(� ´ 1) elements where � is the number of distinct
zeroes of the polynomial f(x) ´ x ´ d. This implies that

n�(� ´ 1) ď q ´ 2

so that

� ď
√

q ´ 2
n

` 1
4

` 1
2
.

and this finishes the proof.

Remark 4. Note that since S1,1 is divisible by n, the proof in fact shows that

S1,1 ď
⌊√

q ´ 2 ` 1
4 ` 1

2

⌋
n

where �x�n denotes the largest integer divisible by n

which is less than or equal to x.

Corollary 1. Suppose n > 2 is a positive integer such that q ´ 1 “ 2n ´ 1 is a
(Mersenne) prime. Then, we have

S1,1 ď C(Gq) ď max
{⌊√

q ´ 2
n

` 1
4

` 1
2

⌋
,S1,1

}
.

Moreover,

S1,1 ď
⌊√

q ´ 2 ` 1
4

` 1
2

⌋
n

.

Proof. It follows from Lemma 1, Theorem 3 and Remark 4.

Remark 5. We denote max
{⌊√

q´2
n ` 1

4 ` 1
2

⌋
,S1,1

}
by Bound A, and⌊√

q ´ 2 ` 1
4 ` 1

2

⌋
n

by Bound B.

Remark 6. In the appendix, we prove that Bound B is at worst recovers Gómez-
Pérez and Winterhof’s bound. Numerics suggest that although Bound B is only
slightly better than that of Gómez-Pérez and Winterhof, Bound A gives a sig-
nificant improvement.

Remark 7. Computation of C(Gq) for n ě 17 is beyond our reach even with the
help of Lemma 1. It would be interesting to tackle the first instance (if any) of
n for which S1,1 �“ C(Gq).
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Table 1. Comparison of our bounds and that of Gómez-Pérez and Winterhof’s in Case
I.

n S1,1 C(Gq) Bound A Bound B Gómez-Pérez and Winterhof’s bound

3 3 3 3 3 3

5 5 5 5 5 6

7 7 7 7 7 12

13 13 13 25 91 91

17 51 * 88 357 363

19 57 * 166 722 725

2.5 Golomb Costas Arrays of Size 3n ´ 2 Where (3n ´ 1)/2 Is
a Prime

Throughout Sect. 2.5, let q be a power of 3 such that (q ´ 1)/2 “ (3n ´ 1)/2 is a
prime, i.e. q is a strict safe prime power as defined in [6]. Such n is necessarily an
odd prime and first few values for it are 3, 7, 13, 71. Recall that C(Gq) is equal
to

max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c �“0

|{x P Fq \ {0, 1} |xk ´ cx ´ d “ 0}|.

Lemma 2. Suppose n ě 3 is a positive integer such that (q ´ 1)/2 “ (3n ´ 1)/2
is a prime. Then, we have

C(Gq) “ max
2ďkďq´2

gcd(k,q´1)“1

max
c,dPFq

c�“0
|{x P Fq \ {0, 1} | xk ´ cx ´ d “ 0}| “ max

2ďkďq´2
gcd(k,q´1)“1

max
dPF∗

q
cP{1,´1}

|{x P Fq | xk ´ cx ´ d “ 0}|.

Proof. Note that the polynomials xk ´ cx ´ d and (x/α)k ´ c/αk´1x/α ´ d/αk

have the same number of distinct zeroes where α P F∗
q . Either c or ´c is a square

in Fq and gcd(k ´ 1, q ´ 1) “ 2 so that

αk´1 “ c or

αk´1 “ ´c

has a zero in Fq. Therefore, we may assume that c P {1, ´1}.
Let us now argue why 0 and 1 can be excluded: First note that polynomials
xk ´ cx can be excluded from the list as we already know that C(Gq) ě n ě 3.
Moreover, 0 is not a zero of any xk ´cx´d where d P F∗

q . Clearly, 1 �P S1,d where
d P F∗

q and even if 1 P S´1,´1, we have S´1,´1 “ S´1,1 and 1 �P S´1,1.

Remark 8. With the help of Lemma 2, we were able to compute that C(Gq) “ 14
for n “ 7 using Magma [1] within minutes.

Theorem 4. Suppose n ě 3 is a positive integer such that (q´1)/2 “ (3n´1)/2
is a prime. Let f : F2n → F2n be the (permutation) polynomial defined by
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f(x) “ xk where for some 2 ď k ď q ´ 2 and gcd(k, q ´ 1) “ 1. Then, νi(f) “ 0
for

i > max
{√

q ´ 3
n

` 1
4

` 1
2
, S1,1, S´1,1

}

where Su,v “ max
2ďkďq´2

gcd(k,q´1)“1

|Su,v(xk)| and u, v P {1, ´1}.

Proof. Consider the polynomial f(x) ´ cx ´ d. Note that S1,1 “ S1,´1 and
S´1,1 “ S´1,´1, so by Lemma 2 we may assume c P {1, ´1} and d P Fq \ Fp.
Now, we imitate the proof of Theorem 3 by first considering the map Φ from the
set (Sc,dˆSc,d)\Δ to the graph {(y, z) P F2

q |D1f(y) “ z and y �“ 0, 1} defined by
(x1, x2) �→ (x1/(x1´x2), (x1´x2)1´k) where D1f(x) “ f(x`1)´f(x). Note that
now we have gcd(1´k, q´1) “ 2, so the injectivity of Φ requires a new argument:
Suppose Φ(β1, β2) “ Φ(β3, β4). This implies that (β2 ´ β1)1´k “ (β4 ´ β3)1´k,
i.e.,

β4 ´ β3 “ ξ(β2 ´ β1)

for some ξ P Fq such that ξ1´k “ 1. Since gcd(k ´ 1, q ´ 1) “ 2, we must have
ξ “ ±1.
Note that Φ(β1, β2) “ Φ(β3, β4) also forces that β3 “ ξβ1. However, we have

βk
3 ´ cβ3 ´ d “ (ξβ1)k ´ cξβ1 ´ d “ ξ(βk

1 ´ cβ1) ´ d “ 0

as ξ1´k “ 1. This implies that d “ ξd, so we must have ξ “ 1. This implies that
(β1, β2) “ (β3, β4) proving the injectivity.

Next, we consider the equivalence relation defined in Theorem 3:

(1, b) „ (1, d)

if b “ σr(d) for some 0 ď r < n where σ denotes the Frobenius automorphism.
Note that we have |S1,b| “ |S1,d| for any (1, b) „ (1, d) and moreover these
S1,b’s are all pairwise disjoint. Note that Φ injectively extends to the domain⊔
(1,b)„(1,d)

((S1,b ˆ S1,b) \ Δ) because ´d cannot be a Galois conjugate of d as the

extension degree of Fq over Fp is necessarily an odd prime. There are n such
pairs (1, b) since d P Fq \ Fp and n is prime. The target has cardinality q ´ 2
and the domain has n�(� ´ 1) elements where � is the number of distinct zeroes
of the polynomial f(x) ´ cx ´ d. This implies that n�(� ´ 1) ď �q ´ 2�n “ q ´ 3
so that

� ď
√

q ´ 3
n

` 1
4

` 1
2

and this finishes the proof.

Remark 9. Note that since S´1,1 “ 1 (mod n) and S1,1 is divisible by n, the

proof shows that S1,1 ď
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n

and S´1,1 ď
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n,1

.

Here, �x�n,1 denotes the maximum of the two integers that are not exceeding x
and equal to 0 or 1 modulo n.
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Corollary 2. Suppose n ě 3 is a positive integer such that (q´1)/2 “ (3n´1)/2
is prime. Then, we have

max{S1,1,S´1,1} ď C(Gq) ď max
{⌊√

q ´ 3
n

` 1
4

` 1
2

⌋
, S1,1, S´1,1

}
.

Moreover,

max{S1,1,S´1,1} ď
⌊√

q ´ 3 ` 1
4

` 1
2

⌋
n,1

.

Proof. Immediate.

Remark 10. We call the expression max
{⌊√

q´3
n ` 1

4 ` 1
2

⌋
, S1,1, S´1,1

}
Bound

A, and
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n,1

is called Bound B.

Remark 11. We prove in the appendix that Bound B is at worst recovers Gómez-
Pérez and Winterhof’s bound.

Table 2. Comparison of our bounds and that of Gómez-Pérez and Winterhof’s in Case
II(a).

n S1,1 S´1,1 C(Gq) Bound A Bound B Gómez-Pérez and Winterhof’s bound

3 3 4 4 4 4 5

7 14 8 14 18 43 47

13 * * * * 1262 1263

Remark 12. Computation of C(Gq) for n ě 13 is beyond our reach even with
the help of Lemma 2. It would be interesting to tackle the first instance (if any)
of n for which max{S1,1, S´1,1} �“ C(Gq).

Remark 13. Using the idea in Theorem 3 and Theorem 4, one can obtain an
analogue of Bound B for the subfamily Gp of Golomb Costas permutations and
the family Wp of Welch Costas permutations where p is a safe prime. However,
there is no analogue of Bound A in these cases due to the lack of nontrivial
automorphisms.

3 Part II: Almost Difference Families Arising
from xk ´ cx ´ d

3.1 Planar Almost Difference Sets Arising from the Polynomials
xk ´ cxpi ´ d

Definition 4 ([3]). Let (A, `) be an abelian group of order n. A subset of D ⊂ A
of cardinality w is an (n,w, λ, t) almost difference set in A if, for t times, the
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difference function diff : A\{0} → Zě0 takes the value λ and, for n´1´t times,
it takes the value λ ` 1 where

diff(α) “ |(D ` α) X D|.
Notations 5. Let Fq be a finite field where q ě 4 and for fixed c, d P F∗

q

and 0 ď i < n, consider the set Si,c,d(k) “ {x P Fq |xk ´ cxpi ´ d “ 0}. Let
2 ď k ď q ´ 2 be an integer such that � :“ |Si,c,d(k)| ě 2. For brevity, we write
Si,c,d in place of Si,c,d(k) if k is clear from the context. Moreover, if i “ 0, we
write Sc,d in place of S0,c,d (see Notation 2).

Lemma 3. The map G : (Si,c,d ˆ Si,c,d) \ Δ → Fq defined by G(β1, β2) “ β1

β2
is

injective.

Proof. Let us first consider the map Φ : (Si,c,d ˆ Si,c,d) \ Δ → F2
q defined by

Φ(x1, x2) “
(

x1

x1 ´ x2
, c(x1 ´ x2)pi´k

)
.

This map is injective: For if Φ(β1, β2) “ Φ(β3, β4), then

c(β1 ´ β2)pi´k “ c(β3 ´ β4)pi´k

implies that β1 ´ β2 “ ξ(β3 ´ β4) for some ξ P Fq such that ξpi´k “ 1. This
implies that β1 “ ξβ3, but then

βk
1 ´ cβpi

1 ´ d “ (ξβ3)k ´ cξpi

βpi

3 ´ d “ ξpi

(β3 ´ cβpi

3 ) ´ d “ 0

as ξpi´k “ 1. This implies that d “ ξpi

d, so ξpi “ 1 and we conclude that ξ “ 1.
Hence, (β1, β2) “ (β3, β4). Moreover, the image of Φ is contained(!) in the graph
{(x, y) P F2

q | y “ (x`1)k ´xk} (see the proof of Theorem 3 for how we construct
Φ) so that the map F :“ π1 ◦ Φ is also injective where π1 : F2

q → Fq is the first
projection. Note that 1 �P Im(F ), so we may consider the composition r◦F where
r : Fq \ {1} → Fq is the rational map r(x) “ x

x ´ 1
. Observe that the map r ◦ F

is the map G given in the statement above. The injectivity of r implies that G
is injective, and we are done.

Theorem 6. Si,c,d(k) is a (q ´ 1, �, 0, q ´ 2 ´ �(� ´ 1)) almost difference set in
the group F∗

q .

Proof. For simplicity, we denote Si,c,d by D. Let a P Im(G) (so, a �“ 1), then
there exist distinct elements β1, β2 P D such that a “ β1/β2. I.e. β1 P aD X D
so that diff(a) ě 1. Let us now show that in fact diff(a) “ 1 in this case. Let
β1, β

′
1 P aD X D, then there exist β2, β

′
2 P D such that

β1 “ aβ2

β′
1 “ aβ′

2,
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i.e., β1
β2

“ β′
1

β′
2
. This implies that G(β1, β2) “ G(β′

1, β
′
2), so by the injectivity of G,

we conclude that β1 “ β2. Thus, diff(a) “ 1.

Now, suppose a �P Im(G) and a �“ 1. We claim that aD X D “ H, for if
β1 P aD X D, then there would exist β2 P D (with β2 �“ β1 as a �“ 1) such
that aβ2 “ β1. This contradicts with our assumption that a �P Im(G). Hence, D
is a (q ´ 1, �, 0, q ´ 2 ´ �(� ´ 1)) almost difference set of the group F∗

q .

3.2 Almost Difference Families Arising from the Polynomials
xk ´ cx ´ d

Definition 5 ([5]). Let F “ {D1,D2, . . . , Dm} be a family of w-subsets of a
finite abelian group G of cardinality n. For 1 ď j ď m, let ΔDj denote the
multiset

{a ´ b | a, b P Dj , a �“ b}.

Let ΔF denote the formal sum of ΔDj’s. F is called an (n,w, λ, t) almost dif-
ference family of size m if some t nonzero elements of G occur in the multiset
ΔF with multiplicity λ, and the remaining n´1´ t nonzero elements of G occur
in ΔF with multiplicity λ ` 1.

The setup of the next theorem is as follows:

Let Fq be a finite field. Let c P F∗
q , d P Fq and 2 ď k ď q ´ 2 be an inte-

ger. Let r :“ gcd(k ´ 1, q ´ 1) and we denote the subgroup of F∗
q consisting

elements of order dividing r by Hr. Note that there is a (faithful) group action

Hr ˆ Ms(xk, c) \ {0} → Ms(xk, c) \ {0}
(h, x) �→ hx

where s :“ |Sc,d| by multiplication (see Definition 3).

Theorem 7. Let R be a set of representatives of the orbit space (Ms(xk, c) \
{0})/Hr. Then, {Sc,d(k) | d P R} is an (q ´ 1, s, 0) almost difference family in

F∗
q of size

⌊
Ms(x

k,c)
r

⌋
.

The proof of this theorem will be given after Remark 15.

Remark 14. Note that if xk ´ cx has s distinct zeroes in Fq, then
⌊

Ms(x
k,c)

r

⌋
“

Ms(x
k,c)´1
r , and otherwise

⌊
Ms(x

k,c)
r

⌋
“ Ms(x

k,c)
r .

Note that Mq(xq, 1) “ qn´1 ([10, Proposition B.1]) in Fqn and this gives us the
next immediate corollary known as the generalized Bose-Chowla construction of
OOCs.
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Corollary 3 (Generalized Bose-Chowla construction, [11]). There is an almost
difference family in F∗

qn with parameters (qn ´ 1, q, 0) of size qn´1´1
q´1 .

Proof. It immediately follows from Theorem 7 and the remark above.

Remark 15. Note that after choosing an isomorphism F∗
qn 	 Zqn´1, associated

to the family in the corollary above, there is an optimal optical orthogonal code
(OOC for short) with parameters (qn ´ 1, q, 1) for every prime power q and an
integer n ě 2 (see Definition 6 below). One may more generally consider the
zero set of the polynomials xq ´ cx where c is a nonzero (q ´ 1)th power, i.e.
c “ αq´1 for some α P F∗

qn . However, in the case, the two codewords (of weight q)
associated to the zero sets of xq´x´d (where d P R is fixed) and xq´cx´αqd are
cyclic shifts of each other. Hence, two relevant optical orthogonal codes would be
related to each other by an already-known operation of replacing any codeword
by a cyclic shift of itself (see Remark 18 below).

Proof (Proof of Theorem 7). Let us first consider the map

Φ :
⊔
dPR

((Sc,d ˆ Sc,d) \ Δ) → F2
q

defined by

Φ(x1, x2) “
(

x1

x1 ´ x2
, c(x1 ´ x2)1´k

)
.

This map is injective: For if Φ(β1, β2) “ Φ(β3, β4) where β1, β2 P Sc,d1 and
β3, β4 P Sc,d2 , then we have β3 ´ β4 “ ξ(β1 ´ β2) for some ξ P Fq such that
ξ1´k “ 1. This implies that β3 “ ξβ1 but note that

βk
3 ´ cβ3 ´ d2 “ ξ(βk

1 ´ cβ1) ´ d2 “ 0.

Therefore, ξd1 “ d2 and this forces that ξ “ 1 since d1, d2 P R, proving the
injectivity of Φ.

The rest is identical to the arguments given in Lemma 3 and Theorem 6.

Remark 16. For r as above, let C
(r,q)
0 is the set of r´th powers in F∗

q and C
(r,q)
i “

{αix |, C(r,q)
0 } where α P Fq is a fixed primitive element and 0 ď i ď r ´ 1. Note

that the almost difference family in Theorem 7 can in fact be extended to the
union

⋃r´1
i“1 {Sci,d(k) | d P Ri} where ci P C

(r,q)
i are fixed elements and Ri’s are

fixed sets of representatives of the orbit spaces (Ms(xk, ci) \ {0})/Hr. In this

way, the size of the extended family increases to
⌊∑r´1

i“0 Ms(x
k,ci)

r

⌋
.

Remark 17. In [9], Kyureghyan-Li-Pott computed the multiplicity distribution
of x3 over arbitrary finite fields. Using their result and Remark 16 above one
can isolate the prime powers q such that there exist (q ´ 1, 3, 1) optimal optical
orthogonal codes arising from the zero sets of polynomials x3 ´ cx ´ d. Note
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however that the existence problem of optimal OOCs of weight 3 is already
settled (see Theorem 5, [2]).

If the multiplicity distribution of x4 is studied, this might lead to a partial
progress towards the open problem of existence of optimal OOCs of weight 4
and it might even be possible to formulate a conjecture about an exhaustive list
of lengths for which such OOCs exist. We expect that such a task boils down to
cyclotomy but we do not tackle this problem here.

4 Part III: An Algorithm to Produce OOCs

Definition 6. An optical orthogonal code (OOC for short) C with parameters
(n,w, λ) is a collection of sequences consisting 0s and 1s of length n and weight
w such that

(i)
n´1∑
i“0

cici`j ď λ for any c P C and j �≡ 0 (modn), and

(ii)
n´1∑
i“0

cidi`j ď λ for any distinct c,d P C.

Remark 18. For a codeword c “ (c1, c2, . . . , cn), let T (c) denote the cyclic shift
(cn, c1, c2, . . . , cn´1). Then, for an optical orthogonal codes C, the collection (C \
{c}) ∪ {Tm(c)} is an OOC as well for any 0 ď m ď n. That is, we can replace
any codeword with some cyclic shift of itself.

This section is motivated by the work [4] of Ding-Xing (though we do not use
cyclotomy). Here is our algorithm:

Step 1: Fix a polynomial of the form P (x) “ x�1 ` c�2x
�2 ` c�2´1x

�2´1 ` · · · `
c1x P Fq[x] where c1 and c2 are nonzero (or more generally, where ci

and cj are nonzero for some 1 ď i < j ď �2 so that gcd(�1 ´i, �1 ´j) “
1).

Step 2: Fix an extension F∗
qn of Fq and element d P F∗

qn such that P (x) ´ d
has � zeroes F∗

qn where � > �2. (Note that one can always let d be any
nonzero element of Fq and set Fqn as the splitting field of P (x) ´ d.)

Step 3: Find all elements d P Fqn such that P (x) ´ d has � non-zero zeroes in
Fqn .

Output: Associated to the family

{{x P F∗
qn |P (x) ´ d “ 0} | d is nonzero and P (x) ´ d has � zeroes in F∗

qn}

of sets (of cardinality �), we have optical orthogonal codes with param-
eters (qn ´ 1, �, �2) whose supports are obtained by taking discrete
logarithm with respect to some primitive element of Fqn .

This algorithm will be extended in a way that the size of the code is as large
as possible (yet likely still non-optimal) but we first provide some examples by
considering linearized polynomials:
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Proposition 2. For any integer f ě 1, there exists an (221f ´ 1, 32, 2) optical
orthogonal code with size 221f´5 ´ 1.

Proof. It has been checked with Magma that the additive polynomial L(x) “
x32 ´ x2 ´ x splits over F221 . For nonzero elements d1, d2 P F221f , denote by
Di ⊂ F∗

221f the zero set of x32 ´ x2 ´ x ´ di in F221f for i “ 1, 2. Note that for
nonzero α P F221f ,

|α´1D1 X D2| “ deg gcd(α32x32 ´ α2x2 ´ αx ´ d1, x32 ´ x2 ´ x ´ d2)

“ deg gcd((α32 ´ α2)x2 ` (α32 ´ α)x ` α32d2 ´ d1, x32 ´ x2 ´ x ´ d2)

ď 2

since (α32 ´ α2)x2 ` (α32 ´ α)x ` α32d2 ´ d1 is a nonzero polynomial (of degree
at most 2) where d1 “ d2 and α �“ 1, or d1 �“ d2.

Then, associated to the set of 32-subsets

{{x P F∗
221f | x32´x2´x´d “ 0} | d is nonzero and in the image of L : F221f → F221f },

we have an OOC with the desired properties.

Proposition 3. For any integer f ě 1, there exists an (313f ´ 1, 81, 3) optical
orthogonal code with size 313f´4´1

2 .

Proof. It has been checked with Magma that the F3-linear polynomial L(x) “
x81 ` x3 ` x splits over F313 . As for a nonzero element α P F∗

313f , that α81 “ α3

and α81 “ α implies α2 “ 1, therefore associated to the set of 81-subsets

{{x P F
∗
313f | x

81 ` x
3 ` x ´ d “ 0} | d is a non-square element in the image of L : F313f → F313f },

we have an OOC with the desired properties.

We will now give an example that will motivate the next subsection:

Proposition 4. For an integer f ě 1, there exists an (214f ´ 1, w(f), 2) optical
orthogonal code with size

⎧⎨
⎩

2 ·
(

214f

w(f) ´ 1
)

if f is not divisible by 5,

214f

w(f) ´ 1 if f is divisible by 5

where

w(f) “
⎧⎪⎨
⎪⎩

16 if f is odd
32 if f is even but not divisible by 4,

64 if f is divisible by 4.
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Proof. Let θ P F214 be a primitive third root of unity. It has been checked with
Magma that the additive polynomial Lθ(x) “ x64 ´ x2 ´ θx factorizes over F214

as a product of 16 linear factors, 8 quadratic factors and 8 quartic factors (so
does Lθ2(x) “ x64 ´ x2 ´ θ2x).

If f is not divisible by 5, then 62 is coprime to 214f ´ 1 and associated to the
union of the set of w(f)-subsets

{{x P F∗
214f

| x64 ´ x2 ´ θx ´ d “ 0} | d is nonzero and in the image of Lθ : F214f → F214f }

with the set of w(f)-subsets

{{x P F∗
214f

| x64 ´ x2 ´ θ2x ´ d “ 0} | d is nonzero and in the image of Lθ2 : F214f → F214f }

we have an OOC with the desired properties. In case f is divisible by 5, only
one of these sets yields an OOC (and has the desired properties).

4.1 Algorithm Continued: How to Extend the Size of the OOC

Note that the algorithm in the previous section does not guarantee that the
OOC produced will be optimal, so it is important to extend the algorithm in a
way that we get as many codes as possible as an output. Here are the remaining
steps of the algorithm:

Step 4: Set S “ {P (x)} and W be the complement of S in the set of polyno-
mials in Fq which are of the form specified in Step 1.

Step 5: Let Q(x) “ x�1 ` c�2x
�2 ` c�2´1x

�2´1 ` · · · ` c1x be in W . If
(i) Q(x) ´ eFqn has � zeroes in F∗

qn for any e P F∗
qn , and

(ii) Q(x) �“ α´�1P (αx) for any α P F∗
qn and any P (x) P S,

then add Q(x) to the list S.
Step 6: Remove Q(x) from the set W and return Step 5 until S stabilizes.

Output: Associated to the family

{{x P F∗
qn | P (x)´d “ 0} | P (x) P S, d is nonzero and P (x)´d has � zeroes in F∗

qn}

of sets (of cardinality �), we have optical orthogonal codes with param-
eters (qn ´ 1, �, �2) whose supports are obtained by taking discrete
logarithm with respect to some primitive element of Fqn .

The proofs of the propositions in previous subsection illustrate the idea
behind our algorithm. Nevertheless, we provide an argument to show that the
algorithm works:

(Proof of the validity of the algorithm:) Note that by Step 2 and Step 5, the
family

{{x P F∗
qn | P (x) ´ d “ 0} | P (x) P S, d is nonzero and P (x) ´ d has � zeroes in F∗

qn}
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contains only subsets of cardinality �. Let D1 “ {x P F∗
qn |P (x) ´ d1 “ 0} and

D2 “ {x P F∗
qn |Q(x) ´ d2 “ 0} and α P F∗

qn , then

|α´1D1 X D2| “ deg gcd(P (αx) ´ d1, Q(x) ´ d2)

“ deg gcd(Q(x) ´ α´�1P (αx) ` d2 ´ α´�1d1, Q(x) ´ d2)

If P (x) “ Q(x) and d1 �“ d2, the polynomial Q(x) ´ α´�1P (αx) ` d2 ´ α´�1d1
is a nonzero polynomial of degree at most �2 by Step 1. If P (x) �“ Q(x), then
Q(x) ´ α´�1P (αx) ` d2 ´ α´�1d1 is a nonzero polynomial of degree at most �2
by Step 5.

We end by providing examples of OOCs arising from non-additive polyno-
mials.

Example 1. Associated to the family

{{x P F
∗
37 | x

59 ´ x
2 ´ cx ´ d “ 0} | d is nonzero and x

59 ´ x
2 ´ cx ´ d has at least 5 zeroes in F

∗
37},

we have a variable-weight OOC with parameters (2186, {5, 6, 7, 8, 9}, 2) of size
17143 (14329 of them have weight 5). Note that the assumption in Step 5 of our
algorithm is satisfied as gcd(57, 2186) “ 1.

Example 2. Associated to the family

{{x P F
∗
2111 | x

59 ´x
2 ´cx´d “ 0} | d is nonzero and x

59 ´x
2 ´cx´d has at least 5 zeroes in F

∗
2111},

we have a variable-weight OOC with parameters (2110, {5, 6, 7, 8, 9}, 2) of size
16263 (13600 of them have weight 5).

Acknowledgement. We would like to thank the anonymous referees for their valuable
suggestions and comments.

A Appendix

Proposition 5. Bound B recovers Gómez-Pérez and Winterhof’s bound when
q “ 2n and q ´ 1 is a prime for n ě 3.

Proof. For n “ 3, we have an equality (see Table 1), so may assume n ě 5. Then,
we have
(

1 ´ 1
q ´ 1

)
(1 ` √

q) ´
(

1
2

`
√

q ´ 7
4

)
“ 1

2
´ 1

q ´ 1
` √

q ´
√

q

q ´ 1
´

√
q ´ 7

4

ě 1
2

´ 1
q ´ 1

´
√

q

q ´ 1
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Note also that
(

1
2

´ 1
q ´ 1

)2

´
( √

q

q ´ 1

)2

ě 1
4

´ 1
q ´ 1

` 1
(q ´ 1)2

´ q

(q ´ 1)2

ě q2 ´ 10q ` 9
4(q ´ 1)2

.

As q ě 32, we have q2 ´ 10q ` 9 ě 0. Hence,
⌊

1
2 `

√
q ´ 7

4

⌋
n

ď
⌊(

1 ´ 1
q´1

)
(1 `

√
q)

⌋
.

Proposition 6. Bound B recovers Gómez-Pérez and Winterhof’s bound when
q “ 3n and (q ´ 1)/2 is a prime.

Proof. Assume the hypothesis on q. Then, we have
(
1 `

(
1 ´ 2

q ´ 1

)√
q

)2

´
(√

q ´ 3 ` 1

4
` 1

2

)2

“
(
1 ` 2

√
q
q ´ 3

q ´ 1
`

(
1 ´ 4

q ´ 1
` 4

(q ´ 1)2

)
q

)
´

(
q ´ 3 ` 1

4
`

√
q ´ 3 ` 1

4
` 1

4

)

“
(
1 ` q ´ 4q

q ´ 1
` 4q

(q ´ 1)2
` 2

√
q
q ´ 3

q ´ 1

)
´

(
´ 5

2
` q `

√
q ´ 11

4

)

“ ´1

2
` 4

q ´ 1
` 4q

(q ´ 1)2
` √

q

(
2(q ´ 3)

q ´ 1
´

√
1 ´ 11

4q

)

ě ´1

2
` √

q

(
1 ´ 4

q ´ 1

)

ě ´1

2
`

√
q

2

Hence,
⌊√

q ´ 3 ` 1
4 ` 1

2

⌋
n,1

ď
⌊
1 `

(
1 ´ 2

q´1

)√
q

⌋
“ 1 `

⌊(
1 ´ 2

q´1

)√
q

⌋
.
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Abstract. Chudnovsky-type algorithms for the multiplication in finite
extensions of finite fields are well-known for having a good bilinear com-
plexity, both asymptotically and at finite distance. More precisely, for
every degree n of the extension, the existence of a family of algorithms
with linear bilinear complexity in n has been proved using the original
method applied to an explicit recursive tower of function fields. However,
there is currently no method to build these algorithms in polynomial
time. Nevertheless, one can construct in polynomial time a Chudnovsky-
type algorithm over the projective line for the multiplication in any
extension degree, with a quasi-linear bilinear complexity. In this paper,
we prove that we can obtain algorithms both constructible in polyno-
mial time and having a linear bilinear complexity by mixing up these
two strategies.

1 Introduction

1.1 Multiplication in Finite Extension of Finite Fields

Let Fq be the finite field with q elements, q being a prime power. The search for
algorithms computing multiplications in a finite extension Fqn efficiently is an
important research area. This problem can be approached according to different
models of complexity. The algebraic complexity relies on counting the operations
in the base field used by an algorithm. Many works use this model, and focus
on obtaining the best asymptotic complexities, for example [14,19,22], and more
recently [18], that proves that multiplication in Fqn can be done with O(n log n)
operations in Fq. Furthermore, one can consider that there are different types of
operations in the base field. More precisely, let B = {e1, ..., en} be a basis of Fqn

over Fq. Then, for x =
∑n

i=1 xiei and y =
∑n

j=1 yjej , the product of x and y is
given canonically by

z = xy =
n∑

h=1

zheh =
n∑

h=1

( n∑

i,j=1

tijhxiyj

)

eh, (1)
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where eiej =
∑n

h=1 tijheh, tijh ∈ Fq being some constants. This formula involves
additions and multiplications. One can moreover distinguish two types of multi-
plications. There are multiplications by a constant in Fq (by tijh in (1)), called
scalar multiplications, and the bilinear multiplications that are depending of the
two elements being multiplied (the xiyj). Each kind of operations has a different
computational cost. Additions are known to be less expensive than multiplica-
tions. Among the multiplications, the scalar ones are their-selves known to be
less expensive than the bilinear ones [23]. The last observation lead to the intro-
duction of the bilinear complexity theory [10], that is the study of the complexity
of the multiplication considering only bilinear multiplication in the base field.

Definition 1.1. Let U be an algorithm for the multiplication in Fqn over Fq. Its
number of bilinear multiplications is called its bilinear complexity, written μ(U).
The bilinear complexity of the multiplication in Fqn over Fq, denoted by μq(n),
is the quantity:

μq(n) = min
U

μ(U),

where U is running over all multiplication algorithms in Fqn over Fq.

1.2 Known-Results

It is known that the method of D. V. and G. V. Chudnovsky [12] currently pro-
vides the best results on bilinear complexity. The Chudnovsky-Chudnovsky Mul-
tiplication Algorithm (CCMA) is an evaluation/interpolation algorithm using
rational points of algebraic curves, i.e. rational places of a function field. As the
degree of the extension is increasing, the algorithm requires more and more ratio-
nal places for the evaluation. From the Hasse–Weil bound, it is known that the
number of rational places of a function fields of genus g is bounded. Consequently,
these algorithms use function fields of increasing genus according to the degree
of the extension. Using an explicit recursive tower of function fields defined by
Garcia and Stichtenoth [15], Ballet has proven the existence of CCMA having a
linear bilinear complexity ([2], see [8]). The method had since been generalized.
Ballet and Rolland [6] made it possible to use of places of degree 1 and 2. Arnaud
[1] introduced the use of derivative evaluations. Cenk and Özbudak [11] extended
these results. Finally, the last generalization is due to Randriambololona [21],
allowing the construction of asymmetric algorithms. These works, as well as oth-
ers on building the objects on which the algorithm is based (e.g. [5,20]), have
allowed to improve the bounds for the bilinear complexity [8, Section 8.2].

However, the effectiveness of the asymptotic construction of these algorithms
is unclear. According to Shparlinski, Tsfasman, and Vlăduţ [23, Remark 4.5],
they can be constructed in polynomial time as long as a place of degree n of
the function field, required to realize the extension as a residue class field, is
given. For now, there is no method for constructing such a place other than
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looking through an exponentially large set, and that makes algorithms with a
linear bilinear complexity not constructible in polynomial time. But the general-
izations of CCMA lead to the introduction of another strategy for constructing
an algorithm for the multiplication in any extension degree. Instead of using
function fields of increasing genus according to the extension degree, one can fix
the genus of the function field and use places of increasing degrees to evaluate.
This strategy was first introduced in [4], fixing the genus to be equal to 1 (i.e.
using elliptic curves). This way, algorithms for the multiplication in any exten-
sion degree can be constructed in polynomial time, and the bilinear complexity
of these algorithms is asymptotically quasi-linear. More recently, the authors
introduced in [7] a generic construction over the projective line (i.e. using the
function field of genus 0), that also gives algorithms constructible in polynomial
time, and with a uniform quasi-linear bound for their bilinear complexity.

1.3 New Results and Organization of the Paper

Thanks to the notion of tester, Bshouty obtained in [9] for the first time a
family of multiplication algorithms that are constructible in polynomial time and
have a linear bilinear complexity in O(n). It is a reasonable question whether
the method of D.V. and G.V. Chudnovsky, and its generalizations, can also
provide algorithms both constructible in polynomial time and having a linear
bilinear complexity. The aim of this paper is to give a positive answer to this
question. The key idea is to mix the two strategies discussed above. First, we
construct a Chudnovsky-type algorithm over the projective line, using places
of arbitrary degrees. Then, we use a CCMA over a tower of function fields to
multiply the evaluation at the non-rational places. This method allows us to
give an uniform bound for the bilinear complexity, that is linear according to
the extension degree. This is the first time such an uniform bound is given for
algorithms constructible deterministically and in polynomial time.

The paper is organized as follows. In Sect. 2, we recall the basics of function
field theory and give the necessary information on Chudnovsky-type algorithms.
In Sect. 3, we introduce a new construction called Hybrid Chudnovsky-type Algo-
rithms. In Sect. 4, we prove the existence of such algorithms having a linear bilin-
ear complexity while they are constructible deterministically and in polynomial
time for any base field and any extension degree.

2 Chudnovsky-type Multiplication Algorithms

In this section, we first recall the basics of function field theory. Then, we give a
version of the Chudnovsky method sufficient for our discussion. In a third time,
we review the existing strategies for asymptotic construction of these algorithms.

2.1 Background and Notations

Let F/Fq be a function field of genus g = g(F ) over Fq. For O a valuation ring,
the place P is defined to be P = O \ O×. We denote by FP the residue class
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field at the place P , that is isomorphic to Fqd , d being the degree of the place. A
rational place is a place of degree 1. We also denote by Nd(F/Fq) the number of
places of degree d of F over Fq. A divisor D is a formal sum D =

∑
i niPi, where

Pi are places and ni are relative integers. The support supp D of D is the set of
the places Pj for which nj �= 0, and D is effective if all the ni are positive. The
degree of D is defined by deg D =

∑
i ni. The Riemann-Roch space associated

to the divisor D is denoted by L(D). A divisor D is said to be non-special if
dim L(D) = deg(D)+1− g. Details about algebraic function fields can be found
in [24]. In order to obtain an explicit formula, let us recall the following notation.

Definition 2.1. Let q be a prime power and d1, . . . , dN be positive integers. The
generalized Hadamard product in Fqd1 × · · · × FqdN , denoted by �, is given for
all (a1, . . . , aN ), (b1, . . . , bN ) ∈ Fqd1 × · · · × FqdN by

(a1, . . . , aN )�(b1, . . . , bN ) = (a1b1, . . . , aNbN ).

2.2 Chudnovsky-type Multiplication Algorithm

Now, we can give a version of the method of D.V. and G.V. Chudnovsky, suffi-
cient for our purpose, using only the generalization to the evaluation at places
of arbitrary degrees. This follows directly from [8, Theorem 5.3].

Theorem 2.2. Let q be a prime power and n be a positive integer. Let F/Fq

be an algebraic function field of genus g, Q be a degree n place of F/Fq, D be a
divisor of F/Fq, and P = {P1, . . . , PN} be a set of places of arbitrary degrees of
F/Fq. We suppose that supp D ∩ {Q,P1, ..., PN} = ∅ and that

(i) the evaluation map
EvQ : L(D) → FQ

f �→ f(Q)

is surjective,
(ii) the evaluation map

EvP : L(2D) → Fqdeg P1 × · · · × Fqdeg PN

f �→ (f(P1), . . . , f(PN ))

is injective.

Then,

(1) we have a multiplication algorithm UF,P
q,n (D, Q) such that for any two ele-

ments x, y in Fqn :

xy = EQ ◦ EvP |ImEvP
−1

(
EP ◦ Ev−1

Q (x)�EP ◦ Ev−1
Q (y)

)
, (2)

where EQ denotes the canonical projection from the valuation ring OQ of
the place Q in its residue class field FQ, EP the extension of EvP on the
valuation ring OQ of the place Q, EvP |ImEvP

−1 the restriction of the inverse
map of EvP on its image, � the generalized Hadamard product and ◦ the
standard composition map;
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(2) the algorithm UF,P
q,n (D, Q) defined by (2) has bilinear complexity

μ(UF,P
q,n (D, Q)) =

N∑

i=1

μ(Uq,deg Pi
(Pi)),

where Uq,deg Pi
(Pi) is the algorithm used to multiply the evaluations at Pi.

Existence of the objects satisfying the above conditions is ensured by the fol-
lowing numerical criteria:

(a) a sufficient condition for the existence of a place Q in F/Fq of degree n is
that 2g + 1 ≤ q(n−1)/2(q1/2 − 1), where g is the genus of F ,

(b) a sufficient condition for (i) is that the divisor D − Q is non-special,
(c) a necessary and sufficient condition for (ii) is that the divisor 2D − G is

zero-dimensional:
dim L(2D − G) = 0

where G = P1 + · · · + PN .

2.3 Existing Asymptotic Constructions

The topic of this paper is to show how algorithms for multiplication in an arbi-
trary extension degree can be constructed. In this purpose, we will give several
families of algorithms.

Definition 2.3. Let q be a prime power.

(i) A family of Chudnovsky-type algorithms Uq = (Uq,2,Uq,3, . . . ,Uq,n, . . .) is a
collection of Chudnovsky-type algorithms such that for all integer n ≥ 2, the
algorithm Uq,n = UF,P

q,n (D, Q) is an algorithm for the multiplication in Fqn

over Fq.

Let Uq = (Uq,2,Uq,3, . . . ,Uq,n, . . .) be a family of Chudnovsky-type algorithms.

(ii) The family Uq admits an asymptotically bounded bilinear complexity if there
exists f : N → R such that lim supn→+∞

μ(Uq,n)
n ≤ f(n). In this case, the

bilinear complexity of Uq is said to be asymptotically bounded by f , which
is denoted by μ(Uq) ∈ O(f(n)).

(iii) Moreover, the family Uq admits an uniformly bounded bilinear complexity if
there exists f : N → R such that for all integer n ≥ 2 the bilinear complexity
of Uq,n verifies μ(Uq,n) ≤ f(n)n. Then, the bilinear complexity of the family
Uq is said to be uniformly bounded by f , which is denoted it by μ(Uq) ≤ f(n).

Note that for given q and n, when F , D and Q are fixed, the same construc-
tion can be applied to any place Q of degree n. Consequently, we refer to
Uq,n = Uq,n(P ) depending on whether or not the choice of Q matters. Using
these notations, the result that the bilinear complexity is linear according to the
degree of the extension can be rephrased as the existence for any q of a family
of algorithm Uq such that their bilinear complexities verify μ(Uq) ≤ C, where
C is a constant. Moreover, we are interested in the construction cost of these
algorithms. In this sense, we introduce the following notation.
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Definition 2.4. Let Uq,n be a Chudnovsky-type algorithm for the multiplication
in Fqn over Fq. Its complexity of construction, denoted by ψ(Uq,n), is given by
the number of operations in Fq required to build it deterministically.

Now, let us recall the two main strategies of asymptotic constructions of
families of Chudnovsky-type algorithms.

Increasing Genus Strategy. Originally, CCMA is an evaluation/interpolation
algorithm using only evaluation at rational places of function fields. Conse-
quently, the construction of the algorithm requires an increasing number of ratio-
nal places, in accordance with the degree of the extension. From the Hasse–Weil
bound, the number of rational places is bounded relatively to the genus of the
function fields. Thus, the historical approach is to use an infinite family F of
function fields of increasing genus in order to obtain an increasing number of
rational places.

Example 2.5. For any q > 3, Ballet proved in [2] the existence of a family
of CCMA UF

q2 = (UF
q2,n)n≥2 such that for all n ≥ 2, the algorithm UF

q2,n =
UFi,P

q2,n (D, Q) is an algorithm from Theorem 2.2 such that

– Fk is the step with the smallest possible genus in F = (F1, . . . , Fk, . . .), the
recursively defined tower of function fields over Fq2 defined by Garcia and
Stichtenoth in [15], such that
1. Fk/Fq contains a place of degree n,
2. N1(Fk/Fq) > 2n + 2g(Fk) − 1

– P is a set of 2n+g(Fk)−1 rational places, D is a divisor of degree n+g(Fk)−1
such that D − Q is non-special, and Q is a place of degree n.

The bilinear complexity of this family verifies μ(UF
q2) ≤ 2

(
1 + q

q−3

)
. The exis-

tence of this family proves that the bilinear complexity is linear for the extensions
of Fq2 , where q > 3.

Remark 2.6. This is an existence result, and there is no method to construct the
algorithms of the family UF

q2 efficiently (for the moment). More precisely, there
is no method to construct the place Q of degree n better than use an exhaustive
search in an exponentially large set [23, Remark 4.5]. There is also method to
construct such a divisor D.

Recursive Strategy Using Places of Increasing Degrees. The generaliza-
tion of the method to the use of evaluations at places of arbitrary degrees made
possible a new asymptotic construction strategy. It is in fact no longer necessary
to use more and more rational places, since places of increasing degree can be
used instead. But the evaluation at a place of degree d > 1 lies in an exten-
sion of degree d of Fq. Then, one can recursively construct a Chudnovsky-type
algorithm to multiply these evaluations. Consequently, it leads to a recursive
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construction of Chudnovsky-type algorithms. This strategy was introduced by
Ballet, Bonnecaze and Tukumuli in [4], using functions fields of genus 1 only,
i.e. elliptic curves. They proved what can be rephrased as follows

Proposition 2.7. For any prime power q, there exists a family of Chudnovsky-
type algorithms U1

q = (U1
q,2, . . . ,U1

q,n, . . .), where for any positive integer n ≥ 2,
the algorithm U1

q,n = UF,P
q,n (D, Q) is an algorithm from Theorem 2.2 recursively

constructed over a function field F of genus at most 1, such that

(i) its bilinear complexity is asymptotically bounded, and verifies

μ(U1
q ) ∈ O

(
(2q)log

∗(n)
)

,

(ii) there exists α ∈ N such that for all prime power q and all positive integer
n, ψ(U1

q,n) ∈ O(nα).

In this result, the iterated logarithm log∗ is defined as follows.

Definition 2.8. For all integer n, the iterated logarithm of n, denoted by
log∗(n), is defined by the following recursive function:

log∗(n) =
{

0 if n ≤ 1
1 + log∗(log(n)) elsewhere.

This value is the number of times the logarithm is iteratively applied to n until
we obtain a result lower than or equal to 1.

This bilinear complexity is not linear, but is said to be quasi-linear since the
iterated logarithm is a very slow-growing function, as it can be seen in [4, Table 2].
The bilinear complexity of these algorithms is not as good as that of algorithms
provided by the increasing genus strategy, but unlike the latter, the algorithms
of U1

q are constructible in polynomial time. More recently, the authors applied
this recursive strategy of construction to the rational function field Fq(x) in [7].
These algorithms will be at the heart of our new construction.

Definition 2.9. Let q be a prime power and n be a positive integer. A recur-
sive Chudnovsky-type algorithm UPn

q,n(Q) over the projective line is an algorithm
UF,P

q,n (D, Q) satisfying the assumptions of Theorem 2.2 such that:

– F/Fq is the rational function field Fq(x), Q is a place of degree n of Fq(x),
– D = (n − 1)P∞, where P∞ is the place at infinity of Fq(x),
– Pn is a set of places of degrees lower than n such that

∑

P∈Pn

deg P = 2n − 1,

– the multiplication in FP � Fqd , where d = deg P , is computed by UPd

q,d(P ),
where P ∈ Pn.
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The results from [7] can be expressed as follows.

Proposition 2.10. For all prime power q, there exists a family of recursive
Chudnovsky-type algorithms over the projective line U0

q = (U0
q,2, . . . ,U0

q,n, . . .),
where for any positive integer n ≥ 2, the algorithm U0

q,n = UPn
q,n(Q) is an algo-

rithm from Definition 2.9, such that

(i) its bilinear complexity verifies μ(U0
q ) ≤ C

(
4q2

q−1

)log∗√
q(2n)

, where C = 3 if
q = 2 and C = 1 elsewhere, and the iterated logarithm in the basis

√
q is

defined as follows:

log∗√
q(n) =

⎧
⎨

⎩

0 if n ≤ 1 and q > 2,
0 if n ≤ 5 and q = 2,
1 + log∗√

q(log√
q(n)) elsewhere.

(ii) The algorithms of U0
q are constructible deterministically and in time

ψ(U0
q,n) ∈ O(n4).

Compared with the recursive construction over function fields of genus one,
the use of the rational function field allows the authors to prove a uniform bound
for the bilinear complexity of the algorithms, and to give an estimation for the
cost of construction. Moreover, this construction is generic unlike the case of
elliptic curves, since the form of the divisor D and the bases of the Riemann-
Roch spaces are fixed.

Remark 2.11. The use of evaluation with multiplicity, using generalized eval-
uation maps, can also be considered in this construction.

3 New Strategy of Asymptotic Constructions

In this section, we introduce a new strategy of construction of Chudnovsky-
type algorithms, in order to obtain a family of algorithms that are constructible
in polynomial time and have a linear bilinear complexity. This strategy is an
hybrid construction, involving both strategies introduced in the Sect. 2.3. The
clearest way to expose this construction is to introduce a tree representation of
Chudnovsky type algorithms.

3.1 Tree Construction of Chudnovsky-type Algorithms

The algorithms provided by the recursive construction of Sect. 2.3 can be seen
as in the following example.

Example 3.1. Let us consider the multiplication in F36 over F3. The recursive
Chudnovsky-type algorithm over the projective line UP6

3,6(Q6) evaluates at the 4
rational places of F3(x), denoted by P0, P1, P2 and P∞, 2 places of degree 2, denoted
by P 2

1 and P 2
2 , and a place of degree 3 denoted by P 3. The product of the evalua-

tions at the places of degree 2 are computed using the recursively defined algorithm,
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with P2 = {P0, P1, P∞} (that corresponds to the Karatsuba algorithm). The evalu-
ations at P 3 are multiplied using UP3

3,3(P
3), where P3 = {P0, P1, P∞, P 2

1 }, that also
involves the algorithm for the multiplication in the quadratic extension. The tree in
Table 1 shows the sub-algorithms used by UP6

3,6(Q6), where Pi = Uq,1(Pi) is the algo-
rithm of multiplication in Fq, consisting of a bilinear multiplication in Fq. In the
langage of trees, the root is the main algorithm, used to multiply in F

6
3. This algo-

rithm reduce the problem to the multiplication at some places of degrees one, two or
three, at the level 1 of the tree. The leaves of the tree are multiplications at rational
places and thus the bilinear complexity of the algorithm is given by the breadth of
the tree, i.e. its number of leaves.

Table 1. Tree representation of UP6
3,6(Q6)

Using this formalism, one can define an algorithm using the structure of a tree.

Definition 3.2. A tree-structure Chudnovsky-type algorithm is an algorithm of
type Chudnovsky given by its tree representation.

Consequently, one can express already known constructions as follows.

– CCMA: the original algorithm is fully defined by is root. It uses evaluation
only at rational places and can be represented as a tree of depth one.

– Recursive construction over the projective line: these algorithms are
given by recursively constructed trees such as in Table 1.

3.2 Hybrid Strategy

Now, let us introduce a new strategy of construction, that we call hybrid strategy.
Our aim is to construct an algorithm for the multiplication in Fqn with a linear
bilinear complexity, and that is constructible efficiently, i.e. deterministically
and in polynomial time with respect to n. The algorithms built over a tower
of function fields as in Example 2.5 already have a linear bilinear complexity,
but have an exponential cost to construct the place of degree n [23, Remark
5]. On the other side, the algorithms over the projective line are constructible
in polynomial time, but lose the linearity of the bilinear complexity. The idea



44 S. Ballet et al.

is to mix these strategies to obtain algorithms with at the same time a linear
bilinear complexity and a construction that is deterministic and in polynomial
time (Table 2).

To construct such an algorithm of multiplication in Fqn , we start with a
Chudnovsky type algorithm over the projective line. In this case, the place of
degree n is constructible efficiently, and we use the evaluation at places of degrees
until some integer d. The multiplication of the evaluations at these places is
computed using a family of algorithms of type Chudnovsky built over a tower
of function fields whose bilinear complexity is uniformly bounded by a constant.
We define such an algorithm as a Hybrid Chudnovsky-type Algorithm (HCA).

Definition 3.3. Let q be a prime power and n be a positive integer. A Hybrid
Chudnovsky-type Algorithm for the multiplication in Fqn over Fq is a tree-

structured Chudnovsky-type algorithm UH(U0
q,n,Uq)

q,n such that

– the root of UH(U0
q,n,Uq)

q,n is a Chudnovsky-type algorithm over the projective line
U0

q,n = UPn
q,n(Q) ∈ U0

q ,
– at level 1, the evaluations are multiplied using a family Uq of Chudnovsky-

type algorithms constructed using the increasing genus strategy, whose bilinear
complexity is uniformly bounded.

Table 2. Tree representation of a UH(U0
q,n,Uq)

q,n

Proposition 3.4. Let q be a prime power and n be a positive integer. Let

UH(U0
q,n,Uq)

q = (UH(U0
q,2,Uq)

q,2 , . . . ,UH(U0
q,n,Uq)

q,n , . . .) be a family of HCA as in Defini-
tion 3.3. Then,

(i) its bilinear complexity verifies μ(UH(U0
q,n,Uq)

q ) ≤ 2μ(Uq),
(ii) for all n, if each algorithm Uq,n ∈ Uq is constructible deterministically and

in time ψ(Uq,n), then for any positive integer n, the algorithm UH(U0
q,n,Uq)

q,n is
constructible deterministically and in time O (

n4 +
∑

P∈P ψ(Uq,deg P (P )
)
.

Proof. (i) By Theorem 2.2, the bilinear complexity of the algorithm UH(U0
q,n,Uq)

q

is given by
∑

P∈P μ(Uq,deg P ). Let nk denote the number of places of
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degree k in P. By Definition 2.9, we have that
∑

k knk = 2n − 1 and
d = maxP∈P(deg P ). Then, for all positive integer n,

μ

(

UH(U0
q,n,Uq)

q

)

=
∑d

k=1 nkμ(Uq,k)

≤ ∑d
k=1 knkμ(Uq) = (2n − 1)μ(Uq).

It follows that μ
(
UH(U0

q,n,Uq)
)

≤ 2μ(Uq).
(ii) First, we need to construct the main part of a Chudnovsky-type over the

projective line. For all positive integer n, there exists a Chudnovsky-type
algorithm UP

q,n(Q) over Fq(x) that is constructible in time O(n4) determin-
istically [7, Theorem 5.3]. This gives the cost of the construction of the root
of UH(U0

q,n,Uq). It remains to consider the construction of the sub-algorithms
Uq,deg P (P ), for all P ∈ P. By hypothesis, these algorithms are constructible
deterministically and in time ψ(Uq,deg P (P )). Consequently,

ψ
(
UH(U0

q,n,Uq)
)

∈ O
(

n4 +
∑

P∈P
ψ (Uq,deg P (P ))

)

.

4 Explicit Construction of Algorithms with Linear
Bilinear Complexity and Constructible in Polynomial
Time

This section is devoted to prove for all prime power q the existence of a family UH
q

of algorithms having a linear bilinear complexity, and constructible determinis-
tically and in polynomial time. More precisely, we prove the following result.

Theorem 4.1. For all prime power q, there exist a family UH
q = UH(U0

q,n,Uq)
q of

Hybrid Chudnovsky-type algorithm such that

– the bilinear complexity of the family verifies μ(UH
q ) ≤ Cq,

– the algorithms of UH
q are constructible deterministically, and for all positive

integer n, they are constructible in time ψ(UH
q,n) ∈ O(n4).

To complete this proof, we first recall a property of the tower of algebraic
function fields define by Garcia and Stichtenoth in [15]. In a second time, we give
a specific family UFsp

q2 over this tower of function fields. Finally, the last section
proves Theorem 4.1.

4.1 A Garcia-Stichtenoth Tower of Function Fields

Recall that a recursively defined tower of function fields is defined in [24, Defini-
tion 7.2.2]. In what follows, we consider the recursive tower F = (F1, . . . , Fk, . . .)
defined over Fq2 introduced by Garcia and Stichtenoth in [15] and defined by
the equation Y q +Y = Xq

Xq−1+1 . This tower is the one used to prove the linearity
of the bilinear complexity, as explained in Example 2.5 and Remark 2.6. Recall
this result from [15].
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Theorem 4.2. The genus gk of Fk/Fq2 is given by

gk =
{

qk + qk−1 − q(k+1)/2 − 2q(k−1)/2 + 1, if k ≡ 1 mod 2
qk + qk−1 − 1

2q(k/2)+1 − 3
2q(k/2) − q(k/2)−1 + 1, if k ≡ 0 mod 2

Moreover, if Nk denotes the number of rational places of Fk/Fq2 , then for all
k ≥ 3

N1(Fk) ≥ (q2 − 1)qk−1 + 2q.

4.2 Specific Construction on the Garcia-Stichtenoth Tower

In our purpose, we need to introduce a specific construction of algorithms for the
multiplication in any finite extension of a finite field. This construction relies on
the explicit recursive tower of function fields defined by Garcia and Stichtenoth
[15], in a manner similar to that of Ballet [2]. However, we are interested in having
some informations on the complexity of the construction of these algorithms. In
this purpose, we set some parameters generically, as in [23, Proposition 4.1]. Let
us introduce this family of Chudnovsky-type algorithms.

Definition 4.3. Let q > 5 be a prime power. Let UFsp

q2 = (UFsp

q2,n, . . . ,UFsp

q2,n, . . .)

be a family of CCMA where for all n ≥ 2, the algorithm UFsp

q2,n = UF,P
q2,n(D, Q) is

an algorithm as in Theorem 2.2 with the following parameters.

– F = Fk is the step with the smallest possible genus of the Garcia-Stichtenoth
tower F of Sect. 4.1 such that
1. 2gk + 1 ≤ qn−1(q − 1), where gk = g(Fk),
2. N1(Fk) ≥ 2n + 4gk.

– D = (n + 2g − 1)P , where P is a rational place of Fk.
– P is a set of 2n + 4gk − 1 rational places of Fk, distinct from P .
– Q is a degree n place of Fk.

Proposition 4.4. Let q > 5 be a prime power. The algorithm UFsp

q2,n exists for
any positive integer n, and its bilinear complexity is given by

μ(UFsp

q2,n) = 2n + 3gk − 1.

Proof. The existence of such an algorithm is given by the existence of a step in
the Garcia Stichtenoth recursive tower of function fields verifying the conditions
1. and 2. in Definition 4.3. Indeed, suppose that such a function fields exists.
Then, the condition 1. is the condition (a) of Theorem 2.2. Moreover, the Divisor
D − Q is of degree 2gk − 1, and thus trivially non special and (b) is verified.
Finally, the divisor 2D − ∑

P∈P P is of degree −1 and hence zero dimensional,
and this gives condition (c). Theorem 2.2 is hence verified and we can construct
an algorithm UFsp

q2,n = UFk,P
q2,n (D, Q). Since L(2D) is of dimension 2n + 3gk − 1, it

is enough to use exactly this number of places of P. Consequently, the bilinear
complexity of the algorithm is given by μ(UFsp

q2,n) = 2n + 3gk − 1. It remains to
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prove that such a function field exists. In [2], Ballet proved its existence where
the condition 2. was given by N1(Fk) ≥ 2n+2gk −2, where q was supposed to be
greater than or equal to 3. It has been possible because the Garcia-Stichtenoth
tower reaches the Drinfeld-Vlăduţ Bound. Indeed, the parameters chosen by
Ballet are possible since limk 	→+∞

N1(Fk)
gk

= q − 1 ≥ (2n + 2gk − 2)/gk, then

q−1 ≥ 2 and hence q ≥ 3. Here, we need limk 	→+∞
N1(Fk)

gk
= q−1 ≥ (2n+4gk)/gk,

then q − 1 ≥ 4 and hence q ≥ 5. What remains of the existence proof is similar
to that of [2].

Proposition 4.5. The bilinear complexity of UFsp

q2,n verifies

μ
(
UFsp

q2

)
≤ 2

(

1 +
3q

q − 5

)

.

Proof. Recall that N1(Fk) ≥ (q2 − 1)qk−1 + 2q = Mk. In the following, let

Δq,k = Mk − 4gk = (q2 − 4q − 5)qk−1 + f(k)

where by Theorem 4.2,

f(k) =
{

4q(k+1)/2 + 8q(k−1)/2 + 2q − 4 if k ≡ 1 mod 2
2q(k/2)+1 + 6qk/2 + 4q(k/2)−1 + 2q − 4 if k ≡ 0 mod 2

Note that since q > 2, the value of f(k) is strictly positive for any q and k. For any
integer n, let k be the smallest such that (q2−1)qk−1 ≥ 2n+4gk, or equivalently
2n ≤ (q2 − 1)qk−1 − 4gk. Hence, we also have that 2n ≥ (q2 − 1)qk−2 − 4gk−1.
i.e. 2n ≥ Δq,k−1 ≥ qk−2(q2−4q−5). Thus k−1 ≤ logq(2n)−logq(q2−4q−5)+1.
Consequently, we have μ(UFsp

q2,n) ≤ 2n + 3gk ≤ 2n + 3(qk + qk−1), and the latter
bound on k − 1 implies that

μ
(
UFsp

q2,n

)
≤ 2n + 3(q + 1)qlogq(2n)−logq(q

2−4q−5)+1 = 2n

(

1 +
3q

q − 5

)

.

These algorithms are constructible efficiently if a degree n place is given.

Proposition 4.6. The algorithm UFsp

q2,n = UFk,P
q2,n (D, Q) is constructible deter-

ministically and in polynomial time if the place Q of degree n of Fk is given.

Proof. By the results of Elkies [13], the recursive tower of Garcia and Stichtenoth
of Sect. 4.1 is a family of Drinfeld modular curves, and according to Tsfasman
and Vlăduţ, we can work polynomially with points and linear systems on these
curves [25]. Then we can construct Fk and its rational places in polynomial
time. Moreover, the divisor D is set to be D = (n + 2gk − 1)P , for P a rational
place of Fk, and D is also constructible in polynomial time. Consequently, if a
place Q of degree n is given, all of the objects involved in the construction of
UFsp

q2,n are constructible in polynomial time. It remains to compute the bases of
L(D) and L(Q), and the evaluation maps, but this can be done polynomially
according to [23, Proposition 4.1]. In particular, the 2n + 3gk − 1 places of P
used to perform the inversion can be found by using Gaussian elimination in
time O((2n + 4gk − 1)3).
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Complexity of the Construction of the Degree n Place. In the language
of function fields, the construction of a point of order n corresponds to the
construction of a place of degree n, that is given by the orbit of a point of degree
n under the action of the Frobenius. In fact, every algebraic function field F/Fq

can be seen as the field of the functions defined on a curve C. There is a 1-1
correspondence between rational places of F/Fq and the Fq-rational points of C
( [17], Theorem 3.2). Moreover, let G = Gal(Fq | Fq), the G-orbits of points of
C(Fq) are called closed points of C/Fq. The degree of a closed point is equal to
the cardinality of the orbit. Then, Corollary 3.6.5 of [24] implies that there is a
one-one correspondence between the places of degree d of a function field F/Fq

and the closed points of degree d on the associated curve C/Fq. Following [23],
we say that a place of degree n is constructed if the coordinates of one of the
points of the corresponding orbit are given in some projective embedding. In the
case of recursive towers of function fields, we consider the following.

Definition 4.7. Let F = (F0, F1, . . . , F�, . . .) be a recursive tower of function
fields defined by the equation f(Y ) = h(X) over Fq. A degree n place P of F�/Fq

is constructed if the coordinates of x = (x0, x1, . . . , x�), where xi ∈ Fqn and for
all 1 ≤ i ≤ � we have f(xi) = h(xi−1), and there exists one xj, for 0 ≤ j ≤ �,
such that for all integers d dividing n, xj /∈ Fqd .

This definition makes sense since once such coordinates are given, one can
construct the orbit under the action of the Frobenius polynomially, using [16],
Algorithm 14.26. Consequently, the problem of constructing a degree n place
of a function field in polynomial time is the same as that of constructing the
coordinates of a point of order n on the associated curve. One can estimate the
complexity of the construction of such a place using brute force.

Lemma 4.8. Let F� be the �-th step of the recursively defined tower of function
fields of Garcia-Stichtenoth of Section 4.1, given by the equation f(Y ) = h(X)
and defined over Fq2 . Assume that F� contains a place of degree n. Then, one
can construct such a place with O((q2)2nM(n) log n) operations in Fq2 , with
M(n) ∈ O(nω), where ω = 2, 373 . . . is the best exponent for the multiplication of
two matrices of size n×n, and using a table of precomputations of size (q2)n ×q.

Proof. According to Definition 4.7, we are looking for an element
(x0, x1, . . . , xl) ∈ F

�+1
(q2)n such that for all 0 ≤ i ≤ � − 1, we have f(xi+1) = h(xi)

and whose orbit under the Frobenius action is of cardinal n. We precompute
the table of couples that gives for all x ∈ F(q2)n the list of elements y ∈ F(q2)n

such that f(y) = h(x). There are (q2)2n possible pairs of solutions. Each pair is
computed in a constant number of operations in F(q2)n , since q is fixed. By [16],
a division in F(q2)n can be done with O(M(n) log(n)) operations in Fq2 , and that
is more than a multiplication, or an addition. Thus, the table can be computed
in O (

(q2)2nM(n) log n
)

operations in Fq2 . This table allows us to obtain a tuple
(x0, . . . , x�) verifying the recursive equation without any arithmetic operation in
Fq2 . Since f is of degree q, there at most q solutions y of the equation f(y) = h(x)
for a given x ∈ F(q2)n , and the table of precomputations is of size (q2)n×q. Then,
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for each xi there are at most q elements xi+1 solutions of the equation and overall,
there are at most (q2)nq� tuples. For a given tuple, we apply the iterated Frobe-
nius to compute its orbit, that costs at most O(M(n)2 log(n)2) for all the � + 1
coordinates, using Algorithm 14.26 in [16]. Therefore, the cost of the construc-
tion of a place of degree n in F� is bounded by O((q2)nq�(� + 1)M(n)2 log(n)2)
when the table is given. Overall, the cost of the construction of a place is thus
O (

(q2)2nM(n) log n + (q2)nq�(� + 1)M(n)2 log(n)2
)

= O (
(q2)2nM(n) log n

)
.

Remark 1. One can also estimate this complexity without using a precomputa-
tion table. The algorithm would in this case be as follows. For each x0 ∈ F(q2)n ,
we find all the solutions of the recursive equation in time O((q2)nM(n) log(n)).
At this step we found the (x0, x1) verifying the recursive equation. Then for the
(at most) q solution x1 found for a given x0, we apply again this process to find
the (x0, x1, x2). The running time at this step is in O((q2)n((q2)nM(n) log(n) +
q × (q2)nM(n) log(n)). This process has to be done � times. Consequently, we
obtain an algorithm in time

O
(
(q2)n

(
(q2)nM(n) log(n) + q ×

(
(q2)nM(n) log(n) + q × (· · · ) · · ·

)))
.

Since the process is done � times, this can be rewritten

O
(

(q2)n(
�∑

i=0

qi)((q2)nM(n) log(n))

)

.

Consequently, the algorithm can be executed in time

O (
(q2)nq�(q2)nM(n) log(n)) = O((q4n+�M(n) log(n)

)
.

Lemma 4.8 can easily be generalized to any recursive tower of function fields,
with respect to the degree of f and the base field on which the function fields
are defined.

4.3 Constructions of Hybrid Chudnovsky-type Algorithms

Now, let us introduce the family of Hybrid Chudnovsky-type Algorithms that
allows us to prove Theorem 4.1.

Definition 4.9. Let q > 5 be a prime power. Let UH
q2 = (UH

q2,2, . . . ,UH
q2,n, . . .) be

the family of Hybrid Chudnovsky-type Algorithms for the multiplication in the

extensions of Fq2 such that for any n ≥ 2, the algorithm UH
q2,n = UH(U0

q2,n
,UFsp

q2
)

q2

is an HCA where :

– The root is a Chudnovsky-type algorithm U0
q2,n over the projective line from

the family U0
q2 ,

– The algorithms at level one are those from the family UFsp

q2 , given by the
specific construction over the Garcia-Stichtenoth tower of function fields given
in Sect. 4.2.
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Theorem 4.10. Let q ≥ 5 be a prime power and n be a positive integer. Then,
the hybrid Chudnovsky-type algorithms UH

q2,n for the multiplication in the degree
n extension of Fq2 provides a family UH

q2 such that

(i) its bilinear complexity is uniformly bounded by μ(UH
q2) ≤ 4

(
1 + 3q

q−5

)
,

(ii) for all n ∈ N, the algorithms UH
q2,n are constructible deterministically, and

in time ψ
(
UH

q2,n

)
∈ O(n4).

Proof. We apply Proposition 3.4 with the algorithms given in Definition 4.9.
By Proposition 4.5, we know that μ(UFsp

q2 ) ≤ 2
(
1 + 3q

q−5

)
. It follows that

μ(UH
q2) ≤ 4

(
1 + 3q

q−5

)
, and (i) is proven. For all positive integer n, recall that

there exists a Chudnovsky-type algorithm U0
q2,n = UPn

q2,n(Q) over Fq2(x), where Q

is a degree n place of Fq2(x) and Pn is a set of places of arbitrary degrees such that∑
P∈Pn

deg P = 2n−1. Moreover, it is known that (q2)d+1 =
∑

k|d kBk(Fq2(x)),
where Bk(Fq2(x)) is the number of places of degree k of Fq2(x). This implies that
there exists a convenient set Pn such that the degree of each place in Pn is at
most dm ∈ O(logq2(2n)). Consequently, we have to construct the algorithms
UFsp

q2,d, where d is running through all the degrees of the places in Pn. By Propo-

sition 4.6, the algorithm UFsp

q2,d, defined over Fk, is constructible in polynomial
time in d as long as a place of degree d of Fk is given, i.e. time O(dα), for
some positive integer α. Moreover, the place of degree d can be constructed
in time O(O((q2)2dM(d) log d)) according to Proposition 4.8. By Proposition
4.5, we have that k − 1 ≤ logq(2d) − logq(q2 − 4q − 5) + 1, and since q > 5
is fixed, k ≤ logq(2d). It follows that the place of degree d and the algorithm
UFsp

q2,d can both be constructed in time ψ(UFsp

q2,d) ∈ O((q2)2dM(d) log d + dα) =
O((q2)2dM(d) log d). This process has to be done for all the degrees of the
places in Pn. Recall that d ≤ dm ∈ O(logq2(2n)). Therefore, it is required
to construct O(dm) algorithms UFsp

q2,d, and the construction of each of them

is bounded by O((q2)2 logq2 (2n)M(logq2(2n)) log logq2(2n)) = Õ(2n2). Conse-
quently, the construction of all these algorithms can be done in time Õ(2n2dm),
i.e.

∑
P∈Pn

ψ(UFsp

q2,n) ∈ Õ(2n2). Finally by Proposition 3.4, the construction of
the algorithm UH

q2,n can be done in time O(n4), and (ii) is proven.

Theorem 4.11. Let q be a prime power and n be a positive integer. Then, there
exists a family of Hybrid Chudnovsky-type algorithm UH

q such that
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(i) its bilinear complexity is uniformly bounded by μ(UH
q ) ≤ Cq, where

Cq =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
(
1 + 3

√
q√

q−5

)
if q > 25 is a square,

12
(
1 + 3q

q−5

)
if q > 5,

152 if q = 5,
172 if q = 4,
279 if q = 3,
648 if q = 2.

(ii) for any integer n ≥ 2,
ψ

(UH
q,n

) ∈ O(n4).

Proof. If q > 25 is a square, the result is directly given by Theorem 4.10. Else-
where, we use the family of algorithms defined over Fq2 (or Fq4 or Fq6), and
use the algorithms with the best known bilinear complexities to perform the
multiplications in Fq2 (or Fq4 or Fq6) over Fq. The construction time of these
algorithms is negligible, and the cost of the construction remains asymptotically
identical. If q > 5, then we use the family UH

q2 , that gives algorithms over Fq2 .
Then, we compute each multiplication in Fq2 with μq(2) = 3 bilinear multipli-

cations. Thus, μ(UH
q ) = 3μ(UH

q2) ≤ 12
(
1 + 3q

q−5

)
. For q = 3, 4, 5, we use UH

q4 .
Since μ3(4) = 9 and μ4(4) = μ5(4) = 8, it provides the existence of a family of
algorithms such that μ(UH

5 ) = 8μ(UH
252) ≤ 152, μ(UH

4 ) = 8μ(UH
162) ≤ 172 and

μ(UH
3 ) = 9μ(UH

92) ≤ 279. Finally, for q = 2 we use UH
26 = UH

8 and μ2(3) = 6.
According to what precedes μ(UH

8 ) ≤ 12
(
1 + 24

3

)
, thus μ(UH

2 ) = 6μ(UH
8 ) ≤ 648.

The bounds given for the bilinear complexity can be refined, for instance
using densified tower of function fields such as in [3]. Nevertheless, this latest
result proves Theorem 4.1, i.e. we showed an explicit construction of algorithm
constructible deterministically and in polynomial time, while giving a uniform
linear bound for their bilinear complexity.
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Abstract. The complexity of the multiplication operation over polyno-
mial rings and finite fields drastically changes with the selection of the
defining polynomial of the respective mathematical structure. Trinomials
and pentanomials are the most natural choices for the best arithmetic.
In this paper, we first present a study in which a special type of trinomial
does not require any reduction steps. We then introduce two new algo-
rithms, FIKO and RF-FIKO, fully interleaved bit-parallel Karatsuba-
Ofman multipliers where the latter is only concerned with the three
Karatsuba-Ofman terms and is free from the bipartite reduction cir-
cuits. All algorithms are implemented in FPGA and ASIC, and detailed
implementation results are presented, showing significant improvements
to existing methods.
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1 Introduction

The study of irreducible polynomials is particularly important in cryptography.
For modern schemes that employ modular arithmetic such as, RSA and ECDSA,
the multiplication operation is the most expensive. In particular, Post-quantum
Cryptography (PQC) lattice-based schemes and Fully Homomorphic Encryption
(FHE) systems would benefit from efficient finite field arithmetic. For practical-
ity, security, and efficiency, we are concerned with binary fields in the polynomial
basis (PB).
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The most efficient bit-parallel multipliers known all make use of special trino-
mials to obtain time and space complexity speedups. Moreover, they make efforts
to simplify modular reduction as a means to obtain faster implementations. In
this paper we present a solution to the problem A(t) × B(t) (mod F (t)) that
does not require reduction modulo F (t) but only three multiplications followed
by some shifts and additions in the last clock cycle, when F (t) has a special form
– A fully interleaved reduction-free modular multiplier.

2 Preliminaries

This section provides an overview of the notation used throughout in the paper,
concerning modular reduction with finite rings and fields where the elements are
represented in the polynomial basis.

Let Zp[t]/(F (t)) denote the set of polynomials in variable t with coefficients
over p, defined by a monic F (t) of degree n which forms a finite field, for p prime
and F (t) irreducible modulo p; and a ring, Rq=pn , otherwise. We express F (t)
as

∑n
i=0 = fntn + fn−1t

n−1 + fn−2t
n−2 + · · · + f2t

2 + f1t + f0t
0 where the fi

are the coefficients. The same notation is used for all other polynomials, strings,
and data registers in hardware to refer to the ith coefficient or data bit. Let f−1

i

denote the multiplicative inverse of fi (mod p). An element A(t) in any such
structure is expressed as A(t) =

∑n
i=0 = an−1t

(n−1)+an−2t
(n−2)+· · ·+a1t+a0t

0.
Then, the product of two elements is A(t) × B(t), is expressed as C(t) = A(t) ×
B(t) (mod p, F (t)). Arithmetic concerning coefficients of elements A(t) and B(t)
conforms to (mod p). Polynomial arithmetic conforms to (mod F (t)).

Let Cmax = 2(n−1) denote the maximum degree of a product of two elements
in Rq. Let Fd be the degree of defining polynomial F (t) and Cd the degree of
an arbitrary product of two elements, C(t) = A(t) × B(t) ∈ Rq. Then, ρ =
Cd − (Fd − 1) denotes the number of reductions required to reduce a product of
degree Cd to become representable in the field or ring.

For a hardware register or string holding A(t) of depth k = 2× r, let A(t)[j:i]
denote the bit range of data from j to i inclusive, from the jth most significant
bit to the ith least significant bit. For a register A of width k = 2 × r, let AUR

denote the upper register A[k−1:r] and ALR denote the lower register A[r−1:0].
Similarly, || denotes concatenation of strings. For example, C = A||B, would
refer to the equivalent SystemVerilog assignment C = {A,B} for C of width k
and A and B both of width r.

Let GF (pn) and Fq with q = pn, be a finite field for p prime and defining
polynomial F (t) of degree n irreducible in modulo p. Our work is primarily
concerned with Galois fields of the form GF (2n) and is easily adaptable to rings
where the coefficients vary over Zp. We are interested in prime odd binary curves
of degree n that define different binary fields GF (2n) for varying F (t). We use
the notation GF (2n), (n+1)-bit curve, and k = (n+1)-bit field interchangeably,
where (n+1)-bit curve refers to F (t) and k-bit field to GF (2n) which is defined
by k-bit F (t).
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3 Reduction with Polynomial Rings

Efficient arithmetic over polynomial rings and fields Zp[t]/F (t) has originated
from usual modular arithmetic routines. If polynomial coefficients and words of
multi-precision numbers are considered as the atomic units of their representa-
tions, polynomials enjoy carry-free arithmetic over these units. Multiplication
involving creative representations make the arithmetic over polynomial rings
quite interesting.

Modular multiplication involves multiplication and reduction steps; these are
often implemented as separate algorithms or interleaved into one algorithm. Both
type of implementations are characterized by the reduction technique employed.
Modular reduction can applied from left-to-right, right-to-left, or both directions;
corresponding examples to these would be Blakely, Montgomery, and Bipartite,
respectively [3,16,25].

In this section, we go over the reduction techniques when given an already
computed product C(t) = A(t) × B(t) with A(t), B(t) ∈ Zp[t]/F (t) for some p
and F (t) a monic of degree n. We consider the product C(t) of maximum degree
m = Cmax and reduction (mod q, F (t)).

3.1 Left-to-Right Reduction

Any algorithm that reduces a product C(t) modulo F (t) from the left falls into
the left-to-right category, including the standard division algorithm.

Algorithm 1. Blakely Polynomial Reduction
Require: C(t) of degree m
Ensure: R(t) ≡ C(t)(modp, F (t))
1: R(t) = C(t)
2: j = m − n
3: for i = m downto n do
4: qj = ri mod p
5: R(t) = R(t) − qjF (t)ti−n

6: j = j − 1
7: end for
8: return R(t)

Algorithm 1 presents the Blakely reduction method from [3] which can be
adapted to GF (2n) as in [20]. This is a bit-serial algorithm in which we loop k =
m− (n− 1) times reducing the degree of C(t) from the most significant position
until i = n and we obtain a residue of degree ≤ n − 1. In line 4 we compute
the jth digit of the full quotient Q(t) as the jth digit of R(t) modulo p, starting
from the most significant position. In line 5 we subtract an aligned multiple of
the modulus, to continue reduction from left-to-right in each loop. The resulting
residue satisfies the closed form of the division theorem, R(t) = C(t)−F (t)Q(t).
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3.2 Right-to-Left Reduction

Montgomery multiplication [25] demonstrates the unique example of right-to-left
reduction which is shown in Algorithm 2.

Algorithm 2. Polynomial Montgomery Reduction
Require: C(t) of degree m
Ensure: S(t) ≡ C(t)(modp, F (t))
1: S(t) = C(t)
2: for i = 0 to k − 1 do
3: q′

i = f−1
0 s0 mod p

4: S(t) = (S(t) − q′
iF (t))/t

5: end for
6: return S(t)

The residue is computed in a bit-serial fashion, where we loop k = m−(n−1)
times, reducing the product from the least significant position, one degree per
loop. In line 3 we compute the ith quotient of the Montgomery quotient, q′

i, as the
multiplicative inverse of the least significant coefficient of F (t) multiplied with
the least significant digit of S(t), modulo p. In line 4, subtracting q′

iF (t) from S(t)
sets the constant coefficient, s0, to zero and hence the division by t corresponds
to a trivial division or a right-shift. This is the reason why Montgomery reduction
is preferred in most repetitive multiply-reduce designs. The result is a residue
S(t) = C(t)t−k (mod F (t)) with degree ≤ n − 1.

3.3 Bipartite Reduction

The bipartite modular multiplication (BMM) method introduced by Kaihara
and Takagi in [16], presents a method of modular reduction in which a left-to-
right and a right-to-left technique can be applied in parallel to reduce a product
from both ends simultaneously. This method is presented in Algorithm 3; for
completeness we simply combine Algorithms 1 and 2.

Algorithm 3 executes in a sequential fashion but it loops ρ = �n/2� =
m−(n−1)

2 half the number of times as Blakely and Montgomery which require
ρ = m − (n − 1) reductions. In lines 4–5, we compute the standard and Mont-
gomery quotients, respectively. In line 6, we apply Blakely reduction to S(t) and
in line 7 we apply Montgomery reduction. Lines 7–8 can be implemented as sep-
arate threads in software or functional units in hardware executing in parallel.
When the coefficients are over Zp we must account for the Montgomery domain
and set the parameter R to be less than the modulus.

4 Interleaved Modular Reduction

This sections builds on the previous section by interleaving multiplication of
a product and reduction using a simpler structure, GF (2n). We present the
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Algorithm 3. Bipartite Polynomial Reduction
Require: C(t) of degree m
Ensure: S(t) ≡ C(t)(modp, F (t))
1: S(t) = C(t)
2: k = �n/2�
3: for i = 0 to �n/2� − 1 do
4: qk = sk mod p
5: q′

i = f−1
0 s0 mod p

6: S(t) = S(t) − qkF (t)tk−n

7: S(t) = (S(t) − q′
iF (t))/t

8: k = k − 1
9: end for

10: return S(t)

corresponding interleaved modular multiplication algorithms for Blakely, Mont-
gomery, and BMM.

4.1 Blakely

Algorithm 4. Interleaved Blakely
Require: k-bit F(t), (k − 1)-bit A(t) and B(t)
Ensure: R(t) ≡ A(t) × B(t)(modF (t))
1: R(t) = 0
2: for i = k − 2 downto 0 do
3: R(t) = R(t) � 1
4: if ai then
5: R(t) = R(t) ⊕ B(t)
6: end if
7: if rk−1 then
8: R(t) = R(t) ⊕ F (t)
9: end if

10: end for
11: return R(t)

Algorithm 4 shows the adapted version of the original interleaved algorithm
in the binary basis [3,20]. Multiplication and reduction are interleaved using
the standard shift and add technique. In this case we observe the bits of A(t)
starting from the most significant bit; if the bit is set, we multiply or add B(t)
to R(t). Similarly, if the most significant bit of R(t) is set, we reduce R(t) with
F (t). After a multiplication and a reduction, we shift out the degree that has
been knocked down.
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4.2 Montgomery

Algorithm 5 shows the interleaved binary version adapted from [2]. If we are
only concerned with multiplication, we observe the bit of the multiplier from
either end. However, when we are performing interleaved multiplication, these
bits must be observed according to the technique; for Blakely and Montgomery
it is according to the direction we are reducing from. In this case, we test if the
least significant bit of the residue is set and reduce it with F (t). Lastly, we shift
out the knocked-down degree.

Algorithm 5. Interleaved Mongtomery
Require: k-bit F(t), n = (k − 1)-bit A(t) and B(t)
Ensure: R(t) ≡ A(t) × B(t) × 2−n(modF (t))
1: R(t) = 0
2: for i = 0 to k − 2 do
3: if bi then
4: R(t) = R(t) ⊕ A(t)
5: end if
6: if r0 then
7: R(t) = R(t) ⊕ F (t)
8: end if
9: R(t) = R(t) � 1

10: end for
11: return R(t)

4.3 Bipartite Modular Multiplication

Algorithm 8 adapts BMM from [16] to GF (2n). In hardware, the intermediate
Blakely S(t) and Montgomery T (t) residues are computed in parallel. The algo-
rithm uses Algorithm 6 and Algorithm 7 to compute interleaved modular multi-
plication with A(t) and the upper and lower words of B(t). For k-bit curves, we
can compute the bipartite residue in k/2 CC without dependencies. The Blakely
residue requires r − 1 reductions in Algorithm 6 while the Montgomery residue
requires r reductions in Algorithm 7 since BH is one bit less. BMM ensures a
residue R(t) ≡ (A(t)×BH(t) (mod F (t))+(A(t)×BL(t)×2−� k−1

2 � (mod F (t)))
(mod F )(t). This residue is also implicitly expressed as A(t) × B(t) × 2−r

(mod F (t)) indicating the r = �k−1
2 � Montgomery degrees knocked down.



Reduction-Free Multiplication for Finite Fields and Polynomial Rings 59

Algorithm 6. ibBlakely
Require: A(t)[k−2:0], BH(t)[r−2:0], F (t)[k−1:0]

Ensure: S(t) ≡ A(t) × BH(t)(modF (t))
1: S(t) = 0
2: for i = r − 2 downto 0 do
3: S(t) = S(t) � 1
4: if bhi then
5: S(t) = S(t) ⊕ A(t)
6: end if
7: if sk−1 then
8: S(t) = S(t) ⊕ F (t)
9: end if

10: end for
11: return S(t)

Algorithm 7. ibMontgomery
Require: A(t)[k−2:0], BL(t)[r−1:0], F (t)[k−1:0]

Ensure: T (t) ≡ A(t) × BL(t) × 2−r(modF (t))
1: T (t) = 0
2: for i = 0 to r − 1 do
3: if bli then
4: T (t) = T (t) ⊕ A(t)
5: end if
6: if t0 then
7: T (t) = T (t) ⊕ F (t)
8: end if
9: T (t) = T (t) � 1

10: end for
11: return T (t)

Algorithm 8. BMM
Require: k-bit F (t), (k − 1)-bit A(t), B(t), r = �( k−1

2
)	

Ensure: R(t) ≡ A(t) × B(t) × 2−r (mod F )(t)
1: S(t) = ibBlakely(A(t), B(t)[k−2:r], F (t))
2: T (t) = ibMontgomery(A(t), B(t)[r−1:0], F (t))
3: R(t) = S(t) ⊕ T (t) ⊕ F (t)
4: return R(t)

5 Partially Interleaved Karatsuba-Ofman

Modular multipliers fall under one of two types: multiply and reduce or inter-
leaved multiply and reduce. Varying implementations of Montgomery, BMM,
and Mastrovito are among the most efficient interleaved modular multipliers
introduced [14,24]. In general, interleaving fast multi-digit multipliers, such as
Schönhage-Strassen or Fürer is difficult and application-specific [12,34]. For
example, Fürer is intended for huge numbers in the order of 1082 and becomes
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efficient when the operands are in that order. In this section, we present the
Karatsuba-Ofman Algorithm (KOA) and the work from [33], a Partially Inter-
leaved Karatsuba-Ofman (PIKO) modular multiplier.

5.1 Karatsuba-Ofman Multiplication

KOA is a recursive divide and conquer algorithm based on the observation by
Babbage that two n-digit numbers can be expressed as binomials and multiplied
out likewise requiring four multiplications [1,19]. In 1962, Karatsuba and Ofman
observed that the middle term could actually be computed in one multiplication
with some additions and subtractions from already computed terms requiring
only three multiplications total. KOA is intended for very large numbers in the
order of several thousand digits ranging from 103 to 104 digits with complexity
O(nlog2(3)) in the input size.

The algorithm is quite generic that it can easily be adapted to polynomial
multiplication for binary fields where operands range from a few thousand bits
to a few hundred thousand bits. In practice, KOA is used in conjunction with
reduction routines such as Blakely or Montgomery [3,25]. Recursion can be set to
any desired level. However, further recursion and improved KOA must account
for platform constraints and is completely application-specific.

