
An Efficient Key Recovery Attack Against
NTRUReEncrypt from AsiaCCS 2015

Zijian Song1,2, Jun Xu1,2(B), Zhiwei Li1,2, and Dingfeng Ye1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

xujun@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100093, China

Abstract. At AsiaCCS 2015, Nuñez et al. proposed a NTRU-based
proxy re-encryption (PRE) scheme, called NTRUReEncrypt. A complete
PRE scheme permits the sender to encrypt messages to the proxy, and
allows the receiver to decrypt the ciphertexts re-encrypted by the proxy.
At PQCrypto 2019, Liu et al. provided cryptanalysis of the scheme based
on decryption failures and statistical analysis, both of which need huge
amount of ciphertexts. For instance, for ees1171ep1 parameter set, the
number of ciphertexts required are 4.68 ·1017 and 4.83 ·1017 respectively.
In this paper we point out that the security of NTRUReEncrypt would
be impacted by an efficient key recovery attack based on linearization
technique, it can reduce the number of required ciphertexts drastically.
To be specific, two parties sending and receiving messages can recover the
other’s private key by communicating O(N + [N

2
]) times, where N is an

odd prime in the ring R = Z[x]/
(
xN − 1

)
. For specific scheme on param-

eter sets ees1087ep1, ees1171ep1, ees1499ep1, where N equals 1087, 1171
and 1499 respectively, the amount of ciphertexts used in our attack is
only on the order of 103, and our experiments are all completed within
one hour on PC. Moreover, we discuss the NTRUReEncrypt instanti-
ated with the NTRU parameter sets in the third round of NIST-PQC
competition and give the theoretical analysis.

Keywords: NTRUReEncrypt · NTRU · Linearization technique · Key
recovery attack

1 Introduction

In 1998, Blaze, Bleumer and Strauss [3] proposed a new type of public-key cryp-
tographic scheme, namely proxy re-encryption (PRE) scheme. A complete PRE
scheme consists of three parties: the sender Alice, the receiver Bob, and the proxy.
It permits Alice to encrypt messages to the proxy, and allows Bob to decrypt
the ciphertexts re-encrypted by the proxy. Further, in the communication pro-
cess, the proxy only provides the re-encryption operation without knowing any
information about messages. In fact, proxy re-encryption scheme is a variant of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Isobe and S. Sarkar (Eds.): INDOCRYPT 2022, LNCS 13774, pp. 644–657, 2022.
https://doi.org/10.1007/978-3-031-22912-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22912-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-22912-1_28


An Efficient Key Recovery Attack Against NTRUReEncrypt 645

the traditional public key cryptosystem. Its basic algorithm is the same as that
of public key encryption scheme, except that there are two more steps: gener-
ating proxy re-encryption key and re-encrypting ciphertexts. After a period of
development, many PRE schemes have been constructed, but the vast majority
of these are based on traditional number theoretic problems, such as discrete
logarithm problem [4]. However, these problems suffered the impact after Shor’s
algorithm [14,15] was put forward. Therefore, the attention turned to the field
of post-quantum cryptography, such as lattice-based schemes [1].

At AsiaCCS 2015 [13], Nuñez et al. proposed a NTRU-based proxy re-
encryption (PRE) scheme, called NTRUReEncrypt. It only has one more re-
encryption step, and the rest is the same as NTRU scheme including param-
eter sets. In 1996, Hoffstein, Pipher and Silverman proposed a cryptosystem
called NTRU [7], which has the advantages of high efficiency and low memory
usage. Due to these properties, it becomes an indispensable part of post-quantum
cryptography, and has been standardized by IEEE P1363.1 [2]. Recently, it was
also submitted to the third round of NIST-PQC competition, e.g. NTRU-HPS,
NTRU-HRSS [5]. One reason for the efficiency of NTRU is that, some of poly-
nomials in NTRU have small coefficients, which we will call “small" polynomi-
als for ease of description. The brief process of NTRUReEncrypt scheme is as
follows: (1) Alice encrypts the message m as CA = hA ∗ r + m by selecting
a small polynomial r, where Alice’s private key is (fA, gA) and public key is
hA = p ∗ gA ∗ f−1

A . (2) The proxy selects a small polynomial e, encrypts CA sent
by Alice as CB = CA ∗ rkA→B + p ∗ e, where rkA→B = fA ∗ f−1

B mod q is the
re-encrypted key of the proxy and fB is Bob’s private key. (3) Bob decrypts CB

sent by the proxy as (CB ∗ fB mod q) mod p to obtain the message m.
There are many attacks against NTRU, such as decryption failure attack

[8], broadcast attack [6,10]. The method of latter uses the linearization tech-
nique, whose main idea is to generate a linear system by linearizing monomials
into new variables. At PQCrypto 2019 [11], Liu et al. proposed cryptanalysis
of NTRUReEncrypt, whose strategy is based on two points: one is decryption
failure, the other is statistical analysis. Due to the huge amount of data required,
these two attacks are hard to implement in practice. For instance, for ees1171ep1
parameter set, the number of required ciphertexts are 4.68 · 1017 and 4.83 · 1017
respectively.

