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Abstract. Due to the recent attack of Beullens on Rainbow, the crypto
community looks back again at the unbalanced oil-and-vinegar (UOV)
signature. The original UOV does not have any formal security reduction.
It was Sakumoto et al. who added a random salt to the original UOV
signature to give a reduction under the UOV-inversion (UOVI) problem
in the classical random oracle model (CROM).

In this paper, we revisit the security of salted UOV signature. We start
by identifying some issues related to programming the random oracle
and the distribution of the salt. Then provide a security reduction of the
salted UOV signature in the CROM that clearly addresses these issues.
One crucial requirement of our reduction is that the field size needs to
be asymptotically superpolynomial in the security parameter. We also
give a security reduction of the salted UOV under the UOVI problem
in the quantum random oracle model. This work is hoped to aid further
concrete security analysis and thereby guide parameter choice of UOV-
based schemes in the context of future standardization of post-quantum
signature.

Keywords: Digital signature · Multivariate cryptography · UOV ·
Post-quantum security · QROM

1 Introduction

Multivariate quadratic polynomials (MQ) based signatures [DS05,PCY+15,
CHR+16] are attractive candidates for post-quantum cryptography due to their
fast verification and short signature. One of these is Rainbow which was a finalist
in the recently concluded third round of NIST PQC Standardization competi-
tion. Rainbow [DS05] is a multilayered version of unbalanced oil-and-vinegar
(UOV) signature scheme [KPG99]. Several variants of signatures, e.g., identity-
based signature [CLND19,CDP21], blind signature [PSM17] and ring signature
[MP17] have been designed in the MQ-setting using Rainbow (or UOV) as pri-
mary building block. Note that Rainbow as a multilayered extension of UOV
[KPG99] was solely introduced to gain efficiency. For practical applications,
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two-layered version of Rainbow is mainly recommended as further increasing the
number of layers does not significantly improve its efficiency. However, the recent
attack [Beu22] on the two-layered Rainbow basically works by peeling off the 2nd
layer followed by an existing UOV attack in [KPG99] on the 1st layer with much
smaller parameter size compared to the original UOV. The attack motivates
the research community to look back at the UOV signature with renewed inter-
est. Thus a rigorous security analysis would be useful in designing UOV-based
signatures, which could be candidates for future standardization efforts.

Note that the original UOV proposal of [KPG99] does not have any for-
mal security proof. It was Sakumoto et al. [SSH11] who first formally studied
security of the UOV signature. They introduced a random salt to make the
output signature somewhat uniform and then argued security in the classical
random oracle model (CROM) from UOV-inversion (UOVI) problem1 using the
FDH-technique [BR93]. In [SSH11], the authors consider the hash function to
be H : M × SaltSpac → F

m, where F is the underlying field. That is, the hash
arguments have the form: (m, s), where m is the message and s is the salt (a
binary string). A valid signature for m under the salted UOV is of the form:
σ = (x, s) such that P(x) = H(m, s), where P : Fn → F

m is the UOV public
map. In the security reduction, H is treated as a random oracle.

Our Result. In this paper, we revisit the security reduction of the salted UOV
[SSH11] and identify some gaps pertaining to programming the random oracle
and distribution of the salt (Sect. 3). In particular, when queried with (m, s) the
random oracle involved in the signature oracle is programmed to return P(x),
where x ∈ F

n is randomly chosen. That is, the authors implicitly assumed that
for a random x ∈ F

n, P(x) is uniform. The paper also assumed that the salt
part of the output signature is uniform, although the distribution of the salt
actually depends on the size of the underlying field.

We then provide (Sect. 4) a security reduction of the salted UOV signature
in the CROM that clearly addresses these issues. Here we consider the salted
homogeneous UOV scheme, but through the subspace description [Beu21] of the
UOV-trapdoor (Sect. 4.1). The main reason for using [Beu21] is that it improves
secret key sizes (Sect. 4.2). For the reduction, we assume neither the uniformity
of P(x) nor the uniformity of the salt involved in the output signature. We
essentially show that both distributions deviate from the respective uniform dis-
tributions by at most 1/q (Proposition 1 and Corollary 2), where q is the size of
the underlying field. One crucial implication of our result is that the field size q
needs to be asymptotically superpolynomial in the security parameter. Suppose
the upper bound on the numbers of signature queries and random oracle queries
in practice are 220 and 260 respectively. Then, from a back-of-the-envelope calcu-
lation based on Theorem 1, one can see that the underlying field has to be chosen
of size roughly 288 for 128-bit security2. This will surely impact the efficiency of

1 Given a random UOV public map P : Fn → F
m and a random element y ∈ F

m, find
an x ∈ F

n such that P(x) = y.
2 Note that whatever the parameter choice of UOV, the unavoidable degradation due

to the total number of random oracle queries will always be there.
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the scheme. Thus deriving the parameter sizes and the consequent implication
on efficiency based on a concrete analysis of our security reduction of salted UOV
could be an interesting future work.

In principle, it is desirable to have security proof in the quantum random
oracle model (QROM), rather than just in CROM. We achieve this for salted
UOV by providing a security reduction (Sect. 5) from the UOVI problem in the
QROM. Again based on this reduction, we do not provide any parameter choice,
other than pointing out the fact that q needs to be asymptotically superpolyno-
mial in the security parameter (Theorem 2).

2 Preliminaries

For a ∈ N\{0}, define [a] = {x ∈ N\{0} : x ≤ a}. For a set X, we write x
$←− X

to mean that x is drawn uniformly at random from X. For an algorithm A and
its input x, the notation y ← A(x) denotes that when A is run on x, it outputs
y. We use bold-face lower case letters, e.g., x to denote column vectors. The
i-th entry of x is denoted by xi. For a matrix A, the notation A� is used to
denote its transpose. The fixed finite field on which all the operations take place
is denoted by F. The notation q will denote the size of the field F. We make no
assumptions about the characteristic of F.

We shall consider only homogeneous quadratic polynomials in n variables
over F. While discussing UOV scheme, the number of polynomials in the secret
system F and that in the public system P will be m. This number would match
the number of oil variables, as per the usual description of UOV scheme. The
oil (vinegar) variables will be last m (respectively, the first v = n − m) of them
among {X1, . . . , Xn}. With the secret and public systems one can associate poly-
nomial maps F : Fn → F

m and P : Fn → F
m, respectively, which will just denote

evaluation. All the polynomials which appear in this work are homogeneous. It is
well-known in literature that the security of MQ-based systems depends mainly
the quadratic part of the polynomials involved. The transformation used for
mixing the variables in UOV is assumed to be an invertible matrix. Hence the
public key obtained will be homogeneous whenever the secret key is so.