Now, consider two arbitrary polynomials A(t) = apt
m + · · · + a2t

2 + a1t + a0

and B(t) = bqt
n + · · · + b2t

2 + b1t + b + 0 of degrees m and n respectively, and
without loss of generality, let m ≥ n and r = �m/2�. For simplicity, let’s say
they are both expressed as the closest power of two and are split into half-size
equal words. Let:

A(t) = A1(t) · tr + A0(t),
B(t) = B1(t) · tr + B0(t)

where, A1(t) and A0(t) represent the upper and lower words of the polynomial
A(t), each of degree r. Standard multiplication of A(t) and B(t) can expressed
as follows:

C(t) = A(t) · B(t)
= (A1(t)tr + A0(t))(B1(t)tr + B0(t))
= (A1(t)B1(t))t2r + (A1(t)B0(t) + A0(t)B1(t))tr

+A0(t)B0(t)
= C2(t)t2r + C1(t)tr + C0(t).

Notice that, the above calculation requires four different polynomial multiplica-
tions with operands of degree r. This has quadratic complexity in operand size.
KOA however, achieves the same computation with only three multiplications
as follows:
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C0(t) = A0(t) · B0(t)
C2(t) = A1(t) · B1(t)
C1(t) = (A0(t) + A1(t))(B0(t) + B1(t)) − C0(t) − C2(t)
C(t) = C2(t)t2r + C1(t)tr + C0(t).

5.2 Interleaving Karatsuba-Ofman and Bipartite Reduction

In [33] Saldamlı et al. present PIKO, consisting of Karatsuba-Ofman multiplica-
tion and bipartite reduction circuits. The algorithm considers only the first layer
of recursion requiring half-size words. In this section, we give a general overview
of the algorithm as follows.

Let F (t) = xn + x�n
2 � + 1 the defining polynomial of degree n for some

odd prime curve with coefficients defined over GF (2). Now, consider two n-bit
elements A(t) and B(t) in the field, both of maximum degree n − 1. First, we
prefix the elements to consists of k = n + 1 bits. This allows all operands F (t),
A(t), and B(t) to be split into equal half-size words of size r = k

2 bits. Note
that the maximum degree for the lower word of an element is d = r − 1 but for
the upper word it is r − 2. For uniformity, because we are working with r-bit
registers, the operands are decomposed as follows.

F (t) = F1(t) · td + F0(t),
A(t) = A1(t) · td + A0(t),
B(t) = B1(t) · td + B0(t),
Q(t) = Q1(t) · td + Q0(t),
Q′(t) = Q′

1(t) · td + Q′
0(t).

where Q(t) and Q′(t) represent the Blakely and Montgomery quotients.
Figure 1 illustrates the PIKO algorithm. The algorithm is the same as BMM

except that multiplication is done using KOA. In the upper part, we compute
the Karatsuba-Ofman terms C0(t), C1(t), and C2(t); the middle term is partially
computed. In the middle part, we compute bipartite terms consisting of bipartite
quotients and bipartite products. The quotients Q′

0(t) and Q1(t) are computed
using fully interleaved Montgomery and Blakely algorithms applied to the prod-
ucts C0(t) and C2(t) which are reduced with F0(t) and F1(t), respectively.

The reduction terms are then (Q′
0(t)F0(t)), (Q′

0(t) + Q1(t))(F0(t) + F1(t)),
and (Q1(t)F1(t)). These terms are applied to C0(t), C1(t), and C2(t) to produce
reduced products C ′

0(t), C ′
1(t), and C ′

2(t). Lastly, the final sum can be computed
in different ways. In Fig. 1, the final sum is simply S(t) = C ′

2LR(t)||C ′
0UR(t) +

C ′
1(t)+C ′

2LR(t)||C ′
0UR(t). This gives us a residue A(t)×B(t)× t−r (mod F (t)).

The term t−r is equivalently expressed as (tr)−1 = 2−r = (2r)−1 since in the
binary base, t−r is a shift right by r indicating the Montgomery degrees knocked
down.
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Fig. 1. Partially interleaved Karatsuba-Ofman algorithm.

If we compute all terms in PIKO in a bit-parallel fashion, bit-by-bit per clock
cycle, it becomes fully interleaved. Then, a residue of k-bit operands can be com-
puted in k

2 clock-cycles. We call this version the Fully Interleaved Karatsuba-
Ofman (FIKO) algorithm. This follows by noting that when we compute a prod-
uct A × B, the bits of a multiplier B, can be observed from either the least
significant or most significant position. In this manner, we can compute the
Blakely and Montgomery quotients from opposite ends. Close attention to the
half-size products, reveals no dependencies in this approach. For example, the
product of two upper words A1(t) × B1(t) will always have Cmax = 2(r − 2)
because they are prefixed. Consequently, the most significant (k−1)−Cmax bits
of C(t)2 will always be zero. The upper bits of the product C2(t) become fixed
as the amount by which we shift A1(t) by decreases.

The remaining multiplications such as Q1(t)F1(t), can all be accomplished
using shifts and adds, according to F (t). The three types of F (t) used are dis-
cussed in Sect. 7. Figure 2 shows the core of the FIKO bit-parallel algorithm
in SystemVerilog. C0, C1, C2 correspond to KOA terms; R1 and R0 are the
Blakely and Montgomery residues; and Q1 and Q0 are the Blakely and Mont-
gomery quotients.
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Fig. 2. Fully interleaved Karatsuba-Ofman algorithm core.

6 Reduction-Free FIKO

In this section we develop the FIKO algorithm into a reduction-free version.
First, we present the special form of the defining polynomial which allows us to
accomplish this.

6.1 Equally Spaced Polynomials

In [14], Koç provides a concise definition of Equally Spaced Polynomials (ESPs)
and Equally Spaced Trinomials (ESTs). An ESP with degree n = δk has form
xδk + xδ(k−1) + · · · + xδ + 1 and is necessarily of even degree with all non-zero
terms equally spaced by δ−1 zero terms. For example, xδk +xδ(k−1) +xδ(k−2) =
x6 + x3 + x0 = 10010012 for δ = 3 and k = 2, the terms are equally spaced by
δ − 1 = 2 zero terms. Similarly, x4 + 1 is an ESP. A special case is the All-One-
Polynomial (AOP), in which case δ = 1. For example, x(k−1) +x(k−2) +x(k−3) +
x(k−4) + x(k−5) + x(k−6) = 11111112 with k = 6. An EST is a trinomial with
all non-zero terms equally spaced and necessarily of even degree; for example
x4 + x2 + 1 = 101012.

6.2 Reduction-Free Trinomials

Ideally, we would like to work with an intermediary binomial or an EST where we
can reduce a product from both ends in parallel without dependencies. However,
for our work, ESTs cannot be used as they have an even degree, cannot be equally
split, and have security considerations. Now, when the defining polynomial is an
ESP-like trinomial of form xn + xr + 1 with n odd and r = �n/2�, we can enjoy
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reduction-free multiplication. We define this special polynomial as a Reduction-
Free Trinomial (RFT). Such polynomials can be split into equal half-size r-
bit registers and are of necessarily odd prime degree. This trinomial is easily
characterized as one whose lower register is a 1 and whose upper register is an
ESP of desired binomial form. For symmetry, we zero-extend the input operands
and work with r-bit registers.

When we work with half-size operands and an RFT, careful observation of
the computations and results in FIKO reveal that the bipartite reduction circuits
can be removed. The following example shows this.

Example 1. For simplicity, consider GF (29), F (t) an RFT that defines the field,
and two elements in the field:

F (t) = t9 + t5 + 1
A(t) = t8 + t7 + t6 + t5 + t2 + 1
B(t) = t8 + t5 + t3 + t + 1.

The corresponding half-size words with the prefixed elements are given in
Table 1.

Table 1. Half-size parameters

Operand Upper register Lower register

F (t) F1(t) = 10001 F0(t) = 00001

A(t) A1(t) = 01111 A0(t) = 00101

B(t) B1(t) = 01001 B0(t) = 01011

If we compute FIKO as usual, we would obtain all Karatsuba-Ofman prod-
ucts, bipartite terms, reduced terms, and final sum. However, since F0(t) = 1, we
can observe that the lower word of the Montgomery quotient is just the lower reg-
ister of C0(t) since a (mod 1) is always a. Similarly, we observe that the Blakely
quotient for the entire product C2(t) is just the most significant [k − 2 : r − 1]
bits of C2(t). Note that the Blakely quotient will always fit in less than r-bits.
Because we are working with half-size words and we are only concerned with the
upper register of the standard quotient Q(t), we can easily see that this is just
C2(t)[k − 2 : r − 1]. Because A1(t) and B1(t) are prefixed and their product is
of degree at most 2(r − 2), it can be observed that the (k − 1) − 2(r − 2) bits of
C2(t) will always be zero and that the upper register of the quotient is found in
the specified bits. However, the full upper register of C2(t)[k−1:r] can be taken
as Q1(t) if we multiply it by t or shift it left by one. This is illustrated in Fig. 3;
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the left side shows RF-FIKO quotients taken directly from C0(t) and C2(t) and
the right side shows the quotients we obtain after we apply bipartite reduction.
They are the same.

Fig. 3. RFFIKO and FIKO with a RFT.

There is no need for the Blakely and Montgomery reduction circuits, we can
just take the quotients from the Karatsuba-Ofman terms C0(t) and C2(t). RF-
FIKO, illustrated in Fig. 4, reduces to a total of three distinct multiplications,
namely those to compute the Karatsuba-Ofman products C0(t), C1(t), and C2(t).
The bipartite products and reduction terms are all computed with shifts and
additions on the last clock cycle. In Example 1, our desired answer C(t) =
(C ′

2t
2r + C ′

0 + C ′
1t

r + C ′
0t

2r + C ′
2)t

−r is 1000010100. We can easily obtain the
result in the standard domain by re-adding the r Montgomery zeroes (degrees we
knocked down) to this bipartite residue and employing standard reduction. Our
result is C(t)t−r (mod F (t)) ≡ A(t)B(t)(tr)−1 (mod F (t)). Now, from closer
inspection of Fig. 4, we can see that Q′

0(t)F0(t) = Q′
0(t) since F0(t) = 1.

For an RFT, the cross term is simply computed as the sum of the quotients
with multiplication by (F1(t)⊕F0(t)) implemented as a shift left by r−1. Hence,
we have a fully interleaved reduction-free modular multiplier with a total of three
half-size word multiplications and six sums (two k-bit sums, three r-bit sums,
and one 1-bit sum). The sums can be implemented differently, for example to
reduce an r-bit sum to a 1-bit sum at the cost of space. In either case, the metrics
are the same and we kept the original implementation with three k-bit sums and
three r-bit sums.

7 Test Inputs

We consider finite fields of the form GF (2n) where the degree of the defining
polynomial corresponds to an ECDSA binary field or a Mersenne exponent [6,13,
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Fig. 4. Reduction-free fully interleaved Karatsuba-Ofman (RF-FIKO) algorithm.

29,38]. We consider three different types of trinomials, namely, RFTs of special
form xn +x�n/2� +1, special trinomial type 1 of form xn +x�n/2� +1 and special
trinomial type 2 of form xn + x + 1.

Table 2. Test curves

Curve type Exponents

ECDSA 163, 233, 283, 409, 571

Mersenne 107, 127, 521, 607, 1279, 2203, 2281, 3217

Table 2 shows the curves used and Table 3 shows our test field groups. For
example, test group F2 from Table 3 consists of finite fields of the form GF (2n)
where n varies over the ECDSA exponents listed in table Table 2 and the defining
polynomial for all such fields is an RFT. More explicitly, the F2 group consists
of fields: GF (2163), GF (2233), GF (2283), GF (2409), and GF (2571) each of which
is defined by a corresponding RFT F (t) = t163 + t82 + 1, F (t) = t233 + t117 + 1,
F (t) = t283 + t142 + 1, F (t) = t409 + t205 + 1, and F (t) = t571 + t286 + 1,
respectively. RF-FIKO is completely defined by an RFT and hence, we only
test it with finite fields in groups F1 and F2. Blakely, Montgomery, FIKO, and
BMM are independent of the defining polynomials and can be tested with all
test groups.
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Table 3. Test groups

Group Curves F (t)

F1 Mersenne RFT

F2 ECDSA RFT

F3 Mersenne Type 1

F3′ ECDSA Type 1

F4 Mersenne Type 2

F4′ ECDSA Type 2

8 Hardware Implementation

In this section, we present two bit-parallel hardware implementations in GF (2n).
The algorithms implemented were Interleaved Montgomery, Interleaved Blakely,
BMM, FIKO, and RF-FIKO. We implemented in Verilog and SystemVerilog and
prototyped on a Virtex-7 FPGA. The ASIC design synthesis was done using
TSMC 28-nm CMOS technology.

8.1 Non-recursive Decomposition

Figure 5 details the microarchitecture for RF-FIKO corresponding to our algo-
rithm in Fig. 4. A direct and näıve implementation of Fig. 4 would yield a residue
in k-CC with the KOA terms computed in r-CC followed by the bipartite reduc-
tion products in r-CC. However, a bit-parallel implementation allows for a fully
interleaved implementation with all terms computed in parallel, one bit per clock
cycle, in r-CC. Moreover, close inspection of Fig. 4 and the bipartite terms, allows
us to be concerned only with the KOA products of C0(t), C1(t), and C2(t) since
the bipartite and reduction terms can all be computed with shifts and additions.
The critical delay path is then the multiplication of the three KOA terms for
which there exist various techniques for improvement.

The fastest bit-parallel implementations are concerned with special trino-
mials and exploiting structure to compute the product A(t) × B(t) mod F (t)
while making efforts to simplify the reduction. We have explored the mathemat-
ical structure of the RFT together with noted observations so that we can solve
the problem A(t)×B(t) mod F (t) with only three multiplications, C0(t), C1(t),
and C2(t), and obtain a true reduction-free residue. Because of the nature of the
RFT, we obtain reduction-free quotients and compute the remaining terms with
some shifts and adds.

This work sets forth an initial presentation of RF-FIKO concerned with the
upper layer of recursion of Karatsuba-Ofman to compute the three multiplica-
tions using half-size operands. Further KOA layers imply more space and plat-
form constraints. This decomposition was selected as an initial step to improve
PIKO in time and space complexity and hence, obtain improvement over the
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Fig. 5. RF-FIKO microarchitecture

bipartite reduction technique by completely removing it. Moreover, implemen-
tations that apply non-recursive KOA (only the upper layer), usually use 1/4
less space compared to the fastest implementations [8–10,15,22,35–37]. Further
recursion and incorporation with other techniques is reserved for future work.

8.2 Register-Transfer Level Design

Close observation of Fig. 5 shows that the KOA terms are computed in a bit-
parallel fashion. The data path is controlled by a four state Moore machine.
In state zero all data registers are loaded with the value of zero and the down
counter, cnt, is loaded with r − 1. In state two, the multiplication control signal
controls the bit-parallel multiplication of C0(t), C1(t), and C2(t) to compute
them one bit per clock cycle. Sketched rectangles highlight the three differ-
ent arithmetic operations; the symbols GF (2)+, GF (2)x, and � correspond
to GF (2) addition, GF (2) multiplication, and shift left by r − 1. These oper-
ations are implemented as XORs, shift and add multiplication, and arithmetic
left shift to multiply by a power of two. When cnt reaches zero, the multiplica-
tion is complete and the final sum and done signals are generated by the FSM.
The remaining RTL details how the final sum is computed; all such registers are
assigned inside a procedural block.
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The r-bit quotients are assigned as Q1(t) = C2(t)[k−2:r−1] and Q0(t) =
C0(t)[r−1:0]. The reduced terms C ′

0(t) and C ′
2(t) are implemented as r-bits.

The final sum only concerns the upper register of C ′
0(t) and hence, there

is no need to compute the full C ′
0(t) term. Moreover Q′

0(t)F0(t) reduces to
Q′

0(t) for F0(t) = 1 which does not affect the upper register of C ′
0(t). We let

C ′
0(t) = C0(t)[k−1:r]. Similarly for C ′

2(t), we implement Q1(t)F1(t) as a left
shift by r − 1 added with Q1, and take only the lower register of C ′

2(t) =
C2(t) ⊕ (Q1(t) � (r − 1)) ⊕ Q1(t). For C ′

1(t) we require the full term, and
implement the cross-term X(t) as (Q1(t)⊕Q0(t)) � (r −1) since multiplication
by (F1(t)⊕F0(t)) reduces to a shift left by r−1. Finally, our sum of concatenated
terms, is Σ = C ′

0(t)||C ′
2(t) ⊕ C ′

1(t) ⊕ C ′
2(t)||C ′

0(t) which corresponds to the final
output in Fig. 5, A(t)B(t)t−r (mod F )(t).

9 Results

In this section we provide results for both FPGA and ASIC hardware imple-
mentations for sample ECDSA and Mersenne curves. In both implementations,
Blakely and Montgomery form our baseline for comparison. Bipartite reduc-
tion is the fastest reduction technique prior to this work. Our main targets for
comparison are BMM and FIKO for half-size words. A brief comparison with
some of the fastest bit-parallel multipliers in the field is also provided along with
estimates for FHE curves.

9.1 FPGA Results

Table 4 shows the FPGA results for sample curves in different groups–namely,
the clock cycle (CC) count, LUT count, slices, frequency (MHz), and the latency
in clock cycles × clock period (μs). For each sample field GF (2n), we list the
defining polynomial F (t) and the results for each algorithm. Blakely and Mont-
gomery show some slight variance in all metrics. In comparison to the other
three algorithms, these approximately double in the execution time but half the
space used. FIKO outperforms BMM for GF (2107) and GF (2163) curves using
several tens to hundreds more LUTs and slices. For the non-RFT curves, BMM
and FIKO behave similar. As expected, RF-FIKO in turn outperforms FIKO
which was our expected goal. For GF (2107), RF-FIKO is 1.026 times faster than
FIKO and 1.071 times faster than BMM using approximately half the LUTs.
For GF (2163) RF-FIKO computes the residue 1.064 times faster than FIKO and
1.076 times faster than BMM. This is more easily observed in Fig. 6 which shows
the execution time for all algorithms for sample fields.

9.2 ASIC Results

Table 5 shows the results from our ASIC implementation. As expected, the
results are significantly faster with the largest curve attaining a period of 0.41
ns for Montgomery. For 108-bit and 164-bit curves, FIKO outperforms BMM in
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Table 4. FPGA sample results

Algorithms CC LUT Slices f (MHz) Latency (μs)

F1 : F (t) = t107 + t54 + 1

Blakely 107 179 64 299.4 0.357

Montgomery 107 177 61 277.8 0.385

BMM 54 344 114 327.9 0.165

FIKO 54 400 150 342.5 0.158

RF-FIKO 54 235 108 350.8 0.154

F2 : F (t) = t163 + t82 + 1

Blakely 163 260 78 268.1 0.608

Montgomery 163 262 73 268.8 0.606

BMM 82 477 142 286.5 0.286

FIKO 82 768 259 289.9 0.283

RF-FIKO 82 512 212 308.6 0.266

F3 : F (t) = t521 + t260 + 1

Blakely 521 819 218 218.3 2.39

Montgomery 521 813 230 216.0 2.41

BMM 261 1492 435 219.3 1.19

FIKO 261 2,685 922 203.7 1.28

F ′
4 : F (t) = t571 + t + 1

Blakely 571 893 238 215.1 2.66

Montgomery 571 895 264 207.9 2.75

BMM 286 1,632 491 215.1 1.33

FIKO 286 2,772 942 199.7 1.432

time but not space. For 108-bit and 164-bit curves RF-FIKO outperforms BMM
in time and space. For 108-bit curves, BMM computes a residue in 54 CC × 0.36
ns × 10−3 = 0.01944 µs requiring 5,512 gates. RF-FIKO computes the residue
in 54 CC × 0.32 ns × 10−3 = 0.01728 µs with 4,876 gates. RF-FIKO differs by
2.16 ns and is more optimal in space with 636 fewer gates. In terms of execution
time, RF-FIKO is 19.44 ns / 17.28 ns = 1.125 times faster than BMM when
working in GF (2107). For 164-bit curves, BMM computes a residue in 0.03116
µs at the cost of 6551 gates and RF-FIKO in 0.02788 µs with 7059 gates. In
this case RF-FIKO requires 508 more gates but is 31.16 ns / 27.88 ns = 1.118
times faster than BMM when working in GF (2163). Figure 7 shows the latency
for 108 and 164-bit curves in clock cycle count by clock cycle time in μs for all
algorithms. For other curves, FIKO behaves similar to BMM.
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Table 5. ASIC sample results

Algorithm CC Time(ns) Gate# Area ∗ time

F1 : F (t) = t107 + t54 + 1

Blakely 107 0.33 1,941 640.53

Montgomery 107 0.37 2,039 754.43

BMM 54 0.36 5,512 1,984.32

FIKO 54 0.34 7,812 2,656.08

RF-FIKO 54 0.32 4,876 1,560.32

F2 : F (t) = t163 + t82 + 1

Blakely 163 0.34 3,115 1,059.1

Montgomery 163 0.38 3,835 1,457.3

BMM 82 0.38 6,551 2,489.38

FIKO 82 0.34 12,402 4,216.68

RF-FIKO 82 0.34 7,059 2,400.06

F3 : F (t) = t521 + t260 + 1

Blakely 521 0.4 9,240 3,696

Montgomery 521 0.41 11,785 4,831.85

BMM 261 0.39 20,690 8,069.1

FIKO 261 0.41 41,007 16,812.87

F ′
4 : F (t) = t571 + t + 1

Blakely 571 0.4 11,031 4,412.4

Montgomery 571 0.41 12,399 5,083.59

BMM 286 0.39 22,370 8,724.3

FIKO 286 0.41 43,346 17,771.86

Fig. 6. FPGA execution time in CC × T (μs) for 108 and 164-bit curves
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Fig. 7. ASIC execution time in CC × T (μs) for 108 and 164-bit curves

RF-FIKO removes the reduction part in modular multiplication simplifying
the solution to the problem A(t) × B(t) (mod F (t)) to three multiplications
followed by some shifts and additions on the last clock cycle; the results presented
showed improvement in time and space complexity for specific curves. Further
optimization can be obtained through experimentation and incorporation with
other techniques such as, varying parameters, Mastrovito matrix for KOA terms,
higher radices (e.g. 22, 23, etc.), refined and combined versions of KOA (e.g., with
Toom-Cook), and pipelining.

Both FPGA and ASIC results show that for k-bit fields, Montgomery and
Blakely can compute the residue in k CC, our main metric for time. BMM, FIKO,
and RF-FIKO compute in k/2 CC. The focus of this work was to highlight
the impact of our modulus polynomial. Hence, for comparison and additional
consideration noted earlier, all algorithms were implemented in the same base
and in a similar fashion. Results from state-of-the-art implementations, such
as [16] and [17] for BMM, confirm similar results with respect to clock cycle
count. For example in [17], for a radix-4 pipelined implementation, the residue is
computed in n

2 +4 CC for n-digit operands. A strict comparison in terms of time
and space for state-of-the-art implementations would require reproducing such
works and is considered for future work as there are different optimization levels
that can be applied. Moreover, besides the several variants and considerations for
comparison, such works also conform to particular modulus polynomials [21,23].

9.3 Bit-Parallel Multipliers and Fully Homomorphic Encryption

This subsection provides a brief comparison against some of the fastest bit-
parallel modular multipliers and estimates for FHE curves. Table 6 lists the total
gate count for similar works in the PB and Shifted PB. RF-FIKO space com-
plexity consists of 7059 total gates for GF (2163) which is six times less gates
compared to [9,36,37] and four times less gates than [35]. The estimated time
delay as a function of the signal propagation delay through total AND-gates
(TA) and XOR-gates (TX) is expected to be significant.
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Table 6. Bit-parallel multipliers in PB and SPB

GF (2147)

Work Gate# Time

Sunar & Koç, Wu [36,37] 43,217 TA + 10TX

Elia et al. [8] 33,045 TA + 11TX

Fan et al. [9] 43,217 TA + 9TX

Negre [28] 49,000 TA + 8TX

Li et al. [35] 29,154 TA + 8TX

On the other hand, the degrees of defining polynomials for FHE are much
larger than those of PQC, demanding more parallelism. Several functions
with fully-homomorphic properties work with polynomial rings of the form
Zq[t]/(tn + 1). These rings are applied to the FHE algorithms such as, CKKS
and RLWE BVG [4,7]. For RLWE BGV, the moduli can take values in the inter-
vals q ∈ [215, 2500] and n ∈ [29, 214]. CKKS works with polynomial rings of the
form Z[t]/φ(t)m for which the defining polynomial φ(t)m is the m-th cyclotomic
polynomial for m ∈ Z

+ and a power of 2. It also works with a ring Zp[t]/φ(x)m.
Table 7 lists estimates for RF-FIKO for sample n for F (t) that define rings for
RLWE BVG, CKKS, and similar functions such as, FV and BFV [5,11]. The
estimates for total gate count are based on the results for RF-FIKO for GF (2163),
as �n/163�×7059. The CC is n/2 as noted previously. We can easily see that for
GF (2512), BVG would require 22,174 gates which is approximately half of the
gate count for three of the fastest bit-parallel multipliers listed in Table 6 for a
much smaller field.

10 Applications

Ring and finite field multiplication forms the fundamental operation in crypto-
graphic schemes. Public-key cryptography, symmetric key cryptography, FHE,

Table 7. Estimates for FHE curves [4,5,7,11]

n CC Gate#

RLWE BVG

29 256 22,174

214 8,192 709,538

CKKS and similar

215 16,384 1,419,076

216 32,768 2,838,152

217 65,536 5,676,303
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and primitives based on these, such as KEMs and HMACs, all employ modular
arithmetic. These schemes are particularly interested is fast modular multipli-
cation with polynomial rings and fields defined over different bases [18]. When
working in higher radices, intermediate operations may be performed in GF (2n)
for efficiency, such as eliminating carry propagations. In the modern regime,
our work is applicable to schemes, such as RSA and ECC (e.g. ECDSA) [29].
In the quantum regime, NIST PQC Third Round Lattice-based finalists which
share similar construction based on structured lattices, would benefit from our
work. FHE uses higher degrees than PQC and requires a higher level of paral-
lelism [4,26].

The arithmetic in Lattice-based schemes consists of matrix algebra and finite
field and ring arithmetic. Cryptographic hashing (SHA-3 and XOFs), random-
ness generation, and ring multiplication are among the most expensive computa-
tions in these schemes [30]. The Number Theoretic Transform (NTT) is employed
in all Lattice-based schemes for fast ring and field multiplication except in Saber
and NTRU. Tables 8 and 9 list sizes for keys and moduli used in modern and
PQC schemes. Table 10 lists rings used in different PQC schemes. Further details
regarding the schemes and varying instances can be obtained by accessing the
specification documents of each submission [31].

10.1 NTT-Unfriendly Rings

The polynomial arithmetic techniques applied to Lattice-based schemes can be
grouped into three categories, namely, NTT-friendly, NTT-unfriendly, and com-
binations of Karatsuba and Toom-N . Karatsuba-Ofman multiplication is par-
ticularly suitable when the defining polynomial of the ring has degree above 16
and within 256. Variants of Karatsuba and Toom-N are more efficient when the
degree is above 256. These variants are particularly suited for NTT-unfriendly
rings where the moduli are a power of two, Z2m [t] (e.g. Saber and NTRU).

NTTs can be adapted for NTT-unfriendly rings to obtain significant speed-up
through new implementations of the schemes and techniques (e.g., layering) [18].
However, improving NTTs by reducing the number of modular reductions is a
sought venue for improvement [27]. Moreover, NTTs may not be applicable in all
use cases (e.g. compression in Saber). Depending on the implementation, plat-
form, and techniques applied, a speed-up may not be possible [31]. For exam-
ple, in AVX2, a software speedup was not possible for n = 509 with NTT of
length-1024 due to selected strategy and vector layout [18]. A fast hardware
implementation uses schoolbook multiplication and highlights the difficulties of
implementing recursive structures in hardware, such as Toom-N [32].

10.2 Number Theoretic Transforms

Kyber, Dilithium, and Falcon use NTT-friendly rings. NTRU-HRSS is flexi-
ble and the latest specification allows for variants that use a prime q allowing
for security and size trade-offs not present when q is a power of two [31]. Fal-
con, based on NTRU lattices, uses a prime modulus q = 12289 of special form
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q = ((k × 2n) + 1) that makes it suitable for NTTs [31]. Hardware accelera-
tion of primitives through platform-specific ISA extensions and cryptographic
processors such as, single-cycle multiplication and vectorized NTTs on target
platforms, such as ARM Cortex-M4 and Intel AVX2 would improve all Lattice-
based schemes.

Table 8. Sample modern schemes [29]

Modern schemes Keys/Moduli (bits)

AES 128, 192, 256-bit keys

RSA 2048, 4096, 7680, 15,360-bit moduli

DH 2048-bit modulus

ECC 160–233, 224–255, 256–383, 384–511, 512+ moduli

The reduction-free property of RFTs is an extension from binomials. For
simplicity, if we consider a small field of the form Z2[t]/(x8 + 1), we can easily
see that with this binomial, elements can be split into even half-size words of
d-bits or 8/2 bits. F (t) can be split evenly by allowing the upper register to hold
the d most significant bits and the lower register can be truncated to d-bits since
it is 1 and reducing with (mod 00001) is equivalent to reducing with (mod 0001)
or just 1. We can easily observe that the Blakely quotient will just be the d − 1
most significant bits of C2 and Montgomery is just the least significant d-bits of
C0. Modular multiplication in finite fields and rings can apply the reduction-free
property when the defining polynomial is a binomial or trinomial that allows it.

When the coefficients of the polynomials are elements in a ring of field, such
as Zq, such as a ring of the form Zq[t]/(xn + 1), the reduction-free property
can be explored with respect to modulo q. For example, for q = 819210 =
100000000000002 and intermediate multiplications and additions of elements in
{0, 1, .., q−1} may be done in the binary base and we may exploit reduction-free
properties and split q into q1 = 1000000 and q0 = 0000000.

Table 9. Sample PQC keys [31]

PQC schemes Key size (Bytes) Security level

Kyber768 sk = 2400(32†), pk = 1182 3

FireSaber-KEM sk = 3040(1760‡), pk = 1312 5

NTRUhrss701 sk = 1452, pk = 1138 1, 3∗

Dilithium5 sk = 2592, pk = 4595 5

Falcon-1024 pk = 1793, σ = 1280 5

† indicates option for only 32 bytes of randomness with trade-
offs.
‡ indicates option to use compression to reduce the key size to
384 bytes. ∗ 1 for non-local models, 3 for local.
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Table 10. Sample PQC fields and ring parameters [31]

Scheme Zq[t]/F (t)

Saber Z3329[t]/(t256 + 1)

Kyber Z3329[t]/(t256 + 1)

NTRUhrss701 Z8192[t]/(t701 + 1)

Dilithium Z8380417[t]/(t256 + 1)

Falcon-1024 Z12289[t]/(t1024 + 1)

Improvements of Karatsuba and Toom-N that explore reduction-free
(mod q, F (t)) is applicable for cases where NTT cannot be applied. If NTT
can be adapted, there is no reduction (mod F (t)) and we are only concerned
with reduction (mod q) in which case, we can obtain reduction-free NTT if q
can be expressed accordingly. The polynomial arithmetic and techniques appli-
cable depend on the implementation type, software or hardware. In Saber, the
reference software implementation notes that 50–70% of the time is spent on
generating pseudorandomness [31]. Recent work also shows that optimization of
polynomial multiplication in Lattice-based schemes, controls computation time
to a large-scale [18]. Our work is specifically applicable to hardware implementa-
tions which are optimized through principled design. RF-FIKO can be designed
in different bases, radices, incorporated with other techniques (pipelining, paral-
lelism, refined KOA) and algorithms (e.g. Toom-N), and transformed into other
domains (e.g. NTT) to obtain a significant speed up in modern, PQC, and FHE
schemes.

Highly optimized software and specialized hardware implementations have
paramount applications on the Internet and computing systems in general. These
include embedded firmware (e.g. TPMs), cryptographic libraries (e.g. OpenSSL)
to secure the cloud and VPNs through transport layer security (TLS) and IPSec
implemented in the OS code on hosts and gateway routers, and devices in gen-
eral such as, cryptographic cores and modules (e.g., secure enclaves on SoCs).
Moreover, blockchain technology which is highly dependent on PKC, namely
digital signatures, is faced with protecting against quantum attacks. To remain
secure and practical in the quantum regime, blockchains must implement PQC
schemes efficiently. General adaption of PQC must also be applied in a timely
manner [26]. Being able to operate on encrypted data efficiently is also highly
desired for FHE applications such as, zk-SNARKs.

11 Conclusions

Efficient implementations of modern PKC and lattice-based schemes are sought
in both software and hardware. In this paper, we introduced two new algo-
rithms (FIKO and RF-FIKO) which are based on fully interleaved bit-parallel
Karatsuba-Ofman multipliers without the bipartite reduction circuits. Their
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FPGA and ASIC implementations were faster than FIKO and BMM and showed
promising results for PQC and FHE implementations. Moreover, further analysis
of a complete system that applies cryptographic primitives must account for soft-
ware and hardware attacks, such as side-channels. In this case, because RF-FIKO
is reduction-free, it eliminates timing leakage via modular reductions without
the need to recourse to alternative algorithms. This conforms to constant-time
implementation requirements.

Further optimization of RF-FIKO through incorporation with other tech-
niques or transforming NTT into reduction-free NTT, merits further research
and consideration.
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Abstract. Both classical and post-quantum cryptography massively use
large characteristic finite fields or rings. Consequently, basic arithmetic
on these fields or rings (integer or polynomial multiplication, modular
reduction) may significantly impact cryptographic devices’ efficiency and
power consumption. In this paper, we will present the most used and
the less common methods, clarify their advantages and drawbacks and
explain which ones are the more relevant depending on the implementa-
tion context and the chosen cryptographic primitive. We also explain why
recent proposals such as RNS, PMNS or Montgomery-friendly primes
may be a good alternative to classical methods depending on the con-
text and suggest directions for further research to improve them.

Keywords: Finite field · Arithmetic · Cryptography · Modular
reduction · Multi precision · Polynomial rings

1 Introduction

Most of the public key cryptosystems use large finite fields or rings as well as
their polynomial extensions. The consequence of this massive usage is that basic
arithmetic on these fields and rings may impact the efficiency and power con-
sumption of cryptographic devices. Nevertheless, the sizes and degrees involved
are very diverse. For example

– Discrete logarithm on the multiplicative subgroup of a finite field, as well as
RSA, uses 1024 to 4096-bits integers.

– Elliptic curve cryptography uses 256 to 512-bits prime fields.
– Pairing-based cryptography uses 256 to 1024-bits prime fields together with

small degrees extension fields.
– Isogeny-based post-quantum cryptography uses 400 to 1000-bits prime fields

and quadratic extensions.

This work was supported in part by French project ANR-11-LABX-0020-01 “Centre
Henri Lebesgue”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Mesnager and Z. Zhou (Eds.): WAIFI 2022, LNCS 13638, pp. 79–106, 2023.
https://doi.org/10.1007/978-3-031-22944-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22944-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-22944-2_5


80 S. Duquesne

– Lattice-based post-quantum cryptography uses 13 to 60-bits prime fields and
large-degree polynomial rings.

Because of this large spectrum, there is a wide collection of algorithms for per-
forming finite field or ring arithmetic which have each their range of interest
depending on the context. Many arithmetic operations (squarings, inversions,
additions, Frobenius map, square roots, ...) are involved in various protocols. In
this paper, we will concentrate on multiplications and modular reduction because
there are the most impacting operations in practice.

We will present the most used methods (schoolbook, interpolation based,
Montgomery) as well as less common ones (RNS, PMNS) and some that are
specific to particular modules (Mersenne and pseudo-Mersenne primes, Mont-
gomery friendly primes). We will discuss their advantages and drawbacks and
explain which ones are the most relevant depending on the implementation con-
text and the chosen cryptographic primitive. We will detail how they can be
combined and in which direction they should or could be improved in further
works. For some of them, we give some trails for such improvements. We also
explain to what extent recent techniques (PMNS, Montgomery-friendly primes)
are competitive with more classical ones and spotlight their advantages depend-
ing on the context.

The paper first recalls multi-precision arithmetic and then concentrates on
modular reduction methods and polynomial operations.

2 Multiprecision and Large Integer Multiplication

Hardware devices have the native capacity to perform arithmetic operations on
bounded inputs, usually the processor’s word size (denoted w in this paper).
This word size is classically between 8 and 128 bits; most common architectures
use 32 or 64-bit words nowadays. However, classical cryptography and isogeny-
based cryptography use much larger integers. Multiprecision is the way a device
deals with such large integers. It consists in writing large integers in base β
(where β = 2w) and then using specific algorithms to get the result of a specific
operation involving large inputs.

For example, to add 2 n-words integers a < βn and b < βn, we have to add
them word by word

a + b =
n−1∑

i=0

aiβ
i +

n−1∑

i=0

biβ
i =

n−1∑

i=0

(ai + bi)βi (1)

Unfortunately, this is not so easy because of carries. Indeed, ai + bi may be
greater than or equal to β. The right formula is then

a + b =
n−1∑

i=0

aiβ
i +

n−1∑

i=0

biβ
i =

n∑

i=0

(ai + bi + qi−1 mod β)βi
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where qi−1 = 0 or 1 is the quotient of the Euclidean division of ai−1+bi−1+qi−2

by β. Contrary to Eq. (1), a + b is now written in base β because its coefficients
are less than β.

The carry is just 0 or 1, so it is not a big deal to add it to the next coeffi-
cient, and the complexity of multi-precision addition remains linear in n. Never-
theless, its potential propagation makes difficult the parallelization of this naive
algorithm. Moreover, parallelization is very important today because multi-core
devices are very current. It is possible to partially get around this problem using
carry-save variants of this algorithm. Their concept is to delay and accumulate
carries to the end of the computation [67].

2.1 Schoolbook Multiplication

We can follow the same process for multiplying 2 large integers. Let us consider
a and b, two n-word integers written in base β. Then ab can be computed by a
succession of basic word multiplications and additions in the way pupils learn
multiplication in base 10 at school (which gives the name to the method)

n−1∑

i=0

aiβ
i

n−1∑

i=0

biβ
i =

2n−2∑

i=0

ciβ
i with ci =

∑

k+l=i

akbl (2)

The complexity is n2 word multiplications but again ab is not written in base β
in formula (2) because ci will generally overcome β. In order to take carries into
account, we use Algorithm 1.

As was the case for multiprecision addition, the complexity is not affected (n2

basic word multiplications) but managing carries makes this algorithm difficult
to parallelize again. Note that if a specific squaring algorithm is used, it will be
more efficient than using Algorithm 1 because if a = b, aibj and ajbi are the
same and then are computed only once.

2.2 Karatsuba Multiplication

There is a well-known way to reduce the number of basic multiplications required
for multiplying large integers. It is due to Karatsuba [52]. To multiply 2-word
integers with the schoolbook method, we do

(a0 + a1β)(b0 + b1β) = a0b0 + (a0b1 + a1b0)β + a1b1β
2

Karatsuba’s method consists in computing the middle term as

a0b1 + a1b0 = (a0 + a1)(b0 + b1) − a0b0 − a1b1

This saves one multiplication (at the cost of 3 extra additions) because a0b0 and
a1b1 are already computed as the constant term and the term in β2, respec-
tively. This process can be recursively applied to deal with larger integers (the
well-known divide-and-conquer strategy). We then get the schoolbook method’s
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Algorithm 1: Schoolbook multiplication of large integers
Input: 2 integers 0 ≤ a, b < βn written in base β = 2w:

Input: a =

n−1∑

i=0

aiβ
i, b =

n−1∑

i=0

biβ
i, with 0 ≤ ai, bi < β

Result: r = ab < β2n written in base β: r =

2n−1∑

i=0

riβ
i, with 0 ≤ ri < β

ri ← 0 ∀i ∈ [0..2n − 1]
for i = 0 to n − 1 do

carry ← 0
for j = 0 to n − 1 do

t ← ri+j + ajbi + carry
carry ← t quo β
ri+j ← t mod β

end for
ri+j+1 ← carry

end for
return {ri}i=0..2n−1

complexity of nlog2 3 basic word multiplications instead of n2. The main draw-
back is that the number of addition will grow much faster than the number of
multiplications will decrease.

Then, depending on the context and the relative cost of additions and multi-
plications, the schoolbook or the Karatsuba method should be preferred. More
precisely, the Karatsuba method can be used for the first steps of the divide-
and-conquer strategy for large integers, but it is not necessarily adequate for the
last steps. Indeed, operands are smaller so that the relative cost of additions is
higher than those of multiplications. Then, in practice, both methods are com-
bined. The threshold for switching from Karatsuba to a schoolbook depends
on the implementation context. More details on this shallow Karatsuba app-
roach and the choice of the threshold can be found in [69,75]. For example, for
the current ECC key sizes, Karatsuba approach is not competitive for software
implementation [44].

Many other ways exist to improve the complexity of large integer multiplica-
tions at the cost of extra additions or other small operations. We do not present
them here because there are not used in cryptography (their threshold of use is
too far regarding the sizes of integers used in cryptography), but also because we
will give them in Sect. 5 in the polynomial context, which is more straightforward
(in particular, no carries are involved).
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3 Modular Reduction in the General Case

The specificity of the finite field arithmetic is the reduction step modulo the
characteristic p of the field. However, note that the algorithms for reducing
modulo p presented in this section do not require p to be prime and are indeed
not always used in cryptography for primes (e.g. for RSA ciphering).

3.1 Schoolbook Reduction

The reduction of an integer modulo p consists in finding the remainder of the
Euclidean division of this integer by p. Again, the easiest way is to use the
algorithm learned at school. Assume we want to reduce a m-word integer a
modulo a n-word integer p (with of course m ≥ n) written in base β:

a =
m−1∑

i=0

aiβ
i and p =

n−1∑

i=0

piβ
i

We assume that we have at our disposal a basic division of a 2-word integer by a
1-word integer, provided that the quotient is a 1-word integer. The principle of
the schoolbook division is essentially to divide the main significant word am−1

of a by the one of p (or the 2 main ones if am−1 < pn−1). The quotient q gives a
first approximation of the result, and a is updated as a− qp (up to some powers
of β), and the process is iterated until a becomes less than p. This process is
precise in Algorithm 2.

Algorithm 2: Schoolbook reduction

Input: a =

m−1∑

i=0

aiβ
i and p =

n−1∑

i=0

piβ
i

Result: a reduced modulo p
Compute q0, r0 s.t. am−1 = pn−1q0 + r0 with r0 < pn−1

a ← a − q0pβm−n

for i = 1 to m − n do
Compute qi, ri s.t. am−iβ + am−i−1 = pn−1qi + ri with ri < pn−1

s ← a − qipβm−n−i

while s < 0 do
qi ← qi − 1 s ← s + pβm−n−i

end while
a ← s

end for
return a

The loop of this algorithm is m−n+1-long and each step is, up to additions,
made of one basic division (computing qi and ri) and n basic multiplications
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(multiplying the 1-word integer qi by the n-word integer p). The overall com-
plexity is then m−n+1 basic divisions and n(m−n+1) basic multiplications. If
a is the result of a multiplication in Fp, we have m = 2n, and the complexity is
then n divisions and n2 multiplications. This is not so bad compared to multipli-
cation. However, basic divisions are usually very expensive, so we want to avoid
them. It can be, for example, done thanks to the Newton method applied to the
function f(x) = 1

x − b, which computes the inverse of b without any division.
However, the best way to do it is to use the so-called Montgomery or Barrett
reductions.

3.2 Montgomery Reduction

During the ’80s, Peter Montgomery [58] and Paul Barrett [18] introduce new
methods to perform a Euclidean division without basic divisions. Their app-
roach are slightly different but the principle is the same: write a

p as a
βn

βn

p . If
the second term is precomputed (it does not depend on a), the division by p is
then replaced by a division by βn, which is trivial in base β. Of course, this app-
roach works for real divisions, not directly for Euclidean ones. Then, they need
to consider correcting terms to get the right result. Barrett and Montgomery’s
approaches have their advantages and drawbacks. The main drawback of Mont-
gomery reduction is that it requires changing the representation of numbers, but
it is mitigated if several operations are performed successively. This is classically
the case in cryptographic primitives, so the Montgomery reduction is the most
popular in this domain, and we will detail it in this subsection.

To simplify, we assume we want to reduce modulo p the result a of multipli-
cation of 2 integers less than p (which is the most common use case). The basic
version of the Montgomery reduction is given by Algorithm 3.

Algorithm 3: Montgomery reduction modulo p

Input: a < pβn, βn−1 ≤ p < βn

Input: the precomputed value p′ = −p−1 mod βn

Result: r < 2p such that r = aβ−n mod p
q ← ap′ mod βn

r ← (a + qp)/βn

It is easy to prove that the output r < 2p and r = aβ−n mod p. But these
two properties are not exactly the expected ones for the reduction of a mod p.
For the first one, we can of course subtract p if necessary to get r < p. As an
alternative, the output of Algorithm 3 can be used directly as input for the next
step by adding a condition on p, specifically 4p < βn.
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The fact that r = aβ−n instead of a modulo p can be overcome by using the
so-called Montgomery representation of numbers defined by x = xβn mod p.
This representation is, of course, stable for the addition (x + y = x + y), but it
is also stable for the modular multiplication using Algorithm 3. Indeed, when
we multiply x and y in Montgomery representation, we get a β2n factor. But
βn is removed during the Montgomery reduction process, so we finally get the
Montgomery representation of xy and we then have x y = x y mod p. Thanks
to this stability, we can chain several operations in Montgomery representation.
Changing representation may only be necessary at the beginning and end of the
complete cryptographic computation. Moreover, this change of representation
can be easily obtained thanks to Algorithm 3. Indeed, the Montgomery repre-
sentation of x < p is obtained with x (β2n mod p) as an input. Similarly, we can
recover x using Algorithm 3 with x as an input. Hence, we usually ignore the
conversion cost from Montgomery to classic representation (and reciprocally) in
cryptographic applications.

Concerning the complexity, 2 multiplications are involved in the algorithm,
but there are incomplete ones. The first one (ap′) is reduced mod βn, so it is
unnecessary to compute its most significant part. For the second one, we know in
advance that a+qp will be exactly divisible by βn (by definition of q), so its least
significant part is zero and may not need to be computed. The other operations
in Algorithm 3 have negligible cost in base β, so the overall cost should be the
one of only one full multiplication, say n2. Nevertheless, this analysis does not
take carries into account. For example, the least significant part of the second
operation is zero but may produce some carries, so it must be computed anyway.
For concrete applications and precise complexity analysis, we use Algorithm 4: a
word-by-word version which requires n2 + n basic word multiplications [27,29].

Algorithm 4: Word version of the Montgomery reduction modulo p

Input: a < pβn, βn−1 ≤ p < βn

Input: the precomputed value p′ = −p−1 mod β
Result: r = aβ−n mod p and 0 ≤ r < p

r ← a;
for i = 0 to n − 1 do

r0 ← r mod β
q ← p′r0 mod β
r ← (r + qp)/β

end for
r′ ← r − p + βn

if r′ ≥ βn then // else r < p
r ← r′ mod βn // r ← r − p if r ≥ p

return r
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There also exists a version of Algorithm 4 that is interleaved with the mul-
tiplication steps [27,56] to get a complete modular multiplication algorithm. It
has some advantages (smaller intermediate results) and drawbacks (only com-
patible with schoolbook multiplication). We do not give it here, but details can
be found in Chap. 5 of [42], for example.

The Montgomery reduction has been used mainly in cryptography for decades
as long as the module does not have a specific form allowing fast reduction.
The only constraint is that p is odd so that it can be inverted modulo β. It
is, for example, regularly used in RSA implementations, Elliptic Curve Cryp-
tography, pairing-based protocols or, more recently, isogeny key exchanges or
lattice-based cryptography using primes modules. For example, the reference
and optimized implementation of the NIST candidates Frodo and NTRUprime
for post-quantum standardization [61] are using Montgomery reduction. How-
ever, we still have carries issues with this technique. To avoid them, one can use
the well-known Chinese reminder theorem.

3.3 The Residue Number Systems (RNS)

The principle of Residue Number Systems (RNS) is to represent an inte-
ger a by its residues (a1, a2, . . . , an) modulo a set of coprime numbers B =
(m1,m2, . . . ,mn). This set is called a RNS basis and we have ai = a mod mi

which we will also denote |a|mi
for clarity. We generally assume that 0 ≤ a <

M =
∏n

i=1 mi. The main interest of such a system is that it independently
distributes large integer operations on the small residue values. In particular,
large integer operations become linear relatively to their sizes, and there is no
carry propagation. These systems were introduced and developed in [43,71,72].
A good introduction can be found in [55].

However, they cannot be used directly in the cryptographic context because
we need to reduce modulo a prime p that cannot be factorized in small mod-
uli by definition. For constructing an arithmetic over Fp, we assume that
p < M =

∏n
i=1 mi and we use a variant of the Montgomery reduction algo-

rithm presented in Subsect. 3.2 to replace reductions modulo p by reductions
modulo M instead of βn [4,5,53,64]. Montgomery reduction algorithm cannot
be used without adaptation. Otherwise, we would have to divide by M on the
RNS basis. This is not possible because M =

∏n
i=1 mi is not invertible mod-

ulo mi. It is then necessary to introduce an auxiliary RNS basis to handle the
inverse of M . The consequence is that arithmetic operations (e.g. the initial
multiplication) must be performed on the two bases. This doubles the cost of
arithmetic operations, but this is not an important issue since this cost is now
linear, contrary to classical arithmetic. The biggest issue is that some changes
of basis become necessary before and after dividing by M .

As a derivative of the Montgomery reduction algorithm, this algorithm has
the same drawbacks that can be solved in the same way. The Montgomery rep-
resentation of a in this case is a = aM mod p and is stable for Montgomery
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Algorithm 5: RNS reduction based on Montgomery approach
Input: 2 coprime RNS basis B and B′ such that p < M < M ′

Input: p given in basis B′ and −p−1 precomputed in basis B
Input: a < Mp represented in both RNS basis
Result: r = aM−1 (mod p) represented in both RNS basis, with r < 2p

1 q ← a×(−p−1) in B
2 [q in B] −→ [q in B′] // First basis extension

3 r ← (a + q×p)×M−1 in B′

4 [r in B ] ←− [r in B′] // Second basis extension

addition and multiplication. And again, changing representation is rare and easy
to perform with a or a(M2 mod p) as input of Algorithm 5 [9].

Instructions 1 and 3 of Algorithm 5 are component-by-component operations
performed independently for each basis element, so they are very efficient (linear
complexity). On the other hand, the basis extensions of instructions 2 and 4 have
quadratic complexity. To convert a RNS representation to another RNS basis, we
usually use a Lagrange interpolation: if (a1, a2, . . . , an) is the RNS representation
of a in the basis B = {m1, . . . ,mn}, then,

a =
n∑

i=1

∣∣aiM
−1
i

∣∣
mi

Mi − αM where Mi =
M

mi

Furthermore, the main challenge is to compute α efficiently. There are several
approaches in the literature. In [53], it is shown that the first conversion can be
only an approximation because q is then multiplied by p. However, the second
conversion needs to be exact and can be done if w < 2p < (1 − 1

ρ )M ′ for some
ρ ≥ 2 and ci

2w < 1
n (1 − 1

ρ ) assuming mi = 2w − ci. The same idea is used in [12],
but the conditions are relaxed. In [73], a binary tree construction is used with a
logarithmic depth with a modulo reduction at each level. Finally, it is shown in
[7] that the overall complexity of Algorithm 5 can be optimized up to 7

5n2 + 8
5n

multiplications at the moduli level.
For efficiency reasons, the size of the elements of the RNS basis is related to

the word size (usually 1 or 2 words), and they must be chosen carefully so that
reductions modulo the mi are cheap. Moduli of special form as in Sect. 4 are
usually chosen so that the reduction modulo mi is, in this case, obtained with
few shifts and additions. For example, Kawamura et al. [53] are using moduli
mi = 2w−ci with ci < 2w/2. In [12], a double Montgomery reduction is suggested
to avoid internal modular reduction constraints and pseudo-Mersenne use. J.
van der Hoven suggests in [73] to use s-gentle moduli, for example for s = 2,
mi = 22w − ε2i with 0 ≤ εi < 2(w−1)/2.
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RNS arithmetic has many advantages compared to standard arithmetic. In
particular, multiplication becomes a linear operation instead of a quadratic one.
However, also, no more carriers are involved, and conjointly with the indepen-
dence of the components, it makes RNS arithmetic very easy to implement and
parallelize, especially in hardware, as shown in [45]. We can also introduce redun-
dancy in the representation by adding new moduli. This allows for the intro-
duction of randomization in the representation of elements that can be used
as protection against differential side-channel attacks. Moreover, an RNS-based
architecture is very flexible: with a given structure of n modular digit operators,
it is possible to handle any value of p < M . Hence, the same architecture can be
used for different cryptographic primitives, different levels of security and several
base fields for each of these levels. The main drawback is the cost of the basis
extensions, which makes the RNS reduction significantly more expensive than
the classical Montgomery reduction. However, remember that RNS multiplica-
tion is much cheaper than classical multiprecision multiplication. So, there is a
gap between the reduction and the multiplication cost, which does not occur in
classical systems. We can take advantage of this gap by accumulating multipli-
cations before reducing it. This method is called lazy reduction and is detailed
in Sect. 6.

RNS systems have been successfully used in various cryptographic primi-
tives, especially in hardware implementation (because it is necessary to have an
efficient reduction modulo the mi, which is challenging to achieve in software).

The first target was RSA (see [9] for example). The results are fascinating
and competitive. However, the integers are very large in RSA, so a large basis are
required for high-security levels, and it cannot always be realized with classical
pseudo-Mersenne primes as in [53], especially if the word size is small. At this
point, it would be very interesting to find other families of moduli allowing fast
reduction, to develop variants of the RNS method, which is less demanding in
terms of basis size (for example, by considering 2-words moduli). Some works
already went in such direction recently [6,12,73] but for sure many improvements
remain to be find and would be interesting not only for RSA.

RNS has also been successfully used in elliptic curve cryptography [7,8,45]
and even allows to break of speed records in pairing-based cryptography [31].
Again, work remains to be done to adapt and optimize the elliptic curve and
pairing formulas to exploit the complexity gap between the RNS multiplication
and reduction steps more efficiently. RNS will also probably give interesting
results in isogeny-based cryptography because, as in pairing-based cryptography,
small degree extension fields are used in this context so that, as explained in
Sect. 6, the lazy reduction can be systematically used, and this is advantaging
RNS arithmetic.

More recently, an RNS-based implementation has been proposed for some
protocols of Fully Homomorphic Encryption [49]. However, it generally has few
interests in lattice-based cryptography because no large integers are used in this
case, so we do not get the gain of fast multiplication.
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Finally, RNS arithmetic may be helpful for constrained devices and hardware
and when we plan to use the base field level parallelization.

3.4 PMNS

Another way to avoid carriers is to work with polynomials. The so-called PMNS
(Polynomial Modular Number System) represents integers modulo p by a poly-
nomial that gives the integers once evaluated in a given value γ < p: a polyno-
mial P represents P (γ) mod p [10]. For efficiency reasons, P must satisfy some
constraints:

– The degree of P is (strictly) bounded degree by a given integer n.
– The coefficients of P are bounded by a given parameter ρ:

||P ||∞ < ρ � n
√

p.

Note that ρ cannot be less than ( n
√

p + 1)/2 otherwise all the elements of Fp

cannot be represented [63].

For example, if we choose γ = 7, then −X − 1 represents 11 modulo 19. Note
that X2 also represents 11 so this representation is a redundant system [39,63].

Thanks to this representation, large integer arithmetic is replaced by poly-
nomial arithmetic, which has many advantages (no carries, parallelization, inde-
pendence of the components). The main problem is the growing of degrees and
coefficients when operations are performed on the representative polynomials.
Then degrees and coefficients may outreach the given constraints for a represen-
tative to be valid. So reduction techniques are necessary.

The easiest operation is to reduce the degree. This is called the external
reduction, and this is done by reducing modulo a given polynomial E. This
polynomial must be chosen as a monomial of degree n so that the degree of
the reduced polynomial is less than n − 1. It must also cancel γ modulo p so
that the reduced polynomial represents the same element in Fp. For example, if
this polynomial is well chosen and sparse, this reduction step is very efficient.
It should also be chosen with small coefficients for efficiency reasons but, above
all, to minimize the growth of the coefficients induced by this step [37].

This is, for example, the case if we consider a polynomial of the form Xn −λ,
ideally with λ very small [10] or a power of 2. In this case, these systems are
called AMNS (Adapted Modular Number System) [10]. In any case, the external
reduction cost is usually only some extra additions [63].

Reducing the coefficients is more complicated and costly. This step is called
internal reduction. The idea is the same. Namely, we use a polynomial M that
cancels in γ. We then hope that dividing by M will give a polynomial with
smaller coefficients representing the same integer modulo p. Various methods
have been proposed to do it efficiently [10,11,18,60]. The most conclusive one
is based on the Montgomery reduction [60]: Algorithm 6 requires an auxiliary
integer φ, which is usually a power of 2 and uses Montgomery’s usual trick to
replace expensive divisions by M with cheap divisions by φ:
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Algorithm 6: Internal reduction using Montgomery reduction
Input: R ∈ Zn−1[X] with ||R||∞ ≥ ρ
Input: the precomputed polynomial M ′ = −M−1 mod (E, φ)
Result: S ∈ Zn−1[X] s.t. S(γ) = R(γ)φ−1 mod p

Q ← R × M ′ mod(E, φ)
S ← (R + Q × M)/φ mod E

Assuming that a Montgomery representation of elements is used (R = Rφ),
this algorithm outputs a polynomial S representing the same element as the
input and whose coefficients are reduced if M and φ are satisfying the following
conditions (for AMNS):

ρ > 2n|λ| ||M ||∞ and φ > 2n|λ|ρ

Contrary to the external reduction (which has linear complexity), the internal
reduction is quadratic, as an instance of the Montgomery technique. As for the
RNS reduction, we will not get any complexity gain compared to the classical
Montgomery reduction of Sect. 3.2, but we get simpler arithmetic that can easily
be parallelized.

Moreover, this representation is naturally redundant so that we can protect
the arithmetic against differential side-channel attacks. For example, we can add
a random polynomial that cancels in γ modulo p [37]. It is also shown in [38] that
this representation allows base field arithmetic without conditional branching,
which can be very interesting in the grey box context.

Until recently, the main drawback of this method was the parameter genera-
tion. We apply LLL to the lattice of polynomials cancelled by γ to get M. But it
is not so trivial to ensure that the polynomial M ′ exists as an integer polynomial
and that the parameter φ is a power of 2 to minimize the costs. A generator has
been very recently given in [38].

In terms of cryptographic applications, there are still few implementations
in the literature because of this parameter generation issue. However, it is very
promising for ECC, pairing or isogeny context [22], especially for constrained
devices and when parallelization is considered at the base field level. It may also
be a good alternative if side-channel resistance is needed at the base field level,
thanks to the redundancy of the representation.

4 Modular Reduction for Special Primes

The underlying base field can be chosen without restrictions in some crypto-
graphic contexts. In this case, the module p can be taken in a specific form that
allows much better complexity for reduction thanks to a dedicated algorithm.
Usually, only several shifts and additions are needed for the modular reduction
instead of O(n2) multiplications as in Sect. 3. The most known form is one of
the generalized Mersenne primes we will describe now, but we will see that there
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are not the only ones. The main drawback of this strategy is that it requires an
implementation/architecture dedicated to the specificity of p, which cannot be
used for other base fields. Consequently, it is not always practical in either soft-
ware or hardware implementation, and many users may prefer flexible products.

4.1 Mersenne and Pseudo-Mersenne Primes

The more efficient modules for reduction are the so-called Mersenne primes.
They have the form p = 2e − 1 and are historically used to break large prime
numbers records. In this case, the reduction Algorithm 7 splits the input after e
bits and uses that 2e = 1 mod p. Then adding the low and the high parts gives
a reduced form of the input. It is not completely reduced since it is less than 2p
instead of p, so an extra subtraction may be necessary to get the right result.
Note that this subtraction is not directly done with p but with 2e − 1, which is
mathematically equivalent but practically easier.

Algorithm 7: Reduction modulo a Mersenne prime p = 2e − 1
Input: 0 ≤ a < 2ep
Result: r = a mod p and 0 ≤ r < p

Write a = a12
e + a0

r ← a0 + a1

r′ ← r + 1 // r′ ← r − p + 2e

if r′ ≥ 2e then // if r ≥ p
r ← r′ mod 2e // r ← r − p

return r

The complexity of this algorithm is only one (large) addition. This is of course
much cheaper than all other reduction algorithms, especially if e is a multiple
of the word-size. However, Mersenne primes are very rare in the cryptographic
range. Only 3 of them can be encounter in the cryptographic literature:

– 2521 −1 introduced in [66] and used as a standard for elliptic curve cryptog-
raphy at the 256-bits security level.

– 2127 −1 used for hyperelliptic curves at the 128-bit security level [20,65].
– 231 −1 used as part of a RNS basis on 32-bit architecture.

In order to get more candidates, Mersenne primes can be generalized to any
prime having the form 2e − c for small values of c. Replacing 2e by c in the
writing of a large integer a in base 2e will indeed reduce the size of a.

a = a0 + a12e ⇒ a = a0 + a1c mod p

However, a1c is not reduced enough, so this reduction step needs to be applied
again to this term. It is easy to prove that if |c| is less than 2

e
2 , then a third

reduction step is not necessary, and we can then use Algorithm 8 involving only
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2 reduction steps. In this case, the result is less than 3p (as the sum of 3 integers
less than p), so 2 steps of subtraction of p may be necessary.

Algorithm 8: Reduction modulo p=2e − c, pseudo-Mersenne s.t. |c|<2
e
2

Input: 0 ≤ a < 2ep
Result: r = a mod p and 0 ≤ r < p

Write a = a0 + a12
e

b ← a0 + a1c
Write b = b0 + b12

e

r = b0 + b1c
r′ ← r + c; // r′ ← r − p + 2e

if r′ ≥ 2e then // if r ≥ p
r ← r′ − 2e // r ← r − p
r′ ← r + c // repeat the previous steps if r is still ≥ p
if r′ ≥ 2e then

r ← r′ − 2e

end if
return r

The final cost of Algorithm 8 is then 2 multiplications by c (and some addi-
tions). Consequently, c must be chosen carefully so that multiplications by c are
fast to compute. Of course, it can be chosen very small, as suggested by Cran-
dall [35]. This is, for example, the case of the prime 2255 − 19 introduced by
Bernstein to define the famous elliptic curve Curve25519 [19]. However, it can
also be chosen very sparse in the base of the machine word. This is, for example,
the case of Solinas primes [32,70], which are built as evaluation in the power of 2
(ideally in β) of sparse polynomials with very small coefficients. The polynomial
should be irreducible [59]. For example, if we choose the polynomial X3 −X − 1
and apply it to 264, we get a pseudo-Mersenne prime with c = 264 + 1 so that
multiplying by c just adds up to 64-bit architecture. This prime and other Soli-
nas ones are suggested by the NIST [62] and included in many standards for
elliptic curve cryptography.

Pseudo-Mersenne class is also the main provider of moduli (non necessarily
primes) for RNS basis because of their efficient reduction algorithm and the fact
that they can be freely chosen (as long as there are coprime). However, pseudo-
Mersenne primes cannot be used in cryptographic contexts where modules have
inherent constraints (e.g. RSA, pairings, Ring-lattices, isogenies).

4.2 Montgomery-Friendly Prime Numbers

In this subsection, we are interested in the so-called Montgomery-friendly primes
[6,25,26,50]. They are build in the form p = 2e2α±1 with e2 larger than the word
size w so that the Montgomery reduction Algorithm 4 is particularly efficient.
Indeed, this algorithm involves multiplication by the inverse of p modulo β. In the
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case of Montgomery-friendly primes, p is ±1 modulo β so that this multiplication
is free. Then, the only operation to perform in the for loop is the computation
of (r + qp)/β where q = r mod β. As p = β2e2−wα − 1 and assuming that
r =

∑
riβ

i at the beginning of each step of the for loop, this operation can be
computed as:

(r + qp)/β =
(∑

riβ
i + r0β2e2−wα − r0

)
/β =

∑

i�=0

riβ
i−1 + r02e2−wα

Algorithm 9: Word version of the Montgomery reduction if p = 2e2α − 1
Input: 0 ≤ a < pβn, βn−1 ≤ p < βn with β = 2w and w ≤ e2
Result: r = aβ−n mod p and 0 ≤ r < p

r ← a
for i = 0 to n − 1 do

r0 ← r mod β
r ← (r − r0)/β + r0 × α2e2−w

end for
r′ ← r + (βn − p) ;
if r′ ≥ βn then

r ← r′ − βn

return r

Algorithm 4 can then be rewritten as Algorithm 9 and the cost of each step
of the for loop is reduced to one multiplication of α2e2 mod w by the single word
value r0. Assuming α2e2 mod w fits on nα words, Algorithm 9 then requires nnα

word multiplications. Of course the case p = 2e2α + 1 is very similar.
As detailed in [6], the choice of α and e2 is crucial to get an efficient reduction

algorithm.

– If α is a power of 2, the multiplication by α is very efficient, but we finally
get a Mersenne prime.

– If α = 2e′
2 − c with c small, we get an equivalent of pseudo-Mersenne primes.

– If α = 2e′
2 − c with c sparse involving only coefficients of the word size, we

get an equivalent of the Solinas primes.
– If e2 (and e′

2) is a multiple of the word size, this will reduce the word size nα

to the one of α.

If both α and e2 are wisely chosen as above, the Montgomery reduction
Algorithm 9 is very efficient by construction (each step of the for loop costs
only one multiplication of a single word by c). Note that it will not give better
efficiency than classical pseudo-Mersenne primes. It only provides more choices
of good primes. This can be useful in many cryptographic contexts.

Such primes have been used in elliptic curve cryptography for years, such as

– p192 = 264(2128 − 1) − 1, which was already a Solinas prime used in most
standards [62],
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– p448 = 2224(2224 − 1) − 1, used for the curve Ed448 [51],
– p480 = 2448(232 − 1) − 1 or p512 = 232(2480 − 1) − 1 for higher security levels.

Other Montgomery-friendly primes, which do not appear as pseudo-Mersenne
primes, together with elliptic curves defined over the corresponding prime field,
can be found in the recent cryptographic literature [26,28,50]. For example the
primes 2240(216 − 88) − 1 and 2240(214 − 127) − 1 are recommended for the 128-
bits security level. However, the parameters e2 and e′

2 were not multiples of the
word size in these proposals. The most accomplished example is given in [6]:
p256 = 2192(264 −4)−1 can be seen as a good alternative to the Bernstein prime
2255 − 19 because reduction modulo p256 requires only a few additions while the
Bernstein prime requires multiplication by 19. Moreover, it is possible to find
an elliptic curve satisfying the security requirements given in [21] with a smaller
curve coefficient than Curve25519 [6].

The most natural application is isogeny-based cryptography because primes
involved have the form 2e23e3 −1 and are naturally Montgomery-friendly. It was
even the initial motivation to study these primes [6]. For example, for the famous
SIKE prime p503 = 22503159−1 given in the SIKE proposals [2,3] for the security
category 2, we have n = 8 if w = 64 and α = 3159258 so that nα = 5. The overall
cost of the reduction algorithm is then 40 word-multiplications (which fits with
the reference implementation of SIKE). In order to follow the requirements on
α and e2 given above, it is not restrictive to consider primes p with a small
cofactor f , as long as p + 1 is divisible by a sufficiently large power of 2 and
3 to ensure the existence of the isogenies [6]. This gives for example the prime
p512 = 31·2256 3158−1 which ensures the same security than p503 but with nα = 4
so that the overall cost of the reduction algorithm is only 32 word-multiplications
instead of 40. More such primes for various security levels are given in [6].

The main interest of these new primes is that we get new prime numbers
with an efficient reduction algorithm that can be used when pseudo-Mersenne
or Solinas primes are too rare. The situation is, in fact, even better because,
contrary to pseudo-Mersenne primes, the value of c can be chosen even. Con-
sequently, for the same size of constants ci it is possible to find roughly twice
many candidates. This can, for example, be very interesting for generating RNS
bases handling larger values of p or involving smaller ci values [6] (and then
more efficient reduction algorithms). Consequently, RNS-based arithmetic can
be considered for larger fields or rings.

Montgomery-friendly prime numbers form a large family and offer new
(prime) numbers that can be used in many cryptographic contexts, such as ellip-
tic curves, isogeny-based cryptography, or RNS arithmetic for large numbers.

Note that the prime used for the KYBER lattice-based primitive win-
ner of the NIST post-quantum standardization process [1], q = 13.28 − 1, is
Montgomery-friendly. However, the efficient reduction process could not be used
at first sight (but on 8-bits devices which is quite rare today). For sure, some
additional work has to be done to take advantage of the form of this prime
in future implementations of KYBER. One could also use Montgomery-friendly
prime numbers as RSA primes without loss of security while α is random and
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sufficiently large. Using these primes is recent in cryptography and requires fur-
ther research.

5 Polynomial Rings and Extension Fields

Polynomials are used in various contexts in public key cryptography, mainly
to build extension fields and their interest. For extension fields or polynomial
rings, a reduction polynomial is necessary. In any case, it can be chosen sparse
so that reducing is not really an efficiency problem, just like Mersenne primes.
So we will concentrate in this section on multiplication or squaring algorithms
or sometimes on both multiplication and reduction as one common operation.
Polynomials in cryptography can be categorized into two main families.

– The first one is for small degree extension fields. For example, isogeny-based
post-quantum cryptography is usually defined on finite quadratic fields, so it
is important to compute with degree 1 polynomials efficiently. Pairing-based
cryptography also massively involves extension fields of degrees 6 to 48. It
is not so small, but in practice, the degrees are smooth, and the extension
fields are built as a succession of very small degrees extensions. So we only
need to deal with small degrees, principally 2 and 3 [42]. However, higher
extension degrees were recently used in pairing-based cryptography [34,46,
47] to overcome the Kim-Barbulescu attack, which takes great advantage of
smooth embedding degrees [16,54].

– The second family is made of very large degrees of polynomials. There are, for
example, used in post-quantum cryptography based on Ring-lattices where
polynomial rings of large degree (up to several thousand) are common [1,30]

As was the case for integers multiplication, the reference algorithm for polyno-
mial multiplication is the schoolbook one, given by the same formula with n2

complexity to multiply 2 polynomials of degree n − 1

n−1∑

i=0

aiX
i.

n−1∑

i=0

biX
i =

2n−2∑

i=0

ciX
i with ci =

∑

k+l=i

akbl

It is even simpler than the integer situation because no carry is involved in the
polynomial case. As in the case of integers, we can also be smarter to perform
such multiplications with various methods depending on the context.

5.1 Interpolation Techniques for Small Degree Extensions

All the algorithms for efficient polynomial multiplication are based on the same
principle. The general idea is to evaluate the 2 input polynomials of degree n−1
in 2n − 1 values. We then get 2n − 1 evaluations of the product polynomial,
which has a degree 2n − 2. Finally, the product polynomial can be recovered
using an interpolation algorithm. As long as the evaluation values are cleverly
chosen, in the sense that evaluation (and interpolation) complexity is low, the
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multiplication cost becomes linear because only 2n− 1 base field multiplications
are required instead of n2 for the schoolbook method. Depending on the choice
of these evaluation points, we obtain different algorithms that may be used in
different contexts.

The most know method is undoubtedly the Karastuba multiplication (already
seen in Subsect. 2.2 in the integer context). It evaluates degree 1 polynomials in
0, 1 and ∞. If A(X) = a0 + a1X and B(X) = b0 + b1X, we have

A(0) = a0, A(1) = a0 + a1, A(∞) = a1 and
B(0) = b0, B(1) = b0 + b1, B(∞) = b1

Then AB evaluated in 0, 1 and ∞ can be computed with only 3 multiplications.

AB(0) = a0b0, AB(1) = (a0 + a1)(b0 + b1), AB(∞) = a1b1

So that AB can be easily and completely recovered with only few additions by
classical interpolation.

AB(X) = a0b0 + ((a0 + a1)(b0 + b1) − a0b0 − a1b1) X + a1b1X
2

This method is very suitable for degree 2 finite fields extensions but can be
generalized to any higher degree thanks to a “divide and conquer” procedure. It
leads to a complexity of O(nlog3 2) = O(n1.58). However, some other choices of
evaluation points may be more appropriate for specific situations.

The Toom-Cook method allows, for example, to multiply degree 2 polynomi-
als with only 5 multiplications instead of 9 using the evaluation points 0, 1,−1, 2
and ∞ [55]. It is, of course, particularly well adapted for degree 3 extensions but,
using the “divide and conquer” procedure, it asymptotically leads to complexity
in O(nlog5 3) = O(n1.46). However, it involves more additions than Karatsuba
during the evaluation and interpolation steps and even some divisions by small
numbers like 2 or 3 that must be treated very carefully and may invalidate the
interest of the method depending on the context.

In the case of finite field extensions of small degrees (or towers of small
degrees), the reducing polynomials have to be chosen carefully so that the reduc-
tion step is as cheap as possible. This step is usually included in the multipli-
cation algorithm for efficiency reasons. The best choice is generally to choose
an irreducible polynomial in the form Xn − μ such that multiplications by μ
are easy, following the model of Mersenne primes. For example, the Karatsuba
multiplication of degree 1 polynomials modulo X2 − μ can be rewritten as

AB(X) = a0b0 +a1b1μ + ((a0 +a1)(b0 + b1)−a0b0 −a1b1) X (3)

5.2 Some Special Squarings: Complex and Chung-Hasan

The same analysis should be done for the specific operation of squaring. Of
course, the same algorithms as for multiplication apply with a better complexity
because there is only one input. For example, squaring a degree 1 polynomial



Finite Field Arithmetic for Cryptography 97

modulo X2 −μ can be done in 2 squarings and one multiplication, thanks to the
schoolbook method.

(a0 + a1X)2 = a2
0 + μa2

1 + 2a0a1X

while the Karatsuba method replaces 2a0a1 by (a0 + a1)2 − a2
0 − a2

1 and then
one multiplication by one squaring in the base field (which yields to a global
complexity of 3 squarings). But, we can alternatively use the so-called complex
method that squares with only 2 multiplications in the base field

(a0 + a1X)2 = (a0 + μa1)(a0 + a1) − (μ + 1)a0a1 + 2a0a1X

This method is of course particularly efficient if μ = −1, which explains its name.
In the case of degree 2 polynomials (and then degree 3 extension fields), the

Schoolbook squaring modulo X3 − μ requires 3 squarings and 3 multiplications
in the base field

(a0 +a1X +a2X
2)2 = a2

0 +2a1a2μ +
[
2a0a1 +μa2

2

]
X +

[
a2
1 +2a0a2

]
X2 (4)

As usual, the Karatsuba method computes the bolded terms of (4) with only
one squaring instead of one multiplication in the base field (and so a global
complexity of 6 squarings). In this situation, we can also reduce the complexity
to 5 operations in the base field using the Chung-Hasan method [33]. There are
several variants but for example, the term in X2 in (4) can be computed as

a2
1 + 2a0a2 = (a0 + a1 + a2)2 − (2a0a1 + 2a1a2 + a2

0 + a2
2).

5.3 Application to Pairing Based Cryptography

Small degree extensions are used for isogenies and pairings. Determining which
method is the best in a small degree extension is not immediate and not universal
because it depends on the relative cost of multiplications, squarings and additions
in the base field as well as multiplications by μ (if the reduction polynomial has
the form Xn − μ). But the base field may vary a lot depending on the targeted
cryptosystem and even for a given use case. The situation is quite simple in
isogeny-based cryptography because it is only using quadratic extensions.

Nevertheless, it is less trivial in the pairing context. Indeed extension degrees
can be up to 48 and generally have the form 2i3j . This means that the extensions
are built as a succession of degree 2 and degree 3 intermediate extensions. The
first step is to choose this sequence and the reduction polynomials so that the
global complexity is the best. It is, for example, shown in [36] choosing that even
for a degree 12 extension in the pairing context, all the choices for building Fp12

are not equivalent and may result in significant differences in the final pairing
cost (because the extension field arithmetic is predominant mainly in any pairing
computation). Then, for each level in the extension tower, we have to choose the
best algorithm for multiplying and squaring. As already mentioned, this choice
depends on the relative cost of basic operations at the previous level. However,
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these relative costs are not always the same. They depend on the reduction
polynomial used but also on the level itself: it is not the same at the ground
level (for building Fp2 over Fp, for example) and at the top level (for building
Fp12 over Fp6 for example). Moreover, all these choices depend on the base field
because an efficient reduction polynomial (μ = −1, for example) will not always
be irreducible. So there is no uniform answer to get the best possible arithmetic
for pairings. New choices must be made for each case, and the final impact on
the extension field arithmetic is important. It is also shown that it may influence
the choice of the curve parameters themselves [41].

Of course, other operations on polynomials as additions, inversions or images
of the Frobenius map may be considered for a complete study of the algorithmic
complexity of the arithmetic of extension fields. This is, for example, done in [41]
in the pairing context, but we did not go at this level of details here because
multiplications and squarings have by far the largest impact.

5.4 Interpolation Techniques for Large Degrees

The situation is quite different for large degree polynomials/extension degrees.
The first main reason is that the base field is finite, so the number of evaluation
points is naturally limited. We then may not be able to have sufficiently many
points (or efficient points) to set up an evaluation/interpolation technique. One
elegant solution is to use Chudnovsky-type algorithms. These algorithms use
points on an algebraic curve defined on the base field as evaluation values instead
of base field elements [13,14,23]. It is interesting because, as the genus grows,
we can have more points on the curve than elements in the base field. Their
practical use in cryptography is still limited, so we do not give details here, but
some recent publications on the subject make a good survey [15].

The second main reason is that large degrees make the famous Fast Fourier
Transform (FFT) method competitive, and its complexity becomes theoretically
quasi-linear in the degree. This method uses the 2n-th roots of unity as evalua-
tion points (of course, assuming they are lying in the base field). The problem, in
this case, is, of course, to be able to evaluate the polynomials in these points effi-
ciently. This can be done thanks to a famous divide-and-conquer algorithm from
Cooley and Turkey [24]. This algorithm becomes computationally attractive only
if n is large so that the evaluation complexity in the polynomial multiplication
process is balanced by the gain on the number of base field multiplications.

This method was neglected until recently in cryptography because it becomes
interesting only for very large integers or polynomials which were not used in
this domain. The situation is different now because very large polynomial rings
are used in lattice-based cryptography, especially in KYBER [1], which recently
won the NIST post-quantum standardization process [61]. The FFT computes
the Discrete Fourier Transform (DFT, when the base field is C) or the Number
Theoretic Transform (NTT, when the base field is finite, so DFT and NTT are
just different names for the same thing depending on the context). Its general
principle can be found in many algorithmic books because it is very old, famous,
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and widely used in many engineering, signal processing, mathematical and phys-
ical domains. We give it here in the general case to fix notations and explain how
it applies to large polynomial multiplications and cryptographic applications. It
is as follows: assume a primitive n-th roots of unity ω lies in the base field (for
example, ω = e

2iπ
n in C) and let A =

∑n−1
i=0 aiX

i be a polynomial represented by
the sequence of its coefficients [a0, a1, · · · , an−1]. The Discrete Fourier Transform
of A is defined as the evaluation of A in all the n-th root of unity:

Â = DFT (A) = [â0, â1, · · · , ân−1] with âk =
n−1∑

i=0

aiω
ik = A(ωk)

We can also define the inverse transform which is nothing but the classical inter-
polation to recover A:

iDFT (Â) = [a′
0, a

′
1, · · · , a′

n−1] with a′
j =

1
n

n−1∑

k=0

âkω−kj (5)

And it is easy to prove that a′
j = aj so that the names are well chosen and

A = iDFT (DFT (A))

The application to degree n−1 polynomials multiplication immediately uses 2n-
th roots of unity (to get 2n − 1 evaluation points). The first step is to compute
the DFT of inputs which can be asymptotically done in O(n log n) thanks to the
Cooley-Turkey algorithm [24]. We then say that we are in the Fourier domain
where multiplications can be done component by component (and then in O(n)).
We finally return to the initial domain computing the inverse DFT (again in
O(n log n)) of the result. It is important to note that we can stay in the Fourier
domain for consecutive operations, which may save many operations in practice.
The inverse transformation needs to be applied only to the final result.

In the particular case of a polynomial ring defined by the specific reduction
polynomial Xn +1, it is possible to get an improved version of the multiplication
algorithm based on the NTT that mimics a transform of size n instead of 2n.
Let ψ be a primitive 2n-th root of unity in the base field.

– ψ2 = ω is a n-th root of unity
– ψn = −1

There is an obvious correspondence between this second relation and the combi-
nation of the 2 operations we have to perform: reduce mod Xn + 1 and evaluate
in ψ. This correspondence leads to the following writting for the product of 2
degree n − 1 polynomials A and B modulo Xn + 1

C = AB =
2n−2∑

j=0

cjX
j ⇒ C =

n−1∑

j=0

(cj − cn+j)Xj mod Xn + 1
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and in the NTT context, we have

cj − cn+j =
1
2n

2n−1∑

k=0

ĉk

(
ψ−kj − ψ−k(n+j)

)

=
1
2n

2n−1∑

k=0

ĉkψ−kj
(
1 − (−1)k

)
because ψn = −1

=
1
n

n−1∑

k=0

ĉ2k+1ψ
−jω−kj

This expression is very similar to the inverse DFT of size n given by formula (5).
There is only an extra factor ψ−j . As a consequence, we can define a variant of
the DFT/NTT of A by

âk =
n−1∑

i=0

aiψ
iωik

as well as its inverse. This transform is nothing but A(ψωk). It has size n instead
of 2n and allows polynomial multiplication in quasi-linear complexity with the
modular reduction mod Xn+1 included. That is the reason why this polynomial
ring is widely used in Ring/Module lattices cryptography [1,30].

6 Lazy Reduction

Lazy reduction is a technique commonly used in finite fields implementations [57,
68,74] but rarely presented in the literature [7,40] Its principle is to delay the
reduction step when we have to compute several products that will be summed.
For example, if a, b, c and d lie in Fp, computing and reducing a pattern of the
form ab + cd is done with 2 multiplications (ab and cd), one (large) addition
and one final modular reduction instead of 2 multiplications, 2 reductions and
1 (normal) addition. Of course, this implies that the reduction algorithm can
take larger integers as input (less than 2p2 instead of less than p2 in the above
example), but it is not cumbersome in practice. There are 2 main contexts where
using lazy reduction is particularly interesting.

The first is when the reduction step is costly compared to the multiplica-
tion step so factoring a reduction step for several other operations is particu-
larly worthwhile. This is for example the case if RNS (see Sect. 3.3) or PMNS
(see Sect. 3.4) arithmetic is used. It has been shown that lazy reduction was
very profitable in this case in the elliptic curve context [7,8] as well as in the
pairing context [31,40]. This was for RNS arithmetic because PMNS was not
yet developed, but it is no doubt that the high cost of an internal reduction
in PMNS would greatly advantage the lazy reduction technique for any crypto-
graphic primitive. This may be an interesting trail to follow for people interested
in PMNS implementations.

The second favourable context for lazy reduction is when patterns of the form
ab + cd naturally occur in a cryptographic protocol or can be revealed. This is,
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for example the case in elliptic curve cryptography where addition and doubling
formulas can be adapted to involve more such patterns [7,8].

This is also the case in pairing-based cryptography and, more generally, in
extension fields. Indeed, when a multiplication in an extension field Fpk is per-
formed, it is necessary to make only one reduction modulo p for each component
of the result instead of one for each Fp multiplication involved [40]. This means
that only k reduction steps are required instead of k2 for a classical multiplica-
tion in Fpk . For example, if Fp2 is defined by Fp[X]/(X2 + 1) and A = a0 + a1X
and B = b0 + b1X ∈ Fp2 , we have AB = a0b0 − a1b1 + (a0b1 + a1b0)X.

We can see that ab+ cd patterns naturally occur which makes lazy reduction
particularly relevant. Note that, as elements in Fp2 have 2 independent compo-
nents, it is not possible to have less than 2 reductions in Fp in this case. The
case of 6 and 12 extension degrees is done in detail in [40], showing a significant
implementation improvement. These degrees were chosen because of their par-
ticular interest in the pairing context at that time, and especially because of the
dominance of BN curves [17]. However, other degrees may now be considered
(in the pairing context or in other contexts), and the detailed impact of a lazy
reduction in these cases should be studied in the future.

Such patterns also naturally appear in lattice-based cryptography because
most of the computations in this domain are inner products that are, by defini-
tion, well adapted to the lazy reduction trick. By the way, the reference imple-
mentations of Kyber [1] use lazy reduction. This situation is, in fact, even more,
favourable in lattice-based cryptography because the reduction module involved
is usually much less than a machine word (for example, Kyber prime is only 12-
bits long). Consequently, many multiplications and additions may be performed
and accumulated before reducing without overflowing a single machine-word [48].
One could even go further in this case by storing 2 integers on the same machine
word. It would for sure be interesting to study in detail how this could be done
in practice and what would be the expected gain.

7 Conclusion

Finite field arithmetic significantly impacts cryptographic performances but is
very diverse and dependent on the cryptosystem. The efficient algorithms are
not always the same and must be adapted to the context. They indeed depend
on the size of the base field or ring, on the targeted device and its properties
(possibilities of parallelism, size of machine words, software/hardware) but also
on what is expected for the implementation in terms of performance and security
(side-channel resistance ability for example).

Of course, this paper is far from exhaustive about algorithms for finite fields
or ring arithmetic, and there are many missing improvements and variants or
hidden things in what is presented. However, it gives a good overview of what
can be done for efficient finite field arithmetic for cryptographic applications, and
it gives some ideas to improve existing methods, extend their range of interest
or even discover new ones.
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Abstract. In arithmetic and algebraic geometry, superspecial curves
have been studied as one of the most important objects, with practi-
cal applications to cryptography and coding theory. The enumeration
of those curves is a central problem, but if g ≥ 4 it is not even known
whether a superspecial curve of genus g exists in general characteristic
p > 0. In this paper, we propose an algorithm with complexity O(p3)
to enumerate superspecial hyperelliptic curves of genus 4 with automor-
phism group V4, where V4 is the non-cyclic group of order 4. By executing
the algorithm over Magma, we enumerate those curves over Fp for p up
to 200. We also succeeded in finding a superspecial hyperelliptic curve of
genus 4 in every characteristic p with 19 ≤ p ≤ 6691.

