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Abstract. Conventional bit-based division property (CBDP) and bit-
based division property using three subsets (BDPT) introduced by Todo
et al. at FSE 2016 are the most effective techniques for finding inte-
gral characteristics of symmetric ciphers. At ASIACRYPT 2019, Wang
et al. proposed the idea of modeling the propagation of BDPT, and
recently Liu et al. described a model set method that characterized the
BDPT propagation. However, the linear layers of the block ciphers which
are analyzed using the above two methods of BDPT propagation are
restricted to simple bit permutation. Thus the feasibility of the MILP
method of BDPT propagation to analyze ciphers with complex linear lay-
ers is not settled. In this paper, we focus on constructing an automatic
search algorithm that can accurately characterize BDPT propagation for
ciphers with complex linear layers. We first introduce BDPT propagation
rule for the binary diffusion layer and model that propagation in MILP
efficiently. The solutions to these inequalities are exact BDPT trails of
the binary diffusion layer. Next, we propose a new algorithm that mod-
els Key-Xor operation in BDPT based on MILP technique. Based on
these ideas, we construct an automatic search algorithm that accurately
characterizes the BDPT propagation and we prove the correctness of
our search algorithm. We demonstrate our model for the block ciphers
with non-binary diffusion layers by decomposing the non-binary linear
layer trivially by the COPY and XOR operations. Therefore, we apply
our method to search integral distinguishers based on BDPT of SIMON,
SIMON(102), PRINCE, MANTIS, PRIDE, and KLEIN block ciphers.
For PRINCE and MANTIS, we find (2 + 2) and (3 + 3) round integral
distinguishers respectively which are longest to date. We also improve the
previous best integral distinguishers of PRIDE and KLEIN. For SIMON,
SIMON(102), the integral distinguishers found by our method are con-
sistent with the existing longest distinguishers.
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1 Introduction

Division Property. At Eurocrypt 2015, Todo [30] introduced Division property
which is a novel strategy to discover integral characteristics to search integral
distinguishers of block cipher structures (Feistel structure and SPN structure).
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Later, Todo and Morii [31] introduced bit-based division property (which is actu-
ally called Conventional Bit-based Division Property (CBDP)), which could be
treated as an exceptional instance of division property. Actually CBDP clas-
sify all vectors u in F

n
2 into two subsets such that the parity of

⊕
x∈X

xu is 0
or unknown (where xu is defined as xu :=

∏n
i=1 xi

ui). Moreover, at CRYPTO
2016, Boura and Canteaut [9] presented a different perspective on the division
property, called ’parity set’.

The intricacy of using CBDP was generally equivalent to 2n for a n-
bit primitives. Henceforth, the gigantic intricacy limited the wide uses of
CBDP. To tackle the limitation of the tremendous complexity, Xiang et al.
[34] applied MILP-strategy to look through integral distinguisher dependent
on CBDP and they applied this modeling technique to six lightweight block
ciphers. By extending and improving this method, the integral attacks have
been applied to many ciphers and many better integral distinguisher has been
found [18,19,21,23,28,29,37].

Three-Subset Division Property. Although CBDP can find more precise
integral distinguishers than other methods, the accuracy is never perfect. To
find more accurate distinguishers, the bit-based division property using three
subsets (BDPT) was proposed in [31]. BDPT divides all vectors u in F

n
2 into

two subsets such that the parity of
⊕

x∈X
xu is 0, 1 or unknown. Essentially,

the set unknown in CBDP is divided into 1-subset and unknown subset in
BDPT. As a result, BDPT can find more precise integral characteristics than
CBDP. For example, CBDP demonstrated the existence of SIMON32’s 14-round
integral distinguisher whereas BDPT discovered SIMON32’s 15-round integral
distinguisher [30].

Despite of its successful combination of the MILP and the CBDP, the MILP
modeling technique does not work quite well with the BDPT. As in case of
BDPT we have to track the division property propagation of two sets (K (the
unknown subset) and L (the 1-subset)) as well as the influence of the set L

on the set K should also be traced which makes the procedure of constructing
automatic search algorithm based on BDPT complicated.

First, Hu et al. [20] proposed variant three subset division property (VTDP)
and applied this method to improve some integral distinguishers although it
sacrifices quite some accuracy of BDPT. Therefore, Wang et al. [32] proposed
the idea of modeling the propagation for the BDPT and recently Liu et al. [24]
proposed a model set method to search integral distinguishers based on BDPT.
Both of these methods have been applied to the block ciphers having simple bit
permutation as their linear layer.

1.1 Motivation

The idea of modeling BDPT propagation which is described in [32] is that each
node on the breadth-first search algorithm is regarded as the starting point of
division trails, and the MILP evaluates whether there is a feasible solution from
every node. According to their searching algorithm, we can run this algorithm to
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any block cipher efficiently only if we can divide the round function into several
appropriate parts. Therefore, it is very difficult to model BDPT propagation
using this technique for the ciphers with complex linear layers. Next, Liu et al.
[24] proposed model set method to search BDPT where the authors constructed
r different MILP models for r-round block ciphers which is a bit complicated.
Moreover, both these methods have been applied to the block ciphers having
linear layers as simple bit permutation. Now, the following question arises:
Is MILP method of BDPT propagation efficiently applicable for ciphers with
complex linear layers?

1.2 Our Contributions

To address this question, first we propose an idea to find BDPT propagation
through the binary (complex) linear layer accurately and then we construct an
automatic search algorithm for BDPT in this paper. The details of our technical
contributions are listed as follows:

Model the BDPT Propagation of Binary Linear Layer. We give an idea
to find exact BDPT propagation through the binary (complex) linear layer which
is a new method that helps us to construct MILP model of BDPT propagation
through the binary linear layer accurately. We actually find that the rows of the
primitive matrix corresponding to the binary mixcolumn matrix can be divided
into some cosets with the property that the rows in different cosets have no
common nonzero entries in the same column. Using this interesting property, we
can easily find accurate BDPT propagation and can give a description of such
propagation by smallest number of inequalities.

Construction of Automatic Search Algorithm for BDPT. To search for
BDPT, first we construct the MILP models for key-independent components of
the round function of block ciphers. When a Key-Xor operation is applied, new
vectors generated from the set L will be added to the set K. Therefore, how to
model Key-Xor operation accurately is a complex problem. To solve this prob-
lem, we construct a new efficient algorithm that models each Key-Xor operation
based on MILP technique. Finally, by selecting appropriate initial BDPT and
stopping rules we construct an automatic search algorithm that accurately char-
acterize BDPT propagation using only two MILP models which is much simpler
than the algorithm described in [24]. Moreover, we prove the correctness of our
search algorithm.