2.1 Quadratic Polynomials and Their Matrix Representation

We shall consider homogeneous quadratic polynomials in m variables over a finite
field F. Any such f has a associated polar form f′, which is symmetric bilinear,
satisfying

f′(X,Y ) = f(X + Y ) − f(X) − f(Y ).

With every homogeneous quadratic polynomial one can associate a matrix.
The matrix representing the polynomial is defined as follows.

Definition 1. Let f be a homogeneous quadratic polynomial over F in n vari-
ables. An n × n matrix Mf is said to represent f if

f(X) = X�MfX,



700 S. Chatterjee et al.

where X = (X1, . . . , Xm)� is a column vector of variables.

Remark 1. The polar form of the quadratic form is bilinear. There is an obvious
way (see [Beu21]) for obtaining the matrix representing the polar form, depend-
ing on the characteristic of the underlying field. If M ′

f denotes this matrix, then
f′(X,Y ) = X�M ′

fY .

2.2 (Unbalanced) Oil-Vinegar Signature Schemes

We will be following the treatment of Kipnis et al. [KPG99]. Let F be a fixed
finite field. As usual, let n and m be positive integers, and set v = n − m. Let
{X1, . . . , Xv} denote the (ordered) set of vinegar variables and {Xv+1, . . . , Xn}
that of oil variables. The message (digest) space is F

m and the signature space
is F

n (for plain-UOV scheme).
The central object in such schemes is a polynomial of the following special

form. The oil-vinegar type polynomial is a quadratic polynomial over F in the
variables described above, but without any quadratic terms involving only the
oil variables. In other words, a oil variable is not allowed to mix with another
oil variable in such a polynomial. The general form of such a polynomial is as
follows:

φ(X1, . . . , Xm) =
v∑

j=1

n∑

k=j

αjkXjXk +
n∑

j=1

βjXj + γ. (1)

For a given polynomial of the form in Eq. (1), if values are assigned to all vinegar
variables, the resulting polynomial is linear in oil variables. This feature is the
central theme of the trapdoor.

Let T : F
n → F

n denote an invertible linear map. Such a transformation
is used for mixing the input variables. The oil-vinegar trapdoor is described as
follows.

Definition 2. (Oil-Vinegar Trapdoor) Let F be a system of m polynomials of
the form given in Eq. (1). Let T be a invertible linear transformation on F

n. Let
P = F ◦ T be the polynomial system obtained by composing each polynomial in
F with T (i.e., transformed polynomials when T acts on the vector of variables).
Given P and τ ∈ F

m, the challenge is to solve P(·) = τ .

Remark 2. Solving P(·) = τ directly is assumed to be hard. But the knowledge of
the trapdoor information, namely F and T , can be used for solving such a system
[KPG99]. Solving F(·) = τ is easy. The strategy is to assign random values for
vinegar variables and solving the linear system involving only the oil variables.
The resulting assignment is then inverted under the affine transformation T .
The process of assigning values to vinegar variables and solving the resulting
system of linear equations is repeated until one valid assignment for all variables
is found.
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Matrix Description of Homogeneous Quadratic System. Studying the
matrices representing the F and P systems becomes useful from the analysis
point of view. Let us consider the component polynomials f involved in the
system F to be homogeneous quadratic polynomials. Since every polynomial f in
the system F is devoid of oil-oil term and every polynomial g in P is constructed
as g = f ◦ T , the (block) form of their corresponding matrices will be

Mf =
[
A B
0 0

]
and Mg = T�MfT , (2)

where A is a v × v upper triangular matrix, B is a v × m matrix, and 0’s are all
zero matrices of suitable orders such that Mf is an n × n matrix.

2.3 Linear Subspace Interpretation of Oil-Vinegar Trapdoor

Beullens [Beu21] takes a subspace approach to the oil-vinegar trapdoor descrip-
tion. The public key is a MQ system P (m MQ polynomials in n variables)
which vanishes on a secret subspace O ⊂ F

n of dimension m. The trapdoor is
set as follows. First, the subspace O is chosen at random. Then a system P,
consisting of m multivariate quadratic polynomials in n variables, vanishing at
this subspace O, is chosen uniformly at random. The trapdoor information is
the description of O. For a target τ ∈ F

m, solving P(·) = τ is easy. Notice that

P(v + o) = P(v) + P(o) + P ′(v,o) (3)

holds for any o coming from the subspace O and any v coming from F
n. Thus

P(·) = τ can be solved by solving

P ′(v,o) = τ − P(v),

where o ∈ O. The above system is linear in variable o. For, the first term in the
right hand side of Eq. (3) is fixed once v is fixed, the second term is zero since o
is from the distinguished subspace O and the third term is linear in oil variables.

On the other hand, solving the MQ system P, without the knowledge of the
trapdoor information is assumed to be hard.

2.4 Syntax and Security of Signature Scheme

Definition 3 (Signature Scheme). It consists of three PPT algorithms - Key-
Gen, Sign and Ver.

– KeyGen: It takes as input a security parameter κ and outputs a public and
private key pair (PK,SK).

– Sign: It takes as input a message m ∈ M, where M is the message space, and
the secret key SK and outputs a signature σ.

– Ver: It takes as input a message-signature pair (m, σ) and the public key PK.
It outputs a value 1 if (m, σ) is a valid message-signature pair else it outputs
0.
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Correctness: For all (PK,SK) ← KeyGen(1κ) and for all messages m ∈ M, it
is required that

Ver(m,Sign(m,SK),PK) = 1.

Next we define security model of the signature scheme. A security notion
very useful in practice is called existentially unforgeable under chosen message
attack (EUF-CMA).

Definition 4 (EUF-CMA). A signature scheme is said to be EUF-CMA
secure if for all quantum PPT algorithms A, the advantage

AdvEUF -CMA
A (κ) = Pr

[
Ver(m∗, σ∗,PK) = 1

∣∣∣∣
(PK,SK) ← KeyGen(1κ);
(m∗, σ∗) ← AOSign(PK)

]

is a negligible function in κ, where A is provided access to the sign oracle OSign

with a natural restriction that m∗ �= m for all messages m queried to OSign.

3 Revisiting the Security Reduction of Salted UOV

The unbalanced oil-and-vinegar (UOV) signature was proposed in [KPG99] to
protect from the attack of [KS98] on the balanced oil-and-vinegar signature of
Patarin [Pat97]. However, the authors of UOV-signature did not provide any for-
mal security proof of their construction. The distribution of the signatures gen-
erated in the original UOV-signature [KPG99] is not uniform, even if the under-
lying hash function is treated as random oracle. Therefore, the FDH-technique
[BR93] is not directly applicable in arguing security of the UOV-signature.