Keywords: Hyperelliptic curves · Superspecial curves · Genus-4
curves

1 Introduction

Throughout this paper, by a curve we mean a nonsingular projective variety
of dimension one. Let K be a perfect field of characteristic p > 0, and K its
algebraic closure. A curve C of genus g defined over K is said to be superspecial
(s.sp. for short) if its Jacobian variety Jac(C) is isomorphic over K to the product
of copies of a supersingular elliptic curve E, that is, Jac(C) ∼= Eg. S.sp. curves
have been studied also for their applications to cryptography and coding theory
since they or their forms have many rational points (with respect to genus) and
their Jacobian varieties have large endomorphism rings.

For given g and p, it is very important to enumerate isomorphism classes of
s.sp. curves of genus g in characteristic p. In the case of g = 1 (precisely the case
of elliptic curves), the number of isomorphism classes of supersingular elliptic
curves was studied by Deuring [5]. For g = 2 and 3, it follows from [15, Theorem
3.3] by Ibukiyama-Katsura-Oort that the number of isomorphism classes of s.sp.
curves is determined by computing the class numbers of quaternion hermitian
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lattices, which can be explicitly computed by Hashimoto-Ibukiyama [11] for g =
2 and Hashimoto [10] for g = 3 (cf. Brock’s thesis [3] for explicit formulae).
Ekedahl also proved in [6, Theorem 1.1] that if there exists a s.sp. curve of genus
g in characteristic p > 0, then g and p must satisfy 2g ≤ p2 − p (and 2g ≤ p − 1
if the curve is hyperelliptic and (g, p) �= (1, 2)).

The case of g = 4 is the next target, but in fact, it is still an open problem
whether there exists a s.sp. curve of genus 4 for arbitrary p > 7. One of the
mainstream approaches in recent years is the computational enumeration such
as [20] and [22] (resp. [21]) for the non-hyperellliptic (resp. hyperelliptic) case.
However, these algorithms might have exponential complexities, since they enu-
merate all s.sp. curves. On the other hand, in the non-hyperelliptic case, there is
an algorithm [23] with complexity Õ(p4) restricting to a certain 4-dimensional
family of non-hyperelliptic curves. In the following, we review in detail what we
know currently about the case of g = 4:

– By Ekedahl’s bound, there is no s.sp. curve of genus 4 for p ≤ 3 (and for p ≤ 7
in the hyperelliptic case). For p = 5, Fuhrmann-Garcia-Torres [7] proved that
there exists a unique s.sp. curve of genus 4. Kudo-Harashita computationally
enumerated genus-4 s.sp. non-hyperelliptic curves in [20] and [22] for p ≤ 11,
and a particular result in [20] is the non-existence of s.sp. curves for p = 7.
In [21] at WAIFI2018, they also provided a computational enumeration in
the hyperelliptic case for p ≤ 19. The idea of Kudo-Harashita’s approaches
is to reduce the enumeration into solving multivariate systems over finite
fields, where the number of variables is close to the whole moduli dimension
(3g −3 = 9 for the non-hyperelliptic case, and 2g −1 = 7 for the hyperelliptic
case). Their algorithms are applicable to arbitrary p, but in practice infeasible
for larger p. This is because the maximum total-degree of each multivariate
system increases in O(p), which might make the total complexities exponential
with respect to p in worst case.

– To overcome the limitation of the enumeration in practical time, Kudo-
Harashita-Howe recently proposed an alternative algorithm in [23] at ANTS-
XIV for the non-hyperelliptic case. Their algorithm need not to solve any
multivariate system, and we here briefly review details: They focused on a
certain 4-dimensional family of curves of genus 4 which tend to be s.sp. except
for several small p, that is, Howe curves (studied first in [12], and so named
in [24]). A Howe curve D is the normalization of the fiber product over P

1 of
two genus-1 double covers Ei → P

1 which share exactly one ramified point.
Note that the notion of Howe curves is generalized to higher genus, see [19]
or Subsect. 2.3 below for a review. The authors of [23] proved that D is
non-hyperelliptic [23, Lemma 2.1], and constructed an algorithm to enumer-
ate s.sp. Howe curves in Õ(p4) arithmetic operations in Fp4 , where Soft-O
notation omits logarithmic factors. Their algorithm first produces all genus-2
s.sp. curves C by Richelot isogenies, and then constructs Ei by dividing the
6 ramified points of each C into two. By executing the algorithm on Magma,
the authors of [23] enumerated s.sp. Howe curves for p ≤ 200, and showed
the existence of such a curve for every 5 ≤ p ≤ 20000 with p �= 7.
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The aim of this paper is to provide a new efficient algorithm for the hyperel-
liptic case. For this, we consider a hyperelliptic analogue of the construction of
a Howe curve, that is, the normalization H of the fiber product over P

1 of two
genus-2 curves C1 and C2 which share exactly 5 ramified points (we call such a
pair (C1, C2) a genus-4 hyperelliptic Howe pair). It will be shown in Lemma 1
and Proposition 2 that such a curve H is a hyperelliptic curve of genus 4 with
Aut(H) ⊃ V4, and vise versa, where V4 is the non-cyclic group of order 4. Dif-
ferent from [21], our algorithm do not search the whole moduli, but nevertheless
worthwhile; as in the case of Howe curves in [23], the dimension of the space of
our curves is 4, which is more than a half of the whole moduli dimension 7.

Here, the first main result is as follows:

Theorem A. There exists an algorithm (explicitly Algorithm 1 in Sect. 4) for
enumerating s.sp. hyperelliptic curves of genus 4 with V4-automorphism group.
Under some assumption, it terminates in O(p3) arithmetic operations in Fp4 .

Note that we can modify Algorithm 1 so that it terminates once a single s.sp.
curve is found. The modified algorithm has also the worst-case complexity O(p3).

Algorithm 1 consists of the following four parts. The first part is to enumerate
s.sp. genus-2 curves by using Richelot isogenies, as in an algorithm of [23] (see the
Step 1-part of Subsect. 5.1 for details). Second, we detect genus-4 hyperelliptic
Howe pairs (C1, C2) of s.sp. genus-2 curves C1 and C2. Third, all pairs (C1, C2)
with associated H satisfying Aut(H) = V4 are collected. Finally, we classify the
isomorphism classes of collected H’s as hyperelliptic curves.

The restriction Aut(H) = V4 is for the efficiency of the isomorphism classi-
fication; most of (C1, C2) satisfy Aut(H) = V4 as showed in Table 1, and thus
this restriction would be practical. More precisely, since the number of produced
(C1, C2)’s is expected to be O(p2) (Remark 4), that of required isomorphism
tests is naively O(p4), but in fact O(p2) under the restriction Aut(H) = V4 due
to our criteria (Lemma 4 and Proposition 5). Note that the algorithm also works
even for the case where #Aut(H) > 4, but the complexity might become O(p4).

By executing the algorithm over Magma [2], we obtain the following results:

Theorem B. (i) For every prime p with 19 ≤ p ≤ 6691, there exists a s.sp.
hyperelliptic curve H of genus 4 with Aut(H) ⊃ V4.

(ii) For every prime 17 ≤ p ≤ 200, the number of isomorphism classes of s.sp.
hyperelliptic curves H of genus 4 with Aut(H) = V4 is given in Table 1.

The upper bounds on p in Theorem B are very larger than that of the enumera-
tion result in [21], and it can be increased easily. For example, enumerating s.sp.
hyperelliptic curves of genus 4 with automorphism group V4 in characteristic
199 took 96,996 s (≈ 27 h) by our environment stated in Subsect. 4.2. Among
17 ≤ p ≤ 6691, the maximal time for finding a single s.sp. curve was about 7.5 h
for p = 4889, while there are many large p for which such a curve was found in
quite shorter time (e.g., 5 s for p = 6529). See [28] for the source codes and log
files with explicit examples.
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This paper is organized as follows. In Sect. 2, we will recall basic facts on
hyperelliptic curves and generalized Howe curves. Section 3 studies hyperelliptic
curves of genus 4 with automorphism group containing V4. In Sect. 4, we propose
our main algorithm, and state computational results obtained by our implemen-
tation. Section 5 is devoted to the complexity analysis of the algorithm. Finally
we give a concluding remark in Sect. 6. All the complexities are measured by the
number of arithmetic operations in Fp4 (cf. Lemma 3).

2 Preliminaries

In this section, we will review some facts on hyperelliptic curves, and their iso-
morphisms and automorphisms. The notion of generalized Howe curves and their
fundamental properties will be also described.

2.1 Hyperelliptic Curves and Their Isomorphisms

Let K be a field of characteristic not equal to 2. In general, a hyperelliptic curve
H of genus g over K is realized as the normalization of the projective closure of
the affine plane curve y2 = f(x), where f(x) ∈ K[x] is a separable polynomial
of degree 2g + 1 or 2g + 2. The (affine) model y2 = f(x) is said to be imaginary
or real if deg(f) = 2g + 1 or 2g + 2, respectively.

Let H1 : y2 = f1(x) and H2 : y2 = f2(x) be hyperelliptic curves of genus
g > 1 over K, where f1 and f2 are polynomials over K of degree 2g + 1 or
2g + 2 with no multiple root. It is well-known (see, e.g., [21, Lemma 1]) that
any isomorphism over K between H1 and H2 is represented by a pair (h, λ) of
h := αE11+βE12+γE21+δE22 ∈ GL2(K) with α, β, γ, δ ∈ K and λ ∈ K∗, where
each Eij denotes the 2×2-matrix with 1 in the (i, j) entry and 0’s elsewhere. The

isomorphism associated with (h, λ) is given by (x, y) 	→
(

αx+β
γx+δ , λy

(γx+δ)g+1

)
, or by

considering the homogenization y2z2g = Fi(x, z) := z2g+2f(x/z), it is given by
(x, z, y) 	→ (αx + βz, γx + δz, λy). The representation (h, λ) is unique up to the
equivalence (h, λ) ∼ (μh, μg+1λ) for some μ ∈ K∗. If K is algebraically closed,
then we can take a representative with λ = 1 in each equivalence class.

Let ai (resp. a′
i) be the xi-coefficient of f1 (resp. f2), and assume that K is

algebraically closed. A method to determine if H1 and H2 are isomorphic over K
or not is to test if there exists a root over K of a multivariate system with respect
to α, β, γ and δ obtained by comparing coefficients in F1(αx + βz, γx + δz) and
those in F2(x, z). More explicitly, consider the following (homogeneous) system:

⎧
⎪⎪⎨
⎪⎪⎩

2g+2∑
i=0

ai

i∑
k=0

(
i

k

)
αkβi−k

(
2g + 2 − i

� − k

)
γ�−kδ2g+2−i−(�−k) = a′

�

(αδ − βγ)μ = 1

(2.1.1)

with 0 ≤ � ≤ 2g + 2 and an extra variable μ, and test if a Gröbner basis for
the ideal in K[α, β, γ, δ, μ] associated to (2.1.1) contains a unit. There are only
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finite elements in PGL2(K) translating the ramified points of H2 to those of
H1, and thus the ideal associated to the homogeneous system (2.1.1) is zero-
dimensional. Since the system also has the maximum total-degree ≤ 2g + 2 and
a constant number of variables, the Gröbner basis is computed in constant time
with respect to p for a fixed g.

In the case of genus two (resp. three), the isomorphism test using Igusa (resp.
Shioda) invariants is much more effective than the method described above. We
here briefly recall Igusa invariants which will be used in our main algorithm. Let
C : y2 = f(x) be a genus-2 hyperelliptic curve over K, where f(x) is a sextic
over K with mutually distinct roots a1, . . . , a6 and leading coefficient c6. Then
the Igusa invariants of C are defined as certain symmetric functions J2, J4, J6,
J8 and J10 of the roots, e.g., J10 = 2−12c106

∏
i<j(ai − aj)2, and the absolute

invariant of C (cf. [16, p. 641]), which we denote by jabs(C), is defined as a
tuple of ten quotients of the Igusa invariants. Two genus-2 curves C1 and C2 are
isomorphic over K if and only if jabs(C1) = jabs(C2). Since J2, J4, J6, J8 and J10

are represented as polynomials in the coefficients of f with degree bounded by a
constant, jabs(C) can be computed in constant time. Several computer algebra
systems have functions for computing the Igusa and absolute invariants, e.g.,
AbsoluteInvariants in Magma [2] for computing jabs(C).

2.2 Automorphism Groups of Hyperelliptic Curves

It is well-known that the automorphism group over K of a curve of genus g over K
is finite, and has size ≤ 16g4 unless it is a Hermitian curve [27]. In particular, we
here consider the case of hyperelliptic curves, say, C : y2 = f(x) a hyperelliptic
curve with deg(f) = 2g+2 and Aut(C) its automorphism group over K. Putting
F (x, z) := z2g+2f(x/z), we have the following group isomorphism:

Aut(C) 
 {
h ∈ GL2(K)

∣∣F ((x, z) · th)) = F (x, z)
}

/μμg+1, (2.2.1)

where μμg+1 = {μI2 : μ ∈ K
×

, μg+1 = 1} with the 2×2-identity matrix I2. Each
automorphism is represented by a root of (2.1.1) with ai = a′

i for 0 ≤ i ≤ 2g+2.
Since both |Aut(C)| and |μμg+1| are finite, the number N(C) of roots of (2.1.1) is
also finite, and |Aut(C)| is computed as N(C)/|μμg+1|. The number N(C) is equal
to the dimension of the coordinate ring of the ideal associated to (2.1.1) as a K-
vector space, and thus it can be computed by the Gröbner basis computation.
By the same reason for the case of isomorphisms in Subsect. 2.1, computing
|Aut(C)| is done in constant time with respect to p, when g is fixed.

This paper focuses on the case where g = 4 and Aut(C) ⊃ V4. In this case,
Paulhus [26, Theorem 4] classified possible finite groups isomorphic to Aut(C) in
characteristic zero, whereas unfortunately we could not find any reference stating
such a classification in positive characteristic case. This paper does not rely on
the classification of Aut(C), and discusses only the case where Aut(C) ⊃ V4.
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2.3 Generalized Howe Curves

This subsection reviews the notion of generalized Howe curves, which are very
useful to produce superspecial (or supersingular) curves (e.g., see [23] and [24]
for genus-4 non-hyperelliptic case). Let C1 and C2 be two hyperelliptic curves
of genera g1 and g2 such that C1 and C2 share precisely r ramified points, say

C1 : y2 = (x − a1) · · · (x − ar)(x − b1) · · · (x − b2g1+2−r),

C2 : y2 = (x − a1) · · · (x − ar)(x − c1) · · · (x − c2g2+2−r),

where ai, bi and ci are all distinct. Let πi : Ci → P
1 be double covers. Note that

πi is unique if the genus of Ci is greater than or equal to 2, see [9, Section IV.5].
The normalization H of the fiber product C1 ×P1C2 is called a generalized Howe
curve as defined in [19]. When g1 = g2 = 1 and r = 1 with g(H) = 4, it is called
simply a Howe curve, which had already been treated in [23] and [24]. Let σi be
the involution on H whose quotient map is H → Ci. We then have a diagram

H

����
��
��
��

  �
��

��
��

�

��
C1

���
��

��
��

� C3

��

C2

����
��
��
��

P
1,

where C3 is the quotient by the other involution σ3 := σ1σ2 on H:

C3 : y2 = (x − b1) · · · (x − b2g1+2−r)(x − c1) · · · (x − c2g2+2−r).

Recall a result by Katsura-Takashima [19, Section 2] on the genus of H and on
a criterion for H to be hyperelliptic:

Proposition 1. Let C1, C2 and H be as above. The genus of H is equal to
2g1 + 2g2 + 1 − r. If the genus of H is greater than or equal to 4, then H is
hyperelliptic if and only if r = g1 + g2 + 1, that is, the curve C3 is of genus 0.

3 Construction of Our Curves and Their Superspeciality

In this section, we study hyperelliptic curves of genus 4 with automorphism
group containing V4. In particular, it will be shown in Subsect. 3.1 below that
such a curve D is realized as a hyperelliptic generalized Howe curve of genus 4,
that is, the normalization H of the fiber product of two genus-2 hyperelliptic
curves C1 and C2 which share exactly five ramified points. We also show in
Subsect. 3.2 that the superspeciality of H is reduced into that of C1 and C2.
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3.1 Construction

Let K be a field of characteristic p ≥ 3. Let C1 and C2 be hyperelliptic curves
of genus 2 over K defined by

Ci : y2 = (x − a1)(x − a2)(x − a3)(x − a4)(x − a5)(x − bi) (3.1.1)

for i = 1, 2 with distinct elements a1, a2, a3, a4, a5, b1, b2 of K ∪ {∞}, where by
that an element α of {a1, a2, a3, a4, b1, b2} is ∞ we mean the factor (x − α) is
excluded from (3.1.1). Let π1 : C1 → P

1 and π2 : C2 → P
1 be the usual double

covers, where fi is ramified over Si with

S1 := {a1, a2, a3, a4, a5, b1}, S2 := {a1, a2, a3, a4, a5, b2}.

We consider the normalization H of the fiber product C1 ×P1 C2. Note that H
is a generalized Howe curve defined in Subsect. 2.3, and we have the following:

Lemma 1. H is a hyperelliptic curve of genus 4, and Aut(H) contains V4.

Proof. It follows from Proposition 1 that H is a genus-4 hyperelliptic curve. The
hyperelliptic involutions of C1 and C2 lift to automorphisms of H, and thus the
automorphism group of H contains a subgroup isomorphic to V4. ��
Example 1. Consider the case where b1 = 0 and b2 = ∞, say C1 : y2 = xf(x)
and C2 : y2 = f(x) with f(x) = (x − a1)(x − a2)(x − a3)(x − a4)(x − a5). Then
H is isomorphic to the normalization of the curve defined by

D : Y 2 = (X2 − a1)(X2 − a2)(X2 − a3)(X2 − a4)(X2 − a5).

Indeed, there exist the morphism D → C1 defined by x 	→ X2, y 	→ XY and the
morphism D → C2 defined by x 	→ X2, y 	→ Y . These morphisms are of degree 2
and make a commutative diagram with π1 and π2, and hence the normalization
of C1 ×P1 C2 is isomorphic to D by the universality of the fiber product.

Example 2. Consider the case where {a1, a2, a3} = {0,∞, 1}, say

Ci : y2 = x(x − 1)(x − a4)(x − a5)(x − bi)

for i = 1, 2. The map x 	→ x−b1
x−b2

transforms C1 and C2 into C ′
1 : y2 = xf(x) and

C ′
2 : y2 = f(x) with f(x) = (x − 1)(x − c2)(x − c3)(x − c4)(x − c5), where

c2 =
b1
b2

, c3 =
1 − b1
1 − b2

, c4 =
a4 − b1
a4 − b2

, c5 =
a5 − b1
a5 − b2

.

Hence H is isomorphic to the normalization of the curve defined by

D : Y 2 = (X2 − 1)(X2 − c2)(X2 − c3)(X2 − c4)(X2 − c5) (3.1.2)

as in Example 1.

We also prove the converse of Lemma 1:
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Proposition 2. Any hyperelliptic genus-4 curve D with Aut(D) ⊃ V4 is iso-
morphic to the normalization of C1 ×P1 C2 for some C1 and C2 as in (3.1.1).

Proof. Let D be a hyperelliptic curve of genus 4 such that Aut(D) ⊃ G with
G ∼= V4. Let σ be the hyperelliptic involution (which is unique) of D. We claim
that there exists a V4-subgroup G′ of Aut(D) such that σ ∈ G′. Indeed, if σ ∈ G,
there is nothing to prove. If not, then we choose an involution τ ∈ G and let G′

be the subgroup generated by σ and τ . Since σ and τ are commutative (otherwise
we have another hyperelliptic involution τ−1στ), we have G′ ∼= V4.

We choose two involutions ι1, ι2 in G′ with ι1, ι2 �= σ and set the curves
C1 := D/〈ι1〉, C2 := D/〈ι2〉 and P := D/〈ι1, ι2〉. We have the following diagram:

D ��

���
��

��
��

��

		����
�����

�����
�����

�����
��� C1 ×P1 C2



��
��
��
��

���
��

��
��

�

C1

��	
		

		
		

		
C2


















P

Here the curve P is isomorphic to P
1 as this is a quotient of P

1 
 D/〈σ〉
with σ = ι1ι2, and therefore there exists the morphism D → C1 ×P1 C2 by the
universality of the fiber product. Since both the morphisms C1 ×P1C2 → Ci and
D → Ci are of degree 2, the morphism D → C1 ×P1 C2 is of degree one. Hence
D → C1 ×P1 C2 gives the normalization map.

To complete the proof, it suffices to show that C1 and C2 are of genus 2 and
share exactly 5 ramified points. Let gi ≥ 1 be the genus of Ci and r the number of
common ramified points. It follows from Proposition 1 that 2(g1+g2)+1−r = 4
since D is of genus 4, and r = g1 + g2 + 1 since D is hyperelliptic. Thus we have
g1 + g2 = 4. On the other hand, there is no dominant morphism D → Ci where
Ci is of genus 3 by Hurwitz’s formula, and hence we have gi ≤ 2. Therefore, we
obtain g1 = g2 = 2 and r = 5. ��
Remark 1. We have another proof of Proposition 2 as follows. A hyperelliptic
curve D of genus 4 with Aut(D) ⊃ V4 is isomorphic to the normalization of the
curve defined by y2 = f(x2), where f(x) is a monic polynomial whose degree is
five by [8, Lemma 2.2]. It follows from Example 1 that D is isomorphic to the
normalization of C1 ×P1 C2 for C1 : y2 = xf(x) and C2 : y2 = f(x).

3.2 Superspeciality

Let K be a field of characteristic p ≥ 3. Let H be the normalization of C1×P1 C2

as in Subsect. 3.1, where C1 and C2 are hyperelliptic curves of genus 2 over K
which share exactly five ramification points. Then we have the following criterion
on the superspeciality of H:

Lemma 2. H is superspecial if and only if C1 and C2 is superspecial.
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Proof. Recall the fact that there exists an isogeny of Jacobian varieties from
Jac(C1) × Jac(C2) to Jac(H) of 2-power degree (cf. [18, Theorem C]). By p �= 2,
we have an isomorphism between their p-kernels

Jac(C1)[p] × Jac(C2)[p] ∼= Jac(H)[p]. (3.2.1)

For a curve D over K, its a-number a(D) is defined to be dim HomK(αp, Jac(D)),
where αp is the kernel of the Frobenius map on the one-dimensional additive
group Ga. Note that a(D) is at most the genus of D. Since the p-multiplication
on αp is zero, the a-number a(D) is equal to dim HomK(αp, Jac(D)[p]). Hence
we have a(H) = a(C1) + a(C2) by (3.2.1). The lemma follows from tha fact (cf.
[25, 1.6]) that a curve is s.sp. if and only if its a-number is equal to its genus.��

By Lemma 2, we have an idea to find or enumerate s.sp. hyperelliptic curves
D of genus 4 with Aut(D) = V4. First, we enumerate s.sp. genus-2 curves in
characteristic p. As it is shown in [23], this is done by using Richelot isogenies,
see the Step 1-part of Subsect. 5.1 below for details. Second, we detect pairs
(C1, C2) of s.sp. genus-2 curves C1 and C2 which share exactly 5 ramified points
(we call such a pair a genus-4 hyperelliptic Howe pair). Third, all pairs (C1, C2)
with associated D satisfying #Aut(D) = 4 are collected. Finally, we classify the
isomorphism classes of collected D’s as hyperelliptic curves.

4 Algorithm and Computational Results

This section presents an algorithm to enumerate s.sp. hyperelliptic curves of
genus 4 with V4-automorphism group, based on the idea described in the last
paragraph of Subsect. 3.2. Moreover, computational results obtained by our
implementation of the algorithm on Magma are summarized. Note that all the
computations are done in Fp4 , see Lemma 3 below. We fix a primitive element
ζ ∈ Fp4 for each p, and order elements a = ζi and b = ζj in Fp4 by a ≤ b if i ≤ j.

4.1 Main Algorithm

Algorithm 1 below is our main algorithm. The four steps in Algorithm 1 corre-
spond to those in the idea described in the last paragraph of Subsect. 3.2.

Algorithm 1 (Main algorithm).

Input: A rational prime p > 2.
Output: A list of the isomorphism classes of s.sp. genus-4 hyperelliptic curves

over the algebraic closure of Fp with V4-automorphism group.

Step 1. Enumerate all s.sp. curves C of genus 2 in characteristic p, by a method
in Subsect. 5.1. Let SSp2(p) be a list of enumerated genus-2 s.sp. curves.
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Step 2. Collect genus-4 hyperelliptic Howe pairs as follows: For each s.sp. curve
C of genus 2, produce its imaginary models y2 = x(x−1)(x−a4)(x−a5)(x−b)
for some a4, a5, b ∈ Fp4 � {0, 1}, by translating 3 points among 6 ramified
points of C → P

1 to {0, 1,∞}. For each imaginary model, and we generate
three triples of the form (a4, a5, b) with a4 < a5. Detect all pairs (C1, C2)
of imaginary models C1 and C2 constructed as above which share exactly
5 ramified points, namely pairs of (a4, a5, b1) and (a′

4, a
′
5, b2) with a4 = a′

4,
a5 = a′

5 and b1 �= b2. Let HowePairsList be a list of (C1, C2) found as above.
Step 3. Among the genus-4 hyperelliptic Howe pairs collected in Step 2, detect

all (C1, C2) such that the hyperelliptic curve D obtained as C1×P1C2 satisfies
#Aut(D) = 4. Let HowePairsV4 be a list of D’s satisfying #Aut(D) = 4.

Step 4. Classify the isomorphism classes of D’s in HowePairsV4 as follows:
(4-1) Sorting (C1, C2)’s in a total order on the set of pairs of absolute invari-

ants of C1 and C2, divide them into groups to have the same absolute
invariants pair. Namely, if two pairs (C1, C2) and (C ′

1, C
′
2) belong to the

same group, then C1
∼= C ′

1 and C2
∼= C ′

2 as hyperelliptic curves. We
denote by SameInv(C1, C2) the group represented by (C1, C2).

(4-2) Classify the isomorphism classes of s.sp. hyperelliptic curves in each of
the groups constructed in (4-1). Finally, output a list AllHypHoweCurves
of the computed isomorphism classes.

Remark 2. In Sect. 5 below, we will estimate the complexity of Algorithm 1 as
O(p3), assuming that we use a hash table to collect pairs of (a4, a5, b1) and
(a′

4, a
′
5, b2) in Step 2. Using a hash table is suggested by one of the reviewers.

However, we have not succeeded in implementing the generation of such a hash
table yet, and thus our current implementation collects those pairs by simply
sorting (a4, a5, b1)’s. Therefore, the practical behavior would follow Õ(p3).

4.2 Computational Results

We implemented the algorithm and its variant on Magma [2] V2.25-3 in its
64bit version, where the variant terminates as soon as a single s.sp. hyperelliptic
curve D of genus 4 with Aut(D) ⊃ V4 is found. The codes and log files for
our implementation are available at [28]. Executing the codes on a PC with
Windows 10 Pro OS at 1.80 GHz CPU (Intel Core i7-8565U) and 16.0 GB
memory, Theorem B is proved. Table 1 shows computational results for Theorem
B (ii). We see from Table 1 that the time acts almost as Õ(p3) estimated in
Remark 2.

For 17 ≤ p ≤ 200 (except for several small p), most of the time is spent at
Step 2, which is one of the dominant steps (cf. the proof of Proposition 3 below).
From Table 1, we can also confirm the validity of our assumption in Proposition 3
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Table 1. The number Np of s.sp. hyperelliptic curves of genus 4 with automorphism
group V4 (namely Np = #AllHypHoweCurves), and the time for executing Algorithm
1 for each p with 17 ≤ p ≤ 200. The notation HowePairsList, HowePairsV4 and
SameInv(C1, C2)) are same as in Steps 3 and 4 of Algorithm 1.

p #HowePairsList #HowePairsV4 max(#SameInv(C1, C2)) Np Time (sec.)

17 0 0 0 0 < 1.0

19 96 0 0 0 4.9

23 120 60 60 1 7.0

29 96 0 0 0 6.1

31 450 300 120 5 35.2

37 480 240 60 4 38.4

41 510 420 60 7 63.5

43 600 480 120 8 75.2

47 1110 840 60 14 145.8

53 1140 780 60 13 148.9

59 1236 1020 120 17 183.8

61 1140 900 120 15 173.6

67 1200 960 60 16 178.0

71 4020 3660 120 61 576.2

73 2610 2280 120 38 397.0

79 4266 3780 120 63 662.3

83 4320 3720 120 62 675.3

89 3966 3600 120 60 751.7

97 4440 4200 120 70 1029.5

101 6000 5580 180 93 1411.7

103 5700 5100 180 85 1927.2

107 6720 6060 120 101 2535.4

109 6336 5940 120 99 2604.2

113 6000 5220 120 87 2595.8

127 11970 11160 180 186 5114.2

131 10260 9540 180 159 4805.0

137 8730 8100 120 135 6882.4

139 10356 9240 120 154 7907.9

149 12216 11340 120 189 11821.1

151 18240 17640 180 294 15865.3

157 13140 12180 120 203 20647.5

163 14580 14100 120 235 25176.4

167 24300 23160 180 386 30838.6

173 19020 18360 120 306 32910.1

179 20616 19260 120 321 47790.8

181 16620 15780 180 263 61735.1

191 32250 30060 120 501 104923.2

193 18420 17340 180 289 64025.0

197 21360 20640 120 344 82069.3

199 34896 33360 180 556 96996.3
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and the correctness of Lemma 5: The number of pairs (C1, C2) of s.sp. curves of
genus 2 such that they share 5 ramified points up to Aut(P1) is expected to be
O(p2), and #SameInv(C1, C2) is bounded by a constant.

As an example, for p = 199, we found a s.sp. genus-4 hyperelliptic curve
D : y2 = (x2−1)(x2−92)(x2−772)(x2−792)(x2−582) over Fp with Aut(D) = V4,
with Ci : y2 = x(x − 1)(x − 70)(x − 23)(x − bi) for (b1, b2) = (25, 180). See log
files at [28] for further examples.

Remark 3. We also examined with Magma that all of the obtained s.sp. hyper-
elliptic curves D with Aut(D) = V4 for 19 ≤ p ≤ 200 are Fp2 -maximal or Fp2 -
minimal, where a genus-g curve C over a finite field Fq is said to be Fq-maximal
(resp. Fq-minimal) if the number of its Fq-rational points attains the Hasse-Weil
upper (resp. lower) bound q+1+2g

√
q (resp. q+1−2g

√
q). Maximal curves are

useful to construct good algebraic-geometric codes (cf. [14]), and their concrete
examples are given at manypoint.org. (Unfortunately, the site does not cover
the case q = p2 for p > 19.)

The smallest case p = 19 among ours is covered by the site, but in this case
there is no s.sp. D with Aut(D) = V4. On the other hand, we also found an
F192 -maximal curve D : ζy2 = x10 + ζ127x8 + ζ173x6 + ζ225x4 + ζ283x2 + 3 with
Aut(D) = D4 � V4, where ζ is a primitive element of Fp2 . This is a new example
of F192 -maximal curves of genus 4 since one can check by Magma that it is not
F192 -isomorphic to the examples by Rovi and Fischer shown at manypoint.org.

5 Complexity Analysis

The main purpose of this section is to analyze the complexity of the main algo-
rithm (Algorithm 1) presented in Subsect. 4.1. For this, we first explain details of
each step concretely, in Subsect. 5.1 below. After that, we shall prove in Subsect.
5.2 below that the complexity of Algorithm 1 is bounded by O(p3).

5.1 Concrete Description of Each Step

We here precisely describe each of Steps 1-4 in Algorithm 1. The notation is
same as in Sect. 4, unless otherwise noted. The absolute invariants of genus-
2 hyperelliptic curves will be ordered by the lexicographic order on (Fp4)⊕10

derived from the order on Fp4 defined at the beginning of Sect. 4.

Step 1: Enumeration of s.sp. Curves of Genus Two. This step enumerates
all the isomorphism classes of s.sp. curves of genus 2 in characteristic p. For
this, we apply a method given in [23, Section 5A] (see also Steps (1)–(3) of
[23, Algorithm 5.1] for concrete procedures). In this method, we first produce
Fp2 -maximal s.sp. curves of genus 2 over Fp2 by gluing supersingular elliptic
curves together along their 2-torsion subgroups [13, Proposition 4], and then
construct more such curves by applying Richelot isogenies to the curves already
produced. This construction from curves newly obtained is repeated until no new
isomorphism class is produced. We use the absolute invariant defined in Subsect.
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2.1 to test if two genus-2 curves are isomorphic or not. The termination of this
method is assured by a fact that there are only finitely many s.sp. curves of
genus 2, and the correctness follows from [17, Theorem 43] by Jordan-Zaytman,
where they showed the connectedness of superspecial isogeny graphs in arbitrary
dimension. Note that the complexity of this method is bounded by the number
of s.sp. curves of genus 2 in characteristic p, which is asymptotically equal to
O(p3), as p → ∞.

Lemma 3. Let y2 = f(x) be any hyperelliptic curve of genus 2 appearing in
Step 1 as above. Then all the roots of f(x) belong to Fp4 . Hence all the compu-
tations in Algorithm 1 are done in Fp4 .

Proof. Any supersingular elliptic curve has a model of the form y2 = g(x), where
all roots of g(x) belong to Fp2 (cf. [1, Proposition 2.2]). The genus-2 s.sp. curve
constructed from two such models by the method in [13, Proposition 4] is of
the form y2 = G1(x)G2(x)G3(x) with quadrics Gi(x) over Fp2 . According to [4,
Proposition 1], the curve obtained by any Richelot isogeny from a genus-2 curve
y2 = G1(x)G2(x)G3(X) as above is also of the form y2 = H1(x)H2(x)H3(x)
with quadrics Hi(x) over Fp2 . Thus we have the required result. ��

Step 2: Detection of Genus-4 Hyperelliptic Howe Pairs. As in Algorithm
1, let SSp2(p) denote a list of s.sp. genus-2 curves enumerated in Step 1. This
step computes imaginary models of each s.sp. curve C ∈ SSp2(p) so that the
model has 0, 1 and ∞ as the x-coordinates of ramification points. More con-
cretely, it follows from Lemma 3 that we can write C as C : y2 = f(x) and let
xi ∈ Fp4 be the roots of f(x) with 1 ≤ i ≤ 6. Choosing three roots x1, x2 and
x3, we produce an imaginary model of C given by

Ca4,a5,b : y2 = x(x − 1)(x − a4)(x − a5)(x − b) (5.1.1)

obtained by the map x 	→ (x−x1)(x3−x2)
(x−x2)(x3−x1)

from C, where a4, a5 and b are its images
of x4, x5 and x6, respectively. The map also sends x1, x2 and x3 into 0, ∞ and
1, respectively. Since the number of choices of ordered three points (x1, x2, x3)
is 6 × 5 × 4 = 120, each C ∈ SSp2(p) produces 120 imaginary models in total.

We collect all pairs (C1, C2) of imaginary models C1 and C2 produced as
above which share exactly five ramification points. For this, we generate three
triples of the form (a4, a5, b1) with a4, a5, b1 ∈ Fp4 and a4 < a5 from each imag-
inary model as in (5.1.1), and collect pairs of triples (a4, a5, b1) and (a′

4, a
′
5, b2)

with (a4, a5) = (a′
4, a

′
5) and b1 �= b2. Computing the hash h = H(a4, a5) of the

first two elements of each triple, this can be efficiently done by preparing a hash
table of size p3×120×3 = O(p3). We store each found pair (C1, C2) as a sextuple
(a4, a5, b1, a

′
4, a

′
5, b2), and let HowePairsList be a list of collected sextuples. Note

that we expect #HowePairsList = O(p2) by Remark 4.

Step 3: Detection of s.sp. Hyperelliptic Curves with Automorphism
Group V4. Let HowePairsV4 be an empty list. For each (C1, C2) ∈ HowePairsList
(stored as a sextuple (a4, a5, b1, a

′
4, a

′
5, b2)), we set c2, c3, c4 and c5 as in
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Example 1, and then the genus-4 hyperelliptic curve D defined by (3.1.2) is
isomorphic to the normalization H of C1 ×P1 C2.

We compute the number of automorphisms of D by a method described in
Subsect. 2.2, and add D to the list HowePairsV4 if #Aut(D) = 4. Note that
#HowePairsV4 = O(p2), assuming #HowePairsList = O(p2) by Remark 4.

We store each D as a quadruple (jabs(C1), jabs(C2), (a4, a5, b1), (a′
4, a

′
5, b2))

with a4 = a′
4, a5 = a′

5 and b1 �= b′
2, where jabs(C1) and jabs(C2) are the absolute

invariants defined in Subsect. 2.1 with jabs(C1) ≤ jabs(C2), respectively.

Step (4-1): Dividing Into Groups to Have the Same Absolute Invari-
ants Pair. This step divides elements in HowePairsV4 into groups so that any
distinct two elements (C1, C2) and (C ′

1, C
′
2) in a group satisfy C1

∼= C ′
1 and

C2
∼= C ′

2. This is because, for isomorphism classification in the next step, it
suffices from Lemma 4 to classify elements in the same group.

To divide the elements, we sort HowePairsV4 with respect to the lex-
icographic order on (jabs(C1), jabs(C2)), and add (C1, C2) and (C ′

1, C
′
2)

into the same group if (jabs(C1), jabs(C2)) = (jabs(C ′
1), jabs(C

′
2)). Denot-

ing by SameInv(C1, C2) the group whose representative is (C1, C2), we have
HowePairsV4 =

⊔
SameInv(C1, C2).

Step (4-2): Isomorphism Classification of Collected Hyperelliptic
Curves. Let AllHypHoweCurves be an empty list. In this step, we classify the iso-
morphism classes of Howe curves in each of the groups constructed in Step (4-1).
Concretely, we write each SameInv(C1, C2) as SameInv(C1, C2) = {D1, . . . , Dk},
and then conduct the following: For i from 1 to k by 1, test whether Di is iso-
morphic to Dj for some j < i or not. If Di is not isomorphic to Dj for any j < i,
then add Di into AllHypHoweCurves as a representative of an isomorphism class.
Each isomorphism test for hyperelliptic curves is done by a method described in
Subsect. 2.1. Finally, we return the list AllHypHoweCurves.

5.2 Criterion for Efficiency and Complexity Analysis

In this subsection, we shall prove some criteria for making isomorphism clas-
sification in Algorithm 1 efficient, and then determine the total complexity of
Algorithm 1. Since Step 3 of Algorithm 1 is expected to produce O(p2) s.sp.
genus-4 hyperelliptic curves in practice (cf. Remark 4 below), the number of
required isomorphism tests is O(p4) naively. However, in fact, it suffices to do
O(p2) isomorphism tests, due to our criteria below.

The first criterion is Lemma 4, which implies that it suffices to do isomorphism
classification on (C1, C2)’s with the same invariants pair (jabs(C1), jabs(C2)).

Lemma 4. If D(1) and D(2) are isomorphic, then {C
(1)
1 , C

(1)
2 } are isomorphic

to {C
(2)
1 , C

(2)
2 }, where D(i) is the hyperelliptic curve with Aut(D(i)) ∼= V4 con-

structed from C
(i)
1 and C

(i)
2 as in the equation (3.1.1) for i = 1 and 2.

Proof. There are exactly three order-2 subgroups of V4 and one of them is the
hyperelliptic involution on each of D(1) and D(2). The other two make the double
covers D(i) → C

(i)
1 and D(i) → C

(i)
2 for each i. Thus the lemma follows. ��
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The second criterion is Lemma 5. This lemma shows that the number of
(C1, C2)’s which have the same absolute invariants pair does not depend on p.

Lemma 5. Let C1 and C2 be curves of genus 2. Then the cardinality of the
set {(a4, a5, b1, b2) | Ca4,a5,b1

∼= C1, Ca4,a5,b2
∼= C2} is bounded by a constant

independent of p, where Ca4,a5,b is as in (5.1.1).

Proof. It suffices to show that for a given curve C of genus 2, the number of
(a4, a5, b) such that Ca4,a5,b

∼= C is bounded by a constant independent of p. It
is bounded by the number (explicitly 720) of arrangements of the ramification
points of the double cover C → P

1. Indeed for each arrangement, say P1, . . . , P6,
we obtain a Ca4,a5,b by sending the first three ramification points P1, P2 and
P3 to 0, 1 and ∞ respectively in this order by an element h of Aut(P1) and by
setting ai := h(Pi) for i = 4 and 5, and b := h(P6). ��
Remark 4. Let M(p) be the number of pairs (C1, C2) of s.sp. genus-2 curves
which share 5 ramified points up to Aut(P1), namely M(p) = #HowePairsList.
Then M(p) = O(p2) would be expected. Indeed the number of (C1, C2) of isomor-
phism classes of s.sp. genus-2 curves is O(p6) and the probability that (a4, a5)’s
of C1 and C2 coincide can be expected to be 1/p4. Moreover, it can be expected
that the genus-4 curves constructed by “almost all” pairs have the automorphism
group V4 (see also #HowePairsV4 in Table 1 in practice), and there is at most
constant contribution from taking account of isomorphisms of curves of genus 4.

Now we determine the complexity of the main algorithm. All the complexities
are measured by the number of arithmetic operations in Fp4 .

Proposition 3. Under an assumption that M(p) = O(p2), the total complexity
of Algorithm 1 is bounded by O(p3).

Proof. Step 1 is done in O(p3), as noted in Subsect. 5.1. Note that the number
of generated s.sp. genus-2 curves is estimated as O(p3) by [15, Theorem 3.3], and
thus the number of iterations in Step (2) is also O(p3).

In Step (2), we produce 6×5×4 = 120 imaginary models for each s.sp. curve
of genus 2, and for each imaginary model, we also construct 3 ordered triples
(a4, a5, b) ∈ (Fp4)3 with a4 ≤ a5. Since the cost of computing an imaginary
model and a triple is constant in p, the complexity of Step (2) is estimated as
the size of a generated hash table (see Subsect. 5.1 for details), say O(p3).

Note that the number of constructed genus-4 hypperelliptic Howe pairs
(C1, C2) (stored as (a4, a5, b1, a

′
4, a

′
5, b2) in HowePairsList) is O(p2) by our

assumption, which comes from our heuristic (Remark 4).
Step 3 constructs a s.sp. hyperelliptic curve D of genus 4 for each pair

of (a4, a5, b1) and (a4, a5, b2), and computes the number of its automorphisms.
The construction of each D requires a constant number of operations in Fp4 .
Recall from Subsect. 2.2 that the computation of automorphisms on D is done in
constant time with respect to p. Therefore, the complexity of collecting (C1, C2)
such that the corresponding D satisfies Aut(D) = V4 is O(p2). Since the absolute
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invariants jabs(C1) and jabs(C2) are computed in constant time with respect to
p, the complexity of this step is estimated as O(p2).

Step (4-1) sorts the list HowePairsV4 which has O(p2) elements, and thus
its complexity is O(p2log(p2)) = Õ(p2). It follows from Lemma 5 that the size of
each group is bounded by a constant, and thus the number of groups is O(p2).

In (4-2), we classify the isomorphism classes of s.sp. hyperelliptic curves
in each of the groups constructed in (4-1). Recall from Subsect. 2.1 that each
isomorphism test is done in constant time with respect to p, and hence the
complexity of (4-2) is O(p2). ��

6 Concluding Remarks

In this paper, we proposed an algorithm for enumerating (or finding) s.sp. hyper-
elliptic curves of genus 4 with V4-automorphism group (Theorem A with Algo-
rithm 1). We characterized such curves as generalized Howe curves, and con-
structed the algorithm as a hyperellptic analogue of an algorithm in [23] together
with our criteria for efficient isomorphism classification. Unlike [21], our algo-
rithm need not to solve any multivariate system to collect our s.sp. curves.
The complexity of the algorithm was shown to be O(p3) (under some practi-
cal assumption), which is asymptotically faster than the algorithm of [21], and
than the most efficient existing algorithm [23] with complexity Õ(p4) for the
non-hyperelliptic case. By our implementation of the algorithm over Magma, we
enumerated the isomorphism classes of s.sp. hyperelliptic curves of genus 4 with
automorphism group V4 in characteristic 17 ≤ p ≤ 200 (Theorem B (ii)). We also
succeeded in finding a s.sp. hyperelliptic curve of genus 4 in every characteristic
p with 19 ≤ p ≤ 6691 (Theorem B (i)). From our computational results on the
existence, we also expect that the following conjecture would be true:

Conjecture 1. There exists a s.sp. hyperelliptic curve of genus 4 with automor-
phism group containing V4 for arbitrary characteristic p ≥ 19.

A theoretical proof of this conjecture and that of the Fp2 -maximality or mini-
mality of obtained s.sp. curves (cf. Remark 3) are future works.
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27. Stichtenoth, H.: Über die Automorphismengruppe eines algebraischen Funktio-
nenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der
Automorphismengruppe. Arch. Math. 24, 527–544 (1973)

28. https://sites.google.com/view/m-kudo-official-website/english/code/genus4hypv4

https://doi.org/10.1007/BFb0095931
https://doi.org/10.1007/BFb0095931
https://sites.google.com/view/m-kudo-official-website/english/code/genus4hypv4


Coding Theory



Two Classes of Constacyclic Codes
with Variable Parameters

Cunsheng Ding1(B) , Zhonghua Sun2 , and Xiaoqiang Wang3

1 Department of Computer Science and Engineering, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

cding@ust.hk
2 School of Mathematics, Hefei University of Technology, Hefei 230601, Anhui, China

3 Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics
and Statistics, Hubei University, Wuhan 430062, China

Abstract. Constacyclic codes over finite fields are a family of linear
codes and contain cyclic codes as a subclass. Constacyclic codes are
closely related to many areas of mathematics and outperform cyclic codes
in several aspects. Hence, constacyclic codes are of theoretical impor-
tance. On the other hand, constacyclic codes are important in practice,
as they have rich algebraic structures and may have efficient decoding
algorithms. In this extended abstract, two classes of constacyclic codes
are constructed using a general construction of constacyclic codes with
cyclic codes. The first class of constacyclic codes is motivated by the
punctured Dilix cyclic codes, and the second class is motivated by the
punctured generalised Reed-Muller codes. The two classes of constacyclic
codes contain optimal linear codes. The parameters of the two classes of
constacyclic codes are analysed, and some open problems are presented
in this extended abstract.
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1 Introduction and Motivations

1.1 Constacyclic Codes and Cyclic Codes

Let GF(q) be the finite field with q elements, and let GF(q)∗ denote the mul-
tiplicative group of GF(q). By an [n, k, d] code C over GF(q) we mean a k-
dimensional linear subspace of GF(q)n with minimum distance d. Let λ ∈
GF(q)∗. A linear code C of length n is said to be λ-constacyclic if (c0, c1, . . . , cn−1)
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∈ C implies (λcn−1, c0, c1, . . . , cn−2) ∈ C. Let Φ be the mapping from GF(q)n to
the quotient ring GF(q)[x]/〈xn − λ〉 defined by

Φ((c0, c1, . . . , cn−1)) =
n−1∑

i=0

cix
i.

It is well known that every ideal of the ring GF(q)[x]/〈xn − λ〉 is principal
and a linear code C ⊆ GF(q)n is λ-constacyclic if and only if Φ(C) is an ideal
of GF(q)[x]/〈xn − λ〉. Consequently, we will identify C with Φ(C) for any λ-
constacyclic code C. Let C = 〈g(x)〉 be a λ-constacyclic code over GF(q), where
g(x) is monic and has the smallest degree. Then g(x) is called the generator poly-
nomial and h(x) = (xn −λ)/g(x) is referred to as the check polynomial of C. The
dual code C⊥ of C is a λ−1-constacyclic code generated by the reciprocal polyno-
mial of the check polynomial h(x) of C. By definition, 1-constacyclic codes are the
classical cyclic codes. Hence, cyclic codes form a subclass of constacyclic codes.
In other words, constacyclic codes are a generalisation of the classical cyclic
codes. For more information on constacyclic codes over finite fields, the reader
is referred to [5–9,13,18,20,21,24,25,27,30–32,35] and the references therein.

1.2 Motivations and Objectives

By definition, cyclic codes are a proper subclass of constacyclic codes and con-
stacyclic codes are a proper subclass of linear codes. Clearly, cyclic codes have a
better algebraic structure than λ-constacyclic codes with λ �= 1 and constacyclic
codes have a better algebraic structure than other linear codes. A better alge-
braic structure may mean a better decoding algorithm. Then the following two
questions are interesting and good motivations for studying constacyclic codes.

Question 1. Is a given linear code over GF(q) monomially-equivalent to a cyclic
code over GF(q)?

Question 2. Is a given linear code over GF(q) monomially-equivalent to a λ-
constacyclic code over GF(q) with λ �= 1?

For example, the Hamming code of length (qm − 1)/(q − 1) over GF(q) is
monomially-equivalent to a cyclic code over GF(q) when gcd(m, q − 1) = 1, and
is always monomially-equivalent to a contacyclic code over GF(q). This shows
that the Hamming code is attractive. Notice that the two questions are open for
most linear codes.

Recall that cyclic codes have a better algebraic structure. Then one would
ask why we would study constacyclic codes. Below is a list of motivations for
studying λ-constacyclic codes with λ �= 1:

– There does not exist a cyclic code over GF(q) with parameters [n, k, d] for
certain q, n, k and d; but there is a λ-constacyclic codes over GF(q) with
parameters [n, k, d].
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– The best [n, k] constacyclic code over GF(q) has a better error-correcting
capability than the best [n, k] cyclic code over GF(q) for certain q, n and k.

– Constacyclic codes can do many things that cyclic codes cannot do. For exam-
ple, the Hamming code of length (qm − 1)/(q − 1) can always be constructed
as a constacyclic code, but cannot be constructed as a cyclic code when
gcd(q − 1,m) �= 1.

The original binary Reed-Muller codes were introduced by Reed and Muller
in 1954 [26,29]. They are called geometric codes, as all the minimum weight
codewords of the r-th order Reed-Muller code R2(r,m) are the incidence vectors
of all the (m − r)-flats in the affine geometry AG(m,GF(2)) and they generate
R2(r,m) [2]. The automorphism group of R2(r,m) is known to be the general
affine group GAm(GF(2)), which is triply transitive on GF(2)m. Hence, the
binary Reed-Muller codes support 3-designs. It was later discovered that the
binary Reed-Muller codes become cyclic codes if they are punctured in a special
coordinate position. These properties show that the original Reed-Muller codes
are very interesting in theory. Binary Reed-Muller codes are also interesting
in practice as they have efficient decoding algorithms [29]. The binary Reed-
Muller codes and their punctured codes were later generalised to codes over
GF(q) for general q. In 2018, the binary Reed-Muller codes were generalised
into another type of linear codes [10], which were called Dilix codes for the
purpose of distinguishing the two types of generalisations [11, Chapter 6]. The
Dilix codes have also interesting properties and are extended cyclic codes by
definition. In other words, if the Dilix codes are punctured in the last coordinate,
the punctured Dilix codes are cyclic. Motivated by the punctured generalized
Reed-Muller codes and punctured Dilix codes, the objective of this extended
abstract is to construct and analyse two classes of constacyclic codes.

2 Preliminaries

Throughout this extended abstract, we fix the following notation, unless it is
stated otherwise:

– q is a prime power.
– m ≥ 2 is an integer.
– r is a positive divisor of q − 1.
– N = qm − 1.

For a linear code C, we use dim(C) and d(C) to denote its dimension and
minimum Hamming distance, respectively. For a linear code C ⊂ GF(q)n, let
Ai denote the number of codewords with Hamming weight i in C. The weight
enumerator of C is defined as 1+A1z + · · ·+Anzn. The sequence (1, A1, . . . , An)
is called the weight distribution of C. If the number of nonzero Ai in the sequence
(A1, A2, . . . , An) equals t, then C is called a t-weight code.
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2.1 The Hamming Weight and q-weight of Nonnegative Integers

Let N = qm−1. For each i ∈ ZN , let the q-adic expansion of i be i =
∑m−1

j=0 ijq
j ,

where 0 ≤ ij ≤ q − 1. The Hamming weight of i, denoted by wt(i), is defined
to be the Hamming weight of the vector (i0, i1, . . . , im−1). The q-weight of i,
denoted by wtq(i), is defined to be

∑m−1
j=0 ij .

2.2 Cyclotomic Cosets

Let q be a prime power, n be a positive integer with gcd(q, n) = 1, r be a positive
divisor of q − 1, and let λ be an element of GF(q) with order r. To deal with
λ-constacyclic codes of length n over GF(q), we have to study the factorization
of xn − λ over GF(q). To this end, we need to introduce q-cyclotomic cosets
modulo rn.

Let Zrn = {0, 1, 2, · · · , rn − 1} be the ring of integers modulo rn. For any
i ∈ Zrn, the q-cyclotomic coset of i modulo rn is defined by

C
(q,rn)
i = {i, iq, iq2, · · · , iq�i−1} mod rn ⊆ Zrn,

where �i is the smallest positive integer such that i ≡ iq�i (mod rn), and is the
size of the q-cyclotomic coset C

(q,rn)
i . The smallest integer in C

(q,rn)
i is called

the coset leader of C
(q,rn)
i . Let Γ(q,rn) be the set of all the coset leaders. We have

then C
(q,rn)
i ∩ C

(q,rn)
j = ∅ for any two distinct elements i and j in Γ(q,rn), and

⋃

i∈Γ(q,rn)

C
(q,rn)
i = Zrn.

Let m = ordrn(q). It is easily seen that there is a primitive element α of
GF(qm) such that β = α(qm−1)/rn and βn = λ. Then β is a primitive rn-th
root of unity in GF(qm). The minimal polynomial Mβi(x) of βi over GF(q) is
the monic polynomial of the smallest degree over GF(q) with βi as a zero. We
have Mβi(x) =

∏
j∈C

(q,rn)
i

(x − βj) ∈ GF(q)[x], which is irreducible over GF(q).
It then follows that xrn − 1 = xrn − λr =

∏
i∈Γ(q,rn)

Mβi(x). Define

Γ
(1)
(q,rn,r) = {i : i ∈ Γ(q,rn), i ≡ 1 (mod r)}.

Then xn − λ =
∏

i∈Γ
(1)
(q,rn,r)

Mβi(x).

2.3 Automorphism Groups and Equivalence of Linear Codes

Two linear codes C1 and C2 are said to be permutation-equivalent if there is a
permutation of coordinates which sends C1 to C2. This permutation could be
described by employing a permutation matrix, which is a square matrix with
exactly one 1 in each row and column and 0s elsewhere. The set of coordinate
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permutations that map a code C to itself forms a group, which is referred to as
the permutation automorphism group of C and denoted by PAut(C).

A monomial matrix over GF(q) is a square matrix having exactly one nonzero
element of GF(q) in each row and column. A monomial matrix M can be written
either in the form DP or the form PD1, where D and D1 are diagonal matrices
and P is a permutation matrix.

Let C1 and C2 be two linear codes of the same length over GF(q). Then C1

and C2 are said to be monomially-equivalent if there is a monomial matrix over
GF(q) such that C2 = C1M . Monomial equivalence and permutation equivalence
are precisely the same for binary codes. If C1 and C2 are monomially-equivalent,
then they have the same weight distribution. The set of monomial matrices
that map C to itself forms the group MAut(C), which is called the monomial
automorphism group of C. By definition, we have PAut(C) ⊆ MAut(C). Two
linear codes C1 and C2 of the same length over GF(q) are said to be scalar-
equivalent if there is an invertible diagonal matrix D over GF(q) such that
C2 = C1D.

Two codes C1 and C2 are said to be equivalent if there is a monomial matrix
M and an automorphism γ of GF(q) such that C1 = C2Mγ. All three are the
same if the codes are binary; monomial equivalence and equivalence are the same
if the field considered has a prime number of elements.

The automorphism group of C, denoted by Aut(C), is the set of maps of the
form Mγ, where M is a monomial matrix and γ is a field automorphism, that
map C to itself. In the binary case, PAut(C), MAut(C) and Aut(C) are the same.
If q is a prime, MAut(C) and Aut(C) are identical. In general, we have

PAut(C) ⊆ MAut(C) ⊆ Aut(C).

In this extended abstract, we consider the monomial equivalence of linear codes.
Two monomially-equivalent codes have the same parameters and weight distri-
bution. If a linear code C is monomially-equivalent to a constacyclic code C1,
we prefer C1 to C as constacyclic codes have a better algebraic structure than
general linear codes.

2.4 The Projective Reed-Muller Codes

Let q be a power of a prime p and let m ≥ 2. A point of the projective geometry
PG(m−1,GF(q)) is given in homogeneous coordinates by (x1, x2, . . . , xm) where
all xi are in GF(q) and are not all zero. Each point of PG(m−1,GF(q)) has q−1
coordinate representations, as (ax1, x2, ..., axm) and (x1, x2, ..., xm) generate the
same 1-dimensional subspace of GF(q)m for any nonzero a ∈ GF(q).

Let GF(q)[x1, x2, . . . , xm] be the set of polynomials in m indeterminates over
GF(q), which is a linear space over GF(q). Let A(q,m, h) be the subspace of
GF(q)[x1, x2, . . . , xm] generated by all the homogeneous polynomials of degree h.
Let {x1,x2, · · · ,xn} be a set of projective points in PG(m−1,GF(q)), where n =
(qm −1)/(q−1). Then, the h-th order projective Reed-Muller code PRM(q,m, h)
of length n is defined by

PRM(q,m, h) =
{(

f(x1), f(x2), . . . , f(xn)
)

: f ∈ A(q,m, h)
}

.
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The code PRM(q,m, h) depends on the choice of the set {x1,x2, · · · ,xn} of
coordinate representatives of the point set in PG(m − 1,GF(q)), but is unique
up to monomial equivalence (in fact, up to scalar equivalence). The parameters
of PRM(q,m, h) are known and documented in the following theorem [3,19,34].

Theorem 1. Let m ≥ 2 and 1 ≤ h ≤ (m − 1)(q − 1). Then the linear code
PRM(q,m, h) has length n = (qm − 1)/(q − 1) and minimum distance (q −
v)qm−2−u, where h − 1 = u(q − 1) + v and 0 ≤ v < q − 1. Furthermore,

dim(PRM(q,m, h)) =
∑

t≡h (mod q−1)
0<t≤h

⎛

⎝
m∑

j=0

(−1)j

(
m

j

)(
t − jq + m − 1

t − jq

)⎞

⎠ .

By Theorem 1 and definition, PRM(q,m, 1) is monomially-equivalent to the
Simplex code. The weight distribution of PRM(q,m, 2) was settled in [22]. It
was pointed out in [4] that the code PRM(q,m, h) is not cyclic in general, but
could be cyclic or quasi-cyclic under special conditions. Later in this extended
abstract, we will compare some newly constructed constacyclic codes with the
projective Reed-Muller codes. This explains why we introduced the projective
Reed-Muller codes here.

2.5 Projective Generalized Reed-Muller Codes

For an integer h ≥ 0, let PP(q,m, h) be the linear subspace of GF(q)[x1, x2, . . . ,
xm], which is spanned by all monomials xi1

1 xi2
2 · · · xim

m satisfying the following
two conditions:

1.
∑m

j=1 ij ≡ 0 (mod q − 1),
2.

∑m
j=1 ij ≤ h(q − 1).

Each a ∈ GF(q) is viewed as the constant function fa(x1, x2, . . . , xm) ≡ a.
Let {x1,x2, . . . ,xn} be the set of projective points in PG(m − 1,GF(q)),

where n = qm−1
q−1 . Then, the h-th order projective generalized Reed-Muller code

PGRM(q,m, h) of length n is defined by

PGRM(q,m, h) =
{(

f(x1), f(x2), . . . , f(xn)
)

: f ∈ PP(q,m, h)
}

.

Theorem 2. Let 0 ≤ h ≤ m−1. Then, the minimum weight of PGRM(q,m, h)
is qm−h−1

q−1 and

dim(PGRM(q,m, h)) =
∣∣∣∣

{
0 ≤ j ≤ qm − 1

q − 1
: wtq(j(q − 1)) ≤ h(q − 1)

}∣∣∣∣ . (1)

Note that the minimum distance of PGRM(q,m, h) is known to be qm−h−1
q−1 .

But the expression in (1) is not specific, and there is no known specific formula for
dim(PGRM(q,m, h)). Later, we will compare the codes PGRM(q,m, h) with the
constacyclic codes presented in this extended abstract. To this end, we present
the following example.
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Example 1. The parameters of the codes PGRM(3, 4, h) for 0 ≤ h ≤ 3 are given
below.

[40, 1, 40], [40, 11, 13], [40, 30, 4], [40, 40, 1].

2.6 The Punctured Dilix Codes

In this subsection, we outline a type of cyclic codes, called punctured Dilix codes
[10]. Let m be a positive integer and let N = qm − 1, where q is a prime power.
Let β be a primitive element of GF(qm). For any 1 ≤ h ≤ m, we define a
polynomial

ω(q,m,h)(x) =
∏

1≤i≤N−1
1≤wt(i)≤h

(x − βi).

Since wt(i) is a constant function on each q-cyclotomic coset modulo N ,
ω(q,m,h)(x) is a polynomial over GF(q). By definition, ω(q,m,h)(x) is a divisor
of xN − 1. Let Ω(q,m, h) denote the cyclic code over GF(q) with length N and
generator polynomial ω(m,q,h)(x).

Theorem 3. [10] Let m ≥ 2 and 1 ≤ h ≤ m−1. Then Ω(q,m, h) has parameters
[N, k, d ≥ (qh+1 − 1)/(q − 1)], where

k = qm −
h∑

i=0

(
m

i

)
(q − 1)i.

Later, we will use the codes Ω(q,m, h) to construct some constacyclic codes.
This explains why we introduced the punctured Dilix codes Ω(q,m, h) here.

3 A General Construction of Constacyclic Codes
of Length qm −1

r
with Cyclic Codes of Length qm − 1

In this section, we present a general construction of constacyclic codes of length
qm−1

r with cyclic codes of length qm −1 over GF(q), where r is a positive divisor
of q − 1. Throughout this section, let n = qm−1

r , where m is an integer with
m ≥ 2. Define N = rn = qm − 1. Let β be a primitive element of GF(qm) and
λ = βn. Then λ is an element of GF(q)∗ with order r.

Let C be a cyclic code of length N over GF(q) with generator polynomial

g(x) =
∏

i∈D(C)
(x − βi),

where D(C) is the union of some q-cyclotomic cosets modulo N and is called the
defining set of C with respect to the primitive element β of GF(qm). Put

D(C) = {i ∈ D(C) : i ≡ 1 (mod r)}.
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If D(C) = ∅, then define g(x) = 1. If D(C) �= ∅, then define

g(x) =
∏

i∈D(C)
(x − βi).

Then the following hold:

1. g(x) is a polynomial over GF(q).
2. g(x) = gcd(g(x), xn − λ).

Let C denote the λ-constacyclic code of length n over GF(q) with generator
polynomial g(x). By definition, C is constructed from the given cyclic code C.

By definition,
dim(C) = N − deg(g) = N − |D(C)|

and
dim(C) = n − deg(g) = n − |D(C)|.

Hence, it may not be easy to determine dim(C) even if dim(C) is known. How-
ever, this may be possible in some special cases. By definition, there is no clear
connection between d(C) and d(C) in general.

Later in this extended abstract, we will use this general construction to obtain
two classes of λ-constacyclic codes of length (qm −1)/(q −1) over GF(q). Specif-
ically, we will consider only the special case r = q − 1 in this extended abstract.

Example 2. Let q > 2 be a prime power and let m ≥ 2 and r = q − 1. Let β be
a primitive element of GF(qm) and λ = β(qm−1)/(q−1). Let C denote the cyclic
code of length N = qm − 1 with generator polynomial g(x) = Mβ(x)Mβq+1(x).
It is easily seen that D(C) = C

(q,N)
1 and g(x) = Mβ(x). Then the λ-constacyclic

code C is the Hamming code and C⊥ is the Simplex code.

4 The First Class of Constacyclic Codes

We follow the previous notation. Throughout this section, let n = qm−1
q−1 , where

m is an integer with m ≥ 2. Define N = rn = qm − 1, where r = q − 1. Then it
is easily seen that ordn(q) = ordN (q) = m. Let Γ(q,N) be the set of q-cyclotomic
coset leaders modulo N and let

Γ
(1)
(q,N,q−1) = {i : i ∈ Γ(q,N), i ≡ 1 (mod q − 1)}.

Let β be a primitive element of GF(qm) and let λ = β(qm−1)/(q−1). Then λ is a
primitive element of GF(q). Let � be a positive integer with 1 ≤ � ≤ m. Define

g′
(q,m,�)(x) =

∏

i∈Γ
(1)
(q,N,q−1)

1≤wt(i)≤�

Mβi(x).
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Let

D′
(q,m,�) =

⋃

i∈Γ
(1)
(q,N,q−1)

1≤wt(i)≤�

C
(q,N)
i .

Then {βi : i ∈ D′
(q,m,�)} is the set of all zeros of g′

(q,m,�)(x). It is easily verified
that D′

(q,m,�) is invariant under the permutation qy mod N of ZN . Consequently,
g′
(q,m,�)(x) is over GF(q) and is a divisor of xn − λ. Let C′(q,m, �) denote the λ-

constacyclic code of length n over GF(q) with generator polynomial g′
(q,m,�)(x).

By definition, g′
(q,m,m)(x) = xn −λ and the code C(q,m,m) is the zero code and

C′(q,m,m)⊥ is the [n, n, 1] code GF(q)n over GF(q). Hence, we will consider the
code C′(q,m, �) only for 1 ≤ � ≤ m − 1, and call D′

(q,m,�) the defining set of
C′(q,m, �) with respect to the primitive element β of GF(qm).

Theorem 4. Let 1 ≤ � ≤ m − 1. Then

dim(C′(q,m, �)) =
qm − ∑�

i=0

(
m
i

)
(q − 1)i

q − 1

and

d(C′(q,m, �)) ≥
⌊

q�+1 − 1 − 2(q − 1)
(q − 1)2

⌋
+ 2. (2)

Theorem 5. Let 1 ≤ � ≤ m − 1 and q ≥ 3. Then

dim(C′(q,m, �)⊥) =
�∑

i=1

(
m

i

)
(q − 1)i−1

and

d(C′(q,m, �)⊥) ≥ qm−�. (3)

Corollary 1. Let m ≥ 2. Then the constacyclic code C′(q,m, 1) has parameters

[(qm − 1)/(q − 1), (qm − 1)/(q − 1) − m, 3]

and is monomially-equivalent to the Hamming code. In addition, C′(q,m, 1)⊥

has parameters [(qm − 1)/(q − 1),m, qm−1] and is monomially-equivalent to the
Simplex code.

Let Ω(q,m, �) denote the punctured Dilix code constructed in [10] (see also
Sect. 2.6). Theorem 4 tells us that

dim(Ω(q,m, �)) = (q − 1) dim(C′(q,m, �)).

Experimental data indicates that the lower bound in (2) is good in general. But
the following problem is worth of investigation.
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Open Problem 6. Determine the minimum distance of C′(q,m, �) or improve
the lower in (2) for 2 ≤ � ≤ m − 1.

Experimental data shows that the lower bound in (3) is quite away from the
true minimum distance.

Open Problem 7. Determine the minimum distance of C′(q,m, �)⊥ or improve
the lower bound in (3) for 2 ≤ � ≤ m − 1.

Example 3. Let (q,m, �) = (3, 4, 1). Let β be the primitive element of GF(34)
with β4 + 2β3 + 2 = 0. Then the code C′(q,m, �) has parameters [40, 36, 3] and
C′(q,m, �)⊥ has parameters [40, 4, 27]. The former is a perfect code and the latter
meets the Griesmer bound.

Example 4. Let (q,m, �) = (3, 4, 2). Let β be the primitive element of GF(34)
with β4 + 2β3 + 2 = 0. Then the code C′(q,m, �) has parameters [40, 24, 8] and
C′(q,m, �)⊥ has parameters [40, 16, 12]. The best ternary code known of length
40 and dimension 24 has minimum distance 9 [16].

Example 5. Let (q,m, �) = (3, 4, 3). Let β be the primitive element of GF(34)
with β4 + 2β3 + 2 = 0. Then the code C′(q,m, �) has parameters [40, 8, 21] and
has the best parameters known [16], and C′(q,m, �)⊥ has parameters [40, 32, 4].

The forgoing examples demonstrate that the code C′(q,m, �) and its dual
C′(q,m, �)⊥ may be optimal or have the best parameters known some times.
Below we explain some connection and difference among the code C′(q,m, �),
the projective Reed-Muller codes and the projective generalised Reed-Muller
codes.

By Corollary 1, C′(q,m, 1)⊥ is monomially-equivalent to PRM(q,m, 1), as
both codes are monomially-equivalent to the Simplex code. This is one connec-
tion between the codes C′(q,m, �) and the projective Reed-Muller codes. Consider
now all the projective codes PRM(3, 4, �) for all � with 1 ≤ � ≤ 6. It follows from
Theorem 1 that

d(PRM(3, 4, 1)) = 27,
d(PRM(3, 4, 2)) = 18,
d(PRM(3, 4, 3)) = 9,
d(PRM(3, 4, 4)) = 6,
d(PRM(3, 4, 5)) = 3,
d(PRM(3, 4, 6)) = 2.

By Example 4, d(C′(3, 4, 2)) = 8 and d(C′(3, 4, 2)⊥) = 12. This means that both
C′(3, 4, 2) and C(3, 4, 2)⊥ cannot be monomially-equivalent to a code PRM(3, 4, �)
for all � with 1 ≤ � ≤ 6. Hence, the two families of codes C′(q,m, �) and
PRM(q,m, �) are different in general. Notice that C′(2,m, �) and the punctured
Dilix code Ω(2,m, �) are identical. But C′(q,m, �) and the punctured Dilix code
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Ω(q,m, �) are not monomially-equivalent when q > 2, as they have different
lengths.

Compared with parameters of the codes PGRM(3, 4, �) in Example 1,
both C′(3, 4, 2) and C′(3, 4, 2)⊥ cannot be monomially-equivalent to a code
PGRM(3, 4, �) for all � with 0 ≤ � ≤ 3. Hence, the class of codes C′(q,m, �)
and the class of codes PGRM(q,m, �) are different.

5 The Second Class of Constacyclic Codes

We follow the previous notation. Throughout this section, let n = qm−1
q−1 , where

m is an integer with m ≥ 2. Define N = rn = qm − 1, where r = q − 1. Then it
is easily seen that ordn(q) = ordN (q) = m. Let Γ(q,N) be the set of q-cyclotomic
coset leaders modulo N and let

Γ
(1)
(q,N,q−1) = {i : i ∈ Γ(q,N), i ≡ 1 (mod q − 1)}.

5.1 Definition and Basic Properties of the Constacyclic Codes

Let β be a primitive element of GF(qm) and let λ = β(qm−1)/(q−1). Then λ is a
primitive element of GF(q). Let � be a positive integer with 0 ≤ � < (q−1)m−1.
Define

g(q,m,�)(x) =
∏

i∈Γ
(1)
(q,N,q−1)

wtq(i)<(q−1)m−�

Mβi(x).

Let

D(q,m,�) =
⋃

i∈Γ
(1)
(q,N,q−1)

wtq(i)<(q−1)m−�

C
(q,N)
i .

Then {βi : i ∈ D(q,m,�)} is the set of all zeros of g(q,m,�)(x). It is easily verified
that D(q,m,�) is invariant under the permutation qy mod N of ZN . Consequently,
g(q,m,�)(x) is over GF(q) and is a divisor of xn − λ. Let C(q,m, �) denote the λ-
constacyclic code of length n over GF(q) with generator polynomial g(q,m,�)(x).
We call D(q,m,�) the defining set of C(q,m, �) with respect to the primitive ele-
ment β of GF(qm).

Lemma 1. Let m ≥ 2 and q ≥ 3. Then C(q,m, �) = {0} for all � with 1 ≤ � ≤
q − 3. Furthermore, C(q,m, (q − 1)u + q − 2) = C(q,m, (q − 1)(u + 1) + v) for all
0 ≤ u ≤ m − 2 and 0 ≤ v ≤ q − 3.

This lemma shows that this class of constacyclic codes C(q,m, �) contain only
the following distinct nonzero codes:

C(q,m, (q − 1)u + q − 2), 0 ≤ u ≤ m − 2.
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Theorem 8. Let m ≥ 2, q ≥ 3 and 0 ≤ u ≤ m−2. Then C(q,m, (q−1)u+q−2)
is monomially-equivalent to PRM(q,m, (q − 1)u + q − 2). Consequently,

dim(C(q, m, (q − 1)u + q − 2)) =
∑

t≡q−2 (mod q−1)
0<t≤(q−1)u+q−2

(
m∑

j=0

(−1)j
(

m

j

)(
t − jq + m − 1

t − jq

))
,

and
d(C(q,m, (q − 1)u + q − 2)) = 3qm−2−u.

The main contribution of this section is Theorem 8, which shows that the
projective Reed-Muller code PRM(q,m, �) has a constacyclic code construction
when � = (q − 1)u + q − 2 for any u with 0 ≤ u ≤ m − 2 up to monomial
equivalence. However, the following question is still open.

Open Problem 9. Is PRM(q,m, �) monomially-equivalent to a constacyclic
code when � �≡ q − 2 (mod q − 1) and q − 2 ≤ � ≤ (m − 1)(q − 1)?

5.2 Some Special Cases of the Code C(q, m, �)

In this subsection, we study the code C(q,m, �) in some special cases. The code
is very interesting in some special cases.

Corollary 2. Let q ≥ 3 and m ≥ 2. Then C(q,m, (q − 1)(m − 2) + q − 2) has
parameters [

qm − 1
q − 1

,
qm − 1
q − 1

− m, 3
]

and is monomially-equivalent to the Hamming code. Hence, C(q,m, (q − 1)(m −
2) + q − 2)⊥ has parameters

[
qm − 1
q − 1

,m, qm−1

]

and is monomially-equivalent to the Simplex code.

Corollary 3. Let m ≥ 2. Then C(4,m, 2) has parameters
[
4m − 1

3
,

m(m + 1)
2

, 3 × 4m−2

]

and C(4,m, 2)⊥ has parameters
[
4m − 1

3
,

4m − 1
3

− m(m + 1)
2

, 4
]

.

The following four examples show that C(4,m, 2) is a (m + 1)-weight code
for even m and m-weight code for odd m.
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Example 6. Let (q,m, �) = (4, 2, 2). Let β be the primitive element of GF(42)
with β4+β+1 = 0. Then C(4, 2, 2) has parameters [5, 3, 3] and weight enumerator
1 + 30z3 + 15z4 + 18z5. Furthermore, C(4, 2, 2)⊥ has parameters [5, 2, 4]. Both
codes are MDS and optimal.

Example 7. Let (q,m, �) = (4, 3, 2). Let β be the primitive element of GF(43)
with β6 + β4 + β3 + β + 1 = 0. Then C(4, 3, 2) has parameters [21, 6, 12] and
weight enumerator

1 + 630z12 + 3087z16 + 378z20.

Notice that the code C(4, 3, 2) is distance-optimal [16]. Furthermore, C(4, 3, 2)⊥

has parameters [21, 15, 4] and is almost-distance optimal [16].

Example 8. Let (q,m, �) = (4, 3, 5). Let β be the primitive element of GF(43)
with β6 +β4 +β3 +β +1 = 0. Then the code C(q,m, �) has parameters [21, 18, 3]
and is distance-optimal [16], and C(q,m, �)⊥ has parameters [21, 3, 16] and is
distance-optimal [16].

Example 9. Let (q,m, �) = (4, 3, 4). Let β be the primitive element of GF(43)
with β6 +β4 +β3 +β +1 = 0. Then the code C(q,m, �) has parameters [21, 6, 12]
and is distance-optimal [16], and C(q,m, �)⊥ has parameters [21, 15, 4].

These examples above show that the code C(q,m, �) could be optimal in some
cases. Thus, the code C(q,m, �) is interesting in terms of its error-correcting
capability.

5.3 The Difference Between the Codes C(q, m, �) and the Codes
PGRM(q, m, h)

According to Theorem 2, C(3, 4, 5) has minimum distance 3. By Example 1, none
of the codes PGRM(3, 4, h) for 0 ≤ h ≤ 3 has minimum distance 3. Consequently,
the class of codes C(q,m, �) and the class of codes PGRM(q,m, h) are different.

6 Summary and Concluding Remarks

The main contributions of this extended abstract are the constructions and anal-
yses of the two classes of constacyclic codes C′(q,m, �) and C(q,m, �). The codes
are interesting in theory as they contain optimal codes and codes with best-
known parameters and they are constacyclic. In addition, the codes C′(q,m, �)
are new, and the codes C(q,m, �) give a costacyclic-code construction of some
projective Reed-Muller codes. It would be very interesting to settle the open
problems presented in this extended abstract and determine the automorphism
groups of the first class of constacyclic codes C′(q,m, �).

Acknowledgements. The first author thanks Sihem Mesnager and Zhengchun Zhou
for inviting him to present the talk at WAIFI 2022.
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Abstract. In this paper, several infinite families of near MDS codes with dimen-
sion four are constructed with special matrixes and oval polynomials. The weight
enumerators of them are explicitly determined. As an application, the duals of
these near NMDS codes are proved to be both distance-optimal and dimension-
optimal locally recoverable codes.

Keywords: Linear code · Near MDS code · Locally repairable code

1 Introduction

Denote by Fq the finite field with q elements for a prime power q. Let F∗
q := Fq \{0}.

1.1 Near MDS Codes

For a positive integer n, a subset C of Fn
q is called an [n,k,d] linear code over Fq if

it is a k-dimensional linear subspace F
n
q, where d denotes the minimum (Hamming)

distance of C . It is well known that the minimum distance of a linear code C equals the
minimum Hamming weight of nonzero codewords in C . The dual of an [n,k,d] linear
code over Fq is defined by C⊥ =

{
c′ ∈ F

n
q : 〈c′,c〉 = 0 ∀ c ∈ C

}
, where 〈c′,c〉 represents

the Euclidean inner product of c′ and c. Clearly, C⊥ is an [n,n− k] linear code over Fq.
Denote by Ai = |{c ∈ C : wt(c) = i}|, 0 ≤ i ≤ n, where wt(c) denotes the Hamming
weight of c. Then the sequence (1,A1, · · · ,An) is referred to as the weight distribution of
the linear code C . The weight enumerator of C is defined as the following polynomial:
A(z) = 1 + A1z+ A2z2 + · · ·+ Anzn. The weight distributions of many special linear
codes were determined in the literature [3,4,9,11,20,21].

In coding theory, we hope to construct an [n,k,d] linear code with both large code
rate k/n and large minimum distance d. Nevertheless, there exists a tradeoff among the
parameters n,k and d. The well-known Singleton bound on an [n,k,d] linear code C is
given by n≥ k+d−1. A linear code achieving this bound is called an MDS (maximum
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distance separable) code, i.e. it has parameters [n,k,n−k+1]. The dual of an MDS code
is also an MDS code. MDS codes have many nice applications and were investigated
in [10,18]. However, according to the well-known MDS conjecture, the lengths of a
nontrivial [n,k] MDS codes over Fq are limited by the size of the field, i.e. n ≤ q+2 if
q is even and k = 3 or k = q−1, and n ≤ q+1 for other cases.

It is interesting to study linear codes nearly achieving the Singleton bound with
larger lengths. Linear codes with parameters [n,k,n− k] are called almost MDS codes.
In general, the dual of an almost MDS code may not be almost MDS. If both a code and
its dual are almost MDS, this code is called an near MDS code (NMDS code for short).
Denote by n(k,q) the largest possible length of an NMDS code over Fq with dimension
k. In [5], it was proved that n(k,q) ≤ 2q+ k. For k > q, there indeed exist NMDS
codes with parameters [2q+ k,k,2q] constructed in [1]. Hence, NMDS codes can have
larger lengths than those of MDS codes. Near MDS codes have nice applications in
combinatorics, finite geometry, cryptography and data storage [3–5,19–21].

1.2 Locally Recoverable Codes

For a block code, if any symbol in the encoding is a function of r other symbols, then
this code is called a locally recoverable code (LRC for short) with locality r. In this
paper, we only consider linear LRCs. We denote an [n,k,d] linear code over Fq with
locality r by (n,k,d,q;r)-LRC. There exist some tradeoffs among the parameters of
LRCs. For an (n,k,d,q;r)-LRC, the Singleton-like bound (see [2]) is given by

d ≤ n− k−
⌈
k
r

⌉
+2. (1)

If a LRC achieves this bound, then it is said to be distance-optimal. For an (n,k,d,q;r)-
LRC, the Cadambe-Mazumdar bound (see [7]) is given as

k ≤ min
t∈Z+

[rt+ k(q)opt(n− t(r+1),d)], (2)

where k(q)opt(n,d) denotes the minimum dimension of a linear code of length n, minimum
distance d over Fq and Z

+ represents the set of all positive integers. If a LRC achieves
the Cadambe-Mazumdar bound, then it is said to be dimension-optimal. In [15], the
authors constructed optimal locally repairable codes of distance 3 and 4 from cyclic
codes. In [19], the minimum linear locality of general linear codes was investigated and
many families of optimal LRCs were derived with certain families of linear codes. In
[8], optimal LRCs were constructed with a family of almost MDS codes. In [12,13],
several families of distance-optimal or dimension-optimal LRCs were constructed with
NMDS codes with dimension 3.

1.3 The Objectives of This Paper

Since many infinite families of NMDS codes with dimension 3 were constructed with
oval polynomials in [12,13], a natural question arises: whether can we construct infi-
nite families of NMDS codes with bigger dimensions from oval polynomials? This
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paper will tackle this question. The first objective of this paper is to construct several
infinite families of NMDS codes with dimension 4 from some special matrixes and oval
polynomials. The weight enumerators of the NMDS codes will also be determined. The
second objective is to construct dimension-optimal and distance-optimal LRCs via the
duals of these NMDS codes.

2 Preliminaries

For a linear code C of length n, let (1,A1, · · · ,An) and (1,A⊥
1 , · · · ,A⊥

n ) represent the
weight distributions of it and its dual, respectively. The following lemma provides cru-
cial information on the weight distributions of NMDS codes and their duals.

Lemma 1 [5]. For an [n,k] NMDS code C over Fq, its weight distribution satisfies the
following recurrence relation:

An−k+s =
(

n
k− s

) s−1

∑
j=0

(−1) j
(
n− k+ s

j

)
(qs− j −1)+(−1)s

(
k
s

)
An−k

for s ∈ {1,2, . . . ,k}. The weight distribution of C⊥ satisfies the following recurrence
relation:

A⊥
k+s =

(
n

k+ s

) s−1

∑
j=0

(−1) j
(
k+ s
j

)
(qs− j −1)+(−1)s

(
n− k
s

)
A⊥
k

for s ∈ {1,2, . . . ,n− k}.
The following lemma provides a useful property on the relationship between the

support of the minimum weight codewords of an NMDS code and that of its dual.

Lemma 2 [6]. For an NMDS code C of length n, define the support of c= (c1, . . . ,cn)∈
C by suppt(c) = {1 ≤ i ≤ n : ci �= 0}. For any minimum weight codeword c in C , then
there exists, up to a multiple, a unique minimum weight codeword c⊥ in C⊥ such that
suppt(c)∩ suppt(c⊥) = /0. Besides, the number of minimum weight codewords in C is
equal to that of minimum weight codewords in C⊥.

In this paper, we will use oval polynomials to construct NMDS codes. The definition
of an oval polynomial is as follows.

Definition 1 [14]. Let q = 2m for m ≥ 2. A polynomial f ∈ Fq[x] is called an oval
polynomial if it satisfies the following two conditions:

• f is a permutation polynomial of Fq such that deg( f )< q and f (0) = 0, f (1) = 1;
• for each a ∈ Fq, ga(x) := ( f (x+a)+ f (a))xq−2 is also a permutation polynomial of
Fq.

Some known infinite families of oval polynomials are listed as follows.
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Theorem 1 [16]. Let m ≥ 2 be an integer and q= 2m. Then the following polynomials
are all oval polynomials over Fq.

– f (x) = x2h with gcd(h,m) = 1.
– f (x) = x6 for odd m.

– f (x) = x3×2(m+1)/2+4 for odd m.

Some useful properties on oval polynomials are also presented as follows.

Lemma 3 [17]. Let f be a polynomial over Fq such that f (0) = 0. Let fu := f (x)+ux
with u ∈ F

∗
q. Then it is an oval polynomial if and only if fu is 2-to-1 for each u ∈ F

∗
q.

Lemma 4. Let f be a polynomial over Fq. Then f is an oval polynomial over Fq if and
only if it satisfies the following two conditions:

1. f is a permutation polynomial of Fq such that deg( f )< q and f (0) = 0, f (1) = 1;
2. if x,y,z ∈ Fq are pairwise distinct, then

f (x)+ f (y)
x+ y

�= f (x)+ f (z)
x+ z

.

It is easy to prove Lemma 4 by the definition of oval polynomials.

Lemma 5 [21]. Let m be an odd integer such that m> 2. Let f (x) be an oval polyno-
mial over Fq such that its coefficients are in F2. Then f (x)+ x+1 �= 0 for all x ∈ Fq.

3 Several Infinite Families of NMDS Codes

In this section, let q = 2m, where m is an odd integer with m ≥ 3. For convenience, let
dim(C ) and d(C ) represent the dimension and minimum distance of a linear code C ,
respectively. Let Fq = {α0 = 0,α1 = 1,α2, · · · ,αq−1}. By Theorem 1, both f1(x) = x2

and f2(x) = x4 are oval polynomials for odd m.

Lemma 6. Let x1,x2, · · · ,xn be pairwise distinct elements of Fq, then

D=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
...

...
. . .

...
xn−2

1 xn−2
2 · · · xn−2

n
xn1 xn2 · · · xnn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= −(x1 + x2 + · · ·+ xn) ∏
0≤i< j≤n

(x j − xi).