Our Contribution. We present a key recovery attack based on the linearization
technique against NTRUReEncrypt, where the parameter sets are from those in
AsiaCCS 2015 and PQCrypto 2019. To implement an attack, O(N +

[
N
2

]
) legal

communications are needed to collect ciphertexts CAi
and CBi

, where N is an
odd prime in the ring R = Z[x]/

(
xN − 1

)
. The comparison of PQCrypto 2019

and our work is shown in Table 1.
The technical overview is as follows. First, we focus on the following relation

from the proxy’s re-encryption stage:

CB = CA ∗ rkA→B + p ∗ e mod q.

Here, CA, CB , p, q = 2γ are known, where γ is an integer, and rkA→B , e are
unknown. Our goal is to recover the re-encryption key rkA→B , and then obtain



646 Z. Song et al.

Table 1. Number of ciphertexts needed

ees1087ep1 ees1171ep1 ees1499ep1

PQCrypto 2019 4.06 · 1017 4.83 · 1017 9.67 · 1017
Our work 3.17 · 103 3.58 · 103 4.45 · 103

the private key fA or fB based on rkA→B = fA ∗ f−1
B mod q. For the sake of

efficiency, we first choose to recover rkA→B mod 2 instead of rkA→B mod q. Due
to the special structure of coefficients in the polynomial e, i.e., its coefficients
have certain numbers of +1, −1, and 0. Hence, the inner product of the coefficient
vector of e is fixed. Thus, we can establish a system of linear congruence equations
by using inner product calculation, and then obtain rkA→B mod 2 by using the
linearization technique. According to rkA→B = fA ∗ f−1

B mod q and q is a power
of 2, we get that fB ∗ (rkA→B mod 2) = fA mod 2. Without loss of generality,
suppose that Bob is an attacker, where fB is the private key of Bob. Based on the
above equation, Bob can determine the position of 0 bits of Alice’s private key fA.
Notice that the private key pair (fA, gA) of Alice satisfies hA = p∗gA∗f−1

A mod q,
where hA is the public key. It implies fA ∗ hA = p ∗ gA mod 2. Furthermore, the
attacker Bob can also deduce the position of 0 bits of gA. Finally, combining with
the position of 0 bits about fA and gA, we get a new system of linear congruence
equations derived from fA ∗ hA = p ∗ gA mod q, and compute the remaining bits
of fA and gA using Gaussian elimination. Theoretically, the algorithm overhead
is divided into two main parts: constructing linear equations from the proxy’s
re-encryption stage and solving linear equations. Since we choose to work on F2

rather than Z2048, the cost of the latter is greatly reduced to negligible. This
means that the time required to implement an attack is almost dependent on
constructing a system of equations, which could be completed within one hour
on PC.

Our another contribution is to discuss the NTRUReEncrypt instantiated with
the NTRU parameter sets in the third round of NIST-PQC competition. Unlike
the parameter sets from AsiaCCS 2015 and PQCrypto 2019, the parameter sets
in the third round of NIST-PQC competition, e.g., NTRU-HPS and NTRU-
HRSS [5], no longer determine the certain numbers of +1, −1, 0 in the coefficients
of the secret polynomials. It means that the inner product of e is not fixed.
However, we can still take advantage of another property of ternary polynomials
e. Denote the coefficient vector of e as e, hence each component ei ∈ {−1, 0, 1}
satisfies ei = (ei)3. The remaining operations are the same as the previous
attack, except that the number of communications is increased to O(N2).

Organization. The rest of this paper is organized as follows: In Sect. 2, we
provide some basic preliminaries for the linear form and parameter sets of NTRU.
In Sect. 3, we briefly describe NTRU and NTRUReEncrypt schemes, provide the
specific parameter sets used in this paper. In Sect. 4, we present our attack in
detail and give a comparison with PQCrypto 2019 [11]. In Sect. 5, we discuss the
NTRUReEncrypt instantiated with the NTRU parameter sets in the third round



An Efficient Key Recovery Attack Against NTRUReEncrypt 647

of NIST-PQC competition, and also compare with previous parameter sets used
in Sect. 4. In Sect. 6, we present the experimental results, whose parameter sets
are ees1087ep1, ees1171ep1, ees1499ep1 respectively. In Sect. 7, we conclude the
paper.