The signature scheme, salted UOV was presented in [SSH11, Section 4.1]
(see Appendix B). The salt is appended to the message and hashed, thereby a
system P(·) = H(m||s) is set up. A solution is obtained by first putting values
for the vinegar variables and solving (a linear system) for the oil variables. If the
system does not have a solution, a fresh salt is chosen. The authors point out
that, this way, the distribution of the signature will be uniform, and hence, the
FDH-technique can be used to argue the security of the salted UOV signature.

3.1 On the Simulation of Random Oracle and Salt

First, we informally describe the FDH-style security reduction [BR93]. Let
(f : D → R, y∗ ∈ R) be the given problem instance, where f is a trapdoor
permutation and the goal is to find an x∗ ∈ D such that f(x∗) = y∗. Recall
that the FDH-signature for a message m is of the form σ = x, where y = H(m),
x = f−1(y) and H : M → R is the underlying hash function. A message-
signature pair (m, σ) is valid, if f(σ) = H(m).
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If an adversary can produce a valid forgery (m∗, σ∗) for this signature scheme,
then a solver for the above problem can be constructed. Here the underlying hash
function H : M → R is treated as a random oracle. That means, the adversary
must have queried the corresponding message m∗ to the random oracle H. In the
reduction, an index is guessed where the forgery message m∗ could appear as a
random oracle query and the corresponding random oracle value is appropriately
programmed. In other words, pick an index i∗ randomly as a guess and set
H(mi∗) = y∗. Note that for a correct guess, we have m∗ = mi∗ . For a query on

message m ∈ M other than mi∗ , first pick a signature σ
$←− D, then program

the random oracle at m as H(m) = y = f(σ) and store the tuple (m, σ, y) in a
list List. So using the list, all the oracle queries can be answered. Note that f(σ)
will be uniform over R as f is bijective3. If i∗ is correctly guessed and (m∗, σ∗) is
a valid forgery, then we have f(σ∗) = H(m∗) = y∗, which implies that x∗ = σ∗

is the required solution of the given problem instance.
In [SSH11], the authors showed a security reduction of salted UOV in the

CROM under the hardness of UOVI-problem. Since a salt is involved as part of
the signature, the FDH-style proof will be slightly different here. We summa-
rize their security proof as follows. In the game between a simulator S and an
adversary A, S maintains a list Listuov of three tuples (m, s,y), where y is the
hash of m||s. The random oracle query on challenge message is answered in a
similar way as done above. The other queries are answered as follows. For an
incoming random oracle query m||s, if (m, s, ·) ∈ Listuov, then the stored value is
returned. Else a random value y is returned and (m, s,y) is appended to the list
Listuov. If m is a signing oracle query, the simulator chooses a salt s at random. If
(m, s, ·) is in the list, it aborts. Else, it chooses x ∈ F

n uniformly at random and
returns (x, s) as signature corresponding to m after appending (m, s,y), with
y = P(x), to the list Listuov. Similarly as above, when the index i∗ is correctly
guessed and (x∗, s∗) is a valid forgery for m∗, then x∗ will be a solution of the
given UOVI-problem instance.

Issue in Random Oracle Programming. Note that while answering the
sign-queries, the random oracle H is programmed by assigning P(x) for random
choice of x from F

n. Since P is neither bijective nor known to be regular, it
cannot be definitely said that P(x) is uniform over Fm. Hence, H is treated as a
random oracle in [SSH11] without any proper justification. This, in turn, opens
up the possibility of a potential gap in the security claim.

Issue in Salt Distribution. A signature in the salted UOV [SSH11] consists
of a salt and an element from F

n. Note that only the salt generated in the
last iteration of the loop in the sign algorithm (Algorithm3) contributes to the
final output signature. In other words, the salt in the output signature follows
a distribution that samples a couple of salts in a row without replacement and
outputs the final salt. More precisely, the distribution of the salt in the output
signature depends on the rank of an m × m matrix, which further depends

3 Note that the reduction also works, if f is considered to be a regular function. Here
regular means the preimage sets of all the points in M under f are of same size.
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on q = |F| (for details, see [SSH11, Section 3.1]). As described earlier, while
answering the sign-queries in the reduction, the salts are always chosen uniformly
at random. Essentially, this creates a difference between the distributions of salts,
one involved in the actual signatures and the other in the simulated signatures.
It seems the authors implicitly assume that a computational adversary cannot
detect the difference.

4 A Clean Security Reduction of Salted UOV

For addressing the issues raised in the previous section, we consider the underly-
ing maps involved in the public key P to be homogeneous quadratic polynomials.
For general quadratic polynomial maps, closing the above gaps still remains an
interesting research problem. Nonetheless, restricting to homogeneous quadratic
maps does not weaken the security of the signature as the intractability of the
underlying MQ-problem mainly relies on the quadratic part of the MQ-system.
Using the result on the distribution of P(x) that we describe in Sect. 4.3, one can
derive a clean security proof of the salted homogeneous UOV signature. However,
in this paper, we argue the security of an alternative salted UOV signature (see
Sect. 4.2) which is based on the subspace approach to UOV trapdoor [Beu21].
The reason for considering this alternative construction is that it improves upon
the key sizes a bit. The remainder of this section is organized as follows. We
start with the (plain) homogeneous UOV signature based on Beullens’ subspace
approach in Sect. 4.1. Then, present its salted version in Sect. 4.2. We analyze
the distribution of P(x) in Sect. 4.3. Finally, provide a clean proof of the salted
homogeneous UOV in Sect. 4.4.

4.1 Homogeneous UOV Signature Scheme Using the Subspace
Interpretation

The trapdoor described in Sect. 2.3 can be used to design a signature scheme. We
discuss the efficiency aspects of the key generation and signing modules (without
salt) in this section. The public key system is an MQ-system, which vanishes on
a subspace. The trapdoor information is the description of the subspace. The
two major questions are the following. How does one sample a random subspace
of F

n and a uniformly random MQ system which vanishes on this subspace?
How does one represent the trapdoor information so that the MQ system can
be solved, efficiently, using the trapdoor information? Next we discuss these two
points based on [Beu21].

Efficient Setup for the UOV Trapdoor. The trapdoor can be efficiently
setup using the matrix representation of the quadratic form. Let F = (f1, . . . ,
fm), be the collection of secret UOV (homogeneous) polynomials. The matrix
corresponding to fi has the form
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Mfi =
v m

v
m

[
Ai Bi

0 0

]
(4)

where Ai is a random v × v upper triangular matrix, Bi is a random v × m
matrix, and 0’s are all zero matrices of suitable orders such that Mfi is an n × n
matrix. The following subspace

O′ =
{
(x1, . . . , xn)� ∈ F

n : x1 = · · · = xn−m = 0
}

is called oil subspace of dimension m. Notice that every fi vanishes on O′. If
P = (g1, . . . , gm) is the public key system, where gi = fi◦T , then every quadratic
form in P vanishes on O = T −1(O′), where T is an invertible matrix. Since T
is invertible, the dimension of O is equal to m. So, O will be a random subspace
when T is a random invertible matrix.