Proof. The proof is easy and omitted.
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3.1 NMDS Codes with Parameters [q+3,4,q−1]

Define a 4 by q+3 matrix over Fq by

G1 =

⎡

⎢
⎢
⎣

1 1 · · · 1 1 0 0 0
α1 α2 · · · αq−1 α0 1 0 0
α2

1 α2
2 · · · α2

q−1 α0 0 1 0
α4

1 α4
2 · · · α4

q−1 α0 0 0 1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 1 · · · 1 1 0 0 0
α1 α2 · · · αq−1 0 1 0 0
α2

1 α2
2 · · · α2

q−1 0 0 1 0
α4

1 α4
2 · · · α4

q−1 0 0 0 1

⎤

⎥
⎥
⎦ .

Then G1 generates a linear code C over Fq. In the following, we study the linear code
C .

Theorem 2. Let m be an odd integer with m≥ 3 and q= 2m. Then C is a [q+3,4,q−1]
NMDS code over Fq whose weight enumerator is given by

A(z) = 1+
q(q−1)2(q−2)

24
zq−1 +

(q−1)(3q2 +3q+2)
2

zq+
q(q−1)2(q−2)

4
zq+1 +

q(q−1)2(2q+11)
6

zq+2 +
3q(q−1)2(q−2)

8
zq+3.

Proof. Note that the q-th, q+1-th, q+2-th and q+3-th columns of the generator matrix
G1 are linearly independent. Then dim(C ) = 4 and dim(C⊥) = q−1.

We next prove that C⊥ has parameters [q+3,q−1,4]. Firstly, we prove d(C⊥)> 3
by considering the following cases.

Case 1.1: Selecting any three columns from the first q columns of G1, we obtain a
submatrix

M1,1 =

⎡

⎢
⎢
⎣

1 1 1
x y z
x2 y2 z2

x4 y4 z4

⎤

⎥
⎥
⎦ ,

where x,y,z are three pairwise distinct elements in Fq. To determine the rank of M1,1,
we consider a submatrix of M1,1 as

M1,1,1 =

⎡

⎣
1 1 1
x y z
x2 y2 z2

⎤

⎦ .

Note that |M1,1,1| = (x+ y)(x2 + z2)+ (x+ z)(x2 + y2) �= 0 by Lemma 4 as f1(x) = x2

is an oval polynomial. Then the rank of M1,1 is 3, i.e. any three columns in the first q
columns of G1 are linearly independent.

Case 1.2: Now we consider the following submatrixes whose first two columns are
chosen from the first q columns of G1 and third column is chosen from the last three
columns of G1. These submatrixes is denoted by

M1,2 =

⎡

⎢
⎢
⎣

1 1 0
x y 1
x2 y2 0
x4 y4 0

⎤

⎥
⎥
⎦ ,M1,3 =

⎡

⎢
⎢
⎣

1 1 0
x y 0
x2 y2 1
x4 y4 0

⎤

⎥
⎥
⎦ ,M1,4 =

⎡

⎢
⎢
⎣

1 1 0
x y 0
x2 y2 0
x4 y4 1

⎤

⎥
⎥
⎦ ,
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where x,y are distinct elements in Fq. Choose a 3×3 submatrix M1,2,1 of M1,2 as

M1,2,1 =

⎡

⎣
1 1 0
x y 1
x2 y2 0

⎤

⎦ .

It is easy to deduce that |M1,2,1| �= 0 as x �= y. Then the rank of M1,2 is 3. Similarly, we
can prove that both M1,3 and M1,4 have rank 3.

Case 1.3: We then consider the following submatrixes whose first column is chosen
from the first q columns of G1 and last two columns are chosen from the last three
columns of G1. These submatrixes are denoted by

M1,5 =

⎡

⎢
⎢
⎣

1 0 0
x 1 0
x2 0 1
x4 0 0

⎤

⎥
⎥
⎦ ,M1,6 =

⎡

⎢
⎢
⎣

1 0 0
x 1 0
x2 0 0
x4 0 1

⎤

⎥
⎥
⎦ ,M1,7 =

⎡

⎢
⎢
⎣

1 0 0
x 0 0
x2 1 0
x4 0 1

⎤

⎥
⎥
⎦ ,

where x ∈ Fq. Choose a 3×3 submatrix M1,5,1 of M1,5,

M1,5,1 =

⎡

⎣
1 0 0
x 1 0
x2 0 1

⎤

⎦ .

It is easy to deduce that |M1,5,1| = 1. Then the rank of M1,5 is 3. Similarly, we can see
both that M1,6 and M1,7 have rank 3.

Case 1.4: Consider the following submatrix whose columns are chosen from the last
three columns of G1. The submatrix is given by

M1,8 =

⎡

⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥
⎥
⎦ .

Then the rank of M1,8 is 3.
In conclusion, any three columns of G1 are Fq-linearly independent. Then d(C⊥)>

3. To prove d(C⊥) = 4 and calculate the total number of codewords of weight 4 in C⊥,
we consider the following cases.

Case 2.1: Let x,y,z,w be four pairwise different elements in Fq. Consider the fol-
lowing submatrix as

M2,1 =

⎡

⎢
⎢
⎣

1 1 1 1
x y z w
x2 y2 z2 w2

x4 y4 z4 w4

⎤

⎥
⎥
⎦ .

Then |M2,1| = (x+ y+w+ z)(w− z)(w− y)(w− x)(z− y)(z− x)(y− x) by Lemma 6.
It is easy to deduce that |M2,1| = 0 if and only if x+ y+ z+w = 0. Then we have the

number of pair (x,y,z,w) is q(q−1)(q−2)
4! . Besides, rank(M2,1) = 3 if x+ y+ z+w = 0.



148 Z. Heng and X. Li

Hence, the number of codewords of weight 4 in C⊥ whose nonzero coordinates are at

the first q locations is equal to q(q−1)2(q−2)
24 .

Case 2.2: Let x,y,z be three pairwise different elements in Fq. Consider the follow-
ing submatrix as

M2,2 =

⎡

⎢
⎢
⎣

1 1 1 0
x y z 1
x2 y2 z2 0
x4 y4 z4 0

⎤

⎥
⎥
⎦ .

Then |M2,2|= (x4+z4)(x2+y2)+(x4+y4)(x2+z2). Since f (x) = x2 is an oval polyno-
mial over Fq, then x2,y2,z2 are also three pairwise different elements in Fq. By Lemma
4, |M2,2| �= 0. Hence, there is no codeword of weight 4 in C⊥ such that its first three
nonzero coordinates are at the first q locations and the rest is at the q+1-th location.

Case 2.3: Let x,y,z be three pairwise different elements in Fq. Consider the follow-
ing submatrix as

M2,3 =

⎡

⎢
⎢
⎣

1 1 1 0
x y z 0
x2 y2 z2 1
x4 y4 z4 0

⎤

⎥
⎥
⎦ .

Then |M2,3|= (x4+z4)(x+y)+(x4+y4)(x+z). By Lemma 1, we know f (x) = x4 is an
oval polynomial over Fq when m is an odd integer with m ≥ 3. Then by Lemma 4, we
have |M2,3| �= 0. Hence, there is no codeword of weight 4 in C⊥ such that its first three
nonzero coordinates are at the first q locations and the rest is at the q+2-th location.

Case 2.4: Let x,y,z be three pairwise different elements in Fq. Consider the follow-
ing submatrix as

M2,4 =

⎡

⎢
⎢
⎣

1 1 1 0
x y z 0
x2 y2 z2 0
x4 y4 z4 1

⎤

⎥
⎥
⎦ .

Then |M2,4|= (x2+z2)(x+y)+(x2+y2)(x+z). By Lemma 4, |M2,4| �= 0. Hence, there
is no codeword of weight 4 in C⊥ such that its first three nonzero coordinates are at the
first q locations and the rest is at the q+3-th location.

Case 2.5: Let x,y be two different elements in Fq. Consider the following submatrix
as

M2,5 =

⎡

⎢
⎢
⎣

1 1 0 0
x y 1 0
x2 y2 0 1
x4 y4 0 0

⎤

⎥
⎥
⎦ .

We have |M2,5|= x4+y4 = (x+y)4 �= 0 as x �= y. Hence, there is no codeword of weight
4 in C⊥ such that its first two nonzero coordinates are at the first q locations and the
others are at q+1-th and q+2-th locations.
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Case 2.6: Let x,y be two different elements in Fq. Consider the following submatrix
as

M2,6 =

⎡

⎢
⎢
⎣

1 1 0 0
x y 1 0
x2 y2 0 0
x4 y4 0 1

⎤

⎥
⎥
⎦ .

We have |M2,6|= x2+y2 = (x+y)2 �= 0 as x �= y. Hence, there is no codeword of weight
4 in C⊥ such that its first two nonzero coordinates are at the first q locations and the
others are at q+1-th and q+3-th locations.

Case 2.7: Let x,y be two different elements in Fq. Consider the following submatrix

M2,7 =

⎡

⎢
⎢
⎣

1 1 0 0
x y 0 0
x2 y2 1 0
x4 y4 0 1

⎤

⎥
⎥
⎦ .

We have |M2,7| = x+ y �= 0 as x �= y. Hence, there is no codeword of weight 4 in C⊥
such that its first two nonzero coordinates are at the first q locations and the others are
at q+2-th and q+3-th locations.

Case 2.8: Let x ∈ Fq. Consider the following submatrix as

M2,8 =

⎡

⎢
⎢
⎣

1 0 0 0
x 1 0 0
x2 0 1 0
x4 0 0 1

⎤

⎥
⎥
⎦ .

We have |M2,8| = 1. Hence, there is no codeword of weight 4 in C⊥ such that its first
nonzero coordinate is at the first q locations and the others are at q+1-th, q+2-th and
q+3-th locations.

Consequently, the total number of codewords of weight 4 in C⊥ is q(q−1)2(q−2)
24 from

the discussions above.
We finally prove that the minimum distance of C is q−1. Assume that d(C ) ≤ q−

2= q+3−5 and let c= ag1+bg2+cg3+dg4 be a codeword with the minimum weight
in C , where g1, g2, g3 and g4 respectively denote the first, second, third and fourth rows
of G1. Thus, there are at least five coordinates in c are zero. We now consider the
following cases.

Case 3.1: Assume that none of the last three coordinates in c are zero. Then there
exist five pairwise distinct elements x1,x2,x3,x4,x5 in Fq such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,

a+bx5 + cx2
5 +dx4

5 = 0.
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Let f (x) = a+bx+ cx2 +dx4. Then x1,x2,x3,x4,x5 are five pairwise different roots of
f (x). This contradicts with the fact that the degree of f (x) is 4 and it has at most four
roots in Fq as (a,b,c,d) �= (0,0,0,0).

Case 3.2: Assume that one of the last three coordinates in c is zero. Then there exist
four elements x1,x2,x3,x4 in Fq such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,
b= 0,

or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,
c= 0,

or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,
d = 0.

Since f (x) = x2 and f (x) = x4 are oval polynomials over Fq for odd m ≥ 3, we can
deduce that a = b = c = d = 0 and c = 0 by Lemma 5. This contradicts with the fact
that c is a minimum weight codeword in C .

Case 3.3: Assume that two of the last three coordinates in c are zero. Then there
exist three pairwise distinct elements x1,x2,x3 in Fq such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
b= 0,
c= 0,

or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
b= 0,
d = 0,

or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
c= 0,
d = 0.

Since f (x) = x2 and f (x) = x4 are permutation polynomials over Fq for odd m ≥ 3 and
x1,x2,x3 are pairwise distinct elements in Fq, then it is easy to deduce that a= b= c=
d = 0 and c= 0. This contradicts with the fact that c is a minimum weight codeword in
C .

Case 3.4: Assume that the last three coordinates in c are all zero. Then there exist
two different elements x1,x2 in Fq such that

⎧
⎨

⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

b= c= d = 0.

Obviously, we have a= b= c= d= 0. This contradicts with the fact that c is a minimum
weight codeword in C .

As a result, we conclude that d(C ) ≥ q− 1. Besides, d(C ) ≤ q by the Singleton
bound. If d(C ) = q, then C is an [q+ 3,4,q] MDS code and C⊥ is also an MDS code
with parameters [q+3,q−1,5]. This is contrary to d(C⊥) = 4. So C is a [q+3,4,q−1]
AMDS code. Then C is an NMDS code as both C and C⊥ are AMDS. By Lemma 2,
the total number Aq−1 of the minimum weight codewords in C is equal to the total

number of the codewords of weight 4 in C⊥. Hence Aq−1 =
q(q−1)2(q−2)

24 . By Lemma 1,
the desired conclusion follows.
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3.2 NMDS Codes with Parameters [q+2,4,q−2]

Define the following 4× (q+2) matrix over Fq as

G2 =

⎡

⎢
⎢
⎣

1 1 · · · 1 1 0 0
α1 α2 · · · αq−1 α0 1 0
α2

1 α2
2 · · · α2

q−1 α0 0 1
α4

1 α4
2 · · · α4

q−1 α0 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 1 · · · 1 1 0 0
α1 α2 · · · αq−1 0 1 0
α2

1 α2
2 · · · α2

q−1 0 0 1
α4

1 α4
2 · · · α4

q−1 0 0 0

⎤

⎥
⎥
⎦

Then G2 generates a linear code over Fq denoted by D . In the following, we study the
linear code D .

Theorem 3. Let m be an odd integer with m ≥ 3. Then D is a [q+ 2,4,q− 2] NMDS
code over Fq with weight enumerator

A(z) = 1+
q(q−1)2(q−2)

24
zq−2 +q2(q−1)zq−1 +

(q−1)(q3 −q2 +8q+4)
4

zq+

q(q−1)2(q+4)
3

zq+1 +
q(3q−2)(q−1)2

8
zq+2.

Proof. Since the first, q-th, q+1-th and q+2-th columns of G2 are linearly independent,
we have dim(D) = 4 and dim(D⊥) = (q+2)−4 = q−2.

We next prove that D⊥ has parameters [q+ 2,q− 2,4]. To prove d(D⊥) > 3, we
consider the following cases.

Case 1.1: Selecting any three columns from the first q columns of generator matrix
G2, we obtain the submatrix

M1,1 =

⎡

⎢
⎢
⎣

1 1 1
x y z
x2 y2 z2

x4 y4 z4

⎤

⎥
⎥
⎦ ,

where x,y,z are the three pairwise different elements in Fq. Consider the 3×3 submatrix
of M1,1 as

M1,1,1 =

⎡

⎣
1 1 1
x y z
x2 y2 z2

⎤

⎦ .

Then |M1,1,1| �= 0 by Lemma 4. Then we have the rank of M1,1 is 3, which means that
any three columns in the first q columns of G2 are linearly independent.

Case 1.2: Now we consider the following submatrixes whose first two columns are
chosen from the first q columns of G2 and third column is chosen from the last two
columns of G2:

M1,2 =

⎡

⎢
⎢
⎣

1 1 0
x y 1
x2 y2 0
x4 y4 0

⎤

⎥
⎥
⎦ ,M1,3 =

⎡

⎢
⎢
⎣

1 1 0
x y 0
x2 y2 1
x4 y4 0

⎤

⎥
⎥
⎦ ,
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where x,y are the distinct elements in Fq. Note that the submatrix M1,2,1 of M1,2 satis-
fying |M1,2,1| �= 0 as x �= y, where

M1,2,1 =

⎡

⎣
1 1 0
x y 1
x2 y2 0

⎤

⎦ .

Then the rank of M1,2 is 3. Similarly, we can prove that M1,3 has rank 3.
Case 1.3: We now consider the submatrix whose first column is chosen from the

first q columns of G2 and last two columns are given as the last two columns of G2,
where the submatrix is given by

M1,4 =

⎡

⎢
⎢
⎣

1 0 0
x 1 0
x2 0 1
x4 0 0

⎤

⎥
⎥
⎦ , x ∈ Fq.

Note that there is a submatrix M1,4,1 of M1,4 such that |M1,4,1| = 1, where

M1,4,1 =

⎡

⎣
1 0 0
x 1 0
x2 0 1

⎤

⎦ .

Then the rank of M1,4 is 3.
Consequently, any three columns of G2 are linearly independent over Fq, which

implies d(D⊥)> 3. To prove d(D⊥) = 4 and calculate the total number of codewords
of weight 4 in D⊥, we consider the following cases.

Case 2.1: Let x,y,z,w be four pairwise different elements in Fq. Consider the sub-
matrix

M2,1 =

⎡

⎢
⎢
⎣

1 1 1 1
x y z w
x2 y2 z2 w2

x4 y4 z4 w4

⎤

⎥
⎥
⎦ .

Then |M2,1| = (x+ y+w+ z)(w− z)(w− y)(w− x)(z− y)(z− x)(y− x) by Lemma 6.
Then |M2,1| = 0 if and only if x+ y+ z+w = 0. Then we have the number of pair

(x,y,z,w) is q(q−1)(q−2)
4! . Hence, the number of codewords of weight 4 in D⊥ whose

nonzero coordinates are at the first q locations is equal to q(q−1)2(q−2)
24 .

Case 2.2: Let x,y,z be three pairwise different elements in Fq. Consider the subma-
trix

M2,2 =

⎡

⎢
⎢
⎣

1 1 1 0
x y z 1
x2 y2 z2 0
x4 y4 z4 0

⎤

⎥
⎥
⎦ .

Then |M2,2| = (x4 + z4)(x2 + y2)+ (x4 + y4)(x2 + z2). Since f (x) = x2 is an oval poly-
nomial over Fq, then |M2,2| �= 0 by Lemma 4. Hence, there is no codeword of weight
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4 in D⊥ such that its first three nonzero coordinates are at the first q locations and the
rest is at the q+1-th location.

Case 2.3: Let x,y,z be three pairwise different elements in Fq. Consider the subma-
trix

M2,3 =

⎡

⎢
⎢
⎣

1 1 1 0
x y z 0
x2 y2 z2 1
x4 y4 z4 0

⎤

⎥
⎥
⎦ .

Then |M2,3| = (x4 + z4)(x+ y)+ (x4 + y4)(x+ z). By Lemma 1, f (x) = x4 is an oval
polynomial over Fq when m is an odd integer with m ≥ 3. Then by Lemma 4, we have
|M2,3| �= 0. Hence, there is no codeword of weight 4 in D⊥ such that its first three
nonzero coordinates are at the first q locations and the rest is at the q+2-th location.

Case 2.4: Let x,y be two different elements in Fq. Consider the submatrix

M2,4 =

⎡

⎢
⎢
⎣

1 1 0 0
x y 1 0
x2 y2 0 1
x4 y4 0 0

⎤

⎥
⎥
⎦ .

Then |M2,4| = x4 + y4 = (x+ y)4. |M2,4| �= 0 as x �= y. Hence, there is no codeword of
weight 4 in D⊥ such that its first two nonzero coordinates are at the first q locations and
the others are at q+1-th and q+2-th locations.

Based on these discussions, we deduce that the total number of codewords of weight

4 in D⊥ is q(q−1)2(q−2)
24 .

We finally prove that the minimum distance of D is q− 2. Assume that d(D) ≤
q− 3 = q+2 − 5 and let c = ag1 +bg2 + cg3 +dg4 be a codeword with the minimum
weight in D , where g1, g2, g3 and g4 respectively represent the first, second, third and
fourth rows of G2. Hence there are at least five coordinates in c are zero. Consider the
following cases.

Case 3.1: Assume that none of the last two coordinates in c are zero. Then there
exist five pairwise distinct elements x1,x2,x3,x4,x5 in Fq such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,

a+bx5 + cx2
5 +dx4

5 = 0.

Let f (x) = a+ bx+ cx2 + dx4. Note that x1,x2,x3,x4,x5 are the roots of f (x). This
contradicts with the fact that f (x) has at most four roots in Fq as (a,b,c,d) �= (0,0,0,0).
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Case 3.2: Assume that one of the last two coordinates in c is zero. Then there exist
four elements x1,x2,x3,x4 in Fq such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,
b= 0,

or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
a+bx4 + cx2

4 +dx4
4 = 0,
c= 0.

Since f (x) = x2 and f (x) = x4 are oval polynomials over Fq for odd m ≥ 3, it is easy
to deduce that a= b= c= d = 0 and c= 0 by Lemma 5. This contradicts with the fact
that c is a minimum weight codeword in D .

Case 3.3: Assume that the last two coordinates in c are zero. Then there exist three
pairwise distinct elements x1,x2,x3 in Fq such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a+bx1 + cx2
1 +dx4

1 = 0,
a+bx2 + cx2

2 +dx4
2 = 0,

a+bx3 + cx2
3 +dx4

3 = 0,
b= 0,
c= 0.

Since f (x) = x4 is an oval polynomial of Fq for odd m ≥ 3, then x4
1,x

4
2,x

4
3 are pairwise

distinct elements in Fq. So we have a= b= c= d = 0 and c= 0. This contradicts with
the fact that c is a minimum weight codeword in D .

As a result, we then have d(D) ≥ q− 2. Besides, d(D) ≤ q− 1 by the Singleton
bound. If d(D) = q−1, then D is a [q+2,4,q−1] MDS code and D⊥ is also an MDS
code with parameters [q+2,q−2,5]. This is contrary to d(D⊥) = 4. So D is an AMDS
code with parameters [q+ 2,4,q− 2] and D⊥ is also an AMDS code with parameters
[q+ 2,q− 2,4]. Then D is an NMDS code. By Lemma 2, the total number Aq−2 of
the minimum weight codewords in D is equal to the total number of the codewords of

weight 4 in D⊥. Hence Aq−2 =
q(q−1)2(q−2)

24 . By Lemma 1, the weight enumerator of D
follows.

It is well known that any [n,k,n− k+ 1] MDS code over Fq must have a unique
weight enumerator. But this fact is not true for NMDS codes. We give another con-
struction of NMDS code with the same parameters [q+2,4,q−2] but different weight
enumerators in the following. Define

G2,1 =

⎡

⎢
⎢
⎣

1 1 · · · 1 0 0 0
α1 α2 · · · αq−1 1 0 0
α2

1 α2
2 · · · α2

q−1 0 1 0
α4

1 α4
2 · · · α4

q−1 0 0 1

⎤

⎥
⎥
⎦ .

Then G2,1 is a 4 by q+ 2 matrix over Fq. Let G2,1 generate a linear code D1 over Fq.
With a similar proof to that of Theorem 3, we can obtain the parameters and weight
enumerator of D1 in the following theorem.
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Theorem 4. Let m be an odd integer with m ≥ 3. Then D1 is a [q+2,4,q− 2] NMDS
code over Fq with weight enumerator

A(z) = 1+
(q−1)2(q−2)(q−4)

24
zq−2 +

(q−1)(5q2 −6q+4)
3

zq−1 +

(q−1)(q3 −5q2 +20q−4)
4

zq+
(q−1)2(q2 +6q−4)

3
zq+1 +

(q−1)2(9q2 −10q+8)
24

zq+2.

3.3 NMDS Codes with Parameters [q+1,4,q−3]

Define

G3 =

⎡

⎢
⎢
⎣

1 1 · · · 1 1 0
α1 α2 · · · αq−1 α0 1
α2

1 α2
2 · · · α2

q−1 α0 0
α4

1 α4
2 · · · α4

q−1 α0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 1 · · · 1 1 0
α1 α2 · · · αq−1 0 1
α2

1 α2
2 · · · α2

q−1 0 0
α4

1 α4
2 · · · α4

q−1 0 0

⎤

⎥
⎥
⎦ .

Then G3 is a 4 by q+1 matrix over Fq. Let G3 generate a linear code F over Fq. The
parameters and weight enumerator of F are determined in the following theorem.

Theorem 5. Let m be an odd integer with m ≥ 3. Then F is a [q+ 1,4,q− 3] NMDS
code over Fq with weight enumerator

A(z) = 1+
q(q−1)2(q−2)

24
zq−3 +

q(q−1)2

2
zq−2 +

q(q3 +5q−6)
4

zq−1 +

(q−1)(q+2)(2q2 −q+3)
6

zq+
q(3q+2)(q−1)2

8
zq+1.

Proof. By the proof of Theorem 3, we can similarly prove that F has parameters [q+
1,4,q− 3] and F ⊥ has parameters [q+ 1,q− 3,4]. In addition, the total number of

codewords of weight 4 in F ⊥ is q(q−1)2(q−2)
24 and Aq−3 =

q(q−1)2(q−2)
24 by Lemma 2. By

Lemma 1, the weight enumerator of F are proved.

Below we give another construction of NMDS code with the same parameters [q+
1,4,q−3] but different weight enumerators. Define

G3,1 =

⎡

⎢
⎢
⎣

1 1 · · · 1 0 0
α1 α2 · · · αq−1 1 0
α2

1 α2
2 · · · α2

q−1 0 1
α4

1 α4
2 · · · α4

q−1 0 0

⎤

⎥
⎥
⎦ .

Then G3,1 is a 4 by q+ 1 matrix over Fq. Let G3,1 be a generator matrix of the linear
code F1 over Fq. With a similar proof to that of Theorem 3, the parameters and weight
enumerator of F1 can be determined in the following theorem.
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Theorem 6. Let m be an odd integer with m ≥ 3. Then F1 is a [q+ 1,4,q− 3] NMDS
code over Fq with weight enumerator

A(z) = 1+
(q−1)2(q−2)(q−4)

24
zq−3 +

(7q−8)(q−1)2

6
zq−2 +

(q−1)(q3 −3q2 +18q−8)
4

zq−1 +
(q−1)(2q3 +7q2 −11q+14)

6
zq+

(q−1)2(9q2 +2q+8)
24

zq+1.

Note that the NMDS codes in [19, Theorems 37, 38], Theorems 3 and 4 have the
same parameters. But they are inequivalent to each other as they have different enumer-
ators.

4 Optimal Locally Recoverable Codes

In this section, we prove that the duals of NMDS codes constructed in Sect. 3 are opti-
mal LRCs.

Lemma 7 [19]. Let C be an NMDS code. Denote by d⊥ = d(C⊥). If
⋂
S∈B

d⊥ (C⊥) S = /0,
then the minimum linear locality of C⊥ is equal to d(C )−1, where Bd⊥(C⊥) is the set
of the supports of all codewords with weight d⊥ in C⊥.

Theorem 7. The dual of the NMDS code C in Theorem 2 is a (q+3,q−1,4,q;q−2)−
LRC. Besides, C⊥ is both distance-optimal and dimension-optimal.

Proof. By the proof of Theorem 2,
⋂
S∈B4(C⊥) S = /0. Then by Lemma 7, the mini-

mum linear locality of C⊥ is d(C )− 1 = q− 2. Now we prove C⊥ is an optimal LRC.
Putting the parameters of the (q+ 3,q− 1,4,q;q− 2)-LRC into the right-hand side of
the Singleton-like bound in (1), we have

n− k−
⌈
k
r

⌉
+2 = q+3− (q−1)−

⌈
q−1
q−2

⌉
+2 = 4.

Hence C⊥ is a distance-optimal LRC. Putting t = 1 and the parameters of the (q+3,q−
1,4,q;q−2)-LRC into the right-hand side of the Cadambe-Mazumdar bound in (2), we
have

k ≤ r+ k(q)opt(n− (r+1),d) = q−2+ k(q)opt(4,4) = q−1,

where k(q)opt(4,4) = 1 by the classical Singleton bound. Hence C⊥ is a dimension-optimal
LRC. The proof is completed.

Theorem 8. The dual of the NMDS codeD in Theorem 3 is a(q+2,q−2,4,q;q−3)−
LRC. Besides, D⊥ is both distance-optimal and dimension-optimal.

Proof. It is easy to deduce that
⋂
S∈B4(D⊥) S = /0 by the proof of Theorem 3. The rest

of this proof is similar to that of Theorem 7.
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Theorem 9. The dual of the NMDS code D1 in Theorem 4 is a (q+ 2,q− 2,4,q;q−
3)−LRC. Besides, D⊥

1 is both distance-optimal and dimension-optimal.

Proof. Similarly to the proof of Theorem 3, it is easy to deduce that
⋂
S∈B4(D⊥

1 ) S = /0.
The rest of this proof is similar to that of Theorem 7.

Theorem 10. The dual of the NMDS code F in Theorem 5 is a (q+ 1,q− 3,4,q;q−
4)−LRC. Besides, F ⊥ is both distance-optimal and dimension-optimal.

Proof. Similarly to the proof of Theorem 3, it is easy to deduce that
⋂
S∈B4(F ⊥) S = /0.

The rest of this proof is similar to that of Theorem 7.

Theorem 11. The dual of the NMDS code F1 in Theorem 6 is a (q+ 1,q− 3,4,q;q−
4)−LRC. Besides, F ⊥

1 is both distance-optimal and dimension-optimal.

Proof. Similarly to the proof of Theorem 3, we have
⋂
S∈B4(F ⊥

1 ) S = /0. The rest of this
proof is similar to that of Theorem 7.

5 Concluding Remarks

In this paper, we constructed several families of NMDS codes and explicitly determined
their weight enumerators. The duals of these NMDS codes were proved to be optimal
locally recoverable codes. We remark that the optimal locally repairable codes of dis-
tance 4 in this paper are not contained in [15].
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Abstract. First, we state a generalization of the minimum-distance
bound for PIR codes. Then we describe a construction for linear PIR
codes using packing designs and use it to construct some new 5-PIR
codes. Finally, we show that no encoder (linear or nonlinear) for the
binary r-th order Hamming code produces a 3-PIR code except when
r = 2. We use these results to determine the smallest length of a binary
(possibly nonlinear) 3-PIR code of combinatorial dimension up to 6. A
binary 3-PIR code of length 11 and size 27 is necessarily nonlinear (as a
PIR code), and we pose the existence of such a code as an open problem.

Keywords: Batch codes · PIR codes · Nonlinear code · Hamming
code · Packing design

1 Introduction

Private Information Retreval (PIR) schemes enable a user to extract a bit of
information from a database, stored in encoded form on a multi-server dis-
tributed data storage system, without leaking information to the servers in which
particular bit the user was interested in, see, e.g., [3].

A (binary) t-PIR code of length n and size 2k is an encoder that encodes k
data bits one-to-one into n encoded bits in such a way that each data bit has
t mutually disjoint recovery sets. If the encoder employs only linear operations,
then we speak of a linear PIR code. Linear t-PIR codes can be used to implement
a classical (linear) t-server PIR scheme [3] with less storage overhead than the
original scheme, by using the PIR code to emulate the t servers [5,6]; see also [17]
for another explanation of how this magic is worked.

A batch code is a special type of PIR code where for any batch of t data
symbols, there exist t mutually disjoint recovery sets. Batch codes were initially
introduced in [9] as a method to improve load-balancing in distributed data
storage systems. Later, so-called switch codes (a special case of batch codes)
were proposed in [19] as a method to increase the throughput rate in network
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switches. In such applications, there is no need for the batch code to be linear.
We remark that a PIR or batch code can be nonlinear because the associated
code is nonlinear, or because it consists of a nonlinear encoder onto a linear code.

For an overview of PIR- and batch-type codes and other similar codes, we
refer to [16]. In this paper, all PIR codes are multiset primitive [16], and we will
mostly consider only binary codes. Precise definitions will be given in the next
section.

For linear PIR-codes, much work has been done to find bounds on the small-
est n for which a linear t-PIR code of dimension k and length n exists, see for
example [10] for a recent overview. For linear batch codes, the situation is simi-
lar. Nonlinear PIR-codes are interesting combinatorial objects in their own right,
but in contrast, virtually nothing is known about their possible parameters. In
fact, we do not know a single example of an “interesting” nonlinear PIR code,
that is, with parameters for which no linear PIR-code exists. One of our aims in
this paper is to at least identify some parameters for which such an interesting
nonlinear code could exist, were we concentrate on 3-PIR codes since there are
linear optimal t-PIR codes for t = 1, 2 (see, e.g., [10, p. 560]).

The contents of this paper are as follows. In Sect. 2, we define the notion of
a t-PIR code and various other notions that we will need. Our results strongly
depend on a simple bound on the minimum distance of a (linear or nonlinear)
t-PIR code. In Sect. 3, we derive a generalization of this lower bound for a broad
class of (not necessarily linear) PIR-like codes. For linear 3-PIR and 3-batch
codes, the optimal codes are known. Bounds and constructions for linear 3-PIR
codes and some generalizations of these constructions are discussed in Sect. 4.
In Sect. 5 we prove one of our main results, stating that no encoder for a binary
length 2r − 1 Hamming code with r ≥ 3 is a 3-PIR code. We use this result to
determine the optimal length of 3-PIR codes of size 2k for 1 ≤ k ≤ 6 in Sect. 6,
and we pose the question of the existence of a (necessarily nonlinear) 3-PIR code
of length 11 and size 27 as an open problem. We end with some conclusions and
further questions in Sect. 7.

2 Preliminaries

Let q be a positive integer. We use Σ to denote an alphabet with q symbols; if
q is a prime-power, we identify these symbols with the q elements of the finite
field Fq of size q. For a positive integer n, we let [n] denote the set {1, . . . , n},
and we use this set to index the positions in code words of length n.

Informally, PIR- and batch-type codes are characterized by the property that
given the encoded data, certain simultaneous requests for specific data symbols
can each be handled by reading and decoding data from a set of positions called
a recovery set , where these sets are supposed to be of bounded size, with limited
overlap between the sets. We now introduce some useful terminology to make
this precise.

Definition 1. A k-to-n encoder over an alphabet Σ is a one-to-one map ε :
Σk → Σn; the image C = Cε of ε is referred to as the associated code of ε. By
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definition, such an encoder ε has a decoder δ : C → Σk with the property that
if c = ε(a), then δ(c) = a. We refer to ε as a q-ary encoder if |Σ| = q.

Let I = {i1, . . . , is} ⊆ [n] with i1 < . . . < is. Given a code word c ∈ Σn, the
restriction cI of c to I is the word cI = (ci1 , . . . , cis).

Definition 2. We say that I is a recovery set of the j-th data symbol for a
k-to-n encoder ε over Σ if for every a ∈ Σk, when c = ε(a), the restriction cI of
c to I uniquely determines aj ; it is called minimal if no proper subset of I has
this property.

A query of ε is a sequence i1, . . . , it of (not necessarily distinct) elements
of [n]. Given a code word c = ε(a), the query i1, . . . , it should be considered
as a request to obtain the data symbols ai1 , . . . , ait . We will say that the sets
I1, . . . , It ⊆ [n] serve the query of ε if for every j ∈ [t], the set Ij is a recovery
set of ε for the ij-th data symbol. We say that I1, . . . , It serve the query with
width w and multiplicity μ if |Ij | ≤ w (j = 1, . . . , t) and if every position i ∈ [n]
occurs in at most μ of the sets I1, . . . , It.

Now we are ready for a definition of batch-type codes.

Definition 3. Let ε be a k-to-n encoder over Σ, let w, μ be positive integers,
and let Q be a collection of queries of ε. We say that ε is a (Q, w, μ)-batch code if ε
can serve every query in Q with width at most w and multiplicity at most μ. The
encoder ε is a (t, w, μ)-PIR code if ε is a (Q, w, μ)-batch code with Q consisting
of all queries of the form i, i, . . . , i (t times) with i ∈ [k]; a (t,∞, 1)-PIR code
is called a t-PIR code. The encoder ε is a t-batch code if ε is a (Q,∞, 1)-batch
code with Q consisting of all queries of the form i1, . . . , it with i1, . . . , it ∈ [k].

More informally, a recovery set for a data symbol allows the recovery of a
certain data symbol by inspecting only the code word symbols in the positions
of the recovery set. Then a t-PIR code has the property that every encoded data
symbol has t mutually disjoint recovery sets, while for a t-batch code we can
find t mutually disjoint recovery sets for every batch of t data symbols.

We remark that what we call here a batch code is referred to by some authors
as a primitive (multiset) batch code, see, e.g., [16].

A linear k-to-n encoder over a q-ary alphabet is an Fq-linear map ε : Fk
q → F

n
q ,

which can thus be represented by a k×n matrix G over Fq; here G is the generator
matrix of the associated linear code C = ε(Fk

q ). In this case, a set I ⊆ [n] is a
recovery set for the j-th data symbol if and only if some Fq- linear combination
of the columns of G indexed by I sum up to ej , the j-th unit vector in F

k
q , for a

proof see [13, Theorem 1].
In this paper, we are mainly interested in “optimal” binary t-PIR and t-batch

codes with 1 ≤ t ≤ 4.

Definition 4. Let k and t be positive integers. We let P (k, t), PL(k, t), B(k, t),
and BL(k, t) denote the smallest length n of a binary possibly nonlinear t-PIR
code, a binary linear t-PIR code, a binary possibly nonlinear t-batch code, or a
binary linear t-batch code, of size 2k, respectively.
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We will refer to a code of the above types with an optimal, minimal length as
an optimal code for that type.

3 The Minimum-Distance Bound for Batch-Type Codes

Let Σ denote an alphabet of size q. An (n,M, d)q-code C is a subset of Σn,
of size M , where any two distinct code words in C have (Hamming) distance
at least d. Here, the (Hamming) distance between two words v, w ∈ Σn is the
number of positions in which v and w differ. An [n, k, d]q code is a linear code
of length n and dimension k over Fq, with minimum distance d. One of the very
few known lower bounds for the length of a t-PIR code of a given size results
from the observation that a t-PIR code must have minimum distance at least t.
This was first stated for binary linear batch codes in [13] and for non-linear
batch codes over general alphabets in [22]. See also [16,21], and [11,12] where
the result was stated for PIR codes. Here we present a slight generalization of
these results.

Theorem 5. Let C be an (n, qk, d)q-code over an alphabet Σ, and suppose
that C has an encoder ε : Σk → C that is a (t,∞, μ)-PIR code. Then �t/μ	 ≤ d.

Proof. Let δ : C → Σk be the corresponding decoder. Let c(1), c(2) be distinct
code words from C. Then there is an s such that δ(c(1))s 
= δ(c(2))s. By our
assumption on C, there are sets I1, . . . , It that serve the query s, s, . . . , s (t
times) with multiplicity at most μ. So for every position set Ij , the restrictions
c
(1)
Ij

and c
(2)
Ij

determine distinct data symbols, hence Ij must contain a position ij

for which c
(1)
ij


= c
(1)
ij

. By the multiplicity condition there must be at least �t/μ	
distinct positions among i1, . . . , it, so as a consequence, c(1) and c(2) differ in
at least �t/μ	 positions. Since the code words were arbitrary, we conclude that
d ≥ �t/μ	.
We will refer to a code that attains the bound in Theorem 5 as distance-optimal .

4 Some Bounds and Constructions

For later use, we first state the following simple result.

Theorem 6. If P (k, 2t − 1) = PL(k, 2t − 1), then P (k, 2t) = PL(k, 2t) =
P (k, 2t − 1) + 1.

Proof. Suppose that the condition in the theorem holds, and let C be a linear
(2t − 1)-PIR code of dimension k and length n = P (k, 2t − 1). Then by a well-
known argument (see [6]), the extended code C (adding an overall parity-check
bit) is a (2t)-PIR code, hence P (k, 2t) ≤ P (k, 2t − 1) + 1. On the other hand, if
C ′ is any s-PIR code of size 2k and length n, then the code obtained from C ′

by deleting a position is obviously an (s − 1)-PIR code. By taking s = 2t, we
conclude that P (k, 2t − 1) ≤ P (k, 2t) − 1. Combining these inequalities shows
that P (k, 2t) = P (k, 2t−1)+1, and since C has length P (k, 2t−1)+1 = P (k, 2t),
we also have that P (k, 2t) = PL(k, 2t).
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As a consequence of Theorem 6, we can restrict our search for binary nonlinear t-
PIR codes to the cases where t is odd. We obviously have P (k, 1) = PL(k, 1) = k
and P (k, 2) = PL(k, 2) = k + 1, where the optimal codes are the entire k-
dimensional space and the even-weight vectors in a (k + 1)-dimensional space,
respectively (see, e.g., [10, p. 560]). This leads us to consider the case where
t = 3.

In [15], it was shown that a linear 3-PIR code with dimension k and length n,
so with redundancy r = n − k, satisfies the bound r(r − 1)/2 ≥ k. Moreover,
this bound is attained by the codes with generator matrix of the form (IkP ),
where P is the k×r matrix that has rows consisting of distinct binary vectors of
weight 2 (note that such a matrix exists by the condition on k and r). We even
have the following.

Theorem 7. Let k ≥ 1 be integer. The code C with generator matrix (IkP )
as defined above is 3-batch, and the extended code is 4-batch. Hence both are
optimal linear codes, BL(k, 3) = PL(k, 3), and BL(k, 4) = PL(k, 4). Both the
code C and its extension are also distance-optimal.

Proof. The batch properties of the two codes can easily be proved directly, but
also follow from [18, Lemma 3, 4, 5] since the matrices of the form (IkP ) as
defined above are systematic. Since PL(k, 4) = PL(k, 3)+1 (see [6]), both codes
must be optimal both as PIR and as batch codes. Since the code C has code
words of weight 3 in its generator, by the minimum distance bound Theorem 5,
it has distance 3, and the extension has minimum distance 4.

In fact, the above code construction can be generalized. To this end, we need a
special type of combinatorial structure. Let v ≥ k ≥ t. A t − (v, k, λ) packing
design or, more briefly, a packing , consists of a collection B of subsets of [v], each
of size k, with the property that any subset of [v] of size t occurs in at most λ
sets in B. We will refer to the elements of [v] as points and to the elements of B
as blocks. We write Dλ(v, k, t) to denote the packing number , the largest possible
number of blocks in a t − (v, k, λ) packing; in the case where λ = 1, we denote
the packing number by D(v, k, t). For a general overview of packing designs, we
refer to [4, Part IV, Sect. 40].

Here, we will be interested in the case t = 2 and λ = 1. Note that in this case,
any two blocks of the design intersect in at most one point (indeed, otherwise a
pair of points from the intersection would be contained in at least two blocks).
We now have the following generalization of Theorem 7.

Theorem 8. Let r, t be positive integers with r ≥ t − 1, and let k be a positive
integer such that k ≤ D(r, t − 1, 2). Let P be a k × r matrix whose rows are the
incidence vectors of k pairwise distinct blocks from a 2−(r, t−1, 1) packing design
with at least k blocks (note that this is possible by the condition on k). Then the
matrix (IkP ) is the generator matrix of a t-PIR code. As a consequence, we have
that PL(k, t) ≤ k+r, where r is the smallest integer for which k ≤ D(r, t−1, 2).

Proof. By the properties of a packing design, this follows immediately from [6,
Lemma 7] or [5, Lemma 7].
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Strictly speaking, the above result is not new. But the authors of [5] did not
explicitly make the connection with packing designs, so they did not quantify
their result except for the case of Steiner systems.

Note that this theorem indeed generalizes Theorem 7 since in the case where
t = 3, a 2 − (r, 2, 1) packing design is simply a collection of pairs from [r], so
that D(r, 2, 2) = r(r − 1)/2. Since, as remarked before, PL(k, 4) = PL(k, 3)+1,
the next interesting case of the above theorem is when t = 5. Interestingly, the
packing numbers D(r, 4, 2) are completely known.

Theorem 9 (See [2]). Let

U(r, 4, 2) =
⌊

r

4

⌊
r − 1

3

⌋⌋
,

and write

J(r, 4, 2) =
{

U(r, 4, 2) − 1, for r ≡ 7 or 10 (mod 12);
U(r, 4, 2), otherwise. (1)

Then D(r, 4, 2) = J(2, 4, r) if r /∈ {8, 9, 10, 11, 17, 19} and D(r, 4, 2) = J(r, 4, 2)−
ε with ε = 1 for r ∈ {9, 10, 17} and ε = 2 for r ∈ {8, 11, 19}.

In the next example, we discuss some applications of Theorem 8 and Theorem 9.

Example 10. We mention some improvements of [6, Table III].
(i) First, D(12, 4, 2) = 9, so P (9, 5) ≤ 9 + 12 = 21 and P (9, 6) ≤ 22, which
improves the known value by 1, but loses against the more recent [10, Table 1].
(ii) We have D(15, 4, 2) = 15 and D(16, 4, 2) = 20. So P (15, 5) ≤ 30, hence
P (15, 6) ≤ 31, improving the value in [6, Table III] by 3, and P (16+i, 5) ≤ 32+i,
hence P (16+ i, 6) ≤ 33+ i, for i = 0, . . . , 4, improving the values in [6, Table III]
by 4. After completion of this work, we learned that these results are similar to
those in [7] (unpublished), see also [8] in these proceedings. �

5 The Hamming Codes as PIR-codes

For an integer r ≥ 2, the binary r-th order Hamming code is a linear code of
length n = 2r − 1 and dimension k = 2r − 1 − r, with the k × n parity-check
matrix Hk whose columns are the nonzero binary vectors of length r. Obviously,
these codes have minimum Hamming distance 3. We will now prove the following.

Theorem 11. For r ≥ 2, the all-one word 1 is in the r-th order Hamming code.
Moreover, let r ≥ 3 and suppose that for some encoder for the r-th order Ham-
ming code, the position subsets I1, I2, I3 are three mutually disjoint, minimal
recovery sets for a particular data bit. Then for every code word c, both c and
its complement 1 + c decode to the same value of that data bit.
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Proof. It is natural to label the positions with the nonzero binary vectors of
length r. In what follows, we will not distinguish between a set S ⊆ F

r
2 \ {0}

and its characteristic vector χS of length 2r − 1 that has a 1 in the positions
of S and a 0 in the other positions. Note that with this convention, a set S =
{v, w, v+w} corresponds to a word of (minimal) weight 3 in the Hamming code,
so the minimum weight vectors in the Hamming code correspond to the lines in
the projective geometry PG(r − 1, 2). Note also that every point in PG(r − 1, 2)
is on (2r − 2)/2 = 2r−1 − 1 lines, so for r ≥ 2 the all-one vector 1 is contained
in the code. In what follows, we associate the points of PG(r − 1, 2) with the
nonzero vectors in F

r
2.

First, we claim that a line L intersecting two of the sets I1, I2, I3 also inter-
sects the third one. Indeed, if not, we may assume without loss of generality
that L intersects I1 only in P and does not intersect I3. Let � be the code word
corresponding to the line L. Then for every code word c, the code words c and
c + � have the same restriction to I3, so decode to the same value for the data
bit, while their restrictions to I1 differ exactly in position P . As a consequence,
the restriction of c to I1 \ {P} already contains sufficient information to decode,
contradicting the minimality of I1.

Next, we claim that none of I1, I2, I3 contains a line. Indeed, suppose that I1
contains the line L = {P1, P2, P3}. Let R be a point in I3. Then L and R together
span a PG(2, 2). Now consider the lines Li though Pi and R (i = 1, 2, 3). By the
first claim, the third point Qi on the line containing R and Pi is in I2. Then
the third line through P1 in this PG(2, 2) is {P1, Q1, Q2}, intersecting I1 in one
point and I2 in two points, contradicting the first claim.

Finally, as a consequence of the above two claims, if P,Q are two points in
some Ii, then the third point R on the line L through P and Q is outside Ii

and by the first claim R is outside I1 ∪ I2 ∪ I3. Consider any code word c. If �
is the code word corresponding to the line L, then since c and c + � have the
same restriction to the sets Ij with j 
= i, they decode to the same value of the
data bit. Since the two points and the set Ii are arbitrary, it follows that on
each of I1, I2, I3, the restrictions that have even weight all decode to the same
value of the data bit, and the restrictions that have odd weight all decode to the
complement of that value.

Since the all-one word is contained in the code, it follows from the above that
to prove the theorem, we are done if we can show that each of the sets I1, I2, I3
has even size. To this end, let H consist of the all-zero vector 0 together with
all the nonzero vectors associated with the points outside I1 ∪ I2 ∪ I3. By the
minimality of the Ii’s, no line containing two points from H \ {0} can have its
third point outside H, hence H is a subspace of Fr

2. Moreover, for every i, the line
through two points on Ii has its third point on H, hence Ii is contained in a coset
of H. Moreover, by our first claim, each of these cosets are distinct, and since H
and the Ii together partition F

r
2, we conclude that |H| = |I1| = |I2| = |I3| = 2r−2.

As a consequence, for every i, the set Ii indeed has even size provided that r ≥ 3.

Obviously, since the all-one vector is a code word, Theorem 11 implies that no
encoder for the r-th order Hamming code with r ≥ 3 can be a 3-PIR code. Since
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the second order Hamming code is just the repetition code of length 3, which is
easily seen to be a linear 3-PIR code, we have proved the following.

Corollary 12. The r-th order Hamming code (r ≥ 2) has a (linear or nonlin-
ear) 3-PIR encoder if and only if r = 2.

6 Optimal (not Necessarily Linear) 3-PIR Codes

Earlier, we have already remarked that the best q-ary (not necessarily linear)
1-PIR code of size qk has length n = k and consists of all words of length k, and
the best 2-PIR code of size qk has length n = k + 1 and consists of all words
c = (c0, . . . , cn−1) for which

∑
ci = 0 (in the binary case, this is the even-weight

code).
In Theorem 7 we have seen that a binary linear 3-PIR code of length n

and dimension k, so with a linear encoder and completely described by a k × n
generator matrix, has a redundancy r = n − k satisfying r(r − 1)/2 ≥ k. We
also saw that codes satisfying this bound exist: they have a generator matrix
of the form G = (IkP ) where P is a k × r matrix that has distinct weight-two
vectors as its rows. In Table 1 below, we list the optimal length of a binary linear
k-dimensional 3-PIR code of this form, for various values of k.

Table 1. Optimal (smallest) length of binary linear k-dimensional 3-PIR codes

k 1 2 3 4 5 6 7 8

n 3 5 6 8 9 10 12 13

A priory , it is possible that there exist shorter non-linear codes. By the
minimum-distance bound in Theorem 5, any 3-PIR code has minimum distance
d ≥ 3. In Table 2 we list the values of A2(n, 3), the maximum number M of
code words in a binary code of length n and distance 3, see [1]. Inspection of
Table 2 shows that there are no shorter binary codes of length n and minimum
distance 3 than those in Table 1 for k = 1, 2, 3, 5, 6. For k = 4, there is a unique
code of length 7, size 16, and minimum distance 3 (see [20]), which is the Ham-
ming code of that length. We have shown that there is no encoder (linear or
nonlinear) that turns that code into a 3-PIR code. For k = 7, there are 7398
inequivalent binary codes of length 11, size 144, and minimum distance 3 (see
[14]). As a consequence, there are many nonlinear binary codes of length 11,

Table 2. Maximum size A2(n, 3) of a binary code of length n and minimum distance 3

n 3 4 5 6 7 8 9 10 11 12

M 2 2 4 8 16 20 40 72 144 256
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size 27 and minimum distance 3. We do not know if there exist a (nonlinear)
3-PIR code with these parameters.

Problem. Does there exist a (nonlinear) binary 3-PIR code of length 11 and
size 27?
In fact, we believe that the answer is no. (Note that the underlying code could
be linear, for example a shortened Hamming code, but in view of Theorem 7, the
encoder is necessarily non-linear.) Indeed, we suspect that P (k, 3) = PL(k, 3),
that is, for every k ≥ 1, there are no nonlinear codes of size 2k with a shorter
length than the linear 3-PIR codes of size 2k in Theorem 7, but presently we
have neither a proof nor a counterexample.

7 Conclusions

First, we have shown how packing designs can be used to construct new PIR
codes. Then, we have shown that for r ≥ 2, the r-th order Hamming code has
a (linear or nonlinear) 3-PIR encoder if and only if r = 2. Using the fact that
a (linear or nonlinear) t-PIR code has minimum Hamming distance at least t,
this result has allowed us to determine P (k, 3), the shortest length of a (not
necessarily linear) 3-PIR code of size 2k, for k ≤ 6. We posed the existence of a
(necessarily nonlinear) 3-PIR code of length 11 and size 27 as an open problem.
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Abstract. A k-server Private Information Retrieval (PIR) code is a
binary linear [m, s]-code admitting a generator matrix such that for every
integer i with 1 ≤ i ≤ s there exist k disjoint subsets of columns (called
recovery sets) that add up to the vector of weight one, with the single 1
in position i. As shown in [8], a k-server PIR code is useful to reduce the
storage overhead of a traditional k-server PIR protocol. Finding k-server
PIR codes with a small blocklength for a given dimension has recently
become an important research challenge. In this work, we propose new
constructions of PIR codes from combinatorial structures, introducing
the notion of k-partial packing. Several bounds over the existing litera-
ture are improved.

Keywords: Privacy information retrieval · PIR codes ·
Configurations · Packings

1 Introduction

A Distributed Storage System (DSSs) consists of a set of hard drives (disks), or
nodes, and it is used to store data in a distributed manner. DSSs are an integral
part of modern data centers which support large scale computing applications.
Reasons why one may want to store data in a distributed manner (rather than
on a single disk) include ease of scale and reliability. To achieve reliability, redun-
dancy is needed. Instead of using replication of the nodes, more advanced coding
techniques are implemented because of storage efficiency.

Fazeli, Vardy and Yaacobi [8] proposed the definition of a k-server PIR code
as an important ingredient in the construction of coded PIR protocols. PIR
codes are one of the classes of linear codes that received more attention for
their applications to DSSs. A k-server PIR code is a binary linear [m, s]-code
admitting a generator matrix such that for every integer i with 1 ≤ i ≤ s there
exist k disjoint subsets of columns (called recovery sets) that add up to the
vector of weight one, with the single 1 in position i. Here m is the total number
of bits stored on all the servers and s is the number of bits in the database.
Clearly, for given k and s the optimal m is the minimal one. Given k and s, let
P (s, k) denote the least integer m for which a k-server PIR [m, s]-code exists.
The storage overhead of a k-server PIR [m, s]-code is the ratio m/s.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Already in [8] it was noted that notions and tools from incidence geometry
and design theory could be useful to construct good PIR codes. In particular,
Lemma 7 in [8] states that a collection S1, . . . , Sr of subsets of a finite set X
such that every element of X belongs to at least k − 1 subsets and two distinct
subsets meet in at most one element give rise to a k-server [r + s, s]-code. This
result motivates the following definition.

Definition 1.1. Let X be a finite set of size s. A k-partial packing of X is a
set of k − 1 partitions of X such that

(i) each subset in any partition has size at least two;
(ii) two subsets from two distinct partitions meet in at most one point.

The order r of a k-partial packing is the total number of subsets of X belonging to
its partitions. A k-partial packing is uniform if all the subsets from any partition
have the same size.

It is clear that any k-partial packing of order r of a set of size s gives rise to
a k-server PIR [r + s, s]-code, with storage overhead 1 + r

s .
A k-partial packing P of a set X clearly defines h-partial packings of X for

every h < k. We will call them partial subpackings of P. It is known that from a
k1-server PIR [m1, s]-code and a k2-server PIR [m2, s]-code one can construct a
(k1 + k2)-server PIR [m1 + m2, s]-code; see e.g. [7, Theorem 2]. Here, it is inter-
esting to note that if h1 +h2 ≤ k +1, then we can construct partial subpackings
of P giving rise to an h1-server PIR [m1, s]-code, an h2-server PIR [m2, s]-code,
and an (h1 + h2 − 1)-server PIR [m3, s]-code with

m3 = m1 + m2 − s < m1 + m2.

This provides a strong motivation for searching k-partial packings with large k
with respect to s.

Table 1. New upper bounds on P (s, k).

s k P (s, k) ≤
a1 · a2 · · · ac ≤ c + 1 s(1 + 1

a1
+ · · · + 1

ak−1
)

2N+1 − 1, N odd ≤ 2N s(1 + k−1
3 )

qN+1−1
q−1 , N = 2i+1 − 1 ≤ 1 + qN −1

q−1 s(1 + k−1
q+1 )

qN ≤ 1 + qN −1
q−1 s(1 + k−1

q )

2n+n′ − 2n + 2n′
, 0 ≤ n′ ≤ n ≤ 2n + 2 s(1 + k−1

2n′ )

q3 + 1 ≤ q2 + 1 s(1 + k−1
q+1 )

q2−q
2 ≤ q + 1 s + (k − 1)q

≡ 3 (mod 6) ≤ 1 + s−1
2 s(1 + k−1

3 )

≡ 4 (mod 12) ≤ 1 + s−1
3 s(1 + k−1

4 )

≡ 5 (mod 20), �= 45, 345, 465, 645 ≤ 1 + s−1
4 s(1 + k−1

5 )

≡ 7 (mod 42) > 294427 ≤ 1 + s−1
6 s(1 + k−1

7 )

≡ 8 (mod 56), > 24480 ≤ 1 + s−1
7 s(1 + k−1

8 )

sh multiple of k + 1, sufficiently large arbitrary s(1 + h
k+1 )

s ≥ 13 3 2s
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Other combinatorial objects which provide k-server PIR codes are the so-
called configurations; see [5, Chapter VI, Sect. 7].

Definition 1.2. i) A (vt, bz)-configuration is an incidence structure of v points
and b lines, such that each line contains z points, each point lies on t lines,
and two distinct points are connected by at most one line.

ii) If v = b, and hence t = z, the configuration is symmetric, and it is denoted
by vz.

It is straightforward to check that a (vt, bz)-configuration produces a (t+1)-
server PIR code with s = v and storage overhead 1 + b

v . In particular, any
symmetric configuration defines a PIR code with storage overhead equal to 2.
The dual incidence structure of a configuration is still a configuration, which
defines a (z + 1)-server PIR code with s = b and storage overhead 1 + v

b .
We remark that a uniform k-partial packing of a set X, together with its

partial subpackings, naturally define configurations.
The aim of this paper is to obtain new upper bounds on P (s, k) through

the notions of k-partial packings and configurations. Our constructions provide

Table 2. Best known bounds for P (s, k) for small values of s and k.

k \ s 2 3 4 5 6 7

2 3∗ 1.50 5∗ 2.50 6∗ 3.00 8∗ 4.00 9∗ 4.50 11∗ 5.50

3 4∗ 1.33 6∗ 2.00 7∗ 2.33 10∗ 3.33 11∗ 3.67 13∗ 4.33

4 5∗ 1.25 8 2.00 9 2.25 11 2.75 12∗ 3.00 14 3.50

5 6∗ 1.20 9 1.80 10 2.00 12 2.40 13 2.60 17 3.40

6 7∗ 1.17 10 1.67 11 1.83 13 2.17 14 2.33 18 3.00

7 8∗ 1.14 12 1.71 13 1.86 14 2.00 15 2.14 20 2.86

8 9∗ 1.13 13 1.63 14 1.75 17 2.13 18 2.25 22 2.75

9 10∗ 1.11 14 1.56 15 1.67 19 2.11 20 2.22 24 2.67

10 11∗ 1.10 15 1.50 16 1.60 20 2.00 21 2.10 25 2.50

11 12∗ 1.09 17PR 1.55 18PR 1.64 24 2.18 25 2.27 36 3.27

12 13∗ 1.08 18T.4.2 1.50 20PR 1.67 25 2.08 26 2.17 38 3.17

13 14∗ 1.08 21 1.62 22 1.69 26 2.00 27 2.08 39T. 4.1 3.00

14 15∗ 1.07 22 1.57 23 1.64 28 2.00 29 2.07 42 3.00

15 16∗ 1.07 23 1.53 24 1.60 30S. 4.1 2.00 31PR 2.07 43 2.87

16 17∗ 1.06 24 1.50 25 1.56 32T. 3.2 2.00 33PR 2.06 44 2.75

17 18∗ 1.06 26PR 1.53 27PR 1.59 33PR 1.94 34PR 2.00 45 2.65

18 19∗ 1.06 27T.2.2 1.50 28PR 1.56 34PR 1.89 35PR 1.94 46 2.56

19 20∗ 1.05 28PR 1.47 29PR 1.53 35PR 1.84 36PR 1.89 47 2.47

20 21∗ 1.05 29T. 2.2 1.45 30PR 1.50 36T. 4.3 1.80 37PR 1.85 48 2.40

21 22∗ 1.05 31 1.48 32 1.52 41 1.95 42 2.00 49 2.33

22 23∗ 1.05 32 1.45 33 1.50 42PR 1.91 43PR 1.95 50 2.27

23 24∗ 1.04 33 1.43 34 1.48 43PR 1.87 44PR 1.91 51 2.22

24 25∗ 1.04 34 1.42 35 1.46 44PR 1.83 45PR 1.88 52 2.17

25 26∗ 1.04 35 1.40 36 1.44 45S. 3 1.80 46PR 1.84 53 2.22

26 27∗ 1.04 37PR 1.42 38PR 1.46 46PR 1.77 47PR 1.81 54 2.08

27 28∗ 1.04 38PR 1.41 39PR 1.44 47PR 1.74 48PR 1.78 55 2.04

28 29∗ 1.04 39T. 2.2 1.39 40PR 1.43 48PR 1.71 49PR 1.75 56 2.00

29 30∗ 1.03 40PR 1.38 41PR 1.41 49PR 1.69 50PR 1.72 57 1.97

30 31∗ 1.03 41T. 2.2 1.37 42PR 1.40 50T. 4.2 1.67 51PR 1.70 58 1.93



172 M. Giulietti et al.

both families of PIR codes whose storage overhead is asymptotically optimal (see
Table 1), and PIR codes that provide improvements over the existing literature
for small values of s and k (see Table 2).

We also recall that the PIR codes obtained in this paper are systematic. Then,
by [16, Corollary 1], they also produce families of locally recoverable codes.

2 Families of k-partial Packings

2.1 Direct Product Construction

Assume that s can be written as the product of k − 1 integers greater than 2,
that is

s = a1 · a2 · · · ak−1, with ai ≥ 2.

For an integer a ≥ 2, let Ca denote the cyclic group of order a. Let

G = Ca1 × Ca2 × · · · × Cak−1

be the direct product of the groups Cai
for i = 1, . . . , k − 1.

Finally, let Pi be the partition induced by the cosets of the subgroup Cai
,

naturally embedded in G.

Proposition 2.1. For each w ≤ k − 1,

P = {P1, . . . ,Pw}

is a (w + 1)-partial packing of G of order s
a1

+ . . . + s
aw

.

Proof. As ai ≥ 2 for i = 1, . . . , w, property (i) of Definition 1.1 holds. Also, for
any two distinct indices i, j, the intersection of a coset in Pi and a coset in Pj

clearly contains at most one element, and hence (ii) holds. Finally, observe that
|Pi| = s

ai
for any i = 1, . . . , w. ��

The following result is a straightforward corollary.

Theorem 2.2. Let

s = a1 · a2 · · · ak−1, with ai ≥ 2.

Then for each w ≤ k − 1 there exists a (w + 1)-server PIR [m, s]-code with

m = s +
s

a1
+ . . . +

s

aw

and storage overhead 1+
∑w

i=1
1
ai
. In particular, if s = hk−1, for each w ≤ k −1

there exists a (w + 1)-server PIR [s + w s
h , s]-code with storage overhead 1 + w

h .
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2.2 Uniform Partial Packings from Projective Geometry

For q a prime power, let PG(N, q) be the projective space of dimension N over
the finite field with q elements Fq. We recall that the size of PG(N, q) is

s(N, q) =
qN+1 − 1

q − 1
= qN + qN−1 + . . . + q + 1,

and the total number of lines is

L(N, q) =
(qN+1 − 1)(qN − 1)

(q2 − 1)(q − 1)
.

Also, a line in PG(N, q) consists of q + 1 points, and two distinct lines meet in
at most one point.

A resolution class (also called a spread of lines) of PG(N, q) is a set of lines
which partition the point set. A packing (or resolution) of the lines of PG(N, q)
is a partition of the lines into resolution classes. Clearly, any k − 1 resolution
classes from a packing are a k-partial packing of PG(N, q).

Sufficient conditions on N and q for a packing to exist are known since the
seventies.

Proposition 2.3. [1,2] A packing of the lines of PG(N, q) exists if

(a) N = 2z + 1, q = 2, z ≥ 1;
(b) N = 2i+1 − 1, i ≥ 1, q a prime power.

Then the following holds.

Theorem 2.4. Let N and q be as in (a) or (b) of Proposition 2.3. Then for
s = s(N, q) and any k ≤ 1 + (qN−1 + . . . + q + 1), there exists a k-server PIR
[m, s]-code with

m = s +
(k − 1)s
q + 1

and storage overhead 1 + k−1
q+1 .

Proof. Note that there are �(N, q) = s
q+1 lines in any resolution class of

PG(N, q), and a packing of the lines of PG(N, q) comprises L(N,q)
�(N,q) = qN−1

q−1 =
qN−1 + . . . + q + 1 resolution classes. Then the k-partial packing of PG(N, q)
obtained taking any k − 1 resolution classes gives rise to a k-server PIR as in
the claim. ��

2.3 Uniform Partial Packings from Affine Geometry

In AG(N, q) a resolution is easily obtained for any N and q. Here a resolution
class is just a parallelism class. Taking into account that every line contains q
points, and that the number of parallelism classes is s(N − 1, q), the following
result is easily obtained.
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Theorem 2.5. Let q be a prime power and N an integer with N ≥ 2. Then for
s = qN and any k ≤ 1 + s(N − 1, q) there exists a k-server PIR [m, s]-code with

m = s +
(k − 1)s

q

and storage overhead 1 + k−1
q .

Now we consider subsets E of AG(N, q) of size hqN−1 consisting of h ≤ q
parallel hyperplanes. There are qN−1 directions not determined by these hyper-
planes and each line with such directions meets E in precisely h points. Then
the following holds.

Theorem 2.6. Let q be a prime power and N an integer with N ≥ 2. Then for
s = hqN−1, h ≤ q, and any k ≤ 1+ qN−1 there exists a k-server PIR [m, s]-code
with

m = (h + k − 1)qN−1 = s + (k − 1)qN−1

and storage overhead 1 + k−1
h .

2.4 Partial Packings from Other Geometrical Objects

2.4.1 Maximal Arcs
In a projective plane PG(2, q), a maximal arc is a set of v points K such that
every line of PG(2, q) is either disjoint from K or meets K in the same number
z of points. If this happens K is said to be a {v; z}-maximal arc.

The existence problem for maximal arcs of given size is completely solved;
see [11].

Theorem 2.7. A {v; z}-maximal arc of PG(2, q) exists if and only if there exist
0 ≤ n′ ≤ n such that

q = 2n, z = 2n′
, v = zq − q + z.

For a point P not in K, the lines through P that are not disjoint from K
give rise to a partition of K in subsets of size z. Also, joining k − 1 partitions
corresponding to q + 1 collinear points gives rise to a k-partial packing of K.
Then the following holds.

Corollary 2.8. Let s be an integer of the form s = 2n+n′ − 2n + 2n′
, for some

1 ≤ n′ ≤ n. Then for each k ≤ 2n + 2 there exists a k-server PIR [m, s]-code
with

m = s +
(k − 1)s

2n′

and storage overhead 1 + k−1
2n′ .
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2.4.2 Classical Unitals
A classical unital U in PG(2, q2) is the set of points whose homogeneous coordi-
nates (x0, x1, x2) satisfy the equation xq+1

0 +xq+1
1 +xq+1

2 = 0, up to projectivities.
It is well known that U consists of q3 +1 points in PG(2, q2), and that through a
point P ∈ PG(2, q2)\U , there are q2−q secant lines intersecting U in q+1 points,
and q + 1 tangent lines intersecting U in one point. Also, the q + 1 points lying
on the tangent lines through P are collinear; see [14, Section 7.3]. Therefore, the
following result holds.

Theorem 2.9. The set U consists of q3+1 points, and each point in PG(2, q2)\
U defines a partition of U in q2 − q + 1 subsets of q + 1 collinear points.

If we consider a line l meeting U in precisely one point P , then the q2 points
on l distinct from P define disjoint partitions. Then the following holds.

Corollary 2.10. Let s be an integer of the form s = q3 + 1, for some prime
power q. Then for each k ≤ q2 + 1 there exists a k-server PIR [m, s]-code with

m = s +
(k − 1)s
q + 1

and storage overhead 1 + k−1
q+1 .

2.4.3 Internal Points to a Conic
Let C be an irreducible conic in PG(2, q), with q an odd prime power. A point
P ∈ PG(2, q)\C is external if it lies on a tangent line to C, and internal otherwise.

There exist precisely (q2−q)/2 internal points. Also, a secant line of PG(2, q)
contains (q − 1)/2 internal points of C, while an external line contains (q + 1)/2
internal points of C. Then, clearly the lines through an external point P , distinct
from the tangent lines at P , define a partition of the set of internal points of C
in q − 1 subsets of collinear points of cardinalities (q − 1)/2 and (q + 1)/2; see
[12].

If q > 3, taking k−1 distinct external points lying on a same tangent line to C,
we obtain a k-partial packing of the set of internal points of C. Note that, unlike
the other partial packings from geometrical objects, this construction provides
a non-uniform k-partial packings. The following result then holds.

Corollary 2.11. Let s be an integer of the form s = (q2 − q)/2, for some odd
prime power q > 3. Then for each k ≤ q + 1 there exists a k-server PIR [m, s]-
code with

m = s + (k − 1)(q − 1),

and storage overhead 1 + 2(k−1)
q .
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3 Uniform Partial Packings from Resolvable
Configurations and BIBDs

Recently, in [10], the notion of resolvable configuration has been introduced. A
parallel class in a configuration C is a set of lines which partition the set of
points; a resolution of C is a partition of the set of lines into parallel classes. A
configuration C is said to be resolvable if it admits a resolution. A resolution of
a (vt, bz) resolvable configuration consists of t parallel classes, each of which has
size v

z . Therefore, if a (vt, bz)-configuration is resolvable, then a k-partial packing
of the set of its v points can be defined for each k ≤ 1 + t.

Theorem 3.1. Let (vt, bz) be a resolvable configuration. Then for any k ≤ 1+ t
there exists a k-server PIR [m, v]-code with

m = v + (k − 1)
v

z
,

and storage overhead 1 + k−1
z .

Existence results for symmetric resolvable configurations were investigated
in [4]. Here we list the parameters for which a vz resolvable configuration exists.

• 3 ≤ z ≤ 5, v = wz, w ≥ z, see [4, Theorem 3.2];
• 6 ≤ z ≤ 13, v = wz, w ≥ z, with the following possible exceptions

(z, w) ∈ {(9, 10), (10, 12), (11, 12), (11, 14), (12, 12), (12, 14), (12, 15), (13, 14), (13, 15)},

see [4, Theorem 4.7];
• z ≥ 3, w ≥ z2, v = wz, see [4, Corollary 4.6];
• q a prime power, z ≤ q, v = zq, see [4, Corollary 3.4].

If a (vt, bz)-configuration is such that any two distinct points are connected
by exactly one line, then C is called a Balanced Incomplete Block Design (BIBD),
or a Steiner system. In [8] it was noticed that one can construct a PIR code from
a given Steiner system; see also [15]. Here we focus on resolvable Steiner systems,
since they give rise to uniform partial packings and hence to a large number of
distinct PIR codes, each one with a different number of servers. By a counting
argument it is easy to see that the number of parallel classes in a resolution of
a BIBD is v−1

z−1 . Therefore, the following result holds.

Theorem 3.2. Let (vt, bz) be a resolvable BIBD. Then for any k ≤ 1 + v−1
z−1

there exists a k-server PIR [m, v]-code with

m = v + (k − 1)
v

z
.

We list here some families of parameters for which there exists a (vt, bz)-
configuration which is also a resolvable BIBD; see [5, Chapter II, Sect. 7] and
[13].
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• z = 3, v such that v ≡ 3 (mod 6);
• z = 4, v such that v ≡ 4 (mod 12);
• z = 5, v ≡ 5 (mod 20), v �= 45, 345, 465, 645;
• z = 7, v ≡ 7 (mod 42), v > 294427;
• z = 8, v ≡ 8 (mod 56), v > 24480.

Also, the following general result holds.

Theorem 3.3. [5, Chapter II, Theorem 7.10] If v and z are both powers of the
same prime, and z − 1 divides v − 1, then a (vt, bz) resolvable BIBD exists.

4 Families of Configurations

4.1 Symmetric Configurations

As already pointed out, any symmetric configuration vz defines a (z + 1)-server
PIR [2v, v]-code with storage overhead equal to 2. In this section we provide a
list of infinite families of symmetric configurations that are known to exist, see
[5,6]. In the following, q is a prime power and p is any prime number.

v z Conditions

v 4 v ≥ 13

q2 − 1 q none

p2 − p p − 1 none

q2 − qs q − s q > s ≥ 0

q2 − (q − 1)s − 1 q − s q > s ≥ 0

c(q +
√

q + 1)
√

q + c q square, c = 2, 3, . . . , q − √
q

2p2 p + s p + s > 0, 0 < s ≤ q + 1, q2 + q + 1 ≤ p

c(q − 1) c − δ δ ≥ 0, c = δ, . . . , b, b = q if δ ≥ 1, b = � q
2
� if δ = 0

q(q−1)
2

q+1
2

q odd
q(q+1)

2
q−1
2

q odd

q2 + q − q
√

q q − √
q q square

q2 − rq − 1 q − r q − 3 ≥ r ≥ 0

q2 − q − 2 q − 1 q − 3 ≥ r ≥ 0

rq − 1 r r > 0, q > r ≥ 3

rq − 2 r r > 0, q > r ≥ 3

For small values of v and z, more symmetric configurations are known; see [5,
Table 7.13].

• v ∈ {21, 23, 24, 25, 26, 27, 28} and z = 5;
• v ∈ {31, 34, 35, 36, 37, 38} and z = 6;
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• v ∈ {45, 48, 49, 50} and z = 7;
• v ∈ {57, 63, 64} and z = 8;
• v ∈ {73, 78, 80} and z = 9;
• v ∈ {91, 98} and z = 10;
• v ∈ {133, 135} and z = 12.

4.2 Non-symmetric Configurations

Non-symmetric configurations allow to obtain PIR codes with storage overhead
smaller than 2. Indeed, let (vt, bz) be a configuration with v �= b. Then, up to
taking the dual configuration, we can assume b < v and hence this configuration
produces a (t + 1)-server PIR [v + b, v]-code, with storage overhead 1 + b

v < 2.
The existence problem of configurations with z = 3 is completely solved; see [13,
Theorem 3.1].

Theorem 4.1. A (vt, b3) configuration exists if and only if vt = 3b and v ≥
2t + 1.

For z = 4, 5, the following results hold; see [13, Sections 3.2 and 3.4].

Theorem 4.2. In the following cases, a configuration (vt, b4) exists.

• v ≡ 4 (mod 12), v > 3t + 1 and vt = 4b;
• v ≡ 0 (mod 12), v ≥ 3t + 1, vt = 4b, and v �∈ E, where

E = {84, 120, 132, 180, 216, 264, 312, 324, 372, 456, 552, 648, 660, 804, 852, 888};

• v ≡ 0 (mod 12), v = 3t + 3 and vt = 4b;
• t = 4s, v ≥ 3t+1, vt = 4b, and 1 ≤ s ≤ 15, except possibly s = 3 and v = 38;
• t = 6, v ≥ 20 even, b = 3v

2 .

Theorem 4.3. In the following cases, a configuration (vt, b5) exists.

• v = 4t + 4, v ≡ 0 (mod 20), and vt = 5b;
• v ≡ 5 (mod 20), v ≥ 4t + 1, vt = 5b, and v ≥ 7865;
• t = 5s, v ≥ 4t + 1, vt = 5b, and 1 ≤ s ≤ 10, except possibly for the cases

(t, v) ∈ E, where

E = {(1, 22), (2, 42), (2, 43), (3, 62)(3, 63)(4, 82), (5, 102), (7, 142)(9, 182),
(9, 183), (9, 185), (9, 186), (9, 187), (9, 188), (9, 189), (9, 190), (9, 191), (9, 192)}.

4.3 Asymptotic Results

It was proven in [3] that for fixed t and z there exist integers v0, b0 such that
for every v ≥ v0 and b ≥ b0 with vt = bz, there exists a (vt, bz)-configuration.

This means that if we fix the number of servers k and an arbitrary fraction
of r

k+1 then for s sufficiently large and such that sr is a multiple of k + 1, there
exists a k-server PIR [m, s]-code with m = s(1 + r

k+1 ) and storage overhead
1 + r

k+1 .
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4.4 Dual Configurations from Partial Packings

In the direct product construction, if G = C�
h we obtain a uniform partial pack-

ing. Since it defines a configuration, we can also consider the dual configuration.
Therefore, k-server PIR [m, s]-codes with the following parameters are obtained:

• any h, any �:

k = h + 1, s = vh�−1 with 2 ≤ v ≤ �, m = s + h�,

and storage overhead 1 + h
v .

The same approach can be used for the other constructions that provide
uniform partial packings. Therefore, we obtain PIR codes with the following
parameters:

• Projective case (q and N as in (a) or (b) of Proposition 2.3):

k = q+2, s = v
s(N, q)
q + 1

with 2 ≤ v ≤ (q+1)
L(N, q)
s(N, q)

, m = s+s(N, q),

and storage overhead 1 + q+1
v .

• Affine case, Theorem 2.6 (any q prime power, N ≥ 2):

k ≤ q + 1, s = vqN−1 with 2 ≤ v ≤ qN−1, m = s + (k − 1)qN−1,

and storage overhead 1 + k−1
v .

• Maximal arcs case (maximal arcs of size 2n+n′ −2n+2n′
, for some 0 ≤ n′ ≤ n):

k = 2n
′
+ 1, s = h(2n − 2n−n′

+ 1) with 2 ≤ h ≤ 2n + 1, m = s+ 2n+n′ − 2n + 2n
′

and storage overhead 1 + 2n′

h .
• Classical unitals case:

k = q + 2, s = h(q2 − q + 1) with 2 ≤ h ≤ q2, m = s + q3 + 1

and storage overhead 1 + q+1
h .

• Resolvable BIBD case: if a (vt, bz)-configuration which is also a resolvable
BIBD exists, then the dual construction provide k-server PIR [m, s]-codes
with

k = z + 1, s = h
v

z
with h ≤ v − 1

z − 1
, m = s + v

and storage overhead 1 + z
h .
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5 General Constructions of k-server PIR Codes

In the previous sections we constructed PIR codes whose lengths had a specific
form. Here we explicitly construct PIR codes of arbitrary length.

The proof of the following statement is straightforward.

Proposition 5.1. Let P = {P1, . . . ,Pk−1} be a k-partial packing of a set X.
Let Y be a subset of X and for each i = 1, . . . , k − 1 let PY

i be the partition of
Y induced by Pi. Then PY = {PY

1 , . . . ,PY
k−1} is a k-partial packing of Y if and

only if for each i no subset of Pi meets Y in precisely one element. In this case,
the order of PY is less than or equal to that of P.

As an illustration, we apply Proposition 5.1 to the partial packings described
in Sect. 2.3.

Let qN be the least prime power such that k ≤ 1 + s(N − 1, q) − qN−1 and
s ≤ qN . The condition on k allows to construct a k-partial packing P according
to Theorem 2.5, in which the parallelism classes of the lines belonging to a fixed
hyperplane H are avoided.

If in addition s ≥ 2qN−1, then one can fix a subset Y of AG(N, q) with size
s that contains two hyperplanes parallel to H. Then clearly every line belonging
to the partitions of P meets Y in at least two points, and PY is a k-partial
packing.

Theorem 5.2. For integers k and s, let qN be the least prime power such that
k ≤ 1 + s(N − 1, q) − qN−1 and 2qN−1 ≤ s ≤ qN . Then there exists a k-server
PIR [m, s]-code with

m = s + (k − 1)qN−1

and storage overhead 1 + (k−1)qN−1

s .

The best case is clearly when s is close to a prime power. However, something
very general can be stated.

Corollary 5.3. For integers k and s, let qN be the least prime power such that
k ≤ 1 + s(N − 1, q) − qN−1 and 2qN−1 ≤ s ≤ qN . Then there exists a k-server
PIR [m, s]-code with storage overhead O with

1 +
k − 1

q
≤ O ≤ 1 +

k − 1
2

.

6 Conclusions

In recent years, finding k-server PIR codes with a small blocklength for a given
dimension has become an important research challenge. Let P (s, k) denote the
minimum value of m for which a k-server PIR [m, s]-code exists.

In this paper several upper bounds on P (s, k) have been obtained through
the notions of k-partial packings and configurations. Here we summarize our
result on P (s, k), taking into account that the function P is strictly increasing
in both variables s and k, as the following propagation rules show.
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Proposition 6.1. [9, Lemmas 13 and 14]

(i) P (s, k) ≤ P (s, k + 1) − 1;
(ii) if k is odd, then P (s, k) = P (s, k + 1) − 1;
(iii) P (s, k) ≤ P (s + 1, k) − 1.

In the next table q denotes a prime power, whereas N and ai any integer
greater than 1. The integer k is always assumed to be greater than 2.

Finally, in the next table we report the best known bounds for P (s, k) for
small values of s and k. In particular, the improvements over the existing liter-
ature that are provided by our constructions are printed in bold. In these cases,
we state the Section (briefly S), or Theorem (briefly T) from which the improve-
ment is obtained. Also, we use PR to denote the improvements that are obtained
using the constructions of this paper together with the above-mentioned propa-
gation rules. We don’t know if some of the codes that we obtained are actually
optimal. In this direction, it would be interesting to find new lower bounds on
the parameter P (s, k), at least for small values of s ≥ 3.
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Abstract. The importance of interactions between groups, linear codes and t-
designs has been well recognized for decades. Linear codes that are invariant
under groups acting on the set of code coordinates have found important applica-
tions for the construction of combinatorial t-designs. Examples of such codes are
the Golay codes, the quadratic-residue codes, and the affine-invariant codes. Let
q = 5m. The projective general linear group PGL(2, q) acts as a 3-transitive per-
mutation group on the set of points of the projective line. This paper is to present
two infinite families of cyclic codes over GF(5m) such that the set of the sup-
ports of all codewords of any fixed nonzero weight is invariant under PGL(2, q),
therefore, the codewords of any nonzero weight support a 3-design. A code from
the first family has parameters [q + 1, 4, q − 5]q , where q = 5m, and m ≥ 2. A
code from the second family has parameters [q + 1, q − 3, 4]q , q = 5m, m ≥ 2.
This paper also points out that the set of the support of all codewords of these
two kinds of codes with any nonzero weight is invariant under StabUq+1 , thus
the corresponding incidence structure supports 3-design.
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1 Introduction
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by the blocks, and columns indexed by the points of D, where ai,j = 1 if the jth point
belongs to the ith block, and ai,j = 0 otherwise.

It is known that groups, linear codes and t-designs are closely related. Linear codes
that are invariant under groups acting on the set of code coordinates have found impor-
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family of linear codes holding 4-designs was constructed by Tang and Ding in [3]. It
remains an interesting open problem if there exists an infinite family of linear codes
holding an infinite family of t-designs for t ≥ 5. In fact, only a few infinite families of
cyclic codes holding an infinite family of 3-designs are reported in the literature. For
more results on linear codes and t-designs, we refer the reader to [4–7,10]. Now, we
will consider a class of cyclic codes

Cm = {(Tr(a2u
2 + a3u

3))u∈Uq+1 : ai ∈ GF(q2)}
over GF(q) and its dual, where q = 5m with m ≥ 2 being an integer, Tr is the trace
function from GF(q2) to GF(q) and Uq+1 is the set of all (q + 1)-th roots of unity in
GF(q2).

The objective of this paper is to present two infinite families of cyclic codes over
GF(5m) such that the set of the supports of all codewords of any fixed nonzero weight
is invariant under PGL(2, q), therefore, the codewords of any nonzero weight support a
3-design.

2 Preliminaries

2.1 Linear Codes and Cyclic Codes

Let GF(r) be the finite field with r elements, where r is a power of a prime p. For a
positive integer n, a linear code of length n over GF(r) is defined to be a subspace of
GF(r)n. A linear code C of length n and dimension k over GF(r) is called an [n, k]r
linear code over GF(r). The vectors in C are called codewords. If it has minimum dis-
tance d it is also called an [n, k, d]r code. An [n, k]r code C is called cyclic if for every
codeword (c0, c1, ..., cn−1) ∈ C, its cyclic shift (cn−1, c0, ..., cn−2) is also in C.

The dual code C⊥ of a linear code C over GF(r) of length n is defined to be the set

C⊥ = {x ∈ GF(r)n : 〈x, c〉 = 0, for all c ∈ C},
where 〈x, c〉 is the usual Euclidean inner product of c and x. Let a = (a0, . . . , an−1) ∈
(GF(r)∗)n, a · C stands for the linear code {(a0c0, . . . , an−1cn−1) : (c0, . . . , cn−1) ∈
C}. It is a simple matter to check that

(a · C)⊥ = a−1 · C⊥, (1)

where a−1 = (a−1
0 , . . . , a−1

n−1) (see [8]).
There are two classical ways to construct a code over GF(r) from a given code over

GF(rh). Let C be a code of length n over GF(rh). Then the subfield subcode C|GF(r)

equals C ∩ GF(r)n, the set of those codewords of C all of whose coordinate entries
belonging to the subfield GF(r). The trace code of C is given by

Trrh/r(C) =
{(

Trrh/r(c0), . . . ,Trrh/r(cn−1)
)
: (c0, . . . , cn−1) ∈ C}

,

where Trrh/r denotes the trace function from GF(rh) to GF(r). A celebrated result
of Delsarte [6] states that the subfield code C⊥|GF(r) and the trace code Trrh/r(C) are
duals of each other, namely,

(
Trrh/r(C)

)⊥ = C⊥|GF(r) (2)
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Conversely, given a linear code C of length n and dimension k over GF(r), we define a
linear code GF(rh) ⊗ C over GF(rh) by

GF(rh) ⊗ C =

{
k∑

i=1

aici : (a1, . . . , ak) ∈ GF(rh)k
}

,

where c1, c2, ..., ck is a basis of C over GF(r). This code is independent of the choice of
the basis c1, c2, ..., ck of C, is called the lifted code of C to GF(rh). Clearly, GF(rh) ⊗
C and C have the same length, dimension and minimum distance, but different weight
distributions. A trivial verification shows that if (c0, ..., cn−1) ∈ GF(rh) ⊗ C, then
(cr

0, ..., c
r
n−1) ∈ GF(rh) ⊗ C. Applying Lemma 7 in [9], one has

Trrh/r

(
GF(rh) ⊗ C)

=
(
GF(rh) ⊗ C) |GF(r)

Let n be a positive integer with gcd(n, r) = 1 and h = ordn(r). Let Un be the cyclic
multiplicative group of all n-th roots of unity in GF(rh). By polynomial interpolation,
every function f from Un to GF(r) has a unique univariate polynomial expansion of the
form

f(u) =
n−1∑

i=0

aiu
i,

where ai ∈ GF(rh), u ∈ Un.