Applications. As for the application of our methodology, first time we apply
BDPT on block ciphers with complex linear layers. We apply our automatic
search model to search integral distinguishers of PRINCE [8], MANTIS [6],
KLEIN [16], PRIDE [4], SIMON [5], and SIMON(102) [22]. The results are
shown in Table 1.
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At first, we apply our method on PRINCE and MANTIS which have binary
linear layer. We find 2 + 2 round integral distinguisher for PRINCE which is
one more round than the previous best integral distinguisher [15] and find 3 + 3
round integral distinguisher for MANTIS which is also one more round than the
previous best integral distinguisher [15] where we denote a are the rounds before
the middle layer, and b are the rounds after the middle layer and a + b as total
number of rounds.

Table 1. Summarization of integral distinguishers

Cipher Data Round Number of constant bits Time References

MANTIS 232 3+2 16 – [15]

263 3+3 64 2h 8m Sect. 5.1

PRINCE 232 2+1 64 – [15]

263 2+2 64 21h 45m Sect. 5.1

PRIDE64∗ - 8 – – [33]

263 9 32 2h 35m Sect. 5.2

KLEIN64 232 5 64 – [36]

262 6 64 45m Sect. 5.2
∗ In [33], the authors have only mentioned that PRIDE64 has 8-round integral
distinguisher and no other information is available best known to us.

To complete our BDPT analysis on ciphers with complex linear layers, we
apply our method to KLEIN and PRIDE which have non-binary linear layers.
As there are no known results on them related to CBDP, then we first apply
MILP based CBDP on them and find 6-round and 9-round integral distinguishers
for KLEIN and PRIDE respectively which are one more rounds to previous
best integral distinguishers [33,36]. Therefore, we apply our MILP based BDPT
method and the integral distinguishers we find are in accordance with the integral
distinguishers we find based on CBDP. Finally, we apply our method to all
variants of SIMON, and SIMON(102) block ciphers and the distinguishers we
find are in accordance with the previous longest distinguishers [24] but we get
these results in better time.

1.3 Organization of the Paper

This paper is organized as follows: In Sect. 2, we briefly recall some background
knowledge about the bit-based division property. In Sect. 3, we studies how to
model basic operations used in the round function of a block cipher by the
MILP technique and introduce exact modelling of complex (binary) linear layer
in BDPT. Section 4 studies the initial and stopping rules, and search algorithm.
We show some applications of our model in Sect. 5. At last we conclude the paper
in Sect. 6.
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2 Preliminaries

2.1 Notation

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ F
n
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,
define xu =

∏n−1
i=0 xui

i . Then, for any k ∈ F
n
2 and k′ ∈ F

n
2 , define k � k′ if

ki ≥ k′
i holds for all i = 0, 1, . . . , n − 1, and define k � k′ if ki > k′

i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊆ {0, 1, ..., n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K = K ∪ {k} and K → k when K = K \ {k}. And
|K| denotes the number of elements in the set K. We denote [n] = {1, 2, . . . , n},
1 = 1n, and 0 = 0n. We denote i-th unit vector in F

n
2 as ei.

2.2 Bit-Based Division Property

Two kinds of bit-based division property (CBDP and BDPT) were introduced
by Todo and Morii at FSE 2016 [31]. Their definitions are as follows.

Definition 1 (CBDP [31]). Let X be a multiset whose elements take a value
of F

n
2 . Let K be a set whose elements take an n-dimensional bit vector. When

the multiset X has the division property D1n

K
, it fulfills the following conditions:

⊕

x∈X

xu =

{
unknown, if there is k ∈ K satisfying u � k,

0 otherwise.

Some propagation rules of CBDP are proven in [30,31,34].

Definition 2 (BDPT [31]). Let X be a multi-set whose elements take a value
of Fn

2 . Let K and L be two sets whose elements take n-dimensional bit vectors.
When the multi-set X has the division property D1n

K,L, it fulfils the following con-
ditions:

⊕

x∈X

xu =

⎧
⎪⎨

⎪⎩

unknown, if there isk ∈ K satisfying u � k,

1, else if there is l ∈ L satisfying u = l,

0, otherwise.

If there are k ∈ K and k
′ ∈ K satisfying k � k

′
in the CBDP D1n

K
, then k can be

removed from K because the vector k is redundant. This progress is denoted as
Reduce0(K). Moreover, if there are l ∈ L and k ∈ K, then the vector l is also
redundant if l � k. This progress is denoted as Reduce1(K,L). The redundant
vectors in K and L will not affect the parity of xu for any u.

The propagation rules of K in CBDP are the same with BDPT. So we only
introduce the propagation rules of BDPT which are needed in this paper. For
further details, please refer to [31,32].
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BDPT Rule 1 (Xor with The Secret Key [31].) Let K be the input multiset
satisfying D1n

K,L. For the input x ∈ X, the output y ∈ Y is y = (x0, . . . , xi ⊕
rk, xi+1, . . . , xn−1), where rk is the secret key. Then, the output multiset Y has
D1n

K′,L′ , where K
′ and L

′ are computed as

⎧
⎪⎨

⎪⎩

L
′ ← l for l ∈ L,

K
′ ← k for k ∈ K,

K
′ ← (l1, l2, ..., li ∨ 1, ..., ln) for l ∈ L satisfying li = 0.