Note that the distribution of the public keys generated in both ways, one
as discussed above and the traditional one are the same. Beullens also pointed
out in [Beu21] that the public key generated using the subspace description
(discussed in Sect. 2.3) and using the traditional description have the identical
distribution.

Solving the MQ System Using Trapdoor, Efficiently. We discuss how a
solution for P(·) = τ can be obtained, efficiently, using the trapdoor information.
Recall that the trapdoor information is a description of the subspace on which
this system P vanishes. From Eq. (3), solving this system amounts to solving
P ′(v,o) = τ ′ for o ∈ O, where τ ′ = τ − P(v) and v ∈ F

n is fixed. For a
homogeneous quadratic polynomial g, the polar form is given by g′(x,y) =
x�M ′

gy for all x,y ∈ F
n (see Remark 1).

We can describe the subspace O ⊂ F
n of dimension m using column-span of

a full-rank n × m matrix M . For, if O is generated by a linearly independent set
of vectors {w1, . . . ,wm} from F

n, then i-th column of M will be wi. Thus M is
a full-rank matrix and any element of the subspace O can be written as o = My
for some y ∈ F

m.
We now describe an effective procedure for solving the public key system. For

each public key polynomial g, a row vector cg is computed as cg = v�M ′
gM ,

where v is a random vector chosen from F
n. We then consider the following linear

system: Cy = τ ′ (recall that τ ′ = τ − P(v)), where the g-th row of the matrix
C is the row vector cg. If a solution y ∈ F

m to the system exists, an element
o ∈ O can hence be obtained as o = My. The quantity v + o is a solution for
P(·) = τ .

Remark 3. Note that the matrix C can also be written as C = C ′ · M , where
the row of C ′ corresponding to the public polynomial g is given by c′

g = v�M ′
g.

When the map P ′(v, .) : O → F
m is non-singular, then the rank of C ′ will be m,
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which in turn implies that the matrix C will be non-singular as M is an n × m
full-rank matrix. In [Beu21], Beullens uses the following fact:

Pr[P ′(v, .) : O → F
m is non-singular : v

$←− F
n] ≈ (1 − 1/q). (5)

So, the procedure described above is expected to terminate after a few trials.

The algorithmic version of the above description is given in Appendix A. The
signature scheme derived from the trapdoor is also described there.

4.2 Salted Homogeneous UOV

In this section, we illustrate a signature scheme, designed using the subspace
description of the UOV trapdoor [Beu21]. The approach is similar to that used
in [SSH11]. A salt is used for making the security reduction to go through in the
random oracle model. Let us refer to this signature as salted homogeneous UOV
(SHUOV) signature.

KeyGen. This takes the security parameter 1κ as input and outputs the public and
secret keys. The secret key SK is a description of the subspace O ⊂ F

n, that is,
an n×m full-rank matrix M (as mentioned in Sect. 4.1). The public key PK is
the system P consisting of m MQ-polynomials in n variables which vanishes
at O. See Sect. 4.1 for a description. A hash function H : M×SaltSpac → F

m

for converting message into a fixed-length digest is known publicly, where M
and SaltSpac = {0, 1}�s are respectively the message space and the salt space.
Note that the signature space of SHUOV-signature is Σ = F

n × SaltSpac.
Sign. This takes message m and the secret key SK as input and outputs a signa-

ture σ. The procedure for computing the signature is described in Algorithm1.
The tuple (z, s) is returned as signature σ.

Ver. This module takes message m, the signature σ and the public key PK as
input and outputs accept or reject. The steps are described below:

– Parse the signature as (z, s)
– Compute τ = H(m||s)
– Accept the signature if P(z) = τ holds; otherwise reject.

Correctness. The signature scheme is correct. If a message m, public key P and
a signature (z, s), where z is obtained according to Algorithm 1 are given, then,
we need to verify that P(z) = H(m||s) holds. Let g be any MQ-polynomial in
the public key system P. The following can be easily verified for each such g:

g(z) = g(v + o)
= g(v) + g(o) + g′(v,o)

= g(v) + g(o) + g′(v,Mu)

= g(v) + g(o) + v�M ′
gMu (6)
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Algorithm 1. Signing Module for Salted UOV
Require: The message m, secret key SK and the description of the salt space
Ensure: A signature (z, s) on m

1: Sample a vector v
$←− F

n

2: Compute cg = v�M ′
gM � M ′

gM can be precomputed
3: Construct the m × m matrix C with cg as rows
4: repeat

5: Sample s
$←− {0, 1}�s � a salt s is sampled

6: Compute τ = H(m||s)
7: Compute τ ′ = τ − P(v)
8: until {y ∈ F

m : C · y = τ ′} �= ∅
9: Sample u

$←− {y ∈ F
m : C · y = τ ′}

10: Compute o = Mu � column-span corresponding to u
11: Compute z = v + o
12: Output σ = (z, s)

where g′ is the polar form of g. Since o ∈ O, the second term on the RHS of
Eq. (6) is zero and the third term is equal to the g-th coordinate of the vector
τ ′ = τ − P(v). Thus, combining the above observation for every such g, we
obtain P(z) = H(m||s). This proves that (z, s) is a valid signature on m.

Efficiency Comparison. One can easily check that both the versions, based on
traditional approach [SSH11] and subspace approach (presented above) enter-
tain more or less the same signing and verification time. However, the key sizes
are improved in the subspace approach as only the basis information for the
secret hidden subspace is required to store. In fact, the number of field elements
required to store for both the approaches are presented in Table 1.

Table 1. Public and secret key sizes for UOV signature

Approach Public key (# of field elements) Secret key (# of field elements)

Traditional mn(n + 1)/2 m(v(v + 1)/2 + vm) + n2

Subspace mn(n + 1)/2 mn

We now discuss the distribution of the output signatures. Note that the
output signature has two components z and the salt s. In the following, we first
establish (in Proposition 1) that the statistical distance between the salt part
of the output signature and the uniform distribution over {0, 1}�s is bounded
by 1/q. Then, we show (in Corollary 1) that the distribution of the signature
deviates from the uniform distribution over Fn × {0, 1}�s by at most 1/q. Let us
define a good set and a bad set as follows:

Good = {v ∈ F
n : P ′(v, .) : O → F

m is non-singular}
Bad = {v ∈ F

n : P ′(v, .) : O → F
m is singular}.
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Following Eq. (5), we have |Good| ≈ qn(1 − 1/q) and |Bad| ≈ qn · 1
q , where

q = |F|. Sometimes, we refer to an element of Good (resp. Bad) as good (resp.
bad) element. Let χ denote the random variable corresponding to the salt part
of the output signature. Note that the distribution of χ depends on that of
random variables v and s (involved in steps 1 and 5 respectively). Let U denote
the uniform distribution over {0, 1}�s . Then, the following proposition gives a
bound on their statistical distance.