2 Preliminaries

In this section, we provide some basic preliminaries of NTRU and NTRUReEn-
crypt scheme. The operations of both schemes are defined over the quotient
ring R = Zq[x]/

(
xN − 1

)
, where N is an odd prime. Other parameters p, q are

integers, where p is much smaller than q and gcd(p, q) = 1.
The polynomials are selected from four subset of R, denote as Lf =

T(df ,df −1), Lg = T(dg,dg), Lr = T(dr,dr),

Lm =
{

m ∈ R : every coefficient of m lies between − p − 1
2

and
p − 1
2

}
.

In addition, elements in Lf , Lg, Lr are ternary polynomials. We introduce the
definition of ternary polynomial from PQCrypto 2019 [11].

Definition 1. A ternary polynomial T with positive integers d1, d2 is defined
as:

T(d1,d2) =
{

trinary polynomials of R with d1 entries
equal to 1 and d2 entries equal to − 1

}
.

2.1 Vector and Matrix Forms of NTRU

A polynomial f ∈ R in NTRU can be presented as f =
∑N−1

i=0 fix
i. Its vector

form can be presented as f = (f0, f1, · · · , fN−1)
T

. The polynomial f can be
written in the form of a circular matrix F in Z

N×N
q :

F =

⎛

⎜
⎜
⎜
⎝

f0 fN−1 . . . f1
f1 f0 . . . f2
...

...
. . .

...
fN−1 fN−2 . . . f0

⎞

⎟
⎟
⎟
⎠

Further, the matrix form of multiplication of two polynomials f, g ∈ R can be
presented as: ⎛

⎜
⎜
⎜
⎝

f0 fN−1 · · · f1
f1 f0 · · · f2
...

...
. . .

...
fN−1 fN−2 · · · f0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

g0
g1
...

gN−1

⎞

⎟
⎟
⎟
⎠

.

As needed, there are the following fundamental lemmas [9]:



648 Z. Song et al.

Lemma 1. If H ∈ Z
N×N
q is a circular matrix over Z

N×N
q , then HT is also a

circular matrix over Z
N×N
q .

Lemma 2. If G,H ∈ Z
N×N
q are circular matrices, then GH is also a circular

matrix. In particular, HTH is a symmetric circular matrix.

3 NTRU and Its Proxy Re-encryption Scheme

In this section, we overview the NTRU and NTRU-based proxy re-encryption
scheme, called NTRUReEncrypt. Parameters sets are shown in the following
table, related to version 3.3 of the EESS#1 specification [2], from IEEE P1363.1
standard. For ees1087ep1, ees1171ep1, ees1499ep1, the private keys are f, g
selected from Lf = T(df ,df −1) and Lg = T(dg,dg) respectively, the set of small
polynomials is Lr = T(dr,dr), where small means that the coefficients of the
polynomials are small.

Table 2. Instance of polynomial sets

Instance N p q dg df = dr

ees1087ep1 1087 3 2048 362 120
ees1171ep1 1171 3 2048 390 106
ees1499ep1 1499 3 2048 499 79

In practice, some variants of NTRU take the following approach to generating
key f for efficiency: f have the form of 1+ p ∗F with F ∈ T(df ,df ), first generate
F ∈ T(df ,df ), and then calculate 1 + p ∗ F to obtain f . We would use this form
throughout the rest of the paper.

3.1 NTRU Cryptosystem

The brief description of NTRU cryptosystem is as follows, see [7] for more details.

– Key Generation: Randomly chooses F ∈ T(df ,df ), then calculate 1 + p ∗ F
to obtain f , where f has inverse f−1

p , f−1
q in Rp, Rq, then randomly chooses

g ∈ T(dg,dg). Outputs public key pk = h = p ∗ g ∗ f−1
q mod q, private key

sk = (f, g).
– Encryption: To encrypt a plaintext m ∈ Lm, randomly chooses r ∈ Lr.

Outputs ciphertext c = h ∗ r + m mod q.
– Decryption: To decrypt a ciphertext c, receiver uses private key f and com-

putes a = f ∗c mod q such that coefficients of a are all lie between (−q/2, q/2].
Outputs plaintext m = a ∗ f−1

p mod p.



An Efficient Key Recovery Attack Against NTRUReEncrypt 649

Note that f , g, s, m are small, i.e. each of its coefficients is small, then all
coefficients of a = c ∗ f = p ∗ g ∗ s + m ∗ f mod q lie in (−q/2, q/2] with high
probability. Thus, one computes a = c ∗ f mod q turns to a = c ∗ f over Z. Then
can decrypt the message:

a ∗ f−1
p = p ∗ g ∗ s ∗ f−1

p + m ∗ f ∗ f−1
p = m mod p.