BDPT Rule 2 (S-box [32].) For an S-box : Fn
2 → F

n
2 , let x = (x0, . . . , xn−1)

and y = (y0, . . . , yn−1) denote the input and output variables. And every yi,
i ∈ {0, 1, . . . , n − 1} can be expressed as a boolean function of (x0, x1, . . . , xn−1).
If the input BDPT of S-box is D1n

K,L={l}, then the output BDPT of S-box can be
calculated by D1n

Reduce0(K),Reduce1(K, L),

{
K = {u′ ∈ F

n
2 | for any u ∈ K, if yu ′

contains any term xv satisfying v � u}
L = {u ∈ F

n
2 |yu contains the term xl}

Let D1n

K,L={l0,...,lr−1} and D1n

K′,L′ be the input and output BDPT of S-box, respec-
tively. We can get the output BDPT D1n

K′,L′
i
from the corresponding input BDPT

D1n

K,L={li} where i = 0, 1, . . . , r − 1. Then,

L
′ = {l | l appears odd times in sets L

′
0, . . . ,L

′
r−1}

2.3 The MILP Model for CBDP

At Asiacrypt 2016, Xiang et al. [34] applied MILP method to search integral
distinguishers based in CBDP, which allowed them to analyze block ciphers
with large sizes. Firstly they introduced the concept of CBDP trail as follows:

Definition 3 (CBDP Trail [34]). Consider the propagation of the division

property {k} ≡ K0
f1→ K1

f2→ K2
f3→ .... Moreover, for any vector k∗

i ∈ Ki(i ≥ 1),
there must exist an vector k∗

i−1 ∈ Ki−1 such that k∗
i−1 can propagate to k∗

i by
CBDP propagation rules. Furthermore, for (k∗

0,k
∗
1, ...,k

∗
r) ∈ K0 ×K1 × ... ×Kr,

if k∗
i−1 can propagate to k∗

i for all i ∈ {1, 2, . . . , r}, we call (k∗
0,k

∗
1, . . . ,k

∗
r) an

r-round CBDP trail.

With the help of division trail, finding the CBDP is transformed into a prob-
lem of finding a division trail ended at a unit vector. For more details please
refer to [34].
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3 The MILP Model for BDPT

Suppose Er is a r-round iterated block cipher whose round function fi for i ∈ [r]
consists of a non-linear layer, linear layer, and Key-Xor operation. Let f i

k be
the Key-Xor operation, and f i

e be the rest of the operations in the ith round
function fi i.e.

fi = f i
k ◦ f i

e

Let, the input multiset X to the block cipher Er has initial BDPT as
D1n

K0={k},L0={l}, and for any i ∈ [r], we denote the output BDPT as D1n

Ki,Li
.

Now, for the operation f i
e, we denote the BDPT propagation as

f i
e(Ki−1) = K

∗
i−1, f i

e(Li−1) = L
∗
i−1

We can evaluate the BDPT propagation for K (unknown subset) and L (1
subset) independently as per the BDPT propagation rules for linear and non-
linear layers. Now, for the operation f i

k, according to the BDPT Rule 1 some
new vectors which are produced from the vectors in L

∗
i−1 and those new vectors

along with the vectors in K
∗
i−1 are the vectors in the set Ki, and the set Li is

same as L
∗
i−1.

Now, we divide the operation f i
k into two parts say f i

1, f i
2 such that f i

1 is
the operation where new elements are produced from each elements in L

∗
i−1

according to BDPT Rule 1, and f i
2 is the operation which includes the new

vectors and the vectors from K
∗
i−1 in Ki which is as follows:

(Ki,Li) = f i
k(K

∗
i−1, L

∗
i−1) = (f i

2(f
i
1(L

∗
i−1), K

∗
i−1), L

∗
i−1) (1)

Precisely, f i
2 is the union operation i.e. Ki = f i

1(L
∗
i−1) ∪ K

∗
i−1.

To model the propagation of BDPT for the operations f i
e and f i

k for all i ∈ [r],
we reintroduce a notion named BDPT trail.1

Definition 4 (BDPT Trail) Let X be the input multiset to the block cipher
which has initial BDPT D1n

K0={k}, L0={l}, and denote the BDPT after r-round
propagation through f i

e, f i
k for all i ∈ [r] by D1n

Kr, Lr
, where r ≥ 1. Thus we have

the following chain of BDPT propagations:

{k} � K0 K
∗
0

f1
e

{l} � L0 L
∗
0

f1
e

f1
k

K1

L1

f2
e

f2
e

K
∗
1

L
∗
1

Kr−1 K
∗
r−1

fr
e

Lr−1 L
∗
r−1

fr
e

fr
k

Kr

Lr

where K
∗
i−1 = f i

e(Ki−1), L∗
i−1 = f i

e(Li−1), and (Ki, Li) = f i
k(K

∗
i−1, L

∗
i−1) for all

1 ≤ i ≤ r. Moreover, for any vector tuple (ki , li), ki ∈ Ki, and li ∈ Li (i ∈ [r]),
there must exist (k∗

i−1, l∗i−1), where k∗
i−1 ∈ K

∗
i−1, and l∗i−1 ∈ L

∗
i−1 such that

k∗
i−1 ∈ K

∗
i−1 propagate to (ki , li) by BDPT propagation rule of Key-Xor, and

1 In [24], the authors have defined BDPT trail. We actually rewrite it according to
our notations.
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there must exist (ki−1, li−1) ∈ Ki−1 × Li−1 such that ki−1 propagate to k∗
i−1,

and li−1 propagate to l∗i−1 by BDPT propagation rules of linear and non-linear
layers. Furthermore, for (k0, l0), . . . , (kr, lr) ∈ K0 × L0 × . . . × Kr × Lr, if
(ki−1, li−1) can propagate to (ki, li) for all i ∈ {1, 2, . . . , r}, we call

(k0, l0)
f1
e , f

1
k→ (k1, l1)

f2
e , f

2
k→ . . .

fr
e , f

r
k→ (kr, lr)

an r-round BDPT trail.

Now, to model BDPT trail, we propose Proposition 1 according to Defini-
tion 4.

Proposition 1. Let the input multiset X has initial BDPT D1n

{k}, {l} and D1n

Kr,Lr

denote the BDPT of the output multiset after r-round propagation. Then, the set
of first components of the last vectors of all r-round BDPT trails which starts
with the vector (k, l) is equal to the set Kr and the set of second components of
the last vectors of all r-round BDPT trails which starts with the vector (k, l) is
equal to the set Lr.

Proof of this Proposition 1 directly follows from Definition 4.

3.1 Some Observations on BDPT Propagation Rule for S-box

S-box is an important component of block ciphers. For a lot of block ciphers
it is the only non-linear part. Although any Boolean function can be evaluated
by using three rules (COPY, XOR, AND), the propagation requires much time
and memory complexity when Boolean function is complex. Inspired by the
algorithm of calculating CBDP trails of S-box [34], Wang et al. proposed a
generalized method to calculate BDPT division trails of S-box in [32] and we
have mentioned the rule in BDPT Rule 2.