Proposition 1. The statistical distance between χ and U is bounded by 1/q.

Proof. First observe that for any a ∈ {0, 1}�s , we have Pr [χ = a | v ∈ Good] =
1/2�s , where the probability is taken over the random choice of v ∈ F

n and
s ∈ {0, 1}�s . Then, calculate the following probability for any a ∈ {0, 1}�s .

Pr [χ = a] =
∑

S∈{Good,Bad}
Pr [χ = a | v ∈ S] · Pr [v ∈ S]

≈ 1
2�s

·
(

1 − 1
q

)
+ pa · 1

q
(7)

where pa = Pr [χ = a | v ∈ Bad]. Then, the statistical distance between χ and
U is given by

Δ(χ,U) =
1
2

·
∑

a∈{0,1}�s

|Pr [χ = a] − Pr [U = a]|

≈ 1
2

·
∑

a∈{0,1}�s

∣∣∣∣
1

2�s
·
(

1 − 1
q

)
+ pa · 1

q
− 1

2�s

∣∣∣∣ [using Eq. (7)]

≤ 1
2

·
∑

a∈{0,1}�s

(
1

2�s
· 1
q

+ pa · 1
q

)

=
1

2 · q
·

⎛

⎝1 +
∑

a∈{0,1}�s

pa

⎞

⎠

=
1

2 · q
· (1 + 1) =

1
q
.

This completes the proof.

Corollary 1. The distribution of the output signature deviates from the uniform
distribution over Σ by at most 1/q.

Proof. Since v is chosen uniformly at random from F
n, the z-part of the signa-

ture is uniform over F
n. Hence, the corollary follows from Proposition 1.

4.3 Uniformity of MQ-Systems

We now analyze the distribution of P(x), when x ∈ F
n is chosen uniformly at

random. In particular, we quantify the gap between this distribution and the
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uniform distribution. This is essentially required for giving a concrete security
reduction of the salted homogeneous UOV signature. Recall that P is a random
MQ-system which vanishes on a random subspace O. We show (see Corollary 2)
that the statistical distance between the distribution of P(x) and the uniform
distribution over F

m is at most 1/q, where q = |F|. Since |Fn/O| = qn−m, Fn

can be written as a union of qn−m disjoint cosets of O in F
n, i.e.,

F
n =

qn−m

∪
i=1

Coseti

where Coseti = vi +O, vi is called a coset representative and Cosetj ∩Cosetk = ∅
for distinct j, k ∈ [qn−m]. We now study the behavior (basically, bijectivity) of
P on each coset Coseti which is independent of the choice of the representative.

Proposition 2. When vi ∈ Good, then the restricted map P : Coseti → F
m is

bijective.

Proof. It suffices to show P : Coseti → F
m is injective. Let x′

1,x
′
2 ∈ O be two

arbitrary distinct elements. Since P ′(vi, .) : O → F
m is injective, P ′(vi,x

′
1) �=

P ′(vi,x
′
2), that means P(vi + x′

1) �= P(vi + x′
2).

When P is bijective on a coset, then we would refer to this coset as ‘good
coset’, otherwise ‘bad coset’. Note that given a coset, any element of it can
be a representative. So, if a coset contains at least one good element, then P
will be bijective on that coset. We now ask the following question. What is the
probability that a randomly picked coset is good? To answer the question let us
take a look at the worst case situation, although the likelihood of this is very
low: Out of the total qn−m cosets, roughly 1

q ·qn−m many cosets contain only the
bad elements. Therefore, if we pick up any coset randomly, then it will be good
with probability roughly (1−1/q) in the worst case. Let GSet be the union of all
good cosets and BSet be the union of all bad cosets (i.e., BSet = F

n \GSet). So,
Pr[x ∈ GSet] ≈ 1 − 1/q and Pr[x ∈ BSet] ≈ 1/q, where the probability is taken
over the uniform choice of x ∈ F

n. Note that the statistical distance between
the distribution of P(x) and the uniform distribution over Fm will be maximum
in the worst case situation mentioned above. The following corollary quantifies
the gap of the two distributions.

Corollary 2. Let P : F
n → F

m be a homogeneous UOV public map. When
x

$←− F
n, let χ denote the distribution of P(x) over F

m. Let U be the uniform
distribution over F

m. Then Δ(χ,U) ≤ 1
q .

Proof. When x
$←− GSet, then x belongs to a random good coset; let us

call it Coset. Then, x will be uniform over Coset. So, P(x) will be uni-
form over F

m thanks to Proposition 2. That is, for any a ∈ F
m, we have

Pr [χ = a | x ∈ GSet] = 1/qm, where the probability is taken over the random
choice of x ∈ F

n. Therefore, for any a ∈ F
m, we have
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Pr [χ = a] =
∑

S∈{GSet,BSet}
Pr [χ = a | x ∈ S] · Pr [x ∈ S]

≈ 1
qm

·
(

1 − 1
q

)
+ pa · 1

q
(8)

where pa = Pr [χ = a | x ∈ BSet]. Then, the statistical distance between χ and
U is given by

Δ(χ,U) =
1
2

·
∑

a∈Fm

|Pr [X = a] − Pr [U = a]|

≈ 1
2

·
∑

a∈Fm

∣∣∣∣
1

qm
·
(

1 − 1
q

)
+ pa · 1

q
− 1

qm

∣∣∣∣ [using Eq. (8)]

≤ 1
2

·
∑

a∈Fm

(
1

qm
· 1
q

+ pa · 1
q

)

=
1

2 · q
·
(

1 +
∑

a∈Fm

pa

)

=
1

2 · q
· (1 + 1) =

1
q
.

This completes the proof.

4.4 Security of Salted Homogeneous UOV Signature in CROM

In this section, we argue the security of SHUOV signature (presented in Sect. 4.2)
in the classical random oracle model. Following the proof-style of [SSH11] and
Corollaries 1 and 2, a security reduction can be easily shown from the UOVI-
problem. For the shake of completeness, we give a proof-sketch in the CROM
thereby resolving the issues raised in Sect. 3.1. Similarly, a security reduction for
the traditional salted homogeneous UOV of [SSH11] can be derived.

Theorem 1. If the UOVI-problem is intractable and q is superpolynomial in
the security parameter κ, then the SHUOV-Signature is EUF-CMA secure in
the CROM.