2.2 Group Actions and t-designs

A permutation group is a subgroup of the symmetric group Sym(X), where X is
a finite set. An action σ of a finite group G on a set X is a homomorphism σ from
G to Sym(X). We denote the image σ(g)(x) of x ∈ X under g ∈ G by g(x) when
no confusion can arise. The G − orbit of x ∈ X is Orbx = {g(x) : g ∈ G}. The
stabilizer of x is Stabx = {g ∈ G : g(x) = x}.

Given a t-homogeneous group G on a finite set X with |X| = v and a subset B of
X with |B| = k > t, the pair (X,OrbB) is a t−(ν, k, λ) design, whereOrbB is the set

of images of B under the group G, λ = (kt)|G|
(vt)|StabB | and OrbB is the setwise stabilizer

of B in X . Let
(
X
k

)
be the set of subsets of X consisting of k elements. A nonempty

subset B of
(
X
k

)
is called invariant under G if OrbB ⊆ B for any B ∈ B.

2.3 Projective General Linear Groups

Let PGL(2,q) be the projective general linear group acting as a permutation group on
the set of points of the projective line PG(1,q) over a finite field GF(q) with q ele-
ments. Every vector in the (q + 1)-dimensional vector space GF(r)q+1 can be written
as (cx)x∈PG(1,q) , where cx ∈ GF(r) and r is a prime power. In other words, the coor-
dinates of the vectors in GF(r)q+1 can be indexed by the points in PG(1,q). Consider
the induced action of PGL(2,q) on GF(r)q+1 by the left translation:

π : (cx)x∈PG(1,q) 	→ (
cπ(x)

)
x∈PG(1,q)

,
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where (cx)x∈PG(1,q) ∈ GF(r)q+1 and π ∈ PGL(2, q). Let C be a linear code of
length q + 1 over GF(r). We say that C is invariant under PGL(2,q) if each ele-
ment of PGL(2,q) carries each codeword of C into a codeword of C. For a codeword
c = (cx)x∈PG(1,q) in C, the support of c is defined as

Supp(c) = {x ∈ PG(1, q) : cx �= 0}.

Let Aw(C) = |{c ∈ C : wt(c) = w}| and Bw(C) = {Supp(c) : wt(c) = w and c ∈
C}, where wt(c) denotes the Hamming weight of c. Bw(C) is said to be invariant under
PGL(2,q) if the support Supp

((
cπ(x)

)
x∈PG(1,q)

)
belongs to Bw(C) for every π ∈

PGL(2, q) and any codeword (cx)x∈PG(1,q) of weightw in C. It is easily seen that if C is
invariant under PGL(2,q), then so is Bw(C) for each w. Moreover, if Bw(C) is invariant
under PGL(2,q), then (PG(1, q),Bw(C)) holds a 3-design provided Aw(C) �= 0, since
the action of PGL(2,q) on PG(1,q) is 3-transitive (see [2]).

3 Linear Codes of Length 5m + 1 and 3-designs

Let Uq+1 be the subset of the projective line PG(1,q2) =GF(q2)∪{∞} consisting of all
the (q + 1)-th roots of unity. Denote by StabUq+1 the setwise stabilizer of Uq+1 under
the action of PGL2(GF(q2)) on PG(1, q2).

Lemma 1. Let q = 5m. Then the setwise stabilizer StabUq+1 of Uq+1 is generated by
the following three types of linear fractional transformations:

1. u 	→ u0u, where u0 ∈ Uq+1;
2. u 	→ u−1;
3. u 	→ u+cq

cu+1 , where c ∈ GF(q2)∗ \ Uq+1.

Similar proofs are shown in [1].
Let q = 5m and Uq+1 = {u : u ∈ GF(q2), uq+1 = 1}. Let C{2,3} be the linear code

defined by

C{2,3} =
{
(a2u

2 + aq−1u
q−1 + a3u

3 + aq−2u
q−2)u∈Uq+1 : a2, aq−1, a3, aq−2 ∈ GF(q2)

}
.

(3)
We index the coordinates of the codewords in C{2,3} and related codes with the elements
in Uq+1. The dual of C{2,3} is given as

C{2,3}
⊥ =

⎧
⎨

⎩
(cu)u∈Uq+1 ∈ GF(q2)q+1 :

∑

u∈Uq+1

cuhu = 0

⎫
⎬

⎭
, (4)

where hu is the transpose of the row vector (u−3, u−2, u2, u3).
It is obvious that if (cu)u∈Uq+1 ∈ C{2,3} (resp., (cu)u∈Uq+1 ∈ C{2,3}

⊥), then
(cq

u)u∈Uq+1 ∈ C{2,3} (resp., (cq
u)u∈Uq+1 ∈ C{2,3}

⊥). In fact, C{2,3} is the lifted code
of Trq2/q(C{2,3}) to GF(q2) and has cyclicity-defining set {2, 3, q − 1, q − 2}. Simi-

larly, C{2,3}
⊥ is the lifted code of Trq2/q

(
C{2,3}

⊥
)
to GF(q2).
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From Lemma 7 in [9] we deduce that

Trq2/q(C{2,3}) = C{2,3}|GF(q) , (5)

and
Trq2/q

(
C{2,3}

⊥
)
= C{2,3}

⊥|GF(q) . (6)

In order to describe the supports of the codewords of Trq2/q(C{2,3}) and
C{2,3}

⊥|GF(q), we need to employ symmetric polynomials and elementary symmetric
polynomials. A polynomial f is said to be symmetric if it is invariant under any permu-
tation of its variables. The elementary symmetric polynomial(ESP ) of degree � in
k variables u1, u2, . . . , uk, written σk,�, is defined by

σk,�(u1, . . . , uk) =
∑

I⊆[k],|I|=�

∏

j∈I

uj , (7)

where [k] = {1, 2, ..., k}.
For any k-variable symmetric polynomial f with coefficients in GF(q2), write

Bf,q+1 =
{

{u1, . . . , uk} ∈
(

Uq+1

k

)
: f(u1, . . . , uk) = 0

}
.

To determine the parameters of Trq2/q(C{2,3}) and C{2,3}
⊥|GF(q), we prove sev-

eral lemmas below. To simplify notation and expressions below, we use σk,� to denote
σk,�(u1, . . . , uk) for any {u1, . . . , uk} ∈ (

Uq+1
k

)
whenever {u1, . . . , uk} is specified.

Lemma 2. Let q = 5m, where m ≥ 2 is a positive integer. For any {u1, u2, u3} ∈(
Uq+1
3

)
, we have the following results.

1. u1 + u2 + 3u3 �= 0;
2. u1 + 2u2 + 2u3 �= 0;
3. u1 + 3u2 + u3 �= 0.

Proof. We only give the proof of the first conclusion and the proofs of other conclusions
are similar to the first conclusion.

Assume that u1 + u2 + 3u3 = 0, this is equivalent to u1 + u2 − 2u3 = 0, then

(u1 + u2 − 2u3)q =
1
u1

+
1
u2

− 2
u3

=
1
u1

+
1
u2

− 4
2u3

= 0.

It follows from u1 + u2 = 2u3 that

1
u1

+
1
u2

− 4
u1 + u2

= 0,

Multiplying both sides of the previous equation by u1u2(u1 + u2) yields

(u1 + u2)2 − 4u1u2 = 0,

which means that (u1 − u2)2 = 0. This is contrary to our assumption that u1, u2, u3

are pairwise distinct. Thus, u1 + u2 + 3u3 �= 0. This completes the proof.
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For a positive integer � ≤ q + 1, define a 4 × � matrix M� by

⎡

⎢
⎢
⎣

u−3
1 u−3

2 . . . u−3
�

u−2
1 u−2

2 . . . u−2
�

u+2
1 u+2

2 . . . u+2
�

u+3
1 u+3

2 . . . u+3
�

⎤

⎥
⎥
⎦ , (8)

where u1, . . . , u� ∈ Uq+1. For r1, . . . , ri ∈ {±2,±3}, let M�[r1, . . . , ri]
denote the submatrix of M� obtained by deleting the rows (ur1

1 , ur1
2 , . . . , ur1

� ), . . . ,
(uri

1 , uri
2 , . . . , uri

� ) of the matrix M�, where 1 ≤ i ≤ 4.

Lemma 3. Let M� be the matrix given by (8) with {u1, . . . , u�} ∈ (
Uq+1

�

)
. Consider

the system of homogeneous linear equations defined by

M�(x1, . . . , x�)T = 0 (9)

Then (9) has a nonzero solution (x1, . . . , x�) in GF(q)� if and only if rank(M�) < �,
where rank (M�) denotes the rank of the matrix M�.

Lemma 4. Let m ≥ 2 be a positive integer, q = 5m and M3 be the matrix given by (8)
with {u1, u2, u3} ∈ (

Uq+1
3

)
. Then rank (M3) = 3.

Proof. Suppose that (M3) < 3. Then det (M3[3]) =
∏

1≤i<j≤3(ui+4uj)

σ3
3,3

(σ3
3,1 +

3σ3,1σ3,2 + σ3,3) = (u1 + u2 + 3u3)(u1 + 2u2 + 2u3)(u1 + 3u2 + u3) = 0, which is
contrary to Lemma 2. This completes the proof.

Lemma 5. Let m ≥ 2 be a positive integer, q = 5m and M4 be the matrix given
by (8) with {u1, u2, u3, u4} ∈ (

Uq+1
4

)
. Then rank (M4) = 3 if and only if σ3

4,2 +
3σ4,3σ4,2σ4,1 + σ2

4,3 + σ2
4,1σ4,4 + 4σ4,2σ4,4 = 0.

Proof. Note that

det(M4) =

∏
1≤i<j≤4(ui + 4uj)

σ3
4,4

(σ3
4,2+3σ4,3σ4,2σ4,1+σ2

4,3+σ2
4,1σ4,4+4σ4,2σ4,4),

which completes the proof.

In this subsection, we will determine the parameters of the cyclic code C{2,3} and
its dual C⊥

{2,3}.

Theorem 1. Let q = 5m withm ≥ 2 being a positive integer. Then the subfield subcode
C⊥

{2,3} over GF(q) has the parameters [q + 1, q − 3, 4]q .



The Projective General Linear Group PGL(2, 5m) 189

Proof. It follows from definitions that the code C⊥
{2,3}|GF(q) has length q + 1. Let α be

a generator of the multiplicative group GF(q2)∗ and define β = αq−1. Then β ∈ Uq+1

is a (q + 1)-th primitive root of unity in the field GF(q2). Let gi(x) denote the minimal
polynomial of βi over GF(q), where i ∈ {2, 3}. Note that gi(x) has only the roots βi and
β−i. We then deduce that g2(x) and g3(x) are pairwise distinct irreducible polynomials
of degree 2. By definition, the generator polynomial of C⊥

{2,3}|GF(q) is g2(x)g3(x) with
degree 4. Thus, C⊥

{2,3}|GF(q) has dimension (q + 1) − 4 = q − 3.
By Lemma 4, we have the minimum distance d of C⊥

{2,3}|GF(q) is at least 4. Next we
will prove that d = 4.

Let {u1, u2, u3, u4} ∈ (
Uq+1
4

)
, Without the loss of generality, we assume that

u1 = ui1 , u2 = ui2 , u3 = ui3 , u4 = ui4 ,

where 1 ≤ i1 < i2 < i3 < i4 ≤ q + 1. Since d ≥ 4, the rank of M(u1, u2, u3, u4)
equals 3, where M(u1, u2, u3, u4) was defined by (9). Let (xi1 , xi2 , xi3 , xi4) ∈ GF(q)4

denote a nonzero solution of
⎡

⎢
⎢
⎣

1 1 1 1
u1 u2 u3 u4

u5
1 u5

2 u5
3 u5

4

u6
1 u6

2 u6
3 u6

4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

xi1

xi2

xi3

xi4

⎤

⎥
⎥
⎦ = 0 . (10)

Since the rank of the matrix M(u1, u2, u3, u4) is 3, all these xij �= 0. Define a vector
c = (c0, c1, . . . , cn) ∈ GF(q)n+1, where cij = xij for j ∈ {1, 2, 3, 4} and ch = 0, for
all h ∈ {0, 1, . . . , n} \ {i1, i2, i3, i4}. It is easily observed that c is a codeword with
Hamming weight 4 in C⊥

{2,3}|GF(q) . The set {ac : a ∈ GF(q)∗} consists of all such
codewords of Hamming weight 4 with nonzero coordinates in {i1, i2, i3, i4}. Hence,
the code C{2,3}

⊥|GF(q) has minimum distance d = 4. Meanwhile, every codeword of

Hamming weight 4 in C{2,3}
⊥|GF(q) with nonzero coordinates in {i1, i2, i3, i4} must

correspond to the set {u1, u2, u3, u4}. This completes the proof.
The minimum-weight codewords in Trq2/q(C{2,3}) are described in the following

lemma.

Lemma 6. Let f(u) = Trq2/q(au2 + bu3) where (a, b) ∈ GF(q2)2 \ {0}. Define

zero(f) = {u ∈ Uq+1 : f(u) = 0},

Then |zero(f)| ≤ 6. Moreover, |zero(f)| = 6 if and only if a = −σ6,1
τ√
σ6,6

and

b = τ√
σ6,6

where {u1, . . . , u6} ∈ Bσ6,2,q+1,τ ∈ GF(q)∗.

Proof. When u ∈ Uq+1, one has

f(u) = Trq2/q(au2 + bu3) =
1
u3

(bu6 + au5 + aqu + bq), (11)

Thus |zero(f)| ≤ 6.
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Assume that |zero(f)| = 6. From (11), there exists {u1, . . . , u6} ∈ (
Uq+1
6

)
such

that f(u) = b
∏6

i=1(u−ui)

u3 . By Vieta,s formula, bσ6,1 = −a, σ6,2 = 0, σ6,3 = 0,
σ6,4 = 0, bσ6,5 = −aq and bσ6,6 = bq. One obtains b = τ√

σ6,6
from bσ6,6 = bq, where

τ ∈ GF(q)∗. Thus a = −σ6,1
τ√
σ6,6

.

Conversely, assume that a = −σ6,1
τ√
σ6,6

and b = τ√
σ6,6

, where {u1, . . . , u6} ∈
Bσ6,2,q+1 and τ ∈ GF(q)∗. Then f(u) = b

∏6
i=1(u−ui)

u3 . Consequently zero(f) =
{u1, . . . , u6} and |zero(f)| = 6. This completes the proof.

Theorem 2. Let q = 5m with m ≥ 2 being a positive integer. Then the trace code
Trq2/q(C{2,3}) has parameters [q + 1, 4, q − 5]q .

Proof. Recall that (6) says that

(
Trq2/q(C{2,3})

)⊥ = C{2,3}
⊥|GF(q) .

Thus Trq2/q(C{2,3}) has dimensioin 4 by Theorem 1. Then we have d = (q + 1) − 6 =
q − 5 by Lemma 6. This completes the proof.

We checked results with Magma [4] in the following examples.

Example 1. Let q = 52. Then Trq2/q(C{2,3}) has parameters [26, 4, 20]25 and the code
C⊥

{2,3}|GF(q) has parameters [26, 22, 4]25.

Example 2. Let q = 53. Then Trq2/q(C{2,3}) has parameters [126, 4, 120]75.

Theorem 3. Let q = 5m with m ≥ 2. Let k be an integer with 1 ≤ k ≤ q + 1
and Ak

(
Trq2/q(C{2,3})

)
> 0. Then Bk

(
Trq2/q(C{2,3})

)
is invariant under the action

of StabUq+1 . In particular, the incidence structure
(
Uq+1,Bk

(
Trq2/q(C{2,3})

))
is a

3-design when k > 3.

Proof. We only need to show that if c ∈ Trq2/q(C{2,3}) and π is a linear
fractional transformation listed in Lemma 1, then there exists a codeword c′ ∈
Trq2/q(C{2,3}) such that Supp(π(c)) = Supp(c′). Denote by c(a2, a3) the codeword(
Trq2/q(a2u

2 + a3u
3)

)
u∈Uq+1

of Trq2/q(C{2,3}), where a2, a3 ∈ GF(q2). We investi-
gate the following three cases for π.

If π is the transformation given by u 	→ u0u, where u0 ∈ Uq+1, then it is clear that
π(c(a2, a3)) = c(a2u

2
0, a3u

3
0). Thus Supp(π(c(a2, a3))) = Supp

(
c(a2u

2
0, a3u

3
0)

)
.

If π is the transformation given by u 	→ u−1, then it is obvious that π(c(a2, a3)) =
c(a2, a3). Thus Supp(π(c(a2, a3))) = Supp(c(a2, a3)).

Let π be the transformation given by u 	→ u+cq

cu+1 where c ∈ GF(q2)∗ \ Uq+1. Write
f(u) = Trq2/q(a2u

2 + a3u
3) and A = cu + 1. Then u + cq = uAq. A standard

computation gives
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f

(
u + cq

cu + 1

)

= Trq2/q

(

a2

(
u + cq

cu + 1

)2

+ a3

(
u + cq

cu + 1

)3
)

= Trq2/q

(
a2(u + cq)2(cu + 1) + a3(u + cq)3

(cu + 1)3

)

= Trq2/q

(
a2u

2A2qA + a3u
3A3q

A3

)

=
a2A

2qAu2 + a3A
3qu3

A3
+

aq
2A

2Aqu2q + aq
3A

3u3q

A3q

=
a2A

5qAu2 + a3A
6qu3 + aq

2A
5Aqu2q + aq

3A
6u3q

A3A3q

=
a2A

5qAu2 + a3A
6qu3 + (a2A

5qAu2 + a3A
6qu3)q

A3A3q

=
1

A3A3q
Trq2/q(a2A

5qAu2 + a3A
6qu3).

(12)

Expanding a2A
5qAu2 yields

a2A
5qAu2

= a2(cu + 1)5q(cu + 1)u2

= a2(c5qu5q + 1)(cu + 1)u2

= a2u
2(c5q+1u5q+1 + c5qu5q + cu + 1)

= a2(c5q+1u5q+3 + c5qu5q+2 + cu3 + u2)

= a2(u2 + cu3 + c5q+1u−2 + c5qu−3).

(13)

Expanding a3A
6qu3 yields

a3A
6qu3

= a3(c6qu6q + 1)u3

= a3(c6qu6q+3 + u3)

= a3(u3 + c6qu−3).

(14)

Combining (13) and (14) gives

Trq2/q(a2A
5qAu2 + a3A

6qu3)

= Trq2/q(a2(u2 + cu3 + c5q+1u−2 + c5qu−3) + a3(u3 + c6qu−3))

= Trq2/q((a2 + aq
2c

5+q)u2 + (a2c + aq
2c

5 + a3 + aq
3c

6)u3).

(15)

Plugging (15) into (12) yields

f

(
u + cq

cu + 1

)
=

1
A3A3q

Trq2/q(a′
2u

2 + a′
3u

3),
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where a′
2 = a2 + aq

2c
5+q and a′

3 = a2c + aq
2c

5 + a3 + aq
3c

6. This clearly forces
Supp(π(c(a2, a3))) = Supp(c(a′

2, a
′
3)). The desired conclusion then follows.

The proof of Theorem 2 gives more, namely

Trq2/q

(

a2

(
u + cq

cu + 1

)2

+ a3

(
u + cq

cu + 1

)3
)

=
1

(cu + 1)3(cu + 1)3q
Trq2/q(a′

2u
2 + a′

3u
3),

(16)

where a2, a3 ∈ GF(q2), c ∈ GF(q2)\Uq+1, a′
2 = a2+aq

2c
5+q and a′

3 = a2c+aq
2c

5+
a3 + aq

3c
6.

The following theorem shows the invariance of the set of the supports of all the
codewords of any fixed weight in C{2,3}

⊥|GF(q) under the action of PGL(2, q).

Theorem 4. Let q = 5m with m ≥ 2. Let k be any integer with 1 ≤ k ≤ q + 1
and Ak

(
C{2,3}

⊥|GF(q)

)
> 0. Then Bk

(
C{2,3}

⊥|GF(q)

)
is invariant under the action

of StabUq+1 . In particular, the incidence structure
(
Uq+1,Bk(C{2,3}

⊥|GF(q))
)
is a 3-

design when k > 3.

Proof. Recall that by (6) we have

(
Trq2/q(C{2,3})

)⊥ = C{2,3}
⊥|GF(q) .

Let w be any codeword of
(
Trq2/q(C{2,3})

)⊥ = C{2,3}
⊥|GF(q) and π be any linear

fractional translation listed in Lemma 1. It is easily seen that if π is a transformation
given by u 	→ u0u or u 	→ 1/u, whereu0 ∈ Uq+1, then

π(w) ∈ C{2,3}
⊥|GF(q). (17)

Assume π is a translation given by u 	→ u+cq

cu+1 where c ∈ GF(q2)∗ \ Uq+1. It is obvious

that π(w) ∈ (
π

(
Trq2/q(C{2,3})

))⊥
. From (16) we conclude that

π
(
Trq2/q(C{2,3})

)
=

(
1

(cu + 1)3q+3

)

u∈Uq+1

· Trq2/q(C{2,3}),

By (1) we have that

(
π

(
Trq2/q(C{2,3})

))⊥ =
(
(cu + 1)3q+3

)
u∈Uq+1

· (
Trq2/q(C{2,3})

)⊥
,

Consequently,

π(w) ∈ (
(cu + 1)3q+3

)
u∈Uq+1

· (
Trq2/q(C{2,3})

)⊥
. (18)

Combining (17) and (18) with Lemma 1 we can assert that the set of all the supports of
C{2,3}

⊥|GF(q) stays invariant under StabUq+1 . This completes the proof.
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4 Summary and Concluding Remarks

In this paper, we investigated two infinite families of cyclic codes of length 5m+1 over
GF(5m) and completely determined their parameters. A code from the first family has
parameters [q + 1, 4, q − 5]q , where q = 5m and m ≥ 2 is an integer. A code from the
second family has parameters [q+1, q − 3, 4]q , where q = 5m and m ≥ 2 is an integer.
3-designs can be obtained from sets of the supports of all codewords of any fixed weight
being invariant under PGL(2, q).
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Abstract. A Private Information Retrieval (PIR) scheme allows users
to retrieve data from a database without disclosing to the server infor-
mation about the identity of the data retrieved. A coded storage in a
distributed storage system with colluding servers is considered in this
work, namely the approach in [6] which considers a storage and retrieval
code with a transitive group and provides binary PIR schemes with the
highest possible rate. Reed-Muller codes were considered in [6]. In this
work we consider cyclic codes and we show that binary PIR schemes
using cyclic codes provide a larger constellation of PIR parameters and
they may outperform the ones coming from Reed-Muller codes in some
cases.

Keywords: Private information retrieval · Cyclic codes · Reed-Muller
codes

1 Introduction

Many protocols protect the user and server from third parties while accessing
the data. Nevertheless, no security measure protects the user from the server. As
a result of this demand, Private Information Retrieval (PIR) protocols emerged
[5]. They allow users to retrieve data from a database without disclosing to the
server information about the identity of the data retrieved. We consider in this
work that data is stored in a Distributed Storage System (DSS), since, if data is
stored in a single database, one can only guarantee information-theoretic privacy
by downloading the full database, which has a high communication cost.

Shah et al. [14] have shown that privacy is guaranteed when one bit more
than the requested file size is downloaded, but it requires many servers. In case
of non-response or a fail from some servers, the PIR scheme should allow servers
to communicate with each other. Hence, it is natural to assume that the servers
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may collude, that is, they may inform each other of their input from the user.
A scheme that addresses the situation where any t servers may collude is called
a t-private information retrieval scheme and it was considered in [7,17]. This
approach, that we consider in this work, uses Coding Theory and the security and
performance depend on the parameters of linear codes and their star products
(also called Shur products).

The PIR maximum possible rate was examined without collusion in [15] and
with collusion in [16]. The PIR capacity obtained without colluding servers and
using a Maximum Distance Separable (MDS) code was given in [1]. In [7], a
PIR scheme with colluding servers for Generalized Reed Solomon (GRS) codes
is given. Their PIR scheme rate is based on the minimum distance of a star
product of the storage code and the retrieval code.

The use of a GRS, or an MDS code, requires working over a big base field.
In order to address this issue, since binary base fields are desirable for practical
implementations, [6] provided a PIR scheme that is based on binary Reed-Muller
(RM) codes. They observed that the scheme reaches the highest possible rate if
the codes used to define the PIR scheme have a transitive automorphism group,
which is the case of RM codes.

In this work we propose to use cyclic codes to construct PIR schemes in the
same fashion as [6]. Cyclic codes have also a transitive automorphism group and
they can be defined over a binary (or small) finite field as well. Moreover, the star
product of two cyclic codes is a cyclic code and its parameters can be computed
[4]. Namely, the star product of two cyclic codes is given by the sum of their
generating sets and we can compute its dimension and estimate its minimum
distance considering cyclotomic cosets.

The main contributions of this work are given in Sect. 5. Our aim is to opti-
mize the number of databases that can collude without disclosing to the server
information about the identity of the data retrieved. In order to show the good-
ness of cyclic codes for PIR schemes, we first provide pairs of cyclic codes C
and D, the storage code and retrieval code, such that the parameters of C, D,
D⊥, C � D and (C � D)⊥ are -at the same time- optimal or the best known. As
we will recall in Sect. 2, their parameters determine the performance of the PIR
scheme defined by C and D. Since a punctured RM code is a cyclic code, we may
obtain PIR schemes using punctured RM codes by using cyclic codes. Moreover,
we show that by using cyclic codes we obtain a larger constellation of possible
parameters of binary PIR schemes. The construction of PIR schemes and the
computations of their parameters follow from a detailed analysis of cyclotomic
cosets. Then we focus on the privacy and on the rate of a PIR scheme since the
upload cost in a PIR scheme can be neglected [1]. More concretely, in case that
the storage code C has dimension 2, we obtain binary PIR schemes that greatly
outperform the ones obtained using RM codes, more concretely they protect
against a more significant number of colluding servers. Finally, we compare our
schemes with shortened RM codes and we show that in this case the PIR schemes
using cyclic codes outperform them as well, namely they offer more privacy for
a fixed rate.
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2 General Private Information Scheme

This section reviews some basic definitions of linear codes and briefly recalls PIR
schemes (see [6,7,17] for further details). We denote by Fq the finite field with q
elements. A linear code C is a linear subspace of Fn

q . We denote its parameters
by [n, k, d].

Definition 1. Given two linear codes C and D of length n over Fq, we define
their star product (or Shur product) C � D as the linear code in F

n
q spanned

by the set {c � d | c ∈ C, d ∈ D}, where � denotes the component-wise product
c � d = (c1d1, . . . , cndn).

2.1 PIR Schemes

A PIR scheme consists of three stages; Data Storage, File Request and Response
Process. In the Data Storage Process, files are uploaded to a DSS. In the File
Request, users decide the file they want to retrieve, called the desired file, and
according to it, they select queries that are sent to the servers. In the final
Response Process, servers ‘operate’ the files with the queries generating a matrix
of responses that are sent back to the user. It should be noted that the servers
do not have any information about the file requested by the user.

Data Storage Process. We have r-files, each file has ρ-rows, k-columns, and
the elements of the files are in Fq. Since the number of files is r, the total file
can be understood as rρ × k matrix denoted by A, and each file is denoted by
ai, where i ∈ {1, . . . , r}.

The files are stored in a DSS. In order to upload the files into the servers, files
are encoded by a k-dimensional storage code C ⊆ F

n
q with parameters [n, k, d].

Concerning encoding, we multiply the matrix A, which covers all files, by GC

the generator matrix of the linear code C and we obtain the matrix Y := A ·GC .
Since A is a ρr × k matrix, Y has ρr rows and n columns.

Request and Response Process. Let’s assume that the user wants to retrieve
the file ai. Then the user chooses a random query Qi and sends this query to
the servers. Each server computes the inner product of Qi

j and Yj , where j is
the server index, i.e., jth-server computes 〈Qi

j , Yj〉. Then, servers send back the
response vectors to the user.

The file is divided into parts, and a part is obtained in each round. With
the final round, all parts of the file are completed. All the parts of the file
from several servers are gathered to get the whole file. Therefore, the PIR rate
is defined as the ratio of the information obtained during the process to the
downloaded information.

If t-colluding servers communicate with each other and they cannot access
any information about the desired file, it is said that the PIR scheme is resistant
to t-colluding servers. The following theorem is the key for finding the number
of colluding servers and the system’s PIR rate.
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Theorem 1 ([6]). If the automorphism groups of C and C � D are transitive
on the set {1, . . . , n}, then there exists a PIR scheme with rate dim(C�D)⊥

n that
resists a (dD⊥ − 1)–collusion attack. That is, the privacy is t = dD⊥ − 1.

We will compare Reed-Muller codes, considered in [6], and cyclic codes in
Sect. 5. For this reason, the next section gives a brief exposition of RM codes.

3 Reed-Muller Codes

The binary rth order Reed-Muller Code, denoted by RM(r,m), is defined to be

RM(r,m) = {ev(f) : f ∈ F2[x1, ..., xm], deg(f) ≤ r} , (1)

where ev(f) is the evaluation of f at all points in F
m
2 .

Remark 1. RM(r,m) is a linear code of length n = 2m, dimension k =∑r
i=0

(
m
i

)
, and minimum distance 2m−r [12]. One has that RM(r1,m) �

RM(r2,m) = RM(r1 + r2,m), where r1 + r2 ≤ m.

Since if we shorten or puncture RM codes at the position evaluating at 0 we
obtain cyclic codes [18], the following two definitions will be helpful in Sect. 5.

Definition 2. The shortened code at the position evaluating at 0 of a binary
Reed-Muller code is denoted by the linear [2m − 1, k − 1, 2m−r] code C•. The
punctured code at the position evaluating at 0 of a binary Reed-Muller code is
denoted by the linear [2m − 1, k, 2m−r − 1] code C•.

4 Cyclic Codes

In this section, we will be concerned with basic cyclic code definitions and com-
pute the star product of two cyclic codes.

Definition 3. A [n, k] linear code C is said to be cyclic if every cyclic shift
of a codeword c = (c0, c1, . . . , cn−1) ∈ C is also codeword in C, that is c =
(cn−1, c0, . . . , cn−2) ∈ C.

Theorem 2 ([11]). A linear code C is a cyclic code if and only if C is isomor-
phic, as a Fq-linear space, to an ideal in the ring Rn = Fq[x]/〈xn − 1〉.
In order to have a semisimple algebra, i.e., non-repeated roots for the polynomial
xn − 1 and a 1–1 correspondence between it factors and its roots, from now on
we will require that gcd(n, q) = 1.

Definition 4. Let C be a cyclic code in Rn. We call g(x) the generator polyno-
mial of C if there exists a unique monic polynomial g(x) such that C = 〈g(x)〉.
Clearly, g(x) is a divisor of xn − 1 in Fq[x].
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Definition 5. A set J ⊆ {0, . . . , n − 1} is said to be the defining set of C =
〈g(x)〉 if J = { j ∈ Z/nZ | g(αj) = 0 } and a set I is called the generating set of
C = 〈g(x)〉 if I = { j ∈ Z/nZ | g(αj) �= 0 }, where α is a primitive element of
Fq.

Remark 2. Let g(x) be a generator polynomial of cyclic code C then g(x) =∏
j∈J(x − αj) and g(x) = xn−1∏

i∈I(x−αi) . Furthermore, one has that
dim(C) = n − |J | = |I|.
Remark 3. Assume that J is a defining set of the code C, then the generator
polynomial of C⊥ is h(x) =

∏
i∈−I(x − αi), where −I is the set of additive

inverses in Z/nZ of the elements in I.

Definition 6. The cyclotomic coset containing s, denoted by Us, is defined to be
the set {s, sq, . . . , sqi} (mod n) where i is the smallest integer such that qi ≡ 1
(mod n).

We have the following result about the star product of cyclic codes.

Theorem 3. Let I1 and I2 be the generating sets of the cyclic codes C and D,
respectively. The star product of C � D is generated by

gC�D =
xn − 1

∏
j∈I1+I2

(x − αj)
, (2)

where + denotes the Minkowski sum on sets, that is,

I1 + I2 := {i1 + i2 | i1 ∈ I1, i2 ∈ I2}.

Proof. We will follow a similar way to [4, Theorem III.3], which proves this result
for C � C. It is well known from [2] that a cyclic code can be defined as follows,
consider K the extension field of Fq such that xn − 1 splits in linear factors in
K[x]. For a set M ⊆ {1, . . . , n − 1} let B(M) be the K-vector space

B(M) =

{

(f(α0), f(α1), . . . , f(αn−1)) | f =
∑

i∈M

fix
i ∈ K[x]

}

.

For a cyclic code C with defining set I, as a byproduct of Delsarte’s theorem,
one has that C is equal to the subfield subcode B(−I)|Fn

q
= B(−I)∩ F

n
q (see [4,

Lemma 5]). Now note that the vector space obtained by the extension of scalars
of C, denoted by K ⊗ C, is a K-cyclic code with the same dimension as B(−I)
(given by |I|) and, henceforth (K ⊗ C) = B(−I). Note that the extension by
scalars commutes with the star product (see [13, Lemma 2.23]) thus it is clear
that C�D = (K⊗(C�D))|Fn

q
= (K⊗C�K⊗D)|Fn

q
= (B(−(I1)) � B(−(I2))) |Fn

q
=

B(−(I1 + I2))|Fn
q
. ��

Proposition 1 (BCH Bound). Let J be a defining set of a cyclic code C with
minimum distance d. If J contains δ−1 consecutive elements {i, . . . , i+δ−2} ⊆
J , where i, δ ∈ Z/nZ, then d ≥ δ.
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The following example illustrates the previous statements on cyclic codes.

Example 1. Set q = 2, n = 31. Let IC be a generating set and let JC be a
defining set of the code C. The first cyclotomic cosets (modulo 31) are:

U0 = {0}, U1 = {1, 2, 4, 8, 16}, U3 = {3, 6, 12, 17, 24}.

Consider C the cyclic code with defining set JC = U0∪U1∪U3. One has that JC

contains {0, 1, 2, 3, 4}, thus the BCH bound of C is equal to 6. The dimension
of C is equal to k = |IC | = 31− 11 = 20. Therefore, the parameters of this code
are [31, 20,≥ 6].

5 PIR Schemes from Cyclic Codes

In this section, we focus on cyclic codes towards obtaining PIR schemes over
small fields and compute the code parameters with cyclotomic cosets. First, we
will analyze the codes obtained from computer search, their cyclotomic cosets,
PIR rates, and the number of colluding servers.

The formulation of the amount of colluding servers and the PIR rate is given
in Theorem 1. This theorem is valid for PIR schemes arising from cyclic codes
since the automorphism group of a cyclic code is also transitive [10]. Table 1
gives some cyclic codes, the rate of the corresponding PIR scheme arising from
them, and the maximum number of servers that may collude, that is, the privacy
parameter t.

Table 1. Computer search experiments

C D D⊥ C ∗ D (C ∗ D)⊥ Privacy Rate

[127, 8, 63] [127, 29, 43] [127, 98, 10] [127, 113, 5] [127, 14, 56] 9 14/127

[127, 8, 63] [127, 42, 32] [127, 85, 13] [127, 112, 6] [127, 15, 55] 12 15/127

[127, 15, 55] [127, 15, 55] [127, 112, 6] [127, 106, 7] [127, 21, 48] 5 21/127

[127, 15, 55] [127, 21, 48] [127, 106, 7] [127, 112, 6] [127, 15, 55] 6 15/127

[127, 21, 48] [127, 21, 48] [127, 106, 7] [127, 112, 6] [127, 15, 55] 6 15/127

For instance, the first row in Table 1 considers C as a storage code with
parameters [127, 8, 63] and D as a retrieval code with parameters [127, 29, 43].
Applying Theorem 1, we can conclude that this scheme is secure against 9-
colluding servers since d(D⊥) = 10 and that the PIR’s rate is dim(C�D)⊥

n = 14
127 .

We have obtained the codes in Table 1 by computer search, their generating
set can be found in Table 2. For instance, Consider the codes in the first row, the
generating set of the code C consists of the union of the cyclotomic cosets U1

and U31, and the one of D consists of U0, U5, U23, U27, U31. As mentioned before,
the generating set of star products of cyclic codes are given by the Minkowski
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sum of their generating sets. Hence, the generating set of C � D consists of all
cyclotomic cosets except U13 and U47.

From now on, for sake of brevity, we will denote as U{s1,...,st} the union of
the t cyclotomic cosets given by U{s1,...,st}=

⋃t
j=1 Usi

.

Table 2. Cyclotomic cosets used for codes in Table 1.

C D

U{0,31} U{0,5,23,27,31}
U{0,11} U{1,3,11,23,43,55}
U{0,5,43} U{0,23,43}
U{0,23,63} U{19,31,55}
U{1,10,29} U{7,31,55}

Table 3 classifies the codes in Table 1 according to the best-known linear codes
in the database [8], which gives lower and upper bounds on the parameters of
linear codes. As it is shown in the following table, their parameters are the best
known or optimal.

Table 3. Classification of codes in Table 1

C D D⊥ C � D (C � D)⊥

Optimal Best − known Best − known Optimal Optimal

Optimal Best − known Best − known Optimal Best − known

Best − known Best − known Optimal Best − known Best − known

Best − known Best − known Best − known Optimal Best − known

Best − known Best − known Best − known Optimal Best − known

5.1 Comparison with Punctured and Shortened RM Codes

We will show now why cyclic codes may provide better performance than RM
codes. Even though a RM code C is not cyclic, C• and C• are cyclic codes [18].
Therefore, we compare the PIR rate and privacy given by a cyclic code with the
corresponding punctured and shortened RM codes.

First, let us focus on the comparison with punctured RM codes. For length
127 and 255, we fixed as storage code a [127, 8, 63], [255, 9, 172] cyclic code and
collected the star product of some codes in Table 4 and Table 6, respectively. We
remark that in Table 4 the BCH bound of the retrieval codes (D) equal to their
minimum distance (Table 5).
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Table 4. Comparison with punctured RM codes (Shadow rows)

C D D⊥ C ∗ D (C ∗ D)⊥ Privacy Rate

[127, 8, 63] [127, 8, 63] [127, 119, 4] [127, 29, 31] [127, 98, 7] 3 98/127

[127,8,63] [127,22,47] [127,105,8] [127,64,15] [127,63,16] 7 63/127
[127, 8, 63] [127, 29, 31] [127, 98, 8] [127, 64, 15] [127, 63, 16] 7 63/127

[127,8,63] [127,50,27] [127,77,16] [127,99,7] [127,28,32] 15 28/127
[127,8,63] [127,57,23] [127,70,16] [127,99,7] [127,28,32] 15 28/127
[127, 8, 63] [127, 64, 15] [127, 63, 16] [127, 99, 7] [127, 28, 32] 15 28/127

[127,8,63] [127,85,13] [127,42,32] [127,120,3] [127,7,64] 31 7/127
[127,8,63] [127,92,11] [127,35,32] [127,120,3] [127,7,64] 31 7/127
[127, 8, 63] [127, 99, 7] [127, 28, 32] [127, 120, 3] [127, 7, 64] 31 7/127

Table 5. Cyclotomic cosets used for codes in Table 4.

C D

U{0,1} U{0,1}
U{0,1,5,9}
U{0,1,5,9,3}
U{0,1,5,9,3,11,19,21}
U{0,1,5,9,3,11,19,21,7}
U{0,1,5,9,3,11,19,21,7,13}
U{0,1,5,9,3,11,19,21,7,13,23,27,43}
U{0,1,5,9,3,11,19,21,7,13,23,27,43,29}
U{0,1,5,9,3,11,19,21,7,13,23,27,29,43,15}

Unbold rows in Table 4 and Table 6 display the parameters of those codes
obtained by the star product of two cyclic codes, equivalent to the punctured
RM codes. Bold rows are obtained by the star product of a cyclic code and
the fixed code C. Consequently, when the rate and the storage codes are fixed,
cyclic codes provide the same parameters as punctured RM ones except D with
parameters [255, 77, 31] which gives a better rate than RM codes. However, for
a fixed-length n, the dimension of RM codes overgrow, thus for a fixed C � D,
there are not many values that the dimensions of the code C and D may take.
Hence, the first advantage of using cyclic codes in the PIR scheme is to easily
provide a larger constellation of parameters.

As an illustration of this fact, in the fourth and fifth rows of Table 4, the
dimension of D can be 50 or 57 other than 64, or the dimension of D can be 85
or 92, different than 99. Thus, we have different options for the same rate and
privacy. The following remark will show the method we used for obtaining the
codes in Table 4 and Table 6.
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Table 6. Comparison with punctured RM codes (Shadow rows)

C D D⊥ C ∗ D (C ∗ D)⊥

P
ri
va

cy

R
at
e

[255, 9, 127] [255, 9, 127] [255, 246, 4] [255, 37, 63] [255, 218, 8] 3 218
255

[255,9,127] [255,25,≥ 63] [255,230,≥ 8] [255,93] [255,162] ≥ 7 162
255

[255,9,127] [255,33,≥ 63] [255,222,≥ 8] [255,93] [255,162] ≥ 7 162
255

[255, 9, 127] [255, 37, 63] [255, 218, 8] [255, 93, 31] [255, 162, 16] 7 162
255

[255,9,127] [255,77,≥ 31] [255,178,≥ 16] [255,161] [255,94] ≥ 15 94
255

[255,9,127] [255,85,≥ 31] [255,170,≥ 16] [255,163] [255,92] ≥ 15 92
255

[255, 9, 127] [255, 93, 31] [255, 162, 16] [255, 163, 15] [255, 92, 32] 15 92
255

[255,9,127] [255,133,≥ 15] [255,122,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255,9,127] [255,141,≥ 15] [255,114,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255,9,127] [255,149,≥ 15] [255,106,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255,9,127] [255,153,≥ 15] [255,102,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255,9,127] [255,161,≥ 15] [255,94,≥ 32] [255,219] [255,36] ≥ 31 36
255

[255, 9, 127] [255, 163, 15] [255, 92, 32] [255, 219, 7] [255, 36, 64] 31 36
255

[255,9,127] [255,211,≥ 7] [255,44,≥ 64] [255,247] [255,8] ≥ 63 8
255

[255, 9, 127] [255, 219, 7] [255, 36, 64] [255, 247, 3] [255, 8, 128] 63 8
255

Remark 4. The r-th order punctured generalized RM code is the cyclic code
length n = qm − 1 with generator polynomial

g(x) :=
∏

i∈I

(x − αi), where I = {i : wq(i) ≤ (q − 1)c}, (3)

for some c ∈ Z
+ and wq(i) is the number of non-zeros in the q-ary expression

of i. Now using Equation (3), we have created the unbolded row in Table 4 and
Table 6. Namely, if we add or remove some cyclotomic classes to the punctured
RM code’s generating sets, we can get another cyclic code, which provides the
same rate and privacy. While making these additions and removals of cosets, we
use Remark 3 to decide the heuristics of which cyclotomic cosets we select. Note
that the minimum distance of the code D⊥ provides the privacy of the scheme,
so we wish d(D⊥) − 1 being as big as possible. For this purpose, we set −I to
be a large set of consecutive elements.
For instance, the third row in Table 4, the generating set of C is comprised of U0

and U1, and D is comprised of U0, U1, U3, U5, U9. The generating set of code D
in the second row consists of U0, U1, U5, U9 by removing U3. We have removed
U3, because U3 does not change the BCH bound of the code. Moreover, in the
fourth row in Table 6, the generating set of D is comprised of U0, U1, U17, U9,
U5, U3. Removing U17 is not affecting the BCH bound of the code and, thus we
obtain the parameter in the third row.

We also achieved a second advantage, more privacy, by reducing the dimen-
sion of the storage code C, which is not equivalent to punctured Reed-Muller
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Table 7. Cyclotomic cosets used for codes in Table 6.

C D

U{0,1} U{0,1}
U{0,1,3,5}
U{0,1,3,5,9}
U{0,1,3,5,9,17}
U{0,1,3,5,9,17,7,11,13,19,25}
U{0,1,3,5,9,17,7,11,13,19,21,25}
U{0,1,3,5,9,17,7,11,13,19,21,25,37}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,45,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,45,51,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53,85}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53,85,31,47,55,59,61,87}
U{0,1,3,5,9,17,7,11,13,19,21,25,37,15,23,27,29,39,43,45,51,53,85,31,47,55,59,61,87,91}

codes. We remark that the upload cost in the PIR scheme can be neglected
[1], thus we focus on the value d(D⊥) − 1, which provides privacy, and on
dim(C � D)⊥/n, which gives the PIR rate. Therefore, we can reduce the dimen-
sion of the code C.

Example 2. Consider the punctured RM codes CRM and DRM with parameters
[63, 7, 31] and [63, 42, 7], respectively. One has that the product code CRM �DRM

has parameters [63, 57, 3]. The PIR scheme given using CRM and DRM protects
against dD⊥ −1 = 15 collusions. Consider now the cyclic code C with parameters
[63, 2, 42], where the generating set of C is equal to U21, and the cyclic code D
with parameters [63, 51, 3]. One has that C � D = CRM � DRM . In this case
dD⊥ − 1 = 19. Therefore, our cyclic code proposal protects against a more
significant number of colluding servers for the same rate.

Remark 5. Note that for length 63, there are two good cyclic codes in terms of
the PIR parameters, one has dimension 2 (see Example 2) and the second one,
D with parameters [63, 40, 7], provides the same rate and privacy of a RM code.
In the case of length 31, there are no binary cyclic codes that improve the rate
or privacy of a RM code other than the ones equivalent to them. This is why we
consider binary cyclic codes of length greater than ors equal to 127.
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Table 8. Reducing the dimension of the storage

C D D⊥ (C � D)⊥ Privacy Rate

[255, 2, 170] [255, 192] [255, 63,20+45] [255,19] 64 19/255

[255, 2, 170] [255, 195] [255, 60,15+51] [255,8] 65 8/255

[255, 2, 170] [255, 198] [255, 57,15+53] [255,8] 67 8/255

[255, 2, 170] [255, 200] [255, 55,29+41] [255,11] 69 11/255

[255, 2, 170] [255, 201] [255, 54,40+32] [255,9] 71 9/255

[255, 2, 170] [255, 202] [255, 53,28+44] [255,8] 71 8/255

[255, 2, 170] [255, 204] [255, 51,14+60] [255,11] 73 11/255

Table 9. Cyclotomic cosets used for codes in Table 8, where V is the set of all cyclo-
tomic cosets for q = 2, modulo n = 255.

C D

U85 V \ (U{0,1,11,13,17,21,25,61,85,87})

V \ (U{1,13,25,27,29,31,45,119})

V \ (U{0,1,7,13,25,31,39,45})

V \ (U{0,1,13,17,25,29,31,63,85})

V \ (U{39,55,61,63,85,87,119,127})

V \ (U{0,1,9,13,25,31,111,119})

V \ (U{0,1,11,13,29,47,85,111})

Table 8 contains more examples where, by using cyclic codes, the dimension
of the storage code has been reduced. In this table, the minimum distance of D⊥,
which is related to the privacy, was first evaluated by the BCH bound and then
its real value was computed using the powerful minimum distance algorithm
in [9] (for instance, by 20 + 15 we mean that the BCH bound is equal to 20
and the real minimum distance is equal to 35). The table displays the privacy
(number of colluding servers) and rate of the PIR scheme obtained using a
code C with length 255 and dimension 2. Note that the PIR scheme obtained
using the Punctured RM codes CRM and D⊥

RM with parameters [255, 9, 127] and
[255, 36, 64], respectively, protects against a maximum of 63 colluding servers.
Moreover, the PIR rate of this scheme is equal to 8/255. In Table 8, the code
pairs in all rows protect against more than 63 collusions. The cyclotomic cosets
used for constructing the codes in Table 8 are given in Table 9.

In Table 10, shortened RM codes at the evaluation of 0 and cyclic codes with
length 127 are analyzed. Again, we specify bold rows for star product of cyclic
codes and unbold rows for star product of shortened RM codes. The storage
code C with parameters [127, 7, 64], equivalent to a shortened RM, is fixed. The
only difference with respect to Table 4 is that we do not include the cyclotomic
coset U0 in the generating set of C.
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Table 10. Comparison with shortened RM codes (Shadow rows)

C D D⊥ C ∗ D (C ∗ D)⊥

P
ri

va
cy

R
at

e

[127, 7, 64] [127, 7, 64] [127, 120, 3] [127, 28, 32] [127, 99, 7] 2 99
127

[127,7,64] [127,22,47] [127,105,8] [127,63,16] [127,64,15] 7 64
127

[127, 7, 64] [127, 28, 32] [127, 99, 7] [127, 63, 16] [127, 64, 15] 6 64
127

[127,7,64] [127,50,23] [127,77,16] [127,98,8] [127,29,31] 15 29
127

[127,7,64] [127,57,23] [127,70,16] [127,98,8] [127,29,31] 15 29
127

[127, 7, 64] [127, 63, 16] [127, 64, 15] [127, 98, 8] [127, 29, 31] 14 29
127

[127,7,64] [127,85,13] [127,42,32] [127,119,4] [127,8,63] 31 8
127

[127,7,64] [127,92,11] [127,35,32] [127,119,4] [127,8,63] 31 8
127

[127, 7, 64] [127, 98, 8] [127, 29, 31] [127, 119, 4] [127, 8, 63] 30 8
127

Table 11. Cyclotomic cosets used for codes in Table 10.

C D

U{1} U{1}
U{0,1,5,9}
U{1,5,9,3}
U{0,1,5,9,3,11,19,21}
U{0,1,5,9,3,11,19,21,7}
U{1,5,9,3,11,19,21,7,13}
U{0,1,5,9,3,11,19,21,7,13,23,27,43}
U{0,1,5,9,3,11,19,21,7,13,23,27,43,29}
U{1,5,9,3,11,19,21,7,13,23,27,29,43,15}

One has that the PIR schemes using cyclic codes protect against one more
colluding server than shortened RM codes, as it can be seen at Table 10. More-
over, in this way we may increase the constellation of possible parameters. For
instance, for a case rate equal to 29/127, the PIR scheme coming from a cyclic
code protects against 15-collusion, but the one from a shortened RM code pro-
tects against 14-collusion. The cyclotomic cosets used for constructing the codes
in Table 10 are given in Table 11.

6 Conclusion

By using cyclic codes, we provide binary PIR schemes with colluding servers
in the fashion of [6]. We provide a family of optimal binary PIR schemes. Our
PIR schemes have the advantage, with respect to PIR schemes from MDS codes,
that they can be defined over a binary field. Moreover, they provide a larger
constellation of parameters than the binary PIR schemes using Reed-Muller
codes and they even outperform them in some cases. Note also that we come up
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with a reduced cost in generating the query vectors since a smaller dimension
of the retrieval code means that less randomness will be needed to be generated
by the user. All the examples in the paper were generated using the computer
algebra system Magma [3].

Acknowledgements. We would like to thank F. Hernando (Universitat Jaume I) for
providing us the code of the algorithm in [9].
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Abstract. In this paper, we construct two families of linear codes over
the ring Fq +uFq by the defining set approach, where q is a prime power
and u2 = 0. We completely determine their Lee weight distributions,
which shows that these codes have few Lee weights. Via the Gray map,
we obtain a family of near Griesmer codes over Fq, which is also distance-
optimal, and a family of linear codes over Fq, whose optimality is charac-
terized with an explicit computable criterion using the Griesmer bound.

Keywords: Optimal linear code · Few-weight code · Lee weight
distribution

1 Introduction

Let Fqm be the finite field with qm elements and F
∗
qm = Fqm\{0}, where q is

a power of a prime p and m is a positive integer. An [n, k, d] linear code C
over Fq is a k-dimensional subspace of Fn

q with minimum Hamming distance d.
Let Ai denote the number of codewords with Hamming weight i in a code C
of length n. The weight enumerator of C is defined by 1 + A1z + A2z

2 + · · · +
Anzn. The sequence (1, A1, A2, · · · , An) is called the weight distribution of C. A
code is said to be a t-weight code if the number of nonzero Ai in the sequence
(A1, A2, · · · , An) is equal to t. Linear codes with few weights have applications
in secret sharing schemes [1,3], authentication codes [5,7], association schemes
[2], strongly regular graphs and some other fields.

An [n, k, d] linear code C over Fq is said to be distance-optimal if no [n, k, d+1]
code exists (i.e., this code has the largest minimum distance for given length n
and dimension k) and it is called almost distance-optimal if there exists an
[n, k, d + 1] distance-optimal code. An [n, k, d] linear code C is called optimal
(resp. almost optimal) if its parameters n, k and d (resp. d+1) meet a bound on
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linear codes with equality [10]. The Griesmer bound [9,16] for an [n, k, d] linear
code C over Fq is given by

n ≥ g(k, d) :=
k−1∑

i=0

� d

qi
�,

where �·� denotes the ceiling function. An [n, k, d] linear code C is called a Gries-
mer code (resp. near Griesmer code) if its parameters n (resp. n − 1), k and d
achieve the Griesmer bound.

In 2007, Ding and Niederreiter [6] introduced a nice and generic way to
construct linear codes via trace functions. Let D ⊂ Fqm and define

CD = {ca = (Trq
m

q (ax))x∈D : a ∈ Fqm},

where Trq
m

q (·) is the trace function from Fqm to Fq. Then CD is a linear code of
length n := |D| over Fq. The code CD is called a trace code over Fq and the set
D is called the defining set of CD. Let R be a finite commutative ring and Rm

be an extension of R of degree m. A trace code over R with defining set L ⊂ Rm

is defined by
CL = {ca = (Tr(ax))x∈L : a ∈ Rm} (1)

where Tr(·) is a linear function from Rm to R. Using the construction above,
many attempts have been made in this direction to obtain good linear codes
over rings, see [12–15,17] for example.

The finite rings of the form R = Fq + uFq, u2 = 0, have been used widely
as alphabets in certain codes. Let R = Fqm + uFqm be an extension of R. The
following cases of trace codes have been studied in the previous works:

1) When R = F2 + uF2, u2 = 0; R = F2m + uF2m , L = F
∗
2m + uF2m , the code

CL is a 2-weight code with respect to the Lee weight (see [14]).
2) When R = Fp + uFp, u2 = 0; R = Fpm + uFpm , L = Q + uFpm , where p is

an odd prime and Q is the set of all square elements of F∗
pm , the code CL is

a 2-weight or 3-weight code with respect to the Lee weight (see [15]).
3) When R = Fp + uFp, u2 = u; R = Fpm + uFpm , L = Q + uF∗

pm and L =
F

∗
pm + uF∗

pm , where p is an odd prime and Q is the set of all square elements
of F∗

pm , the code CL is a 2-weight or few-weight code with respect to the Lee
weight (see [13]).

4) When R = Fq + uFq, u2 = 0; R = Fqm + uFqm , L = C
(e,r)
0 + uFqm , where e

is a divisor of q − 1 and C
(e,r)
0 is the cyclotomic class of order e, the code CL

is a 2-weight or few-weight code with respect to the Lee weight (see [12]).
5) When R = F2 + uF2, u2 = 0; R = F

m
2 + uFm

2 , L = Δ1 + uFm
2 \Δ2 and

L = F
m
2 \Δ1+uFm

2 \Δ2, where Δ1 and Δ2 are simplicial complexes generated
by a single maximal element, the code CL is a few-weight code with respect
to the Lee weight (see [17]).

It should be noted that some optimal linear codes have been obtained from the
above constructions.



210 Z. Hu et al.

In this paper, let R = Fq + uFq with u2 = 0 and R = Fqm + uFqm . The
objective of this paper is to investigate two families of linear codes CL defined
by (1) with the following defining sets respectively:

1) L = L1 = Fqr + u(Fqm\Fqs);
2) L = L2 = Fqm\Fqr + u(Fqm\Fqs),

where m > 1, r and s are positive integers satisfying r|m and s|m. Note that, to
some extent, these two families of linear codes generalize the results of [17] (see
Remark 3 for details). Through some detailed calculations on certain exponential
sums, we determine the Lee weight distributions of these codes CL completely,
which shows that CL1 is 3-weight and CL2 is 6-weight. Moreover, under the Gray
map φ, we show that the codes φ(CL1) over Fq are near Griesmer codes and
also distance-optimal codes. For the codes φ(CL2) over Fq, we characterize the
optimality of φ(CL2) with an explicit computable criterion and consequently
obtain many distance-optimal linear codes over Fq.

2 Preliminaries

In this section, we introduce some basic notation, definitions and lemmas which
are needed for the subsequent section. Let q be a power of a prime p and denote
the canonical additive character of Fq by

χ(x) = ζ
Trqp(x)
p ,

where ζp is a primitive complex p-th root of unity and Trqp(·) is the trace function
from Fq to Fp.

Let R = Fq + uFq with u2 = 0. A linear code C of length n over R is an
R-submodule of Rn. For any a + ub ∈ R where a, b ∈ Fq, the Gray map φ from
R to F

2
q is defined by

φ : R → F
2
q, a + ub �→ (b, a + b).

Any vector x ∈ Rn can be written as x = a + ub where a,b ∈ F
n
q . The map φ

is a bijection, which can be extended naturally from Rn to F
2n
q as follows:

φ : Rn → F
2n
q , x = a+ ub �→ (b,a+ b).

The Hamming weight wt(a) of a vector a ∈ F
n
q is the number of nonzero coordi-

nates in a. The Lee weight wtL(a+ub) of a vector a+ub ∈ Rn is the Hamming
weight of its Gray image φ(a+ ub) as follows:

wtL(a+ ub) = wt(b) + wt(a+ b). (2)

The Lee distance of x,y ∈ Rn is defined as wtL(x− y). One can check that the
Gray map is an isometry from (Rn, dL) and (F2n

q , dH).
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Let R = Fqm + uFqm with u2 = 0. Let F be the Frobenius operator over R
defined by F (a + ub) = aq + ubq. The trace function Tr(·) is defined by

Tr =
m−1∑

i=0

F i : R → R, a + ub �→
m−1∑

i=0

F i(a + ub) =
m−1∑

i=0

(aqi + ubq
i

).

By the definition above, it can be readily verified that

Tr(a + ub) = Trq
m

q (a) + uTrq
m

q (b) (3)

where Trq
m

q (·) denotes the trace function from Fqm to Fq.
With the discussion above, we show the following lemma to compute the Lee

weight of the trace code CL defined by (1) for a general defining set L.

Lemma 1. Let L = D1+uD2 = {a+ub : a ∈ D1, b ∈ D2} where D1,D2 ⊂ Fqm .
Then CL defined by (1) is a code of length |L| over R, and for any a+ub ∈ R\{0},
the Lee weight of the codeword ca+ub in CL is wtL(ca+ub) = 2|L| − Ω where

Ω =
1
q

∑

v∈Fq

∑

y∈D2

χ(vTrq
m

q (ay))
∑

x∈D1

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x))).

Proof. Observe that the length of CL is |L|. Let a + ub ∈ R and x + uy ∈ L
where x ∈ D1 and y ∈ D2. By (3) and (2), for (a, b) 	= (0, 0), the Lee weight
wtL(ca+ub) of the codeword ca+ub in CL is equal to

wtL((Tr((a + ub)(x + uy)))x∈D1,y∈D2)

=wtL((Trq
m

q (ax) + uTrq
m

q (ay + bx))x∈D1,y∈D2)

=wt((Trq
m

q (ay + bx))x∈D1,y∈D2) + wt((Trq
m

q (ay + (a + b)x))x∈D1,y∈D2).

Further, using the orthogonal property of nontrivial additive characters of Fq,
for (a, b) 	= (0, 0), the Lee weight wtL(ca+ub) can be expressed as

wtL(ca+ub) = 2|L| − Ω

where

Ω =
1
q

∑

x∈D1

∑

y∈D2

∑

v∈Fq

(χ(vTrq
m

q (ay + bx)) + χ(vTrq
m

q (ay + (a + b)x)))

=
1
q

∑

v∈Fq

∑

y∈D2

χ(vTrq
m

q (ay))
∑

x∈D1

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x))).

This completes the proof. 
�
To compute the Lee weight distributions of the codes constructed in this

paper, the following lemma will be needed in the sequel.
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Lemma 2. Let m > 1, r < m and s < m be positive integers with r|m, s|m and
gcd(r, s) = t. Then for z ∈ Fqr , we have

|{a ∈ Fqm : Trq
m

qs (a) = 0,Trq
m

qr (a) = z}| =
{

qm−r−s+t, if Trq
r

qt (z) = 0;
0, if Trq

r

qt (z) 	= 0.

Proof. Using the orthogonal property of nontrivial additive characters of Fq, we
have

|{a ∈ Fqm : Trq
m

qs (a) = 0,Trq
m

qr (a) = z}|
=

1
qr+s

∑

x∈Fqm

∑

w∈Fqs

χ(Trq
s

q (wTrq
m

qs (x)))
∑

v∈Fqr

χ(Trq
r

q (v(Trq
m

qr (x) − z)))

=
1

qr+s

∑

w∈Fqs

∑

v∈Fqr

χ(Trq
r

q (−vz))
∑

x∈Fqm

χ(Trq
m

q ((w + v)x))

= qm−r−s
∑

v∈Fqt

χ(Trq
t

q (vTrq
r

qt (z)))

=

{
qm−r−s+t, if Trq

r

qt (z) = 0;
0, if Trq

r

qt (z) 	= 0.

This completes the proof. 
�

3 Two Classes of Optimal Linear Codes

In this section, we study the Lee weight distributions of two classes of linear
codes over R of the form (1). Under the Gray map, we investigate the optimality
of the images of these linear codes over R and consequently we can obtain two
classes of optimal linear codes over Fq.

3.1 The First Class of Optimal Linear Codes

In this subsection, we investigate the linear codes CL1 of the form (1) with the
defining set

L1 = Fqr + u(Fqm\Fqs). (4)

Theorem 1. Let m > 1, r < m and s < m be positive integers satisfying r|m
and s|m, and gcd(r, s) = t. Then CL1 defined by (1) and (4) is a 3-weight code
of length qr(qm − qs) and size qm+r, and its Lee weight distribution is given by
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Weight w Multiplicity Aw

0 1

2(q − 1)qm+r−1 (qm−r−s+t − 1)

2(q − 1)qr−1(qm − qs) qm+r − qm−r−s+t(2qr−t − 1)

(q − 1)qr−1(2qm − qs) 2qm−r−s+t(qr−t − 1)

Moreover, the code φ(CL1) is a near Griesmer code and it is distance-optimal.

Proof. Clearly, the length of CL1 is qr(qm−qs). By Lemma 1, for a+ub ∈ R\{0},
the Lee weight of the codeword ca+ub in CL1 is

wtL(ca+ub) = 2qr(qm − qs) − Ω

where

Ω =
1
q

∑

v∈Fq

∑

y∈Fqm\Fqs

χ(vTrq
m

q (ay))
∑

x∈Fqr

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x))).

Note that
∑

y∈Fqm\Fqs

χ(vTrq
m

q (ay)) =
∑

y∈Fqm

χ(vTrq
m

q (ay)) −
∑

y∈Fqs

χ(vTrq
s

q (Trq
m

qs (a)y)).

To determine the value of Ω, we consider the following three cases.
Case (1): a = 0. Then we have

Ω =
2
q
(qm − qs)

∑

v∈Fq

∑

x∈Fqr

χ(vTrq
r

q (Trq
m

qr (b)x))

=

{
2qr(qm − qs), if Trq

m

qr (b) = 0;
2qr−1(qm − qs), if Trq

m

qr (b) 	= 0.

Thus, for a = 0, one gets

wtL(ca+ub) =

{
0, if Trq

m

qr (b) = 0;
2(q − 1)qr−1(qm − qs), if Trq

m

qr (b) 	= 0.

Case (2): a 	= 0 and Trq
m

qs (a) = 0. Then we have

Ω =2qr−1(qm − qs) − qs−1
∑

v∈F∗
q

∑

x∈Fqr

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x)))

=

⎧
⎨

⎩

2qr(qm−1 − qs), if Trq
m

qr (b) = Trq
m

qr (a + b) = 0;
2qr−1(qm − qs), if Trq

m

qr (b) 	= 0 and Trq
m

qr (a + b) 	= 0;
2qm+r−1 − (q + 1)qr+s−1, otherwise.
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Thus, for a 	= 0 and Trq
m

qs (a) = 0, wtL(ca+ub) is equal to
⎧
⎨

⎩

2(q − 1)qm+r−1, if Trq
m

qr (b) = Trq
m

qr (a + b) = 0;
2(q − 1)qr−1(qm − qs), if Trq

m

qr (b) 	= 0, Trq
m

qr (a + b) 	= 0;
(q − 1)qr−1(2qm − qs), otherwise.

(5)

Case (3): Trq
m

qs (a) 	= 0. Then we have Ω = 2qr−1(qm − qs) which indicates

wtL(ca+ub) = 2(q − 1)qr−1(qm − qs).

With the discussion above, wtL(ca+ub) = 0 if and only if a = 0 and Trq
m

qr (b) =
0, which indicates A0 = qm−r. This shows that the size of CL1 is qm+r. Moreover,
CL1 has three possible nonzero weights as follows: w1 = 2(q − 1)qm+r−1, w2 =
2(q − 1)qr−1(qm − qs) and w3 = (q − 1)qr−1(2qm − qs).

Using Lemma 2, it follows from (5) that

Aw1 = |{(a, b) ∈ F
2
qm : a 	= 0,Trq

m

qs (a) = Trq
m

qr (b) = Trq
m

qr (a + b) = 0}|
= qm−r|{a ∈ F

∗
qm : Trq

m

qs (a) = Trq
m

qr (a) = 0}|
= qm−r(qm−s−r+t − 1).

Moreover, we have

N1 := |{(a, b) ∈ F
2
qm : a 	= 0,Trq

m

qs (a) = 0,Trq
m

qr (b) = 0 and Trq
m

qr (a + b) 	= 0}|
= |{(a, b) ∈ F

2
qm : a 	= 0,Trq

m

qs (a) = 0,Trq
m

qr (b) = 0}| − Aw1

= q2m−2r−s+t(qr−t − 1) (6)

and by denoting a + b = −c, it gives

N2 := |{(a, b) ∈ F
2
qm : a 	= 0,Trq

m

qs (a) = 0,Trq
m

qr (b) 	= 0 and Trq
m

qr (a + b) = 0}|
= |{(a, c) ∈ F

2
qm : a 	= 0,Trq

m

qs (a) = 0,Trq
m

qr (a + c) 	= 0 and Trq
m

qr (c) = 0}|
=N1. (7)

Thus, one gets Aw3 = 2q2m−2r−s+t(qr−t − 1) and consequently Aw2 = q2m −
Aw0−Aw1−Aw3 = q2m−q2m−s−2r+t(2qr−t−1). Then the Lee weight distribution
of CL1 follows.

Employing the Gray map on the linear code CL1 , we can obtain a linear code
φ(CL1) over Fq. It can be easily verified that the code φ(CL1) has parameters
[2qr(qm − qs),m + r, 2(q − 1)qr−1(qm − qs)]. By the Griesmer bound, we have

g(m + r, d) =
m+r−1∑

i=0

�2(q − 1)qr−1(qm − qs)
qi

�

=
s+r−1∑

i=0

2(q − 1)(qm+r−i−1 − qs+r−i−1) +
m+r−1∑

i=s+r

2(q − 1)qm+r−i−1 − 1

=2qm+r − 2qs+r − 1
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which indicates that φ(CL1) is a near Griesmer code. Similarly, we have

g(m + r, d + 1) =
m+r−1∑

i=0

�2(q − 1)qr−1(qm − qs) + 1
qi

�

=
{
2qm+r − 2qs+r + s + r, if q = 2;
2qm+r − 2qs+r + s + r − 1, if q > 2,

which implies that φ(CL1) is distance-optimal since 2qr(qm − qs) < g(m, d + 1).
This completes the proof. 
�
Remark 1. Let S be the simplex code of dimension m + r over Fq in the non-
projective case and then the length of S is n = qm+r − 1. Let T be the subset of
{1, . . . , n} such that S punctured on {1, · · · , n}\T is the simplex code of dimen-
sion r + s in the nonprojective case. Denote the concatenation of two codes S
punctured on T by C. One can check that C has the same parameters as φ(CL1)
in Theorem 1 and C is a two-weight code. Thus although φ(CL1) and C have the
same parameters, they are inequivalent since φ(CL1) is a three-weight code.

Example 1. Let q = 3, m = 4, r = 2 and s = 1. Magma experiments show that
φ(CL1) is a [1404, 6, 936] linear code with the weight enumerator 1 + 684z936 +
36z954 + 8z972, which is consistent with our result in Theorem 1. This code is a
near Griesmer code and it is distance-optimal due to the Griesmer bound.

3.2 The Second Class of Linear Codes

In this subsection, we investigate the linear codes CL2 of the form (1) with the
defining set

L2 = Fqm\Fqr + u(Fqm\Fqs). (8)

Theorem 2. Let m > 1, r < m and s < m be positive integers satisfying r|m
and s|m, and t = gcd(r, s). Then CL2 defined by (1) and (8) is a 6-weight code
of length (qm−qr)(qm−qs) and size q2m, and its Lee weight distribution is given
by

Weight w Multiplicity Aw

0 1

2(q − 1)qm−1(qm − qs) qm−r − 1

2(q − 1)(qm−1 − qr−1)(qm − qs) q2m−2r−s+t(q2r+s−t − 2qr−t + 1)

(q − 1)qm−1(2qm − 2qr − qs) 2(qm−r−s+t − 1)

(q − 1)(qm−1 − qr−1)(2qm − qs) 2qm−r−s+t(qr−t − 1)

2(q − 1)qm−1(qm − qr − qs) (qm−r−s+t − 1)(qm−r − 2)

(q − 1)(2qm(qm−1 − qr−1 − qs−1) + qr+s−1) 2qm−r−s+t(qr−t − 1)(qm−r − 1)
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Moreover, for qm−r > 2, the code φ(CL2) is distance-optimal if m+min{r, s}+
δ > 2qr+s, where

δ =

⎧
⎨

⎩

1, if q = 2;
−1, if r = s and q > 4;
0, otherwise.

Proof. The length of CL2 is (qm−qr)(qm−qs). By Lemma 1, for a+ub ∈ R\{0},
the Lee weight of the codeword ca+ub in CL2 is

wtL(ca+ub) =2(qm − qr)(qm − qs) − Ω

where

Ω =
1
q

∑

v∈Fq

∑

y∈Fqm\Fqs

χ(vTrq
m

q (ay))

∑

x∈Fqm\Fqr

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x))).

Note that

Ω1 :=
∑

y∈Fqm\Fqs

χ(vTrq
m

q (ay)) =
∑

y∈Fqm

χ(vTrq
m

q (ay)) −
∑

y∈Fqs

χ(vTrq
m

q (ay))

and

Ω2 :=
∑

x∈Fqm\Fqr

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x)))

=
∑

x∈Fqm

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x)))

−
∑

x∈Fqr

(χ(vTrq
m

q (bx)) + χ(vTrq
m

q ((a + b)x))).

One can check that Ω1 = qm − qs and Ω2 = 2(qm − qr) if v = 0. Thus, we
only need compute Ω1 and Ω2 for the case v ∈ F

∗
q in the following. To further

determine the value of Ω, we consider the following three cases.
Case (1): a = 0. Then for v ∈ F

∗
q , we have Ω1 = qm − qs and

Ω2 =

⎧
⎨

⎩

2(qm − qr), if b = 0;
−2qr, if b 	= 0 and Trq

m

qr (b) = 0;
0, if Trq

m

qr (b) 	= 0.

Thus one gets

Ω =

⎧
⎨

⎩

2(qm − qr)(qm − qs), if b = 0;
2(qm−1 − qr)(qm − qs), if b 	= 0 and Trq

m

qr (b) = 0;
2(qm−1 − qr−1)(qm − qs), if Trq

m

qr (b) 	= 0
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which leads to

wtL(ca+ub) =

⎧
⎨

⎩

0, if b = 0;
2(q − 1)qm−1(qm − qs), if b 	= 0, Trq

m

qr (b) = 0;
2(q − 1)(qm−1 − qr−1)(qm − qs), if Trq

m

qr (b) 	= 0
(9)

Case (2): a 	= 0 and Trq
m

qs (a) = 0. Then we have Ω1 = −qs if v ∈ F
∗
q . To

compute Ω2, we consider the following three cases:
(i) For b = 0 and a + b 	= 0, it gives

Ω2 =

{
qm − 2qr, if Trq

m

qr (a + b) = 0;
qm − qr, if Trq

m

qr (a + b) 	= 0,

which implies

wtL(ca+ub) =

{
(q − 1)qm−1(2qm − 2qr − qs), if Trq

m

qr (a + b) = 0;
(q − 1)(qm−1 − qr−1)(2qm − qs), if Trq

m

qr (a + b) 	= 0.

(ii) For b 	= 0 and a + b = 0, it leads to

Ω2 =

{
qm − 2qr, if Trq

m

qr (b) = 0;
qm − qr, if Trq

m

qr (b) 	= 0,

which implies

wtL(ca+ub) =

{
(q − 1)qm−1(2qm − 2qr − qs), if Trq

m

qr (b) = 0;
(q − 1)(qm−1 − qr−1)(2qm − qs), if Trq

m

qr (b) 	= 0.

(iii) For b 	= 0 and a + b 	= 0, one gets

Ω2 =

⎧
⎨

⎩

−2qr, if Trq
m

qr (b) = 0 and Trq
m

qr (a + b) = 0;
0, if Trq

m

qr (b) 	= 0 and Trq
m

qr (a + b) 	= 0;
−qr, otherwise,

which implies

wtL(ca+ub) =

⎧
⎨

⎩

w5, if Trq
m

qr (b) = 0 and Trq
m

qr (a + b) = 0;
w2, if Trq

m

qr (b) 	= 0 and Trq
m

qr (a + b) 	= 0;
w6, otherwise

where w2 = 2(q − 1)(qm−1 − qr−1)(qm − qs), w5 = 2(q − 1)qm−1(qm − qr − qs)
and w6 = (q − 1)(2q2m−1 − 2qm+r−1 − 2qm+s−1 + qr+s−1).

Case (3): Trq
m

qs (a) 	= 0. Then we have Ω1 = 0 for v ∈ F
∗
q and consequently

Ω = 2(qm−1 − qr−1)(qm − qs). Thus it leads to wtL(ca+ub) = 2(q − 1)(qm−1 −
qr−1)(qm − qs).

With the discussion above, wtL(ca+ub) = 0 if and only if a = b = 0, which
implies that the size of CL2 is q2m. Moreover, CL2 has six possible nonzero weights
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as follows: w1 = 2(q − 1)qm−1(qm − qs), w2 = 2(q − 1)(qm−1 − qr−1)(qm − qs),
w3 = (q−1)qm−1(2qm−2qr−qs), w4 = (q−1)(qm−1−qr−1)(2qm−qs), w5 = 2(q−
1)qm−1(qm − qr − qs) and w6 = (q − 1)(2q2m−1 − 2qm+r−1 − 2qm+s−1+ qr+s−1).
Next, we compute the Lee weight distribution of CL2 .

From (9), it gives Aw1 = |{b ∈ F
∗
qm : Trq

m

qr (b) = 0}| = qm−r −1. From (i) and
(ii) of Case (2), we have

Aw3 = |{(a, b) ∈ F
2
qm : a 	= 0, b = 0,Trq

m

qs (a) = Trq
m

qr (a) = 0}|
+ |{(a, b) ∈ F

2
qm : a 	= 0, b 	= 0, a + b = 0,Trq

m

qs (a) = Trq
m

qr (b) = 0}|
=2|{a ∈ F

∗
qm :,Trq

m

qs (a) = Trq
m

qr (a) = 0}|
=2(qm−r−s+t − 1)

by Lemma 2 and

Aw4 = |{(a, b) ∈ F
2
qm : a 	= 0, b = 0,Trq

m

qs (a) = 0}|
+ |{(a, b) ∈ F

2
qm : ab 	= 0, a + b = 0,Trq

m

qs (a) = 0}| − Aw3

=2|{a ∈ F
∗
qm : Trq

m

qs (a) = 0}| − Aw3

=2qm−r−s+t(qr−t − 1).

From (iii) of Case (2), it follows that Aw5 = (qm−r−s+t − 1)(qm−r − 2) since

|{(a, b) ∈ F
2
qm : ab 	= 0, a + b 	= 0,Trq

m

qs (a) = Trq
m

qr (a) = Trq
m

qr (b) = 0}|
= |{(a, b) ∈ F

2
qm : ab 	= 0,Trq

m

qs (a) = Trq
m

qr (a) = Trq
m

qr (b) = 0}|
− |{(a, b) ∈ F

2
qm : ab 	= 0, a + b = 0,Trq

m

qs (a) = Trq
m

qr (a) = Trq
m

qr (b) = 0}|
=(qm−r−s+t − 1)(qm−r − 1) − |{a ∈ F

∗
qm : Trq

m

qs (a) = Trq
m

qr (a) = 0}|
=(qm−r−s+t − 1)(qm−r − 2)

where the last equality holds due to Lemma 2. Moreover, similar to the com-
putation of (7) in Theorem 1, it gives Aw6 = 2qm−r−s+t(qr−t − 1)(qm−r − 1)
since

|{(a, b) ∈ F
2
qm : ab 	= 0, a + b 	= 0,Trq

m

qs (a) = Trq
m

qr (b) = 0,Trq
m

qr (a + b) 	= 0}|
= |{(a, b) ∈ F

2
qm : ab 	= 0,Trq

m

qs (a) = 0,Trq
m

qr (a) 	= 0,Trq
m

qr (b) = 0}|
=(|{a ∈ F

∗
qm : Trq

m

qs (a) = 0}| − |{a ∈ F
∗
qm : Trq

m

qs (a) = Trq
m

qr (a) = 0}|)
|{b ∈ Fqm : b 	= 0,Trq

m

qr (b) = 0}|
=(qm−s − qm−r−s+t)(qm−r − 1) = qm−r−s+t(qr−t − 1)(qm−r − 1).

Thus, we have Aw2 = q2m − 1 − Aw1 − Aw3 − Aw4 − Aw5 − Aw6 = q2m−2r−s+t

(q2r+s−t − 2qr−t + 1). Then the Lee weight distribution of CL2 follows.
It’s easy to check that the code φ(CL2) over Fq has parameters [2(qm −

qr)(qm − qs), 2m]. Note that w5 < w1, w2, w3, w4, w6. If qm−r > 2, which implies
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Aw5 > 0, then the minimum distance of φ(CL2) is d = 2(q−1)qm−1(qm−qr−qs).
By the Griesmer bound, we have

g(2m, d) =
{
2(q2m − qm+r − qm+s) − 1, if r = s and q 	= 3;
2(q2m − qm+r − qm+s), otherwise

and g(2m, d + 1) = 2(q2m − qm+r − qm+s) + m +min{r, s} + δ. Then φ(CL2) is
distance-optimal if m +min{r, s} + δ > 2qr+s. This completes the proof. 
�
Remark 2. If r = t and qm−r > 2, the code CL2 in Theorem 2 reduces to a
4-weight code.

Example 2. Let q = 2, m = 7, r = 1 and s = 1. Magma experiments show
that φ(CL2) is a [31752, 14, 15872] linear code with the weight enumerator 1 +
3906z15872 + 12288z15876 + 126z16000 + 63z16128, which is consistent with our
result in Theorem 2. This code is distance-optimal due to the Griesmer bound.

Remark 3. Let F2r be a subfield of F2m and {α1, . . . , αm} be a basis of F2m over
F2 where {α1, . . . , αr} is a basis of F2r over F2. Then F2m is isomorphic to F

m
2

under the map

ψ : Fm
2 → F2m , (x1, . . . , xm) �→ α1x1 + · · · + αmxm, ∀x1, . . . , xm ∈ F2.

Thus, by the definition of simplicial complexes (see [4] and [11]), F2r can
be viewed as a simplicial complex of F2m generated by the maximal element
{1, . . . , r}. Therefore, to some extent, our results in Theorem 1 and Theorem 2
generalize the results of [17] to a general R = Fq + uFq, u2 = 0.

4 Conclusions

In this paper, we constructed two families of linear codes CL1 and CL2 over
Fq + uFq, u2 = 0 with defining sets associated with subfields. To some extent,
these two families of linear codes generalize the codes in [17] from F2 + uF2,
u2 = 0 to a general Fq + uFq, u2 = 0. By computing certain exponential sums,
we completely determined the Lee weight distributions of these two families of
codes, which shows that they have few Lee weights. Moreover, under the Gray
map φ, we showed that the linear codes φ(CL1) over Fq are near Griesmer codes
and also distance-optimal codes, and we characterized the optimality of the linear
codes φ(CL2) over Fq with an explicit computable criterion using the Griesmer
bound, which allows many distance-optimal linear codes over Fq to be produced.
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Abstract. Non-malleable codes are introduced to protect the communi-
cation against adversarial tampering of data, as a relaxation of the error-
correcting codes and error-detecting codes. To explicitly construct non-
malleable codes is a central and challenging problem which has drawn
considerable attention and been extensively studied in the past few years.
Recently, Rasmussen and Sahai built an interesting connection between
non-malleable codes and (non-bipartite) expander graphs, which is the
first explicit construction of non-malleable codes based on graph theory
other than the typically exploited extractors. So far, there is no other
graph-based construction for non-malleable codes yet. In this paper, we
aim to explore more connections between non-malleable codes and graph
theory. Specifically, we first extend the Rasmussen-Sahai construction to
bipartite expander graphs. Accordingly, we establish several explicit con-
structions for non-malleable codes based on Lubotzky-Phillips-Sarnak
Ramanujan graphs and generalized quadrangles, respectively. It is shown
that the resulting codes can either work for a more flexible split-state
model or have better code rate in comparison with the existing results.

Keywords: Non-malleable code · Biregular graph · Expander graph ·
Split-state model

1 Introduction

Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs [19,20],
are resilient to adversarial tampering on arbitrary number of symbols which is
beyond the scope of error-correcting and error-detecting codes. Consider the
following “tampering experiment”. A message m ∈ M is encoded via a (ran-
domized) encoding function enc : M → X , yielding a codeword c = enc(m).
However the codeword c is modified by an adversary using some tampering
function f ∈ F with f : X → X to an erroneous word c̃ = f(c), and c̃ is
decoded using a deterministic function dec, resulting m̃ = dec(c̃). In terms of
the practical application, the reliability m̃ = m is desired. An error-correcting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Mesnager and Z. Zhou (Eds.): WAIFI 2022, LNCS 13638, pp. 221–236, 2023.
https://doi.org/10.1007/978-3-031-22944-2_14
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code with minimum distance d can guarantee the reliable communication with
respect to the family F which satisfies that for f ∈ F the Hamming distance
between c̃ = f(c) and c is at most �(d−1)/2�. However it is impossible to achieve
the reliability using error-correcting codes if the tampering family F is large. In
order to deal with this, Dziembowski et al. [19] proposed the non-malleable codes
(with respect to F), which ensure that either the tampered codeword is correctly
decoded, i.e., m̃ = m, or the decoded message m̃ is completely unrelated to the
original message m. As remarked in [19] and [20], the concept of non-malleable
codes is in a spirit of non-malleability proposed by Dolev, Dwork and Naor [16]
in cryptographic primitives. Informally, the non-malleability in the context of
encryption requires that given the ciphertext it is impossible to generate a dif-
ferent ciphertext so that the respective plaintexts are related [16].

It is known that no non-malleable code exists if the tampering family F is the
entire space of functions. Thus the study on non-malleable codes has focused on
the specific families F . One typical tampering family is with the split-state model,
which has also been investigated in the context of leakage cryptography [12,18].
Roughly speaking, this model assumes that the encoded memory/state of the
system is partitioned into two parts and adversaries can arbitrarily tamper the
data stored in each part independently. More precisely, each message is encoded
into a word c = (L,R) ∈ L × R and adversaries try to tamper it using some
functions g : L → L and h : R → R which change c to c̃ = (g(L), h(R)) ∈ L×R.
Moreover, if |L| = |R|, we call it equally-sized split-state model.

To explicitly construct non-malleable codes is a fundamental and challeng-
ing problem. In the literature, explicit non-malleable codes for the split-state
model have been derived based on two-source extractors and additive combi-
natorics, see [1–7,10,11,17,26,27] for example. Notably, Dziembowski, Kazana
and Obremski [17] pointed out: “This brings a natural question if we could
show some relationship between the extractors and the non-malleable codes
in the split-state model. Unfortunately, there is no obvious way of formaliz-
ing the conjecture that non-malleable codes need to be based on extractors”.
Recently, Rasmussen and Sahai [32] discovered that (non-bipartite) expander
graphs could provide non-malleable codes for the split-state model, which in
some sense answers Dziembowski-Kazana-Obremski’s question in [17]. Inspired
by [32], we are interested with exploring more graph-theoretic constructions
for split-state non-malleable codes. More precisely, we shall study the following
problem.

Problem 1. Based on graph theory, provide explicit constructions of non-
malleable codes for the split-state model.

Indeed, Rasmussen and Sahai [32] provided an elegant answer to Problem 1.
However we noticed that the construction in [32] cannot be directly transferred
to the general split-state model. Inspired by this, we initially extend the con-
struction in [32] to bipartite graphs. Specifically, in this paper, we first establish a
coding scheme based on bipartite graphs. Then we prove that when the underly-
ing bipartite graph is an (r, s)-biregular graph with the second largest eigenvalue
μ, our coding scheme provides O

(
μ3/2
√

rs

)
-non-malleable codes for the split-state
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Table 1. Explicit graph-based ε-non-malleable codes in this paper and [32]

Ref. |L| |R| Code rate Comments

[32, Sec. C] q3 q3 1
24 log2(1/ε)+O(1)

q = p2, p is a prime

Cor. 2 Θ(p5/2 log(p)) Θ(p5/2 log(p)) 1
20 log2(1/ε)+O(log log(1/ε))

p is an odd prime

Table 2. Code rates of non-malleable codes based on bipartite graphs with n vertices,
where q is a prime power

Ref. #vertices n |L| |R| Code rate Minimum rate for n
(|L| = |R| = n/2)

Theorem 5 2q2(q + 1) (q + 2)q2 q3
1

log2(q
6 + 2q5)

1

log2(q
6 + 2q5 + q4)

Theorem 6 (q3 + q2 + 2)(q5 + 1) (q2 + 1)(q5 + 1) (q3 + 1)(q5 + 1)
1

log2(q
15 + O(q14))

1

log2(q
16 + O(q15))

model which is not necessarily to be equally-sized (see Theorem 3). This can
be seen as an extension of the coding scheme in [32] in the sense that we could
deduce the codes for equally-sized split-state model in [32] as special cases (see
Remark 1). Based on this, we provide several more solutions to Problem 1 by
means of Lubotzky-Phillips-Sarnak Ramanujan graphs and generalized quad-
rangles (see Tables 1 and 2). In particular, the resulting non-malleable codes
can either work for more flexible non-equally-sized split-state model (see Theo-
rems 5, 6) or have better code rate (see Theorem 4, Corollary 2) in comparison
with the non-malleable codes in [32, Section C]. In particular, for a given size
of graphs, codes for non-equally-sized split-state model in general realize larger
code rate than the rate of codes for equally-sized split-state model (see Table 2
and Sect. 4).