Let, the input BDPT of S-box is D1n

K, L={l}, and according to the BDPT
Rule 2, we have found the sets K, and L from K and L respectively as follows:
{
K = {u′ ∈ F

n
2 | for any u ∈ K, if yu ′

contains any term xv satisfying v � u}
L = {u ∈ F

n
2 |yu contains the term xl}

(2)
Now, according to the BDPT Rule 2, the output BDPT would be D1n

K′, L′

which is as follows:

K
′ = Reduce0(K), L

′ = Reduce1(K, L)

Therefore, it is obvious that, K′ ⊆ K, and L
′ ⊆ L. Here, we come to two

observations as follows:

Observation 1. L
′ does not contain 1 vector.

According to the BDPT propagation rule of S-box, as L
′ = Reduce1(K, L),

and for any u ∈ K, 1 � u, then L
′ does not contain 1 vector.
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Observation 2. If L = {0}, then L
′ = {0}.

Whenever, L = {0}, then
⊕

x∈X
x0 = 1 which implies that the input multiset

X contains a constant term. Therefore, for all u � 0,
⊕

x∈X
xu = unknown.

Hence, trivially
⊕

y∈Y
y0 = 1 and L

′ = {0} where Y is the output multiset.

Therefore, given an n-bit S-box and its input BDPT D1n

K={k}, L={l}, BDPT Rule 2
returns the output BDPT D1n

K′, L′ . Thus for any vector k′ ∈ K
′, (k,k′) is a valid

division trail for K
′ of the S-box. Similarly, this holds for L

′ as well. We know
that, the vector l does not affect the propagation of vector k through the S-box,
we will obtain a complete list of the division trail for K

′ by traversing k ∈ F
n
2

[34].
Similarly, for a certain input vector l ∈ F

n
2 , we will obtain a certain set of

division trails for L using Eq. 2 and then using Observation 1, and Observation 2
we will remove some invalid division trails from L and obtain a set of division
trail for L

′. Therefore, if we try all the 2n possible input vector l, we will get a
complete list of division trails for L

′.
In [32], the authors included some invalid BDPT trail for L′ set while obtain-

ing a complete list of division trails for L
′. In [24], the authors have removed

those invalid BDPT trail from L
′ by introducing another algorithm which is

actually equivalent to the algorithm of finding BDPT trail of S-box in [32] and
by traversing k ∈ F

n
2 . Now, our approach is similar to their idea [24] in a much

simplified manner using two observations from BDPT Rule 2 which was intro-
duced in [32].

In the full version of this paper [10], we present the complete lists of all the
division trails for L of PRINCE S-box according to our method which is same if
we apply the method the authors described in [24]. Therefore, after getting the
BDPT trails for K and L of S-box, we construct the linear inequalities using the
method described in [34] whose feasible solutions are exactly those BDPT trails
which are shown in the full version of this paper [10].

3.2 MILP Model of BDPT for Complex Linear Layer

In this section, we establish the idea to construct MILP model of BDPT for
complex linear layer represented by a matrix M = (mi,j)s×s ∈ F

s×s
2m . Given

the irreducible polynomial of the field F
m
2 where the multiplications operate,

the representation of the matrix over F2 is unique, which we call the primitive
matrix of M and is denoted by M ′ = (m′

i,j)n×n
where m′

i,j ∈ F2 and n = m× s.
Therefore, if each mi,j in M which is a polynomial in the extension field F2m �
F[x]/(f), where f is the irreducible polynomial over F2 with degree m, is either
0 or 1 then M is called binary matrix and otherwise M is non-binary matrix.

Therefore, block ciphers with complex linear layer can be partitioned into
two parts: (i) Block ciphers with binary linear layer and (ii) Block ciphers with
non-binary linear layer, depending on the binary or non-binary matrix as its
linear layer. Examples of block ciphers having binary linear layer are MIDORI,
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SKINNY, CRAFT, PRINCE, MANTIS etc. and AES, LED, KLEIN, PRIDE
etc. have non-binary linear layer.

Now, an obvious way to model the BDPT propagation through any complex
linear layer i.e. u1

M→ v1 in K subset, and u2
M→ v2 in L subset is that one

can introduce some auxiliary binary variables and decompose it into the COPY
and XOR operations. Therefore, by following the BDPT propagation rule of
COPY and XOR, BDPT propagation through linear layer can be modelized.
The obvious advantage of this model is that using this technique we can model
BDPT propagation of any complex linear layer.

In [21,37], the authors have shown that using this technique one may intro-
duce many invalid division trails in K subset. Now, here we are going to show
that if we use this COPY-XOR technique to handle binary linear layer then
many invalid division trails may be added to the L subset as well which we have
shown by giving an example in the full version of this paper [10].

Exact BDPT Modelization for Ciphers Having Binary Linear Layer.
Given a binary matrix M = (mi,j)s×s ∈ F

s×s
2m , and denote n = m × s, we can

derive an equivalent matrix working at a bit level which is called primitive matrix
M ′ = (m′

i,j)n×n ∈ F
n×n
2 . Now, M ′ has n = ms number of rows which we denote

say R0, R1, . . . , Rn−1, and define a set of all rows R = {Ri | 0 ≤ i ≤ n − 1}.
Therefore, we can construct m disjoint sets R0, R1, . . . ,Rm−1 in the following
way:

Ri = {Rmj+i | 0 ≤ j ≤ s − 1} for all 0 ≤ i ≤ m − 1 (3)

Now, it is obvious that �m−1
i=0 Ri = R, and Ri contains exactly a number s of

rows from M ′ where 0 ≤ i ≤ m−1. Here we come to an important property that
the rows in different sets have no common nonzero entries in the same column,
which is the key feature of a binary matrix. Exploiting this property of a binary
matrix, the binary linear layer can actually be seen as the application of m many
s-bit S-box with algebraic degree 1 in parallel.