Proof-sketch in CROM. The proof uses a hybrid argument over the following
games.

0. Game0. This is exactly the original EUF-CMA security game, where the hash
function H : M × SaltSpac → F

m is treated as random oracle. Note that
the non-salt part of the output signature is distributed uniformly over F

n.
Let quov and qsign be the number of hash queries and the number of sign-
queries respectively. Let δ be the advantage of an adversary A0 in Game0,
i.e., AdvEUF-CMA

A0
(κ) = δ.



Revisiting the Security of Salted UOV Signature 711

1. Game1. This is same as Game0, except4 the salts involved in the answers of
sign queries are chosen uniformly at random. That is, the output signature in
Game1 is distributed uniformly over Σ. Then, by Corollary 1, the advantage
of an adversary A1 in Game1 is given by AdvEUF-CMA

A1
(κ) ≥ AdvEUF-CMA

A0
(κ)−

qsign · 1
q = δ − qsign · 1

q .
2. Game2. This is same as Game1, except the qsign-many random oracle queries

are answered by P(x), where x
$←− F

m. Then, by Corollary 2, the advantage
of an adversary A2 in Game2 is given by AdvEUF-CMA

A2
(κ) ≥ AdvEUF-CMA

A1
(κ)−

qsign · 1
q ≥ δ − 2 · qsign · 1

q .

We now show that using A2 in Game2, we can break the UOVI-problem.
An instance (P,y∗) ∈ Puov(Fn,Fm) × F

m of the UOVI-problem is given to a
simulator S and the goal of S is to find x∗ ∈ F

n such that P(x∗) = y∗. The
simulator maintains a list Listuov for keeping records of the form: (m, s,H(m||s)).
The adversary A2 may ask queries to hash oracle and sign-oracle in any order.
The simulator S picks i∗ $←− [quov] as a guess for the forgery message.

– Hash-oracle. When A2 asks the i-th H-query on mi||si, it returns H(mi||si)
if (mi, si, ·) ∈ Listuov. Otherwise, if i = i∗, then S updates Listuov with the

entry (mi, si,y
∗) and returns y∗, else it picks yi

$←− F
m, updates Listuov with

(mi, si,yi) and returns yi.
– Sign-oracle. On the i-th query on message mi, S picks (xi, si)

$←− Σ. If
(mi, si, ·) ∈ Listuov, it aborts, otherwise updates Listuov with (mi, si,P(xi))5

and returns σi = (xi, si).
– Forgery. When A2 produces a message-signature pair (m∗, σ∗ = (x∗, s∗)), S

submits x∗ as a solution of the given instance of the UOVI-problem.

Note that all the queries of A2 are answered according to the description in
Game2. With probability 1/quov, S correctly guesses the message m∗ = mi∗ , and
x∗ is a correct solution of the given problem instance if (m∗, σ∗ = (x∗, s∗)) is a
valid pair. So, the advantage of breaking the UOVI-problem is given by

AdvUOVI
S (κ) ≥ 1

quov
· AdvEUF-CMA

A2
(κ)

=
1

quov
·
(

δ − 2 · qsign · 1
q

)
(9)

≈ 1
quov

· δ [as q is superpolynomial in κ ]

This ends the proof-sketch. ��
4 As mentioned earlier in Sect. 3.1, there is a gap between the distribution of salts

involved in the construction and the security reduction of [SSH11]. That gap essen-
tially depends on the size of the underlying field. But the authors implicitly assumed
that a computational adversary cannot distinguish the difference. Unlike [SSH11],
our security treatment takes into account this difference.

5 Note that H(mi||si) is programmed by the value P(xi), instead of uniformly random
value of Fm and this change is already captured in Game2.
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Remark 4. As mentioned earlier, we are able to resolve the issues in the security
argument of [SSH11] (raised in Sect. 3) for the case of homogeneous salted UOV
signature. While we utilize the subspace description of the scheme, one can
easily check that the same strategy works for the case of conventional description
(thanks to the identical distribution of keys in both the approaches). However,
for general (not necessarily homogeneous) salted UOV signature, it is not known
whether the corresponding key can be expressed through the subspace structure.
Hence, one cannot directly apply Proposition 2 in this case.

Remark 5. Note that the above reduction makes sense, if q (that is, the size
of the underlying field) involved in Eq. (9) is a superpolynomial in the security
parameter. This q appears in Eq. (9) due to the bounds involved in Corollaries 1
and 2. Improving these bounds is an interesting future research problem as they
have a direct bearing on the size of the underlying field.

5 Security of Salted Homogeneous UOV in QROM

In this section, we prove the security of SHUOV-signature in the quantum ran-
dom oracle model. We start by recalling some notations and important results
required for the security reduction. For two sets X and Y, the notation YX

denotes the set of all functions from X to Y. For a distribution D on Y, the
notation g←−DX denotes sampling a function g : X → Y as follows: for x ∈ X ,
g(x) is sampled according to the distribution D. For a given function f : X → Y,
we can always handle on-the-fly simulation of the function by the following uni-
tary (see [NC00]):

Of : X × Y → X × Y
|x, y〉 �→ |x, y ⊕ f(x)〉 (10)

So, for handling superposition queries to the random oracle H, it suffices to give
a function description of the oracle. Here, we will use the fact [Zha12b] that the
advantage of a quantum algorithm in distinguishing a randomly chosen 2k-wise
independent function from a truly random function is 0, where the number of
quantum queries is at most k. This means a quantum-accessible random oracle
can be implemented by choosing a random 2k-wise independent function.

We show a reduction in the QROM based on small-range distributions
[Zha12a]. Here, we first give the definition and related results of small-range
distribution.

Definition 5 (Small-range distributions [Zha12a]). Given an integer r ∈ N,
two sets X and Y, and a distribution D on Y, a small-range distribution, denoted
by SRD

r (X ), is defined to be the following distribution on YX :

1. For each i ∈ [r], choose a random value yi from Y according to the distribution
D, i.e., sample a function, say, g : [r] → Y according to D[r].

2. For each x ∈ X , pick i
$←− [r] and set O(x) = yi.
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This distribution can be alternatively viewed as follows: choose g←−D[r] and
f

$←− [r]X and return the composition O = g ◦ f . Now, we state a result which
is very important for arguing security of public-key schemes in the QROM. It
essentially says that the difference between the output distributions of a quantum
algorithm making k quantum queries to an oracle sampled either according to
SRD

r (X ) or randomly from YX is at most 27k3/r. The result is stated below.

Lemma 1 ([Zha12a, Corollary 7.5]). Suppose a quantum algorithm asks k
many quantum queries to an oracle either drawn from SRD

r (X ) or drawn ran-
domly from YX . Then, the output distributions of the algorithm are �(k)/r-close,
where �(k) = π2(2k)3/3 < 27k3.