3.2 NTRUReEncrypt

NTRUReEncrypt is a NTRU-based proxy re-encryption scheme, all parameter
sets are related to formal NTRU scheme. Its initial key generation and first
encryption stage are consistent with NTRU encryption, at second re-encryption
stage, algorithm selects the same set of polynomials as NTRU. NTRUReEncrypt
has a unique re-encrypt key generation, which ensures that Bob can decrypt the
re-encrypted ciphertext sent from proxy.

The flow of the algorithm is as follows:

– Key Generation: Key generation algorithm is the same as that in NTRU.
Outputs a pair of public and secret keys (pkA, skA) for Alice, where skA =
(fA, gA) and pkA = hA, and Bob also obtains a public-private key pair in the
same way.

– Re-encrypt Key Generation: The algorithm requires two private keys skA

and skB , from sender Alice and receiver Bob respectively. Outputs re-encrypt
key rkA→B = fA ∗ f−1

B mod q. The re-encryption key can be computed by a
simple three-party protocol below:
1. Alice selects t ∈ Rq, sends t ∗ fA mod q to Bob and t to proxy;
2. Bob sends t ∗ fA ∗ f−1

B mod q to proxy;
3. Proxy computes rkA→B = fA ∗ f−1

B mod q.
– Encryption: Alice encrypts a plaintext m ∈ Lm, randomly chooses r ∈ Lr.

Outputs ciphertext CA = hA ∗ r + m mod q.
– Re-encryption: Proxy encrypts a ciphertext CA sent by Alice, randomly

chooses e ∈ Lr. Outputs ciphertext CB = CA ∗ rkA→B + p ∗ e mod q.
– Decryption: Bob decrypts a ciphertext CB , uses private key fB and compute

CB ∗ fB = p ∗ gA ∗ r + m ∗ fA + p ∗ e ∗ fB mod q

such that coefficients of CB ∗ fB are all lie between (−q/2, q/2]. Outputs
plaintext m = CB ∗ fB mod p.

Decryption stage is similar to previous NTRU decryption, see [13] for more
details.

4 Key Recovery Attack Against NTRUReEncrypt

In this section, we propose an efficient key recovery attack by only collecting
ciphertexts CA and CB based on the algorithm of Li et al. [10]. They proposed
a broadcast attack against NTRU only to recover messages at AsiaCCS 2015,
however in NTRUReEncrypt, we find out that the re-encryption key rkA→B

can be recovered from the proxy’s re-encryption stage, then a malicious receiver
(sender) can directly recover the private key of the other one.



650 Z. Song et al.

4.1 Construction of Equations

We now recall the re-encryption stage, proxy encrypts a ciphertext CA sent by
Alice, randomly choosese ∈ Lr. Outputs ciphertext

CB = CA ∗ rkA→B + p ∗ e mod q. (4.1)

For convenience, we denote e, cB, λ as their vector form in lowercase, and denote
CA as its matrix form in uppercase, then write Eq. (4.1) in linear form:

pe = cB − CAλ mod q,

where λ is the vector form of re-encryption key rkA→B .
Then, do the inner product of both sides of the equation:

(pe)T (pe) = (cB − CAλ)T (cB − CAλ) mod q.

Note that p = 3 and secret polynomial e selected in set Lr, the numbers of +1
and −1 in their coefficients are dr, thus (pe)T (pe) = 2drp

2 is a constant, denote
as d.

We can get

d − cBT cB = λTCA
TCAλ − 2cBTCAλ mod q. (4.2)

4.2 Linearization

For convenience, let d − cBT cB = u, cBTCA = (k0, k1, · · · , kN−1), and

CA
TCA =

⎛

⎜
⎜
⎜
⎝

c0 cN−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cN−1 cN−2 · · · c0

⎞

⎟
⎟
⎟
⎠

.

From Lemma 2.2, CA
TCA is a symmetric circular matrix, where ci = cN−i,

for i ∈ {0, 1, · · · , N − 1}. Then expanding Eq. (4.2), we can get

u = c0
(
λ2
0 + λ2

1 + · · · + λ2
N−1

)

+ c1 (λ1λ0 + λ2λ1 + · · · + λ0λN−1)
+ · · · · · ·
+ cN−1 (λN−1λ0 + λ0λ1 + · · · + λN−2λN−1)
− 2k0λ0 − 2k1λ1 − · · · − 2kN−1λN−1 mod q

(4.3)

Note that when choosing a specific parameter N , vector λ = (λ0, λ1, · · · , λN−1)
has N unknown components. After the inner product operation, it generates
O(N2) new monomials λiλj , for 0 ≤ i ≤ j ≤ N − 1.