The remainder of this paper is organized as follows. Section 2 briefly reviews
non-malleable codes and basics in graph theory. Section 3 provides the coding
scheme based on bipartite graphs and discusses its non-malleability. Section 4
analyzes the code rate of the established non-malleable codes. Section 5 presents
several explicit constructions for non-malleable codes. Section 6 concludes this
paper.

2 Preliminaries

In this section we recall the notion of non-malleable codes and some useful basics
in graph theory. Throughout this paper, let x ← X denote that the random
variable x sampled uniformly from a set X . Let ⊥ denote a special symbol.

For positive-valued functions f and g over N, we say f = O(g) as n → ∞
if there exists a constant C > 0 that f(n) ≤ Cg(n) holds for any sufficiently
large n. Similarly f = Ω(g) as n → ∞ if there exists a constant C > 0 that
f(n) ≥ Cg(n) holds for any sufficiently large n. In particular f = Θ(g) as n → ∞
if Ω(g) = f = O(g) holds. Also f = o(g) as n → ∞ if lim

n→∞ f(n)/g(n) = 0.
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2.1 Non-malleable Codes

Let M be a set of messages and X a set of codewords. A coding scheme is a pair
of functions (enc,dec), where enc : M → X is a randomized encoding function,
and dec : X → M ∪ {⊥} is a deterministic decoding function. Assume that for
all m ∈ M,

Pr[dec(enc(m)) = m] = 1,

where the probability is taken over the randomness of enc.
Let A,B be two random variables over the same set X . Then the statistical

distance between A and B is defined as

Δ(A,B) :=
1
2

∑

x∈X

∣
∣
∣
∣Pr[A = x] − Pr[B = x]

∣
∣
∣
∣.

Definition 1 (Split-state non-malleable codes). In the split-state model,
assume X = L × R is the product set of sets L and R. Let F be a set of
functions from L×R to itself, where each f ∈ F can be represented as f(L,R) =
(g(L), h(R)) for all (L,R) ∈ L×R with some g : L → L and h : R → R. Then a
coding scheme (enc,dec) such that enc : M → L×R and dec : L×R → M∪{⊥}
is called an ε-non-malleable code with respect to F if for every f ∈ F , there exists
a probability distribution Df on M∪{same∗,⊥} such that for every m ∈ M, we
have Δ(Am

f , Bm
f ) ≤ ε, where for m ∈ M and f ∈ F , let Am

f and Bm
f be events

defined as follows.

Am
f :=

{
(L,R) ← enc(m);

Output dec(g(L), h(R))

}
,

Bm
f :=

{
m̃ ← Df ;

Ifm̃ = same∗ output m else output m̃

}
.

The symbol “same∗” means that the decoded message is equal to the original
message (tampering corrected). Hereafter, as in [17] and [32], the symbol “⊥”
from Definition 1 will be dropped since it usually denotes the situation when the
decoding function detects tampering and outputs an error message, which is not
dealt in this paper. As mentioned in [17], this would be not so problematic for
practical applications.

Definition 2 (Code rate). For a coding scheme C with the set of messages M
and the set of codewords X , the code rate R(C) is defined as

R(C) :=
log2 |M|
log2 |X | .

In particular if M = {0, 1}κ and X = {0, 1}n then R(C) is the ratio of the
message length κ and codeword length n.
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This paper focuses on single-bit non-malleable codes, i.e., M = {0, 1}. It is
shown in [17] that single-bit non-malleable codes can be formulated as in the
following Theorem 1 as well.

Theorem 1 [17]. Let (enc,dec) be a coding scheme with enc : {0, 1} → X and
dec : X → {0, 1}. Let F be a set of functions from X to itself. Then (enc,dec) is
an ε-non-malleable code with respect to F if and only if it holds for every f ∈ F
that

1
2

∑

b∈{0,1}
Pr

[
dec

(
f(enc(b))

)
= 1 − b

]
≤ 1

2
+ ε

where the probability is over the uniform choice of b and the randomness of enc.

2.2 Expander Graphs

Throughout this paper, we assume that all graphs are undirected and simple,
i.e., without multiple edges and loops. Let G = (V,E) denote a graph G with
vertex set V and edge set E. Let G = (V1, V2, E) be a bipartite graph with a
partition (V1, V2) of vertex set and edge set E ⊂ {{v1, v2} : v1 ∈ V1, v2 ∈ V2}. For
convenience, we identify G = (V1, V2, E) with an orientation

−→
G = (V1, V2,

−→
E )

where
−→
E = {(v1, v2) : {v1, v2} ∈ E} ⊂ V1 × V2.

We call
−→
G the associated orientation of G.

We say a vertex has degree d if it connects exactly d edges. A graph G is called
a d-regular graph if every vertex has degree d. A bipartite graph G = (V1, V2, E)
is called an (r, s)-biregular graph if every vertex of V1 and V2 has degree r and
s, respectively. Clearly, for an (r, s)-biregular graph G = (V1, V2, E) and its
associate orientation

−→
G = (V1, V2,

−→
E ), the following equation holds.

|E| = |−→E | = r|V1| = s|V2|. (1)

Let G = (V,E) be a graph with n vertices. Then the adjacency matrix of
G, denoted by A(G), is a |V | × |V | binary matrix such that the (u,w)-entry is
1 if and only if {u,w} ∈ E. Clearly, A(G) is a symmetric matrix and thus has
exactly n real eigenvalues with multiplicity, denoted by λ1 ≥ λ2 ≥ · · · ≥ λn.

Lemma 1 (e.g. [9]). Let G be a graph with n vertices.

1. If G is d-regular, then λ1 = d and λn ≥ −d, where λn = −d if and only if G
is bipartite.

2. If G is (r, s)-biregular, then λ1 =
√

rs and λn = −√
rs.
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By Lemma 1, the largest eigenvalue of a (bi-)regular graph is always deter-
mined. However, the second largest eigenvalue typically has rich properties. For
a d-regular graph G, denote λ(G) := max

2≤i≤n
|λi|. For an (r, s)-biregular graph G,

denote
μ(G) := max

2≤i≤n−1
|λi|.

An (r, s)-biregular graph G is a μ-spectral expander if μ(G) ≤ μ. It has the
following nice expansion property.

Proposition 1 [37]. Let G = (V1, V2, E) be an (r, s)-biregular graph which
is a μ-spectral expander. For a subset S ⊂ V1, define the neighbour of S as
N(S) := {u ∈ V2 : u is adjacent to some vertex in S}, and let ρ(S) := |S|

|V1| .
Then for every subset S ⊂ V1,

|N(S)|
|S| ≥ r2

ρ(S)(rs − μ2) + μ2
.

By Proposition 1, it is readily seen that if G is a μ-spectral expander with
small μ, then G has a good expansion property and thus we are interested in
how μ(G) can be small.

Lemma 2 [24]. Suppose that G is a sufficiently large graph. Then the followings
hold.

(1) If G is d-regular, then λ(G) = Ω(
√

d).
(2) If G is (r, s)-biregular, then μ(G) = Ω(

√
r + s).

3 Codes from Bipartite Graphs

In this section we provide a bipartite graph based coding scheme and show that
it produces non-malleable codes.

3.1 A Coding Scheme

First we propose a coding scheme based on bipartite graphs.

Construction 2. Let G = (V1, V2, E) be a bipartite graph and
−→
G = (V1, V2,

−→
E )

the associated orientation of G. Then the associated graph code CG := (encG,
decG) consists of the functions

encG : {0, 1} → V1 × V2, decG : V1 × V2 → {0, 1}
such that

encG(b) :=

{
(u,w) ← (V1 × V2) \ −→

E if b = 0;
(u,w) ← −→

E if b = 1,

decG(v1, v2) :=

{
0 if (v1, v2) /∈ −→

E ;
1 if (v1, v2) ∈ −→

E .
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Remark 1. Rasmussen and Sahai [32] designed a coding scheme based on a graph
G = (V,E) so that the space of codewords is V × V , but it works only for
equally-sized split-state model with |L| = |R| = |V |. On the other hand, our
code can be applied to a more flexible split-state model, i.e. |L| = |V1| may not
be necessarily equal to |R| = |V2|. An advantage of such model is discussed in
Sect. 4 afterwards.

3.2 Non-malleability

We show that the coding scheme in Construction 2 based on biregular spectral
expanders can produce non-malleable codes for the split-state model.

Theorem 3. Let G = (V1, V2, E) be an (r, s)-biregular graph with n vertices
which is a μ-spectral expander. Suppose that r = r(n), s = s(n) with r, s → ∞ as
n → ∞ (hence μ = μ(n) → ∞ by Lemma 2). Assume that |E| = Ω

(
(rs)2 log(rs)

μ

)

(n → ∞). Let F be the set of all functions f = (g, h) with g : V1 → V1 and
h : V2 → V2, where f(v1, v2) := (g(v1), h(v2)) for any (v1, v2) ∈ V1 × V2. Then

the code CG is an O
(

μ
3
2√
rs

)
-non-malleable code with respect to F as n → ∞.

The proof of Theorem 3 is referred to Sect. 3.3.

Remark 2. Suppose that G is an (r, s)-biregular graph with s ≥ r, s = o(r2)
and μ(G) = O(

√
s). Then Theorem 3 guarantees that the code CG is an ε-

non-malleable code with ε = O(s1/4/r1/2), where s1/4/r1/2 = o(1) by the
assumption on r and s. On the other hand, according to Lemma 2, the quantity
ε = O(s1/4/r1/2) in Theorem 3 is best possible up to a constant (i.e. the order
of the magnitude of ε cannot be reduced in general).

The following corollary follows from Theorem 3 and (1).

Corollary 1. Let G = (V1, V2, E) be a bipartite d-regular graph with |V1| =
|V2| = n/2 which is a μ-spectral expander. Suppose that n = Ω

(
log(d)·d3

μ

)
and

F is as in Theorem 3. Then the code CG is an O
(

μ3/2

d

)
-non-malleable code with

respect to F .

Remark 3. Corollary 1 actually includes the explicit construction of non-
malleable codes by Rasmussen and Sahai [32, Section C]. Indeed, for a finite
abelian group X and a subset S of X, the Cayley graph Cay(X,S) is an |S|-
regular graph with vertex set X in which two vertices x and y are adjacent if and
only if xy−1 ∈ S. Note that from Cay(X,S), a bipartite |S|-regular graph can
be easily obtained as follows. Take two disjoint copies X1 and X2 of X and con-
struct a bipartite graph so that x1 ∈ X1 and x2 ∈ X2 are adjacent if and only if
x1x

−1
2 ∈ S; such a bipartite regular graph is called a bi-Cayley graph. For a prime

p let Fp denote the p-element field and q = p2. Rasmussen and Sahai [32] con-
structed an O(q−1/4)-non-malleable code from a non-bipartite graph Cay(F6

p, S)
with some S ⊂ F

6
p such that |S| = q. In terms of Corollary 1, the corresponding

bi-Cayley graph provides the same non-malleable code as in [32, Section C].
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3.3 Proof of Theorem 3

This subsection aims to prove Theorem 3. We adopt the following notations. Let
X, Y be two sets and f : X → Y be a function. For each y ∈ Y , denote f−1(y) :=
{x ∈ X : f(x) = y}. For a subset S ⊂ Y , denote f−1(S) := ∪s∈Sf−1(s). Also
let G = (V1, V2, E) be an (r, s)-biregular graph with n vertices, μ(G) = μ and−→
G = (V1, V2,

−→
E ) be the associated orientation of G. Then for any pair of subsets

S ⊂ V1 and T ⊂ V2, let

E(S, T ) :=
∣
∣{(s, t) ∈ −→

E : s ∈ S, t ∈ T}∣
∣,

D(S, T ) :=
√

rs
√|V1||V2|

· |S||T | − E(S, T ).
(2)

To prove Theorem 3, we shall employ Theorem 1 and the following lemmas.

Lemma 3. Let G = (V1, V2, E) be an (r, s)-biregular graph and
−→
G = (V1, V2,

−→
E )

the associated orientation of G. For given functions g : V1 → V1 and h : V2 → V2,
define f : V1 × V2 → V1 × V2 such that f(v1, v2) := (g(v1), h(v2)) for any
(v1, v2) ∈ V1 × V2. Let

T :=
1
2

∑

b∈{0,1}
Pr

[
dec

(
f(enc(b))

)
= 1 − b

]
.

Then we have
T =

1
2

+ δ ·
∑

(v,w)∈−→
E

D
(
g−1(v), h−1(w)

)

where

δ :=
|V2|

2r(|V2| − r)|V1| =
|V1|

2s(|V1| − s)|V2| .

Due to the space limitation, we omit the proof of Lemma 3 here, which can
be found in [34, Lemma 21].

Let f = (g, h) : V1 × V2 → V1 × V2 be a given tampering function from F .
Recall that for each pair of 1 ≤ i �= j ≤ 2 and each vertex v ∈ Vi, N(v) = {u ∈
Vj : u, v are adjacent in G}. Define the following partitions of V1 and V2.

G1 :=
{

v ∈ V1 : |g−1(v)| >
|V1|
rs

}
, G2 :=

{
v ∈ V1 : |g−1(v)| ≤ |V1|

rs

}
,

H1 :=
{

w ∈ V2 : |h−1(w)| >
|V2|
rs

}
, H2 :=

{
w ∈ V2 : |h−1(w)| ≤ |V2|

rs

}
.

For 1 ≤ i, j ≤ 2, let

Ri,j := δ ·
∑

(v,w)∈−→
E ∩(Gi×Hj)

D
(
g−1(v), h−1(w)

)
.
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It follows from Lemma 3 that

T =
1
2

+
∑

1≤i,j≤2

Ri,j . (3)

In order to prove Theorem 3, we also need the following Lemmas 4, 5 and 6.

Lemma 4 (i = 2). R2,1 + R2,2 = O
(
1
r

)
.

Lemma 5 (i = 1, j = 2). R1,2 = O
(
1
s

)
.

The proofs of Lemma 4 and Lemma 5 can be found in [34, Lemmas 22-23].

Lemma 6 (i = j = 1). R1,1 = O
(

μ
3
2√
rs

)
.

The proof sketch of Lemma 6 is referred to Sect. 3.4.

Proof of Theorem 3. By Theorem 1 and (3), Theorem 3 immediately follows from
Lemmas 4, 5 and 6. ��

3.4 Proof Sketch of Lemma 6

In this subsection we sketch the proof of Lemma 6, in which the following lemma
is required.

Lemma 7 (Expander mixing lemma, [14,21,22]). Let G = (V1, V2, E) be
an (r, s)-biregular graph with μ(G) = μ. Then for any pair of subsets S ⊂ V1

and T ⊂ V2, we have
|D(S, T )| ≤ μ

√
|S||T |. (4)

Remark 4. The non-malleable codes from [32] used the following fact. Let G =
(V,E) be a d-regular (possibly non-bipartite) graph with λ(G) = λ. Then for
any pair of subsets S, T ⊂ V ,

∣
∣
∣
∣
d

n
|S||T | − e(S, T )

∣
∣
∣
∣≤ λ

√
|S||T |. (5)

Here e(S, T ) denotes the number of edges between S and T . However, if G is a
bipartite graph, the estimation (5) cannot be used to prove the non-malleability
for the coding scheme in [32] and the coding scheme in this paper (see Con-
struction 2), since in this case λ(G) = d (see Lemma 1), which only implies
O(

√
d)-non-malleable codes. However we could see from Theorem 3 that using

Lemma 7 can produce o(1)-non-malleable codes.

The intuitive idea for proving Lemma 6 is to count the number of edges
between G1 and H1 by using Lemma 7. To that end, we divide G1 and H1 into

G1(k) :=
{

v ∈ G1 :
|V1|
2k−1

≥ |g−1(v)| ≥ |V1|
2k

}
(1 ≤ k ≤ �log(rs)�),

H1(l) :=
{

w ∈ H1 :
|V2|
2l−1

≥ |h−1(w)| ≥ |V2|
2l

}
(1 ≤ l ≤ �log(rs)�).
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For each pair of 1 ≤ k, l ≤ �log2(rs)�, let

Sk,l := δ ·
∑

(v,w)∈−→
E ∩

(
G1(k)×H1(l)

)
D

(
g−1(v), h−1(w)

)
.

Notice that R1,1 =
∑

1≤k,l≤
log2(rs)�
Sk,l. Hence it suffices to prove

∑

1≤k,l≤
log2(rs)�
Sk,l = O

( μ
3
2√
rs

)
. (6)

To that end, we divide the sum in (6) into two parts, namely, to show

(Case 1)
∑

1≤k≤l≤
log2(rs)�
Sk,l = O

( μ
3
2√
rs

)

(Case 2)
∑

1≤l<k≤
log2(rs)�
Sk,l = O

( μ
3
2√
rs

)
.

Indeed, to derive the bound for (Case 1), we need to evaluate Sk,l for 1 ≤ k ≤
l ≤ �log2(rs)�. First observe that

δ−1Sk,l =
∑

v∈G1(k)

D

(

g−1(v),
⋃

w∈N(v)∩H1(l)

h−1(w)

)

.

By Lemma 7 we have

δ−1Sk,l ≤
∑

v∈G1(k)

μ

√
|g−1(v)| ·

∑

w∈N(v)∩H1(l)

|h−1(w)|

≤ μ

√
|V1|
2k−1

· |V2|
2l−1

∑

v∈G1(k)

√
|N(v) ∩ H1(l)|

≤ 2μ · 2− l+k
2 ·

√
|V1||V2| ·

√
|G1(k)| ·

√
E

(
G1(k),H1(l)

)
.

Next by applying Lemma 7 for subsets G1(k) and H1(l) we have

δ−1Sk,l ≤ 2μ · 2− l+k
2 ·

√
|V1||V2| ·

√
|G1(k)|

·
√ √

rs
√|V1||V2|

· |G1(k)||H1(l)| + μ
√

|G1(k)||H1(l)|.

Then by means of Jensen’s inequality and relation (1), we obtain

Sk,l ≤ O
( μ

√|E|
)

· 2− l+k
2 · |G1(k)| ·

√
|H1(l)|

+ O
( μ

3
2√
rs

)
· 2− l+k

2 ·
(
|G1(k)|3|H1(l)|

) 1
4
. (7)
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Accordingly, the bound in (Case 1) can be obtained by summing up Sk,l together
with the estimation in (7) as well as the condition of |E| in Theorem 3, and the
detailed calculation is referred to [34, Lemma 24]. In addition, the bound in
(Case 2) can be established by similar arguments as (Case 1). The complete
proof can be found in [34, Lemma 24].

4 Non-equally-Sized Split-State Model

In this section we discuss the code rate of non-malleable codes for non-equally-
sized split-state model. Recall from Theorem 3 that the non-malleable code CG

is established for a given integer n and a bipartite graph G = (V1, V2, E) with n
vertices. The robustness ε of the non-malleable code CG relies on the parameters
|V1|, |V2|, r, s and μ, which are functions of n. In terms of the code rate, we also
have the following interesting observation.

Lemma 8. Let n be a positive integer. Let G = (V1, V2, E) be a bipartite graph
with n vertices. Then

R(CG) =
1

log2(|V1||V2|) . (8)

Moreover assuming |V1| ≥ |V2| we have

R(CG) ≥ 1
log2(�n/2� · �n/2�) , (9)

where the equality holds if and only if |V1| = �n/2� and |V2| = �n/2�.
Proof. The Eq. (8) immediately follows from the construction of CG (Construc-
tion 2). Also (9) can be proved by finding the maximum value of log2(|V1||V2|)
under the conditions that |V1| + |V2| = n and 1 ≤ |V1|, |V2| ≤ n − 1. Notice
that |V2| = n − |V1|, then |V1||V2| = |V1|(n − |V1|) is maximized if and only
if |V1| = �n/2� and |V2| = �n/2�. Since the function log2(·) is monotonically
increasing, the inequality (9) follows. ��

According to Lemma 8, for any bipartite graph G = (V1, V2, E) with n
vertices, it is readily seen that the smallest code rate occurs when |V1| =
|V2| (i.e. equally-sized). In other words, the non-malleable codes derived from
Construction 2 can have better code rate for non-equally-sized split-state model
in comparison with equally-sized split-state model in general. Furthermore it is
worth noting that the larger the ratio of |V1| and |V2| is, the better the code
rate is. In addition to the above analysis on code rate, one could also derive
code rate according to the robustness parameter ε of the established code in
Construction 2 (see Sect. 5.1, for example).

5 Explicit Constructions

In this section, we present explicit non-malleable codes based on specific biregular
spectral expanders.
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5.1 Via Lubotzky-Phillips-Sarnak Ramanujan Graphs

In this subsection, we construct non-malleable codes based on suitably chosen
graphs from known families of bipartite regular graphs. The resulting codes can
have better code rate in comparison with the codes in [32] (see also Remark 3).

To show our construction based on Corollary 1, we need the following claim.

Claim 1. For a given large prime p, there exist explicit (bipartite) (p+1)-regular
graphs G with Θ(p5/2 log(p)) vertices and μ(G) ≤ 2

√
p.

Our construction of graphs is based on the following Ramanujan graphs due
to Lubotzky, Phillips and Sarnak [29], and Margulis [30] (see also [13, Theorem
4.2.2]). Let p, r be two distinct odd primes such that r > 2

√
p and p is a quadratic

non-residue modulo r. Then one can explicitly construct a bipartite (p + 1)-
regular graph Xp,r with r(r2−1) vertices and μ(Xp,r) ≤ 2

√
p for every r > 2

√
p.

Indeed the graph Xp,r is constructed as a Cayley graph Cay(PGL2(Fr), S) with
some explicit generating set S ⊂ PGL2(Fr) of size p+1, where PGL2(Fr) denotes
the projective general linear group of rank 2 over the r-element field Fr. The
details of the construction can be found in [13]. Note that for each prime p, one
could check whether two given vertices are adjacent in Xp,r in O(log(r))-time
(e.g. [31]), and hence the graph can be constructed in poly(r)-time.

Proof of Claim 1. To prove Claim 1, it suffices to take the graph Xp,r with
r = Θ(p5/6 log1/3(p)). Indeed for each sufficiently large prime p, by Bertrand’s
postulate, there exists a prime r = Θ(p5/6 log1/3(p)) > 2

√
p, which can be found

in poly(p)-time. If p is a quadratic non-residue modulo r, then Xp,r is a bipartite
(p + 1)-regular graph with Θ(p5/2 log(p)) vertices and μ(Xp,r) ≤ 2

√
p. ��

Thus we obtain the following theorem.

Theorem 4. For any sufficiently large prime p, suppose that r = Θ(p5/2 log(p))
is a prime such that p is a quadratic non-residue modulo r. Then the code CG

with G = Xp,r is an O(p−1/4)-non-malleable code for the split-state model with
|L| = |R| = Θ(p5/2 log(p)).

Note that Theorem 4 cannot deal with the case when r = Θ(p5/2 log(p)) is
a prime such that p is a quadratic residue modulo r. However, in this case, one
can instead explicitly construct a non-bipartite (p + 1)-regular graph Y p,r with
r(r2 −1)/2 vertices and λ(Y p,r) ≤ 2

√
p (see [13,29,30]). By [32, Theorem 7], the

graph Y p,r with r = Θ(p5/2 log(p)) provides an O(p−1/4)-non-malleable code for
the split-state model with |L| = |R| = Θ(p5/2 log(p)). Moreover, for each pair of
primes p and r, one could check whether two given vertices are adjacent or not in
Xp,r and Y p,r in O(log(p))-time. By these facts and Theorem 4, we immediately
obtain the following corollary.

Corollary 2. For any sufficiently large prime p, there exists an explicit (p+1)-
regular graph G with Θ(p5/2 log(p)) vertices which provides an O(p−1/4)-non-
malleable code for the split-state model with |L| = |R| = Θ(p5/2 log(p)). In
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particular, for every 0 < ε < 1, there exists an explicit ε-non-malleable code with
code rate

1
20 log2(1/ε) + O(log log(1/ε))

.

Moreover, both of encoding and decoding can be done in O(log(1/ε))-time.

The last statement of Corollary 2 directly follows from the discussion in [32,
Section 1.3]. Note that the explicit codes derived in [32] (see also Remark 3)
have code rate 1/(24 log2(1/ε) + O(1)) while encoding and decoding time is
O(log(1/ε)). In other words, the resulting codes here can have better code rate
in comparison with the codes in [32], while encoding and decoding time are the
same (up to constant).

5.2 Via Generalized Quadrangles

In this subsection, we provide split-state non-malleable codes based on general-
ized quadrangles. The code rates of these codes can also be found in Table 2 of
Sect. 1.

A generalized quadrangle of order (α, β) is an (α + 1, β + 1)-biregular graph
GQ(α, β) = (V1, V2, E) such that

– for all x, y ∈ V1 ∪ V2, there exists a path of length ≤ 4 connecting x and y;
– for all x, y ∈ V1 ∪ V2, if the length of the shortest path connecting x and y is

h < 4, then there exists only one path of length h connecting x and y;
– for every x ∈ V1 ∪ V2, there exists y ∈ V1 ∪ V2 such that there exists a path

of length 4 connecting x and y.

More details of generalized quadrangles can be found in [33,38]. Now based
on generalized quadrangles, we can derive two families of non-malleable codes
for the non-equally-sized scenario.

Theorem 5. For any prime power q, the code CG with G = GQ(q − 1, q + 1)
is an O(q−1/4)-non-malleable code for the split-state model with |L| = (q + 2)q2

and |R| = q3.

We need the following lemma to prove Theorem 5.

Lemma 9 [33,37,38]. For the graph GQ(α, β), we have

– |V1| = (α + 1)(αβ + 1),
– |V2| = (β + 1)(αβ + 1),
– μ(GQ(α, β)) =

√
α + β.

Proof of Theorem 5. To obtain the theorem, we apply an explicit construction
of GQ(q − 1, q + 1) for every prime power q ([8, Sections 4 and 5]). According to
(1) and Lemma 9, we have |E| = r|V1| = Θ(q4) and (rs)2 log(rs)

μ = Θ(q7/2 log q).
Thus by Theorem 3, the code CG with G = GQ(q − 1, q + 1) gives the desired
code. ��

The following theorem can deal with more unbalanced non-equally-sized
scenario.
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Theorem 6. For any prime power q, the code CG with G = GQ(q2, q3) is an
O(q−1/4)-non-malleable code for the split-state model with |L| = (q2 +1)(q5 +1)
and |R| = (q3 + 1)(q5 + 1).

Proof. For every prime power q, there is an explicit construction of GQ(q2, q3)
(e.g. [33, Chapter 3]). By (1) and Lemma 9, we have |E| = r|V1| = Θ(q10) and
(rs)2 log(rs)

μ = Θ(q17/2 log q). Thus according to Theorem 3, (encG,decG) with
G = GQ(q2, q3) gives the desired code. ��

6 Concluding Remarks

In this paper, we proposed a coding scheme based on bipartite graphs and showed
that the non-malleability can be satisfied if the underlying bipartite graph is a
biregular μ-spectral expander with sufficiently small μ. Based on it, we provided
explicit non-malleable codes via several types of biregular spectral expanders
such as Ramanujan graphs and generalized quadrangles. The established non-
malleable codes can either work for a more flexible split-state model or have
better code rate in comparison with the existing results.

In addition, our results show that some related error-correcting codes have
potential applications to constructing non-malleable codes for the split-state
model. For example, it is well-known in coding theory and combinatorics that a
low-density parity-check (LDPC) code has an associated bipartite graph called
Tanner graph. Precisely, the Tanner graph of an LDPC code with parity-check
matrix H = (hij) is a bipartite graph such that the vertex set is the index set
of rows and columns of H, and two vertices i and j are adjacent if and only if
hij �= 0, see [36]. It is shown that the algebraic or combinatorial constructions of
LDPC codes often provide Tanner graphs with small second largest eigenvalue,
see [15,23,25,28,35] for example. According to the bipartite graph based coding
scheme proposed in this paper, a connection between LDPC codes and non-
malleable codes can be accordingly established. Particularly, the constructions
in Theorems 5 and 6 are based on several typical bipartite graphs realized as
Tanner graphs of LDPC codes.

In terms of practical applications, it is desirable to construct split-state non-
malleable codes for k-bit messages with k ≥ 2. As far as we know, there is no
known graph-theoretic constructions of split-state non-malleable codes for k ≥ 2.
It would be of interest to generalize the graph-based codes in this paper and [32]
for k-bit messages in the split-state model (see also [39, Section 2.1.3]).
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Abstract. We give algebraic relations among equations of three alge-
braic modelings for MinRank problem: support minors modeling, Kipnis–
Shamir modeling and minors modeling.
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1 Introduction

In 2020, Bardet et al. introduced the support minors modeling [1] for solving Min-
Rank problem, whose applications include the novel attacks on GeMSS [20] and
Rainbow [2]. The powerful attacks make us wonder whether some new algebraic
structures exist in support minors modeling and help it reduce the complexity
of MinRank. In this paper we explore the algebraic relation between this model-
ing and other two modelings, namely minors modeling [11] and Kipnis–Shamir
modeling [17].

The MinRank problem asks for a nonzero linear combination of given matri-
ces with low rank. It has been used to attack some NIST-PQC candidates, for
example ROLLO, RQC, GeMSS and Rainbow. In rank-metric-based code (for
example ROLLO and RQC [1]) and rank syndrome problem [14] it is natural to
consider MinRank problem since metric is defined by matrix rank. In multivari-
ate cryptography, traditional ways to design a cryptography system and make
trapdoors include two ways: using BigField structure [8,18,19] and using prop-
erties of BigField to build trapdoors; using UOV structure [7,16] and assigning
vinegar variables to build trapdoors. Some of these trapdoors include special
restrictions which can be detected by matrix rank, for example in HFE [18] the
degree restriction of univariate polynomial and in Rainbow [7] the multi-layer
oil and vinegar variable structure, therefore MinRank problem can be used to
attack these schemes. On the other hand, since Buss et al. proved that MinRank
problem is generally NP-hard [4], there exists some zero-knowledge scheme based
on MinRank, for example [6].
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There are many ways to solve the MinRank problem, including minors mod-
eling, Kipnis–Shamir modeling and linear algebra search [15]. Besides these
basic ideas, Wang et al. [22] also considered the hybrid method that combines
Kipnis–Shamir modeling and minors modeling. Moreover, previous works also
concern the complexity of MinRank. Faugere et al. focused on the case of under-
determined and well-determined cases [11–13] and proved that minors model-
ing is better than Kipnis–Shamir modeling by a little. For the over-determined
case, Verbel et al. considered the case of the so-called ‘superdetermined’ case
for Kipnis–Shamir modeling [21] which uses Jacobian of the matrix to induce
equations.

Most of these modelings and analyses above fall into the step of calculating
Gröbner basis [3] for the ideal corresponding to equations, which is the con-
ceptual generalization of Gaussian Elimination and Euclid’s greatest common
factor. Efficient algorithm for solving Gröbner basis are F4 [9] and its variant
F5 [10]. Meanwhile, support minors modeling does not require Gröbner basis
computation and turns to XL-like methods [5,23] which has its full power when
the number of equations is more than that of variables.

In this paper we focus on the quadratic equations given by Kipnis–Shamir
modeling and support minors modeling. We found that by substituting cT vari-
ables in equations of the support minors modeling with determinant-like polyno-
mials in yi,j variables from equations of the Kipnis–Shamir modeling, all former
equations become linear combination of latter equations with coefficients in the
polynomial ring of yi,j variables. As a byproduct, we offer a constructive proof of
the fact that the equations of the minors modeling come from linear combination
of that of Kipnis–Shamir modeling with coefficients in the polynomial ring of
yi,j ’s and linear variables xk’s.

2 Notation

We list some useful notations for the following statements and proofs:

– I (calligraphic font) stands for some index set with r+1 elements correspond-
ing to either rows or columns. The row (column) number always starts from
1.

– {i1 < · · · < il ≤ r < il+1 < · · · < ir+1} stands for {i1, . . . , ir+1}, with orders
in the set specified as i1 < · · · < il ≤ r < il+1 < · · · < ir+1.

– For matrix A, AI,J stands for submatrix of A with rows I and columns J .
– For a m × n matrix A, I ⊂ {1, . . . , m} and J ⊂ {1, . . . , n}, if |I| = |J |,

|A|I,J stands for the minor of A with rows I and J .
– For a m × n matrix A and |J | = m, A∗,J is acronym for A{1,...,m},J , and

|A|∗,J is acronym for |A|{1,...,m},J .
– T (letter ‘T’) stands for some index set subset of {1, . . . , n} with r elements.
– cT represents |C|∗,T , where C is the coefficient matrix in support minors

modeling.
– For matrix A, At stands for transpose of A.
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3 Preliminaries

MinRank Problem. We give the statement of the MinRank problem:

Definition 1 (MinRank problem). Fix a field K. We denote K
m×n as the

vector space of matrices with m rows and n columns and entries in K.
Given matrices M1, . . . ,Ml ∈ K

m×n and a target rank r, the MinRank prob-
lem asks for elements x1, . . . , xl ∈ K that are not all zero, such that the linear
combination M =

∑l
k=1 xkMk has rank no more than r.

Notice that sometimes the solution is restricted to some subfield L ⊂ K (for
example in some BigField schemes). However, in this paper we only consider the
case that solution takes value in K.

Algebraic Modelings for Solving MinRank Problem. Below we describe
three algebraic modelings for MinRank problem.

Minors Modeling. The matrix M has rank ≤ r iff all its r + 1 minors are zero.
Minors modeling simply uses these minor conditions as equations. There are(

m
r+1

)(
n

r+1

)
minors in matrix M , and they are all r +1 degree polynomials in the

variables x1, . . . , xl, since each entry of M is a linear form of these variables.
If we denote M = (ai,j), then each ai,j can be written as

ai,j =
l∑

k=1

a
(k)
i,j xk (1)

where a
(k)
i,j is the (i, j)-th element of Mk. Each (r + 1)-minor of M is a homo-

geneous polynomial of degree r + 1 in the ai,j ’s, so when substituting ai,j with
xk’s, we get a homogeneous polynomial of degree r + 1 in the xk’s. If we make
these polynomials equal to zero we get the corresponding equations of minors
modeling.

Kipnis–Shamir Modeling. We recall the following rank–nullity theorem from
linear algebra:

Lemma 1. For a linear map A : Kn → K
m, we have

dim A(Kn) + dim ker(A) = n

Since the matrix M has rank ≤ r, the dimension of the kernel of M is no less
than n − r, hence it must contain a (n − r)-dim subspace. So there exists a
full-rank matrix Y ∈ K

n×(n−r) such that MY = 0. Notice further that for any
invertible matrix R ∈ GLn−r(K), we have M(Y R) = (MY )R = 0, and Y R also
has full rank, so we can restrict some entries of Y and still expect a solution.
Therefore, we solve the following matrix equation

M

[−Y ′

In−r

]

= 0 (2)
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where In−r is the (n − r) × (n − r) identity matrix, and

Y ′ =

⎡

⎢
⎣

y1,1 · · · y1,n−r

...
...

yr,1 · · · yr,n−r

⎤

⎥
⎦ (3)

is a r × (n − r) matrix. If (2) has a solution, then the rank of M must be less
than r.

From (2) we can get m(n − r) equations, each of the form

fi,j = ai,r+j −
r∑

k=1

ai,kyk,j = 0 (4)

for i = 1, . . . , m, j = 1, . . . , n − r. If we plug in (1), we get quadratic equations
with no square terms and the equations are linear in xk’s. Total number of
variables is p + r(n − r).

Support Minors Modeling. We recall the following rank decomposition theorem
from linear algebra:

Lemma 2. A m × n matrix M has rank ≤ r iff there exists a m × r matrix S
and a r × n matrix C, such that M = SC.

Since the rank of M is no more than r, we can find some matrices S and C
such that

∑p
k=1 xkMk = M = SC. While we cannot make both S and C full

rank (otherwise we know M is of rank r), we can assure that C has full rank by
expanding the row space of M into a r-dim vector space and solve for entries of
S. Since C has full rank, we know that each row ri is in the row space of C, so
the augmented matrix

Ci =
[
ri
C

]

has rank r. Therefore the maximal minors of Ci should be zero. If we denote
cT for the maximal minors of C with columns T , then using Laplace expansion
of determinant, each maximal minor of Ci is a bilinear form in aij and cT . By
evaluating these maximal minors to be zero, we get m

(
n

r+1

)
quadratic equations

|Ci|∗,J = 0 (5)

for i = 1, . . . , m and all subset J ⊂ {1, . . . , n} with r + 1 elements. If we plug
in (1), we get equations bilinear in xk’s and cT ’s. Total number of variables is
p +

(
n
r

)
.

4 Main Results and Proofs

4.1 Relation Between Kipnis–Shamir Modeling and Support
Minors Modeling

We will adopt the following matrix

C ′ =
[
Ir Y ′]
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where Y ′ is the r×(n−r) matrix defined by (3). The core idea of this subsection
is to make substitution φ : cT �→ |C ′|∗,T in support minors modeling. This is
the same as replacing the coefficient matrix C from support minors modeling
with C ′.

The reason we consider matrix C ′ comes from cryptographical situations. In
practical use of MinRank problem, the target rank r is often the smallest rank
that

∑p
k=1 xkMk can attain besides zero. In this case the rank decomposition

M = SC tells us that row space of C is the same as that of the M . Therefore
from (2) we also get

C

[−Y ′

In−r

]

= 0 (2’)

We claim that

Lemma 3. The reduced row echelon form of C is C ′.

Proof. Denote C ′′ to be the reduced row echelon form of C. Since C is full row
rank, all rows in C ′′ have pivot elements. Since C ′′ is in reduced row echelon
form, the r-th row of C ′′ must begin with r − 1 zeros. Therefore it suffices to
show that the (r, r)-th element of C ′′ is 1 instead of 0.

Assume instead that the r-th row of C ′′ begin with r zeros, then this row
has the shape of [

0 · · · 0 z1 · · · zn−r

]

for some z1, . . . , zn−r ∈ K. Using (2’), we get that

0 =
[
0 · · · 0

]
(−Y ′) +

[
z1 · · · zn−r

]
In−r =

[
z1 · · · zn−r

]

So the r-th row of C ′′ is a zero row, which contradicts the fact that C has full
rank. Therefore the (r, r)-th element of C ′′ is 1, and we get C ′′ has the shape of
C ′.

Since C ′ is the reduced row echelon form of C in cryptographical situations, it
suffices to replace C with C ′ and use this to relate the support minors modeling
and Kipnis–Shamir modeling. Notice that in general the row space of M is only
contained in that of C, therefore (2’) cannot be derived from (2).

Denote

C ′
i =

[
ri
C ′

]

(6)

the augmented matrix Ci with block C replaced by C ′.
Some properties of φ are listed below:

Lemma 4. φ(c{1,...,r}) = 1.

Lemma 5. φ(c{1,...,r}\{i}∪{r+j}) = (−1)r−iyi,j.

Proof. Direct calculation. We have

|C ′|∗,{1,...,r}\{i}∪{r+j} =

∣
∣
∣
∣
∣
∣

Ii−1 0(i−1)×(r−i) ∗(i−1)×1

01×(i−1) 01×(r−i) yij
0(r−i)×(i−1) Ir−i ∗(r−i)×1

∣
∣
∣
∣
∣
∣
= (−1)r−iyi,j
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Maximal Minors of C′
i . To calculate maximal minors of C ′

i and relate this
with fij from Kipnis–Shamir modeling (see (4)), we consider the following matrix

Li =
[

1 −ai,1 · · · −ai,r

0r×1 Ir

]

(7)

Li is invertible matrix and has determinant 1. Also, when calculating maximal
minors of LiC

′
i, we have

|LiC
′
i|∗,J = (detLi)|C ′

i|∗,J = |C ′
i|∗,J (8)

since the determinant function is multiplicative. Therefore it suffices to consider
the matrix LiC

′
i. Denote

LiC
′
i =

[
Q1 Q2

Q3 Q4

]

where Q1 is 1 × r matrix, Q4 is r × (n − r) matrix, and the shape of Q2 and Q3

follows from the block matrix rules. We have Q3 = IrIr = Ir, Q4 = IrY
′ = Y ′.

Also,

Q1 =
[
ai,1 · · · ai,r

]
+

[−ai,1 · · · −ai,r

]
Ir = 0

Q2 =
[
ai,r+1 · · · ai,n

]
+

[−ai,1 · · · −ai,r

]

⎡

⎢
⎣

y1,1 · · · y1,n−r

...
...

yr,1 · · · yr,n−r

⎤

⎥
⎦ =

[
fi,1 · · · fi,n−r

]

So

LiC
′
i =

[
01×r fi,1 · · · fi,n−r

Ir Y ′

]

(9)

From (9) and (8) we know that |C ′
i|∗,{1,...,r}∪{r+j} = (−1)rfi,j . Therefore

after applying substitution φ, equations of Kipnis–Shamir modeling can be
viewed as a subset of equations of support minors modeling (up to a constant of
−1). In general, we have

Proposition 1. Suppose J = {j1 < · · · < jl ≤ r < jl+1 < · · · < jr+1}, then

|C ′
i|∗,J =

r+1∑

k=l+1

(−1)k−1fi,jk−r|C ′|∗,J \{jk} (10)

Proof. Simply use Laplace expansion.

Notice that |C ′|∗,J \{jk} is maximal minor of C ′, which in turn is polynomial in
yi,j ’s. So we know that |C ′

i|∗,J is a linear combination of fi,j ’s with coefficients
in K[y1,1, . . . , yr,n−r].
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4.2 Solution Space of cT ’s from Support Minors Modeling

We know that cT is denoted to be the maximal minor of C with columns T .
However when cT becomes variables of equations, it becomes not so clear if any
solution of equations from support minors modeling still has the meaning that
corresponding M is of rank ≤ r. It is intuitive that if M has rank ≤ r, then we
can expand the row space of M into a r dimensional space, and get a matrix
A of r rows and n columns, whose maximal minors is a nonzero solution of (5)
since A has full rank. Also, if M has rank < r, then different ways of expanding
the row space of M will possibly give linear independent solutions for (5). In
particular, we are interested in the following questions:

1. For some specific choice of xk’s such that M has rank > r, is the solution
space of cT ’s the zero space?

2. For some specific choice of xk’s such that M has rank r, is the solution space
of cT ’s dimension 1?

3. For some specific choice of xk’s such that M has rank < r, what can we say
about the solution space of cT ’s?

Nonetheless, we give the following proposition:

Proposition 2. Suppose for some specific choice of xk’s, the rank of M is r′.
Then the solution space of cT has dimension

(
n−r′

n−r

)
. In particular, when r′ > r

the only solution for cT ’s is zero solution.

Proof. We know that the equations (5) come from augmenting matrix C with a
row of M and calculating the r + 1 minors. In general, we can also augment C
with b rows of M to get a b-augmented matrix

⎡

⎢
⎢
⎢
⎣

ri1
...
rib
C

⎤

⎥
⎥
⎥
⎦

where 1 ≤ i1, . . . , ib ≤ m, and calculate its r + b minors. Since all rows of M are
in the row space of C, all these r + b minors are zero as long as r + b ≤ n. Using
Laplace expansion along the first row we get a linear combination of r + b − 1
minors of (b−1)-augmented matrix. Therefore the equations (5) are not linearly
independent.

Since we know that M has rank r′, it suffices to use these r′ independent rows
to generate augmented matrices. There are

(
r′+b−1

b

)
different ways to b-augment
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the matrix C. Using some knowledge of syzygy, it is easy to deduce the number
of independent equations as

n−r∑

b=1

(−1)b−1

(
r′ + b − 1

b

)(
n

r + b

)

(11)

Lemma 6. We have the following combinatorial identity:

n−r∑

b=0

(−1)b
(

r′ + b − 1
b

)(
n

r + b

)

=
(

n − r′

n − r

)

(12)

Proof. Denote

G(r′, r, n) =
n−r∑

b=0

(−1)b
(

r′ + b − 1
b

)(
n

r + b

)

(13)

Since
(

n
r+b

)
=

(
n−1
r+b

)
+

(
n−1

r−1+b

)
, we have G(r′, r, n) = G(r′, r, n − 1) + G(r′, r −

1, n − 1). Also G(r′, r, r) = (−1)0
(
r′−1
0

)(
r
r

)
= 1. So it suffices to prove that

G(r′, r′, n) = 1.
Denote F (r′, n) = G(r′, r′, n). Notice that

(
n

r′ + b

)

=
(

n − 1
r′ + b

)

+
(

n − 1
r′ − 1 + b

)

(
r′ + b − 1

b

)

=
(

r′ − 1 + b − 1
b

)

+
(

r′ − 1 + b − 1
b − 1

)

Therefore F (r′, n) = F1 + F2 + F3, where

F1 =
n−1−r′

∑

b=0

(−1)b
(

r′ + b − 1
b

)(
n − 1
r′ + b

)

= F (r′, n − 1)

F2 =
n−r′
∑

b=0

(−1)b
(

r′ − 1 + b − 1
b

)(
n − 1

r′ − 1 + b

)

= F (r′ − 1, n − 1)

F3 =
n−r′
∑

b=1

(−1)b
(

r′ + b − 1 − 1
b − 1

)(
n − 1

r′ + b − 1

)

= −F (r′, n − 1)

So F (r′, n) = F (r′ − 1, n − 1), hence

F (r′, n) = F (1, n − r′ + 1) =
n−r′
∑

b=0

(−1)b
(

n − r′ + 1
b + 1

)

= 1

i.e. G(r′, r′, n) = 1. Therefore G(r′, r, n) =
(
n−r′

r−r′
)

=
(
n−r′

n−r

)
.
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Therefore

n−r∑

b=1

(−1)b−1

(
r′ + b − 1

b

)(
n

r + b

)

=
(

n

r

)

−
(

n − r′

n − r

)

Since we have
(
n
r

)
variables cT , the solution space dimension is

(
n−r′

n−r

)
. Therefore

when r′ > r the binomial coefficient takes the value 0. This ends the proof of
Proposition 2.

Notice that when r′ < r, we know that the solution space of cT ’s has dimen-
sion more than 1. Therefore if we do not make the target rank r′ optimal, then
original equations from support minors modeling have more than 1 dimension
of solutions, which means XL-like algorithms cannot make out a solution as [1]
said.

4.3 Relation Between Kipnis–Shamir Modeling and Minors
Modeling

We will adopt the following matrix:

M ′ =

⎡

⎢
⎣

a1,1 · · · a1,r f1,1 · · · f1,n−r

...
...

...
...

am,1 · · · am,r fr,1 · · · fr,n−r

⎤

⎥
⎦ (14)

Since only r columns of M ′ are of the form ai,j , if we calculate r + 1 minors of
M ′, at least one column is of the form fi,j , so all r + 1 minors lie in the ideal of
K[{xk}, {yi,j}] generated by fi,j ’s. Notice that from (4), M ′ and M are related
by the matrix equation

M = M ′R (15)

where

R =
[
Ir Y ′

0 In−r

]

. (16)

Using Cauchy–Binet formula, we can calculate r + 1 minors of M :

|M |I,J =
∑

K
|M ′|I,K|R|K,J (17)

where K takes value of each r + 1 subset of {1, . . . , n}. Since all |M ′|I,K’s lie in
the ideal generated by fi,j ’s, so does |M |I,J .

5 Conclusion and Discussion

We discussed the quadratic equations from Kipnis–Shamir modeling and sup-
port minors modeling, and give the proof that they can be derived from each
other. We also give proof that from equations of Kipnis–Shamir modeling we
can get the minors equations. Heuristically, the equations derived from support
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minors modeling can be viewed as an application of bilinear XL on those from
Kipnis–Shamir modeling with bi-degree (b, r). This helps us make sure that sup-
port minors modeling contains no new algebraic structures from Kipnis–Shamir
modeling. However, these calculations above are from the viewpoint of commu-
tative algebra (symbolic calculation) and cannot explain why supports minors
modeling has major improvement from other modelings. We believe that the
efficiency of support minors modeling comes from the way it solves equations
since it contains no additional Gröbner basis calculation.

Acknowledgements. This work has been supported by the National Key R&D Pro-
gram of China (No. 2021YFB3100100).
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Abstract. Modern block ciphers incorporate a vectorial Boolean func-
tion (S-box ) as their only nonlinear component. Almost Perfect Nonlinear
(APN) functions exhibit optimal resistance to differential cryptanalysis
and thus present ideal security properties as S-boxes. These optimal cryp-
tographic properties have the side effect of making the function harder to
represent and implement. As the number of variables of the function grows,
lookup-table representations become less feasible, and so from a practical
point of view, it is crucial to develop a good understanding of how crypto-
graphically strong functions can be represented in hardware.

This paper focuses on one of themost importantAPN functions, namely
Dillon’s permutation in dimension 6. This is the only known APN per-
mutation in an even number of variables. It is thus an ideal candidate
for studying the efficiency of different representations since it combines
at least two very important cryptographic properties, and since the num-
ber of variables is not large enough to make its computational investiga-
tion intractable. In this paper, we give a new description of Dillon’s per-
mutation as a composition of two functions and compare it with its clas-
sic univariate polynomial representation. We give hardware architectures
for both representations, and we report on the results obtained from their
FPGA implementations. From the experimental results, the implementa-
tion of the new decomposed Dillon’s permutation presents reductions in
the number of 2-input XOR gates of up to 27.3% and in the Area × Delay
metrics of up to 27.4% with respect to the implementation of the corre-
sponding univariate representation. Therefore, the new decomposed Dil-
lon’s permutation representation is more efficient than the univariate poly-
nomial one when reconfigurable devices are used for the hardware imple-
mentation. This indicates that by representing APN functions as a compo-
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sition of simpler functions, significant reductions in the complexity of the
implementation can be achieved.

Keywords: Almost perfect nonlinear (APN) · Boolean functions ·
Block cipher · S-box · finite field · hardware implementation

1 Introduction

Given two positive integers n and m, vectorial Boolean functions, or (n,m)-
functions, i.e. functions from the vector space Fn

2 to F
m
2 , are used as the only non-

linear component of virtually all modern block ciphers. In this way, the cipher’s
security directly depends on the properties of the underlying functions, so it is
necessary to use functions that possess specific cryptographic properties that indi-
cate resistance to various types of cryptanalytic attacks. One of the most powerful
cryptographic attacks against block ciphers known today is differential cryptanal-
ysis [1]. The differential uniformity of a function measures its resistance against
this kind of attack: the lower the differential uniformity, the better the resistance.
Typically, we consider (n,m)-functions with n = m; in this case, the functions
with the lowest possible differential uniformity are called almost perfect nonlinear
(APN) functions and have been a subject of intense study in recent years.

Certain cipher designs, such as substitution-permutation networks (SPN),
require vectorial Boolean functions that are bijective. Unfortunately, such func-
tions seem very hard to find. Indeed, for a long time, it was believed that APN
permutations over F

n
2 with even n do not exist; this was disproved only in 2010

when Dillon et al. constructed an APN permutation of F6
2 [15]. Until today, this is

the only known APN permutation on an even number of variables; the problem of
finding other such APN permutations is known as the “big APN problem” and is
one of the most important open questions in the cryptographic Boolean functions
community.

Since Dillon’s permutation combines two significant cryptographic proper-
ties, namely APN-ness and bijectivity, it is an ideal candidate for investigating
the behaviour of various constructions and approaches to cryptographically opti-
mal functions. This is also aided by the fact that functions with n = 6 variables
are tractable with the help of modern computers. Nonetheless, it is expected
that (n, n)-functions for much higher values of n will have to be used in order to
provide good security in the future, and investigating the properties of good func-
tions in relatively small dimensions is an excellent way to accumulate structural
knowledge about cryptographically strong functions that can then be applied to
higher dimensions.

An important practical consideration is how to represent and implement an
(n, n)-function in software and hardware. When the dimension n is small enough,
this can easily be done as a look-up table, i.e. by explicitly storing all values of
the function in memory. However, the size of the look-up table increases exponen-
tially with n, and especially in the case of a resource-constrained environment,
such a representation may not be feasible or practical. This raises the important
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question of how to optimally represent such a function and how much difference
the choice of a representation can make.

In this paper, we investigate the implementation efficiency of representing
Dillon’s permutation as the composition of two simpler functions. We provide
a hardware implementation of both this new representation and the “classical”
univariate representation of the permutation and compare the two according to
several metrics. We conclude that the compositional representation significantly
reduces the complexity of the implementation, and thus similar representations
should be considered when implementing any function that cannot be directly
represented as a look-up table.

The paper is organized as follows. Section 2 introduces the fundamental con-
cepts used throughout the paper. Dillon’s permutation, the new decomposed and
univariate polynomial representations and their corresponding analysis are given
in Sect. 3. Section 4 introduces the hardware architecture of the decomposed
Dillon’s permutation and presents the F26 multipliers used in the paper. The
hardware architecture of the corresponding univariate representation of Dillon’s
permutation is given in Sect. 5. Theoretical complexities of the relevant hardware
architectures are given in Sect. 6. Section 7 gives FPGA implementation results
and discussion. Finally, Sect. 8 concludes the paper.

2 Notation and Preliminaries

Let F2 = {0, 1} be the finite field with two elements and let F2n be the exten-
sion field with 2n elements. Let also p(y) =

∑m
i=0 piy

i be a monic irreducible
polynomial of degree m over F2, where pi ∈ F2 for i = 0, 1, . . . ,m. Any element
x of the binary extension field F2m can be represented in the standard basis
{1, ζ, . . . , ζm−1}, where ζ is a root of p(y), as

x =
m−1∑

i=0

xiζ
i = (1, ζ, . . . , ζm−1) · (x0, . . . , xm−1)T (1)

with xi ∈ F2. In this case, (x0, . . . , xm−1) are the coordinates of x with respect
to the standard basis.

Vectorial Boolean functions, or (n,m)-functions, are mappings between the
vector spaces F

n
2 and F

m
2 , where n and m are positive integers. These functions

have a fundamental importance in cryptography because one or more (n,m)-
functions are virtually always included in modern block ciphers as the only
nonlinear components. Vectorial Boolean functions can also be considered as
mappings between the binary extension fields F2n and F2m , due to the identifi-
cation of the vector space F

m
2 with the extension field F2m . If n = m, then any

(m,m)-function can be uniquely expressed as a polynomial

g(x) =
2m−1∑

i=0

cix
i (2)
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with ci ∈ F2m . This is called the univariate representation of g. In this polyno-
mial representation, the algebraic degree of g is defined as the largest Hamming
weight (number of 1’s in the binary representation) of any exponent i with ci �= 0.
Functions of algebraic degree no greater than 1 are called affine, while functions
of algebraic degree 2 and 3 are called quadratic and cubic, respectively. An affine
function g satisfying g(0) = 0 is called a linear function.

The derivative of an (m,m)-function g in direction a ∈ F2m is Dag(x) =
g(x+a)+g(x). The number of solutions x to the equation Dag(x) = b is denoted
by Δg(a, b), and the differential uniformity of g (denoted by Δg) is the largest
value of Δg(a, b) among all a �= 0 and all b. Differential uniformity can be used
to determine the security of a block cipher against differential cryptanalysis [1]:
the lower the differential uniformity, the better the security. An almost perfect
nonlinear (APN) function is an (m,m)-function g with the lowest possible value
Δg = 2. That is the reason why APN functions have a fundamental importance
in the construction of secure block ciphers [12,13]. To be used in a Substitution
Permutation Network (SPN), an APN function must be a permutation.

3 On Dillon’s Permutation

The existence of APN (m,m)-permutations for even m is one of the most impor-
tant open questions in the study of Boolean cryptographic functions. For a long
time, it was believed that there are no APN permutations on an even number of
variables. However, in 2010, Dillon presented an APN permutation over F26 [9].
To date, this is the only known APN permutation for even dimension, and it is
unknown whether APN permutations exist over F2m for other even values of m.

Dillon’s permutation has been used in designing the lightweight authenticated
encryption algorithm FIDES [10], so the study of its mathematical properties and
the efficiency of its hardware implementations are of fundamental interest [14]
per se. In addition, being a cryptographically optimal permutation in a tractably
small number of variables, it is a perfect candidate for studying the structure
and behaviour of cryptographically strong functions. In the rest of the paper,
we consider how Dillon’s permutation can be advantageously implemented in
hardware by utilizing its decomposition into two simpler functions.

3.1 New Decomposition of Dillon’s APN Permutation

Dillon’s APN permutation g(x), with x ∈ F26 , can be presented as a composition
of f1 and f−1

2 , i.e., g = f1 ◦ f−1
2 , where f1 and f2 are quadratic. Let f(x) be

given by

f(x) = ζx3 + ζ5x10 + ζ4x24, (3)

where ζ is Magma’s [16] default primitive element, i.e. a root of the primitive
pentanomial p(y) = y6 + y4 + y3 + y + 1 over F2. If f1 and f2 are given as

f1(x) = x + ζ7x8 + ζ4f(x) + ζ32f(x)8, (4)
f2(x) = ζ3x + ζ31x8 + f(x) + f(x)8, (5)
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then the composition g = f1 ◦ f−1
2 represents Dillon’s APN permutation.

From Eq. (5), the univariate polynomial representation of f−1
2 is given by

f−1
2 (x) = ζx56 + ζx49 + ζ22x48 + ζx42 + ζ23x41 + ζ36x40 + ζx35 + (6)

ζ15x34 + ζ29x33 + ζ36x28 + ζ36x21 + ζ22x20 + ζ36x14 +
ζ23x13 + ζ8x12 + ζ58x8 + ζ36x7 + ζ15x6 + ζx5 + ζ58x.

The univariate polynomial representation of Dillon’s APN permutation g(x),
with x ∈ F26 , generated by the Magma computational algebra software, is given
by

g(x) = ζ18x57 + ζ22x56 + ζ18x50 + ζ22x49 + ζ7x48 + ζ18x43 + ζ22x42 + (7)
ζ44x41 + ζ57x40 + ζ18x36 + ζ22x35 + ζ22x34 + ζ50x33 + ζ24x32 +
ζ18x29 + ζ57x28 + ζ25x25 + ζ18x24 + ζ18x22 + ζ57x21 + ζ7x20 +

ζ18x18 + ζ18x17 + ζ18x15 + ζ57x14 + ζ44x13 + ζ29x12 + ζ11x11 +
ζ18x10 + ζ24x8 + ζ57x7 + ζ22x6 + ζ22x5 + ζ3x4 + ζ18x3 + ζ13x.

A look-up table of this permutation is given in Table 1, where v and w are
given in hexadecimal. For example, if the input x is given in hexadecimal as
x = vw = 2B then g(2B) = 3F .

Table 1. Dillon permutation g(x) in hexadecimal.

w

0 1 2 3 4 5 6 7 8 9 A B C D E F

v 0 00 18 22 39 01 0B 04 3D 32 19 12 1D 02 1E 35 2A

1 0D 10 0E 03 2C 05 27 2E 20 0C 38 34 23 09 36 1B

2 3C 06 28 07 0F 16 13 2F 3B 21 17 3F 31 3A 33 2D

3 24 1F 0A 37 15 2B 1C 14 30 3E 29 11 08 26 25 1A

3.2 Analysis of Decomposed and Univariate Polynomial
Representations of Dillon’s Permutation

Dillon’s APN permutation g(x), with x ∈ F26 , can be expressed as g = f1 ◦ f−1
2 ,

i.e. g(x) = f1(f−1
2 (x)), where f1 and f2 are given in terms of the function f(x).

It can be observed that f , f1 and f2 given in Eqs. (3), (4) and (5), respectively,
are quadratic functions, while the univariate polynomial representation of f−1

2

given in Eq. (6) has an algebraic degree of 3. The function f(x) only includes
the addition of three different powers of x (multiplied by corresponding powers
of ζ), while that of f1 and f2 includes the addition of four terms including two
powers of x and the addition of f(x) and f(x)8 (some of them multiplied by
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corresponding powers of ζ). Furthermore, the univariate representation of f−1
2

includes 20 different powers of x that are multiplied by 8 different powers of ζ.
We can observe that the original univariate polynomial representation of

Dillon’s permutation given in (7) has algebraic degree 4 and includes 36 different
powers of x that are multiplied by 12 different powers of ζ. This fact implies (as
for the univariate representation of f−1

2 ) that some terms ζi are common in
several products ζixj for different values of j, so simplified expressions of the
form ζi(xj1 +xj2 + . . . ) = ζivi can be obtained, thereby reducing the number of
arithmetic operations that need to be performed when evaluating the function.

These differences among the decomposed and univariate representation of
Dillon’s permutation influence the hardware implementation complexity, as illus-
trated in the sequel.

4 Hardware Architecture of the Decomposition
of Dillon’s Permutation

Following the analysis in Subsect. 3.2, the hardware architecture for the decom-
position of Dillon’s permutation is shown in Fig. 1, where the composition
g = f1 ◦ f−1

2 is represented by the two hardware modules f−1
2 and f1 in such

a way that the 6-bit input x (represented in the binary extension field F26 gen-
erated by the primitive pentanomial p(y) = y6 + y4 + y3 + y + 1) is fed to the
f−1
2 module. The output of this first module y = f−1

2 (x) is supplied to the sec-
ond module f1 in order to compute the output value of Dillon’s permutation
g(x) = f1(y) = f1(f−1

2 (x)). As we deal with elements in the finite field F26 ,
XOR and AND gates will be used as the basic components for the hardware
implementation.

Fig. 1. Hardware architecture of decomposed Dillon’s permutation g(x) = f1(f
−1
2 (x)).
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4.1 Computation of f−1
2

Following Eq. (6), the inverse function f−1
2 is given by the addition (XOR) of

terms ζixj where the powers of x are computed by the method of square and mul-
tiply. In order to do this, the successive squares of x (in this case, x2, x4, x8, x16

and x32) modulo the primitive polynomial p(y) must first be determined. These
powers are easily computed in F26 due to the fact that x2i , for i = 1, 2, . . . , 5, is

x2i = x5ζ
5·2i + x4ζ

4·2i + x3ζ
3·2i + x2ζ

2·2i + x1ζ
1·2i + x0ζ

0·2i (8)

and the powers of ζ are reduced using p(y).

Example 1. In order to compute x8 = x5ζ
40 +x4ζ

32 +x3ζ
24 +x2ζ

16 +x1ζ
8 +x0,

the powers ζ40, ζ32, ζ24, ζ16 and ζ8 must be reduced modulo p(y) = y6 + y4 +
y3 + y + 1. Since ζ is a primitive element, we have that ζ6 = ζ4 + ζ3 + ζ + 1, so
ζ40 = ζ4 + ζ2 + 1, ζ32 = ζ5 + ζ4 + ζ, ζ24 = ζ5 + ζ3 + ζ + 1, ζ16 = ζ4 + ζ + 1 and
ζ8 = ζ5 + ζ4 + ζ2 + ζ +1, and their substitution into the expression for x8 gives

x8 = (x4 + x3 + x1)ζ5 + (x5 + x4 + x2 + x1)ζ4 + (x3)ζ3 + (x5 + x1)ζ2 + (9)
(x4 + x3 + x2 + x1)ζ + (x5 + x3 + x2 + x1 + x0).

Therefore the coordinates of the successive powers of x are given as the XORs
of the coordinates of x.

Once we have determined the powers x2i , for i = 1, 2, . . . , 5, the powers x5,
x6, x12, x20, x33, x34, x40 and x48 that we need in Eq. (6) can be computed
by parallel multiplication of some of the terms x, x2, x4, x8, x16 and x32. For
example, x40 = x8 · x32, where this product is implemented with a multiplier
over F26 using the primitive polynomial p(y) = y6 + y4 + y3 + y + 1. Multipliers
selected for the implementation are described in Subsect. 4.3.

The remaining powers x7, x13, x14, x21, x28, x35, x41, x42, x49 and x56 from
Eq. (6) are computed by parallel multiplication of some of the previously com-
puted powers (including the input x). For example, x56 = x8 · x48, where the
product is also implemented using a multiplier over F26 .

From these considerations, we can observe that the computation of the powers
of x needed in Eq. (6) requires the use of 18 F26 multipliers distributed in two
levels.

As given in Subsect. 3.2, the univariate representation of f−1
2 includes 20

different powers of x that are multiplied by 8 different powers of ζ. For this
reason, expressions of the form ζi(xj1 + xj2 + · · · ) = ζivi can be identified in
Eq. (6). More precisely, the following expressions can be found in the univariate
representation of f−1

2 :

ζ(x56 + x49 + x42 + x35 + x5) = ζv1, (10)
ζ15(x34 + x6) = ζ15v15, (11)
ζ22(x48 + x20) = ζ22v22, (12)
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ζ23(x41 + x13) = ζ23v23, (13)
ζ36(x40 + x28 + x21 + x14 + x7) = ζ36v36, (14)

ζ58(x8 + x) = ζ58v58. (15)

The use of these expressions allows us to reduce the complexity of the hardware
implementation, where the sum of such powers of x is simply performed as
the bitwise XOR of the corresponding coordinates. Therefore, the univariate
representation of f−1

2 given in Eq. (6) can be rewritten as:

f−1
2 (x) = ζv1 + ζ8x12 + ζ15v15 + ζ22v22 + ζ23v23 + (16)

ζ29x33 + ζ36v36 + ζ58v58.

The new representation of f−1
2 given in Eq. (16) requires the sum of terms

ζixj and ζivi, where vi = (xj1 +xj2 + · · · ) and xj , vi ∈ F26 . In general, the term
ζiB, with B ∈ F26 , will be

ζiB = ζi(b5ζ5 + b4ζ
4 + b3ζ

3 + b2ζ
2 + b1ζ + b0) = (17)

b5ζ
5+i + b4ζ

4+i + b3ζ
3+i + b2ζ

2+i + b1ζ
1+i + b0ζ

i,

where the powers of ζ are reduced using the primitive pentanomial p(y).

Example 2. The term ζ8B is given as ζ8B = (b5ζ13 + b4ζ
12 + b3ζ

11 + b2ζ
10 +

b1ζ
9 + b0ζ

8), where ζ13, ζ12, ζ11, ζ10, ζ9 and ζ8 must be reduced modulo p(y) =
y6+y4+y3+y+1. Since ζ is a primitive element, we have that ζ6 = ζ4+ζ3+ζ+1,
so ζ13 = ζ3 + 1, ζ12 = ζ5 + ζ3 + 1, ζ11 = ζ5 + ζ4 + ζ3 + 1, ζ10 = ζ5 + ζ4 + 1,
ζ9 = ζ5 + ζ4 + ζ2 + 1 and ζ8 = ζ5 + ζ4 + ζ2 + ζ + 1, and substituting this into
the expression for ζ8B gives

ζ8B = (b4 + b3 + b2 + b1 + b0)ζ5 + (b3 + b2 + b1 + b0)ζ4 + (18)
(b5 + b4 + b3)ζ3 + (b1 + b0)ζ2 + (b0)ζ + (b5 + b4 + b3 + b2 + b1 + b0).

Therefore, the coordinates of ζiB are given as the XORs of the coordinates
of B depending on the reduction modulo the primitive polynomial p(y).

The final sum of the terms appearing in the new univariate representation
of f−1

2 given in Eq. (16) is simply performed as the bitwise XOR of the corre-
sponding coordinates.

4.2 Computation of f1

As shown in Eq. (4), the function f1 is given as the sum of four terms including
the input x, x8, f(x) and f(x)8, where x8, f(x) and f(x)8 are multiplied by
ζ7, ζ4 and ζ32, respectively. Furthermore, the function f(x) given in Eq. (3)
only includes the sum of x, x10 and x24 which are multiplied by ζ, ζ5 and ζ4,
respectively.

As shown in Fig. 1 (where y = f−1
2 (x) is the input to f1), the hardware

architecture for f1 requires the parallel computation of y3, y10 and y24 that we
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need for computing f(y). These values are given as products of powers of y,
i.e., y3 = y · y2, y10 = y2 · y8, y24 = y8 · y16, so the powers y2, y8 and y16

must first be computed in a similar way as previosuly described in Subsect. 4.1
(see Example 1). Furthermore, the above products are implemented with F26

multipliers using the primitive polynomial p(y) = y6+y4+y3+y+1. Multipliers
selected for the implementation are described in Subsect. 4.3.

Using y3, y10 and y24, evaluating the function f(y) requires their multipli-
cation by ζ, ζ5 and ζ4, respectively, which can also be done in a way similar to
what was described in Subsect. 4.1 (see Example 2). The sum of terms in Eq.
(3) completes the computation of f(y).

The function f1 also requires the eighth power of f(y). This power can be
computed using the same expressions given in Eq. (9) (Example 1).

Once we have computed y8, f(y) and f(y)8, these values must be multiplied
by ζ7, ζ4 and ζ32, respectively. This can be done in a similar way to Subsect.
4.1 using Eq. (17).

Example 3. Let f(y)8 = f8
5 ζ5 + f8

4 ζ4 + f8
3 ζ3 + f8

2 ζ2 + f8
1 ζ + f8

0 , where f8
i ∈ F2

(i = 0, 1, . . . , 5) are the coordinates of f(y)8 with respect to the standard basis.
Then the term ζ32f(y)8 is given as ζ32f(y)8 = (f8

5 ζ37 + f8
4 ζ36 + f8

3 ζ35 + f8
2 ζ34 +

f8
1 ζ33 + f8

0 ζ32), where ζ37, ζ36, ζ35, ζ34, ζ33 and ζ32 must be reduced modulo
p(y) = y6 + y4 + y3 + y + 1. Since ζ is a primitive element, we have that ζ6 =
ζ4 + ζ3 + ζ + 1, so ζ37 = ζ4 + ζ3 + ζ2 + ζ + 1, ζ36 = ζ5 + ζ, ζ35 = ζ4 + 1,
ζ34 = ζ5 + ζ2 + 1, ζ33 = ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1 and ζ32 = ζ5 + ζ4 + ζ, and
substituting this into the expression for ζ32f(y)8 gives

ζ32f(y)8 = (f8
4 + f8

2 + f8
1 + f8

0 )ζ5 + (f8
5 + f8

3 + f8
1 + f8

0 )ζ4 + (19)
(f8

5 + f8
1 )ζ3 + (f8

5 + f8
2 + f8

1 )ζ2 + (f8
5 + f8

4 + f8
1 + f8

0 )ζ +
(f8

5 + f8
3 + f8

2 + f8
1 ).

Therefore the coordinates of ζ32f(y)8 are also given as the XORs of the coor-
dinates of f(y)8 depending on the reduction modulo the primitive polynomial
p(y).

Finally, the sum of terms appearing in the expression of f1 given in Eq. (4) is
simply performed as the bitwise XOR of the corresponding coordinates and also
gives the output of the decomposed Dillon’s permutation g(x) = f1(f−1

2 (x)).

4.3 Multipliers Over F26

Multipliers over F26 for the primitive pentanomial p(y) = y6 + y4 + y3 + y + 1
are needed for the computations first of x5, x6, x12, x20, x33, x34, x40, x48 and
then of x7, x13, x14, x21, x28, x35, x41, x42, x49, x56 in Subsect. 4.1 for f−1

2 (x).
Finite field multipliers over F26 are also needed in Subsect. 4.2 for f1(y) for the
computation of y3, y10 and y24.

We have used the method given in [18] for the construction of multipliers
over F2m in the standard basis. In [18], the product C = A · B, with A,B ∈
F26 , is computed through a product matrix K (that depends on the primitive
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polynomial p(y) and on the coordinate bi of the operand B) in such a way that
the product of the matrix K and the coordinates vector of the operand A gives
the coordinates of the product C as sum-of-products of aibj , with ai and bi

being the coordinates of A and B, respectively. Furthermore, the matrix K can
be decomposed into a sum of matrices depending on the primitive polynomial
p(y) used for the binary extension field F2m . In order to compute the coordinates
of the product C, the functions Si (1 ≤ i ≤ m) and Ti (0 ≤ i ≤ m − 2) were
defined in [18] by the sum of terms xk = (akbk) and zj

i = (aibj + ajbi). These
functions (obtained in [18] from the product of K and the coordinate vector
of A) were given by Si = xp +

∑p−1
h=0 zi−h−1

h and Ti = xq +
∑r−(i+1)

j=1 zm−j
i+j ,

where p = �i/2�, q = (�m/2	 + �i/2�), the term xp = apbp only appears for
i odd and xq only appears for m and i even or for m and i odd. In this case,
r = q. Otherwise, i.e., for m even and i odd or for m odd and i even, the term
xq does not appear and r = (�m/2	 + �i/2	). Using the above expressions for
F26 , the terms Si and Ti are: S1 = x0 = a0b0, S2 = z10 = (a0b1 + a1b0), S3 =
x1 + z20 = a1b1 + (a0b2 + a2b0), S4 = z30 + z21 = (a0b3 + a3b0) + (a1b2 + a2b1),
S5 = x2 + z40 + z31 = a2b2 + (a0b4 + a4b0) + (a1b3 + a3b1), S6 = z50 + z41 + z32
= (a0b5 + a5b0) + (a1b4 + a4b1) + (a2b3 + a3b2), and T0 = x3 + z51 + z42 =
a3b3 +(a1b5 +a5b1)+(a2b4 +a4b2), T1 = z52 +z43 = (a2b5 +a5b2)+(a3b4 +a4b3),
T2 = x4 + z53 = a4b4 +(a3b5 + a5b3), T3 = z54 = (a4b5 + a5b4), T4 = x5 = a5b5.
The coordinates of the product C = A ·B can then be computed as the addition
of some of these terms.

This method was used in [18–20] for the computation of the finite field
multiplication over F2m in the standard basis for irreducible trinomials, type-
I pentanomials and type-II pentanomials, respectively, where explicit expres-
sions for the coordinates of the products were given in terms of the Si and
Ti functions. Irreducible type-I pentanomials were defined in [21] as p(y) =
ym +yn+1+yn +y+1, where 2 ≤ n ≤ �m

2 �−1. It can be observed that the prim-
itive pentanomial used in Dillon’s APN permutation p(y) = y6 + y4 + y3 + y + 1
follows the structure of type-I pentanomials, but in this case n = 3 and there-
fore it does not meet the valid value for the parameter n (n = 2 for type-I
pentanomial in F26). Therefore, the expressions given in [19] can not be used
in this case and the coordinates of the product must be obtained directly from
the decomposition of the product matrix K given in [18] for the specific values
m = 6, n = 3.

For an irreducible polynomial p(y) = ym + ykt + ykt−1 + · · · + yk1 + 1, the
matrix K can be decomposed into a sum of matrices whose number depends
on the values of kt, kt − 1, . . . , k1 corresponding to the nonzero coefficients
pkt

, pkt−1, . . . , pk1 , respectively, of p(y). The decomposition of K into a sum
of m × m matrices was given in [18] by

K = K0 +
t∑

j=1

⎛

⎝
τj∑

i=1

Kkj

i +
t∑

p=1,p�=j

τj−1∑

i=1

Kkp,kj

i

⎞

⎠ (20)



260 J. L. Imaña et al.

where τi = �m−1
Δi

	 (Δi = m − ki). The product of the decomposed matrix K
given in Eq. (20) and the coordinate vector of A gives a set of functions Si and
Ti whose addition provides the coordinates of the product C.

For the primitive pentanomial p(y) = y6 + y4 + y3 + y + 1, the left-hand side
of Table 2 shows the specific expressions obtained in this case for the product
C = A · B over F26 given in terms of the Si and Ti functions, where the ci

(i = 0, 1, . . . , 5) coordinates of the product C are given by the sum of terms in
their corresponding rows, and where the columns show the Si or Ti functions
given by different matrices. We can observe on the left-hand side of Table 2 that
several terms Ti can be cancelled, leading to the reduced expressions shown on
the right-hand side of Table 2:

c0 = S1+T0+T2+T3+T4, c1 = S2+T0+T1+T2, c2 = S3+T1+T2+T3,
c3 = S4+T0, c4 = S5+T0+T1+T2+T3+T4 and c5 = S6+T1+T2+T3+T4.
Furthermore, it can be observed that there exist subexpressions (sums of Ti

terms) that can be shared among different coordinates of the product. This
subexpressions sharing can be used to reduce the area complexity of the hardware
implementations. Table 2 shows the subexpressions that can be shared in this
case with shadowed cells. If we define as intermediate variables v0 = T1 + T2,
v1 = T3 + T4 and v2 = v0 + v1, then the final expressions of the product
coordinates using subexpressions sharing are

c0 = S1 + T0 + T2 + v1

c1 = S2 + T0 + v0

c2 = S3 + v0 + T3 (21)
c3 = S4 + T0

c4 = S5 + T0 + v2

c5 = S6 + v2.

Table 2. Coordinates ci of the product for the pentanomial p(y) = y6 +y4 +y3 +y+1.

c0 S1 T0 T2 T4 T3

c1 S2 T1 ��T3 ��T4 T0 ��T3 T2 ��T4

c2 S3 T2 ��T4 T1 ��T4 T3

c3 S4 ��T3 T0 ��T3 ��T2 ��T4 ��T2 ��T4

c4 S5 ��T4 T0 T2 ��T4 T3 T1 T4 ��T3 ��T3

c5 S6 T1 T3 T4 T2 ��T4 ��T4

=

S1 T0 T2 T3 T4

S2 T0 T1 T2

S3 T1 T2 T3

S4 T0

S5 T0 T1 T2 T3 T4

S6 T1 T2 T3 T4
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5 Hardware Architecture of the Univariate
Representation of Dillon’s Permutation

Following the analysis in Subsect. 3.2, the hardware architecture for Dillon’s
permutation deduced by the univariate polynomial representation given in Eq.
(7) is shown in Fig. 2, where the different modules needed for the computation
are included. The 6-bit input x is represented in the finite field F26 generated by
the primitive pentanomial p(y) = y6 + y4 + y3 + y + 1.

Fig. 2. Hardware architecture of univariate polynomial representation of Dillon’s per-
mutation.

5.1 Generator of xh

This module computes the powers of x using the method of square and multiply
in a similar way as shown in Subsect. 4. In order to do this, the successive
squares x2, x4, x8, x16 and x32 modulo the primitive polynomial p(y) must first
be determined. These powers are easily computed in F26 due to the fact that
x2i , for i = 1, 2, . . . , 5, is given as in Eq. (8) and the powers of ζ are reduced
using p(y) (see Example 1). Therefore the coordinates of the successive powers
of x are given as the XORs of the coordinates of x.

Once we have determined the powers x2i , for i = 1, 2, . . . , 5, the powers x3,
x5, x6, x10, x12, x17, x18, x20, x24, x34, x36 and x40 needed in Eq. (7) can be
computed by means of the parallel multiplication of some of the terms x, x2, x4,
x8, x16 and x32. For example, x24 = x8 · x16, where this product is implemented
with the F26 multiplier for the primitive pentanomial p(y) = y6 + y4 + y3 + y +1
described in Subsect. 4.3 and given in Eq. (21).
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The remaining powers x7, x11, x13, x14, x15, x21, x22, x25, x28, x29, x33, x35,
x41, x42, x43, x48, x49, x50, x56 and x57 that appear in Eq. (7) are determined
by the parallel multiplication of some of the powers previously computed (also
including the input x). For example, x57 = x17 · x40, where the product is also
implemented using a multiplier over F26 for the given pentanomial p(y).

From the above considerations, it can be observed that the computation of
the powers of x needed in Eq. (7) requires the use of 32 F26 multipliers distributed
in two levels.

5.2 Sum of Powers xj with Common Terms ζi

As discussed in Subsect. 3.2, some terms ζi are common to several products ζixj

for different values of j, so we can obtain expressions of the form ζi(xj1 + xj2 +
· · · ) = ζivi. In this module, we compute the sums vi = (xj1 + xj2 + · · · ). We
observe the following expressions in the univariate representation of Eq. (7):

ζ7(x48 + x20) = ζ7v7, (22)
ζ18(x57 + x50 + x43 + x36 + x29 + x24 + x22 + x18 +

x17 + x15 + x10 + x3) = ζ18v18, (23)
ζ22(x56 + x49 + x42 + x35 + x34 + x6 + x5) = ζ22v22, (24)

ζ24(x32 + x8) = ζ24v24, (25)
ζ44(x41 + x13) = ζ44v44, (26)

ζ57(x40 + x28 + x21 + x14 + x7) = ζ57v57. (27)

The use of these expressions allows the reduction of the complexity of the hard-
ware implementation. The sum of such powers xn is simply performed as the
bitwise XOR of the corresponding coordinates. Therefore, the univariate repre-
sentation of Eq. (7) can be rewritten as:

g(x) = ζ3x4 + ζ7v7 + ζ11x11 + ζ13x + ζ18v18 + ζ22v22 + ζ24v24 + (28)
ζ25x25 + ζ29x12 + ζ44v44 + ζ50x33 + ζ57v57.

5.3 Generator of the Terms ζixj and ζivi

The new representation of Dillon’s univariate polynomial given in Eq. (28)
requires the sum of terms ζixj and ζivi, where vi = (xj1 + xj2 + · · · ) and
xj , vi ∈ F26 . The general expression of the term ζiB, with B ∈ F26 , is given in
Eq. (17), where the powers of ζ are reduced using the primitive polynomial p(y).

Example 4. The term ζ24B is given as ζ24B = (b5ζ29 + b4ζ
28 + b3ζ

27 + b2ζ
26 +

b1ζ
25 + b0ζ

24), where ζ29, ζ28, ζ27, ζ26, ζ25 and ζ24 must be reduced modulo
p(y) = y6 + y4 + y3 + y + 1. Since ζ is a primitive element, we have that ζ6 =
ζ4+ζ3+ζ+1, so ζ29 = ζ5+ζ4+ζ3+ζ2+1, ζ28 = ζ5+ζ4+ζ+1, ζ27 = ζ5+ζ4+ζ2,
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ζ26 = ζ4 + ζ3 + ζ, ζ25 = ζ3 + ζ2 + 1 and ζ24 = ζ5 + ζ3 + ζ + 1, and substituting
this into the expression for ζ24B gives Eq. (29):

ζ24B = (b5 + b4 + b3 + b0)ζ5 + (b5 + b4 + b3 + b2)ζ4 + (29)
(b5 + b2 + b1 + b0)ζ3 + (b5 + b1 + b3)ζ2 +

(b4 + b2 + b0)ζ + (b5 + b4 + b1 + b0).

Therefore the coordinates of ζiB are given as the XORs of the coordinates
of B depending on p(y).

5.4 Sum of the Terms ζixj and ζivi

The final sum of terms ζixj and ζivi appearing in the univariate polynomial
representation of Dillon’s permutation given in Eq. (28) is simply performed as
the bitwise XOR of the corresponding coordinates.

6 Theoretical Complexities of Dillon’s APN Hardware
Architectures

Area and time theoretical complexities of the different architectures for comput-
ing Dillon’s permutation can be obtained from the complexities of the modules
previously described. Area complexity corresponds to the number of 2-input
AND and 2-input XOR gates. The number of XOR gates for each architecture is
given by the hardware synthesis tool used for the FPGA implementations given
in Sect. 7. For this reason, we only give in this section the number of 2-input
AND gates. Time complexity is determined by the maximum number of 2-input
AND and 2-input XOR gates that a signal must traverse from input to output,
and is given in terms of the values TAND and TXOR that describe the gate delay
of a 2-input AND and 2-input XOR gate, respectively.

6.1 Complexity of F26 Multipliers

From the description of the F2m multiplier given in Subsect. 4.3, we can observe
that the number of 2-input AND gates is given by m2, so in this case the number
of AND gates needed is 36 for each multiplier.

Using the Si and Ti expressions given in Subsect. 4.3, we can observe that
the number of XOR levels of the terms S1, S2, S3, S4, S5, S6, T0, T1, T2,
T3 and T4 is 0, 1, 2, 2, 3, 3, 3, 2, 2, 1 and 0, respectively. Furthermore, the
Si and Ti terms have one level of AND gates. Therefore, using the coordinate
expressions given in Equation (21), we can show that the F26 multiplier has a
maximum theoretical delay of TAND + 5TXOR.

These complexities will be used in the sequel for the computation of the
theoretical complexities of the decomposed and univariate representations of
Dillon’s permutation.
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6.2 Decomposed Dillon’s Permutation

As shown in Sect. 4 and in Fig. 1, the composition g = f1 ◦ f−1
2 is represented by

the two hardware modules f−1
2 and f1, so we have to determine the complexities

for these two modules.
The module for the computation of f−1

2 given in Subsect. 4.1 involves the
generation of the powers xh that requires the use of 18 F26 multipliers distributed
in two levels, so the total number of AND gates is 18×36 = 648. Concerning
the time delay, the generator of xh involves the generation of the powers x2i

(with a maximum delay of 3TXOR) and the two levels of F26 multipliers for
the generation of the remaining powers of xh (therefore with a maximum delay
of 2TAND + 10TXOR). The sum of powers xj with common terms ζi presents
a maximum delay of 3TXOR corresponding to the addition of 5 terms for the
variables v1 and v36 as given in Eqs. (10) and (14), respectively. The generation
of the ζixj and ζivi terms given in Subsect. 4.1 needs a maximum of 3TXOR. The
final sum of the eight terms appearing in the univariate representation of f−1

2

given in Eq. (16) also requires a maximum of 3TXOR. Therefore, the maximum
delay of the module for the computation of f−1

2 is 2TAND + 22TXOR.
The module for the computation of f1 given in Subsect. 4.2 involves the

generation of the powers yh that requires the use of 3 F26 multipliers in one
level, so the total number of AND gates is 3×36 = 108. With respect to the
time delay, the generator of yh involves the generation of the powers y2i (with
a maximum delay of 3TXOR) and one level of F26 multipliers for the generation
of y3, y10 and y24 (with a maximum delay of TAND + 5TXOR). The generation
of the ζixj terms needed for the computation of f(y) requires a maximum of
3TXOR and the sum of the three terms of f(y) given in Eq. (3) needs 2TXOR.
The generation of f(y)8 requires 3TXOR and the computation of ζ32f(y)8 needs
a delay of 2TXOR for the sum of a maximum of 4 terms, as given in Eq. (19).
The final sum of the four terms appearing in the expression of f1 given in Eq.
(4) also requires a maximum of 2TXOR. Therefore, the maximum delay of the
module for the computation of f1 is TAND + 20TXOR.