Next, we describe another important result that can be used for programming
random oracles. In particular, the result is useful in a situation, where oracle
values were supposed to be assigned uniformly, but are assigned by sampling
according to a distribution which is ε (negligible) distance apart from uniform
distribution. Then, any quantum algorithm making k many queries to one of
them can distinguishing them with probability at most O(k3/2) · ε1/2. The result
is stated below.

Lemma 2 ([BZ13, Lemma 2.5]). Let X and Y be two sets. Suppose for each
x ∈ X , there are two distributions Dx and D′

x on Y with |Dx −D′
x| ≤ ε. Let two

functions O : X → Y and O′ : X → Y be defined as follows: for each x ∈ X ,
O(x) and O′(x) are set by sampling from Y according to the distributions Dx

and D′
x respectively. Then, any quantum algorithm making at most k quantum

queries to O or O′ can not distinguishing them, except with probability at most√
8C0k3ε, where C0 = 27 (a universal constant).

Let M̃ = M × SaltSpac. The sets X and Y that appear in the above lemma are
considered to be M̃ and F

m in our context respectively. Further, we consider
for all x ∈ X , the distributions Dx (resp. D′

x) are to be the same and let us
call it D (resp. D′). Now, we set D to be the uniform distribution over F

m and

define the distribution D′ over F
m as follows: Pick x

$←− F
n and output P(x),

where P : Fn → F
m is a random public key of SHUOV-scheme. Note that the

statistical distance between D and D′ is at most ε (thanks to Corollary 2), where
ε = 1/q and q = |F|. In the reduction, we use the following corollary.

Corollary 3. Let Õ : M̃ → F
n and O : M̃ → F

m be two quantum-accessible
random oracles. Let O′ : M̃ → F

m be a quantum-accessible oracle defined as
follows: for m||s ∈ M̃, O′(m||s) = P(Õ(m||s)). Then, any quantum algorithm
making at most k queries to O or O′ can not distinguishing them, except with
probability at most

√
8C0k3ε.

Proof. Let D be the uniform distribution over F
m. Then, we define Dm||s = D

for all m||s ∈ M̃ and the computation of O : M̃ → F
m can be thought of via

sampling from F
m according to distribution D. The distribution D′ picks x

$←−
F

n and returns P(x). For each m||s ∈ M̃, the distribution D′
m||s samples P(x),
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where x = Õ(m||s) is uniform over F
n. Basically, D′ and D′

m||s have identical
distribution. The remainder of the proof immediately follows from Lemma2 and
Corollary 2.

Theorem 2. If the UOVI-problem is intractable and q is exponential in the
security parameter κ, then the SHUOV-Signature is EUF-CMA secure in the
QROM.

Proof. We adopt the proof strategy [Zha15] of signature from trapdoor permu-
tations. The proof essentially follows from a hybrid argument over the following
games.

0. Game0. This is exactly the original EUF-CMA security game, where the hash
function H : M̃ → F

m is treated as random oracle. Note that the non-salt
part of the output signature is distributed uniformly over Fn. Let quov and qsign
be the number of hash queries and the number of sign-queries respectively.
Let qtot = quov+qsign+1. Let δ be the advantage of an adversary A0 in Game0,
i.e., AdvEUF-CMA

A0
(κ) = δ.

1. Game1. This is same as Game0, except the random oracle is programmed as
follows: Pick a quantum-accessible random oracle Õ : M̃ → F

n. Then, for
each m||s ∈ M̃, define H(m||s) = P(Õ(m||s)). By Corollary 3, the advantage
of an adversary A1 in Game1 is

AdvEUF-CMA
A1

(κ) ≥ AdvEUF-CMA
A0

(κ) −
√

8 · C0 · q3tot · ε = δ −
√

8 · C0 · q3tot · ε.

2. Game2. This is same as Game1, except the function Õ : M̃ → F
n is sampled

according to the small-range distribution SRD
r (M̃), where D is the uniform

distribution over Fn, r = �2 · �(qtot)/δ� and �(qtot) = π2 · (2qtot)
3/3 < 27 · q3tot.

Note that as mentioned earlier, Õ can be viewed as Õ = g ◦ f , where g :
[r] → F

n is described by the elements x1, . . . ,xr
$←− F

n and f
$←− [r] ˜M,

i.e., for m||s ∈ M̃, Õ(m||s) = xi, where f(m||s) = i. Then, by Lemma 1, the
advantage of an adversary A2 in Game2 is

AdvEUF-CMA
A2

(κ) ≥ AdvEUF-CMA
A1

(κ) − �(qtot)/r ≥ δ/2 −
√

8 · C0 · q3tot · ε.

3. Game3. This is same as Game2, except the salt computation in sign-oracle
which is handled as follows: Let Osalt : M̃ × [qsign] → SaltSpac be a classical6

random oracle. A counter ctr (initially, set to 0) is maintained to keep track
the index7 of the current message queried to the sign-oracle. For a query
message m, ctr ← ctr+1 and the salt value for m is computed as Osalt(m||ctr).
That is, the output signature in Game3 is distributed uniformly over Σ. By
Corollary 1, the advantage of an adversary A3 in Game3 is

AdvEUF-CMA
A3

(κ) ≥ AdvEUF-CMA
A2

(κ)− qsign · ε ≥ δ/2−
√

8 · C0 · q3tot · ε− qsign · ε.
6 Since the salt generation in the security game is involved only in answering sign-

oracle (classically), it is sufficient to have a salt generation random oracle Osalt which
is classical.

7 The whole purpose of this counter is to generate different salts even for the same
message queried multiple times to the sign-oracle.
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4. Game4. This is same as Game3, except the following:
(a) At the beginning of the game, pick i∗ $←− [r]. (This is the guess where

the forged message-salt appears to the oracle f , i.e., f(m∗||s∗) = i∗.)
(b) Abort, if f(m∗||s∗) �= i∗ or if for any sign-query on m, f(m||s) = i∗, where

s is computed as described in Game3.
The probability of not abort is

Pr [¬abort] =
1
r

·
(

1 − 1
r

)qsign

≥ 1
r

− qsign
r2

≥ 1
2 · r

(as r ≥ 2 · qsign).

Then, the advantage of an adversary A4 in Game4 is

AdvEUF-CMA
A4

(κ) ≥ 1
2 · r

· AdvEUF-CMA
A4

(κ)

≥ 1
2 · r

·
(

δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
.