A trivial idea is to linearize these variables to O(N2) one-order monomials,
denoted as x = (x0, x1, · · · , xO(N2)−1). Then Eq. (4.3) turns to a congruence



An Efficient Key Recovery Attack Against NTRUReEncrypt 651

equation with O(N2+N) variables, thus λi can be recovered by collecting O(N2)
equations in time O(N6) by Gaussian elimination. In certain parameter sets
defined by NTRUReEncrypt, the size of N generally amounts to 103, which
means the system of linear equations with around 106 variables and it is hard
to implement in practice.

To reduce the number of variables, let

xi = λiλ0 + λi+1λ1 + · · · + λN−1λN−i−1 + λ0λN−i + · · · + λi−1λN−1,

for i = 0, 1, · · · , N − 1. In the parameter sets we attacked, N is an odd prime.
Note that ci = cN−i and xi = xN−i for i = 0, 1, · · · , N − 1, the Eq. (4.3) is
equivalent to

u = c0x0 + 2c1x1 + · · · + 2c[N
2 ]x[N

2 ]
− 2k0λ0 − 2k1λ1 − · · · − 2kN−1λN−1 mod q,

(4.4)

where q is a power of 2 denoted as q = 2γ , γ is a positive integer. Further,
assuming that c0, u are even, the equation could be converted to

1
2
u =

1
2
c0x0 + c1x1 + · · · + c[N

2 ]x[N
2 ]

− k0λ0 − k1λ1 − · · · − kN−1λN−1 mod 2γ−1.
(4.5)

Notice that we can get one congruence Eq. (4.4) with (N +[N2 ]+1) variables
by collecting CA and CB through one legal communication, so we could collect a
series of samples by communicating relevant times. In fact through experiment,
we could always select enough equations in the form of (4.5) by choosing these
samples, and the number of samples is O(N + [N2 ]), which is related to the
number of variables.

4.3 Solving the System of Linear Congruence Equations

Denote n as the number of variables and n = N +
[

N
2

]
+1, then we build a linear

system L×X = S mod 2γ−1 by collecting n+ l equations from Eq. (4.5), where
l is a positive integer, the vector X = (x0, x1, · · · , x[N

2 ], λ0, λ1, · · · , λN−1)T , the
row of the matrix L corresponds to (4.5) equals

(
1
2
c0, c1, · · · , c[N

2 ],−k0,−k1, · · · ,−kN−1)T ,

and S is the column vector related to 1
2u. For the sake of efficiency, we choose

to apply our algorithm to work over the finite field F2 but not the ring Z2γ−1 ,
which means that we turn to solve the system of equations L × X = S mod 2.
That is, our goal is to find rkA→B mod 2 not rkA→B mod 2γ−1, and we would
show that it is enough for recovering the private key in the next subsection.

Note that the vector S ∈ F
n
2 , the matrix L ∈ F

(n+l)×n
2 , we aim to find

rkA→B mod 2 = (λ0, λ1, · · · , λN−1)T by selecting last N bits of X ∈ F
n
2 . It is



652 Z. Song et al.

obvious that there is a unique solution is equivalent to the matrix L is invertible,
which means that the rank of L equals to n. The problem turns to figure out
the proportion of the matrices of rank n in L ∈ F

(n+l)×n
2 . Li et al. [10] gave the

following result estimating the proportion of invertible matrices in finite field
among all matrices:

Theorem 1. Let Fq be the finite field with q elements, where q is a prime power.
The proportion of matrices of rank n in the set of (n+l)×n matrices with entries
in Fq is equal to:

n+l∏

k=l+1

(
1 − q−k

)
, l = 0, 1, 2, · · · .

According to the theorem above, we give the proportion of the matrices of rank n
in Fq in Table 3 blow. It implies that if l grows, the probability that the random
matrix L is invertible is also increasing. In the case of our attack, q = 2, l = 4,
and the random matrix L is invertible with high probability.

