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Abstract. In this work we analyze the solution of the Schrödinger equa-
tion for light atoms obtained by the quantum Monte Carlo method using
a supercomputer. The general properties of electron correlations are
determined, which are further used to improve deterministic methods
of solving the Schrödinger equation.
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1 Introduction

The main problem of deterministic methods used to solve the Schrödinger equa-
tion is the incorrect allowance for interelectronic correlations [1–3]. In this case,
to refine them, a solution obtained by the stochastic method, the quantum Monte
Carlo method (QMC), can be used. Different versions of QMC simulations give
an exact solution for boson systems in the sense that the error is determined
only by statistics. But in the case of fermion systems with an antisymmetric
wave function, successful application of QMC requires knowledge of the nodal
surfaces due to the sign problem [4,5]. An additional approximation associated
with the use of Slater determinants introduces an uncontrollable error, and is
also very inconvenient for the implementation of Monte Carlo methods.

In [6] we proposed a new approach—Kurchatov Quantum Monte Carlo
(KQMC)—that differs from the traditional diffusion Monte Carlo methods [5] by
using the stationary Green’s function of the Helmholtz equation. The implemen-
tation of the KQMC algorithm on a supercomputer makes it possible to bypass
the problems associated with the use of normalization algorithms and to obtain
an actually exact solution from a chemical point of view for a number of light
atoms.

This paper presents the main aspects related to the parallel implementation
of the KQMC method. The calculation results obtained with a supercomputer
are analyzed and an assumption is made about the form of the correlation func-
tion. Further, the correlation function is used to refine the classical Hartree-Fock
method (HF) in terms of the error associated with taking into account correla-
tions of electrons with oppositely directed spins.
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2 Parallel Implementation of KQMC

The wave function describing a multifermion system has the well-known antisym-
metry property, which is expressed in the Pauli principle. If the QMC methods
allowed integrating the entire domain of definition of the wave function, then
the solution would converge to the exact solution of the Schrödinger equation.
However, this is not the case for the reason that Monte Carlo methods cannot
work with sign-changing functions (the sign problem) [4,5].

Due to the properties of antisymmetry, the wave function of N fermions of
the same spin divides the entire space into N ! subdomains, in each of which the
wave function is of constant sign. In [6] we proposed a method for constructing
such a subdomain for the KQMC algorithm, which made it possible to bypass
the sign problem at least for some simple fermionic systems. However, the use
of normalization algorithms to prevent an unlimited growth of the eigenfunction
norm leads to the appearance of an additional error associated with electronic
fluctuations in shells located far from the nucleus. Figure 1 shows the magnitude
of these fluctuations.

In KQMC, the integral Schrödinger equation of the form (1) is solved:

λΨ(r) =
∫

V

G(r′ → r)k0(r′)Ψ(r′) dV ′, (1)

where
λ =

√
E0
E —eigenvalue to be determined, E0 = − me4

32π2�2ε2
0
;

Ψ—wave function of the system, defined in R3N , N—number of electrons;
G(r) = r1− 3N

2 K 3N
2 −1(r);

k0 =
(∑N

i=1
2Z

|̃r0−r̃i| − ∑N−1
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j>i

2
|̃ri−r̃j |

)
, r̃i = ri

a0

√
E
E0

, a0 = 4πε0�
2

me2 , r0 ∈
R3—nuclear radius vector, ri ∈ R3—radius vector of the i-th electron.

In operator form, Eq. (1) is written as:

λΨ = KGΨ, (2)

where G—non-local translation operator, K—local production operator.
To find the maximum modulo eigenvalue and corresponding eigenfunction

of the ground state of the calculated system, the following iterative process is
realized [7]:

Ψ (n+1) = AΨ (n), (3)

where n—iteration number, A = KG.
The eigenvalue corresponding to the ground eigenstate is defined as:

∣∣∣λ(n+1)
0

∣∣∣ =
‖Ψ (n+1)‖
‖Ψ (n)‖ −−−−→

n→∞ |λ0| , (4)

where ‖Ψ‖ is any norm of Ψ . The sequence Ψ (n) converges to an eigenfunction
Ψ0 corresponding to λ0.
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(a)

(b)

Fig. 1. Dependence of an average distance over generations (in Bohr radii) of each
electron on a series number (20 generations in a series) in Be atom (a) and in B (3s
2S) atom (b), obtained by KQMC calculation using normalization algorithm.



High-Performance Computing 143

The distribution Ψ(r) is represented by a set of discrete sampling points
(random walkers) with weights [8]:

Ψ(r) discrete−−−−−→
∑

k

ωkδ(r − rk). (5)

At each iteration (3), the operator A acts on each such point. Since the
operator A is stochastic itself, its action on

∑
k ωkδ(r− rk) is understood as the

generation of a set of points
∑

k ω̃kδ(r− r̃k). A set of points with weights (delta
functions with weights) corresponding to one iteration (3) is called a generation.