5. Game5. This is same as Game4, except the following change in answering hash
queries: Pick y

$←− F
m and set H(m||s) = y (instead of defining H(m||s) =

P(xi∗)) for all m||s ∈ M̃ such that f(m||s) = i∗. Then, the advantage of an
adversary A5 in Game5 (using Corollary 2) is

AdvEUF-CMA
A5

(κ) ≥ AdvEUF-CMA
A4

(κ) − ε

≥ 1
2 · r

(
δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
− ε.

Now, we create a solver for the UOVI-problem using the adversary A5 (in
Game5). An instance (P,y∗) ∈ Puov(Fn,Fm)×F

m of the UOVI-problem is given
to a simulator S and the goal of S is to find x∗ ∈ F

n such that P(x∗) = y∗.
The simulator will use A5 in the environment of Game5 for breaking the problem
instance. S picks i∗ $←− [r] and answers the following queries that may appear
in any order:

– Hash-oracle. For answering quantum queries to hash-oracle, it suffices to
describe only the classical description of the oracle function (without using
any history) thanks to the on-the-fly simulation due to the unitary given in
Eq. (10). For an input m||s ∈ M̃, the function is defined as follows:

H(m||s) =

{
y∗ if i = i∗

P(xi) otherwise

where f(m||s) = i. As mentioned earlier the quantum random oracle f : M̃ →
[r] can be implemented using random 2 · qtot-wise independent function.

– Sign-oracle. For a sign-query on m, S sets ctr ← ctr + 1 and computes
s = Osalt(m||ctr) and i = f(m||s). If i = i∗, it aborts, otherwise returns the
signature σ = (x, s), where x = Õ(m||s).
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– Forgery. When A produces a message-signature pair (m∗, σ∗ = (x∗, s∗)), S
checks whether f(m∗||s∗) = i∗. If not, S aborts, otherwise it submits x∗ as a
solution of the given problem instance.

Note that when (m∗, σ∗ = (x∗, s∗)) is a valid forgery, we have P(x∗) =
H(m∗||s∗) = y∗ and hence, x∗ is a valid solution to the instance of the UOVI-
problem. Therefore, we have

AdvUOVI
S (κ) = AdvEUF-CMA

A5
(κ)

≥ 1
2 · r

(
δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
− ε

≥ δ

4 · 27 · q3tot

(
δ

2
−

√
8 · C0 · q3tot · ε − qsign · ε

)
− ε

=
δ2

216 · q3tot
− ε ·

(
1 +

δ · qsign
108 · q3tot

)
−

√
ε ·

√
C0

54
· δ√

q3tot

≈ δ

216 · q3tot
(11)

where the 2nd and the 3rd terms involved in Eq. (11) are ignored as ε = 1/q is
negligible in κ. When δ is non-negligible in κ, then AdvUOVI

S (κ) is non-negligible
– a contradiction.

6 Concluding Remark

In this paper, we have identified some issues related to the security reduction
of the salted UOV signature in the CROM [SSH11] and then addressed these
issues through the subspace description [Beu21] of the scheme. This alterna-
tive construction of salted UOV improves the signing key size a bit. We also
have provided a security reduction of the same scheme in the QROM. Our secu-
rity treatment is applicable only to the homogeneous salted UOV signature. A
clean security reduction for general salted UOV signature remains an interesting
research problem.
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editorial content of this paper. This work is supported by the Ministry of Electronics
and Information Technology, Government of India through its grants for the Center of
Excellence in Quantum Technology at IISc Bangalore, India.

A Signature Using Trapdoor Information

A.1 Algorithm for Solving the Public Key System Using Trapdoor
Information

In this section, we give the method for solving the public key system using the
trapdoor information as an algorithm. The procedure was described in Sect. 4.1.
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Algorithm 2. Inverting Public Key System Using Trapdoor
Require: The matrices M ′

g for each public key polynomial g, the hidden subspace O
and an image point τ ∈ F

m, where P(O) = {0} and O is described as column-space
of an n × m matrix M .

Ensure: A solution z ∈ F
n such that P(z) = τ .

1: repeat

2: Sample a vector v
$←− F

n

3: Compute τ ′ = τ − P(v)
4: Compute cg = v�M ′

gM
5: Construct m × m matrix C with cg as rows
6: until {y ∈ F

m : C · y = τ ′} �= ∅
7: Sample u

$←− {y ∈ F
m : C · y = τ ′}

8: Compute o = Mu � column-span corresponding to u
9: Compute z = v + o

10: Output σ = z

A.2 Signature Scheme

Let us write down the complete signature scheme based on this trapdoor.

KeyGen. This takes the security parameter 1κ as input and outputs the public
and secret keys. The secret key is a description of the subspace O ⊂ F

n

and the public key is the system P consisting of m MQ-polynomials in n
variables which vanish at O. Note that O can be represented by an n × m
matrix as described in Sect. 4.1. Thus SK = O and PK = P. A hash function
H : M → F

m for converting message into a fixed-length digest is known
publicly.

Sign. This takes messagem and the secret key SK as input and outputs a signature
σ. The signature σ is obtained by solving P(·) = H(m) using Algorithm 2.

Ver. This takes the message m, the signature σ and the public key PK as input
and outputs accept or reject. If P(σ) = H(m), holds, the signature is accepted.
Otherwise, the signature is rejected.

B Signature of Sakumoto et al.

We reproduce the salted version of UOV signature given in [SSH11, Section 4.1].
The secret key is a UOV type MQ system F of m polynomials in n variables.
The authors consider non-homogeneous polynomials. Then, as usual, an affine
invertible transformation T is used for mixing the variables. The public key is
obtained in the obvious way as P = F ◦ T . The scheme uses a salt of length �s,
which is a polynomial in the security parameter κ. The public and the secret
keys contain a description of the salt space.

The verification follows the obvious procedure. We describe the signing algo-
rithm in Algorithm 3. The variable list is parsed as (xv,xm), where xv denotes
the vector of vinegar variables and xm that of oil variables. There are v vinegar
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variables and m oil variables. The notation F(x′
v,xm) is used to denote the

linear system in oil variables which is obtained after the vinegar variables have
been specialized to the vector x′

v.

Algorithm 3. Signing Algorithm of Sakumoto, Shirai and Hiwatari
Require: F , T and the message m
Ensure: A signature σ on m such that P(σ) = H(m||s)
1: Sample x′

v
$←− F

v � uniform assignment for vinegar variables
2: repeat

3: Sample salt s
$←− {0, 1}�s � sampling random salt

4: Compute y = H(m||s)
5: until {xm ∈ F

m : F(x′
v, xm) = y} �= ∅

6: Sample x′
m

$←− {xm ∈ F
m : F(x′

v, xm) = y}
7: Compute x = T −1(x′

v, x′
m) � applying T −1 on a length n vector

8: Output (x, s) as signature
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