Table 3. The proportion of the matrices of rankn in L ∈ F
(n+l)×n
q

q l = 0 l = 1 l = 2 l = 3 l = 4

2 0.2889 0.5776 0.7701 0.8801 0.9388

3 0.5601 0.8402 0.9452 0.9816 0.9938

7 0.8368 0.9763 0.9966 0.9995 0.9999

For any ciphertext pair (CA, CB) in Eq. (4.1), we could always get CB(1) =
CA(1)rkA→B(1) mod q, which also holds on F2. Specifically, we could obtain a
new equation:

CB(1) = CA(1)(λ0 + λ1 + · · · + λN−1) mod 2,

where CA(1), CB(1) are fixed number. Adding this equation to the system of
linear equations that we seek to solve, and now we can take l = 3 to implement
our attack. Since the number of variables is n = N +

[
N
2

]
+ 1, l = 3, thus

we can construct a system of linear equations with the number of equations
n + l + 1 = N +

[
N
2

]
+ 5, which could be solved to obtain a unique solution

in time O(N3) using Gaussian elimination. Compared to running on Z1024, our
algorithm requires significantly less time to run on F2, just a few seconds.

4.4 Recovering Private Keys

In Sect. 4.3, we have obtained the re-encryption key rkA→B mod 2. Now, we
discuss how to recover the private key in this subsection. First, we recover
the position of 0 bits of the private key pair (f, g) by means of the obtained



An Efficient Key Recovery Attack Against NTRUReEncrypt 653

rkA→B mod 2, and then reveal the remaining bits of the private key f by solv-
ing a system of linear equations.

Since rkA→B = fA ∗ f−1
B mod q, we have that rkA→B = fA ∗ f−1

B mod 2. If
one party to the communication obtains rkA→B mod 2, then can immediately
calculate the other party’s private key in the sense of modulo 2. Now we design
a roadmap to show how to recover the private keys. For the sake of description,
we assume that Bob is the malicious party, who knows rkA→B mod 2 and the
private key fB :
Step 1. Considering fA = fB ∗ rkA→B mod 2. Since fA = 1 + p ∗ F with F ∈
L(df ,df ) and p = 3, we get p ∗ F = fB ∗ rkA→B − 1 mod 2. Note that there are
df +1’s, df −1’s and (N − 2df ) 0’s in the coefficients of F , so the position
of 0 bits of F can be determined by counting the position of the 0 bits of
fB ∗ rkA→B − 1 mod 2, where the number of 0 bits of F is N − 2df . It means
that we can also get the position of the 0 bits of fA.
Step 2. Since the public key hA = p ∗ gA ∗ f−1

A mod q with gA ∈ L(dg,dg) holds,
hA = p∗gA∗f−1

A mod 2 is also satisfied, where the coefficients of gA have dg +1’s
and dg −1’s, (N −2dg) 0’s. Based on p∗gA = hA∗fA mod 2, the position of the 0
bits of gA can be determined by counting the position of 0 bits of hA ∗fA mod 2,
where the number of 0 bits is N − 2dg.
Step 3. Plugging fA = 1 + p ∗ F into hA ∗ fA = p ∗ gA mod q, we get hA ∗ (1 +
p ∗ F ) = p ∗ gA mod q, which is equivalent to the equation

p ∗ hA ∗ F = p ∗ gA − hA mod q. (4.6)

For convenience, we denote f , g, h as the vector form of F , gA, hA, and HA

as the matrix form of hA. The Eq. (4.6) can be rewritten as the following linear
form:

pHAf = pg − h mod q.

That is,

p · HA

⎛

⎜
⎜
⎜
⎝

f0
f1
...

fN−1

⎞

⎟
⎟
⎟
⎠

= p ·

⎛

⎜
⎜
⎜
⎝

g0
g1
...

gN−1

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎝

h0

h1

...
hN−1

⎞

⎟
⎟
⎟
⎠

mod q, (4.7)

where HA is a N×N matrix. Considering the 2N variables (f and g) of Eq. (4.7),
there are N − 2df and N − 2dg known in f and g respectively. Hence, the
number of unknown variables is 2df + 2dg, whereas the number of equations
is N . According to Table 2, N is larger than 2df + 2dg (e.g. in ees1171ep1,
N = 1171, dg = 390, df = 106, the number of equations N = 1171 is larger than
the number of variables 2df + 2dg = 992). Hence we can recover the remaining
bits of f by solving the system of linear equations using Gaussian elimination,
then recover all bits of fA which is Alice’s private key.

At PQCrypto 2019, Liu, Pan, and Zhang [11] proposed a key recovery attack
based on statistical methods, malicious receiver Bob needed huge amount of
ciphertexts CBi

encrypted by the same plaintext m, which is illegal and hard to
implement. Here are the approximate number of ciphertexts in Table 4.