To estimate the eigenvalue, use not the λ(n) number for a particular n, but
the averaging:

ΛM,N =
λ(M+1) + λ(M+2) + . . . + λ(N)

N − M
. (6)

Similarly, the functionals of an eigenfunction are estimated by averaging.
Monte Carlo calculations are inherently parallel in nature. At their most basic

they involve calculation of a large set of independent random numbers and then
averaging of the set of results obtained by each of these random numbers. The
central idea in doing QMC on massively parallel processors is the master-slave
paradigm when one processor controlls the whole simulation. In KQMC, each
core, generating its own sequence of pseudorandom numbers [9], independently
runs a simulation and accumulates its own set of eigenvalues; the eigenvalues
from different cores are gathered, averaged, and written by the master core at
the end of the run. Due to this, the KQMC parallel algorithm achieves linear
scaling on machines with any number of nodes.

The calculations were carried out on the second-generation HPC2 cluster of
Complex for Simulation and Data Processing for Mega-science Facilities at NRC
“Kurchatov Institute”. One compute node has two Intel Xeon E5450 processors
(3.00 GHz, 4 cores), 16 GB of RAM. Interprocessor communications involving
sending packets of data between processors are carried out using the MPI stan-
dard.

To solve the problem of electronic fluctuations, we abandoned the use of
normalization algorithms and introduced a corridor according to the number of
particles in a packet—an approach that does not affect the accuracy of the solu-
tion obtained [10]. At the same time, it was obtained that when calculating using
the corridor on insufficient statistics, a residual fluctuation remains (Fig. 2(a)).
To completely solve the problem of electronic fluctuations, at least for the first
three periods of the periodic table, a sample of the order of 1012 points is needed
(Fig. 2(b)). Sampling about 109–1010 points (the average number of points in the
corridor is several hundred thousand, the number of generations is several tens
of thousands) for elements of the first two periods of periodic table on one core
of Intel Xeon E5450 3.00 GHz processor takes up to 10–20 h. Calculation on the
same statistics per core, but using 512 cores, allows increasing the total number
of sampled points to about 1012, while the calculation time in fact remains the
same as on one core due to the linear scaling of KQMC.
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(a)

(b)

Fig. 2. Dependence of an average distance over generations (in Bohr radii) of each
electron on a series number (20 generations in a series) in B (3s 2S) atom, calculated
using a corridor by a number of particles in a packet per 1 (a) and 512 (b) cores.
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3 Analysis of the Results

The HF method is one of the main tools in the theory of electronic structure
in chemistry, materials science and other related fields. In this, the wave func-
tion of the system is represented as a product of determinants built on one-
electron orbital functions with the same spin projection [1,11]. The problem of
the method is that the subspace of solutions chosen in this way does not make
it possible to take into account the correlation in the motion of electrons with
oppositely directed spins [1]. Therefore, in order to somehow take into account
this correlation, in practice, the wave function is usually represented as a linear
combination of determinants (configuration interaction), or perturbation theory
is used [12]. However, the computational complexity grows with the use of more
and more determinants in the configuration interaction, or a larger order of per-
turbation theory, and the calculation becomes more laborious, which severely
limits the scope of these methods. Therefore, the urgent task is to develop fun-
damentally new methods to account for electron-electron correlation.

The exact functional E of the system can be represented as:

E = EHF + δE↑↑
c + δE↓↓

c + δE↑↓
c , (7)

where EHF is the HF functional; δE↑↑
c , δE↓↓

c and δE↑↓
c are correlation corrections

for electron pairs with the corresponding spin projection. Correlation corrections
δE↑↑

c and δE↓↓
c for pairs of electrons with the same spin projection are second-

order corrections, since in the first order the correlation in the motion of these
pairs is taken into account by means of the exchange interactions in EHF . The
most significant correction will be δE↑↓

c , the form of which is determined by the
term with the two-particle density ρ(r↑

1, r
↓
2) in the expression for E:

E = −N1

∫

R3N

Ψ(r)Δ↑Ψ(r)dr − N2

∫

R3N

Ψ(r)Δ↓Ψ(r)dr − N1

∫

R3

2Z
ρ(r↑)
|r↑| dr↑

−N2

∫

R3

2Z
ρ(r↓)
|r↓| dr↓ + N1(N1 − 1)

∫

R3

∫

R3

ρ(r↑
1, r

↑
2)

|r↑
1 − r↑

2|
dr↑

1dr
↑
2

+N2(N2 − 1)
∫

R3

∫

R3

ρ(r↓
1, r

↓
2)

|r↓
1 − r↓

2|
dr↓

1dr
↓
2 + N1N2

∫

R3

∫

R3

ρ(r↑
1, r

↓
2)

|r↑
1 − r↓

2|
dr↑

1dr
↓
2.