Therefore, if x = (x0, x1, . . . , xn−1), and y = (y0, y1, . . . , yn−1) are corre-
sponding input and output variables w.r.t the linear layer i.e. y = M ′ · x, then
we can write ANF of m many s-bit S-box with algebraic degree 1 as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S0(x0) = (R0
0 · x0, R0

m · x0, . . . , R
0
(s−1)m · x0)

S1(x1) = (R1
1 · x1, R1

m+1 · x1, . . . , R
1
(s−1)m+1 · x1)

...
Sm−1(xm−1) = (Rm−1

m−1 · xm−1, Rm−1
2m−1 · xm−1, . . . , R

m−1
sm−1 · xm−1)

where Ri
mj+i is a vector which belongs to the set F

s
2 such that Ri

mj+i =
(m′

mj+i, i, m′
mj+i,m+i, . . . ,m

′
mj+i, (s−1)m+i), and xi = (xi, xm+i, . . . ,

x(s−1)m+i) ∈ F
s
2 where i = 0, 1, . . . , m − 1, and j = 0, 1, . . . , s − 1.
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An Example of Exact BDPT Modelization of Binary Matrix. The
MixColumns matrix M of the block cipher MANTIS which is as follows:

M =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ ∈ F

4×4
24

Therefore, for this example, s = 4, and m = 4, and the primitive matrix M ′

corresponding to the matrix M is a 16 × 16 matrix where each matrix element
is either 0 or 1 i.e. the primitive matrix M ′ ∈ F

16×16
2 is as follows:

M ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ F
16×16
2

Now, we can easily conclude that applying the matrix M ′ to a vector x =
(x0, x1, . . . , x15) ∈ F

16
2 is actually equivalent to performing the following 4-bit

S-box in parallel:

Si(xi, xi+4, xi+8, xi+12) =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

xi

xi+4

xi+8

xi+12

⎞

⎟
⎟
⎠ , i ∈ {0, 1, 2, 3}

Therefore, we can construct exact BDPT trail for K and L for the mixcolumn
operation and the linear inequalities whose feasible solutions are exactly those
BDPT trail.

Now, the exact BDPT modelization of S-box we have discussed in the previ-
ous section. Applying that approach we can get the exact BDPT trail through
the binary linear layer and then we can easily represent the BDPT trails of
binary linear layer as linear inequalities following the approach mentioned in
[34]. Thus, we give a way to generate a set of inequalities that exactly model
the valid BDPT propagations through a binary linear layer. For the ciphers with
non-binary linear layer, we decompose its linear layer through the COPY and
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XOR operation trivially and generate a set of linear inequalities that model the
propagations through the linear layer.

3.3 MILP Model of BDPT for Key-XOR

In this section, we explain how to construct MILP model of BDPT for the Key-
Xor operation. As per the notation discussed above Er is the r-round block cipher
where we denote fi is the ith round function and f i

k is the ith round Key-Xor
operation. Moreover, we denote the initial and output BDPT for the Key-Xor
operation as (K∗

i−1, L
∗
i−1), and (Ki, Li) respectively. Therefore, as per BDPT

Rule 1, we decompose f i
k into two operations say f i

1 which actually produces
some new elements from each elements of L∗

i−1 and f i
2 which includes the new

vectors and the vectors from K
∗
i−1 in Ki which is described in Eqn 1. Hence,

we model the operations f i
1, and f i

2 which jointly present the MILP model for
Key-Xor operation.

Table 2. Trails Corresponding to the Function f i
1

(l0, l1, l2, l3) (l′0, l
′
1, l

′
2, l

′
3)

(0, 0, l2, l3) (0, 1, l2, l3), (1, 0, l2, l3), (1, 1, l2, l3)

(0, 1, l2, l3) (1, 1, l2, l3),

(1, 0, l2, l3) (1, 1, l2, l3),

(1, 1, l2, l3) X

Modeling f i
1. In many ciphers, round key is only XORed with a part of block.

Without loss of generality, we assume that the round key is XORed with the
left s (0 ≤ s ≤ n − 1) bits. Let, L∗

i−1 ⊆ F
4
2 and s = 2 i.e. round key is XORed

with the leftmost 2 bits. Therefore, according to the BDPT rule 1, f i
1 function

creates l′ = (l′0, l′1, l′2, l′3) from l = (l0, l1, l2, l3) where for every vector l ∈ L
∗
i−1

satisfying li = 0, l′i = li∨1 where i ∈ {0, 1} and l′j = lj for all j = 2, 3. Therefore,
we write the propagation table (Table 2) corresponding to the function f i

1 using
which we construct linear inequalities whose feasible solutions are exactly those
trails. Now, we are ready to give linear inequalities description of these trails
listed in Table 2 as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l′j ≥ lj , for j = 0, 1
l′j = lj , for j = 2, 3

2
∑1

j=0 l′j − ∑1
j=0 lj ≥ 2

∑3
j=0 l′j − ∑3

j=0 lj ≥ 1

(4)

where l′0, l′1, l′2, l′3, l0, l1, l2, l3 are binaries.
Apparently, all feasible solutions of the inequalities in Eq. 4 corresponding to

l, and l′ are exactly the trails of f i
1 function described above in Table 2. Similarly,
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for a n-bit block cipher where L
∗
i−1 ⊆ F

n
2 , and round key is XORed with the

leftmost s (0 ≤ s ≤ n − 1) bits, the linear inequalities we get which describe the

trails l
fi
1→ l′ as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l′j ≥ lj , for j = 0, 1, ..., s − 1
l′j = lj , for j = s, s + 1 . . . , n − 1

s
∑s−1

j=0 l′j − (s − 1)
∑s−1

j=0 lj ≥ s
∑n−1

j=0 l′j − ∑n
j=1 lj ≥ 1

(5)

where l′0, l′1, ..., l′n−1, l0, l1, ..., ln−1 are binaries.

Modeling f i
2. After applying f i

1 on each element of the set L∗
i−1, we get the set

say L
′
i−1 as follows:

L
′
i−1 = {l′ ∈ F

n
2 | f i

1(l) = l′, ∀ l ∈ L
∗
i−1}

Now, from BDPT Rule 1 we know that:

f i
2(K

∗
i−1, L

′
i−1) = K

∗
i−1 ∪ L

′
i−1 = Ki

Therefore, to model f i
2, we define another function g : (F2

2 \ {(0, 0), (1, 1)}) ×
K

∗
i−1 × L

′
i−1 → Ki such that:

g(λ0, λ1,k
∗, l′) = (λ0 ∧ k∗

0 , . . . , λ0 ∧ k∗
n−1) ⊕ (λ1 ∧ l′0, . . . , λ1 ∧ l′n−1) (6)

where λ = (λ0, λ1) ∈ F
2
2 \ {(0, 0), (1, 1)}, and k∗ = (k∗

0 , . . . , k∗
n−1), and l′ =

(l′0, . . . , l
′
n−1). Therefore, from the definition of g we can easily conclude that

Ki contain all the elements of L
′
i−1, and K

∗
i−1. Hence, modeling g is actually

equivalent to modeling f i
2. Now, we are going to construct the linear inequalities

whose feasible solutions are exactly the g function trail. In order to do that first
we have to construct the linear inequalities which are sufficient to describe the
propagation (a, b) ∧→ c where a, b, c ∈ F2 which is as follows:

⎧
⎪⎨

⎪⎩

a − c ≥ 0
b − c ≥ 0

a + b − c ≤ 1
(7)

where a, b, c are binaries. Therefore, using Eq. 6 and Eq. 7 we can easily conclude
that the following inequalities are sufficient to describe the propagation of g

function i.e. (λ0, λ1, k
∗, l′)

g→ k:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0 − pj ≥ 0, for j = 0, 1, ..., n − 1
k∗
j − pj ≥ 0, for j = 0, 1, ..., n − 1

λ0 + k∗
j − pj ≤ 1, for i = 0, 1, ..., n − 1

λ1 − qj ≥ 0, for i = 0, 1, ..., n − 1
l′j − qj ≥ 0, for i = 0, 1, ..., n − 1

λ1 + l′j − qj ≤ 1, for i = 0, 1, ..., n − 1
pj + qj − kj = 0, for j = 0, 1, ..., n − 1

λ0 + λ1 = 1

(8)

where p0, ..., pn−1, q0, ..., qn−1, l
′
0, ..., l

′
n−1, k0, ..., kn−1, k

∗
0 , ..., k

∗
n−1, λ0, λ1 are

binaries and p = (p0, p1, ..., pn−1), q = (q0, q1, ..., qn−1) are auxiliary variables.
Hence Eq. 8 and Eq. 5 describe the complete MILP model of the Key-XOR oper-
ation w.r.t BDPT.

3.4 MILP Model Construction of r-Round Function

For all the functions based on these above mentioned operations, we are finally
making a set of linear inequalities depicting one round BDPT propagation. In
order to construct an MILP model for r round BDPT propagation we have to
iterate this above mentioned procedure r times and finally we conclude upon
getting a system of linear inequalities L which we describe in Algorithm 1.

Algorithm 1 constructs a system of linear inequalities which charecterizes all
r-round BDPT trails i.e.

(k0 = k, l0 = l)
f1→ (k1, l1)

f2→ . . .
fr→ (kr, lr)

Therefore, we have to construct MILP model using L and appropriate initial and
stopping rules and the search algorithm in order to find integral distinguisher.

4 Automatic Search Algorithm for r-Round Integral
Distinguisher

In this section, we first study the initial BDPT and stopping rule to use when
searching for integral distinguisher based on BDPT. From Algorithm1 we got
the linear inequality system L with the input vector k and l. Now, we convert the
stopping rule into an objective function and combining L and objective function,
we construct the MILP model MK,L. At last we propose an algorithm to search
integral distinguisher based on BDPT given the initial BDPT D1n

{k}, {l} for an
n-bit block cipher and prove the correctness of the algorithm.
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4.1 Initial BDPT

In [31], Todo and Morii set the initial BDPT as (K = {1}, L = {7fffffff})
to search the BDPT of SIMON32, where the active bits of the vector l are set
as 1 and 0 for constant bits. Hence we do the same. Let the initial input BDPT
variables are k0 = (k0

0, k
0
1, ..., k

0
n−1), and l0 = (l00, l

0
1, ..., l

0
n−1) where n is the

block size. The constraints on k0
i and l0i are

k0
i = 1 for i = 0, 1, ..., n − 1

l0i =

{
1, if i − th bit is active
0, otherwise

Algorithm 1: Computing A Set of Constraints Characterizing BDPT
Propagation
Input: The initial input BDPT of an n-bit iterated cipher

D1n

K0={k},L0={l}
Lk(Ki−1, K

∗
i−1): a constraint set of linear inequalities whose

feasible solutions are all division trails from the set Ki−1 to set
K

∗
i−1, ∀ i ∈ [r].

Ll(Li−1, L
∗
i−1): a constraint set of linear inequalities whose

feasible solutions are all division trails from the set Li−1 to set
L

∗
i−1, ∀ i ∈ [r].

Newk(L∗
i−1, L

′
i−1): a constraint set of linear inequalities whose

feasible solutions are all f i
1 function trails, ∀ i ∈ [r].

Unionk(L′
i−1, K

∗
i−1, Ki): a constraint set of linear inequalities

whose feasible solutions are all f i
2 function trails, ∀ i ∈ [r].

Output: A constraint set of linear inequalities L describing r-round
BDPT propagation

begin
L = ∅, Ci = Ci, ∗ = ∅ where i = 1, 2, . . . , r
Allocate n-bit variables ki, li to denote vectors in the set Ki, Li

respectively where i = 0, 1, . . . , r
Allocate n-bit variables li, ∗, pi, and ki, ∗ to denote vectors in the
set L

∗
i , L

′
i, and K

∗
i respectively where i = 0, 1, . . . , r − 1

L ← (k0 = k)
L ← (l0 = l)
for (i = 1 ; i ≤ r ; i + +) do

Ci ← Ll(Li−1, L
∗
i−1) ∪ Lk(Ki−1, K

∗
i−1)

Ci, ∗ ← Newk(L∗
i−1, L

′
i−1)

Ci, ∗ ← Unionk(L′
i−1, K

∗
i−1, Ki)

L ← (li−1, ∗ = li)
L ← (Ci ∪ Ci, ∗)

end
return L

end
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4.2 Stopping Rule

Our automatic search model only focuses on the parity of one output bit. With-
out loss of generality, we consider the q-th output bit. After r round, the output
set has BDPT D1n

Kr,Lr
. Therefore, according to the Proposition 1, we know that

the set of the first components of the last vectors of all r-round BDPT trails
which start from the vector (k, l) is equal to Kr. Hence, to check whether there
exist any unit vector in the Kr, the objective function can be set as follows:

Obj : Minimize(kr
0 + kr

1 + . . . , kr
n−1) (9)

Similarly, according to the Proposition 1, the set of the second components of
the last vectors of all r-round BDPT trails which start from the vector (k, l) is
equal to Lr. Thus, we can set the objective function as :

Obj : Minimize(lr0 + lr1 + . . . , lrn−1) (10)

Now, at first we construct the MILP model MK,L using the system of linear
inequalities L we get from Algorithm 1 and the objective function defined in
Eq. 9. Moreover, we construct another MILP model ML as follows:

ML = ConstructModel(L∗,Min(lr0 + . . . , lrn−1))

where L∗ is the constraint set of linear inequalities whose feasible solutions are
all division trails from the set L0 to Lr.