654 Z. Song et al.

Table 4. Comparison of our work with PQCrypto 2019

ees1087ep1 ees1171ep1 ees1499ep1

PQCrypto 2019 4.06 · 1017 4.83 · 1017 9.67 · 1017
Our work 3.17 · 103 3.58 · 103 4.45 · 103

Remark. The cryptanalysis proposed by PQCrypto 2019 is based on decryp-
tion failure and statistical analysis, both require huge amount of ciphertexts
and the chosen plaintexts. Moreover, the ciphertexts in latter case should be
encrypted by the same plaintext. Unlike the previous ones, our attack has two
advantages: (1) The amount of ciphertext required is greatly reduced. (2) There
are no restrictions on plaintext, our attack only needs to be done in legal com-
munication.

5 Case of NTRU Scheme with Different Parameter Sets

In this section, we discuss other schemes of NTRU with different parameter sets
instantiated to the NTRUReEncrypt. We divide them into two cases, one with a
constant number of +1, −1 (if any) coefficients of the secret polynomial selected
in Lr, in which case we can still attack with the same method as in the previous
section, and the other with the NTRU schemes in the third round of NIST-PQC
competition, which have a variable number of +1, −1 (if any) coefficients of the
secret polynomial selected in Lr, and we analyze this case by a new trick.

5.1 Case of Certain Secret Polynomial Coefficients

For the case of certain secret polynomial coefficients, [12] summarised some
instantiations of NTRU, and their specific parameter sets are listed in the table
below, where B denotes the set of all polynomials with binary coefficients, B (d)
denotes a subset of B with exactly d coefficients equal 1, Lm denotes the poly-
nomial set whose coefficients lying between − 1

2 (p − 1) and 1
2 (p − 1) (Table 5).

One can check that, as for the secret polynomial e selected from Lr in these
schemes, the inner product of its coefficient vectors is a constant. Then we can
use the method proposed in Sect. 4 to recover the private keys.

Table 5. Some instantiations of NTRU

Parameter Sets q p Lf Lg Lm Lr

NTRU-1998 2k ∈ [
N
2
, N

]
3 L(df ,df−1) L(dg,dg) Lm L(dr,dr)

NTRU-2001 2k ∈ [
N
2
, N

]
x+ 2 1 + p ∗ F B (dg) B B (dr)

NTRU-2005 prime 2 1 + p ∗ F B (dg) B B (dr)



An Efficient Key Recovery Attack Against NTRUReEncrypt 655

5.2 Case of Uncertain Secret Polynomial Coefficients

We now discuss the case in the third round of NIST-PQC competition, such
as NTRU-HPS, NTRU-HRSS [5], whose parameter sets are instantiated to
the NTRUReEncrypt. For specific parameter sets in ees1087ep1, ees1171ep1,
ees1499-ep1, our attack’s point is that the secret polynomial e selected in set Lr,
whose coefficients have a certain number of +1, −1, and 0.

However, in NTRU-HPS and NTRU-HRSS, polynomial set Lr = T and T
is the set of non-zero ternary polynomials of degree at most N − 2. It indicates
that we no longer have information on the number of coefficients in the secret
polynomial e, thus the inner product calculation would fail. Ding et al. [6] used
the property ei = ei

3, for i ∈ {0, 1, · · · , N − 1} in the broadcast attack against
NTRU to recover plantexts, it could also be used in this case to recover the
secret keys.

Separating p from Eq. (4.1) and write it in linear form, we can get

e = (CB − CAr) ∗ p−1 mod q.

Since ei = ei
3, so we can get equations that eliminates e:

[(CB − CAr) ∗ p−1]i = [(CB − CAr) ∗ p−1]3i mod q, (5.1)

for i ∈ {0, 1, · · · , N − 1}. Note that in Eq. (5.1) only r is the unknown variable,
cubic computation generates O(N3) new monomials, and we can also linearize
these monomials into new variables. Since one legal communication produces N
equations, the system of linear congruence equations can be built by communi-
cating N2 times, thus recover r in time O(N9). The following table is the compar-
ison of parameter sets between EESS#1 and NTRU-Round3, where NTRU-HPS
is the same as NTRU-HRSS (Table 6).