(8)

To register the functional ρ(r↑
1, r

↓
2) ≡ ρ(r1, r2, μ12) in KQMC, we used a

spatial grid. Based on the conditions, the grid was chosen so that the change
in the solution inside the grid would be significantly less than we are interested
in from a practical point of view. Over these areas, the solution obtained by
KQMC was integrated with an average statistical error of order 1√

N
, where N

is the number sampling points.
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Next, we represent the exact density function in the form:

ρ(r1, r2, μ12) =
ρ(r1, r2, μ12)

ρ(r1, r2)
ρ(r1, r2) = ξ(r1, r2, μ12)ρ(r1, r2),

ρ(r1, r2) =

1∫

−1

ρ(r1, r2, μ12)dμ.

(9)

Theoretically, the function ξ can be expanded into a series using Legendre poly-
nomials in μ12. For He atom, the simplest system with two electrons having
different values of the spin projection, it was found that the dependence of the
function ξ on μ12 is close to linear (Fig. 3(a)), so the first two terms of the
expansion are sufficient:

ξ(r1, r2, μ12) ∼= 1 − a(r1, r2)μ12. (10)

A similar result for ξ was obtained for pairs of electrons with opposite values
of the spin projection in Li atom (for example, for a pair of 1s2s-electrons in
Fig. 3(b)).

The following boundary conditions for the coefficient a are obvious:

a(r1, r2) = a(r2, r1),
a(0, r2) = a(r1, 0),

a(r1, r2) −−−−−−−→
|r1−r2|→∞

0.
(11)

The form of the dependence of the function a(r1, r2) on r1 at different values
of r2, obtained by the KQMC for He atom, is shown in Fig. 4. The function
a(r1, r2) has a minimum at r1 = r2. The function max

(
a(r1, r2)

)
= a(r, r) is

well approximated by a power law:

a(r, r) = e− p
rq , (12)

where p and q are some numbers (Fig. 5). The same type of dependence of the
function a(r1, r2) on r1 at different values of r2 with a minimum at r1 = r2 was
obtained for pairs of electrons with different values of the spin projection in Li
atom. The only difference is in the values of p and q for max

(
a(r1, r2)

)
in the

expression (12).
The form of the function a (r1, r2) for He and Li atoms defined from the

KQMC calculation turned out to be the same:

a(r1, r2) = − exp
{

− p

r2q

} (
−2

(
r1
r2

)3

+ 3
(

r1
r2

)2
)

, r1 ≤ r2. (13)
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(a)

(b)

Fig. 3. Dependence of the function ξ on μ12 for different values of r1 and r2, calculated
by the KQMC method for He atom (a) and for a pair of 1s2s-electrons with opposite
values of the spin projection in Li atom (b).
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Fig. 4. Dependence of the function a(r1, r2) on r1 for different values of r2 obtained
by the KQMC method for He atom.

4 Application of the Correlation Function

Taking into account (8), (9) and (10), the correction δE↑↓
c is defined as follows:

δE↑↓
c =

∫ ∫
ρ↑(r1)ρ↓(r2)a(r1, r2)μdr1dr2

|r1 − r2| . (14)

Next, we make an assumption that the form (13) of the correlation function
a(r1, r2) obtained for He and Li atoms is universal based on the results obtained
in the previous section. In addition, the corrections (14) can be calculated within
the theory of small perturbations framework: the magnitude of the corrections
coincides up to fractions of a percent, regardless of either the orbital functions of
the classical HF are used to calculate the densities in (14), or an additional term,
which was obtained as a result of applying the variational principle to the func-
tional E = EHF + δE↑↓

c , was introduced into the HF equations. The correction
to the ionization energy in the framework of the theory of small perturbations
can be calculated by the formula:
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Fig. 5. Approximation of the function max[a(r1, r2)] = a(r, r) obtained by the KQMC
method for He and Li atoms.

δIi =
∫∫

ϕ↑
i

2
(r1)ρ↓(r2)a(r1, r2)μdr1dr2

|r1 − r2| , (15)

where ϕ↑
i is the orbital function of the i-th valence electron with spin projection

+ 1
2 .
Figure 6 demonstrates that the rather simple corrections introduced in this

way, which take into account the correlation, made it possible to refine the HF
to an almost chemical accuracy practically without increasing computational
costs at least for the first two periods of the periodic table. The exceptions are
elements with completely filled shells with valence s-electrons: He and Be. We
identified the source of this error as an exceptional feature associated with the
spatial dependence of HF wave function on ρ(r1, r2), which can be refined by
introducing additional corrections.



150 A. Danshin and A. Kovalishin

Fig. 6. Value of the error in the energy of the valence electron for the calculation by the
HF method without and with corrections of the form (15) depending on the element
number N.

5 Conclusions

In this work, the results of calculations of light atoms on a supercomputer using
a program that implements the parallel KQMC algorithm were investigated to
determine the general properties of electron correlations. The form of the correla-
tion function was obtained from the analysis of the two-particle electron density
of He and Li atoms, using which the correlation corrections to the HF ionization
energies for the elements of the first two periods of the periodic table were calcu-
lated. These corrections made it possible to refine the HF method to an almost
chemical accuracy with exception of elements with completely filled shells with
valence s-electrons. In the future, it is planned to introduce corrections of this
type for all elements of the periodic table.
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