Finally, the combination of the theoretical complexities above for f−1
2 and

f1 lets us determine that the total number of 2-input AND gates needed for the
hardware realization of the decomposition of Dillon’s permutation is 756 and
that the maximum delay is 3TAND + 42TXOR as shown in Table 3.

6.3 Univariate Representation of Dillon’s Permutation

From the descriptions of the different modules of the univariate architecture
given in Sect. 5 and Fig. 2, we can observe that the module for generating xh is
the only one involving F26 multiplications, so the number of 2-input AND gates
is given by this module. As shown in Subsect. 5.1, this module requires the use
of 32 F26 multipliers distributed in two levels, so the total number of AND gates
is 32×36 = 1152. Table 3 shows the theoretical number of 2-input AND gates
needed for the univariate expression.
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With respect to time delay, the xh module involves the generation of the pow-
ers x2i (with a maximum delay of 3TXOR) and the two levels of F26 multipliers
for the generation of the remaining powers of xh (therefore with a maximum
delay of 2TAND + 10TXOR). The next module performing the sum of powers xj

with common terms ζi given in Subsect. 5.2 presents a maximum delay of 4TXOR

corresponding to the addition of 12 terms as given in Eq. (23). The generator
of the ζixj and ζivi terms given in Subsect. 5.3 needs a maximum of 3TXOR.
Finally, the last module performing the sum of ζixj and ζivi terms given in Sub-
sect. 5.4 has a maximum delay of 4TXOR corresponding to the addition of 12
terms as given in Eq. (28). Therefore, the maximum theoretical delay of the uni-
variate polynomial representation of Dillon’s permutation is 2TAND + 24TXOR

as shown in Table 3.

6.4 Comparison of Theoretical Complexities

As shown in Table 3, the decomposed architecture of Dillon’s APN permutation
has a reduction of 34.4% in the number of AND gates with respect to the uni-
variate polynomial representation. However, it also presents a higher delay, with
increases of 50% and 75% in TAND and TXOR, respectively, with respect to the
univariate representation.

It must be noted that the theoretical complexity is not an exact predictor of
area consumption and time delay when reconfigurable hardware (FPGA) is used
for the implementation. For this reason, the following section presents experi-
mental results when both architectures are implemented in commercial Xilinx
FPGA devices.

Table 3. Theoretical complexities.

#AND Delay

Composition of f1 and f−1
2 756 3TAND + 42TXOR

Univariate polynomial 1152 2TAND + 24TXOR

7 Hardware Implementations

In order to compare the two architectures of Dillon’s permutation (decomposed
and univariate) given previously, we have produced FPGA implementations of
the hardware architectures given in Sects. 4 and 5. The architectures have been
described in VHDL, synthesized and implemented on Xilinx FPGA Artix-7
XC7A12T-3-CPG238 using VIVADO 2021.2. Experimental post-place and route
results are given in Table 4. It must be noted that both implementations fit in
6 LUTs (Lookup Tables). For this reason, and in order to show the differences
between both architectures, Table 4 includes the number of 2-input XOR gates
given by the Xilinx tool. The synthesizer supplies the total number of inferred
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XORs, including XOR gates with multiple inputs and several bits each. In order
to have a fair comparison of the different implementations, these XORs must be
converted to equivalent 2-input XOR gates.

In Table 4, #XOR represents the number of 2-input XOR gates supplied
by the synthesizer, Delay represents the delay (in nanoseconds) needed by
each architecture to compute the output of Dillon’s APN permutation, and
Area × Delay represents the product of the number of 2-input XOR gates and
the delay (less is better). The columns % represent the percentages (with respect
to the highest value) corresponding to #XOR, Delay and Area × Delay met-
rics. From Table 4, we can observe that the implementation of the decomposed
Dillon’s permutation architecture presents the best results in the number of 2-
input XORs and in Area × Delay, with reductions of up to 27.3% and 27.4%,
respectively, in comparison to the univariate polynomial implementation. With
respect to the experimental time results, both architectures exhibit almost the
same delay.

Therefore, implementation results given in Table 4 show the efficiency of the
new decomposed architecture for Dillon’s APN permutation compared with its
univariate polynomial representation when reconfigurable devices are used for
the hardware implementation.

Table 4. Experimental complexities (using subexpressions sharing for the multipliers).

#XOR % Delay (ns) % #XOR × Delay %

Composition of f1 and f−1
2 1167 72.7 5.645 99.9 6587.72 72.6

Univariate polynomial 1605 100.0 5.651 100.0 9069.86 100.0

8 Conclusion

We have considered the recent representation of Dillon’s permutation as the
composition of a quadratic function and the inverse of a quadratic function. We
have produced and implemented hardware implementations for this decomposi-
tion representation and the original univariate representation of Dillon’s permu-
tation. We have computed the Area and delay metric for both representations
and have implemented the resulting architectures in FPGA. We have observed
that using the decomposed representation can reduce the number of 2-input
XOR gates by up to 27.3%, while the Area × Delay metrics can be reduced by
up to 27.4% with respect to the univariate representation.

We have thus demonstrated that the choice of representation can signifi-
cantly affect the implementation complexity. The choice of representation needs
to be carefully considered when realizing vectorial Boolean functions in practice,
especially in cases where the number of variables is high, or the computational
environment has limited resources.
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Abstract. In this paper, we propose two new versions of Miller algo-
rithm in order to secure pairing computations against existing side-
channel attacks (SCA). We have chosen to use the co-Z arithmetic
on elliptic curves from which we derive two methods for pairing com-
putations: one based on Euclidean addition chains and one based on
Zeckendorf representation. We show that our propositions are resistant
to existing side-channel attacks against pairing-based cryptography. We
consider differential power analysis and fault attacks. The complexities
of our solutions are compared with state-of-the-art one. We demonstrate
that our new proposed versions are more efficient by 17%.
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1 Introduction

Pairing-based cryptography (PBC) provides several protocols such as short sig-
nature protocols and hierarchical encryption [1,2], making it a promising tool for
the Internet of things (IoT) or cloud computing. In the first case, pairings would
be implemented on constrained devices [3] such as microcontrollers and would be
subject to invasive and non-invasive Side-Channel Attacks (SCA) [4–9]. Efficient
and secure pairing computation has thus been an active research area [8,10,11].

The most efficient pairing computation algorithms are usually based on the
Tate model [12] and rely on the Miller algorithm in order to compute the rational
function fs,Q such that Div(fs,Q) = s(Q) − ([s]Q) − (s − 1)(O), where P and Q
are two points of an elliptic curve defined over a finite field Fq and O represents
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the identity element for the group of rational points of the elliptic curve. This
function is computed thanks to the double-and-add loop called Miller loop [13]
and followed by a final exponentiation.

Such algorithms are known to be natural targets to SCA [9,14–18]. Our
contribution is to provide a new approach to Miller loop to replace the usual
double-and-add loop by a loop based on addition chains. Such approaches, e.g.,
based on the double-and-add algorithm, have been proven to be an interesting
alternative to standard scalar multiplication methods when security is in bal-
ance with speed, especially when combining to co-Z arithmetic [19]. Concretely,
we provide two versions of the Miller algorithm, one based on Euclidean addi-
tion chain and the other version based on the Zeckendorf representation of the
parameter controlling the number of iterations. We show that both versions are
resistant to Side-Chanel Attacks. Though the computational cost of these ver-
sions of the Miller algorithm is higher than that of the classic Miller algorithm,
they are the most efficient among other countermeasures like masking against
SCA.

The paper is organized as follows. Sections 2 and 3 are devoted to the nec-
essary mathematical background on pairing computations, co-Z arithmetic, and
scalar multiplication using Euclidean additions chains (EAC). In Sect. 4, we
present the new versions of the Miller algorithm, their complexities, and we
compare them with the standard version. Section 6 is devoted to the state of the
art on SCA and in Sect. 7 we analyze the security of our algorithms against some
of those attacks. Finally, in Sect. 8, we provide detailed comparisons between our
counter-measure, and other counter-measures used in the literature.

Notations
In this paper we denote by:

– Me a multiplication in the field Fpe .
– Se a squaring in the field Fpe .

A multiplication, a squaring and an inversion in Fp are respectively denoted by
M , S and I.

2 Background on Pairing Computations

Let E be an elliptic curve defined over a prime field Fp, with p a large prime
number. Let r be a large prime divisor of #E(Fp). In practice, (E, p, r) are
provided using parametric families [20]. Let k be the smallest integer such that
r divides pk − 1, k is called the embedding degree of E relative to r. Let G1 =
E(Fp)[r] be the r-torsion subgroup of E(Fp). Let G2 = E′(Fpk/d)[r]∩ Ker(πp −
[p]) where E′ is the twist of E (if it exists) of degree d, πp represents the Frobenius
map over E and [p] is the scalar multiplication by p over E. The subgroup of
F

�
pk consisting of r-th roots of unity is denoted by G3 = μr. Let s be an integer
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constructed for the optimal Ate pairing [21] and depending on r and p. Then
the (optimal) Ate pairing [21] is given by

Tr : G1 × G2 → G3; (P,Q) �→ fs,Q(P )(p
k−1)/r.

The pairing computation is divided into two main steps [8, Chap. 3]. First,
one has to compute fs,Q(P ) using an iterative algorithm denoted as the Miller
algorithm and described in Algorithm 1 below. As any algorithm based on the
double-and-add algorithm, the overall cost directly depends on the length and
Hamming weight of integer s.

Algorithm 1: Miller algorithm (P,Q) → fs,Q(P )
Require: P ∈ G1, Q ∈ G2, s = (sn−1, . . . , . . . s0): binary representation of s
Ensure: fs,Q(P ) ∈ G3(⊂ F

∗
pk)

1: f1 ← 1
2: T ← Q
3: for i = n − 2 down to 0 do
4: T ← [2]T
5: f1 ← f2

1 · l1(P ) where l1 is the tangent to the point T .
6: if ri = 1 then
7: T ← T + Q
8: f1 ← f1 · l2(P ) where l2 is the line passing through T and P .
9: end if

10: end for
11: return f1

The second step of computing the Tate pairing and its variants is the final
exponentiation and consists of raising the final result of the main loop, fs,Q(P ),
to the power of pk−1

r . The computation of this part can be simplified thanks to
the k-th cyclotomic polynomial [3].

3 Co-Z Arithmetic on Elliptic Curves

Given an elliptic curve E over a finite field Fq there are many ways to compute
the addition of two points. To avoid the computation of inversions in Fq when
considering affine coordinates, it is standard to represent the points of E in
Jacobian coordinates. A point (x, y) given in affine coordinates is represented in
Jacobian coordinates by a triplet (X : Y : Z) such that x = X/Z2 and y = Y/Z3,
the point at infinity being then represented by (0 : 1 : 0). A typical point addition
costs 11 multiplications (M) and 5 squarings (S) in Fq. Considerable literature
now exists on the various point addition formulae, coordinate systems and curve
shapes that can be used in a different context [22].
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In the particular case of two points sharing the same Z-coordinate, the addi-
tion can be performed using only 5M+2S [19]. This operation is usually referred
to as co-Z addition or ZADD. Finding two points sharing the same Z-coordinate
is very unlikely but, when combined with the right scheme, one can perform a
whole scalar multiplication using the co-Z addition. In this work, we consid-
ered two of those schemes: one based on Euclidean addition chains (EAC) and
another based on the Zeckendorf representation of integers [19].

3.1 Euclidean Addition Chains

A Euclidean addition chain (EAC) computing an integer k is a sequence n =
(n1, n2, . . . , nw) such that n1 = 1, n2 = 2, n3 = 3, nw = k and ∀ 3 � i � w − 1,
if ni = ni−1 +nj , for some j < i−1, then we have ni+1 = ni +ni−1 (big step) or
ni+1 = ni+nj (small step). Such an addition chain, computing an integer greater
than 3, can easily be represented by a binary chain c4, c5, . . . , cw representing the
succession of big steps (noted 0) and small steps (noted 1) starting from (1, 2, 3).
For instance, the EAC (1, 2, 3, 4, 7, 10, 13, 23) can be represented as (1, 0, 1, 1, 0).
Another example is the Fibonacci sequence (1, 2, 3, 5, 8, 13, 21, . . . ) which is only
made of big steps.

Example 31. The addition chain (1, 2, 3, 4, 7, 11, 15, 19, 34, 53) is an
Euclidean addition chain computing 53. For example, in step 4, we have com-
puted 4 = 3 + 1. Then for step 5, we must add 3 or 1 to 4, that means that
from step 4, we can compute 7 = 4 + 3 or 5 = 4 + 1. In our example, we have
chosen to compute, 7 = 4+3 (which is a big step). For step 6, we have computed
11 = 7 + 4 (big step), etc.

Finding such chains is simple: choose an integer g co-prime with k and then
apply the subtractive form of Euclid’s algorithm to those numbers.

Example 32. We have presented 53 as an Euclidean addition chain. Let g = 34,
gcd(34, 53) = 1. Let apply now the subtractive form of Euclid’s algorithm:

53 − 34 = 19
34 − 19 = 15
19 − 15 = 4
15 − 4 = 11
11 − 4 = 7
7 − 4 = 3
4 − 3 = 1
3 − 1 = 2
2 − 1 = 1
1 − 1 = 0

The Euclidean addition chain computing 53 is (1, 2, 3, 4, 7, 11, 15, 19,
34, 53). We find this chain by reading the first number of each line of the sub-
tractive form of Euclid’s algorithm.
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It has been shown that those chains can be an efficient alternative to the
classical binary chain used in most scalar multiplication algorithms when side-
channel attack resistance is an issue [19,23]. Algorithm 2 [19] describes how to
perform a scalar multiplication using an EAC.

The main drawback of this approach is that, although it is easy to find an
EAC computing a given integer k, finding a short one seems to be a challenging
problem [24] making it difficult to use EAC for scalar multiplication directly.
However, in the case of PBC, the Miller algorithm uses a fixed scalar which
means that it is worth investigating finding an efficient EAC computing the
parameter s. However, this method will become less efficient when s grows in
size as finding a short EAC will become harder.

Algorithm 2. [19] Calculation of [k]P where k is presented as an Euclidean
Additions Chain.
Require: P ∈ E, c = (c4, . . . , . . . cw) an EAC computing k
Ensure: [k]P ∈ E

(U1, U2) ← ([2]P, P )
for i = 4 to w do

if ci = 0 then
(U1, U2) ← (U1 + U2, U1)

else
(U1, U2) ← (U1 + U2, U2)

end if
end for
U1 ← U1 + U2

return U1

3.2 Zeckendorf Representation

Let k be an integer and (Fi)i≥0 the Fibonacci sequence, a classical result states
that k can be uniquely written in the form k =

∑l
i=2 diFi, with di ∈ {0, 1} and

didi+1 = 0 [25]. An integer k written in this form is said to be in Zeckendorf
representation and will be denoted as k = (dl−1, . . . , d2)Z . Such a representation
is easy to compute as it can be obtained using a greedy algorithm [19].

As mentioned in [19,25], the disadvantage of the Zeckendorf representation
is that it requires 44% more digits than the binary method requires. However,
contrary to EAC, it is easy to bound its length [25]. Given the Zeckendorf rep-
resentation of k, one can perform a scalar multiplication using the following
Algorithm 3 [19].
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Algorithm 3. [19] Computing [k]P using Zeckendorf representation
Require: P ∈ E, k = (dn, . . . , . . . d2)Z Zeckendorf representation of k with dn = 1
Ensure: [k]P ∈ E
1: (U1, U2) ← (P, P )
2: for i = n − 1 to 2 do
3: if di = 1 then
4: (U1, U2) ← (U1 + P, U2)
5: end if
6: (U1, U2) ← (U1 + U2, U1)
7: end for
8: return U1

4 Co-Z Approach to the Miller Algorithm

In this section, we will present two variants of the Miller algorithm. We should
remember that the basic idea of Miller’s algorithm is to consider the binary
representation of the Miller loop length parameter s and apply the double-and-
add algorithm. The main idea of our work is to consider different representations
of s to take advantage of co-Z formulae adapted for pairing computations.

4.1 Miller-Euclide

The idea is to adapt the scalar multiplication scheme described in Algorithm 2 to
Miller loop and take advantage of the co-Z coordinates to limit the computational
cost. Our approach, referred to as Miller-Euclide, is shown in Algorithm 4.

Algorithm 4 : Miller-Euclide, The computation of fs,Q(P ) using an
Euclidean addition chain.
Require: P ∈ G1, Q ∈ G2, c = (c4, . . . , . . . cw) the euclidean addition chain comput-

ing s,
Ensure: fs,Q(P )
1: (T1, T2) ← ([2]Q, Q)
2: (f1, f2) ← (lQ,Q(P ), 1)
3: for i = 4 to w do
4: if ci = 0 then
5: (f1, f2) ← (f1 × f2 × �T1,T2(P ), f1)
6: (T1, T2) ← (T1 + T2, T1)
7: else
8: (f1, f2) ← (f1 × f2 × �T1,T2(P ), f2)
9: (T1, T2) ← (T1 + T2, T2)

10: end if
11: end for
12: f1 ← f1 × f2 × �T1+T2,T1(P )
13: return f1
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First, let us notice that the initialization consists of one doubling and the eval-
uation of the tangent line passing through Q. It has been shown [19] that the dou-
bling is compatible with the co-Z coordinates without additional cost so that the
initialization can be performed in 2 multiplications and 5 squarings for the dou-
bling. We add to this cost 3 multiplications and one squaring for the evaluation of
the tangent. The details of this computation are presented in Algorithm 5.

Algorithm 5. Initialization step of Algorithm 4 lines 1 and 2

Require: P = (xP , yP ) and Q = (XQ, YQ, ZQ)
Ensure: T1 = [2]Q, T2 = Q sharing the same z-coordinate Z′, f1 = �Q,Q(P ), XP =

xP Z′2 and YP = yP Z′3

1: A ← X2
Q (Sk/d)

2: B ← Y 2
Q (Sk/d)

3: C ← B2 (Sk/d)
4: D ← 2((X1 + B)2 − A − C) (Sk/d)
5: E ← 3A
6: F ← E2 (Sk/d)
7: X2Q ← F − 2D
8: Y2Q ← E(D − X2Q) − 8C (Mk/d)
9: Z2Q ← 2YQZQ (Mk/d)

10: XP ← xP Z2
2Q (Sk/d + Mk/d)

11: YP ← yP Z3
2Q (2Mk/d)

12: f1, f2 ← Yp + Xp − 3A2 + 16C, 1
13: T2 = (X2, Y2) ← D, 8C
14: T1 = (X1, Y1) ← X2Q, Y2Q

The main loop of the new Miller-Euclide algorithm is only made of addition
steps, one for each bit of the EAC, so that the computational cost of our method
is simply linked to the length of the EAC representing s.

In order to evaluate the cost of our method we must evaluate the cost of a
full addition step. Let T1 = (X1, Y1, Z) and T2 = (X2, Y2, Z) be two points with
the same z-coordinate. From [19] we have that the coordinates (X3, Y3, Z3) of
the point T3 = T1 + T2 can be computed using the following equations:

A = (X2 − X1)2, B = X1A,C = X2A,D = (Y2 − Y1)2

X3 = D − B − C,

Y3 = (Y2 − Y1)(B − X3) − Y1(C − B),
Z3 = Z(X2 − X1).

This computation requires 5 multiplications and 2 squarings over Fpk/d . On
top of that the quantities X1A = X1(X2 −X1)2 and Y1(C −B) = Y1(X2 −X1)3

computed during the addition can be seen as the x and y-coordinates of the point
(X1(X2 − X1)2, Y1(X2 − X1)3, Z(X2 − X1)) ∼ (X1, Y1, Z). Thus it is possible
to add P1 and P1 + P2 with the same formulae during the next iteration of the
main loop.
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Let us now consider the value of lT1,T2(P ) given by the equation of the line
joining T1 and T2 evaluated on P = (xP , yP ). The standard equation of such
line in affine coordinates is given by

yp =
y1 − y2
x1 − x2

xP +
y2x1 − y1x2

x1 − x2
, (1)

To convert this equation to co-Z coordinate, we just need to apply the trans-
formation (xi, yi) �→ (

Xi

Z2 , Yi

Z3

)
which gives us

yp =
Y1 − Y2

Z(X1 − X2)
xP +

Y2X1 − Y1X2

Z3(X1 − X2)
⇔ yp(X1 − X2)Z3 = (Y1 − Y2)Z2xp + Y2X1 − Y1X2

⇔ yp(X1 − X2)Z3 = (Y1 − Y2)(xpZ
2 − X1) − Y1(X1 − X2)

⇔ ypZ
′3 = (Y1 − Y2)(xpZ

′2 − X ′
1) − Y ′

1

where X ′
1 = X1(X1 − X2)2, Y ′

1 = Y1(X1 − X2)3 and Z ′ = Z(X1 − X2). Now
we remark that all those values have been computed during the point addition
as well as the values of (X1 − X2)2 and (X1 − X2)3. If we suppose that the
values of ypZ

3 and xpZ
2 were stored from the previous iteration of the main

loop, the evaluation of the line joining the points T1 and T2 required exactly 3
multiplications over Fpk/d . Moreover, the value of Z ′ = Z(X1 − X2) itself is not
needed during the whole process, so that we can spare one multiplication per
iteration, for a total cost of 7 multiplications and 2 squarings over Fpk/d .

Finally, we have to compute f1 × f2 × �T1,T2(P ) which requires one sparse
multiplication between elements of Fpk/d and Fpk and one full multiplication
over Fpk .

Algorithm 6 sums up the computations required to perform one addition step
with their respective costs.

Therefore, each addition step of Algorithm 4 requires Mk +Mk,k/d +7Mk/d +
2Sk/d operations. At the end the total cost of the algorithm is 5Mk/d + 6Sk/d +
(n − 2)(Mk + Mk,k/d + 7Mk/d + 2Sk/d).

4.2 Miller-Fibonacci

Let us now adapt Algorithm 3 to the Miller loop to present our new Algorithm 7
which computes fs,Q(P ) using the Zeckendorf representation of s.

First, let us note that the first computation will be a doubling instead of an
addition, independently of the value of sn−1, but for the sake of simplicity, we
only use the additive notation. For this particular step, we use Algorithm 5.

Each step of this algorithm is similar to Miller-Euclide. If the current digit
is a 0, we use the procedure described in Algorithm 6. If the current digit is
a 1 then we have to perform an additional sparse multiplication and then the
evaluation of the line passing through two points of the elliptic curve. To do
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Algorithm 6. Computing one addition step of Algorithm 4
Require: T1, T2 with same z-coordinate Z, Xp = xpZ2, Yp = yP Z3 and f1, f2 ∈ Fpk

Ensure: Z′ = Z(X1 − X2), T3 = T1 + T2, T1 = (X3, Y3, Z
′), T2 =

(X1Z
′2
, Y1Z

′3, Z′), Xp = xpZ′2, Yp = yP Z′3, f1 = f1 × f2 × �T1,T2(P )
1: A ← (X1 − X2)

2 (Sk/d)
2: B ← X1A (Mk/d)
3: C ← X2A (Mk/d)
4: D ← (Y1 − Y2)

2 (Sk/d)
5: E ← C − B
6: F ← Y1E
7: X3 ← D − B − C
8: Y3 ← (Y2 − Y1)(B − X3) − F (2Mk/d)
9: XP ← XP A (Mk/d)

10: YP ← YP E (Mk/d)
11: L ← YP − (Y1 − Y2)(XP − X3) − Y3 (Mk/d)
12: f3 ← f1L (Mk,k/d)
13: f3 ← f1f2 (Mk)
14: f1, f2 ← f3, f1
15: X2, Y2 ← B, F
16: X1, Y1 ← X3, Y3

Algorithm 7: Miller-Fibonacci: The computation of fs,Q(P ) using Fibonacci
sequences
Require: P ∈ G1, Q ∈ G2, (dn, . . . , . . . d2) The Zeckendorf representation of s,
Ensure: fu,Q(P )
1: (T1, T2) ← (Q, Q)
2: (f1, f2) ← (1, 1)
3: for i = n − 1 down to 2 do
4: if di = 1 then
5: (f1, f2) ← (f1 × lT1,T2(P ), f2)
6: (T1, T2) ← (T1 + Q, T2)
7: end if
8: (f1, f2) ← (f1 × f2 × lT1,T2(P ), f1)
9: (T1, T2) ← (T1 + T2, T1)

10: end for
11: return f1

so, we must first upgrade the coordinates of T1 and Q so that they share the
same z-coordinate as well as the values of Xp and Yp (this is easily done in 7
multiplications and 2 squarings) and then use the formulae given in Algorithm 6.
On top of that, we have to keep track of the z-coordinate of T1 during the whole
process which adds another multiplication. In the end the cost when the di = 0
is Mk + Mk,k/d + 8Mk/d + 2Sk/d plus 7Mk/d + 2Sk/d if di = 1. The total cost of
Algorithm 7 is then 5Mk/d + 6Sk/d + (n − 2)(Mk + Mk,k/d + 7Mk/d + 2Sk/d) +
hz(s)(7Mk/d + 2Sk/d) where hz(s) is the hamming weight of the Zeckendorf
representation of s.
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5 Comparison

In this section, we compare three versions of the Miller algorithm that allow
us to compute the rational function fs,Q evaluated at P : Miller’s algorithm,
Miller-Euclide, and Miller-Fibonacci. For the sake of simplicity, we restraint our
comparisons to the computation of the Optimal Ate pairing over BN curves [26]
and BLS 12 curves [27].

After Barbulescu and Duquesne results presented in [28], it is recommended
to use BLS12 for computing Optimal Ate pairing for the 128-bit security level
instead of BN curves. However, BN curves are still considered in practice for
several schemes [29,30]. That’s why, in this paper, we consider the two curves in
our computation.

Both of these curves have the embedding degree k = 12, therefore, the arith-
metic in their extension tower has the same complexity (since we don’t consider
additions in our cost evaluation). The tower extension used for pairing compu-
tation on both curves is given by: The field Fp12 is built using the following
extension tower.

– Fp2 = Fp[α]/(α2 + 1)
– Fp6 = Fp2 [β]/

(
β3 − (α + 1))

)

– Fp12 = Fp6 [γ]/
(
γ2 − β

)

In Table 1, we also present the cost of each operation needed for comput-
ing Miller algorithm using projective coordinates [31] and also the cost of the
operations needed for our new versions of Miller’s algorithm.

Table 1. Cost of necessary operations for Miller loop

Operation Cost in Fp

Multiplication in Fp12 54 M

Sparse Multiplication in Fp12 39 M

Squaring in Fp12 36 M

Multiplication in Fp2 3 M

Squaring in Fp2 2 M

Addition step for Miller classic ( Projective coordinates) 80 M

Doubling step for Miller classic ( Projective coordinates) 100 M

Initialization step for Miller-Euclide/Fibonacci 27 M

Addition step for Miller-Euclide 118 M

Addition step for Miller-Fibonacci(for ui = 0) 121 M

Addition step for Miller-Fibonacci (for ui = 1) 146 M
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Note that these two curves, BN and BLS12, have a twist of degree d = 6 and
the twist isomorphism is given by the following map.

Ψ : E′ (
Fp2

) → E(Fp12)

(xQ′ , yQ′) �→ (γ2xQ′ , γ3yQ′)

5.1 BN Curves

A Barreto-Naehrig (BN) curve [26] is an elliptic curve E : y2 = x3 + b defined
over a finite prime field Fp such that

– b ∈ Fp,
– E(Fp) has prime order n = #E(Fp),
– p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1, and

n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1 for some u ∈ Z.

We choose the following elliptic curve which is efficient in practice [31]:

E(F) : y2 = x3 + 2.

The twisted elliptic curve is defined by the equation:

E′(Fp2) : y2 = x3 + (1 − i).

Recall that the Optimal Ate pairing over BN curves is the following map:

E(Fp)[r] × Ψ(E′(Fp2 ))[r] −→ F
�
p12

(P, Q) �−→ =
(
(f6u+2,Q(P )l[6u+2]Q,πp(Q)(P )l[6u+2]Q,π2

p(Q)(P ))
) p12−1

r

Using the costs presented in Table 1, we obtain the comparison between the
different versions of Miller’s algorithm to compute f6u+2,Q(P ), in terms of oper-
ations in Fp. This comparison is presented in Table 2. We recall that the pairing
parameter in our case is s = 6u + 2 with u = −2114 + 2101 − 214 − 1. In this
case, it is possible to find a EAC of length 168 (using the subtractive euclidean
algorithm with parameter s with s = 174601120802286487002979030408532519
when we consider u = 47085091321987640844053613709579372). Moreover, the
Zeckendorf representation of s = 6u+2 = Fibo(169)+Fibo(61)+Fibo(99) with
a chosen parameter u = 15533701296897238962071235758772159, has a length
of 168 and its hamming weight is 3. Thus, we have:

From this Table 2, we can notice that the classical Miller algorithm is more
efficient than our two new versions. However, it is not secure when considering
DPA attack. We show in the next section that our method protects against this
attack.
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Table 2. Cost of each Miller algorithm for BN curves

Method Complexity in Fp

Miller classic Algorithm 1 12068 M

Miller-Euclide Algorithm 4 19991 M +65,5%

Miller-Fibonacci Algorithm 7 20683 M +71,3%

5.2 BLS 12 Curves

In 2002, Barreto, Lynn and Scott presented in [27] a method to generate pairing-
friendly elliptic curves over a prime field Fp with embedding degree k = 12.
BLS12 are defined over Fp by the following equation:

E : y2 = x3 + b

and by a parameter u ∈ Z such that:
⎧
⎨

⎩

p = (u − 1)2(u4 − u2 + 1)/3 + u
r = u4 − u2 + 1
t = u + 1

(2)

where t is the trace of the Frobenius map on the curve. The parameter u is chosen
such that p and r are prime and have the sizes corresponding to the desired
security level. For the 128-bit security level and as recommended in [28], p and
r are of at least 461 and 308 and the proposed parameter u = −277 + 250 + 233.
The choosed BLS12 elliptic curve is defined over F� by E(F) : y2 = x3 +4 which
admits a twist of degree d = 6 and given by E′(Fp2) : y2 = x3 + 4(1 − i).

The Optimal Ate pairing on BLS12 curves is defined by the following map.

E(Fp)[r] × Ψ(E′(Fp2))[r] −→ F
�
p12

(P,Q) �−→ = ((fu,Q(P ))
p12−1

r .

Using the costs presented in Table 1, we obtain the comparison between the
different versions of the Miller algorithm to compute fu,Q(P ), in terms of opera-
tions in Fp. This comparison is presented in Table 3. We recall that the pairing
parameter in our case is u = −277 + 250 + 230. In this case, it is possible to find
a EAC of length 112 (using the subtractive euclidean algorithm with parameter
u′ = 204035480723636378792533 and s′ = 126100861998131272870737). Note
that u′ is chosen such that p and r are primes. Moreover, the Zeckendorf repre-
sentation of u = 70492524767089125860497 = Fibo(3) + Fibo(7) + Fibo(24) +
Fibo(111) has length 111 and its hamming weight is 4 (u is chosen such that we
obtain an efficient Zeckendorf representation where p and r are primes. Thus,
we have:
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Table 3. Cost of each Miller algorithm for BLS12

Method Complexity in Fp

Miller classic Algorithm 1 7438 M

Miller-Euclide Algorithm 4 13147 M +76,8%

Miller-Fibonacci Algorithm 7 13936 M +87,3%

From this Table 3, we can notice that the classical Miller algorithm is more
efficient than our two new versions. However, it is not secure when considering
DPA attack. We show in the next section that our method protects against this
attack.

6 SCA Against Miller’s Algorithm

The SCA re the perturbation analysis that are invasive and observation analysis
that are non-invasive. Non-invasive attacks against pairing, such as DPA, CPA,
template attack, have been widely studied [4,6,9,14,15,17,32,33], so as the inva-
sive attacks (basically fault attacks) [7,8]. In this section, we briefly recall the
non-invasive attacks against pairing, then, we will illustrate the fact that our
new algorithms seem to be resistant to existing attacks.

6.1 Non-invasive Attacks

Non-invasive attacks can use for instance the power consumption or electromag-
netic emission of a device. Those attacks are also called observation analysis,
they include Differential Power Analysis, Correlation Power Analysis, Template
attacks and can be performed in vertical or horizontal mode. We will describe
the resistance of our algorithms by using the DPA attack model to resume the
non invasive attacks. Those attacks can allow an attacker to compute the inter-
mediate values within cryptographic computations through statistical analysis of
data collected from multiple cryptographic operations. In pairing-based cryptog-
raphy, the secret is one of the inputs, either the point P either the point Q. The
public data is the other point. The vulnerabilities of a pairing implemented with
a classical Miller algorithm have been illustrated in several articles [4,17,32–38].
The scheme is as follow:

1. First choose the secret (P or Q).
2. Then find during the algorithm an operation that involves both the secret data

and a data that can be manipulated freely during the attack. This operation
is the target of the attack. In pairing-based cryptography, the freely chosen
data are the coordinates of the public point.

3. For a vertical attack: the operation is executed at a specific time t0, the
statistical analysis is performed on a collection of traces for the same secret
point and hundred to millions of public point.
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4. For a horizontal attack: the same secret data is used more than once during
a single algorithm execution, the statistical analysis is performed using one
public entry at different times ti.

6.2 Existing Countermeasure

To avoid SCA in pairing-based cryptography, several counter-measures have been
proposed in the literature:

1. The counter-measure proposed by Öztürk et al. in [39]. The principle of this
counter-measure is to avoid any perturbation against Miller’s algorithm using
resilient counters. The disadvantage of this counter-measure is that it is a
proof of concept implementation and doesn’t have a theoretical basis for mea-
suring its security.

2. The second counter-measure is proposed by Gosh et al. in [40]. It consists of
implementing a modified version of the Miller algorithm. Unfortunately, this
method introduces an additional calculation which is expensive and which,
moreover, does not really improve security for the Miller algorithm.

3. The use of the homogeneity property of projective coordinates (or Jacobian
coordinates) of the point P or of the point Q, is a counter-measure against this
attack on Miller’s algorithm [34]. This counter-measure causes a modification
of the result of the Miller algorithm: thus, we obtain a multiple of the final
result of Miller algorithm. However, this is not a problem because this multiple
being in the subfield of Fpk , will be eliminated by the final exponentiation.
The advantage of this counter-measure is that it is not expensive. However,
unfortunately, El Mrabet et al. have shown in [41] that this is not enough to
protect Miller’s algorithm.

4. Another efficient counter-measure is to choose two integers a et b such that
a × b = 1 mod r [34]. Then, the idea is to compute the pairings between
the points [a]P and [b]Q instead of computing the pairing between P and Q.
This operation is possible thanks to the bilinearity of pairings, we have:

e([a]P, [b]Q) = e(P, Q)ab.

Also, thanks to the final exponentiation, the exponent, ab will be canceled.
Finally, we obtain:

e(P, Q)ab×( pk−1
r ) = e(P, Q)(

pk−1
r ).

5. Finally, we cite the most considered counter-measure: masking [34]. When
the secret is the point P , this counter-measure consists of choosing a random
point R of the elliptic curve E such that e(P,R) is defined, then computing
the pairing between P and Q passing through the point R. Using the property
of bilinearity, we obtain:

e(P, Q) = e(P, Q + R) × e(P, −R).

Therefore, this counter-measure consists of computing two pairings instead
of one and then performing their product.
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The last two counter-measures are the most considered in practice. In a
theoretical study of the various existing counter-measures, El Mrabet et al. sug-
gested in [7] to consider the counter-measure by masking to protect the Miller
algorithm against SCA attacks. The counter-measure based on the bilinearity
of pairings implies the computation of two scalar multiplications, one on E(Fp),
and one on E(Fpk), both of them are scalar multiplication by an integer of order
r. Make these two computations secure against side channel attack is a classi-
cal problem in elliptic curve cryptography. In [42], Feix et al. demonstrate that
even a secure scalar multiplication can be sensitive to side channel attack. The
use of that counter-measure in pairing-based cryptography would imply to add
two other sensitive computations with their counter-measure [19,23,43]. On the
other side the masking counter-measure, imply one addition over E and in the
worst case two pairing computations shorter than the scalar multiplication. As
a consequence, we consider the masking counter-measure in the sequel of the
article.

7 Resistance of Our Methods Against Non-invasive
Attacks

Since Miller-Fibonacci algorithm is based on the operation used in the Miller-
Euclide so that proving that it is secure against a non invasive would show that
the Miller-Euclide is also secured.

The Miller-Fibonacci algorithm is based on writing the pairing parameter s as
a sequence of Fibonacci numbers. In our new algorithm, we have only additions
steps. Therefore we only have to evaluate the line passing through the points
T1 and T2 (or T1 and Q) of respective coordinates (X1, Y1, Z) and (X2, Y2, Z)
evaluated on the public point P .

Therefore, the only equation involving known data that the non invasive
attack can use is the following one:

lT1,T2(P ) = yP Z3(X1 − X2)3 − Y1(X1 − X2)3

−(Y1 − Y2)
(
xP Z2(X1 − X2)2 − X1(X1 − X2)2

)

The DPA attack model in pairing-based cryptography [4,34], is efficient when
we have an operation that involved a known data and one of the temporary
variables X1,X2, Y1, Y2 or Z. If the secret is the point Q, the known values are
xp and yp. With a DPA we can find Z2(X1 − X2)2 using the multiplication
xP Z2(X1 −X2)2 and Z3(X1 −X2)3 using yP Z3(X1 −X2)3. This gives us access
to the value Z(X1 − X2). Recall that our algorithm is described using the co-
Z arithmetic, as a consequence the value of Z is the same for the points at
each execution step of the Miller-Fibonacci algorithm. We analyze now which
information can be found given two hypotheses on Z, either ZQ = 1 or ZQ 	= 1.
If ZQ = 1, i.e. Z = 1, then using a vertical DPA attack we can find the values
(X1 − X2), (X1 − X2)2, and (X1 − X2)3. Then using another DPA we can find
either Y1 using Y1(X1 − X2)3 or X1 using X1(X1 − X2)2. With Z = 1 and
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X1 or Y1 and the elliptic curve equation, we can find Y1 or X1. The attack
would be successful. But if ZQ 	= 1, we cannot perform the attack. Indeed,
we made the hypothesis that Q is secret, then ZQ is also secret and different
from 1. We do not know either Z, neither X1 and X2 as they are derived from
Q. We can make hypotheses on the value of Z and then on (X1 − X2), but
we cannot try all the possible values of Z in Fp. As a consequence, as long
as ZQ 	= 1, our Miller-Fibonacci algorithm, based on presenting the parameter
pairing s with the Zeckendorf representation, is natively protected against a
DPA attack. Indeed, once we eliminate the leakage of information during the
operations yP Z3(X1 − X2)3 and xP Z2(X1 − X2)2, the other registers depend
only on the secret point and consequently are protected against any vertical DPA
analysis. In fact, our algorithm is also secure against horizontal attacks. Indeed,
in horizontal attacks, the hypothesis is that a same entry is used more than
once during one single execution of the algorithm. Using the co-Z arithmetic,
we use the same Z coordinates during one step of the Miller algorithm. It is not
sufficient to perform an horizontal SCA.

The same analysis can be done for Miller-Euclide which is also protected
against SCA as long as Z 	= 1.

8 Comparison

In the Sect. 7, we have proved that our new algorithms resist against DPA
attacks. In this section, we compare their respective complexities with a classical
Miller algorithm protected again DPA attack. We choose to compare these two
counter-measures in the context of computing Optimal Ate pairing on BN and
BLS 12 curves for the reasons explained in the Introduction.

Remark 81. Our methods for computing the Miller loop using Euclidean addi-
tion chains or Fibonacci Sequences are available for computing all pairings and
in any elliptic curve.

We have to evaluate f6u+2,Q(P ) using Miller algorithm where 6u + 2 is an
integer of 114 bits and Hamming weight 4.

We present the following table the cost of our counter-measure by comparing
it with the counter-measure by masking.

Table 4. Comparison between the costs of the counter-measures

Algorithm DPA secure Cost BN Cost BLS12

Miller No 12068 Mp 7708 Mp

Miller+masking Yes 24136 Mp 15416 Mp

Miller-Euclide Yes 19991 Mp 13147 Mp

Miller-Fibonacci Yes 20683 Mp 13936 Mp
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Table 4 shows that our counter-measures are more efficient than the counter-
measure proposed in the literature. The Miller-Euclide and the Miller-Fibonacci
algorithm are, respectively, 16% and 17% faster than the Miller standard algo-
rithm combined with the masking.

9 Conclusion

In this paper, we have proposed two new versions of Miller’s algorithm: Miller-
Euclide and Miller-Fibonacci. The complexity of these algorithms depends on
the Miller loop parameter. Therefore, we showed how to choose a short repre-
sentation for the parameter s which makes our algorithms as efficient in terms
of complexity as possible.
We proved also in this paper that these two algorithms resist against Differential
Power Analysis attacks.

We compare the complexity of our new algorithm Miller-Fibonacci with
the most efficient counter-measure of the classical Miller algorithm. We proved
that our proposal Miller-Fibonacci algorithm is more efficient than the counter-
measure by masking about 10.7% in the worst case and in the best case about
20%. We only investigate the vertical power analysis, we leave as an open prob-
lem the analysis of our algorithms against horizontal power analysis. Indeed, this
kind of analysis needs implementations and practical attacks.
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26. Pereira Geovandro, C.C.F., Simpĺıcio Jr., M.A., Naehrig, M., Barreto,P.S.L.M.: A
family of implementation-friendly BN elliptic curves. J. Syst. Softw. 84(8), 1319–
1326 (2011)

27. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Security in Communication Networks (2002)

https://doi.org/10.1007/978-3-642-13797-6_9
https://doi.org/10.1007/11958239_7
https://doi.org/10.1007/978-3-319-54876-0_16
https://doi.org/10.1007/978-3-642-17401-8_18


New Versions of Miller-loop Secured Against Side-Channel Attacks 287

28. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32, 1298–1336 (2019)

29. Black-box wallets: Fast anonymous two-way payments for constrained devices.
IACR Cryptology ePrint Archive, p. 1199 (2019)

30. Canard, S., Diop, U., Kheir, N., Paindavoine, M., Sabt, M.: Blindids: market-
compliant and privacy-friendly intrusion detection system over encrypted traffic.
In: AsiaCCS 2017, Abu Dhabi, Emirats Arabes Unis, 2–6 avril, pp. 561–574 (2017)

31. Duquesne, S., El Mrabet, N., Haloui, S., Rondepierre, F.: Choosing and generating
parameters for low level pairing implementation on BN curves. IACR Cryptol.
ePrint Archive 2015, 1212 (2015)

32. Ghosh, S., Roychowdhury, D.: Security of prime field pairing cryptoprocessor
against differential power attack. In: Joye, M., Mukhopadhyay, D., Tunstall, M.
(eds.) InfoSecHiComNet 2011. LNCS, vol. 7011, pp. 16–29. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24586-2 4

33. Pan, W., Marnane, W.P.: A correlation power analysis attack against Tate pairing
on FPGA. In: Koch, A., Krishnamurthy, R., McAllister, J., Woods, R., El-Ghazawi,
T. (eds.) ARC 2011. LNCS, vol. 6578, pp. 340–349. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19475-7 36

34. Page, D., Vercauteren, F.: Fault and Side-Channel Attacks on Pairing Based Cryp-
tography (2004)

35. Whelan, C., Scott, M.: Side channel analysis of practical pairing implementations:
which path is more secure? In: VIETCRYPT 2006, pp. 99–114 (2006)

36. Mrabet, N.: What about vulnerability to a fault attack of the Miller’s algorithm
during an identity based protocol? In: Park, J.H., Chen, H.-H., Atiquzzaman,
M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 122–134.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1 13

37. Unterluggauer, T., Wenger, E.: Practical attack on bilinear pairings to disclose the
secrets of embedded devices. In: ARES, pp. 69–77 (2014)

38. El Mrabet, N., Fouotsa, E.: Failure of the point blinding countermeasure against
fault attack in pairing-based cryptography. In: El Hajji, S., Nitaj, A., Carlet, C.,
Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 259–273. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18681-8 21
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Abstract. Let f(x) = x
q−3
2 be a power mapping over Fq, where q is

an odd prime power. The differential uniformity of f was determined
by Helleseth and Sandberg [14] in 1997. In this paper, we study the
boomerang uniformity of f via its differential properties. It is shown
that f has low boomerang uniformity when q ≡ 3 (mod 4).

Keywords: Power function · Differential uniformity · Boomerang
uniformity

1 Introduction

Substitution boxes (S-boxes for short) play a crucial role in the field of symmetric
block ciphers. Let Fq be the finite field with q elements. For a function f from
Fq to itself, the main tools to handle f regarding the differential attack are the
difference distribution table (DDT for short) introduced by Biham and Shamir
[2] and the differential uniformity which was introduced by Nyberg [21] in 1994.
For any a, b ∈ Fq, the DDT entry at point (a, b), denoted by δf (a, b), is defined
as

δf (a, b) =
∣
∣{x ∈ Fq : f(x + a) − f(x) = b}∣

∣,

where
∣
∣S

∣
∣ denotes the cardinality of the set S. The differential uniformity of the

function f , denoted by δf , is defined as

δf = max{δf (a, b) : a ∈ F
∗
q , b ∈ Fq},

where F
∗
q = Fq \ {0}. When f is used as an S-box inside a cryptosystem, the

smaller the value δf is, the better the contribution of f to the resistance against
differential attack. When δf = 1 (respectively, δf = 2), the function f is called a
perfect nonlinear (PN) function (respectively, an almost perfect nonlinear (APN)
function). The recent results on cryptographic functions with low differential
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uniformity can be found in [1,3,5,6,13,18,22,23,25,27,29,30,34] and their refer-
ences. More precisely, the readers can refer to a recent monograph [8], Chapter
11, which is written by Carlet.

Another important cryptanalytical technique on block ciphers is the
boomerang attack introduced by Wagner [28], which is a variant of differen-
tial cryptanalysis. In order to analyze the boomerang attack of block ciphers in
a better way, analogous to the DDT concerning differential attack, Cid et al. [9]
firstly proposed the boomerang connectivity table (BCT). Let f be a permuta-
tion from F2n to itself. For a, b ∈ F2n , the BCT entry at point (a, b), denoted by
βf (a, b), is defined as

βf (a, b) =
∣
∣{x ∈ F2n : f−1(f(x + a) + b) + f−1(f(x) + b) = a}∣

∣.

Further, to quantify the resistance of a function against the boomerang attack,
Boura and Canteaut [4] introduced the concept of boomerang uniformity, which
is the maximum value in the BCT excluding the first row and the first column.
That is, the boomerang uniformity of the permutation f , denoted by βf , is given
by

βf = max
{

βf (a, b) : a, b ∈ F
∗
q

}

.

Similarly, the smaller the value βf is, the better the contribution of f to the
resistance against boomerang attack. Recently, Li et al. in [16] generalized the
definition of βf (a, b) for any function f (not necessarily being a permutation)
over Fq. The BCT entry of f at point (a, b), denoted by βf (a, b), is the number
of solutions (x, y) ∈ Fq × Fq of the following system of equations

{
f(x) − f(y) = b,
f(x + a) − f(y + a) = b,

where a, b ∈ F
∗
q . The research on cryptographic functions with low boomerang

uniformity has been a hot issue in recent years, see for example [4,9,11,16,17,
20,26,33]. More precisely, for recent progress of cryptographic functions with
known boomerang uniformity, the readers can refer to the survey article [19],
which is written by Mesnager, Mandal and Msahli.

Power functions with low differential uniformity serve as good candidates for
the design of S-boxes not only because of their strong resistance to differential
attacks but also for the usually low implementation cost in hardware. The dif-
ferential properties of power functions can be studied more easily due to their
particular algebraic structures. Hence, the study on the boomerang uniformity
of power mappings attracts a lot of attention. More precisely, when f is a power
function, i.e., f(x) = xd for an integer d, one easily sees that βf (a, b) = βf (1, b

ad )
for any a, b ∈ F

∗
q . The boomerang properties of f are completely determined by

the values of βf (1, b) as b runs through F
∗
q . Equivalently, we need to consider the

number of solutions (x, y) ∈ Fq × Fq of the following equation system
{

xd − yd = b
(x + 1)d − (y + 1)d = b
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for b ∈ F
∗
q . Although the power functions have good algebraic structures, there

are only a few classes of power mappings with known boomerang uniformity in
the literature. We list them in Table 1.

In this paper, we mainly study the boomerang uniformity of the power map-
ping x

q−3
2 over Fq via its differential properties, where q ≡ 3 (mod 4) is an odd

prime power. The rest of this paper is organized as follows. Section 2 first intro-
duces some frequently-used notation, and then gives some lemmas which will be
used later. Section 3 investigates the boomerang uniformity of x

q−3
2 . Section 4

concludes this paper.

Table 1. Power functions with known boomerang uniformity over Fpn

p d Conditions βf Reference

2 2n − 2 n ≡ 2 (mod 4) 4 [4]
2 2n − 2 n ≡ 0 (mod 4) 6 [4]
2 2k + 1 e = gcd(n, k), n/e is odd 2e [10,12]
2 2k − 1 gcd(n, k) = 1,

δf is not a power of 2
δf ≤ βf ≤ 2δf − 2 [33]

2 2m − 1 n = 2m, m be odd (resp.
even)

2 (resp. 4) [11]

2 2m+1 − 1 n = 2m, m ≥ 2 2m + 2 [32]
2 22k + 2k + 1 n = 4k, k is odd ≤24 [7]
3 3n+3

2
n is odd 3 [15]

odd pn − 2 any n ≤5 [15]
odd pk + 1 e = gcd(n, k), n/e is odd pe [24]
odd pk + 1 e = gcd(n, k), n/e is even pe(pe − 1) [24]
odd pm − 1 n = 2m, pm �≡ 2 (mod 3) 2 [31]
odd (pm−1)(pm+3)

2
n = 2m, pm �≡ 2 (mod 3),
pm ≡ 3 (mod 4)

2 [31]

odd pn−3
2

pn ≡ 3 (mod 4), 5 is a
nonsquare

≤4 This paper

odd pn−3
2

pn ≡ 3 (mod 4), 5 is a square ≤6 This paper

2 Preliminaries

In this section, we introduce some frequently-used notation in this paper and
give some lemmas which will be used in the following.

– q is an odd prime power.
– Fq is the finite field with q elements.
– Let f(x) = x

q−3
2 be a power mapping over Fq.

– Δ(x) = f(x + 1) − f(x) = (x + 1)
q−3
2 − x

q−3
2 .
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– For any b ∈ Fq, let Δ−1(b) = {x : Δ(x) = b} and δ(b) = |Δ−1(b)|.
– Let χ(·) be the quadratic multiplicative character over F∗

q , i.e., for any x ∈ F
∗
q ,

χ(x) = x
q−1
2 =

{

1, if x is a square element,
−1, if x is a nonsquare element.

– For i, j ∈ {1,−1}, we define

Ci,j = {x ∈ Fq\{0,−1} : χ(x) = i and χ(x + 1) = j}.

The differential uniformity of f was determined by Helleseth and Sandberg
in [14]. We have the following theorem.

Theorem 1. Let q ≡ 3 (mod 4) be a prime power. For q > 7, the differential
uniformity of f(x) = x

q−3
2 is given by

δf =

⎧

⎪⎨

⎪⎩

1, if q = 27,
2, if χ(5) = −1,
3, if χ(5) = 1.

Moreover, the following lemma was shown in the proof of Theorem 1 in [14].

Lemma 1. Let q ≡ 3 (mod 4) be a prime power. With the notation introduced
as above, we have

– (i) Δ−1(0) = {− 1
2} and δ(0) = 1.

– (ii) If χ(5) = −1, then Δ−1(1) = {0}, Δ−1(−1) = {−1} and δ(1) = δ(−1) =
1.

– (iii) If χ(5) = 1, then δ(b) = 3 if and only if b = ±1. More-
over, Δ−1(1) = {0,

√
5−1
2 ,

√
5+1
2 }, Δ−1(−1) = {−1, −√

5−1
2 , −√

5−3
2 } with

χ(−1+
√
5

2 ) = −1, Δ−1(1) = {0, −√
5−1
2 , 1−√

5
2 }, Δ−1(−1) = {−1,

√
5−1
2 ,

√
5−3
2 }

with χ(−1+
√
5

2 ) = 1.
– (iv) For b �= ±1, we have δ(b) ≤ 2. More precisely, if δ(b) = 2, i.e., the

equation Δ(x) = b has two distinct solutions, namely x1 and x2, then one of
x1 and x2 is in C1,1 ∪ C−1,−1, and the other is in C1,−1 ∪ C−1,1.

3 The Boomerang Uniformity of the Power Function
x

q−3
2 Over Fq

In this section, we investigate the boomerang uniformity of the power mapping
f via its differential properties. We denote by βf the boomerang uniformity of
f . Our main result is shown as follows.

Theorem 2. Let q be an odd prime power with q ≡ 3 (mod 4). For q �= 7 and
q �= 27, we have,

βf ≤
{

4, if χ(5) = −1,
6, if χ(5) = 1.
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Proof. For any b ∈ F
∗
q , we consider the number of solutions (x, y) ∈ Fq × Fq of

the following equation system
{

x
q−3
2 − y

q−3
2 = b,

(x + 1)
q−3
2 − (y + 1)

q−3
2 = b.

(1)

If (x, y) is a solution of (1), we have x �= y since b �= 0. Moreover, we have
Δ(x) = Δ(y) from (1).We assert that δ(Δ(x)) = 2 or 3 by Lemma 1 and x �= y.
We discuss in the following two cases.

Case 1. δ(Δ(x)) = 2. It is clear that Δ(x) �= ±1 by Lemma 1, then we have
x, y �= 0,−1. The equation system (1) becomes

{
χ(x)x−1 − χ(y)y−1 = b,
χ(x + 1)(x + 1)−1 − χ(y + 1)(y + 1)−1 = b. (2)

By Lemma 1 (iv), for each x ∈ Ci,j , i, j ∈ {1,−1}, there are two possible sets of
y. We have the following 8 subcases, which we summarize in Table 2.

Table 2. Eight subcases from equation system (2)

(x, y) Equation system

I (x, y) ∈ C1,1 × C1,−1

{
x−1 − y−1 = b,

(x + 1)−1 + (y + 1)−1 = b.

II (x, y) ∈ C1,1 × C−1,1

{
x−1 + y−1 = b,

(x + 1)−1 − (y + 1)−1 = b.

III (x, y) ∈ C1,−1 × C1,1

{
x−1 − y−1 = b,

−(x + 1)−1 − (y + 1)−1 = b.

IV (x, y) ∈ C1,−1 × C−1,−1

{
x−1 + y−1 = b,

−(x + 1)−1 + (y + 1)−1 = b.

V (x, y) ∈ C−1,1 × C1,1

{
−x−1 − y−1 = b,

(x + 1)−1 − (y + 1)−1 = b.

VI (x, y) ∈ C−1,1 × C−1,−1

{
−x−1 + y−1 = b,

(x + 1)−1 + (y + 1)−1 = b.

VII (x, y) ∈ C−1,−1 × C1,−1

{
−x−1 − y−1 = b,

−(x + 1)−1 + (y + 1)−1 = b.

VIII (x, y) ∈ C−1,−1 × C−1,1

{
−x−1 + y−1 = b,

−(x + 1)−1 − (y + 1)−1 = b.

Subcase I. (x, y) ∈ C1,1 × C1,−1. After a simple calculation, we obtain two
quadratic equations as follows.

{
b(b − 2)x2 + (b2 − 4b + 2)x − (b − 2) = 0, (3)
b2(y + 1)2 − (b2 + 2)(y + 1) + b = 0. (4)
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It is easy to see that b �= 2 and b �= 0, otherwise, we have x = 0 or y = −1,
a contradiction. If (3) has two solutions, namely x1 and x2, then x1x2 = − 1

b .
We mention that −1 is a nonsquare element. When b is a square element, then
χ(x1x2) = −1, and at most one of x1 and x2 satisfies x ∈ C1,1. Similarly, if (4)
has two solutions, namely y1 and y2, then (y1 + 1)(y2 + 1) = 1

b . When b is a
nonsquare element, then χ((y1 +1)(y2 +1)) = −1, and at most one of y1 and y2
satisfies y ∈ C1,−1. By a discussion as above, we conclude that for any b ∈ F

∗
q ,

this subcase contributes at most 1 solution.
Subcase II. (x, y) ∈ C1,1 × C−1,1. In this subcase, we obtain two quadratic

equations as follows.

{
b(b + 2)(x + 1)2 − (b2 + 4b + 2)(x + 1) + b + 2 = 0, (5)
b2y2 + (b2 + 2)y − b = 0. (6)

It is easy to see that b �= −2 and b �= 0. If (5) (respectively, (6)) has two
solutions, namely x1 and x2 (respectively, y1 and y2), then (x1 +1)(x2 +1) = 1

b
(respectively, y1y2 = − 1

b ). By a similar proof as for subcase I, we conclude that
for any b ∈ F

∗
q , this subcase contributes at most 1 solution.

Subcase III. (x, y) ∈ C1,−1 × C1,1. We obtain two quadratic equations as
follows. {

b2(x + 1)2 − (b2 + 2)(x + 1) − b = 0,
b(b + 2)y2 + (b2 + 4b + 2)y + b + 2 = 0.

Similar to the proof of subase I, this subcase contributes at most 1 solution.
Subcase IV. (x, y) ∈ C1,−1×C−1,−1. Since q−3

2 is even, then (x, y) is a solution
of (1) if and only if (−x−1,−y−1) is a solution of (1). For any y ∈ Fq \{0,−1},
y ∈ C1,1 if and only if −y − 1 ∈ C−1,−1, y ∈ C1,−1 (respectively, C−1,1) if and
only if −y − 1 ∈ C1,−1 (respectively, C−1,1). We conclude that the number of
the solutions in this subcase is the same to that of subcase III.

Subcase V. (x, y) ∈ C−1,1 × C1,1. We obtain two quadratic equations as
follows.

{
b2x2 + (b2 + 2)x + b = 0, (7)
b(b − 2)(y + 1)2 − (b2 − 4b + 2)(y + 1) − (b − 2) = 0. (8)

Similar to the proof of subcase I, this subcase contributes at most 1 solution.
For subcases VI, VII and VIII, we assert that the numbers of solutions in

subcases VI and V (respectively, subcases VII and I, subcases VIII and II) are
the same, similar to subcases IV and III. We conclude that the equation system
(2) has at most one solution in each subcase.

Next we show that the equation system (2) cannot have solutions in subcase
I and subcase V simultaneously. Otherwise, let (x1, y1) ∈ C1,1 × C1,−1 be a
solution of (2) in subcase I and (u1, v1) ∈ C−1,1 × C1,1 be a solution of (2) in
subcase V. Then

χ(x1) = 1, χ(x1 + 1) = 1, χ(y1) = 1, χ(y1 + 1) = −1,
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and
χ(u1) = −1, χ(u1 + 1) = 1, χ(v1) = 1, χ(v1 + 1) = 1.

When we discard the condition on the values of the quadratic character, there
is the other solution (x2, y2) (respectively, (u2, v2)) of equations (3) and (4)
(respectively, (7) and (8)). Considering quadratic equations (3) and (8), only
one of their coefficients has a different sign. More precisely, we have

x1 + x2 = −b2 − 4b + 2
b(b − 2)

= −((v1 + 1) + (v2 + 1))

and
x1x2 = −1

b
= (v1 + 1)(v2 + 1).

Then x1 = −(v2 + 1) and x2 = −(v1 + 1) since x1, v1 ∈ C1,1. Consequently,

χ(b) = χ(
1
b
) = χ(−(v1 + 1)(v2 + 1)) = χ(v1 + 1)χ(x1) = χ(x1) = 1.

Similarly, considering quadratic equations (4) and (7), we have

u1 + u2 = −b2 + 2
b2

= −((y1 + 1) + (y2 + 1))

and
u1u2 =

1
b
= (y1 + 1)(y2 + 1).

Then u1 = −(y2+1) and u2 = −(y1+1) since u1 ∈ C−1,1 and y1 ∈ C1,−1. Hence

χ(b) = χ(
1
b
) = χ((y1 + 1)(y2 + 1)) = χ(−(y1 + 1)u1) = −χ(y1 + 1)χ(u1) = −1,

which is a contradiction. Therefore, for any b ∈ F
∗
q , subcase I and subcase V

cannot give solutions simultaneously, so they contribute at most one solution
altogether. Similarly, subcases II and III contribute at most one solution alto-
gether. That is to say, for any b ∈ F

∗
q , there are at most four solutions of (1) in

this case.

Case 2. δ(Δ(x)) = 3. By Lemma 1, we know that this case only occurs when
χ(5) = 1 and Δ(x) = ±1. Note that −1+

√
5

2 · −1−√
5

2 = −1, without loss of
generality, we assume that χ(−1+

√
5

2 ) = −1. Then we can obtain Δ−1(1) =
{0,

√
5−1
2 ,

√
5+1
2 } and Δ−1(−1) = {−1,−

√
5+1
2 ,−

√
5+3
2 } by Lemma 1 (iii).

We can list all possible pairs (x, y) with Δ(x) = Δ(y) = ±1. Plugging all
pairs (x, y) into the first equation of the system (1), the corresponding b’s are
obtained. We have the following table (Table 3).
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Table 3. The Solutions of Δ(x) = Δ(y) = ±1 and Corresponding b

(x, y) with Δ(x) = Δ(y) = ±1 The Corresponding b

(0,

√
5 − 1

2
), (−1,

−√
5 − 1

2
) b =

√
5 + 1

2

(

√
5 − 1

2
, 0), (

−√
5 − 1

2
, −1) b = −

√
5 + 1

2

(0,

√
5 + 1

2
), (−1,

−√
5 − 3

2
) b =

√
5 − 1

2

(

√
5 + 1

2
, 0), (

−√
5 − 3

2
, −1) b = −

√
5 − 1

2

(

√
5 − 1

2
,

√
5 + 1

2
), (

−√
5 − 1

2
,
−√

5 − 3

2
) b = 1

(

√
5 + 1

2
,

√
5 − 1

2
), (

−√
5 − 3

2
,
−√

5 − 1

2
) b = −1

It is obvious that, for each b ∈ {±1, ±
√
5+1
2 , ±

√
5−1
2 }, the equation system

(1) has two solutions in this case. For b ∈ F
∗
q\{±1, ±

√
5+1
2 , ±

√
5−1
2 } the

equation system (1) has no solution in this case. Note that Case 2 only occurs
when χ(5) = 1, the desired results follow.

Remark 1. By making a computer investigation, we have the boomerang unifor-
mity of f is equal to 4 with q = 35. In addition, the boomerang uniformity of f
is equal to 6 with q = 131. Therefore, we can conclude that our bound is tight.

4 Conclusion

In this paper, we mainly study the boomerang uniformity of the power function
x

q−3
2 over Fq via their differential properties, where q ≡ 3 (mod 4) is an odd

prime power. It is shown that the power function has low boomerang uniformity.
We mention that our approach may be used in determining the boomerang
uniformity of other power mappings. It is worthy finding applications of power
mappings with low boomerang uniformity in sequence designs, coding theory
and combinatorial designs.
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Abstract. The switching method is a powerful method to construct
bent functions. In this paper, using this method, we present two generic
constructions of piecewise bent functions from known ones, which gen-
eralize some earlier works. Further, based on these two generic construc-
tions, we obtain several infinite families of bent functions from quadratic
bent functions and the Maiorana-MacFarland class of bent functions by
calculating their duals. It is worth noting that our constructions can
produce bent functions with the optimal algebraic degree.

Keywords: Bent function · Walsh transform · Switching method

1 Introduction

Boolean bent functions were first introduced by Rothaus in 1976 [10] as an
interesting combinatorial object with maximum Hamming distance to the set of
all affine functions. Over the last four decades, bent functions have attracted a
lot of research interest due to their important applications in cryptography [1],
sequences [8] and coding theory [2,3]. Later, Kumar, Scholtz and Welch in [4]
generalized the notion of Boolean bent functions to the case of functions over an
arbitrary finite field.

Let Fpn denote the finite field with pn elements, where p is a prime and n
is a positive integer. Given a function f(x) mapping from Fpn to Fp, the Walsh
transform of f(x) is defined by

̂f(b) =
∑

x∈Fpn
ωf(x)−Tr(bx), b ∈ Fpn ,

where ω = e
2π

√−1
p is a complex primitive p-th root of unity. According to [4], f(x)

is called a p-ary bent function if all its Walsh coefficients satisfy
∣

∣ ̂f(b)| = pn/2.
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A p-ary bent function f(x) is called regular if ̂f(b) = pn/2ω
˜f(b) holds for some

function ˜f(x) mapping Fpn to Fp, and it is called weakly regular if there exists a
complex μ having unit magnitude such that ̂f(b) = μ−1pn/2ω

˜f(b) for all b ∈ Fpn .
The function ˜f(x) is called the dual of f(x) and it is also bent.

The switching method is a powerful method to construct bent functions.
In 2016, Xu et al. [15] constructed a class of piecewise p-ary bent functions
f(x) = g(x) + cTr(x)p−1 from Gold functions g(x) via the switching method,
where p is an odd prime and c ∈ F

∗
p. In 2017, Xu et al. [17] constructed two

classes of piecewise p-ary bent functions f(x) = g(x) + Tr(ux)Tr(x)p−1 from
p-ary Kasami functions and Sidelnikov functions g(x) [6], where p is an odd
prime and u ∈ F

∗
pn . Recall that Tang et al. [11] constructed bent functions

of the form g(x) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx)), where g(x) : Fpn → Fp,
F (x1, · · · , xτ ) ∈ Fp[x1, · · · , xτ ] and ui ∈ Fpn for 1 ≤ i ≤ τ . Motivated by Xu
et al.’s and Tang et al.’s works, we investigate the bentness of piecewise bent
functions of the forms

f(x) = g(x) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx)) + c
(
∏κ

i=1
Tr(vix)

)p−1 (1)

and

f(x) = g(x) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx))
(
∏κ

i=1
Tr(vix)

)p−1
, (2)

where g(x) : Fpn → Fp, F (x1, · · · , xτ ) ∈ Fp[x1, · · · , xτ ], c ∈ F
∗
p, ui ∈ Fpn for

1 ≤ i ≤ τ and vj ∈ F
∗
pn for 1 ≤ j ≤ κ. In this paper, we first present generic

constructions of bent functions with the forms (1) and (2) respectively. Notice
that the works of Xu et al. [15,17] are two special cases of our work for κ = 1,
F (x1) = 0 in (1) and κ = 1, F (x1) = x1 in (2). In addition, by calculating the
duals of quadratic bent functions and the Maiorana-MacFarland class of bent
functions, several infinite families of bent functions are constructed by using
these generic constructions.

The rest of this paper is organized as follows. Section 2 fixes some notation
and introduces some preliminaries. Section 3 proposes two generic constructions
of bent functions of the forms (1) and (2) respectively. Section 4 constructs sev-
eral infinite families of bent functions using the two generic constructions given
in Sect. 3. Finally, Sect. 5 concludes this paper.

2 Preliminaries

Throughout this paper, let Fpn denote the finite field with pn elements, where p
is a prime and n is a positive integer. The trace function from Fpn to its subfield
Fpk is defined by Trnk (x) =

∑n/k−1
i=0 xpik

. In particular, when k = 1, we use the
notation Tr(x) instead of Trn1 (x). A function F (x1, · · · , xn) : Fn

p �→ Fp is often
represented by its algebraic normal form

F (x1, · · · , xn) =
∑

e=(e1,··· ,en)∈Fn
p

a(e)(
n

∏

i=1

xei
i ), a(e) ∈ Fp. (3)
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A polynomial in Fp[x1, · · · , xn] with the form (3) is called a reduced polynomial.
The algebraic degree of F (x1, · · · , xn), denoted by deg(F ), is defined as deg(F ) =
maxe∈Fn

p
{∑n

i=1 ei : a(e) �= 0}, where e = (e1, · · · , en) ∈ F
n
p .

Lemma 1. ([5, Propositions 4.4 and 4.5]) Let f(x) be a bent function from Fpn

to Fp. Then deg(f) ≤ (p−1)n
2 + 1. Moreover, if f(x) is weakly regular bent, then

deg(f) ≤ (p−1)n
2 .

To simplify the proof of our main result in the sequel, we fix some notation
firstly. Let g(x) be a function from Fpn to Fp. For r := (r1, · · · , rκ) ∈ F

κ
p and

v := (v1, · · · , vκ) ∈ F
∗
pn × · · · × F

∗
pn , define

Tr,v =
{

x ∈ Fpn : Tr(vix) = ri, i = 1, · · · , κ
}

and
Sg(r, v, b) =

∑

x∈Tr,v

ωg(x)−Tr(bx)

for any b ∈ Fpn . It then can be verified that Fpn = ∪r∈Fκ
p
Tr,v. Moreover, we have

ĝ
(

b −
∑κ

i=1
visi

)

=
∑

x∈Fpn
ωg(x)−Tr

(

(b−∑κ
i=1 visi)x

)

=
∑

r∈Fκ
p

∑

x∈Tr,v

ωg(x)−Tr(bx)+
∑κ

i=1 risi

=
∑

r∈Fκ
p

Sg(r, v, b)ω
∑κ

i=1 risi .

From the inverse Fourier transform we can derive

Sg(r, v, b) =
1
pκ

∑

s∈Fκ
p

ω− ∑κ
i=1 risi ĝ

(

b −
∑κ

i=1
visi

)

, (4)

where s := (s1, · · · , sκ) ∈ F
κ
p .

To make the computation of the Walsh transform of the functions investi-
gated in the sequel feasible, we consider a class of weakly regular bent functions
g(x) : Fpn → Fp whose dual satisfies

g̃
(

x −
∑κ

i=1
visi −

∑τ

i=1
uiti

)

= g̃
(

x −
∑τ

i=1
uiti

)

+
∑κ

i=1
ϕvi

(x)si, (5)

where ϕvi
(x) is a function from Fpn to Fp, ui ∈ Fpn , vj ∈ F

∗
pn and ti, sj ∈ Fp

for each 1 ≤ i ≤ τ and 1 ≤ j ≤ κ. Without loss of generality, assume that
ĝ(b) = μ−1pn/2ωg̃(b) for any b ∈ Fpn . Then

ĝ
(

b −
∑τ

i=1
uiti −

∑κ

i=1
visi

)

= μ−1pn/2ωg̃
(

b−∑τ
i=1 uiti

)

+
∑κ

i=1 ϕvi
(b)si

= ĝ
(

b −
∑τ

i=1
uiti

)

ω
∑κ

i=1 ϕvi
(b)si .

(6)

Further we characterize the value of Sg(r, v, b) as below.
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Lemma 2. Let g(x) : Fpn → Fp be a weakly regular bent function whose dual
satisfies (5). For any b ∈ Fpn , Sg(r, v, b) = ĝ(b) if ri = ϕvi

(b) for any 1 ≤
i ≤ κ and otherwise, Sg(r, v, b) = 0, where r = (r1, · · · , rκ) ∈ F

κ
p and v =

(v1, · · · , vκ) ∈ F
∗
pn × · · · × F

∗
pn .

Proof. For any b ∈ Fpn , r = (r1, · · · , rκ) ∈ F
κ
p and v = (v1, · · · , vκ) ∈ F

∗
pn ×· · ·×

F
∗
pn , (4) yields

Sg(r, v, b) =
1
pκ

∑

s∈Fκ
p

ω− ∑κ
i=1 risi ĝ

(

b −
∑κ

i=1
visi

)

,

where s = (s1, · · · , sκ) ∈ F
κ
p . By using (6), one gives

Sg

(

r, v, b
)

=
1
pκ

ĝ
(

b
)

∑

s∈Fκ
p

ω
∑κ

i=1(ϕvi
(b)−ri)si .

Further the desired result follows from the fact that
∑

si∈Fp
ω(ϕvi

(b)−ri)si = p if
ri = ϕvi

(b) and 0 otherwise for any 1 ≤ i ≤ κ. This completes the proof.

Let h : Fpn → Fp be defined as in

h(x) = g(x) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx)), (7)

where g(x) : Fpn → Fp, F (x1, · · · , xτ ) is an arbitrary reduced polynomial in
Fp[x1, · · · , xτ ], ui ∈ Fpn for 1 ≤ i ≤ τ . The Walsh transform of h(x) can be
given as follows.

Lemma 3. ([13, Theorem 1]) Let h(x) be defined as in (7). Then for any b ∈ Fpn ,

̂h(b) =
1
pτ

∑

(t1,··· ,tτ )∈Fτ
p

̂F (t1, · · · , tτ )ĝ(b −
∑τ

i=1
uiti).

Next we characterize the value of Sh(r, v, b) for a class of weakly regular bent
functions g(x).

Lemma 4. Let h(x) be defined as in (7) and g(x) : Fpn → Fp be a weakly regular
bent function whose dual satisfies (5). Then for any b ∈ Fpn , Sh(r, v, b) = ̂h(b)
if ri = ϕvi

(b) for any 1 ≤ i ≤ κ and otherwise, Sh(r, v, b) = 0, where r =
(r1, · · · , rκ) ∈ F

κ
p and v = (v1, · · · , vκ) ∈ F

∗
pn × · · · × F

∗
pn .

Proof. For any b ∈ Fpn , r = (r1, · · · , rκ) ∈ F
κ
p and v = (v1, · · · , vκ) ∈ F

∗
pn ×· · ·×

F
∗
pn , (4) gives

Sh(r, v, b) =
1
pκ

∑

s∈Fκ
p

ω− ∑κ
i=1 risîh

(

b −
∑κ

i=1
visi

)

, (8)
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where s = (s1, · · · , sκ) ∈ F
κ
p . Note that Lemma 3 yields

̂h
(

b −
∑κ

i=1
visi

)

=
1

pτ

∑

t∈Fτ
p

̂F (t1, · · · , tτ )ĝ(b −
∑τ

i=1
uiti −

∑κ

i=1
visi)

=
1

pτ
ω

∑κ
i=1 ϕvi

(b)si
∑

t∈Fτ
p

̂F (t1, · · · , tτ )ĝ
(

b −
∑τ

i=1
uiti

)

,

where t := (t1, · · · , tτ ). The last equality follows from (6). Then from Lemma 3,
one obtains

̂h
(

b −
∑κ

i=1
visi

)

= ω
∑κ

i=1 ϕvi
(b)sîh(b). (9)

Substituting (9) into (8) gives

Sh(r, v, b) =
1
pκ

∑

s∈Fκ
p

ω
∑κ

i=1(ϕvi
(b)−ri)sîh(b).

Further the desired result follows from the fact
∑

si∈Fp
ω(ϕvi

(b)−ri)si = p if ri =
ϕvi

(b) and 0 otherwise for any 1 ≤ i ≤ κ. This completes the proof.

3 The Generic Constructions of Bent Functions

In this section, we will present two generic constructions of bent functions from
known ones with certain properties.

3.1 The First New Class of Bent Functions

A class of non-quadratic p-ary bent functions f(x) = Tr(λxpk+1) + cTr(x)p−1

with deg(f) = p − 1 was presented in [15], where p is an odd prime and
n/ gcd(k, n) is odd. Based on Xu et al.’s work [15], we present the first con-
struction.

Construction 1: Let u1, · · · , uτ be τ ≥ 1 elements in Fpn , v1, · · · , vκ be κ ≥ 1
elements in F

∗
pn and c ∈ F

∗
p. Let g(x) be a weakly regular bent function over

Fpn whose dual satisfies (5) and F (x1, · · · , xτ ) be any reduced polynomial in
Fp[x1, · · · , xτ ]. Generate the function f(x) : Fpn → Fp from g and F as in (1).

Then our first main result is stated as follows.

Theorem 1. Let f(x) : Fpn → Fp be the function generated by Construction 1.
Then f(x) is a bent function if h(x) given by (7) is weakly regular bent.

Proof. For any b ∈ Fpn , the Walsh transform of f(x) defined by (1) is

̂f(b) =
∑

∏κ
i=1 Tr(vix)=0

ωh(x)−Tr(bx) +
∑

∏κ
i=1 Tr(vix) �=0

ωh(x)−Tr(bx)+c.

Note that
{

x ∈ Fpn :
∏κ

i=1
Tr(vix) = 0

}

=
⋃

r∈Fκ
p

{

x ∈ Tr,v :
∏κ

i=1
ri = 0

}

,
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where r := (r1, · · · , rκ). Then

̂f(b) =
∑

∏κ
i=1 ri=0
ri∈Fp

∑

x∈Tr,v

(1 − ωc)ωh(x)−Tr(bx) + ωc
̂h(b)

=
∑

∏κ
i=1 ri=0
ri∈Fp

(1 − ωc)Sh(r, v, b) + ωc
̂h(b).

From Lemma 4 we can deduce that

̂f(b) = (1 − ωc)̂h(b) + ωc
̂h(b) = ̂h(b)

if
∏κ

i=1 ϕvi
(b) = 0 and ̂f(b) = ωc

̂h(b) if
∏κ

i=1 ϕvi
(b) �= 0. Hence the desired

conclusion follows.

3.2 The Second New Class of Bent Functions

Based on the work in [15], Xu et al. [17] further constructed two classes of
piecewise p-ary bent functions f(x) = g(x) + Tr(ux)Tr(x)p−1 from the p-ary
Kasami functions and Sidelnikov functions. Inspired by the idea coined in [15]
and [17], we present the second construction.

Construction 2: Let u1, · · · , uτ be τ ≥ 1 elements in Fpn , v1, · · · , vκ be κ ≥ 1
elements in F

∗
pn and c ∈ F

∗
p. Let g(x) be a weakly regular bent function over

Fpn whose dual satisfies (5) and F (x1, · · · , xτ ) be any reduced polynomial in
Fp[x1, · · · , xτ ]. Generate the function f(x) : Fpn → Fp from g and F as in (2).
Note that f(x) can be rewritten as

f(x) =
{

g(x), if
∏κ

i=1 Tr(vix) = 0,
h(x), if

∏κ
i=1 Tr(vix) �= 0,

where h(x) is defined as in (7).

Then our second main result is stated as follows.

Theorem 2. Let f(x) : Fpn → Fp be the function generated by Construction 2.
Then f(x) is a bent function if h(x) given by (7) is bent.

Proof. For any b ∈ Fpn , the Walsh transform of f(x) defined by (2) is

̂f(b) =
∑

∏κ
i=1 Tr(vix)=0

ωg(x)−Tr(bx) +
∑

∏κ
i=1 Tr(vix) �=0

ωh(x)−Tr(bx).

Note that
{

x ∈ Fpn :
∏κ

i=1
Tr(vix) = 0

}

=
⋃

r∈Fκ
p

{

x ∈ Tr,v :
∏κ

i=1
ri = 0

}

,
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where r := (r1, · · · , rκ). Then

̂f(b) =
∑

∏κ
i=1 ri=0
ri∈Fp

∑

x∈Tr,v

(ωg(x)−Tr(bx) − ωh(x)−Tr(bx)) + ̂h(b)

=
∑

∏κ
i=1 ri=0
ri∈Fp

(

Sg(r, v, b) − Sh(r, v, b)
)

+ ̂h(b),

where v = (v1, · · · , vκ). Together with Lemmas 2 and 4, we can conclude that

̂f(b) = ĝ(b) + ̂h(b) − ̂h(b) = ĝ(b)

if
∏κ

i=1 ϕvi
(b) = 0 and ̂f(b) = ̂h(b) if

∏κ
i=1 ϕvi

(b) �= 0. Hence the desired conclu-
sion follows.

Remark 1. Here we show that our constructions of bent functions are different
from those in the previous works. Observe that bent functions of the forms (1)
and (2) given by this paper are of the form g(x) + F (Tr(α1x), · · · , Tr(αλx)),
where g(x) is a weakly regular bent function from Fpn to Fp, F is a reduced
polynomial given by (3) and αi ∈ Fpn for 1 ≤ i ≤ λ. Recently, some attempts
have been made to construct bent functions of the above general form, see [7,
9,11–16,18]. It should be noted that all these known results in this direction
depended on the dual of weakly regular bent function g(x), that is,

g̃(x −
∑λ

i=1
αiti) = g̃(x) +

∑

1≤i≤j≤λ
Aijtitj +

∑λ

i=1
gi(x)ti, (10)

where Aij ∈ Fp for 1 ≤ i ≤ j ≤ λ, gi(x) : Fpn → Fp and ti ∈ Fp for 1 ≤ i ≤ λ.
Denote the number of nonzero elements in {Aij : 1 ≤ i ≤ j ≤ λ} by N . Notice
that these known results of the above general form were given for N ≤ 3 [7,9,11–
16,18] expect a class of bent functions with deg(F ) = 2 and N > 3 [13] when p
is an odd prime. However, although our results also depend on the dual of g(x),
bent functions with deg(F ) > 2 and N > 3 can be constructed by this paper for
odd p, see Examples 1–4 for details.

Remark 2. As pointed out in [11, Lemma 2.1], for p = 2, the algebraic degree of
F (Tr(u1x), · · · ,Tr(uτx)) is the same as that of F (x1, · · · , xτ ) for some ui, and
it can be generalized to any characteristic directly, where ui ∈ Fpn for 1 ≤ i ≤ τ .
Hence there is no doubt that the generic constructions given in Theorems 1
and 2 can produce bent functions with the maximal algebraic degree given in
Lemma 1.

4 Specific Constructions of Infinite Families of Bent
Functions

In this section, by using constructions 1 and 2, we shall introduce specific con-
structions of bent functions from some known ones whose duals satisfy (5).
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4.1 New Classes of Bent Functions from Quadratic Bent Functions

It is well-known that a homogeneous quadratic bent function is weakly regular
and its dual is also a homogenous quadratic bent function [6]. Let g(x) be a
homogeneous quadratic bent function with the dual g̃(x) =

∑n−1
k=0 Tr(akxpk+1),

ak ∈ F
∗
pn . Through some calculation, we can obtain that g̃

(

x − ∑κ
i=1 visi −

∑τ
i=1 uiti

)

is equal to

g̃(x −
τ

∑

i=1

uiti) +
κ

∑

i=1

ϕvi
(x)si +

κ
∑

i=1

τ
∑

j=1

ϕvi
(uj)sitj +

∑

1≤i≤j≤κ

G(vi, vj)sisj

for all x ∈ Fpn , ui ∈ Fpn , vj ∈ F
∗
pn and si, tj ∈ Fp, 1 ≤ i ≤ τ , 1 ≤ j ≤ κ, where

G(vi, vj) = ϕvi
(vj) if i < j and G(vi, vi) =

∑n−1
k=0 Tr(akvpk+1

i ) if i = j. Here
ϕvi

(x) :=
∑n−1

k=0 Tr(ak(vix
pk

+ vpk

i x)). Obviously, when ϕvi
(uj) = 0 for all 1 ≤

i ≤ κ, 1 ≤ j ≤ τ , ϕvi
(vj) = 0 for all 1 ≤ i < j ≤ κ and

∑n−1
k=0 Tr(akvpk+1

i ) = 0
for all 1 ≤ i ≤ κ, the dual of g(x) satisfies (5).

The specific construction of bent functions from quadratic bent functions
can be simply introduced by using the Sidelnikov function. From [6], we know
that g(x) = Tr(ax2) is weakly regular bent and its dual is g̃(x) = −Tr(x2/(4a)),
where a ∈ F

∗
pn and p is an odd prime. Then the following two theorems are

directly obtained from Theorem 1 and Theorem 2 respectively.

Theorem 3. Let p be an odd prime, a ∈ F
∗
pn , c ∈ F

∗
p, u1, · · · , uτ be τ ≥ 1 ele-

ments in Fpn and v1, · · · , vκ be κ ≥ 1 elements in F
∗
pn satisfying Tr(vivj/(4a)) =

0 for all 1 ≤ i ≤ j ≤ κ and Tr(uivj/(4a)) = 0 for all 1 ≤ i ≤ τ , 1 ≤ j ≤ κ. Then

f(x) = Tr(ax2) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx)) + c
(
∏κ

i=1
Tr(vix)

)p−1

is a bent function if h(x) given by (7) is weakly regular bent.

Example 1. Let p = 3, n = 5, a = 1, c = 1, τ = 4, κ = 2, F (x1, x2, x3, x4) =
x1x2+x3x4 and ξ be a primitive element of F35 . Take u1 = 1, u2 = ξ212, u3 = 2,
u4 = ξ11, v1 = ξ341 and v2 = ξ705. Then Tr(u2

1) = Tr(u2
3) = Tr(u2

4) = Tr(u1u2) =
−1, Tr(u2

2) = Tr(u1u3) = Tr(u2u3) = 1, Tr(u1u4) = Tr(u2u4) = Tr(u3u4) = 0,
Tr(v2

1) = Tr(v1v2) = Tr(v2
2) = 0 and Tr(uivj) = 0 for all 1 ≤ i ≤ 4, j = 1, 2. It

can be verified that h(x) = Tr(x2)+Tr(x)Tr(ξ212x)+Tr(2x)Tr(ξ11x) is bent by
the discussion of Case II of [13]. Theorem 3 now establishes that

f(x) = Tr(x2) + Tr(x)Tr(ξ212x) + Tr(2x)Tr(ξ11x) + (Tr(ξ341x)Tr(ξ705x))2

is a bent function over F35 . Moreover, it can be checked that N = 7 and deg(F ) =
4, where N is defined as in Remark 1.

Theorem 4. Let p be an odd prime, a ∈ F
∗
pn , u1, · · · , uτ be τ ≥ 1 elements in

Fpn and v1, · · · , vκ be κ ≥ 1 elements in F
∗
pn satisfying Tr(vivj/(4a)) = 0 for all

1 ≤ i ≤ j ≤ κ and Tr(uivj/(4a)) = 0 for all 1 ≤ i ≤ τ , 1 ≤ j ≤ κ. Then

f(x) = Tr(ax2) + F (Tr(u1x),Tr(u2x), · · · ,Tr(uτx))
(
∏κ

i=1
Tr(vix)

)p−1
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is a bent function if h(x) given by (7) is bent.