Stopping Rule for the MILP Model MK,L. To check whether Kr contains
the unit vector eq is equivalent to check whether the MILP model MK,L has
feasible solution satisfying kr = eq. Therefore, we can set the stopping rule as:

kr
j =

{
1 if j = q

0 otherwise
(11)

If MK,L has such feasible solutions, then the q-th output bit is unknown.

Stopping Rule for the MILP Model ML. If Kr does not contain eq, then
to check whether Lr contains eq is equivalent to check whether the MILP model
ML has feasible solution satisfying lr = eq. Therefore, we can set the stopping
rule as :

lrj =

{
1 if j = q

0 otherwise
(12)

If both Kr and Lr do not contain eq, then q-th output bit is balanced.
Otherwise, we need to count the number of feasible solutions satisfying lr = eq
of the model ML. Therefore, the parity of q-th output bit is 0 or 1 if the number
of solutions are even or odd respectively as Kr does not contain eq.



414 D. Chakraborty

Algorithm 2: Deciding Parity of q-th Output Bit
Input: The r-round cipher Er, the initial input BDPT of an n-bit

iterated cipher D1n

K0={k},L0={l}, the number q, and Ll(Li−1, Li):
a constraint set of linear inequalities whose feasible solutions are
all division trails from the set Li−1 to set Li, ∀ i ∈ [r].

Output: The balanced information of the q-th output bit based on
BDPT

begin
Allocate all the variables denoting the input and output BDPT
Obj1 = Minimize(kr

0 + kr
1 + . . . , kr

n−1)
Obj2 = Minimize(lr0 + lr1 + . . . , lrn−1)
Call Algorithm 1 and get a constraint set L whose feasible solutions
are r-round BDPT trail
MK,L = ConstructModel(L, Obj1)
MK,L.AddConstraint(kr = eq)
if the MILP model MK,L has solutions then

return unknown
end
else

ML = ConstructModel(
⋃r

i=1 Ll(Li−1,Li), Obj2)
ML.AddConstraint(l0 = l)
if the MILP model ML has no feasible solution satisfying
lr = eq then

return 0
end
else

ML.AddConstraint(lr = eq)
Count the number of solutions in ML

if Count is even then
return 0

end
else

return 1
end

end
end

end

4.3 Search Algorithm

We present the automatic search algorithm to find integral distinguisher based
on BDPT, which decides the parity of the q-th output bit with the given initial
BDPT D1n

K0={k},L0={l} for an n-bit block cipher. Firstly, we allocate all round
variables and auxiliary variables. Therefore, we construct a MILP model MK,L

that describes all r-round BDPT trails, and another MILP model ML that
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describes all r-round division trails for L. Finally, using appropriate initial and
stopping rules, we can obtain the parity of q-th output bit based on BDPT. We
illustrate the whole framework in Algorithm2.

4.4 Correctness of Search Algorithm

Let the initial input division property of an n-bit iterated cipher be
D1n

K0={k},L0={l}, and after r-round propagation, the output BDPT we denote
as DKr,Lr

. It is obvious that if eq ∈ Kr, then the parity of q-th bit is unknown
and if eq does not belongs to Kr as well as Lr, then the parity of q-th bit is 0.

Therefore, to prove correctness of Algorithm 2 we have to prove that if the
q-th unit vector does not belong to Kr and belongs to Lr, then the parity of q-th
output bit is 0 or 1 provided the number of division trails from l to eq is even
or odd respectively. We first prove the following Lemma:

Lemma 1. Let X ⊆ F
n
2 has division property D1n

K0={k},L0={l} and after r-round
propagation, the output set Yr has division property D1n

Kr,Lr
. For any l′ ∈ Lr, if

the number of division trail in L from l to l′ is even, then there exist at least one
j in [r] s.t Lj contains at least one element u which is produced even number of
times from the elements in Lj−1.

The proof is provided in the full version of this paper [10]. Therefore, using
Lemma 1 we prove the final result as follows:

Proposition 2. Let X ⊆ F
n
2 has division property D1n

K0={k},L0={l} and after r-
round propagation, the output set Y has division property D1n

Kr,Lr
. If eq doesn’t

belongs to the set Kr, where q ∈ [n], then we have:

1. If the number of division trail from l to eq is even in L, then
⊕

y∈Y
yq = 0.

2. If the number of division trail from l to eq is odd in L, then
⊕

y∈Y
yq = 1.

Proof. Let S ⊆ (Fn
2 )r+1 be the set which contains all the division trail in L from

l to eq and |S| is even. Now, by using Lemma 1, we can easily conclude that there
exist at least one j ∈ {2, 3, ..., r} s.t Lj contains an element u which is produced
even number of times from the elements in Lj−1. Without loss of generality we
choose smallest such j.

According to the BDPT propagation rule of XOR and S-box, we can see
that if an element u is produced even number of times in Lj from Lj−1, then
the following holds: ⊕

y∈Yj

yu = 0

where Yj is the multiset whose BDPT is D1n

Kj ,Lj
and that implies u shouldn’t

be in Lj . Hence, all the division trails from l to eq which contains the vector u
are actually redundant and those number of redundant division trails must be
even. Therefore, we can remove these redundant division trails from S and we
can call the new set as S1. It is trivial that either |S1| is even or |S1| = 0.
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Case-I. If |S1| = 0, then it implies that all the division trails from l to eq
contains the element u. Therefore, as u shouldn’t be in Lj , so eq also shouldn’t
be in Lr and it is given that eq doesn’t belongs to Kr which means

⊕

y∈Y

yeq =
⊕

y∈Y

yq = 0.

Case-II. If |S1| is even, then in a similar way we can find even number of
redundant division trails from l to eq in L and construct S2 from S1 where |S2|
is either even or 0 and so on.

As |S| is finite, then after finitely many p steps, we must get some Sp s.t
|Sp| = 0. Hence, eq shouldn’t be in Lr and it is given that eq doesn’t belongs to
Kr which means ⊕

y∈Y

yeq =
⊕

y∈Y

yq = 0

which completes the first part of the proof.

Now, it is given that the number of division trail in L from l to eq is odd.
Similarly we can construct a set S′ containing all such division trails. Therefore,
there may or may not exist j ∈ {2, 3, ..., r} s.t Lj contains an element u which
is produced even number of times from the elements in Lj−1.