Table 6. Comparison of EESS#1 with NTRU-Round3

Instance Number of communications Variables Gaussian elimination

EESS#1 O(N) O(N) O(N3)

NTRU-HPS O(N2) O(N3) O(N9)

6 Experiments

In this section, we present experimental results on the assumption that Bob
is a malicious receiver. Due to ciphertexts CA could be collected on the pub-
lic channel and CB could be received normally by Bob, we assumed in our
experiment that the attacker could collect enough ciphertext pairs (CA, CB).
All experiments were performed in SageMath 9.6 on a macOS Monterey 12.5.1
system with Apple M1 CPU @ 3.2GHz, 8GB RAM, and our implement was avail-
able at https://github.com/s4lTea/NTRUReEncrypt_Attack. We implemented

https://github.com/s4lTea/NTRUReEncrypt_Attack


656 Z. Song et al.

our attack against NTRUReEncrypt scheme, whose parameter sets defined by
EESS#1 are the same as those from AsiaCCS 2015 [13] and PQCrypto 2019
[11]. We performed our attack 50 times for each instance, and gave the average
number of communications and running time required by the algorithm. In our
experimental results, let n = N +

[
N
2

]
+ 1, we could always find a matrix L of

rank n. We splited the algorithm into 3 steps:

1) Focusing on the proxy’s re-encryption stage, then generate a system of linear
congruence equations with n+4 equations and n variables by communicating
enough times.

2) Solving it on F2 using Gaussian elimination to obtain re-encryption key
rkA→B mod 2.

3) Building another system of linear congruence equations with N equations and
2df + 2dg variables to solve, finally obtain Alice’s private key.

Table 7. Experimental Results with different parameter sets

Instance N p q Rank(L) Number of
communications

Total time(min)

ees1087ep1 1087 3 2048 1634 3174 17.4
ees1171ep1 1171 3 2048 1757 3579 22.8
ees1499ep1 1499 3 2048 2249 4454 41.9

Step 1 takes some time (minutes) due to matrix multiplication operations. As
it works on F2, so step 2 takes only a few seconds and the running time could be
negligible. There are small number of variables related to the equations in step
3, so the time required to either construct or solve the equations is negligible.
The experimental results are shown in Table 7. For ease of description, we take
the cost of step 1 as the total time of our algorithm.

7 Conclusion

In this paper, we presented an efficient key recovery attack against NTRUReEn-
crypt scheme, whose parameter sets are defined by EESS#1 specification [2] from
IEEE P1363.1 standard. The attack is based on a special structure of secret poly-
nomials from the set Lr. In addition, the key recovery attack could be extended
to the NTRUReEncrypt instantiated with the NTRU parameter sets in the third
round of NIST-PQC competition.

Acknowledgments. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. The work of this paper was supported in part by
the National Natural Science Foundation of China (Grants 61732021, 62272454).



An Efficient Key Recovery Attack Against NTRUReEncrypt 657

References

1. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_1

2. Key Cryptographic Techniques Based. IEEE p1363. 1TM/d1211 (2008)
3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-

tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

4. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194 (2007)

5. Cong, C., Oussama, D., Jerey, H.: NTRU: the round 3 NIST submission (2020).
https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016

6. Ding, J., Pan, Y., Deng, Y.: An algebraic broadcast attack against NTRU. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 124–137.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_10

7. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

8. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4_14

9. Kra, I., Simanca, S.R.: On circulant matrices. Notices AMS 59(3), 368–377 (2012)
10. Li, J., Pan, Y., Liu, M., Zhu, G.: An efficient broadcast attack against NTRU. In:

Proceedings of the 7th ACM Symposium on Information, Computer and Commu-
nications Security, pp. 22–23 (2012)

11. Liu, Z., Pan, Y., Zhang, Z.: Cryptanalysis of an NTRU-based proxy encryption
scheme from ASIACCS’15. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 153–166. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7_9

12. Mol, P., Yung, M.: Recovering NTRU secret key from inversion oracles. In: Cramer,
R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 18–36. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78440-1_2

13. Nuñez, D., Agudo, I., Lopez, J.: NTRUReEncrypt: an efficient proxy re-encryption
scheme based on NTRU. In Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security, pp. 179–189 (2015)

14. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1007/BFb0054122
https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016
https://doi.org/10.1007/978-3-642-31448-3_10
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-030-25510-7_9
https://doi.org/10.1007/978-3-030-25510-7_9
https://doi.org/10.1007/978-3-540-78440-1_2

	An Efficient Key Recovery Attack Against NTRUReEncrypt from AsiaCCS 2015
	1 Introduction
	2 Preliminaries
	2.1 Vector and Matrix Forms of NTRU

	3 NTRU and Its Proxy Re-encryption Scheme
	3.1 NTRU Cryptosystem
	3.2 NTRUReEncrypt

	4 Key Recovery Attack Against NTRUReEncrypt
	4.1 Construction of Equations
	4.2 Linearization
	4.3 Solving the System of Linear Congruence Equations
	4.4 Recovering Private Keys

	5 Case of NTRU Scheme with Different Parameter Sets
	5.1 Case of Certain Secret Polynomial Coefficients
	5.2 Case of Uncertain Secret Polynomial Coefficients

	6 Experiments
	7 Conclusion
	References