Example 2. Let p = 3, n = 6, a = 1, τ = 4, κ = 1, F (x1, x2, x3, x4) = x1x2+x3x4

and ξ be a primitive element of F36 . Take u1 = ξ2, u2 = ξ, u3 = ξ26, u4 = ξ118

and v1 = ξ7. Then Tr(u2
1) = Tr(u2

3) = 1, Tr(u2
2) = Tr(u2

4) = 2, Tr(uiuj) = 0 for
others 1 ≤ i < j ≤ 4, Tr(v2

1) = 0 and Tr(uiv1) = 0 for all 1 ≤ i ≤ 4. It can be
verified that h(x) = Tr(x2) + Tr(ξx)Tr(ξ2x) + Tr(ξ26x)Tr(ξ118x) is bent by [13,
Theorem 5]. Theorem 4 now establishes that

f(x) = Tr(x2) + (Tr(ξx)Tr(ξ2x) + Tr(ξ26x)Tr(ξ118x))Tr(ξ7x)2

is a bent function over F36 . Moreover, it can be checked that N = 4 and deg(F ) =
4, where N is defined as in Remark 1.

4.2 New Classes of Bent Functions from the Maiorana-MacFarland
Class of Bent Functions

Let n = 2m be a positive integer. By identifying an element x ∈ Fpn with a
vector (y, z) ∈ Fpm × Fpm , the Maiorana-MacFarland class of bent functions on
Fpn can be expressed as

g(x) = g(y, z) = Trm1 (yπ(z)) + h(z), y, z ∈ Fpm , (11)

where π : Fpm → Fpm is a permutation and h is a function from Fpm to Fp. Such
class of bent functions is regular and its dual [4] is equal to

g̃(x) = g̃(y, z) = Trm1
(

zπ−1(y)
)

+ h
(

π−1(y)
)

,

where π−1 is the inverse permutation of π. There are several π and h such that
the dual of g(y, z) satisfies (5). In the following, we give the calculation of g̃(y, z)
for the case while π is a linear permutation and h(z) = 0. In the same manner,
it can be verified that g(x) with some other π and h is suitable for Construction
1 and Construction 2. When π is a linear permutation and h(z) = 0, one has

π−1
(

y −
κ

∑

i=1

vi,1si −
τ

∑

i=1

ui,1ti

)

= π−1(y −
τ

∑

i=1

ui,1ti) −
κ

∑

i=1

π−1(vi,1)si,

where ui = (ui,1, ui,2) ∈ Fpm ×Fpm , vj = (vj,1, vj,2) ∈ F
∗
pm ×F

∗
pm and ti, sj ∈ Fp,

1 ≤ i ≤ τ , 1 ≤ j ≤ κ. Then by a direct calculation, we can derive that

g̃
(

y −
κ

∑

i=1

vi,1si −
τ

∑

i=1

ui,1ti, z −
κ

∑

i=1

vi,2si −
τ

∑

i=1

ui,2ti

)

equals to

g̃(y −
τ

∑

i=1

ui,1ti, z −
τ

∑

i=1

ui,2ti) +
κ

∑

i=1

ϕvi,1,vi,2(y, z)si + G
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with

G =
κ

∑

i=1

τ
∑

j=1

ϕvi,1,vi,2(uj,1, uj,2)sitj +
∑

1≤i≤j≤κ

G(vi,1, vi,2, vj,1, vj,2)sisj

where G(vi,1, vi,2, vj,1, vj,2) = ϕvi,1,vi,2(vj,1, vj,2) if i < j and G(vi,1, vi,2, vi,1, vi,2)
= Trm1 (π−1(vi,1)vi,2) if i = j. Here ϕvi,1,vi,2(y, z) := Trm1 (π−1(vi,1)z + vi,2

π−1(y)). If ϕvi,1,vi,2(uj,1, uj,2) = 0 for all 1 ≤ i ≤ κ, 1 ≤ j ≤ τ , ϕvi,1,vi,2(vj,1,
vj,2) = 0 for all 1 ≤ i < j ≤ κ and Trm1 (π−1(vi,1)vi,2) = 0 for all 1 ≤ i ≤ κ, the
dual of g(x) satisfies (5). Then the following two theorems are directly obtained
from Theorem 1 and Theorem 2 respectively.

Theorem 5. Let c ∈ F
∗
p, u1, · · · , uτ be τ ≥ 1 elements in Fp2m and v1, · · · , vκ

be κ ≥ 1 elements in F
∗
p2m , where p is a prime. Write ui as (ui,1, ui,2) ∈

Fpm × Fpm for each 1 ≤ i ≤ τ and vj as (vj,1, vj,2) ∈ Fpm × Fpm for
each 1 ≤ j ≤ κ. Let g(y, z) = Trm1 (yπ(z)), where π is a linear permutation
over Fpm . If Trm1 (π−1(vi,1)uj,2 + vi,2π

−1(uj,1)) = 0 for all 1 ≤ i ≤ κ, 1 ≤
j ≤ τ , Trm1 (π−1(vi,1)vj,2 + vi,2π

−1(vj,1)) = 0 for all 1 ≤ i < j ≤ κ and
Trm1 (π−1(vi,1)vi,2) = 0 for all 1 ≤ i ≤ κ. Then

f(y, z) = h(y, z) + c
(
∏κ

i=1
Trm1 (vi,1y + vi,2z)

)p−1

is a bent function if

h(y, z) = Trm1 (yπ(z)) + F (Trm1 (u1,1y + u1,2z), · · · ,Trm1 (uτ,1y + uτ,2z)) (12)

is weakly regular bent.

Example 3. Let p = 5, m = 3, τ = 4, κ = 1, F (x1, x2, x3, x4) =
x1x2 + x3x4, c = 1 and ξ be a primitive element of F53 . Take
π(z) = z5, (u1,1, u1,2) = (ξ26, ξ50), (u2,1, u2,2) = (ξ32, ξ51), (u3,1, u3,2) =
(ξ119, ξ8), (u4,1, u4,2) = (ξ63, ξ5) and (v1,1, v1,2) = (ξ36, ξ114). Then
π−1(z) = z25, Tr31((u1,1)25u1,2) = Tr31((u3,1)25u3,2) = 1, Tr31((u2,1)25u2,2) =
Tr31((u4,1)25u4,2) = 2, Tr31((ui,1)25uj,2 + ui,2(uj,1)25) = 0 for 1 ≤ i < j ≤ 4,
Tr31((v1,1)25uj,2 + v1,2(uj,1)25) = 0 for all 1 ≤ j ≤ 4 and Tr31((v1,1)25v1,2) = 0. It
can be verified that h(y, z) = Tr31(yz5) + F (Tr31(u1,1y + u1,2z), · · · ,Tr31(u4,1y +
u4,2z)) is bent by [13, Theorem 5]. Theorem 5 now establishes that

f(y, z) = Tr31(yz5)+F (Trm1 (u1,1y+u1,2z), · · · ,Trm1 (u4,1y+u4,2z))+Trm1 (ξy+2z)4

is a bent function over F56 . Moreover, it can be checked that N = 4 and deg(F ) =
4, where N is defined as in Remark 1.

Theorem 6. Let ui = (ui,1, ui,2)(1 ≤ i ≤ τ) be τ elements in Fpm × Fpm

and vj = (vj,1, vj,2)(1 ≤ j ≤ κ) be κ elements in F
∗
pm × F

∗
pm , where p is a

prime. Let g(y, z) = Trm1 (yπ(z)), where π is a linear permutation over Fpm . If
Tr(π−1(vi,1)uj,2+vi,2π

−1(uj,1)) = 0 for all 1 ≤ i ≤ κ, 1 ≤ j ≤ τ , Tr(π−1(vi,1)vj,2
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+vi,2π
−1(vj,1)) = 0 for all 1 ≤ i < j ≤ κ and Tr(π−1(vi,1)vi,2) = 0 for all

1 ≤ i ≤ κ. Then

g̃(y, z) +F (Tr(u1,1y + u1,2z), · · · ,Tr(uτ,1y + uτ,2z))
(
∏κ

i=1
Tr(vi,1y + vi,2z)

)p−1

is a bent function if h(x) given by (12) is bent.

Example 4. Let p = 3, m = 3, τ = 4, κ = 1, F (x1, x2, x3, x4) = x1x2 + x3x4

and ξ be a primitive element of F33 . Take π(z) = z3, (u1,1, u1,2) = (ξ6, ξ21),
(u2,1, u2,2) = (ξ25, ξ15), (u3,1, u3,2) = (ξ11, ξ24), (u4,1, u4,2) = (ξ5, ξ12) and
(v1,1, v1,2) = (ξ, 2). Then π−1(z) = z9, Tr31((u1,1)9u1,2) = Tr31((u3,1)9u3,2) = 1,
Tr31((u2,1)9u2,2) = Tr31((u4,1)9u4,2) = 2, Tr31((ui,1)9uj,2 + ui,2(uj,1)9) = 0 for
1 ≤ i < j ≤ 4, Tr31((v1,1)9uj,2 + v1,2(uj,1)9) = 0 for all 1 ≤ j ≤ 4 and
Tr31((v1,1)9v1,2) = 0. It can be verified that h(y, z) = Tr31(yz3) + F (Tr31(u1,1y +
u1,2z), · · · ,Tr31(u4,1y+u4,2z)) is bent by [13, Theorem 5]. Theorem 6 now estab-
lishes that

f(y, z) = Tr31(yz3)+F (Trm1 (u1,1y+u1,2z), · · · ,Trm1 (u4,1y+u4,2z))Trm1 (ξy+2z)2

is a bent function over F36 . Moreover, it can be checked that N = 4 and deg(F ) =
4, where N is defined as in Remark 1.

5 Conclusions

In this paper, we proposed two generic constructions of bent functions with the
forms (1) and (2), which generalized some previous works [15,17]. Moreover,
based on our constructions, several infinite families of bent functions can be
obtained from quadratic bent functions and the Maiorana-MacFarland class of
bent functions by calculating their duals. In addition, it was shown that bent
functions with the maximal algebraic degree can be obtained from our construc-
tions.

References

1. Carlet, C.: Boolean Functions for Cryptography and Coding Theory, Cambridge
University Press, Cambridge (2021)

2. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. The North Hol-
land, Amsterdam (1997)

3. Ding, C., Fan, C., Zhou, Z.: The dimension and minimum distance of two classes
of primitive BCH codes. Finite Fields Appl. 45, 237–263 (2017)

4. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their
properties. J. Combin. Theory Ser. A 40(1), 90–107 (1985)

5. Hou, X.: p-ary and p-ary versions of certain results about bent functions and
resilient functions. Finite Fields Appl. 10(4), 566–582 (2004)

6. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite
fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)



New Classes of Bent Functions via the Switching Method 309

7. Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE
Trans. Inf. Theory 60(7), 4397–4407 (2014)

8. Olsen, J., Scholtz, R., Welch, L.: Bent-function sequences. IEEE Trans. Inf. Theory
28(6), 858–864 (1982)

9. Qi, Y., Tang, C., Zhou, Z., Fan, C.: Several infinite families of p-ary weakly regular
bent functions. Adv. Math. Commun. 12(2), 303–315 (2018)

10. Rothaus, O.S.: On bent functions. J. Combin. Theory Ser. A 20(3), 300–305 (1976)
11. Tang, C., Zhou, Z., Qi, Y., Zhang, X., Fan, C., Helleseth, T.: Generic construction

of bent functions and bent idempotents with any possible algebraic degrees. IEEE
Trans. Inf. Theory 63(10), 6149–6157 (2017)

12. Wang, L., Wu, B., Liu, Z., Lin, D.: Three new infinite families of bent functions.
Sci. China Inf. Sci. 61(3), 1–14 (2018)

13. Xie X., Li N., Zeng X., Tang X., Yao Y.: Several classes of bent functions over
finite fields. arXiv: 2108.00612 (2021)

14. Xu, G., Cao, X., Xu, S.: Several new classes of Boolean functions with few Walsh
transform values. Appl. Algebra Eng. Commun. Comput. 28(2), 155–176 (2017)

15. Xu, G., Cao, X., Xu, S.: Constructing new APN functions and bent functions over
finite fields of odd characteristic via the switching method. Cryptogr. Commun.
8(1), 155–171 (2016)

16. Xu, G., Cao, X., Xu, S.: Several classes of quadratic ternary bent, near-bent and
2-plateaued functions. Int. J. Found. Comput. Sci. 28(1), 1–18 (2017)

17. Xu, G., Cao, X., Xu, S.: Two classes of p-ary bent functions and linear codes with
three or four weights. Cryptogr. Commun. 9(1), 117–131 (2017)

18. Zheng, L., Peng, J., Kan, H., Li, Y.: Several new infinite families of bent functions
via second order derivatives. Cryptogr. Commun. 12(6), 1143–1160 (2020). https://
doi.org/10.1007/s12095-020-00436-0

http://arxiv.org/abs/2108.00612
https://doi.org/10.1007/s12095-020-00436-0
https://doi.org/10.1007/s12095-020-00436-0


Sequences



Correlation Measure of Binary Sequence
Families With Trace Representation

Ana I. Gómez1 , Domingo Gomez-Perez2(B) , and Andrew Tirkel3

1 Universidad Rey Juan Carlos, Móstoles, Spain
ana.gomez.perez@urjc.es

2 Universidad de Cantabria, Santander, Spain
domingo.gomez@unican.es

3 Scientific Technologies, Melbourne, Australia
atirkel@bigpond.net.au

Abstract. In this paper, we analyze the occurrence of peaks in the cor-
relation measure of several families of binary sequences used in commu-
nications. This concept corresponds to the Low Probability of Intercept
(LPI) properties, terminology used in the area of communications. For
each family, we provide a low order for which the correlation measure
exhibits a full peak.

1 Introduction

Wireless communication is one the most widespread way to transmit information
from one device to another. Due to the rising incidence of cyberattacks to mobile
devices and services, security of communications is an increasingly vital aspect.

Code Division Multiple Access (CDMA) has been replaced in 4G and 5G cel-
lular protocols. However, it is still supported by old devices and used in locations
where modern wireless infrastructure can not be deployed. In CDMA, each user
is identified by a different pseudorandom binary sequence, called the spreading
code. The spreading code modulates a carrier, spreads the spectrum of the wave-
form and hides the communication in the background noise. The aim of this
article is providing a new viewpoint on some spreading codes in Direct Sequence
Spread Spectrum (DSSS) modulation and analyzing the existence of peaks in
the correlation measure of relative low order.

Although many authors have worked on the characterization of statistical
properties of the spreading codes, there is still considerable uncertainty. The
first results in this direction were given by Warner et al. [17,18], who studied
worst case high-order correlations. They showed that classical sequence families
used in CDMA such as Gold codes or small Kasami for certain periods are not
secure against a blind triple correlation attack, because those are built from m-
sequences. Further work [1] has shown that m-sequences and Gold codes can be
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detected in signal intercepts by searching for a pattern in the peaks of the triple
order correlation, in the noiseless case, and in correlations of higher order, for
high Signal to Noise Ratio (SNR).

Aside from high-order correlations, other authors have tried to attack the
communication secrecy using less sophisticated (and easier to compute) statisti-
cal properties. We list some related work and some drawbacks associated to them.
Attacks using the period of the spreading code, as described by Gouda [8,9], and
others [4,11,12], require the removal of the carrier and do not address the issues
of additive noise, interference, multipath, etc. A recent work deals with mul-
tipath channels but not with the removal of the carrier [14]. Summing up, a
major defect in those experiments is that they entail labor-intensive calculations
regarding the spreading code alone, whereas those based on high-order correla-
tion typically tolerate the presence of the carrier [10].

Boztaş et Parampalli [2,3] derive the location of triple correlation peaks
using the Zech logarithm. These attacks work in the same way as the previously
described ones, but include the terminology of low probability of intercept.

These authors show when Gold codes are immune to triple correlation attacks
and obtain an upper bound for the triple correlation of the binary Legendre
sequence, slightly larger than twice the square root of the sequence length.

Recently, Chen et al. [5] have studied bounds on the correlation measure
of arbitrary order and the linear complexity, relating correlation measure with
minimum distance of linear codes.

Our aim is to further explore this relation and to find better security estimates
against statistical attacks for some families of binary sequences.

2 Mathematical Background

We review some standard results from finite field arithmetic. This work focuses
only on finite fields of characteristic 2, which are denoted by F2n . Throughout the
rest of the paper, α ∈ F2n denotes a primitive element and we write F2d ⊂ F2n

when d divides n. The trace function Trnd (for simplicity, we write Tr when d = 1)
is a linear map from F2n to a subfield F2d ⊂ F2n given by

Trnd (x) =
n/d∑

j=1

x2d·j
.

It is known that the trace function is surjective and satisfies the following
properties (see [15, Theorem 1.4.50]):

Trnd (x + y) = Trnd (x) + Trnd (y), Trnd (c · x) = c · Trnd (x) ∀c ∈ F2d .

We consider different families of binary sequences, due to their application
in communication systems. Let us describe them briefly.

An m-sequence is a sequence of period 2n−1 defined by a primitive element α
as

si = Tr(αi), i = 0, . . . , 2n − 2. (1)
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Gold codes [7] is a family of 2n + 1 sequences of period 2n − 1, containing
two m-sequences defined by an integer κ (with gcd(κ, n) = 1) and two primitive
elements: α and α2κ+1. The remaining family sequences are defined as

s
(d)
i = Tr(αi+d + αi(2κ+1)), i = 0, . . . , 2n − 2, (2)

where 0 ≤ d ≤ 2n − 2.
The small Kasami family consists of 2m sequences with period 2n − 1, where

n = 2m. It contains an m-sequence defined by a primitive element α. The remain-
ing sequences are given by

s
(d)
i = Tr(αi + α(i+d)(2m+1)), i = 0, . . . , 2n − 2, (3)

where 0 ≤ d ≤ 2m − 2.
The large Kasami family is also defined for even n = 2m, but only for odd m.

It contains sequences from the Gold family for κ = m + 1 and the following ones:

s
(d)
i = Tr(αi + α(i+d)(2m+1) + αi(2m+1+1)), i = 0, . . . , 2n − 2, (4)

where 0 ≤ d ≤ 2m − 2.
The three term trace is a sequence of period 2n − 1, for n = 2m + 1, defined

by
si = Tr(αi + α(2m+1)i + α(2m+2m−1+1)i), i = 0, . . . , 2n − 2. (5)

GWM sequences [7] are pseudonoise sequences and they are divided in these
different types:

– GMW Type I: These sequences depend on the existence of F2d ⊂ F2n and
they are defined as

si = Trd1((Tr
n
d (α

i))k), i = 0, . . . , 2n − 2,

where gcd(k, 2d − 1) = 1.
– Cascaded GMW: This family of sequences also depends on the existence of
F2d1 ⊂ F2d2 ⊂ . . .F2dr ⊂ F2n and they are defined as

si = Trd1
1 ((Trd2

d1
((. . . (Trndr

(αi))kr . . .)k2))k1), i = 0, . . . , 2n − 2,

where gcd(kj , 2dj − 1) = 1, j = 1 . . . , r.
– Generalized GMW: The last type of GMW uses a chain of field F2d ⊂ F2n

and a function f : F2d �→ F2. They are defined as

si = f(Trnd (α
i)), i = 0, . . . , 2n − 2. (6)

For a binary sequence S with period 2n − 1, the periodic correlation measure
of order k is defined [16] as

θk(S) = max
D

∣∣∣∣∣

2n−2∑

n=0

(−1)sn+d1+sn+d2+···+sn+dk

∣∣∣∣∣ ,
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where D = (d1, · · · , dk) and 0 ≤ d1 < d2 < . . . < dk < 2n −2. A binary sequence
S is said to have a full peak in the periodic correlation measure of order k is
θk(S) = 2n − 1.

We use standard terminology from coding theory, see [15] for a more complete
introduction. Let C be a binary cyclic code of length 2n−1. It is associated with
an ideal in the ring F2[x]/(x2n−1+1). This ideal is generated by a polynomial g(x)
that divides x2n−1 +1. Cyclic codes are commonly described through a defining
set. Namely, for integers 0 ≤ i1 < . . . < il < 2n − 1, the defining set A ={
αi1 , αi2 , . . . , αil

}
determines

{
c(x) ∈ F2[x]/(x2n−1 + 1) | c(ξ) = 0 ∀ξ ∈ A

}
,

which is an ideal and therefore a cyclic code.

3 Full Peaks in the Correlation Measure

It is known that m-sequences have the shift-and-add property, so they have a
full peak in the correlation measure of order 3. For the rest of the described
sequences, we find a (low) order for which there is a full peak, providing hence
a bound for the lowest order of interest.

Theorem 1. The following statements hold.

– Sequences in the small Kasami family have a full peak in the correlation mea-
sure of order 3 or 4.

– Sequences of a Gold code have a full peak in the correlation measure of order 5.
– Sequences in the large Kasami family have a full peak in the correlation mea-

sure of order 7.
– The three term trace has a full peak in the correlation measure of order 7 and

no peak for an order less than 5.

Proof. The proofs are based on the results by Van Lint and Wilson [13]. Any of
the sequences that we are studying are defined as si = Tr(

∑t
j=1 αiej ), for some

integers e0, . . . , et. We notice that the sequence has a full peak in the periodic
correlation measure of order k for shifts 0 ≤ d1 < · · · < dk < 2n − 1 if and only
if, for every i ≥ 0,

k∑

m=1

t∑

j=1

α(i+dm)ej =
t∑

j=1

k∑

m=1

α(i+dm)ej =
t∑

j=1

αi·ej

k∑

m=1

αdm·ej = 0.

This holds if and only if

k∑

m=1

αdm·ej = 0, ∀ j = 1, . . . , t,
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in other words, if and only if the minimum distance of the cyclic code defined
by the set {αe1 , . . . , αet} is less than k. By Theorem 12 from [13], the minimum
distance of a cyclic code given by {α, αt} is less than 5 and, if gcd(t, n) 	= 1,
less than 4. This proves the statement regarding the small Kasami family. For
the Gold code, the minimum distance is exactly 5, according to Theorem 14.
A similar proof than that of Theorem 16 (always from [13]) gives the minimum
distance for the large Kasami family. In the case of the three term trace, the
lower bound follows from the fact that the cyclic code for that sequence contains
the cyclic code for the Gold case. 
�
For the GMW, the linear complexity of the sequence can be quite high and the
bounds found by Chen et al. [5] are large and impractical for attacks. Unfor-
tunately, the next theorem proves the existence of peaks in much more smaller
orders, even for the minimum possible k = 3.

Theorem 2. The following statements hold.
– GMW Type I and Cascaded GMW sequences have a full peak in the correlation

measure of order 3.
– Suppose that (si) is a Generalized GWM sequence as defined as in Eq. (6) and

the sequence Si = f(βi), i = 0, . . . , 2d − 2 have a full peak in the correlation
measure of order k where β = α2n/d−1. Then (si) have a full peak in the
correlation measure of order k.

Proof. The second item implies the first because for GMW Type I sequences (Si)
is a proper decimation of a m-sequence, so it has a full peak in the correlation
measure of order 3. For Cascaded GMW, (Si) is again a Cascaded GMW where
the chain of fields is smaller. Applying induction on the length of the chain and
noticing that the base case correspond to GMW Type I sequences, we obtain
that there is a peak in the correlation measure of order 3.

For the Generalized GMW sequences, suppose that sequence Si has a full
peak in the correlation measure of order k for shifts 0 ≤ d1 < · · · < dk < 2d − 1.
This occurs if and only if, for every i ≥ 0,

0 =
k∑

j=1

f(βi+dj ).

By hypothesis, α is a primitive root in F2n and Trnd is a surjective function so
there exist e1, . . . , ek integers such that

βdj = Trnd (α
ej ), j = 1, . . . , k.

Now, write i as it expansion in base 2n/d − 1, i.e i1(2n/d − 1) + i2.
Suppose Trnd (α

i2) 	= 0 and define h as βh = Trnd (α
i2). Notice that this h

exists because β is a primitive root of F2d . We have that,
k∑

j=1

f(Trnd (α
i+ej )) =

k∑

j=1

f(Trnd (α
(2n/d−1)i1+i2+ej )) =

k∑

j=1

f(βi1+dj+h) = 0.

The case Trnd (α
i2) = 0 is dealt exactly the same, so this finishes the proof. 
�



318 A. I. Gómez et al.

4 Conclusions and Open Problems

In this paper we have improved all of the bounds found by Chen et al. [5]
and summarized in Table 1 therein. Indeed, for Gold codes and small and large
Kasami families, we find exact values for the order which guarantee a full peak
in the correlation measure. For the three term trace sequence, we provide quite
tight bounds. We have also shown that most GMW sequences have full peaks in
the correlation measure of order 3, although they present high linear complexity.
This happens because the existence of a multidimensional array structure behind
them [6] and, due to this fact, it is possible to give exactly the shifts for which it
occurs for GMW Type I and Cascaded GMW sequences depending on the field
structure.

It would be interesting to study these attacks for other pseudonoise sequences,
as sequences with value 1 in the correlation measure of order 2. Indeed, some
preliminary computer experiments shows peaks in the correlation measure of
order k for small k in hyperovals when the length of the sequence is divisible by a
small prime. Another subject that it has not been explored is wether the position
of the peaks and the number of them can help to recover the full sequence.
Although it is not the case for GMW sequences for k = 3, it would be certainly
interesting to study wether correlation peaks of order 5 reveals information about
the structure of the sequence.
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Abstract. Linear complexity is a very important merit factor for measuring the
unpredictability of pseudo-random sequences for applications. The higher the lin-
ear complexity, the better the unpredictability of a sequence. In this paper, we
continue the investigation of generalized cyclotomic sequences constructed by
new generalized cyclotomy presented by Zeng et al. In detail, we consider the
new generalized cyclotomic sequence with period pnqm where p,q are odd dis-
tinct primes and n,m are natural numbers. It is shown that these sequences have
high linear complexity. Finally, we also give some examples to illustrate the cor-
rectness of our results.

Keywords: Binary sequences · Generalized cyclotomy · Linear complexity

1 Introduction

Linear complexity is a very important merit factor for measuring the unpredictability of
pseudo-random sequences. The linear complexity of a sequence may be defined as the
length of the shortest linear feedback shift register which generates the sequence [1].
According to Berlekamp- Massey algorithm, if the linear complexity of the sequence is
l, then 2l consecutive terms of the sequence can be used to restore the whole sequence.
Hence, a “high” linear complexity should be no less than one-half of the length (or
minimum period) of the sequence [2]. For cryptographic applications, sequences with
high linear complexity are required.

An important method of designing sequences with high linear complexity uses clas-
sical cyclotomic classes and generalized cyclotomic classes to construct sequences.
Cyclotomy is related to difference sets, sequences, coding theory, and cryptography
[3]. Classical cyclotomy was first considered in detail by Gauss. Later, Whiteman pre-
sented the generalized cyclotomy of order d with respect to the product of two distinct
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odd primes, which is not consistent with classical cyclotomy [4]. It was extended to odd
integers in [5]. Further, a new generalized cyclotomy that includes classical cyclotomy
as a special case was introduced by Ding and Helleseth [3]. Fan and Ge proposed a
unified approach that determines both Whiteman’s and Ding-Helleseth’s generalized
cyclotomy [6]. In the past decades, the linear complexity of binary and nonbinary
Whiteman’s and Ding-Helleseth’s generalized cyclotomic sequences has been exten-
sively studied [7–12] (see also references therein).

Zeng et al. in [13] presented a new approach and suggested a new generalized
cyclotomy. Further, this new generalized cyclotomy was discussed in [14]. Based on
the generalized cyclotomic classes from [13], Xiao et al.[15] presented a new fam-
ily of cyclotomic binary sequences of period pn and determined the linear complexity
of the sequences for the case when n = 2 and f = 2r. Later, these results were gen-
eralized in [16,17]. The use of new generalized cyclotomic classes for constructing
sequences with high linear complexity and even periods 2pn,2mpn was considered in
[18,19]. In this paper, we will study the linear complexity of new generalized cyclo-
tomic sequences with period pnqm. These sequences are defined using new generalized
cyclotomic classes from [13]. Thus, we continue the study of new generalized cyclo-
tomic sequences started in [15–17].

The rest of the paper is organized as follows. The definition of sequences and the
main result are introduced in Sect. 2. In Sect. 3 we discuss some subsidiary statements
about the sequence polynomial and in Sect. 4 we prove our main result. We conclude
the paper in Sect. 5.

2 Definitions of Sequences

First of all, we recall the definition of new generalized cyclotomic classes presented
in [13] for N = pnqm, where p and q are odd distinct primes, n > 0,m > 0. Suppose e
divides p−1 and q−1; then p−1= e f and q−1= eh. It is well known that there exists
primitive roots η and ξ modulo p2 and q2 respectively. In this case, η is the primitive
root modulo pk, k = 1,2, . . . ,n and ξ is the primitive root modulo ql , l = 1,2, . . . ,m
[20].

Let v= pkql ,v �= 1, where k = 0,1, . . . ,n; l = 0,1, . . . ,m.
According to the Chinese Remainder Theorem, there exists gv such that

gv ≡ η f pk−1
(mod pk) when k ≥ 1 and gv ≡ ξ hql−1

(mod ql) when l ≥ 1. (1)

Also there exist ζp, ζq such that

ζp ≡
{

η (mod pn),
1 (mod qm),

and ζq ≡
{

ξ (mod qm),
1 (mod pn).

(2)

Throughout this paper, we let Zv be the ring of integers modulo v for a positive integer
v, and Z

∗
v be the multiplicative group of Zv. According to [13] we know that D(v) =

{gsv | s= 0, . . . ,e−1} is the subgroup of Z∗
v .
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Define

Ψv =

⎧⎪⎨
⎪⎩
Z f pk−1 ×Z(q−1)ql−1 , if k ≥ 1, l ≥ 1,

Z f pk−1 ×{0}, if l = 0,

{0}×Zhql−1 , if k = 0.

Let I = (i1, i2) ∈ Ψv and D(v)
I = ζ i1

p ζ i2
q D(v).

By [13] we have the following partitions

Z
∗
v \{0} =

⋃
I∈Ψv

D(v)
I and ZN \{0} =

⋃
v|N,v>1

⋃
I∈Ψv

N
v
D(v)
I .

It is necessary to note that for v = pk (or v = ql) we obtain a partition of Z∗
pk

as in

[15] and in this case η tD(pk) is equal to D(pk)
t = {η t+ f pk−1i mod pk | i= 0,1, . . . ,e−1},

t = 0,1, . . . , f pk−1 −1. The properties of D(pk)
t were studied in [15,16].

Let f and h be even numbers and b,c be integers such that 0 ≤ b< f pn−1, 0 ≤ c<
hqm−1. Then define

Ψ (1)
v =

{
{(i1+b, i2) ∈ Ψv | 0 ≤ i1 < pk−1 f/2−1}, if k ≥ 1,

{(0, i2+ c) ∈ Ψv | 0 ≤ i2 < ql−1h/2−1}, if k = 0.

Let
C(v)
1 =

⋃
I∈Ψ (1)

v

D(v)
I and C(v)

0 =
⋃

I∈Ψv\Ψ (1)
v

D(v)
I .

Then we see that

|C(v)
j | =

⎧⎪⎨
⎪⎩
pk−1(p−1)ql−1(q−1)/2, if k ≥ 1, l ≥ 1,

pk−1(p−1)/2, if k ≥ 1, l = 0,

ql−1(q−1)/2, if k = 0, l ≥ 1.

(3)

for v= pkql , j = 0,1.
Define

Cj =
⋃

v|N,v>1

N
v
C(v)

j , j = 0,1

or, in more detail

Cj =
n⋃

k=1

m⋃
l=1

pn−kqm−lC(pkql)
j ∪

n⋃
k=1

pn−kqmC(pk)
j ∪

m⋃
l=1

pnqm−lC(ql)
j . (4)

By definition we get ZN \{0} =C0 ∪C1 and C0 ∩C1 = 
.
Then we can define a balanced binary sequence s∞ with period N as follows:

si =

{
1, if i mod N ∈C1 ∪{0},
0, if i mod N ∈C0.

(5)
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A sequence is called balanced if the numbers of 1’s and 0’s in one minimum period
differ by no more than one. Earlier, new generalized cyclotomic classes were used to
construct sequences with period pn. It is necessary to note that for N = p2 this sequence
is the same as in [15].

We conclude this section by recalling the notion of the linear complexity and one
method of studying the linear complexity. For a N-periodic sequence s∞ = {si}i≥0 over
the F2 (the finite field of two elements), we recall that the linear complexity over F2,
denoted by LC(s∞), is the least order L such that {si} satisfies

si+L = cL−1si+L−1+ . . .+ c1si+1+ c0si for i ≥ 0,

where c0 �= 0,c1, . . . ,cL−1 ∈ F2.
It is well known (see, for instance, [21]) that if S(x) = s0 + s1x+ · · ·+ sN−1xN−1

then the linear complexity of s∞ is given by

LC(s∞) = N−deg
(
gcd

(
xN −1,S(x)

))
.

Thus, if α is a primitive root of order N of unity in the extension of the field F2, then
in order to find the linear complexity of a sequence, it is sufficient to study the zeros of
S(x) in the set {α i | i= 0,1, . . . ,N−1}.

In this paper, we will study the linear complexity of s∞ defined by (5). The values
S(α i) we will consider in the following section.

2.1 Main Result

To begin with, we introduce some new notations. Let ordp(2) be the order1 of 2 modulo
p and

lk =

{
k, if qm ∈ D(pk) or qm ∈ η pk−1 f/2D(pk),

0, otherwise

for k = 1,2, . . . ,n. Let k0 = max
1�k�n

lk.

A prime p is called a Wieferich prime if 2p−1 ≡ 1 (mod p2). It is well known that
there are only two Wieferich primes, 1093 and 3511, up to 6× 1017. Bellow, we will
consider only non-Wieferich primes. Our main contribution is the following statement.

Theorem 1. Let 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1 (mod q2), gcd(p,q− 1) = gcd(p−
1,q) = 1 and let s∞ be a sequence defined by (5). Then

(i) LC(s∞) = N− rp ·ordp(2)− pk0rq ·ordq(2)−δ for k0 > 0,
where rp,rq are integers satisfying inequalities 0 ≤ rp ≤ p−1

2ordp(2)
, 0 ≤ rq ≤ q−1

2ordq(2)
and

δ =

{
1, if (pnqm+1)/2 is even,
0, if (pnqm+1)/2 is odd.

1 The order of 2 modulo p is the least positive integer T such that 2T ≡ 1 (mod p).
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(ii) LC(s∞) = N− rN ·ordpq(2)− rp ·ordp(2)− rq ·ordq(2)−δ for k0 = 0,

where rN is an integer satisfying inequality 0 ≤ rN ≤ (p−1)(q−1)
2ordpq(2)

.

According to Theorem 1 the considered sequences have high linear complexity.

Remark 1. We will show that the value rN also depends on n,m and is not defined only
by p,q.

3 Subsidiary Lemmas

In this section we prove a few lemmas and discuss the properties of the generating
polynomial of s∞.

Lemma 1. Let v= pkql , k = 1, . . . ,n; l = 1, . . . ,m. Then

(i) C(v)
1 mod pk =C(pk)

1 ;

(ii) C(v)
1 mod ql = Z

∗
ql
.

Proof. Suppose i ∈ C(v)
1 ; then there exist u, t,s such that i = ζ u+b

p ζ t+c
q gsv and 0 ≤ u <

pk−1 f/2,0 ≤ t < ql−1(q− 1), 0 ≤ s < e. So, by (1), (2) and the definition of C(v)
1 we

get that i mod pk = ηu+bηspk−1 f , i.e., i mod pk ∈ C(pk)
1 . Further, it is obvious that i

(mod ql) ∈ Z
∗
ql
. Moreover, it is clear that if j ∈C(v)

1 , j �= i then j �≡ i (mod pk) or j �≡ i

(mod ql). Since by (3) we have

|C(v)
1 | = pk−1(p−1)

2
·ql−1(q−1) = |C(pk)

1 | · |Z∗
ql |,

it follows that the conclusion of the lemma holds. ��
Let S(X) = ∑N−1

i=0 siXi be the generating polynomial of s∞. Define as in [15,16] the
subsidiary polynomials, i.e.,

T (pk)
b (X) = ∑

i∈C(pk)
1

Xi, k = 1,2, . . . ,n and T (ql)
c (X) = ∑

i∈C(ql )
1

Xi, l = 1,2, . . . ,m.

Define

S(p
n)

b (X) =
n

∑
k=1

T (pk)
b (X pn−k

) and S(q
m)

c (X) =
m

∑
l=1

T (ql)
c (Xqm−l

).

As noted before, the sequence s∞ defined by (5) for N = p2 is the same as in [15].

In this case, S(p
n)

b (X)+ 1 is the polynomial of generalized cyclotomic sequence with
period pn considered in [16]. The properties of this polynomial are studied in [15,16].

In the next lemma, we will recall the properties of this polynomial that are necessary
in what follows.

Let α be a primitive N-th root of unity in the extension of F2. Since gcd(pn,qm) = 1
then there exist integers x,y such that xpn+ yqm = 1. Define β = αyqm and γ = αxpn .
Then α = βγ , also β and γ are primitive pn-th and qm-th roots of unity, respectively.
Denote βk = β pn−k

, k = 1,2 . . . ,n and γl = γqm−l
, l = 1,2 . . . ,m.
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Lemma 2 [16]. For any a ∈ η tC(pk), we see that

(i) S(p
k)

i (β pda
k ) = S(p

k−d)
i+t (βk−d)+(pd −1)/2 mod 2 for 0 ≤ d < k.

(ii) S(p
k)

i (β a
k )+S(p

k)
i+dk/2

(β a
k ) = 1, where dk = pk−1 f/2.

(iii) Let p be a non-Wieferich prime. Then S(p
k)

i (βk) �∈ {0,1} for k > 1.

(iv) Let p be a non-Wieferich prime. Then S(p
k)

i (βk)+S(p
k)

i+ f/2(βk) �= 1 for k > 1.
(v)

|{ j | S(pk)i (βk) = 0 ( or 1), j = 1,2, . . . , pk −1)}|
= |{ j | S(p)i (β j

1 ) = 0 ( or 1), j = 1,2, . . . , p−1}| = rp ·ordp(2),
where rp is an integer satisfying inequality 0 ≤ rp ≤ p−1

2ordp(2)
.

Similarly, S(q
m)

c (X) + 1 is the generating polynomial of sequence defined by (5) for

v= qm. Hence, the properties of S(q
m)

c (X) are the same as those of S(p
n)

b (X) (of course,
we need to use qm instead of pn).

3.1 The Values of Subsidiary Polynomials

In this subsection we will show that the values of subsidiary polynomials define the
values of S(α j). Here and further we always suppose that gcd(p,q− 1) = gcd(p−
1,q) = 1.

Lemma 3. Let v= pkql ,k = 1,2, . . . ,n; l = 1,2, . . . ,m and j ∈ ZN , j �= 0. Then

∑
i∈N

v C
(v)
1

α i j =

{
T (pk)
b (β jpn−kqm−l

), if j ≡ 0 (mod ql−1) and j �≡ 0 (mod ql),
0, otherwise.

Proof. According to the choice of α,β ,γ we obtain that

∑
i∈pn−kqm−lC(v)

1

α i j = ∑
u∈C(v)

1

β u jpn−kqm−l
γu jp

n−kqm−l
.

Since by Lemma 1 C(v)
1 mod pk =C(pk)

1 and C(v)
1 mod ql = Z

∗
ql
, it follows that

∑
i∈pn−kqm−lC(v)

1

α i j = ∑
u∈C(pk)

1

β u jpn−kqm−l · ∑
u∈Z∗

ql

γu jp
n−kqm−l

.

Denote γ pn−kqm−l
by γ̃l . Then γ̃l is a primitive ql-th root of unity since gcd(p−1,q) = 1.

Let Al = ∑u∈Z∗
ql

γ̃u jl . It is clear

A1 (mod 2) =

{
1, if j �≡ 0 (mod q),
0, if j ≡ 0 (mod q).
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Suppose l > 1; then

Al = ∑
u∈Z

ql

γ̃u jl − ∑
u∈qZ

ql−1

γ̃u jl = ∑
u∈Z

ql

γ̃u jl − ∑
u∈Z

ql−1

γ̃u jql .

We consider the following three cases.

(i) Let j �≡ 0 (mod ql−1). Obviously here Al = 0.
(ii) Let j≡ 0 (mod ql−1) and j �≡ 0 (mod ql). In this case Al ≡ 0−ql−1 ≡ 1 (mod 2).
(iii) Suppose j ≡ 0 (mod ql); then Al = ql −ql−1 and Al mod 2= 0.

This completes the proof of this lemma.

��
Lemma 4. Let j = qa j0 and gcd( j0,q) = 1, 0 ≤ a ≤ m. Then

n

∑
k=1

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j =

{
S(p

n)
b (β jqm−a−1

), if a< m,

0, if a= m.

Proof. If a = m then j ≡ 0 (mod ql) for l = 1,2, . . . ,m and by Lemma 3 we observe
that ∑m

l=1 ∑
i∈pn−kqm−lC(pkql )

1

α i j = 0.

Let a < m. In this case j ≡ 0 (mod qa) and j �≡ 0 (mod qa+1). Then again by
Lemma 3 we have

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j = ∑
i∈pn−kqm−a−1C(pkqa+1)

1

α i j = T (pk)
b (β jpn−kqm−a−1

).

Thus, by definitions of T (pk)
b (X) and S(p

n)
b (X) we see that

n

∑
k=1

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j =
n

∑
k=1

T (pk)
b (β jpn−kqm−a−1

) = S(p
n)

b (β jqm−a−1
).

��
Lemma 5. Let j = qa j0 and gcd( j0,q) = 1, 0 ≤ a ≤ m. Then

(i) S(α j) = S(p
n)

b (β jqm−a−1
)+S(p

n)
b (β jqm)+S(q

m)
c (γ jpn)+1 for a< m,

(ii) S(α j) = S(p
n)

b (β jqm)+(qm+1)/2 for a= m.

Proof. By (4) and (5) we see that

S(α j) =
n

∑
k=1

m

∑
l=1

∑
i∈pn−kqm−lC(pkql )

1

α i j+
n

∑
k=1

∑
i∈pn−kqmC(pk)

1

α i j+
m

∑
l=1

∑
i∈pnqm−lC(ql )

1

α i j+1.



Linear Complexity of Generalized Cyclotomic Sequences with Period pnqm 327

The first sum in the last relation is studied in Lemma 4. Using the definition of sub-
sidiary polynomials and equality α = βγ we get that

n

∑
k=1

∑
i∈pn−kqmC(pk)

1

α i j =
n

∑
k=1

∑
j∈C(pk)

1

β jpn−kqmγ jpn−kqm =
n

∑
k=1

∑
i∈C(pk)

k

β ipn−kqm = S(p
n)

b (β jqm).

and

m

∑
l=1

∑
i∈pnqm−lC(ql )

1

α i j =
m

∑
l=1

∑
j∈C(ql )

1

β jpnqm−l
γ jpnqm−l

=
m

∑
l=1

∑
i∈C(ql )

1

γ ip
nqm−l

= S(q
m)

c (γ jpn).

Then the statement of this lemma follows from Lemma 4. ��

3.2 The Values of Generating Polynomial

Here and further we will always suppose that 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1 (mod q2)
and gcd(p,q−1) = gcd(p−1,q) = 1.

As usual, we denote by F2(βk) a simple extension of F2 obtained by adjoining an
algebraic element βk and by [F2(βk) : F2] the dimension of the vector space F2(βk)
over F2 [2]. Here βk = β pn−k

,k = 1, . . . ,n and γl = γqm−l
, l = 1, . . . ,m, as before. It is

well known that if r1 = [F2(β1) : F2] then r1 divides p−1 and if t1 = [F2(γ1) : F2] then
t1 divides q− 1 [2]. Let K = F2(β1)∩F2(γ1). Then K is a finite field and [K : F2] =
gcd(r1, t1).

Lemma 6. With notations as above, we have F2(βk)∩F2(γl) =K for k = 1, . . . ,n; l =
1, . . . ,m.

Proof. Let F = F2(βk)∩F2(γl). Then [F : F2] divides [F2(βk) : F2] and [F2(γl) : F2].
According to [16] we know that [F2(βk) : F2] = pk−1r1 and [F2(γl) : F2] = ql−1t1
for p,q such that 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1 (mod q2). Hence [F : F2] divides
gcd(pk−1r1,qm−1t1). By the condition gcd(p,q− 1) = gcd(p− 1,q) = 1, then [F : F2]
divides gcd(r1, t1). Thus, we get [F : F2] divides [K : F2]. Since K ⊂ F, this completes
the proof of this lemma.

��
Lemma 7. Let notations be as above and S(q

m)
c (γ j) ∈ K for m > 1. Then j ≡ 0

(mod qm−1).

Proof. By Lemma 2 (i) it is clear that without loss of generality it is enough to consider
the case c = 0. Let u be an integer such that 2 ≡ gu (mod qm). Denote by r degree

[K : F2]. Since S(q
m)

c (γ j) ∈ K, it follows that S(q
m)

0 (γ j) = S(q
m)

0 (γ j)2
r
. Then again by

Lemma 2 (i) we get

S(q
m)

0 (γ j) = S(q
m)

0 (γ j)2
ir
= S(q

m)
0 (γ j2ir) = S(q

m)
iur (γ j) for i= 0,1, . . . (6)



328 V. Edemskiy and C. Wu

Let w = gcd(qm−1h,ur), where h = (q− 1)/e as before. There exist integers x,y such
that xqm−1h+yur=w. Then we see from (6) and Lemma 2 (i) that S(q

m)
0 (γ j) = S(q

m)
iw (γ j)

for i = 0,1, . . . . By [16] gcd(u,q) = 1 for 2q−1 �≡ 1 (mod q2) and gcd(q,r) = 1 here.

Hence w = gcd(h,ur) and w divides h. So, we observe that S(q
m)

0 (γ j) = S(q
m)

ih (γ j) for
i= 0,1, . . . .

Further, S(q
m)

t (γ j)+S(q
m)

t+qm−1h/2
(γ j) = 1 for t = 0,1, . . . by Lemma 2 (ii). Thus,

S(q
m)

qm−1h/2
(γ j) = S(q

m)
qm−1h/2+ih

(γ j)

for i= 0,1, . . . . Since

S(q
m)

qm−1h/2+(qm−1+1)h/2·(γ
j) = S(q

m)
qm−1h+h/2

(γ j) = S(q
m)

h/2 (γ j),

it follows that S(q
m)

0 (γ j)+S(q
m)

h/2 (γ j) = 1. According to Lemma 2 (iii), in this case j ≡ 0

(mod qm−1).

��
Let k0 be the same as before, i.e., k0 = 0 or k0 > 0 is the largest integer such that

qm ∈ D(pk0 ) or qm ∈ η pk0−1 f/2D(pk0 ).

Lemma 8. Let j ∈ pn−kqm−1
Z

∗
pkqm−1 ,1 ≤ k ≤ n and S(p

n)
b (β j)+ S(p

n)
b (β jqm) ∈ K for

n> 1. Then j ≡ 0 (mod pn−1) or k ≤ k0.

Proof. Without loss of generality it is enough to consider the case b = 0. Let j =
pn−kqm−1t, where gcd(t, pq) = 1. If k = 1 then j ≡ 0 (mod pn−1). So, this lemma
is right for k = 1.

Let k> 1 and denote β pn−kqm−1t by β̃k. Then β̃k is a primitive pk-th root of unity and

S(p
k)

0 (β̃k)+S(p
k)

0 (β̃ qm

k ) ∈ K by Lemma 2 (i).

Suppose k > k0; then qm ∈ ηzD(pk) for z �= 0 and z �= pk−1 f/2. By Lemma 2 (i) we

get that S(p
k)

0 (β̃k)+S(p
k)

z (β̃k) ∈ K.
We can show in the same way as in Lemma 7 that

S(p
k)

0 (β̃k)+S(p
k)

z (β̃k) = S(p
k)

f/2 (β̃k)+S(p
k)

z+ f/2(β̃k).

Using the definitions of S(p
k)

i (X) and T (pk)
i (X) we obtain that

T (pk)
0 (β̃k)+T (pk)

f/2 (β̃k)+T (pk)
z (β̃k)+T (pk)

z+ f/2(β̃k) ∈ F2(βk−1).

LetD =D(pk)∪·· ·∪η f/2−1D(pk)∪η pk−1 f/2D(pk)∪·· ·∪η pk−1 f/2+ f/2−1D(pk) and C =
ηzD . Then

T (pk)
0 (β̃k)+T (pk)

f/2 (β̃k) = ∑
i∈D

β̃ i
k
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and
T (pk)
z (β̃k)+T (pk)

z+ f/2(β̃k) = ∑
i∈C

β̃ i
k.

It is clear that |D | = |C | = p−1 and D (mod p) = C (mod p) = Z
∗
p.

Denote by xi ∈ D and yi ∈ C , respectively, such that xi mod p = yi mod p = i,
i= 1, . . . , p−1. Then

∑
i∈D

β̃ i
k =

p−1

∑
i=1

β̃ (xi−i)/p
k−1 · β̃ i

k and ∑
i∈C

β̃ i
k =

p−1

∑
i=1

β̃ (yi−i)/p
k−1 · β̃ i

k.

Suppose that for any i we have β̃ (xi−i)/p
k−1 = β̃ (yi−i)/p

k−1 . Then xi ≡ yi (mod pk) for i =
1,2, . . . , p− 1. Hence D = C . Then z = 0 or z = pk−1 f/2. This is impossible because

k > k0. Thus, we have that the polynomial f (X) = ∑p−1
i=0 (β̃

(xi−i)/p
k−1 + β̃ (yi−i)/p

k−1 )Xi has at

least one nonzero coefficient and f (β̃k)∈F2(βk−1). This is impossible since deg f (X)<
p and [F2(βk) : F2(βk−1)] = p for k > 1. So, k ≤ k0. ��

4 The Proof of Main Theorem

In this section we finish the proof of Theorem 1 in the following two Lemmas.

Lemma 9. Let notation be as above and k0 > 0. Let 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1
(mod q2), gcd(p,q−1) = gcd(p−1,q) = 1 and let s∞ be defined by (5). Then

LC(s∞) = N− rp ·ordp(2)− pk0rq ·ordq(2)−δ ,

where

δ =

{
1, if (pnqm+1)/2 is even ,

0, if (pnqm+1)/2 is odd

and 0 ≤ rp ≤ p−1
2ordp(2)

, 0 ≤ rq ≤ q−1
2ordq(2)

.

Proof. As noted before we have

LC(s∞) = N−
∣∣∣{ j | S(α j) = 0, j = 0,1, . . . ,N−1}

∣∣∣.
First of all we note that by definition S(1) = (pnqm+1)/2. Further, according to Lemma
5 we have

S(α j) = S(p
n)

b (β jqm−a−1
)+S(p

n)
b (β jqm)+S(q

m)
c (γ jpn)+1 (7)

for j = qa j0, a< m, gcd( j0,q) = 1 and

S(α j) = S(p
n)

b (β jqm)+(qm+1)/2

for j = qm j0.
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Let S(α j) = 0, 1 ≤ j ≤ N−1. We consider a few cases.

(i) Suppose j ≡ 0 (mod qm); then S(α j) = S(p
n)

b (β jqm) for even (qm + 1)/2 and

S(α j) = S(p
n)

b (β jqm)+1 for odd (qm+1)/2. By Lemma 2 (v) we get

|{ j| S(α j) = 0, j = qm, . . . ,(pn −1)qm}| =
|{ j| S(p)b (β j

1 ) = 0, ( or 1), j = 1,2, . . . , p−1}| = rp ·ordp(2).

(ii) Let j �≡ 0 (mod qm). According to (7) we see that

S(p
n)

b (β jqm−a−1
)+S(p

n)
b (β jqm) = −S(q)c (γ jpn)−1.

Hence S(q
m)

c (γ jpn) ∈ F2(β ). Then by Lemma 6 we get

S(q
m)

c (γ jpn) ∈ K= F2(β1)∩F2(γ1).

In this case, by Lemma 7 we have j ≡ 0 (mod qm−1). Hence j ∈ pn−kqm−1
Z

∗
pkq

for

k : 1≤ k ≤ n and the sum S(p
n)

b (β j)+S(p
n)

b (β jqm) also belongs toK. Further by Lemma
8 we get k ≤ k0 or j ≡ 0 (mod pn−1). If j ≡ 0 (mod pn−1) then k= 1 and since k0 > 0,
it follows that k ≤ k0 in any case.

By choosing k0 we see that qm ∈ D(pk0) or qm ∈ η pk0−1 f/2D(pk0). Hence for any j :
j ≡ 0 (mod pn−k0) we have

S(p
n)

b (β jqm) =

{
S(p

n)
b (β j), if qm ∈ D(pk0),

S(p
n)

b+pk−1 f/2
(β j), if qm ∈ η pk0−1 f/2D(pk0).

In any case, by Lemma 2 (ii) S(p
n)

b (β j) + S(p
n)

b (β jqm) is equal to 0 or 1 for all j ∈
pn−k0qm−1

Zpk0q and j �≡ 0 (mod qm).

Then, according to (7) we obtain S(q
m)

c (γ jpn) = S(q)c (γ j0p
n

1 ) ∈ {0,1} where j =
qm−1 j0, gcd( j0,q) = 1. In this case, by Lemma 2 (v) we have

|{ j| S(p)b (β j0
1 ) = 0, ( or 1), j0 = 1,2, . . . , p−1}| = rp ·ordp(2).

For fixed j0 we have pk0 numbers from Zpk0q with the same residue modulo q. Thus,
we get

|{ j | S(α j) = 0, j = 1,2, . . . ,N, j �≡ 0 (mod qm)}| = pk0rq · ordq(2),

where 0 ≤ rq ≤ q−1
2ordq(2)

.

Finally, we get |{ j | S(α j) = 0, j = 1,2, . . . ,N,}| = rp ·ordp(2)+ pk0rq ·ordq(2).
��

We consider a few examples with different values rp,rq and k0 = 1.
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Example 1. (i) p = 19,q = 7,e = 3, in this case 7 ∈ D(19) and rp = 0,rq ·ord7(2) = 3.
Hence LC(s∞) = N−19 ·3 for n= 1,2;m= 1,2.

(ii) p= 7,q= 43,e= 3, here 43 ∈ D(7), but rp = 1,rq = 0. Hence LC(s∞) = 301−
1 ·3= 298.

(iii) p = 43,q = 7,e = 3, here f = 14, 7 ∈ η7D(43) and rp = 0,rq · ord7(2) = 3.
Hence LC(s∞) = 301−43 ·3= 172. Similarly, for n= 1,2;m= 1,2.

(iv) p = 41,q = 31,e = 5, f = 8, 31 ∈ η4D(41), rp = 0,rq ·ord3 1(2) = 15. Finally,
LC(s∞) = 1271−41 ·15−1= 655.

(v) p = 7,q = 73,e = 3, here f = 2, 73 ∈ ηD(7) and rp = 1,rq · ord73(2) = 7 · 18.
Hence LC(s∞) = 511−7 ·18−3−1= 381.

Lemma 10. Let notation be as above and k0 = 0. Let 2p−1 �≡ 1 (mod p2), 2q−1 �≡ 1
(mod q2), gcd(p,q−1) = gcd(p−1,q) = 1 and let s∞ be defined by (5). Then

LC(s∞) = N− rN ·ordpq(2)− rp ·ordp(2)− rq ·ordq(2)−δ ,

where 0 ≤ rN ≤ (p−1)(q−1)
2ordpq(2)

and

δ =

{
1, if (pnqm+1)/2 is even ,

0, if (pnqm+1)/2 is odd .

Proof. Let S(α j) = 0, j �= 0. As in Lemma 9 we obtain that |{ j | S(α j) = 0, j =
qm, . . . ,(pn − 1)qm}| = rp · ordp(2) and if j �≡ 0 (mod qm) then S(q

m)
c (γ jpn) ∈ K and

S(p
n)

b (β j)+S(p
n)

b (β jqm) ∈ K.
In the last case, according to Lemma 7 and 8 we get that j ≡ 0 (mod qm−1) and

j ≡ 0 (mod pn−1). Further, if j ≡ 0 (mod pn) then by Lemma 5 we have S(α j) =
S(q)c (γ jpn) + 1 and in this case we observe that |{ j | S(α j) = 0, j = pn, . . . ,(qm −
1)pn}| = rq ·ordq(2) by Lemma 2 (v).

Suppose j = pn−1qm−1t and gcd(t, pq) = 1. Then by Lemma 7 and Lemma 2 (i)

S(α j) = S(p)b (β tqm−1

1 )+S(p)b (β tq2m−1

1 )+S(q)c (γ t p
2n−1

1 )+1.

It is clear that if S(α j) = 0 then S(α j)2
u
= 0 for u = 0,1, . . . ,ordpq(2). Hence, |{ j :

S(α j) = 0, j ∈ Zpq| = rN ·ordpq(2) for the some rN .

Let w= ζ f/2
p ζ h/2

q . Then w ≡ η f/2 (mod p) and w ≡ ξ h/2 (mod q). So, by Lemma
2 (i) we obtain

S(αw j) = S(p)b+ f/2(β
tqm−1

1 )+S(p)b+ f/2(β
tq2m−1

1 )+S(q)c+h/2(γ
t p2n−1

1 )+1.

Hence, by Lemma 2 (ii) we see that S(αw j) = S(α j)+ 1. Thus, 0 ≤ rN ≤ (p−1)(q−1)
2ordpq(2)

.
This completes the proof of this lemma. ��
The statement of Theorem 1 follows from Lemmas 9 and 10.

The following examples show that in this case the value r depends on N, so we are
using a denotation rN .
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Example 2. (i) Let p = 73,q = 7,e = 3,b = 0,c = 0. Here 7 ∈ η9D(73), rp ·ordp(2) =
18,rq ·ordq(2) = 3 and ord511(2) = 9.

For n= m= 1 we get LC(s∞) = 435= 511−76, in this case rN = 5.
For n= 1,m= 2 we have LC(s∞) = 3577−18−3= 3556, i.e., rN = 0.
(ii) Let p= 41,q= 11,e= 5,n= 2,m= 1,b= 0,c= 0.
Here ordpq(2) = 20. For n= 1,2;m= 1,3 we get LC(s∞) = N−101 (rN = 5), and

LC(s∞) = N−200 (rN = 10) if n= 1,2;m= 2.

5 Conclusions

Pseudorandom sequences are widely used in communication, radar navigation, cryp-
tography and some other scenarios. By using the new generalized cyclotomy presented
by Zeng et al., we constructed a new kind of generalized cyclotomic sequences with
period pnqm where p,q are odd distinct primes and n,m are natural numbers. Thus, we
generalized the results obtained in [15–17].

Our results show that such sequences have high linear complexity and are suit-
able for applications. To illustrate the results, some examples are presented. For further
study, the k-error linear complexity, autocorrelation, 2-adic complexity and some other
cryptographic properties of these sequences may be interesting topics.
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Abstract. Let p be a prime. In this paper, we obtain the 2-adic com-
plexity of all almost balanced cyclotomic binary sequence of order two
with period p2; and also show the 2-adic complexity of several non-trivial
balanced cyclotomic binary sequences of order two with period 2p2.

Keywords: Binary sequence · Autocorrelation · 2-adic complexity ·
Cyclotomic numbers

1 Introduction

Sequences are widely used in various fields, such as code-division multiple access
(CDMA) communications and stream ciphers in [6,8,11,16]. In the past few
decades, many efforts have been devoted to construct optimal sequences with
respect to the theoretic bounds. As a result, numerous algebraic and combina-
torial constructions of sequences with low correlation have been reported, see
[2–5,8,14,15,21,22,27–30,32–36]. In cryptography, binary sequences, as candi-
dates of keys in stream cipher system, are required to have high complexity
and good balance. There are many works on the linear complexity of binary
sequences. Both linear feedback shift registers (LFSRs) in [7] and feedback with
carry shift registers (FCSRs) in [12,13] are important pseudo-random sequence
generators. Linear complexity and 2-adic complexity of a sequence are defined
as the length of the shortest LFSR or FCSR respectively, which is capable of
generating a given sequence. Since the end of the last century, the 2-adic com-
plexity has been viewed as one of the important security criteria of sequences.
The sequences with 2-adic complexity n can be generated by a feedback (with
carry) shift register of length n [13].

Let s = {sλ}∞
λ=0 be a binary sequence with period N . The autocorrelation

function of the sequence s is defined by

Cs(τ) =
N−1∑

λ=0

(−1)sτ+λ−sλ ∈ Z (0 ≤ τ ≤ N − 1).
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For τ = 0, Cs(0) = N . For many applications in communication, the value
of max{|Cs(τ)| : 1 ≤ τ ≤ N − 1} is required as small as possible. There-
fore, the study of autocorrelation value of periodic sequence is also one of the
hotspots of pseudo-random sequence research at this stage. Several classes of
binary sequences with three-level autocorrelation and new families of binary
sequences with optimal three-level autocorrelation have been found (see [3,4]).

Let s = (sλ)∞
λ=0 be a binary sequence of period N , where each sλ ∈ {0, 1}.

Let S = {0 ≤ λ ≤ N − 1 : sλ = 1} be the support set of the sequence s, then s
is called balanced if |S| = N

2 ; s is called almost balanced if |S| = N±1
2 . In fact,

balanced or almost balanced binary sequences are widely used in communication
systems, software testing, and stream ciphers.

Let

s(x) =
N−1∑

λ=0

sλxλ ∈ Z[x], (1.1)

d = gcd(s(2), 2N − 1). The 2-adic complexity of s can be defined as the real
number:

φ2(s) = log2(
2N − 1

d
). (1.2)

The 2-adic complexity of m-sequences was determined in [23]. Later, the
2-adic complexity of all known binary sequences with ideal two-level autocorre-
lation was determined in [26]. Hu introduced a simple method to compute the
2-adic complexity of any periodic binary sequence with ideal two-level autocor-
relation [10]. Their 2-adic complexity reaches the maximum value log2 (2N − 1).
For some other sequences with good autocorrelation, the 2-adic complexity is
determined or estimated by a nice lower bound [9,18–20,25].

In [10,26], Xiong and Hu can compute the 2-adic complexity of binary
sequences with optimal autocorrelation of Legendre sequences and Ding-
Helleseth-Lam sequences. In [31], Zhang can compute the 2-adic complexity of
binary sequences with optimal autocorrelation of DHM sequences. In this paper,
we shall complement Xiao’s results in [25] and generalize Zhang’s results in [31].
We use our method to determine the maximum evaluation of the 2-adic complex-
ity in all almost cyclotomic binary sequences of order two with period N = p2

and then the 2-adic complexity of several non-trivial balanced cyclotomic binary
sequences of order two with period N = 2p2.

The paper is organized as follows. In Sect. 2, we introduce some basic con-
cepts and related results. In Sect. 3, we obtain that all almost balanced cyclo-
tomic binary sequences of order two with period p2 have the maximum 2-adic
complexity log2(2p2 − 1). In Sect. 4, we mainly determine the 2-adic complexity
of several non-trivial balanced cyclotomic binary sequences of order two with
period N = 2p2. In Sect. 5, we make a conclusion.

2 Preliminaries

Definition 2.1. Let p be an odd prime and let g be a primitive element of the
finite field Fp, i.e., F

∗
p = 〈g〉. Let p = 2f + 1 and D0 = 〈g2〉. Then D0 is a cyclic
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subgroup of F
∗
p and there are two cosets in F

∗
p:

Di = giD0 = {gi+2k : 0 ≤ k ≤ f − 1}, i = 0, 1,

which are called cyclotomic classes of order two in Fp.

The generalized cyclotomic classes of order 2 with respect to p2 are defined by

D
(p2)
i = {a + bp | a ∈ Di, 0 ≤ b ≤ p − 1}, i = 0, 1.

Let
R = {0}, pDi = {ph | h ∈ Di} for i = 0, 1.

C0 = pD0 ∪ D
(p2)
0 , C1 = pD1 ∪ D

(p2)
1 . (2.1)

Then C0 ∪ C1 ∪ R = Zp2 , C0 ∩ C1 = ∅.

Definition 2.2. The cyclotomic numbers of order two in Fp are defined as

(i, j)2 = |(Di + 1) ∩ Dj |, 0 ≤ i, j ≤ 1.

The evaluations of (i, j)2 have been computed (see [1,17]).The following conclu-
sion is well-known.

Lemma 2.3 [17]. If p ≡ 3 (mod 4), then

(1, 0) = (0, 0) = (1, 1) =
p − 3

4
, (0, 1) =

p + 1
4

.

If p ≡ 1 (mod 4), then

(1, 0) = (0, 1) = (1, 1) =
p − 1

4
, (0, 1) =

p − 5
4

.

Let p be an odd prime, n a positive integer, and ξ a primitive p-th root of
unity in a ring Z/nZ. Define

η
(n)
0 =

∑

k∈D0

ξk, η
(n)
1 =

∑

k∈D1

ξk. (2.2)

Then η
(n)
0 + η

(n)
1 = −1.

Lemma 2.4. If p ≡ 3 (mod 4), then η
(n)
0 η

(n)
1 = 3−p

4 ; if p ≡ 1 (mod 4), then
η
(n)
0 η

(n)
1 = 1−p

4 .

Proof. If p ≡ 3 (mod 4), then

η
(n)
0 η

(n)
1 =

∑

h∈D0

ξh
∑

k∈D1

ξk = (1, 1)
∑

t∈D0

ξt + (0, 0)
∑

t∈D1

ξt +
p − 1

2

=
p − 3

4
(
∑

t∈D0

ξt +
∑

t∈D1

ξt) +
p − 1

2
=

p + 1
4

.
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If p ≡ 1 (mod 4), then

η
(n)
0 η

(n)
1 =

∑

h∈D0

ξh
∑

k∈D1

ξk = (1, 0)
∑

t∈D0

ξt + (0, 1)
∑

t∈D1

ξt

=
p − 1

4
(
∑

t∈D0

ξt +
∑

t∈D1

ξt) =
1 − p

4
.


�

3 2-Adic Complexity of Almost Balanced Sequences
with Period p2

In this section, we always assume that p is an odd prime. We shall determine the
2-adic complexity of all almost balanced cyclotomic binary sequences of order
two with period p2.

In the following, we define almost balanced cyclotomic binary sequences of
order two.

Definition 3.1. The two cyclotomic binary sequences si = {s
(i)
λ }∞

λ=0, i = 0, 1,
with period N = p2 are defined as follows

s
(i)
λ =

{
1, if λ (mod p2) ∈ Ci ∪ R

0, otherwise,
(3.1)

where each Ci is defined as (2).

Theorem 3.2. Let si, i = 0, 1, be two almost balanced cyclotomic binary
sequences of period p2 in (3.1).

(1) If p ≡ 1 (mod 4), then the two sequences s0 and s1 have the 2-adic complexity:

φ2(si) = log2(
2p2 − 1

q
), φ2(si+1) = log2(2

p2 − 1),

if and only if

q = p2 + p + 1 is a prime and q|(2p − 1). (3.2)

Moreover, the two sequences have the maximum 2-adic complexity, i.e.,
φ2(si) = log2(2p2 − 1), i = 0, 1, if and only if (3.2) does not hold.

(2) If p ≡ 3 (mod 4), then the two sequences s0 and s1 have the 2-adic
complexity:

φ2(si) = log2(
2p2 − 1

q
), φ2(si+1) = log2(2

p2 − 1),

if and only if

q = p2 − p + 1 is a prime and q|(2p − 1). (3.3)
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Moreover, the two sequences have the maximum 2-adic complexity, i.e., φ2(si) =
log2(2p2 − 1), i = 0, 1, if and only if (3.3) does not hold.

Proof. Let si(2) =
∑p2−1

λ=0 s
(i)
λ 2λ and

di = gcd(si(2), 2p2 − 1), i = 0, 1,

then the 2-adic complexity of each si is φ2(si) = log2(
2p2−1

di
).

In the following, we need to estimate the values di. By

2p2 − 1 = (2p − 1)(
p−1∑

b=0

2pb), gcd(2p − 1,

p−1∑

b=0

2pb) = 1,

di = gcd(si(2), 2p2 − 1) = gcd(si(2), 2p − 1) · gcd(si(2),
∑p−1

b=0 2pb), i = 0, 1.
By the definition of each sequence si,

si(2) =
p2−1∑

λ=0

s
(i)
λ 2λ ≡ 1 +

∑

k∈pDi

2k +
∑

k∈D
(p2)
i

2k

≡ 1 +
∑

k∈Di

2pk +
∑

k∈Di

2k

p−1∑

b=0

2pb (mod 2p2 − 1).

Then
si(2) ≡ p + 1

2
+ p

∑

k∈Di

2k ≡ p + 1
2

+ pη
(2p−1)
i (mod 2p − 1)

and gcd(si(2), 2p − 1) = gcd(p+1
2 + pη

(2p−1)
i , 2p − 1);

si(2) ≡ 1 +
∑

k∈Di

2pk (mod
p−1∑

b=0

2pb),

gcd(1 +
∑

k∈Di
2pk, 2p − 1) = 1, and gcd(si(2),

∑p−1
b=0 2pb) = gcd(1 +

∑
k∈Di

2pk,
∑p−1

b=0 2pb) = gcd(1 + η
(2p2−1)
i , 2p2 − 1). For convenience, let

Δ = s0(2)s1(2).

(1) If p ≡ 1 (mod 4), then by Lemma 2.4,

Δ ≡ (p + 1)2

4
− p + 1

2
p + p2

1 − p

4
≡ 1 − p3

4
(mod 2p − 1).

In fact, the least prime divisor q of 2p − 1 has q > p + 2 in [26].
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Suppose that

D = gcd(Δ, 2p − 1) = gcd(p3 − 1, 2p − 1) = gcd(p2 + p + 1, 2p − 1) > 1.

Then there is an odd prime divisor q of D and ordq(2) = p, so p|(q − 1). Let
q = pt + 1, t ∈ N, then (pt + 1) | (p2 + p + 1) and p2 + p + 1 = qs = pts + s,
s ∈ N. Hence s = 1 and t = p + 1, so q = p2 + p + 1 is a prime. Conversely, if
q = p2 +p+1 is a prime and q|(2p −1), then s0(2)+ s1(2) ≡ 1 (mod 2p −1) and
gcd(Δ, 2p − 1) = q. Hence gcd(si(2), 2p − 1) = q and gcd(si+1(2), 2p − 1) = 1.

On the other hand, by Lemma 2.4,

(1 + η
(2p2−1)
0 )(1 + η

(2p2−1)
1 ) ≡ 1 − p

4
(mod 2p2 − 1).

Suppose that q is a common prime divisor of p − 1 and 2p2 − 1. Then by Fermat
Theorem, gcd(q−1, p2) > 1, which is contradictory. Hence gcd(Δ,

∑p−1
b=0 2pb) = 1.

In summary, if q = p2 + p + 1 is a prime and q|(2p − 1), then there is a
sequence si such that

φ2(si) = log2(
2p2 − 1

q
), φ2(si+1) = log2(2

p2 − 1);

otherwise, the two sequences have the maximum 2-adic complexity, i.e., φ2(si) =
log2(2p2 − 1), i = 0, 1.

(2) If p ≡ 3 (mod 4), then by Lemma 2.4,

Δ ≡ (p + 1)2

4
− p + 1

2
p + p2

p + 1
4

≡ 1 + p3

4
(mod 2p − 1),

Suppose that

D = gcd(Δ, 2p − 1) = gcd(p3 + 1, 2p − 1) = gcd(p2 − p + 1, 2p − 1) > 1.

Then there is an odd prime divisor q of D and ordq(2) = p, so p|(q − 1). Let
q = pt + 1, t ∈ N, then (pt + 1) | (p2 − p + 1) and p2 − p + 1 = qs = pts + s,
s ∈ N. Hence s = 1 and t = p − 1, so q = p2 − p + 1 is a prime. Conversely, if
q = p2 −p+1 is a prime and q|(2p −1), then s0(2)+ s1(2) ≡ 1 (mod 2p −1) and
gcd(Δ, 2p − 1) = q. Hence gcd(si(2), 2p − 1) = q and gcd(si+1(2), 2p − 1) = 1.

Similarly, we get the result. 
�
In fact, those results in [25] are contained in Theorem 3.2.
Using the magma system, when p ≡ 1 (mod 4) is a prime and p < 223, we

only find two primes p = 5 and 7253 such that q = p2 + p + 1 is a prime and
q|(2p − 1) in Theorem 3.2.

Example 3.3. Let si be two cyclotomic binary sequences of period N = 2p2

defined as (3.1) and p = 5. Then 2 is a primitive element of the finite field F5,
i.e., F

∗
5 = 〈2〉. Hence D0 = {1, 4}, D1 = {2, 3}, pD0 = {5, 20}, pD1 = {10, 15},

D
(p2)
0 = {1, 4, 6, 9.11, 14, 16, 19, 21, 24}, D

(p2)
1 = {2, 3, 7, 8, 12, 15, 17, 18, 22, 23}.
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By Theorem 3.2,

s0(2) ≡ 93 (mod 25 − 1), s0(2) ≡ 1 + 25 + 220 (mod
225 − 1
25 − 1

);

s1(2) ≡ 63 (mod 2p − 1), s1(2) ≡ 1 + 210 + 215 (mod
225 − 1
25 − 1

).

and q = 52 + 5 + 1 = 31 is a prime. By 31 | 93, then 31 | s0. Similarly, we also
get 31 � s1, 225−1

25−1 � s0, 225−1
25−1 � s1. Therefore we determine

φ2(s0) = log2(
225 − 1
25 − 1

), φ2(s1) = log2(2
25 − 1).

4 2-Adic Complexity of Balanced Sequences with Period
N = 2p2

In this section, we always assume that p is an odd prime and N = 2p2. We
shall determine the 2-adic complexity of several non-trivial balanced cyclotomic
binary sequences of order two with period N .

There is an isomorphism of two rings:

ϕ : Z2 × Zp2 ∼= Z2p2 = ZN , (a, b) 
→ (p2 + 1)b + p2a.

In the following, we consider a class of non-trivial balanced cyclotomic binary
sequences of order two with period N . Let

Si = ϕ(({0} × (pDi ∪ D
(p2)
i )) ∪ ({1} × (pDi ∪ D

(p2)
i+1 ))) ∪ {0}, i = 0, 1, (4.1)

be subsets of ZN , then |Si| = p2.

Definition 4.1. There are two non-trivial balanced cyclotomic binary
sequences si = {s

(i)
λ }∞

λ=0, i = 0, 1, as follows:

s
(i)
λ =

{
1, if λ (mod N) ∈ Si,

0, otherwise,
(4.2)

where each Si is the support set of each sequence si as (4.1).

Theorem 4.2. Let si, i = 0, 1, be two non-trivial balanced cyclotomic binary
sequences of period N in (4.2). Then

φ2(si) = log2((2
p2

+ 1)
p−1∑

b=0

2pb), i = 0, 1.
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Proof. Let si(2) =
∑N−1

λ=0 s
(i)
λ 2λ and

di = gcd(si(2), 2N − 1), i = 0, 1,

then the 2-adic complexity of each si is φ2(si) = log2(
2N −1

di
).

In the following, we need to estimate the values di. By

2N − 1 = (2p2 − 1)(2p2
+ 1) = (2p − 1)(

p−1∑

b=0

2pb)(2p + 1)(
p−1∑

b=0

(−2)pb),

gcd(2p2 − 1, 2p2
+ 1) = gcd(2p − 1,

p−1∑

b=0

2pb) = gcd(2p + 1,

p−1∑

b=0

(−2)pb) = 1,

di = gcd(si(2), 2N −1) = gcd(si(2), 2p −1) ·gcd(si(2),
∑p−1

b=0 2pb) ·gcd(si(2), 2p +
1) · gcd(si(2),

∑p−1
b=0 (−2)pb), i = 0, 1.

By the definition of each sequence si,

si(2) =

N−1∑

λ=0

s
(i)
λ 2λ ≡ 1+

∑

k∈pDi∪D
(p2)
i

2(p2+1)k +
∑

k∈pDi∪D
(p2)
i+1

2p2+(p2+1)k (mod 2N −1).

On the one hand,

si(2) ≡ 1 +
∑

k∈pDi∪D
(p2)
i

2k +
∑

k∈pDi∪D
(p2)
i+1

2k

≡ 1 + 2
∑

k∈Di

2pk +
∑

k∈Di

2k

p−1∑

b=0

2pb +
∑

k∈Di+1

2k

p−1∑

b=0

2pb (mod 2p2 − 1).

Then
si(2) ≡ 0 (mod 2p − 1), gcd(si(2), 2p − 1) = 2p − 1;

si(2) ≡ 1 + 2
∑

k∈D0

2pk (mod
p−1∑

b=0

2pb),

gcd(1 + 2
∑

k∈D0
2pk, 2p − 1) = 1, and

gcd(si(2),
p−1∑

b=0

2pb) = gcd(1 + 2
∑

k∈Di

2pk,

p−1∑

b=0

2pb) = gcd(1 + 2η(2p2−1)
i , 2p2 − 1).

For convenience, let
Δ = s0(2)s1(2).

If p ≡ 1 (mod 4), then by Lemma 2.4,

Δ ≡ (1 + 2η(2p2−1)
0 )(1 + 2η(2p2−1)

1 ) ≡ −p (mod 2p2 − 1).
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By the proof of Theorem 3.2,

gcd(si(2), 2p2 − 1) = gcd(−p, 2p2 − 1) = 1.

Similarly, if p ≡ 3 (mod 4), then gcd(si(2), 2p2 − 1) = 1.
On the other hand, without loss of generality, let 2 ∈ D0, i.e., p ≡ ±1

(mod 8),

si(2) ≡ 1 +
∑

k∈D
(p2)
i

2(p
2+1)k −

∑

k∈D
(p2)
i+1

2(p
2+1)k

≡ 1 +
∑

2k∈Di

2(p
2+1)2k

p−1∑

b=0

(−2)pb −
∑

2k∈Di+1

2(p
2+1)2k

p−1∑

b=0

(−2)pb

≡ 1 +
∑

k∈Di

2(p
2+1)2k

p−1∑

b=0

(−2)pb −
∑

k∈Di+1

2(p
2+1)2k

p−1∑

b=0

(−2)pb

≡ 1 +
∑

k∈Di

22k

p−1∑

b=0

(−2)pb −
∑

k∈Di+1

22k

p−1∑

b=0

(−2)pb (mod 2p2
+ 1).

Then

si(2) ≡ 1 +
∑

k∈Di

22k −
∑

k∈Di+1

22k (mod 2p + 1),

and gcd(si(2), 2p + 1) = gcd(1 +
∑

k∈Di
22k − ∑

k∈Di+1
22k, 2p + 1);

si(2) ≡ 1 (mod
p−1∑

b=0

(−2)pb), and gcd(si(2),
p−1∑

b=0

(−2)pb) = 1.

For convenience, let

Δ̃ = (1 +
∑

k∈D0

22k −
∑

k∈D1

22k)(1 +
∑

k∈D1

22k −
∑

k∈D0

22k).

If p ≡ 1 (mod 4), then by Lemma 2.4,

Δ̃ = (1 +
∑

k∈D0

22k −
∑

k∈D1

22k)(1 +
∑

k∈D1

22k −
∑

k∈D0

22k)

≡ 1 − (η(22p−1)
0 + η

(22p−1)
1 )2 + 4η

(22p−1)
0 η

(22p−1)
1

≡ 1 − p (mod 22p − 1).

By the proof of Theorem 3.2, gcd(Δ̃, 22p −1) = gcd(1−p, 22p −1) = gcd(Δ̃, 2p +
1) = 1. Hence gcd(si(2), 2p + 1) = 1.
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By gcd(si(2),
∑p−1

b=0 (−2)pb) = 1, gcd(si(2), 2p2
+ 1) = 1.

Similarly, if p ≡ 3 (mod 4), then gcd(si(2), 2p2
+ 1) = 1.

In summary, di = gcd(si(2), 2N − 1) = 2p − 1, i = 0, 1, then

φ2(si) = log2((2
p2

+ 1)
p−1∑

b=0

2pb).


�
In the following, we consider another class of non-trivial balanced cyclotomic

binary sequences of order two with period N . Let

Ŝi = ϕ(({0} × (pDi+1 ∪ D
(p2)
i )) ∪ ({1} × (pDi ∪ D

(p2)
i ))) ∪ {0}, i = 0, 1, (4.3)

be subsets of ZN , then |Ŝi| = p2.

Definition 4.3. There are two non-trivial balanced cyclotomic binary
sequences ŝi = {s

(i)
λ }∞

λ=0, i = 0, 1, as follows:

ŝ
(i)
λ =

{
1, if λ (mod N) ∈ Ŝi,

0, otherwise,
(4.4)

where each Ŝi is the support set of each sequence ŝi as (4.3).

Theorem 4.4. Let ŝi, i = 0, 1, be two non-trivial balanced cyclotomic binary
sequences of period N in (4.4). Then

φ2(ŝi) = log2 ((2p2
+ 1)(2p − 1)), i = 0, 1.

Proof. Let ŝi(2) =
∑N−1

λ=0 ŝ
(i)
λ 2λ and

di = gcd(si(2), 2N − 1), i = 0, 1,

then the 2-adic complexity of each ŝi is φ2(ŝi) = log2(
2N −1

di
).

In the following, we need to estimate the values di. By

2N − 1 = (2p2 − 1)(2p2
+ 1) = (2p − 1)(

p−1∑

b=0

2pb)(2p + 1)(
p−1∑

b=0

(−2)pb),

gcd(2p2 − 1, 2p2
+ 1) = gcd(2p − 1,

p−1∑

b=0

2pb) = gcd(2p + 1,

p−1∑

b=0

(−2)pb) = 1,

di = gcd(ŝi(2), 2N −1) = gcd(ŝi(2), 2p −1) ·gcd(ŝi(2),
∑p−1

b=0 2pb) ·gcd(ŝi(2), 2p2
+

1), i = 0, 1.
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By the definition of each sequence ŝi,

ŝi(2) =

N−1
∑

λ=0

ŝ
(i)
λ 2λ ≡ 1+

∑

k∈pDi+1∪D
(p2)
i

2(p
2+1)k +

∑

k∈pDi∪D
(p2)
i

2p2+(p2+1)k (mod 2N − 1).

On the one hand,

ŝi(2) ≡ 1 +
∑

k∈pDi+1∪D
(p2)
i

2k +
∑

k∈pDi∪D
(p2)
i

2k

≡ 1 +
∑

k∈Di

2pk +
∑

k∈Di+1

2pk + 2
∑

k∈Di

2k

p−1∑

b=0

2pb (mod 2p2 − 1).

Then
ŝi(2) ≡ p + 2p

∑

k∈Di

2k ≡ p + 2pη
(2p−1)
i (mod 2p − 1),

and gcd(ŝi(2), 2p − 1) = gcd(p + 2pη2p−1
i , 2p − 1);

ŝi(2) ≡ 0 (mod
∑p−1

b=0 2pb), and gcd(ŝi(2),
∑p−1

b=0 2pb) =
∑p−1

b=0 2pb.
For convenience, let

Δ = ŝ0(2)ŝ1(2).

If p ≡ 1 (mod 4), then by Lemma 2.4,

Δ ≡ (p + 2pη
(2p−1)
0 )(p + 2pη

(2p−1)
1 ) ≡ −p3 (mod 2p − 1).

By the proof of Theorem 3.2,

gcd(Δ, 2p − 1) = gcd(−p3, 2p − 1) = gcd(ŝi(2), 2p − 1) = 1, i = 0, 1.

Similarly, if p ≡ 3 (mod 4), then gcd(ŝi(2), 2p − 1) = 1.
On the other hand, without loss of generality, let 2 ∈ D0, then

ŝi(2) ≡ 1 +
∑

k∈pDi+1

2(p
2+1)k −

∑

k∈pDi

2(p
2+1)k

≡ 1 +
∑

2k∈Di+1

2(p
2+1)2pk −

∑

2k∈Di

2(p
2+1)2pk

≡ 1 +
∑

k∈Di+1

2(p
2+1)2pk −

∑

k∈Di

2(p
2+1)2pk

≡ 1 +
∑

k∈Di+1

22pk −
∑

k∈Di

22pk (mod 2p2
+ 1) .

Then gcd(ŝi(2), 1 +
∑

k∈Di+1
22pk − ∑

k∈Di
22pk) = gcd(1 +

∑
k∈Di+1

22pk −
∑

k∈Di
22pk, 2p2

+ 1). In the following, we shall compute the value

Δ = (1 +
∑

k∈D0

22pk −
∑

k∈D1

22pk)(1 +
∑

k∈D1

22pk −
∑

k∈D0

22pk)

≡ 1 − (η(22p2−1)
0 + η

(22p2−1)
1 )2 − 4η

(22p2−1)
0 η

(22p2−1)
1 (mod 22p2 − 1).



On the 2-Adic Complexity of Cyclotomic Binary Sequences 345

If p ≡ 1 (mod 4), then by Lemma 2.4,

Δ ≡ 1 − p (mod 22p2 − 1) .

By the proof of Theorem 3.2, gcd(Δ, 22p2 − 1) = gcd(1−p, 22p2 −1) = gcd(2p2 −
1, 2p2

+ 1) = 1. Hence gcd(ŝi(2), 2p2
+ 1) = 1, i = 0, 1.

Similarly, if p ≡ 3 (mod 4), then gcd(ŝi(2), 2p2
+ 1) = 1 i = 0, 1.

In summary, di = gcd(si(2), 2N − 1) =
∑p−1

b=0 2pb, i = 0, 1, then

φ2(ŝi) = log2 ((2p2
+ 1)(2p − 1)).

5 Conclusion

In this paper, let p be an odd prime. We obtain the 2-adic complexity of all almost
balanced cyclotomic binary sequence of order two with period p2; determine the
2-adic complexity of several non-trivial balanced cyclotomic binary sequences of
order two with period 2p2. In fact, we complement Xiao’s results in [25] and
generalize Zhang’s results in [31].
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