Case-A. If there doesn’t exist any such j, then by BDPT propagation rules, we
can easily conclude that no division trail from l to eq is redundant. Therefore,
it implies that eq belongs to Lr which means

⊕
y∈Y

yq = 1.

Case-B. If there exist some j s.t Lj contains an element u which is produced
even number of times from the elements in Lj−1, then similarly by the previous
argument we can easily conclude that all the division trails from l to eq which
contains u are actually redundant. Therefore, we can remove these redundant
division trails from S′ and we can call the new set as S′

1. It is obvious that |S′
1|

is odd.
Now, continuing like this way, after finitely many steps we arrive at a sit-

uation where the number of remaining division trails from l to eq is odd and
no redundant division trails are left which implies eq belongs to Lr. Therefore,⊕

y∈Y
yeq =

⊕
y∈Y

yq = 1 which completes the second part of the proof. ��

5 Applications to Block Ciphers

In this section, we apply our automatic search algorithm for BDPT to SIMON,
SIMON(102), MANTIS, PRINCE, KLEIN, and PRIDE block ciphers. All
the experiments are conducted on the platform Intel Core i5-8250U CPU @
1.60 GHz, 8 G RAM, 64 bit Ubuntu 18.04.5 LTS. The optimizer we used to solve
MILP models is Gurobi 9.1.2 [17]. For the integral distinguishers, ‘?’ denotes
the bit whose balanced information is unknown, ‘0’ denotes the bit whose sum
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is zero, ‘1’ denotes the bit whose sum is 1. The detailed integral distinguishers
of PRINCE, MANTIS, KLEIN and PRIDE are listed in supporting material of
the full version of this paper [10].

5.1 Applications to PRINCE and MANTIS

In this section we present the application of our BDPT model to the cipher
PRINCE and MANTIS which have binary matrices to conduct their mixcolumn
operations in the round functions. Hence, we apply our method to model binary
linear layer in BDPT and construct the MILP model efficiently. Then, choosing
appropriate initial BDPT, we find improved integral distinguisher as follows:

Integral Attack on PRINCE. Block ciphers based on the reflection design
strategy, introduced by PRINCE [8], are a popular choice for low-latency designs.
PRINCE is the 64-bit block cipher which uses 128-bit key. The PRINCE cipher
is the substitution-permutation network composed of 12 rounds. The 64-bit state
can be organised as the 4 × 4 array of nibbles. For a complete specification and
design rationale of the cipher, a reader is referred to [8].

We will denote the number of rounds of PRINCE as a + b where a are the
rounds before the middle layer, and b are the rounds after the middle layer. There
are several attacks (Integral attack, higher order differential attack, boomerang
attack) on PRINCE [2,25,27]. Now, in [15], the authors applied CBDP on
PRINCE and found 2 + 1 and 1 + 2 round integral distinguishers which are
best integral distinguisher till date.

For PRINCE, we find a 2 + 2 round integral distinguisher which is one more
round than the previous best results [15].

Integral Attack on MANTIS. MANTIS is a tweakable block cipher pub-
lished at CRYPTO 2016 by Beierle et al. [6] and the cipher’s structure is similar
to PRINCE. This block cipher operate on a 64-bit message block and work with
a 64-bit tweak and (64+64) bit key and has a SPN structure. For a more detailed
description of the MANTIS family, we refer to the design paper [6].

In the light of cryptanalysis, there are several attacks [7,11,14] on MANTIS.
For MANTIS, we find a 3+3 round integral distinguisher based on BDPT which
is one more round than the previous best results [15].

5.2 Applications to KLEIN and PRIDE

To complete our BDPT analysis on ciphers with complex linear layers, we apply
our automatic search algorithm for BDPT to block ciphers KLEIN and PRIDE
which have non-binary linear layers. In order to handle non-binary linear layers
we trivially decompose the linear layers as COPY and XOR operations and con-
struct the MILP model accordingly. Then, choosing appropriate initial BDPT,
we find integral distinguisher as follows:
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Integral Attack on KLEIN. KLEIN [16] is a family of block ciphers, with a
fixed 64-bit block size and variable key length-64, 80 or 96-bits. The structure of
KLEIN is a typical Substitution Permutation Network. For more details, please
refer to [16].

In the light of cryptanalysis, there are several attacks [1,3,26,36] on the block
cipher KLEIN, mostly on KLEIN-64 (key length 64 bits). In [36], the authors
have presented a 5-round integral distinguisher using the higher-order integral
and the higher-order differential properties which is best integral distinguisher
known to us. First we apply MILP based CBDP on KLEIN and find a 6-round
integral distinguisher which is one more round than the previous best results
[36]. Therefore, we apply the MILP based BDPT on KLEIN and the integral
distinguishers we find are in accordance with the distinguishers we find based
on CBDP.

Integral Attack on PRIDE. PRIDE is a lightweight block cipher designed
by Albrecht et al. [4], appears in CRYPTO 2014. PRIDE is an SPN structure
block cipher with 64-bit block cipher and 128-bit key. For more details, please
refer to [4]. In the light of cryptanalysis, there are several attacks on PRIDE
[12,13,35,38].

First we apply MILP based CBDP on PRIDE and find a 9-round integral
distinguisher which is one more round than the previous best results [33]. There-
fore, we apply the MILP based BDPT on PRIDE and the integral distinguishers
we find are in accordance with the distinguishers we find based on CBDP.

5.3 Applications to SIMON, SIMON (102)

We apply our method to all variants of SIMON [5], and SIMON(102) [22] block
ciphers and the distinguishers we find are in accordance with the previous longest
distinguishers [24] but we get these results in better time which are shown in the
full version of this paper [10].

6 Conclusion and Future Work

In this paper, we provide an idea to model BDPT propagation of ciphers with
binary (complex) linear layers and furthermore we construct an efficient auto-
matic search algorithm that accurately characterize BDPT propagation. Based
on these, more accurate BDPT for ciphers with binary (complex) linear layers
such as PRINCE, MANTIS can be obtained.

For ciphers with non-binary linear layers we trivially decompose the lin-
ear layer by COPY-XOR technique which may ignore some balanced property.
Therefore, how to model BDPT propagation for ciphers with non-binary linear
layers accurately and efficiently is an open problem. Moreover, we construct our
model using MILP solver whereas SAT/SMT are also very popular and efficient
solvers in this domain. How to implement our model using SAT/SMT solvers or
similar ones will be a future work.
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